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A B S T R A C T

Expected stock returns are one of the most relevant variables in fi-
nance, both among practitioners and academics. Unfortunately, they
are unobservable and thus suitable proxies have to be found to ap-
proximate them. Realized returns are by far the most common proxy,
from which estimates are either inferred directly or indirectly via
factor-based asset pricing models or predictive regressions. Their suc-
cess stems from their wide availability, observability and asymptotic
unbiasedness. However, they have one major shortcoming, namely
the large noise induced by information surprises, or news, that clouds
the true underlying process of expected returns that one is ultimately
interested in. As a solution to this problem, alternative expected re-
turn proxies have been proposed with substantially lower variation
than realized returns. They are forward looking in nature and there-
fore, at least in theory, unaffected by any news. They rely on earnings
forecasts, CDS spreads, and corporate bond yields. Due to their sub-
stantially lower standard deviation as compared to realized returns,
they allow a much sharper statistical inference and deliver very ro-
bust results. In other words, parameter uncertainty is greatly reduced,
which has helped to identify seemingly robust relations between ex-
pected returns and factors that would otherwise be overshadowed by
noise when realized returns are used.

In this thesis, I argue that the results of these alternative expected
return estimates may be driven, at least partly, by the ignorance of
model uncertainty. This uncertainty is introduced because there are
many alternative specifications and it is difficult to ascertain which is
the correct one. As a consequence, results may be due to the selection
of a proxy for which the measurement error happens to be associated
with the variable of interest, and not the true underlying expected
return process. By contrast, there is only one specification for realized
returns.

In the theoretical part of this thesis, I first show that model uncer-
tainty is a relevant issue for the most prominent alternative proxy, the
implied cost of capital (ICC). For this proxy, a multitude of different
specifications exist. Although they all have in common that they are
defined as the internal rate of return that equates a vector of all fu-
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ture expected dividends with the current stock price, they differ in
their assumptions about expected dividends. I introduce these speci-
fications in a detailed literature review.

Next, I present at length studies that deal with the issue of selecting
the best specification among the available expected return proxies. I
argue that none of the current approaches is able to generate a con-
fident selection. We simply do not have a reliable method to identify
the best alternative proxy, due to the fact that all of these evaluation
approaches rely on noisy realized returns. In particular, I criticize one
approach that tries to solve the noisiness by adding additional news
proxies. In this approach proxies are defined inconsistently. Following
this discussion in my thesis, it is clear that one faces great uncertainty
in the selection process.

To deal with this problem, I introduce a Bayesian model averag-
ing approach that directly incorporates uncertainty into the statistical
inference. This approach allows someone to condition on the informa-
tion set including all expected return proxies while conducting infer-
ences, as opposed to conditioning on a single proxy. It thereby com-
pares all proxies simultaneously to the extent to which they are able
to explain subsequent realized returns. Put differently, the weight of
a proxy, which denotes the posterior belief one has in its quality, is
higher, the better it is able to explain subsequent realized returns.
This external validation prevents the problem of “measurement error
optimization”, in which someone is choosing a proxy, either inten-
tionally or otherwise, because the measurement error of this proxy is
associated with the variable of interest, and not true expected returns.
However, this directly implies that the evaluation of any alternative
proxy relies again on noisy realized returns, a circularity argument
that I am able to work out.

The empirical part of this thesis starts with an extensive description
of my US data set which implements eight commonly used specifica-
tions of the ICC approach. I present evidence that there are note-
worthy differences between the different specifications, both on an
aggregate and on a firm-level. After showing that one cannot reli-
ably identify the best of these eight ICC specifications, I apply the
Bayesian model averaging approach to three research questions to
average the evidence across those specifications. Taken together, the
evidence from this empirical exercise suggests that the incorporation
of model uncertainty is important to prevent the reporting of biased
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and overconfident results, but it also shows that alternative proxies
can still yield additional insight.

In summary, my thesis levels the playing field between realized
returns, with large parameter uncertainty and no model uncertainty,
and alternative proxies, with typically modest parameter uncertainty,
but potentially large model uncertainty.
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This dissertation is based on papers that I wrote during my PhD,
some of them together with coauthors. The Bayesian model averag-
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(2005) are mostly taken from Jäckel (2013). From both of these pa-
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bles and figures have appeared previously in Jäckel and Mühlhäuser
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and Kaserer (2013).
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1
I N T R O D U C T I O N

1.1 motivation

According to Cochrane (2005), all asset pricing theory is founded on
one simple concept: the price of an asset equals its expected dis-
counted payoffs. However, the expected rate of return with which
payoffs are discounted is unobservable and, as a consequence, a lot
of effort has been put into answering the question of how to measure
expected returns, both in the cross-section and the time series.

A satisfying answer to this question is of great importance to prac-
titioners and academics alike. Chief Financial Officers have to know
what rate of return their investors require to evaluate the gains from
a project. Regulators need to understand what impact policy changes
have on expected returns. Portfolio managers require expected re-
turns as input parameters to compute the allocation weights for dif-
ferent asset classes and assets within these classes. Finally, financial
economists want to understand what factors drive expected returns
both over time and different assets.

To date, the most prominent approach to approximate expected re-
turns for stocks, on which this thesis focuses, is the use of realized
returns. Their popularity stems from the fact that they are an unbi-
ased and observable proxy for expected returns next period. Over
the last decades, some of the greatest breakthroughs and puzzles in
financial economics have been reported based on evidence with real-
ized returns. For example, Shiller (1981) showed that realized returns
move too much to be reconcilable with the relatively smooth divi-
dend process over time and constant expected discount rates, which
was the standard assumption prior to his study.1 This finding, for
which Shiller was awarded the Nobel Prize in Economics in 2013, is
the foundation of the literature on return predictability, which tries
to measure aggregate time-varying return and cash flow expectations

1 Throughout this dissertation, I use the terms “returns”, “cost of (equity) capital”,
and “discount rates” interchangeably.
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1.1 motivation 2

via predictive regressions (cf. Kelly and Pruitt 2013).2 Furthermore,
empirical tests showed that the cross-section of realized returns can-
not be explained by the capital asset pricing model (CAPM), which
is a one-factor asset pricing model proposed by Sharpe (1964), Lint-
ner (1965) and Mossin (1966) and meant to explain cross-sectional
differences in expected returns. This has led to the development of
many alternative multifactor models such as the three-factor model
by Fama and French (1993). Moreover, the difference between the his-
torical return on the US stock market and a riskless rate, the return
for Treasury bills, was 6.9 percentage points over a 110 year period
(cf. Mehra 2008). This large equity premium cannot be rationalized
by standard economic models such as the consumption-based CAPM.
This finding was dubbed as a “puzzle” by Mehra and Prescott (1985)
and has sparked the development of many alternative theoretical as-
set pricing models such as the Campbell and Cochrane (1999) habit
model and the long-run risks model by Bansal and Yaron (2004).

However, as Elton (1999) points out, realized returns as an estimate
of expected returns only track latent expected returns with additional
noise that is induced by information surprises in both expected div-
idends and returns. While these shocks are unbiased asymptotically,
they can be biased in sample. As a consequence, the aforementioned
findings could be spurious and could simply be due to the noise in
realized returns, and not the true underlying process of expected re-
turns. Take the example of the equity risk premium puzzle. If we
take the average historical mean as the true mean of expected returns
during this period, the difference between these returns and the risk-
free rate is indeed hard to reconcile with standard economic theory.
But there is also an alternative explanation that the expected returns
were much lower and only the noise term, although zero asymptoti-
cally, was positive for this period. This is exactly the point made by
Fama and French (2002), who argue that the very high stock returns
of the latter half of the 20th century were due to an unexpected series
of negative discount rate news.3

2 Cochrane (2005), Cochrane (2011), and Koijen and Van Nieuwerburgh (2011) are
excellent reviews of the developments in the asset pricing literature in general and
return predictability in particular over the last decades.

3 As shown later in Chapter 3, negative discount rate news translates to positive real-
ized returns.



1.1 motivation 3

It is therefore not surprising that alternative measures of expected
returns have been proposed.4 All of these proxies for expected returns
have one thing in common, that is, that they are all derived from
an underlying theoretical model that links unobservable expected re-
turns to observable data. Subject to further assumptions to make the
theoretical model empirically tractable, the expected returns can then
be backed out. One class of proxies links equity and credit markets
to obtain conditional expected equity returns from either bond yield
spreads or credit default swap (CDS) spreads. Recent examples of this
approach are Campello, Chen, and Zhang (2008), Berg and Kaserer
(2013), and Friewald, Wagner, and Zechner (2013). More established,
however, is the implied cost of capital (ICC), which is defined as the
discount rate that equates the current stock price of a firm with ex-
pected future dividends, for example approximated by analyst fore-
casts.5 The ICC has found widespread use in both asset pricing and
corporate finance applications.6

Because these alternative expected return measures are forward
looking in nature and take expectations directly into account, they are
not plagued with the large shocks induced by information surprises
that drive realized returns. Hence, these measures are less volatile
than realized returns and it is also argued that they are not affected
by a possible in-sample correlation of the shocks. It is therefore com-
monly believed that these proxies offer fresh insights into questions
concerning the economic drivers of expected returns (cf. Campello,
Chen, and Zhang 2008).

Yet, these proxies have their own Achilles heel. While realized re-
turns are directly observable without any further assumptions, which
implies that they yield the correct results asymptotically, the same is
not true for any other alternative proxy. Any error we make both in
the assumptions of their underlying theoretical models and in the im-
plementations to infer them empirically can bias the results. There

4 Throughout this dissertation, I use the terms “proxy” and “measure” interchange-
ably. Furthermore, I often refer to a “method” or “specification” from which the
“proxy” or “measure” is derived from.

5 More correctly, it should be called the implied cost of equity capital, but the term
equity is typically ignored in the literature. I follow this procedure throughout this
dissertation as well.

6 For example, it has been applied in studies about the risk-return tradeoff (Pástor,
Sinha, and Swaminathan 2008), the effect of cross-listings in the US (Hail and Leuz
2009), the relation between default risk and expected stock returns (Chava and Pur-
nanandam 2010), and the impact of accounting quality on the cost of capital (Fran-
cis et al. 2004). Mühlhäuser (2013) gives a recent and extensive literature review in
Chapter 2 of her dissertation. The empirical results in my dissertation are based
exclusively on expected return estimates that are inferred from the ICC.



1.1 motivation 4

are now dozens of alternative implementations, all yielding different
results, although they all want to measure the same underlying pro-
cess. Of course, it directly follows that at best one of these proxies
measures expected returns correctly and that at least all but one of
them are measured with, potentially large, error. This measurement
error could also lead to spurious results, just as in the case of realized
returns, and therefore it is important to evaluate the quality of these
alternative expected return measures.

First attempts in this direction have been made (cf., e.g., Easton
and Monahan 2005 and Lee, So, and Wang 2011). In short, it can be
shown that a proxy that explains subsequent realized returns better
is tracking expected returns better, at least asymptotically. One part
of this dissertation motivates these evaluation methods and criticizes
certain assumptions made by them. In particular, I argue that the
approach by Easton and Monahan (2005) should be regarded with
suspicion.

Moreover, these approaches all have in common that they rely on
realized returns again. Consequently, the evaluation tests are subject
to the same points of criticism brought forward against realized re-
turns. In particular, due to the large shocks to realized returns, an
evaluation of any alternative proxy is notoriously difficult and a re-
searcher faces great uncertainty about which proxy he should use.

This is a variable selection problem, which is part of a bigger prob-
lem in empirical research. Whenever a researcher tests many alterna-
tive specifications to derive his final model, but acts as if his final
model is the only reasonable specification, he ignores the uncertainty
inherent in this selection process. In his seminal work, Leamer (1978,
p. 1) describes the problem for the classical linear regression model
as follows:

“Data mining,” “fishing,” “grubbing,” “number crunch-
ing.” These are the value-laden terms we use to dispar-
age each other’s empirical work with the linear regression
model. A less provocative description would be “specifi-
cation searching,” and a catch-all definition is “the data-
dependent process of selecting a statistical model.” This
definition encompasses both the estimation of different re-
gression equations with different sets of explanatory vari-
ables and also the estimation of a single equation using
different subsets of the data.
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Later on, he describes the consequences of such specification searches:

In general, the consequence of a specification search is
what you might expect. There is greater uncertainty over
parameters than is suggested by the final specification. [...]
[T]he equation is estimated as if the specification were
given, whereas the very fact that a search occurred reveals
that there is uncertainty over the specification. Loosely
speaking, the apparent statistical evidence implied by the
final equation must be discounted; the greater the range
of search, the greater must be the discount.7

Applied to the problem of choosing from a large set of expected
return proxies, it could be that a researcher stumbles upon seemingly
statistically significant results by simply trying many alternative prox-
ies. In this case, the results would be driven by the association of the
measurement error and the variable of interest, and not by the associ-
ation of true, but latent expected returns and the variable of interest,
which a researcher is eventually interested in. In brief, the results
based on alternative proxies can be spurious as well, in this case even
for large samples.

Fortunately, Leamer (1978) does not only describe the problem, but
he also tackles it. Using a framework rooted in Bayesian statistics,8 he
proposes an intuitive solution: Bayesian model averaging (BMA). In-
stead of basing the inference on one model and acting as if this model
is specified correctly, one can simply average the evidence across all
models under consideration. Thereby, the model weights are posi-
tively related to the relative performance of each model. It has been
shown that results obtained from such a BMA approach have better
performance than the prevailing state-of-the-art method (cf. Raftery
and Zheng 2003). Furthermore, BMA typically leads to better out-
of-sample predictive power (cf., e.g., Raftery, Madigan, and Hoeting
1997), which is “particularly important because these are situations
in which the model assumptions underlying BMA and other meth-
ods do not necessarily hold, and they provide a neutral criterion for
comparing methods” (Raftery and Zheng 2003, p. 931).

In many research questions, the number of models under consid-
eration is very large. For example, a linear regression model with 20

potential predictors has 220 = 1, 048, 576 different specifications. Un-
til very recently, it was therefore not possible to implement a BMA

7 Cf. Leamer (1978, p. 12f.).
8 For an introduction to Bayesian statistics the reader is referred to Appendix A.4.
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practically due to the computational restrictions. But recent theoreti-
cal and technological advancements have enabled researchers to over-
come the difficulties related to implementing BMA (cf. Hoeting et
al. 1999). Since then, BMA has found widespread use in empirical
research.9

The main contribution of this dissertation is to map the variable
selection problem that a researcher faces when dealing with alterna-
tive expected return proxies into a BMA setup. I treat each proxy as
a separate model and show that many of the difficulties typically en-
countered with BMA are not an issue in this case because the number
of models is manageable and the prior specification straightforward.
The main difference to my implementation of BMA in contrast to
other applications is that I compute the model weights based on the
association between the expected return proxy and subsequent real-
ized returns, and not based on the association between the proxy and
the variable of interest. This requirement is necessary to prevent a re-
searcher from finding spurious results due to “optimizing” the mea-
surement error process, instead of reporting the true relation between
his variable of interest and expected returns. I provide simulation-
based evidence that the BMA outperforms current procedures to se-
lect from a set of expected return proxies. Furthermore, I apply the
BMA approach to three research questions that have been previously
examined with the help of the ICC, but only for one specific ICC
method. Consequently, model uncertainty has been ignored in the
original studies. I show that in some cases this ignorance can lead
to uncertainty bands that are too narrow, which can result in mis-
leading conclusions. In other cases, however, in which the results are
similar across each ICC specification, model uncertainty is only of
second-order importance and alternative proxies do indeed provide
fresh insights due to their lower parameter uncertainty in comparison
to realized returns. In summary, this dissertation helps in leveling the
playing field between realized returns on the one hand and alterna-
tive proxies on the other hand, while the latter is unjustly favored in
previous research that ignores the issue of model uncertainty.

9 Moral-Benito (2012) provides an overview over studies that apply BMA in economics.
For studies in finance, see for example Pástor and Stambaugh (1999), Cremers (2002),
Avramov (2002), and Binsbergen, Hueskes, et al. (2013).
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1.2 outline

In Chapter 2, I introduce the implied cost of capital as the most promi-
nent proxy class for expected returns. In the first part of this chapter,
I present studies that examine the theoretical link between the true
ICC on the one hand and true time-varying expected returns next pe-
riod on the other hand. Next, I focus on the issue of inferring the ICC
from the data. To do so, certain simplifying assumptions are neces-
sary, which lead to measurement error in empirical ICC specifications.
I introduce the most prominent methods to estimate the ICC. Finally, I
briefly present empirical studies that use the ICC as their measure for
expected returns and discuss how these studies deal with the prob-
lem of model uncertainty, i.e., the uncertainty of not knowing which
of the many ICC specifications the correct one is.

Chapter 3 discusses previous studies that try to deal with this
model uncertainty by identifying the best expected return measure
from a set of proxies. It turns out that the only reasonable way to
evaluate proxies is via a comparison of subsequent realized returns
and the expected return proxies. Hence, we need realized returns to
evaluate the proxies that are meant to replace these realized returns.
I explain the approaches of Easton and Monahan (2005) and Lee, So,
and Wang (2011) in detail and conclude the chapter by noting that all
of the proposed approaches cannot solve the problem of identifying
the best proxy with confidence. Therefore, a researcher faces great
uncertainty in the selection process.

Chapter 4 introduces the BMA approach to deal with this uncer-
tainty in the proxy selection problem. I link the computation of the
proxy weights that are necessary to average across the evidence based
on each proxy with the evaluation approaches discussed in Chapter 3.
Equipped with these weights, I show how a researcher can conduct
his empirical analysis unconditional of any specific model.

Chapter 5 marks the beginning of the empirical part of this thesis. I
present the US sample ranging from 1985 to 2011 on which my empir-
ical results are based. In a first step, I discuss the data sources for the
input parameters necessary to compute the ICC and for other vari-
ables that I need. Afterwards, I show detailed summary statistics for
the eight ICC methods that I choose to implement. Finally, I discuss
issues such as coverage, analyst forecast bias, and time misalignment
that could impact my findings.
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Chapter 6 repeats the analysis of Easton and Monahan (2005), but
with alternative proxies for cash flow and discount rate news that are
motivated in Chapter 3. This chapter reinvigorates earlier claims that
there is no way to reliably identify a single best proxy in the small
samples that are available to the applied researcher.

In the first part of Chapter 7, I compute the model weights for the
eight ICC methods that I implement. Because of the large shocks of
realized returns, no clear winner among the proxies can be found and
the weights, which denote the posterior confidence that a researcher
should have in a proxy, are rather equally distributed. In the second
part, I revisit three studies that use an aggregated ICC time series
for their research question. Claus and Thomas (2001) measure the
implied risk premium, Pástor, Sinha, and Swaminathan (2008) exam-
ine the risk-return tradeoff, and Chen, Da, and Zhao (2013) look at
the relative impact of cash flow news and discount rate news, respec-
tively, on stock price movements. While all of these studies base their
inference on only one ICC method, I replicate their results with the
BMA approach, which directly incorporates model uncertainty into
the statistical inference.

Chapter 8 summarizes the major findings of this dissertation and
discusses open questions for future research.



2
L I T E R AT U R E R E V I E W

The dividend discount model (DDM) states that the stock price, Pt, is
the sum of expected future dividends per share, discounted to today
(cf., e.g., Ang and Liu 2007):

Pt = Et


∞∑
j=1

DPSt+j
j∏
k=1

1+ Rt+k

 , (1)

where Et[DPSt+j] are the dividends per share at time t + j and
Et[Rt+j] is the return from time t + j − 1 to t + j, both expected at
time t by the investor. If we replace time-varying expected returns
with a constant term Ret , then equation (1) simplifies to10

Pt =

∞∑
j=1

DPSt+j

(1+ Ret)
j
, (2)

where Ret is commonly referred to as the implied cost of capital. The
ICC is therefore the counterpart for stocks to the yield to maturity
(YTM) for bonds, with the additional complication that the cash flows
are stochastic.11

In Section 2.1, I present studies that investigate the theoretical re-
lation between the true ICC and time-varying expected returns. In
other words, I discuss the transition from equation (1) to equation (2)
which depends on the assumption that expected returns are constant.
Because this assumption is unlikely to hold in reality, there are sys-
tematic differences between expected returns and the ICC. The ICC is
therefore an imperfect proxy for expected returns, even if a researcher
was able to estimate expected dividends without error. It is important
to the applied researcher to understand the differences between the
two concepts.

10 For ease of notation, I omit the expectation operator Et[·] in the following. The reader
should keep in mind that all future values are conditional on expectations based on
information available at time t.

11 Cochrane (2005, p. 350) defines the YTM as the “fictional, constant, known, annual,
interest rate that justifies the quoted price of a bond, assuming that the bond does
not default.”

9



2.1 theoretical relation between the icc and expected returns 10

Furthermore, expected dividends are just as unobservable as ex-
pected returns. Thus certain simplifying assumptions have to be made
to approximate them. As a consequence, the true ICC is just as un-
observable as true expected returns and empirically implementable
specifications have to be found. They differ in the short-term cash
flow forecasts and the approximation of the terminal value. In Sec-
tion 2.2, I present these specifications in detail.

Finally, Section 2.3 gives an overview of empirical studies that rely
on the ICC and discusses how these studies approximate the vector
of unobservable expected dividends.

2.1 theoretical relation between the icc and expected

returns

There are two reasons why the true ICC might differ from true ex-
pected returns, even if the vector of expected dividends is estimated
correctly. First, the ICC is a geometric average of the term structure
of equity returns (cf. Easton 2006), while in many studies one is in-
terested in one particular expected return, typically the one for the
next period. There is empirical evidence that the term structure of eq-
uity returns is downward sloping on average (cf. Binsbergen, Brandt,
and Koijen 2012) and changes with business cycles (cf. Binsbergen,
Hueskes, et al. 2013), which implies that the ICC is on average smaller
than the expected return next period and that this difference is corre-
lated with the business cycle.

In particular, this issue is relevant for the study of Pástor, Sinha,
and Swaminathan (2008) who test the intertemporal CAPM by Mer-
ton (1973) that hypothesizes a positive linear relation between the
conditional mean and variance of market returns. Pástor, Sinha, and
Swaminathan (2008) approximate the conditional expected return for
the next period with the ICC and therefore their results could be
driven by systematic differences between the two. To alleviate such
concerns, they theoretically show, based on a Campbell and Shiller
(1988) (CS) loglinearization of returns, that the log ICC is perfectly
correlated with log expected returns next period if both expected
returns and expected dividend growth follow an AR(1) process.12

Additionally, they show in simulation results that the ICC helps to
detect a positive mean-variance relation that is overshadowed by the

12 I introduce the CS loglinearization in Appendix A.1 and the simple framework by
Pástor, Sinha, and Swaminathan (2008) in Appendix A.2.
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large noise when realized returns are used. While those analyses miti-
gate concerns that their results are driven by other factors in addition
to an actual relation between time-varying conditional expected re-
turns and its variance, they do not eliminate them. For example, they
use a very simplistic AR(1) assumption for expected returns that con-
flicts with the empirical evidence. It would be interesting to calibrate
the dynamics of expected returns in their simulations to the empiri-
cal results of Binsbergen, Brandt, and Koijen (2012) and Binsbergen,
Hueskes, et al. (2013).

Furthermore, the difference between the ICC and the expected re-
turn next period is relevant for studies that evaluate the validity of
different ICC methods with predictive regressions of the ICC on sub-
sequent realized returns.13 For example, Easton and Monahan (2005)
claim that the criterion for the validation of an ICC method is how
close the slope coefficient of such a regression is to one. However, the
analytical analysis of Pástor, Sinha, and Swaminathan (2008) shows
that this coefficient will diverge from one even in simple settings, a
point I discuss in more detail in Appendix A.2.

Hughes, Liu, and Liu (2009) discuss a second reason why the ICC
and expected returns can differ. They examine the effect of Jensen’s
inequality that arises because the price in equation (1) is a nonlinear
function of stochastic expected returns.14 This effect is best demon-
strated with a small numerical example. Assume an asset is expected
to pay 100 units next period, irrespective of the state of the economy.
There are two states to be expected, boom and recession. In the boom
state, investors expect a return on the asset of 5%; in the recession
state, investors expect 15%. Both states are equally likely. Plugging
these values into equation (1), we obtain

P0 = 0.5×
100

1.15
+ 0.5× 100

1.05
= 91.10. (3)

Inferring the ICC from equation (2), we get Re = 100/91.10 − 1 =

9.77%. Hence, the ICC is in this case lower than the average expected
return, which is 10%. It is also easy to see that the difference between
the two is dependent on the variation in expected returns.

As Hughes, Liu, and Liu (2009) highlight, this is a well known re-
sult in the fixed income literature. The contribution of Hughes, Liu,

13 In Chapter 3 I describe these approaches in detail.
14 Note that the results in Pástor, Sinha, and Swaminathan (2008) are based on a log-

linearized version of the present value identity and hence they ignore issues arising
from the nonlinearity of the present value formula.
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and Liu (2009) is the generalization of these results to the more com-
plicated case of equities for which expected cash flows are stochastic
as well. One of the main achievements of their study is that they
are able to incorporate stochastic expected returns and cash flows as
well as a correlation between the two in their model, while keeping
it simple enough to allow for a closed form solution. They assume
that true expected returns are only affected through the firm’s beta.
They go on to show that the implied cost of capital is also a function
of volatilities of, and correlation between, expected returns and cash
flows, growth in cash flows, and leverage. This is an important result
for empirical studies. Whenever a study finds an association between
the ICC and these characteristics, it is unclear if this association is
driven by expected returns or merely by the misspecification of the
ICC as a proxy for expected returns (cf. Lambert 2009).

As Tang, Wu, and Zhang (2013) point out, the model of Hughes,
Liu, and Liu (2009) is tightly parameterized, which makes it hard to
empirically calibrate. Furthermore, Lambert (2009) emphasizes that
the assumption that cash flows grow with a constant rate over time,
which is needed to make the model analytically tractable, is unre-
alistic. Therefore, this model helps in illustrating the differences be-
tween expected returns and the ICC in a setting where the former are
stochastic. Since it abstracts from all other problems in estimating the
latter, such as cash flows that grow with a time-varying growth rate,
measurement error in cash flows, etc., and since the model parame-
ters are not calibrated, it is an interesting open question if this effect
is empirically relevant.

In summary, the study of Pástor, Sinha, and Swaminathan (2008)
provides evidence that the ICC can be helpful in discovering an asso-
ciation between a variable of interest and expected returns that would
otherwise be obscured by looking at realized returns due to their
large random shocks. This result is obtained within a very simple
framework and it would be an interesting venue for future research
to check how this association works under more realistic assumptions.
Furthermore, the study by Hughes, Liu, and Liu (2009) highlights that
such an association can also be due to the peculiarities of the ICC, and
not be driven by true, but latent expected returns.

Coming back to the original idea of inverting a dividend discount
model to infer the expected rate of return, both studies assume that
the vector of expected dividends in equation (1) and (2) is measured
without error. They are only concerned with the assumption that is
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needed to transform equation (1) into equation (2). Put differently,
these studies are dealing with the denominator of the dividend dis-
count model. Next, I focus on the issue of approximating expected
dividends, i.e., the numerator of the dividend discount model.

2.2 issues with approximating expected dividends

While expected dividends are the ultimate driver of a firm’s stock
price, they are hard to approximate. For example, according to Fama
and French (2001) only 20.8% of US firms paid dividends in 1999,
which implies that stock returns are mostly driven by capital gains
through retained earnings. Miller and Modigliani (1961) demonstrate
that in the absence of taxes, dividend policy does not affect firm value.
Also, it does not invalidate the dividend discount model from equa-
tion (1) since retained earnings today lead to larger dividends in the
future and the effects cancel each other out in an efficient market.
However, it matters for a researcher who does not know the vec-
tor of true expected dividends and has to approximate them. Enter-
taining a dividend discount model with direct estimates of expected
dividends in the short term is just not practical, also because divi-
dends are subject to arbitrary decisions about the payout ratio. Con-
sequently, earnings are preferred as a performance measure both by
practitioners and academics (cf., e.g., Bakshi and Zhiwu 2008). Pen-
man (2007, p. 121f.) summarizes the shortcomings of the dividend
discount model nicely in the following quote:

The truth of the matter is that dividend payout over the
foreseeable future doesn’t mean much. Some firms pay
a lot of dividends, others none. A firm that is very prof-
itable and worth a lot can have zero payout and a firm that
is marginally profitable can have high payout, at least in
the short run. Dividends usually are not necessarily tied
to value creation. Indeed, firms can borrow to pay divi-
dends, and this has nothing to do with their investing and
operating activities where value is created. Dividends are
distributions of value, not the creation of value.

It is therefore not surprising that it is easier to obtain proxies for
expected earnings than for expected dividends (cf. Daske 2006). In
the next subsection, I introduce the most common data sources of
these forecasts, analysts and regression-based predictions based on
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historical data, and discuss their pros and cons. A researcher then
has to adjust the dividend discount model in such a way that he can
represent a firm’s stock price by expected earnings. I show in sub-
section 2.2.2 that he can either transform the earnings into dividends
or transform the dividend discount model into alternative valuation
models that accept earnings as an input parameter. Finally, because
these valuation models rely on forecasts for an infinite horizon, but
reasonable forecasts for expected earnings are only available for the
next couple of years, researchers have to make further simplifying as-
sumptions. In subsection 2.2.3, I present several studies that propose
such empirically implementable versions of the theoretical valuation
models.

2.2.1 Data sources for expected earnings

2.2.1.1 Analyst earnings forecasts

The most widely used proxy for expected earnings are forecasts by
sell-side analysts, i.e., analysts employed by brokerage houses, inde-
pendent research institutes, and investment banks (cf. Beyer et al.
2010). These forecasts are provided by data vendors such as Insti-
tutional Brokers’ Estimate System (IBES), Value Line, First Call, and
Zacks.

As Bradshaw (2011) points out, both the forecasts provided by these
analysts as well as the analysts themselves as economic agents within
capital markets are interesting research topics in accounting and fi-
nance, which is why there are hundreds of studies that deal with
analysts and their forecasts in one way or another. Excellent surveys
on this research can be found in Ramnath, Rock, and Shane (2008)
and Bradshaw (2011).

Here, I only want to discuss the relevant questions with respect to
the computation of the implied cost of capital. The main question is
whether analysts are able to measure investors’ expectations correctly.
One obvious way to test this question is to compare the forecasts pro-
vided by analysts with the actual earnings. Early studies established
the superiority of direct measures of earnings expectations through
analyst forecasts over the former de facto standard, univariate time
series forecasts (cf. Brown and Rozeff 1978; Brown, Hagerman, et al.
1987).15 In a recent study, however, Bradshaw, Drake, et al. (2012)

15 The reader is referred to Brown (1993) for a comprehensive review of the early liter-
ature on earnings forecasting research.
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show evidence that a random walk time series forecast can be su-
perior over longer horizons, for younger or smaller firms, and when
analysts forecast positive or more extreme changes in earnings. Nev-
ertheless, analyst forecasts are the most widely used surrogate for
market’s expectations on earnings nowadays.

A common result found in the literature is that analysts are on aver-
age too optimistic, that is, they provide forecasts that are higher than
the actual earnings (cf., e.g., Dugar and Nathan 1995; Das, Levine,
and Sivaramakrishnan 1998; Lim 2001; Abarbanell and Lehavy 2003;
Hovakimian and Saenyasiri 2012). If this overoptimism is exclusive to
analysts and not shared by investors, it would lead to ICCs that are bi-
ased upwards, which is particularly worrisome for studies that want
to estimate the level of expected returns such as Claus and Thomas
(2001).

More generally, several studies find predictable forecast errors in
analyst estimates. So (2013) is a recent example that also shows that
investors do not fully adjust for these errors. Hence, he is able to de-
velop a trading strategy that sorts firms by predictable forecast errors
and achieves abnormal returns. This illustrates a general problem of
the evaluation of earnings forecasts. The fact that forecasts systemati-
cally deviate from subsequent actual earnings does not automatically
imply that these forecasts do not measure investors’ expectations cor-
rectly. Maybe the analysts are too optimistic on average because the in-
vestors are too optimistic as well? Of course, there are also reasons to
believe that most of the bias is limited to analysts, and not shared by
investors. This can happen if unbiasedness is not the most important
goal of an analyst. If it is, however, for the researcher or the investor,
it results in a misalignment between analysts and those end users of
the earnings forecasts. For example, an analyst might be willing to be
too optimistic towards a firm to build a better relation with the man-
agement and hence, get better information. As a consequence, his
forecasts will be biased upwards, but will also be more accurate (cf.
Lim 2001). In a recent study, Malmendier and Shanthikumar (2013)
try to disentangle such strategic optimism from non-strategic opti-
mism by analysts. For a review on the incentive structure of analysts,
refer to Ramnath, Rock, and Shane (2008) or Beyer et al. (2010).

Analyst bias is an important issue for researchers that compute
their ICC with analyst data. If this bias is limited to analysts and cor-
related with their variable of interest, a significant relation between
a researcher’s ICC proxy and his variable of interest could be the re-
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sult of this bias, and not because of a relation with expected returns,
which he is interested in. In other words, his results would be spuri-
ous, a point I discuss in more detail in Chapter 4.

There are several studies that propose methods to adjust the fore-
casts for these predictable errors to improve the ICC estimates. Eas-
ton and Sommers (2007) recommend using realized earnings as a
proxy for expected earnings, which implicitly relies on the assump-
tion that earnings follow a random walk. In light of the recent results
of Bradshaw, Drake, et al. (2012) (see above) this may be a reason-
able first-order approximation after all. Not surprisingly, they find
that their implied cost of capital estimates are lower than those based
on analyst earnings. One major shortcoming of this approach is that
realized earnings do not change monthly and thus do not incorpo-
rate new information in a timely manner. Furthermore, in contrast to
analysts who typically provide forecasts for the next couple of years
there is no obvious way to extrapolate current earnings into the fu-
ture. Leaving them constant implies the unreasonable assumption of
no earnings growth. Easton and Sommers (2007) work around this
problem by using valuation models that only require one earnings
forecast and assume a constant growth rate afterwards. As I show in
the next section, this is a very limited model that does not allow a
researcher to incorporate different growth assumptions over different
horizons.

Guay, Kothari, and Shu (2011) argue that one source of the forecast
error is the sluggishness of analysts with respect to information in
past stock returns. They show that stock prices adjust to new infor-
mation more quickly than analysts, which induces a negative correla-
tion between the ICC and recent stock price performance. This is best
illustrated with a simple example. Suppose that a stock price declines
due to lower expected earnings by investors. However, analysts do not
adjust their forecasts simultaneously, but lag a few months behind.
In this case, a researcher who relies on those analyst forecasts has to
explain a lower stock price with unchanged earnings forecasts. To do
so, he has to assume, incorrectly, that the discount rate has increased.
Guay, Kothari, and Shu (2011) support this story by showing empir-
ically that there is a strong negative relation between past realized
returns and forecast errors. If a stock performed poorly in the last
year, analysts overestimate future earnings and vice versa. This effect
translates also into higher ICC estimates for stocks with poor recent
performance. They propose two alternative estimation procedures for
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the ICC to adjust for the sluggishness of analysts. In the first proce-
dure, they adjust the earnings forecasts for each firm by the expected
forecast error. This forecast error is either predicted from a regression
or estimated as the time series median of a portfolio of firms, where
the portfolios are determined by the past stock performance. That is,
for portfolios of stocks with poor recent performance, they reduce the
analyst forecasts accordingly, and vice versa. In the second procedure,
they simply lag the stock prices by roughly five months.

The approach of Mohanram and Gode (2013) also uses a regres-
sion to estimate predictable forecast errors and adjusts for them.16

In contrast to the approach of Guay, Kothari, and Shu (2011), their
regression model is specified more generally and not focused on the
sluggishness problem of analysts. In particular, they use a regression
specification similar to the one proposed by Hughes, Liu, and Su
(2008). This specification explains forecast errors with factors related
to analysts’ overreaction (accruals, sales, growth, long-term growth
estimates, growth in PP&E) and underreaction (recent returns, recent
revisions in forecasts). Note that this model includes recent returns,
which are the main explanatory variable in Guay, Kothari, and Shu
(2011). Both studies show that their adjusted ICC estimates are better
able to explain subsequent realized returns than the unadjusted ones,
which is taken as evidence that the proxies have been improved.

One point of criticism towards the procedure of Guay, Kothari, and
Shu (2011) is that it relies on the whole time series of earnings fore-
casts to infer the predicted forecast error. It would have been inter-
esting to repeat their analysis using a rolling window to only rely
on information that was publicly available up to the date of the ad-
justment. In contrast, Mohanram and Gode (2013) only use publicly
available information for their adjustments. Thus they do not have a
look-ahead bias.

Another relevant question about analyst earnings is which data
vendor to use. The most prominent one is IBES, which aggregates
earnings forecasts from many analysts to one mean or median es-
timate. Ramnath, Rock, and Shane (2005) show that the data from
IBES is superior to the one provided by Value Line in terms of accu-
racy. Two factors explain this finding. First, Value Line provides single
forecasts, while IBES aggregates over many analysts, which mitigates
concerns of idiosyncratic analyst error. Second, Value Line only up-

16 For a similar approach, see also Larocque (2013). Because her approach is much more
parsimonious and quite similar to Guay, Kothari, and Shu (2011), I present only the
study of Mohanram and Gode (2013) in detail here.
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dates its forecast for each firm on a quarterly cycle, in contrast to the
monthly cycle of IBES. Thus IBES has a timing advantage.

Additionally, there is another caveat against data sets based on an-
alyst forecasts: those forecasts are only available for larger firms with
considerable institutional following and more extensive disclosures
(cf. Bradshaw, Drake, et al. 2012). Also, the coverage of firms for
which analysts provide forecasts has increased over time (cf. Brad-
shaw 2011), which could induce systematic biases. For example, an
implied risk premium could rise over time simply because more and
more small firms are added to the sample and smaller firms require
higher expected returns on average.17 Ecker et al. (2013) generalize
this problem and show that ICC samples are a non-random sample
from the population distribution and that this problem can bias em-
pirical results.

In the empirical part of this dissertation, I rely on IBES forecasts
as well. While the previous paragraphs have shown that there are
some potential biases with analyst earnings forecasts in general and
while there are also some issues with IBES in particular,18 they are
still the most widely used surrogate of earnings forecasts both by
practitioners and academics. Next, I discuss an alternative estimate
for expected earnings that is free of the specific problems that plague
analyst forecasts, but one that is subject to its own shortcomings.

2.2.1.2 Regression based earnings forecasts

Recently, Hou, Dijk, and Zhang (2012) have proposed the use of earn-
ings forecasts from a cross-sectional regression model instead of ana-
lyst forecasts. That is, in each year they predict the firm-level earnings
for the next five years based on a pooled cross-sectional regression
using the previous ten years of data. As predictors, they use lagged
earnings, total assets, dividend payments, a dummy variable indicat-
ing dividend payers, a dummy variable indicating negative earnings,
and accruals.

They show that such forecasts are superior to analyst forecasts in
terms of coverage, forecast bias, and earnings response coefficient.
Furthermore, implied costs of capital computed from their earnings
forecasts are better able to explain subsequent realized returns, which
they consider as additional evidence for the superiority of their proxy.

17 Dijk (2011) is a recent survey on the size effect.
18 For example, Ljungqvist, Malloy, and Marston (2009) document widespread ex post

revisions between the years 2000 and 2007 to the IBES database, which resulted in
significant changes in the results of empirical research.
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This is a promising approach and it will be interesting to see how it
is adopted by other researchers. One shortcoming, however, is the pe-
riodicity. They employ regressions on an annual basis and therefore,
their approach cannot be used to infer ICC estimates on a monthly
basis. This reduces the sample period substantially and is not fully
compensated by the longer time period of available forecasts.19

2.2.2 Theoretical transformations of the dividend discount model to alter-
native valuation models

To make the earnings forecasts compatible with the dividend dis-
count model, one has to adjust either the former or the latter to use
earnings forecasts to infer an ICC estimate.

The most obvious approach is the assumption of a payout ratio.
Then, expected dividends can be computed as the product of ex-
pected earnings and the assumed payout ratio. This approach is fol-
lowed by Pástor, Sinha, and Swaminathan (2008) and subsequent
studies that have built upon their approach (e.g., Lee, Ng, and Swami-
nathan 2009, Chava and Purnanandam 2010, Li, Ng, and Swaminathan
2013, and Chen, Da, and Zhao 2013).20

Alternatively, the dividend discount model in equation (2) can be
transformed into a residual income model and abnormal earnings
growth model, respectively. To derive them, start with a zero-sum
equality:21

0 = xt +
xt+1 − (1+ Ret)× xt

(1+ Ret)
+
xt+2 − (1+ Ret)× xt+1

(1+ Ret)
2

+ . . . , (4)

where x can be any variable for which the transversality condition
xt+T/(1+ R

e
t)
T → 0 as T →∞ holds.

19 Hou, Dijk, and Zhang (2012) are able to compute ICCs from 1968 on, while earnings
forecasts from IBES are only available at the end of the 70s. Since the number of
firms tracked by IBES was very low in the first few years, Claus and Thomas (2001)
start their sample in 1985. I follow this procedure in my empirical analysis.

20 Note that Pástor, Sinha, and Swaminathan (2008) interpret the term “dividends”
quite generally to describe the free cash flow to equity (FCFE) since they also adjust
for stock repurchases and new equity issues, at least for their US sample. Contrarily,
I use a simpler approach later on in which I use the dividend payout ratio, which is
in line with most of the other studies.

21 Easton (2007) gives an excellent introduction into the various models, their deriva-
tions, and empirical implementations. This part draws heavily on it.
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To convert the dividend discount model to the residual income
model, we further require that the following relation, known as “clean
surplus” relation, holds:22

BPSt+1 = BPSt + EPSt+1 −DPSt+1, (5)

where BPSt is the book value per share and EPSt are the earnings
per share at the end of period t. This relation requires that all items
affecting the book value of equity are included in earnings (cf. Claus
and Thomas 2001). If we set xj to the expected book value per share,
BPSj, add equation (4) to equation (2) while considering equation (5),
and rearrange, we obtain the residual income model:

Pt = BPSt +

∞∑
j=1

EPSt+j − R
e
t ×BPSt+j−1

(1+ Ret)
j

. (6)

As Claus and Thomas (2001) point out, equation (6) is a simple al-
gebraic restatement of the dividend discount model that only needs
the additional assumption that forecasted earnings satisfy the clean
surplus relation. If this assumption holds, both models theoretically
yield identical results. However, Claus and Thomas (2001) argue that
the residual income model has two empirical advantages: First, a
large part of the stock price Pt is explained by the book value per
share, BPSt, which is directly observable. Second, it is easier to make
reasonable assumptions for the growth rate in residual incomes or
abnormal earnings than for dividends. If book values measure input
costs correctly, residual incomes measure the additional rent over the
fair compensation an investor expects for those input costs.23 Due to
reasons such as global competition and antitrust actions, it is a com-
monly made assumption that the abnormal rents cannot grow in the
long run.

Ohlson (2005), however, criticizes the clean surplus assumption,
which is violated by the GAAP’s earnings construct.24 More impor-

22 The residual income model is sometimes also referred to as the abnormal earnings
model.

23 Penman (2007, p. 162) defines residual earnings as “the return on common equity,
expressed as a dollar excess return rather than a ratio.”

24 Ohlson (2005) does not discuss the empirical relevancy of this issue, but there is evi-
dence that dirty surplus accounting, i.e., violations of the clean surplus relation, have
a minor effect on the correctness of the residual income model. For an international
sample, Isidro, O’Hanlon, and Young (2004, 2006) identify a range of dirty surplus
practices and evaluate the effect of those practices on the residual income model.
They find little evidence on systematic valuation errors. Furthermore, Frankel and
Lee (1999) highlight that the residual income model does not impose that the clean
surplus relation holds in the past. It is merely required that it holds for the future,
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tantly, though, he shows that capital transactions such as share is-
suances and repurchases break the relation in equation (5) on a per
share basis. As a solution, he advocates the use of the abnormal earn-
ings growth model, which does not rely on the clean surplus assump-
tion and is developed in Ohlson and Juettner-Nauroth (2005).25

The derivation is identical to the one of the residual income model,
except that xj is set to EPSj+1/Ret . Then, the dividend discount model
can be rewritten as

Pt =
EPSt+1
Ret

+

∞∑
j=2

EPSt+j + R
e
t ×DPSt+j−1 − (1+ Ret)× EPSt+j−1

Ret × (1+ Ret)
j−1

.

(7)

Abnormal earnings growth refers to the numerator in the infinite sum
expression. According to Ohlson (2005, p. 331) one should interpret
abnormal earnings growth “as the expected eps-increment in excess
of what should be expected due to earnings retained in the prior
period.”

In summary, a researcher can choose between three different valua-
tion models. Theoretically, all models yield identical results, although
the residual income model needs an additional assumption for this
to hold. Empirically, all models can be implemented with proxies for
expected earnings and additional assumptions about the payout ratio
to infer expected dividends. However, while expected dividends are
directly needed for both the dividend discount model and the abnor-
mal earnings growth model, they are only needed to compute future
expected book values per share in the case of the residual income
model. Therefore, this model is more robust to misspecifications with
respect to the payout ratio of a firm.

which can be ensured mechanically by the researcher. The only additional require-
ment is that the earnings forecasts are also consistent with clean surplus accounting.
They go on to show that the majority of dirty surplus accounting practices, at least
in the US, are unpredictable and their expected value is zero. Therefore, the residual
income model should not be systematically biased by dirty surplus accounting.

25 In his discussion of the abnormal earnings growth model, Penman (2005) acknowl-
edges the points raised by Ohlson (2005) that the residual income model is inconsis-
tent with the dividend discount model on a per share basis, but he also brings for-
ward points of criticism towards the abnormal earnings growth model. For example,
he argues that the dismissal of book values comes at the cost of losing information
inherent in the balance sheet of a firm. Also, he points out that the “anchor” of the
residual income model is the current book value, which is observable. In contrast,
the anchor in the abnormal earnings growth model, EPSt+1/Ret , is not a number
in the financial statement, but already a forecast that is subject to potentially large
measurement error.
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Because proxies for expected earnings are only available for a few
years ahead, all models need to make an assumption about the years
after. This is one of the major differentiators between the various em-
pirical studies and I discuss the most prominent approaches in the
next subsection.

2.2.3 Empirically implementable valuation models

Before I introduce the main ICC approaches, I want to emphasize
that I am deliberately vague on what empirical proxies the respec-
tive studies use in their application. I only mention them when I am
of the opinion that it helps the reader to better understand the spe-
cific method. I do so because I want to separate the methods, which
are commonly applied by many follow-up studies, as much as possi-
ble from the specific input parameters used in the studies that intro-
duce the methods. For example, the approach by Pástor, Sinha, and
Swaminathan (2008) needs a steady-state earnings growth assump-
tion, which these authors compute as the rolling average of nomi-
nal gross domestic product (GDP) growth rates starting from 1930.
In contrast, Chen, Da, and Zhao (2013) use the year 1947 as a start,
and Chava and Purnanandam (2010) use the GDP growth rate of the
previous year. This is just one of many examples in which the orig-
inal empirical specification is slightly changed by follow-up studies,
quite often without any motivation. Nevertheless, the elemental com-
ponents of the methods, which I describe here, are left unchanged.

2.2.3.1 Residual income models

Claus and Thomas (2001) and Gebhardt, Lee, and Swaminathan (2001)
were among the first to apply the ICC for a large US sample. Both of
them use a derivative of the residual income model to approximate
the implied cost of capital.

Because Claus and Thomas (2001) want to estimate the equity risk
premium for the aggregate US stock market, they do not have to
worry about differences in long-term growth rates across firms. In-
stead, as already mentioned above, they argue that aggregated resid-
ual income for the US stock market should not grow in the long run
due to reasons such as global competition and antitrust actions. Be-
cause they want to establish an upper bound on the equity risk pre-
mium, they assume that residual incomes grow at the expected infla-
tion rate glt, which they approximate as the yield on a nominal 10-
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year government bond minus an assumed real risk-free rate of three
percent. They require estimates for expected earnings up to five years
ahead. In their study, they rely on analyst forecasts from IBES, which
are only available for two to three years ahead for many firms. But
IBES also provides an expected growth rate for earnings, which can
be used to extrapolate available earnings forecasts when missing.

With these assumptions, the residual income model from equation
(6) can be rewritten into an empirically tractable version:

Pt = BPSt +

5∑
j=1

EPSt+j − R
CT
t ×BPSt+j−1

(1+ RCTt )j

+
(EPS5 − R

CT
t ×BPS4)× (1+ glt)

(RCTt − glt)× (1+ RCTt )5
, (8)

where RCTt is the ICC of the CT method.
The focus of the study by Gebhardt, Lee, and Swaminathan (2001)

is on the drivers of the cross-sectional variation in implied risk premi-
ums. For such a research question, the growth assumption made by
Claus and Thomas (2001) seems too simplistic because it would im-
ply that all firms grow with the expected inflation rate after five years.
Instead, Gebhardt, Lee, and Swaminathan (2001) propose a two-stage
approach. In the first stage, they forecast earnings explicitly for the
next three years. In the second stage, they linearly mean revert the
firm’s expected three-year ahead return on equity (ROE) to the me-
dian industry ROE by period t+ 12. According to them, this captures
the long-term erosion of abnormal ROEs over time that an individual
firm can earn over its peers. After this second stage, it is assumed
that residual incomes do not grow anymore, which means that any
growth in earnings or cash flows is value neutral.

In summary, the ICC of the GLS method, RGLSt , can be obtained by
solving the following equation numerically:

Pt = BPSt +

11∑
j=1

(ROEt+j − R
GLS
t )×BPSt+j−1

(1+ RGLSt )j

+
(ROE12 − R

GLS
t )×BPS11

RGLSt × (1+ RGLSt )11
. (9)
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2.2.3.2 Dividend discount models

Pástor, Sinha, and Swaminathan (2008) build upon the GLS method
in that they also break the intrinsic stock price into three parts: an ex-
plicit forecast period for the next three years, an intermediate forecast
period in which they interpolate the three-year ahead earnings to a
long-term growth rate, and a terminal value for which they assume,
just as in the GLS case, that economic profits are value irrelevant.
However, the major difference between the two is that Pástor, Sinha,
and Swaminathan (2008) directly infer the dividends from forecasted
earnings and estimated payout ratios and do not rely on the residual
income transformation.26,27

They implement the following empirically tractable finite-horizon
model:

Pt =

15∑
j=1

EPSt+j × (1− bt+j)

(1+ RPSSt )j
+

EPSt+16

RPSSt × (1+ RPSSt )15
, (10)

where bj is the expected plowback rate in period j, which is defined
as one minus the payout ratio. Pástor, Sinha, and Swaminathan (2008)
use an intermediate forecast horizon of 15 years as their base case,
instead of the 12 years in the GLS method. Earnings from year 4

on are inferred from the previous earnings forecast, EPSj−1, and an
estimated earnings growth rate gj:

EPSt+j = EPSt+j−1 × (1+ gt+j). (11)

They impose an exponential rate of decline to mean revert the year
t+ 3 growth rate to a long-term growth rate, glt:

gt+j = gt+j−1 × exp
[
log(glt/gt+3)

T − 1

]
. (12)

Finally, they have to forecast the plowback rates, which they do in
two stages. For the first two years, they explicitly forecast the plow-
back rates based on historical values. After that, they mean revert the
plowback rates between t + 3 to t + T + 1 linearly to a steady-state
value computed from the sustainable growth rate formula. This for-

26 As mentioned in footnote 20, Pástor, Sinha, and Swaminathan (2008) use the term
“dividends” quite generally.

27 Lee, Ng, and Swaminathan (2009) provide a motivation for this modification. This
approach imposes less stringent data requirements, which is particularly important
in an international context in which the number of firms per country is substantially
lower compared to a US sample.
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mula assumes that, in the steady-state, the product of the return on
new investments, ROI, and the plowback rate, bSS, is equal to the
steady-state growth rate in earnings, gSS. Due to competition driving
returns on investment down to the cost of equity, ROI can be set to
RPSS. In summary, the steady-state plowback rate, bSS, is set to the
ratio of the steady-state earnings growth rate, gSS, and the implied
cost of capital, RPSS: bSS = gSS

RPSS
. Pástor, Sinha, and Swaminathan

(2008) assume for each firm the same steady-state growth rate. Specif-
ically, they set gSS to a rolling average of nominal GDP growth rates.
Now, the terminal value is easily computed as

TVt+T =

∞∑
i=1

EPSt+T+1 × (1+ gSS)
i−1 × (1− bSS)

(1+ RPSSt )i

= EPSt+T+1 ×
1− bSS

1+ RPSSt

∞∑
i=0

(1+ gSS)
i

(1+ RPSSt )i

= EPSt+T+1 ×
1− gSS

RPSSt

1+ RPSSt

× 1

1− 1+gSS
1+RPSSt

= EPSt+T+1 ×
RPSSt −gSS
RPSSt

1+ RPSSt

× 1+ RPSSt

RPSSt − gSS

=
EPSt+T+1

RPSSt

.

The last line is identical to the terminal value part in equation (10).
The terminal value is therefore identical to the PE method, which I
introduce in the next section (see equation 14). This method assumes
that there is no abnormal earnings growth and the derivations here
illustrate the point nicely. Note that there might still be growth in
earnings in steady-state and this growth might be different for dif-
ferent firms. However, this earnings growth does not add any value.
For example, the larger the part of the earnings that are retained, the
larger the earnings growth, but this is value-irrelevant because had
those retained earnings been paid out instead, an investor could have
just invested these earnings for the same rate of return, RPSS, else-
where.

Because it is assumed that the plowback rates revert linearly to bSS,
they can be inferred recursively as

bt+j = bt+j−1 −
bt+2 − bSS
T − 1

. (13)
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Given equation (11), (12), and (13) as well as explicit forecasts for
earnings, earnings growth, and the plowback rates for the first few
years, equation (10) can be solved for RPSSt .

To the best of my knowledge, all studies but one set glt equal to
gSS. That is, they interpolate the three-year ahead earnings growth
rate to the steady-state growth rate. On the contrary, the study of
Chen, Da, and Zhao (2013), which I replicate in Chapter 7, uses a dif-
ferent assumption. Like Pástor, Sinha, and Swaminathan (2008), they
use a rolling average of nominal GDP growth rates to approximate
gSS, but they set glt to the mean long-term analyst industry growth
forecast. As I show in the empirical part of this thesis, this seemingly
minor modification has a large impact on the results and, therefore, I
give this method its own abbreviation and label it the CDZ method, in
contrast to the original approach by Pástor, Sinha, and Swaminathan
(2008), which I abbreviate as the PSS method.

2.2.3.3 Abnormal earnings growth models

Finally, I now turn to modifications of the abnormal earnings growth
model from equation (7). If one is willing to make the very simplistic
assumption that the abnormal earnings growth for all future periods
is zero, the PE method follows directly. This method is simply the
price-to-forward-earnings ratio:

RPEt =
EPSt+1
Pt

. (14)

I only use this method as a naïve benchmark because it completely
ignores earnings growth.

More realistically, it is a common assumption that the expected
abnormal earnings growth in equation (7), abbreviated with AGRj
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here, grows by a constant rate gAGR. Then, the abnormal earnings
growth model simplifies to28

Pt =
EPSt+1
Ret

+

∞∑
j=2

EPSt+j + R
e
t ×DPSt+j−1 − (1+ Ret)× EPSt+j−1

Ret × (1+ Ret)
j−1

=
EPSt+1
Ret

+

∞∑
j=2

AGRt+j

Ret × (1+ Ret)
j−1

=
EPSt+1
Ret

+
AGRt+2
Ret

∞∑
j=1

(1+ gAGR)
j−1

(1+ Ret)
j

=
EPSt+1
Ret

+
AGRt+2

Ret × (Ret − gAGR)

=
EPSt+1
Ret

+
EPSt+2 + R

e
t ×DPSt+1 − (1+ Ret)× EPSt+1
Ret × (Ret − gAGR)

.

(15)

Equation (15) can be further simplified by assuming that both the
dividends in the next year and the growth rate gAGR are zero. In this
case, we can analytically solve for the ICC. As Easton (2004) shows,
this ICC proxy is equal to the square root of the inverse of the price-
earnings-growth ratio, which is the price-earnings ratio divided by
a growth rate between the two-year and one-year ahead earnings.
Therefore, I label this ICC proxy the PEG method:

RPEGt =

√
EPSt+2 − EPSt+1

Pt
. (16)

Easton (2004) also proposes a modification to the PEG method in
which he does not assume that the next year’s dividends are zero. In
this case, equation (15) can be rearranged to the MPEG method:

Pt =
EPSt+2 + R

MPEG
t ×DPSt+1 − EPSt+1

(RMPEGt )2
. (17)

Finally, Gode and Mohanram (2003) make further adjustments to the
abnormal earnings growth model by Ohlson and Juettner-Nauroth
(2005). First, they assume that gAGR is equal to the expected infla-
tion rate, which they compute as in Claus and Thomas (2001) as the
nominal risk-free rate minus three percent. Second, they replace the
short-term earnings growth rate, gst, between the earnings two years

28 For this derivation to hold, gAGR has to be smaller than Ret .
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and one year ahead that is implicit in equation (15) with an average of
this growth rate and the long-term growth rate provided by analysts.
This decision is made so that the information in the long-term growth
rate provided by analysts is not discarded. I abbreviate this method as
the OJ method in the following. The ICC, ROJt , based on this method
is obtained by solving the following equation numerically:

Pt =
EPSt+1

ROJt
+
gst × EPSt+1 + ROJt × (DPSt+1 − EPSt+1)

ROJt × (ROJt − gAGR)
. (18)

It is instructive to compare the different versions of the abnormal
earnings growth model with their empirical counterparts based on
the residual income model and the dividend discount model. The PE,
the PEG, the MPEG, and the OJ method rely only on earnings fore-
casts for the next two years. Forecasts after this very short forecasting
period are ignored. Only the OJ method allows for the consideration
of longer term growth assumptions through gAGR and gst. It is at
least questionable to assume that forecasts for the next two earnings
are sufficient for valuation, which implies that the abnormal earnings
growth methods may be too simplistic.

This issue is particularly troublesome if the short-term earnings
forecasts are negative. For example, this is likely to happen during
a financial crisis in which many analysts, and probably investors as
well, expect negative short-term earnings for many firms. This is not
a problem for the ICC approach per se as long as those negative
earnings in the short term are offset by a positive long-term view. And
this is exactly what the other methods do that rely on further-ahead
earnings forecasts and long-term growth rates that are assumed to
be positive. Such a long-term view is not possible for the abnormal
earnings growth models presented here and negative earnings in the
short term directly imply nonsensical results or no results at all.29

Therefore, it is a requirement for those methods that the expected
earnings are always positive, which can induce a systematic bias both
in the cross-section and in the time series. This bias is hard to evaluate,
but one can at least check how many observations are lost due to this
requirement. I perform this check in Chapter 5.

29 The PEG method has the additional requirement that the earnings forecast two years
ahead has to be larger than the forecast one year ahead.
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2.2.3.4 Target price model

So far, all models make certain simplifying assumptions about the
terminal value, which are needed to make the models empirically im-
plementable. There is, however, an alternative solution to the termi-
nal value problem. The data provider Value Line provides a four-year
ahead target price, which exempts a researcher from the estimation of
a terminal value. All that is left to do is to estimate the intermediate
dividend payments. Of course, the quality of this approach is depen-
dent on the terminal value assumptions made by the analyst instead
of the assumptions made by the researcher. This is probably one rea-
son why the target price model is rarely used in empirical studies
because the terminal value assumptions of the analysts are opaque.

One exemption is the study of Brav, Lehavy, and Michaely (2005).
They argue that their data could be less affected by analyst optimism
and conflict of interest issues because Value Line is an independent
research service with no affiliation to investment banking activity.
However, as mentioned in Section 2.2.1.1, Ramnath, Rock, and Shane
(2005) provide evidence that IBES is superior to Value Line in terms
of accuracy due to an aggregation and a timing advantage.

2.2.3.5 Estimating earnings growth rates

With the exception of the target price model, all methods introduced
above rely on assumed growth rates after the detailed forecast pe-
riod, supported by economic reasoning. Easton, Taylor, et al. (2002)
propose a regression-based approach to simultaneously estimate the
growth rate and the ICC for a residual income model. Easton (2004)
expands this approach to an abnormal earnings growth model.30 Ba-
sically, these studies replace a possible specification error in the re-
searcher’s assumption by a specification error in the regression ap-
proach. One problem of these approaches is that they only allow the
estimation of average ICC and growth rates estimates across all firms
and are therefore not suitable for cross-sectional analyses. Nekrasov
and Ogneva (2011) eliminate this shortcoming by adding firm-level
explanatory variables to the regression.

Tang, Wu, and Zhang (2013) show that results based on assumed
growth rates on the one hand and estimated growth rates on the other
hand can differ substantially and argue that the specification error in
the regression approach is more pronounced. This opinion seems to

30 Ashton and Wang (2013) propose a similar approach which has fewer data require-
ments and makes fewer assumptions.
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be shared by most researchers that apply the ICC because regression-
based approaches to simultaneously estimate the implied growth rate
are rarely used in empirical studies.

2.3 implementation details of empirical studies

As the previous sections have illustrated, a researcher who wants to
measure expected returns using the ICC faces a multitude of options
with respect to the empirical implementation.31 The impact of these
various options on the results are thereby unclear and naturally the
question arises on how robust the results are to the quite often arbi-
trary decisions made by the researcher. Furthermore, the multitude of
options also increases the probability of finding results by chance and
allows researchers to practice data fishing or data snooping. In sum-
mary, there are many degrees of freedom for a researcher. Because
there is only one true expected return process, these degrees of free-
dom are only affecting the measurement error part of the expected
return proxy. Focusing on only one or a few specifications ignores
the large uncertainty that the researcher has about the correct specifi-
cation and can lead to overconfident and biased results. In Chapter 4,
I introduce an approach that allows the incorporation of model uncer-
tainty into the statistical inference. In this section, however, I shortly
want to discuss how current studies using the ICC in their empirical
analysis deal with the issue of model uncertainty.32

31 The decision to focus on the ICC already implies that other options, mentioned in
the introduction, are not considered.

32 I only focus on the implementation details with respect to the ICC computation.
In Chapter 2 of her dissertation, Mühlhäuser (2013) gives a recent summary of the
research questions and findings of many empirical studies that apply the ICC as an
estimate for expected returns.
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For a non-exhaustive selection of published articles that use the
ICC, Table 1 presents an overview of the implementation details and
robustness checks. In column “Implementation details”, I focus on
the main differentiators between these studies, which is somewhat
subjective and arbitrary. Therefore, this table is not meant to be a com-
plete list of all assumptions and decisions made by the cited studies.
Furthermore, I want to stress that the robustness checks only refer
to control checks with respect to the ICC computation. Other checks
are therefore excluded, even if they are related to the quality of the
ICC. This mostly happens when studies do not directly adjust the
ICC for forecast errors by analysts, but include a control variable of
the forecast error in their regression analysis.

With respect to the source for earnings forecasts for the next few
years, earlier statements about the preference towards IBES are con-
firmed. With the exception of the studies by Francis et al. (2004) and
Brav, Lehavy, and Michaely (2005), all studies rely on IBES data. This
might change in the future if the recently proposed regression-based
approach by Hou, Dijk, and Zhang (2012) is adopted by other re-
searchers.

The known shortcomings of analyst forecasts, discussed in Section
2.2.1.1, are addressed somewhat arbitrarily. Some studies ignore this
issue, some studies adjust the earnings for the optimism bias, some
studies deal with this bias by using realized earnings, and some stud-
ies account for the sluggishness. The same is true for the assumption
on future growth rates. Several studies implement the approach by
Easton, Taylor, et al. (2002) and Easton (2004) to simultaneously es-
timate the growth rate. However, since this approach is only appli-
cable to portfolios of firms and many studies focus on differences
across firms, they prefer to only use this approach in their robust-
ness section. It is interesting that these portfolio approaches are the
standard robustness check with respect to the growth assumption. In
my opinion, it is at least doubtful that investors do not assume dif-
ferent growth rates within industries or countries, but across firms.
In case of a misspecification, this can induce a systematic bias in the
expected return estimates. This is less of an issue for studies that only
look at the aggregated ICC such as Pástor, Sinha, and Swaminathan
(2008) and Li, Ng, and Swaminathan (2013). But, even studies that
focus on cross-sectional differences mostly focus on industry or coun-
try growth rates. An exception is the study of Hail and Leuz (2009),
which acknowledges the substantial impact long-run growth assump-
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tions can have on the ICC. Therefore, they rerun their analysis with
a variety of different growth assumptions, some of which are also
firm-specific.

Take as an example the study of Gebhardt, Lee, and Swaminathan
(2001). One of their results is that the industry implied mean risk
premium from the prior year is an important variable to explain the
cross-sectional variation of ICCs. However, this result is at least partly
driven because of a mechanical relation between the independent and
dependent variable. The GLS method mean reverts three-year ahead
ROEs of each firm to an industry-wide ROE that is based on the me-
dian of all profitable firms within each industry over the last ten years.
Hence, the assumed growth rate by Gebhardt, Lee, and Swaminathan
(2001) is constant within industries and highly persistent. A firm that
had a higher than average ICC last year because of a higher than aver-
age growth rate is more likely to have a higher than average ICC this
year. So it is obvious that a higher than average industry implied risk
premium last year is correlated with a firm’s current ICC. It is easy to
think about similar arguments even on an aggregated level. The more
general point here is that one of the most crucial input parameters,
long-run growth rates, is also one of the hardest to estimate. There-
fore, it would not be surprising if a systematic error is introduced.

In terms of methods, there is a clear separation between asset pric-
ing studies on the one hand and corporate finance as well as account-
ing studies on the other hand. Brav, Lehavy, and Michaely (2005),
Pástor, Sinha, and Swaminathan (2008), Lee, Ng, and Swaminathan
(2009), Chava and Purnanandam (2010), Li, Ng, and Swaminathan
(2013), and Chen, Da, and Zhao (2013) belong to the former field
and, except for Brav, Lehavy, and Michaely (2005), all of these stud-
ies rely on derivatives of the PSS method. As mentioned above, Lee,
Ng, and Swaminathan (2009) motivate the use of this method with
less stringent data requirements, which is particularly important for
international samples for which fewer firms per country are avail-
able. Yet, the studies by Chava and Purnanandam (2010), Li, Ng, and
Swaminathan (2013) and Chen, Da, and Zhao (2013) only use a US
sample, which makes this argument irrelevant to those studies. Also,
it is interesting that these studies hardly make any robustness checks
of the ICC method. Brav, Lehavy, and Michaely (2005) and Chen, Da,
and Zhao (2013) only make robustness checks within their respec-
tive ICC method. Pástor, Sinha, and Swaminathan (2008) and Li, Ng,
and Swaminathan (2013) use only one alternative ICC estimate, based
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on the regression approach that simultaneously estimates the growth
rate (see Section 2.2.3.5). Only Lee, Ng, and Swaminathan (2009) im-
plement several different methods for robustness (MPEG, OJ, CT).

All other studies focus on residual income and abnormal earnings
growth models. The most common procedure here is to focus on the
mean or median of several ICC methods. In these cases the studies
also show the evidence based on every method separately.

Table 1 nicely illustrates the many degrees of freedom a researcher
has in approximating expected returns. It also shows that the deci-
sions about the selection of a specific method are rather arbitrary and
ad-hoc. This is best illustrated in the following quote by Li, Ng, and
Swaminathan (2013, p. 11):

In addition to the methodology used in this paper, several
other procedures are used in the literature to compute the
ICC. Instead of going through all of them, we pick a pro-
cedure recommended by Easton (2004) [...].

There seems to be a common belief that it does not really matter
which method is chosen in particular, as long as the method is sen-
sible. As I show in Chapter 4, this belief is misguided. In the next
chapter, however, I focus first on the question of how to identify sen-
sible proxies in the first place, that is, how to select the best proxy
from a multitude of different options.



3
E VA L U AT I N G E X P E C T E D R E T U R N P R O X I E S

Because of the many different specifications available to the applied
researcher in computing the ICC, it was only a matter of time be-
fore comparative studies of these specifications emerged. This chap-
ter summarizes existing efforts in this area. Broadly, there are two
options to evaluate an expected return proxy.33

First, earlier studies checked the relation between the proxy and
common risk factors. If the proxy under consideration is associated
in the hypothesized direction with such risk factors, it is taken as
confirmatory evidence that the proxy is measuring latent expected re-
turns. However, this approach is subject to a joint hypothesis problem
similar to efficient market tests (cf., e.g., Fama 1970, 1991). I discuss
this approach in Section 3.1.

Therefore, this approach has mostly been replaced by regressions of
an expected return proxy on subsequent realized returns. It turns out
that any reasonable proxy of expected returns has to explain realized
returns eventually. Since my BMA approach builds upon it, I motivate
this approach in detail in Section 3.2.

Both Lee, So, and Wang (2011) and Easton and Monahan (2005) ex-
tend the second approach. The former study distinguishes between
the evaluation in the time series and in the cross-section, while the
latter study argues that the empirical validation of alternative prox-
ies can be improved by controlling ex post for ex ante unexpected
cash flow and discount rate news. I introduce and criticize these ap-
proaches in Section 3.3 and Section 3.4.

Finally, in Section 3.5 I summarize the findings of this chapter and
conclude that an evaluation method that tries to pick the best proxy
is unsatisfactory because it ignores the uncertainty inherent in this
decision. Instead, a researcher should incorporate his uncertainty into
the statistical inference. This insight is the main motivation for the
BMA approach, which I introduce in detail in Chapter 4.

33 I am only aware of studies within the ICC literature that try to evaluate different
ICC specifications. For this reason, this chapter focuses again on the ICC. Despite my
focus on the ICC, the reader should keep in mind that in general these evaluation
methods can also be applied to different proxies, such as proxies inferred from CDS
spreads or bond yields.
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3.1 association with risk factors

This evaluation approach is advocated by Botosan and Plumlee (2005).
They argue that estimates of the true cost of equity capital have to
be associated with firm-specific risk factors in a consistent and pre-
dictable manner. Therefore, they identify five such risk factors that are
supported by economic theory, approximate these theoretical proxies
by empirical measures, and regress the expected return or cost of cap-
ital proxies on the risk factors.34 For their US sample based on Value
Line forecasts, they find that only the cross-sectional variation in ICC
estimates based on target prices and the PEG method are consistently
and predictably related to the risk factors. Some of the associations of
other methods (GLS method, OJ method, and a simple finite horizon
Gordon growth model) with the examined risk factors run counter
to the theory. For example, the GLS method has a negative relation
with the unlevered beta, which implies that investors require a higher
return for stocks with lower market risk. This is inconsistent with the
predictions of the CAPM. Botosan and Plumlee (2005, p. 51) there-
fore conclude that the target price method and PEG method “domi-
nate the alternatives, and recommend that individuals requiring firm-
specific estimates of expected cost of equity capital rely on either of
these two methods as opposed to the alternatives we examine.”

The main point of criticism brought forward against this approach
is that it introduces a circularity argument. One of the main moti-
vations for the ICC approach, in contrast to approaches that extract
expected returns from models such as the CAPM or the Fama-French
three-factor model (cf. Fama and French 1993), is that it does not
rely on any asset pricing model. These asset pricing models identify
risk factors based on theoretical arguments, estimate the premiums
of those risk factors as well as the exposure of a stock to these risk
factors with appropriate proxies, and back out the expected return
from this information. Of course, this approach is dependent on the
correctness of the model. Consequently, the apparent unexpected re-
lation between an expected return proxy on the one hand and a risk
factor on the other hand can be due to a bad proxy or the wrong risk
factor. Thus, a researcher does not know if his proxy or his risk factor
is misspecified.

34 They approximate five theoretical risk factors (market risk, leverage, information risk,
firm size, growth) with the following empirical proxies (same ordering): unlevered
beta, ratio of long-term debt to market value of common equity, dispersion in analyst
forecasts, market value of equity, and expected growth in earnings.
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This circularity is nicely illustrated with a short example. As al-
ready mentioned, Botosan and Plumlee (2005) deem the GLS method
to be inferior to other proxies because it is, among other things, weakly
(in their case even negatively) related to market risk. They assume
that their risk factor is correctly specified and because they do not
find the expected relation between this risk factor and the proxy
based on the GLS method, they take this as evidence against the GLS
method. Gebhardt, Lee, and Swaminathan (2001) also find a weak
relation between their ICCs and the beta of a firm. However, they
interpret this finding as evidence that beta, or market risk, is not
priced, not that their proxy is incorrectly specified. In brief, we get
two interpretations from the same finding and cannot identify which
interpretation is the correct one.

Because of this shortcoming, Easton and Monahan (2010) label this
approach “logically inconsistent” and recommend an alternative test,
proposed in an earlier study (cf. Easton and Monahan 2005), that is
based on realized returns. I present the underlying idea of such tests
with subsequent realized returns in the next section.

3.2 association with subsequent realized returns

3.2.1 Motivation

In Appendix A.1, I introduce the Campbell and Shiller (1988) (CS)
loglinearization of returns. CS develop a useful approximate identity
for the log realized return rt+1 on an asset i that is held from the end
of period t to the end of period t+ 1:35

rt+1 ≈ Et[rt+1]

+ (Et+1 − Et)

 ∞∑
j=0

ρj∆dt+j+1


− (Et+1 − Et)

 ∞∑
j=1

ρjrt+j+1

 , (19)

where ∆dt+1 ≡ dt+1 − dt is the log dividend growth during period
t + 1 and ρ is a parameter of linearization defined by ρ = 1/(1 +

exp(d− p)), where d− p is the average log dividend-price ratio.36

35 For ease of notation, I suppress the identifier i in the following if it is not needed.
36 If not defined otherwise, lowercase letters of already used symbols denote log vari-

ables, e.g., logDt ≡ dt.
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Equation (19) shows that unexpected returns, rt+1 − Et[rt+1], can
only occur for two reasons: changing expectations about future divi-
dends and changing expectations about future returns (or a combina-
tion of both). An increase in expected future dividends results in capi-
tal gains today, while an increase in expected future returns results in
a capital loss today. As an example, suppose that expected future div-
idends do not change over a period, but expected future returns rise.
These higher returns can only be generated by future capital gains
from a lower current price (cf. Campbell, Lo, and MacKinlay 1997).

In the literature, the last equation is often abbreviated as follows:37

rt+1 = µt +CFNt+1 −DRNt+1, (20)

where µt ≡ Et[rt+1] and CFNt+1 is defined as the cash flow (CF)
news and DRNt+1 is defined as the discount rate (DR) news that
arrive between time t and t+ 1.

Equation (20) motivates the use of realized returns, rt+1, as a proxy
for expected returns next period, µt. It is a commonly made assump-
tion that CF news and DR news are zero on average, which is equal
to the statement that there are no systematic biases in investors’ ex-
pectations. In this case, the mean of historical realized returns will
be an unbiased estimator of expected returns. Furthermore, news are
by definition information surprises that are unknown at time t and
therefore, they have to be uncorrelated with µt. The justification be-
hind these assumptions is that investors are assumed to be rational,
which implies that they take all relevant information available at time
t into account. As a direct consequence, all new information that ar-
rives between time t and t+ 1 is unexpected and hence orthogonal to
the forecast from time t.38

3.2.2 Predictive regressions

The discussion in the previous paragraph has shown that realized re-
turns over period t+ 1 are an unbiased estimate of returns for this
period, expected at time t. This relation also implies that any predic-

37 Note that this relation is only an approximation. However, the approximation error
is mostly ignored in the literature and an equal sign is used (cf., e.g., Pástor, Sinha,
and Swaminathan 2008; Vuolteenaho 2002).

38 Pástor and Stambaugh (2009) and Sadka and Sadka (2009) are recent studies that
exploit the unbiasedness and lack of correlation between expected returns on the
one hand and the news term on the other hand.
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tor that is able to explain subsequent realized returns asymptotically
is tracking expected returns. This is the motivation for predictive regres-
sions, which are the most common approach to extract cash flow and
expected return expectations (cf. Kelly and Pruitt 2013).39 If the slope
coefficient on the predictors differ from zero in these regressions, that
is, if returns are predictable, one can also estimate the time series of
expected returns as the fitted regression line.

Predictive regressions can also be used to evaluate the quality of
expected return proxies. A proxy that is of any value in tracking ex-
pected returns has to explain subsequent realized returns eventually.
The only additional requirement of the proxy in comparison to any
predictor is that the proxy should measure expected returns theoret-
ically, not only track them. Common examples for predictors, such
as the dividend-price ratio, stock variance, inflation, or the long-term
government bond yield, do not fulfill this requirement because they
are only meant to be related to expected returns, not to measure them
directly. By contrast, ICC and proxies derived from structural models
try to measure expected returns.

To get a better understanding for the predictive regression frame-
work, I summarize the two unexpected news parts in equation (20)
into one unanticipated news error term, ut+1:

rt+1 = µt + ut+1. (21)

Furthermore, I assume that a proxy µ̂t, e.g. the log implied cost of
capital ret , tracks expected returns, but is scaled by a factor s and also
affected by additional measurement error wt:

µ̂t = sµt +wt. (22)

The additional measurement error in equation (22) can arise due
to misspecifications in the underlying proxy. In the case of the ICC,
misspecifications such as incorrect analyst forecasts or terminal value
assumptions have been discussed in Chapter 2.

The scaling factor s is motivated by the simple framework of Pástor,
Sinha, and Swaminathan (2008) that shows that even in the case of no

39 The literature on return predictability is too voluminous to cover here. Recent im-
portant contributions, some of which also deal with statistical issues that arise from
this approach, are Stambaugh (1999), Lewellen (2004), Campbell and Yogo (2006),
Cochrane (2008), Pástor and Stambaugh (2009), and Binsbergen and Koijen (2010).
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measurement error in cash flows, the ICC does not track expected
returns one by one. I show this in detail in Appendix A.2.40

A researcher can now run a predictive regression by regressing sub-
sequent realized returns rt+1 on a proxy µ̂t. Ideally, if a researcher
could observe true expected returns µt, the intercept α of this regres-
sion would be 0 and the slope coefficient βwould be 1 asymptotically.
In the more realistic case in which a researcher has to use a proxy for
expected returns, β is given as

β =
Cov (µ̂t, rt+1)
Var (µ̂t)

=
Cov (sµt +wt,µt + ut+1)

Var (sµt +wt)

=
sVar (µt) +Cov (wt,µt)

Var (sµt +wt)
. (23)

If we assume that the proxy is measured without any error, equation
(23) simplifies to β = 1/s. This result is also obtained in Appendix A.2,
with the only difference being that the scaling factor is calibrated
based on the input parameters in the Pástor, Sinha, and Swaminathan
(2008) framework. The main takeaway here is that the most prominent
expected return proxy, the ICC, will not yield slope coefficients of 1 in
predictive regressions, even if the cash flows are measured without
any error. This happens because the ICC is a geometric average of
the yield curve of equity returns, which is not identical to expected
returns next period.

As another example, suppose that the scaling factor is 1, but that
the proxy is measured with additional white noise, so that equation
(23) simplifies to β = Var(µt)/(Var(µt) + Var(wt)). In this case, β
will be lower than 1 and biased towards 0. This result is known as
the attenuation bias in the literature (cf., e.g., Wansbeek and Meijer
2000). However, this is an extreme assumption and is not likely to
hold in the case of expected return proxies. For example, there is
ample evidence, as shown in Chapter 2, that analyst forecasts are
systematically biased. It is also hard to imagine that the assumptions

40 One could argue that the introduction of a scaling factor is redundant. As I show
in Appendix A.3, it is possible to split up the measurement error into a part that
is driven by expected returns and a part not driven by expected returns. Since I do
not assume that the measurement error is uncorrelated with expected returns, one
could also model µ̂t as µt +wt and assume that one part of wt is given as (s− 1)µt.
I deliberately introduce the scaling factor here to emphasize that the proxies can
differ from expected return next period even in cases in which the proxy is otherwise
correctly measured. As I argue further below, I think that this issue is not of great
relevance to empirical studies.
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about terminal values for the different ICC methods do not introduce
a systematic error.

If the scaling factor is less of an issue for a researcher and he is
mostly interested in minimizing wt, a good evaluation criterion is
the R2 of the regression, which is defined as the squared correlation
between rt+1 and µ̂t in this simple setup. In this case, we get

R2 =

(
Cov (µ̂t, rt+1)√

Var (µ̂t)
√
Var (rt+1)

)2

=
(Cov (sµt +wt,µt + ut+1))

2

Var (sµt +wt)Var (µt + ut+1)

=
(sVar (µt) +Cov (wt,µt))

2

Var (sµt +wt) (Var (µt) + Var (ut+1))

(24)

In Appendix A.3 I show that the R2 is maximized if the variance
of wt is zero, irrespective of the scaling factor s. This is intuitive:
Because the best predictor of subsequent realized returns are true,
but unobservable expected returns today, any other predictor that
tracks expected returns with an additional error term that is at least
partly uncorrelated with expected returns must do worse.

With respect to the evaluation of an expected return proxy, the
above discussion shows that predictive regressions allow a researcher
to evaluate his proxy. In my opinion, it is not necessary to make the
additional assumption that β is equal to 1 in the regressions because
a researcher should argue on prior grounds that his proxy tracks ex-
pected returns. In the case of the ICC, we actually know that β will
not be equal to 1. Empirically, studies are mostly satisfied that the
ICC tracks expected returns and do not require a 1:1 relation between
expected returns next period and the ICC. Actually, the requirement
that the regression coefficient should be 1 can actually lead to nonsen-
sical results. For example, Li, Ng, and Swaminathan (2013) find betas
larger than 1 for their time series predictive regressions of market re-
turns on the aggregated ICC. This can be explained by the fact that
the scaling factor s is lower than 1 in the case of the ICC. It directly
follows that one could “improve” an ICC proxy by adding additional
white noise to it because this will ceteris paribus lower the regression
coefficient and bias the coefficient towards 1. This, of course is non-
sensical, but it is the evaluation criterion for the evaluation method
by Easton and Monahan (2005). I introduce their approach in detail
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in Section 3.4, but in their defense I want to mention that they look at
the cross-sectional predictive power, for which the slope coefficients
are typically far below 1 and therefore this particular problem is less
of an issue.

3.2.3 Issues

The previous section showed that expected return proxies can be eval-
uated with predictive regressions. Unfortunately, this approach relies
on realized returns again and inherits all of the problems associated
with that. For example, I argued above that realized returns are an
unbiased estimator of expected returns, which is a positive character-
istic. Yet, this characteristic only pays off for large samples. In small
samples that are available to an econometrician, inferences are impre-
cise due to the very large variation of both the CF and DR news part.
This is the main point of Elton (1999, p. 1199) when he writes:

The use of average realized returns as a proxy for expected
returns relies on a belief that information surprises tend
to cancel out over the period of a study and realized re-
turns are therefore an unbiased estimate of expected re-
turns. However, I believe that there is ample evidence that
this belief is misplaced. There are periods longer than 10

years during which stock market realized returns are on
average less than the risk-free rate (1973 to 1984). There
are periods longer than 50 years in which risky long-term
bonds on average underperform the risk free rate (1927 to
1981).

Fama and French (2002) further support Elton’s argument. They
show evidence that the large capital gains in the second half of the
20th century were largely unexpected, driven by a decline in expected
discount rates. In terms of equation (20), this means that the high
average of realized returns is not due to high expected returns, µt,
but persistent negative shocks to the discount rate part DRNt+1.

Unfortunately, any evaluation method based on the correlation be-
tween a proxy and realized returns is subject to this large variation.
Furthermore, since true expected returns are unobservable, we do
not know how much of the variation in realized returns is driven by
variation in expected returns and how much is driven by variation in
the news part. In terms of equation (24), we do not know the R2 be-
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tween realized returns and true expected returns. Therefore, without
further assumptions any evaluation of alternative proxies can only be
relative. That is, we can compare two proxies with each other, but we
cannot tell how close one proxy is to the benchmark, µt. In the next
chapter, I discuss these issues in more detail and also argue why a
researcher would want to rely on alternative proxies, despite these
shortcomings.

Before doing so, I introduce two extensions of the simple predictive
regression approach to evaluate expected return proxies.

3.3 the evaluation approach by Lee , So , and Wang (2011)

The main contribution of Lee, So, and Wang (2011) is that they look at
the time series and cross-sectional performance simultaneously. They
start with the assumption that the proxies under evaluation are track-
ing true expected returns for asset i, µi,t ≡ Et[ri,t+1], with an addi-
tional additive firm-specific error term, wi,t:

µ̂i,t = µt +wi,t. (25)

In terms of equation (22), they set s = 1 or, equivalently, they model
scaling issues into the error term (see footnote 40). Ideally, a researcher
wants wi,t to be zero for each period and each firm. However, they
acknowledge the problem that as soon as there is any measurement
error, the criterion to evaluate a proxy is not one-dimensional any-
more because the measurement error term has both a time series and
a cross-sectional component. As a consequence, they argue that a re-
searcher should evaluate a proxy based on its performance in both
dimensions. It should have a measurement error that is stable over
time so that it tracks expected returns more closely in the time series.
And it should have a measurement error structure in the cross-section
that preserves the ranks of true expected returns.

They provide a simple example that illustrates that these two re-
quirements do not imply each other. Suppose there are two stocks A
and B with constant expected returns of 10% and 2%. Suppose fur-
ther that one proxy produces estimates of 2% and 10% for stock A
and B, respectively. Another proxy produces time-varying estimates
that are either 15% and 5% for some periods or 10% and 2% for the
other periods. Lee, So, and Wang (2011) argue that the first proxy is to
be preferred in terms of the time series property because it tracks ex-
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pected returns for both stocks with a constant measurement error. For
cross-sectional analyses the second proxy should be chosen instead
because it preserves the ranking of expected returns across stocks.

To assess the stability of the measurement error for a specific proxy
over time, they propose the use of a modified variance measure. Taking
the time series variance on both sides of equation (25) and rearrang-
ing, firm’s i variance in the measurement error can be expressed as

Vari(wi,t) = Vari(µ̂i,t) − Vari(µi,t) − 2Covi(µi,t,wi,t), (26)

which can be reorganized as

Vari(wi,t) = Vari(µ̂i,t) − 2[Vari(µi,t) −Covi(µi,t,wi,t)]

+ Vari(µi,t). (27)

Lee, So, and Wang (2011) are interested in a relative measure of the
validity of expected return proxies. Therefore, the third term in equa-
tion (27) can be omitted because it does not depend on the specific
proxy:

MVari(wi,t) = Vari(µ̂i,t) − 2[Vari(µi,t) −Covi(µi,t,wi,t)], (28)

where MVari(wi,t) is called the modified variance for firm i and a
specific expected return proxy.

Next, the second term in equation (28) has to be rearranged be-
cause it is dependent on the unobservable expected return process.
Fortunately, it is easily shown that this term is equal to the covari-
ance between subsequent realized returns and the expected return
proxy:

Covi(ri,t+1, µ̂i,t) = Covi(µi,t + ui,t+1,µi,t +wi,t)

= Vari(µi,t) +Covi(wi,t,µi,t). (29)

This derivation holds because Covi(ui,t+1,µi,t) and Covi(ui,t+1,wi,t)
are equal to 0.

Plugging equation (29) into (28), we get

MVari(wi,t) = Vari(µ̂i,t) − 2Covi(ri,t+1, µ̂i,t). (30)

In equation (30), the modified variance MVar is only a function of
observable variables. Obviously, the lower the modified variance, the
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better a proxy is considered to be. Furthermore, note that the lower
bound for the modified variance measure is not zero. Since we omit-
ted a positive term, it can actually be below zero. The lower bound
is −Vari(µi,t), which would be obtained if the proxy is equal to the
true expected returns next period. Therefore, just like in the simple
predictive regressions, µt is the benchmark against which every other
proxy is compared to. Nonetheless, we also have the same problem
as before, that is, we do not know this benchmark and therefore, we
cannot infer how good our proxy is compared to µt. Here, we do not
know what −Vari(µi,t) is.41

It is instructive to compare this evaluation criterion against the sim-
pler R2 criterion. The modified variance measure implicitly punishes
scaled proxies of expected returns next period, such as the ICC. To
see this, suppose we have two proxies. Proxy A has a scaling factor
sA that is unequal to one, but no additional measurement error wi,t.
Proxy B has a scaling factor of one, but additional measurement error
that is white noise. If we take the R2 criterion, the first proxy will win
because R2 is unaffected by any scale transformations of the indepen-
dent variable.

For proxy A, we get the following modified variance measure:

MVarAi (w
A
i,t) = Vari(µ̂

A
i,t) − 2Covi(ri,t+1, µ̂Ai,t)

= s2AVari(µi,t) − 2Covi(µi,t + ui,t+1, sAµi,t)

= s2AVari(µi,t) − 2sAVari(µi,t)

= (s2A − 2sA)Vari(µi,t). (31)

For proxy B, the modified variance measure can be computed as

MVarBi (w
B
i,t) = Vari(µ̂

B
i,t) − 2Covi(ri,t+1, µ̂Bi,t)

= Vari(µi,t) + Vari(wi,t)

− 2Covi(µi,t + ui,t+1,µi,t +wi,t)

= Vari(µi,t) + Vari(wi,t) − 2Vari(µi,t)

= Vari(wi,t) − Vari(µi,t). (32)

The modified variance measure for proxy A is a function of the scal-
ing factor sA and therefore this criterion is not scale invariant. Con-

41 In an additional analysis, they make further stringent assumptions which make it
possible to approximate the variance of µi,t. This, in turn, allows them to compute
the total variance of the measurement error, for which a simple benchmark exists,
0. However, this approach is more of a theoretical exercise due to the additional
assumptions made that introduce specification errors that cannot be evaluated easily.
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sequently, proxies that do not measure expected returns next period,
such as the ICC, get punished by this approach, while the same is not
true for the R2 criterion. By contrast, the modified variance measure
for proxy B is only dependent on the measurement error and the vari-
ance of true expected returns, which can be regarded as a constant
because it is equal for all proxies. Therefore, it could be that B gets a
lower modified variance measure than A although the latter actually
tracks expected returns perfectly.

The question remains how relevant the scaling issue is in practice.
While this question has not been addressed in the current literature
and might be a fruitful problem for future research, I think that there
is reason to believe that it is not of first-order importance. First, as
I mentioned above, a researcher has to make sure a priori that his
proxy actually measures expected returns in an economically reason-
able way, and does not just track it. For example, the ICC, although
it does not measure expected returns next period, does measure a
discount rate and therefore, it fulfills this criterion. A researcher that
would propose an “improved” ICC measure by just scaling it would
likely have a difficult time convincing his colleagues that this is a
reasonable approach. In the end, one would lose the economic in-
terpretability of the ICC. Second, one is mostly interested in com-
parisons within one proxy class of expected returns and within this
proxy class, the scaling factor should be identical to all proxies under
consideration.

For the cross-section, Lee, So, and Wang (2011) evaluate methods
depending on how well they explain the cross-sectional ranking in
terms of their true expected returns. Since these are not observable,
they have to rely again on the correlation with subsequent realized
returns as the criterion, which is identical to the R2 criterion.

In summary, the evaluation approach of Lee, So, and Wang (2011) is
very similar to simple predictive regressions. The main point of their
study is that a two-dimensional evaluation (time series and cross-
section) is necessary because the two dimensions are not redundant.
Just because one proxy is good in one dimension does not necessarily
imply that it is good in the other dimension. There are in my opinion
two objections to this argument. The first one is empirical. As their
Figure 1 shows, there is actually an almost perfect relation between
the two dimensions. Proxies with lower modified variance (time se-
ries dimension) also predict the cross-sectional variation in realized
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returns better. These proxies are two proxies based on the Gordon-
growth formula and the GLS method.

The second objection is one of relevancy. For me, it is unclear why a
researcher should require both criteria to hold simultaneously. If he is
interested in the time series properties, why should he also consider
the cross-sectional explanatory power of his proxy, and vice versa?
Lee, So, and Wang (2011) do not discuss this issue and they also do
not offer a solution to the question of how a researcher should trade
off the time series and the cross-sectional performance of a proxy.

3.4 the evaluation approach by Easton and Monahan

(2005)

So far, I showed that the evaluation of any alternative expected return
proxy is notoriously difficult. We cannot rely on the risk factor ap-
proach because this introduces a circularity argument. Unfortunately,
if we rely on realized returns instead we reintroduce problems which
avoidance was our main motivation for alternative proxies in the first
place. This is just another circularity problem. Again, we have to deal
with the large noise in realized returns that makes statistical infer-
ence very imprecise and, as a consequence, the evaluation very uncer-
tain. Easton and Monahan (2010) (EM hereafter in this chapter) try to
tackle this problem. Their idea is to control for the ex ante unexpected
news terms CFNt+1 and DRNt+1 in equation (20) with proxies that
are observable ex post. Their hope is that this will improve the power
of the regression because the large variation due to information sur-
prises is controlled for.

I do not believe in this argument. In brief, even with the advantage
of hindsight the measurement error in the CF and DR news part is
large. A large body of literature in asset pricing is dedicated to answer
the question of how much of the variation in realized returns is due
to CF news and how much is due to DR news.42 Since the variation
in those parts is an order of magnitude larger than the variation of
true expected returns, any measurement error has a far more severe
impact here. While EM propose a complicated method to evaluate
the measurement error, this method is subject to further assumptions.

42 Examples are Campbell (1991), Campbell and Ammer (1993), Vuolteenaho (2002),
Chen and Zhao (2009), Engsted, Pedersen, and Tanggaard (2012), and Chen, Da,
and Zhao (2013). The study of Chen, Da, and Zhao (2013) is discussed in detail in
Chapter 7.
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Also, it is unclear how results from this measurement error analysis
should be incorporated back into the evaluation approach.

However, my main objection is that EM throw away the most rel-
evant part of knowledge that they gain by taking information over
period t+ 1 into account. Because we know the realization of subse-
quent returns at time t+ 1, we know that the sum of expected returns
and the two news parts has to be identical to the realized returns over
period t+ 1 (see equation 20). Instead, EM use a CF news proxy that
is inconsistent with this relation, which directly shows that their prox-
ies are mismeasured.

Since this approach has found widespread use especially in the ac-
counting literature (cf. Botosan, Plumlee, and Wen 2011; Nekrasov
and Ogneva 2011; Mohanram and Gode 2013; Larocque 2013), I want
to formalize this critique in detail in the next section. In the empirical
part of this dissertation, I support my theoretical arguments empiri-
cally.43

3.4.1 Recapitulation of the Easton and Monahan (2005) approach

EM begin their analysis by replacing the three parts on the right-hand
side (RHS) of equation (20) with empirical implementable proxies for
each firm i and by estimating the following cross-sectional regression:

rit+1 = α+βer̂
k,i
t +βCFNĈFN

k,i
t+1 +βDRND̂RN

k,i
t+1 + ε

i
t+1, (33)

where r̂k,i
t is the log ICC of firm i for a specific method k that should

be evaluated as a proxy for Et[rit+1].
44 ĈFN

k,i
t+1 and D̂RN

k,i
t+1 are the

CF news and DR news proxy, respectively.45 As EM point out, if the
proxies are measured without error, the betas will all be 1 in abso-
lute terms (βDRN should be −1) and the alpha will be 0. This relation
would hold without error because it is derived from a tautology. Real-
ized returns have to be explained as the sum of the three parts. Hence,
they argue that an ICC proxy is the better, the closer the coefficient is

43 This part is based on Jäckel (2013).
44 In general, this approach could also be applied to proxies other than the ICC. How-

ever, EM derive a DR proxy subject to the characteristics of the ICC and it is unclear
how such a proxy could be estimated with other expected return measures.

45 EM multiply D̂RN
k,i
t+1 by −1, so that βDRN should be positive. I do not follow this

procedure because in the variance decomposition literature, D̂RN
k,i
t+1 is also defined

in such a way that a negative DR news shock implies a positive realized return. Later
on, this allows me to compare my results with Vuolteenaho (2002).
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to 1 in a univariate regression. However, a deviation from 1 is not nec-
essarily proof of a bad expected return proxy, but could also be due
to CF and DR news components that are biased in sample. Therefore,
they include proxies for those parts as well and derive an estimate
of the measurement error variance of the expected return proxy in a
second step.

As a return news proxy D̂RN
k

t+1, they use the following formula:46

D̂RN
k

t+1 =
ρ

1− ρ
(̂rkt+1 − r̂

k
t ), (34)

where ρ is a parameter of linearization that arises in the CS loglin-
earization of returns (see Appendix A.1). I motivate this formula fur-
ther below.

For the CF news proxy ĈFNt+1, they use the following formula:

ĈFNt+1 = (roet − froet,t) + (froet+1,t+1 − froet,t+1)

+
ρ

1− ρωt
(froet+1,t+2 − froet,t+2). (35)

In equation (35), froej,m denotes the forecasted log ROE for fiscal
year m and is computed with log earnings forecasts epsm made in
December of year j. ωt is the regression coefficient of a pooled regres-
sion of the roe on its lagged value. It only depends on realized and
forecasted (up to two years into the future) return on equity values.
Easton and Monahan (2005, p. 511) write that "our cash flow news
proxy embeds the assumption that roe follows a first order autore-
gressive process after year t+ 1", an assumption which they claim is
supported by empirical evidence. Note that this proxy is independent
of the specific ICC method k, i.e., the CF news proxy proposed by EM
is constant across methods.

3.4.2 An analytical derivation of the consistent cash flow and discount rate
news proxies

In this section, I first derive an analytical expression of the log ICC
as well as an ICC proxy that is plagued with measurement error. In a
next step, I show that the DR news proxy is just the scaled difference
between two subsequent ICC proxy values, consistent with equation

46 I suppress the firm index i in the following.
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(34) and results recently derived by Chen, Da, and Zhao (2013).47

Finally, I define the CF news as the part of the log price that is left
unexplained by the log ICC and the DR news proxy.

The basic equation of the loglinearization that allows us to derive
equation (19) is the following approximate identity:48

rt+1 = κ+ ρpt+1 + (1− ρ)dt+1 − pt, (36)

where κ is a parameter of linearization and defined as κ = −log(ρ) −

(1− ρ)log(1/ρ− 1). This formula says that log realized returns rt+1
in period t + 1 can be approximated by a weighted average of log
capital gains and log dividends for this period. Putting the log price
pt on the left-hand side (LHS) and solving this equation iteratively
yields49

pt =
κ

1− ρ
+ (1− ρ)

∞∑
j=0

ρjEt(dt+j+1) −

∞∑
j=0

ρjEt(rt+1+j). (37)

This formula is just a loglinearized approximation of the classical
present value formula.

The ICC is defined as the constant discount rate that equates prices
with the sum of discounted cash flows. Due to the loglinearization,
we are now able to solve for the ICC analytically. As Pástor, Sinha,
and Swaminathan (2008) highlight, the ICC is then defined as the
value of ret that solves50

pt =
k

1− ρ
+ (1− ρ)

∞∑
j=0

ρjEt(dt+j+1) − r
e
t

∞∑
j=0

ρj. (38)

Solving for ret yields

ret = κ− (1− ρ)pt + (1− ρ)2
∞∑
j=0

ρjEt(dt+j+1). (39)

Equation (39) gives the theoretical correct ICC, that is, the ICC that
equates the current stock price with true, but unobservable future ex-
pected dividends. Unfortunately, ret is just as unobservable as Et[rt+1]

47 They show that Et
[∑∞

j=1 ρ
jrt+j+1

]
and the ICC contain similar information. Their

approach, however, does not rely on a loglinear return decomposition and they only
work with capital returns instead of total returns.

48 Refer to Appendix A.1 for more details.
49 For this derivation the transversality condition, lim

j→∞ ρjpt+j = 0, has to hold.

50 Refer to Appendix A.2 for more information.
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because the vector of expected dividends is unobservable. Any empir-
ically implementable ICC method makes certain assumptions about
the expected dividend vector and hence, one can think of the estimate
of a specific ICC method, r̂kt , as the sum of two parts: the true ICC,
ret , and an additional measurement error FEk for each period j:

r̂kt = κ− (1− ρ)pt + (1− ρ)2
∞∑
j=0

ρj
[
Et(dt+j+1) + FE

k
t+j+1

]
(40)

= ret + (1− ρ)2
∞∑
j=0

ρjFEkt+j+1.

The actual form of FEkt+j does not matter for the following analysis.51

Here, I abbreviate the sum with VFEkt , which simplifies equation (40)
further:

r̂kt = ret + VFE
k
t . (41)

Next, we can compute the true, but unobservable discount rate part,
DRNt+1, as

DRNt+1 = (Et+1 − Et)

 ∞∑
j=1

ρjrit+j+1

 =
ρ

1− ρ
(ret+1 − r

e
t). (42)

Equation (42) directly follows from the assumption of the ICC that
expected returns for all future periods are constant, an assumption in-
herent in the ICC approach. A researcher, however, does not observe
DRNt+1 and hence, he has to find a proxy. Given that the researcher
already has a proxy for the ICC, he can just substitute his proxy from
equation (41) into equation (42). This results in

D̂RN
k

t+1 =
ρ

1− ρ
(̂rkt+1 − r̂

k
t ) (43)

=
ρ

1− ρ
(ret+1 − r

e
t + VFE

k
t+1 − VFE

k
t ).

Equation (43) is identical with the proxy from equation (34) that EM
use in their study. Despite some criticism,52 this is the correct proxy
for DR news given a specific ICC method. If one believes that a particular
ICC method is the correct proxy for the expected return next period, it

51 Reasons on why the cash flows are most likely measured with error are given in
Chapter 2.

52 Easton and Monahan (2010) have a summary of the points of criticism brought for-
ward against this DR proxy. They also defend it there.
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directly follows from this belief that the DR news component is just a
scaled difference of two subsequent ICC values, whereby the scaling
factor is ρ/(1− ρ). Of course, a researcher is well aware of the fact
that his ICC proxy is only an approximation of the true underlying
expected return for next period because he knows that it is plagued by
measurement error VFEkt . Yet he does not know how to obtain a better
proxy, i.e., a proxy with better characteristics of the measurement
error part VFEk.53 Because if he did, his ICC proxy would not be his
best guess to begin with and an evaluation of such a method would
be unnecessary.

Therefore, I completely agree with EM on their DR news proxy.
However, I show next that the inherent assumption that the evaluated
ICC method is the best proxy a researcher has also determines the CF
news proxy.54

To do so, we can replace the LHS of equation (20) with equation
(36) and the RHS of equation (20) with r̂kt for Et[rt+1] and the ex-
pression in equation (43) for the DR news part. Solving for the CF
news part and acknowledging that we use proxies now, not the true
unobservable variables, we get

ĈFN
k

t+1 = κ+
ρ

1− ρ
r̂kt+1−

1

1− ρ
r̂kt +ρpt+1+(1−ρ)dt+1−pt. (44)

Equation (44) defines ĈFN
k

t+1 as a function of the ICC of a specific
method k at the beginning and end of period t+ 1, respectively, the
price changes within the period, and the dividend at the end of pe-
riod t+ 1. I want to emphasize that this definition does not need any
additional assumptions. Except for the well-accepted loglinearization,
I make no further assumptions, for instance about the dividend or
measurement error process. Setting the ICC as the constant discount
rate for all future periods, as done in equation (38), is not an assump-

53 I am deliberately imprecise here because there is not a one-dimensional criterion
to assess the measurement error, a point made by Lee, So, and Wang (2011) and
discussed previously. For instance, a researcher might prefer an ICC method that
has a larger (in absolute values), but constant measurement error over a method that
has a smaller, but time-varying measurement error because the former would keep
the ordering of expected returns in the cross-section.

54 Ang and Liu (2007) make a similar point. They show that given a dividend pro-
cess, any one of the three variables – return volatility, expected returns, and price-
dividend ratios – completely determine the other two. Here, I argue that given a
dividend process assumed by a researcher and a market price, the expected returns,
which are assumed to be constant, are completely determined by the CS return de-
composition.
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tion I need for my derivations, but the standard assumption within
the ICC literature.

By putting equation (43) and (44) into equation (20), we get the
following relation between realized returns rt+1 in period t + 1 on
the one hand and the expected return proxy r̂kt , the proxy for CF

news ĈFN
k

t+1, and the proxy for DR news, D̂RN
k

t+1, on the other
hand:

rt+1 = r̂
k
t

+ κ+
ρ

1− ρ
r̂kt+1 −

1

1− ρ
r̂kt + ρpt+1 + (1− ρ)dt+1 − pt

−
ρ

1− ρ

(
r̂kt+1 − r̂

k
t

)
. (45)

It is instructive to replace the three proxies with their true, but unob-
servable counterparts plus their measurement errors:

rt+1 = r
e
t + VFE

k
t

+CFNt+1 +
ρ

1− ρ
VFEkt+1 −

1

1− ρ
VFEkt

−DRNt+1 −
ρ

1− ρ
VFEkt+1 +

ρ

1− ρ
VFEkt . (46)

Equation (46) shows that the tautological relation between realized
returns and its three parts can be maintained in the case in which
possibly time-varying future expected returns are replaced by a con-
stant ICC. The measurement error terms in this equation cancel out.55

Equation (45) proves that this tautological relation is also achiev-
able empirically, i.e., in the case in which the ICC is measured with
error due to the unobservable vector of expected dividends. It is ob-
vious from this equation that the CF and DR news proxies are just as
plagued with measurement error as is the ICC proxy. Yet, my point is
that if one uses the tautological relation from equation (36), as EM do,
then one also has to define the parts in a consistent way. And if one
does so, the multivariate regression from equation (33) will always
return betas of 1, no matter which ICC method is used. However, EM
only define the DR news part as a function of the ICC proxy under
evaluation. As I showed, this is inconsistent.

55 Note that this argument does not hold if one uses the proxy proposed by EM (see
equation 35). In this case, the measurement error terms in the second and third line
of equation (46) are not identical, which breaks the tautological relation. This is my
main motivation to label the CF proxy by EM inconsistent.
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But why is it inconsistent to use an independent CF news proxy?
This is probably best answered with a short example: Suppose that
the log realized return in one period is 20% and, for simplicity, no
dividends are paid in that period and the expected return is 0%. That
is, the returns are completely due to capital gains induced by infor-
mation surprises. Suppose further that this positive return is driven
equally by positive CF news and negative DR news. Moreover, a re-
searcher does not have access to the true vector of future expected
cash flows and returns, and therefore, does not know that CF and DR
news were equally important for this period. Instead, he estimates
with his specific methodology that the sum of the expected return
proxy next period and the proxy for DR news is 15%. Now, what is
his best estimate of the CF news proxy? Obviously, the answer is 5%.
By contrast, if he applied a different method and obtained a value of
8% for the sum of the expected return next period and the DR news,
his best guess would be 12% for the CF news part. This directly fol-
lows from the tautological relation between realized returns on the
one hand and the three proxies on the other hand. If the researcher
regresses the realized returns on his proxies, he will be able to per-
fectly explain the 20% for both methods. Of course, this does not
mean that these two methods are perfect, it simply means that one
can always offset any measurement error in one part by introducing
an opposite measurement error in the other part.56 By contrast, EM
do not require that expected returns, CF news, and DR news sum
up to realized returns. Therefore, they would not object to match ob-
served realized returns of 20% with an ICC estimate of 10%, positive
CF news of 10%, and negative DR news of 10%. I consider this to be
inconsistent.

One could argue that it is better to use an independent CF news
proxy instead of a consistent proxy plagued with added measure-
ment error. In the example above, if the researcher could estimate
a CF news proxy of 10% (i.e., the true CF news for this period) he
should add this proxy to his regression. I totally agree with this ar-

56 This is a well known property of the CS return decomposition in the literature that
estimates CF and DR news not with an ICC, but with a vector autoregression (VAR)
approach. For example, Chen and Zhao (2009) highlight that every misspecification
error to predict future expected discount rates necessarily shows up in the CF news
term. Recently, Chen, Da, and Zhao (2013) entertain the ICC to separate capital gain
returns into a CF and a DR news part. The argument made here can also be seen
from their equations (3) to (5). Capital gain returns can be split up with any ICC
method into the two parts. Only the percentage of each part that drive the capital
gain returns differ from method to method. I introduce their approach in detail in
Chapter 7.
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gument, but I argue that it is not possible to find such a proxy. CF
news are just as unobservable as the other two parts in the CS return
decomposition approach, both ex ante and ex post. So before using
such a CF news proxy, the researcher would want to evaluate its qual-
ity. To do so, the approach of EM recommends running a multivariate
regression with proxies for the other two parts, thereby introducing a
circularity argument. But what if the researcher has a prior belief that
his CF news proxy is better than the consistent one that is dependent
on the specific ICC method and hence, he does not need an empirical
validation for it? In this case, he should not empirically evaluate in-
ferior ICC methods, but instead propose a better ICC method based
on his superior CF news proxy. Put differently, the CF news proxy on
the one hand and the expected return proxy as well as the DR news
proxy on the other hand are linked by a tautological relation, so the
test of the quality of one is always a joint test of the quality of the
other.57

Take the method proposed by Claus and Thomas (2001). They trans-
form the first five IBES earnings forecasts into a residual income and
assume from period 5 on that the residual income grows with the
expected inflation rate. However, by using the CF news proxy as pro-
posed by EM, a researcher inherits on the one hand the assumptions
from the Claus and Thomas (2001) method and assumes on the other
hand that an investor only uses analyst forecasts up to two years into
the future – to compute the CF news (see equation 35). In terms of
equation (46), a researcher uses two different sets of measurement
errors VFEkt .

It is obvious that both assumptions cannot hold simultaneously.
One might object that the assumption made by Claus and Thomas
(2001) is a necessary simplifying assumption, and not the true ex-
pectation generating process of an investor. That is, VFECTt deviates
from zero at least for some periods t. This is most certainly true, and
the very reason one wants to evaluate ICC methods in the first place.
But then, why use a CF news proxy that is just as incorrect as and
inconsistent with the ICC method? The counter argument that the

57 This argument only holds, as shown before, in the case of the ICC, i.e., under the as-
sumption that future expected returns are constant. In this case, the expected return
proxy for next period and the DR news proxy are inherently linked, a point made
before by Pástor, Sinha, and Swaminathan (2008) and Chen, Da, and Zhao (2013).
In the more general case in which a researcher has only a proxy for next period’s
expected return and no such proxy for DR news, there are now two unknowns and
an expected return proxy does not pin down the CF news proxy, but in this case the
approach of EM is not applicable either.
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proxy might be better than the one derived to be consistent with the
ICC introduces a circularity argument: if we knew that it would be a
better proxy, we could then extract a better ICC method in the first
place. But since we do not know it and we have no way of evaluating
that proxy, we should not use it to evaluate another proxy. Easton
and Monahan (2010, p. 9) bring this argument up themselves, just in
a different context in which they discredit the risk factor evaluation
approach introduced in Section 3.1 by writing:

Stated another way, it is illogical to evaluate the reliability
of one proxy by comparing it to another set of proxies that
may also be unreliable.

In summary, my analysis shows that measurement error per se
does not break the tautological relation between realized returns on
the one hand and any ICC proxy as well as CF and DR news proxies
on the other hand, as long as the latter two are defined in a consis-
tent way. EM, however, only define DR news in a consistent way. If
one uses consistent proxies, the relation between any ICC proxy and
subsequent realized returns will always erroneously indicate a perfect
ICC method. As a side note, this is exactly what Chen, Da, and Zhao
(2013) do, abstracting from minor methodological differences. They
estimate the CF and DR news part, thereby assuming that their ICC
method is measured without error. I describe their approach in detail
in Chapter 7.

3.5 discussion

In this chapter, I discussed several empirical methods that have been
proposed to select the best proxy among the many specifications avail-
able to the applied researcher. If one uses realized returns as a proxy
for expected returns, there is no leeway for an econometrician in mea-
suring this proxy because it is observable. Hence, the question of se-
lecting the correct proxy is irrelevant.

By contrast, as the previous chapter has shown, there are a mul-
titude of alternative proxies to choose from. In the case of the ICC
alone, there are now several dozen combinations of methods and in-
put parameters that are entertained in the literature. Furthermore, if
anything, this number will increase in the future because the litera-
ture continues to expand, as can be seen from recent modifications
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by Hou, Dijk, and Zhang (2012), Chen, Da, and Zhao (2013), and Mo-
hanram and Gode (2013).

This is a severe problem, as it increases the likelihood of finding
a relation between a variable of interest and a proxy by chance. This
problem is nicely illustrated by Freedman’s paradox.58 In a simple
Monte Carlo simulation, he shows that predictors that are uncorre-
lated with the dependent variable can appear artificially important.
This happens if there are many such predictors to choose from and
the sample size is comparatively small. Of course, this is an extreme
case of “number crunching” in which a researcher can choose from a
large set of predictors at will. In the case of expected return proxies, a
researcher is constrained by economic theory that requires the proxy
to be meaningful in the first place. Nevertheless, the previous chapter
has shown that even in the boundaries of reasonable proxy specifi-
cations there are many different proxies with different measurement
error processes to choose from. Furthermore, I show in the empirical
part of this thesis that the use of different proxies leads to notewor-
thy differences in the results. There is also the additional problem
that these processes might not be white noise, as Freedman (1983) as-
sumes to show his paradox, but are actually related to the variable of
interest in the research question at hand. Thus the issue of “data fish-
ing”, “data mining” or “number crunching”, as Leamer (1978) called
it, is a relevant one in the case of expected return proxies.59

Easton and Monahan (2005) and Lee, So, and Wang (2011) acknowl-
edge this problem and propose a first step of a solution. They argue
that an external validation of any proxy is necessary to prevent such
data fishing. In my opinion, this is an important insight and contri-
bution to the literature, but it has been mostly ignored by empirical
research.60

58 See Freedman (1983) and Lukacs, Burnham, and Anderson (2010) for a recent dis-
cussion.

59 Manski (2007, p. 7) gives a reason why such data fishing might occur: “Forthright
acknowledgement of ambiguity should be the norm, but it is distressingly rare. The
scientific community rewards those who produce strong novel findings. The pub-
lic, impatient for solutions to its pressing concerns, rewards those who offer simple
analyses leading to unequivocal policy recommendations. These incentives make it
tempting for researchers to maintain assumptions far stronger than they can per-
suasively defend, in order to draw strong conclusions.” Often, this phenomenon is
called the “publication bias” (cf., e.g., Harvey, Liu, and Zhu 2013).

60 To be more precise, it is ignored in the literature that simply wants to apply alterna-
tive expected return proxies to answer questions about the relation between expected
returns and a variable of interest. Studies that try to improve upon expected return
proxies have to justify that their proposals actually work. To do so, these studies use
the evaluation methods presented in this chapter.



3.5 discussion 61

The ignorance is most probably due to the fact that this evalua-
tion again relies on realized returns. Alternative proxies are meant to
replace realized returns, so econometricians have an objection on rely-
ing on those proxies again to evaluate their alternative proxies. In the
end, what could one learn from such alternative proxies that could
not be learned from realized returns in the first place? Furthermore,
the reason we want to replace realized returns, i.e., their large unsys-
tematic shocks, also leads to weak power of those evaluation tests. In
brief, just as we are unable to get precise estimates of expected re-
turns with realized returns in short samples, we are also unable to
identify the best alternative proxy with realized returns in such short
samples.

Currently, there is no way to incorporate this uncertainty in the
selection of the best proxy into the statistical inference. It is therefore
not surprising that researchers prefer to select a proxy they deem
more reasonable personally rather than to rely on such a weak test.
However, this introduces the problem again that a researcher might
not have chosen a proxy he deems more reasonable, but simply one
that better supports his research question.

Therefore, the current procedure is unsatisfactory because it can
lead to overconfident and biased results. In the next chapter, I in-
troduce a method that incorporates the information of all proxies si-
multaneously and automatically, thereby alleviating concerns of data
fishing. It is an extension of the evaluation approaches introduced
here that does not just select a single best proxy, but weighs the evi-
dence across all proxies based on how well they explain subsequent
realized returns. Therefore, the uncertainty in the selection process
is acknowledged.61 Because the problems with realized returns are
a small-sample problem, in large enough samples we can identify
the best proxy with a probability that converges to 1. Thus a model
selection approach and my model averaging approach are identical
asymptotically. The same is not true for small samples, in which a
model selection approach leads to incorrect results. Additionally, I
am able to work out a caveat that applies to all alternative proxies. We
are only able to make relative comparisons between different proxies,

61 This idea is related to the study of Pástor and Stambaugh (1999). They acknowledge
that an investor who wants to estimate expected returns from a factor-based asset
pricing model such as the CAPM or the Fama-French three-factor model faces great
uncertainty about the correct parameter values within the models and about the
correctness of the models themselves. They apply a Bayesian framework as well to
incorporate this uncertainty into the statistical inference, although their focus is on
the parameter uncertainty within each model.
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but not absolute comparisons between any proxy and true expected
returns. Hence, results on alternative proxies might be biased even
asymptotically, a shortcoming a researcher has to live with if he wants
to replace realized returns.



4
B AY E S I A N M O D E L AV E R A G I N G A N D E X P E C T E D
R E T U R N P R O X I E S

In the last chapters, I argued that the evidence from the performance
evaluation of expected return proxies is mostly ignored in applied
research due to the large uncertainty inherent in this evaluation. In-
stead, researchers typically choose one or a few proxies in an ad-hoc
manner.

In Section 4.1 of this chapter,62 I show in a simple setup that such
a course of action can severely bias the empirical results because a
researcher ignores the large uncertainty he has about the correctness
of his proxies. As the following quote illustrates, this issue is well
known in the model selection and model averaging literature:

However, even when we do objective, data-based model
selection [...], the selection process is expected to intro-
duce an added component of sampling uncertainty into
any estimated parameter; hence classical theoretical sam-
pling variances are too small: They are conditional on the
model and do not reflect model selection uncertainty. One
result is that conditional confidence intervals can be ex-
pected to have less than nominal coverage.63

Fortunately, model averaging is a solution to this problem that al-
lows the incorporation of such uncertainty into the statistical infer-
ence. In Section 4.2, I introduce the most prominent averaging ap-
proach, BMA, and apply it to the proxy selection problem. The basic
idea of the BMA approach is to average across the evidence of each
proxy, conditional on the relative weight this proxy should have in
comparison to its competitors. In Section 4.3, I discuss the compu-
tation of these model weights in detail. Section 4.4 summarizes this
chapter.

Model uncertainty and issues arising from it have recently gained
attention in the finance literature and approaches similar to mine that
also rely on Bayesian statistics have been used to address these issues.

62 This chapter is based on Jäckel (2014).
63 Cf. Burnham and Anderson (2002, p. 156).

63
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For example, Pástor and Stambaugh (1999), Pástor (2000), and Pás-
tor and Stambaugh (2000) use a Bayesian framework to consider the
uncertainty an investor has in choosing the correct factor-based asset
pricing model and issues that arise out of this uncertainty, such as
estimating the cost of equity capital or selecting the portfolio weights.
Cremers (2002) and Avramov (2002) use BMA to evaluate the evi-
dence of return predictability of many predictors simultaneously. Pás-
tor and Stambaugh (2012) show that stocks are more volatile in the
long run from an investor’s perspective than commonly believed due
to various uncertainties that the investor faces.64 I contribute to this
growing literature by introducing the issue of uncertainty into the
proxy variable selection problem.

4.1 motivation

Suppose we are interested if the time series of variable xt is related
to expected returns, Et[rt+1] ≡ µt. For illustration purposes, suppose
the following linear relation:65

µt = γxt + εt, t = 1, . . . , T . (47)

Using a univariate, classical regression setting with the assumption
of normally distributed mean zero errors εt, we can regress µt on xt
and test if the estimator γ̂ is significantly different from zero. Because
µt is unobservable, the researcher has to identify observable proxies,
one of which is realized returns rt+1.

As discussed in the previous chapter, it is easily shown via equation
(21) that the unconditional mean of rt+1 is equal to the unconditional
mean of µt. In other words, realized returns are an unbiased estima-
tor of expected returns. Despite this advantageous characteristic, re-
alized returns have come under criticism due to the fact that the vari-
ation in ut+1 is an order of magnitude larger than the variation in µt.
This makes statistical inference notoriously difficult, as highlighted

64 Pástor and Veronesi (2009) give an excellent introduction into the literature on learn-
ing in financial markets. This literature deals with the uncertainty an economic agent
has about the correct parameters and models, how they have to learn about them
over time and how this affects the results. My research deals with one type of uncer-
tainty in particular, namely the uncertainty about the correct specification of alterna-
tive expected return proxies.

65 For simplicity, I assume that the intercept is zero.
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earlier. Plugging equation (21) into (47), the sampling variance of the
estimator based on realized returns, γ̂rr, is given by

Var(γ̂rr) =
Var(εt) + Var(ut+1)∑T

t=1(xt − E[x])
2

. (48)

In small samples, the large variance of ut+1 results in a large sam-
pling variance for γ̂rr that can hinder the detection of an existing
relation between µt and xt. This insight has led to a “proxy variable
search” with the hope of identifying alternative proxies for expected
returns that are not plagued with the large noise inherent in realized
returns. One particularly fruitful proxy class has been the ICC that
was introduced in Chapter 2.

Unfortunately, these proxies are subject to measurement error. I
ignore the additional scaling factor s here and assume that a proxy
µ̂t,k, measured at time t, is tracking µt with an additional, additive
proxy-specific error term wt,k:

µ̂t,k = µt +wt,k, t = 1, . . . , T . (49)

If we run regression (47) with a proxy as defined in equation (49),
the resulting regression coefficient γ̂k converges asymptotically to the
true coefficient, γ, and an additional bias term:

γk =
Cov(µ̂t,k, xt)
Var(xt)

=
Cov(µt +wt,k, xt)

Var(xt)

=
Cov(µt, xt) +Cov(wt,k, xt)

Var(xt)

=
Cov(γxt + εt, xt)

Var(xt)
+
Cov(wt,k, xt)
Var(xt)

= γ
Var(xt)

Var(xt)
+
Cov(wt,k, xt)
Var(xt)

= γ+
Cov(wt,k, xt)
Var(xt)

= γ+Biask. (50)

Obviously, the hope of a researcher who applies proxy k is that the
mean and variance of wt,k are close to zero. In this case, the re-
searcher is able to detect a relation between xt and µt much more
precisely, compared to the analysis that employs realized returns. The
danger, however, is quite obvious as well: if wt,k is systematically cor-
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related with xt, or if by chance the two comove in sample, then one
might incorrectly deduce a relation between µt and xt from the data,
although this relation is solely due to the specific measurement error
of the proxy under consideration.

This simple example provides a nice motivation for the evaluation
methods introduced in Chapter 3. Studies such as Easton and Mon-
ahan (2005) and Lee, So, and Wang (2011) realize that we need an
external validation of the quality of alternative proxies. Furthermore,
these studies show that such an external validation exists in the form
of predictive regressions.

However, I argued before that predicting subsequent realized re-
turns is notoriously difficult. Until now, there has been a heated de-
bate if any predictor, not just expected return proxies, can actually
predict realized returns.66 We therefore have a large number of prox-
ies to choose from and we are unable to precisely determine which
of these proxies is best. In short, we face large model uncertainty. As
a solution to deal with this uncertainty, I introduce model averaging
to the expected return proxy literature in the next section.

4.2 model averaging approach

Within a Bayesian framework, Leamer (1978) shows that the posterior
distribution of a quantity of interest ∆ can be computed, given data
D, as the average of the posterior distributions under each model,
weighted by their posterior model probability.67 If we interpret each
proxy as a separate model, we therefore get

p(∆|D) =

K∑
k=1

p(Mk|D)p(∆|D,Mk), (51)

where Mk = M1, . . . ,MK are the models considered. Equation
(51) implies that the marginal distribution of the parameter of inter-

66 For recent surveys of the literature, see Koijen and Van Nieuwerburgh (2011) and
Cochrane (2011).

67 The most popular derivative of model averaging is the one based on Bayes’ theo-
rem, which is also the foundation in Leamer’s work. This approach subsumes under
the name of Bayesian model averaging. There are also frequentist alternatives based
on information-theoretical criteria such as Akaike information criterion (AIC) or
Bayesian information criterion (BIC) (cf. Claeskens and Hjort 2008). As I show later
on, due to the simplicity of my setup both approaches yield identical results. There-
fore, the debate about differences between the two approaches is not an issue for the
purpose of my approach. Still, in line with most studies that focus on model aver-
aging techniques, I use a Bayesian setting to motivate my approach. Appendix A.4
gives an introduction into Bayesian statistics.
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est is a mixture distribution. The mixture probabilities are the pos-
terior model weights, p(Mk|D), and the individual distributions are
the distributions of the parameter of interest, conditional on a specific
model.

In this simple framework, the only difference between two models
Mk and Mj is that the proxy µ̂k is replaced with µ̂j.68 Additionally,
D is split into two parts here: the part DRQ is the part of the data
needed to answer the research question at hand. In the simple setup
introduced in the previous section, DRQ consists of the matrix of ex-
pected return proxies and xt. DP is the part of the data needed to
compute the posterior probability of each proxy measuring true ex-
pected returns, given that one of the proxies is indeed correct. As
argued before, this data consists of the set of proxies under consid-
eration and subsequent realized returns. The separation of the data
set is a direct consequence of the previous discussion: if we evaluate
the quality of a proxy in terms of how well it explains the research
question at hand, we run the risk of finding spurious relations driven
by measurement error, and not by true expected returns. This is the
main differentiation between my approach and other studies that ap-
ply BMA: Since measurement error is not such an obvious problem in
other studies, a model is considered to be superior if it is better able
to explain the research question.69 In contrast, I use subsequent real-
ized returns to infer the posterior model weights p(Mk|DP), which is
a measure of the quality of the proxy.70 This computation is indepen-
dent of the specific research question. Results for each proxy are then
obtained for the research question and averaged across the proxies
based on the model weights.

68 This is important for the reader to keep in mind because I use the words proxies
and models somewhat interchangeably. The latter is often used to conform with the
language of the model selection and averaging literature.

69 For example, Fernandez, Ley, and Steel (2001) and Sala-I-Martin, Doppelhofer, and
Miller (2004) employ BMA to test the robustness of explanatory variables in cross-
country economic growth regressions. Since the literature has come up with a multi-
tude of possible regressors, the question arises which combinations of those regres-
sors help in explaining cross-country economic growth and how to take issues of
model uncertainty into consideration. In this application problems of measurement
error are ignored. As a consequence, the better a model explains the dependent
variable, the higher its posterior model probability will be.

70 The computation of the weights is discussed further below.
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To emphasize the separation between the posterior model weight
computation and the subsequent statistical inference, equation (51)
can be rewritten as

p(∆|DRQ,DP) =
K∑
k=1

p(Mk|DP)p(∆|DRQ,Mk). (52)

The posterior distribution of the parameter of interest, p(∆|DRQ,Mk),
can be derived from a Bayesian perspective. That is, one would spec-
ify the prior for this parameter, p(∆|Mk), and the likelihood condi-
tional on the parameter, p(DRQ|∆,Mk). The posterior is proportional
to the product of likelihood and prior. While this seems to be a daunt-
ing task at first glance, it is greatly simplified by the fact that each
model has the same interpretation in the case of expected return prox-
ies. Since each proxy wants to measure the same, all parameters have
the same interpretation. In this thesis, I choose a simpler approach
that is more in line with current practice that mostly applies frequen-
tist approaches: For the posterior distribution of the parameter of in-
terest I use the sampling distribution from the frequentist approach.
For example, if we run a time series regression as specified in (47)
and are interested in the slope coefficient, p(∆|DRQ,Mk) is just the
sampling distribution of the slope coefficient from a regression of a
specific proxy on xt. These distributions are easily adjusted to incor-
porate heteroskedastic or autocorrelated error structures, as will be
shown in the empirical examples in Chapter 7.

Coming back to the research question from the previous section,
the first two moments of γ̂ can then be calculated as71

E[γ̂BMA|DRQ,DP] =
K∑
k=1

p(Mk|DP)γ̂k, (53)

and

Var(γ̂BMA|DRQ,DP) =
K∑
k=1

p(Mk|DP)Var(γ̂k|DRQ,Mk)

+

K∑
k=1

p(Mk|DP)(γ̂k − E[γ̂BMA|DRQ,DP])2. (54)

While the mean estimate across all models is simply a weighted av-
erage across the estimate of each model, the variance of the com-

71 Leamer (1978) provides a derivation of these results.
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bined estimate γ̂BMA exceeds a weighted average of the variances
of the estimates within each model by an amount that depends on the
variability of the estimates across models. Consider a case in which
Var(γ̂k|DRQ,Mk) is quite small for all models, i.e., conditional on
a certain proxy the regression coefficient is measured accurately, but
across proxies, the coefficients vary widely. In such a case a researcher
would severely underestimate the variability of the parameter of in-
terest if he was only to focus on one proxy.

In the case of the proxy literature, it is an apparent advantage (see,
for instance, Lee, Ng, and Swaminathan 2009) that the statistical infer-
ence is much sharper due to considerably lower standard errors. This
statement, however, is often based on evidence for one proxy. Equa-
tion (54) shows that the variance could indeed be much larger if the
coefficients between different proxies differ substantially.

By plugging equation (50) into equation (53) and (54) and rearrang-
ing, we can express E[γ̂BMA|DRQ,DP] and Var(γ̂BMA|DRQ,DP) as
follows:

E[γ̂BMA|DRQ,DP] = γ̂+BiasBMA, (55)

and

Var(γ̂BMA|DRQ,DP) =
K∑
k=1

p(Mk|DP)Var(γ̂+Biask)

+

K∑
k=1

p(Mk|DP)(Biask − BiasBMA)
2, (56)

where BiasBMA =
∑K
k=1 p(Mk|DP)Biask. Equation (55) and (56) are

instructive representations of the discussion above. First, if one of
the proxies is measured without error, we want its posterior model
probability to approach unity. In this case E[γ̂BMA|DRQ,DP] and
Var(γ̂BMA|DRQ,DP) will converge to γ̂ and Var(γ̂). Second, if the
bias over all models varies randomly around zero and all proxies get
equal support in the data, the average estimate across the models,
γ̂BMA, will be unbiased, but there is considerable model uncertainty
that is automatically incorporated into the BMA analysis. Conversely,
if an econometrician only examines a subset of the proxies, one might
end up with biased estimates. Third, if all proxies under considera-
tion are systematically biased, BMA will fail.72 Finally, all approaches

72 Therefore, it is a commonly made assumption in the BMA literature that the true
model is part of the set of models considered (cf., e.g., Lunn et al. 2012, Chapter 8).
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that base their results on only one proxy, whether this proxy is chosen
ad-hoc or by its ability to predict subsequent realized returns, ignore
the variability of the parameters from different models. This leads to
overoptimistic decisions and can result in the false identification of
seemingly robust relations.73

4.3 computation of posterior model weights

I follow Avramov (2002), Cremers (2002), and Binsbergen, Hueskes,
et al. (2013), which are all studies that run predictive regressions in a
BMA framework to compute posterior model weights. Consider a set
of k linear univariate models Mk = M1, . . . ,MK with the kth model
be given by

rt+1 = β0 +β1µ̂t,k + εt+1, t = 1, . . . , T , (57)

where εt+1 is assumed to be identically, independently, and normally
distributed with mean zero and unknown variance σ2. Furthermore,
I assume that the regressors are strictly exogenous. This assumption
is clearly false because both the ICC at time t and realized returns in
period t+ 1 are dependent on asset prices at time t (cf. Stambaugh
1999). Nevertheless, it is a commonly made assumption in the liter-
ature (cf., e.g., Cremers 2002 and Wright 2008) and previous studies
have argued that they expect the introduced bias to be small. More-
over, it is an issue that is typically ignored in the model selection
approaches introduced in Chapter 3 as well.

73 In Appendix A.5, I introduce a Monte-Carlo exercise that compares the performance
of the BMA approach with current selection procedures. I simulate the relations
between a variable of interest, latent expected returns, and expected return proxies
for four different specifications in a simple setup. The simulation results confirm the
statements here. In short samples, BMA can severely decrease the bias in estimates
and increase the coverage, i.e., BMA results in coverage regions that include the
true underlying parameter more often. Alternative approaches, such as using the
proxy that shows the strongest relation with the variable of interest or averaging
across the proxies before the analysis, perform worse for those four specifications.
In untabulated results, I repeat the simulation for many more specifications and
find that alternative selection procedures perform mostly worse, sometimes equally
well, and almost never better. The cases in which they perform better are cases of
random measurement error added to the proxies and in which there is an actual
relation between the variable of interest and true expected returns. In these cases,
the attenuation bias is compensated by the overestimation due to selecting the best
proxy. Hence, in these cases the BMA approach is more conservative.
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In general, the posterior model probability for model k is com-
puted, given data DP, via Bayes’ theorem as

p(Mk|DP) =
p(DP |Mk)p(Mk)∑
k p(DP |Mk)p(Mk)

, (58)

where

p(DP |Mk) =

∫ ∫
p(DP |βk,σ2,Mk)p(βk|σ

2,Mk)p(σ
2)dβkdσ

2. (59)

Therefore, we have to specify two priors. First, a prior about the prob-
ability of each model, p(Mk). Second, priors about the parameters
β = (β0,β1) and σ2. Both cases can be tricky if the number of ex-
planatory variables differs between models and if the parameters’ in-
terpretation changes from model to model.74 In my case, however,
this is not an issue because each model has only one explanatory
variable and the interpretation in each model is the same. The default
assumption about p(Mk) is to give each model the same weight a
priori:

p(Mk) =
1

K
. (60)

I use the same priors as Wright (2008) and Binsbergen, Hueskes, et al.
(2013). That is, I make the assumption that β takes the natural conju-
gate g-prior specification proposed by Zellner (1986). The prior on β
conditional on the variance of the error term σ2 is therefore given as
N(0,φσ2(X′kXk)

−1), where φ is a shrinkage parameter that controls
the informativeness of the prior and Xk is the T × 2 matrix of a T vec-
tor of ones and the T vector µ̂k. Since σ2 is identical across models,
we can use an improper prior of an inverse gamma (0,0) that is pro-
portional to 1/σ. Then, the posterior model weights can be computed
from75

p(Mk|DP) ∝
(
r′r−

(
φ

1+φ

)
r′Xk(X

′
kXk)

−1X′kr

)−T/2

, (61)

where r ≡ (r2, . . . , rT+1) denotes the vector of subsequent realized
returns. Finally, we just have to normalize equation (61) so that all
model weights sum to one.

74 For a discussion of these issues, see, for instance, Ley and Steel (2009).
75 I can ignore all terms here that are constant across models because they cancel out

in equation (58).
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The parameter φ governs the informativeness of the researcher’s
prior information. The lower φ, the more weight is put on prior in-
formation. In the limit, if φ = 0, p(Mk|Dp) is equal for all models,
i.e., the posterior probabilities are identical to the prior probabilities
p(Mk).

To provide a link with frequentist approaches and to get rid of
the subjective aspects of the prior assumptions, we can increase φ
to reduce the impact of the priors. In the limiting case, i.e., φ → ∞,
the posterior model weights in equation (61) become proportional to
(SSE)−T/2, where SSE is the sum of squared errors from an ordinary
least squares (OLS). This result is also derived by Leamer (1978) who
is in search of a reasonable diffuse prior. Because the sum of squared
errors is proportional to the negative of the R squared, the weights
can be computed from the latter instead as well.

Furthermore, it is easy to show that in this case the weights com-
puted from equation (61) are identical to the weights that would be
obtained from information-theoretical approaches that use AIC or
BIC based on the following formula:76

pAIC(k) =
exp(0.5∆AIC,k)∑
i exp(0.5∆AIC,i)

, (62)

where ∆AIC,k = AICk −max(AIC1, . . . ,AICK). This subtraction is
made merely for computational reasons. In equation (62), we can re-
place AIC with BIC; since the model sizes are identical across models,
the penalty term that normally differs between AIC and BIC does not
matter.

To summarize, both a noninformative Bayesian approach as well as
a frequentist approach yield identical results due to the simplicity of
the setup (univariate linear regression for each model). Consequently,
debates about which approach is superior are not relevant here and
model weights, given the data, are easily computed. The better a
proxy is able to explain subsequent realized returns, i.e., the lower
the sum of squared errors, the more credible this proxy is in compari-
son to its competitors and the more weight a researcher should assign
to it.

76 Claeskens and Hjort (2008) give a good introduction into frequentist approaches of
model selection and averaging and also motivate the formula given here. George
and Foster (2000) examine in detail under which assumptions the ordering of the
posterior probability corresponds exactly to the ordering based on approaches such
as AIC or BIC.
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Due to the high level of noise inherent in realized returns, alter-
native proxies have been proposed. That is, the main motivation for
these proxies is the replacement of realized returns. However, the pre-
vious analysis to infer the quality of these proxies has to rely again on
the very same realized returns it wants to replace. In my opinion, this
is a severe shortcoming of any alternative expected return proxy.77

A main contribution of this study is that the introduction of model
averaging techniques allows me to shed light on this issue. For the
sake of simplicity, let’s focus only on two alternative proxies with
equal prior probability. In this case, the Bayes factor can be inter-
preted as a summary of the evidence provided by the data in favor of
one proxy, in comparison to another proxy.78 In our case, the Bayes
factor BF is given by

BF12 =

(
SSE2
SSE1

)T/2
=

(
Var(wt,2) + Var(ut+1)

Var(wt,1) + Var(ut+1)

)T/2
. (63)

As argued above, the main motivation of any alternative proxy is the
large variation in realized returns induced by ut+1. Thus, equation
(63) will be dominated by the term Var(ut+1), which means that in
small samples it will be notoriously hard to separate proxies with low
measurement error from proxies with large measurement error. This
means that the weights will not converge quickly to the best proxies
in small samples. Only if sample size increases, even SSE ratios that
are close to one will eventually become large and reveal the superior-
ity of one proxy over the other. Furthermore, it is often argued that
ut+1 can be correlated with other variables in sample and therefore,

77 This issue has been recognized before, but only in a qualitative way. For example,
Guay, Kothari, and Shu (2011, p. 129) write: “Like Easton and Monahan (2005) and
a large literature in finance, we use realized returns as a metric to assess the cost
of capital estimates and the effectiveness of our proposed remedies. Although our
returns-based tests are consistent with a large asset-pricing literature, we acknowl-
edge that realized returns are a noisy proxy for expected returns, and that this is, in
fact, an important motivation behind implied cost of capital measures. However, de-
spite the limitations, we are unaware of a superior benchmark to validate [emphasis
in the original] cost of capital measures that does not rely on realized returns.”

78 Kass and Raftery (1995, p. 773) define the Bayes factor as “the posterior odds of the
null hypothesis when the prior probability on the null is one-half.” For a detailed
discussion of the Bayes factor, refer to their article.
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inferences based on it can be misleading.79 Consequently, it might
happen that inferior proxies get more weight in small samples.

4.4 discussion

This chapter has shown how it is possible to compute posterior model
weights for each proxy. These weights denote the posterior belief a
researcher has in the quality of a proxy, based on his prior beliefs and
the evidence in the data. This evidence is solely based on how well the
proxy is able to explain subsequent realized returns. Taking evidence
based on how well a proxy would explain the variable of interest x
would erroneously favor proxies for which the measurement error is
related to x, and not true expected returns.

This chapter has also shown that the proxy weights are affected by
the large noise of realized returns. As I show in Chapter 7, this results
in rather equally distributed weights across the ICC specifications. In
other words, we cannot reliably differentiate between good or bad
proxies because of the small samples that are available to us. This,
however, directly implies that it is important to average across the
evidence based on each proxy, instead of just relying on the evidence
of a single proxy.

79 Fama and French (2002), for instance, argue that the high realized returns in the
US stock market in the second part of the 20th century were a result of a series of
negative discount rate news that generated positive shocks ut+1 and not a result of
high µt for this period. Additionally, Campello, Chen, and Zhang (2008) also run
the predictive regressions of their expected return proxy and do not find a large
explanatory power of their proxy. Instead of attributing this result as a negative sign
for the quality of their proxy, they blame the shock structure in the sample for this
result and conclude that it is therefore worthwhile to explore alternative proxies. Yet
another indication of the sensitivity of the specific sample is the evidence presented
in Koijen and Van Nieuwerburgh (2011) that the regression coefficients in predictive
regressions are unstable over time.



5
D ATA A N D D E S C R I P T I V E S TAT I S T I C S

In this chapter, I discuss empirical issues when computing the ICC
and show extensive descriptive statistics for a US sample ranging
from 1985 to 2011. Section 5.1 describes the data sources of my data
set. Section 5.2 presents descriptive statistics, both for the aggregate
time series of the ICC and the cross-sectional variation in firm-level
ICCs. In Section 5.3 I perform several sensitivity checks.

5.1 data sources

In this dissertation, I focus on two derivatives of the residual income
model (CT, GLS), two derivatives of the dividend discount model
(PSS, CDZ), and three derivatives of the abnormal earnings growth
model (PEG, MPEG, OJ). I also implement the forward PE ratio as
a naïve benchmark. These methods are the most widely used ICC
methods in empirical studies, as has been shown in Table 1. While
the models were discussed in detail in Chapter 2, Table 2 summa-
rizes the assumptions I make that are necessary to implement the
models empirically. I emphasize that I do not exactly replicate the
original studies that proposed the methods. For example, the GDP
data of Pástor, Sinha, and Swaminathan (2008) already begins in 1930,
while I use data that starts in 1947 in accordance with Chen, Da, and
Zhao (2013). In brief, I try to use identical inputs across methods
whenever possible. Nevertheless, my implementations should be rea-
sonably close to the original studies because I am not aware of any
major assumptions that I change. Furthermore, I compare my data
with other studies below and the results are reasonably close.

75
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5.1.1 IBES

Throughout this dissertation, I follow the majority of studies that im-
plement the ICC and approximate expected earnings with analyst
forecasts from IBES. This data source provides mean earnings fore-
casts up to five years ahead as well as a long-term earnings growth
rate estimated by the analysts. While there is no exact definition of
this growth rate, it is typically assumed to refer to earnings growth
rates for the next five years (cf. Claus and Thomas 2001). With the
exception of the OJ, the PSS, and the CDZ method it is only used
to infer missing earnings forecasts from the previous forecasts and
this earnings growth rate: EPSi,t+j+1 = EPSi,t+j × (1 + Ltgi). I fill
missing earnings forecasts according to Chen, Da, and Zhao (2013),
i.e., I compute missing EPS3, EPS4, and EPS5 with the help of the
long-term earnings growth rate Ltg, but I do not recover missing Ltg
values from the earnings forecasts, as done in other papers.

To get a better understanding of the coverage of the earnings fore-
casts, Table 3 shows the average number of monthly one-year ahead
earnings forecasts available for each year as well as the percentage
of two-to-five years ahead earnings forecasts and long-term earnings
growth forecasts, in relation to the one-year ahead earnings forecasts.
This table is produced from the raw IBES summary file without any
additional filters that I set below.

The number of earnings forecasts for the next year indicates that
IBES, at least in the US, covers many firms. Additionally, since an-
alysts typically focus on larger firms, IBES represents 90% or more
of the total US market capitalization (cf. Claus and Thomas 2001).
The peak in firms covered was around the turn of the millennium,
which could be driven by the Dot-com bubble that was accompanied
by a large increase in publicly traded firms.80 Moreover, Table 3 also
shows that the coverage for further ahead forecasts declines dramat-
ically. While two-year ahead earnings forecasts are available for at
least 80% of the firms in each year, they are almost never available for
forecasts for year 5. The coverage for long-term earnings growth rates
is far better, which is why this growth rate is commonly used to fill
in missing data. It can also be seen from this table that the coverage
for further ahead forecasts has increased over time. For example, in
1985 five-year ahead forecasts were only available for 3% of the obser-

80 For example, Ritter and Welch (2002) show that the number of IPOs was on a very
high level from 1994 to 2000 with an average of 420 IPOs per year, before the number
falls abruptly to 80 IPOs in 2001.
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Table 3: Coverage of earnings forecasts in IBES. This table shows the num-
ber of average monthly observations per year for which an earnings fore-
cast for the next year is available. Additionally, it shows the percentage of
available forecasts for the two-to-five years ahead forecasts as well as the
long-term earnings growth rate (Ltg), in relation to the number of available
one-year ahead earnings forecasts.

Number of % of forecasts in relation to EPS1 forecasts

Year EPS1 forecasts EPS2 EPS3 EPS4 EPS5 Ltg

1985 2978 81.25 14.31 7.58 3.26 76.32

1986 3050 82.24 10.56 2.59 1.72 76.16

1987 3315 82.50 9.91 2.81 1.33 74.43

1988 3448 82.28 12.12 4.31 2.15 69.34

1989 3517 83.83 20.95 11.33 5.05 68.00

1990 3430 83.87 16.26 5.37 2.53 69.30

1991 3361 85.97 19.10 6.08 2.99 69.91

1992 3526 88.72 25.90 12.62 9.50 72.14

1993 3943 90.67 30.77 19.08 15.07 74.21

1994 4432 91.60 31.41 19.09 14.40 74.81

1995 4857 89.62 24.36 10.36 5.23 72.24

1996 5407 89.15 23.51 6.04 1.45 74.16

1997 5842 89.88 24.20 3.82 1.30 76.88

1998 5923 89.62 25.64 4.18 1.81 77.25

1999 5755 88.98 25.32 4.40 1.76 75.88

2000 5442 87.13 26.14 5.16 1.50 75.52

2001 4806 87.47 28.80 5.49 1.55 74.97

2002 4155 94.56 32.28 7.40 0.88 80.28

2003 4084 96.12 40.57 14.10 9.44 82.12

2004 4201 98.22 51.30 21.02 15.39 78.61

2005 4399 98.18 56.04 21.31 14.16 75.98

2006 4538 97.95 60.01 22.13 15.91 73.07

2007 4656 97.07 62.42 26.48 16.87 70.26

2008 4443 97.53 62.32 27.06 20.40 70.07

2009 4171 97.86 66.05 39.17 26.86 66.69

2010 4227 98.48 73.48 40.57 25.70 65.89

2011 4141 99.69 73.09 32.05 22.11 69.05
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vations with one-year ahead forecasts. In 2011, this ratio increased to
22%. Interestingly, the coverage ratio for long-term earnings growth
remained roughly constant over time and even declined after 2003.

It is an interesting question if the systematic changes in coverage
systematically bias the results. For example, if the earnings growth
rates deviate from the earnings growth rate an analyst expects from
year 2 to 3, but methods like the GLS, PSS, and CDZ method use
this growth rate to infer the three-year ahead forecasts, then the ICC
estimate can simply change due to a changing coverage of three-year
ahead forecasts. As can be seen from Table 3, there was a large trend
for this coverage ratio in particular.

Next to earnings forecasts, I also obtain the earnings announcement
date, the stock price as well as the shares outstanding from IBES. The
product of the latter two values serves as the market capitalization
throughout this dissertation and the stock price is also needed as an
input parameter to infer the ICC. It is important to use the same data
vendor here to make sure that any adjustments, such as stock splits
or share repurchases, are handled consistently. This also ensures that
the different values refer to the same point in time. IBES does not
release its forecasts at the end of the month, but on the Thursday
before the third Friday of every month. This is important to keep
in mind, particularly for research questions that relate the ICC to
other monthly updated data. For example, in the analysis of Pástor,
Sinha, and Swaminathan (2008), which I replicate in Chapter 7, the
aggregate ICC is regressed on the market volatility each month. It is
important to check the robustness of the results with respect to the
exact point in time for which the data was computed.

5.1.2 CRSP/Compustat

I obtain all US firms from the CRSP/Compustat merged file from
WRDS. CRSP provides me with the total monthly returns for each
firm that are necessary for my cross-sectional analysis in the next
chapter.81

81 Note that I also obtain the aggregated continuously compounded with-dividend
returns on the value-weighted portfolio of all NYSE, Amex, and NASDAQ stocks
from CRSP as a benchmark for market-wide realized returns. In Chapter 7, this
benchmark is needed for the aggregated predictive regressions that I run and to
compute the stock market volatility to replicate the results of Pástor, Sinha, and
Swaminathan (2008).
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For the computation of the ICC, additional data from Compustat
is needed. I obtain shareholder’s equity (item SEQ) to infer the book
value per share. The number of shares is taken from IBES to make
sure that split-adjustments are consistently applied to both the price
and the book value per share. This is in line with the studies of Hail
and Leuz (2009) and Gebhardt, Lee, and Swaminathan (2001) that
obtain the stock prices and shares outstanding from one source as
well.82 Also, the payout ratios for most methods are assumed to be
constant and equal to the historical ratios, as such, I divide common
dividends (item DVC) by income before extraordinary items available
to common shareholders (item IBCOM).83 For firms with a negative
or missing income, 6% of total assets (item AT) is used as the denom-
inator instead. I winsorize the payout ratios at 0 and 1, respectively.
The historical ROE is calculated as IBCOM divided by SEQ of the
previous year. It is needed to infer the 12-year ahead ROE in the GLS
method, which is defined as the median industry ROE (IBCOM/SEQ
of previous year) over the last ten years for all profitable firms.84

5.1.3 Additional data

For the PSS and CDZ method, I also need GDP growth data starting
from 1947. I obtain quarterly updated, annualized growth rates from
the website of the Bureau of Economic Analysis. Also, as a proxy for
interest rates, I use the nominal yield on a 10-year government bond.
This data is available in the H15 report of the Board of Governors of
the Federal Reserve System.

5.1.4 Matching and computation issues

For the residual income model I need book values in addition to earn-
ings forecasts. As highlighted by Easton (2007, Chapter 13), certain

82 Hail and Leuz (2009) use data from IBES, while Gebhardt, Lee, and Swaminathan
(2001) get their prices and shares outstanding from CRSP. As a sensitivity check that
my results for the residual income models are not driven by a mismatch between
book values from Compustat and prices from IBES, I repeat the empirical analysis
of this thesis with an updated data set. In this data set, I delete the observations
for which their price-book ratio lies within the top and bottom 1% from the cross-
sectional distribution in each year. The results remain virtually unchanged.

83 The only exceptions are the PSS and CDZ method, for which the plowback rates,
defined as 1 minus the payout ratio, are linearly interpolated to a steady-state plow-
back rate after year t+ 2.

84 Throughout this dissertation, I use the 48 Fama and French (1997) industry classi-
fication. This classification can be found on Kenneth French’s website: http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Industry_Definitions.zip.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Industry_Definitions.zip
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Industry_Definitions.zip
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data issues are encountered when matching prices, book values and
future earnings on the same date. One such issue arises from the de-
lay between the fiscal year-end and the reporting of actual earnings
and book values. Because basing the computation on actual not-yet-
reported book values would contradict the principle of using only
publicly available information on the estimation date, I create syn-
thetic book values until book values are publicly released. To approx-
imate this release date, I use the earnings announcement date from
IBES. If this date is not available, I set it to 120 days after the fiscal-
year end instead.

Similar to Gebhardt, Lee, and Swaminathan (2001) and consistent
with clean-surplus accounting, I generate synthetic book values based
on previous book values, earnings and an estimated payout ratio.
This ensures that I do not base my calculation on stale book values.
However, the actual earnings are only available after the earnings an-
nouncement date. I therefore use the IBES earnings forecasts for the
next period to again ensure that only publicly available information
is used. In cases in which the IBES release date is before the earnings
announcement date, the first forecast refers to the previous fiscal-year
end.

Another issue is the misalignment of prices, book values, and earn-
ings forecasts. Equation (2) in Chapter 2 is only valid if the price
is measured on the same date that all expected dividends are dis-
counted to, which happens to be the fiscal-year end for the firm. In
the more common case where the price is taken from any day dur-
ing the year, Daske, Gebhardt, and Klein (2006) propose a technique
for the residual income model that computes the book value on the
estimation date and adjusts the residual incomes accordingly.

It turns out that there is a simpler solution to this problem. Instead
of adjusting the RHS of equation (2) and its derivatives, such as the
abnormal earnings growth model and the dividend discount model,
one can also adjust the LHS, i.e., the price (cf., e.g., Easton 2007).
Suppose that the price is not measured at the fiscal-year end date t,
but at any date t+ x, where x is a number between 0 and 365. For
example, if one wants to compute the ICC for firm i on January 20

and the fiscal-year end for this firm is at the end of December, xwould
be 20. Because the dividends are discounted to date t, and not to date
t+ x, the price, which is measured at this date, has to be discounted
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to date t too. The correct discount rate in this model is just the ICC,
which yields an updated version of the dividend discount model:

Pt

(1+ Ret)
x
365

=

∞∑
j=1

DPSt+j

(1+ Ret)
j
. (64)

In the interest of remaining consistent with the literature, I ignore this
issue in my main empirical analysis. In Section 5.3.2, I show that this
decision has a minor effect on the statistics.

In summary, I match analyst forecasts and price data from IBES
with accounting data from Compustat. Thereby, I ensure that I only
use publicly available information. Now I have all of the information
that is necessary to compute the ICC based on the different methods
in Table 2.

Prior to computing the ICC, I filter all observations for which at
least one of the following items is not available:

• IBES: price, shares outstanding, one-and-two-year ahead earn-
ings forecasts, either three-year ahead earnings forecast or long-
term earnings growth rate.

• Compustat: shareholder’s equity (item SEQ), common dividends
(item DVC), income before extraordinary items available to com-
mon shareholders (item IBCOM).85

As an additional filter, I delete all observations with a negative
book value from Compustat. All other filters are subject to the specific
ICC method. Because the abnormal earnings growth models anchor
their valuation on capitalized expected one-year ahead earnings, I set
the ICC for those methods to missing if the one-year ahead earnings
forecast is negative. Other requirements, such as larger two-year than
one-year ahead forecast for the PEG, result automatically in missing
values because the ICC cannot be numerically solved for. This leads to
a different number of observations for different ICC methods, which
I show the statistics for further below.

I solve for all ICC methods numerically, even for those where an
analytical solution is available.86 I solve for the value of the ICC that
sets the difference of the current price and discounted dividends to

85 If item IBCOM is negative or missing, the item total assets (item AT) has to be
available to compute the plowback rate.

86 Note that equation (64), which I implement in Section 5.3.2, requires a numerical
solution even for the methods for which an analytical solution would be available
without the consideration of timing issues.
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Table 4: Summary statistics for aggregated ICC. This table contains the
summary statistics for the monthly time series of the ICC for different meth-
ods. Only observations are considered for which an ICC can be computed
for each method. The firm-level ICCs are value-weighted (Panel A) or equal-
weighted (Panel B). All numbers are reported in percent. The time period
ranges from 1985 to 2011.

PE PEG MPEG OJ CT GLS PSS CDZ

Panel A: Value-weighted implied cost of capital

Mean 6.49 9.71 11.07 11.42 9.66 8.82 9.85 12.66

Median 6.40 9.74 11.02 11.02 9.24 8.75 9.82 12.68

Std. dev. 1.45 1.08 1.54 1.66 1.81 1.36 1.39 1.12

Minimum 3.73 7.61 8.21 9.14 7.11 6.03 7.29 10.52

Maximum 11.43 14.14 16.84 17.42 15.45 13.29 14.88 17.43

Panel B: Equal-weighted implied cost of capital

Mean 6.85 11.94 12.84 12.69 10.38 10.08 10.85 13.94

Median 6.73 12.08 12.91 12.68 10.47 9.96 10.93 14.10

Std. dev. 1.29 1.10 1.36 1.62 1.73 1.03 1.32 1.56

Minimum 4.78 9.68 10.24 10.00 7.52 8.37 8.46 10.81

Maximum 11.07 15.53 16.86 17.41 15.21 13.13 14.90 18.05

zero. I set the lower bound on the ICC estimate to 0.00001% for all
methods but for the OJ and CT method. For those methods the lower
bound is set to be 0.00001% larger than the long-term growth rate. I
abort the root search as soon as the change in the ICC is less than
0.00001 percentage points for one step.

5.2 descriptive statistics

This section presents summary statistics for the ICC methods that I
implement. While I focus on the aggregate time series for each ICC
method in subsection 5.2.1, I look at the cross-sectional variation for
each method in subsection 5.2.2.

5.2.1 Properties of the aggregate ICC

Table 4 shows summary statistics for both the value-weighted and
the equal-weighted time series of the ICC for each method. In this
table as well as in the discussion to follow and also in the empirical
analysis of Chapter 6 and 7, I require an observation to be complete,
i.e., to have a numeric ICC value for each method. If one or more
methods have a missing value, this observation gets filtered.87

87 Further below, I discuss differences in the number of observations across methods.
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The mean of the value-weighted ICC varies from 6.5% for the PE
method to 12.7% for the CDZ method. The low mean for the PE is
due to the ignorance of any earnings growth after the next year. As
mentioned before, this method is only meant to be a naïve benchmark
and thus the true ICC during that period was probably substantially
larger. At the other extreme, the high average for the CDZ method is
driven by the high expected earnings growth rate that Chen, Da, and
Zhao (2013) assume. The other methods all lie within a much closer
interval between 8.8% and 11.4%. The ICCs based on the residual in-
come models (CT, GLS) as well as the PSS method are on the lower
end of this range, while the abnormal earnings growth methods have
typically larger values. The only exception is the PEG method which
assumes that dividends in the next year and the growth rate there-
after are zero. This finding is in line with results from Daske, Van
Halteren, and Maug (2010) who provide evidence based on simula-
tion results that derivatives of the abnormal earnings growth model
lead to higher estimates for the ICC than derivatives of the residual
income model. Empirically, Hail and Leuz (2009) find the same pat-
tern for their international sample.

There are also noteworthy differences in the standard deviation of
the different methods. The CT has the highest standard deviation
with a value of 1.8%. A possible explanation can be given based on
the CS loglinearization of prices, which decomposes the log price into
a cash flow and a discount rate part (see equation 37). This relation
is tautological, which means that one of the two parts has to explain
a stock price. The approach for any ICC method is to directly model
the CF part and back out the DR part as the residual. As a conse-
quence, if a specific ICC method allows less variation in the CF part,
it has to explain the remainder of the price changes by changes in the
ICC. The CT anchors the valuation on a very persistent book value
and estimates only the earnings for the next five years. After this ex-
plicit forecast period, it assumes that residual incomes grow with the
expected inflation rate. This is a conservative assumption. Thus most
of the variation in prices has to be explained by changes in the ICC
and this drives the larger ICC variation in the CT method. By con-
trast, the standard deviation of the CDZ method is one of the lowest,
which is explained by the assumption made by Chen, Da, and Zhao
(2013) that earnings growth converges to the current industry long-
term earnings growth rate assumed by analysts. Since this growth
rate varies together with changes in prices over time, the majority
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of these price changes is already explained by the CF part for this
method. Therefore, the ICC has to explain a smaller unexplained part
and thus varies less.

Furthermore, the variation for each ICC method is an order of mag-
nitude smaller than the variation in realized returns.88 This is a stan-
dard finding in the literature and advertised as one of the ICC’s main
selling points (cf., e.g., Lee, Ng, and Swaminathan 2009).

With respect to the equally weighted time series, Panel B of Table 4

shows that these are typically larger than their value-weighted coun-
terparts. Just as in the case of realized returns as a proxy for expected
returns, investors seem to require a premium for small firms.89 Never-
theless, the differences across methods are very similar. For example,
the PE method results in the lowest average ICC and the CDZ method
leads to the highest average for both weighting procedures. The stan-
dard deviations of the equally weighted time series are similar to
their value-weighted counterparts as well.

Figure 1 plots the monthly value-weighted time series of the ICC
for the eight methods. Not surprisingly, the CDZ/PE method has
the highest/lowest ICC throughout the sample. Also, this plot nicely
illustrates the above discussion about the differences in standard de-
viations between the methods. Most of the methods constrain future
cash flow growth. This becomes especially apparent before and dur-
ing the Dot-com bubble. The ever increasing prices during that period
had to be explained by something. But because most methods shut
down an exclusive explanation through updated beliefs in future div-
idends, they have to explain a part of the rising stock prices with
lower discount rates. Therefore, all methods except the CDZ method
are relatively low during the Dot-com period. Conversely, the CDZ
method remains rather constant throughout this period since most of
the price changes are explained by higher expected growth rates.

Figure 1 also shows that the correlation between the methods is
quite high. In particular, all methods except the PE and CDZ method
mostly move in unison. Also, all methods show a strong reaction to
the financial crisis with a large rise in expected returns.

Table 5 presents the correlation between the value-weighted and
equal-weighted time series of the eight methods under considera-

88 The annualized standard deviation of monthly realized returns on the value-
weighted portfolio of all NYSE, Amex, and NASDAQ stocks was 16.1% for the same
period.

89 Hanauer, Jäckel, and Kaserer (2013) examine the size premium in detail for an inter-
national ICC sample.
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Figure 1: Value-weighted ICC for different methods over time. This figure
shows the monthly time series of the ICC for eight different methods. The
ICC is computed as a value-weighted average of ICCs across all US firms
for which an ICC is available for all methods.
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Table 5: Correlations for aggregated ICC. This table shows the correla-
tion between the monthly time series of the ICC for different methods.
Only observations are considered for which an ICC can be computed for
each method. The firm-level ICCs are value-weighted (Panel A) or equal-
weighted (Panel B). All correlations are reported in percent. The time period
ranges from 1985 to 2011.

PE PEG MPEG OJ CT GLS PSS CDZ

Panel A: Value-weighted implied cost of capital

PE 100.00 85.39 89.22 86.81 87.55 98.12 96.21 71.92

PEG 85.39 100.00 98.93 91.90 86.25 89.25 91.74 69.57

MPEG 89.22 98.93 100.00 95.96 91.77 92.00 95.71 74.41

OJ 86.81 91.90 95.96 100.00 98.60 87.76 96.03 84.38

CT 87.55 86.25 91.77 98.60 100.00 86.87 95.55 86.20

GLS 98.12 89.25 92.00 87.76 86.87 100.00 95.85 69.08

PSS 96.21 91.74 95.71 96.03 95.55 95.85 100.00 83.22

CDZ 71.92 69.57 74.41 84.38 86.20 69.08 83.22 100.00

Panel B: Equal-weighted implied cost of capital

PE 100.00 86.18 89.53 88.68 91.07 97.42 94.24 74.53

PEG 86.18 100.00 98.88 93.65 90.68 90.01 93.14 79.59

MPEG 89.53 98.88 100.00 96.39 93.65 92.86 94.77 76.07

OJ 88.68 93.65 96.39 100.00 99.01 91.12 96.96 80.95

CT 91.07 90.68 93.65 99.01 100.00 91.79 98.03 83.55

GLS 97.42 90.01 92.86 91.12 91.79 100.00 94.66 74.76

PSS 94.24 93.14 94.77 96.96 98.03 94.66 100.00 88.12

CDZ 74.53 79.59 76.07 80.95 83.55 74.76 88.12 100.00

tion. The correlation for almost all methods is above 90% for both
the value-weighted and equal-weighted time series. Even the correla-
tion between the PE method and the other methods is almost perfect,
although the level of this method is substantially lower. In short, all
methods seem to be driven by the same factor, but differ in their level
and how they are scaled by this factor. The only outlier is again the
CDZ method. Although there is still a large positive correlation with
all other methods, it is substantially lower with correlations as low as
69%.

Finally, Figure 2 shows the value-weighted implied risk premium
over time for each of the eight methods, i.e., the ICC minus the yield
of a 10-year government bond. In many research applications, the fo-
cus is on this implied risk premium instead of the ICC. Because the
yield is the same for each method, the relative difference across meth-
ods is identical between Figure 1 and Figure 2. All methods except
for the PE method result in positive risk premiums for the whole pe-
riod.90 Because a negative expected risk premium is irreconcilable with
finance theory, this is supporting evidence for the validity of the ICC

90 For the GLS method, it is below zero for one month only.
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Figure 2: Value-weighted implied risk premium for different methods
over time. This plot shows the monthly time series of the implied risk pre-
mium for eight different methods, computed as the difference between the
ICC and the yield of a 10-year government bond. The ICC is computed as
a value-weighted average of ICCs across all US firms for which an ICC is
available for all methods.
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Table 6: Summary statistics for firm-level ICCs. This table contains the sum-
mary statistics for the pooled cross-section of the ICC for different methods.
Only observations are considered for which an ICC can be computed for
each method. The columns Mean, Std. dev., 5th, 25th, 50th, 75th, and 95th
refer to the mean, the standard deviation, and the specific percentile, respec-
tively, over the pooled sample. All numbers are reported in percent. The
time period ranges from 1985 to 2011.

Mean Std. dev. 5th 25th 50th 75th 95th

PE 6.72 3.94 1.88 4.45 6.28 8.33 12.68

PEG 11.87 5.19 6.00 8.75 10.72 13.72 21.41

MPEG 12.72 5.13 7.19 9.57 11.55 14.54 22.15

OJ 12.56 3.88 8.05 10.06 11.84 14.18 19.46

CT 10.27 3.45 5.82 8.10 9.85 11.89 15.93

GLS 9.97 2.96 5.72 8.11 9.76 11.59 14.74

PSS 10.77 3.39 6.56 8.67 10.25 12.24 16.54

CDZ 13.98 4.45 8.19 11.14 13.33 16.07 21.80

approach. It also shows that the ignorance of growth opportunities in
the case of the PE method results in unreasonable risk premiums. In
brief, investors take earnings growth into consideration.

In summary, there are noteworthy differences between the first and
second moments of the eight ICC methods under consideration, al-
though there is only one true, but latent ICC. Also, the proxies are
not perfectly correlated. It becomes clear from the previous discus-
sion that a researcher would severely underestimate the true uncer-
tainty in the statistical inference if he would base the results solely
on one method. In this case he would focus on parameter uncertainty
only, thereby completely ignoring model uncertainty.

5.2.2 Properties of the firm-level ICC

Table 6 shows summary statistics for the cross-sectional variation in
the ICC for each method.

Not surprisingly, the cross-sectional average across all firms is sim-
ilar to the time series average for each method. With respect to the
cross-sectional variation, Table 6 shows that the PEG and MPEG meth-
ods have the largest standard deviations. A possible explanation for
this finding is that these are dependent on the growth between the
two-year and one-year ahead earnings and that this growth rate does
not vary a lot in the cross-section. Consequently, a large part of the
cross-sectional variation has to be explained through the residual, the
ICC. By contrast, all other methods allow for much larger differences
in the expected cash flows across firms through industry or firm spe-
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Table 7: Correlations for cross-sectional ICC. This table shows the average
of the annual cross-sectional correlations between the ICC of different meth-
ods. Only observations are considered for which an ICC can be computed
for each method. The firm-level ICCs are value-weighted (Panel A) or equal-
weighted (Panel B). All correlations are reported in percent. The time period
ranges from 1985 to 2011.

Method PE PEG MPEG OJ CT GLS PSS CDZ

PE 100.00 9.66 17.78 29.62 64.10 61.22 52.96 30.02

PEG 9.66 100.00 96.12 89.16 51.46 51.81 52.35 50.51

MPEG 17.78 96.12 100.00 94.91 57.69 51.96 59.36 50.22

OJ 29.62 89.16 94.91 100.00 73.32 55.49 77.40 67.67

CT 64.10 51.46 57.69 73.32 100.00 60.83 91.88 77.61

GLS 61.22 51.81 51.96 55.49 60.83 100.00 59.68 49.59

PSS 52.96 52.35 59.36 77.40 91.88 59.68 100.00 89.52

CDZ 30.02 50.51 50.22 67.67 77.61 49.59 89.52 100.00

cific growth rates. Therefore, the variation in the ICC is lower. Hail
and Leuz (2009) find a similar ranking of standard deviations for four
implemented methods (MPEG, OJ, CT, GLS) and an international
sample.

Table 7 displays the average of the annual cross-sectional correla-
tions between the different ICC methods. These correlations are sub-
stantially lower than the time series correlations reported in Table 5.
Also, the differences between the cross-sectional correlations for dif-
ferent valuation models are more pronounced. The correlation within
the abnormal earnings growth models is very high and the corre-
lation between the dividend discount models is also high, but the
correlation between methods from different valuation models is only
around 50%. Furthermore, the simple PE method is clearly an outlier
with correlations that never exceed 65% and that can be as low as 10%.
Easton and Monahan (2005) report similar cross-sectional correlations
for their sample.

In summary, a comparison between the statistics of the time series
and the cross-sectional variation in the ICC methods implies that a
researcher who focuses on the cross-sectional variation faces much
more uncertainty than a researcher who focuses on the time series
characteristics. In particular, the cross-sectional correlation between
the methods is substantially lower than the correlation over time,
which implies that the firm-level ICCs are either affected by random
noise or driven by different, but systematic measurement errors.
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Table 8: Average monthly number of observations for different ICC meth-
ods per year. For each year of the sample, this table shows the average
monthly number of observations for which the specific ICC method returns
a value. In the column “All”, the requirement is that all methods return a
value. This is the sample selection criterion throughout this thesis.

Year PE PEG MPEG OJ CT GLS PSS CDZ All

1985 1686 1617 1628 1612 1659 1760 1729 1729 1543

1986 1672 1600 1612 1609 1694 1776 1725 1725 1555

1987 1734 1662 1673 1660 1734 1826 1770 1770 1603

1988 1726 1618 1632 1621 1710 1798 1746 1746 1557

1989 1769 1630 1643 1640 1756 1842 1792 1792 1568

1990 1766 1684 1695 1680 1756 1841 1799 1799 1624

1991 1754 1704 1714 1705 1766 1850 1804 1804 1654

1992 1896 1857 1865 1855 1928 1994 1944 1944 1816

1993 2151 2105 2111 2093 2203 2270 2192 2192 2059

1994 2514 2461 2468 2440 2562 2646 2557 2557 2402

1995 2663 2608 2614 2580 2684 2780 2690 2690 2544

1996 2911 2818 2827 2812 2952 3086 2959 2959 2758

1997 3147 3064 3072 3053 3251 3415 3261 3261 2998

1998 3134 3050 3056 3046 3286 3437 3288 3288 2991

1999 2909 2833 2840 2838 3070 3222 3084 3084 2781

2000 2525 2440 2445 2450 2694 2900 2716 2716 2392

2001 2130 1990 1994 2007 2340 2651 2353 2353 1938

2002 2126 2065 2067 2067 2348 2598 2360 2360 2024

2003 2260 2120 2128 2135 2475 2613 2434 2434 2073

2004 2416 2284 2289 2269 2536 2641 2469 2469 2209

2005 2513 2368 2374 2338 2610 2730 2531 2531 2273

2006 2532 2350 2358 2296 2576 2735 2485 2485 2212

2007 2470 2306 2312 2224 2491 2690 2414 2414 2148

2008 2318 2054 2063 2017 2396 2603 2288 2288 1896

2009 2033 1780 1789 1661 2116 2508 1957 1956 1532

2010 2254 2077 2084 1797 2148 2596 1966 1966 1703

2011 2209 2033 2040 1842 2155 2436 2005 2005 1758

5.3 sensitivity analyses

5.3.1 Number of observations

In Table 8, I show the average monthly number of observations per
year for which an ICC is available. The table reveals a similar trend
over time as Table 3, which showed the IBES forecasts from the raw
data file. Starting from 1985, the number of observations increases
until the turn of the millennium, where it peaks and decreases after-
wards for a couple of years. This pattern is probably driven by the
rise and fall of many technological firms during the Dot-com bubble.
Since then, the number of observations has remained fairly constant
until the end of the sample in 2011. The column “All” shows the
number of complete observations for each year. If not stated differ-
ently, this is the sample throughout this dissertation. As can be seen,
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this number is lower than the number for each method, which implies
that reasons for missing values are somewhat idiosyncratic.

More interestingly, however, are the systematic differences between
the number of observations across methods. The GLS method typi-
cally has the most observations, while the other methods have a lower
number of observations throughout the sample. In case of the abnor-
mal earnings growth models, this difference is partly due to the re-
quirement of positive one-year ahead forecasts. A similar argument
can be made in the case of the PSS and CDZ method. If the long-term
earnings growth rates are missing or the earnings three years ahead
are negative, the cash flow forecasts assumed by these methods are
not reconcilable with the price reported by IBES. Therefore, there is
a possibility that the above statistics are biased towards better per-
forming firms because I require complete observations for my main
empirical analyses.

As a first indication of how large this effect could be, I plot the GLS
method for two cases. The first case is based on all observations for
which the GLS ICC is available. The second case is based on observa-
tions for which all ICC values are available.

The results can be seen in Figure 3. The differences of the aggregate
ICC between the two samples is negligible, both for a value-weighted
and equal-weighted aggregation.

5.3.2 Time misalignment

In this section, I check the robustness of the results with respect to the
misalignment of prices, book values, and earnings forecasts discussed
above.

Panel A and B of Table 9 are identical to Table 4 except that the
ICC for each method is computed with discounted prices as shown
in equation (64). While such an adjustment of prices is economically
correct, it is mostly ignored in empirical studies. It is therefore inter-
esting to check the importance of the ignorance of this timing issue.

A comparison between the two tables reveals that the more correct
ICCs computed with adjusted prices are always higher than those
computed with unadjusted prices. This directly follows from the fact
that prices which are discounted with a positive ICC are lower than
unadjusted prices and a lower price is only reconcilable with the same
cash flows if the discount rate is higher. This effect is on average
roughly 0.32 percentage points across methods, both for the value-
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Figure 3: Impact of omitted observations. The plot shows the monthly
value-weighted and equal-weighted time series of the implied cost of capital
for the GLS method computed for two different samples: (1) all firm-month
observations for which an ICC value from the GLS method is available; (2)
all firm-month observations for which an ICC value for all methods is avail-
able.
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Table 9: Summary statistics for the aggregated ICC and discounted prices.
Panel A and B of this table replicate Table 4. The only difference between the
two tables is that in this table the prices that enter the ICC computation are
adjusted according to equation (64). For each method, Panel C shows the
correlation between the value-weighted or equal-weighted ICC computed
with adjusted and unadjusted prices. All numbers are reported in percent.
The time period ranges from 1985 to 2011.

PE PEG MPEG OJ CT GLS PSS CDZ

Panel A: Value-weighted implied cost of capital with adjusted prices

Mean 6.74 9.96 11.44 11.74 9.95 9.08 10.18 13.10

Median 6.62 10.08 11.40 11.42 9.66 8.94 10.13 13.09

Std. dev. 1.54 1.13 1.63 1.73 1.86 1.43 1.47 1.17

Minimum 3.92 7.81 8.49 9.36 7.33 6.25 7.63 10.76

Maximum 11.62 14.29 17.06 17.59 15.58 13.45 15.07 17.67

Panel B: Equal-weighted implied cost of capital with adjusted prices

Mean 7.14 12.37 13.35 13.09 10.72 10.37 11.21 14.43

Median 6.95 12.46 13.44 13.13 10.79 10.24 11.25 14.57

Std. dev. 1.40 1.20 1.49 1.70 1.77 1.09 1.39 1.63

Minimum 5.01 9.86 10.48 10.13 7.70 8.65 8.69 11.28

Maximum 12.19 16.59 18.19 17.68 15.42 13.83 15.32 18.41

Panel C: Correlation between ICC time series with adjusted and unadjusted prices

Value-weighted 99.50 99.34 99.20 99.48 99.64 99.49 99.24 98.13

Equal-weighted 99.28 99.04 98.98 99.49 99.64 99.30 99.33 99.22

and equally weighted time series. Hence, studies that are interested
in the absolute level of the ICC should account for the misalignment.

However, Panel C of Table 9 shows that the dynamics are almost
identical between the two approaches (price adjusted vs. unadjusted)
because the correlation between them is almost perfect for all meth-
ods.

5.3.3 Analyst forecast bias

So far, I only looked at firm-level ICCs that were computed with the
consensus analyst forecasts. IBES also provides the lowest (most pes-
simistic) and the highest (most optimistic) forecasts across the ana-
lysts that cover a specific firm. In this section, I show statistics for the
ICC that are computed with these alternative forecasts. This exercise
serves three purposes. First, it evaluates the impact of reasonable al-
ternative estimates of expected earnings and is a reminder that even
the forecasts for the next couple of years are subject to considerable
uncertainty. Second, it allows an initial, albeit simplistic analysis of
the impact of analyst forecast bias because the lowest earnings fore-
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casts might be less affected by it. Third, it nicely illustrates differences
between the various ICC methods.

In this section, I require that all observations have an ICC available
for all methods and for all forecasts (lowest, mean, highest). Although
the raw IBES data set has as many observations for the lowest and
the highest forecasts as it has for the mean forecast, this requirement
still results in a lower number of observations.91 This is because some
ICCs cannot be computed for the lowest or highest forecasts, which
are by definition more extreme than the mean forecasts. For example,
it is a requirement for some methods that the forecasts are always
positive. Obviously, there are more observations with negative fore-
casts in the case in which the most pessimistic forecast is used, but
this effect should be negligible. For example, the correlation between
the equal-weighted ICC time series for the GLS method computed
with the filter that only requires all methods to have an ICC in the
mean forecast case and the filter that requires all methods to have an
ICC for all forecasts is 99.8%. For the MPEG method, it is 99.5%.

Figure 4 shows the value-weighted monthly time series for each
ICC method and the mean forecasts and is therefore identical to Fig-
ure 1 except for the different number of observations used. Addi-
tionally, it also plots a shaded area around each method which is
limited by the ICC computed with the most pessimistic and most
optimistic forecasts. Figure 5 is the equivalent to Figure 4 with an
equal-weighted time series.

Table 10 shows summary statistics for the spread between the ICC
computed with the highest forecasts on the one hand and the lowest
forecasts on the other hand. Furthermore, it shows the correlation
between the two time series for each method.

As the figures and the table illustrate, there are substantial differ-
ences between the methods. On one extreme, the GLS and PE method
are hardly affected by the different forecasts. For the former, the ICC
based on the most optimistic analyst forecasts and the ICC based on
the most pessimistic forecasts are only separated by a little more than
half a percentage point on average. For the PE method, the difference
is only about one percentage point. At the other extreme, the differ-

91 Note that the lowest and highest forecasts are identical to the mean forecast in cases
in which there is only one analyst forecast available. This case applies to 31% of the
sample and results in an ICC estimate that is the same for all forecast types. This
introduces a systematic bias in the analysis because the dispersion for smaller firms
is arbitrarily smaller, simply because it is covered by fewer analysts. This should be
kept in mind when interpreting the statistics.
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Figure 4: Spread between the ICC computed with most optimistic and
most pessimistic analyst forecasts (value-weighted). This figure shows the
monthly time series of the ICC for eight different methods. The ICC is com-
puted as a value-weighted average of ICCs across all US firms for which
an ICC is available for all methods. Only observations are considered for
which an ICC can be computed for all methods and for all forecast types
(pessimistic, mean, optimistic). The upper and lower end of the shaded area
around each line represent the ICC computed with the most optimistic and
most pessimistic analyst forecast, respectively.
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Figure 5: Spread between the ICC computed with most optimistic and
most pessimistic analyst forecasts (equal-weighted). This figure shows the
monthly time series of the ICC for eight different methods. The ICC is com-
puted as an equal-weighted average of ICCs across all US firms for which
an ICC is available for all methods. Only observations are considered for
which an ICC can be computed for all methods and for all forecast types
(pessimistic, mean, optimistic). The upper and lower end of the shaded area
around each line represent the ICC computed with the most optimistic and
most pessimistic analyst forecast, respectively.
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Table 10: Summary statistics for aggregated ICC computed with most op-
timistic and pessimistic analyst forecasts. Panel A and B of this table show
summary statistics of the difference between the monthly ICC time series
computed with the most optimistic analyst forecast and the monthly ICC
time series computed with the most pessimistic forecast. The firm-level ICCs
are either value-weighted (Panel A) or equal-weighted (Panel B). For each
method, Panel C shows the correlation between the value-weighted or equal-
weighted ICC computed with the most optimistic and most pessimistic fore-
casts, respectively. Only observations are considered for which an ICC can
be computed for all methods and for all forecast types (pessimistic, mean,
optimistic). Numbers in Panel A and B are reported in percentage points
and in Panel C in percent. The time period ranges from 1985 to 2011.

PE PEG MPEG OJ CT GLS PSS CDZ

Panel A: Difference between value-weighted ICC with highest and lowest forecasts

Mean 0.95 2.03 2.22 3.02 1.46 0.62 3.39 6.33

Median 0.87 2.08 2.27 2.98 1.31 0.55 3.30 6.29

Std. dev. 0.48 0.99 0.94 0.59 0.55 0.20 0.50 0.71

Minimum 0.25 -1.73 -1.11 1.24 0.68 0.34 2.54 5.17

Maximum 3.06 4.54 4.65 4.50 3.13 1.48 4.66 8.29

Panel B: Difference between equal-weighted ICC with highest and lowest forecasts

Mean 1.07 1.51 1.65 2.19 1.69 0.63 2.70 5.39

Median 0.96 1.47 1.59 2.17 1.61 0.58 2.61 5.21

Std. dev. 0.46 0.93 0.90 0.48 0.48 0.18 0.41 0.67

Minimum 0.30 -0.59 -0.34 1.22 0.94 0.35 2.06 4.24

Maximum 2.90 4.16 4.27 3.67 2.87 1.14 3.74 7.16

Panel C: Correlation between ICC time series with highest and lowest forecasts

Value-weighted 98.22 67.16 82.60 94.86 97.42 99.47 96.97 86.51

Equal-weighted 97.80 72.96 81.46 96.15 98.76 99.50 98.01 94.55
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ence for the CDZ method is above five percentage points for both the
value-weighted and equal-weighted time series.

These extreme differences can be attributed to the different assump-
tions made by the methods. The PE method only relies on the forecast
for the next year. This forecast is the easiest to estimate. In particular,
at the end of the fiscal year an analyst already has much of the infor-
mation that affects the next earnings. The GLS method is also insensi-
tive to changes of the earnings forecasts. Because it is largely driven
by the current book value per share and the historical industry me-
dian ROE, the difference between the ICC based on the highest and
lowest forecasts, respectively, is small. In contrast, the CDZ method
relies heavily on the accuracy of the earnings forecasts, especially
the long-term earnings growth rate. Not surprisingly then, variation
in these forecasts has a large impact on the time series of the CDZ
method.

Another interesting finding is that the minimum spread in Panel
A and B is negative for the PEG and MPEG method in Table 10. That
is, there are months in which the aggregated ICC based on the most
optimistic forecasts is actually lower than the ICC based on the most
pessimistic forecasts. This result emphasizes the meaning of the word
growth in the abnormal earnings growth models. As can be seen from
equation (16), the PEG method is only driven by the difference or
growth, respectively, between the two-year ahead and one-year ahead
forecast. The level of these earnings forecasts is irrelevant. To a lesser
extent, this is also true for the MPEG method, which is also affected
by next year’s dividends. Therefore, the ICC for these methods can
be larger if the difference between the two forecasts is larger, even
if both forecasts are lower. This explains why the ICC can be higher
even if the forecasts are more pessimistic.

The correlations in Panel C confirm the previous findings. They are
almost perfect for all methods that rely on forecasts that are easy to
estimate (PE method) or that are mostly influenced by input param-
eters other than earnings forecasts (CT, GLS, and PSS method). They
are below 85% for the PEG and MPEG method that rely mostly on
earnings growth instead of the earnings level. And they are in be-
tween these values for the other methods that rely both on earnings
forecasts and other input parameters (OJ and CDZ method).

The analysis in this section is only meant to illustrate the impact
that errors in the estimated earnings forecasts can have. As has been
seen, this impact is the larger, the more a method relies on these
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forecasts. In the literature, there are alternative approaches to ap-
proximate this impact. Some studies use realized earnings instead
of analyst forecasts, some studies try to adjust the analyst forecasts,
and Hou, Dijk, and Zhang (2012) propose the use of regression-based
earnings forecasts. However, all of these approaches are subject to
their own shortcomings, some of which I discussed in Chapter 2. The
main takeaway is that there is no perfect or superior way to con-
trol for systematic errors in expected earnings. Therefore, concerns of
measurement error cannot be eliminated.

5.4 discussion

The findings in this chapter can be summarized as follows. First, there
are noteworthy differences in the levels and dynamics of the ICCs
estimated with different methods. These differences are more pro-
nounced in the cross-section, but are also apparent in the aggregated
time series. Second, reasonable changes to the earnings forecasts have
a large impact on the results. Third, at least in the time series, all
methods seem to be driven by the same underlying factor or factors.
However, it is unclear if the only factor is indeed the true expected re-
turn process, or if there are additional systematic biases that affect all
methods simultaneously. All in all, the evidence in this chapter sug-
gests that a researcher faces considerable model uncertainty when he
approximates true expected returns or implied costs of capital with
an observable proxy. Basing his inference on only one or two such
proxies can severely underestimate the uncertainty he should have
in his results. For example, the low implied risk premiums found by
Claus and Thomas (2001) with the CT method are on the lower end
of the spectrum. Because we do not know the true expected earnings
from investors, drawing inferences about the equity risk premium
from evidence based on the CT method alone leads to overconfident
results.

While the sensitivity analyses in this chapter tried to cover a wide
range of reasonable specifications, they are far from exhaustive. I
did not use alternative earnings forecasts, for instance from different
data vendors for analyst forecasts or from predictive regressions. I
did not implement approaches that simultaneously estimate the earn-
ings growth rates. I did not adjust the earnings forecasts with meth-
ods proposed in the literature. I did not examine alternative long-
term growth assumptions for specific ICC methods. Therefore, the
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evidence in this chapter is a lower bound on the true uncertainty a
researcher should have about the true level of the unobservable ICC.



6
E M P I R I C A L A P P L I C AT I O N O F T H E E VA L U AT I O N
A P P R O A C H B Y E A S T O N A N D M O N A H A N ( 2 0 0 5 )

In this chapter,92 I apply the evaluation approach by Easton and Mon-
ahan (2005) to my data set and illustrate the points of criticism I
brought forward against this approach in Chapter 3. To allow for an
easy comparison between my results and the results by EM, I have to
make additional transformations to my data set. They are described
in Section 6.1. In Section 6.2, I show summary statistics for this spe-
cific data set. Section 6.3 contains the results for the evaluation ap-
proach by EM, both for the CF news proxy proposed by EM and for a
consistent CF news proxy. Finally, in Section 6.4 I show evidence that
the inconsistent proxy defined by EM is severely misspecified.

6.1 additional data restrictions

To empirically confirm my analytical derivations of Chapter 3, I repli-
cate the analysis of EM with an updated data set and consistent cash
flow proxies. In accordance with EM, I limit my sample to firms that
have their fiscal-year end in December and I only focus on the ICC
each December. Consequently, all book values refer to the prior fiscal-
year end almost a year ago and it is thus a safe bet that the informa-
tion is already publicly available. I also need realized total returns as
well as dividends paid to investors for the subsequent year, which I
obtain from the CRSP monthly return file.

To be included in the sample, a firm-year observation must be com-
plete, i.e., 12 subsequent monthly returns from CRSP, a value for each
ICC proxy, and all CF and DR news proxies must be available. Also, if
a company does not pay dividends at all, its log dividends are set to
zero,93 and as a consistency check, I require that the stock price from

92 This chapter is based on Jäckel (2013).
93 The log dividends are needed to compute the CF news part, as defined in equation

(44). Unfortunately, the log transformation causes problems in cases in which a vari-
able is zero or close to it, as noted before, for instance, by Vuolteenaho (2002). A
solution to this problem is to apply the return decomposition approach by Chen,
Da, and Zhao (2013), which does not rely on a loglinearization. Because this issue is
not the purpose of this chapter, I rely on the loglinearization as well. My concluding
remark is that one should not use the approach proposed by EM. The fact that one
cannot use it for some firms without further assumptions because log transforma-

103
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IBES is larger than the dividends from CRSP. Finally, in line with
EM I eliminate the top and bottom 1/2 percentile of realized subse-
quent returns, the ICC estimates, and the CF and DR news proxies for
the cross-sectional distribution each year. The final sample consists of
22,267 firm-year observations. Because the computation of the news
proxies requires earnings forecasts by analysts for the next year, my
sample ends in December 2010.

Each year, EM sort a firm into one of five groups, subject to their
price-dividend ratio, and assign a group specific, time-constant ρ for
each group. I follow their procedure and use the ρ estimates reported
in EM.94 ωt, which is needed to compute the CF news proxy pro-
posed by EM (see equation 35), is estimated through a rolling pooled
time series regression for each of the 48 Fama and French (1997) in-
dustries of log return on equity roei,t on its lagged value. That is, I
run roei,t−τ = ω0,t +ωtroei,t−(τ−1) + εi,t, where τ is a number be-
tween zero and nine. My median (mean) value of ωt is slightly lower,
but similar, to EM (median: 0.48 vs. 0.52; mean: 0.49 vs. 0.55).

6.2 summary statistics

Table 11 gives the summary statistics for the relevant variables and
the specific data set used in this chapter. The main differences to the
data set used in the previous chapter are the filtering discussed above
and the logging of the variables. In particular, the lower level of the
ICCs as well as a smaller standard deviation in comparison to Table 6

is mainly explained by the latter. Nevertheless, the statistics in Panel
A of Table 11 are similar to the statistics shown in Table 6.

In the sample period, the realized continuously compounded re-
turn ri,t+1 is 9.1% on average. Also, realized returns have a standard
deviation roughly tenfold as large as any expected return measure, a
common result in the literature that I previously discussed. This find-
ing is a direct consequence of the fact that realized returns are driven

tions are not available is just an additional, but solvable, problem of the method. My
critique, on the other hand, is more fundamental. Nevertheless, I run two robustness
checks. First, I ignore dividends altogether in the computations, even for firms that
pay dividends. The results are mostly unchanged. Second, I only focus on firms that
pay dividends. While this changes the statistics quite a bit (the sample size is roughly
cut in half), the results based on consistent CF news remain very similar.

94 Easton and Monahan (2005) report the following values: (1) non-dividend-paying
stocks: ρ = 0.988, (2) fourth quartile of price-dividend ratio for dividend paying
stocks (i.e., the quartile with the highest price-dividend ratio): ρ = 0.957, (3) third
quartile: ρ = 0.921, (4) second quartile: ρ = 0.927, and (5) first quartile: ρ = 0.924.
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Table 11: Summary statistics for the data set used in the EM analysis. In
Panel A, this table provides summary statistics for the relevant input pa-
rameters of the EM analysis. RR is the realized, continuously compounded
return for year t + 1, as obtained from CRSP. All ICCs represent continu-
ously compounded returns. In Panel B, the CF news proxy as used in EM
is computed from equation (35) and the ICC specific CF news proxies are
computed from equation (44). In Panel C, the ICC specific DR news proxies
are computed from equation (43). The columns Mean, Std. dev., 5th, 25th,
50th, 75th, and 95th refer to the mean, the standard deviation, and the spe-
cific percentile, respectively, over the pooled sample. Only observations are
considered for which an ICC, a CF news proxy, and a DR news proxy can be
computed for each method. Furthermore, only ICCs measured in December
are considered for which the underlying firm has its fiscal-year end in De-
cember. All numbers are reported in percent. The time period ranges from
1985 to 2010.

Mean Std. dev. 5th 25th 50th 75th 95th

Panel A: Realized returns and expected return proxies

RR 9.07 33.94 -49.42 -8.70 11.01 29.39 60.75

PE 6.06 2.66 2.11 4.27 5.84 7.56 10.72

PEG 10.06 3.42 5.52 7.83 9.45 11.65 16.67

MPEG 10.96 3.33 6.78 8.72 10.32 12.53 17.42

OJ 10.98 2.53 7.59 9.17 10.59 12.35 15.69

CT 9.10 2.28 5.70 7.49 8.91 10.50 13.06

GLS 8.83 2.21 5.37 7.34 8.73 10.24 12.65

PSS 9.50 2.18 6.44 7.99 9.23 10.71 13.44

CDZ 11.89 2.87 7.69 9.93 11.59 13.53 17.11

Panel B: CF news proxies (as defined by EM and ICC-specific)

EM -4.13 23.55 -30.68 -9.42 -2.51 2.45 17.14

PE 14.91 111.30 -119.08 -9.25 7.44 31.07 181.60

PEG -3.55 156.69 -252.85 -40.74 -0.19 35.18 230.11

MPEG -4.93 156.43 -255.72 -39.88 -1.18 32.18 228.15

OJ -4.24 98.22 -159.53 -29.45 -1.20 24.04 143.99

CT -0.25 91.21 -142.50 -20.64 1.09 21.55 140.85

GLS 8.12 66.62 -80.97 -12.64 2.45 19.30 124.98

PSS -0.17 91.48 -145.70 -21.44 1.81 22.59 144.00

CDZ -4.13 114.14 -191.33 -26.48 0.09 23.00 173.71

Panel C: ICC-specific DR news proxies

PE 11.52 122.23 -133.54 -18.91 1.69 28.53 203.44

PEG -2.94 163.02 -256.90 -37.88 -3.15 30.33 250.15

MPEG -3.42 163.14 -262.64 -37.99 -2.96 31.00 248.44

OJ -2.71 107.25 -174.45 -27.26 -2.28 22.99 164.13

CT -0.61 101.69 -159.60 -22.76 -2.05 20.56 159.52

GLS 7.51 84.69 -110.38 -18.19 -0.16 22.27 158.32

PSS -0.12 101.27 -160.38 -22.59 -0.63 22.34 161.98

CDZ -1.69 121.69 -195.44 -25.06 -0.61 24.43 192.94
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by changes in expectations about all future expected dividends and
returns.

The different ICC measures have similar properties as in the EM
study, even though the time period is quite different (1981 to 1998 vs.
1985 to 2010): The standard deviations are roughly the same and the
PE method yields the lowest mean ICC, due to an expected earnings
growth of zero. Ignoring the CDZ method, which is not evaluated
by EM, the mean and median ICC is the highest for the abnormal
earnings growth valuation methods in both samples.

Both CF and DR news proxies have similar means and standard
deviations in my and EM’s data set. The means are all close to zero,
which is in line with the argument that there should be no systematic
bias in the news part. Also, the standard deviations are substantially
larger than those of realized returns. This is a counter-intuitive result,
something that has gone unnoticed in previous studies. The return
decomposition also implies a variance decomposition.95 That is, the
variation of unexpected realized returns has to be explained by the
variation in CF news, the variation in DR news, or a combination
of both. If the two are positively correlated, they offset each other
(because positive DR news has a negative effect on realized returns)
and the sum of the two variance terms can be larger than the vari-
ance of unexpected returns. Nevertheless, the DR news components
implied by the different ICC methods are quite extreme. EM, Mohan-
ram and Gode (2013), and myself report standard deviations of more
than 100% for the DR news proxies. Since the standard deviation of
unexpected returns is only around 34%, a very large, offsetting CF
news part is needed to fulfill the tautological relation. This is again
best demonstrated by a simple example. Suppose that the realized un-
expected returns this period are 20%, but a researcher estimates DR
news of -100%.96 Hence, he has to assume an almost equally large,
but offsetting CF news part of -80% proxy to reconcile the lower vari-
ation in realized returns with the very large variation in DR news. For
that reason I find a very high positive correlation between the CF and
DR news proxies within one ICC method, as detailed further below.

But why is the standard deviation of the DR news proxies so large
in the first place? This is most likely due to the specific procedure of
calculating the DR news first as a function of changes in the ICC

95 In accordance with the VAR literature, I focus on unexpected returns, i.e., rt+1 −
Et[rt+1], here. For those returns, the expected return for next period is already con-
sidered and only CF and DR news are left to explain these unexpected returns.

96 Again, a negative DR news shock implies a positive return.
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and then backing out CF news as the residual. Any specification
error that is made within a specific ICC method directly translates
into a specification error in the DR news part. Due to the fact that
the latter is affected by changes in every forecasted period, changes
in measurement error are scaled by a large number, as can be seen
from equation (43). For example, EM use a ρ of 0.988 for their non-
dividend paying stocks. This implies, all other things being equal,
that a change in measurement error of only 0.1 percentage points re-
sults in a change of the DR news part of 0.988/(1− 0.988)× 0.1 = 8.23
percentage points.97

A VAR approach is typically used in the literature to estimate CF
and DR news. This approach takes the opposite route in computing
the two news parts. Instead of obtaining a vector of expected future
cash flows, e.g. from analysts, it predicts a vector of future expected
returns by basically running several regressions in which state vari-
ables including realized returns are explained by their predecessors.
The CF news part can then be backed out as the residual.98 This ap-
proach guarantees, just as my consistent proxies, that the tautological
relation always holds. However, due to the statistical nature of this
approach, any extreme relations are only possible by construction:
with economic reasonable time series (normally, the VAR consists of
realized returns, the dividend yield, and one or more additional eco-
nomic variables) it is not possible to generate extreme variations. For
example, Vuolteenaho (2002) reports a standard deviation of 28% for
the CF news and of 13% for the DR news, which is much lower than
the standard deviations I report for proxies based on the ICC.

Since the ICC-independent CF news proxy from EM is not bur-
dened with the task to offset the very large variation in the DR news
proxies, its standard deviation is substantially lower (23.6% in my

97 The return decomposition proposed by Chen, Da, and Zhao (2013) is more robust
to such specification errors. First, it does not rely on a loglinearization of returns.
Second, Chen, Da, and Zhao (2013) compute the CF and DR news part for each
firm individually. In contrast, the parameter of linearization ρ that is used here is
constant for each firm within one group. I introduce their approach in detail in the
next chapter and show that the results are more reasonable. To further support the
argument that the issue of measurement error is more relevant for specific groups
of firms, I repeat the analysis after excluding all firms that do not pay dividends,
as mentioned in footnote 93. These firms are assigned the value of ρ that is closest
to one and for which measurement errors have the largest impact. Consistent with
the argument here, I find lower variances in the CF and DR news parts and lower
correlations. Because the latter are still very high, the problem is only alleviated, not
solved.

98 For a detailed description, as well as a critique of this approach, see Chen and Zhao
(2009). For a response to the critique, refer to Campbell, Polk, and Vuolteenaho (2010)
or Engsted, Pedersen, and Tanggaard (2012).
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sample and 38.4% in EM’s sample). Obviously, this directly implies
that the three parts do not add up to realized returns. For example,
the sum of the ICC, the EM CF news proxy, and the method-specific
DR proxy is 10.26% for the MPEG method and -2.8% for the GLS
method. This is a first indication that the news part is substantially
misspecified by EM. By contrast, it is 9.45% for all methods if the
consistent CF news proxies are used, which is almost identical to the
realized returns of 9.1%. The reason for the minor difference is that
the empirical implementation by EM, which I replicate here, breaks
the tautological relation between realized returns and the three proxy
parts. The realized returns that are used in this study are obtained
from CRSP and are defined as the total return index over the calen-
dar year. The ICCs are computed with data that comes from IBES
and Compustat and there are certain mismatches between the two
databases. The most important one is probably due to a different
time period: While the realized returns from CRSP correspond to the
calendar year, the ICCs are computed with IBES prices from around
mid-December. Hence, the tautological relation is broken. Further rea-
sons could be data errors or inconsistencies. Also, the derivations are
based on the CS return decomposition, which is an approximation,
while the returns are directly computed and therefore free of any ap-
proximation error.

My results are also roughly in line with Mohanram and Gode
(2013), who present summary statistics for a sample that ranges from
1983 to 2007. The only noteworthy difference is that they report CF
news with a lower standard deviation (9.8%).

Table 12 shows the average of the yearly cross-sectional correla-
tions among the key variables. Except for the CDZ method, all ICCs
are positively correlated with subsequent returns in the cross-section.
Also, the correlation between the different ICC proxies is positive ex-
cept for the PE/PEG relation, which is preliminary evidence that they
are all driven by a common factor.

The most interesting part of Table 12 is the correlation between the
different CF and DR news proxies. The first thing to notice is the very
high positive correlation between the CF and DR news proxy within
one ICC method. I already gave an explanation for this almost linear
relation between the CF and DR news proxy above.

But with the exception of the very simplistic PE method, all corre-
lations of CF and DR news between methods are also positive. There-
fore, this can be seen as evidence that on a firm-level CF and DR news



6.2 summary statistics 109

Ta
bl

e
1

2
:C

or
re

la
ti

on
s

be
tw

ee
n

va
ri

ab
le

s
in

th
e

EM
an

al
ys

is
.T

hi
s

ta
bl

e
sh

ow
s

th
e

av
er

ag
e

of
th

e
an

nu
al

cr
os

s-
se

ct
io

na
lc

or
re

la
ti

on
s

fo
r

th
e

re
le

va
nt

in
pu

tp
ar

am
et

er
s

of
th

e
EM

an
al

ys
is

.I
n

Pa
ne

lA
,t

he
co

rr
el

at
io

ns
w

it
h

su
bs

eq
ue

nt
re

al
iz

ed
re

tu
rn

s
an

d
th

e
ex

pe
ct

ed
re

tu
rn

pr
ox

ie
s

ar
e

gi
ve

n.
Pa

ne
lB

an
d

C
sh

ow
th

e
co

rr
el

at
io

n
w

it
h

th
e

C
F

an
d

D
R

ne
w

s
pa

rt
,r

es
pe

ct
iv

el
y.

R
R

is
th

e
re

al
iz

ed
,c

on
ti

nu
ou

sl
y

co
m

po
un

de
d

re
tu

rn
fo

r
ye

ar
t
+
1

,a
s

ob
ta

in
ed

fr
om

C
R

SP
.A

ll
IC

C
s

re
pr

es
en

t
co

nt
in

uo
us

ly
co

m
po

un
de

d
re

tu
rn

s.
In

Pa
ne

lB
,t

he
C

F
ne

w
s

pr
ox

y
as

us
ed

in
EM

is
co

m
pu

te
d

fr
om

eq
ua

ti
on

(3
5
)

an
d

th
e

IC
C

sp
ec

ifi
c

C
F

ne
w

s
pr

ox
ie

s
ar

e
co

m
pu

te
d

fr
om

eq
ua

ti
on

(4
4

).
In

Pa
ne

l
C

,t
he

IC
C

sp
ec

ifi
c

D
R

ne
w

s
pr

ox
ie

s
ar

e
co

m
pu

te
d

fr
om

eq
ua

ti
on

(4
3
).

O
nl

y
ob

se
rv

at
io

ns
ar

e
co

ns
id

er
ed

fo
r

w
hi

ch
an

IC
C

,a
C

F
ne

w
s

pr
ox

y,
an

d
a

D
R

ne
w

s
pr

ox
y

ca
n

be
co

m
pu

te
d

fo
r

ea
ch

m
et

ho
d.

Fu
rt

he
rm

or
e,

on
ly

IC
C

s
m

ea
su

re
d

in
D

ec
em

be
r

ar
e

co
ns

id
er

ed
fo

r
w

hi
ch

th
e

un
de

rl
yi

ng
fir

m
ha

s
it

s
fis

ca
l-

ye
ar

en
d

in
D

ec
em

be
r.

A
ll

co
rr

el
at

io
ns

ar
e

re
po

rt
ed

in
pe

rc
en

t.
Th

e
ti

m
e

pe
ri

od
ra

ng
es

fr
om

1
9

8
5

to
2

0
1

0
.

Ex
pe

ct
ed

re
tu

rn
pr

ox
y

C
F

pr
ox

y
D

R
pr

ox
y

R
R

PE
PE

G
M

PE
G

O
J

C
T

G
LS

PS
S

C
D

Z
EM

PE
PE

G
M

PE
G

O
J

C
T

G
LS

PS
S

C
D

Z
PE

PE
G

M
PE

G
O

J
C

T
G

LS
PS

S
C

D
Z

Pa
ne

lA
:C

or
re

la
ti

on
w

it
h

re
al

iz
ed

re
tu

rn
s

an
d

ex
pe

ct
ed

re
tu

rn
pr

ox
ie

s

R
R

1
0

0
7

1
3

3
5

6
4

-1
3

3
-5

-1
0

-1
1

-5
-1

-2
5

-1
1

-3
3

-2
7

-2
8

-3
2

-3
2

-6
0

-3
2

-2
5

PE
7

1
0

0
-1

0
2

1
4

6
4

5
8

4
9

1
3

3
-2

9
7

5
-2

-1
7

-1
8

-1
7

-1
4

-2
7

5
4

-3
-1

6
-1

6
-1

7
-1

5

PE
G

1
-1

0
1

0
0

9
4

8
6

3
7

4
0

4
4

4
3

-9
1

3
-3

6
-3

5
-3

0
-7

-9
-7

-7
1

2
-3

3
-3

2
-2

7
-7

-7
-6

-6
M

PE
G

3
2

9
4

1
0

0
9

4
4

5
3

8
5

2
3

8
-7

1
1

-3
7

-3
7

-3
3

-9
-1

0
-9

-8
9

-3
4

-3
4

-3
0

-8
-8

-8
-7

O
J

3
1

4
8

6
9

4
1

0
0

6
2

4
1

7
3

5
7

-1
1

6
-3

1
-3

2
-3

4
-1

4
-1

0
-1

8
-1

7
5

-2
8

-2
9

-3
0

-1
4

-8
-1

6
-1

5

C
T

5
6

4
3

7
4

5
6

2
1

0
0

5
2

8
8

6
2

-1
4

-1
4

-8
-9

-1
7

-3
1

-1
6

-3
0

-2
7

-1
3

-7
-9

-1
6

-2
9

-1
4

-2
8

-2
6

G
LS

6
5

8
4

0
3

8
4

1
5

2
1

0
0

5
1

3
8

4
-1

1
-7

-6
-9

-1
3

-2
5

-1
4

-1
4

-1
1

-7
-6

-9
-1

4
-2

0
-1

4
-1

4

PS
S

4
4

9
4

4
5

2
7

3
8

8
5

1
1

0
0

8
0

-1
6

-9
-8

-1
1

-1
9

-2
5

-1
0

-3
3

-3
2

-9
-8

-1
0

-1
8

-2
4

-9
-3

1
-3

1

C
D

Z
-1

1
3

4
3

3
8

5
7

6
2

3
8

8
0

1
0

0
-2

0
-1

-7
-8

-1
6

-2
0

-2
-2

8
-3

2
-1

-6
-8

-1
4

-1
9

-1
-2

5
-2

8

Pa
ne

lB
:C

or
re

la
ti

on
w

it
h

C
F

ne
w

s
pr

ox
ie

s
(a

s
de

fin
ed

by
EM

an
d

IC
C

-s
pe

ci
fic

)

EM
3

3
3

-9
-7

-1
1

-1
4

4
-1

6
-2

0
1

0
0

1
6

-1
0

9
2

4
-4

2
2

2
1

5
-7

-6
-1

1
2

-1
7

9
1

1

PE
-5

-2
9

1
3

1
1

6
-1

4
-1

1
-9

-1
1

6
1

0
0

-2
1

-2
0

4
6

2
6

0
5

6
4

9
9

5
-2

0
-1

9
4

5
9

5
0

5
4

4
8

PE
G

-1
0

7
-3

6
-3

7
-3

1
-8

-7
-8

-7
-1

-2
1

1
0

0
9

9
8

9
2

4
2

8
2

4
2

3
-1

7
9

8
9

7
8

6
2

6
2

7
2

6
2

5

M
PE

G
-1

1
5

-3
5

-3
7

-3
2

-9
-6

-1
1

-8
0

-2
0

9
9

1
0

0
9

1
2

6
2

6
2

7
2

5
-1

6
9

7
9

8
8

9
2

8
2

6
2

9
2

7

O
J

-5
-2

-3
0

-3
3

-3
4

-1
7

-9
-1

9
-1

6
9

4
8

9
9

1
1

0
0

5
2

3
9

5
7

5
4

4
8

6
8

8
9

5
5

0
3

4
5

5
5

4

C
T

-1
-1

7
-7

-9
-1

4
-3

1
-1

3
-2

5
-2

0
2

4
6

2
2

4
2

6
5

2
1

0
0

6
3

8
8

8
2

5
8

2
2

2
4

4
8

9
4

5
0

8
2

7
8

G
LS

-2
5

-1
8

-9
-1

0
-1

0
-1

6
-2

5
-1

0
-2

-4
6

0
2

8
2

6
3

9
6

3
1

0
0

6
0

5
3

6
3

3
1

2
9

4
4

6
7

9
1

6
4

5
8

PS
S

-1
-1

7
-7

-9
-1

8
-3

0
-1

4
-3

3
-2

8
2

2
5

6
2

4
2

7
5

7
8

8
6

0
1

0
0

9
6

5
2

2
3

2
6

5
3

8
3

4
8

9
4

9
3

C
D

Z
1

-1
4

-7
-8

-1
7

-2
7

-1
4

-3
2

-3
2

2
1

4
9

2
3

2
5

5
4

8
2

5
3

9
6

1
0

0
4

5
2

1
2

3
5

0
7

7
4

2
9

0
9

6

Pa
ne

lC
:C

or
re

la
ti

on
w

it
h

IC
C

-s
pe

ci
fic

D
R

ne
w

s
pr

ox
ie

s

PE
-3

3
-2

7
1

2
9

5
-1

3
-1

1
-9

-1
5

9
5

-1
7

-1
6

4
5

8
6

3
5

2
4

5
1

0
0

-1
0

-1
0

1
4

6
5

6
5

6
0

5
3

PE
G

-2
7

5
-3

3
-3

4
-2

8
-7

-7
-8

-6
-7

-2
0

9
8

9
7

8
6

2
2

3
1

2
3

2
1

-1
0

1
0

0
9

9
9

0
3

1
3

7
3

1
2

9

M
PE

G
-2

8
4

-3
2

-3
4

-2
9

-9
-6

-1
0

-8
-6

-1
9

9
7

9
8

8
8

2
4

2
9

2
6

2
3

-1
0

9
9

1
0

0
9

2
3

3
3

7
3

4
3

1

O
J

-3
2

-3
-2

7
-3

0
-3

0
-1

6
-9

-1
8

-1
4

-1
4

8
6

8
9

9
5

4
8

4
4

5
3

5
0

1
4

9
0

9
2

1
0

0
5

7
5

0
6

2
5

8

C
T

-3
2

-1
6

-7
-8

-1
4

-2
9

-1
4

-2
4

-1
9

1
2

5
9

2
6

2
8

5
0

9
4

6
7

8
3

7
7

6
5

3
1

3
3

5
7

1
0

0
6

8
8

9
8

3

G
LS

-6
0

-1
6

-7
-8

-8
-1

4
-2

0
-9

-1
-1

7
5

0
2

7
2

6
3

4
5

0
9

1
4

8
4

2
6

5
3

7
3

7
5

0
6

8
1

0
0

6
6

5
8

PS
S

-3
2

-1
7

-6
-8

-1
6

-2
8

-1
4

-3
1

-2
5

9
5

4
2

6
2

9
5

5
8

2
6

4
9

4
9

0
6

0
3

1
3

4
6

2
8

9
6

6
1

0
0

9
6

C
D

Z
-2

5
-1

5
-6

-7
-1

5
-2

6
-1

4
-3

1
-2

8
1

1
4

8
2

5
2

7
5

4
7

8
5

8
9

3
9

6
5

3
2

9
3

1
5

8
8

3
5

8
9

6
1

0
0



6.3 empirical results 110

Table 13: Univariate cross-sectional regressions of subsequent continu-
ously compounded realized returns on the ICC for each method. For each
ICC method, the following cross-sectional regression is run each year:

ri,t+1 = α+βer̂
k
i,t + εi,t+1.

The presented regression coefficients and adjusted R2 are the aver-
ages over those annual regressions. The t-statistics are computed as the
average regression coefficients divided by the standard error of the annual
regression coefficients. ri,t+1 is the realized, continuously compounded
return for year t+ 1, as obtained from CRSP. r̂ki,t is the log ICC value of the
respective method. Only observations are considered for which an ICC, a
CF news proxy, and a DR news proxy can be computed for each method.
Furthermore, only ICCs measured in December are considered for which
the underlying firm has its fiscal-year end in December. The time period
ranges from 1985 to 2010.

Method Stat. α βe Adj. R2

PE Coef. 0.0418 0.708 0.0292

t-value 1.13 1.61

PEG Coef. 0.0882 -0.0205 0.0229

t-value 3.24 -0.0694

MPEG Coef. 0.0755 0.0941 0.0173

t-value 2.76 0.352

OJ Coef. 0.072 0.139 0.0194

t-value 2 0.346

CT Coef. 0.0405 0.497 0.02

t-value 1.08 1.11

GLS Coef. 0.0223 0.683 0.0256

t-value 0.629 1.65

PSS Coef. 0.0536 0.319 0.0187

t-value 1.61 0.785

CDZ Coef. 0.118 -0.287 0.0246

t-value 3.14 -0.764

are positively correlated, a result previously obtained by Vuolteenaho
(2002) who uses a VAR approach to compute the news parts. This is
a good consistency check and shows that the derived CF news proxy
are driven by common underlying economic factors.

6.3 empirical results

Before I run the multivariate regressions proposed by EM, I first show
results for univariate regressions in Table 13. The advantage of a uni-
variate regression is that we know that the residual contains all of the
information surprises that affected realized returns over period t+ 1.
We further know that the residual has a mean of zero and is uncorre-
lated with every variable conditional on time t asymptotically.



6.3 empirical results 111

For each year, I run a cross-sectional regression of subsequent real-
ized returns on the ICC estimated in December of the previous year.
In Table 13, I report the average regression coefficients of those annual
regressions. The t-statistics are computed via the approach described
in Fama and MacBeth (1973).

The coefficient on the ICC proxy across methods varies widely.
While it is negative for the PEG and CDZ method, it is close to one
for the PE and GLS method. In line with these results, the R2 are also
the highest for the PE and GLS method. Interestingly, the R2 for the
CDZ method is also quite high.

A possible reason for the negative relation of the CDZ method in ex-
plaining the cross-sectional variation in subsequent realized returns
was already given previously. It could be that the very aggressive
earnings growth assumption made by Chen, Da, and Zhao (2013) are
at odds with investors’ expectations.

In summary, based on the results of Table 13, the GLS and the
PE method are doing a good job in explaining the cross-sectional
variation in subsequent realized returns and can therefore be consid-
ered reasonable proxies for true expected returns. Moreover, all other
methods except for the PEG and CDZ method at least have a positive
coefficient. Of course, due to the large standard deviation of the news
shocks, the power of these regressions is low, which can be seen from
the low adjusted R2. Therefore, the results could also be rationalized
by a sequence of positive or negative news shocks, and not by the
superiority of the GLS or PE method. As a solution to this problem,
EM propose to control for the news shocks. I turn to their approach
next.

Table 14 replicates the analysis in EM with their CF news proxy. In
line with their study and the study of Mohanram and Gode (2013), I
find regression coefficients that are all far below one. Only the sign
for CF and DR news is correct, while the betas of all ICC methods
are negative. This is an interesting result because the univariate re-
gression analysis implied a positive association between most of the
ICC methods and subsequent realized returns. Taking those results
for face value, none of the ICC methods are of any use. However,
as discussed in Section 6.2, these results are most likely driven by a
news proxies plagued with extreme measurement error.99

99 This argument is supported by their measurement error variance analysis. In Table
5 of EM the proxies have large measurement errors. Note that I do not focus on
the measurement error variance analysis of EM here because it is irrelevant to my
argument and would only complicate the discussion.
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Table 14: Multivariate cross-sectional regressions of subsequent contin-
uously compounded realized returns on the ICC for each method with
CF news proxy as defined in EM. For each ICC method, the following
cross-sectional regression is run each year:

ri,t+1 = α+βer̂
k
i,t +βCFN,EMĈFN

EM

i,t+1 +βDRND̂RN
k

i,t+1 + εi,t+1.

The presented regression coefficients and adjusted R2 are the aver-
ages over those annual regressions. The t-statistics are computed as the
average regression coefficients divided by the standard error of the annual
regression coefficients. ri,t+1 is the realized, continuously compounded
return for year t + 1, as obtained from CRSP. r̂ki,t is the log ICC value of
the respective method. The CF news proxy independent of a specific ICC
method is computed from equation (35). The ICC specific DR news proxies
are computed from equation (43). Only observations are considered for
which an ICC, a CF news proxy, and a DR news proxy can be computed
for each method. Furthermore, only ICCs measured in December are con-
sidered for which the underlying firm has its fiscal-year end in December.
The time period ranges from 1985 to 2010.

Method Stat. α βe βCFN,EM βDRN Adj. R2

PE Coef. 0.161 -0.555 0.65 -0.104 0.259

t-value 5.51 -1.68 11.3 -15.3
PEG Coef. 0.155 -0.425 0.578 -0.0509 0.206

t-value 5.71 -1.48 11.6 -9.34

MPEG Coef. 0.162 -0.452 0.583 -0.0534 0.205

t-value 5.89 -1.74 11.5 -9.53

OJ Coef. 0.178 -0.581 0.603 -0.0967 0.239

t-value 5.39 -1.7 11.7 -11.8
CT Coef. 0.126 -0.122 0.693 -0.117 0.269

t-value 4.34 -0.374 11 -13.4
GLS Coef. 0.207 -0.978 0.44 -0.239 0.435

t-value 7.69 -4.37 9.63 -31.1
PSS Coef. 0.151 -0.336 0.676 -0.116 0.258

t-value 5.31 -1.01 11.8 -13.8
CDZ Coef. 0.145 -0.23 0.678 -0.0803 0.225

t-value 4.51 -0.764 11.7 -11.4
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Table 15: Multivariate cross-sectional regressions of subsequent con-
tinuously compounded realized returns on the ICC for each method
with consistent CF news proxies. For each ICC method, the following
cross-sectional regression is run each year:

ri,t+1 = α+βer̂
k
i,t +βCFNĈFN

k

i,t+1 +βDRND̂RN
k

i,t+1 + εi,t+1.

The presented regression coefficients and adjusted R2 are the aver-
ages over those annual regressions. The t-statistics are computed as the
average regression coefficients divided by the standard error of the annual
regression coefficients. ri,t+1 is the realized, continuously compounded
return for year t + 1, as obtained from CRSP. r̂ki,t is the log ICC value of
the respective method. The ICC specific CF news proxies are computed
from equation (44). The ICC specific DR news proxies are computed from
equation (43). Only observations are considered for which an ICC, a CF
news proxy, and a DR news proxy can be computed for each method.
Furthermore, only ICCs measured in December are considered for which
the underlying firm has its fiscal-year end in December. The time period
ranges from 1985 to 2010.

Method Stat. α βe βCFN βDRN Adj. R2

PE Coef. -0.00353 1.08 0.939 -0.942 0.881

t-value -0.472 9.85 104 -104

PEG Coef. 0.0152 0.799 0.939 -0.941 0.879

t-value 1.96 13.7 95.3 -96.5
MPEG Coef. 0.011 0.85 0.94 -0.941 0.879

t-value 1.44 15.6 94.4 -96.1
OJ Coef. 0.016 0.811 0.94 -0.942 0.879

t-value 1.83 10.6 94.6 -97.2
CT Coef. 0.0137 0.859 0.942 -0.943 0.88

t-value 1.52 7.65 97.2 -99.2
GLS Coef. 0.0203 0.753 0.919 -0.936 0.881

t-value 2.44 8.73 84.6 -102

PSS Coef. 0.0245 0.725 0.94 -0.943 0.88

t-value 3.39 8.33 99.9 -99.5
CDZ Coef. 0.0437 0.597 0.939 -0.942 0.881

t-value 4.08 6.22 98 -97.3

Note that the inclusion of news proxies into the regression does not
only change the coefficients quite a bit, but also the ranking across
methods based on the slope coefficients. The GLS method is now one
of the worst methods. Furthermore, the CDZ method now has one of
the lowest regression coefficients in absolute values. The ranking also
changes if we look at the R2 instead.

Table 15 repeats the multivariate regression of EM with updated,
consistent CF news proxies. The previous results are completely re-
versed. Not only do both news proxies have an almost perfect 1:1
relation with realized returns of the following year for every ICC
method, but also βe is above 0.5 for all methods and very close to
one for most of them. According to the EM evaluation method, this
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means that all proxies track expected returns for next period almost
perfectly. Also, the ranking across methods changes again. For exam-
ple, the coefficient on the CDZ method is the lowest again, in contrast
to Table 14.

As I argued before, I do not consider these empirical results as evi-
dence for the quality of particular proxies, but for the inappropriate-
ness of the evaluation approach. By definition, the coefficients have
to be close to one. As pointed out earlier, they actually should be one
theoretically. As noted before, the reason for the minor differences are
due to a mismatch of CRSP and IBES data.

In untabulated results, I repeat the multivariate regression with an
updated realized return. Instead of using returns provided by CRSP,
I compute an approximated loglinearized return as defined in equa-
tion (36). The correlation between the two realized returns is almost
perfect, with differences driven by mismatching reasons as discussed
before. Not surprisingly, every proxy now measures expected returns
perfectly, according to the evaluation approach by EM.

In summary, this section showed that it is possible for every proxy
to define matching CF and DR proxies so that the evaluation method
by EM implies a perfect relation between the proxy and the expected
return next period. Therefore, the EM approach, applied with consis-
tent proxies, cannot be used to separate between different methods.

In the next section, I provide evidence that using an inconsistent
proxy introduces additional, large measurement error and is at odds
with the tautological relation that defines realized returns.

6.4 examination of the residual in the multivariate re-
gressions with the cf news proxy as defined by em

It is easy to check whether the specification proposed by EM and
replicated in Table 14 is correct. Because realized returns are just the
sum of expected returns next period and information surprises, the
residuals in equation (33) have to be zero if one measures the parts
correctly or at least consistently. In contrast, EM use an inconsistent
CF news proxy, so an examination of the residuals reveals how good
the specification is. If the two news proxies are not too far off, the
residuals should be close to zero. In Section 6.2, I already showed
that the mean of the news part is not reconcilable with a specific ICC
method and realized returns. Here, I focus on the residuals instead.
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The average of the cross-sectional standard deviations of the residu-
als for the regressions run in Table 14 ranges from 21% to 26% across
methods. In comparison, the variation in the dependent variable, i.e.,
the total variation that has to be explained by the independent vari-
ables, is only 29%.100 In other words, almost all of the variation of
realized returns in the specification proposed by EM has to be ex-
plained by the residuals. I therefore conclude that the regressions by
EM are subject to a large misspecification error.

This can also be seen from the adjusted R2 column in Table 14. If
the proxies would be specified correctly or consistently, the adjusted
R2 would be one. On the contrary, the values are all well below 30%
except for the GLS method. And even in the case of the GLS method,
less than half of the cross-sectional variation in realized returns can
be explained by the three proxies.

Figure 6 is an illustration of this point. It plots the residuals for the
multivariate regression with the inconsistent proxy by EM and the
ICC and DR proxy according to the PSS method. This histogram is
overlaid with the realized returns. If the proxies by EM did a good
job in approximating these realized returns, the residuals would be
small because there would not be much variation in realized returns
left to explain. By contrast, this figure shows that the variation of the
residuals is almost as large as the variation of the dependent variable,
realized returns. In other words, the proxies are severely misspecified
and are rather useless in explaining the variation of realized returns.
Almost all of this variation has to be explained by the residuals. In
theory, we know that the residuals should be zero for every obser-
vation, i.e., there is no left-out factor. Therefore, the large residuals
indicate severe measurement errors in the CF and DR news part.

To summarize, this section has shown that even in hindsight a re-
searcher cannot estimate CF and DR news in a reliable manner. Even-
tually, this result also explains why the methodology proposed by
Chen, Da, and Zhao (2013) is not robust to the specific ICC method. I
introduce their approach in detail in the next chapter and show how
to apply a BMA approach to check the sensitivity of this approach to
the specific ICC methods.

100 Note that I report a cross-sectional standard deviation of 34% in Table 11. This num-
ber is based on a pooled sample. Here, I report the average across the annual cross-
sectional standard deviations.
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Figure 6: Histogram of log realized returns and residuals of a multivariate
cross-sectional regression of subsequent log realized returns on the ICC
with the PSS method and a CF news proxy as defined by EM. For the PSS
method, the following cross-sectional regression is run each year:

ri,t+1 = α+βer̂
PSS
i,t +βCFN,EMĈFN

EM

i,t+1 +βDRND̂RN
PSS

i,t+1 + εi,t+1.

From this regression, the residuals are stacked in a vector. This figure
overlays the histograms of this vector of residuals and the vector of log
realized returns, ri,t+1. The sample ranges from 1985 to 2010.



7
E M P I R I C A L A P P L I C AT I O N O F T H E B AY E S I A N
M O D E L AV E R A G I N G A P P R O A C H

In this chapter,101 the Bayesian model averaging (BMA) approach pre-
sented in Chapter 4 is applied to three research questions that have
been previously answered with the help of the ICC, but only condi-
tional on one specification. In Section 7.1, I compute the posterior
model weights that are necessary for the application of the BMA
approach. Because these weights are independent of the specific re-
search question at hand, I can discuss their computations in a preced-
ing section. Section 7.2 revisits the study of Claus and Thomas (2001)
that infers an implied risk premium for the aggregated US market. In
Section 7.3, I replicate the study of Pástor, Sinha, and Swaminathan
(2008) that looks at the intertemporal risk-return tradeoff. And Sec-
tion 7.4 applies the BMA approach to the study of Chen, Da, and
Zhao (2013) that wants to explain whether cash flow or discount rate
news drive stock price movements.

7.1 weights

Table 16 shows the posterior model weights that are obtained from
applying equation (61) with different shrinkage parameters φ.102 As
has been argued in Chapter 4, a shrinkage parameter close to zero
puts almost all weight on prior information and leaves little room for
the data to change the researcher’s view on his priors. Since the priors
are equally weighted across models, so are the posteriors in the case
of φ = 0.01.

101 This chapter is based on Jäckel (2014).
102 In line with Li, Ng, and Swaminathan (2013), I use continuously compounded re-

alized returns, but I do not log the implied cost of capital estimates. Because this
is a somewhat inconsistent procedure, I repeat the analysis with simple returns in
Table 26 in the appendix. The results are very similar. Also, in the return predictabil-
ity literature, excess returns are often used. As another robustness check, I compute
the posterior model weights with such excess log realized returns and implied risk
premiums instead. The posterior weights, which can be found in Table 27, are more
evenly distributed than in Table 16, but the results are similar. In particular, the
MPEG method is the best performing method in all cases, while the CDZ method is
the worst one.

117
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Table 16: Posterior model weights for different shrinkage parameters. This
table shows the posterior model weights of the ICC methods for different
shrinkage parameters φ. The weights are based on predictive regressions of
subsequent continuously compounded realized returns for the next month
on the ICCs. The following priors are specified: Equal prior model probabil-
ities p(Mk) across ICC methods, an improper prior on σ2, and the natural
conjugate g-prior specification for β: N(0,φσ2(X′kXk)

−1), where Xk is the
T × 2 matrix of a T vector of ones and the T vector µ̂i; the posterior model
weights are computed via equation (61). Note that the case φ = ∞ is iden-
tical to the AIC weighting shown in equation (62). The time period ranges
from 1985 to 2011.

φ PE PEG MPEG OJ CT GLS PSS CDZ

0.01 12.51 12.54 12.55 12.48 12.48 12.53 12.52 12.40

0.1 12.58 12.87 12.94 12.30 12.30 12.74 12.67 11.59

1 12.78 14.54 14.95 11.29 11.28 13.74 13.32 8.09

10 12.74 16.18 17.02 10.14 10.12 14.57 13.75 5.49

100 12.70 16.49 17.43 9.90 9.88 14.71 13.81 5.06∞ 12.70 16.53 17.48 9.88 9.85 14.72 13.82 5.01

The more φ is increased, the more weight is put on the evidence in
the data. And for this particular data set, the MPEG method performs
the best at predicting subsequent realized returns. In the limiting case
in which the researcher discards all prior information (φ = ∞), the
posterior model weight of the MPEG method is 17%. Moreover, it is
interesting to see that the CDZ method gets almost no support from
the data. Furthermore, even in the case in which one discards prior
information altogether, a researcher cannot differentiate between the
methods with great confidence. Instead, the posterior model weights
are rather evenly distributed across the eight methods. This implies
that the evidence of any research question has to consider the evi-
dence from all proxies simultaneously as well if one is not willing to
put a larger prior weight on one method in particular.

How robust are these posterior model weights though? Table 17 ad-
dresses this question. It shows the distribution of the posterior model
weights for two different shrinkage parameters (φ = 1 and φ = ∞)
and for 10,000 bootstrap runs. In each run, a random sample with re-
placement and the same size as the original data set (i.e., 324 months)
is drawn and the posterior model weights are computed for this boot-
strap sample.103

Table 17 shows that a researcher faces considerable uncertainty
about the performance of the various ICC methods. For instance, in
the case of non-informative priors the 1% and 99% percentiles of the

103 Efron and Tibshirani (1993) give a textbook introduction into the bootstrapping
method.
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Table 17: Bootstrapped posterior model weights for two shrinkage param-
eters. This table shows the distribution of posterior model weights of the
ICC methods for two different shrinkage parameters (φ = 1 and φ = ∞)
over 10,000 block-bootstrap samples with a block length of 24 months. For
each bootstrap sample, the analysis outlined in Table 16 is run.

Percentile PE PEG MPEG OJ CT GLS PSS CDZ

Posterior model weights for φ = 1

1% 3.44 3.73 4.88 2.82 2.84 5.08 4.73 0.84

5% 6.10 6.05 7.32 4.85 5.13 7.74 7.67 1.99

50% 12.75 13.12 13.48 10.61 10.47 13.18 12.55 8.56

95% 29.44 27.65 22.73 15.33 15.07 25.51 16.54 18.75

99% 39.07 38.80 27.60 18.37 18.59 34.15 18.85 27.47

Posterior model weights for φ = ∞
1% 0.44 0.47 0.80 0.25 0.29 1.05 0.88 0.03

5% 2.04 1.97 2.84 1.15 1.25 3.41 3.01 0.20

50% 12.35 12.95 13.68 8.26 8.05 13.03 11.65 5.47

95% 46.04 44.44 29.27 16.79 16.95 35.98 18.62 26.61

99% 62.13 62.24 35.56 22.72 24.16 52.50 22.45 48.38

weights for the MPEG method are 0.8% and 36%, respectively. This
dispersion is even larger for other methods such as the CDZ, the
PE, the PEG, or the GLS method. This large variation is a result of the
large noise inherent in realized returns. The true underlying expected
return process is clouded by large, unsystematic shocks. Therefore,
determining the model weights precisely with predictive regressions
requires long samples that we do not have; and if we had them, al-
ternative proxies would be unnecessary in the first place for many
research questions. This is an inherent circularity in any expected re-
turn proxy that tries to replace realized returns due to high noise in
the latter. To determine the quality of any such proxy, one needs the
very same realized returns that it intends to replace.

The large noise in realized returns and its consequences are well
known in the finance literature. Goyal and Welch (2008) argue that
the apparent statistical significance of many predictors is exclusively
based on evidence due to years up to and especially on the years of
the Oil Shock from 1973 to 1975. Fama and French (2002) find that the
high realized returns in the second half of the 20th century are mostly
driven by positive unexpected shocks, and not by high expected re-
turns. And Campello, Chen, and Zhang (2008) run the predictive re-
gressions from above with their expected return proxy based on yield
spreads and find no relation. They interpret this result as evidence
that the shock structure in realized returns in their sample hindered
the convergence to their expected return proxy, assumed to be correct,
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not as evidence that their proxy might be measured with error. From
the perspective of the BMA approach advocated here, they have a
very informative prior about the correctness of their proxy and there-
fore, discard any information in the data that casts doubt on this
prior.

However, this leaves only one way to evaluate the performance of
any proxy, that is, prior information. Of course, since most empirical
studies have only one proxy class under consideration, the implicit
weight on this proxy is set to one. But this severely overstates, at least
in my opinion, the confidence a researcher should have in his proxy.
In the example of Campello, Chen, and Zhang (2008), if their proxy is
not able to explain subsequent realized returns, why should I choose
their proxy instead of proxies based on CDS spreads or the ICC? In
other words, a researcher who proposes a new proxy has to com-
pare this proxy with existing ones. The only meaningful method of
comparison that I know of are predictive regressions that are highly
sensitive, so a researcher might ignore these regressions altogether.
But in this case, the researcher has to choose between two options. Ei-
ther he considers evidence of all proxies simultaneously, which will
weaken the power of statistical tests and therefore reduce one of the
main advantages of alternative expected return proxies. Or he argues
based on prior information why he deems his proxy to be more suit-
able than other existing proxies and he has to quantify the superiority
of his proxy.104

This procedure is in sharp contrast to current practice. I am not
aware of any study that compares different proxy classes such as ex-
pected returns based on the ICC, yield spreads, or CDS data. Most
studies ignore the evidence of predictive regressions completely and
run ad-hoc robustness checks on their results. That is, they implicitly
set the probability that their proxy is correct to one in the main empir-
ical analysis and report their results, conditional on the assumption
that their proxy is tracking expected returns perfectly. Afterwards,
they repeat their analyses for variations of their proxy under consid-
eration. Thus, the reader has no indication which of these variations

104 Leamer (1978, p. 123) describes issues with the current approach of reporting results
based on one proxy and ignoring the evidence based on others as follows: “But
much more important is the fact that the output of an interpretive search is an
interpretation of the data evidence built on some implicit prior information. This
interpretation is relevant to the reader only to the extent that he accepts the implicit
prior information as his own, and only then if he understands that it is already built
into the result. Publication of the output of an interpretive search is thus equivalent
to publication of a posterior distribution without either the sample result or the
prior.”
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is best supported by the data. It is also difficult for him to combine
the evidence from the battery of robustness tests to one coherent pic-
ture. And finally, the variations chosen in the robustness section are
predominantly selected in an ad-hoc manner with no discernable mo-
tivation. This is nicely illustrated in the ICC literature. Most asset
pricing studies focus on the PSS approach and its derivatives, while
most corporate finance and accounting studies implement abnormal
growth in earnings models and residual income models. Furthermore,
the studies generally focus on one or a few approaches and thus ig-
nore evidence based on other approaches. This procedure may be mo-
tivated by the fact that too many robustness checks will unnecessarily
lengthen the empirical part and bore the reader, particularly if the re-
sults are quite similar. However, as I show in subsequent examples,
omitting such tests can result in quite dramatic misinterpretations.

The model averaging approach introduced in Chapter 4 is a solu-
tion to this problem. If a researcher is willing to make the extra effort
to motivate this approach shortly, model averaging can take any num-
ber of expected return proxies into account without increasing the
complexity of the analysis. Also, if one is willing to take predictive re-
gressions into account, despite their sensitivity to large shocks, model
averaging will automatically incorporate evidence about the quality
of the proxies under consideration. So if one proxy class gets no sup-
port in the data, it will not matter in the following empirical analysis.
The weighting between the prior information and the data can easily
be controlled by the researcher. Furthermore, this approach helps pro-
tect a researcher from finding spurious relations between the variable
of interest and expected returns by ensuring that a researcher does
not select a proxy with a particular measurement error that is related
to the variable of interest.

Unfortunately, even this approach is unable to solve the problem
of whether any proxy is tracking expected returns well. If no proxy
does, the analysis will still be biased, even asymptotically. This is a
severe shortcoming of any expected return proxy. Finally, the BMA
approach subsumes current approaches, which also apply a model
averaging approach implicitly by setting the probability of one proxy
to one. So it is also possible to reproduce current studies exactly with
this approach, but this requires the researcher to explicitly state his
prior.
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In the following, I present three empirical examples that show the
impact of model uncertainty and apply the model averaging approach
to deal with it.

7.2 implied equity risk premium

In this section, I replicate the results of Claus and Thomas (2001)
for an updated time period and additional ICC methods. Claus and
Thomas (2001) were one of the first studies to apply the ICC in empir-
ical research. They use the ICC to compute an implied risk premium,
defined as the ICC minus the 10-year government bond yield, and
find that the US implied risk premium was only around 3% from
1985 to 1998. Due to a lack of alternative proxies back then, they only
apply the CT approach.

I reproduce their analysis for an updated time period from 1985 to
2011 and also incorporate model uncertainty into the analysis by con-
sidering seven ICC methods simultaneously. I consider only seven
methods here because I set the prior weight on the PE method to
zero. Because this method ignores any future earnings growth, I con-
sider this method irrelevant from the outset. Furthermore, I set φ = 0,
i.e., I consider each ICC method equally likely to track expected re-
turns correctly. Hence, the posterior model weights are equal to the
prior model weights; each of the remaining seven ICC methods gets
the same weight. The reason why I do not consider the evidence from
predictive regressions as relevant for this research question is because
I assume that the level of the ICC, in which we are interested in here,
is unrelated to the time series process of the ICC. Only the latter is
evaluated with predictive regressions, but since I assume that there is
no relation to the former, these regressions do not help me in differen-
tiating between the different methods. As a simple example, take two
proxies, one that tracks expected returns perfectly, but is 10 percent-
age points too high every period, and one that is either 2 percentage
points too high or too low, with equal probability. While the former
proxy is biased in levels, it will perfectly track the time series of ex-
pected returns. The latter, on the other hand, will be unbiased, but
not track expected returns reasonable well. In this application, we
want to choose the latter, but the predictive regression would choose,
at least asymptotically, the former. I therefore ignore the evidence of
the predictive regressions.
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Hence, our inference for the implied equity risk premium should si-
multaneously consider the parameter uncertainty within each proxy
and the uncertainty across proxies. Figure 7 does exactly that. For
each proxy, 10,000 block-bootstrap samples are generated with a block
length of 24 months in which the mean of the implied risk premium is
calculated. I use block-bootstrapping to preserve the autocorrelation
structure of ICCs. The bootstrap samples for each proxy are then com-
bined to one final sample. Based on the 70,000 bootstrapped means, I
can compute the mean over all samples, which turns out to be 4.5%,
or get the 2.5% and 97.5% percentile (2.4% and 7%, respectively). The
plot illustrates that model uncertainty dominates parameter uncer-
tainty considerably in this case. While the range of possible values
for the implied risk premium mean, conditional on a specific proxy,
is quite narrow – the largest 95% coverage region is 1.6% for the GLS
method; it is roughly three times as large when both parameter and
model uncertainty are considered. It is therefore of paramount impor-
tance to incorporate model uncertainty into the statistical inference.

Three additional points are worth repeating here. First, model un-
certainty is not completely eliminated. For instance, all proxies are
based on analyst forecasts and these forecasts are probably biased
upwards. Second, one could also adjust the model weights based on
prior information. For example, the assumption made in the CDZ
method that earnings grow with the analysts’ long-term growth rate
until year 15 is certainly a very aggressive growth assumption. If one
deems this assumption to be unreasonable, the prior model weights
of the method can be reduced accordingly. Third, this example still
proves the usefulness of alternative proxies. The seven ICC methods
cover a wide range of earnings growth assumptions and yet, the re-
sults imply that the implied risk premium is positive and lies within
a reasonable range. Such a statement cannot be made for such a short
period based on realized returns. Therefore, the increase in the vari-
ance due to model uncertainty is still considerably lower than the
decrease due to eliminating the large shocks that affect realized re-
turns.

7.3 intertemporal risk-return tradeoff

Although finance theory predicts a positive risk-return relation, em-
pirical evidence based on realized returns does not conclusively find
a positive sign. In simulations, Lundblad (2007) shows that even if
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Figure 7: Histogram of bootstrapped means of implied risk premiums
for seven different ICC methods. This figure overlays the histograms for
the means of implied risk premiums computed from seven ICC methods
(the PE method is ignored). Each histogram consists of 10,000 means that
are computed from block-bootstrapped samples with a block length of 24

months. The monthly sample ranges from 1985 to 2011.
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there is a positive relation between the conditional variance and the
conditional expected return, it takes very long samples to identify
this relation with noisy realized returns.

Consequently, Pástor, Sinha, and Swaminathan (2008) replace real-
ized returns with an ICC measure estimated with the PSS method.
They find a positive relation between the conditional mean of mar-
ket returns, approximated by their ICC, and the variance of market
returns for the years 1981 to 2002. Empirically, they run the follow-
ing regression specifications, which I reproduce and extend with the
model averaging approach:105

µ̂t = a+ bVolt + et (65)

∆µ̂t = a+ b∆Volt + et, (66)

where µ̂t is a proxy for expected excess returns and Volt is either
the annualized variance or standard deviation of the daily value-
weighted market returns from CRSP for this period. Since the IBES
release date is typically a few days after the 15th of each month, I com-
pute the conditional volatility based on returns ranging from the first
trading day after the 15th of the previous month to the first trading
day after the 15th of the current month.106 The implied risk premiums
are the difference between the ICC minus the 10-year government
bond yield. ∆µ̂t and ∆Volt are the first difference of the conditional
market return mean and volatility proxies, respectively. Because the
ICC is highly persistent, I follow Pástor, Sinha, and Swaminathan
(2008) and use 12 Newey-West lags in regression (65). Since the first
difference of ICCs does not show a persistent autocorrelation struc-
ture, I follow Pástor, Sinha, and Swaminathan (2008) and use one lag
for specification (66).

The rows labelled “PSS” in Table 18 repeat the analysis of Pástor,
Sinha, and Swaminathan (2008) for a different time period (1985 to
2011 instead of 1981 to 2002). Despite the different time periods, the
results are very similar. I also find a positive risk-return tradeoff for
both the levels and the first difference regressions and for equally and
value-weighted implied risk premiums. These results are also robust:
the 5th percentile based on Newey-West corrected standard errors is
positive in all specifications.

105 They also entertain a third specification in which they model both expected returns
and the volatility as AR(1) processes and regress the former’s residual on the latter’s.
To keep the analysis short, I omit this specification here.

106 Using conditional volatilities computed for the calendar month yields very similar
results.
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Table 18: Implied premiums regressed on market volatility. This table repli-
cates and extends the analysis in Pástor, Sinha, and Swaminathan (2008). It
reports the slope coefficients as well as the 5% and 95% percentile of the co-
efficients’ distributions from the regressions in equations (65) and (66). The
independent variable is return volatility σt, estimated as the realized market
volatility from daily returns of the first trading day after the 15th of month
t− 1 to the first trading day after the 15th of month t. I use the CRSP value-
weighted index. The column labels σ2t and σt denote the regressor. The
sampling distributions of the slope coefficients are estimated in three ways.
In the PSS case, it is from an OLS with the implied risk premium based
on the PSS method and Newey-West corrected standard errors. In the first
model averaging approach (MA1), I sample 1,000,000 times from a mixture t-
distribution. Each t-distribution’s parameters are determined from a regres-
sion of the implied risk premium for the eight ICC methods under consider-
ation with Newey-West corrected standard errors. The mixture probabilities
are the posterior model weights with φ = ∞. In the second model averaging
approach (MA2), the statistics are based on 100,000 block-bootstrap samples
with a length of 24 months for equation (65) and 3 months for equation (66).
In each bootstrap run, a method-specific implied risk premium is chosen
randomly based on the posterior model weights with φ = ∞. The implied
risk premiums are the difference between the ICCs and the 10-year govern-
ment bond yield. In Panel A/B, I use equal/value-weighted premiums. The
sample is monthly and ranges from 1985 to 2011.

σ2t σt

b̂ 5th perc. 95th perc. b̂ 5th perc. 95th perc.

Panel A: Equal-weighted implied risk premiums

Levels: µ̂t = a+ bσ
(2)
t + et

PSS 0.105 0.053 0.157 0.087 0.062 0.113

MA1 0.109 0.057 0.164 0.090 0.061 0.121

MA2 0.120 0.054 0.246 0.089 0.054 0.124

Differences: ∆µ̂t = a+ b∆σ
(2)
t + et

PSS 0.028 0.014 0.042 0.027 0.017 0.036

MA1 0.027 0.011 0.043 0.025 0.015 0.036

MA2 0.028 0.007 0.048 0.025 0.013 0.035

Panel B: Value-weighted implied risk premiums

Levels: µ̂t = a+ bσ
(2)
t + et

PSS 0.083 0.029 0.137 0.064 0.026 0.101

MA1 0.080 0.029 0.136 0.062 0.023 0.102

MA2 0.079 0.004 0.154 0.057 -0.000 0.101

Differences: ∆µ̂t = a+ b∆σ
(2)
t + et

PSS 0.020 0.006 0.034 0.019 0.010 0.029

MA1 0.017 0.002 0.032 0.016 0.006 0.027

MA2 0.016 -0.003 0.033 0.016 0.005 0.026
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In rows “MA1” and “MA2”, I apply the model averaging approach
to check whether these robust results could be overestimated due to
the ignorance of model uncertainty. Since the density of the slope coef-
ficient b̂, conditional on a specific ICC method, follows a t-distribution,
the density across models is a weighted average of these conditional
densities. This is simply a mixture t-distribution from which I sam-
ple 1,000,000 times. As a robustness check, I also implement a second
model averaging approach, MA2, in which I generate 100,000 block-
bootstrap samples with a block length of 24 months for equation (65)
and 3 months for equation (66). In each sample, an ICC method is
chosen randomly based on the posterior model weights. For this ex-
ample, I decide to use a diffuse prior and set φ to ∞.

Table 18 shows that the consideration of model uncertainty has a
negligible effect on the results. In all specifications, the mean of the
sampled coefficients is very similar to the regression coefficient from
the PSS case. Also, the 90% coverage region widens only marginally.
There are now some cases in which 5% of the drawn coefficients are
negative, but by and large almost all draws across the eight specifi-
cations are positive. This confirms the findings of Pástor, Sinha, and
Swaminathan (2008) that there is a positive relation between the con-
ditional market return and the conditional volatility.

Figure 8 gives the answer to the question why model uncertainty
does not affect the results. It shows the histogram for 100,000 draws
from the mixture t-distribution of the MA1 approach. In particular,
the histogram plots draws from the case in which the first difference
of the value-weighted implied risk premium is regressed on the first
difference of the variance (lower left block in Table 18). It becomes
clear from this figure that all methods lead to very similar results,
with only minor variation in the mean and the variance of the slope
coefficient’s distribution. Not surprisingly, an inference based on a
weighted average of similar distributions is similar to an inference
based on any of these distributions.

In summary, this example shows that model averaging is an easy
to use and flexible approach to incorporate model uncertainty. The
results can be presented in a more concise way than based on sep-
arate evidence for each of the methods. It is also straightforward to
extend this approach to more specifications of a specific proxy class
or even across proxy classes. It also emphasizes that alternative ex-
pected return proxies have their merits over realized returns. In cases
in which reasonable alterations of an expected return proxy lead to
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Figure 8: Mixture t-distribution of slope coefficients from regressing im-
plied risk premiums on market volatility. This plot shows 100,000 draws
from a mixture t-distribution. Each t-distribution represents the sampling
distribution of the slope coefficient from regressing the first differences of
the value-weighted implied risk premium of the specific method on the first
differences of the market volatility, which is measured here as the variance
of daily stock returns. For more information, see the description in Table 18

of the MA1 model averaging approach. The monthly sample period begins
in January 1985 and ends in December 2011.
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similar conclusions, model uncertainty has a negligible effect on the
results. However, it is vital to check this, as the next example shows.

7.4 importance of cash flow and discount rate news

In a recent study, Chen, Da, and Zhao (2013) entertain the ICC to de-
termine whether stock prices move because of revisions in expected
cash flows or discount rates. Other studies predominantly entertain
a VAR approach to estimate the time series of expected returns and
back out cash flow news as the residual. Instead, Chen, Da, and Zhao
(2013) use direct expected cash flow measures, namely analyst fore-
casts. They show that capital gain returns Retx between t+ j and t
can be separated into two parts. First, a cash flow part CFj,k, which is
the part that explains changes in stock prices due to changes in ana-
lyst forecasts between t+ j and t, holding the discount rate constant.
Second, a discount rate part DRj,k, which is the part that explains
changes in stock prices due to changes in discount rates, holding the
cash flows constant. As the subscript k indicates, both parts are de-
pendent on the specific ICC method. In their paper, they estimate the
discount rates with the CDZ method.

Recall from equation (2) and its derivatives that the stock price can
be expressed as a function of the vector of future expected earnings
vepstk, some transformation of this vector, and an ICC proxy, Rkt . Both
are estimated at time t. Retx over horizon j can then be expressed as

Retxj =
Pt+j − Pt

Pt

=
f(vepst+jk ,Rkt+j) − f(veps

t
k,Rkt )

Pt

= CFj,k +DRj,k, (67)

where

CFj,k =

(
f(vepst+jk ,Rkt+j) − f(veps

t
k,Rkt+j)

Pt
+

f(vepst+jk ,Rkt ) − f(veps
t
k,Rkt )

Pt

)
/2 (68)
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and

DRj,k =

(
f(vepstk,Rkt+j) − f(veps

t
k,Rkt )

Pt
+

f(vepst+jk ,Rkt+j) − f(veps
t+j
k ,Rkt )

Pt

)
/2. (69)

Finally, we can study the variance of capital gain returns through
CF and DR news:

Var(Retxt) = Cov(CFt,k,Retxt) +Cov(DRt,k,Retxt)

1 =
Cov(CFt,k,Retxt)
Var(Retxt)

+
Cov(DRt,k,Retxt)
Var(Retxt)

, (70)

where capital gain returns, CF news, and DR news are computed
for a specific horizon j (omitted here). As can be seen from equa-
tion (70), the slope coefficients obtained from regressing CFt,k and
DRt,k, respectively, on Retxj represent the portion of capital gain re-
turns driven by CF news and DR news for a specific ICC method
k.

7.4.1 Introductory example

It is instructive to make a short example on how this return decom-
position by Chen, Da, and Zhao (2013) works. For simplicity, suppose
that investors do not incorporate any growth assumptions into the
firm valuation. Furthermore, suppose that expected returns for all
future periods are constant, which implies that expected returns are
equal to the ICC.107 Thus the stock price is given as the forecast for
next period’s expected dividends divided by the ICC: P0 =

E[DPS1]
Re0

.
Suppose further that a researcher knows that investors make these
assumptions to value their stocks. Because he can observe the current
stock price, the only uncertainty lies in the estimation of the divi-
dends for the next period.

Table 19 provides all relevant information for a small numerical ex-
ample. Panel A contains the observable data for a stock. For the two
periods, the stock had large capital gains with a total return of 200%.
The question we are interested in is how much of these capital gains
are due to changes in expected cash flows and how much are due

107 I discuss this point in detail in Section 2.1.
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Table 19: Numerical example to illustrate the return decomposition ap-
proach by Chen, Da, and Zhao (2013). In this numerical example, it is
assumed that the stock price is derived by a simple perpetuity, i.e., Pt =
Et[DPSt+1]

Ret
. Furthermore, it is assumed that an econometrician knows this,

that is, there is only uncertainty about the correct estimation of the expected
dividends next period. The values in Panel A are observable to an econo-
metrician, while Panel B shows the true, but latent expectations of investors.
Panel C and D show the results for two different assumptions made by an
econometrician. The rows “CF” and “DR” are computed with the formu-
las given in equation (68) and (69). Retx, CF, and DR refer to a one period
horizon.

Time

Variable 0 1 2

Panel A: Observable data

Price 100 160 300

Retx 60% 87.5%

Panel B: Investors’ expectations

E[DPS] 10 8 12

Re 10% 5% 4%
CF -30% 56.25%
DR 90% 31.25%

Panel C: Results for method 1

E[DPS] 10 16 30

Re 10% 10% 10%
CF 60% 87.5%
DR 0% 0%

Panel D: Results for method 2

E[DPS] 10 10 10

Re 10% 6.25% 3.33%
CF 0% 0%
DR 60% 87.5%
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to changes in expected returns.108 Panel B gives the answer to this
question. From time 0 to time 1, investors actually lowered their ex-
pectations for all future dividends. Because they also expected much
lower returns, this led to an increase in the stock price. For period
1, the CF part was therefore actually negative with -30% and the DR
part was even larger than the returns with 90%.109 The sum of those
two parts is equal to the capital gain returns. This has to hold because
of a tautological relation similar to the CS return decomposition.110

In period 2, investors simultaneously raise their cash flow expecta-
tions from 8 to 12 and lower their expected returns, which leads to
a positive capital gain return of 87.5%. Roughly two third of this re-
turn is explained by changes in cash flows and the rest by changes in
discount rates.

Unfortunately, the information in Panel B is unobservable for an
econometrician. As a consequence, he has to estimate the expected
dividends and Panel C and D show the estimates for two different
methods. Method 1 in Panel C assumes that the dividend expecta-
tions increase substantially over time. This assumption implies that

108 Note that Chen, Da, and Zhao (2013) only focus on capital gain returns and ignore
returns from dividend payments.

109 To compute these values, one has to compute hypothetical stock prices first, one with
the expected dividends at time 1 and the ICC at time 0 and one with the expected
dividends at time 0 and the ICC at time 1. This yields

f(E[DPS1],Re0) =
8

0.1
= 80

and

f(E[DPS0],Re1) =
10

0.05
= 200.

CF and DR are then easily computed via equation (68) and (69) as

CF = (160− 200+ 80− 100)/(2× 100) = −60

200
= −30%

DR = (200− 100+ 160− 80)/(2× 100) = 180

200
= 90%.

110 The decomposition by Chen, Da, and Zhao (2013) is, however, in three respects dif-
ferent from the more standard CS return decomposition that I introduce in detail in
Appendix A.1. First, Chen, Da, and Zhao (2013) focus only on capital gain returns,
while the CS decomposition includes dividends. Second, they do not approximate
the present value formula by a loglinearization. Third, CF and DR news sum up
to the unexpected return (realized return minus expected return), while they add up
to the realized price change in the framework of Chen, Da, and Zhao (2013). How-
ever, the variation in expected returns is typically small relative to the variation in
realized returns for stocks. In their appendix, Chen, Da, and Zhao (2013) show that
the differences between the two approaches are minor as long as similar forecasts
for future cash flows are used. Of course, the use of different forecasts is the main
contribution of their paper and explains why their results differ from prior studies.
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the capital gain returns are completely explained by the CF news
part. A researcher that applies this method would conclude, incor-
rectly, that stock prices move due to changes in cash flows only. At
the other extreme, method 2 in Panel D attributes the capital gain
returns exclusively to changes in the DR part because the expected
dividends stay constant over time.

This simple example illustrates that the choice of a specific ICC
method determines the results. Methods that leave the cash flow ex-
pectations rather constant over time, such as the GLS method, will
attribute most of the movement in stock prices to the DR news part.
To the contrary, methods that update cash flow expectations a lot
through time will attribute this movement to the CF news part in-
stead. Because we do not know which of these assumptions is actu-
ally correct, we cannot make statements about the importance of the
two parts based on only one method. Only if all methods would yield
similar results, this would be preliminary evidence.

Of course, this is the same argument I made previously with re-
spect to the usefulness of the Easton and Monahan (2005) approach.
With any ICC method, we can always incorrectly define CF and DR
news in such a way that they are consistent with realized returns.
My critique towards Easton and Monahan (2005) is that they do not
consider this tautological relation consistently. My critique towards
Chen, Da, and Zhao (2013) will be that they ignore the large uncer-
tainty they have about the correct specification of the ICC method and
pretend that there is only one reasonable way to compute consistent
news proxies.

Before I do so in detail, I shortly want to show how one can com-
pute Retx, CF, and DR for longer horizons. Above, I set j = 1. In this
simple example with two periods, we can also compute these values
for j = 2, for example for the true investor expectations. Plugging the
values of Table 19 into equation (67), (68) and (69), we obtain

Retx2 =
300− 100

100
= 200%

CF2 =
300− 250+ 120− 100

2× 100
= 35%

DR2 =
250− 100+ 300− 120

2× 100
= 165%.

Again, the sum of CF and DR news adds up to the capital gain re-
turns.
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7.4.2 Replication of main results on the aggregate portfolio

Table 20 is a replication of Table 2 in Chen, Da, and Zhao (2013) for
the aggregate market. For each quarter throughout my sample, I com-
pute Retx, CFk, and DRk for each firm and different horizons via
equation (67), (68) and (69), where in this case k denotes the CDZ
method.111 In a next step, I aggregate the Retx, CF and DR for each
quarter and horizon (value-weighting). For the aggregated time se-
ries, I show the summary statistics in Panel A of Table 20 and the
results of regression (70) in Panel B, together with confidence inter-
vals that are based on Newey-West standard errors with the lag set
to the number of overlapping quarters. Note that the number of ob-
servations across horizons differ. For larger horizons, there are more
overlapping periods and hence less observations. However, in untab-
ulated results I show that the requirement that all the time series for
all horizons have the same number of observations has a small effect
on the results. For this requirement, the sample ends implicitly in
2004, even for shorter horizons, because one needs additional seven
years to compute the variables for a horizon of 28 quarters.

Although I use a different sample – for instance, I require that for
every observation all ICCs are available –, the results are very sim-
ilar. In both samples, the variation in capital gain returns is mostly
explained by the DR news part for shorter horizons and by the CF
news part for longer horizons. At a quarterly horizon, only 17%/16%
of the return variation of the market portfolio is explained by CF
news in my/their sample. This fraction increases to 72%/59% at a
seven-year horizon. Also, the results are robust: at twelve quarters
and beyond, the fraction of CF news is above 50%, even for the 5%
percentile. In summary, these results imply that cash flow news is im-
portant in driving the stock price movements, based on evidence of
the CDZ method.

The results from Table 20 can be easily obtained from the BMA
approach. In fact, my argument is that Chen, Da, and Zhao (2013)
use such an averaging approach, but implicitly set the prior model
weight of their CDZ method to one and the weights for all other
specifications to zero. That is, they assume that their method is cor-

111 I winsorize Retx, DR, and CF for each horizon at the 1% and 99% breakpoints, in
accordance with Chen, Da, and Zhao (2013). This is the reason why the tautological
relation in equation (67) is broken and the slope coefficients in Panel B do not add up
to 1, but the deviations are marginal. In line with Chen, Da, and Zhao (2013), I also
use quarterly data, i.e., I only consider observations from March, June, September,
and December of each year.
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Table 20: Return decomposition using CDZ method. This table replicates
Table 2 in Chen, Da, and Zhao (2013). Panel A reports for the value-weighted
market portfolio the mean as well as the variance of capital gain returns
(Retx), cash flow (CF) news, and discount rate (DR) news, from one quarter
up to 28 quarters. Panel B reports the portion of capital gain returns that
can be explained by CF and DR news, respectively. These are determined
by regressing CF news and DR news on aggregate Retx. The rows 5% and
95% report the confidence intervals around the coefficients and are based on
Newey-West standard errors with the lag set to the number of overlapping
quarters. The sample is quarterly and ranges from 1985 to 2011. All numbers
are in percent.

Horizon (Quarter)

1 2 4 8 12 16 20 24 28

Panel A: Summary statistics

Mean(CF) 2.06 4.25 7.90 15.06 21.61 31.11 43.11 55.59 68.48

Mean(DR) 0.24 0.49 1.86 4.95 7.96 10.88 13.69 17.19 22.42

Mean(Retx) 2.30 4.70 9.68 19.92 29.73 42.48 57.85 74.35 92.79

Var(CF) 0.37 0.84 2.07 5.08 8.67 13.42 19.25 25.94 32.75

Var(DR) 0.76 1.27 2.45 3.42 3.70 4.34 4.67 4.35 6.58

Var(Retx) 0.59 1.27 2.53 6.26 11.72 20.69 31.39 42.69 56.58

Panel B: Decomposition

5% 0.54 14.88 21.08 42.36 56.23 58.85 61.45 65.08 64.61

CF 16.53 32.32 42.45 63.19 71.02 71.37 72.19 74.33 72.37

95% 32.52 49.77 63.82 84.02 85.80 83.89 82.93 83.59 80.13

5% 66.50 48.27 34.33 13.35 11.19 12.78 12.18 10.15 13.87

DR 82.38 66.02 56.04 34.64 26.19 25.39 23.16 20.48 22.91

95% 98.27 83.77 77.76 55.93 41.19 37.99 34.13 30.80 31.96
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Table 21: Return decomposition using the model averaging approach. This
table updates Table 2 in Chen, Da, and Zhao (2013) by applying the model
averaging approach proposed. The posterior model weights are based on
φ = 1. In Panel A, the slope coefficients are sampled from a mixture t-
distribution where each t-distribution is scaled by the Newey-West standard
errors with the lag set to the number of overlapping horizons and the slope
coefficient added. The weighting across the t-distribution is based on the
posterior model weights. 1,000,000 draws are taken. Panel B is based on
100,000 block-bootstrap samples with a block length of 20 quarters, drawn
with replacement. In each run, the CF news based on an ICC method is
chosen randomly, subject to the posterior model weights. Then, the slope
coefficient for the specific bootstrap sample and an ICC-specific CF news
part is returned. Both panels show the 5% percentile, the mean, and the 95%
percentile of the generated samples. The sample is quarterly and ranges
from 1985 to 2011. All numbers are in percent.

Horizon (Quarter)

1 2 4 8 12 16 20 24 28

Panel A: Mixture t-distribution with Newey-West standard errors

5% -2.23 10.44 7.45 17.46 24.70 27.64 28.79 26.72 21.93

CF 15.54 26.29 27.48 36.24 39.51 39.91 40.13 40.61 38.58

95% 35.00 43.85 48.72 61.44 68.36 69.08 70.17 72.66 70.95

Panel B: Bootstrapped samples

5% 1.77 14.76 2.50 15.47 22.30 23.86 22.94 18.28 11.76

CF 15.53 25.89 26.45 36.00 39.76 39.86 39.50 39.28 37.22

95% 30.77 38.03 47.75 62.12 69.92 68.27 69.34 71.63 68.84

rect on prior grounds, although they do not give any arguments at
all as to why their method is definitely correct and other methods
such as the PSS or CT method are definitely misspecified. Next, I use
more reasonable priors that acknowledge the fact that there are no
convincing economic reasons that would allow the dismissal of any
ICC method on prior grounds. That is, I set my prior belief that all
ICC methods should be equally likely. Also, I set φ to 1, which gives
roughly equal weight to the evidence in the data and my prior be-
liefs. The sampling from the parameter densities are done as in the
previous example. That is, in the first case I sample from a mixture
t-distribution, where each t-distribution’s parameters are estimated
from an OLS with Newey-West corrected standard errors. In the sec-
ond case, I apply a bootstrap approach in which I choose an ICC
method randomly in each run, based on the posterior model weights,
and obtain the regression coefficient for the specific bootstrap sample.

Table 21 presents the results. Incorporating uncertainty about the
correct ICC specification widens the coverage regions considerably.
Only for shorter horizons one can be reasonably sure that returns are
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Figure 9: Fraction of Retx driven by CF news for different ICC methods
and horizons. This figure shows the fraction of variation in Retx attributable
to CF news for different ICC methods and horizons. The fraction is defined
as the regression coefficient of CF news on Retx. The shaded area around
each line represents the 90% confidence bands around the coefficients. The
bands are computed via Newey-West standard errors with the lag set to the
number of overlapping quarters. The sample is quarterly and ranges from
1985 to 2011.

mostly driven by DR news. For longer horizons, the intervals become
too large to draw any reasonable conclusions. The results also show
that the two approaches of model averaging yield similar results here.
Furthermore, CF news is less important in explaining capital gain
returns for longer horizons according to the averaged results, and in
stark contrast to the evidence reported in Table 20.

Figure 9 shows why the results conditional on only the CDZ method
on the one hand and conditional on the eight ICC methods on the
other hand differ so dramatically. It plots the fraction of the variation
in capital gain returns that is explained by CF news over various hori-
zons and for different ICC methods. As becomes apparent, the view
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that most of the variation in capital gain returns is driven by CF news
is only supported by the CDZ method. All other methods come to the
conclusion that DR news, even for longer horizons, is more important.
However, there is also large variation across the remaining methods,
which means that the return decomposition approach based on ICCs
is sensitive to the specific model.

The rationale behind this finding is that every ICC method equates
the current stock price with a transformation of discounted expected
dividends. Differences arise on how the second part is transformed.
In this particular research question, the specific assumptions have a
large impact. Chen, Da, and Zhao (2013) assume that the earnings
growth rate converges to the industry long-term growth rate pro-
vided by analysts over the next 15 years, although these growth rates
are commonly interpreted to represent the next five years (see Claus
and Thomas 2001) and are probably affected by analyst bias. Obvi-
ously, these growth assumptions are sensitive to the current market
environment. For example, during the Dot-com bubble in 2001 the
mean across the industry growth rates within my sample was as high
as 24%. Assuming that investors expected earnings growth rates to
converge to these growth rates for the next 15 years will obviously
explain almost all of the capital gains that accrued over this period.
Such an extreme assumption is not made by the other methods. For
example, the PSS method assumes that the earnings growth rate in
period 3 is the earnings growth rate provided by analysts and extrap-
olates this growth rate over 15 years to the historical average of the
nominal GDP growth rate. This much more conservative assumption
about expected earnings leaves a much larger part of capital gains un-
explained and the ICC has to step in to fill the gap. Similar arguments
can be made for the other methods as well.

This, of course, is an outcome of model uncertainty. We do not
know if investors updated their long-term earnings growth assump-
tions or if they updated their expected returns. It is the question we
want to answer. Each method emphasizes the two parts differently
and hence, results conditional on only one method ignore the uncer-
tainty we have about these assumptions.

Furthermore, a comparison with the Easton and Monahan (2005)
evaluation approach that I introduce in Chapter 3 is instructive be-
cause it illustrates the circularity we are facing here. Easton and Mon-
ahan (2005) define a CF news proxy that is independent of the specific
ICC method. Next, they evaluate how much each of the ICC methods
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fails to explain subsequent realized returns. In their original analysis,
all proxies fail massively and Easton and Monahan (2005) take this
finding as evidence that all proxies are grossly misspecified. I offer
an alternative explanation: It could very well be that their CF news
proxy is completely misspecified. In contrast, Chen, Da, and Zhao
(2013) follow the approach of defining consistent CF and DR news
proxies. They derive them in such a way that the two, irrespective of
the specific ICC method, always add up to the capital gain returns.
Then, they act as if those proxies are defined correctly and try to an-
swer the question which part is more important. Unfortunately, they
only do this for one method and fail to acknowledge the uncertainty
they have in the correctness of this method.

7.4.3 Replication of robustness checks

This example highlights that it is important to implement a broad
set of reasonable alternative specifications to check the robustness of
results based on the ICC. However, Chen, Da, and Zhao (2013) do
not use alternative ICC methods, but only change input parameters
of their CDZ method. As I show next, these changes do have a minor
impact on the results, which is why the issue of model uncertainty
has gone unnoticed in the original study.

There are two broad robustness tests run by Chen, Da, and Zhao
(2013). In one test, they allow the steady-state earnings growth rates
and plowback rates to be functions of firm characteristics and esti-
mate those using historical data, instead of using the rolling average
of the historical nominal GDP growth rate for all firms. Within each
of the 12 Fama-French industries, they classify stocks into eight port-
folios by an independent triple-sort according to their sizes, book-to-
market ratios, and ages. For each of these portfolios, they compute
the average earnings growth rates and plowback rates 15 years later.
Finally, they use a rolling window of 18 years to calculate portfolio
averages of those long-run growth rates and plowback rates and re-
run their analysis with these portfolio-level earnings growth rates and
plowback rates. The results are very similar to the base case on an ag-
gregate level, on which I focus here. Over a horizon of 4/24 quarters,
CF news explains 0.41/0.55 of the variation in capital gain returns
in their sample. The values in the base case are 0.36/0.63. Instead
of replicating this robustness test exactly, I choose to implement an
easier, but in my opinion instructive, robustness check. I simply use
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arbitrary long-run earnings growth rates.112 I do so because I hypoth-
esize that the steady-state assumptions do not have such an important
impact in the first place and thus any robustness check dealing with
them, reasonable or not, should have a minor impact on the results. I
use two different steady-state growth rates. First, I assign every indus-
try an integer number i ranging from 1 to 48.113 For each firm, I then
use a steady-state earnings growth rate of 2× i/10%. For instance, if a
firm falls into industry assigned the integer 30, I assume a growth rate
of 6% for this firm. This results in a large cross-sectional variation of
the steady-state earnings growth rates from 0.1% to 9.6%. Second, for
each firm within one industry and quarter, I assign a random number
that is drawn from a uniform distribution with a minimum of 0.1%
and a maximum of 9.6%. This is an extremely unreasonable assump-
tion because it allows large random shocks in the steady-state growth
rates. For example, it is possible that firms within one industry are
assumed to have a steady-state growth rate of 1% in one quarter and
9% in the next. Also, this test allows for a large variation both over
time and firms.

In another set of robustness tests, they control for analyst forecast
bias. In one test, they simply replace the consensus mean forecast
with the highest or lowest analyst forecast. Additionally, they adjust
the forecasts based on known relations between the forecast bias and
other variables. To be more precise, they cite studies that document
that analysts are optimistic in particular for firms for which there is
large investment banking demand. To control for this effect, they con-
struct earnings forecasts as weighted averages between the most pes-
simistic and most optimistic forecast, where the weights are depen-
dent on the amount of cash raised through external financing, which
is a proxy for investment banking demand. Furthermore, they com-
pute the weights based on recent forecast errors because these fore-
cast errors have been found to be persistent. In their Table 3, they find
CF news even more important if they use the highest analyst forecast.
For example, over a horizon of 24 quarters the slope coefficient of CF
news on capital gain returns is 0.85 instead of 0.63. With the lowest
forecasts, it decreases slightly to 0.51, but CF news still explains more
than half of the subsequent capital gain returns. Because the adjusted

112 Note that the long-run earnings growth rates implicitly determine the steady-state
plowback rates. Refer to Section 2.2.3 for a description of the relation between the
steady-state earnings growth rate and plowback rate.

113 Because I use the 48 Fama-French industry classification, I have 48 industries to start
with.
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forecasts are a weighted average of the highest and lowest forecasts, it
is not surprising that the results based on these adjusted forecasts are
closer to the base case than the results based on the highest or lowest
forecasts, respectively. Therefore, I only replicate the robustness tests
with the highest and lowest forecasts.

In the following, I use an alternative data set that only requires that
the CDZ methods and its derivatives described in this section return
a value for the ICC. This allows me to better compare my results with
Chen, Da, and Zhao (2013). Table 22 shows the summary statistics for
the CDZ derivatives as well as the number of firms, the median mar-
ket capitalization, and the median steady-state plowback rate for each
year, which I can now compare with Panel A in Table 1 of Chen, Da,
and Zhao (2013). The two samples are very similar, both in the levels
as well as the dynamics over time. For example, the median market
capitalization at the beginning of my sample is 273 million dollars
and increases to 1203 million dollars by 2010. They report values of
238 and 1343 million dollars, respectively. Furthermore, the mean of
the median base ICC time series between my and their sample is al-
most identical (13.4% vs. 13.5%) and the correlation is almost perfect
(99.6%). Finally, the cross-sectional variation is very similar as well,
which can be seen by a comparison between the Q1 and Q3 columns
in my and their table. Alternatively, one can look at the statistics for
the cross-sectional standard deviation in each year for both samples.
The correlation between the time series of these cross-sectional stan-
dard deviations is 97.1% and the mean of the two time series differs
only by 0.07 percentage points.

The ICCs computed with unreasonable steady-state growth rates
do not differ much from the base method. This is a first indication that
changes in the steady-state growth rate do not have a large impact on
the results. In contrast, using high or low forecasts instead of the
consensus mean has a large impact on the level of the ICC, a result
that was already shown in Figure 4 and Figure 5 for a different sample
composition. However, these time series have a downward trend in
the ICC over time as well.

Table 23 reports the decomposition results for the different deriva-
tives of the CDZ method. Panel A is almost identical with the results
reported in Table 20, which is based on a sample for which all ICC
methods have to have a numerical value. This suggests the conclusion
that sample selection issues discussed in Chapter 5 are not relevant.
The results of Panel B and Panel C for different steady-state earnings
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Table 23: Return decomposition using CDZ method (robustness). This ta-
ble performs robustness checks similar to Table 3 in Chen, Da, and Zhao
(2013). In Panel A, I use the base CDZ method to compute the ICC. In Panel
B, an alternative steady-state earnings growth rate is used that varies over
industries. In Panel C, the steady-state earnings growth rate is varied over
both industries and time. Panel D and E are based on ICCs computed with
the highest and lowest earnings forecasts, respectively. In all panels I re-
port the portion of capital gain returns that can be explained by CF and
DR news, respectively. These are determined by regressing CF news and
DR news on aggregate Retx. The rows 5% and 95% report the confidence
intervals around the coefficients and are based on Newey-West standard er-
rors with the lag set to the number of overlapping quarters. The sample is
quarterly and ranges from 1985 to 2011. All numbers are in percent.

Horizon (Quarter)

1 2 4 8 12 16 20 24 28

Panel A: Base CDZ method

5% -1.64 16.57 16.17 36.44 52.70 58.79 64.57 67.14 63.64

CF 12.62 31.46 36.59 60.63 71.75 72.78 73.49 74.71 71.38

95% 26.87 46.34 57.00 84.82 90.80 86.77 82.40 82.29 79.12

5% 72.05 51.75 40.88 11.62 5.16 9.90 12.38 10.63 14.69

DR 86.26 66.88 61.89 36.71 24.58 23.61 21.34 19.50 23.71

95% 100.47 82.01 82.90 61.80 43.99 37.31 30.29 28.38 32.74

Panel B: Arbitrary steady-state growth rates by industry

5% -1.44 16.62 16.03 35.87 51.79 57.91 63.61 65.93 62.36

CF 12.67 31.31 36.26 59.78 70.67 71.70 72.31 73.37 69.97

95% 26.78 46.00 56.49 83.70 89.56 85.49 81.01 80.80 77.57

5% 72.14 52.07 41.37 12.73 6.39 11.17 13.71 11.99 16.14

DR 86.20 67.02 62.20 37.55 25.65 24.67 22.47 20.80 25.11

95% 100.27 81.97 83.04 62.38 44.90 38.17 31.24 29.62 34.08

Panel C: Arbitrary steady-state growth rates over time and industries

5% -0.57 18.95 15.76 36.73 53.25 58.77 64.48 67.44 63.86

CF 15.10 32.93 35.98 60.46 71.25 72.40 73.28 74.62 71.21

95% 30.76 46.90 56.21 84.18 89.26 86.04 82.07 81.81 78.57

5% 68.12 51.24 41.74 12.73 6.99 10.79 12.68 11.33 15.24

DR 83.81 65.46 62.50 37.08 25.15 24.04 21.51 19.68 23.83

95% 99.49 79.68 83.26 61.44 43.31 37.29 30.34 28.03 32.42

Panel D: CDZ method with highest forecasts

5% -16.50 11.22 20.96 52.28 71.85 77.25 80.38 82.25 75.16

CF 3.30 28.63 36.67 71.34 86.89 89.02 89.35 91.36 85.74

95% 23.09 46.04 52.37 90.39 101.92 100.79 98.31 100.47 96.31

5% 75.34 51.85 45.23 5.61 -5.97 -4.80 -3.69 -5.74 -1.75

DR 95.34 69.10 61.30 25.80 9.98 7.33 5.85 4.08 9.54

95% 115.35 86.34 77.36 45.99 25.92 19.47 15.38 13.91 20.83

Panel E: CDZ method with lowest forecasts

5% -0.19 10.14 5.09 19.25 35.30 44.12 55.42 61.26 59.62

CF 13.32 28.13 34.48 54.88 63.19 62.97 65.69 68.22 65.88

95% 26.83 46.11 63.86 90.51 91.07 81.82 75.96 75.17 72.15

5% 71.23 51.51 31.92 5.90 5.23 14.62 19.54 18.41 21.76

DR 85.02 69.89 62.78 42.38 33.23 33.08 29.19 26.33 29.55

95% 98.81 88.27 93.64 78.87 61.23 51.55 38.85 34.25 37.34
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growth assumptions are virtually identical to Panel A. This is a con-
firmation of my hypothesis that changes in the steady-state earnings
growth assumption have a negligible effect on the return decomposi-
tion approach. It is therefore not surprising that the robustness test
performed by Chen, Da, and Zhao (2013) does not change their con-
clusion that CF news is the more important part of stock price move-
ments in the long run. The same is true for robustness checks with
respect to analyst forecast bias. Panel D and E report the results using
the highest and lowest analyst forecasts. In line with Chen, Da, and
Zhao (2013), I find CF news to be even more important based on the
highest forecasts. For example, they report that CF news explains 39%
of return variance at the annual frequency for the aggregate portfo-
lio and 85% at six years. I find values of 37% and 91%, respectively.
Using the lowest forecasts, the portion of CF news decreases in both
samples. They now report that CF news explains 33% of the return
variance at the annual frequency and 51% at the six-year horizon,
while I obtain values of 34% and 68%.

In summary, I find that the return decomposition results are robust
to variations within the CDZ method, in line with the robustness tests
of Chen, Da, and Zhao (2013). Nevertheless, the results are not robust
with respect to variations between different ICC methods. It is there-
fore of paramount importance to consider the model uncertainty in
the choice of an ICC method in the statistical inference because oth-
erwise the results can imply too much confidence about the relative
importance of the drivers of stock price movements. Furthermore, this
example has shown that the BMA approach is an easy to use and easy
to interpret way to incorporate model uncertainty.



8
C O N C L U S I O N

8.1 summary of main results

The main contribution of this thesis is the introduction of a Bayesian
model averaging (BMA) approach into the variable selection prob-
lem that a researcher faces who can choose between a multitude of
expected return proxies. While this approach is applicable to any ex-
pected return proxy, I focus on the implied cost of capital (ICC) in
my discussions, which is defined as the internal rate of return that
equates the current stock price with expected future dividends. To
this day, it is the most prominent measure of return expectations that
is not based, directly or indirectly, on realized returns.

In Chapter 2, I first summarize earlier work by Pástor, Sinha, and
Swaminathan (2008) and Hughes, Liu, and Liu (2009) who examine
the underlying theoretical relation between expected returns on the
one hand and the ICC on the other hand. It turns out that there are
noteworthy differences between the two concepts even if the vector
of future expected dividends is measured without error. Nevertheless,
the true, but unobservable ICC is a useful proxy for expected returns
and under certain simplifying assumptions even perfectly correlated
with it. Yet, the vector of expected dividends is as unobservable as ex-
pected returns and therefore additional assumptions have to be made
to approximate the ICC. The last decade has seen an explosion of re-
search that proposes adjustments to these simplifying assumptions,
both minor and major ones. The second part of Chapter 2 explains
and categorizes them. Finally, I give a non-exhaustive overview of em-
pirical studies that apply the ICC with a focus on how these studies
select their specific ICC implementation from the numerous options
available. I come to the conclusion that the current approach is ad-hoc
and does not follow any clear guidelines.

It is well known from the model selection and model averaging
literature that such an ad-hoc selection of a proxy raises concerns
of data fishing. Maybe a researcher simply selects the proxy that is
most in line with his research question, instead of the proxy that
is the best in tracking true, but latent expected returns. To alleviate

145



8.1 summary of main results 146

such concerns, Easton and Monahan (2005) and Lee, So, and Wang
(2011), among others, recommend evaluating the different proxies to
identify the best one in a preceding step. While there are minor dif-
ferences between the approaches, which I present in Chapter 3, the
fundamental idea is the same for all of them: any proxy that tracks
expected returns next period has to explain subsequent realized re-
turns eventually. This directly follows from the Campbell and Shiller
(1988) (CS) return decomposition that shows that log realized returns
over a period are the sum of expected returns at the beginning of the
period and cash flow and discount rate news that arrive in the period.
Because the news parts are uncorrelated with expected returns and
zero on average, it directly follows that a proxy is better, the better it
is able to explain subsequent realized returns. Most studies run uni-
variate predictive regressions of subsequent realized returns on their
expected return proxy to test the quality of this proxy.

By contrast, Easton and Monahan (2005) recommend extending
such regressions by additional proxies for cash flow news and dis-
count rate news. I object to this recommendation. Easton and Mona-
han (2005) propose cash flow and discount rate news proxies based
on theoretical arguments and simplifying assumptions. Therefore, the
quality of these proxies is dependent on these assumptions and I con-
sider it very unlikely that it is possible to approximate the news part
reasonably. We already have a very hard time estimating expected
returns next period, but the news parts contain changes in expecta-
tions about all future periods. This seems to be an impossible task
and I confirm this presumption later in my empirical analysis. As a
consequence, their evaluation method introduces additional issues of
measurement error and also ignores the major positive feature of the
news parts, namely their asymptotic unbiasedness and uncorrelated-
ness with expected returns next period. Furthermore, I show that it
is always possible to define the proxies for cash flow news and dis-
count rate news in such a way that the evaluation method of Easton
and Monahan (2005) indicates incorrectly a perfect relation between
any proxy and true expected returns. In summary, the main takeaway
from this chapter is that there is great uncertainty about which proxy
measures expected returns best.

Ignoring such uncertainty in the statistical inference can produce
severe biases in all statistical measures for the classical linear model,
which has prompted Breiman (1992) to label such ignorance the quiet
scandal in the statistical community. BMA allows the incorporation of
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such uncertainty and has found increased popularity in recent years.
Nevertheless, to the best of my knowledge it has not been applied to
the variable selection problem in the expected return proxy literature.
Chapter 4 fills this gap. It shows how reasonable assumptions about
the prior and the likelihood lead to posterior model weights with
an analytical solution. In other words, the posterior model weights
denote the degree of support for each proxy, given the prior beliefs
of the researcher and its association with subsequent realized returns.
Because the model weights are dependent on the ability of each proxy
to explain subsequent realized returns, this provides a nice link to the
discussion in Chapter 3: any alternative measure of expected returns
has to rely on subsequent realized returns for its empirical evaluation.
The only way to circumvent this reliance is to argue on prior grounds
that the measure tracks expected returns perfectly, thereby setting the
model weight of this proxy implicitly to one.

The theoretical explanations of this chapter show that in large sam-
ples the BMA approach yields results similar to a model selection ap-
proach that tries to pick the best proxy. This holds because it is not a
problem to identify the best proxy in large samples. The chapter also
shows that the issue of model uncertainty is only of second-order im-
portance if all proxies come to similar conclusions. Intuitively, if all
proxies tell the same story, an average across all proxies will also do
so. However, I emphasize the importance of model averaging in cases
in which different proxies lead to different results. And finally, the
BMA framework allows me to evaluate the impact on the results if
all proxies are biased. Not surprisingly, the average across all of these
proxies will then also be biased. This is, at least in my opinion, a se-
vere shortcoming of any alternative proxy in comparison to realized
returns and important for the applied researcher to keep in mind.

Chapter 5 introduces the data set that is used in the following chap-
ters to empirically test the statements about the Easton and Mona-
han (2005) evaluation approach and to apply the BMA approach to
three different research questions. This data set is based on the com-
plete universe of listed US companies for which the relevant variables
from IBES and Compustat are available. With respect to the valuation
model, I focus on two derivatives of the residual income model (CT,
GLS), two derivatives of the dividend discount model (PSS, CDZ),
and three derivatives of the abnormal earnings growth model (PEG,
MPEG, OJ). I also implement the forward PE ratio as a naïve bench-
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mark. Because the latter ignores any growth after the next period, it
yields the lowest estimates for expected returns by far.

In general, the results confirm the findings of previous studies.
First, the standard deviation of each ICC method is an order of mag-
nitude smaller than the standard deviation of realized returns (cf.,
e.g., Lee, Ng, and Swaminathan 2009). Second, the abnormal earn-
ings growth models typically lead to somewhat larger estimates than
the estimates based on the residual income models (cf., e.g., Daske,
Van Halteren, and Maug 2010 and Hail and Leuz 2009). Third, the
correlation in the aggregated time series is very high, while the cross-
sectional correlation is substantially lower. This confirms claims by
Li, Ng, and Swaminathan (2013) that the aggregate ICC is likely to
be less noisy because the averaging of the firm-level ICCs reduces
the impact of idiosyncratic errors. Finally, I perform sensitivity anal-
yses with respect to the number of observations per method, time
misalignment issues, and analyst forecast bias. While these sensitiv-
ity checks are rather simplistic, they provide a first indication that the
dynamics of the ICC are not substantially affected by those issues. Of
course, the analyst forecast bias has a large impact on the levels of
the ICC estimates.

In Chapter 6, I confirm the findings of Chapter 3. I show that it is
possible for each of the eight ICC estimates to establish an apparent
and incorrect perfect relation between the ICC estimate and subse-
quent realized returns by defining the news proxies accordingly. Also,
I show that the news proxies defined by Easton and Monahan (2005)
are severely misspecified.

Finally, in Chapter 7 I apply the BMA approach to three research
questions that have previously been examined with the help of the
aggregate ICC, but only conditional on one method. To do so, I com-
pute the posterior model weights first, which already reveal two inter-
esting findings. First, there is no clear winner between the different
methods. For example, the MPEG method gets the highest support
from the data. But even in the limiting case in which the researcher
discards all prior information (φ = ∞), the posterior model weight
of the MPEG method is only 17%. Also, the CDZ method gets the
least support from the data, which is an indication that the extreme
earnings growth assumptions made by Chen, Da, and Zhao (2013)
do not coincide with investors’ expectations. Second, there is large
uncertainty about the posterior model weights, as a simple bootstrap
exercise shows. For instance, in the case of non-informative priors the
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1% and 99% percentiles of the weights for the MPEG method are 0.8%
and 36%, respectively. This finding is again driven by the large shocks
that affect realized returns and emphasizes the general point that it
is not possible to precisely identify a single best ICC proxy from a set
of proxies in small samples.

Equipped with the posterior model weights, I replicate three stud-
ies from the ICC literature. I start with the study by Claus and Thomas
(2001) who use the CT method to approximate the implied risk pre-
mium. In this example, model uncertainty dominates parameter un-
certainty, which illustrates the importance of incorporating the for-
mer by a model averaging approach. The confidence bands are roughly
three times larger for the implied risk premium mean over all ICC
methods than the confidence bands conditional on only a specific
ICC method. The reason why model uncertainty is so important here
is the fact that the levels of different ICC estimates differ widely, as
has been shown in the summary statistics in Chapter 5. Taken for
face value, the mean implied risk premium for the US from 1985

to 2011 was 4.5%. In the second example, I revisit the study of Pás-
tor, Sinha, and Swaminathan (2008) who report a positive risk-return
tradeoff. That is, they regress the ICC based on the PSS method on
a volatility measure – either the daily standard deviation or variance
over a month – and find a positive slope coefficient. Incorporating
model uncertainty into this research question does not alter the main
conclusion. Because all methods indicate such a positive risk-return
tradeoff, an average across all methods does so as well. This example
illustrates nicely that BMA per se does not destroy the advantages
of alternative expected return proxies. If all proxies come to similar
conclusions, the results are robust to specification errors. Only if the
research question is sensitive to the specific proxy used, BMA does
correctly widen the confidence bands to indicate the uncertainty a
researcher should have on the results conditional on a specific proxy.
This is exactly what happens in the third research question I look
at. I repeat the analysis of Chen, Da, and Zhao (2013) who want to
answer the question whether stock price movements are driven to a
larger extent by changes in cash flow expectations or by changes in
discount rate expectations. To do so, they rely on the ICC and de-
fine changes in cash flow expectations as hypothetical price changes
due to updated earnings forecasts, while leaving the ICC constant;
and they define changes in discount rate expectations as hypothetical
price changes due to an updated ICC, while leaving the earnings fore-
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casts constant. As a proxy for the true, but unobservable ICC, they use
the CDZ method and report that most of the changes in stock prices
are driven by CF news. On the contrary, I show that this result is not
robust to the specific ICC method. Conditional on a specific method,
a researcher could claim that the majority of stock price movements
is driven by CF news or, at the other extreme, that they are almost
exclusively driven by DR news. Therefore, it is of paramount impor-
tance to average across the evidence of all methods and in this case
the coverage regions are too wide to make any meaningful statement.

At the very least, this dissertation has shown that researchers have
to identify and control for the major parameters of an expected return
proxy. In the case of the ICC, those are the differences in long-term
or steady-state growth assumptions and different versions of the divi-
dend discount model. Only controlling for minor parameters, such as
the analyst bias in the first two or three forecasts, has typically a far
smaller effect. As a consequence, even robustness sections that look
extensive can be misleading. Additionally, I propose a method that
allows a researcher to directly incorporate model uncertainty into his
statistical inference. The results are easy to understand and interpret.

8.2 limitations

A first limitation of this thesis is my focus on eight ICC specifications
in the empirical part of this thesis. While I implement the most com-
mon approaches from the literature, one could criticize my choice of
the eight different methods as ad-hoc and arbitrary. Thus it would
have been interesting to implement more ICC specifications such as
ICCs computed with regression-based earnings forecasts, with ad-
justed earnings forecasts or simultaneously estimated long-term earn-
ings growth rates. Of course, incorporating more proxies is time-
consuming, both for the researcher and the reader in the case of cur-
rent approaches which present separate results for several specifica-
tions that are chosen ad-hoc. The former has to implement the meth-
ods, obtain additional variables, etc. The latter has to work through a
larger robustness section and summarize the results that are spread
out in many tables. A researcher therefore faces a tradeoff between
the consideration of model uncertainty on the one hand and his and
his readers time constraints on the other hand. It is obvious that a
researcher cannot implement all specifications proposed, but my re-
search also showed that he should at least take the evidence of four
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to five major different specifications into account. It is therefore an in-
teresting open question about how a researcher should deal with this
tradeoff. Because the BMA approach is easily extended to as many
proxies a researcher considers reasonable without any lengthening of
the empirical analysis, this tradeoff is now solely determined by the
time constraints of the researcher.

Another caveat of my dissertation is a theoretical one. To derive
the formulas necessary to compute the posterior model weights, I
rely on certain simplifying restrictions such as normality, linearity,
and the choice of priors. This is in line with current practice in the
literature, but a better understanding about the impact of these re-
strictions on the results is certainly desirable. In particular, I make
the assumption that the exogenous variables, which are the expected
return proxies in my case, are either fixed in repeated samples or
independent of the error term. In the case of predictive regressions,
which I have to deal with here, this assumption is clearly violated
(cf., e.g., Stambaugh 1999). My approach to this problem is similar
to Wright (2008), who acknowledges the issue, but simply wants to
assess the results obtained by BMA. My simulation results provide
additional evidence that the BMA approach does indeed yield better
results than ignoring model uncertainty altogether, which is in my
opinion quite intuitive in examples such as the replication of Chen,
Da, and Zhao (2013). Because I need this assumption to relatively com-
pare the predictive power of each expected return proxy, and not to
evaluate the absolute quality of one predictor, I do not see how the
weights could be biased towards one proxy in particular. Moreover,
one can always increase the informativeness of the priors so that the
information in the data is discarded. In this case, the posterior model
weights are equally weighted and problems from the predictive re-
gressions are non-existent. Given that the posterior model weights are
rather evenly distributed in my sample anyways, for many research
questions it should be a reasonable approach to ignore the evidence
of predictive regressions and simply use an average across different
proxies. This simplifies the analysis substantially.

Finally, I tackled the variable selection problem encountered in the
expected return proxy literature from a model uncertainty perspec-
tive and settled on the BMA approach as a solution to this problem.
It might be more natural to tackle the variable selection problem from
a measurement error perspective.
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8.3 outlook

In this dissertation, I focused on only three exemplary research ques-
tions to show the implementation of the BMA approach. Naturally,
it would be interesting to revisit many more studies that do not ac-
count for model uncertainty sufficiently and check the robustness of
the original results. In particular, one could focus on studies that deal
with the cross-sectional variation in ICC estimates. As I have shown
in Chapter 5, the cross-sectional summary statistics differ much more
between different ICC methods than in the case of the aggregate ICC.
Thus I think that model uncertainty is an even more important issue
in cross-sectional studies. Because these studies often focus on regres-
sion models with many control variables, one would have to sample
the coefficients for each variable separately.

Furthermore, the BMA approach allows a comparison across differ-
ent proxy classes, which is something that has not been done to the
best of my knowledge. Maybe there is only great uncertainty between
different ICC methods, but the ICC approach is clearly dominated by
expected returns from CDS or bond yield data, or vice versa. The
BMA can help answering such a question.

Also, predictive regressions are the most common approach to mea-
suring aggregate return expectations (cf. Kelly and Pruitt 2013) and
great advances have been made in the last decade to improve this
approach. In particular, Pástor and Stambaugh (2009) deal with the
problem of imperfect predictors, that is, predictors that are correlated
with true expected returns but cannot deliver it perfectly. Of course,
any alternative expected return proxy can be interpreted as such an
imperfect predictor. Therefore, one can use expected return proxies
to try to predict subsequent realized returns, as recently done by Li,
Ng, and Swaminathan (2013). Furthermore, one can then use the re-
sults from these regressions to back out the expected return process
again. Alternatively, one can directly take the estimates of the alterna-
tive proxies, but use predictive regressions to evaluate the quality of
such proxies. This shows that predictive regressions on the one hand
and alternative expected return proxies on the other hand are both
competing approaches to measure expected returns, but the former
is also necessary to evaluate the latter. In brief, there is an inherent
link between the two approaches and I consider my thesis only as a
first step in working this relation out.
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Finally, the BMA framework nicely illustrates how to evaluate any
expected return proxy class. All these proxies are derived from an un-
derlying theoretical model that links unobservable expected returns
to observable input parameters. It is then possible to back out the
unobservable expected returns, subject to additional simplifying as-
sumptions. The more leeway a method has in setting these assump-
tions, the larger is the uncertainty a researcher faces about the cor-
rectness of one specific implementation of this method. Take the ICC
as an example. It relies on the correct estimation of the vector of all
future expected dividends. There is large uncertainty about this vec-
tor and hence large differences between different ICC specifications.
If we could estimate this vector more precisely, we could substan-
tially lower the uncertainty in the ICC estimates. Recently, Binsbergen,
Brandt, and Koijen (2012) and Binsbergen, Hueskes, et al. (2013) made
great progress in that respect. Using novel data sets from derivative
markets, they are able to extract expectations about future dividends
from market data. In this case, one does not have to rely on poten-
tially biased analyst or regression-based forecasts, which reduces the
uncertainty considerably. Unfortunately, this data is only available for
short time periods and only for a few firms, but it shows that model
uncertainty can be reduced. In summary, we can draw conclusions
with more confidence if we are able to reduce the degrees of freedom
in the estimation of a specific expected return proxy. I am confident
that future research will make important contributions in this respect.



A
A P P E N D I X

a.1 the Campbell and Shiller (1988) loglinearization

The log return rt+1 on an investment such as a single stock or a stock
market index from t to t+ 1 is defined as114

rt+1 = log(1+ Rt+1) = log

(
Pt+1 +Dt+1

Pt

)
, (71)

where Pt is the market price at t and Dt+1 is the dividend paid at
t+ 1. This equation can also be written as follows:115

rt+1 = log(Pt+1 +Dt+1) − log(Pt)

= log

(
Pt+1

(
1+

Dt+1
Pt+1

))
− log(Pt)

= pt+1 − pt + log

(
1+ e

log
(
Dt+1
Pt+1

))
= pt+1 − pt + log

(
1+ edt+1−pt+1

)
. (72)

The last term in this equation is a nonlinear function of the log
dividend-price ratio, f(dt+1 − pt+1), and can be further simplified
by taking a first-order Taylor approximation around the mean of

114 For a more detailed textbook treatment of these derivations, see Campbell, Lo, and
MacKinlay (1997, Chapter 7).

115 Throughout this chapter I use lowercase letters to denote log variables, e.g.,
log(Dt) ≡ dt.
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the log dividend-price ratio, (d− p). Also, I define ρ = 1

1+ed−p
and

κ = −log(ρ) − (1− ρ)log
(
1
ρ − 1

)
, which results in

rt+1 ≈ pt+1 − pt + log
(
1+ ed−p

)
+

ed−p

1+ ed−p
(dt+1 − pt+1 − d− p)

≈ pt+1 − pt + log
(
ρ−1

)
+

(
1−

1

1+ ed−p

)
(dt+1 − pt+1 − d− p)

≈ pt+1 − pt − log (ρ) + (1− ρ)(dt+1 − pt+1 − d− p)

≈ −log (ρ) − (1− ρ)(d− p) + ρpt+1 + (1− ρ)dt+1 − pt

≈ κ+ ρpt+1 + (1− ρ)dt+1 − pt. (73)

The Taylor approximation replaces the sum of the log price and the
log dividend with a weighted average of the two, whereby the for-
mer is weighted by ρ and the latter by (1− ρ). This approximation is
mostly applied to stock market securities, such as a single stock or a
stock market index, for which the dividend is normally much smaller
than the price. This results in a ρ close to 1.

Solving equation (73) for pt and iterating forward yields

pt ≈ κ+ ρpt+1 + (1− ρ)dt+1 − rt+1

≈ κ+ ρ (κ+ ρpt+2 + (1− ρ)dt+2 − rt+2)

+ (1− ρ)dt+1 − rt+1

≈ κ+ ρκ+ ρ2pt+2 + ρ(1− ρ)dt+2 + (1− ρ)dt+1

− (ρrt+2 + rt+1)

≈ lim
T→∞

T∑
j=0

ρjκ+

T∑
j=0

ρj
[
(1− ρ)dt+1+j − rt+j+1

]
+ ρTpt+T .

Because ρ is smaller than one, the first term can be rewritten as κ/(1−
ρ). Furthermore, rational bubbles are ruled out, i.e., it is assumed that
the term lim

T→∞ ρTpt+T → 0. Also, taking expectation on both sides
results in

pt ≈
κ

1− ρ
+ Et

 ∞∑
j=0

ρj
[
(1− ρ)dt+j+1 − rt+j+1

] . (74)
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Equation (74) shows that the current price is high when expected cash
flows are high and low when expected returns are low. This equation
is identical to equation (37) in the main text.

Finally, we can substitute equation (74) into equation (73):

rt+1 ≈ κ+ ρpt+1 + (1− ρ)dt+1 − pt

≈ κ− κ

1− ρ
+ (1− ρ)dt+1

+ ρ

 κ

1− ρ
+ Et+1

 ∞∑
j=0

ρj
[
(1− ρ)dt+j+2 − rt+j+2

]
− Et

 ∞∑
j=0

ρj
[
(1− ρ)dt+j+1 − rt+j+1

]
≈ κ− κ

1− ρ
+

κρ

1− ρ
+ ρ0(1− ρ)dt+1+0

+ Et+1

 ∞∑
j=1

ρj
[
(1− ρ)dt+j+1 − rt+j+1

]
− Et

 ∞∑
j=0

ρj
[
(1− ρ)dt+j+1 − rt+j+1

]
≈ Et[rt+1]

+ Et+1

 ∞∑
j=0

ρj(1− ρ)dt+j+1

− Et+1

 ∞∑
j=1

ρjrt+j+1


− Et

 ∞∑
j=0

ρj(1− ρ)dt+j+1

+ Et

 ∞∑
j=1

ρjrt+j+1


≈ Et[rt+1] + dt − dt

+ Et+1

 ∞∑
j=0

ρjdt+j+1 − ρ
jdt+j

− Et

 ∞∑
j=0

ρjdt+j+1 − ρ
jdt+j


− Et+1

 ∞∑
j=1

ρjrt+j+1

+ Et

 ∞∑
j=1

ρjrt+j+1


≈ Et[rt+1]

+

Et+1
 ∞∑
j=0

ρj∆dt+j+1

− Et

 ∞∑
j=0

ρj∆dt+j+1


−

Et+1
 ∞∑
j=1

ρjrt+j+1

− Et

 ∞∑
j=1

ρjrt+j+1

 , (75)
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where ∆dt+j+1 ≡ dt+j+1 − dt+j. This equation shows that unex-
pected stock returns, i.e., rt+1 − Et[rt+1], can only come from two
sources: changes in expectations of future dividends (cash flow news)
or future returns (discount rate news). A decrease in expected future
dividends is associated with a capital loss today, while a decrease in
expected future returns is associated with a capital gain today.

a.2 theoretical relation between expected returns and

the icc in the model of Pástor , Sinha , and Swami-
nathan (2008)

In this appendix, I map the simple framework of Pástor, Sinha, and
Swaminathan (2008) into the predictive regression framework and
discuss the impact of the difference between expected returns on the
one hand and the ICC on the other hand on the slope coefficient in
such predictive regressions.

The CS approximation, introduced in Appendix A.1, of the present
value formula expresses the log price pt ≡ log(Pt) as116

pt =
κ

1− ρ
+ (1− ρ)

∞∑
j=0

ρjEt(dt+j+1) −

∞∑
j=0

ρjEt(rt+1+j), (76)

where κ = −log(ρ) − (1 − ρ)log(1/ρ − 1). As Pástor, Sinha, and
Swaminathan (2008) point out, in this framework the log ICC is de-
fined as the value of ret that solves

pt =
κ

1− ρ
+ (1− ρ)

∞∑
j=0

ρjEt(dt+j+1) − r
e
t

∞∑
j=0

ρj. (77)

It directly follows from equation (76) and (77) that the ICC is just
a scaled version of the vector of all future discounted expected re-
turns:117

ret = (1− ρ)

∞∑
j=0

ρjEt(rt+1+j). (78)

This also implies that the log ICC is not identical to the expected re-
turn next period, µt ≡ Et[rt+1], in cases in which expected returns

116 As already explained in footnote 37, I ignore the approximation error in the follow-
ing and use an equal sign.

117 This holds exactly in the CS framework, but Chen, Da, and Zhao (2013) provide
evidence that the approximation error is close to zero even if the ICC is computed
from the classical present value formula in equation (2).
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are time-varying. To provide more insight into the relation between
the ICC and expected returns next period, I assume in accordance
with Pástor, Sinha, and Swaminathan (2008) that the conditional ex-
pected return, µt, follows a stationary AR(1) process:

µt+1 = λµ + τµµt + vt+1, 0 < τµ < 1, vt+1 ∼ N(0,σ2v). (79)

Under this assumption, they show that

Et

 ∞∑
j=0

ρjrt+j+1

 =
λµ

(1− τµ)(1− ρ)
+

(
µt −

λµ

1− τµ

)
1

1− ρτµ
. (80)

Replacing the LHS of equation (80) with the relevant part of the RHS
in equation (78) gives a relation between the ICC and the conditional
expected return today, µt:

ret =
λµ

1− τµ
+

(
µt −

λµ

1− τµ

)
1− ρ

1− ρτµ
. (81)

Equation (81) shows that the ICC would be perfectly correlated with
the conditional expected return today given that the AR(1) assump-
tion is appropriate and that the vector of expected dividends is mea-
sured without error. This let Pástor, Sinha, and Swaminathan (2008)
to conclude that the ICC, at least theoretically, is a good proxy for
conditional expected returns.

However, it is obvious from equation (81) that a regression of re-
alized returns on the true log ICC will not result in a slope of one
anymore, which is the criterion for a perfect proxy of the expected
return period next period (see Chapter 3). Instead, the regression co-
efficient will be

βret =
Cov (ret , rt+1)
Var (ret)

=
Cov

(
λµ
1−τµ

+
(
µt −

λµ
1−τµ

)
1−ρ
1−ρτµ

,µt + ut+1
)

Var
(
λµ
1−τµ

+
(
µt −

λµ
1−τµ

)
1−ρ
1−ρτµ

)
=
1− ρτµ
1− ρ

. (82)

Equation (82) shows that βret will be larger than one as long as τµ is
below one. This finding is consistent with the study of Li, Ng, and
Swaminathan (2013) who report betas between 1.5 and 2.5 for pre-
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dictive regressions of realized returns on aggregated ICCs for a US
sample ranging from 1977 to 2011.

To understand the difference between the log ICC and the log ex-
pected return next period in this framework better, it is instructive
to solve equation (79) forward. Further ahead expected returns for
period t+ 1+ j can then be expressed as

Et[rt+1+j] = λµ
1− τjµ
1− τµ

+ τjµµt, (83)

where E[µ] = λµ/(1− τµ) is the unconditional mean of expected re-
turns. Thus, further ahead expected returns are a weighted average
of the expected return for next period, µt, and the unconditional or
long-run mean, whereby the weight for the latter converges to 1 for
further ahead periods. In this simple AR(1) framework, the current
state gets less and less important, i.e., it is transitory, and for periods
that lie far ahead it does not have any relevance anymore. The ICC is
a geometric average over all future expected returns and is therefore
less volatile than the expected return next period because it always
takes the expectation of further ahead returns close to the long-run
mean into account as well. As a consequence, a regression of sub-
sequent realized returns on the ICC instead of µt leads to a slope
coefficient larger than 1.

As a small numerical example of this effect, consider the following
parameter values:

• ρ = 0.95.

• τµ = 0.8.

• λµ = 2% per year, which implies an unconditional mean return
of 10% per year.

• Two scenarios:

1. µt,low = 5% per year.

2. µt,high = 15% per year.

Figure 10 shows the expected return over time for both scenarios
as well as the corresponding ICC. It illustrates that investors expect
returns in the far ahead future to converge to the long-run mean, ir-
respective of the current level of expected returns. Because the ICC
contains information about expected returns for all periods, it is less
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Figure 10: Expected returns and the ICC for different periods and scenar-
ios in the Pástor, Sinha, and Swaminathan (2008) framework. This plot
shows the expected returns for the first 25 years as well as the ICC for two
scenarios. In scenario “High”, the current expected return µt is 15% per year,
in scenario “Low” 5% per year. Expected returns are computed from equa-
tion (83). The ICCs are computed from equation (81) and represented as
horizontal, dotted lines. The other parameters are set to ρ = 0.95, τµ = 0.8,
and λµ = 2% per year.
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volatile than expected returns next period. With this specific calibra-
tion, the regression coefficient of subsequent realized returns on the
true, but unobservable ICC would be 4.8. In empirical applications
this coefficient is likely to be lower due to additional measurement
error in estimated ICCs.

a.3 upper bound of R2 in univariate errors-in-variables

problem

Suppose a variable yt+1 is driven only by one single factor, xt, plus
additional random noise εt+1 . This error term is independent with
any variable from time t. That is, we know that Cov(xt , εt+1) = 0:

yt+1 = xt + εt+1 . (84)

Because xt is a latent variable, we only observe proxies of it that are
both scaled by a factor s and have additional measurement error wt.
wt can be correlated with xt, but is uncorrelated with εt+1 . A proxy
x̂t is then given as

x̂t = sxt + wt . (85)

Here, I show that the R2 in the case in which Var(wt) = 0 is the
upper bound for any proxy.

The R2 in the univariate regression framework with intercept is
just the squared correlation between x̂t and yt+1 :

R2 =

(
Cov(yt+1 , x̂t)

σyσx̂

)2
=
Cov(xt + εt+1 , sxt + wt)2

Var(yt+1)Var( x̂t)

=
(sVar(xt) + Cov(xt , wt))2

Var(yt+1)Var(sxt + wt)
(86)

Equation (86) simplifies to R2 = Var(xt)/Var(yt+1) if Var(wt)
equals 0. Next, I want to show that this is an upper bound.

To do so, I split up the measurement error in two parts, one which
is correlated with xt and one which is uncorrelated. This can be done
by regressing wt on xt:

wt = τ0 + τ1xt + vt . (87)
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By construction, Cov(xt , vt) = 0. Plugging equation (87) into (86),
we get:

R2 =
(sVar(xt) + Cov(xt , wt))2

Var(yt+1)Var(sxt + wt)

=
(sVar(xt) + Cov(xt , τ0 + τ1xt + vt))2

Var(yt+1)Var(sxt + τ0 + τ1xt + vt)

=
(s + τ1)

2Var(xt)
2

Var(yt+1)((s + τ1)2Var(xt) + Var(vt))
(88)

Equation (88) equals the R2 of the true, but latent explanatory vari-
able xt if the variance of vt is zero. In all other cases, however, the
denominator is larger due to the additional term Var(vt). This, in
turn, decreases R2, which shows that any proxy measured with ad-
ditional error that is at least partly orthogonal to expected returns
results in lower R2.

a.4 a short introduction to bayesian statistics

This section gives a short introduction into Bayesian statistics. Using
the example of a linear regression, it shows how the statistical infer-
ence works in a Bayesian setting. Furthermore, some equations used
in the main part are derived.

For a more detailed treatment of Bayesian statistics in general and
regression models in particular, the interested reader is referred to
textbooks such as Poirier (1995), Koop (2003), Lunn et al. (2012), and
Gelman et al. (2013), from which this section heavily draws on.

a.4.1 Theory

All of Bayesian statistics is founded on one simple principle, Bayes’
theorem. This theorem is usually expressed in terms of probabilities
for observable events A and B. It states that

p(A|B) =
p(B|A)p(A)

p(B)
. (89)

In words: the conditional probability of A given B, also referred to as
the posterior probability of A after taking into account the value of B,
is given as the conditional probability of B given A multiplied by the
marginal probability of A and divided by the marginal probability of
B. p(A) is also often referred to as the prior probability of A, where
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“prior” indicates “before taking account of the information in B” (cf.
Lunn et al. 2012). Bayes’ theorem is applicable to any probability dis-
tribution p(·).

In frequentist statistics it is a commonly made assumption that pa-
rameters of a model are unknown, but fixed quantities. Only the data
are assumed to be random draws from probability distributions. In
contrast, both data and parameters have a probability distribution in
Bayesian statistics and so Bayes’ theorem can also be applied to esti-
mate a vector of parameters θ.118

Let p(·) now denote a probability density rather than a simple prob-
ability of an event. Further, let y denote the data. Then, equation (89)
can be used to make inferences about θ:

p(θ|y) =
p(y|θ)p(θ)

p(y)
, (90)

where p(θ) is the prior distribution of θ, p(y|θ) is the distribution of
the data y, conditional on the parameters of the model θ, and p(θ|y)
is the posterior distribution of θ, conditional on the data y. p(y|θ) is
taken here as a function of θ, not of y. This function is commonly
called the likelihood function.
p(y) is obtained by integrating out θ of the likelihood function:

p(y) =

∫
p(y|θ)p(θ)dθ. (91)

p(y) is also called the marginal distribution of y because θ is swept
out. Thus it is independent of θ and can be considered as a constant in
equation (90), which normalizes the posterior distribution p(θ|y) so
that it integrates to 1 and is therefore a valid probability distribution.
Most relevant properties of the posterior can be obtained without this
normalization and since the computation of p(y) can be complicated,

118 Leamer (1978, Chapter 2) discusses the underlying differences between frequentist
and Bayesian inference in detail. In the introduction of this chapter on page 21, he
summarizes the main points as follows: “An inference is a logical conclusion drawn
from a set of facts. Statistical inference is concerned with drawing conclusions about
unobservables θ from a set of facts, including observed data x and a conditional
probability distribution f(x|θ), that indicates the probability of various values of x
given various values of θ. Bayesian inference is distinguished from classical inference
by its inclusion of a “prior” probability function f(θ) in the set of facts. To a Bayesian
there is no sound logical reason why the distribution f(x|θ) should be regarded to
be more of a “fact” than the distribution f(θ). A classicist, however, argues that
the distribution f(x|θ) is an objectively verifiable feature of the world, whereas any
distribution f(θ) is purely a figment of someone’s imagination.”
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it is often ignored. In this case, the posterior is just proportional to
the product of the likelihood and the prior:

p(θ|y) ∝ p(y|θ)p(θ). (92)

In short, in Bayesian inference one updates his prior beliefs into pos-
terior beliefs conditional on the observed data (cf. Koop, Poirier, and
Tobias 2007). To compute the posterior p(θ|y), a researcher has to set
up a full probability model for all relevant parameters and data in a
problem. Because the posterior can only be derived analytically for a
few simple cases, most of Bayesian statistics relies on computational
tools to sample from the posterior distribution (cf., e.g., Koop 2003

or Lunn et al. 2012). However, the linear regression model with addi-
tional assumptions about the prior and the likelihood is such a simple
case. Because the BMA approach introduced in Chapter 4 is based on
such a linear regression model, I discuss it here in detail.

This model posits a linear relationship between the response or
outcome variable yi and a 1× k vector of explanatory variables, xi,
where i = 1, . . . ,N indexes the relevant observation unit. In matrix
notation, y denotes the vector of outcomes for the N subjects and X
denotes the N× k matrix of predictors:

y = Xβ+ ε, (93)

where β = β1, . . . ,βk is a vector of length k that holds the parameters
of interest. For many applications, the variable xi,1 is set to 1.

I assume here that the classical assumptions of a linear model
hold.119 Since one of these assumptions is that the explanatory vari-
able xt is not random, the likelihood function is defined by the proba-
bility distribution of the error terms. A commonly made assumption
is that εi is normally distributed with mean zero and constant vari-
ance across units i:

ε ∼ N(0,σ2IN), (94)

where IN is the N×N unit or identity matrix. Often, one works with
the error precision parameter instead of the error variance, that is,
h ≡ σ−2. This model is also called the normal linear model because y,
given X, is normally distributed.

119 For a summary of these assumptions, refer to, e.g., Kennedy (2008, Chapter 3).
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The linear regression model is now completely specified. The pa-
rameter vector is θ = (β,h), and the likelihood function, subject to θ
and equation (94), is given as

L(θ) = p(y|θ)

=

N∏
i=1

p(εi)

=

N∏
i=1

h1/2√
2π
exp

−
h

2

yi − k∑
j=1

βjxi,k

2


=
hN/2

(2π)N/2
exp

(
−
h

2
(y−Xβ)′(y−Xβ)

)
. (95)

Finally, we have to specify the prior distributions of θ, which is one
of the main objections of frequentists against Bayesian analysis be-
cause it introduces subjective beliefs into the analysis (cf. Kass and
Wasserman 1996).

Often, conjugate priors for the likelihood function are used, which
ensure that the posterior distribution is in the same family as the prior
distribution. A natural conjugate prior has the additional property
that it follows the same functional form as the likelihood function (cf.
Koop 2003). In addition to computational convenience, Koop, Poirier,
and Tobias (2007, p. 19) describe another advantage of such natural
conjugate priors:

Natural conjugate priors have the desirable feature that
prior information can be viewed as “fictitious sample in-
formation” in that it is combined with the sample in ex-
actly the same way that additional sample information
would be combined. The only difference is that the prior
information is “observed” in the mind of the researcher,
not in the real world.

In the regression model used here, the natural conjugate prior is the
normal-gamma distribution, which implies by the definition of con-
jugacy that the posterior distribution follows a normal-gamma distri-
bution as well.120 Formally, it is assumed that the precision parame-
ter h follows a gamma distribution (h ∼ G(h, v)) and that the condi-
tional distribution of β, given h, is a multivariate normal distribution
(β ∼ N(β,h−1V)). That is, the prior for β and h is NG(β,V ,h, v).121

120 Koop, Poirier, and Tobias (2007) provide a derivation in Exercise 10.1.
121 I denote prior parameters with underlines and posterior parameters with overlines.
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It can be shown that in this case (cf., e.g., Poirier 1995) the marginal
prior distribution of β, i.e., the distribution for which σ2 is integrated
out, follows a multivariate t-distribution t(β, s2V , v) with mean and
variance122

E(β) = β, if v > 1, (96)

and

Var(β) =
v

v− 2
s2V , if v > 2. (97)

The parameters of the prior, which are often referred to as hyper-
parameters (cf. Gelman et al. 2013), have to be specified by the re-
searcher a priori.

Since this specification is natural conjugate, the posterior distri-
bution of β and h is the normal-gamma distribution NG(β,V ,h, v),
where

β = V(V−1β+X′XβOLS), (98)

V = (V−1 +X′X)−1, (99)

v = v+N, (100)

vs2 = vs2 + SSE+ (βOLS −β)
′[X′XVV−1](βOLS −β). (101)

βOLS is the OLS estimator of β and SSE is the sum of squared error
from an OLS regression.

Equation (98) to (101) illustrate nicely the view of the prior as a
“fictitious” sample.123 In this case, v can be interpreted as the sam-
ple size of this “fictitious” sample and the posterior mean of β, β, is
just a weighted average between the prior mean, β, and the evidence
from the data, βOLS. The weights are proportional to X′X and V−1,
respectively, where the latter reflects the confidence in the prior.124

The more confident a researcher is in his prior, the more β is biased
towards it. Furthermore, equation (101) shows that the posterior sum
of squares, vs2, combines the prior sum of squares, vs2, the sample

122 Throughout this section, I use the same parameterization for distributions as Koop
(2003), which can be found in his appendix.

123 Leamer (1978) provides a derivation that shows that the posteriors are nothing else
than the results obtained from pooling two samples, one which is the data and one
which comes from the fictitious sample of the prior assumptions.

124 The variance-covariance matrix of βOLS is given as var(βOLS) = σ2ε(X′X)−1. V has
the same interpretation as (X′X)−1 for the fictitious prior sample. That is, the smaller
V , the smaller is the uncertainty in the prior estimate and the higher is the precision.
A higher precision translates into a higher weight.
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sum of squares, SSE, and a term that measures the conflict between
prior and data information. Due to the assumptions made about the
prior and the likelihood, the marginal likelihood and the marginal
posterior density of β follow multivariate t-distributions as well (cf.
Koop 2003). Therefore, sampling from these distributions is straight-
forward.

a.4.2 Numerical example

The above discussion is best understood with a small numerical ex-
ample. Suppose that the outcomes y are generated by the data gener-
ating process with the following underlying parameters:125

• β = 2, i.e., we have a univariate linear model with no intercept.

• h = 1.

A researcher is interested in the slope coefficient β, but does only
observe N draws from the data generating process. I simulate 50 data
points by drawing both the explanatory variable xi and the errors εi
(since h = 1) from a standard normal distribution and computing y
from equation (93).

The first prior specification is as follows:

• β = 1.5.

• V = 0.25

• v = 10.

• h = 1.

This information allows us to sample from the marginal distribu-
tions of the prior, the likelihood, and the posterior, which are shown
in Figure 11. The prior for β is centered around 1.5, but has a large
variance. A researcher who would have specified such a prior would
not be very certain about his prior information. The likelihood is cen-
tered around 1.94, which is the OLS estimate for this specific random
sample. In contrast to the fictitious prior sample, the evidence from
the data allows a much more precise inference about β. This can be
seen from the much smaller dispersion of the likelihood in Figure 11.
The posterior combines the evidence of the prior and the likelihood.

125 This example is taken from Koop (2003, Chapter 2).
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Figure 11: Marginal prior, likelihood, and posterior for β (case 1). The
prior specification for this plot is given by β,h ∼ NG(β,V ,h, v) with β = 1.5,
V = 0.25, v = 10 and h = 1.
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Because the evidence in the data is given more weight here, the pos-
terior is similar to the likelihood. Koop (2003) shows that if we would
further decrease the importance of the prior information, the likeli-
hood and the posterior would eventually converge. In this case, be-
cause the prior does not play any role anymore, it is referred to as a
noninformative prior.

It is easy to go the other way and make the prior more informative.
Maybe a researcher has done a similar analysis many times before
and is fairly certain that his prior of a coefficient of 1.5 is a good
estimate. In this case, he can increase the fictitious sample size and
decrease the uncertainty in his prior. For example, he could increase
v by a factor of 10 and decrease V accordingly by the same factor:

• β = 1.5.

• V = 0.025

• v = 100.

• h = 1.

Figure 12 shows the densities for the same data, but updated prior
beliefs. Because the information in the prior and in the data is now
roughly equally important to the researcher, the posterior is in the
middle of the two.

a.4.3 Discussion of priors

A main issue of the prior specification in the linear model with normal-
gamma distributed priors is the specification of V . One easy to imple-
ment solution to this problem is the use of the g-prior, as introduced
in Zellner (1986). In this case, V is set to φ(X′X)−1, where φ is a
shrinkage parameter that controls the informativeness of the prior.
Note that the researcher only has to set φ, a single parameter.

With the g-prior specification, V simplifies to

V = (V−1 +X′X)−1

= ((φ(X′X)−1)−1 +X′X)−1

= ((φ)−1X′X+X′X)−1

= (φ)(X′X+φX′X)−1

=
φ

1+φ
(X′X)−1. (102)
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Figure 12: Marginal prior, likelihood, and posterior for β (case 2). The
prior specification for this plot is given by β,h ∼ NG(β,V ,h, v) with β = 1.5,
V = 0.025, v = 100 and h = 1.
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Another commonly made simplification is the assumption that β is
set to zero. This assumption mimics a researcher that believes in no
relation between the explanatory variables and the outcome a priori.
Furthermore, since the subjectivism in the priors is often an objection
against Bayesian statistics, it is tried to reduce its impact as much
as possible. In the case of the g-prior specification, it is desirable to
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control the informativeness of the prior only via φ, so v is often set to
0.126 vs2 is then given as

vs2 = vs2 + SSE+ (βOLS −β)
′[(X′X)VV−1](βOLS −β)

= vs2 + SSE

+ (βOLS − 0)
′[(X′X)

φ

1+φ
(X′X)−1

1

φ
(X′X)](βOLS − 0)

= vs2 + SSE+
1

1+φ
β′OLSX

′XβOLS

= 0+ SSE+
1

1+φ
β′OLSX

′XβOLS

= (y−XβOLS)
′(y−XβOLS) +

1

1+φ
β′OLSX

′XβOLS

= y′y− 2y′XβOLS +βOLSX
′XβOLS +

1

1+φ
β′OLSX

′XβOLS

= y′y− 2(XβOLS + ε)
′XβOLS +β

′
OLSX

′XβOLS

+
1

1+φ
β′OLSX

′XβOLS

= y′y−β′OLSX
′XβOLS +

1

1+φ
β′OLSX

′XβOLS

= y′y+

(
1

1+φ
− 1

)
β′OLSX

′XβOLS

= y′y−

(
φ

1+φ

)
β′OLSX

′XβOLS

= y′y−

(
φ

1+φ

)(
(X′X)−1X′y

)′
X′X(X′X)−1X′y

= y′y−

(
φ

1+φ

)
(X′y)′

(
(X′X)−1

)′
X′y

= y′y−

(
φ

1+φ

)
y′X(X′X)−1X′y. (103)

Finally, plugging equation (102) into equation (98), it is easy to show
that

β =
1

1+φ
β+

φ

1+φ
βOLS. (104)

126 As Wright (2008) highlights, this assumption also implies that the prior on σ2 simpli-
fies to a uniform distribution. Such a distribution is called improper because it does
not integrate to 1. Fortunately, this is not an issue here because the posterior distri-
bution is still proper in this case (for a discussion see Gelman et al. 2013). Improper
priors give equal weights to all possible values and are therefore a nice way to be
as non-informative as possible in the priors. This is often of great importance to re-
searchers because it provides a nice link to classical/frequentist approaches. See, for
instance, Leamer (1978, p. 110): “The critical defect of a Bayesian analysis of data
is that prior distributions are both personally difficult to specify and also subject to
variation among interested people. As a consequence, a Bayesian analysis based on
any particular prior is of little interest.”
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Because β is typically set to zero, this further simplifies to β = φ/(1+

φ)βOLS. Equation (104) shows that the posterior mean converges to
βOLS if φ becomes large. In this case, the information in the prior is
ignored and the classical OLS results are reproduced.

a.4.4 Derivation of posterior model weights

With the above derivations, it is easy to derive equation (61) from the
main text. To do so, I assume now that the independent variables in
equation (93) are model specific:

Mk : y = Xkβk + εk. (105)

Otherwise, the assumptions remain the same. The posterior model
weights are proportional to the product of the model likelihood and
the model prior:

p(Mk|D) ∝ p(D|Mk)p(Mk), (106)

where D is the data. In general, the marginal likelihood, conditional
on model k, is given as127

p(D|Mk) = ck

[
|Vk|

|Vk|

]1/2
[vks

2
k]

−vk/2, (107)

where

ck =
Γ(vk/2)[vks

2
k]
vk/2

Γ(vk/2)π
N/2

. (108)

Γ(·) denotes the gamma function. All that is left to do is to com-
pute p(D|Mk) for the special case with a g-prior specification. Set-

127 See, e.g., Poirier (1995) or Koop (2003).



A.5 simulation results of bma performance 174

ting V = φ(X′X)−1 and V = φ/(1+φ)(X′X)−1 (see equation 102) in
equation (107), we obtain128

[
|Vk|

|Vk|

]1/2
[vks

2
k]

−vk/2 =

[
| φ1+φ(X

′X)−1|

|φ(X′X)−1|

]1/2
[vks

2
k]

−vk/2

=


(
φ
1+φ

)K
|(X′X)−1|

φK|(X′X)−1|


1/2

[vks
2
k]

−vk/2

=

[
1

1+φ

]K/2
[vks

2
k]

−vk/2 (109)

Plugging equation (109) into (107) and ignoring terms that are con-
stant across models, p(D|Mk) simplifies to

p(D|Mk) ∝ ck(vs2k)−vk/2. (110)

Finally, if we set v to zero, as done before, ck is equal across models
as well and can be ignored. Additionally, we can replace vs with the
term given in equation (103) to obtain

p(D|Mk) ∝
(
y′y−

(
φ

1+φ

)
y′Xk(X

′
kXk)

−1X′ky

)−N/2

. (111)

Equation (111) is identical to equation (61) of the main text, only the
notation differs. Note that the prior model weights, p(Mk), are set to
1/k in the main text, which implies that p(Mk|D) is proportional to
p(D|Mk). Because the prior model weights are equal across models,
they cancel out in the computation and the posterior model weights
are only driven by the evidence in the data for each model.

a.5 simulation results of bma performance

The aim of this simulation is to evaluate the performance of the model
averaging approach in comparison to other applied or recommended
approaches of choosing among a set of alternative expected return
proxies in the outlined research question of equation (47). Since we
do not know the exact properties of latent expected returns, I decide
to simulate four different specifications that cover a wide range of
reasonable assumptions.

128 For this derivation, the following calculation rule for a matrix A with rank j is
needed: |cA| = cj|A|.
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We are interested in the following regression:

µt = γ0 + γ1xt + εt. (112)

More precisely, we want to determine if γ1 deviates from zero, but we
face the problem that µt is unobservable. Instead, we can only rely on
k = 8 different proxies available. I consider the following approaches
to estimate γ1:

• Best: This approach runs the regression specified in equation
(112) for each available proxy and takes the results of the proxy
that yields the most significant results. In this simulation, it
means that I take the slope coefficient with the highest positive
value, assuming that a researcher wants to establish a positive
relation between true expected returns and xt.

• Ave: This approach averages across all proxies before the regres-
sion is run and reports the statistics for the averaged proxy. This
approach was proposed by Hail and Leuz (2009).129

• Highest R2: In a first step, this approach selects the proxy that
explains subsequent realized returns best. Afterwards, regres-
sion (112) is only run for this proxy. This is a classical model
selection approach in which the model selection and the statis-
tical inference step are separated. This approach is based on the
work of Easton and Monahan (2005) and Lee, So, and Wang
(2011).

• BMA: First, weights for each proxy are computed based on
how well this proxy is able to explain subsequent realized re-
turns. The weights are computed with the equations provided
in Chapter 4. I set φ = ∞ and give each model equal weight a
priori. Second, the posterior distribution of the quantity of inter-
est is computed via equation (51). Since every estimated slope
coefficient follows a t-distribution, the marginal density across
all models is a mixture t-distribution.

• Real: This approach uses realized returns as a proxy for ex-
pected returns.

I want to evaluate the performance of these approaches for different
scenarios. In particular, I want to find out how each of them performs

129 They also report their results for all of their four methods separately.
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in cases in which the true expected return process is or is not within
the set of proxies under consideration and in cases in which the mea-
surement error is or is not correlated with the variable of interest xt.
Another requirement I want to fulfill is that µt follows an AR(1) pro-
cess since this is a commonly made assumption in the literature.130

Therefore, I simulate xt as a monthly AR(1) process:131

xt+1 = τxxt + εx,t+1, εx,t+1 ∼ N(0,σ2εx). (113)

For the case in which xt and µt are related, I compute µt – based on
equation (112) – as

µt = 1× xt + εµ,t, εµ,t ∼ N(0,σ2εµ). (114)

In this case, an econometrician wants to obtain γ1 = 1.
For the case in which there is no relation between xt and µt, i.e.,

γ1 = 0, I simulate expected returns as

µt+1 = τµµt + εµ,t+1, εµ,t ∼ N(0,σ2εµ). (115)

Subsequent realized returns are then simulated from the following
equation:

rt+1 = µt + ut+1, (116)

where the variance of ut+1 is set to (4.8%)2, which results in a vari-
ance of roughly (5%)2 per month, consistent with empirical evidence.

Finally, k proxies are constructed from the following equation:

µ̂t,k = µt +wt,k, (117)

where wt,k is generated as xt +mt and mt is white noise. The ratio
σ2x/(σ

2
x + σ

2
m) controls how systematic the measurement error varies

with xt. If it is one, all variation in the measurement error is driven
by xt; if it is zero, wt,k is just white noise. The ratio σ2µ/(σ2µ + σ2w)

determines how much of the variation in each proxy is due to µt and
how much variation is due to wt,k. Each proxy µ̂t,k is then rescaled
so that its variance is equal to the variance of µt. This ensures that for
changing ratios σ2µ/(σ2µ+σ2w) the variance of the proxies remains the

130 See for example Pástor, Sinha, and Swaminathan (2008), Pástor and Stambaugh
(2009), and Binsbergen and Koijen (2010).

131 All variables are demeaned and thus the intercept is irrelevant.
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same. If true expected returns are part of the set of proxies, the ratio
σ2µ/(σ

2
µ + σ2w) is set to 1 for one out of the k proxies.

Table 24 shows the values of the input parameters for the four dif-
ferent scenarios that I run. Let’s first discuss the parameters that re-
main constant over the scenarios. First, the unexpected shocks to real-
ized returns are calibrated in such a way that the standard deviation
of realized returns is around 5%, roughly matching the evidence in
the data. Second, xt, the independent variable, is in all cases a rather
persistent AR(1) process. Third, I simulate in every scenario eight
proxies an econometrician can choose from. This is the same number
of proxies that I use in the empirical part of my thesis.

Next, let’s focus on the differences between the scenarios. The first
and second scenario both model a relation between xt and µt. Ad-
ditionally, the explanatory power of predictive regressions is rather
high in the first scenario, since the variance of expected returns is
roughly 8% of the variation in realized returns. Therefore, the pre-
dictive regression should be able, even in small samples, to identify
the correct proxy. The measurement errors of all proxies (except for
the true expected return process) are equally driven by xt and white
noise, but the importance of measurement error in relation to µt is
distributed uniformly across the proxies. Therefore, there should be
quite some variation between the proxies. In the second scenario, the
variance of the shocks to expected returns is reduced by a factor of
ten. This means that almost all the variation of µt is driven by xt
and that the expected-to-unexpected ratio in realized returns is lower.
Also, in this case the true proxy is not within the set of proxies un-
der consideration. Both the signal-to-noise in the measurement error
(how much of the variation in measurement error is driven by xt) and
in the proxies (how much of the variation in each proxy is driven by
µt) are uniformly distributed from 0 to 1, adding even more variation
between each proxy in each run.

In the third and fourth scenario, there is no relation between xt and
µt. µt is in this case an equally persistent, but uncorrelated, AR(1)
process.132 The other parameters are identical to the first two scenar-
ios.

I run each scenario 10,000 times with 300 months sampled in each
run. Due to data requirements in empirical research, this sample size
is on the upper bound of sample sizes found in empirical time se-

132 Note that this case implies autocorrelated residuals, which is why I use adjusted
standard errors with Newey-West lag corrections. The number of lags is computed
via the method proposed in Newey and West (1994).
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ries studies that apply expected return proxies and therefore, larger
sample sizes are of little interest. Also, as Sala-I-Martin, Doppelhofer,
and Miller (2004) highlight, model selection and model averaging
is strictly a small-sample problem. Asymptotically, a researcher is
able to identify the best proxy almost surely, so the model selection
and the model averaging approach converge. Note, however, that this
does not imply that a researcher gets rid of the potential bias in his
proxies. Even asymptotically, we can only make relative statements
about the performance of proxies, not absolute ones. In other words,
we might identify the best proxy, but we can still not be sure that this
proxy measures expected returns without any error. This is another
shortcoming of any other proxy in comparison to realized returns.
However, in very large samples we can often just use realized returns
because it is an unbiased estimate of expected returns and its noise is
not an issue anymore.

For each scenario, I compute the bias as well as range of the esti-
mator and the coverage. The bias is the difference between the esti-
mator, i.e., the weighted average slope coefficient γ̂a that approach a
obtained over all Monte Carlo runs,133 minus the true γ. The range
is the average difference between the 97.5th percentile and the 2.5th
percentile of the regression coefficient. The coverage is the number
of runs in which the confidence or credible intervals of the specific
approach cover γ divided by the number of all runs. Note that I use
Newey-West corrected standard errors throughout the simulation.

Table 25 presents the results. The column labelled "True" shows the
results if one could observe expected returns. Not surprisingly, in this
case the bias is close to zero and the coverage is around 95%. However,
an econometrician has to settle with proxies and their performance is
shown in the remaining columns. The advantages and disadvantages
of realized returns are obvious from Table 25. Its application leads to
unbiased results (the bias is close to zero and the coverage is close
to 95%), but with a lot of parameter uncertainty. The confidence in-
terval that we can impose with realized returns can be more than 40

times as large as the confidence interval we would obtain if we could
observe expected returns. This is the main motivation for any alter-
native expected return proxy and as we can see from the remaining
columns, all other approaches lead to much lower intervals. In other
words, these approaches are much more certain about the estimated

133 In the case in which only one one regression is run (True, Real, Best, Ave, R2), it is
just the regression coefficient obtained from an OLS.
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Table 25: Summary statistics of Monte Carlo simulation. This table presents
summary statistics for four different scenarios (see Table 24). The bias in
Panel A is defined as the mean of the OLS estimator (for approaches True,
Real, Best, Ave, and R2) or of the weighted average across proxies (for ap-
proach BMA) minus the true coefficient γ. Range in Panel B is the difference
between the 97.5th percentile and the 2.5th percentile. The coverage in Panel
C shows the ratio (in percent) of how often the 95% percentile of the specific
approach covered the true coefficient γ. The statistics are based on 10,000

Monte Carlo runs. In each run, a time series of 300 months is simulated.

Scenario True Real Best Ave R2 BMA

Panel A: Bias

1 0.0003 -0.0020 0.2860 0.2069 0.0897 0.1197

2 -0.0000 0.0010 0.0252 -0.0393 -0.0223 -0.0169

3 -0.0001 0.0006 1.3617 0.8499 0.0991 0.1534

4 -0.0001 -0.0027 0.1438 0.0895 0.0859 0.0882

Panel B: Range

1 0.2241 1.0970 0.1465 0.1405 0.2024 0.3697

2 0.0225 1.0779 0.0241 0.0299 0.0621 0.1676

3 0.7686 1.2505 0.2882 0.5390 0.7570 1.0364

4 0.0768 1.0779 0.0302 0.0505 0.0499 0.1345

Panel C: Coverage

1 93.0400 93.3100 0.3000 14.0523 57.1900 86.7800

2 93.3500 93.3300 10.4100 2.9885 22.3700 54.6200

3 92.2200 91.5200 0.0100 53.9041 80.7700 90.9800

4 92.1900 93.3000 0.0000 5.0548 13.3900 28.7700
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parameter. However, since BMA incorporates model uncertainty, it
has the largest range of the alternative approaches.

Are the methods correct in being certain though? The answer is no.
All methods can lead to substantial biases and overconfident results.
The worst performer is clearly the "Best" approach. In this case, one
simply picks the proxy that yields the results that favor one’s hypoth-
esis the most. This is certainly an extreme case in which a researcher
goes fishing for the most significant results. The coverage here is close
to zero. This is because one always finds too strong of a relation, even
in cases in which there is a relation between true expected returns
and the variable of interest.

Both averaging across proxies before the regressions are run, as pro-
posed by Hail and Leuz (2009), and selecting the proxy based on
predictive regressions prevent a researcher from fishing for the "best"
proxy and are clearly superior to this approach. They result in better
coverages and less bias, but have still far narrower confidence/cred-
ible regions than results based on realized returns. Yet, they do not
incorporate the uncertainty an econometrician has about which of the
proxies is the correct one. Hence, the regions are too narrow and cov-
erage is far too low. That is, we get precise results, but often those
results are precisely wrong. A researcher that entertains any of those
three approaches severely overestimates the power of the results and
makes biased inferences. In cases in which the true proxy is actually
within the set of expected return proxies (scenario 1 and 3), BMA is
a solution to this problem. The coverage intervals are close to 95%,
so model uncertainty is correctly incorporated. Still, the ranges are
lower than in the case of realized returns and therefore, applying al-
ternative proxies pays off. However, in cases in which the true proxy
is not within the set of proxies under consideration (scenario 2 and
4), the results are still biased and the coverage is far too low, even in
the case of BMA.134 If all proxies are biased, averaging across them
will also lead to biased results. Since I am unaware of any reasonable
test that establishes the unbiasedness of the proxies under consider-
ation, particularly in short samples, this is a severe shortcoming for
any such proxy.

134 Note that the absolute bias is lower in scenario 2 and 4 for the BMA approach. This
is due to the fact that the shocks that affect true expected returns are lower which
increases the precision in detecting a relation between xt and µt. This can be seen
from a comparison of the ranges in Panel B of column “True”. However, because the
confidence intervals are even smaller in absolute terms, they often do not cover the
correct coefficient.
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Table 26: Posterior model weights for different shrinkage parameters (sim-
ple realized returns). This table shows the posterior model weights of the
ICC methods for different shrinkage parameters φ. The weights are based
on predictive regressions of subsequent realized returns for the next month
on the ICCs. In comparison to Table 16, the realized returns are not logged
here. The following priors are specified: Equal prior model probabilities
p(Mk) across ICC methods, an improper prior on σ2, and the natural conju-
gate g-prior specification for β: N(0,φσ2(X′kXk)

−1), where Xk is the T × 2
matrix of a T vector of ones and the T vector µ̂i; the posterior model weights
are computed via equation (61). Note that the case φ = ∞ is identical to the
AIC weighting shown in equation (62). The time period ranges from 1985 to
2011.

φ PE PEG MPEG OJ CT GLS PSS CDZ

0.01 12.51 12.55 12.55 12.48 12.48 12.53 12.52 12.40

0.1 12.54 12.95 12.97 12.29 12.27 12.75 12.65 11.57

1 12.55 15.03 15.15 11.21 11.11 13.77 13.19 7.99

10 12.28 17.16 17.42 9.96 9.80 14.58 13.47 5.33

100 12.19 17.59 17.88 9.70 9.53 14.72 13.49 4.90∞ 12.18 17.64 17.94 9.67 9.50 14.73 13.50 4.85

In summary, those results show that using alternative expected
return proxies without the incorporation of model uncertainty can
severely overestimate the confidence a researcher should have in the
results. It can also lead to biased results. BMA helps in cases in which
the true expected return process is within the set of proxies of the re-
searcher. It must fail, like all other methods, if this is not the case.

a.6 sensitivity of the posterior model weights in the

predictive regression framework

Table 26 is identical to Table 16 with the only exception that I do
not continuously compound the realized returns here. A comparison
between the two tables reveals that the posterior model weights are
hardly unaffected by this decision.

Table 27 replicates Table 16, but regresses monthly excess log real-
ized returns on implied risk premiums instead of log realized returns
on implied costs of capital. In general, the weights are more evenly
distributed, which indicates that the model uncertainty is even larger
in this case. Nevertheless, the results are similar. The GLS method is
by far the best performing method, while the CDZ method is worst
in explaining subsequent realized returns.
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Table 27: Posterior model weights for different shrinkage parameters (ex-
cess continuously compounded realized returns and implied risk premi-
ums). This table shows the posterior model weights of the ICC methods for
different shrinkage parameters φ. The weights are based on predictive re-
gressions of subsequent excess realized returns for the next month on the im-
plied risk premiums. The following priors are specified: Equal prior model
probabilities p(Mk) across ICC methods, an improper prior on σ2, and the
natural conjugate g-prior specification for β: N(0,φσ2(X′kXk)

−1), where Xk
is the T × 2 matrix of a T vector of ones and the T vector µ̂i; the posterior
model weights are computed via equation (61). Note that the case φ = ∞
is identical to the AIC weighting shown in equation (62). The time period
ranges from 1985 to 2011.

φ PE PEG MPEG OJ CT GLS PSS CDZ

0.01 12.50 12.49 12.52 12.50 12.51 12.50 12.50 12.47

0.1 12.52 12.43 12.68 12.52 12.59 12.53 12.53 12.20

1 12.60 12.08 13.49 12.61 13.02 12.63 12.64 10.92

10 12.65 11.72 14.34 12.67 13.43 12.71 12.73 9.75

100 12.66 11.64 14.51 12.68 13.51 12.72 12.75 9.53∞ 12.66 11.64 14.53 12.68 13.52 12.73 12.75 9.50
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