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ABSTRACT: Monitoring is an essential element of modern tunneling construction. The most common mon-
itoring method is measuring displacements, for example convergence of the tunnel opening or surface settle-
ments. Measurement outcomes can be used to update the knowledge on material properties of the soil or other
parameters that enter numerical models of the structural behavior of the tunnel. In probability theory, this pro-
cess can be formalized in the concept of Bayesian updating. In this paper, we apply the Bayesian concept to
update the numerical model of a tunnel in soft soil conditional on settlement measurements. The tunnel is con-
structed by means of the conventional tunneling method and modeled with 2D finite elements applying the
stress reduction method. We assume that settlement measurements are taken at full excavation and utilize the
measurements to update the material properties of the soil as well as the the relaxation factor of the stress re-
duction method. Updating is performed by means of BUS, a recently proposed method for Bayesian updating
of mechanical models with structural reliability methods.

1 INTRODUCTION

In tunneling design, engineers establish numerical
models of the tunnel excavation and conduct struc-
tural analyses to predict the stresses and deforma-
tions for the considered designs. However, there is
significant uncertainty in the choice of the model pa-
rameters. Uncertainties may be related to the inher-
ent spatial variability of the mechanical properties of
the soil but also to the application of dimensionally
reduced models to represent complex phenomena. A
proper assessment of the safety and serviceability of
the structural design involves the modeling of the un-
certainties by use of probabilistic models and the eval-
uation of the structural reliability against the respec-
tive design requirements.

During the tunnel construction process, measure-
ments of physical quantities such as deformations
and stresses are typically conducted. Measurements
can be used to compare predictions of the numerical
model with the actual structural behavior, to verify the
reliability of the structural design as well as to up-
date the probabilistic description of the parameters of
the numerical model. The latter is formalized in the
concept of Bayesian updating. Thereby, a prior prob-
abilistic model is updated with new data and informa-
tion to a posterior probabilistic model.

Bayesian updating requires the solution of a po-

tentially high-dimensional integral to obtain the pos-
terior distribution of the model parameters. Com-
monly, Markov Chain Monte Carlo (MCMC) sam-
pling is used to sample directly from the posterior
distribution, thus bypassing the solution of the afore-
mentioned integral (Gelman 2004). An alternative ap-
proach is based on interpreting the updating problem
as a structural reliability problem (Straub & Papaioan-
nou 2013). This approach, termed BUS, applies meth-
ods originally developed for structural reliability anal-
ysis to obtain samples from the posterior distribution.

In this paper, we apply BUS to learn the model pa-
rameters of a tunnel in soft soil using settlement mea-
surements. The tunnel is constructed by the conven-
tional tunneling method. We model the tunnel in 2D
using nonlinear plain-strain finite elements and the 3D
arching effect is approximated by application of the
stress reduction method. Using assumed settlement
measurements at full excavation, we update the ma-
terial properties of the soil as well as the relaxation
factor of the stress reduction method.

2 MODEL DESCRIPTION

2.1 Mechanical model

A conventional driven tunnel with a horse-shoe
shaped profile is considered in this study (see Fig. 1).
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Figure 1: Ground layers considered in the model.

The problem is modeled in the SOFiSTiK finite el-
ement (FE) software package (SOFiSTiK AG 2012),
using 2D plain strain finite elements. The numerical
model has a width of 80m and a height of 26m. The
FE mesh is shown in Figure 2. In this study, we are
interested in surface settlements over the tunnel cen-
ter line (point A in Fig. 1). The excavation process is
modeled by application of the stress reduction method
(Panet & Guenot 1982). In this method, a prescribed
fraction β of the initial stress is left inside the tunnel
as a support pressure to approximately account for the
three-dimensional arching effect. This support pres-
sure is then removed after installation of the lining.
The parameter β is termed relaxation factor.

The model consists of three different ground layers;
the layers are illustrated in Figure 1. The cover layer
is a man-made fill and has a depth of 5.4m. Heavily
weathered soft rock known as Keuper marl forms the
second layer. The thickness of this layer is 16.8m. We
adopt a hardening plasticity soil model (SOFiSTiK
AG 2012) to describe the material behavior of the first
two layers. This material model allows for a realistic
description of the stiffness and hardening behavior of
soft soil in settlement analysis (Möller 2006). The ma-
terial properties of the cover layer are as follows: elas-
tic modulus for unloading-reloading: 30MPa, Pois-
son’s ratio: 0.2, specific weight: 20kN/m3, friction
angle: 25◦, cohesion: 10kPa, oedometric stiffness
modulus: 10MPa, stiffness modulus for primary load-
ing: 10MPa. The exponent in the hardening law is se-
lected as 0.5 for the first and the second layer. The
angle of dilatancy is assumed as zero, correspond-
ing to a non-associated flow rule. The soil param-
eters of the Keuper marl layer are modeled as ran-
dom and their prior probabilistic description is dis-
cussed in Section 2.2. Strong limestone constitutes the
bottom layer. The Mohr-Coulomb law is applied for
this layer. The material properties are: Young’s mod-
ulus: 575MPa, Poisson’s ratio: 0.2, specific weight:
23kN/m3, friction angle: 35◦, cohesion: 200kPa. Due
to the much larger stiffness of the limestone compared
to the stiffness of the overlaying materials, only 3.8m
of this layer are modeled.

The height of the tunnel above the limestone layer
is 6.2m. Consequently, the tunnel is located in a depth
of 16m below the ground surface. At the intersec-
tion of the second and the third layer, the tunnel has
a width of 9.16m. In the vicinity of the tunnel the
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Figure 2: Finite element mesh.

Keuper marl is reinforced with nails. This is mod-
eled by increasing the cohesion in the affected re-
gion (see Fig. 1) by 25kPa. Moreover, the tunnel is
located above the groundwater level. The shotcrete
lining is modeled using linear beam elements with a
normal stiffness of 10.5GN and a flexural rigidity of
26.78MNm2.

2.2 Prior probabilistic model

The cover layer and the limestone layer are consid-
ered as deterministic in the analysis. Since the cover
layer is a man-made fill, we assume that its soil prop-
erties are well-known, and the associated uncertain-
ties are small compared to the uncertainties in the ma-
terial description of the Keuper marl layer and hence
can be neglected. The limestone layer is also modeled
as deterministic, because, due to its large stiffness, the
contribution of this layer to the surface settlements
is negligible. The probability distributions describing
the uncertainties in the material parameters of the Ke-
uper marl layer are listed in Table 1. We assume that
the stiffness modulus for primary loading E50 equals
the oedometric stiffness modulus Eoed. We also con-
sider a correlation of 0.7 between Eoed and the elastic
modulus Eur. The friction angle and the cohesion are
assumed to have a negative correlation of −0.5.

In conventionally driven tunnels, there is usually a
large uncertainty in the choice of the relaxation fac-
tor β ∈ [0,1] of the stress reduction method (Möller
2006). In this study β is modeled as a beta-distributed
random variable (see Table 1).

A reliability assessment of the tunnel was pre-
sented in Ranjan et al. (2013). Therein, a two-step ap-
proach is adopted. In a first step, the reliability anal-
ysis was performed applying the first order reliability
method (FORM) [e.g. see (Der Kiureghian 2005)]. As
a byproduct of the FORM, the influence coefficients
provide information on the sensitivity of the reliabil-
ity in terms of the random variables. This informa-
tion was used to identify the random variables with
the highest influence that, in a second step, are mod-
eled as random fields.

Figure 3 depicts in a pie graph the squared influ-
ence coefficients obtained by the FORM. It is ob-
served that the variable with the largest influence is
the oedometric stiffness modulusEoed followed by the
relaxation factor β. Based on this result, we account



Table 1: Prior distribution of the parameters of the Keuper marl
layer.

Parameter Distribution Mean CV

Relaxation factor β Beta(0.0,1.0) 0.5 10%
Elast. mod. Eur [MPa] Lognormal 80.0 32%
Oedometr. mod. Eoed [MPa] Lognormal 30.0 32%
Poisson’s ratio ν Beta(0.0,0.5) 0.2 15%
Friction angle ϕ [◦] Beta(0.0,45.0) 20.0 15%
Cohesion c [kPa] Lognormal 25.0 30%
Specific weight γ [kN/m3] Lognormal 24.0 5%
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Figure 3: Squared influence coefficients obtained by FORM.

for the inherent spatial variability of Eoed. Since Eoed
is strongly correlated with the elastic modulusEur, the
spatial variability of the latter parameter is also mod-
eled. This is achieved by modeling the two parameters
as cross-correlated homogeneous random fields. The
joint distribution of the two fields at each pair of lo-
cations is modeled by the Nataf distribution (Der Ki-
ureghian & Liu 1986) with lognormal marginals ac-
cording to Table 1. The spatial variability depends
only on the separation in horizontal and vertical direc-
tion between two locations, ∆x and ∆y. The follow-
ing exponential autocorrelation coefficient function is
chosen for both random fields:

ρ(∆x,∆y) = exp

(
−∆x

lx
− ∆y

ly

)
(1)

where lx = 20m and ly = 5m denote the correlation
lengths in horizontal and vertical direction, respec-
tively. The cross-correlation coefficient function is:

ρcross(∆x,∆y) = ρc · ρ(∆x,∆y) (2)

where ρc = 0.7 denotes the correlation ofEoed andEur
at the same location.

Since the random fields have the Nataf distribution,
they can be expressed as functions of correlated Gaus-
sian fields. Due to the form of their cross-correlation
function, the latter fields can be transformed to inde-
pendent Gaussian fields by performing the Cholesky
decomposition of the 2× 2 correlation matrix, whose
off-diagonal terms express the correlation of the two
fields at the same location. The underlying indepen-
dent Gaussian fields are discretized by application of
the Karhunen-Loéve expansion (Ghanem & Spanos

1991). That is, each field is represented as a truncated
series of products of the eigenfunctions of its autocor-
relation function and independent random variables.
Each random field is dicretized with 100 random vari-
ables. Therefore the total number of random variables
in the problem is 205.

3 BAYESIAN UPDATING WITH STRUCTURAL
RELIABILITY METHODS (BUS)

Let X denote the n-dimensional random vector repre-
senting the uncertain model parameters discussed in
Section 2.2. Also, let f(x) be the prior joint probabil-
ity density function (PDF) of X. Assume that a mea-
surement uA,m of the surface settlement (point A in
Fig. 1) is made at full excavation. The measurement is
subjected to an additive error εwhich is described by a
normal PDF fε with zero mean and standard deviation
σε. The measurement information can be described by
the event Z = {uA,m−uA(x) = ε}, where uA(x) is the
surface settlement evaluated by the FE program for a
realization x of the random vector X. The correspond-
ing likelihood function can be expressed as follows:

L(x) = fε [uA,m − uA(x)]

=
1

σε
√

2π
exp

(
−(uA,m − uA)2

2σ2
ε

)
(3)

The posterior joint PDF of X conditional on the mea-
surement event Z can be obtained by application of
Bayes’ rule:

f(x|Z) =
L(x)f(x)∫

Rn L(x)f(x)dx
(4)

The evaluation of the n-fold integral in the denom-
inator of Equation (4) is computationally demand-
ing; this has motivated the application of MCMC
algorithms for sampling directly from the posterior
f(x|Z) (Gilks et al. 1998, Gelman 2004). Here, we
apply an alternative approach, termed BUS, which
uses methods originally developed for structural re-
liability analysis to obtain samples from the poste-
rior distribution (Straub & Papaioannou 2013). The
method is based on the algorithm for reliability up-
dating developed in Straub (2011) and applied in Pa-
paioannou & Straub (2012) to the reliability updating
of geotechnical structures.

The BUS approach introduces the following limit
state function:

h(x, u0) = u0 −Φ−1 [cL(x)] (5)

where u0 is the outcome of a standard normal random
variable U0, Φ−1(.) is the inverse of the standard nor-
mal cumulative distribution function and c is a pos-
itive constant chosen to ensure that cL(x) ≤ 1. It is



shown in Straub & Papaioannou (2013) that the pos-
terior PDF f(x|Z) is proportional to the prior PDF
f(x) conditional on the event Ze = {h(x, u0) ≤ 0}.
Hence, solving the updating problem becomes equiv-
alent to solving the structural reliability problem of
estimating the probability Pr(Ze).

It should be noted that the constant c has consider-
able influence on the efficiency of the BUS approach,
since its value is directly proportional to the proba-
bility Pr(Ze) (Straub & Papaioannou 2013). A large
value of Pr(Ze) is beneficial for most structural relia-
bility methods. Therefore, c should be chosen a large
as possible, while still ensuring that cL(x) ≤ 1. For
the likelihood function of Equation (3), the optimal
choice is c = [maxfε(ε)]

−1 = σε
√

2π.
For most reliability methods, it is convenient to

transform the problem from the original random vari-
able space to a space of independent standard normal
random variables. Since the distribution of the ran-
dom vector X is described by the Nataf model, such
a transformation [U1; . . . ;Un] = T(X) is straightfor-
ward (Der Kiureghian & Liu 1986). The limit-state
function h(x, u0) can be expressed in the transformed
space as H(u) = h[T−1(u1; . . . ;un), u0], where T−1

denotes the inverse transformation and u ∈ Rn+1 is
the outcome of U = [U0;U1; . . . ;Un].

The formulation of the updating problem in terms
of the limit-state function of Equation (5) allows for
the application of a variety of structural reliability
methods for estimation of the posterior PDF. Appli-
cation of crude Monte Carlo method will lead to a
rejection-acceptance scheme, with Pr(Ze) being the
acceptance probability. However, this approach be-
comes very inefficient for small Pr(Ze), which corre-
spond to cases where the posterior distribution differs
considerably from the prior. In the following section,
we discuss the application of BUS in conjunction with
subset simulation (SubS), which is an adaptive Monte
Carlo method for estimating small probabilities. The
SubS is especially efficient in high dimensional prob-
lems, as is the case in the present application where a
large number of random variables is used for the ran-
dom field representation of the soil properties.

3.1 SubS-based BUS

The SubS method, originally developed in Au & Beck
(2001), evaluates the probability Pr(Ze) of the event
Ze = {H(u) ≤ 0} as a product of larger conditional
probabilities. This is achieved by expressing the event
Ze as the intersection of M intermediate events that
are nested, i.e. it holds Z1 ⊃ Z2 ⊃ · · · ⊃ ZM = Ze.
The events {Zi, i = 1, . . . ,M} are defined as Zi =
{H(u) ≤ bi}, where b1 > b2 > · · · > bM = 0. The
probability Pr(Ze) is then expressed as

Pr(Ze) =
M∏
i=1

Pr(Zi|Zi−1) (6)

where Z0 denotes the certain event and Pr(Zi|Zi−1)
is the probability of the event Zi conditional on the
occurrence of the event Zi−1. The values bi can be
chosen adaptively, such that the estimates of the con-
ditional probabilities correspond to a given value p0.

The probability Pr(Z1|Z0) = Pr(Z1) is computed
by applying crude Monte Carlo simulation. To esti-
mate the conditional probabilities {Pr(Zi|Zi−1), j =
2, . . . ,M}, we need to obtain samples of U condi-
tional on the occurrence of the events {Zi−1, j =
2, . . . ,M}. Assume that at each subset level i, J sam-
ples {u(j), j = 1, . . . , J} of U conditional on Zi−1

are available. The threshold bi is set as the (1− p0)-
percentile of the samples; the samples u(j) for which
H(u(j)) ≤ bi are then used as seeds for the simula-
tion of samples conditional on Zi by application of an
MCMC algorithm (Papaioannou et al. 2013).

For Bayesian updating, we are interested in obtain-
ing samples conditional on Ze. Therefore, we add one
final step, which is to obtain K such samples trough
MCMC starting from the samples generated at the
last subset level M for which H(u(j)) ≤ 0. These
samples are then transformed to the original space as
{x(k) = T−1(u

(k)
1 ; . . . ;u

(k)
n ), k = 1, . . . ,K} in order to

obtain samples from the posterior distribution f(x|Z).
In this study, the parameters of the SubS algorithm for
Bayesian updating are set as follows: p0 = 0.1; num-
ber of samples per level J = 1000; number of target
samples K = 1500.

4 RESULTS AND DISCUSSION

We consider a measurement outcome of uA,m =
20mm. The prior mean of uA(X) is 10.5mm, which
indicates that the prior model underestimates the mea-
sured surface settlement. The updating was performed
for two different values of the standard deviation σε of
the measurement error: 1mm and 2mm. Figure 4 and
Figure 5 show the posterior sample means of the oe-
dometric stiffness modulus Eoed and the elastic stiff-
ness modulus Eur, respectively. The samples statistics
of the remaining material parameters of the Keuper
marl layer are shown in Table 2.

Looking at the results for σε = 2mm, one can ob-
serve that the posterior mean of Eoed at the elements
within and around the tunnel is smaller than the prior.
Note that Eoed is the parameter with the highest influ-
ence on the tunnel’s reliability (see Fig. 3). Away from
the tunnel, the posterior mean of Eoed increases and
the value of its prior mean is reached at the upper left
and right corners of the computational domain. Sim-
ilar results are obtained for Eud, which is highly cor-
related with Eoed. Due to the symmetry of the prob-
lem, it is expected that the spatial distribution of the
posterior means of both Eoed and Eud be symmetric
about the vertical central axis. This result is evident
in the area close to the tunnel, however away from the
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Figure 4: Posterior mean of the oedometric stiffness modulus
Eoed of the Keuper marl layer.

tunnel one can observe what seems like local random
fluctuations from the expected result. This effect is
attributed to sampling error and is related to the fact
that in the areas away from the tunnel the influence
of the values of Eoed and Eud on the surface settle-
ments is minor. That is, a large number of combina-
tions of material values in these areas can justify the
measurement outcome, which requires a large num-
ber of samples for the SubS algorithm to account for
all the possible combinations.

The effect of the measurement is also evident in the
posterior mean of the relaxation factor β of the stress
reduction method, which is decreased compared to its
prior. Its posterior coefficient of variation (CV) is also
smaller than its prior, which reflects the impact of the
measurement on the variable. Moreover, the initial
stress for the stress reduction is computed based on
the elements corresponding to the tunnel whose pos-
terior means are much lower than their priors. This re-
veals the influence of the 2D modeling of the arching
effect by the stress reduction method, which is consis-
tent with the fact that most settlements will take place
in the excavation phase, i.e. before the installation of
the lining.

The friction angle φ is slightly influenced by the
measurement; its posterior mean is decreased com-
pared to the prior however its coefficient of variation
is somewhat increased which indicates that the impact
of the measurement on φ is small. The mean of the co-
hesion c is increased reflecting its negative correlation
with the friction angle, while the influence of the mea-
surement on the rest of the parameters is negligible.

The results for the case where the standard de-
viation of the measurement is decreased, i.e. when
σε = 1mm, confirm the high impact of the measure-
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Figure 5: Posterior mean of the elastic stiffness modulus Eur of
the Keuper marl layer.

ment outcome on the stiffness variables Eoed, Eud and
the relaxation factor β. In this case, which implies
higher information content of the measurement, the
posterior mean of β is further decreased and the weak
zone around the tunnel with low values of Eoed and
Eud is increased.

Figure 6 demonstrates the influence of the prior
knowledge on the relaxation factor β. Therein, the
prior and posterior PDFs of β are plotted for two dif-
ferent assumed prior coefficients of variation (10%
and 20%) and for σε = 1mm. It is observed that as
the prior knowledge on beta decreases, i.e. as its prior
coefficient of variation increases, the influence of the
measurement becomes higher. Comparing the poste-
rior PDFs for the two cases, we see that the same mea-
surement information leads to much lower values of
β when a larger prior coefficient of variation is as-
sumed. This result further highlights the influence of
the 2D modeling of the arching effect on the surface
settlements. Moreover, it shows how the confidence
on the prior assumption can influence the updating
results that may provide a basis for further risk and
reliability assessment.

5 CONCLUSION

In this paper, we performed Bayesian updating of
the parameters of a 2D numerical model of a tun-
nel in soft soil, conditional on settlement measure-
ments. We applied BUS, a recently proposed method
for Bayesian updating with structural reliability meth-
ods, combined with subset simulation, an adaptive
Monte Carlo method that is able to handle efficiently
problems with a large number of random variables.
The results demonstrate the influence of the accuracy



Table 2: Statistics of the posterior distribution of the random variables of the Keuper marl layer.
Parameter σε = 1mm σε = 2mm

Mean CV Mean CV

Relaxation factor β 0.42 8.3% 0.44 8.4%
Poisson’s ratio ν 0.19 14.5% 0.19 15%
Friction angle ϕ [◦] 18.5 17.2% 18.9 17.2%
Cohesion c [kPa] 29.04 30.5% 26.3 29.3%
Specific weight γ [kN/m3] 24.2 5% 24.4 5.2%
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(a) Prior CV of β: 10%.
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Figure 6: Posterior PDF of the relaxation factor β for σε = 1mm.

of the measurement device as well as the prior knowl-
edge of the uncertain parameters on their posterior
distributions. It was shown that the highest impact of
the measurement fell on the stiffness moduli and the
relaxation parameter of the stress reduction method
that models the 3D arching effect of the stress distri-
bution.
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