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Abstract

To be knowledgeable in a subject matter is a prerequisite of being competent.

Experts typically possess densely connected structural knowledge of the concepts

in their field of expertise. Therefore, investigating the knowledge structures of

learners remains a central aspect of educational research in computer science
as well as in other subjects, despite the ongoing trend towards outcome and

competence oriented assessment.

This thesis presents concept landscapes - a novel way of investigating the state
and development of knowledge structures using concept maps. Instead of focusing

on the assessment and evaluation of single maps, the data of many persons is

aggregated and data mining approaches are used in analysis. New insights into the

“shared” knowledge of groups of learners are possible in this way. The educational

theories underlying the approach, the definition of concept landscapes, and the

accompanying analysis methods are presented.

Since both data mining techniques and concept map collection are well suited for

computer-based approaches, three software projects have been realized in the

course of this thesis. They allow computer-based drawing and assessing concept

maps, the subsequent analysis of concept maps and concept landscapes, and the

extraction of salient concepts and propositions from texts.

The methods and tools have been applied in three research projects that investigate
structural knowledge in computer science education. Among others, the structural

knowledge of CS students entering university has been analyzed. It has been
found, that attending the compulsory school subject “Informatics” in Bavaria has

visible effects on the knowledge structures of beginning students. The results of

these studies can be taken in order to better understand the possibilities, limits, and

effects of teaching methods, curricula, or learning materials in computer science

education and other subjects.
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Zusammenfassung

Wissen ist eine Voraussetzung um in einem Fach kompetent zu sein. Experten be-

sitzen üblicherweise eine dicht vernetzte Wissensstruktur hinsichtlich der Konzepte

ihres Spezialgebiets. Daher ist die Untersuchung von Wissensstrukturen von Ler-

nenden ein zentraler Aspekt von Lehr-/Lernforschung in Informatik und anderen
Fächern, trotz eines erkennbaren Trends hin zur Outcome- und Kompetenzorien-

tierung.

Diese Arbeit präsentiert concept landscapes - ein neuartiger Weg um den Zus-
tand und die Entwicklung von Wissensstrukturen mit Hilfe von Begriffsnetzen zu

untersuchen. Anstelle den Fokus bei der Bewertung und Auswertung auf einzelne

Netz zu richten, werden die Daten von vielen Personen aggregiert und zur Analy-

se Methoden des Data Mining angewendet. Dadurch sind neue Einblicke in das

“gemeinsame” Wissen einer Gruppe von Lernenden möglich. Die Arbeit präsen-

tiert die zugrundeliegenden Theorien der Lehr-/Lernforschung, die Definition von
concept landscapes und die möglichen Analysemethoden.

Da sich Techniken des Data Mining und die Erhebung von Begriffsnetzen inhärent

für rechnerbasierte Verfahren eignen, sind drei Softwareprojekte im Laufe dieser Ar-

beit realisiert worden. Diese erlauben das rechnerbasierte Zeichnen und Bewerten

von Begriffsnetzen, die darauf folgende Analyse von Begriffsnetzen und concept

landscapes sowieso das Extrahieren von zentralen Konzepten und Propositionen
aus Texten.

Die Methoden und Werkzeuge wurden in drei Forschungsprojekten angewendet,
die Wissensstrukturen im Bereich der Informatikausbildung untersuchen. Unter

anderem wurde das strukturelle Wissen von Informatik-Studienanfängern analysiert.

Dabei hat sich gezeigt, dass der Besuch des Pflichtfachs Informatik in Bayern

sichtbaren Einfluss auf die Wissensstrukturen von Studienanfängern hat. Die

Ergebnisse der Studien helfen, die Möglichkeiten, Grenzen und den Einfluss von

Lehrmethoden, Lehrplänen und Lehrmaterialien in der Ausbildung in Informatik und

anderen Fächern besser zu verstehen.
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Part I

Introduction





1 Problem Setting

This thesis presents data driven methods and the results of empirical research

dealing with learning in the context of computer science (CS). As such, it is in-

terdisciplinary in nature, depending both on computer science and on research

about education and learning. The focus lies on investigating and visualizing the

state and development of structural knowledge. Research concerned specifically
with computer science education is a relatively recent field of interest (cf. Fincher

& Petre 2004, p. 1), especially when compared to the corresponding research

in other subjects like mathematics, physics, history, or languages, for example.

These all have a much longer tradition in the curricula of schools and in universities.

Consequently the knowledge about and experience in teaching these subjects is far

more elaborate and widespread than for computer science, where the subject itself
has emerged merely half a century ago. This is especially true for learning how to

program:

“Huge numbers of papers have been published in computing

education conferences and journals in the past 40 years, so we
would expect much to have been learnt about teaching and learning

in computing. However, after decades of research, we still have

only a vague understanding of why it is so difficult for many students

to learn programming, the basis of the discipline, and consequently

of how it should be taught.” (Malmi, Sheard, Simon, Bednarik,

Helminen, Korhonen, Myller, Sorva & Taherkhani 2010, p. 9)

The advancement of educational research in other subjects is a benefit, of course,

as the researchers of computer science education are not forced to repeat every

erroneous way of others done in the past. Also, the research about education and

learning in general has advanced greatly over the last decades. Constructivism as a

learning theory that is backed by findings of Psychology, as presented in more detail

in the third chapter, forms the basis of the current understanding of how learning
progresses. Therefore, teaching should best adapt accordingly. Luckily, many

parts of computer science are well suited for constructivist approaches anyway

- as described in (Mühling, Hubwieser & Brinda 2010, p. 60). Concerning the

research about education in general, the last decades have brought about a shift in
perspective:

“Since the end of the 1980s, the introduction of new oversight

strategies for governmental intervention worldwide has led to a
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stronger focus on ‘outputs’ and ‘outcomes’ at all levels of the edu-

cational system, from elementary through secondary and tertiary

education up to vocational and adult education. These outcomes -
or the value added to them - are used as criteria for the productivity

of entire educational systems, the quality of individual educational

institutions, and the learning achievements of individuals. The

role of educational research, then, is to render this educational

productivity measurable, to develop models that can explain how
educational processes take place, evaluate their effectiveness and

efficiency, and propose and analyze strategies for intervention.”

(Klieme, Hartig & Rauch 2008, p. 3)

Placing the focus more on outcomes also necessitates new ways of testing, which

is typically done in the form of competence based assessments in these scenarios.

One example of a major testing effort is the international large scale study PISA

(PISA 2009 Technical Report 2012, for 2009). Testing competences, as briefly

described in chapter 3, requires established models that define what a competence
entails and test items that are actually assessing this particular competence. Estab-

lishing such models and tests for CS clearly is a valuable and necessary area of

research (cf. Linck, Ohrndorf, Schubert, Stechert, Magenheim, Nelles, Neugebauer
& Schaper 2013, p. 1), as is the investigation of teaching competencies specifically

for CS (cf. Hubwieser, Magenheim, Mühling & Ruf 2013, p. 1). However, beyond

making the educational productivity measurable, the development of explaining

models for learning computer science and the analysis of strategies for intervention

are also valid research goals, especially when taking into account the current rather
barren research landscape concerning CS education. This calls for fundamental re-

search about the inner processes involved in learning and, ultimately, also teaching

computer science.

A detailed analysis of theories of instruction reveals, that there are typically three

components (cf. Glaser & Bassok 1989, p. 631):

1. A description of the desired goal of the learner concerning competent
performances that encompass both knowledge and skills.

2. An analysis of the initial state of these performances, i.e. of the learner’s

knowledge and ability.

3. A model of learning that explains the transition from the initial state to the

desired state and can be implemented in an instructional setting.
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All three components encompass an element of knowledge. Therefore, when ana-

lyzing processes of learning and teaching CS, one major aspect is the state and

development of (conceptual) knowledge, as defined in chapter 3. To become a
competent computer scientist as well as a competent programmer, a person must

acquire a certain set of skills as well as a certain body of knowledge. There is no

way to become an expert without a rich and highly connected conceptual and factual

knowledge. “Thus, one goal of instruction should be to help students acquire expert-

like knowledge structures in their domain of study” (Trumpower & Goldsmith 2004,
p. 427). Even basic programming skills require factual knowledge about syntax

elements and conceptual knowledge about program flow, for instance. Modern

constructivist teaching implies that such a body of structured knowledge cannot pas-

sively be transported from teachers to learners. Instead, teaching in a constructivist

setting requires getting students to actively engage in the process of knowledge

construction. Educational research, in turn, must find ways of investigating the
idiosyncratically developing knowledge, which is not easily done:

“It should be recognized that we are trying to probe into a per-

son’s cognitive structure and ascertain what concepts and propo-

sitions that person has relevant to a particular topic and how are

these integrated and organized? This is a profoundly challenging

task, and yet it is fundamental to improving teaching and learning in

any field. It is also essential for the capture and archiving of expert
knowledge [...].” (Cañas & Novak 2006, p. 497)

Investigating conceptual knowledge will remain relevant as Goldstone & Kersten

(2003, p. 601) note: “Concepts are useful when they provide informative or diag-

nostic ways of structuring this world. An excellent way of understanding the mental

world of an individual, group or scientific community, or culture is to find out how

they organize their world into concepts.”

All of this sets the stage for modern computer science education research and

defines the general context of this work. Fincher & Petre (2004, p. 3ff.) identify

ten general areas of motivation for further research in computer science education.

This thesis is centered in the first of these ten, which concerns the understanding of

students:

“The area of student understanding is characterized by inves-

tigation of students’ mental and conceptual models, their percep-
tions and misconceptions. The kinds of question that researchers

find motivating in this area are concerned with why students have
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Fig. 1: A general model for monitoring the effects of a learning stimulus on
the knowledge of a person. Even though one is generally interested in the

development in the left half of the diagram (i.e. the real person), only the right

half is accessible to research. The transfers in form of an externalization and
the analysis of the stimulus are in general not loss-less and are subject to

many influences.

trouble with some of the things they have trouble with, what distin-
guishes good students from bad students, and what the differences

are between how students understand things and how experts un-

derstand things.”

Since established models of learning are not yet present for CS, a reasonable

approach of research is to conduct exploratory studies. It was with this goal in

mind, that several investigations were conducted by the research group “Didaktik

der Informatik” at the TU München in the years of 2010 to 2013. The investigations

all aimed to find out how the conceptual knowledge of learners is influenced by

differing forms of computer science education. These forms ranged from an intro-

ductory course on programming with only minimal input given, over a lecture, to the

investigation in how far attending a (newly introduced) compulsory school subject

influences conceptual knowledge about basic CS concepts. While the studies all

differed in their respective details, they all had a basic research design in common

that is shown in Fig. 1.
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The focus of interest always is the current state or development of knowledge at or

over some point(s) in time. This knowledge is influenced by educational processes,

learning materials, activities of the learner and more - all subsumed under the
general notion of “learning stimulus” in Fig. 1. The word “stimulus” was chosen over

the word “input” to indicate that, as also explained in the next part, it can not be

assumed that the knowledge is “formed” by an input, or that an input is “transported”

in some way. The knowledge of a person is not directly observable. It is indirectly

observable though by using some form of externalization (see section 3.1.2). This
form can be rather direct, like conducting an interview or indirect, by having the

person take a multiple choice test, for example. For all of the studies that this thesis

is based on, concept maps, as described in chapter 4 and investigated more closely

in chapter 6, were chosen as the format of knowledge representation and concept

mapping as the process of externalization. The analysis of the stimulus, which may

take on such different forms as a textbook, a curriculum, slides used in lectures, a
talk given by a teacher, or more is also important as it forms a basis for what can

be “looked for” in the knowledge development. Even though there will never be and

cannot be a simple “transfer” of knowledge from teacher to student, the divergences
between the two nevertheless may point to problem areas of the educational process.

There will usually be very many ways to represent the stimulus in a form that is

suitable for this kind of analysis; any form will have its advantages and drawbacks. In

a similar setting, Trumpower, Sharara & Goldsmith (2010, p. 6) describe a process

consisting of three phases: “1) knowledge elicitation, 2) knowledge representation,

and 3) knowledge evaluation”. Following the descriptions given for each phase,

the elicitation corresponds to the externalization of knowledge and the second
phase, representation, corresponds to the analysis of the stimulus where they have

“suggested careful task analysis or consideration of curriculum documents, textbook

content, and other pedagogical material as a starting point”(Trumpower et al. 2010,

p. 25). The evaluation is the analysis of the correlation between the two.

While research about CS education has many facets and learning processes are
of high importance, also the evaluation of educational processes (i.e. teaching) is

pivotal. When using the above schema of investigating knowledge in this context, a

shift in perspective must occur: Instead of externalizing and analyzing the knowledge

of a single person, the analysis must focus on many persons of the same educational

process. It is this combined evidence in which the artifacts of an educational process

can show. The same is done in other studies that are concerned with evaluating

educational processes like PISA - measurements of many individuals are combined

for analysis. A simple example of an exam, e.g. in school shows how results can

be interpreted from different points of view with different outcomes: On the one

hand, a person can be interested in the particular result of one student. A teacher,
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for example, might be interested to know that this person failed the exam, or failed

multiple exams in a row. On the other hand, a person can also be interested in the

the results over all students. The school’s principal might be interested to know that
almost all students failed the exam. In the first case, no particular insight about the

exam can be gained - unless the student would usually not fail an exam. In the

second case, no particular insight about the individual students can be gained, in

general.

This work presents - in chapter 7 - a new way of analyzing the externalized knowl-

edge (with concept maps) in the light of measurements of many persons and also

of several points in time. It is the result of three research studies that are presented

in chapters 10 to 12. The ideas developed over the course of these studies and are

summarized in this work. They are inspired by the ideas of data mining.

In recent years, Educational Data Mining (EDM) has emerged as a new discipline
in the field of educational research. It is “[...] concerned with developing methods for

exploring the unique types of data that come from educational settings, and using

those methods to better understand students, and the settings which they learn
in. [...] Educational data mining methods are drawn from a variety of literatures,

including data mining and machine learning, psychometrics and other areas of

statistics, information visualization, and computational modeling” (Baker & Yacef

2009, p. 4). According to Baker (2010, Table 1), the five primary categories of

Educational Data Mining and their respective goals are:

Prediction Develop a model which can infer a single aspect of the data (predicted
variable) from some combination of other aspects of the data (predictor

variables).

Clustering Find data points that naturally group together, splitting the full data set

into a set of categories.

Relationship Mining Discover relationships between variables.

Discovery with models A model of a phenomenon developed with prediction,
clustering, or knowledge engineering, is used as a component in further

prediction or relationship mining.

Distillation of data for human judgment Data are distilled to enable a human to

quickly identify or classify features of the data.

The research presented in this work is concerned with the second, third and fifth

category. The chosen methods of analysis are described in chapter 5, applied to
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the particular context in chapter 7 and tested on real-world scenarios in chapters

10 to 12. While the externalization of knowledge, its analysis and the analysis of

the learning stimuli don’t require computer support per se, the use of data mining
techniques and computer supported analysis allows the processing of large bodies

of data. Since such large amounts of data cannot be processed manually in

reasonable time, computer support is more than a way of effectively saving time: It

allows new insights into the (often statistical) properties of the data. Using larger

amounts of data often results in new findings that cannot be found in small samples
due to noise or statistical insignificance. The proposed methods can all readily be

implemented in software; for the most part, using a computer (e.g. for drawing

concept maps) is a natural extension of the task and allows enlarging the amount

of data that can be handled greatly. In this way, it is easily attainable to collect

and immediately analyze data from many students worldwide without additional

personal labor costs. Therefore, all proposed methods have been implemented as
part of this thesis, as presented in chapter 8.
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2 Detailed Overview

The research questions underlying this thesis are twofold. First, there is a general

question that drove the development of the method presented in this thesis:

How can the knowledge structures of a group of persons be investigated with re-

gard to common elements and differences between the individuals’ structures?

Derived from this general question while also taking into account the historical

development of the thesis described below, the following more specific research

questions are answered in the third part:

1. How can methods of data mining be applied to sets of concept maps in

order to identify common elements and differences between the individual

maps?

2. How can software support the workflow of the research design presented

in Fig. 1?

In addition to this question, the different research projects all had their own, specific

research questions dealing with computer science education. These are presented
in short below and in greater detail in the fourth part separately for each case study,

as they are dependent on the particular context of each study.

The rest of this thesis is divided into three major parts. First, the literature of related
prior research is presented. It forms the theoretical background for the method

presented in chapter 7. Instead of simply focusing on the relevant details, the
chapters of the second part are trying to give a slightly more complete overview

of the relevant aspects in order to present everything that is necessary to under-

stand the rest of the thesis without having to resort to the references too often. It

encompasses a rather broad field, as described in more detail below, and ranges

from psychological and neurological models of learning over learning theories to

statistical methods of analyzing pattern in data. The next part then contains the

first half of the contributions of this work: An investigation of concept maps and

the development of the notion of concept landscapes. Analysis methods that are

suitable for working with them are presented as well as the software “tool-chain” that

has been developed in the course of this thesis. These contributions are described

in theory first and are then applied to actual research studies, which form the second

half of the contributions of this thesis; the three case studies are based on actual
investigations. Each study is presented self-contained in one chapter. The structure

of each chapter is identical and resembles the organization of a research paper. In
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each of the studies, concept maps were collected from students in order to analyze

conceptual knowledge. In the course of these investigations, the focus shifted

more and more from the investigation of personal knowledge structures towards the
common elements of groups of persons. This development then culminated in the

idea of concept landscapes that formalize this approach. The following gives a brief

summary of the contexts in the temporal order that they were conducted:

Knowledge development in a setting with minimal input One of several pre-

paratory courses offered to beginning CS students at the TU München deals

with basics of object-oriented programming (OOP), as presented in (Hubwieser &
Berges 2011). The course design offers only minimal input and instead focuses

on self-guided, active application of programming concepts. The development of

the knowledge in the light of this setting and the interplay between knowledge and
programming abilities were the central aspects of this study, done in 2010. The

original study has been published in (Berges, Mühling & Hubwieser 2012). The

results show, that the minimal input together with practical exercises are enough to
initiate visible alterations of students’ mental models. Also, cluster analysis identifies

groups of students with markedly different developments in their mental models.

Also, the interrelation between conceptual knowledge and programming abilities is
seemingly not as straight-forward as one would hope for.

Investigation of knowledge development in a lecture An introductory lecture

in computer science for non-majors was investigated in 2010. Of particular interest

was how conceptual knowledge structures of core concepts of object orientation

(OO) develop over time. The results of the original study have been published in
(Hubwieser & Mühling 2011c). The study shows, that the learning of the students

visibly progresses over time. Nevertheless, the process is rather complex and
misconceptions also remain prevalent throughout the lecture.

Influence of compulsory CS education in secondary schools on beginning
students Bavaria, one of the federal states of Germany, introduced a new subject

“Informatics”, as described e.g. in (Hubwieser 2012). As part of a larger research

project in 2011, the conceptual knowledge of beginning CS students regarding

central concepts of the curriculum of this subject have been analyzed. Especially,

the differences to students who did not attend this compulsory school subject were

of interest. The results have not been published previously. The influence on the

school-subject on the mental models is clearly visible. The relevant prior-knowledge
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of the beginning students is surprisingly complex. Also, there are groups identifiable

with regard to the structure of the knowledge that exist regardless of the influence

of the school subject.

The idea of concept landscapes has been developed over the course of these

research projects. It was therefore not fully present (or named) at the time of the

studies. The analysis methods that were used during the studies were revisited and

adapted, afterwards, in order to make them compatible with the new approach of
concept landscapes. Then, the data of each case study was re-analyzed in the

course of writing this thesis in the light of the novel techniques. So, the original

projects are serving as case studies for the practical applications of the idea in this

thesis, but historically, they came first. Several hundred students have taken part

in the studies and the results are of actual value for computer science education.

Therefore, they are a fundamental part of this thesis and significantly more than just

“toy examples”.

Since the idea behind concept landscapes is based on data mining, computer

support presents an important aspect for each of the three subtasks identified in
Fig. 1: The externalization in form of concept mapping as well as the analysis of

both the input and the externalized knowledge can all be supported effectively with

software. The tool-chain that has been developed for this contains the following

three projects:

CoMapEd An online editor that allows creation of concept maps in a browser and

researchers to easily and comfortably collect numerous concept maps in

the course of a survey.

ConEx A Java1 based program that analyzes text data and extracts salient con-

cepts as well as sentences in which these concepts appear. It can be
used to automatically analyze large amounts of textual input for educational

processes.

CoMaTo A package for the statistical language R2 that allows performing the

analysis methods presented in this thesis.

Due to the historical development described above, the concept mapping editor

was not used for the actual studies. However, CoMapEd has been used in other

contexts. The data of this is analyzed and presented in chapter 6. CoMaTo has

been used for the analysis of the case studies and is, partly, a collection of the

1http://www.java.com
2http://www.r-project.org
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software used originally to analyze the studies. ConEx also has been developed

too late to have been of actual use in the studies, but a comparison between the

results obtained manually in the case study and ConEx is presented.

The work in this thesis draws upon different research areas. Fig. 2 illustrates the

interconnections to the research of this thesis. First, there is computer science,

where methods of analysis, most notably data mining are derived from. Also, the

software developed in the course of this thesis is, in the end, based on computer
science. Finally, it also provides the context for the case studies. Second, there is

educational research which provides much of the theoretical background for the

research questions this thesis poses. Also methods of investigating knowledge are

taken from this area. Finally, third, there is didactics of informatics, which sets the

context for the research questions of this thesis and provides theoretical background

for the results. These results are then again relevant twofold: The results of the

analysis in the case studies are relevant first and foremost for didactics of informatics
while the methods presented are also relevant for educational research in general.

This interplay of different areas is typical for research of the educational aspects
of a specific subject. Shulman (1986, p. 10) identifies three types of knowledge

relevant for teachers, namely “(a) subject matter knowledge, (b) pedagogical content

knowledge, and (c) curricular knowledge”. While the latter is mostly covered by

educational research, it is pedagogical content knowledge which is mostly the result

of research in didactics of a specific subject matter (cf. Hubwieser et al. 2013, p. 1).

The terms computer science and informatics are used interchangeably through-
out this thesis. In German, “Informatik” is often translated as computer science,

whereas the term informatics often is seen as comprising more than just computer

science. However, as this thesis is not concerned with the details of the different

subjects, informatics and computer science are both taken to mean the German
term Informatik, which is probably closer to the term informatics than to the term

computer science, even though the latter is more widely used in English literature.

Also, for all software that has been used in the course of this work, a link to the

relevant website is given as a footnote at the first appearance in the text.
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Computer science
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Fig. 2: The areas of research that provide the basis for this thesis.
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Part II

Theoretical Background and Related
Work





3 Knowledge and Learning

“‘All men by nature desire to know.’ With these words, Aristotle

began his Metaphysics. But what is knowledge? What do people

have inside their heads when they know something? Is knowledge

expressed in words? If so, how could one know things that are

easier to do than to say, like tying a shoestring or hitting a baseball?

If knowledge is not expressed in words, how can it be transmitted

in language? How is knowledge related to the world? And what
are the relationships between the external world, knowledge in

the head, and the language used to express knowledge about the

world?” (Sowa 1984, p. 1)

Since this thesis deals with the investigation of knowledge structures, it is inevitable
to take a look at the concept of “knowledge”. Dating back to Aristotle and beyond,

there have been countless attempts, theories, and results regarding the investiga-

tion and classification of knowledge. While some fields of research are treating

knowledge as an abstract entity on its own, others are concerned with memory

rather than with knowledge. In one way or another, the two are equivalent, since

knowledge and the reasoning about and inquiry into knowledge are always tied to

the human brain as the creator, processor, distributor, and analyzer of knowledge.

The next three sections present the theoretical background and related work con-

cerning the organization of knowledge, the acquisition of knowledge (learning) and

the assessment of knowledge as far as it is relevant for this work. Psychological,
neurological, and pedagogical results are taken into account.

3.1 Knowledge

This section presents relevant literature concerning the organization of knowledge.

This encompasses both the organization of knowledge in the brain as well as the

organization of knowledge outside of the human mind as far it is relevant for this

work.
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3.1.1 Psychological Foundations

Knowledge organization from a psychological or neurological point of view encom-

passes results and theories regarding the human brain and the way that knowledge
is stored in and retrieved from it. Historically, theories about memory organization

are often based on observing human behavior and subsequently establishing a

model of (parts of) the mind that explains the observed phenomena. Alternatively,

from a neurological point of view it is also possible to observe not human behavior

but actual activity of the brain as an organ. For example, the structure of the brain
into several lobes or regions (cf. Sousa 2009, p. 16) and measuring activity of these

regions during different tasks provides a theory about the structure of the mind as

an organ. In contrast, the “information processing model” (cf. Sousa 2009, p. 38ff.)

is a more abstract separation of the human mind into functional components (based

on observation of humans) which may or may not map to actual regions of the

brain. Following this popular model, the processing of information is based on the
immediate memory, which is concerned with sensory input from the outside world

(cf. Sousa 2009, p. 42) and the working memory which is where the conscious act

of thinking occurs (cf. Sousa 2009, p. 45). Both of these parts form the short-term

memory, while storage and retrieval of information is the task of long-term memory

(cf. Sousa 2009, p. 51).

Since this section is concerned with knowledge organization, it focuses on details

of the long-term memory. Concerning the organization of this memory (or storage

system), a general distinction can be made between declarative memory and

non-declarative memory (cf. Novak 2002, p. 553). “Declarative memory (also

called conscious or explicit memory) describes the remembering of names, facts,
music, and objects [...], and is processed by the hippocampus and cerebrum. [...]

Declarative memory can be further divided into episodic memory and semantic
memory” (Sousa 2009, p. 81). Whereas episodic memory mostly deals with
events of our lifetime and has a strong connection to the passing of time, it is the
semantic memory that holds what is commonly called “declarative knowledge” in the

context of learning and teaching, like facts or knowledge about concepts and their

interrelations. Squire (1987, p. 152) describes the specifics of declarative memory
even more succinctly: “Declarative memory is memory that is directly accessible

to conscious recollection. It can be declared. It deals with the facts and data that

are acquired through learning”. The separation of these types of memory in the

brain has been shown in medical studies (cf. Goldstein & Vanhorn 2011, p. 158f.),

however, there are also interrelations between episodic and semantic memory. For

example Goldstein & Vanhorn (2011, p. 160) note that “semantic memories that

have personal significance are easier to remember than semantic memories that
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are not personally significant”. In addition to this “semantic memory can influence

how people allocate their attention”.

Non-declarative memory also encompasses several sub-categories, most notably

procedural memory. “Procedural memory refers to the learning of motor and cog-

nitive skills and remembering how to do something [...]” (Sousa 2009, p. 82).

There are other classifications of the components of human memory as well, which

are typically refinements of the general distinction made above. For example,
Trumpower & Goldsmith (2004, p. 430) distinguish between propositional and

configural knowledge, the former referring to facts and the latter meaning the inter-

connected structure of knowledge. In an attempt to summarize different studies that

focus on the task of problem solving, de Jong & Ferguson-Hessler (1996) offer an

attempt for a classification system concerning types of knowledge. It distinguishes

between the type and quality of knowledge, which according to the authors form two

separate dimensions. The types that are distinguished are situational-, conceptual-,
procedural- and strategic knowledge. The qualities are level, structure, automation,

modality and generality (de Jong & Ferguson-Hessler 1996, Table 1).

Conceptual knowledge, again, is defined as “static knowledge about facts, concepts

and principles that apply within a certain domain” (de Jong & Ferguson-Hessler

1996, p. 107). Situational knowledge and strategic knowledge are concerned with

“situations as they typically appear in a particular domain” (de Jong & Ferguson-

Hessler 1996, p. 106) and “students organizing their problem-solving process”

(de Jong & Ferguson-Hessler 1996, p. 107) respectively. The qualities of knowledge

each represent a certain attribute that can take on different values (cf. de Jong &
Ferguson-Hessler 1996, Table 1):

Level Is it surface or deep knowledge?

Structure Does the knowledge consist of isolated elements or is it structured

knowledge?

Automation Is the knowledge declarative or compiled?

Modality Is the knowledge stored in verbal or pictorial form?

Generality Is the knowledge general or domain specific?

While surface level knowledge is “stored in memory more or less as a copy of

external information” (de Jong & Ferguson-Hessler 1996, p. 107), deep level

knowledge is “firmly anchored in a person’s knowledge base and [...] has been

translated to basic concepts, principles, or procedures [...] [and] is different from
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the concrete appearance of the external information from which it stems” (de Jong

& Ferguson-Hessler 1996, p. 107). The quality of structure distinguishes between

elements of knowledge that are “loosely connected [...] or structured in a logical way”
(de Jong & Ferguson-Hessler 1996, p. 108) and is related to the level of knowledge:

“Only the introduction of deep elements makes possible the generalizations and

abstractions that are required for the [...] building of a hierarchical structure” (de Jong

& Ferguson-Hessler 1996, p. 108). Declarative knowledge is defined as above,

in contrast to compiled knowledge that “is tacit, implicit, or not easily expressed”
(de Jong & Ferguson-Hessler 1996, p. 109). Modality refers to the representation

of knowledge “as a set of either propositions or images” (de Jong & Ferguson-

Hessler 1996, p. 109). Generality refers to the fact that knowledge or strategies

(e.g. heuristics) “may be general and domain independent [...] but frequently they

are bound to a domain”(de Jong & Ferguson-Hessler 1996, p. 109).

The structure of organized knowledge is important for the development of learners
and should therefore receive attention. “In general, structured knowledge enables

inference capabilities, assists in the elaboration of new information, and enhances

retrieval. It provides potential links between stored knowledge and incoming informa-
tion, which facilitate learning and problem solving” (Glaser & Bassok 1989, p. 648).

Trumpower et al. (2010, p. 5) also state that “experts possess more knowledge

and, perhaps more importantly, better organize knowledge than novices”. The term

knowledge structure or cognitive structure (cf. Ausubel 1968, p. 10) will be used to

denote the structural organization of a person’s conceptual knowledge.

The very name “conceptual knowledge” and its definitions rely on the notion of a
concept which is also fundamental for the later definition of concept maps. From

a psychological perspective, Solomon, Medin & Lynch (1999, p. 99) state that

“[c]oncepts are the building blocks of thought. How concepts are formed, used,

and updated are therefore central questions in cognitive science”. The following

definition will be used: “A concept is a mental representation that is used for a variety

of cognitive functions, including memory, reasoning, and using and understanding

language.” Goldstein & Vanhorn (2011, p. 240)

The mental representation can be of something that exists as a concrete object,

like a tree (cf. Solomon et al. 1999, p. 101) or an abstract notion, like a disease

(cf. Solomon et al. 1999, p. 100) or a color (cf. Goldstein & Vanhorn 2011, p.

245). Mental representations are usually connected to a mental function or process

that the representation is useful for (cf. Goldstone & Kersten 2003, p. 603). For

concepts, this process is often categorization: the classification of entities into

categories. Categories and concepts are closely related. Categorization happens

through concepts (cf. Solomon et al. 1999, p. 99), in other words for each category
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there must also be a concept. The category then refers to the classified set of

entities in the category whereas the concept refers to the abstract notion of what

this category entails. “Categorization is not an end in itself, but rather it serves to
connect old to new: categorizing novel entities allows the cognitive system to bring

relevant previous knowledge to bear in the service of understanding the novel entity.

[...] Not only are new entities understood in terms of old, but new entities also modify

and update concepts. That is concepts support learning” (Solomon et al. 1999,

p. 99). Especially the first part is important for the theories of conceptual change
that are presented below. Categories are organized in hierarchies (cf. Goldstein

& Vanhorn 2011, p. 247). There are other functions beyond categorization as

well that are based on concepts, like inference, reasoning (cf. Solomon et al. 1999,

p. 99) and integration which “refers to the process of finding a relationship that

meaningfully links two concepts together” (Solomon et al. 1999, p. 102). The

process of integration, in turn “appears central to inductive reasoning” (Solomon
et al. 1999, p. 103)

In general, the organization of concepts in memory is assumed to be pivotal for

the quality of a person’s knowledge (cf. Trumpower et al. 2010, p. 5). Without a
structured connection to others, a concept will, in general, not be kept in long term

memory (cf. Sousa 2009, p. 88). As Ruiz-Primo & Shavelson (1996, p. 570) point

out:

“Most cognitive theories share the assumption that concept

interrelatedness is an essential property of knowledge. [...] As

expertise in a domain is attained through learning, training and/or

experience, the elements of knowledge become increasingly inter-

connected. [...] Assuming that knowledge within a content domain

is organized around central concepts, to be knowledgeable in the

domain thus includes having a highly integrated structure among

these concepts.”

An expansion on the view of knowledge organization is schema theory. “A schema

is a high-level conceptual structure or framework that organizes prior experience

and helps us to interpret new situations. The key function of a schema is to

provide a summary of our past experiences by abstracting out their important

and stable components [...] a distinguishing feature of schemas is that they are

structured mental representations made up of multiple components” (Gureckis &

Goldstone 2011, p. 725). Schema theory holds that the mind possesses schemas
for various situations that allow a very fast information processing, as the schema is

retrieved from memory as one chunk.
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3.1.2 Epistemological Foundations

While the last section dealt with the organization of knowledge inside the brain,

this section deals with how knowledge can be documented outside the human
mind. This capacity is essential for teaching (cf. Cooke 1994, p. 801), or, more

generally, preserving the knowledge of each human generation for the next. What

sets the epistemological perspective on knowledge apart from the psychological

view is that the documentation of knowledge can also arise from the mental models

of many persons (cf. Cooke 1994, p. 821) instead of just the mental model of
one person. This aspect is central for this thesis. Also, as Cooke (1994, p. 802)

notes, knowledge can be elicited from other sources than the human mind, e.g.

texts - which is done in this thesis as well. “Knowledge elicitation is the process

of collecting from a human source of knowledge, information that is thought to be

relevant to that knowledge” (Cooke 1994, p. 802). It is often part of a process called

knowledge acquisition. “The overall goal of knowledge acquisition is to externalize
knowledge in a form that can be implemented in a computer” (Cooke 1994, p. 802).

Often, it is specifically meant in the context of expert systems and expert knowledge,

though (cf. Shaw & Woodward 1990, p. 179). The term externalization of knowledge
sometimes refers to only making tacit knowledge explicit (cf. Dierkes 2001, p. 495),

however, in this work, externalization will refer to a general process of elicitation of

any form of knowledge - usually semantic, declarative knowledge - from humans

regardless of their expertise.

Following the constructivist view presented below, it is paramount to acknowledge

that: “[K]nowledge acquisition is modeling or construction, not mining. Therefore, the

result of knowledge acquisition is a model. Like all models it represents the object
of the modeling enterprise to different degrees of accuracy” (Cooke 1994, p. 802).

Or put differently, the object of interest - the mental model - is by itself unobservable.

Instead, only a model of this model can be observed (cf. Shaw & Woodward 1990,
p. 184). Each method of elicitation and each method of representation is making
assumptions about the knowledge itself (cf. Shaw & Woodward 1990, p. 180).

The process of externalization is also subject to uncertainties. The influences that

incur these uncertainties are numerous, like problems in communication or the
amount to which the knowledge that is to be externalized is compiled and more (cf.

Cooke 1994, p. 803); also personal variables, like the degree of introversion have

been found to influence the process (cf. Hoffman, Shadbolt, Burton & Klein 1995,

p. 146). While all methods inherently suffer from these uncertainties, the specific

influences and their extent are dependent on the method and context. The same

goes for the requirements on the elicitor (e.g. to be a subject-matter expert) or the

analysis methods that are suitable afterwards (cf. Cooke 1994, p. 814).
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There are many different methods of elicitation and ways of representation. Mandl &

Fischer (2000) present an overview over several graphical representations. Hoffman

et al. (1995) present a classification of different methods. Cooke (1994, p. 805ff.)
also presents a classification that identifies three different families of elicitation

techniques: “Observations and interviews”, “Process tracing”, and “Conceptual

techniques”.

A technique of the last family “produces representations of domain concepts and
their structure or interrelations” (Cooke 1994, p. 821) and is especially suited for

the aggregation of knowledge from many persons (cf. Cooke 1994, p. 821) and

automation (Cooke 1994, p. 835), making them especially relevant for this thesis.

The technique of concept mapping, described in the next chapter, is a representative

of the type “graph construction” that belongs to the group of “structural analysis”

techniques in this family (cf. Cooke 1994, Table 3). It has been chosen as the

method of externalization in this thesis. The reasons for this are given in chapter 4

and chapter 6.

While the “differential access hypothesis” assumes that different methods of elici-
tation tap into different types of knowledge (cf. Hoffman et al. 1995, p. 142), the

approach of externalizing the structure of conceptual knowledge is considered valu-

able beyond that specific type of knowledge: “Collectively, these studies suggest

that [...] [assessing structural information of conceptual knowledge] allows valid

inferences to be made about overall domain knowledge across a diverse array of

domains, ranging from those that are more procedural (e.g., computer programming)

to those that are more conceptual (e.g., evolution)” (Trumpower et al. 2010, p. 10).

The chosen representation also affects what types of knowledge can be documented.

Giving an overview of all kinds of knowledge representations and their respective

strengths and weaknesses is beyond the scope of this work, however. The chosen
method of concept mapping determines the representation (concept maps) anyway.

For the analysis methods, different representations of the same information are also
used, based on the requirements of the methods.

3.2 Learning

“Obviously, all knowledge constructed in a discipline is first
constructed in some individual’s cognitive structure. To understand

how knowledge is constructed in any field, it is therefore essential

to understand how individual human beings construct knowledge.

To understand how an individual constructs his or her conceptual
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frameworks, we need to understand the psychology underlying

human meaning making.” (Novak 2002, p. 562)

Beyond the organization of knowledge inside the mind, there are also the elementary

processes of creating and altering this knowledge. Since humans are born with

almost no knowledge whatsoever, everything must be developed through experience

and learning. In regards to the process of learning, it is again possible to either
focus on the mind or brain itself, or to focus on the person, possibly also in a

larger context of not isolating a single person but acknowledging the society and
environment in which the person lives while learning. While the psychological

foundations are primarily concerned with the former, the pedagogical learning

theories of learning are usually concerned with the latter. There are numerous
learning theories, especially when also considering their historical developments.

All theories usually are more or less heavily influenced by the zeitgeist of their date

of creation. This section focuses on the basic psychological processes of learning

and on currently established learning theories that are supported by these.

3.2.1 Psychological Foundations

Learning, especially concerning declarative knowledge, encompasses both the
storing of new information and the reorganization or alteration of information already

present in the memory. Following the distinction in memory organization, “the acqui-

sition of new declarative knowledge, development of a cognitive skill, organization of
knowledge into more effective representations, and discovery and inference of new

information are differentiated forms of learning, and their characterization varies”
(Glaser & Bassok 1989, p. 634).

The modification of knowledge, as also postulated by current learning theories, is

fundamentally personal: “Learning is highly idiosyncratic and progresses over time”
(Cañas & Novak 2006, p. 495). Knowledge is actively constructed by each person’s

memory subjectively. Nevertheless, the structure of the knowledge that is created,
with increasing expertise and, depending on the subject domain, often shows a

similar configuration across many persons (cf. Trumpower & Goldsmith 2004, p.

426f.). Even more, this configuration is typically similar to those of experts in that

domain (cf. Ausubel 2000, p. 76). Also Trumpower & Goldsmith (2004, p. 441) note

that the structural organization of knowledge may have an influence on the ability of

beginners to learn new material of a subject domain.

The addition of new information into long-term memory - a process that is often

called retention (cf. Sousa 2009, p. 86) - is influenced by many factors outside of
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the actual memory (e.g. motivation). Concerning the actual processes in memory,

the retention of conceptual knowledge is critically dependent on the rehearsing

of new information (cf. Sousa 2009, p. 86). There are two types of rehearsal:
Rote rehearsal which “is used when the learner needs to remember and store

information exactly as it is entered into working memory” (Sousa 2009, p. 87) and

elaborative rehearsal for “when it is more important to associate the new learnings

with prior learnings to detect relationships” (Sousa 2009, p. 87), see also (Goldstein

& Vanhorn 2011, p. 174f.). This distinction is also being made by the theory
of meaningful learning, presented below. Learning in the context of educational

research is often seen as elaborative learning. In this case the prior knowledge

becomes important. “The prevailing view of cognitivists today is that humans store

knowledge as associative networks of ideas, concepts, procedures, and other forms

of knowledge. During learning, new knowledge is integrated into the network by

linking it to semantically relevant prior knowledge” (Trumpower et al. 2010, p. 5).

With increasing training and expertise in a given field, the conceptual knowledge will

get restructured and is then accessible in bigger chunks of connected knowledge.

Also, as skills develop, the necessary knowledge will get compiled into procedures.
As Glaser & Bassok (1989, p. 634) put it: “At various stages of learning, there

exist different integrations of knowledge, different degrees of proceduralized and

compiled skill, and differences in rapid access to memory [...]. These differences

signal advancing expertise or possible blockages in the course of learning”.

3.2.2 Constructivism

Constructivism as a learning theory is best understood as opposite to the theories

of Behaviorism and Cybernetics, where the prevalent idea is that teaching is nothing
more than a transfer from the outside world into the mind of the learner. As

Glasersfeld (1983, p. 41) puts it:

“Ten or 15 years ago, it would have been all but inconceiv-

able to subject educators or educational researchers to a talk that

purported to deal with a theory of knowledge. Educators were

concerned with getting knowledge into the heads of their students,

and educational researchers were concerned with finding better

ways of doing it. There was, then, little if any uncertainty as to

what the knowledge was that students should acquire, and there

was no doubt at all that, in one way or another, knowledge could

be transferred from a teacher to a student. The only question
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was, which might be the best way to implement that transfer – and

educational researchers, with their criterion-referenced tests and

their sophisticated statistical methods, were going to provide the
definitive answer.”

As a contrast, the central aspect of Constructivism is that “[k]nowledge [...] cannot

be imposed or transferred intact from the mind of one knower to the mind of another.
Therefore, learning and teaching cannot be synonymous: we can teach, even well,

without having students learn.” (Karagiorgi & Symeou 2005, p. 18)

Fundamentally, Constructivism is built upon two principles (Glasersfeld 1989, p.

162):

1. “knowledge is not passively received but actively built up by the cognizing
subject” and

2. “the function of cognition is adaptive and serves the organization of the

experiential world, not the discovery of ontological reality”.

The first principle, when followed strictly, does imply that there is no “true” knowledge,

since all knowledge is only constructed inside a person’s mind and cannot, in
general, be transferred in or out of that mind. Consequently, Glasersfeld (1983,

p. 65) describes knowledge in the constructivist sense as: “A knowledge that fits

observation. It is knowledge that human reason derives from experience. It does

not represent a picture of the ‘real’ world but provides structure and organization

to experience. As such it has an all-important function: it enables us to solve

experiential problems”. It is, however, especially this second principle, that separates

Constructivism from other theories. “The revolutionary aspect of Constructivism lies
in the assertion that knowledge cannot and need not be ‘true’ in the sense that it

matches ontological reality, it only has to be ‘viable’ in the sense that it fits within
the experiential constraints that limit the cognizing organism’s possibilities of acting

and thinking” (Glasersfeld 1989, p.162).

Historically, the theory is based on studies by Jean Piaget (Piaget 1929). Meanwhile,

research has offered enough insight into the neurological mechanisms of learning,

that the constructivist theory can justifiably be seen as an explanatory model of

human learning and knowledge construction. Sabitzer (2011) provides insights into

the neurological aspects of teaching computer science, stating that learning is the

process of subjectively constructing knowledge. Wittrock (1992, p. 536) states
from the perspective of cognitive research: “[L]earning is not the internalization of

information given to us whole by experience or analyzed by a teacher. Instead,
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learning consists of the active generation of meaning, not the passive recording of

information.”. Finally, Altenmüller, Gruhn, Parlitz & Liebert (2000, p. 49) present the

results of a study in music education. The results show, that the activation patterns
of the brain differs between groups that were taught using “verbal explanations,

visual aids, notations, verbal rules and some musical examples which were played to

the subjects, but never sung or performed [and a second] group who participated in

musical experiences for establishing genuine musical representations by singing and

playing, improvising with corresponding rhythmic and tonal elements or performing
examples from the musical literature”. The second group also showed superior

results in an assessment task.

There are many consequences for teaching and educational research when adopting

this theory. “Above all, it will shift the emphasis from the student’s ‘correct’ replication

of what the teacher does, to the student’s successful organization of his or her own

experience” (Glasersfeld 1983, p. 69). Teaching in a constructivist setting also
implies that the knowledge structure of individuals may differ from what the physical

world dictates or differ from what experts of a field are agreeing upon. In this case,

it seems reasonable to assume that the learner will benefit from attempts that result
in a modification of the knowledge structure. Constructivism also puts a limit on

the results one can expect from assessing a person’s knowledge by comparing it

to expert knowledge - which is also in accordance with the description of “deep”

knowledge presented in the first section of this chapter. Radical Constructivism

places difficult burdens on educational systems. The following two quotes of the

same publication are an example of the difficulty of reconciling a constructivist
mode of learning with the long established tradition of education at, for example,

universities.

“I now believe that the days of straight lecturing in introductory
science courses are numbered. We can no longer afford to ignore

that inefficiency of the traditional lecture method, regardless of

how lucid or inspiring our lectures are. The time has come to offer
our students in introductory science classes more than a mere

regurgitation of printed material.” (Mazur 1996, p. 14)

“[...] in the sciences, as in the humanities, the first exposure to

new material should come from reading printed material.” (Mazur

1996, p. 13)
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3.2.3 Conceptual Change

“[E]ffective learning changes the way we see the world- The acquisition of infor-
mation in itself does not bring about such a change, but the way we structure that

information. Thus, education is about conceptual change, not just the acquisition

of information.” (Biggs & Tang 2011, p. 23). The theory of conceptual change is
typically attributed to Posner, Strike, Hewson & Gertzog (1982) and revised by Strike

& Posner (1992). Learning can, very generally, be described as change. A change
of a person’s knowledge structure, a change of a person’s behavior or attitudes

can all be the results of learning processes. The learning theories presented so

far acknowledge this - for example meaningful learning as described in the next

section by its very definition is the change of an existing mental model. The idea

of conceptual change in contrast is subtly different in that it puts the focus on the

very act of change instead of just acknowledging its existence. The change of a
person’s knowledge structure can be additive in the sense that an existing model of

the world is expanded in the light of new experiences or facts or it can require that

the model has to be restructured or even completely abandoned because it is not
compatible with new knowledge. Piaget calls these two ways of change assimilation

and accomodation (cf. Geber 2006, p. 5), (cf. Goldstone & Kersten 2003, p. 603).

Duit & Treagust (2003, p. 672) note that “[t]he most common analysis is that there

are two types of conceptual change, variously called weak knowledge restructur-

ing, assimilation or conceptual capture and strong radical knowledge restructuring,

accommodation or conceptual exchange”.

It is especially this last part that plays an important role in conceptual change

as, naturally, there is an impediment to a restructuring or abandoning of ones

mental models, in general. This becomes especially important in science education,

since typically everybody has a preconceived notion about how, for instance, the
physical world works. As Duit & Treagust (2003, p. 671) put it: “Findings from

many studies over the past three decades show that students do not come into
science instruction without any pre-instructional knowledge or beliefs about the

phenomena and concepts to be taught. Rather, students already hold deeply rooted

conceptions and ideas that are not in harmony with the science views or are even
in stark contrast to them”. Such a model that is not in harmony with the science

view has been given several names (cf. Novak 2002, p. 555), often misconception.

Novak (2002, p. 555) suggests “Limited or Inappropriate Propositional Hierarchies

(LIPH’s)”.

Just like other learning theories, the theory of conceptual change has direct im-

plications for teaching. “The classical conceptual change approach involved the
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teacher making students’ alternative frameworks explicit prior to designing a teach-

ing approach consisting of ideas that do not fit the students’ existing ideas and

thereby promoting dissatisfaction. A new framework is then introduced based on
formal science that will explain the anomaly” (Duit & Treagust 2003, p. 673). How-

ever, Novak (2002, p. 562) also points out, that albeit the process of instruction

can influence conceptual change, it is inherently a decision of the learner: “What

becomes central to ‘conceptual change’ from my perspective is the necessity for

meaningful learning to occur. [...] The fundamental challenge to ‘conceptual change
teaching’ is therefore to help learners understand how they must choose to modify

their concept and propositional hierarchies [...]. Changing their ‘conceptual ecology’

requires that the learner recognize explicit ways where their concept/propositional

frameworks are limited, inappropriate or poorly organized into hierarchies”. Glaser

& Bassok (1989, p. 642) note that “conceptual change is self-directed, in the sense

that humans are intrinsically motivated to understand the world around them”.

What is especially interesting is the event of a major change in a knowledge structure.

Threshold concepts provide a theory for this. Meyer & Land (2006, p. 3) describe

them as: “[A]kin to a portal, opening up a new and previously inaccessible way
of thinking about something. It represents a transformed way of understanding,

or interpreting, or viewing something without which the learner cannot progress.

As a consequence of comprehending a threshold concept there may thus be a

transformed internal view of subject matter, subject landscape, or even world view”.

For example, the concepts of complex numbers and limits are seen as threshold

concepts in mathematics (cf. Meyer & Land 2006, p. 5). The characteristics of
thresholds concepts within a discipline are as follows (cf. Kinchin, Cabot, Kobus &

Woolford 2011, p. 2):

Transformative The learning results in a change of perception, values, or at-
tributes.

Irreversible The change is unlikely to be forgotten.

Integrative New interrelations to other concepts of the subject are discovered.

Bounded The concept is pivotal to an area of an academic discipline.

(Potentially) troublesome The concept typically provides problems to students
when they are presented with the new perspective that it offers.

Threshold concepts therefore offer a new aspect to the theory of conceptual change,
insofar as they provide a reasoning for problems in learning that is mostly irrele-
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vant to the prior knowledge and is only centered around the characteristics of the

threshold concept itself.

Since the focus of conceptual change lies on the change of knowledge structures,

the theory must also make assumptions about the organization of knowledge.

Özdemir & Clark (2007) present an overview over two opposing theories on concep-

tual change regarding the structure of mental models, dubbed as “knowledge-as-

theory” and “knowledge-as-elements”.

Knowledge-as-theory means that the mental model is “an overarching hierarchical

conceptual structure with theory-like properties that constrains a student’s interpre-

tation of subordinate models and ideas” (Özdemir & Clark 2007, p. 352).

“This theory-like knowledge is hypothesized to involve coherent

structures grounded in persistent ontological and epistemologi-

cal commitments. Because novices unconsciously develop these

coherent structures through collections of daily experiences, their

‘theories’ are not available for hypothesis testing in a manner similar
to scientists’ theories. However, novices’ alternative conceptions

do constrain future learning and allow novices to make consis-

tent predictions across conceptual domains. Knowledge-as-theory
perspectives hypothesize revolutionary change in knowledge struc-

tures through various mechanisms.[...] [T]hey all assert that learn-

ers at any given time maintain a small number of well-developed

coherent naïve theories based on their everyday experiences and

that these theories have explanatory power to make consistent
predictions and explanations across significant domains.” (Özdemir

& Clark 2007, p. 354)

Conversely, knowledge-as-elements describes a structure in which “elements in-

teract with each other in an emergent manner where the combinatorial complexity

of the system constrains students’ interpretations of phenomenons” (Özdemir &

Clark 2007, p. 352). This corresponds to the quality of structure in the classification

by de Jong & Ferguson-Hessler (1996), presented in section 3.1.1.

“[K]nowledge-as-elements perspectives hypothesize that naïve

knowledge structures consist of multiple conceptual elements in-

cluding, but not limited to, phenomenological primitives, facts, fa-

cets, narratives, concepts, and mental models at various stages of

development and sophistication. Novices spontaneously connect
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and activate these knowledge pieces according to the relevance of

the situation. During the conceptual change process, the elements

and interactions between the elements are revised and refined
through addition, elimination, and reorganization to strengthen the

network. From this perspective, conceptual change involves a

piecemeal evolutionary process rather than a broad theory replace-

ment process” (Özdemir & Clark 2007, p. 355).

3.2.4 Meaningful Learning

David Ausubel proposed a learning theory that deals with the differences between

rote learning of information and meaningful learning. It also is fundamentally tied
to concept mapping presented in the next chapter. A definition of a meaningful

learning process can in short be given as follows:

“The essence of the meaningful learning process [...] is that

new symbolically expressed ideas (the learning task) are related
in a nonarbitrary, and nonverbatim fashion, to what the learner

already knows (his cognitive structure in a particular subject-matter

field), and that the product of this active and integrative interaction

is the emergence of a new meaning reflecting the substantive and

denotative nature of this interactive product.” (Ausubel 2000, p.

67f.)

Following the distinctions made for the mental process of rehearsal above, the theory
of meaningful learning acknowledges that there is rote learning and meaningful

learning as two different learning activities with different expected outcomes. The

central idea of opposing modes of learning, with rote learning being one of them,

can be found elsewhere as well. For example Biggs & Tang (2011) distinguish

between “surface” and “deep” learning, with similar characteristics. Also, the

learning process as observed by neurologists seems to validate the central idea

of meaningful learning: “we only memorize what’s good and meaningful for us,

learning is especially effective, when it makes sense. [...] we are learning by making

associations and linking new information to current knowledge” (Sabitzer 2011, p.

168 f.). Meaningful learning results in deep structured knowledge, when following

the classification by de Jong & Ferguson-Hessler (1996) presented in section 3.1.1:

“‘Meaningful Learning’, by definition, involves the acquisition of new meanings.
New meanings, conversely, are the end-products of meaningful learning. That is,
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the emergence of new meanings in the learner reflects the prior operation and

completion of a meaningful learning process” (Ausubel 2000, p. 67).

There are two prerequisites of a successful meaningful learning task present in

the above definition, namely that the learners themselves choose to relate new

information into their current cognitive structure in a nonarbitrary and nonverbatim

fashion which in turn requires that the information presented to them is potentially

meaningful, so that there actually is a way in which the information can be related to
the learners’ cognitive structures. These two prerequisites are called meaningful

learning set and potential meaningfulness (cf. Ausubel 2000, p. 68). To possess

potential meaningfulness, information must be logically meaningful. This means

that it must be “sufficiently nonarbitrary itself (i.e. nonrandom, plausible, sensible) so

that it could be related on a nonarbitrary and nonverbatim basis to correspondingly

relevant ideas that lie within the realm of what human beings are capable of learning”

(Ausubel 2000, p. 69). Whereas the logical meaningfulness is an inherent property
of the information and the way it is presented to a learner, the potential meaningful-

ness is a property of the learner, or more specifically, of the learner’s knowledge

structure. If there is no way that an information can be related meaningfully into a
certain cognitive structure, then the person that this structure belongs to will not

be able to meaningfully learn this information regardless of whether the person

chooses to learn meaningfully or not (cf. Ausubel 2000, p. 70).

Concerning the actual learning process, Ausubel (2000, p. 84ff.) distinguishes

between three types of learning:

1. Vocabulary or representational learning, that describes “learning the mean-
ings of single words, or learning what single words represent”.

2. Concept learning, which describes the acquisition of a new concept and
can happen in two ways:

(a) Concept formation, in which “the criterial attributes of the concept are

acquired as a consequence of direct experience through successive

stages of hypothesis generation, testing, and generalization”.

(b) Concept assimilation , during which “the criterial attributes of new con-

cepts can be ascertained by use in new combinations of existing ref-

erents (words as well as images) available in the child’s cognitive

structure”.

3. Propositional learning, which describes a task that “consists of a composite

idea and is expressed verbally in a sentence containing both denotative
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and connotative word meanings and the syntactic functions of and relations

between words”.

Concepts are defined as “objects, events, situations, or properties that possess

common criterial attributes and are designated by the same sign or symbol” (Ausubel

2000, p. 88). Also, concept formation, according to (Ausubel 2000, p. 88) is mostly
relevant for young children. For this work, only concept learning and propositional

learning are relevant.

Each learning process, if done meaningfully, will integrate new ideas into an ex-

isting cognitive structure. This integration can follow certain hierarchical patterns
(cf. Ausubel 2000, p. 89ff.) of which the following three are relevant for concept

assimilation and propositional learning: Subordinate learning or subsumption de-

scribes the integration of new information under an already existing superordinate
cognitive element of a cognitive structure. In contrast, superordinate learning oc-

curs when several existing elements of a cognitive structure are subsumed under

a newly learned idea. Finally, if neither of the two patterns is applicable for the

result of a meaningful learning process, the learning is called combinatorial learn-

ing. A succession of subsumptive learning processes, i.e. starting with a general

concept, is called progressive differentiation. The opposite, a succession of superor-
dinate learning processes starting from a very specific concept, is called integrative

reconciliation (cf. Ausubel 2000, p. 102).

The underlying idea of these learning processes, especially concept assimilation,

is “that new meanings are acquired by the interaction of new, potentially mean-

ingful ideas (knowledge) with previous learned concepts and propositions. This
interactional process results in a modification of both the potential meaning of the

new information and of the meaning of the concepts or propositions to which it

is anchored, and also creates a new ideational product which constitutes its new

meaning to the learner” (Ausubel 2000, p. 102). It is relevant for education, as

“[c]lassroom or subject-matter learning is primarily concerned with the acquisition,

retention, and use of large bodies of meaningful information such as facts, proposi-

tions, principles, and vocabulary in the various disciplines” (Ausubel 2000, p. 67).

Since the information is meaningful, it should be learned as such. Additionally,

Ausubel (2000, p. 77) points out the importance of meaningful learning in education

“because it is the human mechanism par excellence for acquiring and storing the

vast quantity of ideas and information represented by any field of knowledge”. Addi-

tionally, rote-learning doesn’t remediate misconceptions held by a learner (cf. Novak
& Cañas 2010, p. 1), as it is by definition always an assimilation of knowledge and

not a radical restructuring.
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3.2.5 Models of Learning

Every learning theory typically has an underlying model of how persons actually

learn. This model is not always explicitly stated, though. For example, the theory of
meaningful learning is based around the model of a person who must be willing to

integrate new material in a non-arbitrary and non-verbatim fashion. If this integration

occurs, the person has learned (meaningfully). There are several explicit models

of how a person learns, however. All of the models have in common that learning

is seen as a personal change that occurs if a certain set of preconditions is met.
Learning models are relevant since they can help explaining artifacts in the knowl-

edge structures of persons, when monitoring an educational process, as shown

later in the first case study in chapter 10. Also, many learning models stress the

importance of existing prior knowledge. It is therefore paramount for teaching and

learning, to take this into account, which requires identifying the existing knowledge.

Kolb & Fry (1975) and Kolb (1984) describe a basic model of learning that is based
on the principles of Constructivism presented above - explicitly on the work of Lewin,

Dewey and Piaget. According to this model, learning progresses through four
stages as displayed in Fig. 3. It begins with a concrete experience of, for example,

a phenomenon in the real world. This triggers a reflective observation of the

encountered phenomenon. The result of this stage is an abstract conceptualization

which in turn is refined and validated through active experimentation (cf. Kolb 1984,

p. 39). The model is influenced by Constructivism since it emphasizes that the

person is in charge of creating the knowledge subjectively and since the process

of learning originated in a concrete experience. The four stages form the basis of

four learning styles, that Kolb defines, based on a preference of a person for any of
the different aspects of the learning cycle. As Hay, Kinchin & Lygo-Baker (2008, p.

296) state: “The approach subsumes the notions of difference, since it suggests

that, while different people may have different affinities for one part or other of the
cycle, ultimately learning occurs only when the cycle as a whole is complete.”

Jarvis (1992) and more recently Jarvis (2012) presents a complex model of (adult)

learning which emphasizes that learning is a personal endeavor that will result in a

change of the learner, if successful.

Hay et al. (2008) integrate the ideas of the learning models of Kolb, Jarvis and the

theory of meaningful learning into a more general model in order to measure the

quality of learning. It is shown in Fig. 4. They identify several possible outcomes

of learning that is visible in concept maps (see next chapter). Aside from the two

extremes of rote learning and meaningful learning, there are also other possible

developments of the knowledge. For example, rote learning can lead to the point
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Concrete experience

Reflective observation

Abstract conceptualization

Active Experimentation

Fig. 3: Kolb’s learning cycle

where new concepts cannot be integrated into the current knowledge structure,

leading to a collapse and a subsequent re-emerging of the structure, in a different

and (hopefully) more meaningful connection.

There are several other models of learning as well. For example, Wittrock (1992,

p. 532) suggests a generative learning model in which “comprehension and under-

standing result from the processes of generating relations both among concepts
and between experience of prior learning and new information. [...] This active

generation process is quite different from the process of getting learners to store

information for reproduction on lists”. The model, again, indicates the importance of

existing knowledge.

3.3 Assessment

Learning is a process of changing the mind and the two processes of learning and

organization of knowledge - as presented in the last two sections - are intricately

related. Assessment is seen, in this work, in the specific context of education. It

usually entails a scoring or grading of some externalized (see section 3.1.2) artifacts,

like a response to a math problem, an essay, or a picture. Typically the person
assessed is not assumed to be an expert. As has been mentioned before, the

externalization of knowledge requires a form of representation. “How do we assess

and represent an individual’s knowledge? [...] The two processes, assessment and

representation, are obviously related. In our view the approach to representation
is more fundamental in that assumptions regarding the organization of knowledge

have implications for how we assess knowledge” (Goldsmith & Johnson 1990, p.

241).
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Theqteacherqpresentsqnewqmaterial

toqexamineqandqevaluate
whatqtheyqalreadyqknowq

andqwhatqisqnew

NOTqtoqexamineqtheq
newqmaterialqqinqtheqcontextq
ofqwhatqtheyqalreadyqknow

theqstudent'sqpriorqknowledgeq
structureqisqrobustqenoughqtoq
includeqtheqnewqmaterialqinq

non-trivialqwaysqwithoutqrecourseq
toqdeepqstructuralqlearning

theqnewqknowledgeqandqtheq
prior-knowledgeqareq

irreconciliableqforqtheqstudent

theqstudentqlearnsqtoqrepeat
theqnewqmaterialqbyqrote

theqstudentqrepeatsqonlyq
whatqtheyqknowqbefore

theqstudentqforgesqnewq
knowledgeqstructuresqtoq

reconcileqtheirqknowledgeq
andqunderstanding

theqstudentqseeksqtoqunderstandq
whatqtheyqhaveqlearntqtoqrepeat

theqstudentqforgetsqwhatq
theyqhaveqlearntqtoqrepeat

theqstudentqchooses

either/or

either/or

causingqdisjunctureqbefore

requiresqswitchqtoqanq
alternativeqstrategy

either/or

leadingqto

Fig. 4: A model of learning, adapted from Hay et al. (2008, Fig. 7). All boxes

with no outgoing arrows represent final states of the model: The two green

ones on the left represent an outcome in which the student has learned

something. The red box on the right represents an outcome of non-learning.
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An ideal assessment task “is objective and reliable, minimizes the influence of

context on responses, and captures something of the structural nature of the

subjects’ knowledge” (McClure, Sonak & Suen 1999, p. 476). Additionally, any
method of assessing knowledge should both be valid and reliable. “Reliability is an

expression of the proportion of the variation among scores that are due to object of

measure. As variation due to error goes to zero, the reliability of an assessment

goes to 1” (McClure et al. 1999, p. 477). Put differently: “A test is reliable when

individuals with the same fund of knowledge obtain the same scores, or if a given
individual obtains the same scores when the exam is repeated with no change of

knowledge occurring between tests” (Novak 2010, p. 221). A valid test measures

the construct that is supposed to measure (cf. McClure et al. 1999, p. 478).

The next two sections present two major ways of defining the desired results of an

assessment. The first focuses on small, testable items that are specifically defined,

the second puts more emphasis on complex interactions.

3.3.1 Learning Objectives

One way of characterizing a desired outcome that can be assessed is by formulating

explicit learning objectives. A learning objective is comprised of a verb and a noun.

“The verb generally describes the intended cognitive process. The noun generally
describes the knowledge students are expected to acquire or construct” Anderson

& Krathwohl (2001, p. 4f.). This definition is in accordance with others found

previously in literature (cf. Anderson & Krathwohl 2001, p. 12). The noun and verb

of the learning objective can be directly used in order to construct an assessment.
For example the learning objective “the student remembers that the second world

war ended in 1945” can be directly formulated into an assessment question: “when
did the second world war end?”

3.3.1.1 Taxonomies

When looking at different learning objectives, it is usually self-evident that some are

more difficult to achieve than others. Partly, this difficulty arises from the specific

element of knowledge that is part of each learning objective. But there is also a

difference in difficulty arising from the cognitive process. Clearly, remembering that

the second world war ended in 1945 is less complex then the learning objective

“the student is able to divide two polynomials”. These two objectives differ in the

cognitive function that is required (remembering a fact versus applying an algorithm)
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and in the type of knowledge that is required (a single fact versus an algorithm or

procedure).

Bloom (1956) was the first to identify a taxonomy of learning objectives by classifying

the cognitive process into six categories: Knowledge, Comprehension, Application,

Analysis, Synthesis and Evaluation. This taxonomy is “[o]ne of the most enduring

and useful models” (Sousa 2009, p. 248). Especially, since Anderson & Krathwohl

(2001) present a revised version of Bloom’s taxonomy of learning objectives. A
second dimension is introduced that classifies the element of knowledge that is part

of each learning objective. Also, to correspond better to the actual wording of a

learning objective, the original dimension of Bloom has been rephrased into verbs

and the last two categories were interchanged.

The knowledge dimension categorizes different types of knowledge appearing in

learning objectives. The types are factual-, conceptual-, procedural-, and meta-

cognitive knowledge (cf. Anderson & Krathwohl 2001, p. 27). The second dimension

deals with the cognitive process that is needed for a learning objective. The possible

cognitive processes are: remember, understand, apply, analyze, evaluate and
create (cf. Anderson & Krathwohl 2001, p. 30).

Taking, for example, the learning objective “the student is able to sort a list of

numbers using Quicksort”: In this case, “being able to sort” points to an application

of knowledge, so the cognitive process dimension would be “apply”. The knowledge

element is “Quicksort” which, arguably, is a form of “procedural knowledge”. Hence,

this learning objective would be classified as “applying procedural knowledge”.

Particularly in the context of computer science, Fuller, Johnson, Ahoniemi, Cukier-

man, Hernán-Losada, Jackova, Lahtinen, Lewis, Thompson, Riedesel & Thompson

(2007) argue that the taxonomy of Anderson and Krathwohl is lacking a distinc-

tion between more practically oriented cognitive processes and more theoretically

oriented ones. They propose a three dimensional taxonomy by further splitting

up the cognitive process dimension into a plane, with the categories remember,

understand, analyze, and evaluate forming one dimension (called “Interpreting”).

The second dimension (called “Producing”) is made up of the three levels: none,

apply, and create. They continue to describe certain “pathways” through this two

dimensional plane that are typical for certain approaches, like “trial and error” (cf.
Fuller et al. 2007, p. 164).
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3.3.2 Learning Outcomes

While the terms “learning objective” and “learning outcome” are sometimes used
synonymously, in this work, a learning outcome is a more complex artifact that has

been created as the result of an assessment task (or learning process) and has

not been defined a priori by the assessor - in contrast to learning objectives. A
learning outcome could thus be, for example, a report written by a student which is

then assessed or analyzed. The next section presents a way of characterizing and
classifying such an outcome with regard to the knowledge and abilities that went

into its creation. Competencies, which are briefly described afterwards are taking

this idea even further.

3.3.2.1 SOLO Taxonomy

Biggs & Collis (1982) describe a taxonomy that - instead of classifying learning
objectives based on their difficulty - focuses purely on the structure of the actual

learning outcome. The taxonomy is concerned with reception learning of existing

knowledge and is based on the theory of meaningful learning (cf. Biggs & Collis 1982,
p. 3). It also puts more emphasis on the learner, instead of the learning material.

“The difference, essentially, is that the Bloom levels are a priori ones, imposed in

advance by the teacher, whereas we would prefer to use levels that arise ‘naturally’
in the understanding of the material” (Biggs & Collis 1982, p. 13).

Table 3.1 shows the taxonomy and some explanations of the levels. Capacity “refers

to the amount of working memory, or attention span, that the different levels of
SOLO require” (Biggs & Collis 1982, p. 26). The relating operation “refers to the way

in which the cue and response interrelate” (Biggs & Collis 1982, p. 26). Additionally,
Biggs & Collis (1982) also give the attribute of “Consistency and closure”, referring

to the felt need of the learner to come to a conclusion that is consistent with the data

and other possible conclusions (cf. Biggs & Collis 1982, p. 27), which increases
with the levels of the taxonomy.

While learning objectives are formulated in a manner that allows direct testing of
them and therefore also of the different levels of the taxonomy, using the SOLO

taxonomy requires a different approach. The assessment must be designed in such

a way to elicit a response that accurately captures the level of the respondent (cf.
Biggs & Collis 1982, p. 177). Failure to do so will typically result in observed levels

being too low. Higher levels of the SOLO taxonomy require elaborate reasoning

and the inclusion of external facts of knowledge. Failure to accommodate for this
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SOLO Level Capacity Relating operation

Prestructural Minimal: cue and response

confused

Denial, tautology, transduction.

Bound to specifics.

Unistructural Low: cue and one relevant

datum

Can “generalize” only in terms of

one aspect.

Multistructural Medium: cue and isolated

relevant data

Can “generalize” only in terms of

a few limited and independent as-

pects.

Relational High: cue and relevant data
and interrelations

Induction: Can generalize within
given or experienced context us-

ing related aspects.

Extended

Abstract

Maximal: cue and relevant
data and interrelations and

hypotheses

Deduction and induction. Can
generalize to situations not expe-

rienced.

Table 3.1: The levels of the SOLO taxonomy as described by Biggs & Collis

(1982, Table 2.1)

fact in the design of an assessment will often lead to less elaborate answers than a
respondent could produce.

Even though the focus of the SOLO taxonomy is on the response of a person, the

assigned level is still not considered a personal attribute: “The SOLO taxonomy

makes no attempt to infer a cognitive processing level although it might be argued

that to perform at a relational level or an extended abstract level involves greater
cognitive processing than that required for unistructural or multistructural since the

learners not only have to be able to recall items, they have to show the relationship

among items (relational) and draw conclusions (extended abstract)” Fuller et al.
(2007, p. 155).

3.3.2.2 Competencies

Taking the idea of e.g. the SOLO taxonomy even further, a competency is a personal

attribute that can be measured and that is based solely on an actual (observable)

outcome. The idea behind competencies and competence based assessment is

that “in a modern industrial society, education and professional qualifications can

no longer be described according to a rigid canon of knowledge in specific subjects
passed on from generation to generation. Instead building competencies has been

identified as the main objective of education” (Klieme et al. 2008, p. 3).
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In his seminal publication, McClelland (1973, p. 7) criticized a testing mentality

that is focused on intelligence or general aptitude tests and suggested instead that

“[i]f you want to test who will be a good policeman, go find out what a policeman
does. Follow him around, make a list of his activities, and sample from that list

in screening applicants.” There, already, one of the central ideas of competence

based assessments is visible: Testing should be done as close to real-life scenarios

as possible: “It seems wiser to abandon the search for pure ability factors and to

select tests instead that are valid in the sense that scores on them change as the
person grows in experience, wisdom, and ability to perform effectively on various

tasks that life presents to him” (McClelland 1973, p. 8).

There is no single accepted definition of competence. Specifically for large scale

assessments, competence can be defined as “context-specific cognitive dispositions

that are acquired by learning and needed to successfully cope with certain situations

or task in specific domains” (Klieme et al. 2008, p. 9). This, in turn, is based on
a definition given by Weinert (2001, p. 27f.), which lists several components of

competencies - among them knowledge, but also e.g. volition. By measuring

competencies in authentic (though maybe simulated) real world tasks, a greater
validity is reached then by purely assessing knowledge, which may be rote-learned

(cf. Klieme et al. 2008, p. 9). “Novices can know a principle, or a rule, or a

specialized vocabulary without knowing the conditions of effective application. In

contrast, when experts access knowledge, it is functional or bound to conditions

of applicability. [...] The progression from declarative knowledge to well-tuned

functional knowledge is a significant dimension of developing competence” (Glaser
& Bassok 1989, p. 635).

Education with the goal of acquiring competence must aim for the students to choose

to learn meaningfully. “Beginners’ knowledge of a domain is spotty, consisting of

isolated definitions and superficial understandings of central terms and concepts.

As proficiency develops, these items become structured and are integrated with past

organizations of knowledge” (Glaser & Bassok 1989, p. 647). It is obvious, though,

that while declarative knowledge is in most cases a prerequisite of competent per-

formance of complex skills, competence is not a direct consequence of declarative

knowledge. For example the knowledge required to evaluate a mathematical proof

and to generate one are nearly equivalent, but the execution of each skill is different
(cf. Glaser & Bassok 1989, p. 653).

Assessing competencies is a non-trivial task. It involves defining a cognitive model

of competencies, which is difficult because of the contextualized nature of compe-

tencies (cf. Klieme et al. 2008, p. 10). It also requires defining suitable psychometric

models that relate the theoretical construct of competences to empirical assess-
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ments (cf. Klieme et al. 2008, p. 12). These two have to be “translated into concrete

empirical measurement procedures” (Klieme et al. 2008, p. 13). “Valid competence

models basically serve two goals: they are used to define educational standards and
to measure the development of competences in diverse settings” (Linck et al. 2013,

p. 1). Currently, there exists only a limited number of theoretically defined compe-

tence models - for computer science, the MoKoM project tries to establish a model

for certain aspects of the scientific field (cf. Linck et al. 2013).

Nevertheless, conceptual knowledge is, in general, an important component of

competence. “Even in highly procedural domains, acquiring knowledge of concept

relatedness may improve subsequent performance” (Trumpower & Goldsmith 2004,

p. 443). The idea of competencies has influence on instruction however, insofar

as “all investigators agree that useful knowledge is not acquired as a set of general

propositions, but by active application during problem solving in the context of

specific goals” (Glaser & Bassok 1989, p. 659). Additionally, differing skills require
differing amounts of declarative knowledge which should be reflected in the teaching

(cf. Glaser & Bassok 1989, p. 660).



4 Concept Maps

Historically, concept maps1 were invented in the 1970s as a tool to help structur-

ing and visualizing the responses of children in clinical interviews (cf. Novak &

Cañas 2010, p. 1). The interviews were part of a twelve-year research project.

It investigated the premise, “that substantive learning of basic science concepts

was possible — if quality instruction could be offered” (Novak & Musonda 1991, p.
118), by providing interactive lessons on audio tapes to first and second grade chil-

dren. The researchers then used a technique based on Piaget’s clinical interviews

(Piaget 1929) to monitor the change of the knowledge structures of the participants

over the course of twelve years. To help evaluating the interviews and extract the

information about relevant knowledge structures, a visual representation of the

occurring science concepts and their connections was developed, which in the end
became concept maps.

“Prior to development of the concept mapping technique, our
analyses of conceptual change focused primarily on the kind and

frequency of propositions made by interviewees before and after

relevant instruction. We found this to be useful, but there was

still a lack of clarity as to how concept meanings were related to

one another over the whole domain of knowledge represented in

the interview. The construction of concept maps permitted us to
begin with the most general, most inclusive concept dealt with in

the interview and to show propositional structures in a hierarchical

arrangement, also illustrating important interrelationships among

concepts included in different interviewee statements.” (Novak &

Musonda 1991, p. 126)

Later on, the use of concept maps shifted from a specific technique for data analysis
to a general technique for learning, teaching, and assessing structural knowledge.
Usually, the learners create the concept maps themselves in these settings (cf.

Novak & Cañas 2008, p. 5, p. 11ff.). The technique of concept mapping is

fundamentally based on the ideas of Constructivism and meaningful learning (cf.

Novak & Musonda 1991, p. 126). To this day, concept maps have been successfully

used as learning and teaching aids as well as for the assessment and investigation

of persons’ knowledge structures in countless scenarios, studies, and subject

domains, see e.g. (Al-Kunifed & Wandersee 1990). Novak & Cañas (2010) present
1The term “concept map” has been trademarked, serial number 75230079 registered at the United

States Patent and Trademark Office but abandoned in 1998



46 4.1. ELEMENTS

an in-depth review over relevant literature and many areas of application. Also,

there is a bi-annual international conference solely dedicated to concept mapping2.

Attempting to give an exhaustive review over the relevant literature is beyond the
scope of this work. The subject domains to be found are ranging from human

resource development (Daley, Conceicao, Mina, Altman, Baldor & Brown 2010),

political science (Zimmaro, Zappe, Parkes & Suen 1999) over mathematics (Ozdemir

2005), biology (Kinchin 2000), training in dental medicine (Kinchin & Cabot 2009)

and nursing (Akinsanya & Williams 2004), physics (Mistades 1999), didactics
of informatics (Gouli 2007) to computer programming (Keppens & Hay 2008),

computer science (Sanders, Boustedt, Eckerdal, McCartney, Moström, Thomas &

Zander 2008), (Ertl & Mok 2010) and beyond. Also, concept maps have been used

for other tasks in the context of education, like the planning (Novak & Cañas 2008)

or comparison (Anohina-Naumeca, Graudina & Grundspenkis 2012) of curricula.

The next sections present the related work concerning the definition of concept
maps and their application in more detail.

4.1 Elements

Fig. 5 shows an example of a concept map, by Novak (2010). It contains three

elements of interest: Above all, there is a focus question. Its purpose is to define a
context and help focusing on relevant aspects more easily (cf. Novak & Cañas 2008,

p. 11). The rest consists of graphical boxes that all contain a label and represent

a concept. Concepts are defined as “perceived regularities or patterns in events
or objects, or records of events or objects, designated by a label” (Novak 2010,

p. 25). Two concepts that are linked by a connection are forming the basis of a

proposition. “When two or more concepts are related by the use of what we will call

linking words, propositions are formed. These become the fundamental units of

meaning stored in our cognitive structure.” (Novak 2010, p. 26). A proposition is

composed of the two concepts and the label of the connection itself. Originally, only

those links that are meant to be “read‘” either horizontally or upwards should show
an arrow-head (cf. Åhlberg 2004, p. 26). However, this is clearly not the case in the

concept map shown in Fig. 5. Instead, all links without an arrow-head should be

read from top to bottom (cf. Safayeni, Derbentseva & Cañas 2005, p. 743). To avoid

misinterpretation, it is also customary to always use arrow-heads, though. The basic
rules for creating a concept map are summarized by Hay & Kinchin (2006, p. 129)

as follows:
2see http://cmc.ihmc.us
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FocusvQuestion:vHowvdovpropositionsvrelatevtovknowledge?

Propositions

Conceptsvlinkedvwithvconcepts

Meaningfulvstatements

Buildingvblockvofvknowledge

Linkingvwords

valid invalid

Verifiablevobervations Avbeliefvsystem

Science Religion

are

using

canvbe

basedvon notvsupportedvby

supportedvby

asvin

suchvas

Fig. 5: A concept map illustrating the concept “proposition” and its relation to

knowledge. Adapted from Novak (2010, p. 26)
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• “The concepts that an individual deems important in illustrating their per-

sonal understanding of a topic are placed in text-boxes and arranged

hierarchically on a page (so that broad and inclusive concepts are at the
top and detail or illustrative example, at the bottom).”

• “Concepts are then linked with arrows that are annotated with “linking

statements” to explain the nature of the link.”

• “Concepts may be listed only once, but any number of links may be made

between any number of concepts at any number of conceptual links.”

A concept map, in its original intent is meant to answer a focus question (cf. Valerio,
Leake & Cañas 2008, p. 122). Research has shown, that the formulation of the

focus question has direct impact on the resulting maps’ structures (cf. Cañas &

Novak 2012, p. 250). Also, it is necessary to define the context of the map (cf.
Cañas, Carff, Hill, Carvalho, Arguedas, Eskridge, Lott & Carvajal 2005, p. 207),

since concepts often have different meaning depending on the context, for example

the concept “class” in the contexts of object orientation, biology, or education.

However, when the context is clear to participants, the focus question is often more

a task than an actual question that is meant to be answered by the map, which

“usually leads to a descriptive concept map instead of an explanatory map” (Cañas

& Novak 2012, p. 250). Omitting a specific focus question is especially appropriate
for evaluating prior knowledge (cf. Cañas & Novak 2012, p. 251). Also, it is not

necessarily seen as part of the concept map itself (cf. Cañas & Novak 2006, p.

496).

Safayeni et al. (2005) investigate the notion of concepts and propositions more

closely. The results show that a concept in a concept map can stand for a psycho-

logical category (cf. Safayeni et al. 2005, p. 475 ff.). Also, it may be that certain,
especially abstract concepts, “exist in the mind at the level of label with minimal de-

scription without references to any entity” (Safayeni et al. 2005, p. 748). Concerning

the propositions, the following taxonomy of possible relationships between concepts
and examples have been identified (cf. Safayeni et al. 2005, p. 480f.):

Static Inclusion a square is a geometric shape.

Common membership squares and triangles are geometric shapes.

Intersection squares have one more side than triangles.

Dynamic Causality travel time is an inverse function of the speed for a given
distance.
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Correlation/Probability academic performance in high school is a good

predictor for academic performance at university.

Concept maps in their traditional form are typically not used to display dynamic

relationships (cf. Safayeni et al. 2005, p. 481). Therefore, Miller & Cañas (2008,

p. 2) slightly alter this definition by defining a dynamic proposition as involving

“1) physical movement, 2) action, 3) change of state, or 4) [...] dependency or
causal relationship”. Furthermore, dynamic propositions can be causative or non-

causative: “In order for a dynamic proposition to be causative, one part of the

proposition must embody the ‘cause’ or ‘probable cause’, while the other part
must correspond to the ‘effect’. Alternatively, one part of the proposition must be

identifiable as the ‘source’ from which that which the effect stated in the other part

of the proposition originates” (Miller & Cañas 2008, p. 2). Causative propositions
can also be quantified. “Quantified causative propositions explicitly indicate the

manner in which a certain change in one concept induces a corresponding change

in the other concept, unlike non-quantified propositions that make no reference to

directionality or any other measure of the causal relationship” (Miller & Cañas 2008,

p. 366). Based on this modification, both types of relationships can be expressed

in concept maps, even though quantified dynamic relationships are usually found

seldom (cf. Miller & Cañas 2008).

Most of the specific details of concept mapping as originally defined by Novak have

been altered over time, allowing for a wide variety of concept mapping tasks to
be found in literature - sometimes showing almost no similarity to the original (cf.

Sousa 2009, p. 200ff.). Cañas et al. (2005, p. 208) define a “well-constructed”

concept map as one where “[e]ach pair of concepts, together with their joining

linking phrase, can be read as an individual statement or proposition that makes

sense”, “[c]oncepts and linking phrases are as short as possible, possibly single

words” and “[t]he structure is hierarchical and the root node of the map is a good

representative of the topic of the map.” Similarly, Novak insists on his definition:

“Unlike so many ‘concept maps’ appearing in the literature. [sic!]

what our team developed was a knowledge representation tool

showing concepts and explicit prepositions forming a hierarchical

structure. So-called concept maps that do not specify the links

between ‘nodes’ fail to construct propositions which we see as the
essential elements in representing meanings. The lack of hierarchy

fails to indicate what concepts are most inclusive, or most salient for

a given context to which the knowledge structure is to be applied.”

(Novak 2002, p. 553)



50 4.1. ELEMENTS

4.1.1 Map Structure

The structure of a concept map is relevant, since it is supposed to reflect the knowl-
edge structures of a person. As Trumpower et al. (2010, p. 5) note: “[K]nowledge

organization has been recognized as important in the fields of education and edu-

cational assessment”. This is based on the premise that “knowledge requires not
only acquiring facts, procedures, and concepts, but also having an understanding

of the interrelationships among those facts, procedures and concepts” (Trumpower
et al. 2010, p. 5). McClure et al. (1999, p. 491) assert that it is “the organiza-

tional component captured by concept maps that may allow teachers to identify

and correct student misconceptions”. Koponen & Pehkonen (2010, p. 1670) have

analyzed concept maps and conclude: ‘[W]ith more connections the structure also

becomes more ordered. This suggests that students that are able to provide more

connection (having more knowledge at their command) are also better at organizing
that knowledge”.

A very basic structural aspect is small structural patterns between concepts. Novak

(2010, p. 235) notes, without further elaboration, that “[o]nce nodes (concepts)
have been placed in a map, they are related to one another to form larger graphic

structures, usually triads”. Koponen & Pehkonen (2010, p. 1656) link several basic

patterns, namely “different types of hierarchies, cliques, transitive patterns and

cycles”, to observable artifacts of procedures of knowledge construction.

In contrast to these minimal structural elements of which a concept map is com-

posed, it is also possible to investigate the overall structure of the map. Cañas &
Novak (2012, p. 249) note that “[t]he overall structure of the concept map provides

an idea of the global organization of the map, showing for example clusters of

concepts in subdomains, whether the concept map is ‘balanced’ or whether one

subdomain includes a much larger number of concepts and links than other subdo-

mains”. As noted above, traditionally, a concept map is hierarchical. Propositions

that connect non-adjacent levels of the hierarchy are called cross-links. Later on,

cross-links are more generally described as “relationships or links between concepts

in different segments or domains of the concept map” (Cañas & Novak 2012, p.

2). The hierarchy of a map becomes most important when concept maps are used

as a teaching aid - alluding to the process of progressive differentiation: “Because

meaningful learning proceeds most easily when new concepts or concept meanings
are subsumed under broader, more inclusive concepts, concept maps should be

hierarchical” (Novak & Gowin 1984, p. 15). In contrast, Ruiz-Primo, Shavelson
& Schultz (1997, p. 7) investigate the necessity of a hierarchical structure and

conclude that “[m]ethodologically and conceptually, there is no need to impose a
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hierarchical structure on concept maps if the structure of the content domain to

be mapped is not hierarchical. In fact, it may be that different map structures are

needed to represent different types of content structures”. They continue to point
out, that there is no clear definition of a hierarchical concept map and that defining

it - especially in the presence of cross-links - is a non-trivial task (cf. Ruiz-Primo

et al. 1997, p. 8f.). One possible definition will be given later in this work. Åhlberg

(2004, p. 27) suggests that in order to avoid ambiguities, concept maps should best

be organized around a central concept, instead of forming a hierarchy. Safayeni
et al. (2005, p. 745) note that the question whether or not a concept map must

always be hierarchical is an open debate.

Leake, Maguitman & Reichherzer (2005) and Leake, Reichherzer, Cañas, Carvalho

& Eskridge (2004) investigate elaborate ways of using a concept map’s structure

to determine the importance of single concepts for the map. Additionally, Hay &

Kinchin (2006) present “conceptual typologies” of concept maps. According to the
authors, concept maps can be divided into three major types of morphology:

Spoke One central concept acts as a “hub” and other concepts are connected
directly to that “hub”.

Chain The concepts are linked consecutively one to the other.

Net Several concepts form a (densely) connected network of propositions.

Fig. 6 shows an abstract example of the three different structures. Kinchin (2000)
describes the process that led to the identification of these three types. They are the

result of a research approach based on grounded theory and using different sets of

concept maps created in the context of biology. However, e.g. Sanders et al. (2008,

p. 333) report that using only these types of morphology didn’t work for a study

in object-oriented programming and Koul, Clariana & Salehi (2005) report a high

variability in the correlation between qualitatively derived concept map scores based

on these types of morphologies and scores of an essay writing task - in contrast to

a quantitatively derived score. Yin, Vanides, Ruiz-Primo, Ayala & Shavelson (2005)

suggest adding the types “tree” and “circular” to the list.

As has been mentioned at several instances in chapter 3, structure and organization

of knowledge are assumed to be different between experts and novices. Therefore,

it seems plausible to expect these differences to also show in the structure of

concept maps. Table 4.1 presents differences between concept maps of experts

and concept maps of novices that were found by Kinchin (2000) regarding the

different types of morphology. Concerning the development of knowledge, the
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(a) Spoke (b) Chain (c) Net

Fig. 6: The three different types of morphology of concept maps. Adapted

from Kinchin (2000, p. 5-42)

structural developments visible in concept maps is closely tied to the learning model
of Hay et al. (2008) shown in Fig. 4. Beginning with some form or prior knowledge,

the rote- and non-learning outcomes are assumed to reflect by adding new concepts

and propositions in a chain-like manner to the existing structure, whereas the
meaningful learning is represented by adding new information into the knowledge

structure, which makes the concept map more and more net like. A disjuncture

that is caused by new facts which are irreconcilable with the existing knowledge

structure manifests itself by a sudden collapse of the structure of the concept maps

and a re-emerging of a more net-like map structure (cf. Hay et al. 2008, Fig. 6).

4.2 Applications

While there are many different applications of concept maps, the most prominent

ones are arguably supporting teaching, learning and assessing structural knowledge.

Other applications include the archiving of expert knowledge (cf. Cañas et al. 2005,

p. 208) or supporting cooperative learning (cf. Mandl & Fischer 2000, p. 7).

“The widespread use of concept maps is based on the notion

that a concept map is a reflection of the builder’s cognitive structure

and thus portrays his or her understanding of the domain depicted

in the map. For example, a concept map built by a student will

show misconceptions as wells as concepts that are not clearly
understood, and at the same time it makes evident what the student

does understand.” (Cañas & Novak 2012, p. 247)
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When creating a concept map, there are four different possible scenarios. The

simplest case is one person drawing a concept map at one point in time. Next, a

person can continue to work on a concept map over a longer period of time, like
creating a concept map over the course of a lecture by revisiting and changing

the map over and over again. This approach has been called “recursive concept

mapping” by Kern & Crippen (2008, p. 33). Alternatively, the concept map can be

created collaboratively by several persons (cf. Chiu, Huang & Chang 2000), again

at one instance or over a longer period of time.

4.2.1 Learning and Teaching

Since the initial use of concept mapping has been broadened to include teaching
and learning, it has a long history of application in both settings.

“A concept map is a schematic device for representing a set

of concept meanings embedded in a framework of propositions.

Concept maps work to make clear to both students and teachers
the small number of key ideas they must focus on for any specific

learning task. A map can also provide a kind of visual road map

showing some of the pathways we may take to connect meanings of

concepts in propositions. After a learning task has been completed,

concept maps provide a schematic summary of what has been

learned.” (Novak & Gowin 1984, p. 15)

Concept maps are regarded as well suited for a constructivist approach to teaching
and learning (cf. Kinchin, Hay & Adams 2000, p. 45). Especially for science

education, Kinchin (2000, p. 63) remarks that in contrast to possible alternative

graphical organizers “it is concept mapping [...] about which the literature has been

so consistently positive”. Maps can be used to construct a shared meaning between

persons, for example students and teachers, as well as serve to help students

become aware of their own knowledge structures. Rye & Rubba (1998, p. 522) point

out that concept mapping may foster meta-cognition in learners. Also, a concept

map can serve as an advance organizer (cf. Ausubel 1968, p. 136f.) for students,

helping them to integrate newly presented material into their personal cognitive

structure. The usefulness of presenting knowledge to be learned in an organized

way is generally accepted (cf. Goldstein & Vanhorn 2011, p. 178ff.). Additionally,

Trumpower & Goldsmith (2004), Kinchin & Hay (2007), and Hay et al. (2008) point
out, that instruction often requires the teacher to present in a linear fashion the
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dense interrelations among concepts. Using concept maps can help students to

see the original structure beyond the linear presentation. Novak & Gowin (1984),

and Trumpower & Goldsmith (2004, p. 428) explain how the propositional structure
of concept maps facilitates learning of new meanings, especially regarding concept

assimilation:

“Except for a relatively small number of concepts acquired very

early by children through a discovery learning process, most con-

cept meanings are learned through the composite of propositions

in which the concept to be acquired is embedded. Although con-

crete empirical props may facilitate concept learning, the regular-
ity represented by the concept label is given additional meaning

through propositional statements that include the concept.” (Novak

& Gowin 1984, p. 15)

Nesbit & Adesope (2006) provide a meta-study that gives an overview over the
effectiveness of concept maps as a learning aid. They also give a theoretical insight

into why concept mapping may be effective. If viewing a concept map is akin to

reading a map (i.e. a more visually oriented processing of the material), the authors

argue that the dual coding theory might provide a basis for the effectiveness of con-

cept maps. “Viewing or constructing concept maps in conjunction with semantically

equivalent text or spoken presentations may facilitate cognitive representation of the

information in both verbal and visuospatial memory. [...] Links between verbal and
visuospatial codes provide additional retrieval paths for both types of information.”

(Nesbit & Adesope 2006, p. 417). If viewing a concept map is seen more akin to
reading a text, a different argument can be made for the effectiveness of concept

maps when compared to text: “In maps, a concept is represented by a single node

regardless of how many relationships it has with other concepts. That is, maps
visually integrate propositions dealing with the same concept. In contrast, a concept

may be represented at several places scattered throughout a text passage, and it

may be represented by different words” (Nesbit & Adesope 2006, p. 418).

Regardless of the theoretical model underlying the effectiveness, the meta-study

shows a clear trend toward the usefulness of concept maps when compared to
other ways of presenting information like “activities such as reading text passages,

attending lectures, and participating in class discussions” (Nesbit & Adesope 2006,

p. 434). Also, when presenting preconstructed maps to students, it seems like there
is a higher gain for students with lower reading abilities (cf. Nesbit & Adesope 2006,

p. 434).
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Karakuyu (2010) reports a measurable positive effect on achievement in and attitude

towards physics when students constructed concept maps as part of the teaching.

Kinchin (2000) also reports that the attitudes of teacher and students towards
concept mapping is generally positive. “Concept mapping is a valuable tool that has

enormous potential to support teaching and learning at all levels. Using concept

maps should not be seen as an add-on activity [...], but as a core activity to stimulate

the processing and synthesis of information” (Kinchin 2011).

4.2.2 Assessment

Using concept maps as a form of assessment is a natural extension of using

them as teaching and learning aids. Kern & Crippen (2008, p. 33) explain how
concept mapping can provide guidance for teachers in the planning of their lessons:

“In a relatively short period of time, teachers can glean the following by viewing

student concept maps: prior knowledge, misconceptions, and the acquisition and

accommodation of new knowledge as maps are modified over time. The information

derived from analyzing student concept maps can be used to tailor lessons to the

immediate needs of students, resulting in a richer, more meaningful science learning
experience”.

The extent of what a concept map based assessment can cover is limited, though.
“A concept map as an assessment can be thought of as a set of procedures used to

measure important aspects of the structure/organization of a student’s declarative

knowledge” (Ruiz-Primo 2004, p. 555). Within these limits, however, Novak (2010,

p. 231) and Novak & Cañas (2010, p. 3) point to the successful application
of concept maps as a method for assessing or evaluating students’ knowledge

structures across many different fields of study. Especially, it has been shown that
assessments based on concept mapping can differentiate between the knowledge

of experts and novices as well as between meaningful learning and rote-learning

(cf. Derbentseva, Safayeni & Cañas 2007, p. 450). Also, concept mapping may be
especially useful in assessing misconceptions (cf. McClure et al. 1999, p. 476), (cf.

Hay & Kinchin 2006, p. 130).

When used as an assessment task, the validity and reliability of concept mapping
must necessarily be of concern. Establishing the reliability of an assessment task

using concept maps is not easy: “[S]ources of error in a concept map test include:
(a) variations in students’ concept mapping proficiency, (b) variations in the content

knowledge (domain expertise) of those evaluating the concept maps, and (c) the

consistency with which the concept maps are evaluated” (McClure et al. 1999, p.
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477). However, at least under certain conditions, the reliability has been established

by several different studies (cf. Novak 2010, p. 232).

Concerning the validity, the results found in literature are generally positive: “The

validity issue is relatively transparent since it is obvious that the fundamental char-

acteristics of constructivist learning is exemplified in a well-constructed concept

map” (Novak 2010, p. 231). Rosas & Kane (2012) draw a similar conclusion. Albert

& Steiner (2005) present a more detailed overview over the problem regarding
validity and suggest methods of determining it. One aspect that may interfere with

validity is the meta-cognitive thinking that concept mapping fosters, as noted above.

Going even further, Cañas et al. (2005, p. 208) establish that concept mapping is

more than a passive externalization of an existing knowledge structure: “During

concept map construction, meaning making occurs as the learner makes an effort

to link the concepts to form propositions.” Leake, Maguitman & Cañas (2002, p.

168) comment that experts who are constructing a concept map “are not simply
externalizing pre-existing internal knowledge but are also doing knowledge construc-

tion”. Additionally, Passmore (1999) provides a reasoning that integrates schema

theory and concept maps, concluding, that concept maps can be representations
of mental models. This is interesting in so far, as it provides a connection between

concept mapping and the thinking process itself. Instead of seeing concept maps

merely as an externalization of a person’s knowledge, it can also be seen as the

representation of a mental model that existed in working memory during the thinking

process of a person.

In general, every externalization will be influenced by many different variables which
are neither completely known nor easily (or at all) measurable. The extent to which

the knowledge of a person has been externalized in a concept map cannot be

quantified. As Cañas & Novak (2012, p. 249) put it: “However, even when using the

best rubrics that include both content and graphical structure, the educator needs to

understand that the type and quality of the concept map may be more a reflection

of the process and conditions under which the concept map was constructed than

of the student’s understanding of the domain”.

Concerning the assessment task itself, Ruiz-Primo & Shavelson (1996) present

the results of a qualitative analysis of a large body of literature in order to present

and organize the multitudes of concept map assessment tasks. Their results show

that concept mapping is interpreted and used in a highly variable way throughout

literature. Their analysis results in the following classification system (the examples

given are also taken from Ruiz-Primo & Shavelson (1996, p. 573ff.) but have been

adapted):
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1. Assessment task

(a) task demands (e.g. filling in blanks in a concept map as opposed to
constructing a complete concept map from scratch),

(b) task constraints (e.g. being asked to construct a hierarchical map),

(c) task content structure (e.g. the subject that is mapped has an inherently

hierarchical structure).

2. Response format

(a) response mode (e.g. drawing a map or taking part in an interview),

(b) characteristics of the response format (e.g. a skeleton map is given on
a sheet of paper),

(c) mapper (e.g. a student as opposed to an interviewer).

3. Scoring system

The items of the classification systems have some overlap, i.e. are not fully inde-
pendent from one another. For example, if the task consists of taking part in an

interview, the response format will normally not be a concept map. Therefore, Ruiz-

Primo (2004) mapped the complete classification system onto a one dimensional
continuum of “Degree of Directedness”. Anohina-Naumeca & Graudina (2012)

present a detailed discussion of the different possibilities of directedness. A very

low degree for example is creating a concept map without any further restrictions

and a very high degree of directedness is filling in blanks in a pre-constructed

concept map (cf. Ruiz-Primo, Schultz, Li & Shavelson 2001). Ruiz-Primo (2004, p.

561) indicates that the decisions along the dimensions of the classification system

are complex. “Which technique(s) should be considered the most appropriate for
large scale assessment? Practical issues, though, cannot be the only criterion for

selection. We have shown that the constraints and affordances imposed by different
forms of assessments affect the student’s performance. This means that different

mapping techniques may lead to different conclusions about students’ knowledge”.

The task demands are relevant, since they may influence the process of externaliza-

tion. To support this, Ruiz-Primo et al. (2001) compare the results of a low directed

“construct a concept map from scratch” task with a high directed “fill in the blanks in

a concept map” task. The results show that the tasks, when compared to a multiple

choice test, do not seem to measure the same aspects of student knowledge. Also,

filling in blank concepts and filling in blank propositions do not seem to be equivalent
assessment tasks. Yin et al. (2005) investigate the difference between choosing

edge labels from a list of possible labels and freely creating edge labels without
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restrictions. Again, the tasks seem to measure different aspects of a person’s knowl-

edge with the non-restricted task being better suited for capturing misconceptions

and partial knowledge pointing to a higher validity (cf. Yin et al. 2005, p. 181).
The restricted task however, showed a higher reliability concerning the scoring of

propositions.

The very low directed task of creating a concept map from scratch without any task

constraints has been referred to as the “gold standard” of concept map assessments
(cf. Yin et al. 2005, p. 167). However, Cañas & Novak (2012) list several common

restrictions, among which is providing a list of concepts that should be used for map

construction. They note that “research has shown that the same students construct

better maps when given a list of concepts [...]. More specifically, even if the number

of concepts is similar in both cases (with the given list and without), the structure

of the maps is different. Without the list of concepts the students tend to use one

central concept and the maps have ‘star’ structure” (Cañas & Novak 2012, p. 5).
Even more restrictive is an assessment task in which the participants of a concept

map assessment may only use the concepts from that list, called restricting list of

concepts. “Providing a restricting list of concepts is an effective way of determining
the students’ prior knowledge at the beginning of a study unit” (Cañas & Novak 2012,

p. 251).

The task content structure of the subject matter underlying the task is assumed

to reflect back upon the concept maps. It is therefore also an attribute of the

assessment task. For example, if the content structure is hierarchical, one would

expect concept maps to also reflect that hierarchy. If the content structure is more
linear, a more linear map is to be expected from an assessment task (cf. Ruiz-Primo

& Shavelson 1996, p. 578). However, Kinchin (2013, p. 100) points out that “whilst

some structures are more or less contextually appropriate in a given situation, the

student needs to appreciate this and to construct understanding accordingly”. In

other words, the replication of the content structure as agreed upon by experts in a

concept mapping task may not be a feature of the assessment task, but more of the

person being assessed.

Concerning the response format, mostly the response mode is interesting for this

thesis, as it encompasses the use of pen and paper or software for concept map

creation (cf. Ruiz-Primo & Shavelson 1996, p. 579f.). Using software to draw the

concept map allows, for example, refining a map over time more easily than when

using traditional methods. Kern & Crippen (2008, p. 33) believe that this fosters

metacognition: “Metacognition, the act of thinking about one’s own thinking, is a

critical component in the conceptual change process. Recursive concept mapping,

which involves building on and restructuring the same concept map over time,
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can scaffold this change by providing an avenue for representing and evaluating

students’ thinking”. Kwon & Cifuentes (2009) investigated the difference between

digitally drawn concept maps and pen and paper based ones and concluded that
digital creation seems to have a positive influence on students’ motivation during

the task. The next section investigates the last part of the classification in grater

detail - the scoring of concept maps.

4.2.2.1 Scoring System

“A scoring system is a systematic method with which students’ concept maps can be

evaluated accurately and consistently. As expected, a myriad of alternative scoring

systems can be found. However, they can be classified into three general scoring
strategies: (a) score the components of the student’s map, (b) compare the student’s

map with a criterion map and (c) use a combination of both strategies” (Ruiz-Primo &

Shavelson 1996, p. 581f.). Besides the overview of Ruiz-Primo & Shavelson (1996),

Anohina-Naumeca & Grundspenkis (2009) and more recently Strautmane (2012)

also present a systematic evaluation of many different quantitative and qualitative

scoring methods. So, instead of trying to give yet another overview, this section
only presents general results concerning the quantitative and qualitative evaluation

of concept maps as selected case studies of typical approaches. Whether scoring

a map at all is a valid approach is not without doubts, especially when following
a radical Constructivism. Novak & Gowin (1984, p. 97) point out, that “[c]oncept

maps can be similar to paintings; you either like one or you do not”. However, given

a more moderate world view, Valerio et al. (2008, p. 122) state:

“Despite the variety of concept maps that arise from the differ-

ences among map builders, some maps can be considered ‘better’

than others, based on a variety of criteria.[...] Among the features

that can be used to assess the quality of a concept map, we can

distinguish between topological features (e.g. hierarchical structure,

linking phrases, number links into and out of concepts, etc.), and

semantic features (are the propositions correct? how expressive

are the linking phrases? is the focus question answered by the

concept map?)”

There are two general approaches that are apparent in the scoring schemes pre-

sented in literature. First, it is possible to treat the concept map as a mere accu-
mulation of propositions that are scored independently. The concept map is then
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only a graphical representation of that set of propositions. Alternatively, the concept

map can be seen as one big “whole” that is scored holistically. Such a scoring can

for example take the specific layout of the map into account, or the hierarchical
structure, like the scoring system presented in the next paragraph. Structure and

propositions are not always independent, though. For example, if the links have

arrows, then usually only the specific wording of the linking phrase will determine

the direction of the arrows, by using the active or passive form. Incorporating the

structure of a concept map into its evaluation means abandoning the idea of the
map being a mere accumulation of propositions and acknowledging instead that

there is a structural aspect besides the propositional “content” of a map (cf. Cañas

& Novak 2012, p. 248). Also, it is worth noticing, that the structural aspects of a

map can always be judged, whereas the propositional content can only be judged if

the map’s content is in some way “objective” and not, e.g. externalizing beliefs (cf.

Cañas 2008).

Historically, the first scoring system for concept maps is most probably given by

Novak & Gowin (1984). In contrast to many other scoring schemes, it is based

directly on a learning theory, namely the theory of meaningful learning:

“The primary basis for our scoring schemes is Ausubel’s cogni-
tive learning theory, especially three ideas in it [...]: (1) Cognitive

structure is hierarchically organized, with more inclusive, more

general concepts and propositions superordinate to less inclusive,

more specific concepts and propositions. (2) Concepts in cogni-

tive structure undergo progressive differentiation, wherein greater

inclusiveness and greater specificity of regularities in objects or

events are discerned and more propositional linkages with other

related concepts are recognized. and (3) Integrative reconciliation
occurs when two or more concepts are recognized as relatable in

new propositional meanings and/or when conflicting meanings of

concepts are resolved.” (Novak & Gowin 1984, p. 97)

(Novak & Gowin 1984, p. 107) give general rules of the scoring system as well as a

more precisely defined, algorithmic approach (cf. Novak & Gowin 1984, p. 36):

1. Propositions: For each meaningful, valid proposition shown score 1 point.

2. Hierarchy: Is each subordinate concept more specific and less general

than the concept drawn above it? Score 5 points for each valid level of the

hierarchy.
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3. Cross links: Is the relationship shown significant and valid? Score 10 points

for each cross-link that is both valid and significant and 2 points for each

cross-link that is valid but does not illustrate a synthesis between sets
of related concepts or propositions. Unique or creative cross links might

receive special recognition, or extra points.

4. Examples: Specific events or objects that are valid instances of those

designated by the concept label can be scored 1 point each.

Following those four rules, a fifth rule states: “In addition, a criterion concept map

may be constructed, and scored, for the material to be mapped, and the student
scores divided by the criterion map score to give a percentage for comparison.

(Some students may do better than the criterion and receive more than 100% on

this basis)” (Novak & Gowin 1984, p. 36). This is noteworthy, since many later
scoring systems employ the use of such a criterion map, often in order to increase

reliability between several raters.

McClure et al. (1999) investigated the theoretical and practical issues of several
scoring methods. They encompass a holistic approach, an approach that puts most

emphasis on the structure of the concept maps and an approach that scores the

maps’ propositions (“relations”) on their own. Each method was tested with and
without a criterion (“master”) map. All methods except for “structural with master

map” show a significant concurrent validity when comparing the scores with the

similarity of the concept maps to the master map using a measure of structural

similarity presented in the next chapter (cf. McClure et al. 1999, p. 489). It can

therefore also serve as a scoring method and is also used for analysis in this work,

as presented in chapter 7.

The method “relational with master map”, i.e. scoring each proposition on its own
and using a criterion map was found to provide the highest reliability between

several raters. Fig. 7 displays the method in form of a simple diagram. In this thesis,

an adaption of this scoring scheme using zero, one or two points has been adopted
and found to work very well in practice.

There are also more complex quantitative scores. For example, Ifenthaler (2006)

presents a scoring strategy based on three “levels” called SMD. The first level,

Surface, is simply the count of propositions in a concept map and should serve

as a rough indicator of its complexity (cf. Ifenthaler 2006, p. 45f.). The next level,

Matching, is the diameter of the concept map, when treated as a graph (as described
in more detail in chapter 7). In other words: the maximum of the shortest paths

between each pair of nodes. It should provide deeper insight into the structure of
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the concept maps (cf. Ifenthaler 2006, p. 47). Finally, the last level, Deep, is the

similarity of the concept map to a master map. The similarity is calculated using

a measure first introduced by Tversky (1977). This level should provide an insight
into the semantic contents of the concept map (cf. Ifenthaler 2006, p. 49). The

SMD method is compared to several other scoring methods, like the ACMM method

by O’Connor, Johnson & Khalil (2004) and found to be a reliable and valid way

of scoring concept maps (cf. Ifenthaler 2006, p. 98). The SMD system is also, in

contrast to those presented above, explicitly suited for computer aided or automated
scoring.

In the same vein, Gouli, Gogoulou, Papanikolaou & Grigoriadou (2005b) present a

scoring system that is fully automated. It identifies several types of errors based on

an expert map and a numerical score is computed from this. To improve scoring in

this system, the use of WordNet (see next chapter) for identifying synonyms has

been suggested (cf. Kornilakis, Grigoriadou, Papanikolaou & Gouli 2004). Taricani
& Clariana (2006) describe a method that converts a single concept map into

relatedness ratings on which a Pathfinder analysis (see also next chapter) is applied.

The same is done for an expert concept map and the resulting Pathfinder networks
are then compared and scored automatically. This method is interesting insofar,

as it departs from incorporating the actual propositions in the scoring and instead

fully relies on the structural information contained in the concept maps. Anohina-

Naumeca, Grundspenkis & Strautmane (2011) also present an elaborate automated

scoring system that works in conjunction with an expert map.

From a constructivist perspective, using a referent concept map might be inherently
problematic, as Cañas et al. (2005, p. 207) argue: “The strength of concept maps

lies in their ability to measure a particular person’s knowledge about a given topic in

a specific context. Therefore, concept maps constructed by different persons on

the same topic are necessarily different, as each represents its creator’s personal

knowledge. Similarly, we cannot refer to the correct concept map about a particular

topic, as there can be many different representations of the topic that are correct.”

So far, the scoring systems presented have all been quantitative. They typically

assign some score to a map which then allows ranking several maps according to

the score. However, it is worth noticing, that an overly quantitative approach is not

universally accepted:

“The scoring of only ‘valid links’ also misses the point that ‘in-

valid’ links may have a value to the student by supporting more

valid links (sometimes temporarily) and so contributing to the over-

all knowledge structure that he or she is using as a basis for further
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Proposition2to2be2scored

Is2there2any2relationship2
between2the2concepts2in2
the2proposition?

Does2the2label2indicate2a2
possible2relationship2between2
the2concepts2of2the2proposition?

Does2the2direction2of2the2arrow2
indicate2an2hierarchical,2causal,2
or2sequential2relationship2
between2the2concepts2of2the2
proposition2that2is2compatible2
with2the2label?

Assign2a2value2of20

Assign2a2value2of21

Assign2a2value2of22

No

No

No

Yes

Yes

Yes

Assign2a2value2of23

Fig. 7: Relational scoring method. Adapted from McClure et al. (1999, p.

482)
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learning. The usual emphasis on ‘valid links’ seems to contradict

the constructivist philosophy underlying the use of concept maps

by failing to recognize the significance of students’ perspectives.
[...] This suggests that a more informative assessment of concept

maps is required that could be used to bring benefits to the stu-

dents’ learning experience while not placing unrealistic demands

on the classroom teacher. To satisfy these requirements, a more

qualitative description may be appropriate.” Kinchin et al. (2000, p.
46)

There are also other reports that support the idea of not scoring the correctness of
propositions (cf. Taricani & Clariana 2006, p. 68). Nicoll (2001, p. 870ff.) presents

a three-tier coding scheme that assigns attributes to propositions based on their

“utility”, “stability”, and “complexity”. This allows a more fine grained analysis of the

propositions in a map, as they are not only classified with regard to their correctness,

but also their type (e.g. “example”) and regarding whether or not a student seems

to be sure about the proposition or not.

Following their criticism of a purely quantitative approach, Kinchin et al. (2000)

present a qualitative approach that classifies concept maps according to their
“overall structure”. The approach is based on the three types of morphology “spoke”,

“chain” and “net” as presented above. This approach, again, places no importance

on the “correctness” of the propositions in a map. It also, in contrast to all methods

described previously does not assign a score to a map. Consequently, it cannot

be used to form a “rank” of concept maps. However, maps can be partitioned

into classes of differing structure. “As ‘invalid links’ are seen as being of equal

importance to ‘valid links’ (in terms of teacher-awareness), the time-consuming (and

sometimes arbitrary) process of assessing the validity of links is avoided. [...] Implicit
in this classification is the development of increasing integration of a conceptual

framework from spoke structures towards net structures” (Kinchin et al. 2000, p. 46).

The clustering described in chapter 7 is an automated way of forming such classes,
with no prior definition of their structure.

Novak (2010, p. 234ff.) presents an evolved version of the scoring scheme

presented above that places more emphasis on qualitative aspects and can be

seen as a combination of quantitative and qualitative aspects of scoring. It is

based on two separate parts: “The taxonomy dealing with general structure of

the concept maps we call the topological taxonomy and the rubric dealing with
the quality of meanings we call the ‘semantic’ rubric”. The taxonomy is based on

five different criteria: “concept recognition, presence of linking phrases, degree of
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ramification, depth, and presence of cross-links”. The criteria for the rubric are:

“concept relevance and completeness, presence of dynamic propositions, number

and quality of cross-links, and presence of cycles”. Even though not completely left
out, the correctness of the actual propositions is of considerable less importance

than in the above, quantitative scoring schemes and is at least separated from the

structural aspects of the maps.



5 Analysis Methods

This chapter presents the theoretical background and related work concerning

analysis methods that were applied in the course of this thesis. The methods

are presented in chapter 7 and applied in practical settings in chapters 10 to

12. Additionally, the basics of graph theory are presented here as well, as they

are a prerequisite of Pathfinder networks and are used in the next part as well.

As has been noted in the first chapter, the analysis methods are inspired by the

field of educational data mining, in particular the two categories “clustering” and
“distillation of data for human judgment”. Cluster analysis obviously is a method for

the first category, Pathfinder networks are employed for the second. Additionally,

the automated analysis of texts is shortly presented in this chapter, which is used in
the software described in more detail in chapter 8.

5.1 Graph Theory

Graphs are mathematical models consisting of nodes and edges. The exact details
of the definitions vary according to source. The following notation is based on

Schvaneveldt, Dearholt & Durso (1988, pp. 337-338) but similar definitions can be

found in numerous other works on graph theory like (Balakrishnan & Ranganathan

2012).

A (directed) Graph G = (V,E) consists of a finite set of nodes (vertices) V and
edges E, that form a subset of V ×V . If E = V ×V , the graph is said to be complete.

Two nodes i and j are adjacent (connected by an edge) if (i, j) ∈ E. For any edge

e = (i, j), vertices i and j are said to be incident to edge e. For undirected graphs,

the edges (i, j) and (j, i) are equivalent, often notated as {i, j}. The number of

nodes and edges is denoted by n = |V | and m = |E| respectively. NG(v) is the

neighborhood of vertex v in graph G, i.e. the set of nodes that are adjacent to v. An

induced subgraph G′ = (V ′, E′) of G = (V,E) is defined by a subset V ′ ⊂ V and

letting E′ = {(a, b) ∈ E|a, b ∈ V ′}.

Nodes and edges can be labeled, edges can also be weighted. In this case the

graph is also called labeled and/or weighted. This is modeled by label functions

lv : V → Lv and le : E → Le for some sets of Labels Lv and Le. Accordingly, a

weight function w : E → R maps a real valued weight to each edge. Sometimes,

the weights are given as a matrix W ∈ Rn×n with wij denoting the weight of edge

(i, j) if this edge exists - usually it is set to∞ otherwise.
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A set of distinct nodes v1, v2, · · · , vk that are connected by edges (v1, v2), (v2, v3),

· · · , (vk−1, vk) form a path of length k − 1. If v1 = vk, the path is also called a circle.

If there is no path between two nodes vi and vj , the two nodes are in different
components of the graph. A graph that contains no circles is a forest a forest with

exactly one component is called a tree. For weighted graphs, the distance dij

between two nodes vi and vj is the minimal combined edge weight of all edges

along any path from vi to vj according to some metric. Often, the metric is simply

the sum of the individual edge weights, but other metrics, like the maximum of the
weights along a path may be used as well. If there is no path between vi and vj ,

the distance is set to infinity dij =∞.

When implementing graphs in a computer, they are often stored as an adjacency

matrix A ∈ Bn, with aij = 1 if edge (i, j) exists and aij = 0 otherwise. Thus,

for undirected graphs, the adjacency matrix is symmetrical. For weighted graphs,

often the adjacency matrix is defined as aij = wij if edge (i, j) exists and aij =∞
otherwise.

5.2 Pathfinder Networks

Pathfinder networks as described by Schvaneveldt, Durso & Dearholt (1989) are
graph based representation of the similarity (or dissimilarity) of entities. Originally,

the data that is represented consists of pairwise similarity ratings given by persons,

usually using a numeric scale. The similarity ratings can be modeled as a weighted,

complete graph with each entity becoming a node and the weight of each edge is
the similarity value of the pair of incident entities of that edge. Such a representation

is called a “network”. Schvaneveldt et al. (1989, p. 252) note that “[a]s psychological
models, networks entail the assumption that concepts and their relations can be

represented by a structure consisting of nodes (concepts) and links (relations).

Strength of relations are reflected by link weights and the intentional meaning
of a concept is determined by its connections to other concepts”. Algorithmic

methods can then be used to analyze such a network, or extract prominent features.

The Pathfinder algorithm is one such method and an alternative is, for example,

multi-dimensional scaling (MDS) developed by Kruskal (cf. Bartholomew, Steele,

Moustaki & Galbraith 2008, p. 55ff.).

The next sections will present the Pathfinder algorithm that is used to create the

Pathfinder network and explain how it can be used in the context of structural

knowledge.
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5.2.1 Construction

As described by Dearholt & Schvaneveldt (1990, p. 2ff.), a Pathfinder network is
always constructed from an existing, non-negative weight matrix, which represents a

weighted graph. The Pathfinder network is itself again a graph that is directed if and

only if the input graph was directed. It consists of the same nodes and components
as the input graph but of a subset of its edges, with their weights preserved. The

edges are chosen such that the final network provides a path of minimal distance
between each pair of nodes according to a special metric (called Minkowski- or

r-metric) that is dependent on a parameter r > 0. The weight of a path consisting of

edges e1, e2, · · · , ek with weights w1, w2, · · · , wk according to the r-metric is defined

as:

(wr
1 + wr

2 + ...+ wr
k)1/r

For r = 1 the r-metric defaults to the sum of the single edge weights, for r = 2

it is the Euclidean distance and for r = ∞ the path weight is the maximum edge

weight along the path (cf. Dearholt & Schvaneveldt 1990, p. 3). These three values

are representing highly used metrics and are called Manhattan distance, Euclidean

distance, and Chebyshev distance respectively (cf. Han & Kamber 2010, p. 73).

Additionally, a Pathfinder network with n nodes is guaranteed to be q-triangular for

q ∈ {1, 2, ..., n− 1}. This means, that the weight of any edge (i, j) is less or equal

than the weights, according to the chosen r-metric, of any path between i and j that

is of length at most q (cf. Dearholt & Schvaneveldt 1990, p. 3). In other words, when

ignoring paths longer than q, the triangle inequality holds for each pair of nodes in
the graph. If q is set to the maximal value of n− 1, the (regular) triangle inequality

always holds.

Following the description of Dearholt & Schvaneveldt (1990, p. 6), the Pathfinder
Network PFNET (r, q) (with two parameters r and q) of a weighted graphG = (V,E)

is constructed like this:

1. Start with the graph G′ = (V,E′ = ∅).

2. Order all edges of E non-decreasingly according to their weight.

3. Following this ordering, for each edge e = (i, j) add e to E′ if and only if

the path of minimal weight according to the r-metric with at most q nodes

between nodes i and j is as least as big as wij . In other words, including e

keeps G′ q-triangular.

4. Return G′ as the Pathfinder network.
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Since the edges in step 2 are added in non-decreasing weight, G′ will remain

q-triangular throughout the algorithm. For every edge (i, j) that is added to E′, no

path of less weight between i and j can be found later on, as each edge added in a
later step has a weight at least as big as the direct path already provided by e, thus

keeping the triangle inequality valid.

A problem with the algorithm as described above is, that it allows for arbitrary

inclusion of edges in case of ties. So, in general, there are several possible
Pathfinder networks of a given graph. For interpretation, it would be preferable to

have a unique network that is generated for a given graph and parameter values.

There is an additional way of creating Pathfinder networks that doesn’t suffer from

this problem. The algorithm described by Dearholt & Schvaneveldt (1990, p. 7f.) is

reminiscent of the matrix based shortest-path graph algorithms like the algorithm of

Floyd-Warshall (cf. Cormen, Leiserson, Rivest & Stein 2001, p. 629ff.). It works as

follows:

Let W be the n × n non-negative weight matrix of a (possibly directed graph) G,

where all weights wii are assumed to be 0 and the entries for non-existing edges
are assumed to be∞. Starting with W 1 = W , compute W i+1 like this:

wi+1
jk = min((wjm)r + (wi

mk)r)(1/r) for all 1 ≤ m ≤ n.

Where r, as before, defines the metric that is used to calculate the node distances.

For r = 1 this simply defaults to the update rule of the shortest-path algorithm.

Additionally, compute the distance matrix for at most i steps Di according to the

following rule:

dijk = min(w1
jk, w

2
jk, . . . , w

i
jk)

If all weights are non-negative, this rule will ensure that always dijj = 0. The

algorithm first computes Dq according to the rules given above and then deletes

all edges from G where wij 6= dqij . The resulting graph is a unique superset of all

possible Pathfinder networks of the input graph and itself a valid Pathfinder network.

Thus, it includes every edge that does not explicit violate the q-triangularity and

therefore may include more edges than strictly necessary. It makes interpretation

and comparison of a graph more reliable, however. All Pathfinder networks in

this thesis were constructed using this matrix algorithm to ensure that no edges
are missing arbitrarily. The algorithm can be implemented straight-forward in time

Θ(qn3) with space requirements of Θ(n2).

There are other algorithms that generate the pathfinder network faster, especially

for the often used case of q = n − 1, where the running time of the original

algorithm degenerates to Θ(n4). Guerrero-Bote, Zapico-Alonso, Espinosa-Calvo,
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Gómez Crisóstomo & Moya-Anegón (2006) describe a faster implementation called

“Binary Pathfinder”. Quirin, Cordón, Santamaría, Vargas-Quesada & Moya-Anegón

(2008) present an algorithm with cubic running time that only works for q = n− 1.
For the very special (but frequently used) case of q = n − 1 and r = ∞ Quirin,

Cordón, Guerrero-Bote, Vargas-Quesada & Moya-Anegón (2008) present a fast

alternative that works with minimal spanning trees. However, for small graphs (all

graphs in this thesis are considered small), the running time of the straight-forward

algorithm doesn’t pose restrictions on the practicality.

5.2.2 Investigating Structural Knowledge

There are many studies that have successfully employed Pathfinder analysis on
similarity data in order to gain insights into aspects of structural knowledge. Since

this work is not concerned with similarity data, this section only presents some

results regarding the general applicability of the method in the context of knowledge

evaluation.

First, Pathfinder analysis has been shown to capture latent organizational traits

of knowledge. Trumpower & Goldsmith (2004) found out that structuring learning

material according to their similarity in a Pathfinder network (as opposed to, for

example, alphabetical) enhances learning. Similarly, Durso & Coggins (1990) report
enhanced capabilities of recalling words of a list when these are ordered according

to their similarity in a Pathfinder network: “Pathfinder revealed some latent structure

useful for predicting recall order beyond that which could be linearly predicted from

the ratings” (Durso & Coggins 1990, p. 42). They also found that the structure of
the network matches networks that were intuitively drawn by researches (cf. Durso

& Coggins 1990, p. 33). In the same vein, Pathfinder networks have also been used
in automatic summarizing of texts (cf. Patil & Brazdil 2007), which can also be seen

as a form of organizational trait of knowledge. This also indicates the independence

of the Pathfinder method from the relatedness judgments that are typically used as
input.

Second, Pathfinder analysis can be used to make a restructuring of knowledge

visible. Dayton, Durso & Shepard (1990) investigated the difference between
knowledge structures following a moment of insight when solving a puzzle: “We have

shown that people who solve an insight problem have a much different knowledge
organization than do people who do not solve it or who are unaware of the problem.

We have also shown that the correct organization is not achieved merely by exposure

to the relevant information, and we believe this is evidence that the difference
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in structure between problem solvers and nonsolvers is due to a sudden and

substantial shift in connections[...]” (Dayton et al. 1990, p. 277).

Finally, Pathfinder representations of structural knowledge have been used as a

method of assessment and to identify differences between novices and experts. “In

summary, there is some evidence that experts can be distinguished from novices

based on their cognitive structures. Classifications based on Pathfinder was suc-

cessful at uncovering the latent structure inherent in the empirical ratings. Thus,
a comparison of experts with novices supplies some validation of the psychologi-

cal utility of Pathfinder” (Durso & Coggins 1990, p. 40). Trumpower et al. (2010)

describe a system for assessing structural knowledge based on similarity ratings,

Pathfinder networks and comparison to expert networks. Goldsmith & Johnson

(1990) report the results of a study that investigates the usefulness of Pathfinder

networks to assess the knowledge of learners: “[It is based on] the idea that config-

ural properties of representations reflect important characteristics of an individual’s
cognitive system. We further assume that these configural characteristics can be

compared in network representations by employing a method for assessing struc-

tural similarity between graphs” (Goldsmith & Johnson 1990, p. 244). The similarity
ratings of students were analyzed using both the established methods of MDS and

Pathfinder analysis. The raw similarity ratings themselves performed well as a pre-

dictor for the final course grade. 37% of the variance associated with students’ final

grades are accounted for by the correlation coefficient between a student’s similarity

rating and that of the course instructor (cf. Goldsmith & Johnson 1990, p. 249). The

question then was whether scaling techniques like MDS or Pathfinder could yield
a better prediction than the raw similarity data itself. The study compares several

indexes to the final course points of the students. The indexes under comparison

are the raw proximity data, MDS applied on the raw data, the correlation between

the graph-theoretic distances of the students’ Pathfinder network and the instructor’s
network, and the C value (see below) of a student’s and instructor’s Pathfinder

network as described in (Goldsmith & Davenport 1990).

“[T]aken together, these results imply that Pathfinder networks

do indeed contain unique predictive variance over the proximity

ratings and MDS, and that a configural assessment of networks

is a better index for assessing network similarity than correlations.
Apparently, C better reflects commonalties between structures that

happen to be important in assessing knowledge. We assume that

the characteristics common to a student’s structure and instructor’s

structure that are predictive of knowledge attainment exist at a

global or configural level within those representations. This, of
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course, is exactly the type of information that C is assumed to be

good at assessing.” (Goldsmith & Johnson 1990, p. 250)

Concerning the actual analysis, Goldsmith & Johnson (1990) have tested several

measures of graph similarity. They conclude that the structural similarity can be

measured by comparing the neighborhoods of all nodes between two given graphs.

Specifically, let G1 = (V,E1) and G2 = (V,E2) be two graphs that share a common

set of vertices V = {v1, v2, . . . , vn}, Then the similarity ofG1 anG2 can be calculated

by summing the similarity of each neighborhood as follows:

C =
1

|V |
∑
v∈V

|NG1
(v) ∩NG2

(v)|
|NG1

(v) ∪NG2
(v)|

The value of C will vary between 0 and 1, where 1 denotes structural identity and 0

denotes a completely different structure. Note, that the fraction is undefined, if the
union of the neighborhoods is empty, i.e. when both nodes are unconnected in both

graphs. As they are then structurally identical, however, it is convenient to define

the value of the fraction as 1 in this case.

Concerning the choice of parameters for the Pathfinder algorithm, in general, the

higher the values the sparser the resulting network (cf. Cooke 1994, p. 832).

However, the special context of structural knowledge has some implications. For

example, Durso & Coggins (1990, p. 32) state:

“With an exponent of infinity, Pathfinder makes only ordinal

assumptions about the data. The second parameter, q, is a re-

striction on the number of edges in a path that Pathfinder will use
in deciding if two concepts are already connected. The sparsest

PFNET will result when Pathfinder is permitted to consider paths

of any length, that is when q is equal to one less than the number
of nodes. The most dense graphs result when Pathfinder can only

consider a path as consisting of two edges, that is q = 2. [...]

Although decisions about the r parameter can be justified on mea-

surement assumptions, the decision concerning q is more difficult.

[...] Both when picking q and when picking the dimensionality, sev-

eral factors, including the illuminating power of the solution, must

be considered”.

Gammack (1990) quotes an example that serves to show the problem of higher q

values:
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”In a linked set of countries, Jamaica may be considered sim-

ilar to Cuba with a strength of (say) 2 units, and Cuba may be

considered similar to USSR, also with a strength of 2. Particularly
under the dominance metric, Jamaica and USSR are very close in

network terms, but such implied proximity is psychologically hardly

very meaningful. For such multifaceted concepts, relatedness may

be judged on numerous grounds, and this must be considered

when interpreting a network. The criticism may not apply to all net-
works but is particularly relevant to those with semantic properties.

[...] This may imply that values of q > 2 should be treated with

caution.” (Gammack 1990, p. 222)

Additionally, Gammack (1990) critically investigated the stability of Pathfinder net-

works in the light of different methods of eliciting proximity data. The results show,

that the Pathfinder networks, when analyzed statistically, show a relative high agree-
ment, but differ considerably in visual structure. “Until closely examined, it seems

disturbing that the networks are so structurally different, despite demonstrable statis-

tical agreement. Whereas the effects of noise or task context presumably contribute

to this phenomenon, there is nevertheless the assumption that the network repre-

sents only a slightly distorted form of a network structure actually existent in memory.

Questioning this assumption suggests no reason to suppose direct correspondence

between a network and a pre existing memory structure” (Gammack 1990, p. 222).
However, the authors concede, that the effect may just be the result of the inherent

problem that the process of externalization is influenced by external factors:

“[T]he assumption that this knowledge structure would be trans-

parently elicitable by objective methods having no influence on
underlying structure also looks questionable. Since the tasks were
different in nature, it may have been unreasonable to expect any-

thing else. Clearly the tasks have had an effect in that they have

elicited different structures, suggesting that they may be addressing
different aspects of the same knowledge. Knowledge itself is surely

stable, but representations of it are not, despite their specific value

in particular contexts” (Gammack 1990, p.224).

They conclude that “[t]he instability of representation is neither caused by, nor

unique to Pathfinder [...]. Despite some surface variation, Pathfinder descriptions

were found to be particularly useful in the context of knowledge elicitation where
concise and meaningful representations of expert domain conception were reliably

produced” (Gammack 1990, p. 226).
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5.3 Cluster Analysis

“Cluster analysis or simply clustering is the process of partitioning a set of data

objects (or observations) into subsets. Each subset is a cluster, such that objects in

a cluster are similar to one another, yet dissimilar to objects in other clusters.“ (Han

& Kamber 2010, p. 444) The result of a cluster analysis is also called a clustering.

Since every clustering is a partition, each element of the data is assigned to exactly

one cluster. For the probabilistic approach presented below, the probability for each
observation to belong to each cluster is calculated. Cluster analysis is a typical

research method in exploratory analyses, as it identifies pattern in the data which

can then be interpreted (cf. Bartholomew et al. 2008, p. 17).

Concerning the clustering method, a general distinction can be made between

model free methods and model based (or latent class) methods. According to Han

& Kamber (2010, p. 449f.), for model free methods a further distinction can be made
between partitioning-, hierarchical-, density based- and grid based methods. The

descriptions in the following sections are restricted to the methods that are actually

applied in this thesis. Details about this selection are given in chapter 7.

5.3.1 Partitioning Methods

A partitioning method takes all observations and assigns each observation to exactly
one cluster, thus forming a partition of the data. The number of clusters typically

must be given as a parameter of the algorithm beforehand (cf. Han & Kamber 2010,

p. 451). The assignment of observations to clusters is determined by the “distance”

of the observations from each other according to some measure of distance or

similarity. Typical choices for this measure are the L1 or L2 norms, which are

identical to the Manhattan and Euclidean distance, which are in turn identical to the

Minkowski distance for r = 1 and r = 2 as defined in the last section (cf. Han &
Kamber 2010, p. 72) .

Two very commonly used clustering algorithms of the partitioning variety are k-

means and k-medoids (cf. Han & Kamber 2010, p. 451). Both methods work in

an iterative way, starting from a random first clustering to a locally optimal solution.

Also, both methods compute the quality of a clustering (that is maximized by the

algorithms) based on the sum of distances from all the observations of a cluster

to its “center point”. The difference is, that this “center point” is one of the actual

observations for k-medoids, and the mean of all observations of a cluster for k-

means. This makes only sense if calculating the mean is a valid operation on the
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data, i.e. if the data is at least interval-scaled (cf. Bortz 2005, p. 21), which is usually

not the case for the data used in this work.

The k-medoids clustering is described by Kaufman & Rousseeuw (2005, p. 68ff.).

The most common implementation given below is called Partitioning Around Me-

doids (PAM). The input consists of a distance matrix of the observations and the

number of clusters k that the algorithm should produce. The distance matrix for

n observations D ∈ Rn×n contains for each pair of observations, the distance
according to the chosen measure of similarity. After initializing the k medoids with

random samples from the observations, the basic steps of PAM are:

1 For each observation o and each cluster c:

Calculate the distance between o and the medoid of c.

Assign o to the cluster with the minimal distance.

2 For each cluster c and each observation o belonging to c:

Calculate the total sum of distances from o to all other observations of c.

Choose the observation with the minimal sum as the new medoid of c.

This is repeated, until no further change in the assignments of observations to

clusters (and hence also not in the chosen medoids) occurs. Therefore, the solution

depends only on the initial choice of medoids and the input. For this reason, the

algorithm is often run several times with different start values to increase the chance

of finding the (globally) optimal solution.

Concerning the optimal number of clusters, additional indexes are often used to

judge the quality of a clustering. Gordon (1999, p. 60ff.) presents and compares

several indexes. Of these, a well working and easy to compute index is used
in this thesis. It is called G1, also known as the Calinski-Harabasz pseudo F-
statistic. Another well-known index is the so-called Silhouette (Rousseeuw 1987) of
a clustering. G1 is defined as:

G1(c) =
B

c−1
W
n−c

B denotes the total sum of squared distances between all pairs of observations not

sharing the same cluster (“between-cluster”). W denotes the total sum of squared

distances between all pairs of observations sharing the same cluster (“within-
cluster”); c and n denote the number of clusters and the number of observations

respectively. The index effectively measures how close together the observations
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of a cluster are and how disperse the clusters are from another. A higher value

indicates a “better” clustering in the sense, that the clusters are either more spread

apart from each other or the observations within the clusters are very similar or both.
So, the index can be calculated for several given clusterings with differing numbers

of clusters and then the optimal value of c can be chosen.

A partitioning algorithm will produce a result in any case, even if the data itself is

perfectly homogeneously distributed in the multidimensional space and shouldn’t
actually be clustered. However, G1 and other indexes that can be used to judge the

quality of a clustering are not defined for just one cluster (for G1 the denominator

will be zero in this case). Therefore it is paramount to analyze the data prior to

clustering regarding its tendency to actually produce meaningful clusters. This

tendency, in other words, is the “non-uniformity” of the data in the multidimensional

space that it is sampled from. The Hopkins index is a well-known indicator for this

non-randomness of data (cf. Han & Kamber 2010). It is calculated as follows:

H =

∑n
i=1 Ui∑n

i=1Wi +
∑n

i=1 Ui

Given a data set D of k > n observations, n of those observations are sampled

uniformly and randomly. Additionally, n artificial, new “observations” are created
randomly and uniformly distributed in the same multidimensional space as D.

Wi then denotes the minimal distance of the i-th sampled observation to any

observation fromD (except itself) and Ui is the minimal distance of the i-th generated
“observation” to any point in D. H is a measure of how non-uniform the observations

of D are in the underlying space, by comparing the actual minimal distances with

those that would be expected in a uniform distribution of the observations. According

to Lawson & Jurs (1990), if n is chosen to be 5% of the number of observations,
H ≥ 0.75 indicates a non-randomness of the data set on a 90% confidence level.

5.3.2 Model Based Methods

Model based clustering differs from the methods of the last section, in that there is

an explicit (mostly stochastic) model underlying the clustering that allows calculating

a probability of an observation belonging to a cluster. Clustering is then no longer

the task of assigning observations to clusters, instead, “the task of probabilistic

model-based cluster analysis on a data set, D, is to find a set C of k probabilistic

clusters such that P (D|C) is maximized” (Han & Kamber 2010, p. 503). In other

words: to determine values for the parameters of the model, such that the conditional
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probability of the model given the observations (also called likelihood of the model)

is maximized. Typically, the model parameters cannot be determined analytically (cf.

Han & Kamber 2010, p. 503f.). Often the EM algorithm as described by Dempster,
Laird & Rubin (1977) is used to find a (local) maximum of the parameter space in

an iterative way. The EM-Algorithm performs the following two steps consecutively

and repeatedly, starting from an initial guess of parameters and given observations.

E-Step Calculate the expected value of the log-likelihood. That is, calculate the

probability of the observations, given the current parameter values.

M-Step Calculate new parameter values that maximize this expected value, given

the observations and current parameter values.

The EM algorithm converges to a local maximum (cf. Han & Kamber 2010, p.

508) so, typical stopping criteria are either a number of iterations or the amount of

change of the parameters between iterations. If the number of clusters changes,

the probability of the model also changes. This allows - in contrast to model free

methods - to estimate the quality of the clustering directly based on the model.

Particularly, the case of just one cluster can be estimated as well and taken as
an indication of whether or not the data is actually suited to clustering. When just

trying several different numbers of clusters and estimating the parameters, there is

a risk of overfitting: Often, the models can be made to fit the data (nearly) perfectly,

by introducing more clusters (parameters). To prevent this, instead of maximizing

the likelihood of the model parameters and observations by itself, a different term

is maximized, that includes a penalty for introducing too many model parameters

(cf. Stibor 2008). In this work, the often used AIC, or Akaike Information criterion

(Akaike 1974) will be used. It is defined as:

AIC(X, k) = 2k − 2L(X)

where k is the number of model parameters and L(X) is the log-likelihood of the

observed data (given the model parameters). An alternative to AIC is, among others,

BIC (Schwarz 1978).

5.4 Text Mining

In the course of this work, text mining approaches have been used in order to

automatically detect salient concepts of a given text (e.g. a textbook of a lecture)
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and propositions of a given set of concepts. Since automated analysis of texts is

a vast topic of research, any in-depth description is beyond the scope of this work.

Instead, only existing approaches that have been used for the software described in
chapter 8 will be described here. There may be more advanced and better working

methods available, though.

The basic approach of using computer support for extracting the most important

concepts of a text has already been suggested, for example by Trumpower et al.
(2010). For concepts, which are often equivalent to nouns, a simple measure of

salience is the frequency of occurrence of the word in a text. While this often works

for specific terms of a subject matter (e.g. “class” in a text about object-oriented

programming), there are usually also many non subject-matter specific words like

“figure”, “page”, “exercise” or “student” (for curricula, for example), that appear

very frequently. Therefore, two possible approaches of a more useful measure of

salience are described here:

The first uses a term weighting that offsets the relative frequency by some additional

factor. The so called term frequency inverse document frequency (TF*IDF ) method
(Rajaraman & Ullman 2011, p. 8) has been used, for example, to generate search

queries from concept maps that are used as support when creating concept maps

electronically (cf. Leake et al. 2004). It offsets the frequency of occurrence of a word

by the frequency of occurrence of the same word in a set of documents (corpus).

TF ∗ IDF =
nx
n
· log

N

Nx

Where nx and n are the number of occurrences of word x in a document and

the total number of words in this document. N and Nx are the total number of

documents and the number of documents in which the word x appears respectively.

Therefore, a salient word for a given document is a word, that appears much more

frequently in this document, than in the others. Clearly, this measure depends on a

well chosen corpus. To exclude word like “exercise” by this measure, the corpus
should best be composed of textbooks and not of, e.g. newspaper articles.

Another possible approach of identifying salient words for a given text is the obser-

vation that such words usually are not spread out uniformly over the complete text,

but instead follow a Poisson distribution, i.e. are more often found in specific parts

of a text than in the rest, (cf. Montemurro & Zanette 2013).
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5.4.1 Existing Software Solutions

Two software solutions that have been employed in the course of this work are the
natural language processing toolkit (NLP) 1 and WordNet2 as described by in Miller

(1995) and Fellbaum (1999).

The NLP toolkit is providing, among others, a tokenizer that splits an input text

into word tokens and a part-of-speech tagger (cf. Toutanova, Klein, Manning &
Singer 2003), that determines for several languages (only English and German are

relevant for this work) the grammatical role that each word has in a sentence. This

is especially useful for identifying nouns which are candidates for salient concepts.

The tagger distinguishes 36 different functions of the Penn Treebank Tag-Set (cf.

Mitchell, Santorini & Marcinkiewicz 1993) including, among others:

• “noun, common, singular or mass”,

• “noun, proper, singular ”,

• “noun, proper, plural”, and

• “noun, common, plural ”.

WordNet is a semantic network of the English language. However, as it describes

a universal modelling structure for languages, there are also WordNets for other

languages. All entries in the WordNet database consist of a form and sense. Where

form is “a string over a finite alphabet, and a sense [...] is an element from a given

set of meanings” (Miller 1995, p. 39). “Each form with a sense in a language is

called a word in that language. A dictionary is an alphabetical list of words. A word

that has more than one sense is polysemous; two words that share at least one
sense in common are said to be synonymous” (Miller 1995, p.39).

The entities (words) of the semantic network are classified into the categories: noun,

verb, adjective and adverb (cf. Miller 1995, p. 40). Between those entities, the

possible semantic relations in WordNet are given in Table 5.1.

The basic relation of WordNet is Synonymy, as the word senses are represented

by a set of synonyms of a given word form (a so called synset) (cf. Miller 1995,

p. 40). It can also be used to reduce words to a baseform and therefore help to

detect, for example, that a noun in singular and a noun in plural are actually referring

to the same concept, even though the actual words are different. WordNet has,

1http://nlp.stanford.edu/software
2Registered Trademark of Princeton University, see http://wordnet.princeton.edu
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Semantic Relation Possible between Example

Synonymy (similar) Noun, Verb, Adjective, Adverb pipe - tube

Antonymy (opposite) Noun, Verb, Adjective, Adverb wet - dry

Hyponymy (subordinate) Noun maple - tree

Meronymy (part) Noun ship - fleet

Troponymy (manner) Verb march - walk

Entailment Verb drive - ride

Table 5.1: The possible semantic relations in WordNet (cf. Miller 1995, Table

1).

among many other applications, successfully been used for automated support of

software-based concept map drawing (cf. Cañas, Valerio, Lalinde-Pulido, Carvalho

& Arguedas 2003).
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Part III

From Concept Maps to Concept
Landscapes





6 Possibilities and Limitations of
Concept Maps

Chapter 4 has introduced concept maps as a tool for (among others) learning,

teaching, and assessing. Also, several different aspects of knowledge organization,

learning, and assessing have been presented in chapter 3. Fig. 8 integrates these

different parts and shows how they are related in the context of this thesis. Concept
maps are presented in more detail in this chapter. Based on the relevant literature

of the last part, a detailed analysis and discussion of the foundations of concept

maps in the light of everything presented in the chapters 3 and 4 is performed. Care

is taken to clearly distinguish between results that have been taken from literature

and own conclusions based on these findings.

The following sections will present three different views on concept mapping: First, it
can be seen as a (psychological) instrument that externalizes structural knowledge.

Questions regarding psychological processes and influences on the externalization

are important in this view. Second, it can be seen as a mere tool of displaying
knowledge. The restrictions of concept maps regarding the encoding of complex

facts of knowledge must be taken into account then. Finally, third, it can be seen

as an educational assessment tool. This view in a way reconciles the limitations
defined by the previous two views. Finding reliable scoring methods and analyzing

how artifacts of learning and teaching can be measured by concept maps are pivotal,

for the educational view. The selection of these views and the aspects they focus
on is based on the specific context of this thesis and its use of concept mapping.

Clearly, there are other views on concept mappings as well.

6.1 Cognitive View

This section investigates the types of memory a concept mapping task can external-
ize and the psychological foundations of concept maps. This includes observations

made on the process of concept map creation from data collected in the course of
this thesis.

Following the distinctions made in section 3.1.1 concerning the different types

of knowledge, it is clear that concept maps can be seen as an externalization

of declarative knowledge as it has been “declared” by the concept mapper (cf.

Ruiz-Primo & Shavelson 1996, p. 570) - or at least in the context of a concept
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mapping task. Thus, a concept map, in general, is an externalization of parts

of the declarative, semantic memory of a person. As has been mentioned in

chapter 4, concept maps are not restricted to knowledge or semantic memory, as
it is also possible to externalize beliefs or personal experiences. Concerning the

types of knowledge identified by de Jong & Ferguson-Hessler (1996) that have

been presented in section 3.1.1, evidently, concept maps are suited to measure

conceptual knowledge. They might also be able to measure situational knowledge,

especially when taking into account that examples can be included in concept maps
(see below). Procedural knowledge “contains actions or manipulations” (de Jong

& Ferguson-Hessler 1996, p. 107). Since neither is an aspect of concept map

creation - except for the procedural knowledge about concept mapping itself - it can

therefore not be measured with concept maps. Strategic knowledge could in theory

be measured by a concept map, however, as strategic knowledge “is applicable

to a wider variety of types of problems” and concept mapping tasks are typically
bound to a subject domain (cf. Ruiz-Primo & Shavelson 1996, p. 570), measuring it

does probably not capture aspects of interest concerning the knowledge structures

relevant for a subject domain. Regarding the qualities of knowledge identified by
de Jong & Ferguson-Hessler (1996) also presented before, the following can be

said for concept mapping:

Modality Since concepts and propositions are labeled with text, the modality must

be verbal.

Automation Based on the definition of compiled knowledge given in chapter 3, the

knowledge expressible in concept maps must be declarative.

Generality Given a subject domain, the generality is typically domain specific.

Level Both surface and deep knowledge can be externalized with concept maps,

evidently, as a proposition expressed in a map can have been learned

meaningfully or not.

Structure Both isolated elements and structured knowledge can be expressed in

concept maps, which is directly visible in the maps structure.

Glaser & Bassok (1989, p. 35) give an explanation about why concept mapping may

be inherently problematic when used for externalizing the knowledge of experts:

“Experts and novices may be equally competent at recalling specific items of informa-

tion, but experts chunk these items in memory in cause and effect sequences that

relate to the goals and sub-goals of problem solution and use this information for

further action. The progression from declarative knowledge to well-tuned functional
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knowledge is a significant dimension of developing competence.” In other words, the

particular type of knowledge organization in which experts differ from novices may

not be adequately expressible with concept maps. The compilation of knowledge
or, more general, the “chunking” of information that occurs with learning, as e.g.

proposed by schema theory, may present a natural impediment to the assessment

of a person’s knowledge structure, as often the chunks are transformed in such a

way that makes explicit declaration of its “contents” difficult.

Next, the two central elements of concept maps namely concepts and propositions

are investigated more closely. In the last part, there were definitions given in the

context of concept mapping in section 4.1 and in chapter 3 both for the theory of

meaningful learning (section 3.2.4) and concerning the knowledge organization in

the brain (section 3.1.1):

Ausubel “objects, events, situations, or properties that possess common criterial

attributes and are designated by the same sign or symbol” (Ausubel 2000,

p. 88).

Novak “perceived regularities or patterns in events or objects, or records of events

or objects, designated by a label” (Novak 2010, p. 25)

Goldstein “a mental representation that is used for a variety of cognitive functions,
including memory, reasoning, and using and understanding language.”

Goldstein & Vanhorn (2011, p. 240)

Solomon “the building blocks of thought” Solomon et al. (1999, p. 99).

The definitions of Novak and Ausubel are more oriented towards epistemology than

the ones of Solomon or Goldstein. But, as Goldstone & Kersten (2003, p. 600)
argue, both are valid in their own right: “If one assumes the primacy of external

categories of entities, then one will tend to view concept learning as the enterprise
of inductively creating mental structures that predict these categories. [...] If one

assumes the primacy of internal mental concepts, then one tends to view external
categories as the end product of applying these internal concepts to observed

entities.”

Differences between both definitions exist, however: For example, Novak explicitly

states the inclusion of “specific examples of events or objects” (Novak & Cañas 2008,

p. 2) for clarification, which is in accordance with the second part of his concept

definition but not necessarily in accordance with the definition of Goldstein. Whether
or not a specific example is an actual concept depends on the way that this particular

element of knowledge is stored in memory. It may be a rote learned fact of e.g.
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a person’s name or it may be a more elaborate association of this name with

some relevant information. In the latter case, there may indeed exist a concept for

that particular person while in the former case the person may just be a concrete
entity placed in some category (e.g. “Politician”). As has been noted in section

4.1, concepts in concept maps have also been linked to psychological categories.

Taking the example of “dog” (cf. Goldstone & Kersten 2003, p. 600), which can be

both a concept and a category (subsuming all the entities of dogs encountered),

using “dog” in a concept map may refer to:

1. the mental idea of a dog (i.e. the concept) as expressed by a proposition
like “a dog has a tail”, or

2. a subsumption of different examples of dogs (i.e. the category) as ex-
pressed by propositions like “Lassie is a dog”.

Very often, concept mapping seems to be based on the notion that a concept is

a technical term of the subject matter. This is the case for example when using

“instance” as a concept in computer science (cf. Sanders et al. 2008), “double
helix structure” (cf. Kinchin 2011) or “fermentation” (cf. Passmore 1999) in biol-

ogy, “anatomy” in dental medicine (cf. Kinchin 2013), “momentum” in physics (cf.

Îngeç 2009), or even a formula (cf. Koponen & Pehkonen 2010). In general, this is

not in accordance with the definition of Novak, as a technical term like “momentum”

is neither an event nor an object. It can be in accordance with the psychological

definition, as there can be a mental representation of the abstract notion of “momen-
tum” for example. It can also be a simple rote-learned name or label and therefore

clearly not a concept. In summary, a concept map consists of concepts that can be:

1. a (psychological) concept,

2. a (psychological) category, or

3. a rote-learned fact (label)

Propositions or associations - the connections between concepts - can then be seen

as the result of the mental process of integration (see section 3.1.1). Integration

finds connections between two concepts, which is exactly what a proposition in a

concept map constitutes. In contrast to the epistemological view presented below,

the restriction of propositions to be between two concepts only, is psychologically

valid.

In conclusion, a concept map can externalize the results of the mental process

of integration and displays the interconnections of a set of concepts. Goldstone
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& Kersten (2003, p. 615) provide a reasoning about the validity of this approach

beyond concept mapping: “[I]t is likely that all of our concepts are embedded in a

network in which each concept’s meaning depends on other concepts as well as
on perceptual processes and linguistic labels. The proper level of analysis may

not be individual concepts, as many researchers have assumed, but systems of

concepts”. Clearly, the concept mapping task itself may influence the results. For

example, presenting a list of concepts may help retrieving an isolated fact from

memory without the corresponding concept actually being a (psychological) concept
for the mapper. Conversely, presenting a list of labels to be used as linking words

(i.e. the labels of connections) can foster the creation of propositions that would not

have been created without the provided list (cf. Yin et al. 2005, p. 177), or even

the arbitrary creation of propositions that are not retrieved from memory but simply

guessed.

Due to the nature of concept mapping, it is paramount to acknowledge that in
contrast to other forms of externalizations, like relatedness judgments, for which

missing links may be interpreted (cf. Rye & Rubba 1998, p. 543), it is in general

not possible to deduct anything from missing elements in a concept map. It merely
represents an externalized part of a person’s knowledge. This externalization

process, as has been mentioned in section 3.1.2, can be influenced by a number of

variables for example the volition of the person, the prior experience with concept

mapping, the time given to create the map and more. If concepts or propositions

are not contained in a concept map, the knowledge structure of the person might

nevertheless contain them. This is not generally followed, though, for example the
scoring system presented by Gouli et al. (2005b, p. 426) explicitly counts missing

elements - when compared to an expert’s map - which negatively impact the total

score of a map. Concerning the elements that are present in a concept map, they

are typically treated as an artifact of a person’s knowledge structure. It is possible
of course that this person has only guessed them and that they are not the result

of a process of integration and thus not reflect anything from the knowledge of the
person. Whether or not this has been the case is typically not observable in the

outcome, though. However, nearly all methods of externalization are prone to this

flaw, as the process itself is not easily observable.

The rest of this section investigate some of the (arguably) most influential factors on
the externalization in a concept mapping task. Clearly, the motivation of the mappers

is pivotal for the results. Also, the time for the concept mapping task and the training

in concept mapping are heavily influential factors. In literature, there doesn’t seem to

be a clear indication of how much time is needed for a given complexity in the maps.
Some results concerning this problem are presented in the next section. It is also
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unclear how much and what kind of training is necessary before concept maps can

successfully be used as a method of externalization. Typically, the training found

in literature is based on some explanations about concept mapping, an example
map, and, often, a training map that persons are asked to produce before the “real”

map. The aspects of motivation and training are especially important for studies

consisting of several, repeated measurements of the same person. In this case, a

development in the maps complexity, positive or negative, might just be the result

of an increasing fluency in concept mapping or a decreasing motivation to keep
drawing maps. In general, it will be very difficult to quantify the extent of influence

that these variables have on the result of the externalization. So, it is probably best

to judge on a case by case basis about whether or not it seems plausible to suspect

a visible influence on research results, based on the actual data.

Since concept maps are relying on language it is also important to keep in mind the

effect that expressing a mental idea in language has: “Concepts also take part in a
bidirectional relationship with language. In particular, one’s repertoire of concepts

may influence the types of word meanings that one learns, whereas the language

that one speaks may influence the types of concepts that one forms” (Goldstone
& Kersten 2003, p. 613). Concerning a list of concepts, Cooke (1994, p. 825)

notes that “it must be kept in mind that the stimuli are words, not concepts, which

may be interpreted differently by different individuals”. Going even further than

that, Solomon et al. (1999, p. 100) state that “[c]ommunicating about an entity also

appears to affect conceptual structure and categorization”. While this is usually

taken as a good sign, in the sense that it fosters learning, it also succinctly expresses
the inherent problems of externalizing knowledge: As has been argued in chapter 4,

drawing a concept map is a form of communicating, fosters meta-cognition, and also

is an act of knowledge creation. This, in turn, may affect the knowledge structure

that is to be externalized. In other words the method of measurement may affect the
very aspect to be measured. Consequently, Trumpower et al. (2010, p. 9f.) suggest

that using relatedness judgments instead of concept mapping is a better way of
arriving at structural information because it doesn’t require persons to label the links

and may therefore be less dependent on language skills. Also, the explicit structure

of a map, as a person is drawing it, can have a bias on the externalization process

since it may foster the creation of “visually or structurally appealing” (Trumpower

et al. 2010, p. 10) maps regardless of the actual knowledge structure that should

be externalized. However, at least in the end of a concept map creation process,

the changes in the knowledge structure that were triggered by concept mapping will

most probably also have been integrated in the map. At this point the knowledge

structure and the map are consistent again, then.
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In conclusion, it is assumed that based on the vast amount of literature of successful

concept mapping tasks and the psychological backings of the method, at least the

“gold standard” task as described in section 4.2.2 with the common restrictions of a
list of concepts or a restricting list of concepts is a valid approach to externalizing

parts of the conceptual knowledge of a person. However, the externalization is

influenced to an unknown extent by a set of variables not fully known and therefore

all results must be treated with caution in analysis.

6.1.1 Observing the Externalization

This section presents several results concerning the process of concept map cre-

ation that have been gathered in the course of this thesis. They are concerned
with three different aspects: The general complexity of concept maps achieved in

assessment tasks, the actual process of creating them - especially regarding the

required time - and the choice of labels. All three aspects are interesting, since they

provide insights into the influence of variables on the process of knowledge exter-

nalization during concept mapping. There are two possible methods of investigating

this process: Either the process is observed (unobtrusively), or the drawing persons
themselves are asked about the externalization process, for example by interviewing

them afterwards or by having them comment on the creation process. This itself

is an externalization again. Both methods will have their respective strengths and
weaknesses and one cannot completely replace the other. Yin et al. (2005) used

the think-aloud technique to investigate the generation process. They found that

supplying a list of pre-defined linking phrases seemingly changes the cognitive

process underlying map creation. Concerning the value of observing the creation of

a concept map, Cañas (2008, p. 62) notes: “Following the evolution of propositions

over a given time span, furthermore, can help visualize the process of meaningful

learning as revealed by subsumption, progressive differentiation and integrative
reconciliation of concepts, link reworking, and overall map reorganization.”

As part of this thesis, an online editor for concept map creation has been designed,

as described in chapter 8. This allows a completely unobtrusive monitoring of the

process of map creation. The editor has been used in several different applications

and contexts: Some of the maps were used as part of an exam at the university,

others were drawn completely voluntarily as a learning aid, and some were collected

as part of a survey. Also, in some of the cases, a list of concepts or a restricting list

of concepts was used, while in others there were no restrictions whatsoever. Most

of the maps were drawn by learners, some were done by experts for the respective

setting, namely secondary school teachers and advanced students.



POSSIBILITIES AND LIMITATIONS OF CONCEPT MAPS 93

One general observation is, that when asking learners to draw concept maps, the

result will typically be rather sparse, tree-like graphs (see section 6.2.1 below). Of

several hundred concept maps that were collected in various contexts, including all
of the maps used in the case studies of the fourth part, the number of concepts and

propositions were counted. When correlating the number of concepts to the number

of propositions using Pearson’s product-moment correlation, with p < 0.01 the value

lies in the interval of 0.98 and 0.99. So, there is a clear linear dependence between

the number of concepts and the number of propositions. Also, the mean value
of the quotients of the number of propositions divided by the number of concepts

over all maps is 0.98. So, it seems that not only is there a linear trend between the

number of concepts and propositions, but the linear factor is close to 1, i.e. concept

maps are mostly resembling trees. While it may seem that a densely connected

conceptual knowledge is preferable, a very high proposition to concept ratio is not

considered optimal elsewhere in literature (cf. Glöggler 1997, p.136).

To gauge the effect of using a software-based approach, all of the maps that were

not drawn using any form of software were analyzed in comparison to all the maps

that were drawn using the editor. The average ratio of propositions and concepts
for the non-software maps is 0.92. Also, a t-test performed on both sets of these

ratios (number of propositions divided by number of concepts for every single map),

reveals a significant difference (p = 0.014) between the two populations. So, it

seems that using a software-based approach influences the density of the maps in

a small but positive way.

Next, the actual process of creating the maps is analyzed in more detail. The online
editor records a snapshot of the concept map after each of the basic operations

of adding, removing or renaming a concept or proposition. The simple moving of

concepts on the plane is not recorded. The snapshots can be used to identify the

working pattern used by the creators. One typical working pattern might be, for

example, to always create a new concept and then a new connection using this

concept. A different working pattern, and one that might more closely resemble an

exhaustive externalization process, would be to create a few concepts and then

creating many propositions between these concepts. To analyze the pattern, the

difference between consecutive snapshots was identified and the operation that

was used between the snapshots was marked with a code (e.g. ‘C’ for creating a
concept). Then, the sequence of codes of all the snapshots of a map describes the

way the concept map’s structure has been created over time. For example, if the

codes ‘C’ and ‘P’ stand for adding a concept or proposition respectively, then one

pattern of creation might have the code “CPCPCPCPCP”; another pattern could
be “CCPPPCCCPPCPCPP”. The results of all collected maps in the editor show
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that the average length of consecutive operations of either adding only concepts or

adding only propositions is between 1.5 and 2.5. In other words, in general, at most

two concepts are added before a proposition is added or at most two propositions
are added before a new concept is added. This clearly points to a working pattern

of repeatedly only connecting new concepts to an existing map structure - which

will result in a tree like structure.

A variable that will heavily influence the externalization process is time: If not
given enough, the externalization of a person’s knowledge in a concept map must

necessarily fall short regarding validity. In literature, there doesn’t seem to be an

established amount of time that is necessary for a concept mapping task. The time

that was spent between each action in the concept mapping editor is recorded and

can be analyzed. In the course of two runs of the same lecture described in section

6.3.2, the students had to draw concept maps as part of their final grade but were

not given any time restrictions (apart from a final due date), as the concept mapping
task was done at home on their own schedule. When not differentiating between

creating concepts and creating propositions, a histogram of the time spent between

each action can be seen in Fig. 9. An average of about 20 seconds (17.51) is used
for each action, the standard deviation is 14.56 seconds. Since the collected maps

are also rather sparse with a concept to proposition ratio close to 1, as reported

above, it can be assumed that if given a list of n concepts, a time of at least n

minutes should be enough to not negatively influence the externalization - at least

when the maps are drawn using software. Whether or not this also holds true for

maps created with pen and paper is unclear, but at least the actual performance of
typing and clicking versus writing can be assumed to be of roughly equal duration.

However, time is only partly a constraint when considering the number of concepts

given in a concept mapping test. For example, Clariana & Taricani (2010) report

that the predictive ability of concept map scores decreased when increasing the
number of concepts that students should use.

Finally, the labels that are used in concept mapping are investigated. Going even

further than the categorization of different types of propositions presented in section

4.1, from a researcher’s perspective, it would be favorable to have the mapper

choose linking words from a given list of labels - since this would greatly ease

automated analysis and scoring of large amounts of maps. However, such a list
could also negatively influence the externalization. While Yin et al. (2005) found

a difference in cognitive processes when supplying a list of labels, this list has

been extracted from an expert’s map. If, instead, a list could be found that was

independent of the subject matter context and provided a reasonable amount of
coverage over possible concept relations, a different outcome can be expected.
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Fig. 9: The time between consecutive actions in the concept mapping editor

for 58 (rather large) concept maps of students of two runs of the same lecture.

The maps were drawn with no time restrictions and, in general, over several
drawing sessions.

Cooke (1983) presents a classification of link types for similarity ratings concern-

ing the semantic relation specifically between concepts of computer programming.

The types are can be done to/is operated on, is part of/contains, interchange-

able/interchangeable, is a type of/superset, is a type of/could be, and can be done
to/is used with (cf. Cooke 1990, p. 238). The two wordings are used since the types
can be used in both directions for a pair of concepts. Also, Sousa (2009, p. 200)

gives the results of a study that identified nine types of cognitive relationships for

concept mapping with the following names and descriptions:

1. Classification: A is a an example of B.

2. Defining/subsuming: A is a property of B.

3. Equivalence: A is identical to B.

4. Similarity: A is similar to B.

5. Difference: A is unlike B.

6. Quantity: A is greater/less than B.
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7. Time sequence: A occurs before/after B.

8. Causal: A causes B.

9. Enabling: A enables/allows B.

Clearly, from an epistemological view as presented in the next section, these
categories are not enough to encode arbitrary propositional facts, like “the earth

rotates around the sun” which is clearly neither a causal nor an enabling relationship

between the concepts earth and sun nor any of the others. The system of Cooke
is not applicable due to the different context, of course. In the course of the case

study presented in chapter 10 in the next part, the labels that students were actually

using in a concept mapping task were analyzed. The results have been published
in (Hubwieser & Mühling 2011c). Students were free to choose any labels during

creation. Later on, these labels were categorized by a qualitative approach. To

this end, each label was rephrased by stripping unnecessary prepositions and
converting it into an active present tense form, as far as possible. These were then

categorized by combining them under some appropriate label. For example the

labels “characterizes” and “describes” are combined into the category “describes”.
The process is subjective to some extent. To increase objectivity, there was also a

category “too complex” that contains all labels that could not easily be placed into

a category described by a present tense verb. The categories of the labels that

are not too complex and that were actively used by at least 3 students are only the

following 29 (translated from German):

activates, belongs to, calculates, changes, concretizes, connects, consists of, con-

tains, controls, corresponds to, creates, describes, determines, enables, has the

effect of, fulfills, gets, influences, is divided into, is entered, is opposite of, is re-

jected, works with, names, needs, repeats, results in, uses.

Two only appeared in passive form and were therefore left that way. Many of

the categories can be placed in the two systems presented above. For example,

“enables” and “needs” belong to “Enabling” while “determines” and ”results in” can be

placed into the “Causal” category. Some of the resulting categories, like “calculate”

or “activates” are probably a result of the specific context of computer science.

In other contexts, like biology, other categories will most probably appear, while

“calculate”, for example, probably won’t.

So, it seems like providing a list of linking words that is encompassing enough to

allow for arbitrary concept mapping tasks is a difficult endeavor. Also, it remains

unclear in how far it would influence the externalization process. Automated scoring

of propositions would be enhanced by a given list of labels. Using computer support
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for drawing concept maps allows a more flexible approach to this problem, as also

done by Weber & Schumann (2000, p. 162): Instead of giving a fixed list of labels,

a computer system might suggest several labels while still allowing users to create
their own linking phrases if they like. In this way, they would not be restricted but

guided toward reusing labels of other users.

6.2 Epistemological View

From an epistemological point of view, mainly the propositions encoded in concept

maps are of interest. The same information can also be transported by, e.g. a list of

the propositions as sentences. The structure of the concept map (e.g. hierarchical
or taxonomy like) is then merely a chosen way of displaying the knowledge encoded

in the propositions that makes the map easier to grasp visually, for example. From
an epistemological perspective, a proposition should state some form of “fact” in

the given subject matter of the concept map and not just encode trivial connections

that can be made up between almost any pair of concepts like “has something to do

with”.

If, as in the last section, concept mapping is assumed to be based on the mental

process of integration, the fact that a proposition encompasses (exactly) two con-
cepts is not a restriction. Novak, as presented in section 4.1, defines a proposition

such that it connects two or more concepts and Larraza-Mendiluze & Garay-Vitoria

(2013, Figure 8) show an example of a triadic proposition in a concept map, that is

split up for better readability. However, it remains unclear how such propositions are
compatible with the way concept maps work. While strictly speaking a proposition

that connects a concept to itself (e.g. “objects are communicating with objects”)
is not covered by the definition, it is no problem to integrate such an association

in a concept map conceptually and visually. Concerning propositions with more

than two concepts, there is no obvious solution, however. For example a simple
propositional fact like: “The result of a transition (for a given deterministic automaton)

is determined by its current state and the next input” is not easily transformed into a

proposition between two concepts. If the context of a given deterministic automaton

is clear, the concepts that are present in this sentence are: transition, state and

input. Therefore, the proposition is not dyadic (based on two concepts) but triadic.

A concept map containing these three concepts with meaningful connections regard-

less of the given proposition can easily be created. However, the aforementioned

propositional fact cannot be encoded in such a map in an unambiguous manner.

Basically, there are two different ways of how it can be attempted without changing
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the syntax of concept mapping. The triadic proposition can be split up into several

dyadic ones, as in Fig. 10(a). Then, the propositions are formed correctly, but taken

in isolation they are wrong. Instead, they would have to be interpreted as a set of
propositions that are combined in some way. Without specifically hinting at this prob-

lem, Cañas (2008, p. 62) states that a proposition in a concept map is not valid if,

among others, “it is not autonomous, i.e., it is a fragment or continuation of a larger

grammatical structure such as a sentence, and has no meaning independently of

this bigger structure”. Alternatively, the proposition can be encoded by using more
“complex” linking words encompassing other concepts, as in Fig. 10(b). In this case,

each proposition is correct by itself and, in this example, redundant. As a matter of

fact, the concept map of Fig. 10(b) would contain the same information, if one of the

concepts input or state was missing completely. However, it defies the semantics of

concept maps that concepts are appearing as separate elements. Also, it defies

the notion of a well-constructed concept map presented in section 4.1, according to
which only short labels should be used for propositions. The same goes for using

more complex concept labels instead of complex propositions. The first case study

presented in chapter 10 will shed some more light on this restriction by analyzing
different patterns of splitting up a proposition.

6.2.1 Concept Maps as Graphs

This section will establish a formal definition of several typical forms of concept

maps, in order to provide a basis for the following definitions of concept landscapes.

The formalism is kept minimal on purpose in order to make the definition usable and

easy to communicate.

It is self-evident, that concept maps in their most general form can be modeled
mathematically as little more than a labeled, directed graph, as noted in e.g. (Leake

et al. 2005), (Koponen & Pehkonen 2010), or (Anohina-Naumeca 2012). The

concepts form the nodes of the graph and the labeled arrows form the edges. Care
must be taken, however, that a concept should appear only once in a concept map.

So, the basic model of a concept map CM = (V,E,Lv, Le) consists of a finite (and

usually non-empty) set of vertices and edges that form a directed graph and two

functions Lv : V → Σ∗, Le : E → Σ∗ that map the set of vertices and edges to the

set of all words Σ∗ formed over some alphabet Σ. Additionally, it must hold that

Lv is injective, i.e. that Lv(x) = Lv(y) if and only if x = y. A proposition, then, for

some edge p = (x, y) is the triple of the labels: (Lv(x), Le(p), Lv(y)). The usual

application of concept maps assumes that this triple, if read as a “sentence”, will be

understandable for human readers. The labels can be defined more precisely (e.g.
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Transition

State Input

determines result of determines result of

(a) Splitting the proposition up

Transition

State Input

determines result together with input

determines result together with state

(b) Using complex linking words

Fig. 10: A triadic proposition encoded in a concept map.
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by formal languages), to restrict concepts to a single word, for example. Also, though

not very common, self-loops are allowed in this definition and also sometimes found

in real-world concept maps, as already noted above.

A concept map that is restricted to a list of concepts and/or to a list of edge labels

can be modeled as follows - both restrictions can be applied simultaneously:

Concepts Let C ∈ Σ∗ be a set of concepts (given as labels). Set VC to {v1, v2, . . .,

v|C|} and define Lc : Vc → C as a bijective mapping function. Then, the

concept map CMC = (VC , E, LC , LE) for some sets of edges and labels is

restricted to the concepts of C.

Edges Let L ∈ Σ∗ be a set of edge labels. Define LE : E → L as a mapping

function. Then the concept map CME = (V,E, LV , LE) is restricted to the

edge labels of L.

Given a set of concepts C, it is sometimes convenient for analysis to restrict an
existing map to the concepts of C. This is equivalent to using the subgraph induced

by the vertex set L−1V (C) This uses the inverse function of LV applied to a set of

labels.

Adding the restriction that a concept map should be hierarchical is not straight-

forward. A hierarchical graph or network in graph theory is typically seen as

one that “divides naturally into groups and these groups themselves divide into
subgroups, and so on until we reach the level of individual vertices” (Clauset, Moore

& Newman 2007, p. 2). A hierarchical concept map on the other hand is one where

the concepts can be divided into several levels, starting from one central concept.

One level subsumes the nodes of the next level, structurally and semantically, “that

is, the more general, more inclusive concepts should be at the top of the map, with

progressively more specific, less inclusive concepts arranged below them” (Novak

& Gowin 1984, p. 15f.).

While this bears some resemblance with the graph theoretic definition of a forest

(a graph containing no cycles), a hierarchical concept map can also contain edges

within one level of the hierarchy and also edges that are not strictly between adjacent

levels (cross-links) - which may potentially form cycles in the graph. One solution is

to define a hierarchical concept map as a regular concept map with the restriction

that there must be a partition of the set of nodes, such that:

1. One subset of the partition contains exactly one node. This node is the

“root”, i.e. it forms the topmost level of the hierarchy /concept map.
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2. There must be an ordering of the subsets of the partition, such that “most”

edges that are not connecting nodes within a subset are connecting nodes

of adjacent subsets according to the ordering. The edges that are connect-
ing nodes of non-adjacent subsets are cross-links.

Then, each subset forms a level of the hierarchy. For ways of determining the

root node of a concept map, see e.g. (Valerio et al. 2008). Also, this definition
of cross-links only holds for their original meaning. The different meaning of a

cross-link connecting different segments of a map can be formalized using graph
communities as presented in the section 7.2.3.3.

In the analysis of concept maps, it is often required, that the propositions of a map

are scored. This score can then be used for a more detailed evaluation. A scored
concept map CM(V,E,w, LV , LE) is a weighted graph, where the weight function

w(i) denotes the score of the proposition formed by edge i and its incident nodes.

Also, for concept landscapes presented in the next chapter, a graph can have a

layout and a temporal development (i.e. development over time). The layout can

be modeled by a function P : V → R × R that places each vertex on the two

dimensional Euclidean plane. While the concept of time is a very complex subject
by itself, dynamic sets only need a very limited definition of time. There are several

discrete and distinct points in time (without any duration) t1, t2, . . . , tn and a (total)
temporal ordering of these points. In other words, for each pair ti, tj , it must be

possible to determine whether ti was before tj or vice versa. This is a simple notion

of discrete time events. In literature, there are several models of such temporal or

dynamic graphs to be found. Commonly, it is either modeled as a series of graphs

(cf. Holme 2003) or as a series of operations (e.g. adding an edge) on a graph (cf.

Mehta 2005). Both methods are applicable for concept maps as well. While the
analysis presented above concerning the sequence of operations is more influenced

by the second way, the analysis of concept landscapes is often more akin to the

first way of modeling. A possible way of formalization is based on dynamic sets of

vertices, edges and labels, denoted as V (i), E(i), LV (i) and LE(i) respectively. i

denotes a point in time and the dynamic set may be different, i.e. contain different

elements, for each point in time.

6.2.1.1 Representations in Computers

When working with concept maps in computer-based analysis, it is necessary
to represent the concept map digitally in a suitable format. The most common

representations of graphs in a computer are (cf. Cormen et al. 2001, p. 527ff.):
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Adjacency Matrix For a set of n vertices, a n × n binary matrix is constructed,

where an entry aij = 1 if and only if the nodes represented by the i-th row

and j-th column are connected (adjacent) in the graph. For undirected
graphs, this matrix is symmetrical.

Adjacency List For a set of n vertices, an ordered set containing n lists is created,

where the i-th list contains all adjacent nodes of the i-th node.

Incidence Matrix For a set of n vertices and m edges, a m × n binary matrix is

constructed, where an entry aij = 1 if and only if the edge represented by
row i is incident to the vertex represented by column j.

Incidence List (Edge List) For a set of m edges, a list with m entries, where the i-
th entry contains the two nodes that are incident to the edge corresponding

to that entry. It can also be represented as a m× 2 matrix, where each row

corresponds to an edge and contains the two incident nodes of that edge in

the two columns.

For concept maps, it is sometimes convenient to include the edge labels in the

representation (e.g. by not storing an edge list, but instead a “proposition list”, or by

using the edge labels as entries in the adjacency matrix itself). When the chosen

method of analysis ignores the edge labels, it is usually more convenient to treat
the concept map as an undirected graph. The direction of an edge is basically

only dependent on the chosen wording of the proposition and usually an equivalent

alternative wording can be found that reverses the direction of the edge. In this
case, an undirected graph contains the same structural information, as also noted

by Anohina-Naumeca (2012).

In addition to these representations, this work will make use of the following two rep-
resentations of concept maps, even though information is lost in the transformation:

Concept Vector For a given (ordered) set of concepts C, a binary vector v ∈ B|C|

is created, where vi = 1 if and only if the i-th concept of C has at least one
incident edge in the concept map.

Edge Vector For a given (ordered) set of concepts C and the (ordered) set of

edges of the complete graph using C as set of nodes EC , a binary vector

v ∈ B|EC | is created where vi = 1 if and only if the two concepts that are

connected by the i-th edge of EC are connected in the concept map.
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6.3 Educational View

“Consistent with constructivist epistemology and cognitive psy-
chology, the theoretical framework that supports the use of concept

mapping hinges on the notion of meaning. Because meaning is

both constructed and shared, the expectation of the student as an

active agent in participating in the development of understanding is

implicit.” (Edmondson 2005, p. 36)

The “educational view” on concept mapping is, in a way, a reconciliation of the

previous rather extreme views. It is - in this work - based on the notion, that
learners are creating concept maps as a form of assessment or measurement of

their structural knowledge. This requires that concept mapping is both valid and

reliable and that its limits and potentials regarding assessment are clear. From
the previous two perspectives, the validity concerning both the externalization of

structural information of conceptual knowledge and the encoding of knowledge in

the form of (dyadic) propositions has been established. Using the “gold standard”
of concept mapping requires that persons draw “real’ concept maps, in the sense

that they must explicitly give useful edge labels. Even if the labels are ignored in the

subsequent analysis of the maps, this ensures that the properties of the structural

configuration are not overestimated. A connection between concepts should only be

given if there is an associated “element” of (conceptual) knowledge that the mapper

retrieved from memory by using the mental process of integration or (at least) the

recall of some factual information.

Concept mapping from an educational perspective also often entails an educational

process that is assumed to influence the knowledge structure. In other words,

concept mapping may be used to “monitor” how a learning opportunity affects a
person’s memory. As in most forms of assessment however, the result of a concept

mapping task is first and foremost an attribute of the person assessed and not of the
educational process. Implicitly, often it will be assumed that it is this process that

principally determines the result of the assessment. For example, when students

are taking a math test in school, the results of the test are (hopefully) measuring the
students’ knowledge or abilities in math. These may or may not have been a result

of the math classes they attended. Implicitly, though, the assumption will often be

made that it indeed is a direct result of the attendance though obviously combined

with personal attributes and efforts of the students (e.g. preparing for the test).

In this work, it is assumed that the most gain from analyzing concept maps comes

from the structural information of the maps and not from the list of propositions that
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they encode. This structure is present both on a macro level, encompassing all

concepts, and on a micro level, encompassing only a small number of concepts, and

their interrelations. There are also other possibilities, of course, of arriving at such an
externalization. For example the structural information could be externalized by relat-

edness judgments and the propositional information could be collected afterwards

(cf. Albert & Steiner 2005). Also, concerning the epistemological limitations, when

concept mapping is mostly seen as a way of organizing and displaying knowledge,

there are also better alternatives, due to the restrictions of concept maps. However,
concept mapping has the inherent advantage that it is easy to learn for most people

- in contrast to e.g. describing a knowledge base as an ontology - and it offers a

direct benefit for the mapping persons - in contrast to e.g. relatedness judgments,

especially when the mappers can keep or continue working on their concept maps.

Also, concept maps are a valuable tool of formative assessment, in contrast to many

other methods of externalizing knowledge. Formative assessments encompass “all
those activities undertaken by teachers, and/or by their students, which provide

information to be used as feedback to modify the teaching and learning activities in

which they are engaged” (Black & Wiliam 1998, p. 7). This makes concept maps
valuable for applications in educational settings as there is more to be gained than

“just” the externalized knowledge.

6.3.1 Assessing Learning

Concept maps, when used as a form of assessment, may be used to measure

whether or not an intended learning objective (see section 3.3.1) has been met by

students. This section deals with the question of which types of learning objectives

a concept mapping task can cover, in principle. It is based on the taxonomies

described in section 3.3.1.1. Cañas & Novak (2012, p. 248) note without further

elaboration that “when concept maps are used to facilitate learning, they can also be
used as an assessment tool capable of assessing not only the recall of information

but also those higher order skills that are described in Bloom taxonomies”. And,

according to Novak & Cañas (2008, p. 13), the process of identifying cross-links
involves “high levels of cognitive performance, namely evaluation and synthesis of

knowledge”. Again, the authors don’t give a reason for this classification.

The prototypical learning objective that can be assessed with concept mapping,

following the taxonomy of Anderson and Krathwohl, is “understanding conceptual

knowledge”. This is an oversimplification, though. As has been argued above,

drawing a proposition can be a simple task of recalling a fact (“remembering factual

knowledge”) or it can require understanding a more complex interplay of several
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knowledge elements, depending on whether or not the proposition (e.g. “parameters

can be passed by value”) has been rote-learned as a “fact” by the person drawing

the map or not. Clearly, by design, concept maps will fall short for assessing learning
objectives in the realm of procedural knowledge. Similarly, the cognitive process

“apply” is typically not easily covered by a concept mapping task. This combination

is not surprising: “Apply involves using procedures to perform exercises or solve

problems. Thus, Apply is closely linked with Procedural knowledge” (Anderson

& Krathwohl 2001, p. 77). However, when including aspects like the layout of
the concept map, producing a “good” layout can be considered an application of

meta-cognitive knowledge.

To investigate whether or not the higher-order cognitive processes can be reached by

concept mapping, the subtasks that are needed to draw a concept map are analyzed,

as if they were expressed as actual learning outcomes for some (hypothetical)

subject matter. For example the subtask of “identifying key concepts” that is analyzed
in the following actually stands for an operationalized learning outcome that could

be, for example, “the student is able to identify key concepts of object orientation”.

The knowledge component is taken to be either factual or conceptual knowledge.
The task of creating a concept map is defined by Novak & Cañas (2008) as:

“Given a selected domain and a defined question or problem

in this domain, the next step is to identify the key concepts that
apply to this domain. Usually 15 to 25 concepts will suffice. These

concepts could be listed, and then from this list a rank ordered

list should be established from the most general, most inclusive

concept, for this particular problem or situation at the top of the

list, to the most specific, least general concept at the bottom of the

list.[...] The next step is to construct a preliminary concept map.[...]

Once the preliminary map is built, cross-links should be sought.

[...] Finally, the map should be revised, concepts re-positioned in
ways that lead to clarity and better over-all structure, and a ‘final’

map prepared.” (Novak & Cañas 2008, pp. 11-14)

Anderson & Krathwohl (2001, Table 5.1) give detailed descriptions about the cogni-

tive processes of the taxonomy. Applying these to the task description above, the

following matches can be identified by interpreting the description of the concept

mapping task as described and looking for correspondences to the descriptions of

the taxonomy - especially by using the list of synonyms that is given for each of the
cognitive processes. Also, Sousa (2009, p. 250ff.) presents a description of the

different cognitive processes that is used for the interpretation. The analysis yields:
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• “identify the key concepts” While “Identifying” is given as an alternative

name of the sub-category “Remember-Recalling”, in this case it means

“selecting” key concepts. “Select” is given as an alternative name for the
sub-category “Analyze-Differentiating”. Also “identifying parts” is given as a

description of the process “Analyze”.

• “from this list a rank ordered list should be established” Ordering is a

form of structuring, which belongs to the sub-category “Analyze-Organizing”,

also “recognizing organizational principles” is given as a description of the
process “Analyze”.

• “construct a preliminary concept map” Constructing a concept map is
rather general. Particularly, it involves arranging the selected concepts

and deciding which to link and how to name the links. Therefore, the

task encompasses retrieving relevant information about the concepts from

memory (category “Remember-Recalling”), selecting propositions to be
included in the map (category “Analyze-Differentiating”) and integrating

those propositions into the map (category “Analyzing-Organizing”). “Recall

of semantic memory” is a description of the category “Remember” and
“examining the relationships of the parts to each other and to the whole” is

given as a description of “Analyze”.

• “cross-links should be sought” Again, this subtask is too general to be
directly analyzed. It encompasses tasks of retrieving information, selecting

and integrating, and therefore fits the cognitive process of “Analyzing”. For

example, “organize and reorganize information into categories” is given as

a description of “Analyze” which can be applicable for finding cross-links.

As there are no “criteria and standards” that drive an evaluation process,

choosing “Evaluating” as the cognitive process is not applicable in this case.

• “the map should be revised, concepts re-positioned in ways that lend
to clarity and better over-all structure” Assuming that a concept map

should be hierarchical, this can be seen as a criterion. Then this subtask

may be seen as “Evaluate-Critiquing”. Also, “learners tend to consolidate

their thinking” is given as a description for “Evaluate”. Otherwise, it is

more a form of structuring and classification, as above, corresponding

to sub-categories of “Analyze-Organizing” and “Understand-Classifying”

respectively.

In conclusion, a concept mapping task encompasses several subtasks that are

placed differently in the taxonomy. The “highest” category that a regular concept
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mapping task according to this analysis can “safely” reach is “analyzing conceptual

knowledge”. When using the taxonomy of Fuller et al. (2007), then a concept

mapping task can cover almost every aspect of the “Interpreting” dimension - which
makes concept mapping especially interesting in the context of computer science

which this taxonomy is specifically based on.

In a related investigation, Passmore (1999) uses the SOLO taxonomy of observed

learning outcomes on elements of concept maps. Propositions are assessed
according to the taxonomy and this in turn is used to judge the quality of a concept

map. According to his reasoning, propositions can be of any type up to “extended

abstract”. However, this is only possible, because the propositions are extended

with actual explanations of the underlying reasoning and concept maps are used to

summarize an instructional text instead of purely externalizing knowledge:

“Method 1 [out of three Methods of assessing concept maps]

is an adaption of Biggs and Collis’ SOLO knowledge assessment

method. It rates concept map links against the SOLO response

scale. Links consists of one or more items of data and a linking
statement. Each item of data expresses one element of the rela-

tionship between two concepts. [...] The understanding contained
in this connection is expressed in the linking statement. Method 1

determines the quality of this understanding.” (Passmore 1999, p.

71)

It is questionable whether a simple proposition of a typical concept map can be

accurately assessed using the SOLO taxonomy. However, it seems plausible that

an entire map, especially when contrasted with some form of instructional input, can

be assessed this way.

Clearly, concept maps are not a suitable tool to measure competencies - except

for the competence of concept mapping itself. However, as has been presented in

section 3.3.2.2, a competence usually entails a cognitive (or knowledge) component

that is a prerequisite of competent performance. As has been established in this

chapter, concept maps can be used to assess this cognitive aspect of a competence

- at least as far as it concerns conceptual or factual knowledge. Therefore concept

maps are deemed to be a suitable instrument of measurement even in the light of

competence based assessment scenarios.
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% Concept Map SUM PT EXP WIKI

Concept Map - 0.50∗ (0.17) (0.04) (-0.04)

SUM - (-0.07) (0.19) (0.20)

PT - 0.87∗∗ (0.12)

EXP - (0.09)

WIKI -

Table 6.1: Correlation between different elements of the assessment. Spear-

man’s rank correlation was used (∗∗ = p < 0.01, ∗ = p < 0.05, () = p > 0.05).

6.3.2 Scoring Concept Maps

Scoring concept maps has a long tradition both in assessment and research. Often,

the underlying assumption is that not all propositions should be treated equally.

A proposition may be in contradiction to the views of experts on a subject matter

and therefore indicate an inappropriate proposition or misconception. Also, a given
proposition may be valued as “better” (mostly in the sense of “less trivial”) than

another proposition. Therefore, it often seems reasonable to score the propositions

and subsequently use that scoring in the process of assessment (or analysis).

However, as has also been mentioned in section 4.2.2, a scoring often introduces a

subjective element and the reliability of the scoring scheme is highly important.

If concept maps are used as a form of formative assessment the scoring will have
to be done in a way that allows insights into a person’s particular strengths and

weaknesses concerning the conceptual knowledge expressed in a concept map.

This often entails scoring each proposition. In the case studies of the next part, a

scoring using three values ranging from “clearly wrong or uninterpretable” to “clearly
correct” and a middle value of cases where both extreme values are not applicable

has been adopted. In analyses, the propositions with this middle value can be left
out in order to further increase the reliability of the scoring. The scoring method is

inspired by the “relational with master map” method presented in section 4.2.2. In
the case study presented in chapter 10, the correlation of the summed scores of

concept maps using this scheme to other structural attributes of the concept maps

is investigated. The results which are presented in Table 10.1 show that there is

indeed a medium to large effect present for the number of concepts, propositions,

or components.

So, it seems that scoring each proposition in this way may only reveal information
that is - in general - also present in other attributes of the maps. Since scoring each

proposition of a set of maps takes a considerable amount of time, possibilities of
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reducing the necessary manual efforts are worth investigating. When the scoring is

done for analysis or grading only and not for feedback to the learner, this becomes

especially interesting. One such method is presented here. The lecture that formed
the basis for the first case study was completely restructured in the winter term of

2011 according to constructivist principles, as described in more detail in German

by Berges, Mühling, Hubwieser & Steuer (2013). Instead of an exam, the students

had to create a portfolio that consisted of several elements as described below -

including five concept maps for the five major topics of the lecture. The concept
maps were scored using the following very basic scoring scheme:

1. Count the number of concepts that are used (c).

2. Evaluate the overall quality of the map holistically and assign a value of 0,

0.5 or 1 (q).

3. Calculate the score as: min(b c
10c · q, 10).

The maximal score of 10 points was set according to the maximal number of points

that were awarded to the concept maps. The division by 10 was used for simplicity
and because it fits the actual number of concepts well (in the sense that the results

are spread out across the spectrum of 0 to 10 points). The holistic scoring was

derived by checking whether or not propositions are actually labeled in a useful way

and whether or not the concepts are making sense in the context of the lecture. So,

the scoring scheme does not take the correctness of the propositions into account,

based on the notion that misconceptions as expressed by the students may be
valuable and should not negatively impact the score. The scoring system is not

completely automatic, but the second step can be done very quickly, manually. This

is akin to the manual classification of concept maps into the types of “spoke”, “chain”,

or “net” which has been suggested to be a fast and reliable alternative to manual

scoring of propositions (see section 4.2.2). The method has shown to be reliable

between two different coders. To investigate the validity of the scoring system, the

resulting scores of the concept maps were correlated with several other artifacts

that were used for determining the grades, namely:

SUM The students were asked to write a summary of the topics of the lecture (at

least 1000 words).

PT The students had to hand in several programming tasks over the course of the

lectures. These could be done in groups, though.

EXP At the end of the semester, each student had to take part in an interview,

explaining the solutions to the programming task individually.
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WIKI As a creative element of the assessment, the students could write entries for

a Wiki concerning the topics of the lecture.

Spearman’s rank correlation of each of these elements with the score of the concept

maps can be seen in Table 6.1. The strong (and significant) correlation of the

concept map scores with the summary, is the second best value over all correlations
- only bettered by the correlation of PT and EXP. A high correlation between concept

mapping in written text has been identified before by e.g. Zimmaro et al. (1999).

Also, seemingly, the different parts of the assessment are somewhat independent,

with the programming tasks and explanations only weakly correlating with the

rest. Overall, this indicates that actual programming tasks only partly capture
conceptual knowledge. The case study presented in chapter 12 is investigating this

phenomenon more closely. In summary, the results presented here and in the case

study show, that a combination of qualitative and quantitative scoring with only few

different score values and clear distinctions between quality levels works well and

correlates with other methods that assess knowledge and abilities.



7 Concept Landscapes

Based on the constructivist theory of learning and the cognitive and neurological

backings of this theory as presented in chapter 3, it must be acknowledged that

learning is a subjective, personal process and that teaching is far more a fostering

of learning than it is a transportation of knowledge. Nevertheless, the knowledge

organization of experts tends to be similar and when teaching in larger groups,
the effects of teaching will most probably tend to affect the learners in a similar

way. Investigating knowledge in a constructivist setting therefore can focus on two

aspects:

1. The subjectively constructed, idiosyncratic knowledge structure of a person.

2. The commonalities and differences between the knowledge structures of

several persons.

Concept maps have been established as a method of investigating the first aspect,

namely the subjectively constructed knowledge structure of a person. Based on

the findings of the last chapter and the related literature presented in the last part,
it is clear that concept maps, when interpreted with caution, are a valuable tool in

externalizing structural knowledge.

In this thesis and particularly in this chapter a generalization is presented, that allows
using concept mapping for the second aspect, i.e. to investigate the “knowledge

structure” of groups of persons in several distinctly different ways. One specific

way of analyzing shared aspects of concept maps, which is also encompassed by

this generalization, is the creation and subsequent inspection of a weighted graph

that is formed from a set of maps. This approach is typical according to Eckert

(2000, p. 5), for investigating shared knowledge structures and has been recently

done by e.g. Larraza-Mendiluze & Garay-Vitoria (2013) who are investigating a
set of concept maps with techniques of social network analysis. Also, Glöggler

(1997) presents a study that investigates the development of knowledge by using a

technique similar to concept maps and using the data to create a weighted graph

that is then analyzed.

The specific setting requires new ways of working with concept map data but also

presents new opportunities for insights in the data that are not possible when

focusing on single concept maps. For example, as has been argued above, it is not

valid to interpret missing elements for single maps. For groups this is different, as a

hypothetical example in an instructional setting shows: If a single person is missing a
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particular concept or connection, then this may be for a variety of reasons unrelated

to the learning or the instruction this person received. If, however, every person of,

for example, a class misses a particular concept or propositions, it becomes far
more likely that this is due to their specific shared learning environment or input they

received.

As has been mentioned in the last chapter, the externalization process during

concept mapping is influenced by several variables. This influence can also be seen
as “noise” that affects the measurement “concept mapping”. That the measurement

of knowledge is inherently “noisy” has been observed at least for expert knowledge:

“[A]lthough different experts may show variability in their judgments of concept

relations, this variability often appears to be the result of random error rather than

systematic differences in thinking” (Trumpower et al. 2010, p. 8). While the extent

of “noise” in concept mapping in general is not known, it is at least plausible, that

for many of the influencing variables, the “noise” over many measurements will
rather cancel out than systematically add up. This is especially true for personal

variables that influence the externalization. For example, when a group of persons is

creating concept maps, it is reasonable to assume that the motivation will vary from
persons with only little motivation for the task to persons with rather high motivation.

Overall, therefore, the influence of a lack of motivation for concept mapping that is

detrimental when assessing only a single, unmotivated person is far less severe for

a group where only a few persons are unmotivated. The same can be expected to

hold, within reasonable bounds, for the training necessary to create concept maps

and the time given to create the map. Therefore, it is expected that the combination
of many concept maps for analysis effectively reduces the influence of the main

variables that may impact the externalization in a negative way.

The next section presents concept landscapes, which encompass the knowledge

structures of a group of persons expressed in concept maps. Then, various analysis

methods for concept landscapes are presented. These are applied in the case

studies presented in the next part.

7.1 Definition

A concept landscape is a general notion for aggregating (or combining) the data of
multiple concept maps with the goal of analyzing this combination instead of the

single maps. The novel aspect therefore is to no longer treat a concept map as a

single entity which is analyzed for itself, but instead focusing on analyzing sets of

concept maps as a whole.
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While in theory, any set of maps can be used to form a concept landscape, in

practical settings the maps are typically taken from either of two scenarios: The first

is the combination of maps that have been created by several persons in the same
context, e.g. all students of a class at the same point in time. The second is the

combination of maps that have been created by the same person but at different

points in time. Fig. 11 shows these two scenarios as a diagram. It assumes, that a

group of persons were asked to produce concept maps at several points in time.

Then, allowing for some missing maps, the data will consist of a number of concept
maps, where each map is associated with a person and a point in time. A vertical

combination will be made up of all maps at a given point in time. A horizontal

combination will combine the maps of each point in time, for a single person. More

generally:

Vertical Combines a set of concept maps without a temporal ordering of the maps.

Horizontal Combines a set of concept maps with a temporal ordering of the maps.

Data mining approaches for example, are useful with vertical aggregations. Hori-

zontal aggregations can be used for visualization of the developments of knowledge
structures. Besides the choice of which maps to combine into a landscape, there

are also two different ways of how this combination can be done.

Amalgamation The individual maps are combined into a single graph that is then

analyzed. Often, this newly formed graph will be weighted in order to reflect

some of the statistical properties of the original set of concept maps.

Accumulation The maps are still treated as individual entities, however information

contained in them is combined in some form for analysis. Often, the maps
will be transformed into a numeric vector and a matrix will then be formed

from all the vectors.

Fig. 12 displays the difference graphically. An accumulation still treats each concept

map as an entity that is recognizable in the data. For example, when forming a data

matrix, each row will correspond to a specific map. When amalgamating, the single

maps are integrated into a whole and the individual maps can no longer be identified.

Usually both methods will contain loss of information: It is not possible to reconstruct

the single maps from the aggregated data. Since the result of an amalgamation is a

graph (void of edge labels and typically weighted) which is (almost) a concept map
again, this can be used to combine several approaches: For example, the students

of a lecture can be asked to create concepts maps at several points in time. Each
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Fig. 11: A visualization of the two types of aggregations. Each ‘x’ marks the

concept map of one person at one point in time. Some are missing. The

aggregations either combine all maps of one point of measurement or all

maps of one person.

point in time offers a set of maps that can be amalgamated vertically and then, the

resulting graphs can be aggregated in either way horizontally in order to display

the development of the groups’ knowledge. This is schematically shown in Fig. 13

and applied in practice in the first case study. Other combinations may be used as
well, of course. For example, a typical approach would be to first identify clusters

of a vertical accumulation and then, in order to describe the clusters more closely,

combine the maps that form each cluster again in a new way and search for the
“common” elements in each cluster. This is possible because an accumulation still

allows the identification of the constituent maps.

For vertical combinations, the focus of interest usually will determine which method
is used: An amalgamation should be chosen, when the analysis focuses on the

common elements of a group of maps. As the single entities are combined into a

whole, the common elements typically will show more distinctly. When the focus
of the analysis is placed more on the differences between the constituent maps

of a concept landscape, an accumulation should be used. The single maps are

still recognizable entities in this case and suitable analysis methods can identify

how the single maps differ in the information contained in them. The two analysis

methods that are described here and used in the case studies are using these two

approaches: Pathfinder networks are used in identifying the “common” structural
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0 1 1 0 1 1 0
1 1 1 0 0 0 1

(a) Accumulation

(b) Amalgamation

Fig. 12: Accumulations still treat each map as an identifiable entity in the

resulting data. Amalgamations result in a graph or concept map. In both

cases, the newly formed data is the input for the subsequent analysis steps.
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Fig. 13: A typical combination of aggregations: First, the maps of several

points of measurement are amalgamated vertically, the resulting, new set of

maps is then aggregated horizontally, using the times of measurements for
the temporal ordering.

elements of an amalgamation of concept maps. For accumulations, cluster analysis

is used to identify groups in the data.

By taking the type of landscape and the method of combining the maps into account,

there are four distinct ways of how a concept landscape can be formed. By the

nomenclature of typical research designs, a vertical accumulation corresponds to
a cross-sectional-, or “one shot cross-sectional” study (cf. Seidel & Prenzel 2008,

p. 282), in which a group of persons is studied at one point in time. A horizontal
accumulation is a longitudinal study: “In a longitudinal evaluation, one or more

clearly defined outcome measures are assessed repeatedly on a sample of subjects

(e.g., students) over a period of time” (Ma 2010, p. 757).

For each of the four ways, a possible technique of working with the landscape in

analysis is presented below. The next section will give a formal definition of the four
types, built upon the formal definition of concept maps given previously.
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7.1.1 Formal Definition

The formal definitions are based on the general notion of concept landscapes but,

more specifically, on the analysis methods that are used in this work. Different
methods may need a different formalism, but care is taken to keep the approach as

general as possible.

For each case, it is assumed that there are k concept maps (as defined in sec-

tion 6.2.1) CM1 = (V1, E1, w1, LV1 , LE1), CM2 = (V2, E2, w2, LV2 , LE2), . . . , CMk =

(Vk, Ek, wk, LVk
, LEk

) that are used for the landscape. Since the maps may be

scored for analysis purposes, scored maps are assumed. For concept maps that

are not scored, some constant weighting function like w(i) = 0 can be used.

7.1.1.1 Vertical

Vertical landscapes are simply a set of concept maps, combined into a new structure.
A vertical amalgamation can be modeled as a weighted graph CL = (V , E, w,

LV , LE), where V =
⋃k

i=1 Vi, E =
⋃k

i=1Ei, LV (x) =
⋃k

i=1 LVi
(x) and LE(x) =⋃k

i=1 LEi
(x). Based on the above definition, a single graph is created from the k

concept maps. The definition of label functions ensures that no labels are “lost”.

However, typically edge labels are not useful in the analysis of amalgamations. For

concept labels, the definition again ensures no loss of information. It is most useful,
when amalgamating a set of concept maps that share the same nodes and labels,

i.e. V1 = V2 = · · · = Vk and LV1
(x) = LV2

(x) = . . . = LVk
(x). In this case, the set of

concepts and their respective labels are staying the same for the landscape as well.

It is convenient to create a weighted graph and store some information about

the constituent maps in the edge weights. Which information is used depends

on the desired results and intended method of analysis, of course. For example,

the information can consist of summing all the maps that connect a given pair of

concepts and then using that number for the connection of this pair. Alternatively,

instead of forming the simple sum, some additional filtering or transformation may

be applied. For example, if the maps are scored, only maps with a score higher
than some threshold could be used. Or only edges that are used in more than a

given number of maps might be regarded in the analysis. The simplest form of only

counting edges is defined as: w(ei) = |{1 ≤ j ≤ k|ei ∈ Ej}|, for w : E → N. A

filtering that regards only edges with a score higher then t is defined as w(ei) =

|{1 ≤ j ≤ k|ei ∈ Ej ∧ wj(ei) > t}|. Finally, a filtering that regards only edges that

appear in more then t maps is defined as w(ei) = max{|{1 ≤ j ≤ k|ei ∈ Ej}|− t, 0}.
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For vertical accumulations, each constituent map is still an identifiable part of the

“whole”. While there are many different possibilities, in the course of this work it is

convenient (and sufficient) to model the landscape as a numerical matrix with k

rows, where row i is a vector that is chosen to represent map CMi. The concept

and edge vector of a concept map as defined in section 6.2.1 are two possibilities for

this representation. In this case, the resulting matrix will be called vector matrix and

edge matrix for brevity. If the maps of the landscape do not share a common set of

nodes, the definition of edge and concept vector have to be adapted to use the set
of nodes or edges of the landscape instead of the set of the concept map. A more

general model can be based on a mapping function that assigns each map a vector

representation. So, a vertical accumulation is a matrix CL ∈ Rk×j , such that the i-th

row is given by the value f(CMi, θ) of a function f : {CM1, CM2, . . . , CMk} ×Θ→
Rj defined appropriately, for some parameter space Θ. The function may use further

parameters θ. One example of such a function that goes beyond the concept or
edge vector and is used in the case studies is a distance matrix of concept maps.

The mapping function f : {CM1, CM2, . . . , CMn} × {CM1, CM2, . . . , CMk} → Rk

is defined as: f(CMi, {CM1, CM2, . . . , CMk}) = vi ∈ Rk such that the j-th element
of the resulting vector vij is the graph similarity C(CMi, CMj) as defined in section

5.2.2. This matrix will be called the graph similarity matrix later on.

7.1.1.2 Horizontal

In contrast to vertical landscapes, a horizontal landscape, by definition, encom-

passes a temporal aspect. The simple notion of discrete time events as presented

in section 6.2.1 is enough, however.

Modeling a horizontal amalgamation requires some form of temporal information for
graphs. By the definition given above, an amalgamation is a graph where the maps

forming the graph are no longer identifiable as single entities. A horizontal landscape,

however, has a time component that must be kept. The concept landscape is then
defined - in analogy to the concept maps based on dynamic sets - as a dynamic

structure for a point in time i: CL(i) = (V (i), E(i), Lvi , Lei), where Lvi
: V (i)→ L(i)

and Lei : E(i)→ L(i) are defined as labeling functions that are now using dynamic

sets instead of static ones.

Accumulating concept maps means that the constituent maps are still identifiable
as single entities in the aggregation. Therefore, similar to the modeling of temporal

aspects of a concept map, it can be defined as a dynamic set CL(i) of concept

maps CM1, CM2, ..., CMk that form the accumulation, i.e. CL(i) = CMi for all
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1 ≤ i ≤ k, where each CMi is one of the k measurements that are used for the

horizontal landscapes. In other words, CL defines a time series of concept maps.

Additionally, it is convenient to define additional dynamic sets V (i), E(i), Lv(i), Le(i)

that map onto the corresponding part of the i-th concept map. For example if

CL(i) = (Vi, Ei, Lvi , Lei), then V (i) = Vi, E(i) = Ei and so on. Note that Lvi

and Lei by definition are sets of functions. Then, for example, the super set of all

concepts used in the aggregation over all time is described by
⋃k

i=1 V (i), or the set

of concepts that has been added between the two points in time i and j is given as
V (j) \ V (i), assuming that j is after i in the temporal ordering.

7.2 Analysis Methods

This section presents several ways of working with or analyzing concept landscapes.
The methods are not new, but are adapted to work in this novel context. As has

been noted above, the focus of the first method, cluster analysis, is on the inherent

differences in the data by way of identifying sub-groups that differ in marked ways

from one another. The focus of Pathfinder analysis presented next, in contrast, lies

on the common structural elements of the data. Additionally, using graph measures

and visualization techniques for concept landscapes are presented. Fig. 14 shows
how the different methods relate to concept landscapes and how typical analyses

might work.

The chosen methods have been used in the case studies and are also implemented

in the software presented in the next chapter. All methods are inherently suited
for computer based analysis. As the case studies will show, however, most can
be gained by combining this automated analysis with a manual interpretation. The

interpretation of the results is often based on quantitative (e.g. using a hypothesis

to test the difference in concept map complexity between two groups of persons)
as well as qualitative (e.g. visually inspecting and describing the differences in

structure between two concept landscapes) analysis methods.

7.2.1 Cluster Analysis

A typical workflow of using concept landscapes in conjunction with cluster analysis
is as follows:

1. Accumulate the concept maps (vertically) into a matrix using any desired

mapping function.
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2. Apply a clustering algorithm to the resulting (often binary) matrix.

3. Analyze the quality of the clustering and possibly revert to the second step

(using different parameters) until the solution can be considered locally

optimal.

4. Analyze the clusters regarding their differences, for example by forming
new landscapes of the maps of each cluster separately.

Concerning the first step, when combining the data of a set of concept maps, often

the result will be a matrix of binary indicator variables - for example when using the

concept matrix or edge matrix as defined above. As the results of the case studies
have shown, using the edge matrix seems to give less satisfactory results than

the concept matrix. This may be due to the sparseness of the edge matrix, which

has Θ(n2) columns for n concepts. Clustering then requires either only very few

concepts or very many concept maps, since the number of observations (maps)

must usually exceed the number of dimensions (columns) to provide good results

for clustering. Other methods of aggregation are possible as well, the best method

will usually depend on the particulars of the data. Note that not all aggregations
are useful for every clustering method. The graph similarity matrix, for instance,

is mostly suited for distance based partitioning methods, as it effectively is the

distance matrix of the observations. In a different context, Valerio et al. (2008, p.
125) give several features of concepts that could also be used to encode the map,

like the number of concepts that can be reached from each concept or the number

of incident edges for each concept.

The last step of analyzing the clusters is of major importance, as the clustering

algorithms itself may or may not produce clusters that are actually worthwhile from

a researcher’s perspective. Also, it is important to note that in general the clusters
can only be interpreted by additional analysis steps. Otherwise it may happen

that the algorithm produces a clustering based on the influencing factors of the
externalization that the concept landscape tries to minimize: If, for example, the

maps of one cluster are very sparse, then maybe this cluster is formed by all the
persons that didn’t understand concept mapping or weren’t motivated at the time

of creation to produce larger maps. Since a clustering itself is nothing more than

several sets of maps again (or in other words, concept landscapes), all techniques

can also be applied to the clusters individually and the results compared. The

case studies offer some insights into how this may be used to identify differences

between clusters.

In the following, two methods of clustering are presented that are applicable for the

second (and third) step and were successfully applied in experimental studies. One
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uses a partitioning method and distance measure, the other uses a latent class

approach. While not every clustering method is appropriate - like using Gaussian

mixture models as shown below - there are clustering methods, like hierarchical
clustering, that can be applied in theory but are not used here. The reason for

this is that the partitioning methods and the chosen latent-class approach are by

definition suitable for the task and are achieving the desired goal whereas, for

example, a hierarchical clustering would yield information that can not directly be

interpreted in the context of concept landscapes. It might still prove to be a useful
clustering method, though. However, the case studies have shown that the chosen

methods are giving the most promising results. But identifying an optimal algorithm

for clustering concept maps, or comparing clustering algorithms in order to gain

insights into their particular strengths and weaknesses on a larger scale is beyond

the scope of this thesis. The algorithm that is used for clustering can (and should) be

adapted or changed, if different methods are providing better results for a particular
data set.

7.2.1.1 Similarity Based Clustering

Following the straight forward definition of clustering, a cluster should be comprised

of elements that are “similar” to each other, yet “dissimilar” from the elements of the

other clusters. Similarity-based clustering works exactly based on this notion. For
concept landscapes, as noted above, the input data is often a binary matrix. So,

before a similarity based clustering algorithm can be applied, a distance measure

must be chosen. This measure will be applied to pairs of observations, i.e. pairs

of binary vectors, and must yield a positive real value that is small for “similar”

observations. These values are forming the distance matrix as defined in section

5.3.1. As noted in section 5.3.1, common choices are the Manhattan or Euclidean

distance. Conceptually, for binary data resulting from concept maps, the Euclidean
distance doesn’t have a straight-forward interpretation though. The Manhattan

distance (L1 norm), usually defined as
∑n

i=1 |xi| for an n-dimensional vector x,

applied to the difference of two binary vectors effectively only encodes the number
of positions in which the two vectors differ. This makes sense for, e.g. the concept

vectors of two concept maps: Clearly two maps that share concepts are more
similar than two that don’t. On the other hand, at least when using the concept

matrix, much structural information of the maps is lost and thus can’t be incorporated
in calculating the similarity. Using the graph similarity matrix doesn’t suffer from

this problem and shows interesting results as shown in the second and third case

studies in chapters 11 and 12 respectively.
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Concerning the clustering algorithm itself, every one is appropriate in principle, as

long as it doesn’t pose restrictions (or assumptions) on the input data that cannot

be met. As noted in section 5.3.1, k-means clustering implicitly assumes that the
Euclidean norm is valid for the given data, for example, which is usually not the

case for concept landscapes. Apart from such restrictions, the algorithm itself is

less important than the actual distance measure though, since only this measure

imposes how “different” or “similar” single observations are. Different similarity

based clustering algorithms should therefore arrive at similar results when using
the same measure of distance. In the experiments in this section and in the case

studies only the k-medoids algorithm as presented in section 5.3.1 will be used

in the form of its most prominent implementation PAM. As has also been noted

in section 5.3.1, to ensure that a chosen number of clusters is optimal, both the

non-uniformity of the data and the quality of a found clustering must be taken into

account; the Hopkins index and the G1 index as defined there are used throughout
this thesis for these tasks.

7.2.1.2 Latent Class Clustering

This section presents an alternative approach to using distance measures and

similarity for clustering and is based on a probabilistic model of the data. Such a

model must be able to generate the observations used for clustering. As has been
noted in section 5.3.2, one advantage of this approach is the possibility to quantify

the probability of different model parameters. This can be used for model selection

which, in particular, encompasses the sub task of identifying the best number of

clusters.

What probabilistic model can be used in order to describe an accumulated set
of concept maps? At least for the case of using the concept or edge matrix, the

data is a binary matrix with rows corresponding to concept maps and columns

encoding the presence or absence of a particular feature of the map. So, there
are a number of observations of a number of binary variables and often there also

will be correlations among the variables. For example for a concept vector, a 1 in

one column will always indicate the presence of another 1, as each edge has two

incident concepts. One possible model is built upon the Bernoulli distribution. The

basic definitions and the derivation of the clustering in the next paragraphs can be

found for example in (Wolfe 1970) and (Stibor 2008).

A Bernoulli distribution with parameter p models the probability of a random experi-

ment with two possible outcomes. One outcome has probability p, the other has
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1− p. The probability function is P (x) = px(1− p)1−x, where x ∈ {0, 1}. A vector of

k binary random variables can be modeled with a multivariate Bernoulli distribution

of length k. In this case, the parameter Θ consists of k values (p1, p2, . . . , pk). The
probability of an observation x = (x1, x2, . . . , xk) ∈ {0, 1}k is given by the function

P (x) =
∏k

i=1 p
xi
i (1− pi)1−xi . To denote the dependence of P on its parameter, it’s

customary to use the notation P (x|Θ).

A multivariate Bernoulli distribution does not allow correlations among the dimen-
sions of the observations. Each dimension is independently assumed to take on a

value according to this dimensions probability. Following e.g. Stibor (2008), higher

order correlations can be included by extending the model to a mixture of multi-

variate Bernoulli distributions. So, instead of having only one multivariate Bernoulli

distribution, a set of such distributions is used to model observations. For clustering,

each of the mixture’s components is taken to represent one cluster. Every observa-

tion in turn has a probability of “belonging” to each cluster. A multivariate Bernoulli
mixture model (MBMM) can be used to model concept map data. By finding the

most probable values of its parameters, a clustering can be determined. See the

example below for a demonstration of the capabilities regarding the identification of
correlations.

The parameters of a MBMM consist of m vectors Θ = (Θ1,Θ2, . . . ,Θm) with each

vector describing a single multivariate distribution and m mixing coefficients α =

(α1, α2, . . . , αm). It holds that
∑m

i=1 αi = 1. The αi encode the contribution of

each distribution to the clustering. Each Θi consists of k values, so a MBMM has

m · k + m − 1 parameters as there are m − 1 mixing coefficients that are free
to choose, the last one is completely determined by the others. These must be

chosen (optimally) to identify a clustering. The probability function for an observation

x = (x1, x2, . . . , xk) ∈ {0, 1}k is P (x) = P (x|Θ, α) =
∑m

i=1 αmP (x|Θm).

Finding the optimal parameter values for given input data corresponds to maximizing

the likelihood of the observed data. As is customary, instead of maximizing the
likelihood, the log-likelihood is maximized, as it is numerically more convenient to

sum large values than to multiply small ones. The log-likelihood of n observations

X = x1, x2, . . . , xn is

L(X|Θ, α) = log(

n∏
i=1

P (xi|Θ, α)) =

n∑
i=1

log(P (xi|Θ, α)))

As there is no analytic solution to this maximization problem, the EM algorithm

presented in section 5.3.2 is used to find locally optimal values. For a model built
on multivariate Bernoulli mixtures, the E- and M- steps are:
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E-Step Calculate for each mixture component m and each observation of the data

xi the posterior probability using Bayes theorem:

P (m|xi,Θ, α) =
P (xi|m,Θ, α)P (m)

P (xi)

M-Step Calculate for each mixture component m new parameter values Θ′m, α′m
using the current values Θm and αm, by:

α′m =
1

n

n∑
i=1

P (m|xi,Θ, α)

and

Θ′m =
1

nα′m

n∑
i=1

P (m|xi,Θ, α)xi

The computation can be effectively implemented using matrix operations. The

output of the EM-algorithm consists of the locally optimal (i.e. most probable) values
of the probabilities Θ and mixing coefficients α. These values can be used to

calculate the posterior probability (as given above) for each observation and each

cluster. This, in other words, is the probability for each observation to belong to any

of the clusters. Usually, the maximal value of these probabilities is then taken as

the cluster this observation is assigned to. However, the probability values can also

be used to model uncertainty in the cluster assignment or to filter out observations

below a given threshold of probability for any of the clusters.

The clustering process performs the EM-algorithm for a range of different number

of components and chooses the solution with the lowest AIC value (see section

5.3.2). This will then select not only the most probable parameters of the MBMM
model, given the observations, but it will also select the most probable number of

components (clusters). The MBMM clustering approach is employed in the second
and third case study presented in the next part.

7.2.1.3 Example

To investigate how the two clustering approaches work, two examples using ran-

domly generated, artificial data are presented here.

For the first example, the data consists of a matrix of binary values with 500 rows

and 10 columns, representing, e.g. the concept matrix of a vertical accumulation of
500 concept maps that were restricted to a common set of 10 concepts. Typically,

some of these concepts will appear in many maps, as they are, for example, “basic”
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or often used concepts of the subject matter. Conversely, there will be concepts that

appear only in few maps, for example because those concepts are more “advanced”

or seldom used. Similarly, one expects to find some persons that only use few
concepts in their maps and persons that use more or nearly all concepts. Finding

clusters that show these differences between the concepts or between the persons

is one of the goals that cluster analysis should achieve.

The random data is generated to reflect both the structural differences between
concepts, as well as the differences between persons. Each (artificial) observation

is drawn from one of two multivariate Bernoulli distributions with 10 dimensions.

The order is random, but there are 250 observations drawn from each distribution.

Both distributions have increasing probabilities for the dimensions, the first ranges

from p1 = 0.025 to p10 = 0.25 and the second from p1 = 0.525 to p10 = 0.75. So, the

data is generated such that it naturally consists of two clusters, one with a rather low

probability for each dimension and one with a higher probability, but also reflecting
the same increasing probabilities between the concepts.

A clustering algorithm, when applied to this matrix, should identify the two clusters
and it should also be possible to show that two is the optimal number of clusters.

Both the PAM algorithm using Manhattan distance and the MBMM clustering were

applied. The experiment was repeated several hundred times with new randomly

generated input to ensure that the results were not by chance. The Hopkins index

applied to the data always yielded values at or above 0.9, clearly indicating the non-

uniformity of the data set. The results of the clustering algorithms stayed predictably

constant, in the sense that the optimal number of clusters was always two and the
clustering itself followed more or less exactly the generating model. Fig. 15 shows

the results of both algorithms for one of the runs. For this artificial data set, both

PAM and MBMM clustering were able to accurately capture the underlying structure.

Fig. 15(a) and Fig. 15(b) show the result of the clustering itself by using a different

character and color for each observation, depending on its assigned cluster. An
observation is plotted as a point, using the number of dimensions that have a 1 as

the plotted value. For the MBMM approach, the mixture component with the highest

probability of generating the observation was used as the cluster. The two clusters

are visually identifiable as the dense regions at the bottom (low probability for each

dimension) and the top (high probability for each dimension). Both PAM and the

MBMM clustering identify the clusters “correctly” in the sense that the clusters are

comprised exactly of the 250 observations generated for each distribution. The

extreme cases of vectors with all zeros or all ones are identified as the medoids by

the PAM algorithm. Fig. 15(c) and Fig. 15(d) show that two is the optimal number of

clusters, when disregarding more than five clusters.
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(a) MBMM clustering
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(b) PAM clustering
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Fig. 15: MBMM and k-medoid clustering for the dataset of the first experiment
in comparison
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The EM-algorithm was set to stop as soon as the absolute change in value for any

of the parameters in one iteration was less than 0.0001. For the plotted run eight

iterations were made. The likelihood of each point to belong to the chosen clusters
is less then 0.9 for only eight observations. Five of those are from the fringe. The

mixing coefficients in the end were both 0.5. The probabilities of the distributions

are estimated to range from 0.02 to 0.24 for the first cluster and from 0.58 to 1.00 for

the second. So, the values don’t represent the original probabilities perfectly, but

the basic trend is clearly captured by the algorithm.

For the second example, the clustering should find more indirect dependencies

in the data. As has been noted above, for concept vectors the single dimensions

are not strictly independent, as each edge has two incident concepts. In a real

world task, it seems reasonable to assume, that this dependency will not spread

uniformly over all dimensions for each map. Instead, several combinations will be

more probable than others, as typically a concept will often only be connected with
very few other concepts in a set of maps. An exploratory analysis that can retrieve

such “patterns” provides interesting insights, therefore.

So, the data for the second example consists of 100 observations (rows) of five

dimensions (columns) of binary values. Again, this can be taken to represent the

concept matrix of a vertically accumulated concept landscape. This time, instead of

randomly generating each column independently, the columns are made statistically

dependent on each other. Specifically, the first three columns are created as

uniformly distributed binary values. The fourth column is identical to the second

column, indicating a statistical dependence (perfect correlation). The fifth column is
the negation of the third column, i.e. derived by subtracting the third column from 1

for each row, again indicating a statistical dependence (perfect negative correlation).

To make the data more realistic, noise was added to make the correlations less

perfect by randomly choosing two observations and negating the fourth and fifth

column, corresponding to a “noise level” of 2%.

Optimally, the clustering algorithms should identify these dependencies in the data.

To correctly capture them, four clusters are needed based on the combination of

values of the 2nd and 4th and the 3rd and 5th column. Of the 16 possible combi-

nations that the four binary variables could have, only four are actually appearing,

as the value of the 2nd and 3rd column determine the other two values. Again,

PAM using Manhattan distance as well as the MBMM approach were used and the

experiments were repeated in order to ensure that the results were not by chance.

In this example, only the MBMM approach is able to capture the underlying informa-
tion. Fig. 16 shows the results. While the optimal number of four clusters is clearly
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Fig. 16: MBMM and k-medoid clustering for the dataset of the second experi-

ment in comparison
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determined using the AIC values and MBMM, it is not as clear-cut when using PAM

and the value of G1. As shown in Fig. 16(a) and Fig. 16(b), the MBMM clustering is

able to capture these dependencies perfectly, whereas PAM clustering is oblivious
to the structural dependencies. When looking at the learned parameters for the

four mixture components, the following values have been identified after only 10

iterations of the EM algorithm:

Column 1 Column 2 Column 3 Column 4 Column 5

Component 1 0.46 0.00 1.00 0.00 0.00

Component 2 0.27 0.00 0.00 0.00 1.00

Component 3 0.68 0.93 0.04 1.00 0.96

Component 4 0.36 1.00 1.00 1.00 0.00

It clearly can be seen how the noise is affecting the parameters in the third compo-

nent and how the dependencies have been captured perfectly: Aside from noise,

the second and fourth column are showing the same values; the fifth column is

showing the negated value of the third column.

To underline the importance of a valid model for the input data, when using a

clustering that is based on Gaussian mixture models, i.e. assuming that the obser-
vations are generated from a number of Gaussian distributions instead of Bernoulli

distributions, the clustering with the most probable fit according to BIC, consists of

169 clusters for the first and 95 clusters for the second example. The test was done

using the package MClust1 for R.

These two examples show that using MBMM clustering is superior for concept
matrices, since it is able to capture different aspects of hidden structural information.

However, it is the task of the researcher to actually identify what the hidden structural

information in the clusters is. Therefore, it may be well worth the effort to use different
clustering algorithms on the same data and check for differences and similarities in

the identified clusters. If, for example, PAM and MBMM show clearly varying results,

it may be worthwhile to check for hidden dependencies between the variables of

the observations. If both are more or less finding the same clustering, then this may

indicate that the structural information in the data is simpler. One advantage of PAM

is, that it can also be used with other different measures, like the graph similarity

matrix.

1http://www.stat.washington.edu/mclust



CONCEPT LANDSCAPES 131

7.2.2 Pathfinder

From its original intended use, as described in section 5.2, a Pathfinder network

helps with identifying the salient information prevalent in multi-dimensional similarity
ratings. The lengths of paths in the network contain information about how “close”

or similar the connected concepts are in the data. From a graph theoretical point of

view, constructing a Pathfinder network is simply an algorithmic method of (edge-

)pruning a graph by keeping all nodes and systematically removing edges. Taken

together, this is also the reason why the Pathfinder algorithm was chosen as a
suitable analysis method for concept landscapes: One the one hand, in contrast

to other scaling techniques like MDS, it can work directly on a graph as input and

it also produces a graph, making it suitable for the particular format of concept

landscapes. On the other hand, its original intention is directly related to analyzing

the structure of conceptual knowledge, in contrast to other graph pruning techniques,

like minimal spanning trees or the simple edge removal based on some threshold
as for example in (Larraza-Mendiluze & Garay-Vitoria 2013). This makes it suitable

for the particular information contained within concept landscapes. Even though

strictly speaking, a concept landscape is not a “network” in the psychological sense
that is underlying the term “Pathfinder network”, the terms “Pathfinder network”,

“Pathfinder analysis” or simply “Pathfinder” are used synonymously throughout this

work.

In contrast to cluster analysis, Pathfinder analysis works by explicitly discarding

information of the original data that is considered not salient enough. When applying

the Pathfinder algorithm to a concept landscape, the goal is to gain insight into the

“common” structural elements of the concept maps forming the landscape. In other
words, if two concepts are connected in the resulting graph, it should be possible to

assume that these two concepts are “typically” seen as connected, given the original

concept maps. Therefore it is best not to think about “similarity” in the context of this
thesis, but to instead think of “connectedness”. Given a graph (concept landscape)
that contains measures of the frequency of connectedness of pairs of concepts, the

Pathfinder algorithm identifies the salient structural information regarding the most

frequent connections between any pair of concepts. This information of the common
connections is of course already present in the landscape. Further analysis is only

needed in order to make it visible, as typically the combination of a set of concept

maps will contain numerous structural elements, some appearing in almost every

constituent map and some only appearing in very few, or even just a single map.

An analysis using concept landscapes with Pathfinder networks is typically following

these steps:
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1. Amalgamate the maps vertically, using an appropriate method for defining

the edge weights.

2. Create the Pathfinder network from the graph generated in the first step.

3. Analyze the generated Pathfinder network manually or automatically, e.g.

by using graph measures.

An appropriate definition of the edge weights must somehow reflect its “common-

ness”. Using the simple summing of edges as defined in section 7.1.1 above cannot

be used, as the Pathfinder algorithm expects a smaller edge weight to indicate a

more favorable edge. Therefore, a transformation of weights is necessary. It is not
directly obvious, though, that the Pathfinder algorithm will work as expected, since

such a transformation is closely related to the problem of finding simple paths of

longest weights in graphs, which has been shown to be NP-hard (cf. Lawler 2001,
p. 9). So, unless P = NP there is no polynomial transformation of a graph’s edge

weights such that searching for shortest paths with the transformed values would

equal a longest path with the original values. The Pathfinder algorithm however,

while closely related to the problem of finding shortest paths, does work in a different

way and a transformation is possible as the next paragraphs show.

A way that keeps the linear distances of the edge weights the same and also keeps
the range of numbers the same, is to simply use the number of concept maps

plus one and subtract from this the number of concept maps in which the edge is

present. Formally, the weight function of the amalgamation w : E → N is defined

as w(ei) = k + 1− |{1 ≤ j ≤ n|ei ∈ Ej}| for a combination of k concept maps. An

edge that appears in every map is assigned a weight of 1 and an edge that appears

in only 1 map is assigned a weight of k.

As noted in section 5.2.1, the Pathfinder algorithm will make the graph q-triangular:

An edge is removed if and only if there is a path of length at most q with a smaller
distance (using the r-metric) than the weight of this edge. To see that the transfor-

mation does what it is intended to do at least for the two cases r = 1 and r =∞ that

will be used exclusively, assume that an edge ei is removed by the algorithm. This

means that must exist a path of length at most q, e1, e2, . . . , eq such that (for r = 1)

the inequality w(e1) + w(e2) + . . .+ w(eq) < w(ei) holds. Without loss of generality,

the length of the path can assumed to be exactly q. As ei is removed, it must violate

the q-triangularity. Let ci be the number of maps in which edge ei is present. Then

w(ei) = k + 1− ci for some constant k. It follows that:



CONCEPT LANDSCAPES 133

k + 1− c1 + k + 1− c2 + . . .+ k + 1− cq < k + 1− ci
qk + q − (c1 + c2 + . . .+ cq) < k + 1− ci

(q − 1)k + q − 1− (c1 + c2 + . . .+ cq) < −ci
−(c1 + c2 + . . .+ cq) < −ci

c1 + c2 + . . .+ cq > ci

In other words, there exists a path with a combined sum of “edge occurrences” that

is greater than the number of “edge occurrences” of the edge that is removed. By

the same reasoning, r =∞ works as well, by simply taking the maximum weight
instead of the sum in the inequality.

There are other ways of defining the edges’ weights of course. For example, if scores

are present, it seems reasonable that the identification of “common” elements of

knowledge (or misconceptions for that matter) should be based only on edges that

have a certain score.

As has been noted before, a Pathfinder network will always contain the same

components and the same nodes as the original graph. Therefore, if for example,

a concept is used in only one map of the aggregation, this concept will remain in
the Pathfinder network using the one edge that is present in the data, because

pruning this edge would create a new component. Clearly, however, this can hardly

be taken as an indicator that this edge is representative of the “common” knowledge

structure, as it is only there as an artifact of an idiosyncratic knowledge construct

that is not removed by the analysis method.

So, it is important to filter out these idiosyncrasies by manual removal. There are dif-

ferent ways, with different results. In general, either nodes or edges can be removed

and this can happen either before or after the Pathfinder algorithm. Removing

concepts amounts to summing the rows or columns of the weight matrix of the

amalgamation and removing those, whose value is higher (using the transformed

weights) than some chosen threshold. This first establishes a set of “common

knowledge” concepts and then searches the most frequent structural connections

between them. Removing edges amounts to setting all entries in the weight ma-

trix to ∞ that are higher than some chosen threshold - this may leave concepts

unconnected. In contrast, this first establishes a common set of propositions and

then finds the most common arrangement of concepts. The second approach is

stricter, in the sense that it will, given the same threshold, always leave a superset
of the concepts unconnected that would be filtered out by the first approach. In the

case studies, both approaches were used. In these studies, however, there was not
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much difference, if at all, between the methods. There is no best way to arrive at

a threshold for filtering, but using percentiles or a gap statistic provide reasonable

approaches. If there is a value where decreasing the threshold a bit further doesn’t
lead to more removals, this can be seen as the “gap”. Generally, it seems advisable

to try several threshold values and inspect the effects on the network.

The creation of a Pathfinder network itself is dependent on the choice of the

parameters q and r. In general, higher values for either parameter will produce
sparser networks. As has been mentioned in section 5.2.2, it is advisable to try

several values and judge the quality of the results. Also an argument against higher

q values has been presented there. This is only valid in the context of assessing

similarity data. From a perspective of graph pruning, the typical choice for the value

of q is |V | − 1. Using smaller values would be useful only if there were a theory

about why the structural information of paths that are exceeding a certain number

of intermediate steps is not as important as the information of shorter paths. For r,
the extreme values of 1 and∞ are most appropriate. Euclidean distance (r = 2)

might be interesting if it can be assumed that the spatial placement of concepts

in a map is indeed an important aspect of the organization of knowledge. If an
appropriate aggregation is used that somehow respects this spatial information,

the Pathfinder network with r = 2 may produce relevant insights. Other values in

between these extreme cases might be seen as becoming gradually more and more

like the boundaries but generally there is no theory about the effect of using these

values.

The pruning of the Pathfinder algorithm differs fundamentally from a manual removal
of edges with a low (or high) weight. Therefore, it is paramount for the analysis of a

Pathfinder network to keep in mind that it is in general not possible to compare, for

example, two different pairs of concepts based on the fact that the edge between

one of these pairs was removed by the Pathfinder algorithm, but not between the

other. If a concept, for example, has only one incident edge, this edge will never

be pruned. If the weight of this edge is high, it may happen that every edge that is

pruned by the Pathfinder algorithm actually has a lower weight than this one. So,

the manual filtering must make sure that every edge is “common” enough (in the

given context) before applying the Pathfinder algorithm. Also, it may be advisable to

keep the actual edge weights in mind for analysis and only focus on the “strongest”
edges for interpretation.
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7.2.2.1 Example

As before with the clustering algorithms, an example using artificially created data

is used to illustrate how the Pathfinder analysis of concept landscapes works. Real
world applications can then be found in the case studies presented in the next part.

The example is based on an assumed concept mapping survey using the concepts:

class, object, attribute, method, visibility and algorithm. There are 10 concept maps

based on this list shown in part A of the appendix. Amalgamating them vertically
results in the graph shown in Fig. 17. The edge weights are formed by using 11

minus the number of concept maps that contain the given edge. A filtering in this

case is unnecessary, as it is densely connected. Removing for example all edges

with a weight of 10 (lowest quartile of the original edge weights), or even all edges

with weights down to 7 (lower half of the original edge weights) would neither leave

a concept unconnected nor increase the number of components.

Class

Attribute

Method

Object

Algorithm

Visibility

6

7

4

3

3

10

3

9

10

10

8

5

9

Fig. 17: The amalgamated concept landscape of 10 concept maps. The edge

weights are transformed by using 11 minus the number of maps in which the

given edge is present. The dashed edges are non-existent in the original

concept maps and thus have an assumed weight of∞.

Using the Pathfinder algorithm on this graph with the two most prominent values for

q, namely q = 2 and q = n− 1 = 5 and the values 1 and∞ for r, gives four different
resulting networks shown in Fig. 18(a) to Fig. 18(d) respectively. As is expected, the

number of remaining edges decreases both when increasing q or when increasing

r, or both. When taking a closer look at how the edges are pruned, several things

are worth noticing:
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• Each Pathfinder network contains the three “strongest” links (i.e. smallest

weights) between class, object, method and algorithm. These links clearly

can be seen as important when manually inspecting the input graph, too.

• Not every Pathfinder network has pruned all of the three weakest links (al-

gorithm - class, algorithm - attribute and attribute - object), but the sparser

networks are not containing them anymore and two of the three have been

removed in all networks. In general, higher values of q will foster the re-

moval of weak links, since there are more possible alternative paths that
are inspected by the algorithm.

• The sparsest graph is produced by q = 5, r = ∞ and is also a minimal
spanning tree of the graph.

• The difference between setting r = 1 and r = ∞ is obvious for example

for the link between method and visibility: As each alternative path, when

summed, weighs more than the direct edge, it is never pruned for r = 1.

However, with a weight of 9 it doesn’t seem to represent a “common”

understanding shown in the set of maps.

Concerning the interpretation of the graphs, it is important to note that even though

the Pathfinder algorithm is actually inspecting paths, the interpretation of the pruned
networks is centered around links. Taking, for example, the connection between

algorithm and attribute that has been pruned in each of the Pathfinder networks of

this example: It is questionable to say that this means that the concept algorithm
is seen as related to the concept attribute only through the concept of method - as

the concept maps themselves are not containing information that extends beyond a

single edge. However, it is valid to say that, in general, the concepts algorithm and

attribute are not seen as related, while the concepts algorithm and method as well

as method and attribute are.

Following the observations above, it seems advisable to set q to the highest value

when using concept map data and also to use r =∞. This will produce the sparsest

graphs showing only the strongest connections that are needed to make sure the

graph is still connected. Using the maximal value ensures that every alternative

is inspected for pruning and no artificial cut-off length is used. With the value of q

fixed, the value of r can then be seen simply as gradually pruning more and more

edges. Depending on the analysis that is intended afterwards, either keeping more

edges and thus setting r = 1, or pruning as much edges as possible by setting

r =∞ is possible.
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Fig. 18: Pathfinder networks created from the input graph in Fig. 17 using
four different sets of parameters.
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7.2.3 Graph Measures

For amalgamations the resulting data structure is, by definition, a graph. Therefore,
it is possible, of course, to use graph measures for analysis,that are regularly

used in the analysis of single concept maps (cf. Mandl & Fischer 2000, p. 5); for

example by counting the propositions. However, as the measures are simply a
different (usually numeric) representation of attributes of a graph, they should only

be employed when there is some theoretical reasoning about why a certain attribute
is informative for the task at hand. Measuring attributes of graphs is especially

useful when comparing aggregations, for example in order to identify differences

between the concept maps of clusters that were identified in the data. Also, they

can be used in order to gain further insight into Pathfinder networks.

The following sections present - in no particular order and without claiming com-

pleteness - some useful measures. Leake et al. (2005) for example, investigate
several different graph measures specifically for identifying important concepts of a

concept map. These are investigated in more detail by Valerio et al. (2008). Most of

the measures presented here are applied in the case studies in the next part.

7.2.3.1 Simple Graph Measures

Clearly, the simple number of concepts and edges can be used as indicators for
the analysis. As shown in section 4.2.2, scoring schemes based on the number of

propositions are commonly employed for concept maps. More (correct) edges are,

by the basic nature of concept maps, an indicator for a more densely connected
knowledge structure. More concepts can be seen as an indicator of the breadth of

the knowledge structure. Instead of using the number of edges directly, the ratio
of edges to concepts may also be used. In other words, instead of measuring

the number of concepts and the number of edges, it may be more appropriate to

measure the number of concepts (breadth of knowledge) and the density of the
propositions (connectedness of the knowledge). Also, the number of components of

the graph can be measured. This is, for example, done by Ifenthaler (2006) under

the term “ruggedness”. While typically a less “rugged” concept map is seen as better,

the knowledge-as-elements view of conceptual change offers positive support for a

more rugged map as not necessarily worse than a completely connected map.

For horizontal landscapes, often the development of the measures taken over

time are interesting for the analysis. If concept map data has been combined

first vertically and then horizontally, for example mean and standard deviation or
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percentiles of the measures can be plotted/inspected as shown in the first case

study.

For vertical landscapes, one is often interested in identifying the differences between

groups, for example when using cluster analysis first and then aggregating the maps

of each cluster separately. The simple difference between groups is then usually

not enough for interpretation. Instead, statistical tests should be used in order to

find out whether or not the difference is significant and not just a random artifact
of the particular data. For example, for the number of concepts and two groups, a

t-test can be employed in order to find out whether or not the two groups have a

significantly different mean of the number of concepts. This requires that the two

groups are independent samples, which they typically are and that the number of

concepts is normally distributed with equal variance between the groups. This can

be tested with additional tests. Usually normal distribution can be assumed if the

groups are large enough.

7.2.3.2 Advanced Graph Measures

There is a range of different graph measures that can be used. A selection will be

presented here with a short description and an explanation of why this particular

measure can be assumed to work well for concept maps/landscapes. The second
case study uses several of these measures.

Centrality The centrality of a node is a measure originating from research on

social (and communication) networks and has been applied in the analysis of

structural knowledge by e.g. Glöggler (1997). Also Larraza-Mendiluze & Garay-

Vitoria (2013, p. 68) point to the “similarities between concept maps and social

networks”. As Freeman (1978) points out, there are several concurring definitions

of what a “central” node might be. The centrality measure of a node can be based

upon its degree, the number of shortest paths that this node lies upon or the sum

of minimal distances from this node to all others (cf. Freeman 1978, p. 219). All

measures of centrality share the common behavior that the central node of a star

is assigned the maximum centrality value of this graph and all nodes in a fully

connected graph are assigned the same centrality value. Also, for each of the

three methods, Freeman (1978) gives a method of calculation that is independent

of the size of the graph, in order to allow comparisons between graphs of differing

size. For concept maps, using the degree of a concept certainly yields a valuable
insight as a higher degree can be seen as better connected in memory. The



140 7.2. ANALYSIS METHODS

betweenness-centrality of Freeman (1978) of a node or an edge is defined based

upon the number of shortest paths in the graph that are using this node or edge.

In general, a “central” concept of a concept map or concept landscape should be
one that is fundamental for the knowledge structure, i.e. the connections of other

concepts depend on the central concept.

Connectivity The edge-connectivity is the minimal number of edges between

two given nodes that must be removed in order to separate the two nodes in

the graph (cf. Balakrishnan & Ranganathan 2012, p. 53). Clearly, a high edge-

connectivity between two concepts can be seen as an indication of a strongly
developed structural knowledge surrounding these concepts. Conversely, a low

edge-connectivity means that the concepts are only connected by a few paths and

can easily be separated. Accordingly, the graph-connectivity is the minimum of
all edge-connectivity values between all pairs of nodes. A high graph connectivity

means that each pair of nodes has a high connectivity (which would typically

be assumed for the densely connected knowledge of an expert. A low graph-
connectivity only means that at least one pair of nodes has a low connectivity and

is, as such, more difficult to interpret in a useful way.

Diameter The diameter of a graph is the longest simple (or shortest, if the graph

has weights) path between any pair of nodes in the graph (cf. Ifenthaler 2006). In
other words, without artificially prolonging the path by using circles or “expensive”

edges, the diameter is the longest path that can be found in the graph between

any two nodes. A linear, chain-like graph with n nodes and no weights will have a

large diameter of n− 1, whereas a completely connected graph without weights will
always have a diameter of 1. So, a small diameter is preferable, in general, as the

concepts are then more densely connected, in contrast to Ifenthaler (2006, p. 48)
who wrongly attributes a large diameter to a more complex graph. The diameter

should also best be seen in relation to its maximal possible value as the absolute

values of different graphs are usually not comparable - unless, for example, the
number of nodes is held constant.

Node Degrees The degree of a node is the number of neighbors of the node.

Used by itself, it can be taken as an indicator of how well connected a concept is in

a knowledge structure. Additionally, when taking the degrees of all the nodes into

account - also called degree sequence (cf. Balakrishnan & Ranganathan 2012, p.

10) - it can serve as an indicator of the three types of morphology “spoke”, “chain”,
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and “net” as described in section 4.1.1. Specifically, if the average node degree is

low - for a connected graph with more than two nodes, the minimal value is between

1 and 2 - and there is not much variation, the graph will resemble a “chain”. If the
average node degree is high - the maximal value if the number of nodes less one,

for a complete graph - and there is not much variation, the graph will resemble a

“net”. Finally, if the average node degree is neither particularly low or high and there

is variation (few nodes have a high degree, many have a low degree) the graph will

resemble a “spoke”. For the prototypical concept maps of the three types, as shown
in Fig. 6, with n nodes, the average node degree for a chain map as well as a spoke

map is 2 − 2
n and for a (completely connected) net map it is n − 1. The standard

deviation for the chain is approaching zero, as the number of nodes is growing. The

standard deviation for the net is zero if each node has the same degree and the

standard deviation of a spoke is growing with the number of nodes.

7.2.3.3 Community Detection

Community detection is a form of partitioning (or clustering) the nodes of a graph. A

community is a subset of nodes such that the nodes within a community are densely
connected, whereas the nodes of differing communities are not or less densely

connected. The components of a graph are a natural way of forming communities.

However, there are also methods that identify communities within a connected
graph yielding new insights into the structure. Interpretation-wise, a community in a

concept map can be seen as a set of concepts that are “belonging” together. There

are several algorithms that are trying to identify communities based on different

assumptions about how a community can best be characterized. Among others,

the algorithms called “Walktrap” (Pons & Latapy 2006), “Spinglass” (Reichardt &

Bornholdt 2006), and a greedy algorithm described by Clauset, Newman & Moore

(2004) have been used successfully with concept landscapes.

All of these algorithms are based on the premise of much larger and denser graphs,
therefore the results for concept landscapes of typical sizes do not differ very much

(if at all) between the algorithms and running time can be neglected completely.

The second case study uses community detection as part of the analysis. Also, the

layout described below relies on communities.
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7.2.3.4 Frequent Subgraph Analysis

Induced subgraphs can be used in the context of concept landscapes, for example,
to reduce concept maps to a common set of concepts before aggregating them, or

by reducing a landscape to a small number of concepts that one is interested in for

analysis, as shown in the first case study.

However, subgraphs can also be the focus of interest themselves concerning, for
example, the distribution and frequency of occurrence of the different structural

combinations that a (small) number of concepts can have in a set of maps. It is

unlikely that all structural configurations of, for example, four different concepts are

appearing in equal numbers. Instead, there will probably be only a subset of the

(exponentially) many configurations appearing at all. The distribution might show a

clear preference for one or two structural configurations. This, in turn, may reveal

something about the way these concepts is typically connected in memory.

When restricting analysis to subgraphs up to a certain (small) size and using efficient

methods, concept landscapes can be analyzed in this vein. Hubwieser & Mühling
(2011b) present an algorithm developed in the course of this work that counts

the occurrences of all structurally different subgraphs up to a given number of

nodes. A similar approach is suggested by Yoo & Cho (2012). Grundspenkis &

Strautmane (2010) suggest using graph similarity for small patterns in the context

of automatically scoring concept maps.

For concept landscapes the subgraphs are typically undirected and the nodes are
distinguishable entities: It is a difference whether concept A is connected to concept

B or concept C, in general. The investigation of subgraphs gets computationally

expensive rather quickly nonetheless. The different structural configurations are

growing exponentially with graph size, making interpretation difficult. The software
package CoMaTo presented in the next chapter therefore restricts the analysis of

subgraphs to those of three or four concepts. For two concepts, the task resolves
to finding out whether or not the concepts are connected in the graph. If concepts

connected to themselves are not allowed, there will be 2
n2−n

2 different structural

configurations: There are n2 − n positions in the adjacency matrix without the
main diagonal that can be filled with either 1 or 0, but the matrix must remain

symmetrical. For five concepts, this already amounts to more than a 1000 different

structures - which is clearly beyond a size that can be interpreted manually. Since

fast algorithms usually are not treating nodes as distinguishable entities, CoMaTo

uses an exhaustive search that first creates all possible subgraphs of a given size

and set of concepts. Then, each concept map of an accumulated concept landscape

is first restricted to the subgraph of the given concepts and then matched to one
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of the possible subgraphs. For the amounts of data used in the case studies and

subgraphs of at most four concepts, the running time doesn’t impose problems

on the analysis so there is no need for computationally faster approaches. An
analysis of the frequency of subgraph structures is presented in the first case study.

It is a convenient way of analyzing the different structural combinations of a small

subset of concepts in more detail. In theory, subgraphs can also be investigated

independently of specific concepts. The result would then show whether or not

certain structural arrangements are preferred per se.

7.2.4 Visualization

As concept landscapes are mostly a tool for data analysis, their visualization in this
thesis deals with the task of visualizing the information that is used for analysis and

contained within the landscape. As Chen (2002, p. 1) puts it:

“[I]nformation visualization can be broadly defined as a com-

puter-aided process that aims to reveal insights into an abstract
phenomenon by transforming abstract data into visual-spatial forms.

The intention of information visualization is to optimize the use of

our perceptual and visual-thinking ability in dealing with phenomena

that might not readily lend themselves to visual-spatial representa-

tions.[...] [It] traditionally focuses on finding meaningful and intuitive

ways to represent non-spatial and non-numerical information to
people.”

This thesis only deals with the visualization of graphs, which has been proven useful

in analysis. The visualization of, for example, vertical accumulations in form of a

binary matrix is an interesting topic by itself, though.

In a way, a concept map itself is visualized information of the abstract phenomenon

conceptual knowledge - which is especially obvious when using it as a teaching aid
- this has also aptly been called “knowledge visualization” (cf. Cañas et al. 2005,

p. 205). While a concept map usually already has a layout determined by the

creator during drawing, a concept landscape doesn’t as it is aggregated from many

different maps. Also, aggregations often yield much larger graphs that cannot be
easily grasped visually without a good layout. The task of visualizing amalgamated

concept landscapes therefore amounts to the visualization of graphs which may be

weighted, labeled, or show a temporal development.
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Clearly, there are many available methods for visualizing graphs that can be used

or adapted for the task at hand. Visualizing graphs is a broad task that can

focus on many different, sometimes even mutually exclusive aspects. For concept
landscapes the task focuses on the structure of a graph that is usually moderate

in size. However, the structural information is only useful when combined with at

least the labels of the nodes - the concepts. Part of the structural information is

often contained in (usually numeric) attributes of the edges, like weights or scores.

So, in contrast to the visualization of “big data”, like the traffic of the major internet
backbones, for example, the focus usually does not lie on the “big picture” but more

on a number of details that must be visible.

7.2.4.1 Vertical Landscapes

Visualizing vertical landscapes is equivalent to finding a “good” node layout for

a graph and deciding if and how additional information like the weight of edges

should be visualized. Visualizing edge weights is easily done by using differing

line widths, as in e.g. (Eckert 2000). Other measures, like the centrality of a node,

are sometimes displayed by differing nodes sizes, as in e.g. (Diethelm, Hubwieser
& Klaus 2012). Glöggler (1997, p. 164ff.) describes a visualization of a set of

graphical networks that are similar to concept maps that uses different sizes for

nodes depending on their frequency of occurrence in the set.

There are many algorithmic solutions for automatically determining “good” layouts.

A good layout is dependent on the context of its use. It may be “good” to avoid the

crossing of edges or it may be “good” to find a visually appealing layout or even to
keep the layout constant between different visualizations (e.g. a circle layout). A

good layout for a concept map will present structural information to the reader while
remaining a nice visual appearance and good readability.

For the figures in the next part, mostly a layout based on force was used2 with some

manual adaptions. A force directed layout calculates node placement based on a

physical simulation of attracting and repelling forces between the nodes based on
the structure (cf. Kaufmann & Wagner 2001, p. 71ff.). A similar method is used for

analyzing single concept maps by Koponen & Pehkonen (2010).

Additionally, the following algorithmic approach has been successfully applied to

concept landscapes, as presented in (Hubwieser & Mühling 2011a) and is also

implemented in the CoMaTo package described in the next chapter:

2“Organic layout” as implemented in yEd, http://www.yworks.com/yed
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1. Calculate a set of communities in the graph using a suitable algorithm.

2. Allocate space for each community around a circle.

3. For each community: Place all nodes of the community along a circle, which
is then sized appropriately and placed in the allocated space of step 2.

4. Optimize the position of each node and of each community by using a

suitable optimization algorithm.

Tests have shown, that using the Spinglass algorithm in step 2 and “Simulated
Annealing” (Kirkpatrick, Gelatt & Vecchi 1983) in step 4 provides good results.

Optimization is done by switching the positions of nodes within each community as

well as switching the positions of whole communities (at random) and using the total

length of edges on the Euclidean plane as a measure of quality. With increasing

runtime (i.e. lower “temperature”) a change is more and more probably rejected if it

doesn’t increase the quality.

Leaving out the last step results in a graph that has basically the same structure

(many small circles of concepts arranged around a larger circle of communities),

but will often be hard to read as there are many unnecessary intersections of edges

and long edges that are connecting communities placed far apart. Fig. 19 shows

the result of applying this method to a larger concept landscape taken from the first

case study.

7.2.4.2 Horizontal Landscapes

For horizontal landscapes, the major point of interest usually is the development of
a set of concept maps over time. Therefore, the visualization should focus on this

aspect. In the course of this work horizontal landscapes were only used in order to
display the development of graphs; either as a horizontal accumulation of a set of

maps, or as the horizontal accumulation of a set of vertical amalgamations. In both
cases, the data consists of a “time series” of maps that should be visualized.

One way of achieving this is by computing a “master” layout for the concept land-

scape that determines a fixed position for each occurring concept and then using

this layout consistently throughout the visualization of the constituent maps. This

has been previously suggested for the comparison of different concept maps (cf.

Koponen & Pehkonen 2010, p. 1659). When visualizing the development of a con-
cept map, it makes sense to use the layout of the latest map, as far as applicable.

Some concepts will not appear in the last map and are therefore not covered by
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this layout. These can then be placed manually, for example by placing them on a

circle around the layout of the final map. CoMapEd, presented in the next chapter, is

using this scheme in order to visualize the creation process of a user’s concept map
by horizontally accumulating all of the intermediate steps as separate maps. Also,

in the first case study in chapter 10 there is an application of this scheme (Fig. 29

and Fig. 30).
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Fig. 19: The result of applying the layout algorithm to a concept landscape

taken from the first case study. It is based on communities that are aligned

on a circle, the largest community forms the center. Even though the node

placement has been optimized, there are several improvements that could
be made.
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8 Software Support for Concept
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Fig. 20: The three software projects that support the pivotal points of the
schema presented in Fig. 1

Following the central theme of this thesis - new ways of analyzing aggregated

concept map data - the usefulness for computer support is self-evident: The more

data there is, the more interesting the results will be, in general. But the more data,

the more it becomes tedious or virtually impossible to collect, aggregate, and analyze

it manually. This has also become obvious in the course of the studies that form the

basis of this work, where some parts of the work have only been manageable by

employing several students to help with the amounts of data. Therefore, if possible,

software should be used in pivotal points to increase the amount of data that can

be handled. Referring to the general research setting of Fig. 1, there are three

processes that can be supported by software: The externalization of knowledge,

the analysis of concept landscapes the analysis of (textual) input. Consequently,
three software projects have been developed in the course of this thesis. Fig. 20

shows how they support the workflow. The next sections present these projects.

Since software engineering itself is not the focus of this work, only a short overview

over available software and their shortcomings, a list of requirements, and some
notes regarding the implementation and final software are given.
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8.1 CoMapEd

The collection of concept maps can happen in many ways. However, if the subse-

quent analysis is done digitally, the maps must either be collected electronically

in the first place or digitalized later on. Obviously, the way of collecting the maps

should not impede the externalization of knowledge itself. As has been noted in

section 6.1.1, electronic solutions for creating concept maps are already in use and

it seems safe to assume that there is no negative impact of using a software-based
approach to concept mapping. Even more, it can be assumed that there is a positive

impact from doing so. Another effect that is in favor of a software-based drawing is

that the specific graphical syntax of concept maps can be “enforced” much more

easily. Pen and paper based maps, as the experience of the case studies have

shown, are often highly varying in the syntax in ways not consistent with concept

maps, like using arrows that are connecting multiple concepts together. This section

presents the software tool CoMapEd (Concept Map Editor), which was designed
and implemented for this purpose.

There are existing software solutions for drawing concept maps in various settings.
Most notably, there is Cmap Tools1 as described by Cañas, Hill, Carff, Suri, Lott

& Gómez (2004). Most solutions are either not exclusively for concept mapping

but more general drawing tools or are implementing enhanced versions of concept

maps that go beyond the basic structure, like COMPASS2, described by Gouli,

Gogoulou, Papanikolaou & Grigoriadou (2005a). Also, all of the solutions seem to

be based on a program running on the user’s computer.

8.1.1 Requirements Analysis

A typical use of the system encompasses two kinds of users: Participants use the

system to draw a concept map. Researchers use the system to collect the concept
maps of participants in order to analyze them.

For participants, the system should present itself as an easy to use editor that

allows them to draw concept maps in their basic form - labeled concepts that are

connected by labeled propositions. Also, the editor should offer some additional

benefits for the participants in order to keep their motivation for externalizing their

knowledge as high as possible. A negative impact on motivation will most probably

also have a negative impact on the complexity of the results. The additional benefits

1http://cmap.ihmc.us
2http://hermes.di.uoa.gr/compasseng.htm
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include for example the possibility to save the map and continue to work on it later

on or the possibility to export the map in order to print it, or continue to work on

it with other programs on their own. The operation of the system must be mostly
self-explanatory so that none or only very minimal prior training is required for the

participants - assuming the participant has at least some experience as a computer

user. Also, it should run on as many computer platforms as possible, with as few

additional requirements as possible, so that the participants can use it at home or

at any other place.

A researcher using the software should be able to manage typical research scenar-

ios which include longitudinal and latitudinal surveys. Also, it must be easy to give

access to participants. It should be possible to restrict the actual concept mapping

task in the typical ways described in chapter 6 - restricting the list of concepts and

restricting the list of edge labels that may be used. The collected data should then

be exportable by the system and basic analysis should be provided directly within
the system. Also, the process of concept map creation should be observable to the

researchers.

The following is a summary of the functional (FR) and non-functional (NFR) require-

ments derived from these considerations:

FR1 A participant must be able to draw a concept map consisting of graphical

symbols with labels and labeled connections between those symbols.

FR2 It must be possible for a participant to save and later load a map in order to

continue working on it.

FR3 It must be possible for a participant to export the map in formats that can be
used by other programs.

FR4 A researcher must be able to create and manage surveys for longitudinal as

well as latitudinal studies.

FR5 A researcher must be able to provide and restrict access to a survey.

FR6 It must be possible to restrict the process of concept map creation to a certain
set of concepts or to a certain set of possible labels for the connections

between concepts. Also it must be possible to display a focus question

or task description and to give a concept map as starting point for the

participants.

FR7 The concept maps belonging to a survey must be accessible/exportable by

the researcher.
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FR8 Basic analysis of the concept maps of a survey should be supported within

the system for the researcher.

NFR1 The software must be easily operable for the participant, i.e. a person with

typical experience in using computer programs should be able to draw a
concept map with the software without prior training.

NFR2 The software must have only minimal system-requirements in order to be
accessible to a wide variety of participants.

NFR3 The concept maps of the participants must be stored centrally, so that they

are automatically accessible to the researcher, without the participant taking
special action.

NFR3 The system must record a history of each concept map.

NFR4 A larger-scale survey with reasonably sized concept maps may not provide
any problems regarding performance of the system.

8.1.2 Design and Implementation

The design of CoMapEd is based on several decisions that were made according to

the requirements. In particular:

• To fulfill NFR2 and NFR3 from the list of requirements, a web-based system

that runs in a browser is an obvious choice. Alternatives, like a client/server
system would always require a program to be downloaded and run which

in turn would also require a browser. This would have more requirements

than a simple web-based system. On the downside, drawing concept maps
within a browser requires modern technology, which might affect NFR2 in a

negative way. Therefore, care was taken to keep the actual requirements for

the browser as lean as possible. In the case of CoMapEd, this means that

an approach using HTML5 and Javascript was chosen, instead of relying

on different technologies like Adobe Flash.

• The software consists of a front end, that the participants use and a back

end for the researchers. Concept maps are organized in surveys, as re-

quired. Surveys in turn are organized into projects, as this makes managing

a longitudinal survey with several assessments easier.
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• Concept maps are identified by a code (“slug”), that the participants can

use to reload a map at any time. This also serves as a possibility for

researchers to invite participants individually. Additionally, surveys can be
made accessible by a code, which serves as a way of creating new maps

anonymously. Each map will still have a personal code though, but the

researcher do not know the connection of these to the persons, in general.

The design was implemented as a website using the Ruby on Rails3 Framework.

Additionally, for a modern and clean appearance, the Bootstrap4 CSS-Framework

was used. The drawing of the concept maps is done with the SVG support built into

HTML5 and is based on the D35 (Data-Driven-Documents) Javascript library.

Fig. 21(a) shows the main screen that a participant is using to create a map. The

drawing area forms the largest part of the screen. All actions are available in the
menu on the left hand side of the screen. The drawing itself can be done either

from the menu or by using the mouse on the drawing area. Additional information, if

necessary, is presented in a box at the top. Directly after logging in an introductory

text is presented there, which can be defined by the researcher and can include
the focus question. Additionally, for example, online help/instructions can be shown

there if the user selects this action from the menu. Also, if a concept map is opened
for the very first time, a short introductory text about concept mapping including an

example is presented to the user before the main screen appears. Currently, the

map can be exported in two formats: As vector graphic (SVG) or in the simple graph

format (TGF) that can, for example, be opened by yEd.

Fig. 21(b) shows the back end view that is presented to the researchers. The
projects and surveys are organized in the left vertical menus. The concept maps

of a survey are then presented horizontally, including a preview of the map, basic

information and the possibility to view the history of its creation. For this, the layout

described in section 7.2.4.2 for horizontal landscapes is used. Maps, surveys, and

projects can be exported and imported. Additionally, a “filter” view allows creating

and exporting an amalgamated landscape from the set of all concept maps present

in the projects of a researcher.

The system has been used to collect almost a 1000 maps in several settings, so far.

Both front end and back end are available in English and German, depending on
which language the browser requests (English being the default). The feedback of

users has been generally positive.

3http://rubyonrails.org
4http://getbootstrap.com
5http://d3js.org
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(a) Frontend

(b) Backend

Fig. 21: Screenshots of the front- and back end of CoMapEd.
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8.2 CoMaTo

The analysis methods presented in the last chapter have all been presented with

the purpose of implementing them in software. This section presents the software

package CoMaTo (Concept Mapping Tools) that allows working with digitally stored

concept maps in GNU R.

Cañas, Bunch & Reiska (2010) present analysis software that is extensible and is

built upon the data format of Cmap Tools. It may be possible to employ it for use
with concept landscapes. However, especially when considering that an analysis

of concept landscapes can include many different aspects of statistics and can

often be exploratory in nature, using a platform like R for the task provides many
benefits. There are ways of using R together with existing packages like igraph to

analyze concept landscapes directly. Nevertheless it is worthwhile to implement the

methods in an explicit package for reuse and for ease of analysis. Consequently, all
analyses presented in the next part have been done with CoMaTo.

8.2.1 Requirements Analysis

The central application of CoMaTo is the computer aided analysis of concept

landscapes using the methods presented in the last chapter. The following list of

requirements has been identified:

FR1 The package must be able to import concept map data in different formats.
Especially, it must be able to import the export of CoMapEd.

FR2 The analysis techniques as presented in section 7.2, if applicable, must be

supported by the package.

FR3 The package must provide data structures that allow applying other analysis

techniques as well.

FR4 It must be possible to display or export the results (e.g. for preparing scientific

publications).

NFR1 The software must be easy to use for a person already experienced with

GNU R and its package system.
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NFR2 A typical survey with reasonably sized concept maps must be analyzable

without posing problems regarding memory usage and running time to a

current computer.

8.2.2 Design and Implementation

The package is based on the “S3” object orientation of the R programming language

and offers two basic data structures/classes: concept.map embodies a single map

and concept.maps a set of maps. Each concept map is represented as a graph

that is stored in an igraph object. Concerning the input capabilities, the differing

formats of data that appeared in the various case studies have been incorporated.

This includes concept maps stored in spreadsheets as list of propositions as well as
the two graph formats TGF and GraphML. Also, the system can be used flexibly as

there also exists a constructor that simply accepts a R matrix as input. Concerning

the output, the package can generate R plots and TGF files, e.g. for pathfinder

networks.

Based on the two data structures, a set of functions is available to work with

the data. Most notably, the function landscape implements the aggregation of a

concept.maps object. Vertical amalgamations and accumulations are supported in

an extensible manner. The creation of Pathfinder networks from a set of concept
maps and the clustering using multivariate Bernoulli mixtures as described in the

last chapter are implemented as analysis methods. Both basic and advanced graph

measures are also available - mostly based on the corresponding implementations

of the igraph package. Visualizations and horizontal landscapes are supported in
form of the possibility of plotting both a single map and a series of maps using the

layout algorithm described in section 7.2.4.

8.3 ConEx

This section presents the software ConEx (Concept Extraction) that allows the

automated analysis of texts. While not a central aspect of this thesis, the analyses

of texts that are used as input for learning is nevertheless a worthwhile endeavor.

The goal is, to extract salient concepts and propositions that are based on these

concepts from text data automatically. While a manual analysis is possible and has

been done for all of the case studies of the next part, an automated analysis is far

easier, better reproducible, less prone to spurious errors and allows the processing
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of much larger texts. This becomes important especially for content domains where

experts don’t necessarily agree on the structure and importance of concepts (cf.

Trumpower et al. 2010, p. 24) and therefore querying an expert might not yield the
desired results.

There are many existing suggestions and implementations of programs that work

with texts, also for the specific task of extracting salient terms from a corpus. In

the course of the research projects, the systems described by Eynard, Marfia &
Matteucci (2010) and Schöneberg (2010) have been investigated, also MaxQDA6

has been used to identify nouns in texts together with their absolute frequency and

also to identify the position where these appear in a text corpus.

8.3.1 Requirements Analysis

The following list of requirements has been identified:

FR1 The software must work with texts in English and should also work with texts

in German.

FR2 The software must be able to extract salient concepts (according to some

measure) and a list of sentences in which these concepts appear from text

stored in a file.

FR3 The user must be able to modify the list of salient concepts prior to the
extraction of associations.

FR4 The results must be exportable in a suitable format.

NFR1 The software must be extensible concerning languages and measures of
salience.

NFR1 The software should offer support for different, common file format regarding
its input.

8.3.2 Design and Implementation

ConEx has been implemented as a stand alone Java program. It does not present

a novel approach to text analysis, but instead is a software solution specifically

6http://www.maxqda.com
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Fig. 22: Screenshot of the graphical user interface of ConEx.

designed for the task at hand that builds upon established methods and existing

software. It is based on the NLP toolkit and WordNet, presented in section 5.4.1.

Fig. 22 shows the graphical user interface7. A version that can be operated from the

command line is also implemented. The user interface follows, from top to bottom,

the basic workflow of choosing input files and general settings, then extracting

concepts, and finally extracting propositions (associations, or sentence) from a

subset of the extracted concepts. Both PDF and plain text files are supported as
input. Currently, English and German are supported as input languages ( WordNet
is only available for English). As measures of salience both the absolute frequency

and the TF*IDF weighting scheme (see section 5.4) can be used. In the latter case,
a corpus of texts has to be given which defines the “baseline” frequency of the words

in the weighting. Both the concepts and the associations can then be exported in
the CSV format. The object-oriented design of the program and a suitable class

hierarchy allow the easy inclusion of new languages, file formats or the inclusion of

translations of WordNet. The extraction algorithm for the concepts works like this:

7The user interface has been developed by Reinhard Hahn as part of a student project
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1. Tokenize the input text.

2. Classify the tokens of each sentence.

3. For each noun:

(a) If available for the chosen language: Create a baseform of the noun

using WordNet.

(b) Store the number of occurrences for the noun. Nouns are treated as
equal if they have the same baseform (or by simple string comparison

if no baseform is available).

4. Return the salience of each noun as defined by the chosen measure.

The associations are then extracted by using the tokenized sentences. Each
sentence in which at least one of the selected concepts appears is added to the

output. This may include sentences in which not every appearing concept is also

on the list of selected concepts. Selecting only sentences in which every appearing

concept is on the list of selected concepts will, in general, incur the loss of a lot of
information. Therefore, subsequent analysis steps must take into account that not

every sentence of the generated output may viable for using it in the analysis of
learners’ knowledge artifacts.



160 8.3. CONEX



Part IV

Case Studies





9 Overview

This part presents the results of three case studies CS1 to CS3 that were originally

conducted as research projects and led to the development of concept landscapes.

As part of this thesis, the analyses were redone using the new notions. Each

chapter describes one of the studies and they are all structured alike, reminiscent of

a research publication.

First, the general context and specific setting of the study is presented in detail.

References to related research and literature are also included, where appropriate.
The choice to exclude these references from the related work part was made

intentionally as the settings of the case studies are not directly relevant for any other

parts of this thesis. Next, the collected data is presented in detail together with the
research question that the experiment focuses on. The data always is centered

around concept maps, usually accompanied by additional information that was

collected or otherwise available for analysis. The specifics of the concept mapping

task are described there as well. Then, the analysis methods and results are

presented. Care is taken to clearly state the aggregation method and the analysis

technique. The presentation of the results is separated from their discussion, which

forms the final section. There, the answers to the research questions are given, as
far as the results allow it.

Two of the studies - including the experimental results - have been previously

published in the course of this thesis. The relevant publications are cited at the

beginning of each chapter. Also, some text parts of the following chapters have

been taken in verbatim from these publications but are not shown as quotes here,

for better readability. All of the analysis results and figures were re-done for this

thesis - a close similarity to the respective publications is necessarily still present,

though.

Taken together, the case studies serve to give an overview over the typical workflow

of an analysis using concept landscapes as presented in section 7.1 and defined in

section 7.1.1 as well as the analysis methods presented in section 7.2. The strengths

and weaknesses of the techniques as well as the typical way of interpreting the

results will be shown. As has been mentioned in chapter 2 already, the case studies

all are research projects in their own merit. So, the results are also providing

valuable insight into the fundamentals of computer science education and are more

then mere test beds for the new analysis methods. The following description gives

a quick overview over the major facts of each project:



164

CS1 Computer science education for non-majors

Focus Monitoring the knowledge development in the course of an intro-

ductory CS lecture to non-major students in their first semester.

Results Despite the difficult setting concerning the students’ motivation,

they don’t necessarily resort to rote-learning and the learning process

according to the models of learning presented in chapter 3 can be made

visible.

Conudcted in October 2010 to February 2011

Collected concept maps : 90

Particpants Non-major students of an introductory lecture

Analysis methods Basic graph measures, subgraph frequencies, horizon-

tal visualization

Results previously published Hubwieser & Mühling (2011a) and Hub-

wieser & Mühling (2011c)

CS2 Knowledge structures of beginning CS students

Focus Beginning CS students and their conceptual knowledge about core

CS concepts. Also, measuring the impact of a newly introduced com-

pulsory school subject “Informatics”.

Results The knowledge structure of a beginning CS student is rather

complex. In general, students who attended the school subject have

a different knowledge structure than the others, showing artifacts of a

more formal CS education.

Conudcted in April 2011 and October 2011

Collected concept maps : 590

Particpants Beginning major students

Analysis methods Pathfinder networks, advanced graph measures, com-
munity detection, cluster analysis

Results previously published -

CS3 Conceptual knowledge and abilities

Focus Development of the knowledge of concepts related to object-orien-

ted programming in a preparatory course for beginning CS students.

Only minimal teaching input was given - instead self-guided learning-
by-doing was stressed. Additionally, the source code was analyzed in

order to relate the conceptual knowledge to programming abilities.
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Results It is possible to have students develop their mental models with

only very little input but practical programming experience. Also, the

knowledge about concepts and the ability to use them successfully is
interrelated in different ways.

Conudcted in October 2010

Collected concept maps : 188

Particpants Beginning major students

Analysis methods Pathfinder networks, cluster analysis

Results previously published Berges et al. (2012)
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10 CS1: Computer Science
Education for Non-Majors

Most parts of the results - in particular the description of the context and the collected

data - have been previously published in (Hubwieser & Mühling 2011c). Additionally,

some results have been presented in (Hubwieser & Mühling 2011a).

Today’s world is heavily dependent on computing technologies and electronics.

Consequently, the demand for computer science education in nearly every institution

has risen (cf. Guzdial 2003). Especially at universities, fields of study with a more
technical background will typically have some form of computer science education

in their curriculum. For example, almost every major of engineering at the TU

München has compulsory CS education in the first semesters. Sometimes, the

courses are specialized for the particular field of study (e.g. focus primarily on

writing short scripts in Matlab), or they provide a general overview over the basics

of programming and computer science.

Teaching computer science to non-majors is a challenge: “Studies of the problem

point to the overemphasis in computer science classes on abstraction over applica-

tion, technical details instead of usability, and the stereotypical view of programmers
as loners lacking creativity” (Forte & Guzdial 2004, p. 1). Also, the motivation of

students in a non-major course is usually different from those in major courses, as

typically, their main area of interest is not computer science but some other field.

“Historians, writers, architects, and engineers (just to name a few) have diverse

interests and require different kinds of computational proficiency to perform the

tasks that are important to them” (Forte & Guzdial 2004, p. 3). Therefore, and

given that typically the prior knowledge of CS related concepts will be only weakly

developed, it is much more likely that non-major students will resort to rote-learning
in computer science classes, unless they see a clear relevance, are motivated, and

decide to learn meaningfully. Investigating the knowledge structures of non-majors

can reveal whether or not this actually happens.

10.1 Description of the Setting

This case study presents the results of investigating a lecture that is held over the

first two semesters for students with a major of geodesy at the TU München. The

lecture has been held by the working group “Didactics of Informatics” as part of
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a more than 10-year cooperation. This chapter presents results of a study that

was done in the winter term of 2010/2011, where the course was held as a typical

combination of lecture and problem session. In the following winter term it was
completely restructured, described in more detail in German by Berges et al. (2013).

The course was designed as a one semester lecture dealing mostly with object-

oriented programming, presented in an objects-first approach, closely following the

10th grade of the subject Informatics in Bavarian secondary schools presented in
the next case study. In detail, the course contents were:

Chapter 1: Modeling Informatics: main subject areas, typical working methods;

Functional modeling: data flow diagrams; modeling techniques in computer

science.

Chapter 2: Object Oriented Modeling Objects in documents: object, class, at-

tribute, method, class card, object card; artificial languages: grammars,

BNF; states of objects: state, transition, state diagram, real and program

objects; object diagram, association, class diagram, multiplicity of associa-

tions, compound objects: creation of objects as values of attributes.

Chapter 3: Algorithms The concept of algorithms: programming languages, class
definition: definition and declaration, signature of methods, access mod-

ifier, attribute declaration, definition of methods; structure of algorithms:

graphical representation of algorithms, structural components of algorithms,
nesting of components, input and output of algorithms; properties of algo-

rithms: terminating, deterministic, determined.

Chapter 4: Object Oriented Programming Definition of classes: structure of ob-

ject-oriented programs, definition and declaration, signature of methods,
access modifier, attribute declaration, definition of methods; assignment

statement, ring exchange, assignment in constructor methods, encapsu-

lation, equality; translation of computer programs, compiler vs. interpreter,
execution of programs, course of events of a program; communication by

methods: input, output, side effects, local and global variables/attributes;

creating objects at runtime, constructor method, references, removal of

objects; implementation of algorithms: structure elements in programming

languages: sequence, conditional statement, repetition; arrays, index.

Chapter 5: State Modeling Finite automatons, triggering and triggered action,

state chart; Implementation of automatons: switch statement; conditional
transitions: complete state modeling, implementation of conditional transi-

tions.
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Chapter 6: Interaction and Recursion Implementation of associations: unidirec-

tional, bidirectional, 1:1, 1:n, m:n multiplicities, association class; sequence

charts: calling of methods, sequence charts; Recursive algorithms: linear
and cascading recursion.

Chapter 7: Inheritance Generalization: Sub- and super classes, specialization,

inheritance; implementation of specialization, overriding of methods, gen-

eralization, class hierarchies; polymorphism: calling methods of foreign

classes, abstract classes.

10.2 Data Collection & Research Questions
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Fig. 23: Overview over the study, based on the schema of Fig. 1.

The students of the lecture were investigated closely in a longitudinal research

setting in order to monitor the development of their knowledge. The students were

repeatedly asked to draw concept maps anonymously. A code was given to the

students that they should use instead of their names. In this way, the concept maps

of each person could be matched without being able to match them to the actual

person. Additionally, the students were asked to participate in a voluntary short

exercise in the middle of the semester, again using their code. In this way, there was

some way of relating conceptual knowledge to the results of applying this knowledge
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in a short exam-like exercise. The students were asked to draw concept maps at

four points in time over the course of the semester:

1. Right before the very first lecture (pre test, PRE),

2. after 4 weeks of lecture (mid test 1, MT1),

3. after 8 weeks of lecture (mid test 2, MT2), and

4. after 14 weeks, right after the last lecture (post test, POST).

The written exercise was one week before MT2, the final exam was after POST. The
data of the study consists of the concept maps of the four points of measurement

and the scores of the exercise.

Participation began with all 38 students of the course in the pre test. MT1 was
attended by 33 students. For MT2 and POST, 19 students participated. The exercise

was completed by 17 students.

Concerning the concept mapping task itself, the students were always given a
(restricting) list of 40 concepts. They were told to use only concepts from this list

and to use only those concepts that they were familiar with. The focus question was

to try to draw a concept map from as many of the concepts they were familiar with

as possible. The students did produce a new concept map each time. The first two

tests were done using pen and paper and the second two tests were done using the

graph drawing software yED. Fig. 24 shows one of the maps produced with yEd in
the second midtest. The participants had roughly 30 minutes time for each concept

mapping task. They received a short oral introduction to concept mapping at the

first test. A written introduction was given to them each time.

To arrive at the list of concepts, the following semi-automatic procedure was used

on the slides as well as on the main recommended textbook of the course:

1. Reduce the text material of the course to simple statements by removing all

explanatory sentences, examples and sentences that don’t carry relevant
information. Remaining are sentences like: “If an attribute is marked as

private, only objects of the same class are allowed to read or write its value.”

2. Remove all non-nouns from the text and convert all nouns to singular and

to the nominative case.

3. Sort these descending by their frequency of occurrence.
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Fig. 24: An example map of MT2 as originally produced by one of the students
in German.
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4. Separate combinations of nouns that have their own meaning in the context

(e.g. in German “Attributwert” is separated into “Attribut” and “Wert”)

5. Combine all nouns that have no meaning on their own in the context (e.g.

“Garbage” and “Collection” is combined to “Garbage Collection“).

6. Remove nouns that are not part of the subject matter, that are too general
(e.g. “Model”), too specific, technical (e.g. “RAM”), or proper nouns (e.g.

“Pascal”).

While the process is not fully objective in the last step, it turned out to be rather

objective and reproducible by letting a second person follow the same guidelines
and comparing the results. The result was the following list of 40 concepts:

action, aggregation, algorithm, array, assignment, association, attribute, class,

condition, conditional statement, data encapsulation, data, data type, flow, function,
function value, generalization, identifier, inheritance, initialization, input parameter,

instantiation, interface, loop, method, method call, object, output parameter, poly-

morphism, program, reference, specialization, state, state machine, state transition,

structural elements, subclass, transition, value, variable.

ConEx, as described in chapter 8, was also used on the same (unprocessed) input

data. When taking the first 40 concepts sorted decreasingly according to their
frequency and manually filtering out different word forms (e.g. plural), there is an

agreement of more than 60%. The following concepts are appearing in both lists,

sorted by their frequency in descending order: class, object, algorithm, reference,
subclass, value, attribute, flow, program, identifier, loop, conditional statement, as-

sociation, variable, function.

Additionally, the following concepts are not appearing in verbatim, but have a close
correspondence to the concepts given in parentheses: call (method call), parameter

and input (both input parameter), return value (output parameter), and structure
(structural elements).

Finally, these 13 concepts are not appearing in the manually derived list in any

form (again sorted according to frequency): java, set, count, case, order, type, su-

perclass, definition, language, statement, implementation, programming language,

page, sequence, description, constructor, relation, form. Most of them would have

been filtered out in the last step, which is missing in the fully automated concept

extraction. All in all, using ConEx would have made the concept extraction easier;

even without any manual intervention, the result would have an agreement of more

than 60%.
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Using these concepts, the text material was analyzed semi-automatically according

to the following process:

1. Identify all propositions/sentences in the course material automatically by
searching for occurrences of one or more of the extracted concepts.

2. As concept maps can only reflect monodic or dyadic associations, check

the arity of the associations and keep only these.

3. Translate the information that is contained in the remaining sentences into
propositions by qualitative means. If this is not possible unambiguously (e.g.

due to a too complicated structure of a sentence), disregard the sentence.

Among the original 161 sentences, 101 contained two, 40 contained three, 17

contained four, and 3 contained five concepts. Therefore, most of the associations

(63%) are dyadic and can be represented in a concept map. These sentences were

then used as propositions for four “expert” concept maps (EM1 - EM4) containing

the propositions and concepts that were presented to the students up to each point

of measurement (including the exercise). When a pair of concepts was used in

several propositions, only the first was added to the map. Therefore, the expert
maps are mostly relevant concerning their structure. Fig. 25 shows the first expert

map, EM1. The others can be found in the Appendix. Also Fig. 19 shows the

structure of an amalgamation of the four maps EM1 to EM4 without regard to the

temporal ordering.

Fig. 23 shows how this particular study can be represented in the basic scheme

presented in the introduction of this thesis. The research questions are:

RQ1 How does the knowledge of the students develop?

RQ2 Which concepts are “common knowledge” among the students and which

concepts provide the most difficulties to the students?

RQ3 Can the investigation reveal insights about the process of learning?

10.3 Analysis and Results

The propositions of the concept maps were scored using the technique “relational

scoring with master map” as described by McClure et al. (1999). The “master map”

is the amalgamation of EM1 to EM4. The propositions of the student maps were
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Fig. 25: The first expert map containing all the propositions that were pre-

sented up to MT1.

scored using the three values 0, 1 and 2, where 0 and 2 represent the cases of

incorrect and correct propositions with regard to the master map. The value of

1 is for cases where neither 0 nor 2 can clearly be used, i.e. a “partially correct”

proposition. Also, for some of the analyses presented below, transformed scores

of -1, 0, and 1 instead of 0, 1, and 2 were used. Summing these score values

gives subtly different results in the sense that only the extreme values are actually

affecting the sum. Also, a negative and a positive score will cancel out in summation.

10.3.1 RQ1: Development of Knowledge

To analyze the knowledge development, the concept maps of each point of mea-

surement were accumulated vertically by using four different mapping functions that

map each concept map to its number of nodes, edges, components (i.e. rugged-

ness) and sum of edge scores respectively. The resulting vector. Fig. 26 shows the
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r Concepts Propositions Clusters Score

Concepts - 0.95** 0.39** 0.60**

Propositions - (0.18) 0.56**

Clusters - 0.33**

Table 10.1: Spearman’s rank correlation between the four basic graph mea-

sures. As score, the sum of all proposition scores of a map was used
(∗∗ = p < 0.01, () = p > 0.05).

development of these basic graph measures over the course of the lecture when
using mean and standard deviation of the vectors resulting from each accumulation.

It is interesting to see how closely the number of concepts and propositions follows

each other. As the maximal number of edges for n nodes is n(n−1)
2 , the number

of concepts will always provide an upper bound on the number of propositions.

However, the data shows that there are approximately only as many edges as there

are nodes in the concept maps, as also noted in 6.1.1. Also, except for the edge
scores, the variance increases over time. The increase in ruggedness (i.e. the

number of components) and the stagnation of the edge scores is another interesting

aspect.

To investigate the usefulness of simple graph measures further, the correlation

between each pair of measures was calculated using all maps of all four points in

time and calculating Spearman’s rank correlation. This measures the degree of
(linear) dependence between any of the two measures when only assuming they are

an ordinal scale. The score of a map was calculated using the transformed scores
and summing over all proposition scores of a map. Table 10.1 shows the results.

Not surprisingly, the measure of vertices and edges correlates almost perfectly. For

ruggedness there is no large effect visible when compared with any of the other

properties, which is interesting to note. The sum of scores shows a medium to large

effect to all of the other measures. All values are significant with p < 0.01, except

for the correlation between the number of edges and the number of clusters.

Finally, the subgraph frequencies of the four concepts attribute, object, state, and

value are investigated. The lecture material contains the (tetradic) proposition: “The

state of an object is determined by the values of its attributes”. As has been argued

in section 6.2, it is not possible to encode such a complex proposition in a concept

map unambiguously. The semi-automatic processing of the lecture material leads

to a structural configuration of a circle (as also shown in Fig. 25), based on the four

propositions:
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1. attribute describes object.

2. object has state.

3. value determines state.

4. attribute has value.

Fig. 27 shows how the students chose to connect these four concepts. There

are 64 different structural configurations, most of which have never been used.

When ignoring the configurations appearing only once, five different subgraphs are
occurring. The majority of maps are showing a completely empty subgraph (number

64 in the diagram), i.e. there aren’t any connections between the four concepts.

The other four are shown in Fig. 28. For MT2, only the empty subgraph and the
ones with number 24 and 28 were used by students in more than one map.

When analyzing the subgraph frequencies of the three concepts object, class, and

attribute - which form a fully connected triangle in the master map - the subgraph

showing most frequently (12 out of 33 maps) is missing an edge between class and

attribute. The two patterns appearing most frequently after that (at 6 maps each)

are the triangle just like in the expert map and the empty graph.

10.3.2 RQ2: Common Knowledge and Misconcep-
tions

To investigate the “difficulty” of concepts, only a subset of the list of concepts was

used, since it is hard to visually keep an overview over the evolution of too many

concepts. The lecture focuses mostly on object orientation. Therefore the analysis
was restricted to concepts from this particular topic. A list of core concepts for

this part of CS has been suggested as “quarks” by Armstrong (2006). There are
nine verbatim correspondences of the quarks and the concepts in the list: ag-

gregation, association, attribute, class, inheritance, instantiation, method, object,
polymorphism. Additionally, the following six concepts of the list have a close corre-

spondence to one or more of the quarks (given in parentheses): data encapsulation

(encapsulation, information hiding), data type (abstract data type, typing), general-

ization (abstraction, class hierarchy), method call (interaction, message passing),

specialization (class hierarchy, reuse), subclass (class hierarchy, extensibility, re-

lationship, reuse).

To select concepts systematically and based on literature, these nine plus six

concepts that are directly contained in or closely resembled by the list of quarks were
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used. The list is thus: aggregation, association, attribute, class, data encapsulation,

data type, generalization, inheritance, instantiation, method, method call, object,

polymorphism, specialization, subclass.

The concept maps were restricted to these concepts and propositions between

them. Then, they were amalgamated vertically, forming a weighted graph from the

maps by summing the transformed edge scores (-1, 0, and 1). Since the analysis

is focusing on “common knowledge” and “misconceptions” in the data, this new
scoring scheme is more appropriate for the aggregation. The generated graph has

15 · 16/2 = 120 undirected associations. Edges that represent associations that

never appear in any of the maps receive a weight of 0.

The four resulting landscapes are then accumulated horizontally to include a tempo-

ral ordering. This accumulation was done in two ways. First, only edges with a “high”

weight were kept and the rest were pruned, then only edges with a “low” weight
were kept. “High” and “low” are defined as the 4th and 1st quartile of the range of

edge weights, respectively. So, an edge with a “high” value means that at least 75%

of the edges have a lower weight and conversely a “low” value means that 75% of
the edges have a higher weight. Quartiles provide a relative measure. The “top” or

“bottom” 25% of edges will always remain in the graph. A relative measure is useful,

as otherwise the total number of maps would influence the result. Alternatively, an

attribute like “proposition must have received a score of 1 in at least 50% of the

maps” could be used. However, since it is unclear how such an attribute might look

like, quartiles were used.

Fig. 29 and Fig. 30 show a visualization of the accumulated graphs over the four

measurements for the high scoring and low scoring edges respectively. Again, a

low scoring edge is taken as a misconception.

For every measurement of Fig. 29, the concepts attribute, class, method, method

call, and object are present, even though the actual edges connecting them are

varying. Nevertheless, the knowledge structure around the core concepts of object

orientation is constantly evolving throughout the lecture. Also, the concepts of

inheritance are appearing over time - they are introduced rather late in the lecture,

the concept of subclass for example wasn’t present in the material until the last

measurement, but appears earlier, already. Looking at Fig. 30 it can be seen, that
the development of the structural knowledge is only one part of the picture though,

as the misconceptions also show a considerable development.
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10.3.3 RQ3: The Process of Learning

To investigate how the learning process might reflect in the concept maps, the
previous results of the development of knowledge and misconceptions will be used

in the discussion. Additionally, the correlation between map scores and scores in

the exercise were calculated. The map scores were formed by summing the scores
of all propositions of a map. The correlation for the four points of measurement

(PRE, M1, M2, POST) and using Spearman’s rank correlation are: 0.28, 0.42, 0.21,
0.18. The value is distinctly different for M1.

10.4 Discussion

Concerning the first research question (RQ1), there are several points worth men-
tioning. First, as has been alluded to before, the maps are rather sparse. In other

words, adding a concept to a map is equivalent of connecting it with exactly one

edge to the existing map. There are exceptions, of course, where the maps are

denser graphs. Also, there seems to be a “natural” upper bound on the complexity

of a concept map that students are willing to produce in the given setting (about

30 minutes time and without further personal advantages when participating), as

indicated by the stagnation between the last two tests. The increase in variation over
time can be an indication of an increasing spread between students with a more

developed knowledge and those with only poor conceptual knowledge. Clearly,

motivational aspects will also influence this result. Some students will lose interest
in the concept mapping task and produce only small maps, thus the overall variance

will increase. The development of the edge scores in Fig. 26 also shows, that

misconceptions (meaning edges scored with 0) are not diminishing over time, in

contrast to what one would hope for in a lecture. Taken together with the increasing

ruggedness this indicates that the students are not seeing the connection between

different parts of the topics but are creating new “islands” of connected concepts in

their knowledge structure. This might be due to an approach more oriented towards

rote-learning or it might provide support for the “knowledge-as-elements” theory of
conceptual change as described in the second part.

The increasing ruggedness also leads to the visible linear correlation between

concepts and the number of clusters. While the prototypical “good” concept map

would consist of only very few clusters, many concepts and even more propositions,

this result has not been attained in this study. Instead, the correlation of concepts

and clusters shows that on average more concepts also incur more clusters in
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the map. Also, the score does correlate well with either measure, particularly with

the number of concepts. Therefore, a bigger map does on average, also contain

more “right” propositions. Using the transformed scoring scheme ensures that only
explicitly right or wrong propositions will influence the summed score value of a map.

If it is assumed that the score indeed does reflect the actual knowledge contained in

a map, then the correlations of Table 10.1 show that both the measure of concepts

and of propositions seem to be an indicator that can be used to predict the overall

quality of a concept map.

The subgraph frequencies are revealing that the complex fact that was intended to be

learned by the students is taking on different forms in their mental models - at least

when externalized with concept maps. It is interesting, that the original subgraph is

not occurring anywhere in the maps. Instead, three different combinations of only

three of the four concepts are occurring and one combination that connects all four

(and the empty subgraph). It is interesting to note that the subgraph frequencies
are also undergoing a development over the different measurements. Concerning

the subgraphs of object, class, and attribute, the majority is missing the connection

between class and attribute - which might indicate that the objects first approach of
the lecture is showing indirectly - the values of attributes are describing objects.

Concerning the second research question (RQ2) as shown in Fig. 29 and Fig. 30,

it is very interesting to see how the knowledge of the students seems to develop.

First, there is some relevant knowledge present before the start of the course. So,

some of the students know what the main concepts of the lecture were before the

corresponding tests and they seem to have had a mental representation of their
interconnections. However, as the material of object orientation is rather complex

and completely new to many students, it is not surprising that, at the beginning (i.e.

M1), when they were first presented the material, there are roughly as many “problem

areas” as correct associations. However, as this trend continues throughout M2 and

even into POST, it indicates problem areas of the covered material. For instance,

the association between the concepts class and object remains a misconception

throughout almost every test and it is never present in Fig. 29. This lends itself to

the interpretation that a considerable number of students seemed to neither recall

factual information about the concepts and their interrelation, nor did they seem to

have gained a deeper understanding of those two very central concepts of object
orientation. Another interesting example is the association between the concepts

class and subclass. Basically, the understanding of this association requires also

knowledge about the concept inheritance, which wasn’t present in the lecture until

the very last test. Nevertheless, the concept of subclasses are present among
the frequently right associations, even in the context of inheritance, in each test
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except for PRE. It is also present in each of the corresponding graphs of the wrong

associations, however, indicating that the mental representation of the concept is

often faulty. For example, one of the incorrect edges between class and subclass in
M2 was labeled “contains”. After the corresponding material was finally presented

in the lecture (between M2 and POST) a large enough number of students still had

misconceptions about the concept for it to remain in the corresponding graph of

POST. Note, how the association that is frequently right is between subclass and

specialization while the association that is frequently wrong is between subclass
and generalization. Interestingly, the “obvious” relation between class and subclass

appears only once among the frequently correct associations and twice among the

frequently wrong associations. For POST, it is in neither group, though.

Concerning the third research question (RQ3), first, there is the observed correlation

between map scores and exercise scores. The result is highly interesting insofar as

the concepts of M1, which shows the best correlation, are most closely related to
the contents of the exercise (which was held closely after M1). So, for the contents

covered both in the exercise and the concept mapping task, there is an indication

that the abilities of the students as a result of their learning corresponds to their
scores in the concepts maps. An approach oriented towards rote-learning will most

probably show higher scores in the concept maps than in the exercises. This is

especially true for CS when taking into account, for example, the reasoning behind

the taxonomy of Fuller et al. (2007) as presented in the second part - that there

is a supposed independence between the more cognitive oriented and the more

application oriented learning objectives.

The overall picture when taking both Fig. 29 and Fig. 30 into account clearly shows

the process of learning. The knowledge develops increasingly while misconceptions

are present but also developing for the most part. In other words: As the knowledge

increases, the misconceptions shift. Using the learning model of Hay et al. (2008)

as shown in Fig. 4, the overall learning pattern seems to follow the deep learning

approach in which the students need a reconciliation of their knowledge structures

because the prior knowledge is not robust enough. This is encouraging, as it

indicates that the students were choosing to learn meaningfully even in the difficult

context of non-major CS education. In total, the results show that there is a visible

development in structural knowledge during the course of the lecture. However,
the development is not as straight forward as a simple model of learning might

suggest: The misconceptions that are present at the beginning are not simply

decreasing as they are replaced with “correct” knowledge, nor is everything that is

newly learned “correct”. Instead, the misconceptions are developing as part of the
structural knowledge.
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In conclusion, the results of this case study have shown that the learning of new CS

related concepts can be made visible. While the development of misconceptions

does reveal problem areas - and is therefore a valuable result in its own right - it
also indicates that the students are trying to incorporate the concepts meaningfully

into their mental models.

Concerning the analysis methods used, the simple graph measures are not able

to grasp complex information in the data. They can serve as a quick overview,
though, and at least the development of the measures over time is basically like

one would expect them to be. The analysis of subgraph frequencies is well suited

to take a closer look at a certain small set of concepts and the different structural

combinations that are present in the maps of a landscape. Combining vertical

landscapes with horizontal landscapes as a technique provides useful insights into

the development of structural knowledge for the group of students as a whole -

especially when visualized as a series of graphs.
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11 CS2: Knowledge Structures of
Beginning CS Students

The theories of conceptual change and meaningful learning as presented in chapter

3 as well as models of instruction planning, like the “Berliner Modell” (cf. Riedl 2010,

p. 103ff.) all stipulate that “good” learning and teaching must necessarily build

upon and take into account the prior knowledge of the learner. “Prior knowledge
[...] provides a framework through which new information may be organized and

assimilated. This reduces the amount of information chunks to be recalled and

provides association cues for accessing information from the long-term memory”
(Gurlitt & Renkl 2010, p. 418). This becomes a difficult task in higher education,

as typically the development of persons’ knowledge when entering institutions will

be much more diverse than, for example, children entering secondary education.

Especially for computer science education, this becomes particularly relevant. As

has been noted in the first chapter, CS is not yet an established subject of school

education in contrast to e.g. mathematics or physics. Therefore the prior knowledge
is expected to be highly diverse, even more so if a part of the students actually

did receive formal CS education in school. So, the typical prior knowledge is

important information for lecturers and curricular designers. It can also be used
in the development of introductory courses that address possible misconceptions

or underdeveloped parts of the knowledge structures in CS - such a course is

investigated in the next case study.

11.1 Description of the Setting

The state of Bavaria, which is the second largest state of Germany, decided in
the year 2000 to introduce a new compulsory subject “Informatics” at its 405
Gymnasiums, starting in autumn of 2004 (cf. Müller & Hubwieser 2000). This

introduction came parallel with a major restructuring of the school type, leading to a

reduction of 1 year in length (from 9 years to 8 years). The two systems are called
“G9” and “G8” respectively. Therefore, in the summer and winter terms of 2011, the

last G9 students and the first G8 students have been entering university at the same

time, making it a very unique occasion for investigating the effects of the subject on

their prior knowledge.

The research of this case study was done as part of a project called AVIUS that

dealt with the influence that the compulsory school subject Informatics has on the
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knowledge structures of beginning CS students. Additionally, the project investigated

the impression that beginning students had of computer science as a subject

taking into account their personal biographical history concerning CS, following the
research of Knobelsdorf (2011). The participants of AVIUS were beginning CS

students who enrolled at the TU München in the summer and winter term of 2011.

The next section will briefly describe the design of the school subject since its impact

on structural knowledge is the main focus of the case study.

11.1.1 Description of the Subject “Informatics”

The text of this section is partly taken from (Mühling et al. 2010, p. 60ff.), see

also (Hubwieser 2012). The Gymnasium is a specific type of secondary school

in Germany. In Bavaria, it is starting at grade 5 with children at the age of 11
and leading to a degree that allows enrolling in universities after 8 years (9 years

before the restructuring) of studies. It offers four different directions of study: natural

science/technology, foreign languages, economy, and music/arts. At the time of

the survey it was attended by about 370.000 children. The first class of G8 and of

the new subject entered grade 5 in autumn 2003 and completed the compulsory

stage of both school and Informatics after grade 10 in the summer of 2009. The

new subject is comprised of three stages:

• In grade 6 and 7 all students of the Gymnasium have to attend 1 compulsory

lesson per week.

• In grade 9 and 10 there are 2 lessons per week, compulsory for all students
that have chosen natural science/technology as their direction of study

(typically about 50% of the students who have to choose direction).

• In grade 11 and 12 the students that have attended Informatics in grade

9/10 can choose an eligible course of Informatics with 3 lessons per week.

The German school system is heavily federalized. Organization, types of schools,

subjects and curricula vary from state to state. However, all states have a rather strict

system of curricula. A typical curriculum will explicitly state the learning objectives

(including suggested time frames), that students have to learn in each grade. Thus,

teachers have almost no freedom in deciding what they’re teaching in their classes.

The curriculum follows to a great extent the information-oriented teaching approach
as presented by Breier & Hubwieser (2002). Basically the students should acquire

three different basic competencies within this new subject:
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• Represent, structure, store, link, and exchange information using suitable

hard- and software combinations.

• Master, describe, and communicate about complex systems using suitable

- particularly object-oriented - modeling techniques.

• Implement models using suitable software systems or programming plat-
forms - particularly object-oriented - programming languages.

Concerning teaching methods, the subject Informatics is encouraging, more than

any other subject, a very modern, student-oriented learning style: the intensive

problem-oriented usage of computers forces the use of teamwork, group-teaching,
project work and product-orientation in the lessons. Hubwieser (2007) points to

an underlying didactic dilemma: Modern teaching approaches postulate to pose

authentic problems to the students that have relevance in the “real world” outside

the school. Thus, it seems advisable to start programming with interesting, sufficient

complex tasks that convince the students that the concepts they have to learn

are really helpful for their later professional lives. Hence we have to start our

programming course with quite complex programs that simulate processes that the
students know from their everyday life. On the other hand, if we start with quite

complex object-oriented programs, we might ask too much of the students, because

they will have to learn an enormous amount of new, partly very difficult concepts at
one time. As Hubwieser (2008) states, a solution to this problem is to follow a very

strict “objects first” teaching strategy (cf. Gries 2008).

The basic idea is to start the course in grade 6 (where the students are 11 or

12 years old) with object modeling of standard software documents like vector

and pixel graphics, texts or multimedia presentations or hypertext structures. This

way, the students learn to use the object-oriented concepts object, attribute, class,
method, association, aggregation and reference in order to manipulate documents,

some years before they will have to apply them in the context of object-oriented
programming. In grade 6 the students start working with objects of classes like

circle, rectangle, symbol, paragraph etc. They find out that some of the objects are
connected by aggregations, which can even be recursive, for example folder within

file systems. In grade 7 they learn to apply the concept of references (implemented

as links) in order to construct hypertext structures and to exchange information using

e-mail systems. At the end of grade 7, they learn to activate objects by programming

their own methods, using simple robot systems.

At the beginning of grade 9 the students apply the concept of functions by designing
data flow diagrams, which are then implemented using spreadsheets. Following this,

they construct object-oriented data models and implement them using relational
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databases. In grade 10, they finally start “real” object-oriented programming and

thereby have to apply all the concepts they have learned in the former grades.

In the eligible course of grades 11 and 12, the students work with recursive data

structures (lists, trees, and graphs) and corresponding recursive algorithms. They

apply the basic concepts of software engineering: software life cycle models and

stages of software development. In grade 12, they design formal languages and

learn how parallel processes can be synchronized. They simulate computer net-
works, analyze their topology, and learn how a computer is working principally

(hardware architecture, register machine, etc.). Finally, they have to accept that

there are limits of computability, with all the consequences for e.g. data security or

cryptology.

11.2 Data Collection & Research Questions
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Fig. 31: Overview over the study, based on the schema of Fig. 1.

The study is a cross-sectional study of the beginning students of the TU München.

The relevant collected data consists of personal data of the students - including

the number of years they received CS education in school - and a concept map

they were asked to draw. Additionally, they were asked to provide free text answers
concerning their CS related biography, but the answers are not used in this case

study.
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The data collection itself happened at several occasions: All of the newly enrolled

students were invited to take part in a preparatory course in mathematics and object-

oriented programming (see next chapter). Also, their first two days at university are
organized as an introductory event before the start of the lectures at the third day

of the term. The participation in this study was integrated in all of these events as

part of the regular schedule of the students, i.e. they weren’t asked to voluntarily

participate in their spare time, but instead the whole group was given the survey

and asked to complete it, even though there were no negative effects for students
who chose to not take part.

There were 590 participants of about 700 new students who were assessed in

4 batches according to their schedule of their first days at the university. After

eliminating all useless survey responses, 338 remained.

The participants were given a list of 40 concepts (see below). They were then first
asked to mark all concepts they were familiar with and afterwards draw a concept

map of those. Several different orderings for the concept list were used in order to

measure whether this has an effect on the maps, but none was found. The focus
question was to begin with connecting a pair of concepts that has been marked

as familiar and then incorporating as many of the marked concepts as possible by

named links. The students received a short written introduction on concept mapping

including an example map. The participants were asked to label the propositions.

The maps were produced with pen and paper and then later digitalized for analysis.

For the whole survey, the students were given 45 minutes time. An example of one

of the maps can be seen in Fig. 32. In each room there was a researcher present
(at least for some time at the beginning) who told the students about the goals of

the survey and about the anonymity of the process. They also addressed questions

of the participants.

The concepts were extracted from the curriculum of the school subject semi-

automatically by extracting nouns, counting their frequency and then manually
filtering the list. The 40 concepts are:

algorithm, array, assignment, association, attribute, automaton, class, conditional

statement, data, data structure, edges, flow, grammar, graph, instruction cycle,

list, loop, method, object, processor, program, programming language, record, re-
cursion, register machine, semantics, sequence, state, state change, statement,

subclass, superclass, syntax, table, tree, pointer, variable, value, vertex, working

memory

When using ConEx - like in the last chapter - and extracting the first 40 concepts

except for different word forms, there is an agreement of just 50%. However, the
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curriculum is not a very good input for a completely automated extraction as there

are many special words like “pupil” and “hour” that occur rather frequently and

therefore interfere with the result.

Fig. 31 shows how this particular study related to the schema of Fig. 1. The research

questions are:

RQ 1 What is the prior knowledge of a beginning CS student in general and are

there general misconceptions?

RQ 2 Is it possible to observe an effect of the newly introduced subject Informatics

in Bavarian secondary schools with regard to the knowledge structures of
beginning CS students?

Concerning the second question, there are other ways in which the subject may have
had an impact of course, for example by bringing students to enroll for computer

science who otherwise wouldn’t have chosen this field of study. The research project

AVIUS is concerned with the broader scope of this impact, but this case study is

only concerned with the aspects relevant for this thesis.

11.3 Analysis and Results

11.3.1 RQ1: Prior Knowledge of Beginning CS Stu-
dents

To arrive at a visual representation of the “common” prior knowledge, all of the

concept maps were amalgamated vertically. Edge weights of the amalgamated

graph were calculated by counting the original edges in order to use Pathfinder

analysis. The maps were restricted to the 40 concepts of the list. Additionally,

edges not occurring in at least 10% of the maps were removed manually before

creating the Pathfinder network. To arrive at the sparsest representation, the

parameter values q = 39 and r =∞ were used. The Pathfinder network is shown

in Fig. 33, the concepts assignment, association, subclass, and superclass were

left unconnected and removed. The five most central concepts according to the

measure of betweenness-centrality in descending order are: program, processor,

working memory, data and class. Connectivity measures for sparse Pathfinder

networks are not very informative, as they will naturally be low. The four nodes with
the highest appearing node degree (4) are program and processor again as well as

data structure and programming language.
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Next, a cluster analysis was used in order to find out whether or not there are

structural differences inherent in the data. The concept maps were accumulated

vertically in two different ways. First, the concept matrix was used together with
the MBMM approach, then, the graph similarity matrix and the PAM algorithm were

used (see section 7.2). In the latter case, the Hopkins index (see section 5.3.1) of

the resulting matrix was 0.83 indicating that a clustering of the data is possible.

The MBMM clustering applied to the concept matrix finds an optimal solution at
three clusters. One of the clusters, containing 81 maps, simply encompasses all

empty or nearly empty maps. The maximal relative frequency of occurrence for all

concepts - i.e. the sum of each column of the concept matrix of this cluster divided

by the size of the cluster - is a very small 0.03. The mean relative frequency over all

concepts is just 0.004. Also, judging by the overall probabilities, the concept maps

of the remaining two clusters containing 100 and 151 maps, are predominantly

differing in complexity. This is confirmed by a t-test. The true difference in means (of
the edge count) between the two groups is more than 7 (p = 0.0007). This amounts

to an increase in edges of more than 70% for the maps of one cluster compared to

the other.

Using the PAM algorithm applied to the distance matrix of graph similarities, the

optimal number of clusters is two. Both clusters are of nearly identical size with

169 and 164 maps, respectively. To identify how the maps of both clusters differ,

each set of maps was amalgamated vertically and the Pathfinder networks of both

landscapes using q = 39 and r =∞ were created. Again, all edges that appeared

in less than 10% of the maps were removed beforehand and unconnected concepts
removed. Fig. 34 and Fig. 35 shows how both clusters organize their knowledge.

The structural configuration of many concepts is alike, as the connections between

the concepts program, processor, register machine, working memory and data
show. But there are also many differences. Cluster 1, in contrast to cluster 2, has

data not connected to data structure, for example. Also, the concept recursion
is missing completely in cluster 2 and in cluster 1 it is connected to the concepts

algorithm and tree. Also, cluster 1 has the concepts conditional statement, loop, and

algorithm all connected to method, whereas cluster 2 has conditional statement and

loop connected to algorithm, which in turn is connected to program. The concept

method appears only as an “appendix” to class for this cluster. The concept

statement is, interestingly, connected to program for both clusters, but only cluster

1 shows an additional connection (flow).

Finally, all the available data of the students was used in order to find out whether
or not the persons forming the two clusters differ significantly in any of the avail-
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able attributes. There is no discernible difference concerning whether or not they

attended the G8 or G9 school system, as a χ2 test reveals. 49.7% of the students

of the first cluster were attending the G8 system and 45.1% of the second cluster.
Also, there are no differences concerning whether or not computer science was

one of their subjects when they graduated from school or concerning the number

of years they received CS education in school. However, a χ2 test does show a

significant difference (p < 0.05) concerning who they think their biggest influence

regarding their interest for CS was. The students of cluster 1 have given their father
as the biggest influence significantly more often than the students of cluster 2.

11.3.2 RQ2: Effect of CS Education in Secondary
Schools

For this analysis, the maps were split into two groups according to the students’

prior education. G8 denotes the group of students who attended the compulsory
subject Informatics for at least four years and G9 denotes the group who didn’t

have a compulsory subject. Some of them had a voluntary subject of computer
science as part of their education though. Also, in the G8 group, there are some

who took Informatics as one of their subjects they graduated in and others who

didn’t. Note that the groups do not form a partition of the data as there are 48 cases

of students who either attended some other form of school, came from another

country, or whose answer to the survey could not be clearly attributed to either

G8 or G9. The G8 group consists of 163 maps and the G9 group of 127. To
investigate the impact, it is reasonable to separately aggregate the concept maps of

these “naturally” occurring clusters and check whether or not there are discernible

differences. The maps of the G8 groups are significantly denser: A t-test of the

number of edges between two groups shows, the hypothesis, that the true difference

in means is 0 can be rejected with a confidence level of 99% (p = 0.0001).

To identify the prevalent structural configuration, both sets of maps were amal-
gamated vertically by summing edges and, again, the Pathfinder networks with

parameters q = 39 and r = ∞ were created. As before, edges that were appear-

ing in less than 10% of the maps of each group were removed beforehand and

unconnected concepts were removed. First, taking a look at the concepts that

remained in the Pathfinder networks, there were 31 for G8 and 26 for G9. The

networks are shown in Fig. 36 and Fig. 37 respectively. All concepts appearing in

the G9 networks are also appearing in the G8 network, however, the G8 network

contains the additional concepts: list, recursion, semantics, state, and register ma-

chine. When measuring the betweenness-centrality of the nodes, the three highest
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Community G8 G9

1 Data structure, Graph, Edges,

Nodes, List, Tree, Array, Re-

cursion

Data structure, Graph, Edges,

Nodes, Tree, Array

2 Data, Record, Table, Working

memory, Processor, Register

machine

Data, Record, Table, Working

memory, Processor

3 Object, Attribute, Value, Vari-

able

Object, Attribute, Method, Al-

gorithm

4 Class, Method, Loop, Condi-

tional Statement

Class, Value, Variable, Loop,

Conditional Statement

5 Programming language, Syn-

tax, Semantics, Grammar

Programming language, Syn-

tax, Grammar

6 Statement, Program, Automa-

ton, State, Algorithm

Statement, Program, Automa-

ton

Table 11.1: The communities identified within the Pathfinder network from

the maps of the G8 and G9 groups. The ordering of the communities for

both groups is arbitrary, but was chosen to allow comparing the groups more
easily.

scoring concepts for the G8 group are: program, class, and data structure. For the

G9 group it is: program, processor, and data.

Analyzing the communities in the Pathfinder networks using a greedy algorithm,

both networks are partitioned into six communities. The concepts are assigned to

the communities as shown in Table 11.1.

11.4 Discussion

For the first research question (RQ1), the visual inspection of the Pathfinder network

as shown in Fig. 33 reveals some interesting insights. First, it is peculiar that, on

average, a beginning CS student does know something about the concept of a

register machine or the theoretical constructs of grammars, but not of the concepts of

subclass/superclass. It can be assumed that the knowledge about register machines

is most probably due to the large amount of G8 students and therefore an artefact

of prior formal CS education. This nevertheless points to a not fully developed prior

knowledge regarding core OO concepts - even more since subclass and superclass
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are also central concepts of the curriculum of the school subject. Taken together

with the fact that the structural configuration is centered around the concepts of

program and processor, and also taking into account the associations between
data and working memory, as well as between register machine and processor all

indicate an understanding of CS that is centered around computers and a more

practical, programming-oriented approach towards CS. An expert network would

most probably differ in the connections regarding these concepts and show a more

distinct separation between general and abstract concepts like register machine or
data and specific, technical concepts like processor or working memory. This is

valuable information for the design of introductory courses and lectures.

The cluster analysis shows, however, that there are also hidden structural differences

in the groups. Based on the structural configuration of the concepts, the persons of

the two clusters can be characterized as follows:

Cluster 1 Seem to be fluent with the object-oriented approach to programming,

since algorithm is connected to method as well as the control structures

loop and conditional statement. Also, they have an understanding of re-
cursion and recursive data structures. The (recursive) data structures list,

array, tree, and graph are forming a group of concepts that is far away from
the group of database oriented concepts (data, table, and record), which

are placed near the technical concepts working memory and processor.

Cluster 2 Are clearly more oriented towards procedural programming, as algorithm

is connected to program and the control structures loop and conditional
statement are connected to algorithm in turn. The concept method is

seemingly only weakly integrated into the mental models of the persons of
this cluster. Also, the concept of recursion is missing completely. The three

database oriented concepts and the data structures are forming a large

group of concepts for this cluster, which is only connected to the rest via
the concept working memory (i.e. this is the strongest link that remained in

the Pathfinder network).

So, the central aspect that differs between these clusters seems to be their approach

(or prior experience) towards programming - object-oriented versus procedural -

and their grasp of the concept of recursion. Since recursion is a central concept

of computer science and its presence or absence has a clear structural effect on

the knowledge structures, this may be taken as a sign that it is a threshold concept

of computer science. It is interesting to see that the school type did not show

in this particular clustering - especially when comparing some obvious structural
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similarities to the Pathfinder network of the G8 group shown in Fig. 36. In how far

the difference of the father as an influence affects the results is unclear. It seems

reasonable to assume that in these cases the father has either studied computer
science or is at least working in this area. This may explain that these students know

more about object orientation and recursion as they possibly had better access to

CS learning material or may have learned something directly from their father.

Concerning the second research question (RQ2) the results are clearly showing
artifacts of the specific curriculum of the school subject with its strict objects-first,

object-oriented approach. Taking together the Pathfinder networks of Fig. 36 and

Fig. 37 as well as the communities of Table 11.1, the following can be observed:

• The G8 network is visibly more complex.

• While it seems common among all beginning students to value the concept
program highly in their knowledge structure, the most central concepts of

class and data structure as opposed to processor and data show a more

object-oriented understanding of the G8 group, while the G9 group seems
to be more focused on the technical aspects and computers themselves.

• The network of the G8 group has a connection between recursion and

tree, which corresponds to the approach of introducing recursion based on
object-oriented recursive data structures, like lists and trees, chosen in the

curriculum.

• Another indicator for a more formal CS education in the G8 group: For

their network, there is the path programming language, syntax, grammar,
semantics, whereas the G9 group only has grammar and syntax connected

to programming language directly (semantics is missing completely).

• For the G8 group, communities 3 and 4 seem to indicate that objects and

classes are seen as somewhat unrelated, with objects being more identified

by their attributes and classes more by their methods. Additionally, the

control structures (loop and conditional statement) are grouped with class.

This resembles, to some degree, the approach of the school subject, where
objects are introduced as entities described by the values of their attributes

right from the beginning and later on methods are implemented for classes.

• The G9 group in contrast, has a less clear cut grouping concerning the core

concepts of object orientation. Even though method is grouped with object

and algorithm, it is again class that resides in the same community as the

control structures. Also, value is not in the same community as object.
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• There are some commonalities between the two groups: First, communities

1, 2, and 5 are nearly identical except for concepts missing the G9 network

altogether. Next, there is a clear grouping of concepts related to data
structures for both groups in the first community. Also, for both groups,

the more database oriented concepts (data, record, table) are grouped

with processor and working memory, placing them in a more technical and

less abstract corner. In the same vein, register machine is seemingly more

related to a real processor than to an abstract notion for beginning students.
Finally, for both groups, automaton, program and state are related; however,

none of the object-oriented concepts are put into that group, indicating a

lack of understanding of the semantics of object orientation.

In conclusion, the beginning students of this case study have a surprisingly complex

prior knowledge of computer science that seems - without a formal education in

secondary school - to exhibit a practical, programming-oriented view on computer

science. The school subject has a clearly visible impact on the conceptual knowl-

edge, however: Investigating the Pathfinder networks of both groups, there are
several indicators that point to the success of the object-oriented, strictly objects-first

approach of the school subject in the sense that it has an identifiable impact on the

knowledge structure of the students. The communities also support these findings.

The analysis methods used in this study were mostly centered around Pathfinder

networks and their subsequent analysis using graph measures and manual, visual

inspection. The methods were well suited to find out the differences in the knowledge

structures between the two groups of G8 and G9 students as well as to extract the

common knowledge of a beginning CS student. Also, the clustering using graph

similarities revealed some interesting insights beyond the separation of G8 and G9.



12 CS3: Conceptual Knowledge
and Abilities

Most of the results of this chapter have been previously published in (Berges

et al. 2012).

Students beginning their studies of computer science often have difficulties in

learning programming, especially object-oriented programming (OOP) in the fast

pace that the curriculum at university demands. Teaching and learning OOP is

inherently difficulty, as the research literature, e.g. (Hubwieser 2008), (Eckerdal

2006), (Ragonis & Ben-Ari 2005), shows.

Since being able to program is typically not required for students who enroll for stud-

ies of computer science, there are many with no prior experience in programming,
making the beginning of their studies even more difficult. To improve their chances

and alleviate the differences between beginning students, the Department of com-

puter science at the TU München has decided in 2008 to design and implement

a two and a half day long, voluntary introductory course that is held right before

the beginning of the semester. This course introduces the basics of object-oriented

programming to all students wishing to participate. Every newly enrolled CS student

receives an invitation. As part of this course, the knowledge of the students regard-
ing concepts of object-oriented programming has been assessed by concept maps

in a pretest and posttest, following the observation of Novak & Cañas (2010, p. 3):

“When concept maps are used as pretests and then employed with new learning

material, research has shown that meaningful learning can be much facilitated”.

12.1 Description of the Setting

The design of the course is described in detail by Hubwieser & Berges (2011). It

is based on the premise of Constructivism and minimal instruction. The students

are given a programming task to solve and are encouraged to try programming

on their own, right from the beginning with only minimal input given to them in

the form of four worksheets: The first sheet describes the task itself and the

software that will be used, so the students receive a short overview over the

course. The second sheet introduces the basic concepts of object orientation:

objects, classes, attributes, and methods. It emphasizes the concept of data

encapsulation/information hiding that the students should adhere to as early as
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possible. The third sheet presents the implementation of those concepts in Java.

Java was chosen as the programming language, as this is the language they will be

mainly dealing with in the first semesters. The last sheet presents the concept of
algorithms as well as the control structures of procedural programming (sequences,

conditional statements, loops). In addition to the worksheets, a peer tutor is also

present to guide them whenever necessary.

The setting was developed to encourage attaining basic programming abilities
without requiring much conceptual knowledge to be learned beforehand (as the

conceptual basis will be presented in the lectures starting right after the course any-

way). Nevertheless, it seems reasonable to assume that the conceptual framework

of the students concerning the concepts of programming will change nevertheless,

throughout this course.

The students worked in small groups based on their prior programming experience.
There were three different levels and the students were assigned based on their

responses to a question in the survey (see below) concerning their experience:

1. “I have no experience at all”.

2. “I have already written programs”.

3. “I have already written object-oriented programs”.

The demands of the programs that the students should realize differed according to

their respective level of programming experience. The students of the first level (with

the least amount of prior experience) were asked to program the game “Mastermind”.
The groups of the next level should create a tool for managing results from a sports
tournament, for example a football league. The groups of the most advanced, third

level were given the task to program a version of the dice game “Yahzee”.

12.2 Data Collection & Research Questions

All data was collected right before the winter term of 2010/2011. It consists of a

concept map drawn directly before the start of the course (pre map) and one drawn

right after the course (post map). Additionally, the results of a survey asking for

some personal information and prior programming experiences were available for

each participant. Finally, the source code that each student produced was collected
and used for analysis. Drawing the concept map and answering the survey was

part of the course, however participation in the course was voluntary and dropping
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Fig. 38: Overview over the study, based on the schema of Fig. 1.

out of the course didn’t incur any negative consequences for the students. Also, all

data was collected anonymously. A number was given to the participants in order to

match the single items of each student.

There were 167 participants, which amounts to about 42% of all newly enrolled

CS students at the department of computer science at the TU München. They
were divided into 18 groups ranging in size from 6 to 15 people. Some students

dropped out before the end of the course and some didn’t provide a complete data

set of survey, source code and two concept maps. In cases where a post map was

present, but not a pre map, it was assumed that the pre map was intentionally left
blank due to no relevant prior knowledge. In the end, the data of 75 students could

be used for analysis.

The concept mapping task consisted of a list of concepts given to the students and a

written introduction on concept mapping. Additionally, a tutor was present whom the

students could ask. The students were given 30 minutes for drawing the concept

maps both times. Drawing was done using pen and paper. The focus question

asked the students to try to create a concept map using the concepts from the given
list that they were familiar with. It explicitly asked for finding labeled connections

between pairs of concepts and stated that not each pair of concepts must be related.
An example of one of the maps can be seen in Fig. 39. The list of 21 concepts (CL)

that was given to the participants of the course was extracted systematically from
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Fig. 39: A scanned example map after that was produced by one of the
students in German.

the worksheets and encompasses all concepts that the course is dealing with. It is

shown in Table 12.1, the abbreviations are used in the next section.

The source code was collected by asking the students to upload their code as an

archive to a server. The tutors assisted in the process. The students started by

using BlueJ1 for the reasons given by Bergin, Bruce & Kölling (2005), but were then
encouraged to switch to a more advanced IDE (Eclipse2 or Netbeans3).

Fig. 38 shows how the schematic organization of this particular study looks like.

The two research questions concerning this thesis are:

RQ 1 How will the conceptual knowledge of concepts related to programming de-

velop, if there is only very little actual input given. In other words, without
enough material and time to rote learn but opportunities to apply the con-

cepts in programming, will there still be a visible development in knowledge?

RQ 2 Is there any identifiable relation between the conceptual knowledge and the

actual programming abilities of the students?

1http://www.bluej.org
2http://www.eclipse.org
3http://netbeans.org
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AM access modifier constructor ME method

AR arrays DE data encapsulation OB object

AG assignment data type object orientation

AC association IN inheritance OP operators

AT attribute IZ initialization OV overloading

class instance PA parameter

CS conditional state-
ment

LO loop statement ST state

Table 12.1: The 21 concepts that the students should use for drawing the

concept maps. The abbreviations are used later for the code analysis and in

the diagrams of the results.

12.3 Analysis and Results

For analysis, the data was divided according to whether or not a person had prior

programming experience. There was no differentiation made between those who

had experience with object orientation and those who only had written non-OO
programs to keep the two groups roughly the same size: From the 75 participants

that remained for analysis, 42 students had prior programming experience while 33

students had never programmed before.

The concepts of the maps were restricted to the 21 from CL given to the participants.

Missing concepts from CL were added as isolated nodes to the concept map before

aggregating and additional concepts not on CL were removed. Also, edges with no

label were excluded from analysis altogether. The remaining propositions were then
scored manually according to the following scheme:

• If the proposition forms a correct statement it will be scored with 2.

• If the proposition forms a statement that is clearly wrong or if the meaning

of the statement cannot be understood, it will be scored with 0.

• If none of these two conditions apply, the association will be scored with 1.

To validate the reliability of the grading scheme three experts were asked to grade a

randomly chosen subset of the edges according to the scheme. The correlation of

grades between any pair of the three persons was constantly at or above 0.8. To

further improve the reliability of the grading for analysis, propositions with a score of

1 (i.e. the “unclear” cases) were excluded for subsequent analysis steps.
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Fig. 40: Development of relevant structural knowledge over all participants.
Shown is the fraction of maps with at least one “correct” edge (i.e. with a

score of 2) incident to a concept (b(eginning) = pre test, e(nd) = post test).

12.3.1 RQ1: Development of Structural Knowledge

First, the concept maps were accumulated vertically - for pre and post test - both for

all students combined and separately for students with and without prior program-

ming experience. The accumulation used the concept matrix with the restriction

that a concept is marked as present (value 1) in each concept vector only if at least

one of the incident edges of this concept has a score value of 2, i.e. is a “correct”

proposition representing some accepted “fact” about a particular concept. Then, the

mean of each column was taken, resulting in a vector that contains for each concept

of CL the relative frequency of this concept to appear in a map of the landscape

with a correct incident edge. Clearly, this is a very basic measure and one might
expect that the percentage of maps fulfilling this criterion for a given concept is very

large. However, as the concept maps were rather small and sparse, it turned out to

work well in practice.

The relative frequencies and especially the development from pre to post test

can then be plotted. Fig. 40 shows the landscape of all maps, regardless of

prior experience. Additionally, Fig. 50 in the appendix shows the “delta” (i.e. the
difference) between the two lines for better readability. There is a clearly visible

development of the structural knowledge over the course.
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Aggregating over all participants neglects the fact that the prior experience is

rather heterogeneous. Fig. 41 shows the development of the knowledge separately

for both groups. As can be seen, both groups are gaining relevant conceptual
knowledge during the course. Also, there is only very little relevant knowledge

present before the course for the group without prior programming experience - as

is to be expected, of course. In detail, students with prior programming experience

show a better understanding of all concepts after the course except for conditional

statement, inheritance, instance, operators, and parameter, where there is not
much difference. Interestingly, they seem to “lose” some knowledge regarding

instance, operators, and parameters. However, since the aggregation method is

rather coarse, this might for example happen when the students had a very “simple”

proposition in the pre map (with a score of 2) and then tried a more complex one

in the post map which was incorrect or at least not scored with 2. Additionally,

students without prior experience seemingly learned the most about “core” concepts
of object orientation: the four concepts with the biggest increase are attribute, class,

method, and object. The course material put much emphasis on these concepts.

Additionally, the “difference” in knowledge between the two groups is decreasing
for the post maps. Fig. 51 in the appendix shows the same data but separated

between programming experience instead of test. The difference between both

lines is plotted in Fig. 52, also in the appendix.

Using the same method as above, new concept landscapes were formed based

on concepts that had at least one incident edge with a score of 0. Conversely,

these are taken to mean that the students have a misconception regarding this
concept. The mean of the columns then, again, is the relative frequency of a

misconception occurring for this concept of CL. Fig. 54 and Fig. 56 in the appendix

show the results when taking all maps into account and when separating according

to test. Fig. 42 shows the results when separating according to programming
experience. The difference between both lines is plotted in Fig. 53 in the appendix.

As can be seen, the group with prior programming experience shows almost no
development between pre and post test. For the group with no prior experience,

the misconceptions are almost always increasing in frequency of occurrence, most

notably for the concepts attribute, initialization, and parameter. However, even for

these the absolute frequency of occurrence is rather low.

The previous aggregations, like in the last case study, were partly based on a manual

clustering of the data regarding the attribute “prior programming experience”. It

seems worthwhile to additionally use a clustering algorithm in order to find hidden

structural aspects in the data that may be masked due to the manual clustering
based on an external criterion. For the pre maps, both PAM and MBMM clustering
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(a) Pre Maps
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(b) Post Maps

Fig. 41: Development of structural knowledge dependent on prior program-

ming experience. Shown is the percentage of maps that showed at least

one “correct” edge (i.e. with a score of 2) incident to a concept (0 = no prior

experience, 1 = prior experience).
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(a) No experience
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(b) Programming experience

Fig. 42: Development of misconceptions dependent on prior programming

experience. Shown is the percentage of maps that showed at least one

“incorrect” edge (b(eginning) = pre test, e(nd) = post test)).
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Fig. 43: The probabilities of concept occurrence as identified by the MBMM
clustering algorithm for the post maps, shown for both clusters.

mostly identified the empty or nearly empty maps and grouped them together. When
using the clustering based on multivariate Bernoulli mixture models for the post

maps over all participants, the best model is one with two clusters. Both clusters

have about 60% (57.8% and 57.1%) of the maps in common when compared to

the manually formed clusters based on prior experience. Also, both clusters are

of equal size with 37 and 38 members respectively. So, there does seem to be

additional structural information in the data present to allow for another way of

forming clusters. Fig. 43 shows the probabilities for each Bernoulli component

directly for both clusters. The plot can be interpreted in the same way as the

aggregated plots above. The clustering that is found is apparently not sensitive to

the (randomly chosen) start values, as the algorithm repeatedly found nearly the

same probabilities in 50 runs.

To better identify the characteristics of the clusters, it is interesting to take a look

at concepts that have a very high (or low) probability of appearing for each cluster.

For a threshold of 0.8, the concepts for the first cluster are: attribute, class, method,

object. For the second cluster, additionally the concepts of constructor, data type,

and parameter are above the threshold. Note that these are predominately concepts

that are associated with object orientation. For concepts with a probability less than

0.2, the second cluster only has overloading, while the first cluster additionally has:

assignment, association, initialization, instance, and loop statement.
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To further investigate the differences between the clusters, the post maps of each

cluster were vertically amalgamated by summing edges and a Pathfinder network

was created from each landscape separately. To arrive at a small network, a
strict pruning was used: For each cluster, only concepts that were at least once

“correctly” (score of 2) connected in more than half of the maps were left, all others

were removed. Fig. 44 shows the resulting graphs when using the parameters

that produce the sparsest results (q set to one less than the number of remaining

concepts and r set to∞). Clearly, the network of the maps of the second cluster
displays a much richer knowledge structure forming an interconnected network

of 19 concepts (only overloading was pruned). The network structure of the first

cluster on the other hand displays only a very limited understanding of the basic

concepts of object orientation while nearly all concepts that are more oriented

towards programming have been pruned.

Also, like in the last case study, the PAM algorithm was employed as an alternative
to MBMM using the graph similarity matrix. The Hopkins index of the data is 0.79

indicating its non-uniformity. The best result according to the G1 index is three

clusters of a similar size with 21, 30, and 24 maps respectively. The results indicate
structural differences, mostly focusing on the concepts attribute, assignment, and

object orientation. The networks are shown in the appendix in Fig. 58 to Fig. 60 for

completeness. It seems that the students of cluster 2 seem to have a misconception

regarding assignments, since the concept is only connected to data type.

12.3.2 RQ2: Connections Between Knowledge and
Abilities

The code that the students produced is taken as an indicator of their programming

abilities. Analyzing and scoring of object-oriented code is a central topic in edu-
cational research ever since OOP has been taught in introductory courses in CS.

See e.g. Börstler, Christensen, Bennedsen, Nordström, Kallin Westin, Moström &
Caspersen (2008), Sanders & Thomas (2007), or Truong, Roe & Bancroft (2004)

for possible approaches and classifications. However, while there are certain ap-

proaches to scoring that could be used “out of the box”, the underlying research

question in this case needs an analysis method that is closely based on the concepts

of CL, as the investigation deals with the connection between structural knowledge

and programming abilities.

The methodology used in this case study was as follows: A hierarchy of observable

applications (in program code) for each concept of the list was developed in a
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Fig. 44: Pathfinder networks built from the post maps of the members of each

cluster (as shown in Fig. 43). The parameter were set to q = n−1 and r =∞.

Before the creation, all concepts were removed that weren’t connected in

more than half of the maps.
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systematic way. For example, an application of the concept constructor can be

observed in the form of using it (i.e. creating an object) or in the form of creating

it (i.e. defining a constructor). These two applications cover everything that can
be observed in a program code concerning the concept constructor. Clearly, there

are other possibilities of partitioning the “application space” as well, for example by

further separating the creation of a single constructor and the creation of multiple

constructors. That other possible partitions exist is not important for the scoring

method, though. It is only important that there doesn’t exist an observable artifact
concerning a concept that is not matched by any of the concept’s applications.

So, for each concept of the list, two experts tried to conceive all possible ways of

applying it. The result of actual applications is clearly subjective, however, care

was taken that every possible application of a concept was indeed matched by any

of the postulated observable applications. Since each of the possible observable

applications can be present or absent in a given source code, each of these
applications is a testable, dichotomous item.

The only concepts that were excluded right from the beginning were object ori-

entation, class, data type, constructor, and instance. The first one was excluded
because in Java there is object orientation by design. The next two because the

use of a modern IDE makes it virtually impossible to distinguish between “imple-

mentation by the students” and “implementation by the IDE” due to code completion

or auto correct features. Finally, the last two were excluded since they cannot be

separated clearly (calling a constructor will also create an instance).

In the end, this method led to 36 items. In the following, an item “being present”
means that the observation belonging to that item was actually observed in a code.

Some of the items turned out to be trivial, as they were present in all or nearly

all programs. For example, for the concept method there are the applications of

calling a method and defining a method. However, every student used a method,

because they were all printing to the console. Nevertheless, as the code questions

were derived systematically and qualitatively, the trivial questions were kept for the

analysis as well, for the sake of completeness. Table 12.2 shows all the questions,

from now on called CI (code items).

The scoring of the code was done analogously to the concept scoring, i.e. for

each concept a binary value should indicate whether or not the concepts were

successfully applied in the code. In cases where there are several items belonging

to a concept, a decision must be made how to integrate the single values into a

value for the concept. In theory, there are three possibilities: Either all of the items

of a concept must be present, or a fraction (e.g. the majority), or any item must

be present to score a 1 for the corresponding item. In some cases, the items of a
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Concept Level Item
AM 1 Access modifiers private and protected are used
AR 1 An array with pre-initialization is defined in the code

2 An array without pre-initialization is defined in the code
3 An element of an array is accessed
4 An array is created using new
5 A method of the class Array is used

AG 1 An assignment is used
AC 1 There is an association between classes present

2 An association between classes is used
AT 1 An attribute is defined

2 An attribute of another class is accessed
3 An attribute of a class is accessed within the class

CS 1 A conditional statement without else is used
2 A conditional statement with else is used
3 switch is used

DE 1 The visibility of attributes is private or protected
IN 1 A class is derived from an existing Java class

2 A class is derived from a user created class
IZ 1 An attribute is initialized
LO 1 A loop is used
ME 1 A method is called

2 A method is defined
OB 1 A variable or attribute has the type of a user defined class

2 An object referenced by a variable or attribute is used
3 An object uses itself with this

OP 1 The assignment operator is used
2 An arithmetic operator is used
3 A logical operator is used

OV 1 An overloaded method is called
2 An overloaded method is defined

PA 1 A method with parameters is called
2 A method with parameters is defined
3 A parameter of a user defined method is used in the method

ST 1 The state of an object can be read
2 The state of an object can be changed
3 The state of an object impacts program flow

Table 12.2: The dichotomous items used to analyze the code with regard

to the application of the concepts of CL. The concepts are given as the

abbreviations found in Table 12.1.
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concept form a hierarchy in the sense that they are not independent from each other.

For example in order to use a parameter of a method (PA3), it has to be declared

first (PA2). Or, creating an instance of an array with new (AR4) is only possible if
either (AR1) or (AR2) are also present. For this analysis, the approach was chosen

that a concept is seen as implemented as soon as any of its items are present. This

follows most closely the way the conceptual knowledge was analyzed: As long as

the student shows any relevant knowledge the concept is included into the analysis

of the concept maps. Correspondingly, as long as the student did produce any
valid code concerning one of the items of a concept, it suffices as indicator that

there is some ability present regarding that concept. Clearly, this measure is a very

basic one. However, the scoring of the code using these items is highly reliable and

should provide an “overestimation” concerning the validity.

In the end, the analysis should give some insights on the interplay between the

conceptual knowledge about a given programming concept and the abilities to
actually use this concept in programming. The conceptual knowledge about a

concept is externalized in the form of concept maps. More precisely, by all the

edges (and their respective scores) that are incident to this concept in the map. The
abilities are “externalized” by the source code. Both are mapped into a dichotomous

value for this analysis. There are more complex alternatives for both source code

and knowledge - however a common scale is needed in every way. Without a theory

driven analysis of the knowledge structures of the domain and an analysis of the

actual abilities of programming, arguably none of the more complex methods leads

to inherently better results. To get an overview over the results of the code scoring,
the relative frequency of projects (i.e. the whole of the source code of a participant)

in which an item was present can be used. While a complete listing doesn’t yield

much insight, Table 12.3 does give a summary by condensing the information into

percentiles.

Percentile Code Questions

0% - 20% IN1, IN2, AR1, CS3, OV2
21% - 40% AC1, AC2, AR5

41% - 60% IZ1, AT2, OB3

61% - 80% DE1, OP2, AR2, AR4, PA2, PA3, OB1, OB2, AM1

81% - 100% ME1, ME2, AG1, ST1, ST2, ST3, OP1, OP3, AR3, PA1, AT1,

AT3, CS1, CS2, OV1, LO1

Table 12.3: The items of CI and the percentile of projects that showed the
respective property.
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Using the code analysis together with the landscapes of the concept maps presented

in the last section, it is now possible to also aggregate the score values for each

test (pre or post) and group (prior experience or not) in the same way as above.
This way, the relative frequency of “correct” concept occurrences in the concept

maps and corresponding observable application in the source code are shown

simultaneously. Only the post test is relevant for this comparison. The results for all

students are shown in Fig. 45, the results for separated groups are shown in the

appendix in Fig. 57, however, there is only little difference between the two groups.
Basically, each concept falls into one of three categories:

1. The two values are high and close together. This indicates concepts that
were understood well and implemented well, on average. The core concepts

of OOP, attribute (AT), method (ME), and object (OB) fall into this category.

2. The two values are low and close together. This is the opposite of the first

category. Association (AC) and inheritance (IN) belong to this category,

which are the more advanced OOP related concepts.

3. There is a (somewhat large) gap between the two values - this includes all

the concepts that are related to procedural programming - assignment (AG),

conditional statement (CS), loop (LO), operator (OP), parameter (PA), and

state (ST) - as well as the more “technical” concepts like arrays (AR) and
access modifiers (AM), but also overlaoding (OV).

The only concept that doesn’t really belong to any of the 3 categories is data
encapsulation (DE).

When using the results of the clustering from Fig. 43 and comparing the abilities of

the students of the two clusters, there are almost no differences to be found (the

largest difference between the two groups is 0.14).

12.4 Discussion

Concerning the first research question (RQ1) there is a plethora of observations

that can be made from the different diagrams. First, and this is positive to note, both
the students with and without prior programming experience are actually gaining

relevant structural knowledge. So, with only the minimal input that was given to

the students they were, on average, still able to develop their mental models of

the concepts in question. This holds true for both the students with and without
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Fig. 45: Difference between conceptual knowledge and programming abilities
concerning the concepts of CL (k = knowledge, a = abilities).

prior programming experience. Also, most increase in knowledge is observed for
the basic concepts of object orientation (e.g. class, object, method), which were

a focus of the worksheets given to the students. The heterogeneity between both

groups is visibly reduced which was one of the goals of the course - alleviating the

differences between students at the beginning of their CS studies. Looking closer

at the differences between the pre maps and post maps, there are some concepts

(inheritance, initialization, instance) that students without prior experience show no

increase in knowledge in. This could be seen as an artifact of concept mapping, for

example if these particular concepts aren’t easily incorporated into a map. However,

as the other group (with prior experience) made use of the concepts in their maps,

this case can rather safely be dismissed. An alternative explanation is this: It seems

that those concepts need a certain level of understanding, before students can

correctly incorporate them into their mental model. Since the students without prior
experience were acquiring this basic knowledge in the course, they were unable to

additionally focus on the more advanced concepts. It may also indicate however,
that the course material is not suited for explaining advanced concepts to students

without any prior programming experience.

Concerning the clusters shown in Fig. 43, the concepts with an inter-cluster differ-

ence of more than 0.5 of the corresponding probabilities are (in descending order of

the difference): data type, loop statement, assignment, conditional statement, and
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initialization. This list is interesting insofar, as there are no concepts present that

are “purely” object-oriented (like class). Instead, the list contains the very basic

concepts of procedural programming, namely assignment as well as the two control
structures conditional- and loop statement. Also, the members of the first cluster

tend to focus mostly on the basic concepts of object orientation in their post maps.

This may be due to the fact that these concepts were most easily integrated into a

map or it maybe due to the fact that these persons didn’t gain enough programming

experience in order to form relevant structural knowledge of the concepts more
oriented towards programming. The fact that many students did integrate these

concepts (e.g. conditional statement) into their maps supports the fact that there is

a group with only very limited knowledge of the programming concepts. So there

are viable mental models that incorporate the concepts and also people who are

able (and willing) to externalize these models. However, since both clusters found

by the algorithm are somewhat matching the manually formed clusters based on
programming experience, it is unlikely that the first cluster just represents students

not motivated or not able to externalize more of their structural knowledge in the

concept mapping task. Instead, it seems plausible to assume that the clusters are
forming a truer picture of the prior experience of the students - the 40% of students

who said they had prior programming experience but didn’t end up in the second

cluster may simply have overrated their prior knowledge.

Concerning the second research question (RQ2), first there are some observations

regarding the percentiles of the code items. Obviously, there are some constructs

that will appear in even the most basic Java programs, like the use of an assignment.
So, not surprisingly, the corresponding items are present in nearly all projects.

Also, even though, for example, overloading can be incorporated in virtually every

program, not every programming task lends itself for e.g. the creation of a hierarchy

of classes. Since the programming tasks were rather small - in order to make it
possible for the students to finish the tasks in the two and a half days - it must be

assumed that these items are not necessarily only non-present in most projects
because they are more difficult than the rest, but simply because there was no

clear necessity to use the corresponding constructs. Therefore, most insight can be

gained from items that are present at least in some, but not in all of the projects.

The results (Fig. 45) show that abilities do not strictly follow knowledge. Instead,
three categories of the relationship can be identified. There is a group that is

understood and applied well, a group that is only applied well and a group that is

neither understood nor applied well. It is interesting to note that there are concepts

of object orientation in both of the first categories. This clearly shows, that several of
those concepts (like inheritance) are seemingly harder to grasp than the rest, while
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students actually were able to understand and apply the basic concepts of object

orientation (e.g. object) after the course. Next is the huge difference between the

representation of knowledge and the usage in the code of the 3rd group of concepts
like loop. This particular concept might have been hard to integrate in the concept

maps, since it is part of a few concepts dealing more with procedural programming

than with object orientation. But it may just as well show, that “understanding”

those concepts is not a trivial task and takes considerably more time than learning

how to apply them. This is especially true for overloading, where the high value
for application mostly comes from calling an overloaded method. Together, this

indicates the difficulty inherent in learning (object-oriented) programming: There

are several groups of concepts that are all needed to create a “real” OO program,

but those groups of concepts are showing radically different results even for those

students that had prior programming experience! Finally, there is an interesting

observation on two very similar concepts. State on the one hand and attribute on
the other. The state of an object is defined by the value of its attributes. Looking at

the values for the conceptual knowledge of both concepts, however, there is a big

difference, which doesn’t hold true for the application, where the results for state
and attribute are close together. So state is a concept that is clearly being used

by the students but not understood. It is not surprising that the students don’t fully

grasp the concept of state transitions of objects after this particular introductory

course, though.

The fact that there is only little difference between the abilities of the two groups and

between the persons of the two clusters identified above indicates that overall the
scoring method used does not offer very much spread over the projects. However,

it also indicates the success of the courses, as one of the goals was that every

participant has a working project in the end - this alone indicates the presence of

many items of CI.

In conclusion the results show that there are seemingly different kinds of OOP-

related concepts. Some are basic enough for students to learn on their own in a

rather short time frame, others require a certain level of prior knowledge in order

for students to be able to incorporate them into their mental model meaningfully.

However, it is possible for students to learn about application of certain concepts

without fully understanding the underlying concepts. In a way, this can be seen as
supporting the idea of the taxonomy given by Fuller et al. (2007). It suggests that

especially for computer science the cognitive processes of learning objectives can

be separated in two (independent) dimensions of “Producing” and “Interpreting”.

Also, the results show that it is possible to have a rather heterogeneous group of
students working on the same material and still have learning opportunities on both
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groups. The students that had already programmed focused on certain concepts in

their learning and simply created more complex programs. The students without

previous knowledge picked up basic elements of OOP while ignoring (or not fully
understanding) the more advanced concepts.

Concerning the analysis methods used, concept landscapes and the way they were

used in this study proved to be effective. Even though there was lots of information

lost in the way the maps were aggregated, it still allowed an insight into the structural
development of students’ knowledge. The clustering worked well in identifying two

groups that differ from the manual selection and that possess a visibly differing

richness of their knowledge structures. Pathfinder networks were helpful in making

this distinction clear. However, especially concerning the analysis of source code,

there is still a lot of room for improvement. While the system of using code items

worked reasonably well concerning reliability, there is no guarantee concerning the

validity of the measurements.



Part V

Conclusion





13 Summary

This thesis - in the last two parts - has presented the notion of concept landscapes

both in theory and practice. As chapter 6, based on chapters 3 and 4 has established,

concept mapping has proven to be an effective method for teaching, learning, and

assessing of conceptual knowledge - especially when focusing on the structural

aspects of concept interdependence. Concept mapping is fundamentally based
on the theories of meaningful learning and Constructivism, which have both been

presented in chapter 3. Also, the psychological definition of a concept as mental

representation together with the psychological function of integration form a basis

on which concept mapping can be better understood. The validity and reliability of

concept mapping assessment tasks has been established by literature, albeit not

beyond any doubt, especially when considering the plethora of different concept
mapping tasks to be found in literature. This thesis therefore has focused on the

“gold standard” concept mapping task of creating a map from scratch with the only

restrictions being a list of concepts or a restricting list of concepts. The most severe
limitations of concept mapping from an epistemological point of view is the restriction

to propositions between two concepts at most, which is not enough for expressing

arbitrary facts. From an educational point of view, it is possible to assess learning

objectives that cover almost the entire “Interpreting” dimension of the taxonomy by

Fuller et al. (2007), as reasoned in chapter 6. Even though concept mapping falls

short in assessing skills or competencies of a person, both are typically based on a

cognitive component that may be assessed by concept maps.

Based on these foundations, a novel view on the application of concept mapping in

investigating the state and development of structural knowledge has been presented

in chapter 7. Instead of focusing solely on the measurement of a single person, or

many measurements of single persons analyzed in isolation, the data of a group

of persons is aggregated. Inspired by the ideas of data mining, this aggregated

data can be used to gain new insights. While motivational factors, the fluency

regarding concept mapping itself, the specific location and time of the concept

mapping task and other variables will, whether detectable or not, influence the

results of each concept map, many of these influences can be expected to cancel

out by aggregation. There are two fundamental ways in which concept maps of
different persons can be aggregated, as shown in Fig. 11. A concept landscape

can be horizontal - focusing on the development of knowledge during time - or

vertical - focusing on the state of knowledge at a single point in time. In practical

settings, often a combination of both of these aspects will be used. The method
of aggregation, as shown in Fig. 12 can either be a “loose” accumulation of maps,
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that remain identifiable in the aggregated data, or it can be a more transformative

amalgamation that results in a new graph which is influenced by the constituent

maps of the landscape.

Concept landscapes are only an abstract notion of a set of data items. In practical

settings it is the analysis and the actual method of aggregation that determines

the usefulness of the approach. This thesis presented two basic analysis methods.

Cluster analysis is best suited to identify inherent differences within an aggregation
and typically works with vertical accumulations. While many clustering algorithms

and similarity measures can be used, a latent model based approach based on

multivariate Bernoulli mixture models and partitioning method using, for example,

graph similarities as measure of distance have been presented and shown to

work well on actual data. Creating Pathfinder networks from concept landscapes

is a way of pruning edges that allows discovery of salient structural information.

Therefore, an amalgamation is the chosen method of aggregation for Pathfinder
analysis in order to identify the common structural elements in the data. Pathfinder

networks have been chosen over other methods of graph pruning or dimensionality

reduction, since graphs are a natural model for concept landscapes and Pathfinder
networks originated from the use in analyzing structural knowledge. These two

basic approaches will usually be accompanied by further ways of analyzing the

results: Several graph measures were presented as well as the analysis of frequently

occurring subgraph structures. These are focusing on the micro structure of graphs.

Finally, visualizing concept landscapes often offers insights into the structure of the

aggregated map data “at a glance” and also eases the interpretation of Pathfinder
networks. The development of knowledge can be displayed very well using the

visualization of a horizontal accumulation.

Since data mining approaches are focusing on large amounts of data and all sub

tasks in the context of concept landscapes can be supported well by software

solutions, chapter 8 presented a tool-chain for working with concept landscapes in

computers, as shown in Fig. 20. At the beginning of a study, concept maps must

be drawn or collected. The online editor CoMapEd allows researchers to conduct

surveys with flexible settings while also offering functions for the participants, like

automatic, online saving of their current work and the possibility of exporting the

concept maps. In the subsequent analysis the techniques presented in chapter 7
are all best suited for computer aided analysis. The R package CoMaTo provides

this support by offering implementations of concept landscapes as data structures

as well as all analysis techniques presented in this thesis. Additionally, the analysis

of the (text) material used in an educational process is a valuable resource for the
interpretation of results, by providing pointers to problem spots in the material or to



SUMMARY 229

particular artifacts in the concept landscapes of learners. ConEx provides some

basic features that guide the analysis process by offering extraction of frequently

occurring or salient nouns/concepts and the sentences/propositions that contain
them.

Finally, the previous part presented several case studies in which concept land-

scapes and the associated analysis techniques were applied in real world scenarios

with actual research questions. The results concerning computer science education
will be discussed in detail in the next chapter. From the perspective of concept

landscapes, the studies have shown that in particular forming Pathfinder networks

from sets of concept maps is a fruitful way of arriving at interpretable results. The

development of knowledge along the course of a lecture has been visualized and it

has been shown that misconceptions are developing alongside of “correct” knowl-

edge. Also, the average knowledge structure of beginning CS students has been

analyzed and illustrated with the help of a vertical amalgamation of concept maps.
The attendance of the newly introduced compulsory school subject Informatics in

Bavaria has a measurable impact on the knowledge structures of beginning CS

students. Finally, the interdependence of conceptual knowledge and programming
abilities has been investigated. It has been shown, that conceptual knowledge

develops even if only minimal theoretical input is provided to students - as long as

they are able to practically apply the relevant concepts in programming tasks.
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14 Discussion

To relate back to the introduction in the very first part, this thesis has been centered

around the research area “student understanding” that was identified for research in

computer science education - in particular the “investigation of students’ mental and

conceptual models, their perceptions and misconceptions” (Fincher & Petre 2004,

p. 3). This in turn is relevant in order to “develop models that can explain how
educational process take place [...] and analyze strategies for intervention” (Klieme

et al. 2008, p. 3), which has been defined as one of the goals of modern educational

research. This thesis presented analysis methods based on educational data mining,
related to the general goals of “clustering”, “relationship mining” and “distillation

of data for human judgment” (Baker & Yacef 2009, p. 9) - as presented in the

three cases studies. It can also be used to analyze interventions - as shown in the
third case study - but more generally investigates mental models of students. This

chapter will discuss what has been presented in both the third and the fourth part

separately. In the same vein as Fig. 2 shows the interconnections of several areas

of research that provide the basis for this thesis, Fig. 46 shows the results, their

interconnections, and how they affect the research areas that provided the basis.

Aside from the case studies, the two specific research questions of this thesis have

been presented in chapter 2:

1. How can methods of data mining be applied to sets of concept maps in

order to identify common elements and differences between the individual

maps?

2. How can software support the workflow of the research design presented
in Fig. 1?

The first question has been answered by the findings of chapter 6 and chapter 7:

Concept landscapes can be used together with data mining approaches to identify

both common elements and the differences between individual concept maps. In

particular, cluster analysis, Pathfinder networks, graph measures, and visualization

techniques have been presented for the task. The case studies have shown the

successful application. The second question has been answered by chapter 8,

where software for each of the pivotal points of the research design of Fig. 1 has

been presented, as shown in Fig. 20. Specifically, the computer based drawing and

collecting of concept maps, the automatic analysis of textual input data, and the

computer based analysis using the methods of chapter 7 have been made possible

by the three software projects CoMapEd, ConEx, and CoMaTo.



232

Computer8Science

Didactics8of8Informatics

Research8of8this8thesis

Educational8Data8Mining

Chapter810-12:8
Case8Studies

Chapter87:8
Concept8landscapes

Educational8Research

Chapter88:8
Software8tool-chain

Chapter86:8
Investigation8of8concept8maps

provides8results8
for8teaching

provides8results

provides8
methods

applied8in

provides8results

implemented8in

used8for

provides8software8support

resulted8in

necessary8for

provides8results

Fig. 46: The results of this thesis and how it affects the different research

areas.
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Concept maps have been chosen as the method for externalization because of their

established validity and reliability, the existing psychological and educational theory

behind it, and the additional benefit they can offer to participants. On the downside,
however, the method of concept mapping has to be explained to participants and

may even require some form of training until they become fluent enough in the

process. Also, the relative freedom of expression, especially for pen and paper

based maps, often leads to highly variable results concerning the actual syntax and

semantics of concept maps. Therefore, alternative methods of externalization may
present viable alternatives for the specific task of research on knowledge structures.

As has been noted in chapter 6, relatedness judgments may provide more accurate

results concerning the structural organization of concepts. Among other factors,

the non-existing benefit for participants and the influence on motivation must then

be considered though. It remains questionable, whether a large scale study with

useful results can be obtained from using relatedness judgments. This holds true
especially since it is far easier to, for example, detect an nonsensical concept map

of a student not interested in taking part in a study, than it is to detect relatedness

judgments that were simply guessed or randomly chosen. Concept mapping has
proven to be a working and established choice - however investigating different

forms of eliciting structural knowledge may provide more insights both into the

workings of concept landscapes and into the strengths and weaknesses of concept

mapping.

The four ways of aggregating concept map data into concept landscapes are not

covering all combinatorial possibilities of aggregating a set of maps. However,
longitudinal and cross-sectional studies are possible, which cover typical research

scenarios. Forming either an amalgamation or an accumulation does cover all pos-

sibilities as either the concept maps remain identifiable as entities in the aggregation

or not. The formal definitions that were given in chapter 7 serve the purpose of
clarification and precise definition but are neither the only, nor the single right way

of modeling the four types of landscapes. The two central methods of clustering
and Pathfinder networks are able to achieve useful results. Nevertheless they must

always be seen as an exemplary selection of all the possible ways of analyzing

the data of aggregated concept maps. There are other ways of pruning graphs,

other similarity measures, or ways of arriving at a distance matrix for clustering

and also other ways of defining latent class models for concept map data. There is

no particular reason for using the centrality of a graph, for example, but not some

other graph measure - except that there is an explainable expected connection

between the graph measure and properties of structural knowledge. The goal of

this thesis is to present a working analysis method that allows investigations into

knowledge structures that are based on a thorough theoretical basis. Other ways
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of investigating concept landscapes are not dismissed by this choice, though, and

should be considered.

What has been hinted at in chapter 7 and followed stringently in the case studies

is, that typically neither a purely quantitative nor a purely qualitative analysis yields

optimal results in exploratory, fundamental educational research. Instead, both

approaches have been used simultaneously and - one might say - non dogmatically

in order to improve on each other. For instance, finding clusters and then using a
t-test to identify that one cluster possesses denser maps is a quantitative approach.

Then continuing by searching graph communities in these clusters and inspecting

them regarding their intersections and differences, based on the given subject

matter context, is a qualitative analysis of the data. By using the strengths of both

methods, a much broader variety of insights into the data of concept landscapes

can be gained.

The software tool-chain that was developed in the course of this work has proven to

work well in research settings. A choice was made in each of the three scenarios to

develop software instead of using an existing solution due to the restrictions that
these solutions presented and the judgment of how costly an implementation is.

Nevertheless, for each project several design choices were made, none of which

was without alternatives. This is especially relevant for the drawing tool CoMapEd,

since this is the one that most people interact with in actual research settings.

Therefore, this software must provide the necessary ease of use and functionality

that participants need in order to keep up their motivation. The choice to implement

it based on a browser is certainly valid given the variety of settings encountered in
actual studies and it has been shown to work well. Other choices however, like the

particular format of exporting, or the actual methods of interacting with the drawing

area, may certainly have to be reconsidered given actual user feedback and might

change in the future. The analysis with CoMaTo based on R makes sense, given

the flexibility of the approach. The analyses of the case studies have shown, that

it is a valuable support for working with concept landscapes. Improvement are

therefore mainly in the form of implementing new features, as briefly described in

the next chapter. ConEx so far can only be seen as an experimental study. Many

different existing methods of extracting salient words from texts exist and should be

considered for the problem at hand.
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14.1 Case Studies

The case studies are providing the research results in the form of pedagogical

content knowledge for subject-matter didactics. The particular set of studies mostly

presented insights into the effects of teaching and learning central, basic concepts

of computer science - often related to object-oriented programming. Also, the

participants were always students at the very beginning or in the first semesters of

their studies at university. While these specific settings are very interesting as they
allow insights both into secondary education as well as education at universities,

clearly, the scope of studies can and should be broadened. This encompasses

studies with more experienced students as well as different, more specialized fields

of computer science. Nevertheless, the basic concepts investigated in this work

are very important, as they form the foundation on which the rest of computer

science education at the university builds. When considering the implications of

meaningful learning, conceptual change and Constructivism, it becomes very hard
if not impossible to develop well formed, densely connected conceptual knowledge

and skills without a well-formed foundation.

Concerning the method of conducting the studies, the computer based collection of

concept maps is clearly preferable to the pen and paper methods. The number of

participants in the second case study, for example, presented an obstacle to analysis

that could only be solved by paying students to digitalize the maps. Software based

collection would have made this step unnecessary and the study cheaper. Also,

when using software, a restricting list of concepts is far more convenient to present
to the participants as it reduces ambiguities due to typing errors or due to using

different forms (like plural) of the concepts given on the list. Additionally, when

collecting concept maps with pen and paper and then manually digitalizing them

afterwards, a new source of error is introduced into the process the severity of which

is difficult to quantify.

The first case study has provided insight into the development of knowledge and
misconceptions, It has shown that learning, as observed, is not a straight forward

process - even when taking into account a whole group of learners. So far, it
remains unclear whether this process is natural in the formation of personal mental

models or a specific artifact of the non-majors that might struggle more with the CS

concepts than students who willingly chose computer science as their field of study.

Nevertheless, it seems worthwhile to evaluate how teaching can be improved and

how students can be made aware of their misconceptions easier and if possible,

redeem them early on. This could, for example, make explicit use of the concept

landscapes that were formed by the students’ concept maps. After all, concept
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maps are an established teaching aid as well and making misconceptions explicit is

one of the fundamental ideas of conceptual change.

The second case study has presented a method of analysis that can be used to

investigate prior knowledge of a group of learners. The structural information is

especially valuable since it can be used to present topics in a way that fosters

meaningful learning more easily by taking into account what concepts might already

be present in the knowledge structure and adapt teaching accordingly. Clearly, the
information extracted from the concept landscape doesn’t hold for each individual,

but teaching to a larger group of learners always requires certain compromises and

taking into account “general” prior knowledge is a reasonable approach, as long

as the idiosyncrasies of learners are not neglected. The identification of different

groups by clustering according to graph similarity has shown interesting insights,

especially when taking into account the other (personal) information provided in the

survey.

Finally, the third case study has shown that it is possible to introduce basics of

object-oriented programming with only minimal input and practical applications and
still have conceptual knowledge develop. Clearly, this approach also fosters the

creation of misconceptions, but taking the first study into account it seems doubtful

whether this can be avoided at all, given a reasonably complex subject area. The

interconnections between abilities and knowledge are more diverse than might be

expected initially. This may, to some degree, be influenced by the actual analysis

methods used in the case study, especially the scoring of the source code. However,

it is also an indicator - to some degree - for an independence between “knowing” and
“doing” in OOP, which has been postulated by the taxonomy of Fuller et al. (2007) for

computer science. It is certainly worthwhile to investigate this dependence further

with other studies.

In conclusion, the application of concept landscapes has proven to be useful in

practical settings, as the case studies of the last part have shown various interesting
results concerning the knowledge development in computer science education.

Having a working software tool-chain available opens the door for an economic and

flexible way of monitoring certain aspects of educational processes in exploratory

settings with minimal prior work. Educators or researchers who are interested in

the development of students’ knowledge can incorporate concept mapping into

their teaching activities, collect, and analyze the maps electronically with minimal

additional overhead incurred. The case studies, which have all been exploratory

in nature, can serve as a blueprint for research questions, subsequent analysis

methods, and interpretations. Since currently the established knowledge about

learning in computer science is not yet very far developed, exploratory case studies
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are needed as the basis for further research. Using these results to develop models

of learning that can then be tested is one of the next steps towards better (research

in) computer science education.

“Psychologists have amassed a large amount of empirical re-

search on various factors that impact the ease of learning and
transferring conceptual knowledge. [...] Putting these suggestions

to used in class-rooms [...] could have a substantial positive impact

on pedagogy” (Goldstone & Kersten 2003, p. 616).
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15 Further research

The work presented in this thesis has been rather broad. Necessarily, single aspects

have only been investigated in limited depths. This chapter outlines some of the

aspects that deserve further inquiry beyond the work presented here.

First, concerning the concept landscapes and their analysis methods, a more
thorough investigation of the mathematical or statistical properties of the analysis

methods and the results generated therefrom should be carried out. This includes,

for example, tests that indicate the suitability of given methods or that measure

to which degree the results are actually significant for the set of maps used. This
could eliminate some of the guesswork in the interpretations still necessary now

when analyzing concept landscapes. Also, the analysis methods themselves can

be refined further. Especially concerning the visualization of horizontal landscapes
there is a much broader variety of possibilities than alluded to in the preceding

chapters. The results of data visualization techniques in other fields of research

must be taken into account in order to judge what might be beneficial for concept

landscapes.

Next, the software that was presented in chapter 8 has several possibilities for

improvement. For CoMapEd the inclusion of some form of recommender system for
the edge labels is an interesting aspect of further development. If users see possible

suggestions for labels as they type and the list of labels is filled with meaningful

examples, they might choose these suggestions. This would make automated
analysis of edge labels far easier, as the semantic meaning of the suggestions

could be predefined. Also, it would not unnecessarily restrict users, as they could
still choose to type their own label, if they desire. Whether this leads to “better”

concept maps or just caters to the laziness of the drawing persons and therefore

probably diminishes the validity of the externalization process remains to be seen
of course. CoMaTo can be expanded by further aggregation methods, import and

export formats, and analysis techniques. ConEx so far is only of experimental value

and can clearly be improved much further. The inclusion of more languages, more

elaborate methods of extracting terms and better integration intro the rest of the

tool-chain are examples for further development steps.

Finally, concerning the case studies, there are several interesting opportunities for

gaining deeper insight into the knowledge development in computer science - as

has been noted in the last chapter already. First, a group of experts should be

investigated in order to have a more clearly defined baseline of what is considered
to be a “good” structured knowledge of computer science. Next, the development of
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knowledge should be more closely related with the development of actual abilities

as, clearly, the trend in assessments seems to favor the latter. Finally, areas of CS in

which a rich framework of conceptual knowledge is necessary may provide a fruitful
opportunity for research with concept landscapes. Examples of such areas are

software engineering, algorithms or also areas like operating systems or networking

in which students are often required to “know” more than to “do”.

The next two sections present aspects of further research that go beyond the
research of this thesis but instead provide directions that may be worthwhile investi-

gating with concept landscapes.

15.1 Identifying Threshold Concepts of CS

Threshold concepts as presented in the chapter 3 are an important aspect to
consider for teaching in any subject. Concept landscapes might be employed to

identify these concepts for computer science. To this end, a longitudinal study

would have to be done where a group of learners are continually working on a

concept map. These maps could then be accumulated horizontally. Following the

characteristics given in section 3.2.3, it seems reasonable to expect the following

observable structural attributes in horizontal aggregations for threshold concepts:

Transformative Once the concept appears, major restructuring of the map is

expected to happen.

Irreversible Once the concept appears, it stays in the map.

Integrative The concept appears not “at the fringe” of the map, but is connected

more centrally right from the beginning.

Bounded The concept appears in a central position in the maps of experts.

(Potentially) troublesome There is a number of maps in which the concepts does

not appear or appears much later then it was presented to the learners, for
example.

In a previous attempt to identify such concepts in the context of computer science,
Eckerdal, McCartney, Moström, Ratcliffe, Sanders & Zander (2006), in reference to

the fundamental ideas of computer science (Schwill 1994), suggest abstraction and

object orientation as threshold concepts. Additional candidates are, for example,

recursion as the second case study already indicates or the theoretical concepts of
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computability and tractability. Also Edmondson (2005, p. 24) describes the potential

of concept maps for identifying (based on manual observation) “essential critical

nodes” that resemble the idea of threshold concepts.

15.2 Combining Knowledge Space Theory
and Concept Maps

The theory of knowledge spaces originally described by Doignon & Falmagne (1985)

is a mathematical model of the possible “knowledge states” of a given set of “facts”

(or items that can be used in assessment) that can be learned (or solved). The

knowledge space is a subset of the power set of these facts. The reasoning is, that

there may be dependencies between the facts such that one fact must always be
learned before another fact, for example. Therefore, not all possible combinations

of facts will exist in the real world and the knowledge space reflects that. Identifying

how the knowledge space actually is structured is a difficult process, however, and

mostly done by querying experts. Albert & Steiner (2005) suggest using knowledge

space theory for the validation of concept maps.

Concept landscapes offer an alternative approach to the problem of knowledge

spaces and additionally, knowledge spaces offer a way of modeling the structural

knowledge externalized in concept maps. It may be possible to identify the de-
pendencies of knowledge about concepts by analyzing how and if or when they

appear in a concept landscape most probably by using vertical aggregations of

several points in time. It might be possible to extract the relations between states of

the knowledge space by statistically analyzing the concept landscape. Knowledge

about the actual structure of the knowledge space in turn allows identifying problem

areas in instruction - for example concerning the ordering of topics.
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A Example Maps for Pathfinder
Analysis

The following ten concept maps haven been used as the basis of the Pathfinder

example given in section 7.2.2.1. Since only the structure of the maps is relevant

for the result, no edge labels are given.
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Fig. 50: Development of relevant structural knowledge over all participants.

Shown is difference between post and pre test of the diagram in Fig. 40.
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Fig. 51: Development of structural knowledge dependent on prior program-

ming experience. Shown is the percentage of maps that showed at least one

“correct” edge (i.e. with a score of 2) incident to a concept (b(eginning) = pre

test, e(nd) = post test).
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(b) Programming experience

Fig. 52: Development of structural knowledge dependent on prior program-

ming experience. Shown is difference between post and pre test of the

diagram in Fig. 51.
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(b) Programming experience

Fig. 53: Development of misconceptions dependent on prior programming

experience. Shown is difference between post and pre test of the diagram in

Fig. 42.
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Fig. 54: Development of misconceptions over all participants. Shown is the

percentage of maps that showed at least one “incorrect” edge (i.e. with a
score of 2) incident to a concept (b(eginning) = pre test, e(nd) = post test).
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Fig. 55: Development of misconceptions over all participants. Shown is

difference between post and pre test of the diagram in Fig. 54.



254

0

0

0

0

0
0

0

0

0
0

0

0
0

0

0

0

0

0
01

1

1
1

1

1

1

01 1

1

1

1

1

1 1 1

1

1

01

1

1

0

0.1

0.2

0.3

0.4

0.5

ac
ce

ss
 m

od
ifi

er
 

ar
ra

ys
 

as
si

gn
m

en
t 

as
so

ci
at

io
n 

at
tri

bu
te

cl
as

s

co
nd

. s
ta

te
m

en
t 

co
ns

tru
ct

or
 

da
ta

 e
nc

ap
s.

 

da
ta

 ty
pe

 

in
he

rit
an

ce
 

in
iti

al
is

at
io

n 

in
st

an
ce

lo
op

 s
ta

te
m

en
t 

m
et

ho
d

ob
je

ct

ob
je

ct
 o

rie
nt

at
io

n 

op
er

at
or

s 

ov
er

lo
ad

in
g 

pa
ra

m
et

er
 

st
at

e

(a) Pre Maps
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(b) Post Maps

Fig. 56: Development of misconceptions dependent on prior programming

experience. Shown is the percentage of maps that showed at least one

“incorrect” edge (i.e. with a score of 2) incident to a concept (0 = no prior

experience, 1 = prior experience).
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(b) Students with prior programming experience

Fig. 57: Difference between conceptual knowledge and programming abilities

concerning the concepts of CL (k = knowledge, a = abilities).
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Fig. 58: The Pathfinder networks (q = n − 1, r = ∞) of the first cluster

identified by using PAM clustering and graph similarity. Edges appearing in

less than 10% of the maps have been pruned.
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Îngeç, Şebnem Kandil (2009): Analysing concept maps as an assessment tool

in teaching physics and comparison with the achievement tests, International

Journal of Science Education 31(14): 1897–1915.

Jarvis, Peter (1992): Paradoxes of learning: On becoming an individual in society,

The Jossey-Bass social and behavioral science series, 1 ed., Jossey-Bass,

San Francisco.

Jarvis, Peter (2012): Adult learning in the social context, Vol. 78 of Routledge library

editions, Education, Routledge, London and New York.

Karagiorgi, Yiasemina & Symeou, Loizos (2005): Translating constructivism into in-

structional design: Potential and limitations, Educational Technology & Society

8(1): 17–27.

Karakuyu, Yunus (2010): The effect of concept mapping on attitude and achieve-

ment in a physics course, International Journal of the Physical Sciences

5(6): 724–737.

Kaufman, Leonard & Rousseeuw, Peter J. (2005): Finding groups in data: An

introduction to cluster analysis, Wiley-Interscience paperback series, Wiley,
Hoboken.

Kaufmann, Michael & Wagner, Dorothea (2001): Drawing graphs: Methods and
models, Vol. 2025 of Lecture notes in computer science, Springer, Berlin and

New York.

Keppens, Jeroen & Hay, David (2008): Concept map assessment for teaching

computer programming, Computer Science Education 18(1): 31–42.

275



Kern, Cindy & Crippen, Kent J (2008): Mapping for conceptual change, Science

Teacher 75(6): 32–38.

Kinchin, Ian & Hay, David (2007): The myth of the research-led teacher, Teachers

and Teaching 13(1): 43–61.

Kinchin, Ian M. (2000): The active use of concept mapping to promote meaningful
learning in biological science, PhD thesis, University of Surrey, Guilford.

Kinchin, Ian M. (2011): Visualising knowledge structures in biology: discipline, cur-
riculum and student understanding, Journal of Biological Education 45(4): 183–

189.

Kinchin, Ian M. (2013): Concept mapping and the fundamental problem of moving
between knowledge structures, Journal for Educators, Teachers and Trainers

4(1): 96–106.

Kinchin, Ian M. & Cabot, L. B. (2009): An introduction to concept mapping in dental

education: the case of partial denture design, European Journal of Dental

Education 13(1): 20–27.

Kinchin, Ian M., Cabot, L. B., Kobus, M. & Woolford, M. (2011): Threshold concepts
in dental education, European Journal of Dental Education 15(4): 210–215.

Kinchin, Ian M., Hay, David B. & Adams, Alan (2000): How a qualitative approach

to concept map analysis can be used to aid learning by illustrating patterns of
conceptual development, Educational Research 42(1): 43–57.

Kirkpatrick, S., Gelatt, Jr. C. D. & Vecchi, M. P. (1983): Optimization by simulated

annealing, Science 220(4598): 671–680.

Klieme, Eckhard, Hartig, Johannes & Rauch, Dominique (2008): The concept

of competence in educational contexts, in E. Klieme, D. Leutner & J. Hartig

(eds), Assessment of competencies in educational contexts, Hogrefe & Huber

Publishers, Toronto.

Knobelsdorf, Maria (2011): Biographische Lern- und Bildungsprozesse im Hand-

lungskontext der Computernutzung, PhD thesis, Freie Universität Berlin, Berlin.

Kolb, D. A. (1984): Experiential learning: experience as the source of learning and

development, Prentice Hall, Englewood Cliffs.

Kolb, David Allen & Fry, Ronald E. (1975): Toward an applied theory of experiential

learning, in C. L. Cooper (ed.), Theories of group processes, Wiley series on

individuals, groups and organizations, Wiley, London, pp. 33–110.

276



Koponen, Ismo T. & Pehkonen, Maija (2010): Entropy and energy in characterizing

the organization of concept maps in learning science, Entropy 12(7): 1653–

1672.

Kornilakis, Harry, Grigoriadou, Maria, Papanikolaou, Kyparisia A. & Gouli, Evangelia

(2004): Using wordnet to support interactive concept map construction, in

Kinshuk, C.-K. Looi, E. Sutinen, D. G. Sampson, I. Aedo, L. Uden & E. Kähkö-

nen (eds), Proceedings of the IEEE International Conference on Advanced

Learning Technologies, Joensuu, Finland, 30 August - 1 September 2004„
IEEE Computer Society, Los Alamitos, pp. 600–604.

Koul, Ravinder, Clariana, Roy B. & Salehi, Roya (2005): Comparing several human
and computer-based methods for scoring concept maps and essays, Journal

of Educational Computing Research 32(3): 227–239.

Kwon, So Young & Cifuentes, Lauren (2009): The comparative effect of individually-

constructed vs. collaboratively-constructed computer-based concept maps,

Computers & Education 52(2): 365–375.

Larraza-Mendiluze, Edurne & Garay-Vitoria, Nestor (2013): Use of concept maps

to analyze students’ understanding of the i/o subsystem, in M.-J. Laakso &
Simon (eds), Proceedings of the 13th Koli Calling International Conference on

Computing Education Research, Koli, Finnland, November 14-17 2013, Koli

Calling ’13, ACM, New York, pp. 67–76.

Lawler, Eugene L. (2001): Combinatorial optimization: Networks and matroids,

Dover Publications, Mineola.

Lawson, Richard G. & Jurs, Peter C. (1990): New index for clustering tendency

and its application to chemical problems, Journal of Chemical Information and

Computer Sciences 30(1): 36–41.

Leake, David B., Maguitman, Ana & Cañas, Alberto J. (2002): Assessing conceptual
similarity to support concept mapping, in S. M. Haller & G. Simmons (eds),

Proceedings of the Fifteenth International Florida Artificial Intelligence Research

Society Conference, Pensacola Beach, USA, May 14-16 2002, AAAI Press,

pp. 168–172.

Leake, David B., Maguitman, Ana & Reichherzer, Thomas (2005): Understanding

knowledge models: Modeling assessment of concept importance in concept

maps, in K. Forbus, D. Gentner & T. Regier (eds), Proceedings of the Twenty-

Sixth Annual Conference of the Cognitive Science Society, Chicago, USA,

August 4-7 2004, Lawrence Erlbaum Associates, Mahwah, pp. 785–800.

277



Leake, David B., Reichherzer, Thomas, Cañas, Alberto J., Carvalho, Marco &

Eskridge, Tom (2004): “googling” from a concept map: Towards automatic

concept-map-based query formation, in A. J. Cañas, J. D. Novak, F. M.
Gonzáles, A. Cañas & F. M. González García (eds), Concept maps: Theory,

methodology, technology: Proceedings of the First International Conference on

Concept Mapping, Pamplona, Spain, Sept 14-17 2004, Vol. 1, pp. 409–416.

Linck, B., Ohrndorf, L., Schubert, S., Stechert, P., Magenheim, J., Nelles, W.,

Neugebauer, J. & Schaper, N. (2013): Competence model for informatics
modelling and system comprehension, 2013 IEEE Global Engineering Edu-

cation Conference, Berlin, Germany, March 13-15 2013, IEEE, Piscataway,

pp. 85–93.

Ma, X. (2010): Longitudinal evaluation designs, in P. Peterson (ed.), International

encyclopedia of education, Elsevier, Oxford, pp. 757–764.

Malmi, Lauri, Sheard, Judy, Simon, Bednarik, Roman, Helminen, Juha, Korhonen,

Ari, Myller, Niko, Sorva, Juha & Taherkhani, Ahmad (2010): Characterizing

research in computing education: a preliminary analysis of the literature, Pro-

ceedings of the Sixth international workshop on Computing education research,
Aarhus, Denmark, August 9-10 2010, ACM, New York, pp. 3–12.

Mandl, Heinz & Fischer, Frank (2000): Mapping-Techniken und Begriffsnetze in

Lern- und Kooperationsprozessen, in H. Mandl & F. Fischer (eds), Wissen

sichtbar machen, Hogrefe, Göttingen, pp. 3–12.

Mazur, Eric (1996): Are science lectures a relic of the past?, Physics World 9: 13–14.

McClelland, David C. (1973): Testing for competence rather than for “intelligence”,

American Psychologist 28(1): 1–14.

McClure, John R., Sonak, Brian & Suen, Hoi K. (1999): Concept map assessment

of classroom learning: Reliability, validity, and logistical practicality, Journal of
Research in Science Teaching 36(4): 475–492.

Mehta, Dinesh P. (2005): Handbook of data structures and applications, computer

and information science series, Chapman & Hall/CRC, Boca Raton.

Meyer, Jan & Land, Ray (2006): Overcoming barriers to student understanding:

Threshold concepts and troublesome knowledge, Routledge, London and New

York.

Miller, George A. (1995): Wordnet: a lexical database for english, Communications

of the ACM 38(11): 39–41.

278



Miller, Norma L. & Cañas, Alberto J. (2008): Effect of the nature of the focus

question on presence of dynamic propositions in a concept map, in A. J. Cañas,

P. Reiska, M. Åhlberg & J. D. Novak (eds), Concept Mapping: Connecting
Educators: Proceedings of the Third International Conference on Concept

Mapping: Tallinn, Estonia & Helsinki, Finnland: September 22-25 2008, Vol. 1,

Tallinn University, Estonia, pp. 365–372.

Mistades, Voltaire Mallari (1999): Concept mapping in introductory physics, Journal

of Education and Human Development 3(1).

Mitchell, Marcus P., Santorini, Beatrice & Marcinkiewicz, Mary Ann (1993): Build-

ing a large annotated corpus of english: The penn treebank, Computational
Linguistics 19(2): 313–330.

Montemurro, Marcelo A. & Zanette, Damián H. (2013): Keywords and co-occurrence

patterns in the voynich manuscript: An information-theoretic analysis, PLoS

ONE 8(6): e66344.

Mühling, Andreas, Hubwieser, Peter & Brinda, Torsten (2010): Exploring teachers’

attitudes towards object oriented modelling and programming in secondary

schools, Proceedings of the Sixth international workshop on Computing ed-
ucation research, Aarhus, Denmark, August 9-10 2010, ACM, New York,

pp. 59–68.

Müller, P. & Hubwieser, P. (2000): Informatics as a mandatory subject at secondary

schools in bavaria, Open Classrooms in the Digital Age - Cyberschools, e-

learning and the scope of (r)evolution, EDEN, Budapest, pp. 13–17.

Nesbit, John C. & Adesope, Olusola O. (2006): Learning with concept and knowl-

edge maps: A meta analysis, Review of Educational Research 76(3): 413–448.

Nicoll, Gayle (2001): A three-tier system for assessing concept map links: a

methodological study, International Journal of Science Education 23(8): 863–
875.

Novak, Joseph D. (2002): Meaningful learning: The essential factor for concep-

tual change in limited or inappropriate propositional hierarchies leading to

empowerment of learners, Science Education 86(4): 548–571.

Novak, Joseph D. (2010): Learning, Creating, and Using Knowledge: Concept

Maps As Facilitative Tools in Schools and Corporations, 2nd ed., Routledge,

London.

279



Novak, Joseph D. & Cañas, Alberto J. (2008): The theory underlying concept

maps and how to construct and use them, Technical Report IHMC CmapTools

2006-01 Rev 01-2008, Institute for Human and Machine Cognition, Florida.

Novak, Joseph D. & Cañas, Alberto J. (2010): The universality and ubiquitousness

of concept maps, in J. Sánchez, A. J. Cañas & J. D. Novak (eds), Concept

Maps: Making Learning Meaningful: Proceedings of the Fourth International

Conference on Concept Mapping, Viña del Mar, Chile, October 5-7, 2010,

Vol. 1, Universidad de Chile, Chile, pp. 1–13.

Novak, Joseph D. & Gowin, Bob (1984): Learning how to learn, Cambridge

University Press, Cambridge and New York.

Novak, Joseph D. & Musonda, Dismas (1991): A twelve-year longitudinal study of

science concept learning, American Educational Research Journal 28(1): 117–

153.

O’Connor, Debra L., Johnson, Tristan E. & Khalil, Mohammed (2004): Measuring

team cognition: Concept mapping elicitation as a means of constructing team

shared mental models in an applied setting, in A. J. Cañas, J. D. Novak, F. M.

Gonzáles, A. Cañas & F. M. González García (eds), Concept maps: Theory,
methodology, technology: Proceedings of the First International Conference on

Concept Mapping, Pamplona, Spain, Sept 14-17 2004, Vol. 1, pp. 487–494.

Ozdemir, A. (2005): Analyzing concept maps as an assessment (evaluation) tool in

teaching mathematics, Journal of Social Sciences 1(3): 141–149.

Özdemir, Gökhan & Clark, Douglas B. (2007): An overview of conceptual change
theories, Eurasia Journal of Mathematics, Science & Technology Education

3(4): 351–361.

Passmore, Graham James (1999): Concept Maps and the Processes of Compre-

hension: Explicating Cognition and Metacognition, Structural Knowledge and
Procedural Knowledge, PhD thesis, University of Toronto, Toronto.

Patil, Kaustubh & Brazdil, Pavel (2007): Sumgraph: Text summarization using

centrality in the pathfinder network, IADIS International Journal on Computer

Science and Information Systems 2(1): 18–32.

Piaget, Jean (1929): The child’s conception of the world, International library of

psychology, philosophy, and scientific method, Routledge & K. Paul, London.

PISA 2009 Technical Report (2012): PISA, OECD Publishing, Paris.

280



Pons, Pascal & Latapy, Matthieu (2006): Computing communities in large networks

using random walks, Journal of Graph Algorithms and Applications 10(2): 191–

218.

Posner, George J., Strike, Kenneth A., Hewson, Peter W. & Gertzog, William A.

(1982): Accommodation of a scientific conception: Toward a theory of concep-

tual change, Science Education 66(2): 211–227.

Quirin, A., Cordón, O., Santamaría, J., Vargas-Quesada, B. & Moya-Anegón, F.

(2008): A new variant of the pathfinder algorithm to generate large visual sci-
ence maps in cubic time, Information Processing & Management 44(4): 1611–

1623.

Quirin, Arnaud, Cordón, Oscar, Guerrero-Bote, Vicente P., Vargas-Quesada, Ben-

jamín & Moya-Anegón, Felix (2008): A quick mst-based algorithm to obtain

pathfinder networks (∞, n − 1), Journal of the American Society for Information

Science and Technology 59(12): 1912–1924.

Ragonis, Noa & Ben-Ari, Mordechai (2005): A long-term investigation of the

comprehension of oop concepts by novices, Computer Science Education

15(3): 203–221.

Rajaraman, Anand & Ullman, Jeffrey David (2011): Mining of Massive Datasets,

Cambridge University Press, Cambridge.

Reichardt, Jörg & Bornholdt, Stefan (2006): Statistical mechanics of community

detection, Physical Review E 74(1): 016110.

Riedl, Alfred (2010): Grundlagen der Didaktik, Pädagogik, 2 ed., Steiner, Stuttgart.

Rosas, Scott R. & Kane, Mary (2012): Quality and rigor of the concept mapping
methodology: A pooled study analysis, Evaluation and Program Planning
35(2): 236–245.

Rousseeuw, Peter J. (1987): Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis, Journal of Computational and Applied Mathemat-

ics 20: 53–65.

Ruiz-Primo, Maria Araceli (2004): Examining concept maps as an assessment tool,

in A. J. Cañas, J. D. Novak, F. M. Gonzáles, A. Cañas & F. M. González García

(eds), Concept maps: Theory, methodology, technology: Proceedings of the

First International Conference on Concept Mapping, Pamplona, Spain, Sept

14-17 2004, Vol. 1, pp. 555–562.

281



Ruiz-Primo, Maria Araceli, Schultz, Susan E., Li, Min & Shavelson, Richard J. (2001):

Comparison of the reliability and validity of scores from two concept-mapping

techniques, Journal of Research in Science Teaching 38(2): 260–278.

Ruiz-Primo, Maria Araceli & Shavelson, Richard J. (1996): Problems and issues

in the use of concept maps in science assessment, Journal of Research in
Science Teaching 33(6): 569–600.

Ruiz-Primo, Maria Araceli, Shavelson, Richard J. & Schultz, Susan Elise (1997): On

the validity of concept map-base assessment interpretations: An experiment

testing the assumption of hierarchical concept maps in science, Technical
Report CSE Technical Report 455, Center for the Study of Evaluation (CSE),

Graduate School of Education & Information Studies, University of California.

Rye, James A. & Rubba, Peter A. (1998): An exploration of the concept map as

an interview tool to facilitate the externalization of students’ understandings

about global atmospheric change, Journal of Research in Science Teaching
35(5): 521–546.

Sabitzer, Barbara (2011): Neurodidactics: Brain-based ideas for ICT and computer

science education, The International Journal of Learning 18(2): 167–177.

Safayeni, Frank, Derbentseva, Natalia & Cañas, Alberto J. (2005): A theoretical

note on concepts and the need for cyclic concept maps, Journal of Research

in Science Teaching 42(7): 741–766.

Sanders, Kate, Boustedt, J., Eckerdal, A., McCartney, Robert, Moström, Jan Erik,

Thomas, Lynda & Zander, C. (2008): Student understanding of object-

oriented programming as expressed in concept maps, SIGCSE Bulletin inroads

40(1): 332–336.

Sanders, Kate & Thomas, Lynda (2007): Checklists for grading object-oriented

cs1 programs: concepts and misconceptions, Proceedings of the 12th an-

nual SIGCSE conference on Innovation and technology in computer science

education, Dundee, UK, June 25-27, 2007, ACM, New York, pp. 166–170.

Schöneberg, Hendrik (2010): Context vector classification - term classification with

context evaluation, in A. L. N. Fred & J. Filipe (eds), KDIR 2010 - Proceedings

of the International Conference on Knowledge Discovery and Information
Retrieval, Valencia, Spain, October 25-28, 2010, SciTePress, pp. 387–391.

Schvaneveldt, Roger W., Dearholt, D.W & Durso, F.T (1988): Graph theoretic foun-
dations of pathfinder networks, Computers & Mathematics with Applications

15(4): 337–345.

282



Schvaneveldt, Roger W., Durso, Francis T. & Dearholt, Donald W. (1989): Net-

work structures in proximity data, The Psychology of Learning and Motivation

24: 249–284.

Schwarz, Gideon (1978): Estimating the dimension of a model, Annals of Statistics
6(2): 461–464.

Schwill, Andreas (1994): Fundamental ideas of computer science, Bull. European
Assoc. for Theoretical Computer Science 53: 274–295.

Seidel, Tina & Prenzel, Manfred (2008): Assessment in large-scale tudies, in

E. Klieme, D. Leutner & J. Hartig (eds), Assessment of competencies in
educational contexts, Hogrefe & Huber Publishers, Toronto, pp. 279–304.

Shaw, Mildred L. G. & Woodward, J. Brian (1990): Modeling expert knowledge,

Knowledge Acquisition 2(3): 179–206.

Shulman, Lee S. (1986): Those who understand: Knowledge growth in teaching,
Educational Researcher 15(2): 4–14.

Solomon, Karen O., Medin, Douglas L. & Lynch, Elizabeth (1999): Concepts do

more than categorize, Trends in cognitive sciences 3(3): 99–105.

Sousa, David A. (2009): How the brain learns: A multimedia kit for professional

development, 3rd ed., Corwin Press, Thousand Oaks.

Sowa, John F. (1984): Conceptual structures: Information processing in mind and

machine, Addison-Wesley, Reading.

Squire, Larry R. (1987): Memory and brain, Oxford University Press, New York.

Stibor, Thomas (2008): Discriminating self from non-self with finite mixtures of

multivariate bernoulli distributions, Proceedings of the 10th annual conference

on Genetic and evolutionary computation (CD-ROM), Atlanta, USA, July 12-16

2008, ACM, New York.

Strautmane, Maija (2012): Concept map-based knowledge assessment tasks and

their scoring criteria: An overview, in A. J. Cañas, J. D. Novak & J. Vanhear

(eds), Concept Maps: Theory, Methodology, Technology: Proceedings of the

Fifth International Conference on Concept Mapping, Valletta, Malta, Sept 17-20
2012, Vol. 1, pp. 80–88.

Strike, K. A. & Posner, G. J. (1992): A revisionist theory of conceptual change, in

R. A. Duschl & R. J. Hamilton (eds), Philosophy of science, cognitive psychol-
ogy, and educational theory and practice, State University of New York Press,

Albany, pp. 147–174.

283



Taricani, Ellen M. & Clariana, Roy B. (2006): A technique for automatically scoring

open-ended concept maps, Educational Technology Research and Develop-

ment 54(1): 65–82.

Toutanova, Kristina, Klein, Dan, Manning, Christopher D. & Singer, Yoram (2003):

Feature-rich part-of-speech tagging with a cyclic dependency network, Proceed-
ings of the Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics, Edmonton, Canada,

May 27 - June 1 2003, pp. 252–259.

Trumpower, David L. & Goldsmith, Timothy E. (2004): Structural enhancement of

learning, Contemporary Educational Psychology 29(4): 426–446.

Trumpower, David L., Sharara, Harold & Goldsmith, Timothy E. (2010): Specificity

of structural assessment of knowledge, The Journal of Technology, Learning,

and Assessment 8(5).

Truong, Nghi, Roe, Paul & Bancroft, Peter (2004): Static analysis of students’ java

programs, Proceedings of the Sixth Australasian Conference on Computing Ed-
ucation - Volume 30, ACE ’04, Australian Computer Society, Inc, Darlinghurst,

Australia, pp. 317–325.

Tversky, Amos (1977): Features of similarity, Psychological Review 84(4): 327–352.

Valerio, Aljandro, Leake, David B. & Cañas, Alberto J. (2008): Automatic classifica-

tion of concept maps based on a topological taxonomy and its application to

studying features of human-built maps, in A. J. Cañas, P. Reiska, M. Åhlberg
& J. D. Novak (eds), Concept Mapping: Connecting Educators: Proceedings

of the Third International Conference on Concept Mapping: Tallinn, Estonia

& Helsinki, Finnland: September 22-25 2008, Vol. 1, Tallinn University, Estonia,

pp. 122–129.

Weber, Susanne & Schumann, Matthias (2000): Das Concept Mapping Software
Tool (COMASOTO) zur Diagnose strukturellen Wissens, in H. Mandl & F. Fis-

cher (eds), Wissen sichtbar machen, Hogrefe, Göttingen, pp. 158–179.

Weinert, Franz E. (2001): Vergleichende Leistungsmessung in Schulen - eine

umstrittene Selbstverständlichkeit, in F. E. Weinert (ed.), Leistungsmessungen

in Schulen, Beltz Pädagogik, Beltz-Verl., Weinheim and Basel, pp. 17–31.

Wittrock, Merlin C. (1992): Generative learning processes of the brain., Educational

Psychologist 27(4): 531–541.

Wolfe, John H. (1970): Pattern clustering by multivariate mixture analysis, Multivari-

ate Behavioral Research 5: 329–350.

284



Yin, Yue, Vanides, Jim, Ruiz-Primo, Maria Araceli, Ayala, Carlos C. & Shavelson,

Richard J. (2005): Comparison of two concept-mapping techniques: Impli-

cations for scoring, interpretation, and use, Journal of Research in Science
Teaching 42(2): 166–184.

Yoo, Jin Soung & Cho, Moon-Heum (2012): Mining concept maps to understand

university students’ learning, in K. Yacef, O. Zaïane, H. Hershkovitz, M. Yudel-

son & J. Stamper (eds), Proceedings of the 5th International Conference on

Educational Data Mining, Chania, Greece, June 19-21 2012, pp. 184–187.

Zimmaro, Dawn, Zappe, Stephen M., Parkes, Jay T. & Suen, Hoi K. (1999): Vali-

dation of concept maps as a representation of structural knowledge, Annual
Meeting of the American Educational Research Association, Montreal.

285


	I Introduction
	Problem Setting
	Detailed Overview

	II Theoretical Background and Related Work
	Knowledge and Learning
	Knowledge
	Psychological Foundations
	Epistemological Foundations

	Learning
	Psychological Foundations
	Constructivism
	Conceptual Change
	Meaningful Learning
	Models of Learning

	Assessment
	Learning Objectives
	Taxonomies

	Learning Outcomes
	SOLO Taxonomy
	Competencies



	Concept Maps
	Elements
	Map Structure

	Applications
	Learning and Teaching
	Assessment
	Scoring System



	Analysis Methods
	Graph Theory
	Pathfinder Networks
	Construction
	Investigating Structural Knowledge

	Cluster Analysis
	Partitioning Methods
	Model Based Methods

	Text Mining
	Existing Software Solutions



	III From Concept Maps to Concept Landscapes
	Possibilities and Limitations of Concept Maps
	Cognitive View
	Observing the Externalization

	Epistemological View
	Concept Maps as Graphs
	Representations in Computers


	Educational View
	Assessing Learning
	Scoring Concept Maps


	Concept Landscapes
	Definition
	Formal Definition
	Vertical
	Horizontal


	Analysis Methods
	Cluster Analysis
	Similarity Based Clustering
	Latent Class Clustering
	Example

	Pathfinder
	Example

	Graph Measures
	Simple Graph Measures
	Advanced Graph Measures
	Community Detection
	Frequent Subgraph Analysis

	Visualization
	Vertical Landscapes
	Horizontal Landscapes



	Software Support for Concept Landscapes
	CoMapEd
	Requirements Analysis
	Design and Implementation

	CoMaTo
	Requirements Analysis
	Design and Implementation

	ConEx
	Requirements Analysis
	Design and Implementation



	IV Case Studies
	Overview
	CS1: Computer Science Education for Non-Majors
	Description of the Setting
	Data Collection & Research Questions
	Analysis and Results
	RQ1: Development of Knowledge
	RQ2: Common Knowledge and Misconceptions
	RQ3: The Process of Learning

	Discussion

	CS2: Knowledge Structures of Beginning CS Students
	Description of the Setting
	Description of the Subject ``Informatics''

	Data Collection & Research Questions
	Analysis and Results
	RQ1: Prior Knowledge of Beginning CS Students
	RQ2: Effect of CS Education in Secondary Schools

	Discussion

	CS3: Conceptual Knowledge and Abilities
	Description of the Setting
	Data Collection & Research Questions
	Analysis and Results
	RQ1: Development of Structural Knowledge
	RQ2: Connections Between Knowledge and Abilities

	Discussion


	V Conclusion
	Summary
	Discussion
	Case Studies

	Further research
	Identifying Threshold Concepts of CS
	Combining Knowledge Space Theory and Concept Maps

	Acknowledgements
	Appendix Example Maps for Pathfinder Analysis
	Appendix Additional Diagrams for CS1
	Appendix Additional Diagrams for CS3
	List of Figures
	List of Tables
	References


