
1 INTRODUCTION 

The mechanical behavior of human bones has been 
studied using both experimental and computational 
techniques. One common computational approach is 
the Finite Element Method (FEM). However, as dis-
cussed in (Ruess et al. 2012), the application of clas-
sical h-version FEM to bone simulation may lead to 
results with low accuracy and efficiency. The Finite 
Cell Method (FCM) offers an alternative, which 
provides more accurate solutions with similar or 
even lower computational cost (Ruess et al. 2012, 
Schillinger et al. 2012). Bone experiments are sub-
ject to multiple source of uncertainty and random-
ness. These include spatial heterogeneity of bone 
properties, measurement device noise, scale of the 
sample, and uncertainties in material models. In nu-
merical simulation of bones these uncertainties are 
typically neglected. This assumption can lead to sig-
nificant differences between simulation and experi-
mental results. The aim of this paper is to propose an 
alternative probabilistic model approach, which ad-
dresses the spatial heterogeneity of the bone struc-
ture through random fields. 

In this paper, the density of the trabecular region 
of human fresh-frozen femurs is analyzed and mod-
eled as a homogeneous Gaussian random field, 
based on quantitative computer tomography (CT) 

scan data. An algorithm for the generation of ran-
dom bone samples is developed and it is used in a 
Monte Carlo setting for the estimation of the me-
chanical properties of the bone. Correlations of at-
tenuation values (i.e. the outcome of the CT scanner 
and related to the bone density) within and between 
samples (i.e. intra- and inter-sample correlations) are 
distinguished. For each sample, the density values at 
each location are mapped to material values through 
empirical relationships and the homogenized me-
chanical properties are estimated applying the FCM. 
Different material relationships are used and com-
pared with the experimental results from laboratory 
tests in order to assess their accuracy at different 
scales. 

2 EXPERIMENTAL DATA 

Three different fresh-frozen femur bones were ana-
lyzed using a CT scanner (Grande 2013). Several 
cubic samples (see Table 1) from the trabecular re-
gion were cut from each bone and scanned. Each 
sample had an approximate size of 7 mm × 6 mm × 
6 mm and the information was provided in a 3-
dimensional matrix that contained the attenuation 
values for each location according to the predefined 
resolution for the sample (Fig. 1). 
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Table 1. Bone samples from laboratory _________________________________________________ 
Patient  Samples  Matrix size  Resolution of voxel [mm] _________________________________________________ 
P1    8            
P2    10    50×40×17  0.1465×0.1465×0.335 
P3    4            _________________________________________________ 
 

 
Figure 1. Example of attenuations from two different “slices” 
of scanned bones. 
 

The measurements included in the matrix corre-
spond to different locations in the bone sample 
based on a Cartesian grid. Some of the original bone 
samples were larger than the size defined in Table 1, 
however their domain was truncated for standardiza-
tion purposes. 

The setting of the CT scan is illustrated in Figure 
2. The CT scanner generates a set of attenuation 
measurements that correspond to the density of the 
scanned object at different locations. These meas-
urements are presented in Hounsfield Units (HU), 
where a value of −1000 corresponds to air and 0 to 
water. The calibration phantom provides five refer-
ence materials (the circular regions depicted in Fig. 
2) with known densities for estimation of the density 
of the bone at the moment of the scan (QCT PRO™ 
2008). Based on the known K2HPO4 density values 
(or Bone Mineral Density, BMD) of the phantom 
materials, the scanned sample density is transformed 
from HU to BMD through linear regression. Based 
on the procedure stated in (QCT PRO™ 2008), an 
excellent linear relation (�� � 0.998) between at-
tenuation value �	
 (in HU) and the density ��
� (in g⁄cm3) of the bone samples analyzed was 
obtained: ��
� � ��	
 � 8.26� 1134⁄  (1) 

Estimation of the elasticity modulus (�) of each 
sample was carried out in the laboratory using two 
different methods: Extensometer Film Method 
(EFM) and the Pressure Film Method (PFM). The 
experimental results were performed by the Depart-
ment of Orthopedics and Sports Medicine at TU 
Munich (Grande 2013). Comparison between the 
average ��
� of each sample and corresponding ex-
perimental � is plotted in Figure 3. This information 
will be used to validate the results obtained from the 
simulations. 

 

 
Figure 2. Example of a CT scan image. Circular regions corre-
spond to the reference samples with known density whereas the 
squared regions correspond to bone samples. 
 

 
Figure 3. Experimental relation between the density and the 
elasticity modulus. 

3 STOCHASTIC MODEL 

3.1 Definition of the random field 

Most physical systems present spatial variability ac-
companied by interrelationships among the elements 
in different locations. Some of these systems have 
properties or variables that might be difficult to 
model using deterministic relations due to their 
complexity or the number of parameters affecting 
them. Random fields represent an alternative for 
modeling those systems with the aim of representing 
their variability using a minimum number of param-
eters (Vanmarcke 2010).  

A random field ����, where � � Ω, Ω � � , is 
defined as a collection of random variables indexed 
by a continuous location parameter �. ���� is called 
Gaussian if the random vector !���"�, … , ���%�& is 
jointly Gaussian for any n number of points and lo-
cations !�", … , �%&. When the joint distribution of !���"�, … , ���%�& is the same as the one of !���" �'�, … , ���% � (�& for any translation vector (, then ��)� is said to be homogenous. This property means 
that the correlation between two points is defined 
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through their relative rather than their absolute posi-
tion. 

Considering the repetitive and relative homoge-
nous behavior of the bone structure (Fig. 1), it is 
possible to model the attenuation value ���� over 
the bone domain as a random field. Statistical analy-
sis of the scanned samples (e.g. mean, standard de-
viation, empirical Cumulative Density Function, 
CDF) was carried out in order to justify the assump-
tion of a homogenous Gaussian field for describing 
the attenuation value (Fig. 4). 

The autocorrelation coefficient function �*��", ��� describes the correlation between two lo-
cations of the random field. For homogeneous ran-
dom fields, �* is a function of the translation vector ( between two locations. ���� is anisotropic be-
cause it is expected that the autocorrelation in the 
longitudinal direction of the bone will be larger than 
the autocorrelation in the other two directions due to 
its structural design. We assume a separable autocor-
relation function based on the empirical autocorrela-
tions estimated separately for each direction. 

The autocorrelation coefficient function between 
attenuation values at locations �" and ��, is ex-
pressed as: �*��", ��� � �*,+�,+� · �*,./,.0 · �*,1�,1� (2) 

where ( � �� 2 �" � 3,+, ,. , ,14 is the translation 
vector between the two locations and functions �*,+, �*,. and �*,1 are the autocorrelation coefficient 
functions in each main direction. 

3.2 Inter- and intra-sample correlations 

In general, it is expected that autocorrelation coeffi-
cient functions of individual bone samples should 
tend to zero as the distance between two locations 
increases. We define this within-correlation as intra-
sample correlation, since its value is obtained using 
only measurements from a single sample. However, 
the correlation estimated by several samples does 
not necessarily tend to zero. This is mainly caused 
by an additional “noise” produced by the scanner it-
self and some environmental conditions at the mo-
ment of the experiment (e.g. temperature, humidity). 
This effect is independent of the bone material prop-
erties and will be defined as the inter-sample corre-
lation. 

In order to separate between inter- and intra-
sample correlations, the following relation is de-
fined:  ���� � �5��� � 6 (3) 

 
Figure 4. Comparison between the empirical CDF of the atten-
uation values and the corresponding Normal distribution with 
the same mean and standard deviation. 
 
 
where ���� is the random field associated to the at-
tenuation values (in HU) obtained from the CT 
scanner, �5��� is the attenuation value containing 
only the intra-sample correlation and Y is a zero 
mean random variable independent of �5��� that 
models the inter-sample correlation. Hence, the au-
tocorrelation and autocovariance functions of �5��� 
will tend to zero as the distance between two loca-
tions increases. 

The correlation between attenuation values ���� 
at two locations � and � � ( reads �/����, ��� � (�0 � �*�(� 

� �cov:�;���, �;�� � (�< � =>�� /=*?� � =>�0@  (4) 

It can be seen that if the norm of the translation 
vector ( increases, then �*�(� tends to A � =>� /=*?� � =>�0@  (5) 

The value A will be called the inter-sample correla-
tion. Combining equations (3) and (5), =*? and => 
can be expressed as a function of =* and A: => � √A · =* (6) =*? � √1 2 A · =* (7) 

From equations (6) and (7), it follows that the au-
to-correlation coefficient function of �5��� is: 

�*?�(� � CD�(�EF"EF  (8) 

Thus, the autocorrelation coefficient function �*? 
can be obtained in terms of the function �* and the 
inter-sample correlation. 

3.3 Empirical autocorrelation coefficient functions 

Based on the scanned bone samples, the empirical 
autocorrelation coefficient functions for each sample 
on each main direction (defined by the shape of the 
sample) are plotted in Figure 5. Direction k corre-
sponds to the longitudinal direction of the bone. 

 



a)  

b)  

c)  
Figure 5. Empirical autocorrelation functions for each sample 
and each main direction. Plots a), b) and c) correspond to direc-
tions i, j and k, respectively. 

 
These functions have an oscillatory behavior and, 

in average, tend to zero as the distance between 
points increases. However, if all samples are includ-
ed in the estimation then the empirical autocorrela-
tion coefficient function presents a different trend 
(Fig. 6) due to the reasons already explained in Sec-
tion 3.2. 

 

 
Figure 6. Autocorrelation coefficient function for each main di-
rection using all available information. 

 
Using equations (6) and (8), it is possible to ob-

tain the standard deviation of 6 and the function �*? 
(i.e. without inter-sample correlation), respectively 

(Fig. 7 and Table 2). These are used for generating 
random realizations of the attenuation values 
through sampling �5��� and 6 and applying equa-
tion (3). The scales of fluctuation in each direction G, H and I are estimated as 0.54mm, 0.65mm and 
0.34mm, respectively. These are scalar measures of 
the spatial dependence corresponding to the integrals 
of the autocorrelation coefficient function in each di-
rection (Vanmarcke 2010). 

 

 
Figure 7. Autocorrelation coefficient function without inter-
sample correlation. 

 
Table 2. Estimated parameters of �, �5 and Y _______________________________________ 
Variable  Parameter   Value   _______________________________________ �     ε      0.13     
     �*      435.84 HU 
     =*      333.7 HU 
     �*      See Figure 6 
 �5     �*?     435.84 HU 
     =*?     311.25 HU 
     �*?     See Figure 7 
 
Y     =>      120.32 HU  _______________________________________ 

3.4 Simulation of random bone samples 

In order to simulate bone samples using the infor-
mation from laboratory, realizations of �5��� and Y 
are generated. However, it is very unlikely that the 
covariance matrix Σ*?*? is positive definite due to 
the fact that empirical autocorrelations are being 
used. Moreover, as the size of the random field de-
fined by �5��� increases, the required computation 
time and memory allocation present additional diffi-
culties. 

In this paper, a truncation of the spectral decom-
position of �5��� together with a sequential Gaussi-
an simulation are used to generate the random bone 
samples. The algorithm for obtaining a realization of � is depicted in Figure 8 and explained below. 

Given a partition !Ω+&+K",…,L of the domain of in-
terest Ω, the covariance matrix Σ�"� (i.e. related to 
the domain Ω") is constructed using the empirical 
correlations obtained from the data. Then its N larg-
est positive eigenvalues (and their corresponding ei-
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genvectors) are used in the spectral decomposition 
of �5�"� for the generation of samples in Ω". 

For each of the remaining domains Ω+, G M 1, 
samples are generated conditional on Ω", … , Ω1, 
with I � 1, … , G 2 1. The matrix Σ�+� is the condi-
tional covariance matrix in domain Ω+ given all the 
previous simulated domains and can be derived ana-
lytically, due to the assumption of normality. Com-
puter memory consumption starts to be an issue as 
the algorithm advances due to the fact that correla-
tions between elements from the domain Ω+ and all 
previous simulated domains need to be considered. 
To avoid this problem, one can exploit the fact that 
most of these correlations are close to zero as the 
distance between locations increases. We define N as 
a negligible correlation limit (i.e. small enough cor-
relation to be assumed equal to zero) and Ω:+E"<O  as 
the set of domains whose correlations with respect to 
locations in Ω+ are not negligible (i.e. all elements of Ω:+E"<O  have correlation larger than N with at least one 
element of Ω+). Then the matrix Σ�+� can be approx-
imated by conditioning only to the domain Ω:+E"<O  in-
stead of all previous simulated domains, leading to 
considerably smaller matrices. The spectral repre-
sentation is now performed using this approximation 
of the conditional covariance matrix. 

After the simulation of the attenuation values for 
the whole domain Ω, the last step is the simulation of 
variable Y in order to include the inter-sample corre-
lation. This variable is a scalar that has to be added 
to all locations of the simulated �5. As an example, 
some realizations of the attenuation values are 
shown in Figure 9.  

4 FINITE CELL METHOD 

The Finite Cell Method is a fictitious domain meth-
od of higher approximation order. The principal idea 
of the method is independent of the applied Ansatz 
space and so far has been successfully tested for in-
tegrated Legendre polynomials (Schillinger et al. 
2012) as known from the p-version of the finite ele-
ment method as well as for B-splines (Schillinger et 
al. 2012) and NURBS (Ruess et al. 2013).  

The method shows its strength in particular for 
heterogeneous materials and multiple material inter-
faces which makes it well suited for the analysis of 
bone tissue. Based on the principle of virtual dis-
placements, the FCM satisfies the governing integral 
equations within a simplified domain of computa-
tion. The method embeds the potentially complex 
domain of interest Ω in an extended simulation do-
main ΩPQR S ΩT+UR that is generated on a Cartesian 
grid (Fig. 10). 

 
Figure 8. Algorithm for generating random bone samples. 

 
 

 
Figure 9. Example of attenuations from two different “slices” 
of simulated bones. 

 
 
Each grid cell represents a high-order hexahedral 

element. Cells that are completely outside Ω do not 
contribute to the elasticity behavior of the structure 
and are therefore omitted. 



The boundary of the fictitious domain ΩT+UR is as-
sumed to be traction-free. Prescribed forces t0 and 
prescribed displacements u0 are directly applied to 
the boundary ΓR and ΓW, respectively, of the true do-
main Ω where ΓR X ΓW � Γ   and   ΓR Y ΓW � Z (9) 
with Γ denoting the complete boundary of Ω. 

The embedding character of the fictitious domain 
method requires a penalization of the stresses and 
volume forces in the fictitious extension domain 
ΩT+UR to confine their influence on the true solution 
domain Ω. Following Hooke’s law for linear elastic 
material, the stress-strain relation is coupled by the 
elasticity tensor [. 
 

 
Figure 10. (a) Physical domain Ω with prescribed traction t0 
along the Neumann boundary ΓR and prescribed displacements 
u0 along the Dirichlet boundary ΓW, (b) extended domain 
Ω\]\Ω with zero traction t0 on the cell domain surface _ΩT+UR, 
(c) embedded domain with implicit domain support for ΩT+UR 
from prescribed displacement constraints on ΓW and (d) finally 
applied cell grid structure on ΩPQR with location function α(x). 
 

Scaling [ by a location dependent factor `�a� 
penalizes stresses in the fictitious domain and retains 
the full contribution of stresses in the true solution 
domain.  

b � `�a� [ c (10) 

with 

`�a� � d ` �  1    e a �  Ω         
   ` �  f     e a �  ΩPQR \Ωg (11) 

The value for f is chosen smallest possible to 
confine the influence of the extension domain but to 
ensure sufficient numerical stability w.r.t. the condi-
tioning of the governing system of equations. Typi-
cal values for f range between 10−14 and 10−4. Ac-
cording to the stresses in (10), volume loads are 
penalized with the same `�a� to restrict them to the 
solution domain Ω. 

Using (10) and (11), the weak form of the elastic-
ity problem on Ω remains a consistent formulation of 
the principle of virtual work: 

h , c
` [ c ijΩklm   

    = h , n
` o ijΩpqr   + h , n
st iuvw  

x � ΓW  y  n � nt (12) 

with c and b representing the strain and stress vec-
tors in Voigt notation, n the displacement vector and 
o the volume load vector. 

The absence of boundary fitted elements in the 
finite cell method requires a weak enforcement of 
the essential boundary conditions. A Nitsche-like 
approach showed excellent performance properties 
for the voxel-based models. A detailed description 
of the applied approach can be found in (Ruess et al. 
2012) and (Ruess et al. 2013). 

The hexahedral finite cells are implemented ac-
cording to the principles of the tensor product ele-
ments of the finite element method. The unknown 
displacement field n�a� is approximated with hier-
archical piecewise defined polynomials of higher 
order z+�N, {, |�  specified in the standard hexahe-
dral �21 } N, {, | } 1� . 
n � ∑ z��N, {, |����  (13) 

δn � ∑ z��N, {, |� δ���  (14) 

with �� denoting the unknown degrees of freedom 
and corresponding virtual components. The approx-
imation of the linear strain tensor c and correspond-
ing virtual quantity, applies the standard strain oper-
ator ��N, {, |�  that is obtained from differentiation 
of (13) with respect to the global coordinates 
�x, �, ��, applying the chain rule. 

Following the Bubnov-Galerkin approach equa-
tions (13) and (14) are substituted into the weak 
form (11) providing a discrete finite cell formulation 

� �� � � (15) 

with the (N×N)-matrix �    representing system stiff-
ness and system load vector �. 

4.1 Evaluation of a homogenized Young’s modulus 

The fictitious domain approach is adjusted for voxel 
data sets. Instead of an explicit separation between 
the domain of interest Ω and the fictitious extension 
domain ΩPQR the various sub-domains and corre-
sponding interfaces are given implicitly by the voxel 
value distribution. The penalization of stresses and 
forces is set into a direct relation to the value of each 
voxel and thus is adjusted to the heterogeneity of the 
material data. 



We use an isotropic heterogeneous material mod-
el to determine the elasticity response, having at 
each point a different Young’s modulus in the tra-
becular bone, depending on the local density. The 
density values are obtained in Hounsfield Units 
(HU) and further transformed in BMD values as ex-
plained in Section 2. 

The Poisson ratio was chosen at ν = 0.3 = const. 
The governing integrals of (12) for the stiffness ma-
trix and the external forces are solved by a com-
posed integration scheme that is capable to exploit a 
pre-computation of an essential part of the applied 
Gauss quadrature scheme. The integral is split into a 
set of integrals over sub-domains that fully cover the 
integration domain. The regular grid structure of the 
voxel data (Fig. 11) is favorably used for the de-
composition process such that each voxel is repre-
sented by a sub-domain cell. This way the material 
properties of each voxel according to the predefined 
material model are included into the material distri-
bution. A detailed description of the composed inte-
gration process for voxel-based models can be found 
in (Yang et al. 2012). 
 

 
Figure 11. HU distribution of a voxel sample cube. 
 

The elasticity properties of the sample cubes are 
determined from prescribed unit strain states �+. � �+�.
 (i,j=1,2,3). Symmetry boundary condi-
tions were applied at three adjacent faces. At the re-
maining faces prescribed displacements were ap-
plied to ensure the unit strain states �+.. For each 
load case the stress response is simulated with a dis-
cretization of 5×5×2 finite cells at a polynomial de-
gree p=3. The cell stiffness integration includes the 
elasticity properties at each voxel due to the sub-cell 
quadrature. With the analysis results the state of 
stress �=+.� is evaluated at each voxel position x for 
the given material values E(x). A spatial averaging 
over all stress contributions for each load case re-
veals the macroscopic homogenized stress compo-
nents =�+. (Kanit et al. 2006). 

=�+.  �   1/� h =+. ij�  (16) 

The apparent elasticity components of the materi-
al tensor follow from (16) evaluated for the unit 
strain states.  

5 RESULTS 

The methodology presented in this paper has been 
applied to the estimation of the average elasticity 
modulus in the three main directions for 300 simu-
lated bone samples according to the algorithm pro-
posed in Section 3.4 and using the FCM as ex-
plained in Section 4. The simulated bone samples 
had a size of 7.3×7.3×6.7 mm3 with the same resolu-
tion as the experimental samples (Table 1) and the 
domain was divided in � � 500 blocks of equal 
size. The largest positive � � 20 eigenvalues of the 
covariance matrices Σ�+� were used in each iteration 
of the algorithm and the value of the negligible cor-
relation was N � 0.01. 

To define the mapping between density � and 
elasticity modulus �, we applied different models, 
namely the ones developed by Wirtz (Wirtz et al. 
2000), Cody (Cody et al. 2000), Lotz (Lotz et al. 
1990), and Keller (Keller 1994). These models were 
established based on tests conducted at the scale of 
the simulated bone samples. To the knowledge of 
the authors, a material model has not been yet de-
veloped based on evidence at the scale of the voxels. 
Analytical expressions of each model are summa-
rized in (Yosibash et al. 2007). The models are ex-
pressed in terms of the apparent dry density ���� 
[g/cm3] (Keller 1994), which is expressed in terms 
of the bone mineral density ��
� [g/cm3], as fol-
lows: ���� � 1.22��
� � 0.0523 (17) 

���� � �C���Et.tt�t.��� , ���� � 0.529C����t.��t.��� , ���� � 0.529g (18) 

where ���� [g/cm3] is the ash density (Keller 1994). 
A first comparison between the experimental 

elasticity modulus and the corresponding output of 
the different material models using the average bone 
density of each simulated sample is shown in Figure 
12. A good agreement between experiment and sim-
ulation based on all models was obtained. This is 
explained by the fact that the applied material mod-
els are used at the sample scale, corresponding to the 
average density of the samples. 

If the material models are used at each scanned 
location of the sample (i.e. at the voxel scale) and 
the elasticity modulus is evaluated by homogeniza-
tion applying FCM (Section 4.1) then the discrepan-
cy between the experimental and theoretical estima-
tions increases considerably (Fig. 13). 

Figures 12 and 13 show how models that are ac-
curate for the estimation of the elasticity modulus in 
the sample scale are not necessarily applicable at the 
voxel scale. Therefore, different relations need to be 
established for the mapping of bone density to elas-
ticity modulus at the voxel scale to obtain better 
agreement with laboratory tests. 



 

  
Figure 12. Experimental (PFM and EFM) and estimated 
(Wirtz, Cody, Lotz and Keller) elasticity modulus using the av-
erage bone density of the simulated samples (i.e. macro-scale). 
 
 

 
Figure 13. Estimated elasticity modulus using the FCM and the 
(Wirtz, Cody, Lotz and Keller) material models in the voxel 
scale and experimental results (PFM and EFM). 

6 CONCLUSION 

A probabilistic model of the bone density of the 
trabecular region of fresh-frozen human femurs was 
combined with the Finite Cell Method (FCM) for the 
simulation of bone samples and the estimation of 
their elasticity moduli. A novel algorithm based on a 
sequential Gaussian simulation using a truncation of 
the spectral decomposition of the random field de-
fined by the bone density was developed to generate 
the random bone samples. The FCM was applied for 
the estimation of the average elasticity modulus of 
the random samples. Comparison between the esti-
mated and experimental elasticity modulus is pre-
sented using different material models. On the one 
hand, very good agreement is observed when the 
material models are applied to the average density of 
each sample. This is due to the fact that the material 
models were derived based on tests conducted at the 
sample scale. On the other hand, the comparison 
shows significant deviation between experimental 
and simulated results when the material models are 
applied at the voxel level. This suggests the need for 
the development of different material models for ap-
plication at this scale. 
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