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ABSTRACT: A probabilistic modeof bone structure the trabecular reon of the femr head is constrit-
ed. In a first step, a probabilistic model for thene density based on computed tomography (CT) dainis
developed. The data consist of a number of cubegam fresh-frozen bones belonging to three défgrmpa-
tients. The model accounts for the spatial varighdf the bone structure as well as the correfabetween
samples (inter-sample correlation). Based on thgstital analysis of the data, a homogeneous Gaussld
with separable autocorrelation coefficient functierdeveloped for modeling the bone structure. Fimite
Cell Method (FCM) is used for estimation of the imaaical properties of the bone. This method hasveho
advantages in terms of efficiency and accuracy @etpto the classical finite element method fos tigpe
of applications. Monte Carlo samples of the meatanproperties of the bone are simulated basecen t
probabilistic model of the bone density. For eagdlization of the random field, density values atleloca-
tion are obtained and further mapped to materimiesathrough empirical relationships. Furthermde, ho-
mogenized material properties are computed usi@dg-@M assuming an isotropic material. The samgls-el
ticity moduli are compared with the ones obtaingdegimentally from laboratory tests in order toigate
the applicability of the material models at diffierscales.

scan data. An algorithm for the generation of ran-
dom bone samples is developed and it is used in a
1 INTRODUCTION Monte Carlo setting for the estimation of the me-
chanical properties of the bone. Correlations ef at
The mechanical behavior of human bones has beaanuation values (i.e. the outcome of the CT scanne
studied using both experimental and computationand related to the bone density) within and between
techniques. One common computational approach samples (i.e. intra- and inter-sample correlati@me)
the Finite Element Method (FEM). However, as dis-distinguished. For each sample, the density vadties
cussed in (Ruess et al. 2012), the applicatiolas-c each location are mapped to material values through
sical h-version FEM to bone simulation may lead teempirical relationships and the homogenized me-
results with low accuracy and efficiency. The Fenit chanical properties are estimated applying the FCM.
Cell Method (FCM) offers an alternative, which Different material relationships are used and com-
provides more accurate solutions with similar orpared with the experimental results from laboratory
even lower computational cost (Ruess et al. 2012ests in order to assess their accuracy at differen
Schillinger et al. 2012). Bone experiments are subscales.
ject to multiple source of uncertainty and random-
ness. These include spatial heterogeneity of bone
properties, measurement device noise, scale of ttie EXPERIMENTAL DATA
sample, and uncertainties in material models. i nu
merical simulation of bones these uncertainties ar€hree different fresh-frozen femur bones were ana-
typically neglected. This assumption can lead ¢g si lyzed using a CT scanner (Grande 2013). Several
nificant differences between simulation and expericubic samples (see Table 1) from the trabecular re-
mental results. The aim of this paper is to pro@ese gion were cut from each bone and scanned. Each
alternative probabilistic model approach, which adsample had an approximate size of 7 mm x 6 mm x
dresses the spatial heterogeneity of the bone-stru6 mm and the information was provided in a 3-
ture through random fields. dimensional matrix that contained the attenuation
In this paper, the density of the trabecular regiovalues for each location according to the predefine
of human fresh-frozen femurs is analyzed and mod-esolution for the sample (Fig. 1).
eled as a homogeneous Gaussian random field,
based on quantitative computer tomography (CT)



Table 1. Bone samples from laboratory
Patient ~ Samples Matrix size Resolution of vdrah]

P1 8
P2 10 50x40x17  0.1465x0.1465%0.335
P3 4

Figure 2. Example of a CT scan image. Circularaegicorre-
spond to the reference samples with known dendiigreas the
squared regions correspond to bone samples.
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samples were larger than the size defined in Thble 8 e PEM
however their domain was truncated for standardiza- o

tlor_}_rr])urpos_es.  the CT Sl din Fi 200 250 300 350 400 450
e setting of the CT scan is illustrated in Figure Bone Mineral Density, BMD [mg K,HPO,/cm?]

2. The CT scanner generates a set of attenuation
measurements that correspond to the density of thgure 3. Experimental relation between the denaitd the
scanned object at different locations. These meas!asticity modulus.

urements are presented in Hounsfield Units (HU),

where a value of —1000 corresponds to air and O to

water. The calibration phantom provides five refer3 STOCHASTIC MODEL

ence materials (the circular regions depicted m Fi

2) with known densities for estimation of the dépnsi o _

of the bone at the moment of the scan (QCT PRO™8.1 Definition of the random field

2008). Based on the known,PO, density values ) ] o

(or Bone Mineral Density, BMD) of the phantom Most ph_yS|caI systems present spatial variabildty a
materials, the scanned sample density is transtbrm&ompanied by interrelationships among the elements
from HU to BMD through linear regression. Basedin different locations. Some of these systems have
on the procedure stated in (QCT PRO™ 2008), aRroperties or varlablt_es_ t_hat mlght be difficult to
excellent linear relationR? = 0.998) between at- Mmodel using deterministic relations due to th_elr
tenuation valueucr (in HU) and the density complexity or the_ number of parameters aﬁfectlng
pemp (in gent) of the bone samples analyzed wadhem. Random fields represent an alternative for

obtained: modeling those systems with the aim of representing
their variability using a minimum number of param-
pemp = (Hcr +8.26)/1134 (1) eters (vanmarcke 2010).
Estimation of the elasticity modulug of each A random fieldX(z), wherez € Q, 0 c R?, is

sample was carried out in the laboratory using twélefined as a collection of random variables indexed
different methods: Extensometer Film MethodPYy @ continuous location parameterX (z) is called
(EFM) and the Pressure Film Method (PEM). TheGaussian if the random vect@X(z,), ..., X(z,)} is
experimental results were performed by the Depart0intly Gaussian for any number of points and lo-
ment of Orthopedics and Sports Medicine at Tucations{z,, ...,z,}. When the joint distribution of
Munich (Grande 2013). Comparison between thdX(z1),...,X(z,)} is the same as the one{af(z, +
averagepgyp Of each sample and corresponding ex9), -, X(z, + 8)} for any translation vectds, then
perimentalE is plotted in Figure 3. This information X(2) is said to be homogenous. This property means
will be used to validate the results obtained fitim  that the correlation between two points is defined
simulations.



through their relative rather than their absolutsip 1r
tion.

Considering the repetitive and relative homoge- -8
nous behavior of the bone structure (Fig. 1), it is
possible to model the attenuation valki€z) over
the bone domain as a random field. Statisticalyanal 4|
sis of the scanned samples (e.g. mean, standard c
viation, empirical Cumulative Density Function, 0.2f — Empirical CDF
(_JDF) was carried out in order_ to jgstify the assump Normal CDF
tion of a homogenous Gaussian field for describinc  _ %50 00 0 500 1000 1500
the attenuation value (Fig. 4). Attenuation value, X [HU]

The  autocorrelation  coefficient  function Figure 4. Comparison between the empirical CDFhefdtten-
px(z4,Z,) describes the correlation between two lo-uation values and the corresponding Normal distidbuwith
cations of the random field. For homogeneous ranfe same mean and standard deviation.
dom fields,py is a function of the translation vector
8 between two locationsX(z) is anisotropic be- , , .
cause it is expected that the autocorrelation & thWhereX(z) is the random field associated to the at-
longitudinal direction of the bone will be largéian ~ t€nuation ,valu_es (in HU) obtained from the CT
the autocorrelation in the other two directions tue Sca@nner.X’(z) is the attenuation value containing
its structural design. We assume a separable autoc®NlY the intra-sample correlation and is a zero
relation function based on the empirical autocarrel Mean random variable independent Xf(z) that
tions estimated separately for each direction. models the inter-sample correlation. Hence, the au-

The autocorrelation coefficient function betweentocorrelation and autocovariance functionsxofz)
attenuation values at locations and z,, is ex- will tend to zero as the distance between two loca-

0.6r

pressed as: thI‘]S inCI’easeS_. .
The correlation between attenuation valX€g)
Px (Z1,22) = pxi(8) - px,;(8;) - Pxk(Bk) (2) attwo locationz andz + 8 reads

where 8 = z, — z; = [6,8;,6,] is the translation p(X(z),X(z+8)) = px(8)
vector between the two locations and functipgs, ) ) 5 5 )
px,; and px, are the autocorrelation coefficient = (cov[X'(@),X'(z+ 8]+ 0})/(o5 +07)  (4)

functions in each main direction. It can be seen that if the norm of the translation

vector$ increases, thepy (8) tends to
3.2 Inter- and intra-sample correlations e =o}/(o + of) (5)

The valuee will be called the inter-sample correla-
OIIion. Combining equations (3) and (@), andoy
fan be expressed as a functiompfinde:

In general, it is expected that autocorrelationffcoe
cient functions of individual bone samples shoul
tend to zero as the distance between two locatio

increases. We define this within-correlation asant g, = /¢ - gy (6)
sample correlation, since its value is obtaineagisi
only measurements from a single sample. Howevepx’ = V1 — ¢ oy (7)

the correlation estimated by several samples does
not necessarily tend to zero. This is mainly causeg,_
by an additional “noise” produced by the scanner it
self and some environmental conditions at the mop,,(§) = px(®)—¢ (8)
ment of the experiment (e.g. temperature, humidity) 1-e
This effect is independent of the bone materiappro  Thus, the autocorrelation coefficient functipgp
erties and will be defined as the inter-sampleesorr can be obtained in terms of the functigp and the
lation. inter-sample correlation.

In order to separate between inter- and intra-
sample correlations, the following relation is de-
fined: 3.3 Empirical autocorrelation coefficient functions

X(z2)=X'(z2)+Y (3)

From equations (6) and (7), it follows that the au-
correlation coefficient function df'(z) is:

Based on the scanned bone samples, the empirical
autocorrelation coefficient functions for each sémnp
on each main direction (defined by the shape of the
sample) are plotted in Figure 5. Directi@ncorre-
sponds to the longitudinal direction of the bone.
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Figure 5. Empirical autocorrelation functions fach sample
and each main direction. Plots a), b) and c¢) cpoed to direc-
tionsi, j andk, respectively.

(Fig. 7 and Table 2). These are used for generating
random realizations of the attenuation values

through sampling{’(z) andY and applying equa-
tion (3). The scales of fluctuation in each direwti,
j and k are estimated as 0.54mm, 0.65mm and

0.34mm, respectively. These are scalar measures of

the spatial dependence corresponding to the integra

of the autocorrelation coefficient function in eadih
rection (Vanmarcke 2010).

1.
0.8
0.6
0.4

Correlation

Distance,d [mm]
j-direction—Kk-direction

---i-direction

Figure 7. Autocorrelation coefficient function watltt inter-
sample correlation.

Table 2. Estimated parametersXo' andY

These functions have an oscillatory behavior and,

in average, tend to zero as the distance betweén

points increases. However, if all samples are hclu

Variable Parameter Value

X £ 0.13
Uy 435.84 HU
Oy 333.7 HU
Px See Figure 6

X' Uy' 435.84 HU
Oy 311.25 HU
Py See Figure 7
oy 120.32 HU

ed in the estimation then the empirical autocofrela

tion coefficient function presents a different tlen
(Fig. 6) due to the reasons already explained o Se
tion 3.2.

Correlation

Distance,d [mm]
- - -i-direction-j-directiom——Kk-direction

Figure 6. Autocorrelation coefficient function feach main di-
rection using all available information.

3.4 Simulation of random bone samples

In order to simulate bone samples using the infor-
mation from laboratory, realizations &f(z) andY

are generated. However, it is very unlikely that th
covariance matrixy s is positive definite due to
the fact that empirical autocorrelations are being
used. Moreover, as the size of the random field de-
fined by X'(z) increases, the required computation
time and memory allocation present additional diffi
culties.

In this paper, a truncation of the spectral decom-
position ofX'(z) together with a sequential Gaussi-
an simulation are used to generate the random bone
samples. The algorithm for obtaining a realizatién
X is depicted in Figure 8 and explained below.

Given a partition{);};-1 ._» of the domain of in-
terest(), the covariance matrix™ (i.e. related to

Using equations (6) and (8), it is possible to obthe domain(,) is constructed using the empirical

tain the standard deviation Bfand the functiomy-
(i.e. without inter-sample correlation), respedive

correlations obtained from the data. ThenNtkarg-
est positive eigenvalues (and their corresponding e



genvectors) are used in the spectral decompositio Partition of ()
of X' for the generation of samples(in. {0 i1,
For each of the remaining domaits, i > 1, 7
samples are generated conditional Qp, ..., Qy, Empirical correlation matrix in (};
with k = 1,...,i — 1. The matrixz® is the condi- i=1 I®
tional covariance matrix in domaip; given all the 3
previous simulated domains and can be derived an: Truncated spectral decomposition

lytically, due to the assumption of normality. Com-
puter memory consumption starts to be an issue ¢
the algorithm advances due to the fact that correla .
tions between elements from the dom&inand all @ . (1) (1) .y (D)

. . ; . X' =y POVEYD Gid u™® - N(o,1
previous simulated domains need to be considere( Hx +; YT ©.1)
To avoid this problem, one can exploit the fact tha

{/151), ...,ASVI)} largest positive eigenvalues of Z(1 with

eigenvectors {Vl(l), ,VIE,D}

most of these correlations are close to zero as tr X(@Z)=X'(z)+7,
distance between locations increases. We défine im0 vzeq,

a negligible correlation limit (i.e. small enougbre Voo Y~N(0, oy)
relation to be assumed equal to zero) &id,; as

the set of domains whose correlations with resfeect

locations inQ); are not negligible (i.e. all elements of

Elements with non-negligible correlation wrt Q;
Qpi-1 = Up2ay
Qi = Quoa\z” € Qp_yg| pxr(z7,2) < & vz € (0}

Qp;_q) have correlation larger thgnwith at least one
element of();). Then the matriz® can be approx-
imated by conditioning only to the domay;_,; in-

stead of all previous simulated domains, leading tc i conditi¢ona| pp—s—
considerably smaller matrices. The spectral repre matrix 20 of 0, given 0
sentation is now performed using this approximatior ¢‘ [i=1]
of the conditional covariance matrix. Truncated spectral decomposition

After the simulation of the attenuation values for {,1“) ,1(”} largest positive eigenvalues of S0 with
the whole domai, the last step is the simulation of e o

; ; ; ; associated eigenvectors {v A }
variableY in order to include the inter-sample corre- y 1 N
lation. This variable is a scalar ,that has to beedd X0 = +Z LOVOy®  a Oy ©01)
to all locations of the simulateXf’. As an example, LN j
some realizations of the attenuation values ar ! 7

shown in Figure 9. x =[x 0T, X,(i)T]T

|
4 FINITE CELL METHOD Figure 8. Algorithm for generating random bone sksip

The Finite Cell Method is a fictitious domain meth-
od of higher approximation order. The principalade
of the method is independent of the applied Ansat: -‘
space and so far has been successfully tested-for i
tegrated Legendre polynomials (Schillinger et al.
2012) as known from the p-version of the finite-ele
ment method as well as for B-splines (Schillinger e
al. 2012) and NURBS (Ruess et al. 2013).

The method shows its strength in particular for
heterogeneous materials and multiple material inter
faces which makes it well suited for the analydis o
bone tissue. Based on the principle of virtual dis- B
placements, the FCM satisfies the governing integre
equations within a simplified domain of Computa-Figl_"e 9. Example of attenuations from two différéslices”
tion. The method embeds the potentially comple®f simulated bones.
domain of interesf) in an extended simulation do-

main Q.,; € Qf;; that is generated on a Cartesian . .
grid (Figtlo). fiet g Each grid cell represents a high-order hexahedral

element. Cells that are completely outsflelo not
contribute to the elasticity behavior of the stuet
and are therefore omitted.




The boundary of the fictitious domatly;, is as- Using (10) and (11), the weak form of the elastic-
sumed to be traction-free. Prescribed forgeand ity problem onQd remains a consistent formulation of
prescribed displacements are directly applied to the principle of virtual work:
the boundaryl; andTl,, respectively, of the true do- fg S§eTa Cedv

ext

mainQ where r r
= o) dv + outy,d
LUl,=T and [, NT, =@ (9) ne S Wapdv + f Sutoda

with T' denoting the complete boundary(af xEL = u=u, (12)

The embedding character of the fictitious domainwith € and o representing the strain and stress vec-
method requires a penalization of the stresses angrs in Voigt notationu the displacement vector and
volume forces in the fictitious extension domainp the volume load vector.

Qe to confine their influence on the true solution  The absence of boundary fitted elements in the
domain(Q. Following Hooke’s law for linear elastic finite cell method requires a weak enforcement of
material, the stress-strain relation is coupledt® the essential boundary conditions. A Nitsche-like

elasticity tensoc. approach showed excellent performance properties
for the voxel-based models. A detailed description
~_to =0 on Qi of the applied approach can be found in (Ruesk et a

@ b, O 2012) and (Ruess et al. 2013).

The hexahedral finite cells are implemented ac-
cording to the principles of the tensor product ele
ments of the finite element method. The unknown
g displacement fielda(x) is approximated with hier-
archical piecewise defined polynomials of higher

W order N;(¢,n,¢) specified in the standard hexahe-
© é%f @t 4{/ dral(-1<¢,n{<1).
/ 5 ': i . u=72.N.(§nU, (13)
_ e Ry AN
| - e o 2 Su = YsNa(§n,0) 8U, (14)
//// ; ////** | with U, denoting the unknown degrees of freedom
Y/ ; 4_}_*//\’__#@5%#0; and corresponding virtual components. The approx-

Figure 10. (a) Physical domaid with pre_scribéqrtractiomo imation of the linear strain tenserand correspond-
along the Neumann boundaFy and prescribed d|splacemepts ing virtual quantity, applies the standard straer-
Up along the Dirichlet boundary,, (b) extended domain ator B(¢,n,¢) that is obtained from differentiation

Qrp\Q with zero tractiort, on the cell domain surfadiy;.., . .
(c) embedded domain with implicit domain suppont ;.. of (13) with ) respect t9 the global coordinates
(x,y,z), applying the chain rule.

from prescribed displacement constraintsi'prand (d) finally . .
applied cell grid structure ad,,, with location functionx(x). _ Following the BUbnOV'Galer_kln approach equa-
tions (13) and (14) are substituted into the weak

Scaling C by a location dependent factar(x)  form (11) providing a discrete finite cell formuita

penalizes stresses in the fictitious domain areinet ¢ ; _p (15)
the full contribution of stresses in the true solut *
domain. with the (NxN)-matrix K representing system stiff-
ness and system load vecRor

c=a(x)Ce (20)
with _ _

2=1 Vx € Q 4.1 Evaluation of a homogenized Young’s modulus
«@={ 52, Vxeo.\a (12) . | -

a =y VX ext \ The fictitious domain approach is adjusted for Joxe

The value fory is chosen smallest possible todata sets. Instead of an explicit separation betwee
Conﬁne the inﬂuence Of the extension domain but tthe domain Of intereﬂ and the ﬁCtitiOUS eXtenSiOI’]

ensure sufficient numerical stability w.r.t. thende  domain Q.,, the various sub-domains and corre-
tioning of the governing system of equations. Typi-SPonding interfaces are given implicitly by the ebx
cal values fory range between T8 and 10% Ac- value distribution. The penalization of stressed an

cording to the stresses in (10), volume loads ar]éorces is set into a direct relation to the valtieach

. . . voxel and thus is adjusted to the heterogeneith®f
penalized with the same(x) to restrict them to the : ) 9 R4

) . material data.
solution domain).



We use an isotropic heterogeneous material modd RESULTS
el to determine the elasticity response, having at
each point a different Young’s modulus in the tra-The methodology presented in this paper has been
becular bone, depending on the local density. Thapplied to the estimation of the average elasticity
density values are obtained in Hounsfield Unitgmodulus in the three main directions for 300 simu-
(HU) and further transformed in BMD values as ex-ated bone samples according to the algorithm pro-
plained in Section 2. posed in Section 3.4 and using the FCM as ex-

The Poisson ratio was chosenvat 0.3 = const plained in Section 4. The simulated bone samples

The governing integrals of (12) for the stiffnesa-m had a size of 7.3x7.3x6.7 riwith the same resolu-
: tion as the experimental samples (Table 1) and the
trix and the external forces are solved by a com

: : . ..domain was divided il = 500 blocks of equal
posed integration scheme that is capable to exploitgi, e The largest positivié = 20 eigenvalues of the

pre-computation of an essential part of the appliedoyariance matrice® were used in each iteration
Gauss quadrature scheme. The integral is splitantoof the algorithm and the value of the negligible-co
set of integrals over sub-domains that fully cover  relation was = 0.01.

integration domain. The regular grid structurehs t To define the mapping between densityand
voxel data (Fig. 11) is favorably used for the de-elasticity modulust, we applied different models,
composition process such that each voxel is repraxamely the ones developed by Wirtz (Wirtz et al.
sented by a sub-domain cell. This way the materia2000), Cody (Cody et al. 2000), Lotz (Lotz et al.
properties of each voxel according to the predefine1990), and Keller (Keller 1994). These models were
material model are included into the material distr established based on tests conducted at the stcale o
bution. A detailed description of the composed-intethe simulated bone samples. To the knowledge of

gration process for voxel-based models can be fourf@€ authors, a material model has not been yet de-
in (Yang et al. 2012). veloped based on evidence at the scale of the soxel

Analytical expressions of each model are summa-
rized in (Yosibash et al. 2007). The models are ex-
pressed in terms of the apparent dry dengity,
[g/cm’] (Keller 1994), which is expressed in terms
of the bone mineral densitygyp [g/cm], as fol-

lows:
pash = 1-229BMD + 00523 (17)
ash—0.007
PO, Pasn < 0.529 (18
p = ,
app pa5h+0.25' pasn = 0.529

0.779

wherep,, [g/cn?] is the ash density (Keller 1994).

The elasticity properties of the sample cubes are A first comparison between the experimental
determined from prescribed unit strain stateglasticity modulus and the corresponding output of
€ij = eie].T (i,j=1,2,3). Symmetry boundary condi- the d_|fferent mate_rlal models using the aver:_:lgee_bon
tions were applied at three adjacent faces. Arghe density of each simulated sample is shown in Figure
maining faces prescribed displacements were apg2. A good agreement between experiment and sim-
plied to ensure the unit strain statgs. For each ulation based on all models was obtained. This is
load case the stress response is simulated with a dexplained by the fact that the applied material mod
cretization of 5x5x2 finite cells at a polynomial-d €ls are used at the sample scale, correspondithg to
gree p=3. The cell stiffness integration includes t average density of the samples.
elasticity properties at each voxel due to the ceib- If the material models are used at each scanned
quadrature. With the analysis results the state dpcation of the sample (i.e. at the voxel scalej an
stress(a;;) is evaluated at each voxel positiefior ~ the elasticity modulus is evaluated by homogeniza-
the given material valueB(x). A spatial averaging tion applying FCM (Section 4.1) then the discrepan-
over all stress contributions for each load case re&y between the experimental and theoretical estima-
veals the macroscopic homogenized stress comp#0ns increases considerably (Fig. 13).

Figure 11. HU distribution of a voxel sample cube.

nentsg;; (Kanit et al. 2006). Figures 12 and 13 show how models that are ac-
curate for the estimation of the elasticity modulus
a;; = 1/V fV o;j dv (16) the sample scale are not necessarily applicalileeat

voxel scale. Therefore, different relations neetha@o

The apparent elasticity components of the materiestablished for the mapping of bone density to-elas
al tensor follow from (16) evaluated for the unitticity modulus at the voxel scale to obtain better
strain states. agreement with laboratory tests.
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