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Abstract— Gaussian Processes (GPs) are gaining increasing
popularity due to their expressive power for learning the
dynamics of non-linear time series data, e.g. for human motion
prediction. However, so far they are restricted to Euclidean
space: input data such as position and velocity need to be
Euclidean. In this paper, we examine GPs over time series of 6D
rigid body motions including large rotations. As the use of Euler
angles with large rotations results in inaccurate predictions, we
present an extension of the valid input data to quaternions H

and dual quaternions HD. The quality of a GP prediction over
unit quaternions is compared with GP prediction over Euler
angles. The results are evaluated based on experimental data
from a quadrotor and in a learning task of a collision free
6D motion trajectory incorporating large rotations based on
artificial data from a motion planner.

I. INTRODUCTION

In human-robot interaction the robot needs to adapt to

a human partner to maximize assistive performance. The

goal-directed interaction of robots with humans is one of

the most challenging issues in unstructured environments

such as for instance in elderly care or other general as-

sistive scenarios. Precise predictions of behavioral goals of

humans are essential for human-robot interaction, in terms

of intention estimation from gestures and motions. Due to

the absence of physical models that can accurately describe

human movements, stochastic learning models are gaining

popularity owing to its robustness in predicting dynamic

human movements from mere observations.

In order for the robot to learn and adapt to nonlinear

dynamics of human behavior in human-robot interaction,

Gaussian Processes (GPs) [1], Gaussian mixture models

(GMMs) [2] and Hidden Markov models (HMMs) [3],

[4] have been used. While HMMs are one of the most

popular methods for describing motion primitives supporting

human-robot interaction, these methods are limited to a

discrete state space and less suitable for modeling continu-

ous motion. Therefore, in this work we focus on GPs for

estimating highly nonlinear dynamics of motion such as

human behavior. Furthermore, the GPs requires minimum

model assumptions [5] and the process is more generalizable.

However, GPs (as well as GMMs) have a drawback so

far; they are only defined in the Euclidean space because,

for the matrix inversion, orthogonal coordinate axes are

required. Hence, the input data for the models are limited

to position, force data, translational velocities or accel-

erations. When orientation is required in addition, Euler
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angles are typically used as a rotation representation (see

for GPs [6], [7] and for GMMs [2]). When the rotation

angles are small, this approach is sufficient as the space of

Euler orientations close to zero is approximately Euclidean.

However, another rotation parametrization is required when

the rate of orientation change becomes significantly large

at high angular speed, low sampling frequency or if loss

of input data occurs. One solution for such problem is a

use of the axis-angle orientation representation. However,

it requires more extensive probability distributions than the

normal distribution such as the wrapped Gaussian or the von

Mises distribution [8]. Furthermore, no efficient composition

algorithm necessary for the GP prediction is available in the

space of axis-angles as the vector sum is not defined. In

contrast, the representation by unit quaternions defined on the

unit sphere S3 is appropriate to solve GP regression problems

regarding large rotations. In addition, the unit quaternions

is extended to dual quaternions so that it can singularly

represent 6D rigid body motions in the space S3 ×R
3.

In this paper, we therefore demonstrate how rotations and

translations represented by dual-quaternions can suitably be

incorporated to GPs using continuous data. The significant

contribution of the current paper is that we introduce an

extension of the valid GP input space to the non-Euclidean

space of quaternions HD and dual quaternions H to perform

GP predictions on 6D rigid body motions. We define three

squared exponential kernels each based on a metric on the

unit quaternions. We then evaluate the performance of a GP

prediction over unit quaternions and Euler angles on real

rotation data and learn a 6D motion trajectory over dual

quaternions.

The present paper is organized as follows. In Section II

the GP kernels are introduced: we define the GP and explain

briefly the 6D pose representation by dual quaternions.

Secondly, we introduce the GP over pure rotations and 6D

rigid body motions. Finally, in Section III, we compare the

different metrics using real data and present a solution from

the GP over dual quaternions for an example data set which

includes large rotations and highlight it’s superiority over

regular GPs.

II. GP FOR 6D RIGID MOTIONS

In this section the GP over 6D rigid motions, parametrized

by dual quaternions is introduced. This GP can be used

for modeling and predicting system dynamics including sig-

nificant rotations and translations. Firstly, some background

information on GP regression is provided to biefly introduce

a 6D pose representation by dual quaternions. For better



understanding the GP is first examined only on rotations

before it is extended to full 6D rigid motions.

A. GP Definition

A GP is a collection of random variables, which are jointly

Gaussian distributed. It can be understood as a generalization

of a Gaussian distribution to an infinitely number of vari-

ables. Instead of having a defining mean vector µ ∈ R
n and

covariance matrix Σ ∈ Mn×n, n ∈ N, the GP is fully specified

by a mean function m(x) and a covariance function k(x,x′).
The covariance function describes the dependencies between

function values for any input pair (x,x′) and defines the

elements of the kernel matrix K by (K)i j = k(xi,x j) [9].

Hence, a GP is defined through

f (x) = GP(m(x),k(x,x′)). (1)

In practice, the mean function is often set to zero, as this

simplifies calculation without limiting the expressive power

of the process. The essential part in GP model learning is

the kernel function k(x,x′) and the estimation of its free

hyperparameters, such as length-scale λ , or signal vari-

ance σ f . To learn the optimal hyperparameters of the GP, a

gradient descent algorithm is used. The squared exponential

covariance function

k(x,x′) = σ2
f exp

(

−‖x− x′‖2

2λ 2

)

, (2)

with hyperparameters σ f , λ , is probably the most widely

used kernel function in machine learning [5].

B. 6D Pose Representation by Dual Quaternions

A unit quaternion qr = qw + qxi+ qy j+ qzk ∈H, with pa-

rameter entries qw, qx, qy, qz ∈ R such that ‖qr‖ = 1 is

used to represent a 3D orientation. An imaginary quater-

nion qt = q′xi+ q′y j+ q′zk, with q′x, q′y, q′z ∈ R is used to

represent a 3D position. Together, the quaternions define a

6D pose and a rigid motion (qr, qt). The representations

SE(3)≃ (qr, qt)≃ S3 ×R
3 (3)

are isomorphic for rigid motions.

The ring of the dual quaternions is defined as

HD = {dq | dq = qre + ε qdu & qre, qdu ∈H}, (4)

where ε is a dual unit, which holds ε2 = 0 [10]. The dual

quaternion representing the pose (qr, qt), is calculated by

dq := qr +
ε

2
qt qr. (5)

To transform a point p = (px, py, pz)
⊤ ∈ R

3 by a rigid

motion parameterized by a dual quaternion dq, the

point needs to be represented by an imaginary quater-

nion qp = pxi+ py j+ pzk. Then the transformed point p′

is represented by the imaginary quaternion

qp′ = dq∗ qp ∗ dq, (6)

where ∗ is the dual quaternion multiplication and

dq = qre + ε qdu is the conjugate of dq and q is the quater-

nion conjugate of q [11].

C. Gaussian Process over Pure Rotations

A GP over pure rotations parametrized by unit quaternions

is introduced in this section. We subdivide into explaining the

GP mapping from input to output space, briefly introducing

the mean function of the GP over the unit sphere S3, before

we specify the metrics over unit quaternions, which we use

for the kernel function. Finally we compare the kernels to

highlight their differences.

1) Input Space to Output Space Mapping: The training

data we introduce for learning the GP mapping from input

to output space, consists of unit quaternion samples q on

the sphere S3 with corresponding velocities. Each rotational

velocity is represented by a vector vTS in the tangent

space TSq of the corresponding rotation quaternion q, i.e.

each 3D velocity vector is defined in its tangent space

to the unit sphere S3 with respective basis. Hence, the

Gaussian distribution over velocities is in a Euclidean tangent

space and we avoid the need to define a Gaussian on the

hypersphere S3. The velocity in the tangent space TSq can

be equivalently represented by a unit quaternion q̇, using

the central projection of vTS to the sphere, q′ = qq̇. In the

GP prediction the velocity vector is projected to the sphere

to obtain the predicted orientation as a unit quaternion.

The central projection from the tangent space TSq of the

quaternion q, to the hypersphere is defined as

Πq : TSq → S3

Πq(vTS) = {− v
‖v‖ ,

v
‖v‖}, (7)

where v = q+BvTS. The basis B is the canonical represen-

tation of the 3D tangent space TSq in the 4D space R
4 [12].

With this representation we avoid cumbersome learning

restrictions in the GP, to assure the output to be a unit

quaternion.

2) Mean Functions: As well as ordinary GP, the GP

over quaternions is fully specified by a mean function m(x)
and a covariance function k(x,x′). The mean function is

defined by orientations and is therefore restricted to the unit

hypersphere, m : S3 → S3. As the mean function in practice is

often set to zero rotation, i.e. m(q) = (1,0,0,0)⊤, we focus

on distance functions.

3) Unit Quaternion Metrics: We introduce three metrics

over points on the unit hypersphere S3, which are visualized

in Fig. 1. The first two metrics depend on the scalar product

over quaternions, which is defined as

〈q, q′〉= qwq′w + qxq′x + qyq′y + qzq
′
z = qq′. (8)

The unit quaternions are a double coverage of the rotations,

so opposite quaternions represent the same orientation. To

avoid ambiguity, both quaternions q, q′ are chosen to lay

on the same hemisphere, such that the scalar product is

nonnegative 〈q, q′〉 ≥ 0. Firstly, the quaternion norm ‖q−
q′‖ is a good approximation of the distance between similar

rotations. It yields the same result as the regular vector norm

of points ∀q, q′ ∈ S3

dnorm(q, q′) =
√

qq′ = ‖q− q′‖. (9)



Fig. 1. The distance measures consisting of quaternion norm, arc length
and projection to the tangent space are depicted with a red dashed, green
solid and blue dashed-dotted line.

This distance measure is calculated in the Euclidean space R4

and is not part of the sphere S3. Secondly, an alternative

distance measure between unit quaternions q and q′ is the

arc length between the quaternions. It is obtained by

darc(q, q′) = arccos(〈q, q′〉) = arccos(qq′). (10)

The advantage of distance darc over dnorm is, that the arc

is a subset of S3. This means, the arc length is a distance

measure on the unit sphere and it precisely measures how

similar orientations are instead of approximating it. Thirdly,

we determine the distance between unit quaternions q, q′

in the tangent space. One quaternion, for instance q′ is

projected to the other’s tangent space TSq by central pro-

jection (7). The quaternion q is represented by the origin

of TSq. Then the tangent space distance dTSq(q, q′) between

the projected quaternions is the norm of Π−1
q (q′) in the

Euclidean space TSq ≃ R
3,

dTSq(q, q′) = ‖Π−1
q (q′)‖= ‖q′

TSq
‖. (11)

As this distance measure is symmetric, it

holds dTSq
(q, q′) = dTSq′ (q′, q)∀q, q′ ∈ S3. If the

quaternions represent opposite orientations, i.e. the

quaternions are perpendicular, the projected quaternion hits

the tangent space at the point ∞. Therefore, we include the

compact boundary R
3
= R

3 ∪ {∞} in the tangent space,

to obtain a continuous completion of the distance dTSq

on R ∪ {∞}. Choosing any point p 6= q, q′ between the

quaternions q and q′ as the tangent point would yield

a bounded distance measures dTSp
, like dnorm, darc are

bounded. The maximal distance occurring for 2π rotations

is
√

2 in the quaternion norm measure dnorm and π/2 in the

arc length measure darc. The distance measures dnorm, darc

and dTSq
define metrics on the unit sphere S3, as they all are

non-negative, symmetric and fulfill the triangle inequality.

4) Covariance Functions: Over the metrics from the pre-

vious subsection, covariance functions on S3 are defined. For

simplicity we focus linear kernel and the family of squared

exponential kernels in the present study. The definition of a

linear kernel over quaternions follows straight forward from

the scalar product over quaternions (8),

klin(q, q′) := 〈q, q′〉. (12)

The kernel functions over unit quaternions corresponding to

the squared exponential kernel (2) provide high correlations

between close unit quaternions and, smoothly descending,

smaller correlations for the far ones. From the dnorm (9) we

obtain the regular squared exponential kernel

knorm(q, q′) = σ2
f exp

(

−‖q− q′‖2

2λ 2

)

, (13)

where the quaternions q, q′ can be regarded as vectors in

the R
4. From the square arc length (10) and the linear

kernel (12) we construct a new kernel function

karc(q, q′) = σ2
f exp

(

− (arccos2(〈q, q′〉)
2λ 2

)

. (14)

That karc defines a kernel function which can be proven

by induction. With the metric over projected points in the

tangent space (11), a squared exponential kernel function is

defined through

kTS(q, q′) = σ2
f exp

(

−
‖q′

TSq
‖2

2λ 2

)

. (15)

The proof that (15) defines a covariance function is analo-

gous to the one for the regular squared exponential kernel (2)

in the Euclidean space.

5) Comparison of Covariance Functions: In this para-

graph, we investigate the behavior of the covariance func-

tions over unit quaternions, as introduced above. To com-

pare them, the covariances at each time step are calculated

between a rotated point and the starting configuration for

a one dimensional full turn. In Fig. 2, the kernel func-

Fig. 2. The full turn about the z-axis is parametrized by quaternions q.
Then the function value of the covariance functions knorm, karc and kTS are
calculated for (0, q) and are visualized by the red dashed, blue dashed-
dotted, green solid line, respectively.

tions knorm(0, q), karc(0, q) and kTS(0, q) are visualized

for q ∈ H representing the rotation from 0 to 2π about

the z-axis. The function values correspond to the first row,

respectively first column of the corresponding covariance

matrix K. In all cases the covariance decreases, as expected,

on rotating to the farthest orientation π and symmetrically



increases as it departs from π . In the upper part, the covari-

ances are depicted three times for fixed signal noise σ f and

varying length scale λ . In the lower part, the length scale is

fixed, while the signal variance varies. The steep decrease of

kernel kTS, visualized by a blue dashed-dotted line, compared

to the kernels knorm and karc, depicted by the red dashed and

green solid line, encodes the fast increase of the underlying

metric dTSq
. Hence, high correlations are obtained only for

highly similar orientations.

The unit sphere S3 can be combined with any Euclidean

space R
n using the Cartesian set product. This offers a

straight forward method to perform GP regression over

spaces that consist of rotation and translation, translational

velocities, forces etc. However, the Cartesian set product

neglects all correlations between the subsets and a case

specific manual weighting between rotation and translation is

required. Instead, we propose the GP over dual quaternions

for 6D rigid motions, as it nicely captures this correlation.

D. Gaussian Process over 6D Rigid Body Motions

In this section, we introduce a Gaussian Process

over S3 ×R
3. We extend our input data from pure orien-

tations to whole 6D poses, parametrized by dual quater-

nions HD. On the special Euclidean group we do not address

the mean function m : SE(3)→ SE(3), and it is set to zero.
1) Input Space to Output Space Mapping: The GP is

trained on a dataset consisting of input poses and output

velocities. The training input is parametrized by dual quater-

nions, whereas the training output is a concatenation of

rotational velocities in the tangent space and translational

velocities parametrized by a simple 3D vector. The velocities

in the tangent space are projected to the hypersphere S3

by (7) and with the imaginary quaternion representation for

the translational velocities, they can be combined to a dual

quaternion velocity using (5). Hence, the dual quaternion

velocity represents the rigid motion velocity at a certain 6D

pose.
2) Dual Quaternion Distance Measures: We introduce

three magnitude measures for dual quaternion differ-

ences. Analogous to how we consider the quaternion dis-

tance dnorm(q, q′) = ∆q as a 4D vector in the squared

quaternion norm, we now consider the dual quaternion dq =
qre + ε · qdu as a vector tuple (qre, qdu). Then, the vector

tuple distance dtuple(dq, dq′) = ∆dq of the dual quater-

nions dq, dq′ can be defined as

dtuple(dq, dq′) = ‖qre − q′
re‖+ ‖qdu− q′

du‖. (16)

In this distance measure it is disregarded the fact, that

the second part of a dual quaternion lies in a dual space.

However, the correlation between rotation and translation

is captured in the second summand of the distance dtuple.

As a second distance measure, we propose the squared

dual quaternion norm, since this measure is well-known and

captures the duality of the representation

d2
dqn(dq, dq′) = ‖dq− dq′‖2 = ‖∆dq‖2

= ∆qre∆qre
︸ ︷︷ ︸

xre

+ε(∆qre∆qdu +∆qdu∆qre
︸ ︷︷ ︸

xdu

) (17)

The dual quaternion difference ∆dq between two 6D

poses dq and dq′ yields a dual quaternion, which is not

representing a rigid motion. Therefore, we obtain a dual

number xre + εxdu for d2
dqn. As the dual part xdu can be

negative, there is no canonical method to extract a real

number from the squared dual quaternion norm necessary

for assuring the covariance to be positive semi-definite. More

information about dual numbers can be found in [13]. The

last magnitude measure we introduce, is calculated from the

transformation rigid motion ~dq between dual quaternions.

It denotes the rigid motion which has to be applied to the

pose dq, to arrive in dq′ and is obtained by

~dq = dq∗ dq′. (18)

From the transformation dual quaternion ~dq = ~qre + ε ~qdu,

rotation and translation are obtained by dual quaternion

decomposition. We define the squared transformation mag-

nitude measure as

d2
mag(dq, dq′) = ‖~qr‖2 + ‖~qt‖2 + c‖~qr~qt‖, (19)

where ~qr is the unit quaternion for rotation, ~qt the imaginary

quaternion for translation and c ≥ 0 a nonnegative constant.

The quaternion norm (9) provides real positive numbers,

which are combined to capture the correlation between ro-

tation and translation. In the transformation dual quaternion

the correlation of rotation and translation is already captured,

such that there is no need to scale ~qr against ~qt . The

factor c defines how strong the composed part is weighted

in comparison to pure rotation and translation.

3) Covariance Functions: The vector tuple distance (16)

allows us to define a linear kernel on dual quater-

nions klin(dq, dq′) = d2
tuple(dq, dq′). Over dual quaternions

no scalar product is defined, but over quaternion tu-

ples dq = (qre, qdu) and dq′ = (q′
re, q′

du), the analogon to

a scalar product is

d2
tuple(dq, dq′) = 〈qre, q′

re〉+ 〈qdu, q′
du〉

+ ‖qre − q′
re‖‖qdu − q′

du‖.
(20)

We obtain a squared exponential kernel function, by inserting

the squared transformation magnitude measure (19) in the

exponential function

kmag(dq, dq′) = σ2
f exp

(

−
d2

mag(dq, dq′)

2λ 2

)

. (21)

Figure 3 illustrates the behavior of the squared exponen-

tial kernel kmag on dual quaternions, representing simul-

taneously constant rotation and translation. In x-direction

constant rotation about a single axis from 0 to 2π is

applied, while in y-direction constant translation in one

direction is applied. The value of the covariance func-

tion kmag(dq′, dq) is color coded for dq′ representing the

origin (0,0), i.e. dq′ = (1,0,0,0)⊤+ ε(0,0,0,0)⊤ and dq

representing the rotations and translations in the grid. The

highest correlations are obtained for points, where both,

rotation and translation are small, i.e. just a small rigid

motion has to be applied to move from dq′ to dq. The color



Fig. 3. In x-direction a full turn about one axis is shown and in y-direction
a constant translation from 0 to 1. Each point in the plane is converted to
a dual quaternion dq, representing the rotation x and translation y. The
hyperparameters (λ , σ f ) = (1, 1) and c = 0. The value of the covariance
function kmag(0, dq) is visualized by the color code of the bar on the right
side.

values are symmetric, as the distance on the hypersphere S3

decreases on both sides of π .

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the GP over 6D rigid body

motions. Firstly, the performance of the proposed squared

exponential kernels for pure orientation is compared with a

GP over Euler angles in a real data experiment. Subsequently,

we apply the GP over dual quaternions to an example setup

including large rotations, translations and variances, which

is poorly handled by an ordinary GP. We use the MATLAB

toolbox GPML from C.E. Rasmussen and H. Nickisch,

provided on http://gaussianprocess.org/ in our

implementation to perform GP regression over dual quater-

nions. All code is written in MATLAB.

A. Real Data Experiment: 3D Rotation

We estimate the rotation in a flight trajectory of a quadro-

copter using real data as ground truth. The 6D pose trajectory

of a Crazyflie Nano Quadrotor, visualized by Fig. 4 is

measured in a passive marker based motion capture system

(Qualisys, Sweden) at 10Hz. The GP is trained on 7%

Fig. 4. The flight trajectory of the Crazyflie Nano Quatrotor captured in
a motion capture system is used to compare GPs using Quaternions with
GPs using Euler angles.

random samples of 150 poses, that are artificially pulled

samples from the motion data. The tracking system noise

is modeled by white Gaussian noise with standard devia-

tion 0.03. We use exact inference and a Gaussian likelihood

and set the hyperparameters (σ f ,λ ) = (0.08,0.4). Each flight

trajectory we was recorded for 15 seconds and this data set

contains rotations of more than 2π . The GP regression is

performed over pure 3D rotations of the flight trajectory.

We compare the GP over unit quaternions using the three

different squared exponential kernels knorm, karc and kTS with

a GP over Euler angles (φ , ψ , θ ) treating the angles like

a vector in R
3. From the estimated orientation trajectory

exemplary one signal output is visualized in Fig. 5. We

arbitrarily select the fourth component qz of the rotation

quaternion (qw,qx,qy,qz)
⊤ ∈ S3 and visualize it over time

using the different underlying metrics dnorm, darc and dTSq .

For comparison the corresponding signal yaw θ of the Euler

angles is also shown. The predictions using knorm and kTS

Fig. 5. All signals visualize one DoF of the performed rotation over time.
The red dashed line depicts the ground truth rotation, the green stars the
samples used for learning and the blue solid line the mean prediction. The
first signal shows the yaw rotation of the flight trajectory estimated by a GP
over Euler angles using the Euclidean norm in the kernel. The other signals
each depict the fourth entry of the GP prediction over unit quaternions using
the kernels knorm, karc and kTS . The gray shaded area shows an upper bound
for the sextuple standard deviation of the prediction.

resemble each other, as the underlying metrics are similar,

those using karc are more accurate for large rotations. As the

underlying metric of kTS precisely measures the orientation

distance, mean prediction is less erroneous for instance in

second 13. All GPs over unit quaternions on S3 outperform

the GP over Euler angles. Even though the yaw angle θ is

unwrapped to avoid the jump at 2π , the predictions close to

large rotation fall behind any prediction using quaternions.

Further, the covariance encoding the prediction uncertainty

is significantly bigger.

B. Simulated Data Experiment: 6D Rigid Motion

In this section we apply the GP over dual quaternions to an

example setup incorporating large rotations and translations.

The aim of this experiment is to learn a collision free 6D

motion trajectory of a stylus from random starting configura-

tions to a fixed goal configuration inside a hole. A set of 500

trajectories to sufficiently cover the 6D space is generated

by the Open Motion Planning Library (OMPL) [14] using

the path planner RRTconnect with path simplification and

smoothing. Each trajectory consists of about 200 to 300



sequential poses visualized in Fig. 6. The GP over 6D rigid

motions is trained with 20% randomly chosen sample poses

from 108406 poses in total. The prediction is performed

Fig. 6. Artificially generated 6D rigid motion trajectory of a longish red
object from a random starting configuration to the goal configuration inside
the hole.

stepwise and we iteratively apply the predicted velocity to

the current pose. To save computational effort, the prediction

is based on the set of n ∈ N closest poses according to

the transformation magnitude measure (19). The starting

configurations are restricted to the 6D space covered by the

training trajectories. This assures positive correlation with

training poses required by the GP prediction. The experiment

is considered successful, when the object maneuvers into

the hole without collision. In Fig. 7, an initial random

configuration is visualized by a large coordinate system. The

smaller coordinate systems represent a subset of training

trajectory starting poses. The predicted motion trajectory

correctly follows the training data and arrives at the goal

pose inside the hole without collision.

Fig. 7. A successful 6D rigid body motion prediction is visualized. The
object moves from a random starting configuration to a goal configuration.
The regression is performed, using GP over dual quaternions with the
kernel kmag.

IV. CONCLUSION

In this paper we introduce the GP over dual quaternions.

The essential contribution is the extension of the input data

of the GP to 6D rigid body motions using the squared

exponential kernel kmag defined over dual quaternions. We

introduce and compare three metrics on the hypersphere that

induce the kernels knorm, karc and kTS for pure rotations. GP

regression is performed for a task involving large rotations,

which is poorly handled by a regular GP using Euler an-

gles, while the GP using dual quaternions can successfully

overcome the problem and arrives in the goal configuration

without collision. For future work we plan to predict human

behavior in human-robot interaction using the GP over dual

quaternions, as for instance human gaze motion trajectories

include large rotations.
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