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Prüfer der Dissertation: 1. Univ.-Prof. Dr. S. J. Glaser

2. Assoc. Prof. Dr. D. Sugny, Université de Bourgogne /Frankreich
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Abstract

Since the foundations of quantum physics have been laid, our knowledge of it never
ceased to grow and this field of science naturally split into diverse specialized branches.
The first part of this thesis focuses on a problem which concerns all branches of quantum
physics, which is the visualization of quantum systems. The non-intuitive aspect of
quantum physics justifies a shared desire to visualize quantum systems. In the present
work, we develop a method to visualize any operators in these systems, including in par-
ticular state operators (density matrices), Hamiltonians and propagators. The method,
referred to as DROPS (Discrete Representation of spin OPeratorS), is based on a
generalization of Wigner representations, presented in this document. The resulting
visualization of an operator A is called its DROPS representation or visualization. We
demonstrate its intuitive character by illustrating a series of concepts in nuclear mag-
netic resonance (NMR) spectroscopy for systems consisting of two spin-1/2 particles.
The second part of this thesis is concerned with a problem of optimal control which
finds applications in the fields of NMR spectroscopy, medical imagery and quantum
computing, to cite a few. The problem of creating a propagator in the shortest amount
of time is considered, and the results are extended to solve the closely related problem
of creating rotations in the smallest amount of time. The approach used here differs
from the previous results on the subject by solving the problem using the Pontryagin’s
maximum principle and by its detailed consideration of singular controls and trajectories.
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Zusammenfassung

Das Wissen über die Quantenphysik ist seit der Gründung dieser Wissenschaft kontinu-
ierlich gewachsen und unterteilt sich heute in eine Vielzahl verschiedener Fachgebi-
ete. Die vorgestellte Arbeit beschäftigt sich mit den zwei Themengebieten der Spin-
Visualisierung und der Spin-Kontrolle.

Die Visualisierung eines Quantenzustandes ist eine Problemstellung, die alle Fachge-
biete der Quantenphysik betrifft. Ein solches System aus Quanten bildlich aufzuarbeiten
stellt das allgemeine Bedürfnis dar, die in der Quantenphysik herrschenden nicht intu-
itiven Sachverhalte zu vermitteln. Es wurde eine Methode entwickelt, die einzelnen
Operatoren des Quantensystems zu veranschaulichen. Es wurden hier unter anderem
die Zustandsoperatoren (Dichtematrix) sowie die Zustandsfunktion und die Hamilton-
Operatoren berücksichtigt. Die als DROPS (Discrete Representation of spin OPeratorS)
bezeichnete Methode ist eine Verallgemeinerung der Winger-Darstellungsmethode. Die
resultierende visuelle Darstellung eines Operators wird zur entsprechenden DROPS-
Darstellung. Die Systematik dieser Visualisationsmethode wird anhand einer Auswahl
an Beispielen aus der Kernresonanzspektroskopie für zwei Spin-1/2-Teilchen vorgeführt.

Der zweite Schwerpunkt der Arbeit beschäftigt sich mit der optimalen Steuer-
ung von Spins. Als Beispiele für eine Anwendung seien hier nur die Kernresonanz-
spektroskopie, bildgebende Verfahren in der Medizintechnik und der Quantencomputer
zu nennen. Die Arbeit untersucht, wie ein Propagator in der kürzest möglichen Zeit
erzeugt werden kann. Die Resultate dieser Untersuchung werden auf das eng verwandte
Problem der Rotationserzeugung in der kürzest möglichen Zeit übertragen. Der hier
gewählte Ansatz unterscheidet sich von der herkömmlichen Herangehensweise, indem er
das Maximumsprinzip nach Pontrjagin benutzt sowie singuläre Kontrollen und Trajek-
torien detailliert berücksichtigt.

ix



x



Acknowledgments

I would like to express my deep gratitude to my advisor Pr. Dr. Steffen Glaser, for his
patience, guidance, enthusiastic encouragements and useful criticisms for this research
work. I particularly appreciated the open mind with which he both received and ex-
pressed new ideas. His lively passion for science, that he generously shares everyday,
has been an illuminating source of inspiration.

I am particularly grateful to my second advisor Dr. Dominique Sugny, for his unwavering
trust and support during the last two years of my PhD. With him, every discussion has
been a generating source of energy, ideas and motivation.

Thanks to Pr. Dr. Olivier Collin and Pr. Dr. Vestislav Apostolov, for giving me advice
and support since the beginning of this project. I thank them for writing so many
reference letters for me, and sharing with me some of their experiences whenever I was
doubting on aspects of my academic projects.

The Glaser group would not be what it is without the shiny presence of Frau Martha
Fill and Dr. Raimund Marx. I would like to thank them for helping out every time they
could, for guiding me through the numerous mysterious university procedures and for
joyfully animating our group meetings.

In addition, a thank you to my colleagues, former and actual ones, for being such a
good company during the last three years. Particular thanks to Robert Fisher, Corey
O’Meara, Franz Schilling, Yun Zhang and Thi-Thoa Nguyen for giving me advice and
for their constant support.

I would like to offer my special thanks to my former colleague, badminton fellow and
friend Manoj Nimbalkar, without whom this project would never have taken place. I
thank him for introducing me to Pr. Dr. Glaser, but principally for being such a
supportive friend.

Thanks to my little red bike, which has been my main “idea generator”, negative energy
killer, and who never let me down.

All my friends, met in Canada or in Germany, for being there and encouraging me during
the last three years. A special thank you to Uwe Sander and Cyril Guinet.

I wish to acknowledge my good friend, and former colleague, Etienne Plante, for his
amazing authenticity and honesty, making him such a valuable source of advice and such
an interesting person to discuss with. I want to thank him for teaching me concepts
of physics, for sharing with me his discoveries, for initiating me to the “rafales”, for
patiently reviewing each sentence of this thesis and for his endless encouragements.

I would like to thank my family, for encouraging me since the beginning of this project.

xi



xii

I would like to especially thank my father, who made several back and forth trips to the
airport to pick me up, but more importantly to bring me support until the end in the
difficult parting moments. And I would like to thank my mother, who every weekend
brought me so much positive and creative energy.

I would like to thank my soul mate Yannick Assenat, for his unconditional love and for
bringing me such a great amount of positive energy every day of my life. He is the one
who always finds the good words to bring me light in the difficult times. This project
required sacrifices from both of us, and I could never be thankful enough for not only
willingly accepting them, but also turning them into everyday interesting challenges.



Contents

1 Introduction 1

2 Visualization of multi-spin operators 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Complete Wigner representation . . . . . . . . . . . . . . . . . . . 6

2.2.2 Tensor bases and number of droplets . . . . . . . . . . . . . . . . . 6

2.2.3 The LiSA tensor basis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Idea of the construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Uniqueness and sign freedom . . . . . . . . . . . . . . . . . . . . . 9

2.4 Result: DROPS visualization of three spins-1/2 . . . . . . . . . . . . . . 9

2.5 Properties of the LiSA DROPS visualization . . . . . . . . . . . . . . . . . 10

2.5.1 Topological information . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Visualization of general operators . . . . . . . . . . . . . . . . . . . 10

2.5.3 Color information . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.4 Cartesian product operators . . . . . . . . . . . . . . . . . . . . . . 11

2.5.5 Multiple quantum coherences . . . . . . . . . . . . . . . . . . . . . 13

2.5.6 Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10.1 Spherical harmonics and irreducible spherical tensors for spin-1/2
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10.2 Multiple-spin Wigner representation . . . . . . . . . . . . . . . . . 22

2.10.3 Cartesian product operators for an n qubits system . . . . . . . . 25

2.10.4 Symmetrizers, projectors and symmetry species . . . . . . . . . . . 25

xiii



xiv CONTENTS

2.10.5 Explicit construction of the LiSA tensor basis of a three-spin-1/2
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10.6 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10.7 Motivation of the sign choice . . . . . . . . . . . . . . . . . . . . . 32

2.10.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10.9 Further symmetrizations . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10.10 Two alternative tensor bases . . . . . . . . . . . . . . . . . . . . . 37

2.10.11 From the LiSA basis to the Cartesian product operator bases . . . 43

3 Applications of the LiSA DROPS visualization 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Visualization of two-spin systems . . . . . . . . . . . . . . . . . . . 47

3.2 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Cartesian operators and the sandwich formula . . . . . . . . . . . 48

3.2.3 Grasping the dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Hamiltonians and pulse sequences . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 The chemical shift Hamiltonians Hcs . . . . . . . . . . . . . . . . . 52

3.3.2 The coupling Hamiltonians HJ . . . . . . . . . . . . . . . . . . . . 53

3.3.3 The pulse Hamiltonians Hrf . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 90◦ and 180◦ pulses . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.5 Pulse sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Decoupling and refocusing pulse sequences . . . . . . . . . . . . . . . . . . 56

3.5 Average Hamiltonian theory . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Illustration (decoupling and refocusing pulse sequences) . . . . . . 61

3.5.3 Average Hamiltonian and toggling frame . . . . . . . . . . . . . . . 63

3.5.4 Illustration 1: Decoupling and refocusing pulse sequences . . . . . 65

3.5.5 Illustration 2: Understanding the TOCSY experiment . . . . . . . 65

3.6 Coherence order, phase cycling and gradient pulses . . . . . . . . . . . . . 66

3.6.1 Coherences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Phase cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.3 Gradient pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.4 Phase cycling versus gradient pulses . . . . . . . . . . . . . . . . . 78

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8.1 Time evolution of ρ(0) = I1x under different coupling Hamiltonians 84



CONTENTS xv

4 Time-optimal control of quantum gates 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 The model system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Spin systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Choice of coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 The Pontryagin maximum principle . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Optimal trajectories without detuning . . . . . . . . . . . . . . . . . . . . 93

4.4.1 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.2 Time-optimal controls . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.3 Rotation about the z axis . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.4 Rotation in the (x, y) plane . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Optimal trajectories with detuning . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.2 Time-optimal controls . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Application: Optimal control on SO(3) . . . . . . . . . . . . . . . . . . . . 99

4.6.1 Case without detuning ∆ = 0 . . . . . . . . . . . . . . . . . . . . . 100

4.6.2 With detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8.1 Derivation of the dynamical Equations (4.7) . . . . . . . . . . . . . 104

4.8.2 Constants of motion and linear evolution of the regular controls . . 106

4.8.3 Singular controls and their associated trajectories . . . . . . . . . . 107

4.8.4 Regular controls and their associated trajectories . . . . . . . . . . 108

4.8.5 Some initial conditions and relation between φ(0) and p2 . . . . . 111

4.8.6 Time-optimal controls . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8.7 Creation of z rotations when ∆ = 0. . . . . . . . . . . . . . . . . . 116

4.8.8 Creation of rotations in the (x, y) plane when ∆ = 0. . . . . . . . . 118

4.8.9 Time-optimal control over SO(3): the complete reasoning . . . . . 119



xvi CONTENTS



Introduction

The world we experience every day is the macroscopic world. Until the 19th century,
theoretical physics was principally concerned with this world, that classical physics suc-
ceeded to describe with a good fidelity. However, as time went by and technology
developed, physicists had the possibility to observe the world in its finest details. The
discovery of a small particle, named electron (by J. J. Thomson in 1897), marked the
beginning of a revolution in the History of physics, opening the doors to a world to be
discovered: the quantum universe of atomic and subatomic systems. Indeed, it became
indisputable that well established laws of classical physics could not explain what would
become quantum mechanics and many accepted concepts had to be questioned. The un-
certainty principle of Heisenberg, stating that it is not possible to simultaneously know,
with 100% certitude, both the position and the velocity of a quantum particle, furnishes
a striking example of the separation between classical physics and this new quantum
reality. The name of the theory is a legacy of the discovery of the quantified nature of
the energy by Max Planck in 1918, which furnished the key argument for the need to
revise our conception of physics.

Quantum mechanics is a field of physics in itself, which possesses its own laws
and its own ideas. The interpretation of some of these concepts is still a subject of
debate [1]. Some of the prime examples would be the concepts of wave-particle duality
[2], Schrödinger’s cat [3] and entanglement [4]. The concept of operator, which plays
a central role in the theory, also challenges our classical preconceptions of physics. Of
course, operators describe transformations on the systems and follow, in this case, our
intuitive understanding of what “to operate on” means. But the states of systems
(using the density matrix formalism [5]) as well as measurements also are described by
operators. One of the advantages of the operator formalism is that quantum mechanics
can be described and manipulated using the reliable apparatus of linear algebra. A
drawback of this formalism is however that most objects are represented by matrices
(operators in linear algebra) and that it is more often than not difficult to give a tangible
meaning to these matrices.

In the case of systems consisting of one spin-1/2 particle, a solution to remedy
this situation is to represent operators (in this case 2× 2 matrices) as vectors [6]. This
visualization tool has found numerous applications [7–9], not only because of its “visual”
nature, but also because this representation also conveys the physical meaning of the op-
erators. For instance, the vector representing density matrices (called the Bloch vector)
defines the magnetization vector whose components are physically measurable.

Clearly, such a meaningful visualization tool is highly desirable for communication
purposes and to help developing intuition about systems we can neither see nor directly
interact with in daily life. This common interest in developing intuition by visualization
already led to many ideas of possible representations of complex systems [9–14] to which

1



2 CHAPTER 1. INTRODUCTION

the Bloch vector representation is not applicable. However, most of the attempts so
far have failed to simultaneously satisfy the two fundamental criteria generally expected
from a visualization tool. That is, either the visualization tool is not bijective (i.e.
to each operator must correspond a unique picture and distinct operators must have
distinct pictures) or it fails at establishing an intuitive connection between the visual
representations of operators and their physical nature. The first part of this thesis
presents a new visualization tool which satisfies the above two criteria. It is based on
the representation of operators by Wigner functions [9, 13, 14], an idea which appeared
already in the literature in [11,12,15–17]. Although the potential of Wigner functions to
represent systems has been acknowledged [18, 19], so far their concrete use to represent
systems with multiple particles seems to have appeared in literature only for two particles
[15]. In Chapter 2, we lay down the foundation of a general visualization method, called
DROPS visualization, which can be applied to any quantum system. The visualization
principle relies on the decomposition of the operator space in a basis of irreducible
spherical tensors [20–22]. A particular basis, the LiSA basis, is presented for systems
consisting of n identical spins and its explicit derivation is given for systems of k spin-1/2
particles, with k = 1, 2, 3. In Chapter 3, we make explicitly use of the LiSA basis to
illustrate concepts in the field of nuclear magnetic resonance spectroscopy.

The second part of this thesis tackles a problem raised by modern applications of
quantum physics: the control of quantum systems. Manipulating a quantum system by
an external field to achieve a given task remains a goal of primary interest in a variety of
domains [23]. In applications such as imagery [7], the quantum systems under concern
are molecules in the studied body and their control leads to the creation of signals
converted into images. In the field of quantum computing [24], control of systems is
required to transmit and store information which can later be retrieved. In Chapter 4 of
this thesis, we address a control problem on one spin-1/2 systems. The problem consists
of creating any unitary transformation (an operator) in the shortest possible time, where
the interaction of the system with an external magnetic field is used to control the system.
The control field is constrained to lie in the xy plan, which restricts its freedom of action
on the system and makes the problem challenging. We must certainly point out that
this problem has already been studied in the past [25–30], but our approach differs
by making use of the Pontryagin maximum principle to find an explicit coordinate-
parametrization of the optimal trajectories. We then apply the results obtained to
address the related time-optimal control problem of creating rotations. In our study, we
take into consideration all the controls which can potentially be time-optimal, including
in particular singular controls. All the results are mathematically proven to be correct.

In order to present the results in a continuous flow, supporting information which
is not necessary to understand the general ideas is gathered into appendices at the
end of each chapter. Such information includes technical proofs, additional examples,
numerical tables and complementary notes on some theoretical concepts.



Visualization of multi-spin operators

2.1 Introduction

The ability to visualize complex information in a meaningful way plays an important
role in understanding and communicating abstract concepts and ideas. Furthermore,
visualization techniques also provide powerful intuitive approaches to think about prob-
lems and to create innovative solutions. In quantum mechanics, the state of a system of
coupled spins or quantum bits (qubits) is mathematically captured by the density oper-
ator [5], which has a complex matrix representation that in general is hard to visualize.
Other important but similarly abstract and unwieldy operators include Hamiltonian op-
erators (representing the energy terms of the quantum system) and unitary transforma-
tion operators (representing e.g. the time evolution of spin systems or logical quantum
gates in quantum information processing). For the special case of a quantum mechan-
ical two-level system, such as an isolated spin-1/2 particle in an external magnetic field,
Feynman, Vernon and Hellwarth showed in a seminal paper [6] that these operators (and
the corresponding complex 2×2 matrices) can always be mapped to three-dimensional
vectors with real components. In this approach, the density operator, the Hamilton
operator and unitary transformation operators are represented by the Bloch vector, the
field vector and rotation vectors, respectively. This mapping has made it possible to
visualize and to design experiments for many applications, ranging from magnetic res-
onance imaging [7, 8] and spectroscopy [8] to quantum optics [9]. Unfortunately, this
powerful approach cannot be directly applied to systems with three or more energy
levels, such as systems consisting of two or more coupled spins or quantum bits (qubits).
In this communication, we present a versatile and physically motivated representation
and visualization technique for arbitrary operators in coupled spin systems, which in fact
reduces to the simple vector representation for the special case of uncoupled spin-1/2
particles. Hence it may be viewed as a generalization of the representation based on the
mapping by Feynman et al. [6].

Hitherto, a number of approaches have been used to illustrate the density operator
of coupled spin systems. However, they all have severe limitations and shortcomings.
In the most direct (and least intuitive) approach, the real and imaginary parts of the
individual matrix elements of the operator of interest is simply displayed in the form of
a three-dimensional bar chart. This graphical representation is commonly used in the
field of quantum information theory to display the density operator, e.g. the results
of state tomography for a set of qubits [31]. In NMR spectroscopy, density operators
are sometimes represented as annotated energy level diagrams, where populations are
represented by circles on energy levels and coherences by lines between energy levels [32].
However, this representation is practical only for simple cases with a small number

3



4 CHAPTER 2. VISUALIZATION OF MULTI-SPIN OPERATORS

of non-zero matrix elements and does not directly reflect the properties of operators
under rotations. Another commonly used pictorial representation of the density operator
is based on the vector representation of single-transition operators [8], which however
provide limited intuition if a large number of non-zero density matrix elements exist and
behave in a non-intuitive way under simple non-selective spin rotations.

For single, uncoupled spins, the Wigner representation [9, 13, 14] provides an el-
egant basis for the visualization of the density operator [11, 12, 16]. In contrast to the
Bloch vector approach, this representation is not limited to spin-1/2 particles but is also
applicable to higher spins and is based on a mapping of tensor operators to spherical
harmonics. Although no formal mapping was given, it is remarkable that some selected
density operator terms of a spin-1 particle were depicted in the same spirit by Pines et
al. already in 1976, alluding to the love of chemists for thinking of atomic and molecular
orbitals [33]. Although the possibility of a potential generalization of the Wigner repres-
entation for coupled spin systems was suggested about three decades ago [18, 19], such
a representation is in general non-trivial and to our knowledge has not been explicitly
worked out. More recently, some authors were even skeptical whether it was possible
at all to generate a Wigner-type representation of operators for systems consisting of
coupled spins [12]. However, as shown in the following, physically meaningful Wigner
representations can be constructed for systems consisting of an arbitrary number of
spins. For the special case of two coupled spins, a particular Wigner-type representa-
tion has already been introduced by Jessen et al. [15]. Here, we present a new class
of Wigner-type representations for general systems consisting of coupled spin systems.
This approach not only provides an efficient way to visualize arbitrary operators but
also reflects characteristic features, such as transformation properties and the rank of
localization or correlations that is associated with a given operator.

For arbitrary spin systems, the available ranks of freedom in the construction of
the underlying mapping between operators and functions are presented and criteria for
choosing a unique map are given. For the case of up to three coupled spin-1/2 particles,
the explicit mapping is presented and possible extensions to larger spin systems or to
coupled systems of particles with larger spin quantum number are discussed. The power
of this mapping is demonstrated for a number of illustrative examples. We expect that
this intuitive visualization technique will find many applications in the visualization of
states or operators in all fields where coupled spins or qubits are of interest, including
nuclear and electron magnetic resonance spectroscopy as well as quantum information
theory.

2.2 Visualization

The visualization of abstract objects such as quantum mechanical operators can be real-
ized by designing a map between these abstract objects and three-dimensional functions
that can be displayed as concrete objects in three-dimensional space. For example, the
state a quantum mechanical two-level system can be mapped to the Bloch vector, which
can be visualized as a three-dimensional arrow. To be of maximum usefulness, this map-
ping should ideally have the following desirable properties: It should be bijective and
physically intuitive. (A) Bijectivity means that every operator corresponds to a unique
function and vice versa. (B) A physically intuitive representation should preserve system
symmetries with respect to fundamental transformations such as linear combinations,
rotations and permutations.
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It is well known that there exists a natural mapping between irreducible tensor
components Tjm (which form an operator basis) and spherical harmonics Yjm [20–22].
More details about the definition of spherical tensors and their relationship with the
spherical harmonics can be found in Appendix 2.10.1 and the representation of the latter
adopted in this work is illustrated in Fig. 2.9. In the case of a single spin with arbitrary
spin number I, all the tensors in the basis have distinct ranks j, and any operator A
can be represented by a unique spherical function fA using the straightforward mapping
[12,13,17]

A =
∑
j,m

cjmTjm ⇔ fA(θ, φ) =
∑
j,m

cjmYjm(θ, φ) (2.1)

with integers 0 ≤ j ≤ 2I, −j ≤ m ≤ j. This mapping has been exploited in the general-
ized Wigner representation [13]. However, extending this idea to systems consisting of
several spins is not trivial and there were even doubts whether it was possible at all [12].

Here, we introduce a general approach to extend this idea in a systematic way
to systems consisting of an arbitrary number of spins. The procedure is be illustrated
explicitly for the example of three coupled spin-1/2 particles.

In the general case, the tensor operator basis contains multiple operators with
the same rank j and order m. Consequently, the direct mapping as in (2.1) would
not be bijective, as distinct operators would be mapped to the same function. This
requires finding a way to distinguish the representations for the tensors of identical rank

j: T
(`)
j 6= T

(`′)
j . For instance, the tensor basis for a system consisting of two spin-1/2

particles contains three distinct tensors of rank j = 1. [8]

A simple solution to the uniqueness problem would be to view the system as a one-
particle system of higher spin number I′ > I and using relation (2.1) in order to have a
visualization as a single three-dimensional function on a sphere. However, such a solution
would provide little intuitive insight as there would not be a one-to-one correspondence
between the transformation properties of operators and their visualization (desirable
property (A)).

A much more natural and intuitive solution can be found if the representation
of a given operator is not restricted to a single 3-dimensional object (corresponding to
a single spherical function) but comprises a set L of objects (corresponding to a set of

spherical functions f
(`)
A where ` ∈ L):

A =
∑
`∈L

A(`) ⇔
⋃
`∈L

f
(`)
A (θ, φ) (2.2)

with

A(`) =
∑
j,m

c
(`)
jmT

(`)
jm ⇔ f

(`)
A (θ, φ) =

∑
j,m

c
(`)
jmYjm(θ, φ). (2.3)

Here, ` ∈ L labels different sets of tensor operators. The definition of these sets is a
matter of choice (vide infra), the only restriction being that all tensors in a given set
have distinct rank j. In the following, such a Discrete Representation of spin OPeratorS

is called a DROPS visualization for short and we refer to each individual object f
(`)
A in

such a representation as a droplet. To fix ideas, this is illustrated in Fig. 2.1, which
shows an example of such a DROPS visualization. It consists of |L| = 11 droplets and
represents a random operator A for a system consisting of three spin-1/2 particles.
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Figure 2.1: DROPS visualization of a random 8 × 8 matrix A corresponding to an operator for a
quantum system consisting of n = 3 qubits (spin-1/2 particles). The DROPS visualization is defined
by the tensor product basis and its DROPS mapping presented in Section 2.10.10. Each droplet is a

linear combination of spherical harmonics corresponding to a specific f
(`)
A in Eq. (2.3). The labels ` of

the droplets are defined in Fig. 2.2.

2.2.1 Complete Wigner representation

In the framework of Wigner representations, it is generally assumed that each operator
A corresponds to a unique single function fA. In Appendix 2.10.2, we show that the set

of functions {f (`)
A }`∈L Eq. (2.2) defines a complete (or “true” [34]) Wigner representa-

tion of multiple-spin systems. By “complete”, we mean here that any operator A can

be recovered from the values of f
(`)
A . The additional four fundamental criteria [35, 36]

that must be fulfilled by the original single mapping f can be generalized in a straight-
forward way to the set of functions {f (`)}`∈L (details in the Appendix 2.10.2) making
the proposed representation complete, coherent and intuitive.

2.2.2 Tensor bases and number of droplets

Given a matrix space Mat(N) together with a representation (action) of SU(2) on this
space, one can always find an orthonormal irreducible tensor basis B of Mat(N)

B =

Q⋃
q=1

Tjq , (2.4)

where Tj := {Tjm}m∈{−j...j} 1 denotes the set of all the 2j + 1 components of the
tensor. The set of ranks {jq}q∈{1...Q} in a basis of the form (2.4) is unique but the

1For instance, a tensor T2 of rank j = 2 corresponds to a set of five components, for −2 ≤ m ≤
2: T2 = {T2,−2,T2,−1,T2,0,T2,1,T2,2}. Each component Tjm is an operator in the system and
accordingly, a tensor Tj is a set of 2j + 1 matrices.
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tensors themselves are not uniquely defined. Indeed, the set of all irreducible spherical
tensors of identical rank j in B forms a vector space [37] and as being so, there is an
infinite number of orthonormal generating tensors for this space that can be chosen to
appear in (2.4). This freedom in the choice of the tensors in (2.4) allows one to choose
tensors having some desired properties and/or preserving specific symmetries. These
additional characteristics for the tensors can be used to label them in a structured way
and define a natural DROPS mapping (2.3).

Note that the (unique) explicit list {jq}q∈{1...Q} of ranks in any basis B defines a
lower and an upper bound for the possible number of droplets in a DROPS visualization.
The upper bound corresponding to a DROPS mapping for which all tensors in the basis
have a distinct label, that is |L| = Q in (2.2). The lower bound corresponds to the
maximum number M of tensors having identical rank jq1 = · · · = jqM in (2.4) since a
necessary condition to have a bijectve DROPS visualization is to ensure that all tensors
of the same rank are mapped to distinct droplets (i.e. have distinct labels `q1 6= · · · 6= `qM
in (2.3)).

For the specific case of three spin-1/2 particles for instance, the list of ranks
in the basis (2.4) is {jq}q∈{1...Q=20} = {3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0} (c.f.
Fig. 2.2) and consequently, the maximum and minimum number of droplets in a DROPS
mapping based on (2.3) are respectively |L| = 20 and |L| = 9, where 9 is the number of
tensors of ranks j = 1 in the above list of ranks {jq}.

In the following, we present a specific DROPS visualization for this system where
the tensors in the basis B are taken to preserve linearity and subsystems as well as
permutation symmetries in the case of the trilinear tensors. The resulting DROPS
visualization is characterized by 11 droplets and their corresponding labels are found in
the last column of Fig. 2.2.

2.2.3 The LiSA tensor basis

Here, we focus on the most common situation typically found in the field of quantum
information processing and magnetic resonance spectroscopy where spins are distin-
guishable. In order to define the final set L of tensor operators (each corresponding to

one droplet f
(`)
A ), we proceed in three steps (see Fig. 2.2). First, tensors are partitioned

according to their linearity or particle number k, i.e. the number of spins (or pseudo
spins) involved with 1 ≤ k ≤ n. Second, they are further split according to the set of
involved spins {s1, ..., sk}. For example, for n = 3 and particle number k = 2, these
sets are {1, 2}, {1, 3} and {2, 3} (see Fig. 2.2). Third, if, for a given subsystem, several
tensors of the same rank j exist, the tensors (or linear combinations of them) for this
subsystem can be partitioned further according to their symmetry species with respect
to the permutation group Sk acting only on the particles involved in the tensor subsys-
tem (see the tensors for the subsystem {1, 2, 3} in Fig. 2.2). In this case, each droplet

can be uniquely labeled by a standard Young tableau τ
[k]
i [37, 38].

This procedure provides a unique set L of labels ` (see Equation (2.3)). For
the specific case of three spin-1/2 particles, the j values for the trilinear terms are
{0, 1, 1, 1, 2, 2, 3} and the set L consists of the following 11 elements: Id, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, τ [3]

1 , τ
[3]
2 , τ

[3]
3 , τ

[3]
4 (see Fig. 2.2), each of which corresponds to a

single droplet in Fig. 2.1. For the specific case of n ≤ 5 spin-1/2 particles, this procedure
provides a tensor basis [39] with defined linearity, spin subsystem, and permutation sym-
metry, which we refer to as the LiSA basis, where LiSA stands for Linearity, Subsystem
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(k)

Figure 2.2: Properties and labels of the tensors of the LiSA basis for a system consisting of three
spin-1/2 particles. Each tensor is k-linear (# spins) and involves a specific subsystem of the global
system (subsystems). They are moreover chosen to be of a specific symmetry species corresponding

to a standard Young tableau τ
[k]
i (Sk). The final tensors are grouped (labels) into droplets according

to the subsystem they involve and for the trilinear tensors also according to their symmetry species.

and Additional criteria such as permutation symmetry in the present case. For larger
systems, additional criteria can be used in order to uniquely label the elements of a
tensor basis. In the Discussion, alternative groupings using the same basis is also be
discussed. In Appendix 2.10.10, we present two alternative tensor bases and suggest a
DROPS visualization for each of them.

2.3 Idea of the construction

Although general algorithms and explicit formulas for irreducible tensor operators are
known, all necessary tensor operators can be derived by combining iteratively the oper-
ators T0 and T1 for one qubit basis and symmetrizing the tensors obtained by applying
the theory of group projectors [19, 37, 40]. The mathematical grounds concerning the
permutation group and its representations used to derive this basis are presented in
details in Appendix 2.10.4 and the explicit construction of the LiSA basis for systems
consisting of three spin-1/2 particles in Appendix 2.10.5.

For a general system consisting of n spin-1/2 particles, the construction of the
LiSA tensor basis is performed in three steps. (I) The first step consists in constructing

recursively the k-linear symmetrized tensors Tj(τ
[k]
i ) of the k-particle systems for all

k ∈ {0, 1, . . . , n}. (II) In the second step, each of these tensors is multiplied by a unique
phase factor eiφ, the choice of which is discussed in the next section. (III) These tensors
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(constructed for k-particle systems of dimension 2k) are finally embedded in the global
system of dimension 2n.

The main part of the construction consists in step (I). Proceeding recursively, the
particles are included one at a time by combining the elements of the product basis

Tj(τ
[k−1]
i )⊗ T1(τ

[1]
1 ). The explicit form of the tensor T1(τ

[1]
1 ) for a single qubit can be

found in Appendix 2.10.5 2. Referring to the Clebsch-Gordan decomposition [20–22],

each product Tj(τ
[k−1]
i )⊗ T1 can be decomposed as a direct sum of irreducible tensors

with ranks running from |j − 1| to j + 1 [8,22,41], namely

Tj(τ
[k−1]
i )⊗ T1(τ

[1]
1 ) = T|j−1| ⊕ . . .⊕ Tj+1, (2.5)

where the explicit tensor components Tj′m are calculated using Wigner coefficients
[37, 41]. The tensors Tj′ so constructed form all together a k-linear tensor basis (2.4)
for the new system which could already form a basis for an alternative DROPS visual-
ization (see the section Discussion). The complete symmetrized tensors are obtained by
symmetrizing these k-linear tensors with respect to permutations using the projectors
P
τ

[k]
i

introduced in Appendix 2.10.4. That is,

Tj′(τ
[k]
i ) := cP

τ
[k]
i

(Tj′) ,

where c > 0 is a normalization constant. The LiSA basis is obtained from these k-linear
symmetrized tensors after performing steps (II) and (III).

2.3.1 Uniqueness and sign freedom

The irreducible spherical tensors previously constructed satisfy the relation Tjm =

(−1)p−mT†jm where p is an arbitrary integer [22]. Here, we adopt the phase conven-
tion of Schwinger [42] which is to set

p = 0. (2.6)

A direct consequence of (2.6) is that the m = 0 tensor components Tj0 are Hermitian.
The considered spherical tensor operators are then uniquely defined up to a sign. Al-
though the choice of sign is completely arbitrary, it can make a notable difference in the
resulting visualization mapping. The specific choice of signs leading to the LiSA basis
proposed here is motivated by the physical intuition behind Cartesian product operat-
ors (see Fig. 2.10). The reader may refer to Appendix 2.10.7 for the justification of the
present choice.

2.4 Result: DROPS visualization of three spins-1/2

Once the LiSA basis is built, all the tools are available to represent arbitrary operators for
systems consisting of n spin-1/2 particles in this basis. In order to visualize an operator
in this system, we decompose it as its unique linear combination of the elements of the
LiSA basis and use the mapping of Eq. (2.3). Recall that a tensor Tj of rank j is a basis
which consists of 2j + 1 matrices Tjm, one for each m ∈ {−j, . . . , j}. The structure of

2The tensors for a system consisting of a single particle are necessarily symmetrized according to

particle permutations, that is, T1(τ
[1]
1 ) := T1.
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the LiSA basis and the associated DROPS visualization of operators are now illustrated
explicitly for the case of three spin-1/2 particles. The justification for the present tensor
labeling is discussed in Appendix 2.10.6.

There are three linear tensors T
{s1}
1m , one corresponding to each spin s1 ∈ {1, 2, 3},

and in Fig. 2.1 the corresponding three droplets are placed at the corners of an equi-
lateral triangle in the x-y plane. For each subsystem {s1, s2} ∈ {{1, 2}, {1, 3}, {2, 3}}
consisting of two spins, there are three bilinear tensors of distinct ranks j = 0, 1, 2 (see
Fig. 2.2) which therefore can be combined in a single droplet. Each {s1, s2}-droplet is
conveniently plotted on the corresponding s1-s2 edge of the triangle. There are seven
trilinear tensors: one tensor of rank j = 0, three of rank j = 1, two of rank j = 2 and
one of rank j = 3 (see Fig. 2.2). Since some of these tensors share the same rank j, they
cannot all be part of the same droplet and the second identification level specified by
their symmetry species can be taken into account to regroup them into different droplets.
The four symmetry species for 3-linear spherical tensors are summarized in Eq. (2.12) of
Appendix 2.10.4 and in Fig. 2.1 the corresponding droplets are plotted above the other
ones. Finally, the droplet of the tensor T∅0,0 (corresponding to the identity operator) is
plotted in the center of the triangle in Fig. 2.1.

2.5 Properties of the LiSA DROPS visualization

2.5.1 Topological information

As each droplet involves a unique subset of particles, they can be arranged on the global
DROPS picture according to the natural topology of the system. Hence, the three-
dimensional arrangement of the droplets implicitly conveys additional information in
an intuitive way. In particular, it is immediately apparent which spins are involved
in a given visualized operator. Furthermore, subsystems can be visualized merely by
restricting the global DROPS visualization to the only droplets involving the particles
of interest. The arrangement of the droplets on an equilateral triangle as in Fig. 2.1
could be modified to match specific features to be emphasized in a given application.
For example, the droplets representing the linear operators could be positioned at the
location of the corresponding nuclear spins in a specific molecular geometry or each
side length of the triangle could be scaled according to the strength of the coupling
constant Jij in the Hamiltonian, providing an additional element of information in the
visualization.

2.5.2 Visualization of general operators

The DROPS representation is completely general and hence can be applied to arbitrary
operators. It is not limited to Hermitian operators (such as Hamiltonians and density
operators) and can also be used to visualize non-Hermitian operators. Examples of
such operators of practical interest include (a) unitary operators representing time-
evolution operators (propagators) or quantum gates; (b) parts of the density operator
corresponding to specific coherence orders, such as the raising and lowering operators for
a given spin or e.g. a term representing +3 quantum coherence in a spin system. The
simultaneous display of e.g. density operators and propagators (or Hamiltonians) can
be helpful in understanding the evolution of a quantum system in concrete experimental
building blocks as the crucial information about what drives the system can be seen (see
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Fig. 2.8 where this is illustrated for the example of a standard experiment in nuclear
magnetic resonance spectroscopy).

2.5.3 Color information

In order to visualize complex functions on the sphere f(θ, φ) := r(θ, φ) · eiα(θ,φ) (i.e.
linear combination of spherical harmonics), the convention adopted in the present text
is to represent the radial part r(θ, φ) by the shape of the graph for r and the phase α(θ, φ)
by a color derived from the mapping shown in Fig. 2.1. The representation of spherical
harmonics illustrated in Fig. 2.9 is derived from this representation. A commonly used
alternative way to display complex functions on a sphere is to represent the phase and
the radial part r(θ, φ) of the function by color and brightness, respectively (see [15] for
an example of use of this alternative representation in a visualization context).

The definition of the mapping (2.3) together with property (2.6) has as a dir-
ect consequence that each droplet in the DROPS visualization of a Hermitian matrix
is a real-valued function and consequently, Hermitian matrices are the ones and only
ones corresponding to purely red (phase α = 0) and/or blue (phase α = π) DROPS
pictures. This feature is clearly visible for the visualization of the Hamiltonians and
density operators in Fig. 2.8 or Cartesian operators in Fig. 2.3. More generally, if the
matrix component corresponding to a specific droplet is Hermitian up to a constant
phase factor eiα, the droplet will also be 2-colored, with colors corresponding to the
angles {α, α + π} in the color mapping given in Fig. 2.1. See for example the different
droplets of the unitary propagators in Fig. 2.8.

2.5.4 Cartesian product operators

Cartesian product operators are widely used as a convenient orthogonal basis in spin
physics [8] (see Appendix 2.10.3). They are Hermitian and consequently, as discussed
above, their DROPS visualization involves only red and blue colors (see Fig. 2.3).
Moreover, as they are k-linear (with well-defined integer k) and correspond to a well-
defined subsystem of spins, their DROPS visualization requires only droplets associated
with the corresponding subsystem.

The LiSA visualization of a linear Cartesian product operator Ikη consists of
two spheres with opposite algebraic signs which are aligned in the direction of the axis
η ∈ {x, y, z} (see Fig. 2.3 and Fig. 2.5). In fact, it is easy to show that for an arbit-
rary Cartesian operator A the droplet representing the linear spin-k term is colinear
and proportional to the three-dimensional vector whose components are given by the
projection of A onto the operators Ikx, Iky and Ikz, respectively. In particular, if A
corresponds to a density operator, the positive (red) pole of the spin-k droplet can be
associated with the tip of the spin-k Bloch vector (corresponding to a magnetization or
polarization vector in NMR and optics, respectively [8] and [9, 11]). In the context of
quantum information and entanglement measurements, it is interesting to point out that
the spin-k Bloch vector is identical to the Bloch vector of the reduced density operator
that is obtained by taking the partial trace over the remaining spins. If A is a Hamilto-
nian, the positive pole corresponds to the tip of a field vector (e.g. a magnetic field
in the case of NMR). Hence, the DROPS representation can be regarded as a natural
generalization of the well known and widely used vector picture. However, the DROPS
representation is limited neither to linear nor to Cartesian operators. For characteristic
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Figure 2.3: Characteristic droplets of Cartesian product operators. The Cartesian product operator
4I1yI2xI3x, omitted here, has the same visualization as 4I1xI2yI3x up to an inversion of colors for the
τ3-component. The red and blue colors refer to positive and negative values of the droplet functions
f (`)(A), respectively. In order to visualize any other Cartesian product operator, it suffices to rotate
the actual droplets along the desired directions.

non-linear Cartesian product operators, the corresponding DROPS representations are
summarized in Fig. 2.3 and Fig. 2.5.

It is interesting to take a closer look at the DROPS representation of operators of
the form 2Ikη1Ilη2 , which play a central role in the Cartesian product operator formalism
commonly used in NMR spectroscopy. For example, an operator with η1 = x and
η2 = z corresponds to anti-phase coherence [8]. The corresponding droplet for such an
operator has an uncommon shape that is not encountered in the typical representation
of the standard spherical harmonics or of atomic orbitals. It consists of two bean-
shaped lobes with opposite sign (see Fig. 2.10 - 2.4) and the long axes of these lobes are
orthogonal to each other. Its graphical decomposition in terms of the bilinear double-
and zero-quantum operators (DQy)kl and (ZQy)kl is shown in Fig. 2.4. In the LiSA
representation, the long axis of the positive lobe is oriented in the ~η1 + ~η2 direction and
the center of the positive lobe is displaced in the ~η3 direction relative to the center of the
droplet, where the direction of ~η3 = ~η1×~η2 is given by the right-hand rule. The DROPS
representation captures all the properties of the operators under global rotations and
permutation of particles. For example, when both spins k and ` are rotated by 180◦

around the x axis, the anti-phase operator 2IkxIlz is transformed to −2IkxIlz and the
corresponding droplet also performs a corresponding rotation around the x axis, resulting
in the same shape as before but with inverted signs, as expected.

Figure 2.4: Decomposition of the bilinear Cartesian product operator 2IkxIly in terms of the double-
quantum operator (DQy)kl = IkxIly + IkyIlx and the zero-quantum operator (ZQy)kl = −IkxIly +
IkyIlx [8].
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Note that in the proposed LiSA visualization, bilinear operators of the form
2IkηIlη and trilinear operators 4I1ηI2ηI2η are represented by symmetric and antisym-
metric elongated shapes along the η direction (c.f. Fig. 2.3).

2.5.5 Multiple quantum coherences

Operators Ap of defined multiple quantum order p play an important role in NMR
spectroscopy. They are invariant under global z rotations up to a phase factor [8]

exp(−iα
n∑
k=1

Ikz)Ap exp(iα

n∑
k=1

Ikz) = Ap exp(−ipα). (2.7)

This property is nicely captured in the DROPS representation, for example the operators
displayed on the right side of Fig. 2.5 have defined coherence order p and they are
invariant under rotations up to a phase factor. The operators displayed on the left side
of Fig. 2.5 correspond to mixtures of multiple quantum orders ±p. These operators as
well as their corresponding DROPS representations are invariant under global z rotations
by integer multiples of α = 2π/|p|. For example the operator (DQx)kl has coherence
order p = ±2 and is invariant under a z rotation of 180◦. In the next Chapter, we take
advantage of this property to visualize the concepts of phase cycling and gradient pulses
arising in the design of NMR experiments.

2.5.6 Hamiltonians

As discussed above, Hamiltonians H of quantum systems are Hermitian operators that
correspond to real spherical functions in the DROPS representation (c.f. Fig. 2.8).

Typically, the Hamiltonian consists of linear terms of the form Hlin := 2π
∑3
k=1 ~ωk ·~Ik

(where ~ωk is a vector and ~Ik := [Ikx, Iky, Ikz]), which represent e.g. magnetic fields,
and bilinear terms of the form Hbil = 2π

∑
kl ckl(aIkxIlx + aIkyIly + bIkzIlz), which

correspond to spin-spin couplings. It is common practice to visualize the linear terms
as three-dimensional field vectors ~ωk. In fact, the droplets corresponding to the linear
terms of the Hamiltonian in the DROPS representation are colinear to these field vectors,
which make the representation consistent with the conventional picture. However, so
far there was no general way to visualize arbitrary coupling terms of the Hamiltonian.
It is an important feature of the DROPS visualization that it also provides a natural
representation of bilinear (or even higher order) coupling terms. This is illustrated in
Fig. 2.6, which shows the following four characteristic coupling terms.

The case a = 0 and b = 1 corresponds to an Ising-ZZ or Heisenberg-Ising model
[44,45], which is also called weak coupling [8] or longitudinal coupling [46]. Note that in
the LiSA DROPS convention this is represented by a longitudinally elongated droplet
(c.f. Hlong in Fig. 2.6). The case a = 1 and b = 1 corresponds to the Heisenberg-
XXX model, which is also called strong coupling or isotropic coupling [8]. In the LiSA
visualization, it is represented by an isotropic spherical droplet (c.f. Hiso in Fig. 2.6).
The case a = 1 and b = 0 corresponds to the Heisenberg-XX model, also called planar
coupling [46,47], which in the LiSA visualization is represented by a planar disc-shaped
droplet in x-y plane (c.f. Hplan in Fig. 2.6). The case a = 1 and b = −2 corresponds to
a dipolar coupling [8] (c.f. Hdip in Fig. 2.6).

Note that the LiSA mapping can also represent more general coupling terms, such
as the anisotropic Heisenberg-XYZ model as well as trilinear coupling terms. Hence, with
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Figure 2.5: DROPS visualization in the LiSA basis of some characteristic multiple quantum coherences
for a system consisting of three spin-1/2 particles. The operators are classified according to their
linearity and their coherence order p ∈ N. For visualization purposes, the empty droplets in the
DROPS representation of the linear and bilinear operators are not displayed, and neither are the linear
and bilinear empty droplets in the DROPS representation of trilinear operators. The four trilinear
droplets are ordered from left to right according to the natural order in the symmetry defining each

droplet, i.e. from τ
[3]
1 to τ

[3]
4 (see Fig. 2.1 and (2.12)). The above pictures correspond to the DROPS

visualization of the tensors after normalization (note that the droplets for the trilinear operators have
been scaled down, as indicated by the size of the spheres). The definition of the zero-, double- and
triple-quantum operators (ZQη)kl, (DQη)kl and (TQη)kl, for η ∈ {x, y}, which are commonly used in
the field of NMR spectroscopy can be found e.g. in [8, 43].
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Figure 2.6: Visualization of characteristic terms of coupling Hamiltonians. In Hlong (corresponding to
the Ising-ZZ or Heisenberg-Ising model), the terms are proportional to IkzIlz . In Hiso (corresponding to
the Heisenberg-XXX model), they are proportional to IkxIlx+IkyIly+IkzIlz . In Hplan (corresponding
to the Heisenberg-XX model), the terms are proportional to IkxIlx + IkyIly and in Hdip they are
proportional to IkxIlx + IkyIly − 2IkzIlz . See the text in the subsection Hamiltonians for more details.

the explicit LiSA mapping for up to three spins presented here, it is straightforward to
visualize the Hamiltonian terms of systems with an arbitrary number of spins or qubits,
such as the well-known Kitaev honeycomb lattice [48], if the largest coupling terms are
trilinear.

As discussed in Appendix 2.10.7, tensors are a priori defined only up to an arbit-
rary sign and the sign choice we made in the definition of the bilinear LiSA tensors is
motivated by the resulting intuitive form of the bilinear coupling terms (c.f. Fig. 2.10).

2.6 Examples

The LiSA visualization is further illustrated in the present chapter by two chosen ex-
amples, for which more details can be found in Appendix 2.10.8. Note that Chapter 3
of this thesis is completely devoted to applications and illustrations of the LiSA DROPS
visualization of quantum systems.

The first example (c.f. Fig. 2.7) shows the DROPS representation of entangled
pure states of two qubits (Bell states) and three qubits (W and GHZ states), as well
as the representation of a separable two-qubit state. It is interesting to note that the
concurrence C, which measures the rank of bipartite entanglement in a pure two-qubit
state, is directly visible in the DROPS representation: as pointed out above, the droplets
representing the linear terms of the density operator are directly proportional to the
Bloch vectors of the reduced density operators, which are obtained by taking the partial
trace over the remaining spin. For two qubits in a pure state, the lengths of the two
reduced Bloch vectors corresponding to the first and second qubits are identical (c.f.
Fig. 2.7) and if this length is denoted R, the concurrence is simply given by C =

√
1−R2

[49] (see also [50, p. 168] or [51, p. 50]).

The second example (Fig. 2.8)) illustrates the operators of interest (density op-
erators of mixed states, Hamiltonians, propagators, effective Hamiltonian and effective
propagator) for the analysis of a non-trivial experiment in NMR spectroscopy. The pulse
sequence consists of two 90◦ pulses separated by a delay, and is designed to excite triple-
quantum coherences starting from the thermal density operator in the high-temperature
limit [8].

The reader can also find in Appendix 2.10.8 an overview of the concatenated
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Figure 2.7: LiSA representation of characteristic entangled and separable pure states for two and three
qubits (spin-1/2 particles). The first six DROPS pictures represent states in a system consisting of two
qubits. The four Bell states

∣∣φ±〉 = 1√
2

(|00〉±|11〉) and
∣∣ψ±〉 = 1√

2
(|01〉±|10〉) correspond to maximally

entangled states of two qubits. For comparison, a separable state (|00〉) and a partially entangled two-

bit state ( 1
4
|00〉+|01〉√

2
+ 3

4

∣∣ψ−〉) are depicted in the third row. In the last row, the Werner state

|W 〉 = 1√
3

(|100〉+ |010〉+ |001〉) and the Greenberger-Horne-Zeilinger state |GHZ〉 = 1√
2

(|000〉+ |111〉)
are shown, which correspond to two different entangled quantum states of three qubits.

INEPT experiment, which is designed to transfer magnetization between two indirectly-
coupled spins.

2.7 Generalization

The method given in Section 2.3 to construct symmetrized tensors for n identical qubits
can be generalized in a straightforward way to systems with n identical spin-I particles.
The tensor basis of a spin-I particle has the form {T0,T1, · · · ,T2S}. When the kth spin

is added to the system, all the tensor products Tj(τ
[k−1]
i ) ⊗ T1, Tj(τ

[k−1]
i ) ⊗ T2, . . .,
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Figure 2.8: Experimental NMR pulse sequence to create triple-quantum coherences starting from the
thermal equilibrium density operator in the high-temperature limit [8]. The pulse sequence consists of
a 90◦ pulse (with phase x) followed by a delay (t2 − t1) and a second 90◦ pulse (with phase y). The
density operators ρ(ti) for this experiment are depicted in the middle row. The Hamiltonians H (ti, ti+1)
(scaled to the same norm for display) are shown in the upper row and the effective Hamiltonian [8] of the
experiment is shown at the top. In the lower row, DROPS representations of the propagators associated
with the individual time steps are displayed and the effective propagator is shown at the bottom (see
Appendix 2.10.8 for details).

Tj(τ
[k−1]
i ) ⊗ T2S (see Eq. 2.15) have to be taken into account in order to generate a

complete tensor basis in Step (III). Then Steps (II) and (III) remain the same. Note
that already for systems consisting of two spins I > 1/2, some of the tensors in the LiSA
basis need an additional parameter κ to be uniquely defined. That is, the linearity, spin
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sub-system and symmetry type of a tensor are not necessarily sufficient to distinguish
all the tensors.

In the case of systems with distinct spin numbers I1, I2,. . ., symmetrization can
be applied to each subsystem of particles having identical symmetry species. Additional
symmetries, such as those in the Hamiltonian, can be taken into account in order to
simplify the DROPS pictures involved in the visualized operators.

2.8 Discussion

In general, the visualization of spin operators (and the corresponding generalized Wigner
representation) requires several spherical functions, each representing a group of tensors.
As discussed above, in the LiSA representation introduced here the tensors are grouped
according to their particle number, spin subsets and permutation symmetry (see Fig. 2.2).

Note that the tensor operators derived from the Clebsch-Gordan decomposition
(2.15) already form a tensor basis for the operator space such that a DROPS repres-
entation for operators could also be defined based on these operators, i.e. without
symmetrizing. The recursive construction of these tensors furnishes a natural grouping
according to their parents since the tensors on the right of (2.15) have identical par-
ents and distinct rank j (see Appendix 2.10.10). It is important however to remember
that the basis so constructed is of course strongly dependent on the different coupling
schemes between the spins in the system [52].

Even if the tensors in the LiSA basis are taken to have a defined symmetry spe-
cies, they also depend on the coupling order of the spins. Indeed, the trilinear symmetry
species considered here are such that tensor operators are always either symmetric or
anti-symmetric with respect to permutation of spins 1 and 2, whereas permutations in-

volving spin 3 may not preserve the tensors (c.f. the tensors of symmetry species τ
[3]
2 and

τ
[3]
3 ). Hence, for the visualization of experiments where two particles are indistinguish-

able, it is of advantage to label them “spin 1” and “spin 2”, exploiting this symmetry.
The visualization of experiments where two or more spins are indistinguishable can also
be further simplified by also symmetrizing the linear and bilinear basis operators over
the relevant permutation group. The use of such a symmetry-adapted basis makes it
possible to reduce the number of droplets in the DROPS representation, because the
subset of droplets with the wrong symmetry will always be empty. For example, in an
I2S spin system [?, 8], where the Hamiltonian and the density operator are both sym-
metric with respect to permutation of spins one and two, the number of droplets can be
reduced from eleven to seven. For a spin system where the Hamiltonian and the density
operator are symmetric with respect to permutations of all three spins, the number of
droplets can be further reduced to four (see Appendix 2.10.9 for more details).

There are many alternative choices of tensor operator bases (with many possible
DROPS visualizations for each of them, depending on how they are combined). The
best choice depends on the system under study and the questions asked [53, 54]. Mul-
tipole operators [19, 52] are also commonly used spherical tensor operators due to their
close relation with state vectors. These tensors do not have a defined linearity (i.e.
particle number) but they are characterized by the angular momentum transition they
perform on the states and which can then be used as criterion to group the tensors. It
is interesting to note that the Wigner representation introduced in [15] for the special
case of two coupled spins, where at least one of the two spins is a spin-1/2 particle, is in
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fact identical to the DROPS visualization based on multipole operators. The interested
reader will find in Appendix 2.10.10 more information about multipole operators and
also a suggestion of DROPS representation using these operators in the case of systems
consisting of three spin-1/2 particles.

In the definition of the DROPS visualization given by Eqs. (2.2) and (2.3), the
2j + 1 components Tjm of a tensor Tj are part of the same droplet. Note that it is also
possible to represent each (or some) of the tensor components Tjm by different droplets,
in order to highlight the presence or absence of certain coherence orders m in the system
(albeit at the cost of an increased number of droplets).

2.9 Conclusion

In this chapter, we presented a general method to visualize operators in single- and
multiple-spin systems, based on a generalization of Wigner representations. We presen-
ted a possible DROPS representation for systems consisting of identical spin-1/2 particles,
based on the choice of a suitable symmetric tensors basis for the operator space. A corres-
ponding visualization has been proposed and its multiple advantages have been pointed
out. This work presents a multitude of possible extensions, from varying the possible
tensor bases to considering systems increasing in complexity. The determination of the
best adapted DROPS representation depending on the process to be visualized is cer-
tainly an interesting question. A more challenging aspect of the DROPS representation
is to eventually describe physical processes by studying the dynamics on the droplets

only, i.e. studying the dynamics between the different Wigner functions {f (`)
A(t)} defining

a DROPS representation.
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2.10 Appendices

The reader will find in this appendix further details left aside in the main text about
the mathematical concepts related to the construction of the LiSA basis as well as the
explicit and detailed construction of the LiSA basis for a system consisting of three
spin-1/2 particles.

Appendix 2.10.1 briefly surveys the irreducible representations of SU(2) and
presents the spherical harmonics and the irreducible spherical tensors as being such
irreducible representations.

Appendix 2.10.2 inserts DROPS representations in the context of phase-space
distributions and presents them as a rigorous generalization of conventional phase-space
representations.

In Appendix 2.10.3 is presented the Cartesian product operators, which we
recall from a widely used standard basis in the field of NMR spectroscopy [8].

Appendix 2.10.4 is dedicated to the symmetric group Sn and its representations.
It is divided in logical steps toward the main goal of defining the projectors necessary to
symmetrize the tensors in the LiSA basis. The action of these projectors on operators is
then presented in order to finally define the concept on tensors with defined symmetry
species.

Appendix 2.10.5 presents the explicit construction of the LiSA basis for a system
consisting of three spin-1/2 particles.

Appendix 2.10.6 presents and justifies the short-hand notation used to denote
tensors in the LiSA basis for a systems consisting of three spin-1/2 particles.

Appendix 2.10.7 shows the motivation of the (a priori arbitrary) sign choice
made here in defining the final tensors.

Appendix 2.10.8 gives more details on the examples presented in the main text
in Section 2.6.

Appendix 2.10.9 discusses the possibility of further symmetrizing the tensors
to simplify the DROPS pictures for systems with indistinguishable particles.

Appendix 2.10.10 presents two other possible tensor bases and suggests a
DROPS visualization for each of them in the case of a system of three spin-1/2 particles.

Finally, Appendix 2.10.11 surveys the explicit transformations between the
LiSA tensor operator basis and the Cartesian product operator basis.

2.10.1 Spherical harmonics and irreducible spherical tensors for
spin-1/2 systems

Irreducible representations of su(2)

Consider the algebra su(2) and let J denote one of its elements. Suppose that the ele-
ments of su(2) act linearly on a given vector space V and let R(J) denote the associated
(matrix) transformation on V . A subspace W of V which is invariant under the action
of all R(J) and having itself no proper invariant subspace is called an irreducible rep-
resentation of su(2). Given j ∈ 1

2Z such that the dimension of W equals d = 2j + 1, a
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standard basis of W consists of elements {|j,m〉}−j≤m≤j which satisfy:

R(J±) |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 ,

R(Jz) |j,m〉 = m |j,m〉 , (2.8)

where J+:= ( 0 1
0 0 ), J−:= ( 0 0

1 0 ) and Jz:=
1
2

(
1 0
0 −1

)
. If two invariant subspaces W and W ′

have the same dimension, an extra parameter κ is needed to distinguish their standard
basis: |κ, j,m〉 6= |κ′, j,m〉.

Spherical harmonics

Consider the vector space V1 := L2 of square integrable complex functions on the sphere.
An element J ∈ su(2) acts on a spherical function f(θ, φ) ∈ V1 by rotation according
to R1(J)f(θ, φ) := f(R−1(θ, φ)), where R = eJ ∈ SO(3) is the rotation having J as a
generator. The existence of R is guaranteed by the well-known relation su(2) ∼= so(3)
[55]. For each natural number j ∈ Z, there is a unique irreducible representation of
dimension 2j+1 and its standard basis is the set of 2j+1 spherical harmonics Yjm(θ, φ)
with m ∈ {−j, . . . , j} [56–59]. Spherical harmonics satisfy relations (2.8) according to
the actions R1(J±) := exp(±iφ)[±∂/(∂θ) + i cot(θ)∂/(∂φ)] and R1(Jz) := −i∂/(∂φ).
The first spherical harmonics are depicted in Fig. 2.9.

Figure 2.9: The spherical harmonics Yjm(θ, φ) = r exp(iα) up to j = 3. The radial part r(θ, φ) of the
spherical harmonics is given by the shape of the graph and the phase α(θ, φ) by a color derived from
the color bar at the bottom.
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Irreducible spherical tensors

Consider now the vector space V2 := Mat(2n,C) of 2n×2n matrices with complex entries.
This vector space corresponds to all possible operators acting on an n-qubit quantum
system. The action of J ∈ su(2) on a matrix M ∈ Mat(2n,C) is defined through the Lie
bracket [60] (cf. p. 90 in [56])

M
R2(J)7−−−−→ [ϕ⊗n1

2

(J), M ], (2.9)

where ϕ 1
2
(J) ∈ Mat(2,C) denotes the 2-dimensional matrix representation of J and

ϕ⊗n1
2

(J) := [ϕ 1
2
(J)⊗ Id⊗ · · · ⊗ Id] + [Id⊗ ϕ 1

2
(J)⊗ Id⊗ · · · ⊗ Id] + . . .+ [Id⊗ · · · ⊗ Id⊗

ϕ 1
2
(J)] ∈ Mat(2n,C), with Id the 2 × 2 identity matrix. In particular, the matrices

ϕ 1
2
(J+) := ( 0 1

0 0 ), ϕ 1
2
(J−) := ( 0 0

1 0 ) and ϕ 1
2
(Jz) := 1

2

(
1 0
0 −1

)
correspond to the matrices

I+ := Ix + iIy, I− := Ix − iIy and Iz of a system consisting of a single spin-1/2 [8],
where Ix, Iy and Iz are Hermitian and are called Cartesian single spin-1/2 operators.

Given j ∈ Z, the standard basis of an irreducible representation of dimension 2j+1
for the action (2.9) defines the components {Tjm}−j≤m≤j of an irreducible spherical
tensor operator of rank j, denoted Tj . By definition, the components Tjm satisfy (2.8).
For n > 1, distinct irreducible spherical tensor operators will have identical rank j (for
example, for a system consisting of two spin-1/2 particles, there exist three distinct
tensors of rank j = 1, i.e. three distinct invariant subspaces of Mat(22,C) of dimension
2j + 1 = 3). Using the fact that the linear combination of irreducible spherical tensor
operators of identical rank j is still an irreducible spherical tensor operator of rank j,
tensor operators Tj(κ) can be chosen to satisfy additional properties κ which are then
used as parameters to distinguish them.

2.10.2 Multiple-spin Wigner representation

Wigner representations of systems are a particular case of “representation distributions”
as initially defined in [35]. A representation distribution on the sphere is a mapping

∆ : S2 → X
(θ, φ) 7→ ∆(θ, φ)

from the sphere to the operator space of the system X. In the case where the operator
space can be generated by a tensor basis {Tj} where all the ranks j are distinct, the
operator ∆ can, for instance, take the form

∆(θ, φ) :=
∑
j,m

Tj,mY∗j,m(θ, φ).

The Wigner function associated with an operator A is then [35,36]

fA(θ, φ) := Tr[∆†(θ, φ)A] =
∑
j,m

Tr[T†j,mA]Yj,m(θ, φ), (2.10)

which corresponds to a direct mapping as in (2.1). The function fA(θ, φ) then satis-
fies the Stratonovich-Weyl (SW) correspondence, that we summarize under the form
presented in [36]:

1. (Linearity) A→ fA(θ, φ) is a one-to-one linear map,
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2. (Standardization) ∫
S2

fA(θ, φ)dµ = Tr(A),

3. (Covariance)

fR(A)(θ, φ) = fA(R−1(θ, φ)),

4. (Traciality) ∫
S2

fA(θ, φ)fB(θ, φ)dµ = Tr(AB),

where dµ := sin θ dθdφ.

The first condition implies that the map given in Eq. (2.10) is linear and bijective.
The second condition establishes the connection between the operator framework and the
state-phase representation theory. The third condition constrains the mapping (2.10)
to be consistent with the rotational symmetry of the space (see Appendix 2.10.1 for
more details about the action of rotations on both operators and functions defined on
the sphere.) The last condition assures that the tracing properties of operators are
consistent with the product of Wigner functions.

We now show how these conditions can be generalized to DROPS representations,

which consist of mapping the operator A on a set of functions {f (`)
A (θ, φ)}`∈L as defined

by the Eqs. (2.2) and (2.3) and that we recall here:

A =
∑
`∈L

A(`) ↔
⋃
`∈L

f (`)(A),

with

A(`) =
∑
j,m

c
(`)
jmT

(`)
jm ↔ f

(`)
A (θ, φ) =

∑
j′,m′

c
(`)
j′m′Yj′m′(θ, φ).

For such sets of functions, the previous criteria are adapted as follows:

1. (Linearity) A → f
(`)
A (θ, φ) are linear maps and the correspondence of A with the

corresponding ordered k-tuple↔
(
f

(`1)
A (θ, φ), f

(`2)
A (θ, φ), . . . , f

(`k)
A (θ, φ)

)
is one-to-

one,

2. (Standardization)

∑
`∈L

∫
S2

f
(`)
A (θ, φ)f

(`)
Id (θ, φ)dµ = Tr(A),

3. (Covariance)

f
(`)
R(A)(θ, φ) = f

(`)
A (R−1(θ, φ)), for all ` ∈ L,

4. (Traciality) ∑
`∈L

∫
S2

f
(`)
A (θ, φ)f (`)

B(θ, φ)dµ = Tr(AB).
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We want to show that the DROPS representation of operators satisfies these
generalized criteria. The first condition follows directly from the definition of the DROPS
mapping. The second condition is a special case of the fourth one, which we prove
afterwards. Here, a summation over all droplet functions appear (in comparison to the
criterion previously encountered),as well a the Wigner function for the identity on the
left side of the equality. The third relation is a direct extension of the initial Covariance
criterion and uses the rotational properties of spherical tensor operators. This criterion
is satisfied since, by definition, the components {Tj,m}−j≤m≤j of the same tensor define
an invariant subspace under rotations and since all these components are part of the
same droplet. The last condition is the only one which requires more careful verifications.
To verify it, we develop both sides of the equality and show that they lead to the same
expression. To simplify the expressions, the dependence of the spherical harmonics on
the variables θ and φ is dropped.

The left-hand side of the equality is developed as:∑
`∈L

∫
S2

f
(`)
A (θ, φ)f (`)

B(θ, φ)dµ =
∑
`∈L

∫
S2

∑
jm

Tr[T
†(`)
jm A]Yjm ·

∑
j′m′

Tr[T
†(`)
j′m′B]Yj′m′dµ

(orthonormality of spherical harmonics and property Yj,m = (−1)
−m

Y
†
j,−m

=
∑
`∈L

∑
jm

Tr[T
†(`)
jm A] · Tr[T

†(`)
j,−mB](−1)−m

(tensor normalization and property Tjm = (−1)
−m

T
†
j,−m

=
∑
`∈L

∑
jm

Tr[T
†(`)
jm A] · Tr[T

†(`)
j,mB].

On the right-hand side,

Tr(AB) = Tr

(∑
`∈L

A(`)
∑
`′∈L

B(`′)

)
(linearity of the trace)

=
∑
`∈L

∑
`′∈L

Tr
(
A(`)B(`′)

)
(orthogonality of the operator spaces corresponding to different droplets)

=
∑
`∈L

Tr
(
A(`)B(`)

)
(decomposition of A

(`)
and B

(`)
)

=
∑
`∈L

Tr

∑
jm

Tr[T
†(`)
jm A]T

(`)
jm ·

∑
j′m′

Tr[T
†(`)
j′m′B]T

(`)
j′m′


(linearity of the trace)

=
∑
`∈L

∑
jm

∑
j′m′

Tr[T
†(`)
jm A]Tr[T

†(`)
j′m′B]Tr(T

(`)
jmT

(`)
j′m′)

(tensor normalization and property Tj,m = (−1)
−m

T
†
j,−m)

=
∑
`∈L

∑
jm

Tr[T
†(`)
jm A]Tr[T

†(`)
j,−mB](−1)m



2.10. APPENDICES 25

(property Tj,m = (−1)
−m

T
†
j,−m)

=
∑
`∈L

∑
jm

Tr[T
†(`)
jm A]Tr[T

(`)
j,mB].

The ensemble of distributions {∆(`)}

∆(`)(θ, φ) :=
∑
j,m

T
(`)
j,mY∗j,m(θ, φ),

together with their associated Wigner functions

f
(`)
A (θ, φ) := Tr[∆(`)†(θ, φ)A] =

∑
j,m

Tr[T
(`)†
j,mA]Yj,m(θ, φ), (2.11)

then define a complete and consistent representation of the operator space X.

2.10.3 Cartesian product operators for an n qubits system

We briefly introduce the Cartesian product operators which are commonly used in nuc-
lear magnetic resonance [8, 32]. They are Hermitian and they form a complete basis
of the operator space for systems consisting of spin-1/2 particles. For a single-spin-1/2
system, the Cartesian operators Iη, η ∈ {x, y, z} have been defined in Appendix 2.10.1
and correspond (up to a factor 1/2) to the Pauli matrices. I0 is the identity matrix. The
Cartesian product operators for an n-spin-1/2 system are defined by first embedding the
one-spin operators Iη with η ∈ {x, y, z} into the global system by choosing a position

p ∈ {1, . . . , n} and defining the n-spin operators I
[n]
pη :=

⊗n
k=1 Iak (or Ipη for short),

where ak=η for k=p and ak=0 otherwise. The Cartesian product operator basis [8] for

an n-spin-1/2 system is now given by all the elements of the form 2d−1
∏d
k=1 Ipkηk for

which d, pk ∈ {1, . . . , n}, `k < pk+1 for k < d, and ηk ∈ {x, y, z}. For instance, in
a system consisting of 3 spin-1/2 particles, the symbols I2x, 2I1zI3y and 4I1xI2xI3y all
correspond to valid Cartesian product operators. Note that Cartesian product operators
are in general neither irreducible nor components of a tensor operator.

2.10.4 Symmetrizers, projectors and symmetry species

The following presentation follows Chapter 5 of [40] (alternatively, see [19, 37], or [61]
for a general survey of projection theory.)

Standard Young tableaux

A standard Young tableau of size k is the left-justified arrangement of k boxes labeled
from 1 to k such that 1) each row has more or the same number of boxes than the
ones below and 2) the numbers in the boxes increase from left to right and from top to
bottom. For instance, the four standard Young tableaux of size k = 3 are

τ
[3]
1 = 1 2 3

, τ
[3]
2 =

1 2

3
, τ

[3]
3 =

1 3

2
, τ

[3]
4 =

1

2

3

. (2.12)
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Total order on standard Young tableaux

The subscript i in τ
[k]
i refers to the natural total order defined on standard Young

tableaux of size k. Let λ(τ
[k]
i ) denote the word made of the number of boxes in each line

from top to bottom in τ
[k]
i and and w(τ

[k]
i ) denote the k-letter word obtained by reading

the numbers in τ
[k]
i from left to right and from top to bottom. The words λ(τ

[k]
i ) and

w(τ
[k]
i ) are respectively called the shape and the filling pattern of τ

[k]
i . For instance,

the shape of τ
[3]
3 in (2.12) is λ(τ

[3]
3 ) = 21 and its filling pattern is w(τ

[3]
3 ) = 132. Then

τ
[k]
i < τ

[k]
i′ if either λ(τ

[k]
i ) > λ(τ

[k]
i′ ) or if λ(τ

[k]
i ) = λ(τ

[k]
i′ ) and w(τ

[k]
i ) < w(τ

[k]
i′ ) where

the inequalities hold for the alphabetical order. The index i corresponds to the position
of the Young tableau relative to this total order (see (2.12)).

Permutation group Sk and its real algebra S̃k

The symmetric group Sk [37, 62–67] is a finite group consisting of k! different per-
mutations σ ∈ Sk which map labels i ∈ {1, . . . , k} to positions σ(i) ∈ {1, . . . , k},
where σ(i1) 6= σ(i2) for i1 6= i2. One way to express a permutation σ is to write

σ =
(

1 2 ··· k
σ(1) σ(2) ··· σ(k)

)
, where the labels are written in the upper row and the posi-

tion they are assigned to in the lower row. The more standard notation used in the
present work is to write the permutation in disjoint cycles σ = c1c2 . . . cp, where a cycle
c = (i1i2 . . . iq) ∈ Sk maps label i1 to position i2, label i2 to position i3, etc. and finally,
label iq to position i1. Any permutation can be uniquely decomposed as a product of dis-
joint cycles. The adjacent transpositions, called transpositions for short, are the cycles
(i i+ 1) which exchange the position of 2 consecutive labels. The group multiplication
for σ1, σ2 ∈ Sk is given by the composition (σ2 ◦ σ1)(i) := σ2(σ1(i)).

The real algebra S̃k consists in all the real linear combinations of permutations σ in
Sk. That is, x̃ ∈ S̃k can be decomposed (not uniquely) as x̃ =

∑
σ∈Sk xσσ with xσ ∈ R.

Given two elements x̃, ỹ ∈ S̃k, the sum is naturally defined as x̃+ ỹ =
∑
σ∈Sk(xσ + yσ)σ

and the product as x̃ · ỹ =
∑
σ′∈Sk

∑
σ∈Sk(xσ′ · yσ)(σ′ ◦ σ).

Symmetrizers [37,40]

Given a standard Young Tableau τ of size k, let hτ ∈ S̃k denote the sum of all permuta-
tions not mixing the labels of different lines of τ and vτ ∈ S̃k denote the “alternated”
sum of all permutations not mixing the labels of different columns in τ . The sign of a
permutation σ in the alternated sum vτ is (−1)|σ| where |σ| is the number of transposi-
tions (i i+ 1) necessary to construct σ starting from the identity element e. Taking for

instance τ := τ
[3]
2 (see Eq. (2.12)), one verifies that hτ = e + (12) and vτ = e − (13).

The product eτ := cτ (hτ · vτ ) ∈ S̃k defines the irreducible symmetrizer associated with
τ . The normalization factor cτ is taken such that

∑
τ

[k]
i
e
τ

[k]
i

= e (the identity element)

where the sum is taken over all the standard Young tableaux of size k.

For instance, the symmetrizers corresponding to the four standard Young tableaux
of size 3 in Eq. (2.12) are

e
τ

[3]
1

=
e+ (12) + (23) + (31) + (123) + (321)

6
(2.13a)
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e
τ

[3]
2

=
e+ (12)− (31)− (321)

3
(2.13b)

e
τ

[3]
3

=
e+ (31)− (12)− (123)

3
(2.13c)

e
τ

[3]
4

=
e− (12)− (23)− (31)− (123)− (321)

6
(2.13d)

and one directly verifies that e
τ

[3]
1

+ e
τ

[3]
2

+ e
τ

[3]
3

+ e
τ

[3]
4

= e.

Projectors

Let τ
[k]
q , τ

[k]
q+1, . . . , τ

[k]
q+d be the ordered list of Young tableaux having identical shape λ

(the fact that the sequence of indices q, . . . , q+ d is unbroken follows from the definition

of the total order on Young tableaux of size k introduced earlier) and consider τ
[k]
i with

q ≤ i ≤ q + d. The projector P
τ

[k]
i

is an element of the algebra S̃k and is defined

recursively from e
τ

[k]
q

, the symmetrizer associated with the smallest standard Young

tableau of shape λ.

Basic case: i = q. The projector associated with the first Young tableau is equal
to its symmetrizer, that is P

τ
[k]
i

:= e
τ

[k]
i

.

General case: i > q. There exists i′ ∈ {q, . . . , i− 1} such that the Young tableau

τ
[k]
i′ differs from τ

[k]
i only by the position of two boxes

a
and

b
with consecutive

labels (b = a + 1) and for which the projector P
τ

[k]

i′
has already been defined. Let δ

denote the number of boxes in the hook path [37] joining the boxes a and b in τ
[k]
i

(excluding the starting box a ) and define A = 1
δ and B =

√
δ2−1
δ . Then

P
τ

[k]
i

:=

(
(a b) +A

B

)
P
τ

[k]

i′
∈ S̃k, (2.14)

where (a b) ∈ Sk is a transposition. To make this construction more concrete, let us
construct the four projectors in S3 used to symmetrize trilinear tensors in a system
consisting of three spin-1/2.

• τ [3]
1 = 1 2 3 is the only standard Young tableau of shape λ = 3. Since it

is (necessarily) the smallest Young tableau of this shape, P
τ

[3]
1

= e
τ

[3]
1

and one can

refer to Eq. (2.13) for its explicit expression.

• τ [3]
2 = 1 2

3
and τ

[3]
3 = 1 3

2
are the two Young tableaux of shape λ = 21. The

smallest of these two Young tableaux is τ
[3]
2 and consequently, P

τ
[3]
2

= e
τ

[3]
2

(see

Eq. (2.13) for its explicit expression). Now, τ
[3]
3 differs from τ

[3]
2 by the exchange of

the two boxes of consecutive labels a = 2 and b = 3. The length of the hook path

joining the boxes 2 and 3 in τ
[3]
3 (excluding the starting box 2 ) is δ = 2 and

we define A = 1
2 and B =

√
3

2 . According to Equation (2.14), we obtain

P
τ

[3]
3

:=

(
(23) +A

B

)
P
τ

[3]
2
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=

(
(23) + 1

2√
3

2

)
e
τ

[3]
2

=

(
(23) + 1

2√
3

2

)
e+ (12)− (31)− (321)

3

=
1√
3

(
e− (12)− (31) + 2(23) + (321)− 2(123)

3

)
.

• Finally, τ
[3]
4 = 1

2

3

is the only standard Young tableau of shape λ = 111. Since it

is the smallest Young tableau of this shape, then P
τ

[3]
4

= e
τ

[3]
4

ant its expression is

given in Eq. (2.13).

Action of permutations on operators

The action of a permutation σ ∈ Sk on operators is defined via the Cartesian product
operator basis. A permutation σ acts on a Cartesian product operator by permuting its
particle labels according to σ. For instance, (321)(I1xI2yI3z) = I3xI1yI2z ≡ I1yI2zI3x.

This action extends naturally by linearity to the group algebra S̃k and then to the
decomposition of any operator with respect to the Cartesian product operator basis.

Symmetry species

Given a standard Young tableau τ , a tensor Tj is said to be of symmetry species τ if each
of its components is left invariant (up to a constant c) under the action of the projector
Pτ associated with τ , that is, Pτ (Tjm) = c Tjm ∀m ∈ {−j, . . . , j}. The particular

cases τ = 1 2 ·· k and τ = 1

2

:

k

correspond respectively to the symmetric and

antisymmetric k-linear tensors.

For instance, one verifies directly on the tensor component

T2,0(τ
[3]
2 ) :=

√
2(−Ixzy + Iyzx − Izxy + Izyx)

that P
τ

[3]
2

(
T2,0(τ

[3]
2 )
)

= T2,0(τ
[3]
2 ), where P

τ
[3]
2

was deduced in a previous paragraph of

the present appendix.

2.10.5 Explicit construction of the LiSA tensor basis of a three-
spin-1/2 system

The irreducible representations of su(2) on the space V2 = Mat(2n,C) (n = 3) considered
are carefully chosen such that their basis elements are labeled

T
{s1,...,sk}
j,m (τ

[k]
i )
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where j and m are defined as before, τ
[k]
i is a standard Young tableau of length k giving

the symmetry species of the tensor and {s1, . . . , sk} denotes the particles involved in the
tensor. The parameter k specifies the linearity of the tensor. The construction of the
basis elements is performed in three steps:
(I) Recursive construction of symmetrized k-linear operators for the systems consisting
of k spin-1/2 particles, for k = 0, 1, 2, 3;
(II) Phase correction by an element in {1,−1, i,−i} of the tensors obtained in (I), where
the imaginary factor ensures that condition (2.6) is satisfied and the choice of the sign
± is motivated in Appendix 2.10.7;
(III) Embedding of the k-linear symmetrized tensors (II) in the entire system, where
a copy of the k-linear symmetrized tensors corresponds to each k-particle subsystem
{s1, . . . , sk} (see [38] for an alternative way to define symmetrized tensors).

Step (I)

• k=0: The tensor T0(τ
[0]
1 ) is simply the 2 × 2 identity matrix and the symbol τ

[0]
1

denotes the empty Young tableau.

• k=1: There is one 1-linear tensor operator T1(τ
[1]
1 ) whose components are the only

matrices to be computed using Eq. (2.8). They can be found in any reference book
on spins such as [8] for example. They are necessarily already symmetrized since

there is only one Young tableau with one box, namely τ
[1]
1 = 1 . The explicit

tensor components are

T1,−1(τ
[1]
1 ) =

(
0 0
1 0

)
, T1,0 (τ

[1]
1 ) =

(
1√
2

0

0 − 1√
2

)
, T11(τ

[1]
1 ) =

(
0 −1
0 0

)
.

• k=2: The three 2-linear tensors are built using the Clebsch-Gordan decomposition

T1(τ
[1]
1 )⊗T1(τ

[1]
1 ) = T0⊕T1⊕T2. The two standard Young tableaux τ

[2]
i of size 2,

their associated symmetrizers e
τ

[2]
i

and projectors P
τ

[2]
i

are constructed according

to Appendix 2.10.4 and have the explicit form

e
τ

[2]
1

=
e+ (12)

2
= P

τ
[2]
1

for τ
[2]
1 = 1 2 ,

e
τ

[2]
2

=
e− (12)

2
= P

τ
[2]
2

for τ
[2]
2 = 1

2
.

The tensors Tj are already symmetrized since there is only one standard Young
tableau of each shape λ. In particular,

T0(τ
[2]
1 ) := T0,

T1(τ
[2]
2 ) := T1,

T2(τ
[2]
1 ) := T2.

Recall that these tensors correspond to 2-linear tensors in a 2-spin-1/2 system and
are elements of Mat(22,C).
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• k=3: There are seven non-symmetrized 3-linear tensors which are obtained from
the Clebsch-Gordan decomposition for the tensor product of the 2-linear tensors
previously found and the 1-linear one:

T0(τ
[2]
1 )⊗ T1(τ

[1]
1 ) = T1

′

T1(τ
[2]
2 )⊗ T1(τ

[1]
1 ) = T0

′′ ⊕ T1
′′ ⊕ T2

′′

T2(τ
[2]
1 )⊗ T1(τ

[1]
1 ) = T1

′′′ ⊕ T2
′′′ ⊕ T3

′′′.

The four standard Young tableaux of size 3 and their associated symmetrizers
are summarized in (2.13). The associated projectors have been computed in Ap-
pendix 2.10.4. The symmetrized and normalized tensors are:

T0(τ
[3]
4 ) := P

τ
[3]
4

(
T0
′′) ,

T1(τ
[3]
1 ) :=

3√
5
P
τ

[3]
1

(
T1
′) ,

T1(τ
[3]
2 ) :=

3

2
P
τ

[3]
2

(
T1
′) ,

T1(τ
[3]
3 ) :=

3

2
P
τ

[3]
3

(
T1
′) ,

T2(τ
[3]
2 ) := P

τ
[3]
2

(
T2
′′) ,

T2(τ
[3]
3 ) := P

τ
[3]
3

(
T2
′′) ,

T3(τ
[3]
1 ) := P

τ
[3]
1

(
T3
′′′) ,

and are elements of Mat(8,C) with appropriate normalization factors.

Note that since n-linear tensors in systems consisting of n ≤ 5 spin-1/2 particles [39] are

uniquely defined by their rank j and symmetry species τ
[n]
i , the outcome of the action

of a projector P
τ

[n]
i

is independent of the tensors to which they are applied. For more

general spin systems, the action of a projector on two distinct tensors of rank j may
result in distinct tensors with identical symmetry species.

Step (II)

We only exhibit here the sign change applied to the current tensors, the choice of which
is further discussed in Appendix 2.10.7. The new tensors (with their proper signs) are
denoted by the subscript [ ](II) and are obtained by scalar multiplication of those in
step (I), denoted with the subscript [ ](I). Recall that the presence of a complex factor
i is uniquely decided by the relation 2.6.[

T1(τ
[1]
1 )
]
(II)

=
[
T1(τ

[1]
1 )
]
(I)T0(τ

[2]
1 )

T1(τ
[2]
2 )

T2(τ
[2]
1 )


(II)

= diag(1,−i,−1)

T0(τ
[2]
1 )

T1(τ
[2]
2 )

T2(τ
[2]
1 )


(I)
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

T0(τ
[3]
4 )

T1(τ
[3]
1 )

T1(τ
[3]
2 )

T1(τ
[3]
3 )

T2(τ
[3]
2 )

T2(τ
[3]
3 )

T3(τ
[3]
1 )


(II)

= diag(−i,−1, 1, 1,−i,−i, 1)



T0(τ
[3]
4 )

T1(τ
[3]
1 )

T1(τ
[3]
2 )

T1(τ
[3]
3 )

T2(τ
[3]
2 )

T2(τ
[3]
3 )

T3(τ
[3]
1 )


(I)

Step (III)

• k = 0. The embedding of T0(τ
[0]
1 ) = Id2 ∈ Mat(2,C) is performed by considering

Id8 ∈ Mat(23,C):

T∅0(τ
[0]
1 ) := T0(τ

[0]
1 )⊗ Id2 ⊗ Id2 = Id8.

• k = 1. The embedding of T1(τ
[1]
1 ) ∈ Mat(2,C) for the spin {1} subsystem is

performed by taking the tensor product with the identity Id2 on the two unaffected
particles, here {2} and {3}. Explicitly:

T
{1}
1 (τ

[1]
1 ) := T1(τ

[1]
1 )⊗ Id2 ⊗ Id2.

The remaining 1-linear tensors can simply be obtained from T
{1}
1 (τ

[1]
1 ) (just com-

puted) by permuting the particle labels (the action of permutations on operators
is defined in Appendix 2.10.4):

T
{2}
1 (τ

[1]
1 ) := (12)

(
T
{1}
1 (τ

[1]
1 )
)
,

T
{3}
1 (τ

[1]
1 ) := (13)

(
T
{1}
1 (τ

[1]
1 )
)
.

• k = 2. The embedding of Tj(τ
[2]
i ) ∈ Mat(22,C) for the subsystem consisting of

spins {1, 2} is performed by taking the tensor product with the identity Id2 for the
unaffected particle {3}:

T
{1,2}
j (τ

[2]
i ) := Tj(τ

[2]
i )⊗ Id2.

The 2-linear tensors for the remaining 2-particle subsystems {1, 3} and {2, 3} can

be obtained from T
{1,2}
j (τ

[2]
i ) by permutation of the particle labels:

T
{1,3}
j (τ

[2]
i ) := (23)

(
T
{1,2}
j (τ

[2]
i )
)
,

T
{2,3}
j (τ

[2]
i ) := (12)

(
T
{1,3}
j (τ

[2]
i )
)

• k = 3. Since the 3-linear tensors Tj(τ
[3]
i ) ∈ Mat(8,C) already involve all the

spins of the global system, there is no embedding to perform and one can directly
write

T
{1,2,3}
j (τ

[3]
i ) := Tj(τ

[3]
i ).
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2.10.6 Labeling

The linear and bilinear (k = 1, 2) tensors are uniquely defined by their rank j and the
subsystem they involve and consequently, the symmetry species is superfluous in their
labeling. To avoid redundancy, the symmetry parameter can be dropped when referring
to them:

T
{s1}
j,m := T

{s1}
j,m (τ

[1]
1 ) and T

{s1,s2}
j,m := T

{s1,s2}
j,m (τ

[2]
i ).

Another shorthand notation can be used when referring to n-linear tensors in an
n-particle system. Indeed, since these tensors involve all the particles, there is no need
to carry the sequence of spins involved and they can therefore be uniquely denoted

Tj,m(τ
[n]
i ) := T

{1,2,...,n}
j,m (τ

[n]
i ).

2.10.7 Motivation of the sign choice

We already discussed the fact that normalized tensors of the LiSA basis fulfilling (2.6)
are defined up to a sign, the choice of which is arbitrary. We present here the choice
made for the introduced LiSA basis. The sign of the linear tensors has been chosen such

Figure 2.10: Different sign choice for the bilinear tensors T
{k,l}
j of rank j = 0, 1, 2. For the different

sign choices, the resulting visualization of the operators a) 2IkzIlz , b) 2IkxIlx+2IkyIly and c) 2IkxIly is

displayed (the red and blue colors refer to positive and negative values of the droplet function f ({k,l})(A),
respectively). In the standard LiSA basis proposed here, signs are chosen according to the last column
(+,−,−).

that the {k} droplet representing the linear Cartesian operators Ikη, η ∈ {x, y, z}, is
consistent with its Bloch vector representation. That is, the positive lobe of the LiSA
representation of Ikη is pointing in the η direction (see Fig. 2.3).

The sign of the bilinear tensors has been chosen in order to be consistent with
the different coupling Hamiltonians together with the operators of the form 2Ikη1

Ilη2
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(which include the anti-phase operators). Figure 2.10 a) and b) shows that there are
two possible shapes (up to a global -1 factor) for the longitudinal and planar Hamiltonian
terms respectively. Choosing the signs +1 and −1 for the tensors T0 and T2 results in
an elongated shape for the longitudinal Hamiltonian droplets and a planar shape for
the planar Hamiltonian droplets. The sign −1 for the tensor T1 has been chosen such
that the center of the positive lobe in the droplet representing 2Ikη1Ilη2 (Fig. 2.10 c)) is
displaced in the ~η3-direction relative to the center of the droplet, where ~η3 = ~η1 × ~η2 is
given by the right-hand rule (c.f. Figs. 2.10 and 2.4).

All but two the signs of the trilinear tensors have simply been inherited from the
bilinear ones, recalling that the trilinear tensors are derived from the Clebsch-Gordan
decomposition of the tensor product of a bilinear tensor with a linear one. The only
tensors for which the sign has been chosen opposite to the one of their bilinear tensor

parent are the totally symmetric tensors T1(τ
[3]
1 ) and T3(τ

[3]
1 ). This choice has been

made such that the positive lobe of the droplet involved in the visualization of the fully
symmetric Cartesian tensor 4I1ηI2ηI1η points in the η direction (see Fig. 2.3).

2.10.8 Examples

Concurrence example

The first example shown in Fig. 2.7 displays the DROPS representation of entangled
pure states of two qubits (Bell states) and three qubits (W and GHZ states) as well as
the representation of a separable two-qubit state.

Consider an operator A acting on a two-qubit system. This operator can be
decomposed as

A = A({1}) +A({2}) +A({1,2}) +A(Id)

using the LiSA mapping corresponding to Eq. (2.3). Since A({1}) acts on the first spin
only, we can write

A({1}) = A1 ⊗ Id,

where Id denotes the identity matrix on spin two and similarly,

A({2}) = Id⊗A2.

The matrices Ak correspond to the reduced operators for the corresponding spin k,
and can also be recovered by tracing out A with respect to the complementary spin.
The trace of A2

k furnishes a measurement of entanglement in the full operator A and

for operators representing pure states, C :=
√

1− Tr(A2
1) =

√
1− Tr(A2

2) is called the
concurrence of the state. In particular, writing Ak = akxIkx + akyIky + akzIkz, then the

concurrence is C =
√

1− a2
kx − a2

ky − a2
kz .

On the other hand, we have that the droplet corresponding to akxIkx + akyIky +
akzIkz has the form of two spheres of opposite sign which delineate an axis pointing in
the direction akx~1x + aky~1y + akz~1z. More precisely, the length of the droplet (defined
by the line joining the opposite sides of the positive and negative spheres) is R =√

6
π (a2

kx + a2
ky + a2

kz), that is, C =
√

1− π
6R

2 and we see that the bigger the droplets

are (value of R), the lower the concurrence value is.
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Creation of triple-quantum coherences experiment

The example shown in Fig. 2.8 represents an experiment commonly used in NMR spec-
troscopy, which is designed to create triple-quantum coherences from the polarization
of three coupled spin-1/2 [8]. The building blocks of the experiment are summarized in
Fig. 2.8 using the LiSA visualization. Recall that triple-quantum coherences consist of
combinations of tensor operators of rank j = 3 and order m = ±3. At the initial time t0,
the system is in thermal equilibrium, which corresponds in the high-temperature limit
to the density matrix

ρ(t0) = I1x + I2x + I3x =
√

2(T
{1}
10 + T

{2}
10 + T

{3}
10 )

(where for simplicity only the traceless part of the density operator is considered here).

A first 90◦ pulse (with phase x) is applied to the system with an amplitude of
10 kHz for a time t1 − t0 = 25µs and flips the three magnetization vectors into the
transverse plane. The corresponding linear control Hamiltonian is

H (t0, t1) = 2π 104Hz (I1x + I2x + I3x)

and the density operator of the system at time t1 is

ρ(t1) = −I1y − I2y − I3y
= −i(T{1}1,−1 + T

{1}
1,1 )− i(T{2}1,−1 + T

{2}
1,1 )− i(T{3}1,−1 + T

{3}
1,1 ).

The next step consists in letting the coupling Hamiltonian act on the system in order
to create trilinear terms in the density operator. The coupling Hamiltonian, applied for
a time t2 − t1 = 50 ms, is longitudinal (c.f. Fig. 2.6) and has the explicit form

H (t1, t2) = 2 π 104Hz (I1zI2z + I1zI3z + I2zI3z).

At time t2, the system is in the state ρ(t2) = 4I1yI2zI3z + 4I1zI2yI3z + 4I1zI2zI3y ∼=

0.78(T1,−1(τ
[3]
1 ) + T1,1(τ

[3]
1 )) + 1.55i(T3,−1(τ

[3]
1 ) + T3,1(τ

[3]
1 )).

Finally, a second 90◦ pulse (with phase y) is applied in order to create density operator
terms of order m = ±3. The corresponding linear control Hamiltonian

H (t2, t3) = 2 π 104Hz (I1y + I2y + I3y)

is applied for a time t3 − t2 = t1 − t0. At time t3, the density operator of the system is

ρ(t3) = 4I1yI2xI3x + 4I1xI2yI3x + 4I1xI2xI3y

∼= 0.78[(T1,−1(τ
[3]
1 ) + T1,1(τ

[3]
1 )]

− 0.39i[(T3,−1(τ
[3]
1 ) + T3,1(τ

[3]
1 )]

+ 1.5i[(T3,−3(τ
[3]
1 ) + T3,3(τ

[3]
1 )].

At this point, the desired triple-quantum coherence term T3,−3(τ
[3]
1 )+T3,3(τ

[3]
1 ) has been

created. Note that the shape of the droplet corresponding to the term τ
[3]
1 of ρ(t3) in

Fig. 2.8 also clearly exhibits the (partial) content of triple-quantum coherence (c.f. term
(TQx)123 in Fig. 2.5). The remaining undesired terms of the density operator can be
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removed by applying a triple quantum filter [8] to ρ(t3) (not shown for simplicity). The
density operators ρ(ti) for this experiment are depicted in the middle row of Fig. 2.8.

The Hamiltonians H (ti, ti+1) (scaled to the same norm for display) are shown in
the upper row and the real effective Hamiltonian is [8]

Heff = −18.1Hz(I1z + I2z + I3z)

− 24.2Hz(IxIxIx + IyIyIy + IzIzIz)

− 72.5Hz(IxIxIy + IxIyIx + IyIxIx)

− 72.5(HzIyIyIx + IyIxIy + IxIyIy)

of the experiment is shown at the top. In the lower row, DROPS representations of the
propagators

U(t0, t1) = 0.35 Id− 0.71i(I1x + I2x + I3x)

− 1.41(I1xI2x + I1xI3x + I2xI3x) + 2.83I1xI2xI3x,

U(t1, t2) =0.35(1 + i) Id− 1.41(1 + i)(I1zI2z + I1zI3z + I2zI3z),

and

U(t2, t3) = 0.35 Id− 0.71i(I1y + I2y + I3y)

− 1.41(I1yI2y + I1yI3y + I2yI3y) + 2.83I1yI2yI3y,

associated with the individual time steps are displayed and the effective propagator

Ueff = 0.18(1 + i) Id− 0.35(1 + i)(I1z + I2z + I3z)

− 0.71(1 + i)(I1zI2z + I1zI3z + I2zI3z)

− 1.41(1− i)(IxIxIx + IyIyIy − IzIzIz)
− 1.41(1− i)(IxIxIy + IxIyIx + IyIxIx)

− 1.41(1− i)(IyIyIx + IyIxIy + IxIyIy)

is shown at the bottom of Fig. 2.8.

Concatenated INEPT experiment

The concatenated INEPT experiment is designed to transfer the magnetization between
two indirectly coupled spins, say spins one and three, via their coupling with the interme-
diary spin two. Considering a homonuclear system, we consider the internal Hamiltonian
driving the system to be

H0 = HJ = 2πJ(I1zI2z + I2zI3z).

The pulse sequence achieving the desired transfer is illustrated in Fig. 2.11. Note that
since the spins are identical, the pulses applied are not selective and affect all spins.
However, to lighten the picture, only the components which have an effect on the system
are identified.

At initial time, the state of the system is ρ(t0) = I1z and a first 90◦y pulse is
applied to create transverse magnetization: ρ(t1) = I1x. The system then evolves freely
for a time duration τ = 1

2J such that at time t2 = t1 + τ , all the magnetization has been
converted into anti-phase magnetization [68] ρ(t2) = 2I1yI2z. A 90◦x pulse is then applied
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90◦1y 90◦1x + 90◦2x 90◦2x + 90◦3x

Figure 2.11: Concatenated INEPT experiment, designed to transfer the magnetization between in-
directly coupled spins. Here spins one and three are coupled to (the intermediate) spin two, with the
same coupling constant J . The coupling Hamiltonian corresponds to H (tk, tk+1) for k = 1, 3, 5. The
DROPS visualizations of the states ρ(tk) at critical times ti are depicted directly above the pulse se-
quence. The constant Hamiltonian for each period (tk, tk+1) are illustrated above the density matrices
and the effective Hamiltonian is depicted at the top of the picture. The propagators for each period
(tk, tk+1) are illustrated below the pulse sequence and the effective propagator lies at the bottom of the
picture.

and transform the anti-phase magnetization into ρ(t3) = −2I1zI2y. Then the system
freely evolves for a time τ such that the anti-phase magnetization between spins one and
two evolves into anti-phase magnetization between spins two and three: ρ(t4) = 2I2yI3z.
A last 90◦x pulse is applied, followed by a delay, such that the state of the system becomes
ρ(t5) = −2I2zI3y and finally ρ(t6) = I3x.
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2.10.9 Further symmetrizations

By construction, each k-linear tensor operator in the LiSA basis involves a subset of
exactly k particles {s1, . . . , sk} and is thus symmetrized with respect to the permutation
subgroup Sk ⊆ Sn. For systems with indistinguishable particles, it is advantageous to
further symmetrize the tensor operators with respect to the identical particles, using
the projector machinery presented in Appendix 2.10.4. Indeed, the resulting tensor
operators which are not fully symmetric with respect to the indistinguishable particles
can then be left aside. This new symmetrization then results in decreasing the number
of droplets necessary to represent operators in systems with indistinguishable particles.

Consider for example the LiSA basis for a system consisting of n = 3 spin-1/2
particles and assume that we have an I2S system, i.e. the first two particles are in-
distinguishable. The symmetrization of the LiSA basis with respect to particles {1, 2}
creates the following 40 operators (grouped into 12 tensor operators) fully symmetric in

{1, 2}: 1
2 (T

{1}
1 + T

{2}
1 ), T

{3}
1 , T

{1,2}
j (j = 0, 2), 1

2 (T
{1,3}
j + T

{2,3}
j ) (j = 0, 1, 2), Tj(τ

[3]
1 )

(j = 1, 3), Tj(τ
[3]
2 ) (j = 1, 2) and the identity T∅0(τ

[0]
1 ). In particular, operators fully

symmetric with respect to particles {1, 2} can be represented with seven droplets.

Suppose now that all three particles are indistinguishable. The symmetrization
of the LiSA basis with respect to particles {1, 2, 3} creates the following 20 operators

(grouped into 6 tensor operators) fully symmetric in the three particles: 1
3 (T

{1}
1 +T

{2}
1 +

T
{3}
1 ), 1

3 (T
{1,2}
j +T

{1,3}
j +T

{2,3}
j ) (j = 0, 2), Tj(τ

[3]
1 ) (j = 1, 3) and the identity T∅0(τ

[0]
1 ).

That is, operators fully symmetric with respect to particles {1, 2, 3} can be represented
with four droplets only.

2.10.10 Two alternative tensor bases

We present two alternative tensor bases and suggest a DROPS mapping for each of
them. To clarify the discussion, the construction of each basis is illustrated for a system
consisting of three spin-1/2 particles.

Tensor product basis

The tensor product operators naturally appear when constructing a tensor basis by
successively adding particles to the system. To simplify the discussion, we consider that
all the spins are identical. Proceeding recursively, the particles are included one at a

time taking all the products T
(`)
j [k− 1]⊗T

(j′)
j′ [1], where T

(`)
j [k] are the operators in the

tensor product basis for the subsystem consisting of the first k particles. In particular,

T
(j′)
j′ [1] denotes the tensors in the basis for one particle.

Referring to the Clebsch-Gordan decomposition [20–22], each product T
(`)
j [k−1]⊗

T
(j′)
j′ [1] can be decomposed as a direct sum of irreducible tensors with ranks running

from |j − j′| to j + j′ [8, 22,41], namely

T
(`)
j [k − 1]⊗ T

(j′)
j′ [1] = T

(`′′)
|j−j′| ⊕ . . .⊕ T

(`′′)
j+j′ , (2.15)

where the explicit tensor components T
(j′′)
j′m are calculated using Wigner coefficients

[37, 41]. The labels (`′′) are also recursively defined by (`′′) := (`, j′, κ) where the



38 CHAPTER 2. VISUALIZATION OF MULTI-SPIN OPERATORS

additional parameter κ further distinguishes tensors associated with identical rank j

and couple (`, j′). The tensors T
(`′′)
j′ so constructed form all together a k-linear tensor

basis (2.4) for the new system.

Example: Three-spin-1/2 system

The tensor basis for one spin-1/2 particle is B1 = {T(0)
0 ,T

(1)
1 }, where T

(0)
0 is proportional

to the 2× 2 identity matrix. Adding one particle leads to four combinations:

T
(0)
0 ⊗ T

(0)
0 = T

(0,0)
0 ,

T
(0)
0 ⊗ T

(1)
1 = T

(0,1)
1 ,

T
(1)
1 ⊗ T

(0)
0 = T

(1,0)
1 ,

T
(1)
1 ⊗ T

(1)
1 = T

(1,1)
0 ⊕ T

(1,1)
1 ⊕ T

(1,1)
2 ,

and the tensor product basis for systems consisting of two spin-1/2 particles is B2 =

{T(0,0)
0 ,T

(0,1)
1 ,T

(1,0)
1 ,T

(1,1)
0 ,T

(1,1)
1 ,T

(1,1)
2 }. Adding one more particle then leads to 12

such tensor products, schematically represented by B3 = B2 ⊗ B1, and results in the
following tensors:

T
(0,0)
0 ⊗ T

(0)
0 = T

(0,0,0)
0 ,

T
(0,1)
1 ⊗ T

(0)
0 = T

(0,1,0)
1 ,

T
(1,0)
1 ⊗ T

(0)
0 = T

(1,0,0)
1 ,

T
(1,1)
0 ⊗ T

(0)
0 = T

(1,1,0)
0 ,

T
(1,1)
1 ⊗ T

(0)
0 = T

(1,1,0)
1 ,

T
(1,1)
2 ⊗ T

(0)
0 = T

(1,1,0)
2 ,

T
(0,0)
0 ⊗ T

(1)
1 = T

(0,0,1)
1 ,

T
(0,1)
1 ⊗ T

(1)
1 = T

(0,1,0)
0 ⊕ T

(0,1,0)
1 ⊕ T

(0,1,0)
2 ,

T
(1,0)
1 ⊗ T

(1)
1 = T

(1,0,0)
0 ⊕ T

(1,0,0)
1 ⊕ T

(1,0,0)
2 ,

T
(1,1)
0 ⊗ T

(1)
1 = T

(1,1,1,κ1)
1 ,

T
(1,1)
1 ⊗ T

(1)
1 = T

(1,1,1,κ2)
0 ⊕ T

(1,1,1,κ2)
1 ⊕ T

(1,1,1,κ2)
2 ,

T
(1,1)
2 ⊗ T

(1)
1 = T

(1,1,1,κ3)
1 ,⊕T

(1,1,1,κ3)
2 ⊕ T

(1,1,1,κ3)
3 .

Note that since the single particle operator T
(0)
0 is proportional to the identity matrix,

the labels of the tensors (except for the κi) give the linearity of the tensor as well as

the subsystems the operator is acting on. For instance, the tensors T
(1,0,1)
j are bilinear

and involve particles one and three only. These “subsystem” and “linearity” features
are always present, regardless of the system under concern. We insisted to list all the
tensors to underline the requirement of three additional parameters κ1, κ2 and κ3 in

the labeling of three-linear tensors T
(1,1,1,κi)
j . Tensors obtained from the same product,

i.e. having the same parents, are associated with the same κi value. In order to define
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(k)

Figure 2.12: Properties and labels of the tensors in the tensor product basis for a system consisting
of three spin-1/2 particles. Each tensor is k-linear (# spins) and involves a specific subsystem of the
global system (subsystems). An additional parameter κi referring to the parents (Parents) is required
to distinguish trilinear operators. The final tensors are grouped (labels) into droplets according to the
subsystem they involve and for the trilinear tensors also according to their parents.

a DROPS visualization based on the tensor product basis, each tensor must finally be
assigned to a label ` in a label set L = {`} to group them into droplets according to
Eq. (2.3). Using the “subsystem” and “linearity” properties of the basis, the labels
used to recursively construct the basis may also be replaced by the spins involved in the
operator. A possible labeling is illustrated in Fig. 2.12, where for instance the recursively
defined label (1, 0, 1) is identified with the DROPS label ` = {1, 3}. Trilinear operators
are labeled according to their parents only. An example of DROPS visualization for a
random 8 × 8 matrix using the tensor product basis is shown in Fig. 2.13. The non-
physical nature of the parents parameters κi is the principal motivation in defining the
LiSA tensor basis, which assigns physically meaningful labels to the trilinear operators.

Multipole tensor basis

The multipole tensor basis [21] is defined from the atomic coherent states {|j,m, κ〉} of
the system, where κ distinguishes states having identical total angular momentum j and
z angular momentum component m. Given j and κ fixed, |j, κ〉 := {|j,m, κ〉}−j≤m≤j
denotes the ordered coherent state set having angular momentum j and labeled by
κ. We can write the state basis of any spin system as a union B =

⋃
j,κ |j, κ〉 of

coherent state sets. In such a basis, components of the multipole tensors, denoted
Tj,m(|j1, κ1〉 → |j2, κ2〉), transform the elements of the set |j1, κ1〉 into elements of the
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Figure 2.13: DROPS visualization of a random 8 × 8 matrix A corresponding to an operator for a
quantum system consisting of n = 3 qubits (spin-1/2). The DROPS visualization is defined by the tensor
product basis and its DROPS mapping presented in Fig. 2.12. Each droplet is a linear combination of

spherical harmonics corresponding to a specific f
(`)
A in Eq. (2.3). The labels ` of the droplets are defined

in Fig. 2.12.

set |j2, κ2〉 according to the Clebsch decomposition:

Tj,m(|j1, κ1〉 → |j2, κ2〉) :=√
2j+1
2j2+1

∑
m1
〈j2,m2|j,m|j1,m1〉 |j2,m2, κ2〉 〈j1,m1, κ1|

(2.16)

where 〈j2,m2|j,m|j1,m1〉 is a conventional representation for Clebsch-Gordan coeffi-
cients [8,22,41]. Note that the multipole tensor operators transforming |j1, κ1〉 → |j2, κ2〉
have ranks |j1 − j2| < j < j1 + j2 and since the angular momentum values j1, j2 are
either all integers or all half-integers, the tensor ranks j are integers as expected.

A natural DROPS representation for the multipole operators groups into a single
droplet all the tensor operators corresponding to the same “coherent state set” transition
|j1, κ1〉 → |j2, κ2〉. If we refer to the formal mapping given by Eqs. (2.2) and (2.3)
defining a DROPS representation, the labels ` ∈ L for this representation consist of all
the possible transitions |j1, κ1〉 → |j2, κ2〉.

Example for a n = 3 spin-1/2 system. We first have to construct the coherent states
for the system, which is done recursively by adding one particle at a time. For a system
consisting of n = 1 spin-1/2 particle, the coherent state basis is simply

B1 = |1/2〉 = {|1/2, 1/2〉 , |1/2,−1/2〉}.

For n = 2, the state basis is B2 = |1〉 ∪ |0〉 obtained from the Clebsch decomposition
B1 ⊗B1:

|1/2〉 ⊗ |1/2〉 = |0〉 ⊕ |1〉 ,
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corresponding to the singlet and triplet states respectively. Note that no additional
label κ is needed since the ranks of the two coherent state sets are distinct. Fi-
nally, for the n = 3 spins system, the basis consists of the three coherent state sets
B3 = |3/2, κ1〉 ∪ |1/2, κ1〉 ∪ |1/2, κ2〉 obtained from the Clebsch decomposition
B2 ⊗B1:

|1〉 ⊗ |1/2〉 = |1/2, κ1〉 ⊕ |3/2, κ1〉 , (2.17)

|0〉 ⊗ |1/2〉 = |1/2, κ2〉 , (2.18)

where κ1 = 1 and κ2 = 0 identify the parents from which a tensor is obtained.

The next step is to construct the tensors associated with each of the nine trans-
itions |j1, κ1〉 → |j2, κ2〉 using Eq. (2.16). For each possible transition, we list here the
ranks of the tensors obtained by this construction:

Transitions Ranks j
|3/2, κ1〉 → |3/2, κ1〉 0, 1, 2, 3
|1/2, κ1〉 → |1/2, κ1〉 0, 1, 2
|1/2, κ2〉 → |1/2, κ2〉 0, 1, 2

|3/2, κ1〉 → |1/2, κ1〉 1, 2
|1/2, κ1〉 → |3/2, κ1〉 1, 2

|3/2, κ1〉 → |1/2, κ2〉 1, 2
|1/2, κ2〉 → |3/2, κ1〉 1, 2

|1/2, κ1〉 → |1/2, κ2〉 0, 1
|1/2, κ2〉 → |1/2, κ1〉 0, 1

Figure 2.14 illustrates the grouping of these tensors into droplets, which defines a possible
DROPS representation of operators acting on three spin-1/2 particles. An example of
DROPS representation for a random operator A is illustrated in Fig. 2.15.
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Figure 2.14: Properties and labels of the multipole tensors in the basis for a system consisting of
three spin-1/2 particles. Each tensor is associated with a defined transition |j1, κ1〉 → |j2, κ2〉 which is
graphically illustrated here (transition). The tensors are grouped (labels) into droplets according to
these transitions.
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Figure 2.15: DROPS visualization of a random 8 × 8 matrix A corresponding to an operator for a
quantum system consisting of n = 3 qubits (spin-1/2). The DROPS visualization is defined by the
multipole tensors basis and its DROPS mapping presented in Section 2.10.10. Each droplet is a linear

combination of spherical harmonics corresponding to a specific f
(`)
A in Eq. (2.3). The labels ` of the

droplets are defined in Fig. 2.14.

2.10.11 From the LiSA basis to the Cartesian product operator
bases

The explicit transformations between the LiSA tensor operator basis and the Cartesian
product operator basis are given in Fig. 2.16 to Fig. 2.19. Figure 2.16 shows the trans-
formations between the linear operators and Fig. 2.17 the transformations between the
bilinear operators. The decomposition of the trilinear tensor operator components in
terms of the Cartesian product operators is given in Fig. 2.18 and reciprocally, the
decomposition of the trilinear Cartesian product basis operators in terms of the LiSA
tensor operator components is given in Fig. 2.19. In order to lighten the expressions, the
shorthand notation for Cartesian operators Iabc := IaIbIc is used in the decomposition
of trilinear operators.
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Figure 2.16: Transformation between the LiSA linear tensor operator components and the linear
Cartesian product basis operators.
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Figure 2.17: Transformation between the LiSA bilinear tensor operator components and the linear
Cartesian product basis operators.
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T0,0(τ4) = 2√
3

[(Ixyz − Ixzy − Iyxz + Iyzx + Izxy − Izyx)]

T1,−1(τ1) = 2√
15

[3Ixxx − 3iIyyy − i(Ixxy + Ixyx + Iyxx) + (Ixyy + Iyxy + Iyyx) + (Ixzz + Izxz + Izzx)

−i(Iyzz + Izyz + Izzy)]

T1,0(τ1) =
√

8
15 [(Ixxz + Ixzx + Izxx) + (Iyyz + Iyzy + Izyy) + 3Izzz]

T1,1(τ1) = − 2√
15

[i(Ixxy + Ixyx + Iyxx) + (Ixyy + Iyxy + Iyyx) + (Ixzz + Izxz + Izzx)

+i(Iyzz + Izyz + Izzy) + 3Ixxx + 3iIyyy]
T1,−1(τ2) = 1√

3
[−i(Iyxx + Ixyx − 2Ixxy)− i(Iyzz + Izyz − 2Izzy) + (Ixyy + Iyxy − 2Iyyx)

+(Ixzz + Izxz − 2Izzx)]

T1,0(τ2) =
√

2
3 [−2(Ixxz + Iyyz) + (Izxx + Ixzx) + (Izyy + Iyzy)]

T1,1(τ2) = 1√
3

[(−Ixyy − Iyxy + 2Iyyx) + (−Ixzz − Izxz + 2Izzx) + i(−Iyxx − Ixyx + 2Ixxy)

+i(−Iyzz − Izyz + 2Izzy)]
T1,−1(τ3) = [(Ixyy − Iyxy) + (Ixzz − Izxz)− i(Iyxx − Ixyx)− i(Iyzz − Izyz)]

T1,0(τ3) =
√

2 [(Izxx − Ixzx) + (Izyy − Iyzy)]
T1,1(τ3) = −[(Ixyy − Iyxy) + (Ixzz − Izxz) + i(Iyxx − Ixyx) + i(Iyzz − Izyz)]

T2,−2(τ2) = 1√
3

[(Iyzx + Izyx) + (Ixzy + Izxy)− 2(Ixyz + Iyxz)− (2iIxxz − iIxzx − iIzxx)

+(2iIyyz − iIyzy − iIzyy)]
T2,−1(τ2) = 1√

3
[−(2Ixxy − Ixyx − Iyxx)− i(2Iyyx − Iyxy − Ixyy) + (2iIzzx − iIzxz − iIxzz)

+(2Izzy − Izyz − Iyzz)]
T2,0(τ2) =

√
2 [(Iyzx + Izyx)− (Ixzy + Izxy)]

T2,1(τ2) = 1√
3

[(2Ixxy − Ixyx − Iyxx)− (2Izzy − Izyz − Iyzz) + i(2Izzx − Izxz − Ixzz)
−i(2Iyyx − Iyxy − Ixyy)]

T2,2(τ2) = 1√
3

[−(2Ixyz − Ixzy − Izxy)− (2Iyxz − Iyzx − Izyx) + i(2Ixxz − Ixzx − Izxx)

−i(2Iyyz − Iyzy − Izyy)]
T2,−2(τ3) = [(Izxy − Ixzy) + (Izyx − Iyzx) + i(Izxx − Ixzx) + i(Iyzy − Izyy)]
T2,−1(τ3) = [(Iyxx − Ixyx) + i(Ixyy − Iyxy) + i(Izxz − Ixzz) + (Izyz − Iyzz)]

T2,0(τ3) =
√

2
3 [−(2Ixyz + Ixzy − Izxy) + (2Iyxz + Iyzx − Izyx)]

T2,1(τ3) = [(Ixyx − Iyxx) + (Iyzz − Izyz) + i(Ixyy − Iyxy) + i(Izxz − Ixzz)]
T2,2(τ3) = [(Izxy − Ixzy) + (Izyx − Iyzx) + i(Ixzx − Izxx) + i(Izyy − Iyzy)]

T3,−3(τ1) = [(Ixxx − iIyyy)− i(Ixxy + Ixyx + Iyxx)− (Ixyy + Iyxy + Iyyx)]

T3,−2(τ1) =
√

2
3 [(Ixxz + Ixzx + Izxx)− (Iyyz + Iyzy + Izyy)

−i(Ixyz + Ixzy + Iyxz + Iyzx + Izxy + Izyx)]
T3,−1(τ1) = 1√

15
[−3(Ixxx − iIyyy) + i(Ixxy + Ixyx + Iyxx)− (Ixyy + Iyxy + Iyyx)

+4(Ixzz + Izxz + Izzx)− 4i(Iyzz + Izyz + Izzy)]
T3,0(τ1) = − 2√

5
[(Ixxz + Ixzx + Izxx) + (Iyyz + Iyzy + Izyy)− 2Izzz]

T3,1(τ1) = 1√
15

[3(Ixxx + iIyyy) + i(Ixxy + Ixyx + Iyxx) + (Ixyy + Iyxy + Iyyx)

−4(Ixzz + Izxz + Izzx)− 4i(Iyzz + Izyz + Izzy)]

T3,2(τ1) =
√

2
3 [(Ixxz + Ixzx + Izxx)− (Iyyz + Iyzy + Izyy)

+i(Ixyz + Ixzy + Iyxz + Iyzx + Izxy + Izyx)]
T3,3(τ1) = [(Ixxx + iIyyy)− i(Ixxy + Ixyx + Iyxx) + (Ixyy + Iyxy + Iyyx)]

Figure 2.18: Decomposition of the trilinear LiSA tensor operators in terms of the Cartesian product
operators.
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4Ixxx = 1
10

[
2
√

15 (T1,−1(τ1)− T1,1(τ1))−
√

15 (T3,−1(τ1)− T3,1(τ1)) + 5 (T3,−3(τ1)− T3,3(τ1))
]

4Ixxy = 1
30

[
2i
√

15 (T1,−1(τ1) + T1,1(τ1))− i
√

15 (T3,−1(τ1) + T3,1(τ1)) + 15i (T3,−3(τ1) + T3,3(τ1))

−10i
√

3 (T1,−1(τ2) + T1,1(τ2))− 10
√

3 (T2,−1(τ2)− T2,1(τ2))
]

4Ixxz =
√

2
15T1,0(τ1)− 1√

5
T3,0(τ1) + 1√

6
T3,−2(τ1) + T3,2(τ1)−

√
2
3T1,0(τ2)

+ i√
3

(T2,−2(τ2)− T2,2(τ2))

4Ixyx = 1
30

[
2i
√

15 [T1,−1(τ1) + T1,1(τ1)]− i
√

15 [T3,−1(τ1) + T3,1(τ1)] + 15i [T3,−3(τ1) + T3,3(τ1)]

+5i
√

3 [T1,−1(τ2) + T1,1(τ2)] + 5
√

3 [T2,−1(τ2)− T2,1(τ2)]
−15i [T1,−1(τ3) + T1,1(τ3)]− 15 [T2,−1(τ3)− T2,1(τ3)]]

4Ixyy = 1
30

[
2
√

15 [T1,−1(τ1)− T1,1(τ1)]−
√

15 [T3,−1(τ1)− T3,1(τ1)]− 15 [T3,−3(τ1)− T3,3(τ1)]

+5
√

3 [T1,−1(τ2)− T1,1(τ2)]− 5i
√

3 [T2,−1(τ2) + T2,1(τ2)] + 15 [T1,−1(τ3)− T1,1(τ3)]
−15i [T2,−1(τ3) + T2,1(τ3)]]

4Ixyz = 1
2
√

3

[
i
√

2 [T3,−2(τ1)− T3,2(τ1)]− 2
√

2T2,0(τ3)− 2 [T2,−2(τ2) + T2,2(τ2)] + 2T0,0(τ4)
]

4Ixzx = 1
30

[
2
√

30 [T1,0(τ1)]− 6
√

5 [T3,0(τ1)] + 5
√

6 [T3,−2(τ1) + T3,2(τ1)]

+5
√

6T1,0(τ2)− 5i
√

3 [T2,−2(τ2)− T2,2(τ2)]− 15
√

2T1,0(τ3) + 15i [T2,−2(τ3)− T2,2(τ3)]
]

4Ixzy = 1
6

[
i
√

6 [T3,−2(τ1)− T3,2(τ1)]− 3
√

2T2,0(τ2) +
√

3 [T2,−2(τ2) + T2,2(τ2)]

−3 [T2,−2(τ3) + T2,2(τ3)]−
√

6T2,0(τ3)− 2
√

3T0,0(τ4)
]

4Ixzz = 1
30

[
2
√

15 [T1,−1(τ1)− T1,1(τ1)] + 4
√

15 [T3,−1(τ1)− T3,1(τ1)] + 5
√

3 [T1,−1(τ2)− T1,1(τ2)]

+5i
√

3 [T2,−1(τ2) + T2,1(τ2)] + 15 [T1,−1(τ3)− T1,1(τ3)] + 15i [T2,−1(τ3) + T2,1(τ3)]
]

4Iyxx = 1
30

[
2i
√

15 [T1,−1(τ1) + T1,1(τ1)]− i
√

15 [T3,−1(τ1) + T3,1(τ1)] + 15i [T3,−3(τ1) + T3,3(τ1)]

+5i
√

3 [T1,−1(τ2) + T1,1(τ2)] + 5
√

3 [T2,−1(τ2)− T2,1(τ2)] + 15i [T1,−1(τ3) + T1,1(τ3)]
+15 [T2,−1(τ3)− T2,1(τ3)]]

4Iyxy = 1
30

[
2
√

15 [T1,−1(τ1)− T1,1(τ1)]−
√

15 [T3,−1(τ1)− T3,1(τ1)]− 15 [T3,−3(τ1)− T3,3(τ1)]

+5
√

3 [T1,−1(τ2)− T1,1(τ2)]− 5i
√

3 [T2,−1(τ2) + T2,1(τ2)]− 15 [T1,−1(τ3)− T1,1(τ3)]
+15i [T2,−1(τ3) + T2,1(τ3)]]

4Iyxz = − 1
2
√

3

[
−i
√

2 [T3,−2(τ1)− T3,2(τ1)] + 2 [T2,−2(τ2) + T2,2(τ2)]− 2
√

2T2,0(τ3) + 2T0,0(τ4)
]

4Iyyx = 1
30

[
2
√

15 [T1,−1(τ1)− T1,1(τ1)]−
√

15 [T3,−1(τ1)− T3,1(τ1)]− 15 [T3,−3(τ1)− T3,3(τ1)]

−10
√

3 [T1,−1(τ2)− T1,1(τ2)] + 10i
√

3 [T2,−1(τ2) + T2,1(τ2)]
]

4Iyyy = 1
10 i
[
2
√

15 [T1,−1(τ1) + T1,1(τ1)]−
√

15 [T3,−1(τ1) + T3,1(τ1)]− 5 [T3,−3(τ1) + T3,3(τ1)]
]

4Iyyz = 1
30

[
2
√

30T1,0(τ1)− 6
√

5T3,0(τ1)− 5
√

6 [T3,−2(τ1) + T3,2(τ1)]− 10
√

6T1,0(τ2)

−10i
√

3 [T2,−2(τ2)− T2,2(τ2)]
]

4Iyzx = 1
6

[
i
√

6 [T3,−2(τ1)− T3,2(τ1)] + 3
√

2T2,0(τ2) +
√

3 [T2,−2(τ2) + T2,2(τ2)] +
√

6T2,0(τ3)

−3 [T2,−2(τ3) + T2,2(τ3)] + 2
√

3T0,0(τ4)
]

4Iyzy = 1
30

[
2
√

30T1,0(τ1)− 6
√

5 [T3,0(τ1)]− 5
√

6 [T3,−2(τ1) + T3,2(τ1)] + 5
√

6T1,0(τ2)

+5i
√

3 [T2,−2(τ2)− T2,2(τ2)]− 15
√

2T1,0(τ3)− 15i [T2,−2(τ3)− T2,2(τ3)]
]

4Iyzz = 1
30

[
2i
√

15 [T1,−1(τ1) + T1,1(τ1)] + 4i
√

15 [T3,−1(τ1) + T3,1(τ1)] + 5i
√

3 [T1,−1(τ2) + T1,1(τ2)]

−5
√

3 [T2,−1(τ2)− T2,1(τ2)] + 15i [T1,−1(τ3) + T1,1(τ3)]− 15 [T2,−1(τ3)− T2,1(τ3)]
]

4Izxx = 1
30

[
2
√

30T1,0(τ1)− 6
√

5T3,0(τ1) + 5
√

6 [T3,−2(τ1) + T3,2(τ1)] + 5
√

6T1,0(τ2)

−5i
√

3 [T2,−2(τ2)− T2,2(τ2)] + 15
√

2T1,0(τ3)− 15i [T2,−2(τ3)− T2,2(τ3)]
]

4Izxy = 1
6

[
+i
√

6 [T3,−2(τ1)− T3,2(τ1)] +
√

3 [T2,−2(τ2) + T2,2(τ2)]− 3
√

2T2,0(τ2)

+3 [T2,−2(τ3) + T2,2(τ3)] +
√

6T2,0(τ3)2
√

3T0,0(τ4)
]

4Izxz = 1
30

[
2
√

15 [T1,−1(τ1)− T1,1(τ1)] + 4
√

15 [T3,−1(τ1)− T3,1(τ1)] + 5
√

3 [T1,−1(τ2)− T1,1(τ2)]

+5i
√

3 [T2,−1(τ2) + T2,1(τ2)]− 15 [T1,−1(τ3)− T1,1(τ3)]− 15i [T2,−1(τ3) + T2,1(τ3)]
]

4Izyx = 1
6

[
+i
√

6 [T3,−2(τ1)− T3,2(τ1)] +
√

3 [T2,−2(τ2) + T2,2(τ2)] + 3
√

2T2,0(τ2)

+3 [T2,−2(τ3) + T2,2(τ3)]−
√

6T2,0(τ3)− 2
√

3T0,0(τ4)
]

4Izyy = 1
30

[
2
√

30T1,0(τ1)− 6
√

5T3,0(τ1)− 5
√

6 [T3,−2(τ1) + T3,2(τ1)] + 5
√

6T1,0(τ2)

+5i
√

3 [T2,−2(τ2)− T2,2(τ2)] + 15
√

2T1,0(τ3) + 15i [T2,−2(τ3)− T2,2(τ3)]
]

4Izyz = 1
30

[
2i
√

15 [T1,−1(τ1) + T1,1(τ1)] + 4i
√

15 [T3,−1(τ1) + T3,1(τ1)] + 5i
√

3 [T1,−1(τ2) + T1,1(τ2)]

−5
√

3 [T2,−1(τ2)− T2,1(τ2)]− 15i [T1,−1(τ3) + T1,1(τ3)] + 15 [T2,−1(τ3)− T2,1(τ3)]
]

4Izzx = 1
5
√

3

[√
5 [T1,−1(τ1)− T1,1(τ1)] + 2

√
5 [T3,−1(τ1)− T3,1(τ1)]− 5 [T1,−1(τ2)− T1,1(τ2)]

−5i [T2,−1(τ2) + T2,1(τ2)]]

4Izzy = 1
5
√

3

[
i
√

5 [T1,−1(τ1) + T1,1(τ1)] + 2i
√

5 [T3,−1(τ1) + T3,1(τ1)]− 5i [T1,−1(τ2) + T1,1(τ2)]

+5 [T2,−1(τ2)− T2,1(τ2)]]

4Izzz = 1√
5

[√
6T1,0(τ1) + 2T3,0(τ1)

]
Figure 2.19: Decomposition of trilinear Cartesian product operators in terms of LiSA tensor operators.



Applications of the LiSA DROPS visu-
alization

3.1 Introduction

The previous chapter was devoted to the general presentation of the DROPS visualiza-
tion of quantum systems and the visualization using the LiSA basis was pointed out as
presenting many interesting features. Some examples of applications have already been
briefly discussed. In the present chapter, we propose to show how the LiSA DROPS
visualization can be applied to help understanding fundamental concepts in theoretical
and experimental nuclear magnetic resonance spectroscopy. Spin systems with spin-1/2
particles are considered, since they are the most encountered systems in NMR spectro-
scopy. In general, one- and two-particle systems will be complex enough to properly
translate the ideas into insightful DROPS figures. To get familiar with the DROPS
visualization, the first part of the chapter illustrates the most basic concepts whereas
more complex ideas involving coherences are saved for the end of the chapter. Since the
scope of this chapter is to illustrate how DROPS visualization may help understanding
the presented concepts, each of these concepts is only briefly introduced. The reader
may always consult [8] if seeking more details.

3.1.1 Visualization of two-spin systems

The DROPS visualizations encountered in the previous chapter were involving three
spin-1/2 particles and 11 droplets were needed to represent general operators. In the
case of systems with two spin-1/2 particles, only four droplets are needed, i.e. the
droplets {1}, {2}, {1, 2} and {Id} which each represent the corresponding sub-system.
An example of DROPS visualization of a two-spin system is illustrated in Fig. 3.1 (on the
right) together with its equivalent representation when seen as a sub-system of a three-
spin-1/2 system (on the left). The labels of the droplets are generally not shown when
no confusion may arise, to lighten the DROPS pictures and ease their understanding.

3.2 Time evolution

3.2.1 General formulation

The time evolution of a system on a time interval [t0, tf ] designates the states taken by
the system at any time t in the interval. Since the state of a system at a time t can be
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Figure 3.1: DROPS visualization of the operator A = I1x + I2y + 2I1zI2z + 1
4

Id. The picture on the
left represents the operator as part of a three-spin-1/2 system. The picture on the right shows the same
operator as acting on a system consisting of two spin-1/2 particles only. The two DROPS visualizations
are equivalent.

uniquely represented by a density matrix ρ(t), studying the time evolution of a system
amounts to studying the evolution of ρ(t) for all t ∈ [t0, tf ]. The time evolution of ρ(t0)
under the action of a Hamiltonian H for a time t is schematically represented by

ρ(t0) −→
H t

ρ(t1),

where ρ(t1) is the density matrix of the system at time t1 := t0 + t. The systems
considered in the present work are closed [69], that is there is no dissipation or no loss of
information. In this case, the dynamics of the system is governed by the Liouville-von
Neumann equation:

ρ̇ = −i[H , ρ], (3.1)

where [A,B] := AB−BA denotes the commutator of A and B. For a constant Hamilto-
nian H , the above equation is easy to solve and its solution is:

ρ(t1) = Uρ(t0)U−1, (3.2)

where U = e−iH t corresponds to the time-evolution operator and is called the propag-
ator. In order to use Eq. (3.2), the time interval [t0, tf ] is generally split into sub-
intervals on which the Hamiltonian is constant (or can be well approximated by a
constant Hamiltonian). The time evolution of the system can then be computed by
subsequently applying Eq. (3.2) on each sub-interval.

Note that Eq. (3.2) is linear. That is, if we decompose ρ0 as a sum of operators
ρ0 =

∑
iAi, then at time t1 the following relation is satisfied: ρ(t1) = Uρ(t0)U−1 =∑

i UAiU
−1. Therefore, it is possible to consider the time evolution of density operator

components Ai.

3.2.2 Cartesian operators and the sandwich formula

Cartesian product operators form a complete orthogonal basis of spin-1/2 systems and
have already been formally presented in Appendix 2.10.3 of Chapter 2. We recall that
for one-spin-1/2 systems, they are

1
2 Id =

(
1/2 0
0 1/2

)
, Ix =

(
0 1/2

1/2 0

)
, Iy =

(
0 −i/2
i/2 0

)
, Iz =

(
1/2 0
0 −1/2

)
.
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For a two-spin-1/2 system, they are formed by taking all the possible tensor products
of the one-spin operators:

1
2 Id, I1η1

, I2η2
, 2I1η1

I2η2
,

where η1, η2 ∈ {x, y, z} and the additional factors ( 1
2 and 2 for instance) ensure that

the operators all have the same norm. For one- and two-spin systems, the DROPS
visualizations of Cartesian product operators involve a single droplet and are illustrated
in Fig. 2.3 of Chapter 2.

Cartesian operators have a very interesting commutation property. Indeed, any
two Cartesian operators C1 and C2 either commute (i.e. [C1, C2] = 0) or satisfy a cyclic
relation with a third cartesian operator C3 [8, 70]:

[C1, C2] = iC3, (3.3a)

[C2, C3] = iC1, (3.3b)

[C3, C1] = iC2. (3.3c)

Using these relations, the time evolution of a Cartesian operator ρ(t0) = C1 under a
Hamiltonian H = C2 has the following direct solution:

C1 −→
C2t

=

{
C1 if [C1, C2] = 0

C1 cos(a2t)− C3 sin(a2t) if [C1, C2] = iC3 6= 0
(3.4)

which is also known as the sandwich formula [70].

3.2.3 Grasping the dynamics

For all pairs of Cartesian operators C1, C2 (excluding the identity operator which com-
mutes with every operator), the Cartesian operator C3 satisfying [C1, C2] = iC3 ap-
pearing in the evolution formula in Eq. (3.4) has been visualized and presented into a
table form in Fig. 3.3. We proceed to show how, with such a table, the time evolution
of any operator ρ(t0) = a1C1 under the action of a constant Hamiltonian H = a2C2

can be grasped by only considering the DROPS pictures for C1 and C3. The dynam-
ics is discussed in terms of DROPS pictures only, but the technical derivation of the
time-evolution operators can be found in chapter 2 of [8].

Before that, we present in Fig. 3.2 the DROPS visualization of each Cartesian
operator (except for the identity) in the system. The operators are presented according
to their orientation axis (which was also discussed in the section 2.5.4 of Chapter 2).

The orientation of a linear operator Ikη is defined from its characteristic droplet
by the two points corresponding to the center of mass of the negative and positive lobes.
Its direction is given by the positive center of mass and coincides with the axis

#”
1 η.

Similarly, the orientation of a mixed bilinear operator 2I1η1
I2η2

, η1 6= η2, is determined
by the center of mass of its negative and positive lobes. Its direction

#”
1 η3

, given by the
positive center of mass, corresponds to the vector product

#”
1 η3 :=

#”
1 η1×

#”
1 η2 . Finally, the

orientation of symmetric bilinear operators 2I1ηI2η corresponds to the axis defined by
the two positive lobes of the bilinear droplet. In this case, no direction can be specified
since both principal lobes of the droplet are positive.
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Figure 3.2: DROPS visualization of Cartesian operators in a two-spin system. The first and second
columns show the linear operators acting on the first and second spins respectively. The third column
shows the symmetric bilinear operators of the form 2I1ηI2η and the two rightmost columns show the
mixed bilinear operators 2I1η1I2η2 with η1 6= η2. Operators oriented in the ±x, ±y and ±z directions
are arranged on the first, second and third rows respectively. As an example, the orientation and
direction of the operators in the first row are indicated with arrows.

Non-commuting Cartesian operators

Let ρ(t0) = C1 and H = C2 be two non-commuting Cartesian operators, i.e. the

evolution C1 −→
C2t

C1(t) is not trivial. At time t = 0, the visualization of ρ(t0) corresponds
to the picture of C1, which is found on the leftmost column of Fig. 3.3. As the time goes,
the operator becomes ρ(t) = C1 cos(t) − C3 sin(t) and there are four possible evolution
schemes.

• If C1 and C2 act on one and the same single spin, the evolution of the DROPS
picture corresponds to a rotation of the C1 droplet about the axis defined by the
cross product ~1C1

×~1C2
. This correspondence is well defined due to the direct re-

lation between droplets representing single-spin operators and their corresponding
Bloch vector (see section 2.5.4 of Chapter 2).

• If C1 is linear and C2 is bilinear, then C3 is also bilinear and the time evolution
ρ(t) corresponds to a volume transfer between the non-empty linear droplet of C1

and the bilinear droplet of −C3.

• Conversely, if C1 is bilinear and C2 is linear, then C3 is also bilinear and the time
evolution ρ(t) corresponds to a shape change in the bilinear droplet.

• If C1 and C2 are both bilinear, then C3 is linear and the time evolution ρ(t)
corresponds to a volume transfer between the bilinear droplet for C1 and the
linear droplet for C3.

Considering a small variation of the previous system, where ρ(t0) = a1C1 and
H = a2C2, the above evolution schemes remain similar up to a size change of the
droplets or a speed variation of the volume transfer.

Commuting Cartesian operators

The DROPS representation of commuting operators C1 and C2 can also be classified
into categories defined from their DROPS pictures only. We briefly summarize them
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here.

• Two linear operators acting on different spins always commute. That is, if the two
droplets involved in the DROPS picture of C1 and C2 are not “connected” to each
other.

• The symmetric bilinear operators 2I1xI2x, 2I1yI2y, 2I1zI2z commute with each
other. Moreover, symmetric operators commute with any operator having a paral-
lel droplet axis. For instance, 2I1xI2x commutes with I1,x, I2,x, 2I1yI2z and 2I1zI2y.

• Mixed bilinear operators 2I1η1
I2η2

, η1 6= η2, for which the droplet axes are parallel,
commute. That is, [2I1xI2y, 2I1yI2x] = [2I1xI2z, 2I1zI2x] = [2I1yI2z, 2I1zI2y] = 0.

• Two non-parallel mixed operators commute if and only if both of them either de-
lineate a positive axis in {x, y, z} or a negative axis in {−x,−y,−z}. For instance,
since 2I1xI2y is oriented in the +z direction and 2I1zI2x is oriented in the +y dir-
ection, then [2I1xI2y, 2I1zI2x] = 0. Conversely, since 2I1xI2y is oriented in the +z
direction and 2I1xI2z is oriented in the −y direction, then [2I1xI2y, 2I1xI2z] 6= 0.

• A linear operator acting on spin 1 oriented in the η-direction commute with a
mixed bilinear operator oriented in the η′-direction if and only if the vector product
#”
1 η ×

#”
1 η′ is pointing in a positive direction in {x, y, z}. Consider for instance I1x,

which is oriented in the +x direction, and 2I1xI2z, which is oriented in the −y
direction. Since

#”
1 x ×

#”
1−y =

#”
1 +z is pointing in a direction in {x, y, z}, then

[I1x, 2I1xI2z] = 0.

• On the other hand, a linear operator acting on spin 2 oriented in the η-direction
commutes with a mixed bilinear operator oriented in the η′-direction if and only
if the vector product

#”
1 η×

#”
1 η′ is pointing in a negative direction in {−x,−y,−z}.

Since it is always possible to decompose operators into a linear combination of
Cartesian operators, the dynamics of Cartesian operators presented above may be of
great help to quickly visualize experiments.

3.3 Hamiltonians and pulse sequences

We now present the typical Hamiltonians encountered in NMR spectroscopy and visu-
alize their effects on given initial density operators. The global Hamiltonian of a system
at a given time can be decomposed as

H = Hcs + HJ + Hrf, (3.5)

where Hcs is the chemical shift Hamiltonian, HJ is the coupling Hamiltonian and Hrf

is the pulse Hamiltonian used to control the system and to design experiments. The
internal Hamiltonian H0 = Hcs + HJ designates the part of the Hamiltonian which is
intrinsic to the system as opposed to the rf-Hamiltonian Hrf, which we may steer.

3.3.1 The chemical shift Hamiltonians Hcs

The chemical shift Hamiltonians are of the form [8]

Hcs = 2π(ν1I1z + ν2I2z)



3.3. HAMILTONIANS AND PULSE SEQUENCES 53

and their visualization corresponds to two droplets on spins one and two of length
proportional to ν1 and ν2 respectively. They are both pointing in the ±z direction,
according to the sign of νi. In Fig. 3.4, two examples of chemical shift Hamiltonians are
illustrated for the case (a) ν1 = ν2 and (b) 2ν1 = ν2.

The effect of Hcs alone on linear operators is simple: the droplet corresponding
to spin one rotates about the z axis with angular velocity ν1 and similarly for spin two.
The bilinear droplet will also rotate when ν1 = ν2, i.e. when the two spins precess with
the same velocity (see Fig. 3.4 (a)). If ν1 6= ν2 however, it may also change its shape as
illustrated in Fig. 3.4 (b).

Figure 3.4: Illustration of the chemical shift Hamiltonians Hcs = 2π(ν1I1z + ν2I2z) for a two-spin
system. Given ν1 = ν, the cases (a) ν2 = ν and (b) ν2 = 2ν are considered. On the top row lies the
DROPS visualization of the corresponding Hamiltonians, which have been scaled down by a factor of

1
2πν

. Below the dashed line, we visualized the time evolution of ρ(0) = I1x + I2y + 2I1xI2y under the

corresponding Hamiltonians at equally distributed time points, where τ = 1
8ν

.

3.3.2 The coupling Hamiltonians HJ

The spin-spin coupling Hamiltonians for a two-spin system are of the form

Hcs = 2πJ(aI1xI2x + aI1yI2y + bI1zI2z)

and have already been discussed in Section 2.5.6 of Chapter 2. We simply summarize in
Fig. 3.5) the shape of these characteristic Hamiltonians for the most encountered values
of the parameters a and b and visualize the evolution of an initial density operator
ρ(t0) = I1x under the action of these Hamiltonians. The detailed time evolution of
ρ(0) = I1x under these different coupling Hamiltonians can be found in Appendix 3.8.1.

3.3.3 The pulse Hamiltonians Hrf

Experiments in nuclear magnetic resonance spectroscopy are designed to manipulate
systems to find out information about their structure. For example, some experiments
are designed to determine which spins are coupled together while others aim at finding
their spin-spin coupling constants (see [71] for a compilation of classical experiments).

An external radio-frequency (rf) magnetic field ~Brf is used to control the system and
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Figure 3.5: On the top row, DROPS visualization of typical coupling Hamiltonians HJ =
2πJ(aI1xI2x + aI1yI2y + bI1zI2z) for the coefficient values (a) a = 0, b = 1, (b) a = 1, b = 1, (c)
a = 1, b = 0 and (d) a = 1, b = −2. The pictures are scaled down by a factor of 1/πJ . Below the
dashed line, we visualized the time evolution of ρ(0) = I1x under the corresponding coupling Hamilto-
nians at equally distributed time points, where τ = 1/8J .

the presence of this field during a certain amount of time is called a pulse. For the
moment, we will consider rectangular pulses only, i.e. pulses created by an rf-field
which is constant in space and time [70].

In this work, we consider that pulses are selective, i.e. they can act independently
on each spin. The total pulse Hamiltonian is then the sum of the single-spin pulses:

Hrf = H
(1)

rf + H
(2)

rf

for a two-spin system. We also consider that we are in the conditions under which
the rotating-wave approximation is a valid representation of the system [8]. Under this
assumption, the Hamiltonian corresponding to a pulse acting on the spin k and whose
field is pointing in the ~1θ(k) := cos θ(k)~1x + sin θ(k)~1y direction has the form

H
(k)

rf = 2πν(k)
x Ikx + 2πν(k)

y Iky, (3.6)

with {
ν

(k)
x := ν

(k)
rf cos θ(k),

ν
(k)
y := ν

(k)
rf sin θ(k),

where the frequency

ν
(k)
rf :=

−γ(k)| ~Brf|
2π

(3.7)

is proportional to the amplitude of the external field multiplied by the gyromagnetic ratio
γ(k) of spin k [8,68]. In this work, we consider systems for which γ(1) ∼= γ(2) and denote

νrf := ν
(1)
rf
∼= ν

(2)
rf . Examples of DROPS representations for pulse Hamiltonians are

illustrated in Fig. 3.7. The pulse Hamiltonians are, like the chemical shift Hamiltonians,
linear. The action of the former is then similar to the action of the latter, rotating the
droplets for spins one and two about the axes ~1θ(1) and ~1θ(2) . Likewise, the bilinear
droplet also rotates if ~1θ(1) = ~1θ(2) .
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3.3.4 90◦ and 180◦ pulses

In many experiments, the pulses used to manipulate systems are defined to perform
90◦ or 180◦ rotations about an axis in the transverse plane. We define below the 90◦

pulse, but the reasoning also holds for 180◦ pulses by simply changing the rotation angle
everywhere.

A 90◦ pulse on spin k about the axis ~1θ, also designated as a 90◦~1θ
pulse, is

determined by the time duration of the pulse: t90◦ . This duration is defined such that
the propagator associated with the pulse (see Eq. (3.2)) takes the form:

U90◦
~1θ

:= e−iHrft90◦ = e−iπ/2[cos θIkx+sin θIky ].

That is, t90◦ = 1
2πνrf

× π
2 , where we recall that νrf is proportional to the rf-field amplitude

(see Eq. (3.7)). Similarly, the time duration to perform a 180◦ rotation is t180◦ =
1

2πνrf
× π. Since the times t90◦ and t180◦ depend on the constant νrf only, they are

independent of the rotation axis and of the identity k of the spin.

A global pulse designates a family of simultaneous pulses acting identically on all
spins of the system. For instance, the Hamiltonian corresponding to a global 90◦x pulse
in a two-spin system is Hrf = 2πνrf(I1x + I2x).

3.3.5 Pulse sequences

A pulse sequence is a sequence of pulses and delays, where a delay is a time period during
which the system evolves freely. It is common practice to represent a pulse sequence
with a diagram as shown in Fig. 3.6. Conventionally, the black and white rectangles
represent 90◦ and 180◦ pulses respectively.

Figure 3.6: An example of pulse sequence for a system with three particles.

Illustration

The DROPS visualizations of Hamiltonians corresponding to some chosen pulses are
depicted in Fig. 3.7. Since rf-Hamiltonians are linear operators, the bilinear droplet (see
the upper part of the figure) in the visualization of Hrf is necessarily empty. To give
insight into the effect of these Hamiltonians on density matrices, the DROPS visualiz-
ations of some chosen density matrices at initial time t1 and final time t2 are depicted
in the figure. As expected, the linear droplets for ρ(t1) = I1x + I2x (first line of the
table) are rotated according to the pulses’ name (e.g. 90◦ rotation of spins 1 and 2
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Figure 3.7: The upper part of the figure shows some chosen pulses and the DROPS visualization of
their corresponding Hamiltonian. As indicated, the DROPS pictures have been scaled down by a factor
of 1

2πνrf
, where νrf is a constant proportional to the rf-field amplitude and the gyromagnetic ratio (see

Eqs. (3.6) and (3.7)). The lower part of the figure shows the effect (ρ(t2)) of the above pulses (columns
(b), (c) and (d)) on the density matrices ρ(t1) illustrated in column (a). The linear density matrices
and the bilinear ones are parted by the horizontal dotted line.

about the x-axis for the first Hamiltonian). Concerning the bilinear density matrices, a
global rotation is also performed when both spins are acted upon by an identical pulse,
as shown in column (b). When the pulses are not identical (columns (c) and (d)), the
bilinear droplet does not necessarily rotate and may change its shape.

3.4 Decoupling and refocusing pulse sequences

The decoupling and refocusing pulse sequences are well-known pulse sequences appearing
as parts of numerous NMR spectroscopy experiments. In this section, we describe three
of these sequences and their effects. They are illustrated for two different initial density
matrices ρ(t0) = I1x and ρ(t0) = I1y in Figs. 3.8 and 3.9 respectively, where for both
cases the time evolution in the presence of the three different internal Hamiltonians

Hcs = H
(1)

cs + H
(2)

cs , HJ and H
(1)

cs + H
(2)

cs + HJ is shown. Note that for these
illustrative examples, since the initial states involve the first spin only, one could replace

Hcs by H
(1)

cs without affecting the time evolution of the state. However, in order to
stay as general as possible, we keep working with the full chemical shift Hamiltonian

Hcs = H
(1)

cs + H
(2)

cs .
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For comparison purposes, the free evolution of ρ(t0) = I1x and ρ(t0) = I1y in the

presence of the internal Hamiltonians H
(1)

cs + H
(2)

cs , HJ and H
(1)

cs + H
(2)

cs + HJ are
illustrated in row (a) of Fig. 3.8 and 3.9. In these figures, the chemical shifts of the two
spins are taken to be identical, i.e. ν1 = ν2, such that the chemical shift Hamiltonian

takes the form H
(1)

cs + H
(2)

cs = 2πν(I1z + I2z), where H
(k)

cs = 2πνIkz. The coupling
Hamiltonian considered is longitudinal and the coupling constant Jc is related to the
chemical shifts by Jc = 2ν. That is, HJ = 2πJcI1zI2z = 2πν · 2I1zI2z.

The refocusing pulse sequence, illustrated in the last row (d) of Figs. 3.8 and 3.9,
consists of two opposite global 180◦ pulses and two delays of same duration τ

2 = t1−t0 =
t3 − t2 before the pulses. The sequence is designed such that the linear components of
ρ(t2) present after the first pulse propagates backward during the second delay τ

2 to be
finally refocused by the last pulse. On the other hand, the bilinear term evolves during
the sequence without being affected. As a result, the state ρ(t4) is identical to the state
obtained from the free evolution of ρ(t0) in the absence of chemical shifts. In Figs. 3.8
and 3.9, we can actually see the effect of the refocusing sequence in the presence of
different Hamiltonians. Under Hcs (first column), the final state ρ(t4) is identical to
the initial state as the effect of the total Hamiltonian is completely canceled. The final
states generated by the refocusing sequence in the presence of the Hamiltonians HJ and
Hcs + HJ (middle and last columns) are identical, the terms generated by Hcs being
canceled at the final time.

The decoupling pulse sequence, illustrated in row (c) of Figs. 3.8 and 3.9, con-
sists of two delays of same duration τ

2 which precede two opposite 180◦ pulses on spin
two. This time, the components obtained from ρ(t0) due to the presence of HJ and

H
(2)

cs during the first delay and pulse are the ones which are propagated backward and
refocused by the second delay and pulse. This sequence is understood as the decoup-
ling of spin two. Indeed, when the initial state involves spin one only, as in our two

principal examples, the fact that the sequence undoes the effect of H
(2)

cs is not visible
and the decoupling effect is the only one visible. Looking at Figs. 3.8 and 3.9, let us
first consider the coupling Hamiltonian HJ only (second column of Fig. 3.8). We can
see that the final state created by the sequence is identical to the initial state, canceling

out the terms created by HJ and preserving H
(1)

cs ≡ Hcs in this case. For an internal

Hamiltonian Hcs ≡ H
(1)

cs (first column), we see that the sequence has no effect on the
time evolution of the system, comparing with the free evolution of the system (row 1).
Finally, as expected, the final state created under Hcs + HJ (last column) is identical

to the one with the Hamiltonian Hcs ≡H
(1)

cs .

Similar to the sequence (c) which decouples spin two, row (b) shows the decoupling

sequence of spin one. The sequence is designed to cancel the effect of HJ and H
(1)

cs .
That is, for an initial state involving spin two only, the final state is the same as the one

created by the chemical shift Hamiltonian only since in this case, Hcs ≡ H
(2)

cs and its
effect is the only one which is visible at final time. In our principal examples however,

Hcs ≡H
(1)

cs such that the components created by both the chemical shift and coupling
Hamiltonians are propagated backward and refocused. That is, the net effect of the pulse
on ρ(t0) is the disappearance of any sign of time evolution, as we can see on row (b) of
Figs. 3.8 and 3.9. As expected, under all three Hamiltonians Hcs, HJ and Hcs + HJ ,
the state created at the final time is identical to the initial state, the terms created by

both Hcs ≡H
(1)

cs and HJ being canceled at final time.

Another way to understand the effect of the above decoupling and refocusing pulse
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sequences is to represent each of them by a constant Hamiltonian under which the final
state ρ(t4) reached by ρ(t0) would be identical. Such a representation is illustrated in
Fig. 3.10.

Figure 3.10: Schematic representation of the global effect of the pulse sequences presented in Figs. 3.8
and 3.9 at final time t4.

This figure reinterprets the sequences of Figs. 3.8 and 3.9, representing each sys-
tem (consisting to an internal Hamiltonian and a pulse sequence) by a constant Hamilto-
nian known as an effective Hamiltonian (further discussed in the next Section). Since
the aim of these sequences is to simulate Hamiltonians without their chemical shift term
Hcs (for the refocusing sequence) or without their coupling term HJ and one chemical

shift term H
(k)

cs (for the decoupling sequences), the constant Hamiltonians then consist
of the full Hamiltonians deprived of the corresponding terms. Accordingly, the Hamilto-
nians representing the refocusing pulse sequence (row (d)) have no chemical shift terms
whereas the ones simulating the decoupling pulse sequences (rows (b,c)) have only one
chemical shift term.
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3.5 Average Hamiltonian theory

3.5.1 Effective Hamiltonian

We can schematically represent a pulse sequence P by a sequence of n constant Hamilto-
nians Hi each applied for a time τi

P = {(H1, τ1), (H2, τ2), · · · , (Hn, τn)} .

The total time of the pulse sequence is τtot :=
∑

1≤i≤n τi. The time evolution on an
initial state ρ(t0) is graphically represented by

ρ(t0) −→
H1τ1

ρ(τ1) −→
H2τ2

ρ(τ1 + τ2) −→
H3τ3 · · · −→

Hnτn
ρ(τtot)

where the state at each stage is calculated via Eq. (3.2). That is,

ρ(τ1) = U1ρ(t0)U−1
1

ρ(τ1 + τ2) = U2U1ρ(t0)U−1
1 U−1

2
...

...
ρ(τtot) = Un . . . U2U1ρ(t0)U−1

1 U−1
2 . . . U−1

n

where Ui := e−iHiτi . Since each propagator Ui is an element of the group SU(2),
the product Un . . . U2U1 is also an element of this group and we define the effective
propagator Ueff as

Ueff = Un . . . U2U1.

The global transformation performed by the above pulse sequence P is then

ρ(t0) −→
Heff·τtot

Ueff · ρ(t0) · U−1
eff , (3.8)

where the effective Hamiltonian [8,72] Heff can be any constant Hamiltonian satisfying
e−iHeff·τtot = Ueff. The effective Hamiltonian, which is obtained by taking the matrix
logarithm of Ueff:

Heff =
i

τtot
log(Ueff), (3.9)

is indeed not uniquely defined since the logarithm is a multivalued function. The choice
of Heff is made by means of simplicity and continuity criteria [73, 74]. In the present
work, we choose Heff to be a traceless solution of Eq. (3.9).

The effective propagator and Hamiltonian are insightful when one is only inter-
ested in the global transformation Ueff created by a sequence of total duration τtot,
regardless of the way this result is achieved. The decoupling and refocusing pulse se-
quences introduced in Section 3.4 are good examples of such situations, since the pulses
are designed to perform a certain transformation at final time t4, independently of the
initial state and the intermediate stages of the sequence.

3.5.2 Illustration (decoupling and refocusing pulse sequences)

In Fig. 3.11, effective Hamitonians Heff corresponding to the pulse sequences presented
in Figs. 3.8 and 3.9 under different internal Hamiltonians are illustrated. The effect-
ive Hamiltonians corresponding to (a) the free evolution are identical to the internal
Hamiltonians but are nevertheless also visualized for comparison purposes.
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Figure 3.11: Effective Hamiltonians corresponding to the pulse sequences presented in Figs. 3.8 and
3.9. The total duration of the pulse is τtot = 1

2J
, the two chemical shifts are identical ν1 = ν2 = ν, i.e.

H
(k)

cs = 2πνIkz . The coupling Hamiltonian is longitudinal and the coupling constant Jc is related to
the chemical shifts by Jc = 2ν. That is, HJ = 2πJcI1zI2z = 2πν · 2I1zI2z .

The effect of the effective Hamiltonians for the refocusing pulse (row (d)) is clear
when looking at the effective Hamiltonians since the DROPS representation of these
Hamiltonians has no linear term. In the first case (H = Hcs), we forthwith deduce
that the final state must be identical to the initial one since ρ(t0) does not evolve at
all. The fact that the effective Hamiltonians Heff for the internal Hamiltonians HJ and
HJ + Hcs are identical bears witness to the fact that the pulse effectively cancels the
effect of the chemical shift Hamiltonian only.

The effect of the decoupling pulse of row (c) corresponds to the internal Hamilto-
nian deprived of its bilinear and linear in spin-two components. The only possible evol-
ution arises when the initial state involves the first spin and when there is a chemical
shift Hamiltonian (first and last columns), in which case the linear droplet on the first
spin embodies the precession of the spin. In the case where there is no chemical shift
Hamiltonian Hcs (column 2), the effective Hamiltonian Heff is zero and corresponds to
the identity transformation Ueff = Id. That is, whatever the initial state is, it does not
evolve under this Hamiltonian.

Similarly to the decoupling sequence (c), the effective Hamiltonians correspond-
ing to the decoupling sequence (b) concur with the linear droplet in spin two of the
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corresponding internal Hamiltonians. In particular, any initial state involving spin one
only, as in the two examples illustrated in Figs. 3.8 and 3.9, does not evolve at all under
these Hamiltonians.

It is interesting to compare the computed effective Hamiltonians illustrated in
Fig. 3.11 with the schematic representation of the sequences we made in Fig. 3.10.
Although the latter has been intuitively deduced from the effect of the pulse at final
time only, it is noticeable that the two representations coincide. Recalling that there are
many possible effective Hamiltonians leading to the same transformation Ueff and that
the choice of a particular one should be based on simplicity and continuity, the fact that
one succeeded in deducing the form of Heff without calculations is a good indication
that the calculated effective Hamiltonians in Fig. 3.11 meet these criteria.

3.5.3 Average Hamiltonian and toggling frame

Let P = {(H1, τ1), (H2, τ2), · · · , (Hn, τn)} represent a generic pulse of total duration
τtot :=

∑
1≤i≤n τi. The Magnus expansion of an effective Hamiltonian Heff leads to the

decomposition

Heff = H
(0)

eff + H
(1)

eff + H
(2)

eff + · · · , (3.10)

where [8]

H
(0)

eff =
1

τtot
(H1τ1 + · · ·+ Hnτn)

H
(1)

eff = − 9

2τtot
([H2τ2,H1τ1] + [H3τ3,H1τ1] + [H3τ3,H2τ2] + . . .)

...

The zeroth-order term H
(0)

eff is the average Hamiltonian of the sequence and is denoted

H . Clearly, when all the constant Hamiltonians Hi commute, the effective Hamiltonian
equals the average Hamiltonian, i.e. Heff = H . When it is not the case, the average
Hamiltonian still furnishes a good approximation of the effective Hamiltonian Heff if
τtot << 2π‖H ‖−1, where ‖H ‖ is the characteristic strength of the pulse Hamiltonian
[72, 74]. In practice, this approximation can often not be applied [74], as it is the case
for the pulse sequences introduced in Section 3.4. An elegant solution to overcome this
issue is provided by the interaction representation (toggling frame) of the experiment
considered.

The toggling frame point of view is based on the possibility to change the frame of
reference in which a physical system is looked at, as long as all the physical quantities of
the system change accordingly. In the toggling frame point of view, the hard pulses are
seen as acting on the internal Hamiltonian H0. This contrasts with the fixed reference
frame, in which the internal Hamiltonian H0 remains constant and the pulses are viewed
as acting on the state of the system. Since the global transformation performed on the
system at final time should be independent of the frame of reference in which the system
is looked at during the sequence, it is important when working with the toggling frame
to make sure that at final time, the frames for each linear droplet of H0 are rotated
back to be aligned with the fixed reference frame.
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3.5.4 Illustration 1: Decoupling and refocusing pulse sequences

In the description of the refocusing and decoupling pulses made in Section 3.4, we
explained that the undesired terms created during the first delay and pulse in these
sequences were canceled during the second delay and pulse. If the effective Hamiltonian
theory is particularly suitable to understand the global effect of a pulse sequence, it
does not explain the mechanism by which the undesired terms cancel each other. In
this regard, the concept of toggling frame provides a suitable tool to understand and
illustrate these mechanisms.

The pulse sequences of Fig. 3.8 (refocusing, decoupling and free evolution) are
summarized in Fig. 3.12 in which the toggling frame Hamiltonians during the first
(H tog

1 ) and second (H tog
2 ) delays are illustrated.

In addition, the average Hamiltonian in the toggling frame H tog has been depic-
ted. Using the DROPS representation of these Hamiltonians in the toggling frame point
of view, we can now study these sequences with a new eye.

In (d) the refocusing pulse sequence, the bilinear droplet remains intact all along
the sequence. The linear droplets however both change signs after the global 180◦ pulse.
On the time evolution of operators, this translates as follows: terms created before the
pulse by the linear terms in the Hamiltonian (i.e. by the chemical shift Hamiltonian)
are also created after the pulse, but with opposite sign. That is, these terms cancel.

In the decoupling pulse sequences (b) and (c), the bilinear droplet changes its
sign after the pulse. We now see why the terms created by the bilinear part of the
Hamiltonian (i.e. the coupling term) before the first pulse are canceled by those created
afterwards. When the pulses are applied on spin k, the droplet corresponding to this

particle also changes its sign after the first pulse and illustrates how the effect of H
(k)

cs

is canceled over the whole pulse sequence.

Note that the average Hamiltonians H tog deduced in the toggling frame are
identical to the effective Hamiltonians previously computed.

3.5.5 Illustration 2: Understanding the TOCSY experiment

The TOCSY (TOtal Correlation SpectroscopY) experiment is designed to detect the
correlation between all spins of a coupled network [74]. The total Hamiltonian of the
system is

H = Hcs + HJ , (3.11)

where the coupling Hamiltonian HJ = Hiso = 2πJ(I1xI2x+I1yI2y+I1zI2z) corresponds
to isotropic couplings between the connected spins. The time evolution of the initial state
ρ(t0) = I1x under the isotropic coupling Hamiltonian alone is found in Fig. 3.5 (b) and
is the mechanism we seek to exploit to detect the correlation between the coupled spins.
We see indeed that there is magnetization transfer between the linear droplets which
are coupled together. However, since Hcs and HJ do not commute, the chemical shift
Hamiltonian interferes with the process we are interested in, i.e. maximizing the magnet-
ization transfer between coupled spins. To address this issue, a simplified version of the
TOCSY experiment is implemented by juxtaposing many refocusing pulse sequences, as
illustrated in Fig. 3.13. For short1 durations τ , the chemical shift Hamiltonian Hcs has

1if 2τ << ‖Hcs + HJ‖−1
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then a negligible effect on the time evolution of the system and the effective Hamiltonian
Heff corresponding to the sequence is to a good precision approximated by Heff

∼= Hiso.

Figure 3.13: Visualization of a simplified version of the TOCSY experiment implemented as a succes-
sion of refocusing pulse sequences. Here, a second 180◦ pulse has been added in the refocusing sequence
to make sure that the toggling frames are aligned with the fixed reference frame after each refocusing
sequence.

3.6 Coherence order, phase cycling and gradient pulses

3.6.1 Coherences

Multiple quantum coherences play an important role in NMR spectroscopy. Aside from
their physical interpretation [68], their periodicity properties make them tractable and
easy to select as measurable information in experiments. As already stated in Sec-
tion 2.5.5 of Chapter 2, operators Ap of multiple quantum coherence order p ∈ N are
invariant under global z rotations up to a phase factor: [8]

e−iαRzAp eiαRz = e−ipαAp, (3.12)

where Rz :=
∑n
k=1 Ikz. This periodicity property is nicely captured in their correspond-

ing DROPS representation, as illustrated in Fig. 2.5 (of Chapter 2) and Fig. 3.14 below.
Each droplet of a coherence Ap is symmetric with respect to any z rotation and thus has
the shape of a solid of revolution about the z axis. Then, for each layer corresponding
to a fixed z value, the phase is uniformly distributed about the z axis with periodicity
p, i.e. all the phase values from 0 to 2π are scanned exactly |p| times, anti-clockwise if
p > 0 and clockwise if p < 0 (when looking toward the −z direction).

Multiple quantum coherences are then good candidates concerning signal manipu-
lation in experiments, since we do have the possibility to influence the phase of operators
over the course of a given experiment. A fundamental example which bears witness to
the need of coherence manipulation comes about from a limitation inherent to NMR
spectroscopy. Spectrometers detect the presence of linear pure quantum coherences of
order p = −1 only. Accordingly, if we are interested in measuring the presence of a
coherence operator A′p′ of order p′ 6= −1, the experiment must be designed such that
the operators A′p′ get fully or partly transferred in a measurable pure quantum operator
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Figure 3.14: DROPS visualization of the characteristic droplets for multiple quantum operators in a
system of two spin-1/2 particles.

A−1. Moreover, the experiment should ideally be designed such that only the signal
coming from A′p′ is measured, and not that from other operators.

Coherence transfer pathways

The coherences which are created at each step of a pulse sequence can be represented
by a coherence pathway diagram as in Fig. 3.15. We see with such a diagram that one
pulse may convert, or transfer, one coherence Ap into a linear combination of many other
coherences A′p1

, A′p2
, · · · .

Figure 3.15: Coherence transfer pathways generated by the DQF COSY experiment (Figure borrowed
from [68]).

As discussed above, in many experiments we are interested in selecting one spe-
cific transfer, e.g. Ap −→ A′p2

, and the signals coming from the other coherences A′p′ are
undesirable. The challenge is then to design experiments which preserve the signals res-
ulting from a defined coherence transfer pathway, and average out the signals generated
by all other pathways. We present now two principal concepts arising in the design of
such experiments, the phase cycling and the gradient pulse strategies, which both rely
on a clever phase manipulation of coherences to take advantage of their periodicity.
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3.6.2 Phase cycling

A phase cycling experiment is defined by a family of pulse sequences P0,P1, . . ., which
differ from one another by the phase of some pulses in the sequences and/or the phase
of the receiver. The phase changes in the pulses (or the change of the receiver phase)
are chosen such that the coherence transfer we wish to observe is preserved whereas all
the other coherences are dephased. To illustrate the situation, let P0 be an initial pulse
and Ap be a coherence of order p. Under the pulse P0, Ap is transformed as

Ap −→
P0

A′p′ +A′′,

where A′p′ is the coherence we aim at preserving and A′′ is the linear combination of all
the other undesired created coherences. The coherence transfer to be selected is Ap −→
A′p′ . To select A′p′ , the phase cycle should be designed such that each pulse P0,P1, . . .
in the cycle preserves A′p′ whereas the undesired coherences in A′′ experience phase
changes. As a result, when all the data are summed up, all the undesired coherences
should be dephased and cancel out and the ones associated with Ap should sum up.

Let us derive the appropriate phase cycling pattern which suits our needs. The
transformation of Ap under the first pulse P0 satisfies

Ap −→ U0ApU
−1
0 = A′p′ +A′′,

where U0 is the propagator associated with P0. Consider now the effect of the same
pulse, the phase of which is shifted by an angle α. The corresponding propagator is
Uα = e−iαRzU0eiαRz and has the following effect on Ap:

Ap −→
P1

UαApU
−1
α = e−iαRzU0 · eiαRzAp exp−iαRz ·U−1

0 eiαRz

= eipα × e−iαRz · U0ApU
−1
0 · e−iαRz

= eipα × e−iαRz (A′p′ +A′′)e−iαRz

= eipα ×
(

e−ip
′αA′p′ +A′′′

)
= e−i(p

′−p)αA′p′ + eipαA′′′, (3.13)

where the periodicity property (Eq. (3.12)) of the quantum operators Ap and A′p′ has
been exploited to obtain the second and last equalities respectively.

We can now modify the phase of operators present after a pulse by shifting by an
angle ϕrec the phase of the receiver. We can schematically represent the receiver phase
change as a multiplication of the operators by e−iϕrec . That is, the change of the receiver
phase after the above pulse P1 (see Eq. (3.13)) results in

Ap −→
e−iϕrecP1

e−i[ϕrec+∆pα]A′p′ + ei(−ϕrec+pα)A′′′, (3.14)

where ∆p = p′ − p denotes the coherence difference. We then see that to preserve the
coherence transfer Ap −→ A′p′ , the receiver phase should be set to [68]

ϕrec = −∆pα.

It is actually known [68] that phase cycles which consist of N evenly distributed angles

αk := k
2π

N
, k = 0, 1, . . . , N − 1, (3.15)
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together with the phase cycle pattern

ϕ(k)
rec = −mαk (3.16)

exactly preserve the coherence transfers Ap −→ A′p′ satisfying

∆p = m+Nx, x = 0,±1,±2, ... (3.17)

and average out all the other coherence transfers. We can interpret the roles of the
phase cycle and the receiver phase pattern as follows: the phase cycle in Eq. (3.15)
is characterized by its number of steps and defines the distance between the selected
coherence differences, whereas the receiver phase determines which ∆p in particular has
to be selected. The case where the receiver phase is not modified corresponds to m = 0
in Eq. (3.16). In this case, the coherence differences which are selected are ∆p = Nx,
x = 0,±1,±2,... In particular, we see that ∆p = 0 is always selected by such a phase
cycle and that if ∆p is selected then so is −∆p.

Illustrations

The previous reasoning can be visualized using the DROPS visualization of coherences
as in Fig. 3.16. In this figure, the DROPS visualization of coherence operators Ap for
p = 1, 0,−1 is plotted in column (a). The operators resulting in 45◦α pulses about
the x, y,−x and −y axes on the Ap operators are plotted in column (b) and their
decomposition in terms of coherences is illustrated in the tables of column (c). In
particular, column (c) corresponds to the decomposition appearing on the right-hand
side of Eq. (3.13). The four rotations correspond to a phase cycle as in Eq. (3.15) with
N = 4, i.e. α = 0, π2 , π and 3π

2 respectively. Columns (d) and (e) show the effect of
an additional receiver shift pattern equal to ϕrec = 0, π, 0, π (from top to bottom) on
operators in columns (b) and (c) respectively. On the bottom row, the result of averaging
the operators obtained by the phase cycle is shown.

Given a coherence transfer Ap −→ A′p′ , the average effect of the above phase cycle
A′p′ , without a receiver phase change, corresponds to the selection Eq. 3.17 where m = 0
and n = 4. Explicitly,

1

4

(
e−i∆p0 + e−i∆p

π
2 + e−i∆pπ + e−i∆p

3π
2

)
A′p′ ,

where we used Eq. (3.13) four times, for the four values of α. It is readily verified that
the possible coherence differences are ∆p = 0,±1,±2 and that the result of the above
equation is different from zero only for ∆p = 0. This can be seen in Fig.3.16, on the
last row of column (c). The coherence terms which did not cancel over the cycle are A′1
obtained from A1, A′0 from A0 and A′−1 from A−1.

Considering now the phase cycle with the receiver phase shifts ϕrec = 0, π, p, π,

we see with Eq. (3.16) that ϕ
(k)
rec = 2αk and the coherence differences selected should be

of the form ∆p = −2± 4x, x = 0,±1,±2, . . . Explicitly, we deduce from Eq. (3.14) that
the average effect of the four-step cycle on A′p′ is now

1

4

(
e−i[∆p0−0] + e−i[∆p

π
2−π] + e−i[∆pπ−0] + e−i[∆p

3π
2 −π]

)
A′p′ .

We verify that, as expected, the only values of ∆p for which this expression is not zero
are ∆p = ±2, which can be seen on the last row of column (e) in Fig. 3.16. The coherence
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Figure 3.16: (Caption next page.)
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Figure 3.16: (Previous page.) Illustration of a phase cycling sequence over a 45◦α pulse the phase of
which is taken to be α = 0, π

2
, π and 3π

2
. Column (a) shows the DROPS representation of coherences

Ap with p = 1, 0,−1. In the case of a single-spin system for instance, these coherences correspond to
the operators A1 = I+, A0 = Iz and A−1 = I−. Column (b) shows the effect of the four 45◦α pulses on
the operators Ap and column (c) shows their decomposition in terms of coherences A′

p′ for p′ = 1, 0,−1.

The average operators obtained over the cycle appear on the bottom row. Likewise, column (d) shows
the effect of the four 45◦α pulses together with receiver phase shifts ϕrec = 0, π, 0, π (rows one to four)
and their decomposition in terms of coherences appears in column (e). The average operators obtained
over the full cycle appear on the bottom row.

terms which are not canceled by the phase cycle are A′1 obtained from A−1 and A′−1

from A1.

The effect of this phase cycle, with and without receiver phase shifts, is also
illustrated in Fig. 3.17 and Fig. 3.18 in which the cycle is considered for a 90◦ and a 180◦

pulse respectively. These figures differ from Fig. 3.16 presented above by the amount of
transfer from Ap to A′p′ before and after the pulse. For the 90◦ pulse (Fig. 3.17), there
is no transfer A0 −→ A′0 whereas only transfers from Ap to A′−p are created by the 180◦

pulse (Fig. 3.18). The coherence transfers which are selected by the phase cycle are then
subsets of those for the 45◦ pulses.

Another example of phase cycling is illustrated in Fig. 3.19, in which the coherence
operators take the values p = −2,−1, 0, 1, 2. The structure of this figure is similar to the
previous one and the reader is invited to refer to the above discussion for explanations
of the figure configuration. The phase cycle affects 45◦α pulses, the phases of which are
taken as before to be α = 0, π2 , π and 3π

2 (corresponding to x, y,−x,−y rotation axes
respectively). The average effect of this sequence, without receiver shifts, was presented
in Eq. (3.6.2). In this case, ∆p can take the values 0,±1,±2,±3,±4 and we verified
with Eq. (3.17) that coherence transfers with ∆p = 0 and ∆p± 4 are preserved by this
sequence, which is what is actually seen on the bottom row of Fig. 3.19.

This time, the receiver phase pattern is taken to be ϕrec = 0, π2 , π,
3π
2 , which

corresponds to m = −1 in Eq. (3.16). Accordingly, the phase cycle selects coherence
transfers satisfying ∆p = −1 ± 4x, x = 0,±1,±2, . . ., where 4 = N is the number of
steps in the cycle. When we explicitly compute the average effect of the four-step phase
cycle on A′p′ using Eq. (3.14), we find

1

4

(
e−i[∆p0+0] + e−i[∆p

π
2 +π

2 ] + e−i[∆pπ+π] + e−i[∆p
3π
2 + 3π

2 ]
)
A′p′ .

As expected, coherence transfers selected by the phase cycle together with this receiver
shift pattern are those for which ∆p = −1 and ∆p = −1 + 4 = 3.

Finally, note that phase cycling can be considered as a filtering technique for
coherences. That is, the coherences A′p′ which are selected by a phase cycle from the
coherence Ap are present in each individual experiment (including the receiver phase)
in the cycle. On Figs. 3.16, 3.17, 3.18 and 3.19, this amounts to say that the operators
in the last rows of columns (c) and (d) are present in each individual step (row) of the
corresponding column, where Ap are the operators in column (I).

3.6.3 Gradient pulses

Coherence order selection, or coherence transfer selection, can also be achieved using
gradient pulses. Like for the rf-pulses, gradient pulses are created by the application
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Figure 3.17: Illustration of a phase cycling sequence over a 90◦α pulse the phase of which is taken to
be α = 0, π

2
, π and 3π

2
. See the caption of Fig. 3.16 for the details on the structure of this figure.
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Figure 3.18: Illustration of a phase cycling sequence over a 180◦α pulse the phase of which is taken to
be α = 0, π

2
, π and 3π

2
. See the caption of Fig. 3.16 for the details on the structure of this figure.
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Figure 3.19: (Caption next page.)
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Figure 3.19: (Previous page.) Illustration of a phase cycling sequence over a 45◦α pulse the phase of
which is taken to be α = 0, π

2
, π and 3π

2
. Column (a) shows the DROPS representation of coherences Ap

with p = 2, 1, 0,−1,−2 from top to bottom. Column (b) shows the effect of the four 45◦α pulses on the
operators Ap and column (c) shows their decomposition in terms of coherences A′

p′ for p′ = 2, 1, 0,−1,−2

(from left to right respectively). The average operators obtained over the cycle appear on the bottom
row. Likewise, column (d) shows the effect of the four 45◦α pulses together with receiver phase shifts
ϕrec = 0, π

2
, pi, 3π

2
(rows one to four) and their decomposition in terms of coherences appears in column

(e). The average operators obtained over the full cycle appear on the bottom row.

of an external magnetic field ~Bgrad to steer the system. However, the usefulness of the
latter for coherence order selection comes from two major differences with normal rf-
pulses: (1) Gradient pulses are oriented along the z axis and (2) are inhomogeneous in
space. That is, the magnetic field has the form

~Bgrad(x) = Gx~1z,

where G is the (constant) gradient strength. The amplitude of the field Gx then depends
on the position x (distance to the origin) of the particle in the sample, where the origin
of the z axis is taken to be at the center of the sample. From point (1), we understand
that the effect of a gradient pulse on an operator ρ(x) =

∑
p cpAp is to dephase all its

coherence components Ap individually, according to the strength of the field at position
x. After a time t, coherences with different orders p are dephased by a different z rotation
angle

φ(x) = −p · 2πνG(x)t, (3.18)

where 2πνG(x) := −γGx. The inhomogeneity of the field (2) is used to average the
signal. Its effect is similar to the previously encountered action of phase cycling and
averaging the signals, the difference being that all the signals are generated at the same
time at different positions x in the sample. Nevertheless, the coherence transfer pathways
selected by gradient pulses generally differ from those created by phase cycling.

The only coherence order transitions selected by a single gradient pulse G are
those of the form Ap −→ A′p′ with p = 0. To select any other pathway, two gradient
pulses (G1,G2) are required. Indeed, the first pulse G1 dephases all coherences Ap
with p 6= 0 initially present in an operator. A second gradient pulse G2 is then applied
after a pulse (or a plus sequence) to rephase the coherences corresponding to the desired
transfer.

To understand how G2 should be defined to select a given coherence transfer from
Ap (before the pulse) to A′p′ (after the pulse), consider the effect of the first gradient
field on the sample. The phase shift experienced by the quantum coherence Ap(x) after
the application of G1 is

Ap(x) −→
G1

eiφ1(x)Ap(x). (3.19)

Denoting by τ1 the duration of the pulse and by G1 its gradient strength, the phase shift
φ1(x) := −p · 2πνG1

(x)τ1 = pγG1xτ1 (see Eq. (3.18)) experienced by Ap depends on its
coherence order p and its position x. Let now a pulse be applied:

eiφ1(x)Ap(x) −→
H t

eiφ1(x)
(
A′p′(x) +A′′(x)

)
, (3.20)

where A′p′ is the coherence operator we wish to preserve. An important point to underline
here is that the presence of the coherence A′p′ can be the result of the first gradient pulse,
that is, it could be that A′p′ is not created from Ap by the rectangular pulse only. Now,
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in order to rephase the coherence A′p′(x), we apply a second gradient pulse G2:

eiφ1(x)
(
A′p′(x) +A′′(x)

)
−→
G2

eiφ1(x)
(

eiφ2(x)A′p′(x) +A′′′(x)
)
,

where τ2 is the duration of the second gradient pulse and we used a relation similar to
Eq. (3.19). The phase shift introduced by G2 on A′p′ is φ2(x) := p′γG2xτ2 and the
operators in A′′(x) are all further dephased to give A′′′(x). We then see that to rephase
A′p′ (which amount to measuring the coherence transfer Ap −→ A′p′), the two gradient
pulses must satisfy

φ1(x) = −φ2(x) =⇒
p 6=0 −p′

p
=
G1τ1
G2τ2

. (3.21)

Note that all coherence transfers Ap1 −→ Ap2 , p1 6= 0, satisfying −p2

p1
= −p′

p are selected

by the gradient pair (G1,G2) according to relation (3.21). Note also that G1 and G2

are designed regardless of the pulse applied between them.

The case p = p′ = 0 is particular. Indeed, in this case, Ap = A0 is invariant
(i.e. not dephased) under any gradient pulse G1 and similarly, A′p′ = A′0 is invariant
under any gradient pulse G2. Consequently, coherence transfers A0 −→ A′0 are always
preserved under any gradient pulse.

Illustration

The action of gradient pulses and the above steps in the design of the gradient pulses
G1 and G2 can be well visualized through the DROPS representation of operators at
each step, as illustrated in Figure 3.20.

In this figure, the two gradient fields G1 and G2 considered are identical. Such a
pair (G1,G2) forms a crusher gradient [7]. Columns one and two (resp. three and four)
in the figure compare the effect of a 90◦x (resp. 180◦x) pulse without and with crusher
gradients on different operators. Rows (a-c) show the effect of the above sequences on
pure coherences A−1 := I−, A0 := Iz and A+1 := I+ respectively. Rows (d-e) show their

effect on operators Ix := I++I−

2 and Iy := I+−I−
2i , which are a mix of coherence operators

A1 and A−1. The points in space x where the effects of G1 and G2 are illustrated are
chosen such that the operators undergo a total global rotation of π/2, π, 3π

2 and 2π at
these positions in the sample.

According to Eq. (3.21), coherence transfers which are selected by crusher gradi-
ents are Ap −→ A′p′ with p′ = −p. In the present case, these correspond to the transfers

p p′

+1 −1
−1 +1

0 0.

(3.22)

Figure 3.20: (Next page.) Illustration of coherence transfer selection by means of gradient fields. The
first and second columns compare the averaged signals of an experiment consisting of a 180◦x pulse,
without and with gradient fields respectively. The third and fourth columns compare the averaged
signals of an experiment consisting of a 90◦x pulse, without and with gradient fields respectively. The
effect of each of these pulse sequences is illustrated by plotting the time evolution of the initial operators
ρ(t0) = (a) I−, (b) I+, (c) Iz , (d) Ix and (e) Iy at key times. Here, ρ denotes the density operator
terms. The initial and final operators are marked with gray boxes.
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Figure 3.20: (Caption previous page.)
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In the case of the 180◦x pulse, we see in Fig. 3.20 (first column) that the pulse
itself selects the coherence transfers of Table (3.22) and the presence of the gradient fields
(second column) does not affect the result of the experiment. Nevertheless, column two
furnishes good examples to understand the effect of gradients on operators and how they
work together to build the final desired coherence.

In the case of the 90◦x pulse, the presence of the crusher gradients (last column)
makes a notable difference in the averaged signal in comparison to the pulse without
gradients (column three). As expected, regardless of the operator obtained without
gradients, the averaged operator with gradients does result in a desired transfer in
Table (3.22).

We discussed earlier in the text (below Eq. (3.20)) the fact that the presence of the
first gradient pulse G1 may be responsible for the creation of coherence transfers which
would not have been created otherwise. This point is illustrated with the 90◦x pulse on the
operator Iy (row (e)). Without gradients (column three), the coherence transfers created
by the pulse are A±1 −→ A0, none of which corresponds to a transfer in Table (3.22).
Nevertheless, in the presence of crusher gradients, the transfers A±1 −→ A∓1 are created.
This example illustrates the importance of not seeing the action of gradients as a simple
filter, but as a mechanism in itself to create and select the desired coherence transfers.
Other insightful examples of this are those corresponding to the initial operators (c)
ρ(t0) = Iz and (d) ρ(t0) = Ix. In the case (c) Iz = A0, the coherence transfer A0 −→ A′0
in Table (3.22) is not created by the single 90◦x pulse (column three) but cannot be
created by using the gradients either, resulting in a vanishing average signal (column
four). In the case (d) ρ(t0) = Ix = A+1 + A−1, the coherence transfers A±1 −→ A∓1 is
maximal in the pulse without gradients (column three) and the presence of the gradients
reduces the signal to half of what it was without them. The desired coherence transfer
in Eq. (3.22) are nevertheless selected.

3.6.4 Phase cycling versus gradient pulses

The phase cycling and gradient pulse techniques to select coherence transfers obviously
present similarities. The two methods exploit the same idea of manipulating the phase
of coherences, either by changing the pulses and receiver phases in a phase cycle or by
using a field oriented along the z-axis in the case of the gradient pulses. Furthemore,
both tools rely on signal averaging, either on a cycle of pulses or on the different signals
created in the sample respectively, to select the desired coherence transfers. Nevertheless,
the two approaches do not select the same families of coherence transfers. That is, if
Ap −→ A′p′ is selected by both methods, phase cycling will select the family of transfers
Ap1
−→ A′p2

for which p2− p1 = p′− p whereas gradient pulses will select the family for

which −p2

p1
= −p′

p .

The coherence transfers selected by each method can be summarized by a simple
rule in terms of the coherence difference ∆p. In the case of phase cycling, we already
discussed the fact that as N -step cycle {αk} defined as in Eq. (3.15) selects coherence
transfers satisfying ∆p = m+Nx, x = 0,±1,±2, . . ., where m is defined by the receiver

phase when set to ϕ
(k)
rec = −mαk. On the other hand, gradient pulses (G1,G2) select

coherence transfers ∆p = (r − 1)p, where r = p′

p = −G1

G2
.2 The difference between

the coherence transfers selected by four-step phase cycles and gradient pulses for p, p′ ∈

2−p′
p

= G1
G2

=⇒ p′ = −G1
G2
p =⇒ p′ − p = p(−G1

G2
− 1) = p(r − 1).
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{−2,−1, 0, 1, 2} is illustrated in Fig. 3.21.

In Figs. 3.22 and 3.23, we take advantage of the DROPS visualization of operators
to compare both methods. Figure 3.22 compares the two methods for an initial state
ρ(t0) = I+ and a 90◦ pulse. In row (a), each step is mathematically indicated and
schematically represented, whereas row (b) of this figure compares the two methods
using the symbolical representation of the steps only. In Fig. 3.23, 90◦ and 180◦ pulses
are considered, in columns (I-II) and (III-IV) respectively. Columns (II) and (IV),
representing the gradient pulses, are identical to those of Fig. 3.20. Columns (I) and
(III), representing the phase cycling, show the effect of the phase change in the pulse
and the phase change of the receiver.

Since the possible coherences are p = 0,±1, the two methods almost select the
same family of transfers. The phase cycle selects the transfers Ap −→ A′p′ for ∆p = ±2
whereas the crusher gradients select transfers satisfying ∆p = −2p. The difference
between the two families is visible for the 90◦ pulse applied on ρ(t0) = I1z (row (c),
columns (I) and (II)). In this case, the phase cycle cannot select the transfer A0 −→ A′0
since ∆p 6= ±1, which results in a signal averaging to zero (in column (I)). On the other
hand, since p = p′ = 0 satisfies ∆p = −2p = −2 · 0, there is selection of this pathway
and the averaged signal using the crusher gradients does not cancel (column (II)). The
selection of the other pathways is identical, but the steps by which the operator phases
are altered differ.
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Figure 3.21: Comparison of the transfer pathways selected by a four-step phase cycle (on the left)
and gradient pulses (on the right).
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COPY

COPY

Figure 3.22: Comparison of the different steps taken in a phase cycle (column (I)) and in a pulse
gradient experiment (column (II)). On row (a), the steps are explicitly indicated for the two methods
and are additionally represented by a symbol in the margins. On row (b), the different steps are
schematically illustrated by their symbolical representation only.
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Figure 3.23: (Caption next page.)



3.7. CONCLUSION 83

Figure 3.23: (Previous page.) Comparison of the transfer pathways selected by the phase cycle
presented in Figs. 3.17 and 3.18 with those selected by means of crusher gradients, for 180◦ (first two
columns) and 90◦ pulses (last two columns). The effect of each method is illustrated at four key times.
The initial operator and the final averaged operator are highlighted with gray rounded boxes. Operators

considered are ρ(t0) = (a) A−1 = I−, (b) A1 = I+, (c) A0 = Iz , (d) I++I−

2
= Ix and (e) I+−I−

2i
= Iy .

3.7 Conclusion

In this chapter, we made use of the DROPS visualization of operators to present and
explain fundamental concepts of NMR spectroscopy. In most of the cases, using the
DROPS visualization made possible a discussion on the ideas involved without going
too deeply into technical details. This underlines the potential of this visualization
technique as an effective communication tool, which despite its apparent simplicity,
transmits essential information and does so in a completely rigorous framework. An
interesting extension of this work would be to use the DROPS visualization to deduce
transformation rules of operators under certain Hamiltonians which would only rely on
the geometric properties of the DROPS visualization of the operators involved. Another
extension of this work would be to adapt the above presentation in the framework of
three-spin-1/2 systems and systems involving particles with spin number I > 1/2.
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3.8 Appendix

3.8.1 Time evolution of ρ(0) = I1x under different coupling Hamilto-
nians

We consider the time evolution of ρ(0) = I1x under the different coupling Hamiltoni-
ans introduced in Section 3.3.2. We first express the decomposition of ρ(t) in terms of
Cartesian operators by multiple applications of the sandwich formula given in Eq. 3.4.
This successive evaluation is valid since the Cartesian operators in the coupling Hamilto-
nians commute with each other [8]. For each coupling Hamiltonian, the decomposition
of ρ(t) is graphically represented and the explicit form of ρ(t) at times t = 1

4J ,
1

2J is
given. These two time values correspond respectively to t = 2τ and t = 4τ in Fig. 3.5.

Evolution under Hlong = 2πJI1zI2z

ρ(2τ) = ρ( 1
4J ) = 1√

2
(I1x + 2I1yI2z),

ρ(4τ) = ρ( 1
2J ) = 2I1yI2z.

Evolution under Hiso = 2πJ(I1xI2x + I1yI2y + I1zI2z)

ρ(2τ) = ρ( 1
4J ) = 1

2 (I1x + 2I1yI2z − 2I1zI2y + I2x),
ρ(4τ) = ρ( 1

2J ) = I2x.

Evolution under Hplan = 2πJ(I1xI2x + I1yI2y)

ρ(2τ) = ρ( 1
4J ) = 1√

2
(I1x − 2I1zI2y),

ρ(4τ) = ρ( 1
2J ) = −2I1zI2y.
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Evolution under Hdip = 2πJ(I1xI2x + I1yI2y − 2I1zI2z)

ρ(2τ) = ρ( 1
4J ) = 1√

2
(−2I1yI2z − I2x),

ρ(4τ) = ρ( 1
2J ) = 2I1zI2y.
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Time-optimal control of quantum gates

This chapter is an adaptation of [75].

4.1 Introduction

Manipulating a quantum system by an external field to achieve a given task remains a
primary goal of various areas [23] extending from atomic and molecular physics [76–79],
nuclear magnetic resonance spectroscopy [8, 70], and quantum computing [80] to solid
state physics. One of the most general and versatile procedures to tackle such control
problems is optimal control theory [81, 82]. This technique designs a field able to steer
the quantum system to the target state while maximizing or minimizing a given cost
functional.

In our setting, an optimal control problem can be treated by two different types
of approaches, geometric [83–91] and numerical methods [92–96] for quantum systems of
low and high dimension, respectively. In addition to the problem of steering the density
operator of the system to the target state, the creation of desired unitary operators plays
a key role in both spectroscopy and quantum information processing. Various approaches
to construct a desired unitary transformation have been proposed. One of them is
based on the combination of simple pulses according to general symmetry principles
[8, 70, 97–99] but the control fields constructed with this method generally present the
drawback of having long durations. Time-optimal solutions can be determined using
numerical optimal control methods [92, 100–105] as well as using geometrical principles
[89,106]. Note that related problems can also be solved by the use of Lie group techniques
[25]. This work uses geometric principles to address one of the basic and fundamental
questions in quantum computation: the optimal control of a single-qubit gate. This well-
known control problem has been the subject of a series of works both in mathematics
[25,30] and in physics [26–29], to cite a few. Here, we propose to revisit this question by
giving an explicit coordinate parametrization of the optimal trajectories. This leads to
a complete, analytical and straightforward resolution of the control problem. We also
discuss the influence of a detuning term on the optimal pulse sequence.

We consider a spin- 1
2 particle interacting with a constant magnetic field ~B0 along

the z direction. The control of the spin is performed through the variation of an external
transverse magnetic field ~B1(t). We place ourselves in the framework of the rotating-wave

approximation, for which |~B1| << |~B0|, and the frequency of the transverse magnetic
field is close to the Larmor frequency of the spin [8, 70,107,108].

To simplify the discussion, we consider in this work only gates on SU(2) and not
on U(2). We recall that the elements of SU(2) are the matrices of U(2) with determinant

87
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equal to one, i.e. the elements for which a global phase factor has been removed. The
formalism introduced below can be straightforwardly extended to the unitary group
U(2). For a given target state belonging to SU(2), we determine the control fields which
minimize the total time of the process by applying the Pontryagin maximum principle.
Note that a similar control problem has been recently treated in Ref. [29] in which a
different parameterization of the optimal trajectories was used. Our work complements
this first study by addressing related questions such as the optimization on SO(3) as
well as the computation of trajectories when a detuning term is taken into account.

The remainder of the chapter is organized as follows. The model of the system
is presented in Sec. 4.2 and the different choices of coordinates to parametrize SU(2)
are discussed. In Sec. 4.3, we show how to apply the Pontryagin maximum principle
to this quantum system. Sections 4.4 and 4.5 are devoted to the computation of the
optimal trajectories with and without detuning. Special attention is paid to two specific
examples: the rotations about the z axis and the rotations about axes in the (x, y) plane.
Explicit optimal solutions are given for these two quantum operations. In Section 4.6,
we apply the results to work out equivalent time-optimal control problem on the group
of rotations SO(3). A conclusion and prospective problems are given in Sec. 4.7. Finally,
technical proofs and further explanations are reported in the appendices, Sec. 4.8.

4.2 The model system

This section is dedicated to presenting the general problem studied throughout the
chapter. After introducing the system under concern, we describe the problem math-
ematically and translate it in different coordinate systems in order to get several points
of view, which are used for the analysis of the optimal control problem.

4.2.1 Spin systems

We consider a one spin- 1
2 closed system on which a constant magnetic field ~B0 aligned

in the z direction is applied. In addition, the system can be acted upon by a controlled
transverse magnetic field ~B1(t) of bounded strength [8, 70]. As mentioned in the intro-

duction of the chapter, we assume that |~B1| is much smaller than |~B0| and that this
field oscillates at a frequency close to the Larmor frequency of the spin. Under this
hypothesis, we can place ourselves in a given rotating frame and use the rotating-wave
approximation in order to simplify the description of the problem. In this framework,
the time-dependant quantum Hamiltonian of the system takes the form

H = ωx(t)
σx
2

+ ωy(t)
σy
2

+ ω
σz
2
,

where ωx, ωy are the control fields, which satisfy ω2
x + ω2

y ≤ ω2
max.

The constant ω is the detuning term and corresponds (up to a constant factor) to

the frequency difference between the frequency of the control field ~B1(t) and the Larmor
frequency. In particular, ω is zero in the resonant case where the two frequencies are
equal. The σi’s denote the Pauli matrices. 1 In order to treat the problem in its
most general context, we use the normalized variables vi = ωi/ωmax where v = (vx, vy)
satisfies ‖v(t)‖ ≤ 1 for t ∈ [0, T (v)] (T (v) being the control duration) and ∆ := ω/ωmax.

1The Pauli matrices are σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.
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Such a transformation corresponds to a renormalization of the time by τ := ωmax

2 t. For
the sake of notation simplicity, we keep t instead of τ in the remainder of the text,
although it is to be understood that the renormalization holds implicitly. The quantum
Hamiltonian of the system now takes the form:

H = vx(t)σx + vy(t)σy + ∆σz. (4.1)

The angular part of v is be denoted µ(t) such that

vx(t) = v0(t) cosµ(t),
vy(t) = v0(t) sinµ(t),

(4.2)

v0 being the amplitude of the control field. Note that the time dependance of most of
the dynamical variables is dropped throughout the text in order to simplify the notation.
Writing the state of the system at time t in the density matrix formalism ρ(t), the time
evolution is given by the von Neumann equation

i∂tρ(t) = [H, ρ(t)],

where one is working in a system of units such that ~ = 1. Since the system is closed,
the states ρ(t) are linked to the initial one ρ0 by a unitary matrix U(t) ∈ SU(2) via the
relation ρ(t) = U(t)ρ0U(t)†. Note that U(t) belongs to SU(2) and not U(2), because
the quantum Hamiltonian H(t) is an element of the Lie algebra su(2). The question
of controlling the quantum system from a given initial state ρ0 can then be translated
to a control problem on SU(2), which is exactly the objective of the present work.
More precisely, one investigates the problem of finding the optimal control v∗ (the ∗
sign indicates the optimal solutions in the remainder of this document), steering the
system from the identity matrix U(0) = I ∈ SU(2) to a target state U∗ ∈ SU(2)
while minimizing the time T (v) to get there. The time duration of v∗ is also denoted
t∗ := T (v∗). The dynamics governing the system for this time-optimal control problem
is given by the Schrödinger equation:

i∂tU(t) = H(t)U(t). (4.3)

4.2.2 Choice of coordinates

Let us recall some characteristics of the group SU(2), which is at the core of our control
problem. Elements U ∈ SU(2) are the 2 × 2 matrices with complex entries satisfying
det(U) = 1. Defining i = iσz, j = iσy and k = iσx, a possible parametrization of U is

U =

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
= x11+ x2i + x3j + x4k (4.4)

where the xi’s are real. This is the quaternion representation of U and is related to the
group of rotations SO(3). Indeed, there exists α ∈ [0, 4π] and #”n ∈ S2(0, 1) (the unit
sphere centered at the origin) such that

x1 = cos(α/2),
x2 = sin(α/2)nz,
x3 = sin(α/2)ny,
x4 = sin(α/2)nx,

(4.5)

and that U represents a rotation of angle α about the unit axis #”n . However, since
det(U) = 1, the xi’s satisfy the relation

∑4
i=1 x

2
i = 1 and the quaternion parametrization
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uses one parameter more than needed. This remark partly motivates our choice of
considering the Hopf parametrization instead. In terms of the Hopf variables {θ1, θ2, θ3},
U can be written as

U(θ1, θ2, θ3) =

(
cos θ1e

iθ2 sin θ1e
iθ3

− sin θ1e
−iθ3 cos θ1e

−iθ2

)
(4.6)

where the domain of definition is be defined below. The main advantage of the Hopf
parametrization is that Eq. (4.3) translates nicely in its variables, which give the simple
form  θ̇1

θ̇2

θ̇3

 =

 u1

− tan θ1 u2 −∆
cot θ1 u2 −∆

 , (4.7)

where the normalized “rotated” controls

u1 := −v0 sin(µ+ θ2 + θ3),
u2 := −v0 cos(µ+ θ2 + θ3),

(4.8)

have been used and satisfy ‖u‖ ≤ 1. The explicit calculations for obtaining equa-
tions (4.7) can be found in Appendix 4.8.1. The control problem now reads as follows:
Given a target state (θ∗1 , θ

∗
2 , θ
∗
3), find the control u∗ steering θi(0) 7→ θ∗i while minimizing

the control duration T (u).
Note that the condition U(0) = I translates in terms of Hopf variables as

θ1(0) = 0,
θ2(0) = 0,
θ3(0) = undefined.

(4.9)

In later parts of the chapter, we also make use of the Euler parametrization U(ψ, θ, φ),
which allows to easily visualize rotations. The Euler variables are related to the Hopf
variables by

ψ = θ2 + θ3,
θ = 2θ1,
φ = θ2 − θ3.

(4.10)

Recalling the close relation between elements of SU(2) and rotations R(ψ, θ, φ) ∈ SO(3),
in terms of Euler coordinates, unitary matrices can be decomposed as U(ψ, θ, φ) =

eiψ
σz
2 · eiθ

σy
2 · eiφ

σz
2 . The Euler variables are taken to be in the domains φ ∈ [−π, π),

ψ ∈ [−2π,+2π) and θ ∈ [0, π]. The domains of the θi variables can then be deduced
directly from Eqs. (4.10).

4.3 The Pontryagin maximum principle

The problem of finding the time-optimal control for steering the system from an initial
state to a fixed target can be decomposed into three steps, each of which brings its own
considerations and particular methodology. First, one must find the optimal candidates
for the control functions. We can have two types of controls: regular type or singular
type. The second step consists in computing the trajectories associated with the different
controls. Finally, one has to determine the right trajectory to reach the desired target
state. While the first two steps are treated through the Pontryagin maximum principle
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(PMP) [81], depending on the optimal problem considered the last step may require
numerical methods.

The present section is intended to expose the main features of the PMP and to
apply it to our particular problem.

4.3.1 Theory

This section aims at presenting the elements of the theory of PMP used to solve our
control problem. In order to be as pedagogical as possible, the general equations arising
from the theory [81,82] is followed by their translation in our particular context.

Consider a controlled system

ẋ = f(t, x(t), u(t)) (4.11)

where x(t) = (x1, x2, · · · , xn) ∈ Rn, u(t) ∈ Ω ⊂ Rm for t ∈ [0, T ], where T := T (u) as
before. Let xu(·) denote the trajectory associated with the control u. Given two points
x0, x

∗ ∈ Rn, one aims at finding u such that xu(0) = x0, xu(T ) = x∗, and minimizing
(or eventually optimizing) the cost functional,

c(T, u) = g(T, xu(T )) +

∫ T

0

f0(t, xu(t), u(t)) dt. (4.12)

The function f0 is the running cost which depends on the whole trajectory xu(·), whereas
g is the final cost which depends only on the final time and state. The Hamiltonian of
the system driven by u is also called PMP pseudo-Hamiltonian and is denoted

H(t, x, p, p0, u) = p · ẋ+ p0f0. (4.13)

The term p · ẋ denotes the scalar product between the derivative of the state vector x
and a vector p(t) ∈ Rn called the adjoint state, which is required to be continuous all
along an optimal trajectory. The constant p0 is taken to be negative (for a maximum
principle) and should be such that p0 and p never simultaneously vanish. Note that the
overall vector (p,p0) ∈ Rn+1 is defined up to a positive constant factor.

At this stage, we express our problem in this formalism. First, Eq. (4.11) corres-
ponds to our system given in Eq. (4.7) with xi := θi. The norm of the controls u(t) is
bounded to ‖u‖ ≤ 1. Since the goal is to minimize the control time, the cost function
is c(T, u) = T and one can consider g ≡ 0 and f0 ≡ 1 in Eq. (4.12). Finally, after
factorizing the two control components, the PMP pseudo-Hamiltonian takes the form

H(t, ~θ, p, p0, u) =
u1p1 + u2(−p2 tan θ1 + p3 cot θ1)− (p2 + p3)∆ + p0,

(4.14)

where ~θ := (θ1, θ2, θ3). The PMP suggests that a necessary condition for a control u∗(t)
to optimize (minimize in our case) the cost functional is to maximize the PMP pseudo-
Hamiltonian H(t) at any time. This leads to the PMP Hamiltonian Hu∗(t, x, p, p

0),
denoted with a script letter, which is free of an explicit control dependence and which
satisfies

Hu∗(t, x, p, p
0) = maxu∈ΩH(t, x, p, p0, u), ∀ t ∈ [0, T ].

Due to the fact that u1 and u2 can be factorized in the pseudo-Hamiltonian H [see Eq.
(4.14)], we find that the controls are given by

u1(t) = p1

N ,

u2(t) = −p2 tan θ1+p3 cot θ1
N ,

(4.15)
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where

N =
√
p2

1 + [−p2 tan θ1 + p3 cot θ1]2 (4.16)

is such that u2
1 +u2

2 = 1 [82,87]. Such controls, which are well defined when N 6= 0 only,

are said to be normal and the associated trajectories ~θ(·) are called regular. WhenN = 0,
computational analysis (detailed below) reveals that the controls, said to be singular,
must vanish. The associated trajectories are also called singular and are non-trivial only
when ∆ 6= 0. Singular controls are briefly discussed in Appendix 4.8.3. However, for
both ∆ = 0 and ∆ 6= 0, we show in Appendix 4.8.6 that singular trajectories as well as
mixtures of regular and singular trajectories are never optimal. In other words, the time-
optimal controls for our problem are necessarily normal and consequently, we restrict
our study to only these. In addition, the PMP states that the final PMP Hamiltonian
must satisfy

Hu∗(T ) = −p0 ∂g

∂t
(T ), (4.17)

∂Hu∗

∂t
=
dHu∗

dt
, (4.18)

for almost all t ∈ [0, T ]. Equation (4.17) is called the transversality condition and takes
the above form when we apply the PMP formalism to our problem for some non-fixed
final time T . Equation (4.18) is derived from the fact that the PMP pseudo-Hamiltonian
does not depend explicitly on time. Note that in our case, since g ≡ 0, those two relations
merge into the relation

Hu∗(~θ, p, p
0) = 0. (4.19)

In the following, the constant p0 is normalized to -1. Finally, the PMP ensures that
the dynamics along an optimal trajectory is given by the Hamilton set of 2n differential
equations

∂Hu∗

∂p
= ẋ,

−∂Hu∗

∂x
= ṗ.

When normal controls are considered, this system takes the form

 θ̇1

θ̇2

θ̇3

 =

 p1

p2 tan2 θ1 −∆
−p2 −∆

 , ṗ1

ṗ2

ṗ3

 =

 −p2
2 tan θ1 sec2 θ1

0
0

 ,

(4.20)

where the adjoint variables have been normalized to p′i := pi
N , the prime has been dropped

to simplify the notations, and we used the constants of motion

p2(t) ≡ p2,

p3(t) ≡ 0,

to simplify the equations. The relation p3(t) ≡ 0 is deduced from the expression of u2(0)
in Eqs. (4.15). Since θ1(0) = 0, the p3 cot θ1 term would be infinite in t = 0 if p3(0) 6= 0,
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which cannot be the case since the controls have finite intensity. Using this condition, it
is also straightforward to check that singular controls are null. The term N(t) is equal
to zero on a given time interval only if p1(t) = 0. The associated singular trajectories
correspond to a freely evolving system whose dynamics is governed by the detuning term
∆ (see Appendix 4.8.3 for more details about the singular controls).

4.4 Optimal trajectories without detuning

We recall that the case without detuning corresponds to ∆ = 0. As already mentioned,
the only controls to consider are the normal controls. In particular, since such controls
satisfy ‖u‖ = 1, the controls are uniquely characterized (modulo 2π) by the angular
parameter (see Eqs. (4.8))

β(t) := µ(t) + ψ(t). (4.22)

In this section, we explicitly write the solutions of the system of dynamical equa-
tions (4.20) in terms of the Euler angle parametrization (ψ, θ, φ). The full problem
is solved for some typical targets frequently encountered in quantum computing [80].

4.4.1 The general case

Using Eqs. (4.10) and setting ∆ = 0, the dynamics satisfied by the regular extremals
can be written in terms of the Euler parameters as ψ̇

θ̇

φ̇

 =

 p2(tan2 θ
2 − 1)

2p1

p2 sec2 θ
2

 . (4.23)

Using the two definitions of the controls given in Eqs. (4.8) and Eqs. (4.15) as well as
the dynamics described by Eq. (4.23), we get two relations between the variables ψ(t),
φ(t) and µ(t):

µ̇ = 2p2 and µ̇+ ψ̇ − φ̇ = 0. (4.24)

The interested reader will find in Appendix 4.8.2 the proofs of these relations. Since p2

is constant, the first of these two equations implies that the real angular control is a
linear function of the time

µ(t) = µ(0) + 2p2t.

We show in Appendix 4.8.5 that β(0) = −π2 and from this relation together with the
fact that φ(0) = −ψ(0) (since θ2(0) = 0), we directly compute µ(0) = φ(0)− π

2 by using
the definition of β(t).

Equations (4.24) also provide the main tool needed to visualize the extremals as
their projection on the sphere S2. Indeed, given an extremal (ψ(t), θ(t), φ(t)) associated
with the regular control u(t) for t ∈ [0, T (u)], let γ(t) := (θ(t), φ(t)) be the projection
of this extremal on the sphere. The variable θ(t) gives the vertical inclination and φ(t)
the azimuthal angle with respect to the x axis. We assume that φ(0) and p2, which
define a particular trajectory, are known. We then have the following property (see
Appendix 4.8.4 for the proof) which has been also established in Ref. [29].

Proposition 1 Let θ̄ = arctan( 1
p2

) and φ̄ = φ(0) + π
2 . The projected trajectory γ(t) =

(θ(t), φ(t)) defines a circle around the fixed axis ~n = (θ̄, φ̄). Moreover, γ(t) is traveled
with constant speed ‖γ̇(t)‖ = 2. The final time t∗ is equal to 1

2 the arc length of γ(t).
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Note that the factor +π
2 appearing in the definition of φ̄ comes from the relation β(0) =

−π2 previously established.

Figure 4.1: Illustration of the different angular parameters used in Proposition 1 to characterize a
projected trajectory γ(t).

Examples of such projected trajectories are illustrated in Fig. 4.2. In the situation
where p2 = 0, Eqs. (4.20) are directly integrable and hence we obtain that γ(t) describes
a great circle, which is the limit case of Proposition 1.

Using Eqs. (4.24), we deduce the explicit expression for the time evolution of
Euler parameters:

θ(t) = cos−1(1 + sin2 θ̄(cos η(t)− 1)),

φ(t) = φ(0) + sign(p2)π2 + tan−1
(

sin η(t)

cos θ̄(cos η(t)−1)

)
,

ψ(t) = −2φ(0) + φ− 2p2t,

(4.25)

where

η(t) :=
2t

sin θ̄
(4.26)

is the angular parametrization of the circle section drawn by γ(t) around its axis n̄
illustrated on Fig. 4.1. The calculations leading to these equations can be found in
Appendix 4.8.4. In particular, the time t for which γ(t) traces out a complete circle
on the sphere corresponds to an angle of η(t) = sign(p2)2π. In the limiting case where
p2 = 0, the equation for φ(t) given in Eqs. (4.25) takes the simple form φ(t) ≡ φ(0).

4.4.2 Time-optimal controls

We can show that all unitary matrices U∗ ∈ SU(2) are reached by a unique regular
control u : [0, t∗] 7→ SU(2) with |η(t∗)| < 2π for all unitary matrices which do not cor-
respond to z rotations. Moreover, these controls are precisely the time-optimal controls.
The condition |η(t∗)| < 2π implies that time-optimal trajectories necessarily trace out
circular arcs of angle |η(t∗)| < 2π and hence, they turn less than once around their axis
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n̄. All regular controls satisfying |η(T )| < 2π (T = T (u)) are then uniquely denoted uU
where U ∈ SU(2) is the target unitary they optimally generate. The case |η(T )| = 2π
corresponds to rotations along the z axis and, in this case, all the trajectories corres-
ponding to the same inclination angle θ̄ will generate the same unitary matrix in the
same time. This special case is discussed in the next section.

To completely solve the problem at hand, it remains to find the explicit parameters
p2 and φ(0) (defining any regular controls up to the final time), which steer the system
to the desired target. In fact, we show in Appendix 4.8.5 that

p2 =
sin(φ∗ − φ(0))

tan( θ
∗

2 )
, (4.27)

and hence we need to only consider the single parameter φ(0). Consequently, Eqs. (4.25)
form a system of three equations of two variables φ(0) and t∗ and the solution for a
general U∗ = (ψ∗, θ∗, φ∗) can be found numerically.

Some cases are of particular practical interest: the unitary matrices describing
rotations about the z axis or about any axis in the (x, y) plane. The full solution for
each of these two classes of targets is presented in the next sections. For both cases, the
initial parameter φ(0) can be found analytically. Interestingly, an analytical formula for
the optimal time t∗ is found as a function of the target U∗. The general case is then
briefly discussed.

4.4.3 Rotation about the z axis

Consider the problem of reaching a target of the form U∗ = eiλ
∗ σz

2 where λ∗ ∈ [−2π, 2π].
The final state is characterized by any pair (λ∗, φ∗), i.e. (ψ∗, θ∗, φ∗) = (λ∗ − φ∗, 0, φ∗).
Since the definition of U∗ depends only on λ∗, the time-optimal trajectories associated
with any value of φ∗ should not influence the final time t∗ taken to reach the target.
Note that the projected trajectory γ(t) := (θ(t), φ(t)) starts and ends at the North
Pole of the sphere, since θ(0) = θ∗ = 0. As a consequence of this remark together
with Proposition 1, γ : [0, t∗] → S2 describes a complete circle and direct computation
detailed in Appendix 4.8.7 shows that the initial parameters leading to the target are
given by

p2 = sign(λ∗) cot
(

cos−1
(

1− |λ
∗|

2π

))
and

t∗ = 1
2

√
4π|λ∗| − |λ∗|2,

(4.28)

from which we can explicitly write the time-optimal trajectory given by Eqs. (4.25).
Examples of projected trajectories for four different z-rotation unitary matrices are
shown on the left sphere of Fig. 4.2. Note that equations similar to Eqs. (4.28) have
been encountered in [89] for the time-optimal control on three coupled spins.

4.4.4 Rotation in the (x, y) plane

Now, we consider a target corresponding to a rotation in the (x, y) plane given by U∗ =

ei(−a)σz2 · eib
σy
2 · eia

σz
2 , which is defined by the Euler variables (ψ∗, θ∗, φ∗) = (−a, b, a)

with b ∈ [0, 2π). This special choice for the domain [0, 2π) of b find its motivation later
when we consider the opposite rotation −U .
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Figure 4.2: On the left, the projected trajectories for the optimal synthesis of U∗ = eiλ
σz
2 with

λ = π
2
, π, 3π

2
, 2π. On the right, the projection of the optimal trajectories of U∗ = e−ia

σz
2 eib

σy
2 eia

σz
2

with (a, b) = (0, kπ
4

) where k = 1, 2, 3, 4. The dots indicate the position of the target states.

At this point, a remark about the behaviour of the Hopf variable θ2 should be
made. We can show (see Appendix 4.8.8) that θ2(t) is monotonic along a time-optimal
trajectory, meaning that it must either strictly increase or strictly decrease, otherwise
it is equal to zero all along the trajectory. In the present case, since θ2(0) = θ∗2 = 0,
the third situation applies which implies that θ̇2 = 0 and θ2(t) = 0 along the complete
trajectory. By comparing this equality with Eqs. (4.20), it becomes clear that we are in
the very special case where p2 = 0 and that the only variable among Hopf angles and
adjoint state variables which is not constant is θ1. All the equations among Eqs. (4.23)
are directly integrable, and hence we obtain that γ(t) must follow a great circle. The
initial conditions and the final time for reaching the target can then be written as

p2 = 0, φ(0) = a and t∗ = b
2 . (4.29)

The interested reader can find in Appendix 4.8.8 a formal proof of these equalities.
Examples of projected trajectories for four different unitary matrices corresponding to
rotations in the transverse plane are shown on the right sphere of Fig. 4.2.

4.5 Optimal trajectories with detuning

In this section, we consider the case where the frequency of the transverse magnetic field
~B1 is not on resonance with the Larmor frequency. In the rotating frame, the system
is subject to a z magnetic field proportional to ∆ 6= 0. In this case, both regular and
singular controls lead to non-trivial trajectories but, as already discussed in Sec. 4.3.1,
the time-optimal ones are necessarily regular, that is, time-optimal controls are never
vanishing.

In the following, we discuss the shape of the regular trajectories and the set of
the time-optimal ones is given as a function of ∆. Note that the analysis is completely
general and applies to any possible value of ∆, as long as the rotating wave approximation
is valid.
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4.5.1 The general case

Let ∆ 6= 0 and consider the dynamics of the system given by Eqs. (4.7) in terms of the
Euler parameters:  ψ̇

θ̇

φ̇

 =

 u2(− tan θ1 + cot θ1)− 2∆
2u1

u2(− tan θ1 − cot θ1)

 .

Replacing the control values (see Eqs. (4.15)) in these equations, the dynamics of the
system governed by the associated regular control is then ψ̇

θ̇

φ̇

 =

 p2(tan2 θ1 − 1)− 2∆
2p1

p2 sec2 θ1

 . (4.30)

Equations (4.24) generalize in a straightforward way to the case with a detuning term
as follows:

µ̇ = 2p2 + 2∆ and µ̇+ ψ̇ − φ̇ = 0 (4.31)

and we recall that the proof of these equations can be found in the Proof section 4.8.2.
More generally, when comparing dynamics of Eqs. (4.30) with the dynamics without
detuning given by Eqs. (4.23), we note that the only variable being influenced by the
detuning ∆ is ψ(t). In particular, the projected trajectories γ(t) = (φ(t), θ(t)) are of
the same shape as the ones without detuning, i.e. they describe circles on the sphere.
More precisely, Proposition 1 still holds with the same definition for the rotation axis
n̄ = (θ̄, φ̄). The time-evolution of the Euler-variables is then given by

θ(t) = cos−1(1 + sin2 θ̄(cos η(t)− 1)),

φ(t) = φ(0) + sign(p2)π2 + tan−1
(

sin η(t)

cos θ̄(cos η(t)−1)

)
,

ψ(t) = −2φ(0) + φ− 2(p2 + ∆)t,

(4.32)

as established in Appendix 4.8.4.

4.5.2 Time-optimal controls

In order to be as general as possible and include rotations about the z axis in our study,
every unitary matrix U∗ = eiλ

∗ σz
2 corresponding to a z rotation will be characterized by

φ∗ = 0, that is U∗ = (ψ∗, θ∗, φ∗) = (λ∗, 0, 0). To avoid confusion, targets U = (ψ,θ,φ)
and U∗ = (ψ∗, θ∗, φ∗) will correspond to targets which are reached without and with
detuning respectively.

As opposed to the case without detuning, when ∆ 6= 0, there may be more
than one regular control u reaching a target U∗ ∈ SU(2) with |η(T (u))| ≤ 2π. We are
then interested in finding which regular controls correspond to the time-optimal controls.
Recall that the regular controls are uniquely denoted uU where U ∈ SU(2) is the unitary
matrix being generated by the regular control uU without detuning. We consider the
well-known end-point mapping [82]:

End∆ : uU 7→ (ψ − 2∆T (uU),θ,φ) (4.33)

mapping any regular control on its target in the presence of a detuning term ∆. In
general, for a given control u, End∆(u) 6= End∆′(u) for ∆ 6= ∆′. We verify directly that
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when there is no detuning, this function maps a control uU on U, that is End0(uU) = U.
We can also check the validity of the mapping by noting (1) that the dynamical variables
θ(t) and φ(t) are unaffected by the detuning and (2) that ψ∗ = ψ− 2∆T (uU) by simply
comparing the equations for ψ̇ given in Eqs. (4.23) and (4.30).

Clearly, the regular controls uU reaching a desired target U∗ = (ψ∗, θ∗, φ∗) are
the ones for which θ = θ∗, φ = φ∗ and ψ− 2∆T (uU) = ψ∗ mod 4π. Since the first two
relations are trivial to satisfy, we can then focus on the variable ψ only and consider the
restriction (denoted f∆) of the end-point mapping End∆ to the controls uU satisfying
θ = θ∗ and φ = φ∗. These controls are then uniquely denoted uψ. The function f∆

takes the form:

f∆ : uψ 7→ ψ − 2∆T (uψ). (4.34)

As expected, we have f0(uψ) = ψ and the end-point mapping can be rewritten as
End∆(uψ) = (f∆(uψ),θ,φ). Examples of graphs for f∆ are illustrated in Fig. 4.3 (b)
and (c). With these tools available, we obtain the set of controls uψ corresponding to

Figure 4.3: (a) Time taken by the regular controls uU where θ = 2.2689, ψ = 0 are fixed and ψ
vary in the domain [−ψ − 2π,−ψ + 2π]. (b,c) Plots of the restriction f∆ of the end-point mapping for

detuning values ∆ = 1
2

and 3
2

respectively. Plot (b) illustrates the case ∆ ≤ | tan( θ
∗

2
)| where Ω∆ = Ω0.

Plot (c) illustrates the case ∆ > | tan( θ
∗

2
)| where the optimal domain Ω∆ ⊂ Ω0.

time-optimal controls under a detuning term ∆ 6= 0. This set, denoted Ω
(θ∗,φ∗)
∆ or simply

Ω∆ (for θ∗ and φ∗ fixed), is given in the following Proposition:

Proposition 2 Let θ∗ and φ∗ be fixed. If |∆| ≤ | tan( θ
∗

2 )|, then Ω∆ = Ω0. Otherwise,

Ω∆ =
[
uψ• , f

−1
∆ (f∆(uψ•)± 4π)

]
where ± is the sign of −∆.

Here, [uψmin
, uψmax

] := {uψ|ψ ∈ [ψmin,ψmax]}. In particular, the time-optimal
domain {uψ} ∈ Ω∆ is such that ψ ∈ [ψmin,ψmax]. The angle ψ• is chosen such that
the adjoint variable p2 characterizing uψ• satisfies p2 = 1

∆ and depends on ∆. The
interested reader will find further explanations about the interpretation of this result as
well as an idea of the proof in Appendix 4.8.6.

Any target U∗ = (ψ∗, θ∗, φ∗) is reached by one and only one time-optimal control
in Ω∆. In other words, the function f∆ is bijective on Ω∆. The time-optimal control
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generating U∗ is the unique control uψ solution of the equation

uψ = f−1
∆ (ψ∗ + n · 4π) ∩ Ω∆ (4.35)

for a certain n ∈ Z. Examples of the projected trajectories for two targets U∗ = ei
π
2
σz
2

and U∗ = ei
π
4

σy
2 under different detuning values ∆ = 0, 1

2 ,
3
2 ,

5
2 are depicted in Fig. 4.4.

Figure 4.4: Projected trajectories for the optimal synthesis of U∗ ∈ SU(2) subjected to a detuning field

of intensity ∆ = 0, 1
2
, 3

2
, 5

2
(trajectories a, b, c, d respectively). On the left, U∗ = ei

π
2
σz
2 corresponds to

a rotation about the z axis. On the right, U∗ = ei
π
4

σy
2 corresponds to a rotation about the y-axis.

Given a propagator U(ψ∗, θ∗, φ∗) ∈ SU(2), we can use the following algorithm to
find the time-optimal control u∗ generating U∗.

Algorithm 1 To find the time-optimal control u∗ = uψ generating U(ψ∗, θ∗, φ∗) under
a detuning term ∆:

1. For ψ ∈ [−φ∗ − 2π,−φ∗ + 2π], compute p2(uψ) by inverting Eqs. (4.25) for the
target U(ψ, θ∗, ψ∗).

2. Compute the time optimal domain Ωθ
∗,φ∗

∆ using Proposition 13.

3. Find the unique uψ ∈ Ω∆ such that f∆(uψ) = ψ∗mod 4π by simply inverting the
function f∆ (defined in Eq. (4.34)) on Ω∆.

4.6 Application: Optimal control on SO(3)

In the context of many experiments (in NMR or quantum gate generation, for instance),
the global phase of a unitary matrix U is not relevant, in the sense that the action of
two opposite evolution operators U and −U on an identical initial state ρ0 results in
identical states which are experimentally undistinguishable. The global phase issue has
been discussed in [101, 102, 104]. In Ref. [101], the authors point out that the time to
optimally generate U differs from that for −U . The control problem on SU(2) in this
experimental context then translates as a control problem on the group of rotations
SO(3).
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The time-optimal control problem on SO(3) can be reformulated as follows: Given
two opposite unitary matrices U and −U , which one of U or −U is the fastest to generate
in the context of time-optimal control on SU(2)? If U∗ ∈ {U,−U} denotes the answer
to this question, then the time-optimal control u(t) for generating U∗ also corresponds
to the time-optimal control for generating the associated rotation R∗ ∈ SO(3). In the
following, we aim at answering the above question for any pair of unitary matrices U and
−U . After considering the two classes of unitary matrices studied in Sec. 4.4.3 and 4.4.4
in the case without detuning, we finally find the class of U ∈ SU(2) such that U and
−U are optimally reached in the same time in both cases with and without detuning.
In order to simplify the notations, the variables related to −U will be denoted with the
symbol ·̃.

4.6.1 Case without detuning ∆ = 0

Rotation about the z axis.

Let U = eiλ
σz
2 as before and −U = eiλ̃

σz
2 . The parameter λ̃ = λ− sign(λ) · 2π is chosen

to be in the domain λ̃ ∈ [−2π, 2π]. Note that λ and λ̃ have opposite signs. Using the
equations for the final time given in Eq. (4.28), we deduce that:

Proposition 3 The rotation R∗ = R(λ−φ∗, 0, φ∗) is optimally generated by U if |λ| < π
and by −U otherwise. The time for generating U and that for −U are the same when
|λ| = π.

Figure 4.5: On both figures, the two full lines correspond to the trajectories for U∗ and −U∗, where
the dots correspond to the end points of the trajectories and the arrows to the travel direction. On

the left, we see the projected trajectory of a z rotation where U∗ = ei
π
4
σz
2 . On the right, the figure

displays the projected trajectory of a rotation on the (x, y) plane where U∗ = ei
π
5

σy
2 . The dashed lines

are the trajectories for the limit case U such that t∗(U) = t∗(−U).

Rotation in the (x, y) plane.

Let U = e−ia
σz
2 eib

σy
2 eia

σz
2 be a unitary matrix where the domains of definition are

a ∈ [−π, π] and b ∈ (0, 2π). Let −U = e−iã
σz
2 eĩb

σy
2 eiã

σz
2 be the unitary matrix opposite
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to U . In order to remain in the prescribed domain, −U is characterized by ã = a ± π
and b̃ = 2π− b where the sign ± is chosen such that a and ã have opposite signs. Using
the equation for the final time given in Eqs. (4.29), we deduce that:

Proposition 4 The rotation R∗ := R(−a, b, a) is optimally generated by U if b < π
and by −U if b > π. The time for generating U and that for −U are the same when
b = π.

In other words, for a rotation about any axis in the transverse plane, t∗ = t̃∗ if and only
if U describes a π rotation about this axis.

General case.

In order to find which one of U and −U is the fastest to generate in the most general
case, we proceed as before by first finding the class of unitary matrices satisfying t∗ = t̃∗.
We have already seen that ±π rotations about the z axis or any axis in the transverse
plane are such that the associated U and −U matrices are optimally reached in the
same time. Let us now consider a general rotation R(ψ∗, θ∗, φ∗) about any axis which
is not included in the two families already treated and let U and −U be the two unitary
matrices generating this rotation. We aim at finding the criterion that should be filled
by R in order to have t∗ = t̃∗.

First, we know from Proposition 1 that the final time t∗ for reaching U is equal
to half of the length of the projected trajectory γ. Consequently, since t∗ = t̃∗, γ and
γ̃ have the same length. Coming back to the Hopf parametrization, and writing the
parameters for −U as a function of U , we get:

θ̃∗1 = θ∗1 and θ̃∗2 = θ∗2 − sign(θ∗2)π. (4.36)

In particular, the Euler variables θ∗ and θ̃∗ are equal. Summarizing what has been
deduced so far, γ and γ̃ have the same length and end up at the same inclination angle
θ∗ while describing a circle on the sphere starting at the North Pole. The only possibility
is that γ and γ̃ describe a circle of identical radius, but one clockwise and the other anti-
clockwise since θ∗2 and θ̃∗2 have opposite signs. In fact, we can deduce that θ∗2 = −θ̃∗2 and
inserting this relation in Eq. (4.36), the condition for U such that t∗ = t̃∗ is

θ∗2 = ±π
2
. (4.37)

In other words, the unitary matrices corresponding to π-rotations (R) about any axis
are the ones which take as much time to generate as their opposite. This can be seen
using the quaternion parametrization introduced in Sec. 4.2. Indeed, θ∗2 = ±π2 implies
that x1 = 0 in Eq. (4.6). In terms of quaternions, this leads to x1 = cos(α/2) from
which we deduce that α = ±π. Recalling that α denotes the rotation angle of U about
a given axis, the rotation associated with θ∗2 = ±π2 is a ±π-rotation about this axis (see
Fig. 4.6). Finally, we deduce:

Proposition 5 Let U ∈ SU(2) and θ∗2 be the corresponding Hopf parameter. Then
t∗ < t̃∗ ⇐⇒ |θ∗2 | < π

2 . In particular, t∗ = t̃∗ ⇐⇒ |θ2| = π
2 .

Figure 4.6 shows the optimal time to generate unitary matrices defined according to
their quaternion’s definition given in Eq. (4.5). Three axes ~ny,

1√
2
(~ny + ~nz) and ~nz are
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considered, corresponding to an axis progressively tilted from the (x, y) plane to the
z axis. Note the monotonic evolution of the time function on the intervals [0, 2π] and
[2π, 4π] in Fig. 4.6. As expected, the matrices satisfying t∗ = t̃∗ (intersection of the solid
and dashed lines) are exactly the ones for which α = π + k · 2π. At these points (black
dots), the corresponding rotations for ~n = ~ny and ~n = 1√

2
(~ny + ~nz) are the well-known

refocusing [8, 70] and Hadamard gates [80], respectively.

0 π 2π 3π 4π
0

π

0 π 2π 3π 4π 0 π 2π 3π 4π

Figure 4.6: Plot of the minimum time t∗ to generate the rotations around the ~ny ,
1√
2

(~ny + ~nz) and

~nz axes as a function of the rotation angle α. The blue (solid) and red (dashed) curves represent the
time to generate U and −U respectively. The black dots and vertical dotted lines underline the angles
α for which t∗ = t̃∗. These angles are α = π, 3π, as expected (see Eq. (4.37)).

4.6.2 With detuning

Let us consider a target of the form U = (ψ∗, θ∗, φ∗). Recall that we are interested
in answering the question: Given ∆ 6= 0, which target among U and −U is the fastest
to generate? Or equivalently, if Tdiff(∆) := T (U,∆) − T (−U,∆) is the “difference
time” function, for which values ∆ does the Tdiff function change sign? Here, T (U,∆)
denotes the duration of the time-optimal control generating U under a detuning term
∆. In order to answer the question, we can of course proceed algorithmically by finding
the time-optimal controls for U and −U respectively using the results of Section 4.5.2
and then comparing the duration of the two corresponding controls. But here, we aim
at understanding under which conditions the function Tdiff changes sign at a specific
value of ∆.

There are two controls of particular interest denoted by uψ+
and uψ− , where

ψ± := −φ∗ ± π. They are special since they correspond to the only two controls (θ∗,
φ∗ being fixed) which generate two opposite matrices U := (ψ+, θ

∗, φ∗) and −U :=
(ψ−, θ

∗, φ∗) in the same time T (uψ+
) = T (uψ−). Let us split the full detuning domain

R into two regions, X and R/X, where X := {∆ | both uψ+
, uψ− ∈ Ω∆}.

When ∆ ∈ X, we can show that uψ+
is the optimal control generating U∗ if and only if

uψ− is the optimal control generating −U∗ or vice-versa. In particular, the values of ∆
for which uψ+

and uψ− are the optimal controls of U∗ and −U∗ are the ones for which
the time difference function Tdiff is equal to zero since T (uψ+

) = T (uψ−). These values

of ∆ are easily found to be ∆ = −φ
∗+ψ∗±π+n·4π

2T (uψ± ) for a certain n ∈ Z.

When ∆ /∈ X, at least one of the two controls uψ± is not time-optimal such that the
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time difference function Tdiff is never zero on the set R/X. Since the time-optimal
control domain Ω∆ as well as the optimal control uψ of U∗ (or of −U∗) vary smoothly
with ∆ (this means that the angle ψ defining uψ is smooth), the function Tdiff also
varies smoothly with respect to ∆ except when the time-optimal control jumps between
extremities of Ω∆. This occurs when the optimal control for one of two unitary matrices
U or −U jumps between uψmin

and uψmax
for an infinitesimal variation of ∆. We can

summarize the previous discussion by the following Proposition.

Proposition 6 For ∆ ∈ X, the function Tdiff changes sign ⇐⇒ ∆ = −φ
∗+ψ∗±π+n·4π

2T (uψ± )

for a certain n ∈ Z. Moreover, Tdiff = 0 at these points. For ∆ ∈ R/X, the function
Tdiff changes sign if and only if the time-optimal control for U or −U is uψmin/max .

An example of application of Proposition 6 is depicted in Fig. 4.7 for the unitary
matrices U = (ψ∗, θ∗, φ∗) = (0, 1.9897, 0) and −U . The upper graph shows the optimal
time for generating unitaries U and −U as a function of ∆. For each value of ∆, the
time-optimal domain Ω∆ is given by the two enveloping black curves on the lower graph.
As long as both uψ± ∈ Ω∆ (region X), the optimal times T (U,∆) and T (−U,∆) vary
continuously between the shortest and longest times and the two curves meet (black
dots on Fig.4.7 (a)) when their two time-optimal controls are exactly uψ± (black dots
on Fig.4.7 (b)). As soon as one of uψ± is not in Ω∆ anymore (∆ ∈ R/X), the time
functions stop crossing but jump one above the other when the optimal controls (curves
of the lower graph) reach the limits of Ω∆. Three other examples are given in Fig. 4.8.

The detailed derivation of the results summarized above is presented in Ap-
pendix 4.8.9.

4.7 Conclusion

In this work, we have investigated the time-optimal control of SU(2) quantum operations
by a bounded external field with two components along the x and y directions. We
have analyzed a control problem where the rotating wave approximation provides a
valid simplification of the dynamics of the system. We have considered two different
situations, with and without a constant detuning term. We have shown that geometric
optimal control techniques provide a systematic way to attack such control problems,
leading to the complete description of the pulse sequences. Furthemore, we have studied
the basic model of a two-level quantum system in order to highlight the geometric
structure of the control. Such results could be applied to more complicated systems
such as the one presented in Ref. [88], where the control of three coupled spins can be
reduced to SU(2) operations.

4.8 Appendices

This section is dedicated to giving most of the details which have been left aside to
seamlessly present the main results and ideas. The reader will find here the technical
proofs of the main results as well as preliminary results on which they are based. For
more complicated results, additional information and explanations support the proofs
and in order to ease the legibility of these explanations for the reader seeking for an
overview of the ideas only, the proofs are delimited in grey areas in the whole section.
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Figure 4.7: (a) Time-optimal durations T (U,∆) and T (−U,∆) to generate U = (0, 2.2689, 0)
(blue/solid line) and −U (red/dashed line) as a function of the detuning ∆. (b) Time-optimal con-
trols uψ of U (blue/solid line) and −U (red/dashed line) respectively as a function of the detuning ∆.
The region defined by the two black curves represents the time-optimal domain Ω∆ for each value of
∆. The time difference function Tdiff stops being continuous when both uψ+

and uψ− do not belong

to Ω∆ (domain X defined by the two vertical lines). The black dots and the white squares represent
the values of ∆ for which Tdiff changes sign for ∆ ∈ X and ∆ ∈ R/X respectively.

Figure 4.8: Evolution of the minimum time t∗ as a function of ∆ for rotations around the three axes
~ny ,

1√
2

(~ny + ~nz) and ~nz . The rotation angle is fixed to α = π/2.

4.8.1 Derivation of the dynamical Equations (4.7)

Proposition 7 The translation of the Schrödinger equation (4.3) in terms of Hopf vari-
ables gives rise to the following system of three equations: θ̇1

θ̇2

θ̇3

 =

 u1

− tan θ1 u2 −∆
cot θ1 u2 −∆

 .
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Proof. Let us write the quantum Hamiltonian (4.1) in terms of the normalized
variables vi := ωi

ωmax
and ∆ = ω

ωmax
using the Quaternions notation introduced in

Section 4.2.2 a :

H = vxσx + vyσy + ∆σz = −i(vxk + vyj + ∆i).

Using the definition of U = x11+x2i+x3j+x4k given in Eq. (4.4), the Schrödinger
equation (4.3) translates into

i∂tU(t) = H(t)U(t)
⇐⇒

∂tU(t) = −iH(t)U(t)
⇐⇒

ẋ1 + ẋ2i + ẋ3j + ẋ4k = −(∆i + vyj + vxk) · (x11+ x2i + x3j + x4k)
⇐⇒

ẋ1

ẋ2

ẋ3

ẋ4

 = LiH


x1

x2

x3

x4


where

LiH =

(
0 ∆ vy vx
−∆ 0 vx −vy
−vy −vx 0 ∆
−vx vy −∆ 0

)
.

Now, noticing that the coordinates xi can be written in terms of the Hopf para-
meters as

x1 = cos θ1 cos θ2,
x2 = cos θ1 sin θ2,
x3 = sin θ1 cos θ3,
x4 = sin θ1 sin θ3,

where we set the variable r = 1, we deduce by straightforward calculations that


ẋ1

ẋ2

ẋ3

ẋ4

 = T


ṙ

θ̇1

θ̇2

θ̇3


where

T =

(
cos θ1 cos θ2 − sin θ1 cos θ2 − cos θ1 sin θ2 0
cos θ1 sin θ2 − sin θ1 sin θ2 cos θ1 cos θ2 0
sin θ1 cos θ3 cos θ1 cos θ3 0 − sin θ1 sin θ3
sin θ1 sin θ3 cos θ1 sin θ3 0 sin θ1 cos θ3

)
.

The matrix T is invertible when θ1 6= nπ
2 for n ∈ N with inverse

T−1 =

(
cos θ1 cos θ2 cos θ1 sin θ2 sin θ1 cos θ3 sin θ1 sin θ3
− sin θ1 cos θ2 − sin θ1 sin θ2 cos θ1 cos θ3 cos θ1 sin θ3
− sec θ1 sin θ2 sec θ1 cos θ2 0 0

0 0 − csc θ1 sin θ3 csc θ1 cos θ3

)
.

The dynamics of the system can now be described in terms of the Hopf variables:
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
ṙ

θ̇1

θ̇2

θ̇3

 = T−1LiH


cos θ1 cos θ2

cos θ1 sin θ2

sin θ1 cos θ3

sin θ1 sin θ3

 .

Knowing that ṙ = 0, the remaining above equality reduces to θ̇1

θ̇2

θ̇3

 =

 −vx sin(θ2 + θ3)− vy cos(θ2 + θ3)
tan θ1[ vx cos(θ2 + θ3)− vy sin(θ2 + θ3)]−∆
cot θ1[−vx cos(θ2 + θ3) + vy sin(θ2 + θ3)]−∆

 .

Finally, using the transformation (4.8) defining the “rotated controls”

u1 = −v0 sin(µ+ θ2 + θ3)
= −vx sin(θ2 + θ3)− vy cos(θ2 + θ3),

u2 = −v0 cos(µ+ θ2 + θ3)
= −vx cos(θ2 + θ3) + vy sin(θ2 + θ3),

where one used the definition of the control v given in Eq. (4.2), we finally get the
dynamical equations (4.7): θ̇1

θ̇2

θ̇3

 =

 u1

− tan θ1 u2 −∆
cot θ1 u2 −∆

 .

aWe recall that the basis elements of the quaternion field are taken to be 1 =
(

1 0
0 1

)
, i = iσz ,

j = iσy and k = iσx.

4.8.2 Constants of motion and linear evolution of the regular
controls

We recall here the definition of β given in Eq. (4.22) ,

β(t) := [µ(t) + ψ(t)],

which denotes the angular parametrization of the rotated controls controls u(t) such
that they take the form (see (4.8))

u1(t) = − sinβ(t),
u2(t) = − cosβ(t).

(4.38)

Recall that the adjoint variable p3 is zero on extremal trajectories, as explained in the
last paragraph of Section 4.3.1.

Lemma 1 The angular parameter β satisfies β̇ = p2 sec2 θ1.

Proof. β̇ =
(4.38) u̇1

u2
=

(4.15) ṗ1

−p2 tan θ1 =
(4.20) −p2

2 tan θ1 sec2 θ1
−p2 tan θ1

= p2 sec2 θ1.

As a corollary, we find that the phase µ(t) of the regular controls v(t), defined in Eq. (4.2),
evolves linearly in time.

Corollary 1 µ(t) = µ(0) + 2(p2 + ∆)t.
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Proof. µ̇ =
(4.22)

β̇ − ψ̇ =
(4.10)

β̇ − θ̇2 − θ̇3 =
(4.20),Lem. 1

2(p2 + ∆).

Corollary 2 µ̇+ ψ̇ − φ̇ = 0.

Proof. µ̇+ ψ̇ − φ̇ =
(4.22)

β̇ − φ̇ =
(4.10)

β̇ − θ̇2 + θ̇3 =
(4.20),Lem. 1

0.

4.8.3 Singular controls and their associated trajectories

Let us express the dynamics (4.7) in terms of the Euler parameters using Eqs. (4.10): ψ̇

θ̇

φ̇

 =

 u2(− tan θ1 + cot θ1)− 2∆
2u1

u2(− tan θ1 − cot θ1)

 . (4.39)

Recall that singular controls correspond to controls for which N = 0, i.e. to controls
vanishing a.e. [25]. We can see it by noticing that N is proportional to

√
u2

1 + u2
2 (see

Eqs. (4.15) and (4.16)). After setting u1 = u2 = 0 in Eqs. (4.39), the differential
equations simply become  ψ̇

θ̇

φ̇

 =

 −2∆
0
0

 ,

and are directly integrable. On the time interval [t0, t1], the trajectory at time t ∈ [t0, t1]
is then given by

ψ(t) = ψ(t0)− 2∆(t− t0), (4.40a)

θ(t) ≡ θ(t0), (4.40b)

φ(t) ≡ φ(t0). (4.40c)

The projected trajectory γ(t) := (θ(t), φ(t)) (see the statement of Proposition 1) as-
sociated with a singular control is then reduced to the point γ(t) = (θ0, φ0) while the
remaining parameter ψ(t) evolves with constant velocity ψ̇ = −2∆.

We conclude this section devoted to singular controls and trajectories with a direct
Corollary of the above Eqs. (4.40) that is later needed to determine the time-optimal
controls.

Corollary 3 Let U∗ = eiλ
∗ σz

2 be a target propagator such that λ∗ ∈ [0, 4π · sign(−∆)]
and consider the singular control generating U∗ after a time tsing starting at t0 = 0 from
the identity. Then

(i) tsing = − λ∗

2∆ ;

(ii) φ(0) = λ∗ − ψ∗.

Proof. Using the hypothesis t0 = 0, the first relation is a direct consequence of the
equalities:

tsing =
Eq. (4.40a) ψ(t)−ψ(0)

−2∆ =
Eq. (4.40c) ψ(t)+φ(t)−φ(0)−ψ(0))

−2∆ =
θ2(0)=0 ψ(t)+φ(t)

−2∆ = λ∗

−2∆ .
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The second relation follows directly from Eq. (4.40c) together with the definition
of λ∗ := φ∗ + ψ∗ = φ(0) + ψ∗.

4.8.4 Regular controls and their associated trajectories

The proof of the main result about the shape of regular trajectories requires the use
of the following Lemma, which links the phase of the rotated control β to the Euler
parameter φ.

Lemma 2 β̇ = φ̇.

Proof. β̇ − φ̇ =
(4.10)

β̇ − θ̇2 + θ̇3 =
(4.20),Lem. 1

0.

We now have everything in hand to prove Proposition 1, that we recall here.

Proposition 1 Let θ̄ = arctan( 1
p2

) and φ̄ = φ(0) − β(0). The projected trajectory

γ(t) = (θ(t), φ(t)) defines a circle around the fixed axis #”n = (θ̄, φ̄). Moreover, γ(t) is
traveled with constant speed ‖γ̇(t)‖ = 2. The final time T (u) is equal to 1

2 the arc length
of γ(t).

The reader is directed to Fig. 4.1 for a visual representation of the different variables
encountered in the proof.

Proof. Let γ : [0, t∗] −→ S2 be the path on the sphere described by the Euler angles
θ(t) and φ(t) and let #”γ (t) := (sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)) denote the
vector in R3 defined by the point γ(t). We first show that #”γ (t) · #”n ≡ cos θ̄ for all t
proving that γ(t) lies in a plane orthogonal to #”n . As #”γ (t) also lies on a sphere and
since the intersection of a plane and a sphere is a circle, this then proves that the
projected trajectory γ(t) lies on a circle.

Dropping some trivial manipulations, we have:

#”γ (t) · #”n = sin θ sin θ̄(cosφ cos φ̄+ sinφ sin φ̄) + cos θ cos θ̄
= sin θ sin θ̄ cos(φ− φ̄) + cos θ cos θ̄
= sin θ sin θ̄ cosβ + cos θ cos θ̄

where we have used the definition of φ̄ and Lemma 2 to write φ−φ̄ = β. Factorizing
by cos θ̄ and using θ̄ := arctan( 1

p2
), the precedent equality becomes

#”γ (t) · #”n = cos θ̄(tan θ̄ sin θ cosβ + cos θ)
= cos θ̄(sin θ tan θ1 + cos θ)

where we used cosβ =
(4.38)

−u2 =
(4.15)

p2 tan θ1 to deduce the last equality. As
θ1 = θ

2 , we finally conclude that

#”γ (t) · #”n = cos θ̄(sin θ tan θ
2 + cos θ)

= cos θ̄.

It remains to show that the trajectory runs with a constant speed 2 on the circle.
We use the two relations θ̇ = 2θ̇1 = 2u1 and φ̇ = −u2(tan θ1 +cot θ1) obtained from
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Eq. (4.7) and the definition of φ̇ := θ̇2 − θ̇3. After some simplifications, we obtain:

‖ #”
γ̇ (t)‖2 = [θ̇ cos θ]2 + [φ̇ sin θ]2 + [θ̇ sin θ]2

= [θ̇]2 + [φ̇ sin θ]2

= [2u1]2 + [−u2(tan θ1 + cot θ1) sin 2θ1]2

= [2u1]2 + [−2u2]2

= 4‖u‖2
= 4.

Proposition 1 contains all the information needed to write the time-evolution of a propag-
ator U ∈ SU(2) governed by a regular control u. In terms of Euler parameters, the
trajectory U(t) is given by

θ(t) = cos−1(1 + sin2 θ̄(cos η(t)− 1)),

φ(t) = φ(0) + sign(p2)π2 + tan−1
(

sin η(t)

cos θ̄(cos η(t)−1)

)
,

ψ(t) = −2φ(0) + φ(t)− 2(p2 + ∆)t,

where η(t) := 2t
sin θ̄

is the angular parametrization of the circle section drawn by γ(t)
around its axis n̄ (see Fig. 4.1).
We now show how to derive the three above equations.

Given p2 and φ(0), we know that the projected trajectory γ(t) = (θ(t), φ(t)) traces
out a circle on the sphere about the axis defined by θ̄ = arctan( 1

p2
) and φ̄ =

φ(0)− β(0). As a first step to deduce the trajectory of regular controls, let us first
derive the trajectory of the two Euler variables θ(t) and φ(t). To do so, we have to
find the parametrization of a circle starting at the North Pole and evolving linearly
about the axis n̄ given above. Let η(t) = 2t

sin θ̄
the parametrization of the circle

relative to the axis n̄. The radius r of the circle is r = sin θ̄.

Starting with a circle of radius r in the xy plane with η(0) in position
(−r, 0, 0), this circle is parametrized by γ1 = (x1, y1, z1) where x1

y1

z1

 =

 −r cos η
−r sin η

0

 .
In particular, at time t = 0, γ1(0) = (x1, y1, z1)|t=0 = (−r, 0, 0). Then applying the
rotation Ry(θ̄) to this circle gives it its final inclination with respect to the z axis.
The resulting tilted circle γ2(t) = (x2, y2, z2) is obtained from the previous one by x2

y2

z2

 =

 cos θ̄ sin θ̄
1

− sin θ̄ cos θ̄

 x1

y1

z1

 .
Now, at time t = 0, the initial position is γ2(0) = (x2, y2, z2)|t=0 = (−r cos θ̄, 0, r sin θ̄).

We now translate the circle upward and forward such that the initial point γ3(0)
lies at the North pole. That is, the translated tilted circle γ3 should satisfy γ3(0) =
(x3, y3, z3)|t=0 = (0, 0, 1). The translation of γ2 by the vector [r cos θ̄, 0, 1− r sin θ̄]t

gives:  x3

y3

z3

 =

 x2

y2

z2

+

 r cos θ̄
0

1− r sin θ̄

 .
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The parametric variables for the actual trajectory γ3(t) is then x3

y3

z3

 =

 x2

y2

z2

+

 r cos θ̄
0

1− r sin θ̄


=

 cos θ̄ sin θ̄
1

− sin θ̄ cos θ̄

  x1

y1

z1

+

 r cos θ̄
0

1− r sin θ̄


=

 cos θ̄ sin θ̄
1

− sin θ̄ cos θ̄

 −r cos η
−r sin η

0

+

 r cos θ̄
0

1− r sin θ̄


=

 −r cos θ̄ cos η
−r sin η

r sin θ̄ cos η

+

 r cos θ̄
0

1− r sin θ̄)


=

 −r cos θ̄ cos η + r cos θ̄
−r sin η

r sin θ̄ cos η + 1− r sin θ̄


=

 − sin θ̄ cos θ̄ cos η + sin θ̄ cos θ̄
− sin θ̄ sin η

sin θ̄ sin θ̄ cos η + 1− sin θ̄ sin θ̄


where r has been replaced by its value r = sin θ̄ to write the last equality. Factor-
izing some of the terms, the cartesian parametrization of γ3 becomes

x3(t) = − sin θ̄ cos θ̄(cos η − 1),
y3(t) = − sin θ̄ sin η,
z3(t) = 1 + sin2 θ̄(cos η − 1),

and converting them into the spherical parameters, we obtain

θ3(t) = cos−1(z3) = cos−1(1 + sin2 θ̄(cos η − 1)),

φ3(t) = tan−1( y3

x3
) = tan−1( sin η

cos θ̄(cos η−1
)).

Now, γ3 has been defined such that φ3(0) = −π2 when η goes anti-clockwise and
φ3(0) = π

2 when η goes clockwise, i.e. φ3(0) = −sign(p2)π2 from the Lemma 3
below. The final trajectory, corresponding to the appropriate initial value of φ(0)
is given by θ(t) := θ3(t) and φ(t) := φ3(t) + επ2 + φ(0), that is:

θ(t) = cos−1(1 + sin2 θ̄(cos η − 1))

φ(t) = φ(0) + επ2 + tan−1
(

sin η
cos θ̄(cos η−1)

)
.

Finally, the time evolution of the variable ψ is deduced from the following series of
equalities:

ψ(t)− ψ(0) =
Cor. 2

φ(t)− φ(0)− [µ(t)− µ(0)]

=
Cor. 1

φ(t)− φ(0)− 2(p2 + ∆)t

⇐⇒
ψ(t) = ψ(0)− φ(0) + φ(t)− 2(p2 + ∆)t
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=
θ2(0)=0

−2φ(0) + φ(t)− 2(p2 + ∆)t.

Use of the following Lemma has been made in the above proof.

Lemma 3 γ(t) goes anti-clockwise ⇐⇒ p2 > 0.

Proof. The projected trajectory γ(t) runs anti-clockwise ⇐⇒ φ̇ > 0 ⇐⇒
Lemma 2

β̇ = p2 sec2 θ1 > 0 ⇐⇒ p2 > 0.

4.8.5 Some initial conditions and relation between φ(0) and p2

The initial values β(0) and µ(0) of the angular controls are given by the following lemma.

Lemma 4 At time t = 0, we have:

(i) p1(0) = 1;

(ii) β(0) = −π2 ;

(iii) µ(0) = φ(0)− π
2 .

Proof.

(i) At t = 0, θ1(0) =
Eq. (4.9)

0 =⇒ tan θ1(0) = 0 =⇒
Eq. (4.15)

u2 = 0. Since the
control has maximum amplitude, this implies that u1 = ±1. But as θ1(0) = 0
and θ1(t) > 0, θ̇1 must satisfy θ̇1(0) = u1(0) ≥ 0, i.e. u1(0) = p1(0) = 1.

(ii) The double equality u1(t) =
Eq. (4.38)

− sinβ(t) =
Eq. (4.15)

p1(t) being satisfied
for all t ∈ [0, T (u)], it is also satisfied in t = 0 such that − sinβ(0) = p1(0) = 1
from (i) such that β = −π2 .

(iii) µ(0) =
Eq. (4.22)

β(0) − ψ(0) =
(ii)
−π2 + φ(0) where the last equality is deduced

using Eq. (4.10) and the fact (see Eq. (4.9)) that θ2(0) = 0.

Given a regular control u and a (possibly null) detuning term ∆, the time evolution of
the Euler variables given by Eqs. (4.32) corresponds to a set of three equations with two
unknown parameters p2 and φ(0). These two parameters are however related by the
following equality.

Proposition 8 p2 = sin(φ∗−φ(0))

tan θ∗
2

.

Proof. Consider the double equality for the control component −u2 =
Eq. (4.38)

cosβ =
Eq. (4.15)

p2 tan θ
2 where θ1 =

Eq. (4.10) θ
2 has been used. When the target is

reached, we then have cosβ∗ = p2 tan θ∗

2 . Now, a direct corollary of Lemma 2

is that β∗ = β(0) + φ∗ − φ(0) =
Lemma 4 (ii)

−π2 + φ∗ − φ(0). We finally get
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cosβ∗ = cos(−π2 + φ∗ − φ(0)) ≡ sin(φ∗ − φ(0)) = p2 tan θ∗

2 .

For a given target U∗, the value φ(0) can then be found at least numerically from
the trajectory Eqs. (4.32). As discussed in the main text, the initial value φ(0) (and
consequently all the other parameters) can be found analytically for the two particular
classes of target propagators U∗ = eiλ

σz
2 and U∗ = e−ia σz2 e

ib σy
2 e

ia σz
2 , which correspond

respectively to “rotations” around the z axis and around an axis lying in the (x, y) plane.

4.8.6 Time-optimal controls

Using the PMP, we found (see Eq. 4.15) that time-optimal regular controls (N 6= 0)
must necessarily have the form

u1(t) = p1

N ,

u2(t) = −p2 tan θ1+p3 cot θ1
N ,

Their associated trajectories have been derived in Appendix 4.8.4. When N = 0, we
found that the singular controls vanish and their associated trajectories have been de-
rived in Appendix 4.8.3. The two classes of controls, singular and regular, are said to be
extremal controls as they satisfy Pontryagin’s necessary condition of being potentially
time-optimal. These two sets of controls, together with all their possible combinations,
constitute the set of controls among which we have to find the time-optimal controls.
The aim of the present section is to find the set of time-optimal controls, denoted Ω∆,
for a system undergoing a drift term ∆. To do so, we first find the set Ω0 of time-
optimal controls without detuning. We then prove that the time-optimal controls Ω∆

when ∆ 6= 0 is a subset of Ω0 to finally characterize the controls in Ω0 which remain
time-optimal when varying the drift value ∆.

Case ∆=0

When ∆ = 0, the trajectory associated with singular controls is trivial and consists of
a fixed point (see Eq. 4.40). In particular, given a target U∗ 6= Id, the time-optimal
control generating U∗ cannot be singular. Since mixing singular and regular controls is
equivalent to only considering the regular controls (as the singular control has no effect),
we then conclude that time-optimal controls are necessarily regular.

The following proposition states that time-optimal regular controls consist of those
for which the associated projected trajectories γ(t) draw circle arcs of angle |η∗| ≤ 2π.
Recall that the “projected trajectory” is defined in the statement of the Proposition 1
and is illustrated in Fig. 4.1.

Proposition 9 The regular time-optimal controls u∗ correspond to regular controls for
which the regular trajectories draw circle arcs of total rotation angle η(T (u∗)) ≤ 2π.

As a consequence, all regular controls with |η∗| ≤ 2π can be uniquely denoted uψ,θ,φ
where U(ψ, θ, φ) is the propagator time-optimally generated by uψ,θ,φ.

Note that the regular controls u(λ−φ),0,φ, for φ ∈ [−π, π), generate the same propagator

U = eiλ
σz
2 . The phase µ(t) of controls corresponding to different values of φ only differ

by a constant and the controls themselves have the same duration

T (uλ) := T (u(λ−φ),0,φ) =
1

2

√
4π|λ| − |λ|2.
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To summarize, the set Ω0 of time-optimal controls without a drift term is the set of all
regular controls satisfying |η(T (u))| ≤ 2π and has the form:

Ω0 = {uψ,θ,φ}.

Case ∆ 6= 0.

To better understand what follows, the reader should quickly skim through Section 4.5.2
of the main text, if not already done.

We are interested in finding the set of all the time-optimal controls Ω∆ for ∆ 6= 0. A
priori, this set Ω∆ potentially contains singular and regular controls and even combin-
ations of these two types of controls. Our first main result shows that the time-optimal
controls consist of the regular controls only. We then see that the set of regular controls
Ω0 covers SU(2) from which Ω∆ ⊆ Ω0. We finally find an expression for the set Ωθ,φ∆ of
all the time-optimal controls generating propagators of the form U(ψ, θ, φ) where (θ, φ)
are fixed and ψ ∈ [−2π, 2π). Ω∆ is then defined as

Ω∆ =
⋃
θ,φ

Ωθ,φ∆ .

Recall that in order not to get confused with the controls notation (defined in the ∆ = 0
section), bold characters {ψ,θ,φ} refer to regular controls uU = uψ,θ,φ and the targets
U(ψ,θ,φ) they generate without detuning. Unbold symbols {U,ψ, θ, φ} refer to variables
in the actual problem, in which ∆ 6= 0.

Before proving the main results, some properties about the time duration of reg-
ular controls T : uψ 7→ T (uψ) should be underlined.

Proposition 10 The time function T : uψ 7→ T (uψ) satisfies the following properties:

(i) T (uψ) is continuous in ψ;

(ii) T (uψ) is concave, symmetric in its minimum ψ = −φ∗, and reaches its maxima
at ψ = −φ∗ ± 2π;

(iii)
dT (uψ)
dψ =

p2(uψ)
2 ;

where p2(uψ) is the value of the adjoint variable p2 along the trajectory corresponding
to the regular control uψ.

Points (i) and (ii) are illustrated in Figure 4.3 (a) and point (iii) is proved now.

Proof. Let uψ be a regular control and θ̄ the inclination angle of the axis n̄ about
which the projected trajectory governed by uψ is evolving (see Fig. 4.1). Without
loss of generality, suppose θ̄ ≥ 0. Let η := η(T (uψ)) denote the final rotation angle
about n̄ which corresponds to uψ.

The radius of the circle is sin θ̄ such that the time to make the complete
circle would be Tmax = 1

2 · 2π sin θ̄ = π sin θ̄ according to Proposition 1. The

duration T (uψ) is then T (uψ) = η
2πTmax = η

2ππ
√

1− cos2 θ̄ from which we compute
dT (uψ)

d cos θ̄
= −η2 p2 (using the equality θ̄ = 1

p2
from Prop. 1). We also know from

Eqs. (4.25) that ψ(t) = −2φ(0) + φ(t) − 2p2t ≡ −2φ(0) + φ(t) − η(t) cos θ̄ where
the last equality comes from the definitions of η(t) (see Eq. 4.26) and θ̄. Isolating
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cos θ̄ in this equality, we get d cos θ̄
dψ =

d(
−2φ(0)+φ−ψ

η )

dψ = −1
η . We finally compute

dT (uψ)

dψ
=
dT (uψ)

d cos θ̄
· d cos θ̄

dψ
=
−η
2

p2 ·
−1

η
=

p2

2
.

We are now ready to prove the first important result of this section.

Proposition 11 Time-optimal controls are regular.

Proof. Without loss of generality, suppose that ∆ > 0. From Eqs. (4.40), we have
θ1 ≡ 0 along a singular trajectory such that the only propagators generated by a
singular control are of the form U∗ = eiλ

∗ σz
2 corresponding to “rotations” about

the z axis. Let us consider λ∗ ∈ [−4π, 0]. We know from Corollary 3 (ii) that the
singular control of shortest duration generating U∗ satisfies

tsing = − λ
∗

2∆
.

By continuity of the time function T (Prop. 10 (i)), the function f∆ is also continu-
ous and there exists λ ∈ [−2π, 2π] such that λ∗ = f∆(uλ)+n ·4π = λ−2∆T (uλ)+
n · 4π. Let us consider λ with the shortest duration. There are two cases defined
by λ ∈ [−2π, 0] or λ ∈ [0, 2π), for which n = 0 and n = −1, respectively. In both
cases, we have:

tsing = − λ
∗

2∆
= −λ− 2∆T (uλ) + n · 4π

2∆
= −λ+ n · 4π

2∆
+ T (uλ) > T (uλ)

proving that the singular control is never optimal.

The last part of the proof is to show that combination of regular controls and
combination of singular and regular controls are never optimal. To do so, consider
the most general control which can possibly be time-optimal, i.e. a control mixing
regular and singular controls, and let us show that in order to be optimal, this
mixed control has to be a single regular control. The proof of this result relies
on two key arguments. The first one is based on the continuity of the adjoint
vector ~p along a time-optimal trajectory insured by the PMPs. Since the adjoint
variable p2 is a constant, the combination of two regular controls, if optimal, must
by continuity have the same p2 variable and hence describe a single regular control.
In other words, the time-optimal combination of two regular controls is equivalent
to a single regular control. The other key argument is to note that regular and
singular controls commute since singular controls just contribute for an additional
shift on the variable ψ. We can then always decompose the time-optimal trajectory
as a regular control followed by a singular one. Finally, since singular controls are

never optimal, they can always be replaced by a regular one and the new control,
of shorter duration, is a combination of two regular controls, which have to define
the same regular control to be time-optimal according to our first key argument.
Time-optimal controls are then regular ones.

We can further restrict the class of controls which can potentially be the time-optimal
ones by noting that the regular controls uψ ∈ Ω0 (for which the projected trajectories



4.8. APPENDICES 115

without detuning correspond to circle arcs of angle |η∗| ≤ 2π) are sufficient to cover
SU(2):

Proposition 12 Ω∆ ⊆ Ω0.

Proof. We show that for all ψ∗ ∈ [−2π, 2π) there exists uψ ∈ Ω0 such that
f∆(uψ) = ψ∗. To do so, we consider ψmin = −φ∗ − 2π and ψmax = −φ∗ + 2π
where [ψmin,ψmax] covers the full domain of length 4π. By Proposition 10 (ii), the
durations for the two associated controls are identical: T (uψmin

) = T (uψmax
) = T ,

which implies that f∆(uψmax
) − f∆(uψmin

) = ψmax − ψmin = 4π. By continuity of
f∆ in the variable ψ (see Proposition 10 (i)), the full range of values for ψ∗ is then
covered by f∆(uψ) for uψ ∈ Ω0. The proof is completed by noting that controls in
Ω0 actually are the regular ones with the shortest durations.

The above proposition expresses the fact that the function f∆ is surjective on Ω0. We
now aim at finding the set Ω∆ ⊆ Ω0 on which f∆ is bijective and for which each control is
time-optimal. Information on the injectivity of f∆ is obtained by studying its derivative
with respect to ψ:

df∆(uψ)

dψ
=
d(ψ − 2∆ T (uψ))

dψ
= 1− 2∆

T (uψ)

dψ
=

Prop. 10 (iii)
1−∆ p2(uψ).

In particular,
df∆(uψ)
dψ = 0 on controls uψ satisfying p2(uψ) = 1

∆ . From Lemma 8, we

know that |p2(uψ)| ≤ cot( θ
∗

2 ) such that for |∆| < | tan( θ
∗

2 )|, the function f∆ is monotonic
on uψ ∈ Ω0 (i.e. its derivative never vanishes). In this case, we conclude that Ω∆ = Ω0.
An example of this case is illustrated in Fig. 4.3 (b).

The case |∆| > | tan( θ
∗

2 )| is illustrated in Fig. 4.3 (c). Let ψ• denote the point (among

possibly two) the closest to −φ∗ satisfying p2(uψ•) = 1
∆ or equivalently

df∆(uψ• )
dψ = 0.

We show that Ω∆ = [f−1
∆ (f∆(uψ•)± 4π), uψ• ], where ±1 = sign(−∆).

The possible forms of the optimal domain Ω∆ are illustrated in Fig. 4.9.

Proposition 13 Let θ∗ and φ∗ be fixed. If |∆| ≤ | tan( θ
∗

2 )|, then Ω∆ = Ω0. Otherwise,

Ω∆ =
[
uψ• , f

−1
∆ (f∆(uψ•)± 4π)

]
where ± is the sign of −∆.

Proof. It remains to consider the case where |∆| > | tan( θ
∗

2 )| in which case the
function f∆ is not monotonic. In these cases, there exist some values of ψ which are
created by more that one regular control uψ and we have to determine which of these
controls have the shortest duration. We can assume without loss of generality that
∆ > 0 and consider Ω∆ =

[
f−1

∆ (f∆(uψ•)− 4π) , uψ•
]

defined as in the statement
of the proposition. The function f∆ is monotonic and bijective on this set. To
prove the time-optimality of the controls in Ω∆ so defined, we have to show that if
uψ1
∈ Ω∆ and uψ2

/∈ Ω∆ are such that f∆(uψ1
) = f∆(uψ2

), then T (uψ1
) < T (uψ2

).

Notice that u−φ∗ ∈ Ω∆. Indeed, let ψ• := −2φ∗ − ψ• define the control which
is symmetric to uψ• with respect to −φ∗. Then both uψ• and uψ• are in Ω∆

since f∆(uψ•) − f∆(uψ•) =
Prop. 10 (ii)

ψ• − ψ• = 2(ψ• + φ∗) < 2 · 2π and ψ• ∈
[−φ∗ − 2π,−φ∗ + 2π]. Consequently, all the controls uψ with ψ ∈ [ψ•,ψ•] are in
Ω∆, including u−φ∗ .
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Let uψ1
∈ Ω∆ and uψ2

/∈ Ω∆ be such that f∆(uψ1
) = f∆(uψ2

). This implies
that

ψ2 = ψ1 + 2∆(T (uψ2
)− T (uψ1

)) (4.41)

where the definition of f∆ has been used only. (A) If ψ1 and ψ2 are of the same
side of −φ∗, then T (ψ2) > T (ψ1) since Ω∆ is centered in −φ∗ and the time of the
controls increases as we move away from −φ∗ (Proposition 10 (ii)). Otherwise, (B)
if ψ1 > −φ∗ and ψ2 < −φ∗, then ψ2 < ψ• since ψ• ∈ Ω∆ and T (uψ2

) > T (uψ•) =
T (uψ•) > T (uψ1

). There remains the case (C) where ψ1 < −φ∗ and ψ2 > −φ∗. We
have ψ2 > ψ1 such that the term T (uψ2

)−T (uψ1
) has to be positive in Eq. (4.41).

That is, T (uψ2
) > T (uψ1

).

Figure 4.9: Possible structures of the time-optimal domain Ω∆ which, we recall, is the set of all the
time-optimal controls uψ generating targets of the form U(ψ∗, θ∗, φ∗) for fixed θ∗, φ∗. The set Ω0

consists in the complete set of regular controls uψ . When |∆| ≤ | tan( θ
∗

2
)|, all the controls in Ω0 remain

time-optimal. When |∆| > | tan( θ
∗

2
)|, some of the controls in Ω0 lose their optimality and in these

cases, Ω∆ ⊂ Ω0.

4.8.7 Creation of z rotations when ∆ = 0.

Consider a target of the form U∗ = eiλ
∗ σz

2 where λ∗ ∈ [−2π, 2π]. We are interested in
finding the analytical form of the time-optimal control creating this propagator which
amounts to finding the Hopf variable p2 and the control duration t∗. We need the
following lemma to find these parameters.

Lemma 5 Let γ(t) denote a projected trajectory on the sphere corresponding to the
Hopf adjoint variable p2 6= 0 and let tmax be the time at which a complete circle has been
traced out. Then for all t ∈ [0, tmax], the Hopf variable θ2 satisfies

θ2(t) + θ2(tmax − t) = sign(p2)π(1− cos θ̄).
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Proof. Let us denote t′ = tmax − t and η′ := η(t′) = sign(p2)2π − η. Note that
completing a full circle takes the time

tmax = sign(p2)π sin θ̄

which is directly deduced from looking at η(tmax) = 2tmax

sin θ̄
= sign(p2)2π.

Using the definition of θ2 := ψ+φ
2 and the time evolution of Euler parameters

given by Eqs. (4.25), we can write the time evolution of the variable θ2 as (using
the above equality)

θ2(t) = sign(p2)
π

2
+ tan−1

(
sin η

cos θ̄(cos η − 1)

)
− p2t.

We then deduce the result from the equalities:

θ2(t) + θ2(t′) = sign(p2)π + tan−1
(

sin η
cos θ̄(cos η−1)

)
+ tan−1

(
sin η′

cos θ̄(cos η′−1)

)
−p2(t+ t′)

= sign(p2)π + tan−1
(

sin η
cos θ̄(cos η−1)

)
+ tan−1

(
− sin η

cos θ̄(cos η−1)

)
−p2tmax

= sign(p2)π − p2tmax

= sign(p2)(π − p2 sin θ̄) (← def. of tmax)
= sign(p2)π(1− cos θ̄). (← def. of θ̄)

As discussed in the main text, the projected trajectory γ(t) for a control creating a z
rotation is a closed circle on the sphere, starting and ending at the North Pole (the
point corresponding to θ1 = 0). Examples of such trajectories are illustrated on the left
sphere of Fig. 4.2. We prove here the exactness of the equalities given in Eq. (4.28) for
the parameters p2 and t∗ characterizing the shortest regular control generating U∗.

Proposition 14 Let U∗ = eiλ
∗ σz

2 where λ∗ ∈ [−2π, 2π]. Then

(i) p2 = sgn(λ∗) cot
(

cos−1
(

1− |λ
∗|

2π

))
,

(ii) t∗ = 1
2

√
4π|λ∗| − |λ∗|2.

Proof.

(i) Using the above lemma, we know at final time t∗ (which corresponds to tmax in
the Lemma) that (a) θ∗2 = sign(p2)π(1−cos θ̄). We also have by the definition

of the target operator U∗ that (b) θ∗2 = ψ∗+φ∗

2 = λ∗

2 . By comparing equations

(a) and (b), we directly find that θ̄ = sign(p2) cos−1(1 − |λ
∗|

2π ). The result
follows from the definition of θ̄ as cot(θ̄) = p2 (see Prop. 1). The fact that
sign(p2) = sign(λ∗) follows from the sign comparison of both equalities (a)
and (b).

(ii) The radius of the circle traced out by γ is rγ = | sin θ̄| = sign(p2) sin θ̄. Con-
sequently, the total length of ‖γ‖ = 2πrγ = 2πsign(p2) sin θ̄. But we know

from Proposition 1 that t∗ = ‖γ‖
2 = sign(p2)π sin θ̄. By replacing θ̄ by its
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value found in (ii), we finally deduce:

t∗ = sign(p2)π sin

(
sign(p2) cos−1(1− |λ|

2π
)

)
= π sin

(
cos−1(1− |λ|

2π
)

)

= π

√
1−

(
1− |λ|

2π

)2

=
1

2

√
4π|λ| − |λ|2.

4.8.8 Creation of rotations in the (x, y) plane when ∆ = 0.

Consider unitary transformations having the form U = ei(−a)σz2 · eib
σy
2 · ea

σz
2 . These

transformations correspond to rotations in the (x, y) plane. Like for the z rotations, the
time-optimal controls to generate a rotation in the transverse plane can be analytically
deduced from the variables defining the target, here a and b. The equations of the
three parameters defining the control, which are p2, φ(0) and t∗, are summarized in
the Proposition 15. Prior to present this proposition, we need to prove a Lemma about
the behavior of the Hopf variables θ2 and θ3 along a regular trajectory. Recall that a
function on one variable is monotonic on a domain if its derivative doesn’t change sign on
this domain. The concept of monotonicity is then closely related to our understanding
of what “increasing” or “decreasing” means.

Lemma 6 The Hopf variables θ2 and θ3 are monotonic along optimal solutions. Moreover,
they have an opposite behavior. When p2 >, θ2 increases and θ3 decreases. The converse
holds in the case where p2 < 0.

Proof. One first shows that θ2 is monotonic. Suppose that there is t′ ∈ [0, t∗] such
that θ̇2(t′) = 0. Then by the definition of the rotated control u2 given in Eq. (4.15),
this implies that p2 tan2 θ1 = 0, which is verified if either p2 = 0 or θ1 = nπ with
n ∈ N. The second possibility forces θ1(t′) = 0 since |θ1| ≤ π

2 and in this case, the

only possibility is that t′ = 0 which means that θ̇2 = 0 only at initial time. The first
case p2 = 0 implies that u2 = 0 all along the trajectory and since θ̇2 = − tan θ1u2

(see Eq. 4.7), we have that θ̇2 ≡ 0 all along the trajectory and θ2 is monotonic.
Similar arguments hold for proving the monotonicity of θ3. Finally, their opposite
behavior is deduced from the sign difference of θ̇2 and θ̇3 in Eq. (4.7). Note that
since θ̇2 = p2 tan2 θ1, the variable θ2 increases when sign(p2) = 1 and decreases
when sign(p2) = −1.

Proposition 15 Let U = ei(−a)σz2 ·eib
σy
2 ·ea

σz
2 . Then the variables defining the optimal

trajectory satisfy

(i) p2 = 0;

(ii) φ(0) = a;

(iii) t∗ = b
2 .
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Proof.

(i) Since θ2(t) is monotonic (Lemma 6), the initial and final conditions θ2(0) =
θ∗2 = 0 imply that θ2(t) ≡ 0 ∀t. In particular, θ̇2 ≡ 0. But θ̇2 = p2 tan2 θ1 and
tan2 θ1 do not vanish a.e. (since tan2 θ1(0) = 1). Consequently, we must have
p2 = 0.

(ii) Since p2 = 0, the dynamical equation for φ given in Eqs. (4.23) takes the trivial
form φ̇ = 0. That is, the variable φ is a constant of motion and φ(0) = φ∗ = a
by the definition of the target U∗.

(iii) From Eqs. 4.20 we have that θ̈1 = ṗ1 = 0 since p2 = 0. That is, θ1 evolves
linearly in time with velocity p1 ≡ 1 since p1(0) = 1 (see Lemma 4). Con-
sequently, as θ1(0) = 0 and θ∗1 = θ∗

2 = b
2 , we have that t∗ = b

2 .

4.8.9 Time-optimal control over SO(3): the complete reasoning

We recall first the question we are interested to answer: Given ∆ 6= 0, which one
among U and = −U is the fastest to generate? Or equivalently, if T (U,∆) denotes the
duration of the time-optimal control generating U in the presence of a detuning ∆, for
which values of ∆ does the “time difference” function

Tdiff : ∆ 7→ T (U,∆)− T (−U,∆) (4.42)

change sign? Since U = (ψ, θ, φ) and −U := (ψ̃, θ̃, φ̃) = (ψ±2π, θ, φ) have the same two
Euler angles θ and φ, the time-optimal controls generating U and −U are denoted as
uψ and uψ̃ respectively. To simplify the arguments used to answer the above question,
we introduce the notion of ∆-predecessor.

Definition 1 Considering θ and φ to be fixed, a control uψ is said to be a ∆-predecessor
of U , or simply of ψ∗, if f∆(uψ) = ψ∗ mod 4π.

That is, a ∆-predecessor uψ of U is any control (and thus not necessary optimal) which
will create U in the presence of a detuning term ∆. In particular, ∆-predecessors of
U generally differ from ∆′-predecessors of U when ∆ 6= ∆′. The time-optimal ∆-
predecessor for ψ∗ is naturally defined to be the one with shortest duration, i.e. the
time-optimal control creating U in the presence of the detuning ∆.

Let us now come back to the problem of finding the values of ∆ for which the
time difference function Tdiff changes sign. There are two types of detuning values to
consider, which can be categorized by the following two sets:

A := {∆ | Tdiff(∆) = 0},
B := {∆ | sign(Tdiff(∆)) 6= sign(Tdiff(∆ + δ))},

where the sign difference in B occurs when δ → 0. Set A corresponds to the detuning
values for which the function Tdiff varies smoothly with ∆ and thus equals zero for some
values of ∆. Set B corresponds to detuning values for which the function Tdiff abruptly
jumps from positive to negative values (or vice-versa). We shall first study the two
sets separately before grouping them into the main proposition (Proposition 6) of the
section.
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Characterization of the detuning set A.

The structure of the set A falls down as a corollary of the following lemma, which relates
the pair of controls u−φ∗±ξ to the propagator they generate.

Lemma 7 Let ξ ∈ [−2π, 2π]. Then u−φ∗+ξ is a ∆-predecessor of ψ∗ ⇐⇒ u−φ∗−ξ is a
∆-predecessor of ψ∗ − 2ξ.

Proof. Since u−φ∗+ξ is a predecessor of ψ∗, by definition

f∆(u−φ∗+ξ) := (−φ∗ + ξ)− 2∆T (u−φ∗+ξ) = ψ∗ + n · 4π.

By symmetry of the time function T with respect to u−φ∗ (Prop. 10 (ii)), we see
that T (u−φ∗+ξ) = T (u−φ∗−ξ) such that

f∆(u−φ∗−ξ) = (−φ∗ − ξ)− 2∆T (u−φ∗−ξ)
= [(−φ∗ + ξ)− 2∆T (u−φ∗+ξ)]− 2ξ
= [f∆(u−φ∗+ξ)]− 2ξ
= [ψ∗ + n · 4π]− 2ξ

and u−φ∗−ξ is a ∆-predecessor of ψ∗ − 2ξ.

This Lemma can be translated into the following diagram:

u−φ∗+ξ u−φ∗−ξ
↓ f∆ ⇐⇒ ↓ f∆

ψ∗ ψ∗ − 2ξ
.

We are interested in the particular case of this lemma for which ξ = ±π. In this case, the
above lemma asserts that the special controls u−φ∗±π are such that they always create
opposite targets regardless of the presence or absence of a detuning term. These special
controls are worth giving a special name, namely

uψ± := u−φ∗±π,

and the previous remark is worth writing into a formal corollary.

Corollary 4 The special controls uψ± are such that they always create opposite targets
whatever the detuning value ∆ is.

The interesting point is that these special controls also have the same duration by
symmetry of the time function T with respect to u−φ∗ (Proposition 10 (i)). If uψ±
both are time-optimal controls (i.e. are in Ω∆), then they optimally create two opposite
unitary transformations in the same amount of time and the values of ∆ for which these
two opposite matrices correspond to our two targets U and −U are exactly the values
for which Tdiff = 0. This discussion is summarized by the following proposition.

Proposition 16 Tdiff(∆) = 0 if and only if uψ± correspond to the time-optimal ∆-
predecessors of U and −U .



4.8. APPENDICES 121

Proof. Let us write u−φ∗+ξ1 the optimal predecessor of ψ∗ and u−φ∗+ξ2 the optimal
predecessor of ψ∗ ± 2π. Since T (U,∆) = T (−U,∆), −φ∗ + ξ1 and −φ∗ + ξ2 have
to be symmetric with respect to −φ∗ and ξ2 = −ξ1. But by the previous lemma,
u−φ∗−ξ1 is also the ∆-predecessor of ψ∗− 2ξ1. We then conclude that ξ1 = ±π and
the result follows.

To have the explicit form of set A, we simply have to find the values of ∆ for which
f∆(uψ±) = ψ∗ and f∆(uψ∓) = ψ∗ ± 2π. Assuming that we found the duration of the
time-optimal controls uψ± by inverting the dynamic Equations (4.32), the structure of
the set A is given by the following proposition.

Proposition 17 The function Tdiff(∆) is zero for a certain ∆ if and only if ∆ =

−φ
∗+ψ∗±π+n·4π

2T (uψ±) for a certain n ∈ Z and both uψ± ∈ Ω∆.

Proof. Suppose ∆ = −φ
∗+ψ∗+π+n·4π

2T (uψ±) . Then

f∆(uψ±) = −φ∗ ± π − 2∆T (uψ±)

= −φ∗ ± π + 2 · φ
∗+ψ∗+π+n·4π

2T (uψ± ) · T (uψ±)

= −φ∗ ± π + φ∗ + ψ∗ + π + n · 4π
= ψ∗ ± π + π + n · 4π
= ψ∗, ψ̃∗ mod 4π.

The arguments are the same for ∆ = −φ
∗+ψ∗−π+n·4π

2T (uψ±) .

We can finally summarize in the following algorithm the procedure to find the values of
∆ in the set A:

Algorithm 2 To find the set A of detuning values satisfying Tdiff = 0:

1. Compute T (uψ±) by inverting the Equations (4.32).

2. Compute the values ∆ = −φ
∗+ψ∗±π+n·4π

2T (uψ±) given in Prop.17.

3. For the values of ∆ computed in 2., verify that uψ± ∈ Ω∆.

It is straightforward to show that Ω∆+d ⊆ Ω∆ for any value of d with sign(d) = sign(∆)
by adapting the arguments used in Prop. 12. Consequently, the above algorithm stops
at the first values of ∆ found in 2. for which condition 3. is not satisfied.

Characterization of the set B

We are now interested in the detuning values such that the “time difference” function
Tdiff(∆) discontinuously changes sign. One key argument is to note that the time-
optimal control uψ generating U varies continuously in Ω∆ when ∆ varies, noting that
Ω∆ also varies continuously with ∆. In particular, T (U,∆) also varies continuously with
∆ and so must the time difference function Tdiff . All of this is true, of course, when uψ
is in the interior of the time-optimal domain Ω∆. A direct implication of the previous
discussion is that the values of the detuning for which Tdiff experiences a discontinuous
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sign change have to be such that the time-optimal control uψ generating U suddenly
jumps from one extremity of Ω∆ to the other extremity, i.e. when uψ is not in the interior
of Ω∆. The above condition is a necessary condition for Tdiff to change sign, but it is
not a sufficient one. That is, the jump from one extremity of Ω∆ to the other may not
result in a sign change in Tdiff even if creating a discontinuity. Clearly, if Ω∆ = Ω0, no
sign change can occur since in this case, the two controls at the extremity of Ω∆ are
u−φ∗−2π and u−φ∗+2π and have the same duration. So an abrupt sign change can only
occur when the time-optimal domain has the form Ω∆ =

[
uψ• , f

−1
∆ (f∆(uψ•)± 4π)

]
(see

Fig. 4.9).

The additional necessary condition which has to be fulfilled for Tdiff to experience
a sign change is expressed in point (ii) of following the proposition.

Figure 4.10: Illustration of the values of ∆ for which Tdiff experiences a sign change. (a) Characteristic
forms of the optimal domain Ω∆. The largest possible domain, and the characteristic domains for ∆ ∈ A
and ∆ ∈ B, are depicted from top to bottom respectively. (b) Illustration of the time-optimal controls
(in the corresponding domain Ω∆) generating ±U . The first row shows the time-optimal controls (the
arrows) generating ±U in a general context and in which case Tdiff does not experience a sign change.
When ∆ ∈ A (second row), the sign changes when the time-optimal controls generating ±U (the arrows)
are exactly u±ψ . When ∆ ∈ B, the sign change occurs when the time-optimal control of one of the
propagators (here −U) jumps from one extremity of Ω∆ to the other.

Proposition 18 Let ∆ 6= 0. The function Tdiff experiences a discontinuous sign change
in ∆ if and only if the three following conditions are satisfied:

(i) Ω∆ 6= Ω0,

(ii) one of the time-optimal controls generating U or −U jumps from one extremity of
Ω∆ to the other,

(iii) at least one of uψ± is not in Ω∆.
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Proof. Without loss of generality, suppose ∆ > 0. In particular, the time-optimal
domain takes the form Ω∆ =

[
f−1

∆ (f∆(uψ•)− 4π) , uψ•
]

that we denote
[
uψmin

, uψ•
]

for short. We consider a variation of ∆ in the positive direction and as doing so,
the parameter ψ which characterizes the time-optimal control uψ generating U (or
−U) shift in the positive direction (see Fig. 4.10, third row). The validity of the
points (i) and (ii) has been discussed at the beginning of this subsection such that
only the point (iii) has to be proved.

(=⇒) Showing the converse, suppose that uψ± both belong to the optimal domain
Ω∆. The main argument comes from the fact that when both uψ± := u−φ∗±π are
in Ω∆, the optimal predecessors of U and −U can be written as

uψ = uψ−+ξ1(∆) and ũψ = uψ++ξ2(∆)

respectively, where ξ1(∆) = 0 ⇐⇒ ξ2(∆) = 0 since uψ+
and uψ− have to be op-

timal predecessors for U and −U exactly at the same time (see Cor. 4). Moreover,
sign(ξ1(∆)) = sign(ξ2(∆)) by continuity of the time-optimal predecessors with re-
spect to variations of ∆ in the interior of the domain Ω∆ as illustrated in the third
row of Fig. 4.10 (b). Without loss of generality, in order to follow the third con-
figuration of Fig. 4.10 (b), let us suppose that the time-optimal control for −U is
the one jumping between the extremities of Ω∆. Recalling that uψ denotes the
time-optimal ∆-predecessor of U , we want to show that

sign(T (uψ•)− T (uψ)) = sign(T (uψmin
)− T (uψ)).

To do so, consider the following sequence of inequalities:

uψmin
< uψ− < uψ−+ξ1(∆) < uψ+

< uψ• .

The relation uψmin
< uψ− implies that T (uψmin

) > T (uψ±) and the relation
uψ+

< uψ• that T (uψ•) > T (uψ±), using the symmetry of the time duration
of the regular controls with respect to u−φ∗ (Prop. 10 (ii)). The middle inequality
uψ− < uψ−+ξ1(∆) < uψ+

implies that T (uψ−+ξ1(∆)) < T (uψ±). Recalling that
uψ−+ξ1(∆) = uψ is the time-optimal control for U and that uψ• and uψmin

are
the time-optimal controls generating −U with detuning ∆ − ε and ∆, we finally
conclude that the time taken to generate −U remains greater than the time taken
to generate U when the time-optimal control for −U jumps from u• to umin.

(⇐=) The arguments are similar to prove the converse, using the above series of
inequalities.

Grouping of sets A and B

To summarize Propositions 17 and 18, the values of the detuning ∆ for which the time
difference function Tdiff changes sign are differently defined, weather both uψ± are time-
optimal (in which case we have to consider the set A) or not (in which case we have to
consider the set B). We already expressed the fact that Ω∆+d ⊆ Ω∆ for any value of
d with sign(d) = sign(∆) such that if one of ψ± does not belong to Ω∆, then so is the
case for the detuning values ∆ + d.

We can then split the full detuning domain R into two regions, X and R/X,
where X := {∆ | both uψ+

, uψ− ∈ Ω∆}. Propositions 17 and 18 are merged into
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the Proposition 6 which was presented in the Section 4.6.2. Recalling that we denoted
by [uψmin

, uψmax
] the time-optimal domain Ω∆ =

[
f−1

∆ (f∆(uψ•)− 4π) , uψ•
]
6= Ω0, we

finally have:

Proposition 6 For ∆ ∈ X, the function Tdiff changes sign if and only if ∆ =
−φ

∗+ψ∗±π+n·4π
2T (uψ± ) for a certain n ∈ Z. Moreover, Tdiff = 0 at these points. For ∆ ∈ R/X,

the function Tdiff changes sign if and only if the time-optimal control for U or −U is
uψmin/max

.



Conclusion

We presented in this thesis two general problems of quantum mechanics, each of which
finds applications in various fields of physics and chemistry. In Chapter 2, we first presen-
ted a general method to visualize any operator in any quantum system by laying down
a generalization of Wigner representations. These representations are the groundwork
of the DROPS visualization of operators. For each system under concern, we pointed
out that there exists many possible DROPS representations for a given system and that
the choice of a DROPS visualization may advantageously be adapted to the processes to
be visualized. We derived a special DROPS representation, named LiSA visualization,
for systems of identical particles and explicitly showed the result in the case of systems
with three spin-1/2 particles.

In Chapter 3, the insightful nature of the LiSA DROPS visualization was demon-
strated by illustrating fundamental concepts of NMR spectroscopy on spin-1/2 particles,
from Cartesian operators to coherence transfer pathway selections, through average
Hamiltonian theory.

In the second part of the thesis, consisting in Chapter 4, we presented a solution
to the problem of creating in a time-optimal fashion a propagator in a closed system.
Our approach using Pontryagin’s maximum principle led to explicit parametrization to
the trajectories un terms of both Hopf and Euler parameters. In particular, we paid
attention to the role of singular controls and trajectories in the optimal solutions, which
lacked in the previous works on the topic. We finally applied our results to solve the
similar time-optimal control problem for creating rotations.
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[27] M. Wenin and W. Pötz, “Optimal control of a single qubit by direct inversion,”
Phys. Rev. A, vol. 74, no. 022319, 2006.

[28] R. Wu, C. Li, and Y. Wang, “Explicitly solvable extremals of time optimal control
for 2-level quantum systems,” Phys. Lett. A, vol. 295, no. 20, 2002.

[29] A. D. Boozer, “Time-optimal synthesis of su(2) transformations for a spin-1/2
system,” Phys. Rev. A, vol. 85, no. 012317, 2012.

[30] T. H. E. Kirillova and K. Spindler, “Optimal Control on Lie Groups: Theory and
Applications,” WSEAS trans. Math., vol. 7, p. 687, 2008.



BIBLIOGRAPHY 129

[31] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Cambridge (UK), 2000.

[32] O. W. Sørensen, “Polarization Transfer Experiments in High-Resolution NMR
Spectroscopy,” Prog. NMR Spectrosc., vol. 21, pp. 503–569, 1989.

[33] A. Pines, S. Vega, D. J. Ruben, T. W. Shattuck, and D. E. Wemmer, Magnetic
Resonance in Condensed Matter - Recent Developments, Proceedings of the IVth
Ampere International Summer School, Pula, Yugoslavia, ch. ”Double quantum
NMR in solids”, pp. 127–179. University of Ljubljana, 1976.

[34] D. Harland, M. J. Everitt, K. Nemoto, T. Tilma, and T. P. Spiller, “Towards
a complete and continious Wigner function for an ensamble of spins or qubits,”
Phys. Rev. A, vol. 86, no. 062117, 2012.

[35] R. L. Stratonovich, “On distributions in Representation Space,” J. Exptl. Theoret.
Phys. (U.S.S.R.), vol. 31, pp. 1012–1020, December 1956.

[36] C. Brif and A. Mann, “A general theory of phase-space quasiprobability distribu-
tions,” J. Phys. A: Math. Gen., vol. 31, pp. L9–L17, 1997.

[37] M. Hamermesh, Group Theory. Addison-Wesley, Reading, MA, 1962.

[38] J. Listerud, S. J. Glaser, and G. P. Drobny, “Symmetry and Isotropic Coherence
Transfer. II. Three Spin Calculations Using a Young Tableaux Formulation,” Mol.
Phys., vol. 78, pp. 629–658, 1993.

[39] J. Listerud, Techniques in Solid State NMR. PhD thesis, University of Washington,
1987.

[40] W. K. Tung, Group Theory in Physics. World Scientific Publishing Company,
Incorporated, 1985.

[41] E. P. Wigner, “On Matrices which Reduce the Kronecker Products of Repres-
entations of S.R. Groups,” in Quantum Theory of Angular Momentum (L. C.
Biedenharn and H. van Dam, eds.), pp. 87–133, Academic Press, New York, 1965.

[42] J. Schwinger, “On Angular Momentum,” U.S. Atomic Energy Commission, Tech-
nical report NYO-3071, 1952.

[43] J. Keeler, Understanding NMR Spectroscopy. John Wiley & Sons, Chichester,
United Kingdom, 2nd ed., 2010.

[44] E. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Z. Physik, vol. 31, pp. 253–
258, 1925.

[45] W. J. Caspers, Spin systems. Singapore: World Scientific, 1989.

[46] S. J. Glaser, “Coupling Topology Dependence of Polarization-Transfer Efficiency
in TOCSY and TACSY Experiments,” J. Magn. Reson. A, vol. 104, pp. 283–301,
1993.
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