Assessment of methods for the numerical solution of the Fredholm
integral eigenvalue problem

W. Betz, 1. Papaioannou & D. Straub

Engineering Risk Analysis Group, Technische Universitit Miinchen, Germany

ABSTRACT: The computational efficiency of random field representations with the Karhunen-Loeve expan-
sion relies on the numerical solution of a Fredholm integral eigenvalue problem. In this contribution, different
methods for this task are compared. These include the finite element method (FEM), the finite cell method
(FCM) and the Nystrom method. For the FEM with linear basis functions, two different approaches to treat the
covariance function in the integral eigenvalue problem are investigated: L?-projection and linear interpolation of
the covariance function between the nodes of the finite element mesh. The FCM is a novel approach, originally
presented in (Parvizian et al., Comput Mech, 41: 121-133, 2007) for the solution of elliptic boundary value
problems. This method is based on an extension to the FEM but avoids mesh generation on domains of complex
geometric shape. In the Nystrom method, a numerical integration rule is applied to transform the integral eigen-
value problem to a matrix eigenvalue problem. It is shown that the expansion optimal linear estimation (EOLE)
method proposed in (Li & Der Kiureghian, J Eng Mech-ASCE, 119(6): 1136-1154, 1993) constitutes a special
case of the Nystrom method. The behavior of all methods is investigated with respect to a two-dimensional

example of a plate with a hole.

1 INTRODUCTION

Uncertain variables with inherent spatial variability,
such as soil parameters in geotechnical engineering
or material properties in civil engineering are mod-
eled by means of random fields. A random field repre-
sents a random quantity at each point of a continuous
domain, and, thus, consists of an infinite number of
random variables. The approximation of the field by
means of a finite number of random variables is re-
ferred to as random field discretization. This process
is essential for a numerical representation of random
fields. An overview of random field discretization
methods can be found in Sudret & Der Kiureghian
(2000). Series expansion methods approximate the
random field by a finite sum of products of determin-
istic spatial functions and random variables. Among
series expansion methods, the Karhunen-Loeve (KL)
expansion is of special interest. This is because it can
approximate the original random field accurately with
a minimum number of random variables (Ghanem &
Spanos 1991).

The KL expansion requires the solution of a Fred-
holm integral eigenvalue problem (IEVP), whose in-
tegral kernel is the autocovariance function of the
random field. Analytical solutions of the IEVP are
available only for a few autocovariance functions and
for simple geometries. Therefore, for most practical

problems, the IEVP must be solved numerically. An
overview on the numerical solution of Fredholm inte-
gral equations is found in (Atkinson 1997). Ghanem
and Spanos (1991) proposed to solve the problem by
means of the finite element method (FEM) that is
based on the Galerkin procedure. On the other hand,
the Nystrom method approaches the problem through
a quadrature representation of the integral equation.
Alternative methods for solving the IEVP are the col-
location method and the degenerate kernel method
(Atkinson 1997).

In this study, the FEM and the Nystrom method are
assessed. Besides the standard FEM, an alternative
formulation where the shape functions are projected
onto the space spanned by the linear basis functions
(Keese 2004) is considered. Furthermore, a novel ap-
proach, termed finite cell method (FCM), is proposed.
The FCM can be regarded as an extension to the FEM,
but does not require an explicit meshing of the do-
main of the random field. The method was originally
proposed in (Parvizian et al. 2007) for the solution
of elliptic boundary value problems. In the FCM, the
domain of computation is extended beyond the physi-
cal domain up to the boundaries of an embedding do-
main with a primitive geometrical shape. Advanced
integration techniques are required to cope with the
discontinuity appearing at the boundary of the physi-
cal domain.



The methods are presented in detail and their
performance is assessed with the help of a two-
dimensional numerical example. We focus on the con-
vergence behavior of the methods and the computa-
tional efforts needed to approximate the random field.

NOTE: This is a shortened version of Betz et al.
(2013).

2 KARHUNEN-LOEVE EXPANSION

2.1 Definition of random fields

A continuous random field H(x,6) may be loosely
defined as a random function that describes a random
quantity at each point x € €2 of a continuous domain
Q CR% d e N.g. 0 € O is a coordinate in the sam-
ple space O, and (O, F, P) is a complete probability
space. If the random quantity attached to each point x
is a random variable, the random field is said to be
univariate or real-valued. If the random quantity is
a random vector, the field is called multivariate. The
dimension d of a random field is the dimension of
its topological space (2. One usually distinguishes be-
tween a one- and a multidimensional random field.

The field is said to be Gaussian if the distribu-
tion of (H(xy,0), ..., H(x,,0)) is jointly Gaussian
for any (x1,...,X,) € 2 and any n € Ny(. A Gaus-
sian field is completely defined by its mean func-
tion p : €2 — R and autocovariance function Cov :
2 x Q — R. The autocovariance function can be ex-
pressed as Cov (x,X') = o(x) - o(X) - p(x,x’), where
o : £ — R is the standard deviation function of the
random field and p : Q x Q — [—1;1] is its autocor-
relation coefficient function.

The discussion in this work is restricted to univari-
ate multidimensional Gaussian random fields. Some
non-Gaussian random fields, namely the so-called
translation fields (Grigoriu 1984), can be expressed
by means of Gaussian random fields through a non-
linear mapping.

2.2 KL expansion of Gaussian random fields

The Karhunen-Loeve expansion is a series expansion
method for the representation of the random field. The
expansion is based on a spectral decomposition of the
autocovariance function of the field. It states that a
random field can be represented exactly by the fol-
lowing expansion (Loeve 1977, Van Trees 1968):

H(x,0) = n(x) + 3 VA (%) &(0) n

where p(x) is the mean function of the field, &;(0) :
© — R are independent standard normal random vari-
ables, and \; € [0,00), ¢; : 2 — R are the eigenval-
ues and eigenfunctions of the autocovariance kernel

obtained from solving the homogeneous Fredholm in-
tegral equation of the second kind:

/ Cov(x,%) o:(x) dx' = Api(x) @)
Q

The eigenfunctions are by definition orthonormal, i.e.
Jo vi(X) @;(x) dx = d;;, where d;; is one if i = j and
zero otherwise. Moreover, they form a complete basis
of the space L*(2) of square integrable functions on

2.3  Truncated KL expansion

The truncated KL expansion is obtained by arrang-
ing the eigenvalues and eigenfunctions in a descend-
ing series with respect to the magnitude of the eigen-
values, and truncating the ordered expansion after M
terms. The truncated KL expansion does no longer
represent the random field H(-) exactly, but provides
an approximation H (-) of the field. Hence, the trun-
cated KL expansion is a random field discretization
method. The discretized random field is written as:

A(x,0) = n(x) + 3 VA (%) (0) ©

For fixed M, the resulting random field approxima-
tion H (x,0) is optimal among series expansion meth-
ods with respect to the integral of the mean square

truncation error over the domain €2, given any other
complete basis of L?(Q2) (Ghanem & Spanos 1991).

3 NUMERICAL METHODS

Integral eigenvalue problems of the type given in
Equation (2) are difficult to solve analytically ex-
cept for a few autocovariance functions defined on
domains {2 of simple geometric shape. In general,
the integral eigenvalue problem is solved numerically.
Thus, the random field approximation of the truncated
KL expansion given in Equation (3) is approximated
as:

A(x.0) = () + Yy Ap 0 &) )

where \; and ¢; are approximations to the true eigen-
values \; and eigenfunctions ¢;. §;(6) are independent
standard normal random variables. Numerical meth-
ods for the solution of Fredholm integral eigenvalue
problems approximate the eigenfunctions by a set of
functions h; : {2 — R as:

N
pi(X) & Gi(x) = > dihy(x) &)
j=1

where the coefficients d; € R have to be determined.



3.1  Nystrom method

In the Nystrom method (Atkinson 1997), the integral
in the eigenvalue problem of Equation (2) is approxi-
mated by a numerical integration scheme:

N
> w; Cov(x,x;) 4i(x;)

Jj=1

= \ii(x) (6)

where x; € Qwith j € {1,..., N}, N € N, represent
a finite set of integration points, and w; is the inte-
gration weight associated with each x;. The Nystrom
method solves Equation (6) at the integration points,
ie.

N
> wy Cov(x, ;) i(x) = Aiczi(xe),

=1

k=1,...,N

(7)

The equation above can be formulated in matrix nota-
tion as

CWy; = j\iYi (8)

where C is a symmetric positive semi-definite N x N
matrix with elements Cy; = Cov(xy,x;), W is a di-
agonal matrix of size /N with nonnegative diagonal
entries W,; = w;, and y; is a N-dimensional vec-
tor whose kth entry is y; , = ¥;(Xx). From a numer-
ical point of view, it is advantageous to reformulate
the matrix eigenvalue problem in Equation (8) to the

equivalent matrix eigenvalue problem By = Ay,
where B is a symmetric positive semi-definite matrix
defined as B = W%CW%, and W= is a diagonal ma-
trix with diagonal entries ,/w;. The eigenvectors y;
can be computed as y; = W*%y;k, where W~2 denotes
the inverse of the matrix W2,

The eigenfunctions are obtained by means of the
interpolation

Z\/_y” Cov(x,X,) 9)

Z]l

where y;; is the jth element of the eigenvector y;.
Equation 9 is derived by solving equation 6 for ¢;(x).
It should be noted that a normalization of the eigen-
vectors |ly;|| = 1 is equivalent to a normalization of
the eigenfunctions.

3.2 Equivalence of the EOLE method with the
Nystrom method

If all the integration weights w; in the numerical in-
tegration scheme applied in the Nystrom method are
the same, i.e. w; =w,Vj =1,..., N, the matrix W in

Equation (8) can be written as W = wl, where I is the
identity matrix and w = |Q2|/N. In this special case,
the matrix eigenvalue problem of Equation (8) can be
reformulated as:

Cy; = \ly; (10)

where 5\;* is related to ;\Z in Equation (8) as )\* = a )\

For this special case, \] and y; are the eigenvalues and
eigenfunctions of the covariance matrix C. Assuming
normalized eigenvectors y;, i.e. ||y;|| = 1, gives, af-
ter some algebra, the following approximate truncated
KL expansion:

f(A ZwaOVXX]) (11)
\/)\7] 1

where y; ; is the jth element of y;. Comparing Equa-
tion (10) and Equation (11) with the equations of the
expansion optimal linear estimation (EOLE) method,
proposed in (Li & Der Kiureghian 1993), shows that
the same problem as in the EOLE method is solved.
Therefore, the EOLE method with a uniform distri-
bution of points over the domain can be considered
a special case of the Nystrom method with equal in-
tegration weights. Consequently, the EOLE method
is an approximation to the solution of the Karhunen-
Loeve expansion.

H(x,0) = pu(x) + Z

3.3 Galerkin methods

3.3.1 Finite element method

In order to quantify the error due to the approxima-
tion of the eigenfunctions in Equation (5), the residual
rievp(X) is introduced as:

TIEVP

Zd (/ Cov(x,x')h;(x') dx’ — Xihj(x)>

(12)

In general, the coefficients d;'- are selected such that
the residual rpyp 1S minimized in some sense. Dif-
ferent techniques on how to minimize rgyp exist. A
point-wise minimization of rgyp is utilized by the so-
called collocation methods (Atkinson 1997). For the
Galerkin methods, the coefficients d’ are chosen such
that the residual rgyp becomes orthogonal to the sub-
space spanned by the basis functions, i.e.:

/TIEVP<X)hk(X)dXIO szl,,N (13)
Q

Equation 13 can be expressed in matrix notation by
the following generalized matrix eigenvalue problem
(Ghanem & Spanos 1991)
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Figure 1: The finite cell method - idea and notation.

where B is a symmetric positive semi-definite N x N
matrix whose elements are defined as

Blm:/hl(x)/Cov(&x’)hm(x’)dx’dx (15)
0 0

and M is a symmetric positive definite N x N matrix
with elements

Mlm:/hl(x) hpm(X) dx (16)
Q

If the domain (2 is of simple geometric shape, the
basis functions can be selected such that they are de-
fined globally on the domain 2. However, in practical
problems the domain € has often a complex geomet-
rical shape. In this case, {2 can be approximated by a
discretization into multiple elements. The basis func-
tions are then defined locally on the element domains.
This approach is called finite element method (FEM).
In the FEM, the basis functions are usually chosen
as piecewise linear polynomials. However, it is noted
that the use of higher-order basis functions can greatly
improve the convergence behavior of the method.

Instead of solving Equation (14) directly, the co-
variance function can first be projected onto the space

spanned by the basis functions {/;}7

N N
Cov(x,x’) ZZ

7=1 k=1

]1’

k(X') (17)

Inserting Equation (17) into Equation (15) leads to
B = MKM, where the matrix K is a symmetric
positive semi-definite N X N matrix with coeffi-
cients K. The coefficients K, have to be deter-
mined beforehand. If only piecewise linear basis func-
tions are applied, the coefficients can be computed as
K, = Cov(x,,X), where x; and x;, denote the coor-
dinates of the nodes of the FE mesh. This approach
is referred to as linear projection. It should be noted
that the solution of Equation (14) where B is assem-
bled according to Equation (15) is equivalent to a L>-
projection.

3.3.2  Finite cell method

If a finite element mesh is not readily available,
a meshless approach might be favored. One quasi
meshless approach is based on so-called finite cells.

Figure 2: Staggered Gaussian integration: mesh for integration
on a finite cell cut by 0.

The finite cell method (FCM) (Parvizian et al. 2007)
was originally developed as an extension to the FEM
for the solution of linear elasticity problems. Let €2 C
R? be the domain of interest and Q* C R? a geometri-
cally simpler domain with 2 C Q*. The geometrically
simpler domain §2* is called primitive domain, and the
original domain 2 is referred to as physical domain.
In the FCM, not the physical but the primitive domain
is meshed, and, therefore, mesh generation is a trivial
task. The finite cell approach is illustrated in Figure 1.

Let the basis functions h}(x) € L*(Q*) form a basis

of a subspace in L?(Q*). In this regard, the approxi-
mation of the eigenfunctions given in Equation (5) is
redefined to

pilx Zdl hj (x (18)

This means, the solutlon of the integral equation de-
fined on the physical domain €2 is approximated with
basis functions spanned over the primitive domain
(2*. Consequently, the integrals in Equation (15) and
Equation (16) can be rewritten as integrals over the
primitive domain 2*:

By, = / a(x)hl(x)/*Cov(x,X’)hm(x')a(x’)dx’dx
(19)

My, — / () () B (3) dx 20)

where the mapping « : Q* — {0, 1} is one for x € 2
and zero otherwise. Note that the eigenfunctions have
to be normalized on Q, i.e. [,. a(x)yp;(x)?dx = 1.
Moreover, higher-order basis functions are of crucial
importance for the applicability of the method be-
cause they yield a fast rate of convergence (Parvizian
et al. 2007).

The integrals in Equation (19) and Equation (20)
are smooth over the domain 2 but not even continuous
over the domain 2*. Therefore, it is important to use
appropriate numerical integration schemes in order to
keep the integration error small. Standard Gaussian
quadrature does not work well for this type of prob-
lem since in this case the integrand cannot be approx-
imated well by a polynomial function. Thus, it is sug-
gested to apply a so-called staggered Gaussian inte-
gration scheme, proposed in (Diister et al. 2008). The



idea of this technique is demonstrated in Figure 2 for
a finite cell that is cut by the boundary of the physical
domain 2, denoted 9€2. The finite cell is sub-divided
into smaller sub-cells using a tree-based refinement
structure. The vicinity of the discontinuity is modeled
with a higher resolution, by sub-dividing cells that are
cut by 0f2. Standard Gaussian integration is applied
on the leaf sub-cells.

Some kernels Cov(x,x’) are non-differentiable on
the diagonal, i.e. at x = x'. In this case, the inte-
grand of the inner integral in Equation (19) is non-
differentiable for x = x’, additionally to the discon-
tinuity at 0€). Moreover, Equation (15) of the FEM
is affected as well. This additional difficulty can be
dealt with by a slight modification of the integration
scheme described above: Instead of refining only the
region around Of) with a high resolution, the entire
cell (or element) domain is refined with at least a pre-
defined minimum resolution. This is done only if both
x and x’ are located in the same cell (or element). Note
that for the FEM, the loss in efficiency due to integra-
tion of non-differentiable kernels is almost negligible.
This is because the integration scheme needs to be
modified only for the part in the integral where x and
x' are located in the same element.

4 NUMERICAL STUDY

4.1 Error measure

One error measure often used in conjunction with the
KL expansion is the mean normalized error variance
ot

Var — H(x 9)}
= rm/ Var[H x,en . D

The evaluation of this error measure is straight-
forward if we can write Var [H(x, ) — F[(X,Q)} =

Var [H (x,0)] — Var [F[(x, 9)} . However, if the KL ex-

pansion is approximated numerically the above does
not necessary hold. Therefore, in this study a different
error measure is applied.

Let ey, be an error measure for the quantification
of the quality of a random field discretization, defined
as

)Var (x,6)] — Var [H(X, 9)} ‘
Ve =0 / Var [H(x,0)]

dx (22)

For a fixed number M of terms in the expansion of the
random field, let ey, ot denote the reference error ob-
tained with the expansion based on the true eigenval-
ues and eigenfunctions [Eq. (3)]. The presented meth-
ods for the solution of the KL expansion are investi-
gated with respect to their convergence in the relative
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Figure 3: Shape of the domain used in the 2D example
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4.2 2D example - exponential kernel

The random field is modeled on a rectangular domain
with a hole (Fig. 3), and has a constant standard de-
viation ¢ = 6 - 103. The number of random variables
in the expansion is fixed to M = 30. An autocorre-
lation coefficient function of the exponential type is
selected:

plix—x) =exp (X 7) 24)

where [ denotes the correlation length. The correlation
length is chosen such that the reference error is close
to 5% (i.e. [ = 4.2). The exponential correlation struc-
ture defined in Equation (24) is non-differentiable at
the diagonal, i.e. at x = x. As is mentioned in sec-
tion 3.3.2, this introduces yet another difficulty in the
integration of Equation (15) and Equation (19).

For the linear FEM, 4-node quadrilateral elements
are applied to mesh the physical domain €2. The more
elements are used the better (2 is represented by the
mesh. The convergence behavior of the random field
discretization is investigated with respect to an in-
creasing number of elements. Additional to the con-
ventional L2-projection, linear projection of the co-
variance kernel is applied as well.

In the FCM, the physical domain (2 is embedded
in a so-called primitive domain 2* of simple geomet-
ric shape. In this example a rectangular shape with the
same contour as the rectangle in Figure 3 is chosen for
2%, i.e. the circular hole of the physical domain is not
considered by (2*. Three different structured meshes
are studied for the discretization of 2*: 1 x 1, 2 x 2
and 4 x 4 cells (Fig. 3). For each structured mesh, the
convergence behavior of the random field discretiza-
tion is investigated with respect to an increasing poly-
nomial order of the basis functions of the cells.

The Nystrom method with equal integration
weights, i.e. the EOLE method, can be considered a
truly meshless method. In this study, the integration
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Figure 4: Convergence of the relative error v, ro; With respect to
the size of the matrix eigenvalue problem to solve. (exponential
kernel)

points are distributed uniformly over the primitive do-
main * of simple geometric shape. Points located
outside of the physical domain €2 are not considered
in the analysis. The convergence behavior of the ran-
dom field discretization is investigated with respect to
an increasing number of points.

For each of the random field discretization meth-
ods, a matrix eigenvalue problem must be solved. In a
first study, the convergence behavior of the relative
EITOr Evyrrel 1S Investigated with respect to the size
of the matrix eigenvalue problem. The reference er-
TOT Evyrref Was obtained numerically as 0.049954 us-
ing the FCM with 4 x 4 cells and a maximum poly-
nomial order of 20. Special care was taken to ensure a
good quality of the numerical integrals involved. The
results of the analysis are depicted in Figure 4. The
finite cell discretization scheme exhibits an exponen-
tial rate of convergence. The influence of the coarse-
ness of the finite cell mesh is small. A smaller number
of cells results in a faster convergence. However, to
reach the same relative error, a larger maximum poly-
nomial order is required on a coarser mesh. Contrary
to the exponential rate of convergence of the FCM, the
Nystrom (EOLE) method and the linear FEM show
only a linear rate of convergence in the log-log plot
in Figure 4. The difference between the linear FEM
and the FCM can be explained by the use of higher-
order basis functions in the FCM. Linear-projection
of the covariance kernel on the piecewise linear fi-
nite element basis functions converges much slower
than the corresponding L?-projection. Since the size
of the matrix eigenvalue problem can become rather
large (i.e. N > M) for the FEM and the Nystrom
method, it is usually much faster to compute only
the M largest eigenvalues and corresponding eigen-
vectors instead of finding all the /V eigenvalues and
eigenvectors. This can be achieved by means of Lanc-
zos algorithms for the solution of the matrix eigen-
value problem.

The size of the matrix eigenvalue problem to solve
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Figure 5: Time needed to obtain an approximation of a random
field for a certain relative error vy rl. (€xponential kernel)

is only one property of the overall solution process.
Another factor that might have considerable influence
on the overall computational cost is the assembly of
the matrices, which differs significantly between the
different methods. Therefore, for practical purposes,
a comparison of the computational time needed to ob-
tain a solution of the random field approximation is of
interest. This time is plotted in Figure 5 with respect
to the relative error ey, Of the corresponding ran-
dom field approximation. This study was performed
on a Intel® Core™ i7-3770 running at 3.40GHz. All
methods were implemented in C++. Some effort was
put into optimizing the implementations. In this re-
gard, the Nystrom (EOLE) method is the most effi-
cient one. The FEM behaves slightly worse than the
EOLE method. The difference between the two meth-
ods grows larger for decreasing relative errors. Except
for very small errors, the linear FEM is clearly faster
than the FCM. This is due to the time needed for in-
tegration of discontinuous functions in the FCM. In
Figure 5, the curves corresponding to the FCM ex-
hibit a flatter slope than the one corresponding to the
FEM. This is caused by the use of higher-order basis
functions in the FCM that lead to an exponential rate
of convergence. Contrary to the findings of Figure 4, it
is better to use more than a single cell. The relatively
large difference observed between using a single cell
and using four cells in the FCM, is due to a more effi-
cient numerical treatment of the integrals in the later
case (compare section 3.3.2). Compared to the other
investigated methods, the FEM with linear projection
of the covariance kernel using linear basis functions
is very inefficient and, therefore, not of interest for
practical applications.

If the random field is required as input for a non-
intrusive finite element reliability analysis (Papaioan-
nou 2013), for each run of the finite element method
a realization of the random field needs to be evaluated
at every Gauss-point. For this type of problem, a sig-
nificant part of the overall runtime is spend in the eval-
uation of a realization of the random field. Therefore,
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Figure 6: Relative time needed to evaluate a realization of the
random field for a certain relative error ey 1. The results are
relative to thrgMm.

it is relevant to compare the methods with respect to
the time needed to evaluate a single realization of the
random field. In this regard, no other method can be
more efficient than the linear FEM. This is because in-
dependent of the accuracy of the random field approx-
imation, the number of basis functions to evaluate for
a realization of the field remains constant: for a one-
, two- and three-dimensional element two, four and
eight basis functions must be evaluated, respectively.
On a Intel® Core™ i7-3770 running at 3.40GHz this
time is approximately typpm = 3.3 - 10~7s. For all
other methods, the time needed to obtain a realiza-
tion was weighted with #ppgyv. The results are pre-
sented in Figure 6. The computational costs of both
the FCM and the Nystrom method increase with a de-
creasing relative error ey ;. However, the Nystrom
(EOLE) method is more than an order of magnitude
slower than the FCM. This is due to the fact that in the
Nystrom method the autocorrelation coefficient func-
tions must be computed at every integration point,
whereas in the FCM only the the basis functions local
to the cell must be evaluated.

Therefore, if the time spend in the evaluation of
random field realizations has a major contribution to
the overall runtime, the Nystrom (EOLE) method is
not the best choice for random field discretization. If
a finite element mesh is already available (e.g. as in
non-intrusive finite element reliability analysis), the
use of the finite element method for the discretization
of the random field is recommended. In this case the
mesh used for the finite element reliability analysis
should be used for the random field discretization as
well. For very small correlation lengths, the existing
finite element mesh might be too coarse to approx-
imate the solution of the IEVP well with linear ba-
sis functions. In this case higher-order basis functions
can be used to improve the quality of the random field
approximation. The use of higher-order basis func-
tions is also recommended to check if the approxima-
tion has already converged with sufficient accuracy.
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Figure 7: Time needed to obtain an approximation of a random
field for a certain relative error v, . (Gaussian kernel)

If a mesh is not available, the FCM is the method of
choice.

4.3 2D example - Gaussian kernel

The same problem as in section 4.2 is investigated,
but replacing the non-differentiable exponential ker-
nel (24) with the differentiable Gaussian kernel:

SN 2
pllx —x|) = exp | ("‘Z_—X’) (25)
G

where [ denotes the correlation length. Again, the
correlation length is chosen such that the reference er-
ror is close to 5%. For a correlation length [ = 0.77,
the reference error ey, ror Was obtained numerically as
0.049931 using the FCM with 4 x 4 cells and a max-
imum polynomial order of 15. Special care was taken
to ensure a good quality of the numerical integrals in-
volved.

For the Gaussian correlation structure, the time
needed to obtain an approximation of the random field
for given relative errors is depicted in Figure 7. Com-
paring Figure 7 with Figure 5 for the exponential cor-
relation structure, the main difference is in the effi-
ciency of the Nystrom (EOLE) method with respect
to the FEM. For the case with an exponential cor-
relation structure the two method behave similarly,
and for the case with the Gaussian correlation struc-
ture the Nystrom (EOLE) method is clearly more ef-
ficient than the FEM. This is because the Nystrom
method approximates the eigenfunctions using the
kernel Cov(x,x’). If the kernel is not differentiable,
the theoretically smooth eigenfunctions are approxi-
mated by a linear combination of non-differentiable
functions.

5 CONCLUSIONS

This paper assessed methods for the numerical so-
lution of the integral eigenvalue problem in the



Karhunen-Loeve (KL) expansion. The methods were
compared in terms of the computational costs of ob-
taining a random field approximation and of evaluat-
ing a realization of the random field.

The advantage of the Nystrom method is its ef-
ficiency in obtaining a random field approximation.
Moreover, the EOLE method, as a special case of
the Nystrom method that utilizes equal integration
weights, is straightforward to implement. The rea-
son is: the assembly of the matrix eigenvalue prob-
lem does not require an integration. This is contrary
to the Galerkin-based approaches, where the coeffi-
cients of the matrix eigenvalue problem are obtained
from a two-folded integration over the domain of the
random field.

The advantage of the Galerkin-based procedures
is that realizations of the random field can be eval-
uated faster than with the Nystrom method. In this re-
gard, the finite element method (FEM) and the finite
cell method (FCM) outperform the Nystrom method;
where the finite element method (FEM) is faster than
the finite cell method (FCM). Therefore, the Galerkin-
based procedures are of interest if the computation of
random field realizations constitutes a major part of
the overall runtime; e.g. in reliability analysis. A lin-
ear projection of the covariance kernel in the FEM
was shown to be less efficient than the standard L>2-
projection. If a finite element mesh is not readily
available and time-consuming to generate, the FCM
is a feasible alternative that does not require an ex-
plicit meshing of the domain.

We recommend to use the FEM or the FCM only if
a large number of realizations of the random field is
required, and if the aim is to provide a reusable im-
plementation as part of a library or software. In all
other cases, we recommend to use the EOLE method;
mainly because it is straightforward to implement.
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