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Kurz-Zusammenfassung

Die Untersuchung des menschlichen Verhaltens, darunter auch das Mobilitatsver-
halten, war lange Zeit auf Umfragen, Experimente mit wenigen Testpersonen oder
synthetischen Daten basierend. Die rapiden technologischen Fortschritte der let-
zten Jahre, insbesondere die Verbreitung von mobilen Gerdten wie Smartphones,
sowie die Verbreitung des mobilen Zugriffs auf das Internet und die Entstehung von
sozialen Netzwerk Platformen erlauben die Erfassung von Unmengen an Informa-
tionen iiber das Verhalten der Nutzer. Neue Dienste sind entstanden, um mobilen
Nutzern auf der Grundlage ihrer aktuellen Standorte zu dienen. Die Vorhersage
des néchsten Ortes eines mobilen Nutzers erlaubt die Entwicklung von neuartigen,
Wertbringenden und intelligenten Dienstleistungen. Dieser Arbeit beschéftigt sich
mit der Vorhersage des néchsten Ortes eines mobilen Nutzers. Die Arbeit unter-
sucht Einfliisse von Zeit, Raum, sozialen Beziehungen, anderen Informationsquellen
sowie diskreten Wissen (Kalendereintrége) auf das Mobilitdtsverhalten des mobilen
Nutzers, der Schwerpunkt liegt insbesondere auf soziale Einfliisse.

Short Abstract

The study of human behavior, including the mobility behavior, was based for a
long time on surveys, experiments with small numbers, or synthetic data. The rapid
technological advances of the last years, especially the pervasiveness of mobile de-
vices such as smartphones, as well as the spread of mobile access to the Internet and
the emergence of social networking platforms allow the collection of vast amounts of
data containing information about the behavior of users. New services are emerged
to serve mobile users based on their current locations. Next location prediction al-
lows the development of more novel, value-making and smarter services. This thesis
is concerned with predicting the next location of a mobile user. The work inves-
tigates the influences of time, space, social relations, other sources of information
and discrete knowledge (calendar entries) on the mobility behavior of a mobile user,
where the focus is particularly on social influences.
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Chapter 1

Introduction

Advances in mobile communication, the massive production of powerful yet inexpen-
sive mobile devices (smart phones), the availability of these devices to the general
public, the development of mobile communication technologies such as Infrared,
Bluetooth, W-LAN] etc. and finally mobile access to the Internet have allowed users
to communicate and share information with each other as never before. Furthermore,
the development of precise and pervasive indoor (W-LAN, Bluetooth) and outdoor
(GSM, GPS) location acquisition technologies and equipping mobile devices with
these technologies has fast-tracked the acceptance and pervasiveness of (mobile) so-
cial media, facilitating communication between friends and allowing services to be
accessed anytime, anywhere.

Location acquisition technologies, pervasive social media, Internet access and so-
phisticated smart phones help collect a vast amount of data about the current con-
text of the user. Context is everything which surrounds the user and gives meaning
to or influence their behavior. The availability of information about the current
context of the user has led to the evolution of new kinds of computations such as
context-aware and mobile computing. Although the context of a mobile user consists
of more than their location, location has nonetheless gained the most attention and
in many cases location does in fact stand for the whole context of the user. Context-
aware computing has generated new innovative mobile services tailored to the user
based on their current location called Location Based Services (LBS) [wik, 2013b].
”Location Based Services (LBSs) are IT services for providing information that has
been created, compiled, selected or filtered taking into consideration the current
location of the user or those of other persons or mobile objects” [Kiipper, 2005].
LBS is the intersection of three technologies, namely Geographical Information Sys-
tems (GIS), the Internet and Mobile Services [Vrcek et al., 2009]. LBS deals with
recreation, entertainment, e-commerce, mobile financial services, location specific
mobile advertising, mobile inventory management, wireless business re-engineering,
mobile interactive games, traffic information, machine control, etc ([[Xang et al.,
2009, Varshney, 2001]). The development of new social media has bridged the gap
between the physical world and online social networking services and led to the evo-
lution of new services called Location Based Social Networking (LBSN) [mic, 2013].
LBSN allows users to share life experiences, information, activities, interests, etc.
anytime, anywhere.
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A user’s current physical location is central to LBS and LBSN, but knowledge
about the next location can be even more important in providing the user with
more valuable information and to offer more sophisticated and novel services. Thus
predicting the next location of a mobile user given his current context has increas-
ingly gained significance in recent years. Next location prediction can be injected
into manifold applications and services. In the following section we present some of
the services, that can take great benefits from next location prediction.

1.1 Motivation

Next location prediction can enhance vehicle intelligence (BMW’s EfficientDynamics
[Eff, 2013]), for example the development of new assistance systems has substantially
contributed to safer and more efficient driving [Wevers et al., 2010], optimization of
fuel consumption and reduction of co2 emission [Ganti et al., 2010, Ericsson et al.,
2006, Lee et al., 2008].

Humans generally drive between only a few significant locations and for such rou-
tine journeys do not use their vehicle’s navigation system. Next location prediction
can be useful in the development of intelligent navigation systems that learn and can
then predict the habitual routes of the driver. The navigation system can input valu-
able information into the onboard systems (BMW’s EfficientDynamics [Eff, 2013])
so that braking energy can be recovered not only during the actual downhill [Nav,
2013]. Further, it allows navigation with foresight, informing the driver of upcoming
speed limits so that they can reduce their speed gently instead of abruptly [Nav,
2013]. A vehicle can also be prepared for the gear changes required prior to entering
a motorway, allowing the momentum to be gained required for the acceleration pro-
cess [Nav, 2013]. Finally, intelligent navigation systems for suggesting routes aimed
at reducing fuel consumption [Ganti et al., 2010, Ericsson et al., 2006, Lee et al.,
2008] can benefit from next location prediction so that routes can be recommended
prior to the start of a journey, even if the driver does not use their navigation system
or enter their destination.

Dynamic Pass Prediction (DPP) is a driver assistance system in BMW’s Con-
nectedDrive service concept for warning the driver of unsafe sections of a route
when overtaking [Lee et al.. 2008]. The system uses data from several sources in-
cluding the navigation system to detect unsafe sections. Next location prediction
can help to predict the route that the driver is going to take without the navigation
system being in use and thus provide the driver with more accurate information
about the route sooner (especially when driving in unfamiliar areas).

Intelligent energy management systems such as BMW’s ActiveHybrid [Act, 2013]
can help reduce energy consumption and emission values by up to 20%. The distance
to drive to the next potential destination can be calculated based on predicting
the driver’s next location. Combining this information with data from the vehicle’s
onboard systems, topological information about inclines and slopes, etc. allows the
system to compile the best energy saving strategy from the moment the drive begins.
It determines the best time to switch off the combustion engine and ensure optimum
use of the hybrid engine modes. This enables the driver to cover as many kilometers
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as possible using the electric motor without producing any emissions.

The performance of a hybrid electric vehicle (HEV) is strongly dependent on the
performance of its high-voltage battery pack, which is influenced by the outside
temperature. The batteries in HEVs perform badly in cold temperatures. The poor
performance of the batteries is caused by high internal resistance which in turn
means the vehicle to starts slowly [Pesaran et al.. 2003]. Next location prediction
can provide the thermal management systems of batteries with travel data before
the driver leaves their current location. The thermal management system can then
improve the performance of the vehicle by appropriately cooling or preheating the
batteries ([Pesaran et al., 2003] as cited by [Krumm and Brush, 2011]).

Computer-aided blogging systems, mobile marketing and intelligent mobile adver-
tising [Barnes and Scornavacca, 2004, Barwise and Strong, 2002] represent other ar-
eas where next location prediction can play an important role in providing users with
services at a time and location that best suits them. Next location prediction can
help both bloggers/advertisers: in order to reduce cost, and subscribers/consumers:
in order not to be disturbed at inappropriate times and thereby not losing their
interest in the services offered and enabling maximum possible gain from the ser-
vice. For example, once the time and location of the next activity of the user is
determined, the user can be provided with appropriate advertizing related to the
activity.

Disaster relief is a another area where next location prediction can play a role ([Gao
et al., 2011a, Gao et al., 2011b] as cited by [Gao et al., 2012]). Currently, incidents
are reported during a disaster by volunteers and victims who have a communication
device (phone, laptop etc). If such people experience limited communication abilities
for example in black-out areas, responders, governmental agencies and NGOs face
difficulties to get ahead of the demand curve and to be more proactive in deploying
aid and rescue capabilities [Gao et al., 2011a]. Next location prediction can combine
scientific data about earthquakes, floods, and other phenomena, with crowdsourcing
data (user data from volunteers, victims, NGO-employees etc.) in order the location
of future requests and needs can be predicted [Gao et al., 2011a]. According to [cro,
2013] crowdsourcing stands for, ”the practice of obtaining needed services, ideas, or
content by soliciting contributions from a large group of people and especially from
the online community rather than from traditional employees or suppliers” (more
detail can be found in [Howe. 2006] as cited by [Gao et al., 2011a]).

Energy saving in private households can also be supported by next location predic-
tion. The USA uses 25% of the total world energy, the residential sector is responsible
for 21%, which corresponds to almost 9% of worldwide energy consumption [Gupta
et al., 2009]. Experimental results by MIT [Gupta et al., 2009] show that almost 7%
of a heating bill can be saved using programmable thermostats that know how far
the occupants are away from home ([Gupta et al., 2009] as cited by [Krumm and
Brush, 2011]). Next location prediction can help provide a better estimation of the
time when an occupant returns home.

In rehabilitation or crime suppression, electronic monitoring and parole is a fur-
ther use case where location prediction can play an important role. Electronically
monitoring people who have committed fairly minor crimes helps reduce costs and
ease prison overcrowding, instead of imprisoning them. Further, in the case of hard-
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ened criminals, it reduces the risk of corrupting them further and exacerbating the
problem by imprisoning them ([Brown et al., 2011] as cited by [Perusco and Michael,
2007]). It can also help protect both victims and offenders in cases involving danger-
ous criminals, repeated offenders or recidivists on parole. Further, a stalking victim
can legally require to be informed of the whereabouts of the offender to avoid un-
wanted encounters. A next location predictor can help predict the time and location
where both victim and offender may potentially meet, either by chance or at the
intention of the offender. The victim can avoid the predicted locations and/or the
local authorities can increase police presence at them and thus avoid the occurrence
of criminal acts.

”A range of applications, from predicting the spread of human and electronic
viruses to city planning and resource management in mobile communications, de-
pend on our ability to foresee the whereabouts and mobility of individuals” [Song
et al., 2010b]. Traffic management and public transport recommender systems are
further examples for the use of next location prediction [Rodriguez-Carrion et al.,
2012]. Next location prediction can help provide a user with the traffic conditions
on the route to the user’s next location.

Combining the location histories of multiple users plus their social network allows
the development of friend recommendation systems, the discovery of social trends
and generalities, the detection of locations with people sharing the same activities
and interests, and last but not least the provision of services like goods sharing (taxi,
car, working tools, etc.) [Ye et al., 2009]

Next location prediction can help accurately predict the time when a person is
going to be present at certain locations. Presence prediction can be important for
example when a person wants to initiate conversations which are sensitive or long,
either spoken or typed, only when the other party is at home or in the office, or
when the person would rather have a face-to-face meeting [Krumm and Brush,
2011]. Presence prediction could also be useful for an intelligent postal service or
when detection of anomalous behavior is important, for example when a disabled
person/patient /teenager/child is expected (not) to be at a certain location, but is
(not). Further action can be initiated based on this information such as an emergency
call [Krumm and Brush, 2011].

Next location prediction can also support assistive technology for disabled or cog-
nitively impaired persons in order to ”provide active cognitive aids for people with
reduced memory and problem-solving abilities due to Alzheimer’s Disease or other
disorders” [Patterson et al., 2002]. ACTIVITY COMPASS is an Assisted Cognition
system developed by [Patterson et al., 2002] that helps to reduce spatial disorienta-
tion inside and outside the home.

The proposed mobility model in this thesis can easily be adapted to a mobility
pattern detection system. The focus in these cases is on continuous recording of hu-
man movements and pattern detection, rather than on predicting their next location
locations. Healthcare monitoring systems can benefit from a system that can detect
the mobility patterns of a user. Some monitoring systems are designed to monitor the
patient continuously for long-term diagnostic purposes. It is generally inconvenient
and inaccurate for a patient to record their activities and behavior. The monitoring
system can collect a huge amount of data about the patient using different sensors
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including sensors for location acquisition. A mobility pattern detection system can
learn the mobility behavior of the user and detect significant behavioral changes,
which could in turn could identify causes for changes in the medical condition of the
patient [Kim and Kotz, 2011].

1.2 Privacy Issues

Despite the usefulness and convenience of next location prediction specifically and
LBS generally, threats to the sphere of personal privacy remain an important and
critical issue regarding user acceptance of next location prediction and LBS as well
[Shin et al., 2012, Perusco and Michael, 2007, ACLU, 2010, Poolsappasit and Ray,
2009]. According to [Perusco and Michael, 2007] the acceptance of people using
LBS is strongly influenced by some of the following factors, ” Accountability for
the accuracy and availability of location information, prioritization and location
frequency reporting, the user’s freedom to opt-in and opt-out of services, caregiver
and guardian rights and responsibilities, the transparency of transactions, and the
duration of location information storage” [Perusco and Michael, 2007]. A service
gains a higher acceptance if users have the choice to opt-in or opt-out of a service, if
they trust the service provider and their security system, if they know who has access
to their location information and with whom they share their information, if they
think that the benefits of the service outweigh the risk of invading the individual’s
privacy, if they have the choice between consent and refusal of monitoring and if the
use of the service is trust-building rather than trust-destroying.

The type of service is therefore important in increasing user acceptance of the use
of LBS applications involving next location prediction. Generally LBS applications
can be categorized according to the type of use into three main categories, namely
mandatory, voluntary and non-user applications [Perusco and Michael, 2007]. Ex-
amples of mandatory user applications are electronic monitoring prisoners on parole
and tracking children and minors by the parents. Examples of voluntary applications
are route, navigation, vehicular and domestic applications (intelligent thermostats).
Examples of non-user applications are city planning, traffic management and epi-
demic modeling (spread of human and electronic viruses).

Mandatory user applications are enforced by special laws such as caregiver and
guardian rights, etc. providing the police, security authorities, parents the legal
rights to keep an eye on criminals or minors, or laws for protection against terror
attacks or crime suppression; in line with the belief that the security of the whole of
society is more important than the privacy of an individual. The users of voluntary
applications have control of their own data and have the choice of using it exclusively
for their own use or sharing it with persons they trust. Further, they can opt out or
deactivate the service whenever they want. Finally user acceptance of a service can
be enhanced if both data and computations are held by the client, for example by
the onboard computers of a vehicle or the mobile device of the user.

Sociologically, trust plays an important role in social systems [wik, 2013c]. Trust
is attributable to relationships between social actors [wik, 2013¢] and since indus-
trialization has also been a feature of the relationship between social actors and
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technological achievements. Humans have a natural disposition to trust and to judge
trustworthiness that can be traced to the neurobiological structure and activity of
a human brain [wik. 2013¢]. Humans are therefore more inclined to trust than dis-
trust when they are confronted with people/technologies/objects with which they
have not had any (negative) experience. Our natural disposition to trust (also in
technology) can be substantiated by the sheer number of users on (location based)
social networking platforms which share information on the servers of the service
provider. The shared information contains messages, tweets, photos, videos and also
information regarding their movements.

In the case of non-user LBS applications, a variety of algorithms have been devel-
oped to anonymize the user who requests an LBS service. These algorithms guar-
antee privacy protection for the users of LBS applications. k-Anonymity [Gruteser
and Grunwald, 2003, Kalnis et al., 2007, Gedik and Liu, 2005], k-anonymity without
cloaking region [Gong et al., 2010] and SpaceTwist [Yiu et al., 2008] are examples
of privacy protection algorithms. The basic idea behind all these algorithms is the
anonymization of both the user and their current location. Users send a request
to a third party server, which they trust, called the anonymizer. The anonymizer
manipulates the user request prior to sending it to the service provider in a manner
so that neither the user nor their location can be determined by an attacker. For
example, instead of sending the real location of the user a region called K-ASR (k-
anonymizing spatial region) is sent to the service provider, where k — 1 users other
than the requester are currently present. The anonymizer filters the best results
from the response of the service provider before sending it to the requester.

This thesis was motivated by the usefulness and convenience of next location pre-
diction in providing humans with important benefits. Further, privacy protection
is exceptionally important and consequently understanding and studying next lo-
cation prediction is equally important so that the best protection can be provided.
We believe that the work presented in this thesis can provide valuable gain in both
cases. Finally, it has been shown by [Song et al., 2010b] that human mobility is
predictable to a very high degree, which is a promising result. The points above
summarize our motivation to investigate the problem of next location prediction.
The focus of this work was not on providing the most accurate mobility model, but
rather on showing how the next location of a mobile user can be predicted based on
a simple but effective algorithm and how accuracy can be improved by combining
spatial with temporal and social features and information from additional sources.

1.3 Research Question

Human behavior has been a subject of scientific interest for a long time. Early re-
search relied on data from surveys (questionnaires) or simulations (synthetic). Tech-
nological advances and the development of wearable devices has allowed experiments
with several hundred test users to be conducted and made it possible to record data
about the context of the test users. However, experimental data is expensive as well
as limited because setting up a test is complex and expensive, the test equipment is
expensive, finding enough representative test users for the application domain (test
persons in most experiments were students and campus employees) is fraught with
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difficult and finally, the duration of test is limited (period of data collection). The
development of powerful mobile phones such as the smart phone, the integration of
a series of sensors in these devices has permitted a huge amount of rich data about
the current context of the mobile user data to be collected continuously. Context-
awareness [Dey, 2001] is a term from ubiquitous or pervasive computing [Schmidt,
2002] referring to linking contextual data with computer systems [wik, 2013a]. Con-
textual data allows patterns in the behavior of the user to be learned and once
these patterns have been learned, allows future behavior to be inferred based on
the current context of the user. Contextual data contains information about current
location, time, other users, current device settings, current program usage, etc. In
this thesis we refer to the set of spatial features with the spatial context, the set
of temporal features with the temporal context, the set of social features with the
social context and to other features with additional context.

Analyzing and recognizing pattern in such a vast amount of data is challenging.
Machine learning provides a number of methods for pattern recognition. One of the
well-studied class of machine learning methods is the Bayesian network. Dynamic
Bayesian network (DBN) approaches are based on a method that models sequences
of observations of an arbitrary size. Each observation o; corresponds to a time step
t and contains contextual information of arbitrary dimensions, i.e. a set of features
such as position, time, social situation, etc. DBN approaches are a general probabilis-
tic approach for estimating the probability of the occurrence of an event/behavior
at a future time step given the observations up to the current time step. It is almost
impossible to use all past observations to the current time step to predict the future
behavior. Further, future behavior/events depend primarily on the most recent ob-
servations, therefore at each time step the number of observations is usually limited
to the n most recent, n represents the order (also degree of memory) of the model.
The limitation of the dependency of the model the n recent observations is known
as the Markov assumption.

The DBN approach can capture the conditional dependence between the variables
and can solve inference problems under uncertainty. DBN approaches usually consist
of two phases, namely the training phase and the testing phase. During the training
phase the model learns a set of patterns of length n+1 equal to the order of the model
plus one. During the test phase the DBN approach takes the last n observations that
represent the current context and assigns a probability mass to each of the patterns
learned during the training phase. The pattern with the highest probability represent
the output of the model, i.e. the predicted event/behavior.

A mobility model of order n = 2 can use the sequence of locations visited by
the user to learn simple spatial patterns of the form "home - work - home”. In
order to detect more complex patterns like "home - campus - auditorium - canteen
- fitness studio - super market - home” a higher order mobility model is required.
The mobility patterns of a user differ in their sizes, mobility models that use a fixed
order fail to detect patterns of variable length. The first research question was:

Q1: Can a mobility model be built which predicts the future location
of the user based on a context of variable length?

A mobility model of a higher order increases the need for training data. Training
DBN approaches is a critical issue and must be well-considered. The performance
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of a mobility model based on a DBN approach to a very high degree depends on
there being sufficient training data. Sufficient training data means, given the current
observation, a probability mass can be assigned to each of the possible patterns
(X", where X represents the state space of the model). Unfortunately this condition
cannot be sustained, cold-start and zero-frequency problems are known drawbacks
of DBN approaches and are the direct consequence of insufficient training data. The
findings of this thesis contribute to solving the problem of:

Q2: How can the impacts of insufficient training data be alleviated, i.e.
how can the drawback of the cold-start and zero-frequency problems be
alleviated?

Context is not limited to location [Schmidt et al.; 1999], additional features can
lead to improving prediction accuracy. Human mobility exhibits temporal regulari-
ties such as Tom goes home every evening (a pure temporal pattern), or whenever
Tom visits the campus, he goes to the cafeteria during lunch time (a mixed spatial-
temporal pattern), etc. Another major contribution of this thesis is to find answers
for the following questions:

Q3: The mobility of humans obeys temporal pattern, how can tempo-
ral features be integrated in to a mobility model in order to model the
temporal dependency of human movement?

Additional features lead to detecting more sophisticated patterns, but unfortu-
nately adding new features to the model increases the need for more training data.
As already mentioned earlier, training data is expensive and sufficient training data
is seldom available. A mobility model that is able to detect patterns of variable
length can consider more features of the dataset without increasing the need for
more training data. In contrast, incorporating more features in a model with vari-
able order helps detect more pattern in the same amount of training data and thus
improve prediction accuracy.

Q4: Can a model with variable order improve the prediction accuracy
taking temporal features into account without increasing the need for
more training data?

Humans are explorative by nature and interested in visiting new locations. Mobil-
ity patterns are subject to decay over time. New mobility patterns evolve and older
ones decay. The performance of a trained mobility model is sensitive to the changing
mobility behavior of the mobile user, especially when change affects very frequently
visited locations (for example, a move, new job, marital status or the birth of a
child). In many cases the mobility model performs so badly that retraining it is
inescapable. A further research question is:

Q5: Mobility patterns are subject to decay, how long can be the life
time of a mobility pattern?

Big changes in the life behavior of a user such as a move, a new job, etc. can lead
to massive changes in the mobility behavior of the user such as the invalidation of
long-term mobility pattern. These changes decrease the performance of the mobility
model. A drift function can help to accelerate the decay of invalid patterns. A further
research question is the following:
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Q6: How can the drift of invalid patterns be accelerated?

Big changes have a further consequence, they lead to the emergence of new mo-
bility patterns. The new mobility patterns require new training data for retraining
the mobility model, otherwise the performance of the mobility model decreases mas-
sively. A mobility model that is able to simultaneously learn and predict does not
necessarily require retraining it. A further question is:

Q7: how can a mobility model be simultaneously trained and tested,
i.e. continuously learn new mobility pattern?

The mobility behavior of the user cannot be explained by focusing solely on their
own location history. Humans are social animals and subject to social influence. Mo-
bile Homophily is the tendency of two similar individuals to love or to be interested
in the same locations. Two questions that arise are:

Q8: How can the similarity between two individuals be quantified? and
how can the interest of two individuals in the same locations be quanti-
fied?

We refer to similarity between two individuals with social proximity, and their
interests in same locations with mobile proximity. We investigate the validity of
mobile homophily by answering the following question:

Q9: Does social proximity imply mobile proximity?

Propinquity refers to the tendency of individuals to associate with close things. In
accordance with Tobler’s first law of geography, ” Everything is related to everything
else, but near things are more related than distant things” [Tobler, 1970]. Users from
the same city influence each other more than users from different cities, users who
live in the same building influence each other more than users living in different
buildings. Following the idea of propinquity, a further research question is:

Q10: Does physical closure imply higher social proximity?

Human beings have cognitive, emotional, spatial and temporal limits that prevents
them from maintaining all their social relationships with the same intensity [Gra-
novetter, 2005]. A user interacts mainly and spends most of their time with a subset
of their social relationships, who form together a subgroup with high group cohesion.
The emotional needs, beliefs, thoughts, information, locations, times, norms, goals,
etc. of users in the same cohesive subgroup overlap to a high extent, which leads to
a higher group cohesion. The next research question is:

Q11: How can cohesive subgroups among the social relationships of a
user be detected? And how can the cohesion among the members of a
subgroup be measured?

Users in the same cohesive subgroup exhibit a high overlap in their information,
which may lead to similar (mobility) behavior. The next research question is:

Q12: Do members of the same cohesive subgroup exhibit higher mobil-
ity proximity?

Social networks can provide valuable information for detecting the influence of
friends on the mobility behavior of a user. Social networks also help detect generali-
ties and social trends that cannot be explained by only taking the individual’s data
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into account. People are explorative by nature and have a deep-rooted desire for
spontaneity. They are interested in visiting and exploring new locations where they
have never been before. In many cases new locations are recommended by friends
who have visited these locations recently. Thus social networks can contribute to
predicting locations where the user has never been before, especially at weekends,
evenings and during free time when people are most explorative. We address in this
thesis the problem of transmitting social influence into a predictive model to find
an answer to the question:

Q13: How can social influences be modeled to improve location predic-
tion based on the impacts of social networks?

The social relationships among members of same cohesive subgroups represent
strong ties of the users. The overlap between the emotional needs, information,
behavior, etc. of two users connected via a strong tie is considerably higher com-
pared to two arbitrary friends, therefore they exchange only in seldom cases new
information. The overlap between the information of members of different cohe-
sive subgroups is considerably lower, therefore, therefore they exchange increasingly
more novel information. The next research question is:

Q14: How information flows between different social groups?

Social influence is subject to decay. The amount and duration of information
sharing is a critical issue regarding the acceptance of a service. A user may accept
sharing their location history with their friends for a limited period of time, but if
this time exceeds a certain value the user may feel unhappy and reject sharing. A
research question regarding the drift of social influence is:

Q15: Does social influence decay?
and

Q16: How long should location histories of friends be stored and used
to improve prediction accuracy?

Today’s mobile devices, specially smart phones, are equipped with additional
sources of information such as different sensory like WLAN, Bluetooth, accelerom-
eters, etc. various applications like clock alarm, system programs, etc. and mobile
access to other information-sources/applocations via the internet. These additional
sources of information allow the collection of huge amounts of data about the users
carrying these devices. A further research question is:

Q17: Can the inclusion of additional sources of information enhance
prediction accuracy?

If yes, then

Q18: How can the model be extended, in order to take new information
sources into consideration, which could help detect more sophisticated
patterns?

The mobility behavior of human beings consists mainly of regular patterns and
a small part of irregular movements. The irregular movements of a user does not
follow any pattern, but nevertheless, users leave evidences that may indicate to
their irregular movement behavior. An example of such an evidence is a calendar
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entry containing the next dentist appointment or the date of the next concert of
the favorite band. We refer to this kind of evidences as discrete knowledge. Discrete
knowledge differs from contextual knowledge in its validity. Discrete knowledge ex-
pires after the point of time of its expected occurrence elapses, whereas contextual
knowledge represents the habits of the user that are valid over a longer period of
time. A further research question addressed by this thesis was:

Q19: How can the probability of visiting a location based on discrete
knowledge be boosted/dampened?

Finally, modeling condition interdependence is another challenge if the DBN ap-
proach is used for prediction tasks. In this thesis we also look at feature selection
and how to model the conditional interdependence between the selected features.

The research questions mentioned above are investigated using two scientific method
approaches, namely design science and empirical evidences. From the point of view
of design science we investigate next location prediction by designing a solution,
defining the features/variables of the designed solution, implementing the solution
and finally evaluating both solution and implementation using empirical datasets, in
order to answer some of the research question. From the point of view of empirical
evidences we extract models from the empirical datasets using induction in order to
answer the remaining research question. We use design science to find answers for
the questions (Q1, Q2, Q3, Q6, Q8, Q11, Q13, Q18, Q19), and empirical evidences
for answering the questions (Q4, Q5, Q7, Q8, Q9, Q10, Q12, Q14, Q15, Q16, Q17).

We use three experimental datasets collected by test subjects over a limited period
of time, and one real life dataset for evaluating the designed solutions and for em-
pirically answering the research questions, namely GeoLife [Geo, 2013a], Reality
Mining [Fagle and Pentland, 2006], Foursquare [fou, 2013] and Mobile Data
Challenge (MDC) [Laurila et al.. 2012].

The following mathematical-statistical correlations are used throughout this thesis
for emphasizing the answers to the research questions:

e Pearson’s Correlation Coefficient is a measure for showing any linear
statistical dependence between two random variables, i.e. to assess how well
the relationship between the two variables can be described using a linear
function (for example, humans tend to move more slowly with increasing age).
The correlation coefficient has a value in the interval [—1, 1], a value near zero
indicates no correlation, a value near -1 or +1 indicates a strong negative or
positive correlation between the variables.

e Spearmann’s Rank Correlation Coefficient is a non-parametric measure
of the statistical dependence between two random variables which assesses how
well the relationship between two variables can be described using a mono-
tonic function. It calculates the correlation coefficient based on the rank of the
values of both variables, in other words it is Pearson’s correlation coefficient
for the ranks of the values. Spearman’s correlation coefficient is thus less sen-
sitive to strong outliers and achieves good results for all monotonic functions
rather than for linear functions only. Additionally to Spearman’s correlation
coefficient we calculate the corresponding p-value P(€). The p-value P(e) in
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statistical significance testing is the probability of the "null-hypothesis”, i.e.
that two phenomena have no relationship [Goodman, 1999]. Researchers reject
the null hypothesis if the p-value is less than a threshold, often 0.05.

e The Shannon Entropy quantifies the measure of uncertainty in the proba-
bility distribution of a random variable [Russell and Norvig, 2010, Page 703].
A random variable that takes many different values with similar probabilities
means that: predicting which value the random variable takes is subject to
high uncertainty.

e Student’s T-Test is a statistical hypothesis test that can determine whether
two sets of data are significantly different from each other. We use this method
to determine whether the mean of the improvements in accuracy is different
from zero using a basic model and an extension (by adding new features to
the basic model) for predicting the mobility of the same set of users

1.4 Thesis-Structure & Chapter Summaries

Chapter 2

Human beings are explorative by nature and have a deep-rooted desire for spontane-
ity as stated earlier. nevertheless, human mobility exhibits high regularity following
a few movement pattern which leads to high mobility predictability [Song et al.,
2010b]. People usually commute between few significant locations, which they visit
in certain orders, for example "home - work - home”. We refer to the order of visiting
significant locations with spatial pattern and the dependency of human mobility on
these spatial patterns with spatial dependency. A mobility model can predict the
future location of a mobile user based on their spatial patterns. The location history
of a user is needed in order to learn their spatial patterns. The rapid technological
developments over the last two decades have allowed access to various sources of in-
formation anytime anywhere and allow a huge amount of data to be harvested from
these sources of information. Sources of information are, for example, integrated
GPS, W-LAN, Bluetooth devices, social networks and social networking platforms
such as Twitter [twi, 2013], Facebook [fac, 2013], Foursquare [fou, 2013], etc. These
developments allow the collection of huge amount of data about the movements of a
mobile user, to which we refer with location history for simplicity reasons. The avail-
ability of location history has prompted the evolution of a new class of computing,
namely location-aware computing. Location-aware computing builds the foundation
for Location Based Services (LBS). This chapter provides an introduction to top-
ics important for LBS like location acquisition, mining location history, mobility
models, location prediction etc.

Chapter summary: Section I of chapter 2 focuses on mining location history, pat-
tern recognition, feature selection and related works based on mining location histo-
ries of mobile users. Section II provided an overview over a set of different mobility
model approaches. Section III provides an overview of location acquisition technolo-
gies. The focus of section IV is on detecting significant locations of users based on
raw GPS-data. A framework for choosing the correct mobility model, in terms of
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design and evaluation criteria and which highlights both the strengths and weak-
nesses of the model is presented in section V. Section VI provides an introduction to
the mobility model approach used in this theses. The last section VII of the chapter
is reserved for the empirical results based on several datasets.

Chapter 3

Context is not limited to spatial information. The spatial context helps detect fre-
quent spatial pattern in the location history of the user, the inclusion of temporal
context helps detect the returning intervals of a frequent spatial pattern. For ex-
ample, a user might visit every Tuesday and Thursday evening after leaving their
working location a fitness studio, and in the remaining three working days they go
home. Thus the spatial pattern home-work-fitness studio has two temporal patterns
(returning intervals), namely Tuesday and Thursday evening. Temporal patterns in-
dicate the periodicities within which a user exhibits the same spatial (sub)pattern.

The mobility of humans obeys both temporal and spatial-temporal patterns. A
mixed spatial-temporal pattern might be, ”Whenever Bob visits the campus, he
goes to the neighboring Mediterranean restaurant for lunch at around 12 o’clock.”
Some patterns are dependent on the temporal context of the user only, such as,
”"Bob goes home every evening, despite his current location.”. Periodicities can be
described using temporal features such as the day of the week, hour of day and
off-days. Mobility patterns are subject to decay over time. Incorporating the decay
of mobility patterns at the design stage reduces the need for retraining the mobility
model.

Chapter summary: We present spatial-temporal and pure temporal pattern in sec-
tion I. Section II introduces research into topics related to periodicities and temporal
pattern. Mining periodic pattern and methods for detecting periodicities are the sub-
ject of section III. In section IV we introduce our mobility model, which is capable
of detecting spatial, temporal or spatial-temporal pattern. The methods addressed
in this chapter are evaluated in the last section using three different datasets.

Chapter 4

Homophily refers to the tendency of individuals to associate with similar individu-
als. Similar individuals have in common features such as interests, beliefs, thoughts,
locations, emotional needs, goals, norms, etc. Mobile homophily refers to the ten-
dency of similar individuals to be interested in the same locations, thus it involves
two measurements, namely social proximity and mobile proximity. Mobile proximity
quantifies the similarity between the mobility of two individuals based on mobil-
ity measurements such as common spatial and spatial-temporal locations. Network
proximity quantifies the similarity between two individuals of the social network
side. Network similarity can be determined using measurements from social net-
work analysis (SNA). The focus of this chapter is on showing statistical dependence
(if any) between social and mobile proximity. Due to cognitive, emotional, spatial
and temporal limits, people cannot maintain of all their social relationships with



14 1.4. THESIS-STRUCTURE & CHAPTER SUMMARIES

the same intensity [Granovetter, 2005]. Each user can have groups of strong so-
cial relationships, in which almost everyone knows everyone else, thus the cohesion
among the members of the same group is considerably higher compared to a group
of arbitrary selected friends. The correlation between group cohesion and mobile
homophily is a further subject of this chapter. The chapter contains methods for
analysing both social networks and location histories of different users.

Chapter summary: Section I provides a brief introduction in social networks, pos-
sibilities arising through technological achievements and the growing interest in in-
vestigating the influence of social networks in real life phenomena in the last two
decades. Section II contains a formal description of social networks, their properties
and interior structure. Further, the section provides an introduction of various types
of locally dense regions representing cohesive subgroups, their properties, methods
for their detection and a measurement for calculating group cohesion. Section III
provides concepts for calculating social proximity among users. Section IV contains
an introduction to the propinquity effect and methods for calculating mobile prox-
imity. Section V presents some relevant works about the interplay between spatial
properties such as locations and distance and social networks. Section VI provides
an in-depth correlation analysis between social and mobile proximity based on data
collected from March to July 2012 from an LBSN platform called Foursquare. The
section sets particular focus on the effects of propinquity and cohesive subgroups on
the mobility behavior of mobile users.

Chapter 5

The influence of social networks on an individual’s behavior has been the subject of
much research. The behavior of an individual cannot be explained by focusing solely
on the behavior of that individual user. Mobility is, as is any other human behavior,
subject to social influences. Human beings are both explorative and social in nature.
They share their experiences of exploring the environment with their friends, fam-
ily members, etc. Sharing experiences may be synchronous, for example when two
friends visit the same restaurant, or general social trends in the community of the
user like a trendy shop, a hip night club or other locations implicitly recommended
by friends. The focus of this chapter is on the causation effect between social prox-
imity and the mobility behavior of socially connected individuals. Causation effect
means whether network similarity causes similar mobility behavior among different
individuals. We show the causation effect by using the mobility model of an indi-
vidual with social network influences to improve the accuracy of predicting the next
location of the user.

Chapter summary: Section I is a general introduction to the causation effects of
social networks on human mobility. Section II provides an overview of the existing
social influence models. Section III focuses on extending the general spatial-temporal
model of chapter 3 for integrating influences from the social network into the indi-
vidual mobility model. The last section IV contains empirical conclusions about the
causation effect between network similarity and next location prediction based on a
dataset from the location based social network platform Foursquare.
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Chapter 6

Context is not limited to spatial, temporal and social features. Mobile devices such as
smart phones contain a set of sensors that can log a huge volume of data about many
aspects of an individual’s behavior. Logs of program usage, Bluetooth, W-LAN and
system settings are examples of additional sources of information that could help
detect more patterns in the individual mobility of a mobile user. A further type of in-
formation is knowledge that is valid during a certain period of time and then expires
later, such as calendar entries about appointments, cinema or restaurant reserva-
tions, etc. We refer to this information as discrete knowledge. Discrete knowledge
helps boost and dampen the probability of visiting certain locations and accordingly
improves the accuracy of the mobility model. This chapter focuses on integrating
additional information sources and discrete knowledge into the individual mobility
model with the aim of increasing the accuracy of next location prediction.

Chapter summary: Section I provides an introduction to additional information
sources, the integration of additional information sources into the mobility model,
related work, the MDC dataset and empirical results. Discrete knowledge, people’s
adherence to schedule, the extension of the mobility model in order to incorporate
discrete knowledge and finally empirical results are presented in section II.

The final chapter of the thesis contains a summary of the conclusions followed by
critical discussion and future prospects.
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Chapter 2

Location Prediction Bases for
Spatial Dependency

The development of inexpensive mobile devices, wireless networking and the availability of
precise location acquisition technology has facilitated the collection of huge sequences of
precise data about the users carrying these devices. We refer to sequences of such data
with movement or location history. Research into human behavior has been hampered for a
long time by the lack of (sufficient) real life behavioral data. Consequently, the investigation
of human behavior was based on surveys and synthetic data, which was far removed from
realistic human behavior. The availability of the location histories of mobile users has opened
up new opportunities for pervasive investigation and the understanding of human behavior
at anytime and anywhere. The availability of location history has prompted the evolution of
a new class of computing, namely location-aware computing [Lu and Liu, 2012, Patterson
et al., 2003a]. Location-aware computing is the foundation for location based services, where
the geographical location of a mobile user is used to tailor to the user a wide spectrum of
new (personalized) services.

Mobile users exhibit regularity in their movements that follows certain patterns. These
patterns make the movement of mobile users predictable to a high degree [Gonzalez et al.,
2008]. The prediction of the future location of a mobile user based on their current loca-
tion and/or n previous locations forms the framework for the spatial dependency of human
movement and is the subject of this chapter.

Chapter summary: Section I provides an introduction to location history mining, pattern
recognition, feature selection and related works based on mining location histories of mobile
users. An overview of existing mobility models and their functionalities is presented in sec-
tion II. An overview of location acquisition technologies is presented in section III. Location
representations and methods of extracting the user’s significant locations based on their raw
movement traces are presented in section IV. Section V provides a set of general require-
ments for the choice of a proper mobility model, as well as a set of design and evaluation
criteria that are tmportant for evaluating it. The mobility model used in this thesis is pre-
sented in section VI. The last section VII of the chapter is reserved for the empirical results

based on several datasets.
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18 2.1. LOCATION HISTORY MINING

2.1 Location History Mining

Location history is a sequence of time stamped location based observations col-
lected by different sources of information. Sources of information are, for example,
integrated GPS, W-LAN, Bluetooth devices, social networks and social networking
platforms such as Twitter [twi, 2013], Facebook [fac, 2013], Foursquare [fou, 2013],
etc. We refer to the collected values at each time step as the observation e; at time
step t. Each observation contains a set of features such as location data collected
by a GPS-Sensor, other mobile devices seen in the neighborhood by the Bluetooth
device, W-LAN access points sensed by the W-LAN device, different application en-
tries/logs such as calendar, alarm clock, system profile and the call-log of the mobile
phone, etc. thus an observation can be of arbitrary dimensions, containing evidence
about the spatial, temporal, social and other contexts of the user.

The daily life of a user has a tight relationship to the geographical locations they
visit, thus the location history of a mobile user contains lots of valuable information
that helps in understanding their life style [Ye et al., 2009]. Location history min-
ing aids the extraction of higher level knowledge such as regularities, anomalies or
phenomena from sequences of low level sensor data, for example recognizing regu-
lar movement patterns or significant locations from the location history of a user.
Pattern recognition is thus an important task for location history mining.

2.1.1 Pattern Recognition

The power of our intelligence lies in our ability to observe/experience our surround-
ings through our senses and to comprehend our environment based on those observa-
tions/experiences, combined with our cognitive capabilities to make/choose correct
decisions/actions. Pattern recognition deals with the identification of valid patterns
of an arbitrary size, shape and complexity using sequential data as input and per-
forming an action according to the category of the pattern [Duda et al., 2001].

”The ease with which we recognize a face, understand spoken words, read hand-
written characters, identify our car keys in our pocket by feel, and decide whether
an apple is ripe by its smell belies the astoundingly complex process that underlies
these acts of pattern recognition” [Duda et al., 2001].

The detection of pattern in the raw location history is highly dependent on the
contained features. ” A feature is an individual measurable heuristic property of
a phenomenon being observed” [fea, 2013]. A simple pattern like "home - work
- home” contains one spatial feature, namely locations, whereas a more complex
pattern like ”"whenever Bob meets Tom at the campus, they go for lunch to the
neighboring pizzeria” contains spatial, temporal and social features. The selection
of proper features is key to any successful pattern recognition algorithm.

2.1.2 Feature Selection

The observations may contain redundant or irrelevant features for pattern recogni-
tion, redundant features occur for example when two sources of information such as
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GPS sensor and WLAN device identify locations. An irrelevant feature for mobility
might be the settings of the browser for example. Further, some features may be
dependent on other features, for example bluetooth observations are relevant only
when the carriers of both devices have a social relationship. Thus, feature selection
(also known as variable or attribute selection) is an important task of pattern recog-
nition. Feature selection deals with identifying the subset of features that influence
the construction of the (predictive) model, eliminating redundant or irrelevant, and
identifying interdependence among the features. Feature selection affects both model
performance and training time, thus it is an important task in model construction.
The following list provides four different techniques for feature selection [Dietterich,
2002]:

e The wrapper approach has two variants, namely forward selection: con-
structing the model with one feature and successively adding more features,
and backward selection: adding all features to the model and successively elim-
inating features. Each time a feature is added (or removed) the performance
of the model must be evaluated in order to select the subset of features that
maximizes the performance of the model.

e Penalty placing techniques include all the features in the model and place
penalties on the parameters associated with the features. The idea is that the
impact of parameters associated with useless features becomes very small or
even perhaps reduces to zero.

e Measure of relevance computes some measure of feature relevance and re-
moves the features with a score under a certain threshold.

e Simple model fitting first fits a simple model and then analyzes the fitted
model to identify the relevant features and removes the features with a low
influence on the model.

In this thesis we follow the wrapper approach starting with one feature and succes-
sively extending it by adding more features under consideration of the interdepen-
dency between the selected features and measuring the improvement in accuracy.
We refer to features relating to location measurements with spatial context. Tempo-
ral context is used for features relating to time. Features from social networks build
the social context. We refer to additional features with additional context.

2.1.3 Related Work

Mining sequential data generated by a mobile user has been the subject of much
research. In the next few subsections we present a set of related research on topics
that are closely associated with mining sequential data.

2.1.3.1 Significant Location Detection

The goal of significant location detection is the discovery of a user’s specific impor-
tant locations [Ashbrook and Starner, 2003, Kang et al., 2004, Liao et al., 2007a].
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[Ashbrook and Starner. 2003] makes use of both raw GPS measurements and the
time a user spends at a location to find the significant locations of that user. All
GPS observations within a radius r and with a stay time greater than a certain
threshold belong to the same significant location.

[[lang et al.. 2004] has proposed an algorithm that allows online detection of sig-
nificant locations. The clustering algorithm is similar to the k-mean variant used by
[Ashbrook and Starner, 2003] with an additional stay time threshold for controlling
the amount of time a user spends in a cluster. Consecutive data points form a cluster
if they all lie within a radius r and the time elapsed between the first and the last
data point exceeds a threshold. Consecutive data points during movement do not
form a cluster, either because they lie within a distance greater than r or the time
elapsed between the first and the last data points is less than the time threshold.

[Liao et al., 2007a] has proposed a hierarchical model for detecting significant
locations as follows. The first level of the hierarchy is formed by the raw GPS traces.
Consecutive GPS data points are spatially segmented to discrete spatial regions of
radius r. The activity of the user is determined by making use of the duration
between the first and the last data point within a segment, the time of the day and
the availability of additional geographical information about restaurants, stores, bus
stops, etc. in that region. Once the activity of the user is determined, a significant
location where the user can perform that activity can be estimated in the next level
of the hierarchy.

2.1.3.2 Activity Recognition

[Eagle and Pentland, 2009] infers the daily routines of a user via principal component
analysis (PCA) using mobile phone sensor data and GSM traces collected by a
mobile phone provider. An individual’s daily behavior is modeled as a vector n x 24
with n labels corresponding to behavior and the 24 hours of a day. Given the daily
behavior of a user over a period of D days, the model can extract the most prevalent
behavior of that user over the hours of the day. Given the prevalent behavior of the
user and the behavior of the user over the first half of the day, the model can predict
the user’s behavior over the remaining 12 hours of the day with an accuracy of 79%.

[Liao et al., 2007a] estimates the activity of a mobile user given his GPS traces.
The model depends heavily on temporal features and the existence of a geographical
dataset containing locations (such as restaurants, shopping malls, etc.) in the vicinity
of the user’s current location.

2.1.3.3 Mobility & Motion Detection

[Krumm and Horvitz, 2004] has proposed a model for learning and inferring the
motion mode (whether the user is moving or staying) and the location of a user
in an indoor environment. The proposed model is called LOCADIO [Krumm and
Horvitz, 2004]. It uses Wi-Fi signal strengths from existing Wi-Fi access points in
a building complex and mobile Wi-Fi receivers carried by the users. The model is
based on the assumption that the signals received by a device are nosier when the
user moves. Once the motion mode is predicted, the next location of the user can
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be predicted taking into account path constraints (such as walls and doors) as well
as human pedestrian speed. Both motion mode and location predictors are based
on Hidden Markov Models (HMM) [Krumm and Horvitz, 2004].

2.1.3.4 Transportation Mean

Given the location and velocity of a user, the location of their car and the current
observations from a wearable GPS device, [Liao et al., 2007b] has proposed a model
to simultaneously learn and infer both the user’s transportation mode such as car,
foot or bus and their destination location [Liao et al., 2007b, Patterson et al., 2003b,
LIAO et al., 2006]. The model can learn the locations where the user changes their
transportation mode as well as their destination from the raw GPS data in an
unsupervised manner. The proposed model is based on an abstract hierarchical
Markov model, more specifically a Rao-Blackwellized particle filter is applied by
the authors to make more efficient inference from both raw GPS data and higher
level knowledge extracted from the raw data. The inference of both transportation
mode and location can be used to provide the user with valuable information such
as information about the traffic conditions in a certain area or the current timetable
at a bus stop [LLIAO et al., 2006]. The model can also be used to detect anomalous
behavior such as getting on the wrong bus [Patterson et al., 2003b], which can
be used in turn to initiate proactive alerts or calls for assistance in order to help
cognitively impaired users through their daily life [Patterson et al., 2004].

2.1.3.5 Location Based Social Networking

Social networks and human mobility influence each other mutually. Users who share
information, thoughts, any kind of objects, geographical areas, etc. exhibit similari-
ties in their behavior. The calculation of similarity between two users helps to infer
their behavior and make recommendations to a user based on data of another user.
In [Han et al., 2007, Zheng et al., 2009a] and [Li et al., 2008] the location histories
of users are used to calculated a location based on the similarity of two users. [Li
et al., 2008] has proposed a framework to infer the similarity of two users based on
the geographical regions shared between them. The more locations two users share,
the more similar they are. A similar work in [Zheng et al., 2009a] uses the GeoLife
dataset 2.7.1 for calculating similarities between users. The entire social network
could be reconstructed based on location histories of users in [Geo, 2013a].

An in-depth correlation analysis between social proximity and mobile homophily
has been made by [Wang et al.. 2011]. The experimental results do indeed show the
statistical dependence between measurements relating to social proximity and mo-
bile homophily. [Scellato et al.; 2011¢] has investigated the link prediction problem
based on location histories of users. The experimental results showed that future
friendships between users who share the same locations, but who are not yet friends
can be predicted. The calculation of tie strength between users who are socially con-
nected based on their location histories has been investigated in [Wang et al., 2011].
[Eagle et al., 2007] has investigated inference of the structure of social networks
using a dataset collected by a mobile phone provider.
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2.1.3.6 Location Prediction

Location prediction is one of the main research areas based on the location histo-
ries of users. A large number of mobility models have been developed within the
last decades. The mobility models differ in their applicability to the spatial environ-
ment. Generally, two spatial environments can be distinguished, namely local /indoor
[Tran et al., 2008, Kaemarungsi, 2005, Kaemarungsi and Krishnamurthy, 2004, Pet-
zold et al., 2005] and global/outdoor [Mathew et al., 2012, Ashbrook and Starner,
2003, Eagle and Pentland, 2009]. Different types of location acquisition technology
can be applied depending on the spatial environment, i.e. area maps, GPS, GSM or
geographical databases. Different location acquisition technologies vary in their rep-
resentation of location data such as continuous (GPS), cellular (GSM) and discrete
(Points of Interests (POI), building/areal maps, etc.)

Over the course of the last few decades, different mobility model approaches have
been developed such as the random mobility model [Bettstetter, 2001b, Bettstet-
ter, 2001a], the linear dynamical system (LDS) [Liang and Haas, 2003], fixed order
Markov model (FOMM) [Ashbrook and Starner, 2003], Neural Networks (NN) [Vin-
tan et al.. 2004], Dynamic Bayesian Network (DBN) [Petzold et al., 2005, Krumm
and Horvitz, 2006, LIAO et al., 2006], Hybrid Markov Model [Yu et al., 2000],
Hidden Markov Model (HMM) [Mathew et al., 2012, Krumm and Horvitz, 2004],
Principal Component Analysis (PCA) [Eagle and Pentland, 2009] and the Variable
Order Markov Model (VOMM) [Begleiter et al., 2004, Bapierre et al., 2011].

2.2 Mobility Models

The prediction of the next location of a mobile entity generally, and a mobile user
specifically, has been the subject of many works. Mobility models represent a set
of well-studied algorithms for location prediction tasks. The mobility models vary
according to the model assumptions and the input/output parameters they use. The
models can be grouped into different categories. There are random mobility models
where the model parameters are chosen randomly, models of exact inference, i.e.
analytical models where the exact location of a mobile entity is calculated based on
the laws of physics, and models of approximate inference based on probabilistic rea-
soning, i.e. assigning a probability mass to each location and predicting the location
with the highest probability.

2.2.1 Random Mobility Models (Traceless)

Random mobility models do not depend on the location history of mobile entities.
The parameters for the model such as speed, direction and destination are chosen
randomly without taking into consideration restrictions like obstacles, geographical
conditions and other entities. Random mobility models are usually used for sim-
ulation purposes in mobile ad hoc networks (MANET). Random mobility models
try to calculate the position of a mobile entity analytically, based on few simple
assumptions such as which of the model’s parameters (speed, direction and desti-
nation) should be chosen randomly, when to change/replace the chosen parameters
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and what should happen when the mobile entity reaches the border of the simulation
area [Bettstetter, 2001b].

e Random walk - in this model at each time step a mobile entity is assumed to
move at a random speed chosen from the range [0, V4] and in a random direc-
tion chosen from the range [0, 27| ([Zonoozi and Dassanayake, 2006] restricts
direction changes to the upper bound A6,,,,). The mobile entity continues
moving with the chosen speed and in the chosen direction until it reaches the
boundary of the simulation area. Upon reaching the boundary, the mobile en-
tity is bounced back into the simulation area at an angle 0(t) or m—6(t) [Hong
and Rappaport Stephen, 1986]. The random walk model does not allow the
entities to spend any time upon arrival at their destinations.

¢ Random way point - the random way point mobility model takes into con-
sideration pause times. The mobile entity moves to a pre-selected destination
(instead of moving to the boundary of the simulation area). Upon reaching
the destination, the mobile entity pauses for a certain pause time 7pqyse [JOh1-
son and Maltz, 1996]. Setting Tpause to zero equates to continuous mobility.
The density of mobile entities near the center of the simulation area becomes
very high a while after the simulation has started and almost zero near the
boundaries.

¢ Boundless simulation area - at each time step ¢, both speed v; and direc-
tion 6; are calculated based on the speed and direction at the previous time
step t — 1. The speed is calculated considering the acceleration a; which is
chosen from the range [—@maz, @maz|- The direction is calculated by adding a
randomly chosen direction change Af; to the previous direction #;_; from a
range [—A#, Af]. Instead of bouncing the entities when the simulation area is
reached, the boundless simulation area allows the mobile entities to cross the
boundary, reappear at the opposite side of the simulation area and continue
travelling with the same speed and in the same direction [Haas, 1997].

e Smooth random mobility- in the previous models, both speed and direction
are chosen independently from their previous values (except a rough consider-
ation in Boundless simulation area), which causes unrealistic movements such
as sharp turns and sudden acceleration/deceleration. The smooth random mo-
bility model considers both speed and direction changes to be smooth. The
speed changes incrementally, taking current acceleration into account. Change
in direction occurs at several time steps [Bettstetter, 2001b].

e City section - the previous models do not consider geographical restrictions
such as the topology of the area. [Bai et al., 2003] proposed a work, in which
the movements of mobile entities are restricted by the street map of a city
section and its speed limits.

e Group mobility models - the previous models assume an entity moves
freely without being restricted by other entities. [Hong et al., 1999, Sanchez
and Manzoni, 2001] introduced many group mobility models where the move-
ment of an entity is additionally restricted by the movement of other enti-
ties. The Pursue Mobility Model, Column Mobility Model, Reference Point
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Group Mobility Model, Exponential Correlated Random Mobility Model and
the Nomadic Community Mobility Model are a few examples of group mobility
models.

e Obstacle Mobility Model - this mobility model has been proposed by [Jar-
dosh et al., 2003] and takes geographic restrictions such as buildings into
account while modeling the movement of mobile entities. The authors use
Voronoi diagrams to model buildings and paths between them.

2.2.2 Linear Dynamical Systems (LDS)

Linear Dynamical Systems have a set of mathematical properties and can be solved
exactly. LDS assume a linear relationship between both observations and states
vectors with zero mean and additive Gaussian noise [Krumm et al., 2003, Bishop,
2007, P 636-637]. The Kalman filter is an example of an algorithm for handling
linear, continuous variables. LDS consists of two steps, namely the prediction and
update steps.

Xi =41 X1+ Bioaw—r + a— (2.1)
SN——— ~~~

controlled input random noise

Equation 2.1 represents the prediction step, where A;_1 is the transition matrix, x;
is the state at time step t, u; is a controlled input representing the deterministic part
of the noise with its dynamics captured in the matrix B; and finally a; represents
the uncontrolled random noise from the distributions a ~ N (a|0, ). Both u; and a;
have Gaussian distributions with a zero mean [[<rumm et al., 2003].

Et = HXt + wy (22)

Equation 2.2 represents the correction steps, where the relationship between both
observation E; and state X; is linear Gaussian with additive Gaussian noise w; with
a zero mean. H is the measurement matrix and w is chosen from the distribution
w ~ N(w|0,w) [Bishop, 2007, P 636-637]. For example, we may set X; = Vi, B} = Sy,
interpreting S; as actual locations and V; as speed and choose the model parameters
B, H in a manner such that S; and V; are linearly dependent plus added Gaussian
noise P(X;|X;—1) ~ N(Si—1 +AV,_1, B) where A is the time difference between the

discrete time steps t and ¢ — 1.

A mobility model based on LDS has been proposed by [Liang and Haas, 2003]. The
linear relationship between the state and measurement variable is adjusted using a
parameter to control the degree of memory of the model a.. The state of the model X;
consists of two variables X; = (V;, D) for estimating both velocity V; and direction
of movement D; at time step t. puy and pp are both asymptotic, which means ¢
approaches infinity for both velocity and direction respectively. a; and 6; represent
the acceleration and direction change respectively and are independent, uncorrelated
and Gaussian processes with zero means and standard deviations o, and oy [Liang
and Haas, 2003]. Both equations 2.3 and 2.4 represent the prediction steps for both
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velocity and direction of movement (for simplicity, a first order Markov and a time
slice equal to one is assumed).

Vi=aVii+ (1—a)py +0o.v/ (1 —alay (2.3)

.

controlled input random noise
Dy =aDi_1 + (1 — a)ﬂD + o9/ (1 — 042915 (24)
controlled input random noise

Once the current states variables V; and D; of the model are predicted then the
exact location ;11 of the mobile user can be predicted according to equation 2.5

lgy1 =l + Vi cos Dy (2.5)

Setting « to zero means a totally random process whereas a linear motion is
obtained by setting « to one [Liang and Haas, 2003].

Although LDS models can be used for the short term (a few seconds to a few
minutes) mobility predictions based on the reasoning of [Liao et al., 2007a, Liang
and Haas, 2003] (by discretizing the street map to 10 meter cells), the assumptions
concerning Gaussian distributions and fixed Markov order are usually not applicable
to human motion on an intermediate timescale of several hours or even days since
human trajectories show a high degree of spatial and temporal regularity [Gonzalez
et al., 2008] which is not well-captured by the aforementioned random models. Other
studies have also confirmed the highly non-random nature of human mobility [Song
et al., 2010a]. Furthermore, the linear system dynamics make the detection of sharp
turns and the avoidance of motion through walls difficult [Krumm et al., 2003].

2.2.3 Mobility Models Based on Probabilistic Reasoning

Mobility models based on probabilistic reasoning predict the future location of a
mobile user using sequences of past observations (location history) [Bishop, 2007,
P 606]. A mobility model, which can depict realistic human movements, must be
able to extract as many patterns as possible from the observations. The sequences
of observations are usually noisy and contain uncertainty. Examples of uncertainty
are errors in location measurements such as acceleration/deceleration while measur-
ing the velocity of a mobile user or sensor errors like measurement errors in GPS
coordinates. The uncertainty increases rapidly when predicting the location of the
user far into the future (hours and days). Mobility models based on probabilistic
reasoning are more attractive because of their ability to handle uncertainty. They
use a belief network to calculate the probability distribution of the observations
instead of calculating the exact location of a user [[Krumm et al., 2003].

Equation 2.6 demonstrates the (exact) inference problem using the full joint dis-
tribution over the complete observation history up to time ¢:

N
pler, €2, ....,er—1,€1) = H pletler ..., ei—1). (2.6)

n=1
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2.2.3.1 Fixed Order Markov Model (FOMM)

The size of the observation history increases as t increases. The exact inference
become very complex because t is unbounded, thus a mobility model based on
the full joint distribution is impractical. Fixed order Markov models estimate the
joint distribution approximately based on the Markov assumption. The Markov
assumption implies that each observation is independent from previous observations
except from a finite set containing the n most recent observations. This means that
consecutive observations are highly correlated and future observations older than n
time steps are decorrelated, i.e. the effect of the whole of the past observations on
e; is included in the n preceding observations [Bishop, 2007, P 606]. Equation 2.7
indicates the joint distribution of an order n = 2 Markov model

N
pler, . en) = plen)p(ealer) [ [ plenlen-1,en—2) (2.7)

n=3

Figure (2.1) illustrates the conditional dependency between consecutive observa-
tions for both order 1 and order 2 Markov models.

b el e2 e3 e4

Figure 2.1: Two Markov chains representing the dependency of an observation of n previous
observations. a) is a first order Markov chain, b) is a second order Markov chain (following the
style of [Russell and Norvig, 2010, p 568]).

An FOMM of order n can detect patterns of length n. Patterns of higher length > n
remain undetected. In order to detect patterns of a length higher than n the order
of the underlying FOMM must be increased. The number of parameters in the order
n Markov model grows exponentially with the growing order n. If the observations
have K different states then the order n Markov model needs K" 1 x (K — 1)
parameters, which represents a serious limitation for higher order Markov models.
Markov models of a higher order require a large amount of training data in order
to detect as many patterns as possible. Training a higher order Markov model with
insufficient training data causes the model to suffer from both cold-start and zero-
frequency problems. Unobserved patterns that first appear during the test phase
have both a frequency and probability of zero.
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2.2.3.2 DBN Approaches for Prediction

FOMM models treat all the observations to be drawn from the same distribution,
but many data sets contain a mixed distribution consisting of n components. Dy-
namic Bayesian Networks (DBN) [Russell and Norvig, 2010] are a class of predictive
mobility models that use two models, namely the state (transition) model and the
sensor model (figure 2.2). The state model has an internal (latent) state variable X,
which is usually unobservable and its state changes at different time steps ¢. The
state model with the conditional distribution P(X¢|X;—1) ~ N(AX;, B) captures
the system dynamics through defining conditional probabilities on the internal state
variable X; (assuming a prior distribution of the state variable is available), which is
restricted by the Markov assumption. Each state defines a distribution from which
evidence (output parameters) can be observed. The observed evidence represents
observation variables, which together form the sensor model. The sensor model with
the condition distribution P(E¢|X:) ~ N (CX4, D) defines conditional probabilities
over both internal state variables X; and the observation variables E;. The DBN
approaches drop the limitation that an observation is dependent only on the most
recent n observations, because the observations are connected through the states of
the internal state variable, which means a non-blocking path exists between any two
observations e, and e,, via the states of X; [Bishop, 2007, P 606], thus the current
observation depends on the state of X; (distribution) that caused this observation
[Russell and Norvig, 2010, p 568]. Both state and evidence variables are of an arbi-
trary dimensionality, where the dimension of the latent variable X; € R™ may differ
from the dimension of the evidence variable E; € R™.

Figure 2.2: A Markov chain containing both observations E and latent states X. Each observation
e; is conditioned on the latent state the observation belongs to. This graphical structure (sometimes
called the independence diagram) builds the foundation of Dynamic Bayesian Networks (following
the style of [Bishop, 2007, P 606])

The conversion of raw measurements (coming from n sensors) to location mea-
surements plays an important role when using DBN approaches for modeling human
mobility [[Krumm et al., 2003]. The conversion should be done using a proper de-
terministic conversion function modeling the relationship between the state variable
X, and evidence vector E; at time step ¢ [[<rumm et al., 2003]. Different models use
different conversion functions [Krumm et al.. 2003]. All DBN approaches consist of
at least one of the following two steps:

e The inference step can estimate the state of the model at a given time step
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t using a sequence of observations.

e The correction step contains an a posteriori estimation of the model pa-
rameters upon receiving a new (noisy) observation using the deterministic
conversion function.

The inference step of a Dynamic Bayesian Network allows the use of a set of
powerful inference types, below we present a short description of four inference
types in DBNs (the notion e;.; denotes the observation sequence between time step
1 and time step t as used by [Bishop, 2007]):

e Filtering - filtering at any time step t delivers an estimate of the state vari-
able, based on the most recent n states and the observations made up to time
t. The estimation is done by computing the conditional probability p(X¢|e1.t).
Filtering at any time step t allows the current state of the model to be tracked.
An efficient procedure for calculation p(X¢|e1, e, ...,e;) is the forward algo-
rithm.

e Prediction - this inference allows the propagation of state estimates into the
future, i.e. predicting k future states based on the observations up to time
step t through computing the a posteriori distribution of p(X;1x|e1.¢) for some
k > 0. The forward algorithm is also an efficient procedure for calculating
P( Xtk Et).

e Smoothing - given the observations up to time step ¢, smoothing calculates
the state of the model at time step k where k < t through estimating the condi-
tional probability p(X|e1.¢). The backward algorithm is an efficient procedure
for the smoothing task.

e Most likely explanation - this inference type can find the most probable
state sequence that might have generated a given sequence of observations,
i.e. estimating the conditional probability p(Xi.¢|e1.t). The Viterbi algorithm
delivers an efficient procedure for this estimation

Combining both inference and correction steps allows the model parameters of a
DBN to be learned iteratively. At each iteration both transitions between states,
and the probability that an observation is generated in any state, are estimated.
The model parameters are updated based on these estimates, the updated model
in turn provides new estimations. These two steps are repeated until convergence
is attained. This procedure is an instance of the expectation maximization (EM)
algorithm [Russell and Norvig, 2010, P 570-571]

In the following we introduce a few DBN approaches from two categories. A cat-
egory contains a dynamical linear system having a continuous state variable with
Gaussian distribution, whereas the other category contains models that drop the
limitation of having a Gaussian distribution.
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2.2.3.3 Hidden Markov Models (HMM)

Hidden Markov Models (HMM) drop the Gaussian assumption and are restricted
to a single, discrete state variable X and usually a fixed Markov order [[<rumm
et al., 2003]. Even if more state variables are present, they can be merged to one
big state variable with a higher dimensionality. At any time step t, the states of the
latent variable of an HMM represent a mixture distribution given by the conditional
probability p(e;|z;), which has generated the observation e;. The conditional prob-
ability p(x¢|x;—1) indicates that the component that generated the observation e;
depends on the component that generated the previous observation e;_; (assuming
a first order Markov assumption). The state dynamic can be easily represented by
the transition matrix T of size S x S (S is the number of possible states for the state
variable X'), where each element Tj; of T' represents the probability of the transition
from state x; to state x;. The sensor model can be represented by the diagonal
sensor matrix O, because the value of E; is known at any time step, thus it is only
necessary to specify which state has caused the observation E; to be generated. Once
the state and sensor models are specified, the forward « and backward S messages
become a simple vector multiplication and can be computed recursively as follows:

1441 = aOp 1 T gy (2.8)

Br+1:t = TOkt1Bi+2:t (2.9)

where a is the normalization factor. Both v and 5 can be combined to compute the
transition probability between two states [Russell and Norvig, 2010, P 579] [Duda
et al., 2001, P 137-138].

The use of HMM poses different challenges and constraints. The first constraint is
the number of the states of the state model, which must be explicitly known, which
represents a handicap for a highly dynamic domain such as human outdoor mobility.
Another challenge that must be overcome is the dimensionality of the latent state
variable, every new dimension leads to an exponentially growing state space. Each
new state represents a new distribution over the observations p(e|x;) and the tran-
sition matrix must be modified in order to add new transition probabilities to all
other states of the state model. An HMM with a large state space requires a large
amount of training data to avoid the sparsity and zero-frequency problem and thus
the inclusion of further context elements can be very problematic. Furthermore, the
fixed order of a standard HMM may not fit well with the complex dependencies
in human mobility patterns. Learning the exact parameters of an HMM and the
complexity of the solution represents an intractable task for HMM, because none
of the known learning algorithms can find the exact solution, but instead a local
maxima [Ron and Singer, 1996]. Although HMMs provide flexible structures that
can model complex sources of sequential data, dealing with HMMs typically requires
considerable understanding of and insight into the problem domain in order to se-
lect the initial parameters, so that the model can converge to the globally optimal
probability distribution [Begleiter et al., 2004]. Unfortunately it is seldom that an
HMM converges to the true probability distribution, therefore the ”hidden” part of
HMM just complicates the model unnecessarily [Ron and Singer, 1996].
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2.2.3.4 Particle Filtering

As exact inference in an unrolled DBN is difficult (see e.g. [Russell and Norvig,
2010, P 590]), methods of approximate inference have to be taken into account.
Particle Filtering is a model that allows an approximate inference. Particle Filtering
represents the current state at time step ¢ as a set of n state samples associated with
a scalar weight, where a higher weight indicates a more probable state according to
the transition model [Russell and Norvig, 2010, P 596-597]. Particle Filtering can
be augmented with Rao-Blackwellization in order to control the number of samples
[Krumm et al., 2003, Gustafsson et al., 2002]. Inference in Particle Filtering works
in three steps:

1. Forward propagation by sampling the next state from the N weighted samples
based on the transition model.

2. Weighting the new samples by the likelihood of the new observation to be
generated by this state.

3. Choosing new N samples from the current state distribution by sampling with
replacement, the samples are drawn randomly proportional to their scalar
weight.

[Liao et al., 2003] has proposed a mobility model based on Particle Filtering in an
indoor environment, but using Particle Filtering for an outdoor environment with a
very large state space (over thousands of kilometers) is intuitively intractable.

2.3 Location Acquisition Technologies

Mobile devices (such as mobile phones, PDAs, IPADS and laptops) carried by mobile
users may support one or more location acquisition technologies. Generally, depend-
ing on the spatial environment, location acquisition technologies can be divided into
two groups, namely local (indoor) and global (outdoor) environments.

2.3.1 Local Positioning Technologies

Local positioning technologies have a limited spatial coverage ranging from a few
meters to a few hundred meters. They can provide high resolution location data
with an accuracy of about 3 meters [Bahl and Padmanabhan., 2000]. Wireless Lan &
Bluetooth communications are examples of local positioning technologies. Although
both technologies can work everywhere without limitation, their main disadvantage
is the expensive infrastructure, which makes them less suitable for use in outdoor
environments.
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2.3.2 Global Positioning Technologies
Global System for Mobile Communication (GSM)

GSM is the communication standard for mobile phones. Mobile phones communicate
with GSM base stations covering an area called a cell. Each cell has its own unique
ID. The cells of a GSM net overlap, thus the same physical location is covered by
one or more cells. An important advantage of GSM is its presence in buildings and
urban canyons. Data collected over GSM suffer from their low resolution, because
each cell covers an area ranging between a few hundred meters (Urban) to a few
kilometers (rural). Each cell tower covers on average an area of approximately 3x3
km [Eagle et al., 2007, Eagle et al., 2007], which means each cell covers more than
one significant location, for example a cell in Seoul is found to contain on average
11 £ 2 locations [Chon et al., 2012].

Global Positioning System (GPS)

GPS increasingly is becoming the standard positioning technology. GPS guarantees
to provide location and time information anywhere, at anytime and in all weathers
when an unobstructed line of sight is available to at least four satellites. GPS needs
a very accurate clock to achieve a perfect estimation of position, because due to the
high speed of light, an error of about 1075 seconds corresponds to an error of about
300 meters in position estimation. GPS can estimate the position of a target with a
precision of about 10 meters. Differential GPS (DGPS) is an enhancement of GPS
which improves the precision of position estimation to about 10 centimeters. GPS
unfortunately suffers from signal loss in indoor environments (buildings) and urban
canyons [Zheng et al., 2009a].

Other Positioning Technologies

Other less popular system are the Russian Global Navigation Satellite System
(GLONASS), the European Union Galileo positioning system, the Chinese Com-
pass navigation system, and the Indian Regional Navigational Satellite System.

2.4 Significant Locations

Global positioning systems can specify any point on the earth using polar coordi-
nates consisting of latitude, longitude and altitude measurements. Prediction of next
location using the (raw) polar coordinates is sufficient for many uses such as vehic-
ular tracking, where the next location of a vehicle has to be predicted/calculated
within a few seconds. In other use cases where the prediction of location is being
made far into the future (hours or even days) such as human outdoor location pre-
diction, it is almost impossible to make an exact inference. Many use cases require
discrete representation of locations significant to the user such as "home”, ”work”,
"restaurant x”, etc. People spend almost 87% of their time at locations and only
13% moving between these locations [Chon et al., 2012]. Thus the locations where



32 2.4. SIGNIFICANT LOCATIONS

people do spend time are of great importance in understanding their mobility be-
havior. The main properties that characterize these locations are the amount of time
a user stays there and the frequency with which a user visits them. We refer to a
location, which is visited by a user with a certain frequency and a certain stay time,
with significant location of the user.

Google

Figure 2.3: The trails of a user in Munich Figure 2.4: The stay points contained in the
over a period of one year. trails from figure 2.3.

This section provides techniques for transforming raw (continuous) sequences
(trails) of GPS data points into sequences (trajectories) of significant locations de-
pending on the duration and frequency of visits. A trail consists of a sequence of
consecutive GPS data points of a mobile user. Each GPS data point is a time-
stamped record containing at least the current time and the polar coordinates of
the user (latitude, longitude and altitude) (figure 2.3).

The time elapsed between two consecutive data points is regarded as the stay
time of the user at the first data point. The stay time is the amount of time a
user spends at a specific location at a stretch before moving to another location.
According to the stay time, a trail contains two types of data points, namely stay
points with a minimum stay time greater than a threshold and transitory data points
for the remaining data points. A stay point is a location where the user spends an
amount of time which is at least greater than a certain threshold dt (figure 2.4). A
significant location is a location visited with a frequency of at least min Pt where
for each visit the user spends at least a time greater than the threshold ét.

GPS measurements are not precise and contain an error up to 10 meters, therefore,
the location logged by the mobile device is not necessarily the same, even if the mo-
bile user stays at exactly the same location. Thus a clustering algorithm is necessary
for classifying the stay points to a set of the user’s significant locations. The tran-
sitory data points have a relatively small stay time, therefore they don’t represent
significant locations. Further, leaving the transitory data points out of consideration
reduces both complexity and misclassification of the clustering algorithm.

2.4.1 Significant Location Detection

Clustering algorithms are techniques for partitioning sample data into subsets (clus-
ters). Samples falling into the same subsets exhibit similarities among themselves
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compared to elements in other subsets. Clustering algorithms vary according to the
sample data available and the selected similarity measurements. The following cri-
teria are important in the choice of the correct clustering algorithm [Duda et al.,
2001, P 517-522]

e Number of clusters - whether the number of clusters in the sample data is
known a priori

e Size & structure of the cluster - whether the cluster has a certain size or
structure

e Similarity measurement - the similarity measurement used to assign a data
point to a cluster

e Category labels of the sample data - whether the cluster centers are known

Each clustering algorithm uses a criterion function that has some of the above
criteria as input and optimizes one or more of the remaining criteria. In the case of
the number of clusters as input, the criterion function is a function that optimizes
the centers of the cluster uq, pa, ..., f4;-
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Figure 2.5: The significant locations of the Figure 2.6: The most frequent trajectory of
user with a stay time of five minutes (using the user (home - bus stop - subway - work -
DB-Scan with € = 10 meters and minPt = 3). subway - bus stop - home).

Figure 2.5 shows the detected significant locations for a user in Munich using trails
over a period of one year and a DB-Scan as a clustering algorithm, figure 2.6 shows
the most frequent trajectory of the user.

2.4.1.1 k-Means Clustering

K-means clustering is a procedure for finding a vector g1, po, ..., 4; with k means
(centers) representing k clusters in the sample data, where k is known (or guessed)
a priori. The criterion function is a function that minimizes the Euclidean distance.
If the number of clusters in the sample data is provided, a maximum likelihood
procedure can be used to compute the k-means as follows:
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Initially k& data points are chosen randomly from the data set, these represent
the centers of the k clusters. The Euclidean distance to the k centers is calculated
for each data point in the data set, the data point is assigned to the cluster with
the minimum FEuclidean distance. After assigning every data point to a cluster,
the centers of the k clusters are calculated and the procedure is repeated until
convergence, for example when the cluster centers stop changing.

[Ashbrook and Starner, 2003] proposed a variation on the k-means clustering al-
gorithm that solves the drawback of knowing k a priori. The algorithm uses the
cluster size as an input parameter. Instead of k the algorithm uses a radius r and a
point from the data set. The clustering procedure is defined as follows:

At each iteration, a data point from the data set is chosen as the center pu; of the
i-th cluster. All the points in the data set that are within the radius r from the u;
are assigned to that cluster. At the end of the iteration the center y; is calculated
from the data points assigned to that cluster and the next iteration is started. This
process is repeated until p; stops changing. p; is added to the list of the detected
clusters, all the data points within r from u; are marked with a label and no longer
need be considered. The procedure is repeated until all the data points in the data
set are labeled with a cluster label and we are left with a vector of cluster centers

M1y U2, -eey g

2.4.1.2 Online Clustering

The previous algorithms assume availability of a full data set prior to the start of the
clustering algorithm. In lots of cases comprehensive data is not available, for example
in the case of memory lack or when the clusters need to be used while the data
streams in. Therefore, algorithms that need the number of clusters to be provided a
priori are unsuitable. Furthermore, algorithms that depend on determination of the
cluster centers are very sensitive to online changes because even very small changes
can cause the whole vector of cluster centers to change. A generic approach called
leader-follower clustering solves the drawbacks of knowing a priori the number of
clusters or the minimum number of data points within a cluster [Duda et al., 2001,
P 517-522] as follows:

Given a set of candidate clusters C, a similarity criterion, a learning rate such as
the minimum number of data points in a cluster, and a threshold o, each new data
point can be assigned to a candidate ¢; € C' if the similarity value of the data point
to the candidate ¢; € C' is smaller/greater than the threshold . The candidate ¢; is
assumed to be a cluster if its size exceeds the learning rate.

[Kang et al., 2004] proposed the time based clustering algorithm, which is another
variant of the k-means algorithm, which can be used online. The algorithm has two
parameters, r is radius of the cluster the same as the variant of [Ashbrook and
Starner, 2003], the second parameter is the minimum stay time dt at a cluster. The
algorithm works as follows.

While a mobile user stays at a significant location, the mobile device logs coor-
dinates near to the center of that significant location. As soon as the user begins
to move away from the significant location, a few smaller clusters are formed, but
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do not form a significant location, because their stay time is less than dt. A new
cluster is formed as soon as enough consecutive data points within a radius r are
logged and when the sum of their stay times exceeds Xt; > dt. Online Clustering
has the disadvantage of not considering the frequency of visit while determining the
significant locations of a user.

2.4.1.3 DBSCAN

Density-based Spatial Clustering of Applications with Noise (DBSCAN) was first
proposed by [Fster et al., 1996]. It has two input parameters, € is a distance thresh-
old for the maximum distance between two neighboring data points of the same
cluster, n is the minimum number of neighboring data points in the vicinity (within
a distance threshold €) from a certain data point. The algorithm is based on the
notion of density reachability is as follows:

A data point p; is directly density-reachable from a data point p; if the following
two conditions are true:

e The distance between p; and p; must be within the threshold |p; — p;| <€

e p; has at least a set N of neighbors containing at least |[N| > n elements within
e distance, i.e. Vp € N, |p— pi| < e

Two data points p; and p; in a chain p;, pi41,pit2, ..., Dj—2,Pj—1,p; of data points
are density-reachable if p;1;,1 is directly density-reachable from p;i;. Two data
points p; and p; are density-connected if there is a third data point pj such that
both p; and p; are density-reachable from py,.

A cluster is a subset of data points C' that fulfills two conditions. First each pair
of data points p; € C' and p; € C'is density connected. Second a data point is a part
of the cluster, if it is density-connected to any data point in the cluster. C' is called a
density-connected set and the data points in C are called core data points. All other
non-core data points are considered to be noise, thus DBSCAN can handle noisy
data. The output of the algorithm is a set of clusters fulfilling the aforementioned
conditions.

2.5 The Choice of a Mobility Model Approach

The quality and performance of a location predictor is highly dependent on the
underlying mobility model, hence the choice of a proper approach for the mobility
model is a critical issue and must be carefully considered. In addition to performance
a set of selection criteria exists, which comes in part from the requirements of the
application domain and in part from the properties (strengths and limitations) of
the underlying mobility model approach. In addition to performance, these criteria
form a framework for the evaluation of the mobility model
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2.5.1 Requirements & Scopes

The scope of next location prediction and the requirements, that should be fulfilled
by the chosen mobility model in this thesis are presented below

e At any point in time ¢, the model should predict the next significant loca-
tion of a mobile user, i.e. the location of a user’s next stay after leaving their
current location. The time of the movement between two significant locations
l; and l; depends on the stay time of the user at the starting location /;. The
stay time varies between a few minutes to a few hours and in some cases even
a day or longer, thus the model should exploit regular patterns over various
time-scales in order to predict the next significant location of the user up to
one day in the future. Note - both cycle transitions (a user is at a location and
remains there) or non-significant locations between start and destination lo-
cations of a movement (such as any point in space on the way to a destination
location) are not subjects of prediction and thus are left out of consideration.

e Extensibility - the model must be extensible, to allow for the incorporation
of more features such as features from temporal and social contexts, mobile
sensor data, calendar etc. Further, the model must be able to capture the
conditional interdependency between the included features.

e Trainability - as already mentioned in the introduction, the duration of lo-
cation data storage is a critical issue for privacy. Mobility models that need a
large amount of training data reduce the user’s acceptance of LBS. Further-
more, such mobility models are hard to retrain if the mobility behavior of a
user changes due to a move for example. Finally it must be kept in mind that
the availability of sufficient training data is a critical issue and it involves a
great deal of expense.

e Complexity - a low complexity so that the model can be rendered on mobile
devices with possibly limited CPU and storage capacities.

2.5.2 Design and Evaluation Criteria

Memoryless mobility models and all random mobility models are not able to learn
the mobility patterns of a mobile user from the user’s location history, further they
produce movement paths that are not realistic for human mobility behavior (as
stated earlier), hence they do not fulfill the above requirements. Mobility models
based on exact inference are able to predict the future location of a mobile user for
a few seconds or a few minutes into the future. Due to the requirement that the
model has to predict the next significant location of the user, which might be hours
or sometimes a day in the future, these models are not appropriate candidates. It
is almost unfeasible to reliably predict the exact location of a user further into the
future for more than few minutes.

Mobility models based on DBN approaches are good candidates because they can
handle the uncertainty that arises due to measurement errors, and due to predicting
far into the future as well. DBN approaches are able to find patterns of an arbitrary
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dimension in the location history of the user. Nevertheless, these models have critical
features that have to be well considered. The critical features of DBN approaches
expand the evaluation framework for our mobility model.

2.5.2.1 Feature Inclusion

The inclusion of new features is a critical issue of many mobility models based on
DBN approaches, because adding new features to the state space causes an expo-
nential increase in the number of states and the size of the transition matrix, which
in turn increases the need for more observations and causes the emission matrix
to grow accordingly [[Krumm et al.. 2003]. Adding new features to the observations
causes a rapid growth in the size of the observation space, each of which needs an
estimation of its probability given the state of the model p(F|X), thus the emis-
sion matrix grows exponentially and again the need for more training data increases
accordingly.

2.5.2.2 Context Length (Order)

Mobility models based on DBN approaches use conditional probabilities of the form
p(g|s) in order to predict the next state g of the model, where ¢ € ¥ is chosen from
the alphabet of the model ¥ (labeled states), s € XV represents the current context
and n = |s| is the length of s and is referred to as the order of the model. The
order of the model correlates with the number of patterns the model can detect,
the higher the order, the higher the amount and the length of possible pattern. The
size of the transition matrix of an Nth-order mobility model grows exponentially
with the increasing order of the model |S|V x |X|. The use of a higher order has the
disadvantage of increasing the need for more training data [Begleiter et al., 2004].
Successful training of mobility models such HMM and FOMM usually requires a very
large amount of training data [Abe and Warmuth, 1990] (as cited by [Begleiter et al.,
2004]). Insufficient training data causes both the transition and emission matrices
to be sparse, thus these mobility models suffer from the so-called cold-start and
zero-frequency problems.

2.5.2.3 Zero-Frequency

Cromwell’s rule suggests avoiding the assignment of a prior probability of 0 or 1 to
a hypothesis (Except when applied to statements that are logically true or false).
Otherwise, the influence of any evidence, no matter how strong, on the posterior
probability is nullified (by Bayes’ theorem, the posterior probability is forced to
be 0 or 1). The rule of succession introduced by Laplace suggests defining a mass
for the probability of an unseen event in order to be able to adjust the situation
once evidences for that event appear [Zabell, 1989]. This problematic is well-known
in literature as the zero-frequency problem. Many mobility models based on DBN
approaches (including HMM) contravene Cromwell’s rule and suffer from the zero-
frequency problem. These mobility models need a massive amount of training data
to alleviate the impact of the zero-frequency problem [Abe and Warmuth, 1990].
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2.5.2.4 Training & Adaptability

The training problem of mobility models based on DBN generally (and HMM specif-
ically) is to find an approximation for an unknown probability distribution. Training
mobility models based on DBN approaches is known to be computationally demand-
ing, for example [Abe and Warmuth, 1990] has shown that HMM is not trainable in
a polynomial time in the alphabet size unless RP = N P. Furthermore, none of the
known learning algorithms can find the exact parameters, rather a local maximum
solution. Therefore, selection of the initial parameters is of eminent importance in
order to find an approximation near the true probability distribution. Selection of
the initial parameters typically requires a deep understanding of the problem do-
main. It is questionable as to whether the performance gained after training the
model is significant in comparison with that from the initial parameters chosen. As
stated earlier in section (2.2.3.3), it is rare that the learning algorithm converges
to the true probability distribution, therefore some of the parameters such as the
"hidden” part of HMM just complicate the model unnecessarily [Ron and Singer,
1996].

Human mobility is highly dynamic due to the explorative nature of human beings
and due to the continuous changes in their lives, which affect their mobility ex-
tremely. Both continuous learning and the adaption of a trained mobility model to
new situations should be a priority consideration when designing a mobility model.
Adapting many mobility models based on DBN approaches to new situations re-
quires great effort and in many cases even a long and arduous journey of retraining
the model, especially when using ”hidden” parameters for learning mixed probability
distributions.

2.5.2.5 Missing Data Handling

Construction of an optimal solution based on machine learning approaches, can
be achieved if the full probability structure of a problem is known [Duda et al.,
2001, P 54-56]. Training data may contain errors. The errors have various sources
such as sensor errors (non-response or sensor defect), time, human mistakes (leaving
some questions unanswered, not recording every movement, shutting down wearable
devices or forgetting to charge a device) or errors in interpretation of the data by
experts. These sources of errors lead to either complete data records being missing
for a period or some features of the data being absent (especially when using multiple
sensors). Fixed order mobility models require all features to be present at any time
t, therefore they are very sensitive to missing data, especially when a higher order
is used. Therefore, the treatment of missing data is of great importance, so that the
model can achieve the desired performance.

A well-studied missing data handling method is data imputation [Rubin and
Schenker, 1986, Raghunathan et al., 2001, Elliott and Stettler, 2007, Horton and
Lipsitz, 2001, Little, 1988, Little and Rubin, 2002, Wu et al., 2004, Timm et al.,
2003]. Imputation can be done based on estimating the missing values (based on the
probability distribution of the missing attributes), or through adding new weighted
examples of a sample that contains missing values. Interpolation (for estimating
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complete records which are absent), mean or most frequent values (for estimating
the missing fields or the missing complete records) [Little and Rubin, 2002, Little,
1988] are a few methods for data imputation.

Handling missing data can provoke another drawback, namely overfitting, when
the model describes the noise instead of describing the underlying relationships.
Pruning (for example in decision trees) is an approach to reduce the risk of overfit-
ting. The basic idea behind pruning is to simplify the induced hypothesis. Simplifi-
cation is done by reducing the number of features to be used in the model. Reducing
the number of features may lead to a reduction in the number of patterns the model
can detect thus decreasing the model’s performance. Therefore many mobility mod-
els based on DBN approaches suffer from a dilemma. On the one hand, as many
features as possible should be used to detect as many patterns as possible, on the
other hand, the use of many features increases both the need for training data and
sensitivity to missing data.

2.6 Prediction by Partial Matching (PPM)

PPM belongs to the set of general-purpose prediction algorithms based on Vari-
able Order Markov Models (VOMM) over a finite alphabet ¥ [Begleiter et al.,
2004]. VOMMs are also referred to as Variable Order Bayesian Networks VOBN
or Context-Specific Bayesian Networks (CSBN). In contrast to Bayesian Network
(BN) models, which predict the value of a random variable ¢; € ¥ at any time step
t based on conditional probabilities of the form P(q|s = (¢t—n, ..., q—1)) depending
on subsets of random variables s = (g—n, ..., ¢t—1) of a fixed size n = |s|, in VOMM
models these subsets may vary based on the specific realization of observed variables
in the training data called the context s (hence the term CSBN), where n represents
only an upper bound for the size of a context |s|. Thus VOMM can exploit patterns
of variable sizes [Begleiter et al., 2004].

The use of variable orders reduces the dependency of the model on the size of
the training data and the sensitivity of the model to missing data. It has been
stated in [Begleiter et al., 2004], that although VOMM models are less expressive
than HMMs, some of the VOMM algorithms ”enjoy tight theoretical performance
guarantees, which in general are not possible in learning using HMMs” [Begleiter
et al., 2004]. Further, VOMM models are structurally simpler than HMMs, which
makes them amenable for analysis and easier to train.

A key application for VOMM is lossless compression, but it can easily adapted
to be used for (location) prediction [Begleiter et al., 2004]. We use an adaptation
of Prediction by Partial Matching (PPM). PPM is an instance of general VOMM
that outperformed other instances in a comparative study by [Begleiter et al., 2004].
VOMM approaches generally use a tree structure to alleviate the problem of transi-
tion matrix sparseness. Let N be the order of the model, then the tree has a maximal
depth of N 41 and each path in it defines a subsequence of symbols appearing in the
training data. Fach node of the tree is labeled with a symbol ¢ from the alphabet
> and has a counter ¢ for bookkeeping the number of occurrences of the context
constructed through concatenating all the symbols from the root of the tree to that
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specific node.
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Figure 2.7: The prefix-tree of a PPM VOMM tree using the training sequence ”acdabcbdbcbd-
abacbdabadc” from the location history of a user. The alphabet of the model is the set of symbols
occurring in the training sequence, namely (X = {a,b,c,d}). The colored paths in the tree repre-
sent the first three maximum sub-patterns of the training sequence, namely acd, cda and . The
sub-pattern occurs three times in the training sequence, thus the counter of the corresponding
node is set two 3.

Figure (2.7) shows an example PPM VOMM tree (also called prefix-tree), which is
constructed by training an order two PPM VOMM model with the training sequence
”acdabcbdbcebdabacbdabadc” from the location history of a user. The alphabet of
the model is the set of symbols occurring in the training sequence, namely (X =
{a,b,c,d}). Each node of the tree is labeled with a symbol from the alphabet and
the corresponding counter for bookkeeping its occurrence. Each node represents a
subpattern constructed by traversing the tree from the root to that node. The nodes
on level one represent sub-patterns of length one, the leafs represent maximum sub-
patterns of the model of length N + 1, where N is the order of the model. The first
three maximum sub-patterns of the training sequence are colored, namely acd, cda
and . The subpattern occurs three times in the training sequence, thus the
counter of the corresponding node is set two 3.

2.6.1 Training PPM VOMM

The context s; of the original PPM VOMM described in [Begleiter et al., 2004]
has a length of N, where N is the order of the underlying Markov model. At each
time step during training phase, we insert a path of length N + 1 into the tree
according to the current context s; and the symbol that appears after this context.
During the following time steps a new context evolves by appending the symbol



CHAPTER 2. LOCATION PREDICTION BASES FOR SPATIAL DEPENDENCY 41

that appeared after the previous context s; to its end and removing the first symbol
from s;. According to this process, the contexts at two consecutive time steps have
n — 1 symbols in common [Begleiter et al.. 2004]. This process is repeated until the
end of the sequence.

According to the above process, training the PPM VOMM tree effectively corre-
sponds to instantiating or updating node counters in the tree. Assuming an order of
n = 3 and a subsequence ABC'D from the training data, all the counters along the
path from the root € to the node labeled with last symbol D have to be incremented
(s = ABC).

2.6.2 Prediction Using PPM VOMM

Prediction using PPM VOMM estimates the conditional probability p(g|s) for a
symbol from the alphabet ¢ € ¥ appearing after the context s of length |s| = N.
PPM VOMM predicts the symbol ¢ that maximizes the probability argmax p(q|s)
as follows. At each time step, the algorithm starts traversing the tree looking for a
path matching the current context s;, having the length |s,| = n. If no matching
path can be found then the algorithm escapes iteratively to find a path matching a
maximum sub-pattern s;. of the current context s;, by removing the first symbol,
that means s;; = bs;, where b is any symbole from the alphabet b € .

To alleviate the drawbacks of the zero-frequency problem, PPM defines an escape
mechanism as in [Begleiter et al., 2004]. For all symbols that have not yet appeared
after context s, the escape mechanism assigns a probability mass P(escape|s). The
remaining mass 1 — P(escapels) is distributed between the symbols appearing after
context s. Equation (2.10) determines the probability of any symbol ¢ occurring
after context s recursively.

P(qls) if g e,
Plals) = { P(escapel|s) P(q|suf(s)) else (2.10)
where Y is the set of symbols appearing after context s, suf(s) denotes the longest
suffix of s. The probability of any symbol appearing after an empty context |s| = 0 is
P(qle) = ﬁ Hence, PPM VOMM is able to assign a probability mass to any symbol
independently of its occurrence in the training sequence. For symbol ¢ and context
s, let C'(sq) be the counter that counts the occurrences of sq, equations (2.11) and
2.12 are estimations of both probabilities P(g|s) and P(escapels) respectively:

_ C(sq)
|25 + Zgrex, C(s¢)

P(q|s) (2.11)

B =4
S+ Syen, Cls0)

P(escape|s) =1 — Z P(qls) (2.12)

qeEY;s

The escape mechanism is a technique to deal with the zero-frequency problem. The
summand |¥;| in the denominator of eq. (2.11) and (2.12) is a Laplace estimator-
like mass for assigning a probability mass to observation sequences that does not
appear in the training sequence [Bapierre et al., 2011]. Thus PPM VOMM does not
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contravene Cromwell’s rule (compare with the rule of succession in general statistics
[Zabell, 1989]) and can deal with symbols ¢ ¢ 35, where ¥4 is the set of all symbols
appearing after context s. More clearly, 3 is the set of already known symbols that
have occurred after the context s, and it does not contain the new emerging symbol
q.

A further important advantage of PPM VOMM is that training and prediction do
not have to be separated, the simple mechanism of instantiating and updating PPM
VOMM allows the model to be trained and tested simultaneously, which indeed
significantly helps to alleviate the drawback of the cold-start problem, as well as
to increase the adaptability of the model when the mobility behavior of the user
changes.

2.7 Empirical Results

We evaluated the PPM VOMM model proposed in the previous section using two
different datasets, namely the GeoLife [Zheng et al., 2009b, Geo, 2013a] and the
Reality Mining [Eagle and Pentland, 2006] datasets.

2.7.1 GeoLife Dataset

The GeoLife dataset contains the location histories of 153 users over a period totaling
2 years between April 2007 and May 2010 (the dataset has been updated recently
and now contains 183 users over a period totaling 3 years between April 2007 and
August 2012 [Geo, 2013a, Geo, 2013Db]). The dataset is very dense because for almost
91% of the data points, a pair of consecutive data points are either 1-5 seconds or
5-10 meters of each other [Geo, 2013b]. Each data point is a time-stamped GPS
record containing at least the absolute GPS coordinates (latitude, longitude). The
dataset contains 69,679 trails. A trail is a sequence of consecutive data points without
interruption. On average, the dataset contains ~ 150,000 GPS records per user (table

(2.1)).

’ Type ‘ All ‘
# Data Points: 22825083
# Users: 153
# Trails: 69679
Av. Data Points per User: | 149184

Table 2.1: Data points and user statistics.

The data points were collected using different GPS loggers with different data
formats, thus pre-processing is needed to convert the different formats to one unified
format. In a second pre-processing step we eliminate the transitory GPS-records
between two stay points. A stay point is a location where the user spends a period
of time greater than a threshold dt as stated earlier.
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2.7.1.1 Stay Point Detection

Prior to stay point detection, we group consecutive GPS records of the same trail
that occur within a radius smaller than a threshold (dd) to one single data point
p. Let SP = {ppn,pn+1, .., Pnti} be the set of consecutive GPS records of the same
trail that occurs within dd. The time the user spends at SP is the time elapsed
between p, and p,+;. The coordinates of SP are set to the average coordinates of
the data points. The dataset contains 11,254, 785 data points when setting dd = 10
meters. SP is a stay point only if the time elapsed between p,, and p,; is greater
than dt. Note: GPS capable devices suffer from signal loss inside building and in
urban canyons, thus the time elapsed between two consecutive data points p; and
Pi+1 is considered to be the stay time of data point p;. The stay points yield locations
where the user has spent a period of time greater than &t.

At 0 10 20 30
# Data Points: 11254785 | 48985 | 38125 | 32586
# Users: 153 127 121 116
Stay Time Rate: 100% 98.7% | 98.0% | 97.0%
# Trails: 69679 44896 | 36254 | 31496
Av. Stay Points per User: | 73561 323 254 217

Table 2.2: User and stay point statistics using dd = 10 meters.

On average a user spends most of their time at a few locations, almost 99.0% at
locations with a minimum stay time of five minutes ¢ = 5 as to be seen in table
(2.2). The number of stay points depends on the choice of 6, for example, for ¢ = 10
the number of stay points is 48,985, which corresponds to 0.44% of the total number
of data points (table (2.2)), thus detecting the user’s significant locations based on
stay time leads to a huge reduction in the amount of data to be processed.

According to our definitions in section (2.4), the stay time as a single classification
feature is insufficient for detecting all the significant locations of a user. A further
classification is needed for detecting the significant locations of the user.

2.7.1.2 Significant Location Detection

Stay points need to be further classified according to the frequency of visits to the
same location in order to reduce the amount of false positive and false negative
classifications. The stay points need further comparison to classify different stay
points to the same physical location. As stated earlier, GPS is known to have an
error of < 10 meters, even if the user stays at exactly the same location. Thus
stay points within a distance smaller than a threshold e are assumed to belong to
the same single location (note - stay points need not be consecutive, they need
not even to belong to the same trail). Setting € to a high value results in merging
many neighboring locations to one single huge location, thus the detected locations
are coarse grained compared to setting € to a smaller value. Setting € to a low value
causes one and the same location to be detected multiple times as different locations.
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Significant locations are visited frequently by a user, the frequency of visit n varies
according to the type of location. A user visits their home and work locations very
frequently, whereas they visit their favorite bar, restaurant, boutique or a swimming
pool in their neighborhood with a lower frequency. The dental practice or a favorite
Christmas market with an even lower frequency. Setting the frequency to a high
value has the consequence of not detecting significant locations visited with a low
frequency, but on the other hand setting the frequency to a low value leads to high
false positive classifications, because an outlier like a traffic light at an intersection
may be detected as a significant location. We aim to detect as many significant and
fine grained locations as possible even if they are visited with a low frequency. On
the other hand the detected locations should contain as few outliers as possible.

Density based clustering DBSCAN as introduced previously in section (2.4.1.3)
can detect locations of an arbitrary shape and has the ability to detect outliers, there-
fore we prefer DBSCAN for detecting significant locations. The parameter min Pt is
the parameter that indicates the minimum number of neighbors a stay point must
have within a radius smaller than € inside a cluster in order to be assigned to this
cluster. Otherwise the stay point belongs to another cluster or it is considered to
be an outlier. We fix the value of the parameter minPt = 2, i.e. a stay point SF;
belongs to a significant location I, if SP; has at least two neighbors inside [. Table
(2.3) shows the number of detected significant locations with different parameter
configurations for €, §¢ and the minimum frequency with which a user visits a lo-
cation [, so that [ can be considered a significant location. The number in braces
represents the average frequency of visit for the detected significant locations.

Min. Stay Time (6t) ¢ equency (minPt) 2 5 10
10 3535 (6.0) | 485 (29.4) | 231 (55.0)
30 3888 (7.6) | 784 (28.5) | 362 (54.2)
10 Minutes 50 3997 (8.2) 900 (28.2) | 425 (52.6)
10 2660 (6.3) | 372 (30.5) | 186 (54.7)
30 2821 (3.1) | 615 (29.0) | 295 (53.4)
20 Minutes 50 2904 (8.7) | 700 (28.8) | 340 (52.3)
10 2247 (6.4) | 328 (30.4) | 157 (56.6)
30 2331 (8.5) | 542 (28.8) | 263 (52.5)
30 Minutes 50 2386 (9.1) [ 605 (29.1) | 303 (51.5)

Table 2.3: The Results DBScan started with different parameter settings (e, minPt and dt).

The amount of time spent at the detected significant locations varies according to
the parameter settings, a user spends on average 82.85% of their time at locations
identified with the parameter setting (6t = 30, ¢ = 10, minPt = 2) and 87.95%
with the parameter setting (0t = 10, ¢ = 50, minPt = 2). On average for all
the parameter settings, the users spend 85.6 & 1.7% of their time at the detected
significant locations, which is entirely in accordance with the findings in [Chon et al.,
2012]. This means the mobility of a user is predictable for almost 85.6% of the time

if the mobility model is able to predict their significant locations.
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2.7.1.3 Prediction Accuracy

The number and the frequency of visits to the significant locations varies according
to the parameter settings, hence the prediction accuracy varies accordingly. In order
to reduce the effect of significant locations with high stay times such as home and
work locations, we ignore cyclic transitions for the calculation of prediction accuracy.
Each correct prediction is weighted equally, no matter how long the stay time is.

Min. Stay Time (5t) | _ equency (minPt) |, | 5| 4
10 504 | 61.6 | 67.8

30 19.3]59.5]65.0

10 Minutes 50 10.1]59.5 | 64.6

10 52.6 | 64.3 | 70.0

30 53.162.7|67.9

20 Minutes 50 52.7 | 61.9 | 68.6

10 55.2 | 68.7 | 754

30 54.964.3|71.3

30 Minutes 50 54.5|64.2 | 71.2

Table 2.4: Prediction accuracy in percent for the GeoLife Dataset.

Table (2.4) shows the prediction accuracy for different parameter settings of the
clustering algorithm. The prediction accuracy varies between 49.1% and 75.4%.

Google maps provides functions for finding the nearest natural address to specified
geographical coordinates (Longitude/Latitude) [goo. 2013]. We applied our mobility
model to the sequence of natural addresses visited by each user. An average abso-
lute improvement in accuracy of 0.03 could be achieved by making use of Google
maps’ geo-coding service. The improvement can be attributed to the fact that some
addresses cover a large area, such as building complexes of a university campus. In
fact, we found that multiple clusters were assigned to the same natural address. This
result demonstrates that the clusters have a finer granularity than natural addresses.
Therefore we decided to use the clusters for subsequent evaluations.

For further analysis we fixed the parameters to (6t = 10, minPt = 5, = 10). Table
(2.5) shows the statistics of the significant locations detected using this parameter
setting.

2.7.2 Reality Mining Dataset

The Reality Mining dataset [Fagle and Pentland, 2006] was collected from 100 users
over the course of nine months. The dataset contains location information in form
of GSM cell tower IDs. Each cell towers covers on average an area (cell) of 3 x 3
km [Fagle et al., 2007, Eagle et al., 2007]. In order to guarantee total coverage, the
same area is covered by multiple cell towers, thus a mobile phone can be observed by
different cell towers even if the user stays at the same location. The dataset contains
a user specific label for the cell towers that contain significant locations of the users.
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y 5t = 10, minPt = 5,¢e = 10

# Users: 127

# Significant Locations: | 3,535

# Stay Points: 21,292

Av. Visits per Location: | 6.02 + 6.49
Av. Visits per User: 167.65 + 194
Av. Locations per User: | 27.83 4+ 27.6
Av. User Entropy 1.57 + 0.43

Table 2.5: Visits and location statistics with parameter setting dt = 10, minPt = 5,¢ = 10.

The use of user-specific labeling for the cell towers is advantageous because it allows
supervised learning, thus errors that occur due to clustering are excluded. Table
(2.6) shows some of the statistics for the GSM records for all and for labeled towers.

’ ‘ All cells Labeled cells
# Users: 90 7
# Cells: 32656 1632
# Labels: - 958
Stay Time Rate: 100% 75.77%
# Data Points: 2536 034 1105004
Av. Data Points per Cell/Label: | 77.66 + 131.8 | 1415 4+ 2212
Av. Data Points per User: 28495 + 14234 | 14350 4+ 8633
Av. Label per User: - 12.44 £+ 8.44
Av. User Entropy - 1.48 + 0.43

Table 2.6: Observations and location statistics of the Reality Mining dataset.

A user in the Reality Mining dataset spends on average 75.77% of their time
at locations labeled by them, which is around 10% less than the time spent by
an average user in the GeoLife dataset. The reason for the reduced stay times at
significant locations is the supervised detection of significant locations. Long stays
at non-significant locations such as waiting in traffic jams are excluded by the users
themselves, whereas such stay times may be included in the GeoLife dataset, for
example when the users are repeatedly stuck in traffic jams at the same location on
their usual route to work/home.

The locations in the reality mining dataset unfortunately are very coarse because
each cell covers a wide area, the user is expected to be at a location when they are
observed by a labeled cell tower, even if they are just in the vicinity of that location.
In addition, a cell tower can cover multiple locations, but has only one label, thus
the user can be mistakenly expected at a location.

2.7.3 Performance Analysis

[Mathew et al., 2012] has proposed a mobility model based on a hidden Markov
model, the mobility model was evaluated using the GeoLife dataset. The perfor-
mance of their mobility model was 13.85% for the correct location and 26.4% when
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the correct location was in the top five most probable locations. The performance of
hidden Markov models has also been addressed by [Asahara et al., 2011] and found
to be poor for location prediction.

[Eagle and Pentland, 2009] has proposed a work based on principal component
analysis (PCA), the performance of the model is evaluated using the Reality Mining
data set. Given the behavior of user in first 12 hours of a day, the model is able
to predict the behavior of the user in the remaining 12 hours of the day with an
accuracy of 79% [Eagle and Pentland, 2009].

[Ashbrook and Starner, 2003] has proposed a mobility model based on a naive
Markov model. Unfortunately the authors have not reported any evaluation results,
but a similar mobility model has been proposed by [Yu et al.. 2006], the mobility
model is based on a hybrid Markov model and achieves a performance of < 75%.
The authors acknowledge that order n Markov model achieves a good performance,
this motivated us to implement the order n naive Markov model ourselves in order
to compare the performance of our PPM VOMM to. We use the performance of the
aforementioned mobility models as bench marks for the performance of the PPM
VOMM model.

2.7.3.1 Size of Training Data

The availability of sufficient training data is a critical issue of predictive models
based on probabilistic reasoning. The acquisition of training data itself is critical
because it is associated with considerable effort and cost. Further, a mobility model
with strong dependency on the size of training data is less adaptable, hence less
applicable to domains with rapidly changing dynamics such as human mobility. The
danger is that the dynamics of the domain change faster than the model is trained,
which in turn leads to a poor prediction accuracy of the model.

Dataset - Training Data % | o 1 075 | 0.5 | 0.25 | 0.0
Mobility Model

GeoLife FOMM 52.01 [ 48.29 | 43.72139.13| 0.0

PPM VOMM 61.63 | 61.57 | 61.51 | 61.56 | 60.60

Reality Mining FOMM 81.58 | 80.09 | 78.54 | 77.39 | 0.0

PPM VOMM 81.02 | 80.80 | 79.82 | 79.75 | 75.90

Table 2.7: Prediction accuracy in percent vs. size of training data, the order in all cases was set
to two.

In order to investigate the dependency of both FOMM and PPM VOMM on the
size of the training data, we varied the training data during multiple test trials on
both GeoLife and the Reality Mining datasets. The ability of PPM VOMM to be
trained and tested simultaneously is a key property that makes PPM VOMM less
dependent on the size of the training data. Table (2.7) shows that the accuracy of
PPM VOMM drops off by 1.03% and 5.13% for both Geolife and the Reality Mining
datasets respectively when the amount of training data is reduced from 90% (10%
test data) to 0% (100% test data). Reducing the amount of training data from 90%
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to 10% drops the accuracy marginally on both datasets, therefore we can conclude
that PPM VOMM is indeed substantially less dependent on the size of training data
compared to FOMM. FOMM cannot be trained and tested simultaneously. When
the amount of training data is reduced from 90% to 10%, the accuracy of FOMM
drops off considerably from 52.01% to 39.13% on the GeoLife dataset, which means
a reduction of about 12.88%. FOMM loses on average 8.03% of its accuracy on the
Reality Mining dataset when the size of training data is reduced from 90% to 10%.

2.7.3.2 Context Length (Order)

A critical issue when using mobility models based on probabilistic reasoning is
the context length of the model (order). The length of the context is an indica-
tion of the degree of memory of the model, it points to the number of previous
states/observations that influence the current state/observation of the model. Table
(2.8) shows the prediction accuracy of FOMM and PPM VOMM for both Reality
Mining and GeoLife datasets for varying model orders. The prediction accuracies
for the GeolLife dataset illustrate clearly the effect of the growing order, the PPM
VOMM is significantly less sensitive compared to FOMM because of the variable
order of the model. A symbol, that has not yet observed in the training data causes
n consecutive false predictions in the FOMM mode. Whereas due to the variable
order of PPM VOMM, possible false predictions due to unseen symbols are bound
by [1, n]. Whenever a context s of length n is not detected in the training data,
PPM VOMM escapes to the next lower order by removing the first symbol of the
context s. Two-sided unpaired T-tests for the varying orders confirm the signifi-
cance of the improvements using PPM VOMM compared to FOMM (T-test values
0.0014,8.1 %+ 1077, 3.5 % 107°,4.6 » 10~° for order 2, 3, 4 and 5 respectively).

Order
Dataset Mobility Mode 2 3 4 5
FOMM 43.67 | 33.48 | 25.95 | 19.84
GeoLife PPM VOMM 61.51{61.85|60.54 | 59.98
FOMM 78.54 | 78.13 | 76.68 | 74.17
Reality Mining PPM VOMM 78.97 | 78.34| 77.2 | 75.0

Table 2.8: Prediction accuracy in percent of both FOMM and PPM VOMM using different order,
the training size was set to 0.5

The prediction accuracies for the Reality Mining dataset are stable for both
FOMM and PPM VOMM compared to the GeoLife dataset for the following rea-
sons. The significant locations of the users in GeoLife are biased due to unsupervised
clustering of the raw GPS measurements. The significant locations in the Reality
Mining dataset, however, are unbiased because the users have labeled them them-
selves. Further, the locations in the GeoLife dataset are finer grained than the GSM
cells in the Reality Mining dataset. It is more difficult to predict finer grained loca-
tions than cells of size 3 x 3 km. That is also why the average prediction accuracy
for the Reality Mining dataset is considerably higher than the prediction accuracy
for the GeoLife dataset. Generally, the accuracy of PPM VOMM is higher compared
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to FOMM, the relative improvement in accuracy on the Reality mining dataset is
~ 1% and varies on the GeoLife dataset between 41% and 200%.

In order to be sure that the improvements are not due to artifacts of the GeoLife
dataset, we applied PPM VOMM to the MDC dataset [Laurila et al., 2012]. The
MDC dataset is also GPS-based and the locations are finer grained and more precise
than GSM cells [Laurila et al., 2012]. The raw GPS data is transformed into symbolic
locations, each symbolic location covers a radius of 100 meters. The sequence of
significant locations contains every symbolic location where the user has spent at
least 20 minutes. FOMM achieved an accuracy of 42.72%, whereas PMM VOMM
achieved 52.72%, which is about a degree of magnitude better than FOMM, the
relative improvement in accuracy is even 23.4%. The performance of PPM VOMM
on the MDC dataset is considerably less than its performance on the GeoLife dataset,
because the MDC dataset does not consider the frequency of visit while detecting
significant locations, thus the average number of locations per user is significantly
higher 66.304+33.90 compared to the GeoLife dataset 27.834+27.60. We use the MDC
dataset in another context in chapter 6. Therefore we continue our evaluations using
the GeoLife dataset in this chapter.

2.7.3.3 Zero-Frequency

The number of patterns detected in a dataset depends on both the size of training
data and the order of the underlying mobility model. Observations made for the
first time during the test phase are problematic and lead to poor performance of the
mobility model. Zero-frequency is a well-known problem of models based on proba-
bilistic reasoning that is closely related to new observations that are not yet seen in
the location history of the user. An unseen observation, for example, occurs when
a user visits a location for the first time, which can always happen due to the ex-
plorative nature of human beings, therefore the consequent problems are inevitable.
Although zero-frequency is unavoidable, its negative side-effects can be alleviated
by the choice of the proper mobility model.

The negative side-effects of visiting a new location are exacerbated by the order n
of the underlying mobility model. The new location is part of n different consecutive
contexts s, each of which has a zero-frequency, therefore the negative side-effects
are increased multiplicatively by the order of the mobility model. As stated earlier
the PPM VOMM uses an escape mechanism during the test phase to alleviate the
effects of zero-frequency. Although the PMM VOMM model (at least until now),
similarly to HMM and FOMM, is unable to predict the new location, it does have
two advantages compared to HMM or FOMM. The escape mechanism of PPM
VOMM allows assignation of a probability mass to unseen contexts and its variable
order allows predictions using a lower order when prediction is not possible using
the higher order. Therefore PPM VOMM is able to predict parts of the following
n — 1 contexts.

Setting the order to two and the amount of training data to 0.5, 23.73% of the
contexts in the GeoLife data set occur only during the test phase, of which 48.84%
could be correctly predicted. That corresponds to a 0.1159 overall absolute improve-
ment in accuracy compared to FOMM (~ 65% of the total improvement in accuracy
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Figure 2.8: The distribution of absolute improvements in accuracy (y-axis) over the hours of work
days (x-axis) due to alleviating the negative impact of zero-frequency. The size of bubbles indicate
the amount of unseen contexts.

of 0.1784). This result impressively demonstrates the advantages of both variable
order and the escape mechanism of PPM VOMM.

The amount of unseen contexts during the hours of a work day are plotted in
figure (2.8). Most of the unseen contexts (by looking at the size of the bubbles)
occur during two time intervals. The first interval is in the morning hours between
7 and 9 a.m. when people are usually on their way to their work places. Users seem
to visit new locations during these hours. An explanation for this could be short
stops for coffee/snacks at coffee shops, keeping doctor’s appointments or visiting the
authorities. The second interval is around the evening hours when people usually
leave their work places and possibly explore new locations like a shopping mall, a
bar or restaurant before going home.

Unlike work days, the distribution of known contexts over the hours of weekend
days (by looking at the size of the bubbles) exhibits a smooth increase that reaches
its peak between 9 and 11 p.m. as can be seen in figure (2.9). Users appear to be
most explorative during the afternoon and evening hours at the weekend. Indeed
this behavior can be generalized to apply to most people, not only the users in this
dataset. Because people conduct their free-time activities during the afternoon hours
of the weekend and then let the day end comfortably in a restaurant or a bar.

Accordingly, alleviation of the negative impact of zero-frequency improves the
accuracy of PPM VOMM during the hours of the day when people are most explo-
rative. Both figures (2.8) and (2.9) demonstrate the improvement in accuracy over
the hours of both work and weekend days. At this point we come to the conclusion
that PPM VOMM has significant advantages over HMM and FOMM which result
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Figure 2.9: The distribution of absolute improvements in accuracy (y-axis) over the hours of
weekend days (x-axis) due to alleviating the negative impacts of zero-frequency. The size of bubbles
indicates the amount of unseen contexts.

from the reduction in the impact of zero-frequency. Therefore, PPM VOMM can
possibly offset the advantages of the greater expressiveness of HMM, albeit consid-
erably simpler in structure and easier to train.

2.7.3.4 Number of Locations

The amount of pattern that can be found in the location history of a user depends
heavily on the number of locations that user visits. The higher the number of lo-
cations, the higher the amount of pattern. Therefore there is an interdependency
between the number of locations visited by the user and the mobility predictability
of that user. The mobility of users with a regular life, following a few regular pat-
terns containing a few locations is fairly predictable. The mobility of users who are
rather explorative in nature and love to experience new locations that are as yet
unvisited by them is less predictable. Hence the dependency of a mobility model on
the number of locations is an important evaluation criterion. The aim is to increase
the mobility predictability of users who visit lots of locations.

The prediction accuracies of both FOMM and PPM VOMM show strong negative
correlations with the number of locations visited by the users. Figure (2.10) illus-
trates these negative correlations. Pearson’s correlation coefficient r = —0.43 shows
a strong negative correlation, Spearman’s rank correlation coefficient p = —0.59
shows an even stronger negative correlation with probability of error P(e) < 0.0.
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Figure 2.10: The number of locations visited by the users shows a strong negative correlation
with the accuracy of both FOMM (r = —0.43,p = —0.59, P(¢e) = 0.0) and PPM VOMM (r =
—0.52, p = —0.69, P(¢) = 0.0).

Although there is a strong negative correlation between accuracy and the number
of visited locations, the improvement in accuracy gained by using PPM VOMM in-
stead of FOMM shows a positive correlation according to Pearson’s correlation coef-
ficient r = 0.19, and also a strong positive correlation according to Spearmann’s rank
correlation coefficient p = 0.44 (figure (2.11)). PPM VOMM outperforms FOMM on
all scales, but markedly for explorative users with a high number of visited locations.
This result implies that PPM VOMM is less dependent on the number of locations
compared to FOMM. A two-sided unpaired t-test = 0.003 confirms the significance
of the improvement in accuracy.
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Figure 2.11: There is a positive correlation between the number of locations and absolute im-
provement in accuracy (r = 0.19, p = 0.44, P(e) = 0.0014).

2.7.3.5 Frequency of Visit per Location

The frequency of visit per location is a further measurement that influences the
predictability of locations and thus the performance of a mobility model. Locations
visited with a high frequency are more predictable than locations visited with less
frequency. Most mobility models are able to predict locations with high frequency
of visit such as home and work places, however a true indicator of the quality of a
mobility model is its ability to predict locations with a low frequency of visit such
as a favorite restaurant of the user.
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Figure 2.12: A positive correlation between frequency of visit per location and prediction accuracy
exists for both FOMM (r = 0.35, p = 0.32, P(e) = 0.0) and PPM VOMM (r = 0.26, p = 0.15, P(e) =
0.0034).

FOMM as well as PPM VOMM depend to a high extent on the frequency of visit
per location. This high dependency is confirmed by the strong correlation between
frequency of visit per location and prediction accuracy, the value of both correlation
coefficients are r = 0.35, P(e) = 0.0 and p = 0.32. Figure (2.12) demonstrates the
positive correlation, PPM VOMM outperforms FOMM significantly for locations
with a low frequency of visit. The accuracy of both models becomes similar as the
frequency of visit per location increases.

Figure (2.13) shows the relationship between frequency of visit per location and
improvement in accuracy. Improvement in accuracy decreases as the frequency of
visits per location increases. This negative tendency is confirmed by both negative
correlation coefficients (r = —0.11, p = —0.003, P(e) = 0.79). A two-sided unpaired
t-test confirms the significance of the improvements 3% 10~7. We conclude from the
above results that PPM VOMM can detect patterns with a low frequency and thus
can detect more patterns in the location history of a user.
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Figure 2.13: There is a negative correlation between frequency of visit per location and absolute
improvement in accuracy (r = —0.11, p = —0.003, P(e) = 0.79).

2.7.3.6 Entropy

The two previous measurements illustrate the mobility predictability when taking
both number of locations and the frequency of visits per location into account.
Despite a high number of visited locations or a low frequency of visits per location,
the mobility of a user might still be predictable to a considerable extent, for example
when the location history of the user contains a few dominant locations with a very
high frequency of visit and many locations with a very low frequency of visit. In
order to combine both previous measurements we calculate the Shannon entropy
for each user. The Shannon entropy quantifies the measure of uncertainty in the
probability distribution of a random variable [Russell and Norvig, 2010, Page 703].

The Shannon entropy for a user whose location history contains many locations
with similar frequencies is high, which means that the uncertainty of predicting
the future location of the user is high, since no location has a significantly higher
probability than the others. Indeed, the prediction accuracy of both FOMM and
PPM VOMM negatively correlates with the entropy values to a very high extent.
Both correlation coefficients r = —0.74 and p = —0.69 confirm the very strong
negative correlation. Figure (2.14) plots both prediction accuracy and entropy. It
clearly shows that PPM VOMM outperforms FOMM for all entropy values, with
the tendency increasing as the entropy increases.

Figure (2.15) plots the improvement in accuracy with entropy. The plot demon-
strates the tendency of improvement in accuracy to increase as entropy increases.
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Figure 2.14: A negative correlation between entropy and accuracy exists for both FOMM (r =
—0.74, p = —0.69, P(e) = 0.0) and PPM VOMM (r = —0.86, p = —0.80, P(e) = 0.0).

Both correlation coefficients = 0.43 and p = 0.50, P(¢) = 0.0004 clearly confirm
this tendency. The above results repeatedly confirm the advantages of PPM VOMM
compared to FOMM. PPM VOMM can better predict the mobility of highly entropic
users with an explorative nature.
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Figure 2.15: The plot shows a positive correlation between entropy and absolute improvement in
accuracy (r = 0.43, p = 0.50, P(e) = 0.0004).



Chapter 3

Improving Location Prediction
based on Temporal Context

As we have seen in the previous chapter, the location history of a user contains many
spatial patterns, but many mobility patterns depend on both location and time. The
spatial context helps detect frequent spatial pattern in the location history of the
user, the inclusion of temporal context helps detect the returning intervals of a fre-
quent spatial pattern. For example, a user might visit every Tuesday and Thursday
evening after leaving their working location a fitness studio, and in the remaining
three working days they go home. Thus the spatial pattern "home - work - fitness”
studio has two returning intervals, namely Tuesday and Thursday evening. We refer
to the returning intervals with the periodicities of the spatial pattern. In terms of
predicting mobility, periodicity refers to patterns that recur after a certain period
of time elapses. Taking periodicities into account helps detect more sophisticated
patterns in the location history of a user. The inclusion of temporal context in the
mobility model helps increase the amount of pattern in the location history of the
user, thus contributing to improving the prediction accuracy of the mobility model.
Further, mobility patterns are subject to decay over time. Incorporating the decay
of mobility patterns at the design stage reduces the need for retraining the mobility
model.

Chapter summary: An introduction to spatial temporal and pure temporal pattern
is provided in section I. Related works on periodicity topics and temporal pattern
are presented in section II. Mining periodic pattern and methods for detecting peri-
odicities are discussed in section ITI. Section IV focuses on the inclusion of temporal
context into the extended PPM VOMM mobility model in order to detect spa-
tial, temporal or spatial temporal pattern. The performance of the extended PPM
VOMM model is evaluated in the last section V of this chapter.

o7
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3.1 Introduction

The mobility model provided in the previous chapter (2) is able to predict the future
location of an individual by focusing solely on the detection of frequent spatial pat-
terns of certain length. The length of each pattern is less than or equal to the order
of the underlying PPM VOMM mobility model. Focusing exclusively on uncover-
ing frequent spatial patterns hampers the prediction of patterns with low frequency.
Human mobility clearly exhibits temporal regularity, for example, we go home every
evening, regardless of our current or previous locations. Consideration of temporal
context and periodicities is of eminent importance in understanding and predict-
ing human mobility. Many patterns occur at a certain time interval, beyond which
they are not valid and therefore have a lower probability. Consideration of temporal
context allows the detection and prediction of more patterns thereby increasing the
accuracy of the mobility model.

The patterns may contain features related to the spatial or temporal contexts
or both. Both time and space allow the detection of various types of pattern. The
following pattern types can be distinguished:

e Pure spatial pattern is a pattern depending only on the sequence of loca-
tions visited by the user. Many locations are visited in a certain order, inde-
pendently of the time, for example in sightseeing scenarios or at a museum,
the order of visiting the various exhibits is always the same. A further example
would be a walk in the park is always followed by a visit to the cafe before
going home.

e Pure temporal periodic pattern is a pattern that depends only on time,
for example a user goes home every evening regardless of their current location.

e Spatial-temporal periodic pattern is a pattern depending on both time
and space. For example, a student visits the cafeteria at lunch time when they
are at the university, i.e. the visit to the cafeteria is dependent on both spatial
(university) and temporal (lunch break at 12:00 o’clock) context.

People are explorative in nature. They love to discover and visit new locations
whenever they have the opportunity to do so. Therefore, they often visit new loca-
tions, places where they have never been before. Predicting a visit to a new location
is very difficult, but it also complicates the prediction of further locations after this
visit, because a new location corresponds to n unseen patterns according to the
order of the underlying mobility model. Detection of pure temporal pattern helps
to predict the future location of a user, even if their current location has not yet
been seen in their location history. Furthermore, the detection of a spatial-temporal
periodic pattern helps to predict non-frequent patterns such as attending a yoga
course every Friday evening after work.

Frequent patterns are usually easy to detect and mostly less interesting and trivial
such as "home - work - home” pattern. The detection of less frequent patterns is
more interesting for service providers (Recommender Systems, intelligent advertis-
ing agencies) such as visiting certain shopping malls, locations associated with a
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certain activity etc. Thus the utility of detecting non-frequent patterns is consider-
ably higher [Ye et al.; 2009], hence taking temporal context into account is of great
importance for the utility of next location prediction.

Periodic Pattern Mining goes beyond considering only the order of visits or the
time which elapses between two consecutive visits. Periodic Pattern Mining provides
a method for detecting the periodicities of repetitive events such as a frequent spatial
pattern. This chapter focuses on improving the prediction accuracy of our PPM
VOMM model by detecting periodic patterns of the above types and integrating
them into the PPM VOMM mobility model.

3.2 Related Work

The detection of periodic pattern has been the subject of many studies. Below we
present a few related works.

3.2.1 Arrival, Stay & Departure Times

An investigation into the check-in behavior of users based on large scale LBSN
data from an online LBSN platform called Foursquare with more than 12 million
check-ins, 700 thousand users and a time period spanning over 100 days conducted
in [Noulas et al., 2011a]. Users ”check in” at locations using an application on
their smartphones for example, by selecting a location from a list of locations the
application locates nearby their current location. The investigation demonstrates
how to reveal a spatial-temporal pattern. The analysis shows that the temporal
distance between two consecutive check-ins varies; 10% of Foursquare check-ins occur
within 10 minutes, 30% within 100 minutes and 20% within more than 2000 minutes.
Further the authors found that 20% of the check-ins occur within a spatial distance
of 1 km, almost 60% within 1-10 km and 20% within a spatial distance greater
than 10 m. Both spatial and temporal distances between consecutive check-ins are
important for uncovering any conditional dependencies between the locations of the
two check-ins. For example a high temporal is an indicator that the two check-ins
are not really dependent on each other.

The spatial and temporal mobility behavior of mobile users is investigated in
[Chon et al., 2012]. The authors found that users usually spend 85 + 3% of their
time staying at particular locations and in the remaining time they transit between
those locations. Users usually spend most of their time at a few frequent locations,
for example they spend on average 83 + 12% of their stay time at their top two
most frequented locations and almost 94 + 3% at their frequently visited locations.
On average the users visit between 8 and 35 locations with a minimum frequency
of three visits, these locations build only 11 4 2% of the total number of locations
visited by them. Further, the transitions of the users are mainly to their frequently
visited locations, more precisely 694 7% of their transitions are to frequently visited
locations. The authors found that the duration of a stay at a location correlates
positively with the arrival time at the current location, whereas the tendency to
return to previously visited locations depends on the degree of spatial memory of
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the model, i.e. the sequence of n last visited locations. Thus the mobility of users is
highly predictable when both the spatial and temporal context of their mobility are
taken into consideration [Chon ct al., 2012].

3.2.2 Life Pattern

Life Pattern is a mining framework proposed in [Ye et al., 2009]. The framework
is used for mining the individual life style and regular behavior of a user based
on raw GPS data[Ye et al., 2009]. The mining framework uses the notion of a life
pattern normal form (LP normal form) for a formal description of regularities in
the life style of an individual. Significant locations of an individual play a central
role in mining the life patterns of that individual. The mining framework therefore
comprises of two phases, namely a pre-processing phase for transforming the raw
GPS data into sequences of significant locations and a mining phase which uses
the output of the first phase for detecting regular life patterns in the movement
trajectories of an individual. The author distinguishes between different types of
life pattern. An atomic life pattern consists of one single significant location. A
sequential life pattern consists of a sequence of atomic life patterns such as ”home
- work - shopping mall - home”. A temporal life pattern considers both arrival and
stay time in an atomic pattern. An example of a temporal life pattern could be the
frequency of cases where a user arrives at 10 o’clock somewhere and stays for two
hours. A conditional life pattern contains both spatial and temporal constraints.
A life associate rule combines two conditional life patterns which may be defined
by rules such as, ” A user arrives at a certain location within a certain time period
with a certain probability whenever another conditional life pattern is true (such as
taking a certain route)”. The mining framework is able to detect a lot of patterns
in the location history of an individual. The detected patterns allow the prediction
of the future behavior/activity of an individual.

3.2.3 Conditional Random Fields

Significant location detection of a mobile user based on GPS traces and activity
inference is the subject of a work by [Liao et al., 2007a]. The authors make use of
temporal features such as divisions of the day (morning, afternoon, evening, etc.), the
day of week and the duration of the stay, as well as a geographical database that
contains the street map and locations near each street segment, and finally both
velocity and GPS traces of each user in order to infer the activities of that user.
The authors distinguish between two types of activity, namely low level activity
such as driving, walking, taking a bus, etc. and significant activity such as leisure,
shopping, visiting, working, sleeping, etc. They cluster the significant activities of
the user to location types and use these location types for detecting the significant
locations of the user. Both significant activities and locations of the user are inferred
using a statistically orientated mining algorithm, namely conditional random field
(CRF) [Liao et al., 2007a]. The proposed method of significant location detection
is independent of a priori knowledge about minimum stay time or the number of
significant locations. The authors claim that their method is more accurate than
other methods such as K-means or DBSCAN, although they evaluated their method
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based on GPS traces of four users collected over a period of one week. [Liao et al..
2007a).

3.2.4 Eigenbehaviors

[Eagle and Pentland, 2009] has proposed a statistically orientated mining framework
based on Principal Component Analysis (PCA) for inferring the daily routines of
users. The authors call the inferred routines the Eigenbehaviors of the user [Eagle
and Pentland, 2009]. Formally, Eigenbehaviors are eigenvectors of the covariance
matrix of behavior data [Eagle and Pentland, 2009]. The framework is evaluated
using the Reality Mining dataset [Fagle and Pentland, 2006]. Among other loca-
tion information (sequences of GSM cell tower IDs), the dataset contains the call
logs of mobile phones, Bluetooth observations, etc. long-term social context is gath-
ered in the form of a socio-matrix of relationships among the users and additional
information from questionnaires.

The behavioral dataset is transformed into a binary matrix of 113 vectors. Each
vector of the matrix represents a day containing 120 binary values for the 24 hours of
the day multiplied by five states, namely {home, elsewhere, work,nosignal,of f}.
The dimension of the vector (120) contributes to the dimension of the patterns in
the dataset. The n eigenvectors that have the highest eigenvalues are determined
from the binary matrix based on PCA. The eigenvectors represent the user’s set of
primary eigenbehaviors. The individual behavior of a user can be approximated by
a weighted sum of their primary eigenbehaviors.

The authors showed that 90% of the daily behavior of students can be charac-
terized by few eigenvectors (”eigenbehaviors”). For each user they calculated the
most populate eigenbehaviors in order to build the behavioral space of the user.
Given the behavioral space and the behavior of the user in the first 12 hours of
a previously unseen day, the behavior of the user within the remaining 12 hours
can be predicted with an average overall accuracy of roughly 79%. Furthermore,
generalities and group affiliations can be detected by combining the daily behavior
of multiple users. As stated earlier, the study distinguishes five very coarse states
(work, home, else, no signal and off ) and three groups of students. It is questionable
as to whether the model would accomplish the same level of accuracy using finer
grained states and applied to users other than students.

3.2.5 Next Place

NextPlace is a prediction framework based on a non-linear time series analysis pro-
posed by [Scellato et al., 2011a] and is a location independent predictor. For each
location [/; in the model it analyzes the arrival times of the day A; (i.e. the hours of
day) and stay times R; of each visit to that location [;. Nextplace calculates a tuple
of the form [;, a;, r; for each location, where a; is the average arrival time and r; is
the expected average stay time for location [;. The leaving time for a location can be
simply calculated by adding a; + r;. Once [;, a;, r; are determined for all significant
locations, NextPlace can predict the future location of the user at each time step t;
given At seconds as follows:



62 3.3. PERIODIC PATTERN MINING

1. If the condition a; < t; + At < a; + r; holds then location [; is predicted. If
more than one location holds the condition then a location is chosen randomly.

2. If the above condition is not satisfied for any location then the framework
checks whether the condition a; < t; 4+ At holds. If yes, the algorithm is started
again using k + 1 most recent visits until k exceeds a threshold. Otherwise the
predictor returns nothing, which means that the predictor believes that the
user is not at a significant location.

The performance of NextPlace was tested based on four datasets. A location is
considered to be significant for a user u if the user visits the location with a frequency
of at least 20 visits. The model can predict the location of a user with an accuracy
of 90%. The high accuracy of NextPlace is explained by the fact that only very
frequently visited locations are considered (20 times) making only short to mid-
term predictions ranging between a few seconds to one hour. Very frequently visited
locations can be predicted without any great effort, especially for short to mid-term
predictions. An extension of NextPlace has been proposed by [Vu et al., 2011] where
more temporal features are considered such as day types (i.e. weekend or work day)
instead of only considering the hours of the day.

3.3 Periodic Pattern Mining

The influence of time and the detection of periodic pattern is an important task of
(temporal) data mining and play an important role in solving problems and improv-
ing the quality of different services from various application domains. [Mooney and
Roddick, 2013] provides a comprehensive overview of different algorithms for mining
periodic patterns in spatial-temporal data. The following subsections present a few
related works on this topic.

3.3.1 Mining Sequential Patterns

Given a large dataset D of sequences of the form s1s2...s,,, where s; = i1,%2...,%p, is
an item set with m items, [Agrawal and Srikant, 1995] and [Srikant and Agrawal,
1996] have proposed methods for finding frequent patterns. A sequence s; is said to
be an m — sequence, i.e. it is of length m. A sequence s; = a1, az, ..., a, is contained
in another sequence s = b1, bs,...,b, with n < m when Va; € s;3b; € s; where
a; C b; and j <i. A sequence is maximal if it is not contained in another sequence.

The generalized sequential pattern (GSP) is an algorithm proposed in [Srikant and
Agrawal, 1996] using a sub-string tree structure to store all possible sub-patterns
of a maximal sequence and provide a counter to each node of the tree. Each node
counter indicates the frequency of the sub-pattern associated with that node. The
algorithm makes multiple passes over the dataset as follows. At the beginning, a
set of frequent 1 — sequence is generated, where the frequency of each 1 — sequence
exceeds a given mingupport. Each subsequent pass uses the frequent sequences found
in the previous step as a seed set and generates new candidate frequent sequences by
adding one more item to them. The candidate sequences with a frequency greater
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than mingsupport build the seed for the next pass. The algorithm terminates when
no frequent sequences can be found or when no further candidates can be generated.
The method works very efficiently and scales well in time O(mlogm) with m being
the number of items.

3.3.2 Temporally Annotated Sequences (TAS)

A sequential pattern mining algorithm has been proposed by [Giannotti et al., 2006],
which additionally considers the time elapsing between two consecutive item sets in
a sequence in order to temporally annotate the two item sets such as:

Where A, B, C are item sets with one or more items, the numbers above the ar-
rows represent the time elapsed between two consecutive item sets. The Temporally
Annotated Sequence (TAS) is used to detect frequent sequences in a dataset based
on 7 — Containment. A sequence T} is 7 — Contained in another sequence T if each
item set s; € T7 from the sequence T} is completely contained in an item set s; € 15
of sequence T with i < j and the difference between two corresponding temporal
annotations is less than a threshold 7. T is 7 — contained in D (Ty < D) if Ty < Ts
for some T € D. Given a set D of TUGS, a time threshold 7 and a minimum support
threshold s, € [0,1], T} is frequent in D if it is 7 — contained in at least a portion
of all T* € D greater than the threshold sy, ([Glannotti et al., 2006]).

3.3.3 Partial Periodic Pattern

The focus of Partial Periodic Pattern (PPP) is on identifying periodic sub-patterns
in the dataset instead of full cyclic periodic pattern [Han et al., 1999, Rasheed,
2011, Han et al., 1998, Sheng et al., 2006]. For example in a period of one week, a
user may visit a yoga course every Friday evening, but for the rest of the week may
exhibit no movement regularity. Algorithms that treat the dataset as an inseparable
flow of events (such as Fast Fourier Transform) do not allow the detection of partial
periodic patterns [Han et al., 1999].

Let X be the set of features that can be derived from the dataset at any instant
(for example, a set of temporal features), further let * be a ”don’t care” symbol that
can stand for any feature in X. A pattern s = s1, s2, ..., 5, is a non-empty sequence
of features with s; € ¥ U *. The length of the pattern |s| denotes the period of
the pattern. A pattern s is called a i-pattern if it contains the letters from X at 4
positions. A sub-pattern s’ = s1, 55, ..., 5, of s = 51, 82, ..., 5 is a pattern with s} C s;
for each s; # *. The confidence con fs is the number of occurrences of s in the dataset
divided by the total number of periods of length p. A frequent sub-pattern s’ of s is
a partial periodic pattern if its confidence exceeds a given threshold con fyin.

The max_sub-pattern tree hit set (MTHS) presented in [Han et al., 1999, Han
et al., 1998] is an algorithm for finding all frequent partial periodic patterns in a
candidate maximal sub-pattern C,,., of period p. The authors extract ¢, from
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the set Fj of all frequent 1-patterns. The root of the MTHS is set to ¢qz, €ach node
at level ¢ + 1 has one non-* letter missing from its parent node at level i. MTHS
contains all sub-patterns of C,q.. The set of sub-patterns with a confidence value
greater than con f,;, represents a frequent partial periodic pattern in the dataset.

DPMiner is a further partial periodic pattern mining algorithm that uses a density
based approach for identifying the 1-patterns (for period p) required to prune the
search space [Sheng et al., 2006]. Beside con fim, the algorithm uses an additional
parameter d,q, for identifying fragments with high density reachable occurrences
of a letter I; € 3. Two occurrences of the letter [; are considered density reachable if
the distance between the positions of the letter in both occurrences is less than d,;,q.
Once the dense fragments are identified then the minimum period of the fragment,
whose occurrence exceeds con fimin, can be calculated. The minimum period helps
to prune the dense fragments by considering only those fragments with a minimum
period less or equal to the period p. The dense region of the letter /; is simply the
union of all its pruned dense fragments. A k — pattern can be mined by intersecting
the dense regions of all letters in its item sets [Sheng et al., 2006].

3.4 The Inclusion of Temporal Features

Human mobility behavior obeys temporal regularities. Humans visit most of their
locations within defined time periods. The time span between consecutive visits of
a user to a location defines the periodic pattern according to which the user returns
to the location. A periodic pattern can be fully cyclic, for example, if we consider a
period of one day, a user goes home every evening. A periodic pattern can also be
partial (a sub-pattern of the full period), for example, considering a period of one
week, the movement behavior during work days and weekends differs significantly, a
user goes to their work place every morning on work days but not on weekend days.
Equally, the movement behavior of a user may differ on specific days of the week,
perhaps even during certain hours of a certain weekday, for example a user visits a
Spanish course after leaving work at location [ every Tuesday and Friday afternoon.

The temporal context of an observation consists of n temporal features. Including
temporal features helps detect less frequent patterns which occur during time periods
which are different from the time period of the frequent spatial pattern depending
on the current spatial context. For example, in the previous example, a mobility
model that does not consider temporal features will only predict frequent patterns
of the user and will fail to predict the location of the Spanish course. The model
will probably predict the most frequent location after work, i.e. the home location
of the user.

The movement behavior of human beings follows natural (day, week, month and
year) and cultural (weekend) periodic patterns. These periods are structured hier-
archically and match the structure of the PPM VOMM tree. The universal validity
of these periodicities (at least in Western societies) is generally accepted and does
not need further proof. Therefore we exploit these periodicities and integrate the
temporal context in our PPM VOMM mobility model. The hierarchical structure
of humankind periods, and the variable order of PPM VOMM allow detection of
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temporal regularities and periodicities on varying scales (e.g. monthly, weekly and
daily routines). Further, it allows pure temporal pattern to be detected when the
current spatial context of the user does not occur in their history, hence improving
the accuracy of the mobility model by predicting locations that obey only periodic
patterns such as going home every evening.

3.4.1 Spatial-Temporal PPM VOMM (ST PPM VOMM) Tree

The alphabet 3 of the PPM VOMM model in the previous chapter contains only
locations. In order to include temporal context we modify the tree and expand each
spatial node with a sub-tree formed by the temporal features determined from the
timestamps of the occurrences of the context s corresponding to that node. Each
node is labeled with a temporal annotation from the temporal feature corresponding
to that node. Let {F'1,F2,..F;} be the set of temporal features to be used. The
alphabet of the ST PPM VOMM model is the union of both spatial locations and
temporal features ¥ = X5 | Ltemp where Xy, are the location symbols and E¢epnyp =
U§'=1 F; the domain of all temporal features. Table (3.1) shows the features included
in the ST PPM VOMM model.

’ Variables ‘ Domain ‘ Description
Yioe {li,l2,...,1;} The set of locations visited by the user
A binary variable representing whether it is a
w {Wd, We} weekend day or a working day
D {Sun, Mon,...,Sat} | The day of week
The number of time slots calculated by dividing
SAt {51,52,...., 55} the hours of day by At, setting At = 1 means
the each hour of day represents a slot

Table 3.1: The features included in the ST PPM VOMM model, W, D and S2* build together

Etemp-

The extended model uses an inclusion semantic for implementing conceptual speci-
ficity, which allows the temporal features to be ordered in a manner such that the
temporal features build a hierarchy of the form Fy C Fj.... C F,,. According to this
inclusion semantic, F} represents the least specific feature (coarsest possible period
in the movement of the user) and F,, represents the most specific temporal feature.
The temporal feature F; subdivides the temporal feature F;_; into finer grained par-
titions of time (e.g. a day is sub-divided into 24 hours), thus the temporal futures
with a higher index ¢ represent more specific periods than temporal features F; with
a lower index j < 7.

We determine the temporal annotation A = (71, 7,...,7;)q with Vj : 7; € F}
for each spatial symbol (location) ¢ appearing in the training sequence. For ex-
ample, using the temporal features in table (3.1), a temporal annotation could be
(We, Sun, S3At, where SgAt is the third time slice of the day with At duration. Each
node in the tree (corresponding to a spatial symbol ¢ and a context path s) becomes
a temporal sub-tree with nodes labeled with temporal annotations according to the
temporal features used. Each node in the temporal sub-tree at level i has a label
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from the temporal feature F; and a counter indicating the occurrence of the sequence
sq fitting the temporal feature indicated by the label.

Figure (3.1) depicts an exemplary temporal sub-tree for a spatial node. The root
of the node represents a spatial node of the parent spatial tree. Each node of the
temporal sub-tree is annotated with a temporal feature. Assuming the use of work
or weekend day, day of week and hours of day as temporal features, a path represents
a temporal annotation like ”Work Day - Monday - S1¢” for a visit to location ¢ on
Monday at ten o’clock. The temporal sub-tree for a location ¢ that occurs only one
time at Tuesday 4:00 pm. in the location history is a linear list like ”(q, 1) - (wd, 1)
- (tu, 1) - (5167 1)”.

(q, 21)
(We, 5) (wd| 16)
(Sa’ 4) (Sul1) (Mo, 1) (Thu, 5) (Fr, 10)

(Ssh 1) (S2, 2) (S3, 3) (S4, 1) (Ss4)

(Se, 5)

(Ssf2)  (Ss|2) (S3,[1)

Figure 3.1: An example of a temporal context sub-tree. The root of the tree is spatial node, each
node is annotated with a temporal feature, a path in the tree represents a temporal annotation
like: Weekend - Saturday - 6 O’Clock. Each node has a counter ¢ for bookkeeping the occurrence
of location ¢ at the time specified by the node

3.4.1.1 Training ST PPM VOMM

The update mechanism for the standard PPM VOMM remains the same, for ex-
ample, given a spatial context sq and temporal annotations (Wd, Mon, Séﬁ)), all
counters along the spatial-temporal path must be incremented in exactly the same
way as in the PPM VOMM tree with one exception, if the stay time of the user at
a location ¢ spans over multiple time slices, all leaves corresponding to these time

slices must be incremented.
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3.4.1.2 Prediction Using ST PPM VOMM

The standard PPM algorithm can be used during the prediction phase, because
the inclusion semantic of the temporal features allows the use of periods of various
length without modification. Given a context s, a location ¢ and temporal features
(Wd, Mon, S{”) ST PPM VOMM algorithm performs as follows. Similar to PPM,
ST PMM VOMM traverses the tree according to the spatial context s in order
to find a child node labeled by ¢, if a path for the current spatial context s does
not exist, the algorithm escapes to a lower spatial order until a node is found, or
escapes to the node ¢ under the root of the tree. Once a node is found, ST PPM
VOMM traverses then the temporal subtree of that node according to the extracted
temporal features. When no node can be found according to the specific periodicity,
ST PPM VOMM escapes to a more general periodicity, for example, if no node
can be found according to the temporal features (Wd, Mon, 556)), ST PPM VOMM
escapes automatically to the more general periodicity given by the temporal features
(Wd, Mon). The algorithm continues escaping until a period is found, or escapes to
the pure spatial context given by the root node of the temporal subtree. The model
predicts the next location based on pure temporal patterns if the current spatial
context s is empty, because ST PPM VOMM then uses the temporal subtree of the
node labeled by the location g (whose probability should be estimated) under the
root of the spatial tree. Pure temporal patterns allow predictions even if the current
location of the user is unknown, for example when the user visits a shopping mall for
the first time after work, the pure temporal pattern helps detect the next location
of the user, namely their home location. The full joint probability p(g|s, A) can be
calculated according to equations (2.10) and (2.11) from chapter 2.

Next location prediction does not depend on fixed time intervals when predicting
the future location of the user, because the duration of stay at a location depends
on the arrival time at that location [Chon et al., 2012], which varies between a few
minutes to few hours or sometimes even more than a day. Further, it has been shown
in [Chon et al., 2012] that the tendency to return to a location depends solely on the
spatial order of the mobility model. It is therefore reasonable to assume conditional
independency between both temporal and spatial context s, the spatial-temporal
probability p(g|s, A) can then be rewritten according to equation (3.1)

P(qls, A) = P(qls) = P(q|A) (3.1)

where A is the set of temporal annotations corresponding to the current occurrence
of q. The probability p(q|\) can be calculated using the counters in the temporal
sub-tree of node ¢ under the root € of the ST PPM VOMM tree (equation 3.2).

- C(gN'T;
P(qg|\) = 3.2
(q’ ) |Zq)\/| =+ ETlequ,C(q)\lT/) ( )

where A = X7, for example, if A contains "work day - day of week - hours of
day”, then X' contains "work day - day of week” and 7; represents the hours of day.
ST PPM VOMM allows calculation of the full joint probability according to the
equation (2.11) and calculation assuming conditional independency between both
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spatial context s and temporal context according to equation (3.2). We evaluate
which of the two equations achieves a better accuracy later.

3.4.2 Drift Function

The life of every individual contains significant events that have a great influence
on their behavior. Some of these events cause changes in their long-term behavior,
including mobility patterns. Examples of such events are marriage, a move, the birth
of a child, a new job, a new circle of friends, etc. For these reasons, our mobility
patterns are subject to change over time. Mobility models based on probabilistic
reasoning are particularly vulnerable to these changes, because statistically it takes
a long time until the probability of a new pattern is higher than the probability of a
frequent pattern that has become invalid. During this time, the performance of the
mobility model worsens significantly.

The adaptability of the mobility model to changing mobility behavior of users
can be increased by using a drift function. With each non-occurrence of a mobility
pattern, the drift function causes the mobility pattern to decay faster. The drift
function has two parameters, the first parameter is a hyper-parameter « that controls
the degree of drift and the second parameter controls the time unit At¢ to which
the mobility pattern should decay according to «. With each non-occurrence of a
mobility pattern, the drift function causes this to decay to factor 1 — a after each
At time unit.

Let t; < t be the time of the last occurrence of the context s. Equation (3.3) shows
the drift function, which calculates at any point in time the degree of drift of context
s.

w(s,t) = (1 — a)t-t)/A (3.3)

where s is a spatial context, « is a hyper parameter representing the degree of drift
and At is the time unit after which the mobility pattern will decay. The unit of the
factor t — t; is set to the most specific temporal feature used in the mobility model,
namely At. t — t; is thus a multiple of Atf, the longer ago is the last occurrence of
a context s, the higher its decay. For example, if we use a temporal feature that
subdivides the time of the day into smaller time slices of 6 hours, then the counter
is drifted every 6 hours by factor (1 — «). The value of w(s, t) is always within the
interval [0, 1].

Upon receiving a new observation, each corresponding node in the VOMM tree
is incremented by multiplying the previous counter C(s) of the node by the drift
function and then incrementing it by one as shown in equation (3.4).

C'(s) = C(s) xw(s,t) + 1 (3.4)

Equations (2.11) and (2.12) must be modified in order to use the drift function.
Equations (3.5) and (3.6) illustrate the modifications.
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~ B C/(SQ) * w(SQ7 t)
P(q|s) = S + Sgen.C(sq) * w(sq, t) (3.5)

: p |2
P(escape|s) =1 — P(qls) = 26
( . qu:s ) 1Es] + Lgex,C(sq) xw(sq', 1) (3:6)

where w(sq,t) is calculated according to the last occurrence of context sq.

3.5 Empirical Results

The empirical results showed that the temporal feature D for the day of week has
only a marginal effect on the accuracy of ST PPM VOMM, consequently we decided
to use only the remaining two temporal features (A = (W, S)) where W = {Wd, We}
indicates the type of day (i.e. whether it is a work day Wd or a weekend day We)
and the temporal feature S®* that partitions the day into time slices of the size
At. We set At = 6, which partitions the day into four time slices(morning(S%G)),
afternoon(SéG)), evening(S?()G)) and night(SflG))). All the following empirical results
are based on the Geolife dataset.

3.5.1 Conditional Dependency

The empirical results showed that the temporal context conditionally depends on the
current location and not on the whole spatial context. The best accuracy of the ST
PPM VOMM for full conditional dependency between the temporal and the whole
spatial context was (66.2) with the parameter settings ((§ = 10,e = 10, minPt =
5)), order 2 and using 90% of the data as training data. However the model that
assumes that temporal context only depends on the current location (according to
equation 3.2) achieves a significantly higher accuracy of 68.9%, which corresponds
to an absolute improvement of 0.027 and a relative improvement of 4.1%.

The accuracy of ST PMM VOMM is higher compared to both FOMM and PPM
VOMM. The absolute improvement in accuracy of ST PMM VOMM when compared
to PPM VOMM is around 0.073 and it increases to 0.269 when ST PMM VOMM
is compared to FOMM, which corresponds to a relative improvement in accuracy
of 12% and 58% respectively. The significance of the improvements in accuracy is
confirmed by both two-sided paired and two-sided unpaired t-tests, shown in Table
(3.2).

T-Test type . . . .
Dataset Mobility Model two-sided Paired | two-sided Unpaired
FOMM 4.6 *107° 9.3*10°
Geolife PPM VOMM 0.037 0.075

Table 3.2: The results of the t-test analysis for both two-sided paired and two-sided unpaired t-tests
for showing the significance of the improvements in accuracies using ST PPM VOMM compared to
FOMM as well as PPM VOMM.
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3.5.2 Performance Analysis

In the following subsections we evaluate the performance of ST PPM VOMM by
comparing it to the FOMM as well as the PPM VOMM models from the previous
chapter.

3.5.2.1 Size of Training Data

ST PPM VOMM is as stable as PPM VOMM in terms of the size of training data.
Table (3.3) shows the prediction accuracies of FOMM, PPM VOMM and ST PPM
VOMM with varying amounts of training data. The accuracy of ST PPM VOMM
drops off to only 1.2% when reducing the amount of training data from 90% to
zero. Further, inclusion of temporal features causes ST PPM VOMM to detect more
patterns in the same amount of training data, namely spatial, temporal and mixed
spatial-temporal pattern. Thus, inclusion of temporal features further alleviates the
effects of the cold start problem. ST PPM VOMM does not even require training
data to achieve a higher prediction accuracy than FOMM and PPM VOMM both
trained with 90% of the data.

Training Data %
Dataset Mobility Model 0.9 | 075 | 05 | 0.25 | 0.0
FOMM 52.01 1 48.29|43.72139.13| 0.0
GeoLife PPM VOMM 61.63 | 61.57 | 61.51 | 61.56 | 60.60
ST PPM VOMM 68.9 | 68.7 | 68.9 | 68.5 | 67.7

Table 3.3: Prediction accuracies in percent achieved using different mobility models and varying
amounts of training data. The order of all models is set to two.

3.5.2.2 Context Length (Order)

The amount of possible pattern in the location history of a mobile user increases
when increasing the order of the underlying mobility model. Increasing the order
of a model increases the demand for training data. The amount of training data
correlates with the increasing order of the underlying mobility model. Increasing
the order of the model without more training data causes the accuracy of the model
to decrease.

Order
Dataset |\ 4 ility Mode 2 13 | 4] 5
FOMM 13.67 | 33.48 | 25.95 | 19.84
GeoLife PPM VOMM 61.51 | 61.85 | 60.54 | 59.08
ST PPM VOMM 68.87 | 68.51 | 67.57 | 66.86

Table 3.4: Prediction accuracies in percent when varying the order of the underlying mobility
model.
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Table (3.4) shows the results of all three mobility models when the order of the
mobility models is varied between two and five. Indeed, the accuracy of all models
decreases as the order increases. The accuracy of FOMM drops off from 43.67%
to 19.84% when the order of the model is increased from two to five. Similarly
to the PPM VOMM, the accuracy of the ST PPM VOMM exhibits only a slight
reduction of around 2%. The secret of the stability of both the PPM VOMM and ST
PPM VOMM lies in their variable order, the models automatically switch to a lower
order when no pattern can be found with the higher order. The escape mechanism
of the ST PPM VOMM, the variable order and the ability of the model to detect
spatial, spatial-temporal and pure temporal patterns causes the model consistently
to achieve high prediction accuracy.

3.5.2.3 Drift Function

The drift function turned out to have a positive influence on the performance of
the ST PPM VOMM. Setting the value of & = 0.007 maximizes the accuracy of ST
PPM VOMM to 70.15%. Using the drift function, the absolute accuracy is increased
by 1.29%, which corresponds to 1.87% relative improvement in accuracy. Setting
a = 0.007 means that the influence of a pattern on the mobility behavior of a user
disappears after a maximum of two years of non-occurrence.

3.5.2.4 Zero-Frequency

As discussed earlier in section 2.7.3.3, mobility models based on probabilistic rea-
soning suffer from the zero-frequency problem. Zero-frequency occurs when a new
context is observed during the prediction phase. The inclusion of temporal features
into the mobility model increases the amount of detected mobility patterns in the
location history of the user, because in addition to spatial patterns, spatial-temporal
as well as pure temporal patterns become detectable. The detection of more patterns
at the same time means detection of more sub-pattern (due to the variable order
of ST PPM VOMM). Hence, the prediction accuracy can be improved even if the
amount of training data remains the same.

As already mentioned in the previous chapter the GeoLife dataset contains 23.73%
new contexts, that were not seen during the training phase. ST PPM VOMM can
correctly predict 61.18% (56.44% without the drift function) of the unseen contexts.
This contribution corresponds to a total absolute improvement of 0.1467(58%) in
accuracy compared to FOMM, and 0.031(42%) compared to PPM VOMM (the
numbers in parenthesis represent percentages of total improvements in accuracy).
This result shows that including temporal context in the mobility model alleviates
the negative impact of the zero-frequency problem and thus contributes to significant
accuracy improvements confirmed by two-sided unpaired t-test values of 9 x 10724
when compared to FOMM, and 0.0045 when compared to PPM VOMM.

Figure (3.2) and (3.3) show the distribution of improvements due to alleviation of
the impact of zero-frequency over the hours of work days compared to PPM VOMM
and FOMM respectively. The size of each bubble indicates the amount of unseen
context during that hour. Most of the unseen contexts occur during the morning
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Figure 3.2: The distribution of absolute im-
provements in accuracy due to the alleviation
of the effects of zero-frequency problem over
the hours of work days compared to PPM
VOMM.

Figure 3.3: The distribution of absolute im-
provements in accuracy due to the alleviation
of the effects of zero-frequency problem over
the hours of work days compared to FOMM.

and evening hours before the users go to their most significant locations, namely
their work places in the morning and their homes in the evening. In the morning,
most improvement is achieved between seven and nine a.m. and drops off smoothly
towards the noon hours. Intuitively, the probability of arriving at a work place
decreases towards noon. Improvements in the evening increase smoothly beyond six
p-m. towards the late night hours, because the later the evening, the higher the
probability of going home. The distribution of improvements over the hours of work
days suggests that the improvements are achieved due to detection of pure temporal
pattern (independently from the current location of the user) such as going to the
work place every morning between seven and nine a.m. or going home at some point
in the evening, mostly between five and seven p.m.

Figure (3.4) shows the distribution of improvements in accuracy over the hours of
weekend days compared to PPM VOMM. Unlike work days, unseen context generally
occurs between 10-12 a.m., and during the evening hours between 8-10 p.m. The
improvement in accuracy compared to PPM VOMM has two dominating ranges,
the first range between 9-12 a.m., and the second range 6-10 p.m. The improvement
in accuracy in the morning increases smoothly towards the noon hours and reaches
its maximum around 12 a.m. The improvement in accuracy in the evening increases
smoothly and reaches its maximum at around 9-11 p.m. The distribution fits the
life of an adult at the weekend. During the morning hours, a person either goes
shopping (mostly on Saturdays) or to a brunch (on Sundays) and then goes home
afterwards. In the evening, the person visits restaurants or bars and during ”home-
coming” hours goes home. Once again we conclude that purely temporal patterns
are responsible for the improvements.

Figure (3.5) shows the distribution of improvements in accuracy over the hours
of weekend days compared to FOMM. The amount of unseen contexts and the
improvements in accuracy increases smoothly towards the late night hours when the
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the hours of weekend days compared to PPM over the hours of weekend days compared to
VOMM. FOMM.

users are most active. It demonstrates again the importance of the variable order of
ST PPM VOMM and the inclusion of temporal context for improving the accuracy
during the hours of day when people are most explorative and hard to predict.
Generally, ST PPM VOMM can alleviate the impact of zero-frequency during the
night hours on weekend days and during the morning hours of work days to a high
extent, i.e. by up to 85%.

3.5.2.5 Number of Locations

The relationship between the accuracy of ST PMM VOMM and the number of
locations visited by the users exhibits the same negative tendency as FOMM and
PPM VOMM. The accuracy of all models has a strong negative linear relationship,
confirmed by the correlation coefficients on figure (3.6). The accuracy of ST PPM
VOMM drops off when the number of locations increases, but to a lesser extent
than that of FOMM or PPM VOMM. Figure (3.6) shows the relationship between
the accuracy of all three models and the number of locations. It can easily be seen
from the slope of the fitted lines that the accuracy of ST PPM VOMM drops off to
a lesser extent. The linear dependency between the accuracy of ST PMM VOMM
and the number of locations is 21%, lower than PPM VOMM and almost 39% for
FOMM.
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Figure 3.6: A negative correlation between the number of locations and the accuracy exists for
FOMM (r = —0.43,p = —0.59, P(¢) = 0.0), PPM VOMM (r = —0.52, p = —0.69, P(¢) = 0.0) and
ST PPM VOMM (r = —0.47, p = —0.70, P(e) = 0.0002).

Although the accuracy of all three models drops off when the number of locations
increases, ST PPM VOMM has significant advantages over both FOMM and PPM
VOMM. The improvement in accuracy due to the inclusion of temporal features ex-
hibits a positive tendency with the number of locations (figure (3.7)). The improve-
ment in accuracy compared to PPM VOMM exhibits a positive correlation confirmed
by both r = 0.22 and p = 0.50, P(e) = 0.0. Both correlation coefficients are even
higher for the improvements in accuracy compared to FOMM, which confirms a
strong positive correlation with coefficient values r = 0.30, p = 0.55andP(e) = 0.0.
The above results show the importance of including temporal context in ST PPM
VOMM, because it improves the prediction accuracy of the mobility of explorative
users, despite a higher uncertainty due to visiting numerous locations.
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Figure 3.7: A positive correlation between the number of locations and absolute improvements in
accuracy using ST PPM VOMM exists compared to both PPM VOMM (r = 0.22, p = 0.50, P(¢) =
0.0002) and FOMM (r = 0.30, p = 0.55, P(¢e) = 0.0).

3.5.2.6 Frequency of Visit per Location

Similarly to PPM VOMM and FOMM; ST PPM VOMM depends to a very high
extent on the frequency of visits per location. Accuracy increases as the frequency
of visits increases. Figure (3.8) shows the relationship between accuracy and the
frequency of visit per location for all three models. The accuracy of all three mod-
els shows moderate to strong positive correlations confirmed by both correlation
coefficients. PPM VOMM achieves a higher accuracy for locations with a lower fre-
quency of visits compared to FOMM, but it achieves accuracies similar to FOMM
for locations with a higher frequency of visit. Unlike PPM VOMM, the inclusion of
temporal context in ST PMM VOMM leads to a consistently higher improvement
in accuracy for all locations, despite their frequency of visit. Thus ST PPM VOMM
has clear advantages over both FOMM and PPM VOMM.
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Figure 3.8: A positive correlation between the history size per location and the accuracy exists
for FOMM (r = 0.35,p = 0.32, P(¢) = 0.0), PPM VOMM (r = 0.26,p = 0.15, P(¢) = 0.0034) and
ST PPM VOMM (r = 0.29, p = 0.21, P(e) = 0.0).

Figure (3.9) shows the relationship between the improvements in accuracy and
the frequency of visit per location using ST PMM VOMM compared with both
PPM VOMM and FOMM. The improvements in accuracy compared to FOMM
show a negative tendency, which is confirmed by slightly negative correlation co-
efficient values of r = —0.06 and p = —0.10, P(¢) = 0.0536. The low correlation
coefficient values indicate that ST PPM VOMM achieves a consistently high per-
formance compared to FOMM, despite the frequency of visit. The improvements in
accuracy compared to PPM VOMM show a positive tendency confirmed by a slightly
positive correlation according to Pearson’s correlation coefficient and a strong posi-
tive correlation according to Spearman’s rank correlation coefficient. The inclusion
of temporal context in ST PPM VOMM increases the low improvement in accuracy
using PPM VOMM compared to FOMM, which again demonstrates the importance
of temporal context in next location prediction.
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Figure 3.9: A positive correlation between the average history per location and absolute im-
provement in accuracy using ST PPM VOMM exists compared to both FOMM (r = —0.06,p =
—0.10, P(e) = 0.0536) and spatial PPM VOMM (r = 0.06, p = 0.29, P(¢) = 0.0).

In order to underline the significance of the improvements in accuracy achieved
by the inclusion of temporal features in ST PPM VOMM compared to both FOMM
and PPM VOMM we conducted a t-test analysis. The results shown in Table (3.5)
underline the significance of the improvements compared to both FOMM and PPM
VOMM using both two-sided paired and two-sided unpaired t-tests.

T-Test Type . . . .
Mobility Model Two-Sided Paired | Two-Sided Unpaired
FOMM 1.8%107% 3.6%10728

PPM VOMM 0.0012 0.0024

Table 3.5: Frequency of visit per location: the results of the t-test analysis for both paired and
unpaired t-tests regarding the significance of the improvements in accuracy using ST PPM VOMM
compared to FOMM and PPM VOMM.

3.5.2.7 Entropy

The prediction accuracy of all three models statistically has a strong negative de-
pendency on the entropy of user. That is, the mobility of highly entropic users is less
predictable, because of the strong uncertainty associated with the next visit of the
user. The strong negative dependency is underlined by a very strong negative corre-
lation using both correlation coefficients r = —0.73 and p = —0.76, P(¢) = 0.0. The
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slopes of the lines for the three models in figure (3.10) show that the accuracy of ST
PPM VOMM decreases more slowly by a factor of 22.5% compared to PPM VOMM
and by a factor of 46% in comparison with FOMM. Thus the inclusion of temporal
context contributes to a slower loss in performance as the entropy increases. The
above results impressively demonstrate that ST PPM VOMM increasingly outper-
forms both FOMM and PPM VOMM with increasing entropy.
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Figure 3.10: A negative correlation between the entropy and the accuracy exists for FOMM
(r=-0.74,p = —0.69, P(¢) = 0.0), PPM VOMM (r = —0.86, p = —0.80, P(¢) = 0.0) and ST PPM
VOMM (r = —0.73,p = —0.76, P(¢) = 0.0).

Figure (3.11) plots the relationship between entropy and the improvements in
accuracy using ST PPM VOMM compared to both FOMM (Blue line) and PPM
VOMM (Red Line). Both lines show a positive tendency, the improvement in accu-
racy increases as the entropy increases. The tendency is statistically confirmed by
a strong positive correlation compared to PPM VOMM (r = 0.39, p = 0.55, P(¢) =
0.0) and a very strong positive correlation compared to FOMM (r = 0.61,p =
0.63, P(e) = 0.0).

Both the variable order and the escape mechanism of the standard PPM VOMM
combined with the inclusion of temporal features increase the predictability of the
mobility of highly entropic users. Low entropic users have a rather monotonous life
characterized by few routines. A property of routines is their regularity, which greatly
facilitates their prediction. Highly entropic users have a rather richer life with variety,
freedom from routine and tend to explore and experience new locations. Therefore,
prediction of their mobility is associated with great uncertainty. The location history
of highly entropic users contains fewer regular patterns, thus their mobility is less
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Figure 3.11: A positive correlation between the entropy and the absolute improvement in accuracy
using ST PPM VOMM exists compared to both FOMM (r = 0.61, p = 0.63, P(e) = 0.0) and spatial
PPM VOMM (r = 0.39, p = 0.55, P(e) = 0.0).

predictable. Although ST PPM VOMM is less expressive than HMMs and simpler
in structure, we believe that the properties already mentioned compensate for the
improvements in accuracy that could be achieved using highly expressive mobility
models (assuming that the non-trivial training of these models converges against
the true probability distribution).



80

3.5.

EMPIRICAL RESULTS




Chapter 4

Correlation Between Social
Network and Mobile Homophily

Homophily refers to the tendency of individuals to associate with similar individuals. Similar
individuals have in common features such as interests, beliefs, thoughts, locations, emotional
needs, goals, norms, etc. Mobile homophily refers to the tendency of similar individuals to be
interested in the same locations, thus it involves two measurements, namely social proxim-
ity and mobile proximity. The focus of this chapter is on showing statistical dependence (if
any) between social and mobile prozimity. Due to cognitive, emotional, spatial and temporal
limits, people cannot maintain of all their social relationships with the same intensity [Gra-
novetter, 2005]. Each user can have subgroups of strong social relationships, in which almost
everyone knows everyone else, thus the cohesion among the members of the same subgroup
is considerably higher compared to a subgroup of arbitrary selected friends. The correlation
between cohesive subgroups and mobile homophily is a further subject of this chapter.

Chapter summary: Section I provides a brief introduction in social networks, possibilities
arising through technological achievements and the growing interest in investigating the in-
fluence of social networks in real life phenomena in the last two decades. Section II contains
a formal description of social networks, their properties and interior structure. Further,
the section provides an introduction of various types of locally dense regions representing
cohesive subgroups, their properties, methods for their detection and a measurement for cal-
culating group cohesion. Section III provides concepts for calculating social prozimity among
users. Section IV contains an introduction to the propinquity effect and methods for calcu-
lating mobile prozimity. Section V presents some relevant works about the interplay between
spatial properties such as locations and distance and social networks. Section VI provides
an in-depth correlation analysis between social and mobile proximity based on data collected
from March to July 2012 from an LBSN platform called Foursquare. The section sets par-
ticular focus on the effects of propinquity and cohesive subgroups on the mobility behavior
of mobile users.
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4.1 Introduction

The behavior of a mobile user cannot be explained by focusing solely on the user’s in-
dividual properties defined for that individual (such as age, gender, etc.), but rather
by understanding the underlying social network to which the individual belongs and
by quantifying the amount of influence the social network exerts.

An individual’s mobility and other behavioral aspects are impacted by their social
network. Research into social networks has suffered from a lack of (real life) data,
both in terms of precision and quantity. Until recently, researchers used data from
questionnaires which had been answered by only a small number of respondents,
artificially created simulation data, or data collected within the course of research

projects ([Fagle and Pentland, 2006] and [Zheng et al., 2009a]) with a few hundred
test persons to investigate the structure of communications & social networks [On-
nela et al., 2007]. Such collections of data do not provide sufficient understanding of

the structure and properties of large social networks with millions of users or pro-
duce much insight into the interaction paths or tie strength between the individuals
in the social network.

Technological improvements and specially the increasing availability and acces-
sibility of social media opened up new opportunities of collecting huge amount of
real life data with millions of users and even more interaction/communication paths
between them. Social media allows users to interact and share with each other. This
has led to the formation of new online interaction and sharing sites such as Facebook
[fac, 2013], Twitter [twi, 2013], etc. Further, the pervasiveness of inexpensive and
precise location-acquisition technologies and their integration into mobile devices
has enabled new service platforms to be built which combine both social networking
and location-acquisition. Examples of location-based social networks (LBSN) are
Foursquare [fou, 2013] and Plazes [pla, 2013]. Through these platforms, users can
log their position into a central database and share their data with their friends.
Such platforms are ideal for investigation of the spatial properties of social networks
as well as the influence of social networks on an individual’s mobility.

Interest in social media has been growing since the mid 90s and recently the
focus has turned to LBSN. LBSN have opened up new perspectives for researchers
investigating the influence two interacting users have on each other and the resulting
change in their behavior. The mutual influence on the individual mobility of users
who are connected via a social network is the subject of this and the following
chapter. Whereas the history of an individual’s movements is sufficient to predict
locations that are frequently visited such as home or work, the social network of a
user provide valuable information which can be used to predict locations that have
been rarely visited or not yet visited by the user for the first time.

The concept of homophily states that individua tend to associate with others
who have similar interests, beliefs, thoughts, hobbies and also mobility [McPherson
et al., 2001]. We investigate the interdependence between mobile homophily and
social proximity in order to answer questions such as: Does the social proximity
between two users imply mobile proximity? Do geographical barriers or distance
have an influence on mobile proximity in the Internet age? Is there a correlation
between mobility proximity and group cohesion?
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4.2 Social Networks

A social network is a structure consisting of a set of individuals, i.e. organizations or
natural persons, and also the ties(dyadic) between those individuals. A tie represents
a social relationship between two individuals such as friendship, kinship, business
relationship, etc. Social Network Analysis (SNA) is the science of analyzing this
structure using a set of techniques and metrics, in order to find local and global
patterns in the social network.

[Moreno, 1951] developed sociometry as a qualitative method for measuring social
relationships in social networks. The most important innovation of Moreno was the
development of the sociogram, which is a graphical representation G of a social
network. The graph G = {V, E} contains a set of vertices V (individuals) and a
set of edges F, an edge e;; represents a tie between two vertices v;,v; € V. The
sociogram is a means that allows the systematic analysis of social networks using
a set of metrics on the relationships (edges F) among the individuals (vertices V),
the distribution of the individuals and (local) regions of high density in the graph
G. The following metrics are among those fundamental to SNA and of relevance for
this work:

Size |V|: is simply the total number of vertices in the graph.

Degree |N(i)|: If two vertices v;,v; are connected on the graph G then an edge
e;j € E exists and the two vertices are said to be neighbors of each other. Let N (1)
be the set of neighbors of vertex v; € V', the degree of the vertex v; represents the
size of its neighbors |N(7)| such that |N(i)| = |e;; € E,v;,v; € V.

Shortest Path or Geodesic Distance d(i, j): is the minimum number of edges
required to connect two vertices v, vj on the graph G [Cormen et al., 2001]. If two
vertices are directly connected, then their distance is one. If they are connected over
an intermediary vertex v, then the distance d(i, j) = 2 and so forth. The average
shortest path was popularized by the small world experiment conducted by Stanley
Milgram [Milgram, 1967]. The small world experiment states that the human society
is a small world, where any random pair of users is on average connected by a small
number of ties (hence the term six degrees of separation) [Milgram, 1967].

Density: is a property of the graph G regarding the proportion of ties | E| relative
to the total number of possible ties |V| x (|[V| — 1) [Xu et al., 2010], the density
increases if the average degree (| of the vertices increases. This measure quantifies
how complete the graph G is. In a complete graph an edge exists between two
arbitrary vertices, thus the density of a complete graph is equal to one.

4.2.1 Clustering Coefficient

[Watts and Strogatz, 1998] introduced this measure in order to determine, whether
a graph G is a small world network (by name analogy with the small world phe-
nomenon [Milgram, 1967]). Clustering coefficient is an elementary measure in social
network analysis and calculates the local density of ties among the neighborhood of
a vertex v. The (local) clustering coefficient determines regions of high local density
and thus is used to find the degree of cliquishness in a social network.[Hanneman
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and Riddle, 2011].

Real social networks are characterized by the tendency of their members to build
close-knit clumps with a high density of social connections, the various knit clumps
in turn are connected with few ties (weak ties). This tendency can be explained by
the principle of triadic closure which states that two friends of a user are also likely
to be friends of each other [Watts, 2004]. The clustering coefficient in real social
networks is considerably higher compared to randomly generated social networks
due to the triadic closure between its members [Newman, 2003, Milgram, 1967],
therefore it is a good indicator of the existence of a real social network.

A triangle eji|v;, v, € N (i), e € E between two neighbors of the vertex v; exists,
if an edge exists between the two vertices v; and v;. An open triplet consists of
three vertices that are connected by two edges, thus a triangle consists of three open
triplets. The clustering coefficient Cj is the relationship between the total number of
triangles and the total number of possible triplets in the neighborhood of a vertex
v;. The local clustering coefficient C; for a vertex v; quantifies to what extent the
vertex v; is likely to build a clique in its neighborhood

_ 2|ejk|vj,vk S N(i),ejk c E‘

Ci ki(ki — 1)

(4.1)

where k; = |N(7)] is the degree of vertex v;. The network clustering coefficient C
is calculated by averaging the local clustering coefficients C' = ‘71| ZviEV C; of all
vertices V' of the graph G, where |V| is the total number of vertices in the graph.
Note that equation (4.1) calculates the clustering coefficient in an undirected graph,
for directed graphs one needs to remove the factor two, because in directed graphs
eij # ej; and the total number of open triplets is thus k;(k; —1) instead of k;(k;—1)/2.

4.2.2 Cohesive Subgroups

According to modern social psychology, subgroups have different emergent features
and properties, which cannot be easily deduced from the dyadic relationships of the
group members. The most common properties that are agreed by many scientist
are: a small size of the group so that each pair of group members can communicate
directly without mediators [Homans, 2001], homogeneity of the group members with
respect to common goals, norms, thoughts, beliefs, a specific communication struc-
ture and finally an emergent group-awareness [U.Brandes and Erlebach, 2004, Fis-
cher and Wiswede, 1997].

A cohesive subgroup in social network is a tightly-knit clump with tight con-
nections and includes the following properties ([Balasundaram. et al., 2009] and
[Wasserman and Faust, 1994] as cited by [Groh, 2005]):

e Cohesion/Density: The density of ties in a cohesive subgroup is significantly
higher compared to randomly chosen graphs.

e Familiarity: Most of the members have ties with every other member of the
subgroup, in other words the subgroup contains few strangers.
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e Mutuality: Most ties in the subgroup are reciprocal.

e Compactness/Robustness: The average shortest path within the subgroup
is very short, which prevents the subgroup from being destroyed if some ties
are removed.

e Separation: Members of the group have more ties within the group than
outside.

A subgroup can be formalized as a subset U C V of the vertices of a social network
represented by the graph G(V, E).

4.2.2.1 Cliques

U is a clique if the subgraph G[U] induced by U is complete, which means for any
pair of users u;,u; € U a tie exists e¢;; € E. A clique U is maximal if it is not a
proper subset of another clique U’, i.e. U C U’ is completely contained in U’ and
a vertex vy, exists such as the vy € U’ and vg ¢ U [Luce and Perry, 1949]. A clique
U is maximum if there is no other clique U’ of a larger size|U| < |U’| in G. Cliques
are nested, because a clique of size n contains n cliques of size n — 1, and they are
robust in terms of member exclusion, because a clique without a member is still a
clique ([Wasserman and Faust, 1994] as cited by [Groh, 2005]). According to this
definition, a clique is an ideal cohesive subgroup with a prefect network diameter,
an average shortest path and a density of one.

The completeness restriction is very strict and makes the concept of clique imprac-
tical, because it makes a clique very sensitive to missing links. In real-life scenarios,
cohesive subgroups are not ideal and a few ties may not exist. Additionally, a few ties
may also be missing due to errors during data collection. Clique relaxation is there-
fore important to make a cohesive subgroup less sensitive to missing ties. Different
clique relaxation methods are based on the relaxation of one or more of the struc-
tural aspects of a clique, namely either distance, diameter or degree [Balasundaram.
et al., 2009].

4.2.2.2 Distance & Diameter-Based Relaxation

N-clique: Given a graph GG and a minimum distance n, the N-clique approach allows
a vertex v; to be a member of an N-clique, if the distance between v; and any other
member v; of the N-clique d(¢y(i,j) < n is less than n in the graph G. The distance
restriction of a clique U is relaxed in an N-clique so that d(¢)(i,j) < n,Vv;,v; € U)
[Luce, 1950].

N-cliques do not have meaningful complementary definitions [Balasundaram. et al..
2009]. They tend to find wiry and long subgroups instead of tight and discrete knits
[Hanneman and Riddle, 2005] because the distance restriction is with respect to the
global graph G and not with respect to the induced N-clique G([U]) (because the
neighbors N (j) of each vertex v; € U of a clique are also assigned to G([U])). More-
over, two vertices of an N-clique can be connected over other vertices, even without
these vertices having to be members of the clique [Hanneman and Riddle, 2005].
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N-clubs: The N-club approach restricts the diameter of the induced graph G([U])
to be less than n [Alba, 1973, Mokken, 1979].

N-clans: To overcome the drawbacks of N-cliques, the N-clan approach restricts
an N-clique to being maximal and the diameter of the induced graph G([U]) to being
less than n [Mokken, 1979], thus the N-clan approach is a minor modification of the
N-clique approach.

All the previous approaches are based on relaxing the distance restriction of U,
which is generally small in social networks [Milgram, 1967], thus they are less suit-
able for finding cohesive subgroups [Seidman and Foster, 1978] (as cited by [Bala-
sundaram. et al., 2009]). Moreover, these approaches are neither nested, nor closed
under exclusion, which makes them even less suitable for finding cohesive subgroups
[Everett, 1982] (as cited by [Kosub, 2004]).

4.2.2.3 Degree-Based Relaxation

N-plexes: The N-plex approach overcomes the drawbacks of distance-based relax-
ation by relaxing the restriction of a clique that any two arbitrary members of the
clique must be connected on the social network graph. Each member can have at
most n missing ties instead of being connected to all other members of the clique
[Seidman and Foster, 1978] (as cited by [Balasundaram. et al., 2009]). U C V is a
k-plex in G = (V, E) if [Ngqu(9)| = [N(@) NU| > [U] = kVv; € U [Seidman and
Foster, 1978] (as cited by [Balasundaram. et al., 2009]). K-plexes are nested and
closed under exclusion and they have a diameter less than or equal to two (as cited
by [[Kosub, 2004]). A K-plex U is maximal if it is not a proper subset of another
K-plex U’ so that all vertices v; € U are also contained in v; € U’ and the K-plex U’
have at least one more vertex than the K-plex U (as cited by [Balasundaram. et al.,
2009]).

4.2.2.4 Maximal Clique Detection

The maximal clique detection aims to enumerate all maximal cliques in a graph. The
clique detection problem is a NP-hard problem [Makino and Uno, 2004, Wakita and
Tsurumi, 2007, Tsukiyama et al., 1977, Kosub, 2004]. Enumerative algorithms con-
tain a set of efficient algorithms that can output all possible configurations in a
polynomial total time bounded by the size of both input and output. [Tsukiyama
et al., 1977] has proposed an algorithm for finding all maximal cliques with a poly-
nomial delay, i.e. the time delays between the start of the algorithm and the first
output, between two consecutive outputs and between the final output and termi-
nation are polynomially bounded by the size of the input. The algorithm is based
on a binary tree with n levels, where each level corresponds to a vertex v; € V
and the nodes at each level i represent a clique in Glvy,vg, ....,v;]. The leaves of
the tree represent all maximal cliques in GG. Each node at level ¢ has at most two
children at level ¢ + 1 as follows: if v;11 is connected to all vertices of the clique
U represented by the parent node at level ¢, then the node has exactly one child
U U v;41. Otherwise it has two children: the first child is U itself, and the second
child is v; 41 U(U — N(i+1)), where N(i+1) contains all vertices of G not adjacent to
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vi+1. Both memory and processing time of the algorithm are bound to O(|V| + |E|)
and o(|V|?) respectively (detailed proof is represented in [Kosub, 2004]).

4.2.2.5 Measure of Cohesion

The measure of cohesion determines the quality of a cohesive subgroup, which in
turn allows the identification of the more important subgroups among the set of all
subgroups [[Kosub, 2004]. A more cohesive subgroup has more ties inside and fewer
outside the group. Given a cohesive subgroup and the adjacency matrix A, C(U)
measures the degree of cohesion in a cohesive subgroup (Equation 4.2 [Wasserman
and Faust, 1994, Chapter 7]):

ZviEU ZvjeU Aij
[UI(U|-1)
D
[Ul(lV-U|-1)

c(U) = (4.2)

4.2.3 Centrality

Centrality: is a measure of social power [Xu et al., 2010] or importance of a vertex
in the social network based on its influence on the other vertices in the graph [Hanne-
man and Riddle, 2011]. The importance of a vertex can be calculated based on either
its degree (Degree centrality), its average distance to all other vertices in the network
(Closeness centrality) or the number of all shortest paths between other vertices on
which it lies (betweenness centrality) [Hanneman and Riddle, 2011, Wasserman and
Faust, 1994]. Central users are important for the flow of novel information across the
social network, because they have many neighbours and can bridge the gap between
different social groups.

4.3 Social Proximity

The intensity of social connections between two individuals varies according to the
amount of social overlap between them. Members of the same social group exhibit a
higher social overlap than members of two different social groups. A social group may
be a family, a circle of friends, colleagues, etc. Social proximity quantifies the social
overlap between two users. The higher the social overlap, the higher their proximity
in the social network. This section provides a set of well-studied social proximity
measurements from the field of social networking analysis (especially in the context
of collaboration networks [Newman, 2001] and link prediction [Liben-Nowell and
Kleinberg, 2003)):

4.3.1 Neighborhood-Based Proximity

The following methods calculate the similarity between two users based on the social
overlap between them.
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Common Neighbors (CN): is the absolute overlap between the friends sets of
two users and is given by CN (u;, u;) = |N(i) N N(j)| where N (i) is a set containing
the neighbors of user u;. The more common friends two users have, the higher their
social proximity.

Adamic-Adar (AA): CN does not differentiate between the common neighbors
of two users, for example the probability that two users have a friend in common
depends on the number of friends this user has. A user with a high degree (a popular
user with thousands of friends) is a potential common neighbor of many pairs of users
(n(n — 1)/2). Adamic & Adair therefore use a normalized version of CN (u;,u;),
where the contribution of each neighbor u;, € C'N (u;,u;) is penalized by the inverse
logarithm of their degree [Adamic and Adar, 2003]

1
AA(u;,uj) = E m (4.3)
ur €CN (ug,uj)

A popular common friend is weighted lower, because due to his popularity it is very
likely that two users have him as a common friend by chance. Whereas an exclusive
common friend (a user, who is connected only to this pair of users) is weighted higher
because she represents a strong evidence for a higher social proximity between the
two users.

Jaccard Coefficient (Jacc): Both previous measurements consider the absolute
number of social overlaps instead of overlaps in relation to the total number of friends
the two users have. For example, a pair of users with a social overlap of 50 common
neighbors out of the union of their friends of 1000 is less significant than three
common neighbors out of four. The Jaccard coefficient sets the absolute number of
common neighbors in relation to the total number of friends of both users. Jaccard
coefficient calculates the similarity between two sample sets by simply dividing the
size of the intersection of the two sets by the size of their union.

[N (i) N N

Jace(u;, uj) = ING)UN(G)|

(4.4)

A pair of users, who have all their friends in common, have the highest social
proximity, whereas a pair who have a lot of friends, but only a few in common, have
a low social proximity.

4.3.2 Distance-Based Proximity

The following methods calculate the similarity between two users based on the
collection of all paths between them

Katz: Proximity is calculated as a weighted sum over the set of all possible paths
pathsy, .; between the two users [Katz, 1953]. The paths are exponentially damped
by their length in order to weight short paths higher (Equation 4.5)

o0
K(ui,uj) = B|paths,, ,, | (4.5)
/=1
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where pathsﬁhuj is the set of all paths of length ¢ and 8 is the damping factor

(typically set to 0.05 [[Katz, 1953])
Similar rank: This method is based on the intuition that two users are likely

to be similar if they have ties to others who are similar. Proximity is calculated
recursively according to Equation 4.6:

>_aeN(i) 2oben () Proz(a; b)
[N (@) * [N(5)]

(4.6)

prox(ui, uj) =

where prox(u;,u;) =1

Random Walk Rank: The network proximity is the number of steps required
during a random walk on the graph G in order to reach vertex u; by starting at
vertex u; and moving to one of the neighbors of the current vertex at the next time
step.

4.3.3 Density-Based Proximity

Degree of Cliquishness (DoC) quantifies to which extent the friends of two users
build a cohesive group. Two users are close friends compared to others if they build
a cohesive subgroup with their common neighbors. Let C'L be a set containing the
two users u;,u; and their common neighbors C'N (u;, u;), for each user in u;, € CL
we calculate the number of triangles that contain uy and two other users in C'L and
divide it by the total number of possible triangles containing user uy (equation 4.7)

_ [{emn|vn, vm € Nor(uk)}|
DoclCL) = uk;L LIN(K)|(IN ()| - 1) (7

where N (k) contains the neighbors of user u in G. Using the set of neighbours of
user uy in G in the denominator of equation 4.7 means that the impact of a com-
mon neighbor on the social proximity between two friends is higher, if the common
neighbor has most of their ties inside the set C'L of common neighbors than outside.

4.3.4 Cluster-Based Proximity

Clustering-Based Proximity improves the quality of the method of calculating
the proximity between two users by clustering their ties and removing those neigh-
bors that are less significant (have a smaller degree) and then running the proximity
calculating method on the reduced graph G.

More measurements for calculating the network proximity are presented in [Liben-
Nowell and Kleinberg, 2003].

4.4 Propinquity, Mobile Homophily, Tie Strength

Propinquity is the tendency of individuals to have ties with others who are phys-
ically close [[Kadushin, 2012]. Physically close users attract each other more than
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distant users, for example, two users living in the same building have a higher
propinquity than two users living in different buildings [Festinger et al.; 1950]. The
effect of distance and physical proximity (as a cost factor) on social attractiveness for
forming new friendships has been studied in [Lucille and Powell, 1975, Fischer and
Wiswede, 1997], the probability of friendship increases as physical distance decreases

(as cited by [Groh, 2005]).

Homophily or proximity is the extent to which an individual forms a tie to
others who are similar, based on metrics such as physical distance, gender, race, age,
occupation, co-locations, etc.[McPherson et al.. 2001, Flynn et al., 2010]. The notion
mobile homophily is used if the similarity between the two users is calculated
based on measurements relating to geographic conditions such as distance and co-
locations.

Tie Strength characterizes the intensity of a relationship between two individuals
based on metrics like co-locations or the number of messages exchanged between
them, etc. thus there is a strong association between tie strength, (mobile) homophily
and propinquity.

Note: Propinquity does not necessarily imply mobile homophily. Propinquity states
that physically close individuals influence each other more than distant individuals,
whereas mobile homophily is the tendency of individuals to be interested in same
locations, disregarding their physical proximity.

The measurements we used to calculate the mobile homophily between a pair of
users include those introduced in [Wang et al.. 2011]. The measurements can be split
into two groups. The first group contains measurements based only on the calculation
of the spatial overlap (asynchronous) between the trajectories of two users such as
spatial co-location (Scol) and spatial cosine similarity (Scos). The second group
contains measurements based on the spatial-temporal overlap (synchronous), i.e.
both users were at the same location at the same time, for example, when two users
are involved in the same social situation. A social situation occurs when at least
two users arrive at a location within a defined time interval At [Groh et al., 2010],
which guarantees an overlap between the stay times of both users at that location.

4.4.1 Measurements Within the Emphasize of Spatial Overlap

The probability that two randomly chosen users visit the same location increases
when the time span between the two visits approaches infinity, but, friends usually,
follow one another to a location within a considerably shorter time frame. For ex-
ample, a user u; can visit an interesting location and recommend it to their friends
N (i), the probability that a friend u; € N(i) visits the same location under the
influence of the visit of user u — ¢ is higher the shorter the time frame between the
two visits. We use a time frame of one week for some of the following measurements.
The following measurements are based on quantifying the amount of spatial overlap
between the trajectories of two users using a time frame of one week.

Spatial Co-location Count (Col): a spatial co-location is a location visited
by two users, but not necessarily at the same time. Spatial Co-location Count
(Col) is simply counts the cases in which a visit by one of the users to a location is
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followed by a visit of the other user to the same location within one week.

Col(u;,u;) = Elxsgu”EHWES;uj)eHu oW — |T8l(ui) — TSl(uj) ) (4.8)

i

H,, is the set of visits of user u; and © is the Heaviside step function for two visits
sl("i) and sl(uj ) of both users u; and u; to the same location [ within a time frame of
one week W [Wang et al., 2011].

Spatial Co-location Rate (SCol): The probability that two users w; and u;
visit the same location within a period of one week:

SCOl(uivuj) = Z p(w)(lkat) *p(uj)(l/wt) (49)
kel

where t is set to one week and the probability mass p(“i)(lk,t) is calculated by
counting the cases where user u; follows user u; to location [;, within one week and
dividing it by the total number of visits of user u; to location ;. Note: This measure
assumes that both users visit the same location independently [Wang et al., 2011].
Equation (4.9) assumes independency between the probability of two users to visit
the same location. The value of SCol(u;,u;) must show no correlation to the social
proximity between users u; and u;, otherwise the assumption is rejected, meaning
that the movements of a user ; is dependent on the movement of a friend u;.

Spatial Cosine Similarity (SCos): This measurement calculates the degree of
spatial overlap between the trajectories of two users, i.e. how often the two users
are co-located, disregarding the times of the visits. The trajectories of a user can
be represented as a multi-dimensional vector of the number of visits to each of the
locations. The similarity between two vectors can be defined as the cosine function
of the angle between the two lines as in equation 4.10.

SCos(us, ;) = S en P () pt) (1) (4.10)
v lp ]|+ [|pts)]| .

where L is a set containing all the locations that both users u; and u; have in
common, p(“i)(lk) is the probability of user u; being at location [ [Wang et al.,
2011].

4.4.2 Measurements Based on Spatial-Temporal Overlap

These measurements guarantee that the two users are present during the same time
at the same location, meaning that the visits of both users occur synchronously.
Social situations take place within small time and location scales, which makes them
important for ”understanding the fundamental properties of relationships between
the participating individuals” [Lehmann, 2010]. A social situation can be detected
using the interaction geometry (relative body orientation and interpersonal distance)
[Groh et al., 2010]. Due to the lack of information we are not able to detect social
situations based on interaction geometry. Nevertheless, two users who visit the same
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location within a small time frame (for example one hour), underly the same social-
psychological driving forces even without observable interaction between them, and
thus are most probably involved in one and the same social situation. Therefore,
we assume that two users are involved in the same social situation, if they visit the
same location within a short time frame At.

Social Situation (s) Rate: This measurement quantifies the degree of spatial-
temporal overlap between the trajectories of a pair of users, i.e. how often a pair
of users were involved in common social situations. s(u;,u;) is mass calculated by
counting the number cases where two users u; and u; visit the same location within
a time frame At, normalized by the total number of times when both users were
observed within this time frame At. Setting the temporal granularity to one hour
means that the two users meet at the same location within one hour as in equation
4.11:

HX g, B0 e gy O(Al = [T = nguj)D
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H,, is the set of visits of user u;, s() is any visit of user w;, © is the Heaviside
step function for two simultaneous visits sl(ui) and sl(uj ) of both users u; and u; to
occur within the time frame At at the same location [ [Wang et al.. 2011]. Two users
can be at the same location, even if only one of them makes a check-in, therefore,
in order to reduce the impact of missing data, the denominator of equation 4.11
counts the number of times both users were observed within a time frame of one

hour, regardless of their location.

4.4.3 Weighting Factors

The following weighting factors are used to calculate weighted versions of the above
measurements:

Location density: Due to a lack of other choices in the neighborhood in suburban
or rural areas, two users may visit a location by chance whereas in urban areas, such
as Manhattan, two users will visit a location as the result of social influence because
there is a high number of other locations to chose from to visit. The density of a
location is an indication of the number of other locations in the neighborhood. We
made use of the GPS coordinates provided by Foursquare to calculate the density
of each location. The density of a location is simply the number of neighboring
locations within a radius of one kilometer. The density is regarded as a positive
weight, meaning the higher the density the higher the likelihood of visiting the
location under social influence and not by chance.

Distance From Home Location: following common sense, the probability that
two users are co-located by chance is higher if the two users live within a short
distance of each other. Each visit of the user can be weighted by multiplying it with
the logarithm of the distance between the homes of the two users. Because the home
locations of the users are unknown, they are learned using the GPS coordinates of the
locations provided by Foursquare. Regions of high density of check-ins are calculated
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for each user using DBScan clustering. The center of the region with the highest
occurrence of check-ins represents the home location of the user. The center of each
region is calculated by simply averaging the coordinates of the check-in locations
within the region. Many studies have confirmed that people tend to visit locations
nearby their homes, therefore it is reasonable to define the region with the highest
occurrence of check-ins, as the home location of a user [Volkovich et al., 2012, Noulas
et al., 2012, Noulas et al., 2011a, Scellato et al., 2011b]. As soon as home locations
have been determined, the physical distance between two users can be calculated.

Location Population p(l;): People can meet by chance at busy locations which
are accessible for everybody (public locations such as subways or sport stadiums).
Whereas they tend to meet close friends at less busy locations such as their private
domicile or a small restaurant/cafeteria nearby their home (with a small number of
visitors). Let p(l;) represent the population visiting the location ;. Each visit to a
location i, is inversely proportional to the log of the population size |p(Ix)| [Wang
et al., 2011].

Location Entropy: The Shannon entropy quantifies the expected average amount
of information with respect to the distribution p(z) of a random variable x [Bishop,
2007, page 49] given by equation (4.12).

H(X) =~ Y plas) Inp(a:) (1.12)

z,€X

where p(z;) is the probability of the occurrence of z;. We use natural logarithms
for calculating Shannon entropy, but logarithm of other bases can also be used.

[Russell and Norvig, 2010, Page 703] describes the Shannon entropy as the measure
of uncertainty in the distribution of a random variable. The Shannon entropy for a
location visited by many users with similar frequency (such as bars, restaurants or
shopping malls) is high, because its value is distributed equally over a wide range.
Therefore the uncertainty of predicting which users are visiting the location is high,
thus knowing the users means a high information gain. In contrast, a low entropic
location is visited by a relatively small number of users and with quite different
probabilities. The probability of a check-in is inversely proportional to the log of the
entropy of the visited location, which means a higher weight for check-ins to low
entropic locations. The mobile homophily between two users is high if they meet at
a private location such as home, instead of meeting at public locations such as a bar
or restaurant.

4.5 Related Work

Physical distance plays a key role in many investigations regarding the interde-
pendence between mobility and social networks. The probability of friendship as a
function of distance P(d) has been investigated in [Lambiotte et al., 2008, Nowell
et al., 2005, Backstrom et al., 2010, Scellato et al., 2011a, Volkovich et al., 2012, Scel-
lato et al., 2011b]. The influence of mobility on the formation of new social ties has
been investigated by [Wang et al., 2011, Cho et al., 2011, Scellato et al., 2011a, Lee
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et al., 2011, Liben-Nowell and Kleinberg, 2003]. The influence of social networks on
predicting individual mobility has been investigated by [Sadilek et al.. 2012, Eagle
and Pentland, 2009, Cho et al., 2011, Hackney and Axhausen, 2006, Tang et al.,
2009)).

[Volkovich et al., 2012] has investigated the relationship between spatial distance
and social interactions. It has been shown that the social overlap between pairs of
friends increases as their geographical distance decreases. The authors found that
the geographic distance between two users is inversely correlated to the size of their
common neighbors. Users with a high social overlap tend to live within a small
geographical distance. The average shortest path among users living within a geo-
graphical distance of less than 60-80 km is rather short. The amount of social overlap
exhibits a rapid reduction and the average shortest path increases considerably if
the geographical distance exceeds 60-80 km. Therefore the authors suggest dividing
social ties into inter and intra city connections with a separation distance of between
50-100 km.

[Kaltenbrunner et al., 2012] found that online interaction between users is not af-
fected by their geographical distance. Online social networks are formed on a global
scale without restriction to a town or a country, therefore interaction in online com-
munities takes place irrespective of geographical conditions. The influence of techno-
logical factors on spatial proximity has been investigated by [Goldenberg and Levy,
2009] by analyzing the spatial dissemination of new baby names. In contrast to the
opinion that the internet has reduced the influence of geographical distance on social
interactions, the authors found that although technological advances have caused
an increase in the overall amount of communication, most of this communication
occurs between spatially close users.

The prediction of user addresses based on the addresses of their friends has been
investigated in [Backstrom et al., 2010] using a maximum likelihood estimator. The
probability of friendship vs. distance of Facebook users was found to follow a power
law. The influence of physical distance on the formation of new links between uncon-
nected users and on tie strength between already connected users has been investi-
gated by [Wang et al., 2011, Cho et al., 2011, Scellato et al., 2011b]. The tie strength
as a function of distance is investigated by [Scellato et al., 2011a] and suggests that
expensive and distant connections appear mainly between the members of a social
network who are important to each other. The relationship between local network
topology and tie strength on global information diffusion, as well as the stability of
social networks when links are removed are the subjects of a study in [Onnela et al.,
2007].

A strong correlation between social networks and mobility has been shown in
[Gonzalez et al., 2006]. The authors were able to reproduce the social network based
on an analysis of the motion of its members. The degree distribution, clustering
coefficient, and the average shortest path of the network were reproduced.

Prediction of new friendships among ”place friends” has been investigated in [Scel-
lato et al., 2011c]. ”Place friends” are two users who have visited at least one com-
mon location, but are not yet socially connected on the LSBN network. It has been
shown that 30% of newly-formed friendships are between ” place friends”. This result
confirms the causal relationship between spatial similarity and friendship formation.
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The correlation between co-locations and social relationships, as well as the calcu-
lation of the probability of friendship based on measurements like diversity /specificity
(shopping mall vs. home) of co-locations and the temporal regularity of visits (such
as hours of day and days of week) has been investigated in [Cranshaw et al., 2010].
The experimental results show that users with irregular mobility behavior, i.e. users
who visit locations with a high diversity (such as shopping malls), tend to have a
lot of friends. Whereas users having co-locations at more specific locations (such as
home locations) tend to have stronger social relationships.

[Crandall et al.; 2010] has investigated the correlation between co-locations and
social tie. They found out that the probability of friendship increases if two users
have more co-locations within a smaller time frame. A similar study by [Dong et al.,
2011] shows that the number of unique co-locations between friends increases as
time goes on. [Zheng et al., 2011] has shown that a strong correlation between social
proximity and mobility exists and that the tie strength between users having similar
mobilities is higher. Based on the number of common dishes ordered in restaurants
among friends, [Lee et al., 2011] has investigated the effects of social influence, co-
present and virtual influence on individual behavior. The experimental results show
the importance of social networks, besides time and the current context of the user,
in explaining an individual’s behavior.

[Noulas et al., 2012] has studied the mobility pattern of mobile users living in
urban areas based on a Foursquare data set from several metropolitan cities. In
their study, the authors defined a new distance measurement between a start and
destination location as rank-distance. Rank-distance differs from physical distance,
because it takes the spatial distribution of locations of interest into account. They
follow the intuition that the interest of mobile users in distant locations decreases
if the number of intervening locations increases. Mobile users are rather more in-
terested in nearby locations with a shorter travelling distance. Their experimental
results confirm this intuition as the probability of moving from the current loca-
tion to a possible destination is inversely proportional to the number of intervening
locations. This result implies that the travel distance is inversely correlated with lo-
cation density of the area. Users living in denser areas (such as metropolitan areas)
have shorter travel distances than users living in less dense areas.

Taking the benefits produced by categorizing places to make similarity compar-
isons between users and locations, [Noulas et al., 2011b] found that the likelihood of
mutual influence is higher between users visiting similar locations. The comparison
was carried out by representing each user with a vector of location categories. For
each user, the weight of each category is calculated based on the past visits of the
user to locations in the respective category.

[Wang et al., 2011] studied the correlation between human mobility and social ties.
Their work was based on large-scale mobile phone data collected by a mobile phone
provider containing 90 000 000 communication records of more than 6 000 000 users,
and over 10000 distinct locations covering a radius of more than 1000 kilometers.
Using the answers to questions such as, "How connected are two users in a social
network?”, ”How similar are the movements of two users” and ”How intense is the
interaction between a pair of users” the study focused on a correlation analysis on
mobility and social ties. The analysis provides a good foundation for the design of
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a complete correlation analysis, e.g. taking into account the fact that real friends
usually meet at certain times of the day and at certain unique locations (unlike
random people with no social ties who commute daily in a subway station). The
following correlation analysis was inspired to a great extent by this study [Wang
et al., 2011].

4.6 Correlation Between Social Proximity and Mobile
Homophily

Correlation analysis measures the amount of statistical dependence between two
random variables. This section describes a deep correlation analysis of mobile ho-
mophily and network proximity measurements based on a dataset collected from a
location-based social network platform called Foursquare.

4.6.1 Foursquare, an Online Location-Based Social Network

Geosocial networking or location-based social networking is a type of social network-
ing where functionalities related to geographic locations are combined with social
networking functionalities in order to offer services of higher quality. Foursquare
provides a mobile application and a web platform for location-based social network-
ing [Fou, 2012b]. Registered users can check-in at venues using the web page of
Foursquare or a device-specific application (such as a smart phone app) provided
by Foursquare. A check-in can be performed by selecting a venue (location) from a
list of venues that the application locates nearby (therefore the use of a Foursquare
data set requires no preliminary clustering for finding significant locations). The
venues in Foursquare are very fine grained so that you can distinguish between two
floors of the same building or two rooms of the same flat. The application maintains
a social network that allows users to connect and communicate with their friends.
Foursquare offers developers an API for integrating the Foursquare functions in their
applications [Fou, 2012a]. We used the Foursquare API to extract a list of venues
in San Francisco containing 46 853 venues together with their details and check-in
statistics. For these venues we extracted all check-ins made by Foursquare users
between March 23, 2012 and July 23, 2012. Each check-in is a triplet < u,l,t >,
consisting of the user’s id, the check-in location id and the date/time of the check-in.
We extracted ~ 2 million check-ins during the four month period.

4.6.1.1 The Social Network

The Foursquare dataset contained 141 750 users, who have generated at least one
check-in. The dataset also contained the friends and the friends of friends (FoF)
for each user. Table 4.1 shows the user statistics of the dataset. We refer to users
who have generated at least 50 check-ins as active users. Users who have generated
fewer than 50 check-ins may be tourists who visit San Francisco for a short time
or people from outside whose regular life does not take place in San Francisco. The
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’ type All active

# Users (U): 141750 9173

# ties of Users (ty): 5327041 | 618970
Av. degree () 37.58 67.59

# Users + Friends (UF): 1747783 | 261780
# ties of User + Friends (tyr): 74585447 | 25293 730
Av. degree Users + Friends (%) 42.67 96.62

# Users + Friends + FoF': 7954935 | 1155324

Table 4.1: Social Network statistics.

amount of location data generated by those users is not sufficient for making a
reliable correlation analysis, therefore they are excluded from the set of active users.

Table 4.1 shows, an average degree of 42.67 among the users with at least one
check-in, their friends and their friends of friends. The average degree increases
to 96.62 considering only the users with at least 50 check-ins, their friends and
their friends friends, because users with more check-ins rather are active since a
longer period of time on Foursquare, compared to new users with few check-ins.
We consider Foursquare as a hybrid social network, because Foursquare, unlike pure
online social network platforms such as Facebook, motivates their users to share real
life movements with their friends, thus we believe that Foursquare users spend less
time on the online platform. This assertion becomes more clear when comparing
the average degree in our Foursquare data set to the average degree of offline and
online social networks. The average number of social links of the users is significantly
higher when compared to most of the (offline) social networks listed in [Newman,
2003], and lower compared to pure online social network platforms like Facebook
(the average number of degree of Facebook is currently found to be 190 [Ana. 2013]).
Further, Foursquare is newer than Facebook, which is possibly another reason for
the lower average degree in Foursquare compared to Facebook.

The average degree between active users and their friends is 67.59 (set U), which
is less than the average degree of 96.62 between the active users, their friends and
their friends of friends (set UF'). The first set U is considerably smaller than set
UF and contains mainly active users, who have an explorative real world life and
spend a considerable amount of their times exploring the world rather than to sit
in front of their PCs. Therefore, set the average degree among the users in set U is
considerably smaller than the average degree among the user in set UF'.

We construct two social networks from the dataset. The first social network con-
tains the users who have generated at least one check-in and the second social
network contains only the active users. We add to each of the two social networks
the friends and the friends-of-friends (FoF') of the users. The social network induced
by the active users has a significantly higher average degree of 67.59 compared to
the average degree 37.58 of the social network induced by all users, which means
that the active users build a significantly denser close-knit social network, possibly
because the set of active users rather contains users who are active since a longer
period of time on Foursquare.
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As mentioned earlier, the clustering coefficient is a good indicator of the existence
of a real social network among a set of users and their relationships [Watts, 2004].
The average clustering coefficients (equation 4.1) for the social network graphs in-
duced by the all users and the active users were found to be 0.104 and 0.1438
respectively (table 4.2). In order to assert that the Foursquare data set represents a
real social network, it must be compared to the clustering coefficient of a randomly
generated social network with the same number of vertices and the same average
degree. The average degree of the social network induced by all users is 42.67, and
the probability of an edge existing was found to be 0.00044 [Jesdabodi, 2012]. Based
on these values, a random graph was constructed in [Jesdabodi, 2012] using the
Poisson random graph method presented in [Newman, 2003]. The clustering coeffi-
cient of the random graph was found to be 0.0002 on average, which is considerably
lower than the clustering coefficient of the social network induced by all users 0.104
(around factor 520), and even lower when compared to the clustering coefficient for
the social network induced by the active users 0.1438 (around factor 719). Therefore
the conclusion is valid that both social networks induced from the Foursquare data
set represent two valid social networks. Further, it is worth mentioning, that the
clustering coefficient of the social network induced by the active users is around
%38 higher than the clustering coefficient of the social network induced by all users.
This result is in accordance with the average degree of both graphs, stating that the
active users together represent a denser close-knit group.

type All Active ‘
Mean average path length: | 4.152 4+ 0.58 | 3.8 £ 0.57
Clustering Coeflicient: 0.104 0.1438

Table 4.2: The mean average path length is calculated using the Breadth First Search (BFS)
algorithm, which has a space complexity of O(|V| + |E|) and time complexity of O(|V| + |E|)
[Cormen et al., 2009].

The mean average path length, as stated earlier, is an indicator of whether a
social network is a small world, generally, a small world is given if the mean average
path length is smaller than O(log(n)), where n is the number of users in the social
network [Newman. 2003]. The calculation of the average shortest path is a very
resource-demanding task, in terms of both memory and time. Therefore we did the
calculation based on 100000 randomly chosen pairs of users from each of the social
networks. The average shortest path for the entire users was found to be 4.15+0.58
whereas the active users have an average shortest path of 3.80 £+ 0.57, which is
indeed smaller than O(log(n)) = 6.24 for the entire users and O(log(n)) = 5.41 for
the active users. The mean average path lengths in both social networks is also in
line with Stanley Milgram’s small world phenomenon [Milgram, 1967, Travers and
Milgram, 1969]. It is worth mentioning at this point that the mean average path
length among the active users is shorter than the mean average path length among
all users. The active users are probably rather users from San Francisco, because
it is unlikely that a user can generate 50 check-ins within a 4 month period in a
foreign city. Although an active user can have friends and friends-of-friends from
elsewhere than San Francisco, nevertheless the mean average path length among
them is smaller. The smaller mean average path length suggests that users from
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the same city build a small world, which is a first indication of the existence of the
propinquity effect.

4.6.1.2 The Check-In Behavior of Foursquare Users

Within the four month period (122 days) of data collection, a total number in excess
of 1983772 million check-ins was generated by 141 750 users at 30630 locations in
San Francisco. The active users were responsible for the generation of 1.14 million
check-ins. The active users built just 6.46% of the total number of users, which means
that 6.46% of the users are responsible for the generation of 57.62% of the total
check-ins. Table 4.3 shows the check-in statistics from two perspectives, namely from
the perspective of the users who generated the check-ins, and from the perspective
of the check-in locations (The + numbers represent the average standard deviation

o).

’ type All ‘ active ‘
# Users: 141750 9173

# Locations: 30630 26 780

# Check-in count: 1983772 1164085

Av. Check-ins per user and day 0.12 1.04

Av. Check-ins per location: 64.77 + 436.17 | 43.47 + 139.72
Av. Check-ins per user: 13.99 + 37.57 | 126.90 £ 84.28
Av. Locations per user: 8.71 + 17.45 62.35 £+ 31.99
Av. Users per Location 40.33 + 282.80 | 21.36 + 71.11
Av. Check-ins per user and location | 1.61 + 3.35 2.04 £ 4.74
Av. Degree of repetition: 0.61 £ 3.35 1.04 + 4.74
Av. User entropy 1.15 4+ 0.99 3.48 £ 0.71
Av. Location entropy 1.73 + 1.60 1.66 + 1.57

Table 4.3: Check-in and location Statistics.)

We calculate user entropy for a user u;, who visits a set of locations L according
to equation 4.13:

HE (L) = =3 p") (1) np (1) (4.13)

lkEL
where p(%)(1},) is the probability that user u; visits location Ij.

We calculate location entropy of a location [; visited by a set of users U according
to equation 4.14:

H(li)(U) - _ Z p(li)(uk) lnp(li)(uk)
upeU

(4.14)

where p) (uy,) is the probability that location I; is visited by user uy.
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The performance of the mobility models in Chapters 2 and 3 were evaluated using
only users who have visited at least 3 locations, and each of these locations were
visited at least 5 times by them. In other words, only significant locations of the
users (such as home, work, etc.) were used. Locations with a frequency of visit of less
than 5, represent less significant locations of a user, which are not considered until
now due to the lack of evidence that would allow their prediction. Locations with a
frequency of visit per user of less than 5 can be assumed be less significant for the
user, because these locations are more publicly accessible and less specific for single
users. Shopping malls, hospitals, etc. are examples of non-significant locations.

Foursquare categorizes its locations into many different categories, where each
location can be in zero categories or more categories. In Figure 4.1 we plotted the
categories and the number of check-ins at locations falling into each category.
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Figure 4.1: The distribution of check-ins over different categories of locations. Foursquare provides
many more categories of locations, for simplicity reasons we have merged the categories into nine
different category groups.

Indeed most of the categories shown in Figure 4.1 contain publicly available lo-
cations with a low frequency of visit per user. The check-in statistics show that as
many as 52% of the total check-ins, and 38% of the check-ins of the active users are
non-recurring check-ins. Around 60% of the check-ins were generated by users who
visit the location with a frequency of less than five times. Furthermore, 33.63% of
the locations have an average check-in per user of one.

Figure 4.2 shows the average history size per user for the locations. Only about
3.4% of the locations have an average history size per user greater than 10 and
only 26 locations have a value greater than 50. The maximum history size per
user is 102 for the only location having a value greater than 100. The Shannon
Entropy for locations and users are high, i.e. many locations are visited by many
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Figure 4.2: A Log-log plot representing the relationship between the average history size per
user(x-axis) and the number of locations (y-axis).

users with similar probabilities, and many users also visit many locations with similar
probabilities. For example, assuming that a user visits every location with the same
probability, an entropy value of 3.48 means that the user can be found in one of
e348 = 32.46 locations.

These statistics show that the Foursquare dataset contains mainly check-ins to
public locations that are accessible for everyone with a low frequency of visit per
user. Each active user makes on average ~ 1 check-in per day and ~ 2.04 + 4.74
check-ins per location and visits 62.35 + 31.99 locations, which explains the high
average user entropy of 3.48 + 0.71 and location entropy of 1.66 £ 1.57.

4.6.2 Empirical Results of the Correlation Analysis

Correlation refers to any linear statistical relationship between two random variables
X and Y and is an indication of statistical dependency between X and Y. Pursuing
the idea of homophily, the following correlation analysis should provide evidence
about the existence of any linear statistical dependence between two visits of two
users u; and u; to a location and their social relationship. Although correlation
analysis disregards the order of the visits of the two users (whose visit follows the
other), which is important for showing causation effect, it is still a good indicator
of the existence of predictive dependence between the social relationship and the
mobility of the two users.

Table 4.4 presents the first evidence for the existence of statistical dependence
between social ties and mobility. Two neighbors share on average 4.29 common
locations and 5.74 social situations, while random pairs share 1.61 common loca-
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tions and just 0.14 social situations. This preliminary finding suggests that social
relationships may affect the mobility behavior of individuals, because the average
common check-in among friends is 2.5 times greater than the corresponding value
for a random pair of users.

Type ‘ ¢ Common locations ‘ ¢ Social situations
Friends: 4.29 5.74
Random pairs | 1.61 0.14

Table 4.4: Friends have on average 2.5 times more common locations than random pairs of users
and are involved in about ~ 40 times more social situations within 1 hour.

The following correlation analysis is based on the social proximity and mobile ho-
mophily measures presented in sections 4.3 and 4.4. For the correlation analysis we
always used 100000 randomly sampled pairs of users chosen from the whole pop-
ulation using a simple random sampling method (sampling a user randomly from
the entire population without replacement, so that each user can be selected with
equal probability during the entire sampling period). The chosen pairs are not nec-
essarily connected through the social network, which is important in quantifying the
actual correlation. The hypothesis is that mobile homophily correlates with network
proximity, i.e. a linear statistical dependence exists between them. We define the
following equivalences for certain intervals of the correlation coefficient: > 0.7 cor-
responds to very strong correlation, [0.4,0.7| corresponds to a strong correlation,
[0.1,0.4] corresponds to a moderate correlation, < 0.1 corresponds to weak or non
correlation. The social proximity between two users is calculated using three neigh-
borhood (CN, AA and Jacc) and one density-based (DoC proximity measurements
(Section 4.4). Mobile homophily is calculated using all the measurements in section
4.4. Following the intuition that people tend to meet close friends during their free
time, an additional measurement, extra-role, is used to refer to those co-locations
which occur during weekends and evening hours.

Table 4.5 shows the results of the correlation analysis. Although a correlation
is noticeable between DoC and all mobile homophily measurements, the remain-
ing measurements unfortunately show no correlation. The results of the correlation
analysis are disappointing at first glance, but the low correlation may be due to
measurement artifacts, because the social network is available on a global scale and
not limited to San Francisco, whereas the location data is indeed limited to San
Francisco. Two users might be very similar on the social network side, but unfor-
tunately due to the lack of location data, no reliable correlation can be determined
between mobile homophily and social proximity.

4.6.2.1 The Propinquity Effect

To reduce the effects of measurement artifacts and to verify the propinquity effect,
we have repeated the correlation analysis and restricted the social network to users
from San Francisco. Foursquare provides the home city for each user so that the
portion of users from the same city can be extracted. Each user has on average a
degree of 67, but only 20 from his home city, which is only ~ 30% of the total number
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CN | AA | DoC | Jacc
Scos: -0.056 | 0.008 | 0.16 | 0.004
scos-User: | -0.058 | 0.008 | 0.15 |-0.017
SCos-Dens: | -0.052 [ 0.013 | 0.155 | 0.013
SCos-Dist: -0.037{0.014 | 0.155 | 0.024
scos-Entr: | -0.048 | 0.008 | 0.155 | 0.004
Scol: -0.171 10.021 | 0.131 | 0.016
Col: -0.207 1 0.023 | 0.131 | -0.007
st -0.066 | 0.043 | 0.112 | 0.021
s-Dens: -0.027 1 0.048 | 0.105 | 0.022
s-Dist: -0.01 | 0.07 | 0.084 | 0.014
s-User: -0.029 | 0.043 | 0.109 | 0.014
s-Entr: -0.029 | 0.048 | 0.108 | 0.019
s-Extra Role: | -0.15 | 0.009 | 0.118 | 0.034

Table 4.5: Pearson’s correlation coefficient » between mobile homophily and network proximity
for 100 000 randomly chosen pairs of users (setting At = 1 hour for spatial-temporal overlap).

of friends. Figure 4.3 shows the number of friends from the home city compared to
the degree of the users.

XXX

450

400

350

300

250

200

150

100

# Friends from Home City

50

200

400

Average Degree

600

800

R?=0,8125

1000 1200

Figure 4.3: A plot representing the average number of friends from the home city compared to
the degree of the users (online friends).

In accordance with Tobler’s first law of geography, ”Everything is related to
everything else, but near things are more related than distant things” [Tobler,
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1970] and in accordance with the propinquity effect, the social network formed
by the active users and their friends and FoF from San Francisco (home city) has
a higher average degree 67 compared to total users 37. The clustering coefficient
and the average shortest path for the graph Gp¢ induced by the new social net-
work dramatically increases when compared to the graphs induced by the total
users GG and the graph by the active users G 4. The clustering coefficient of G
is found to be Cg,,, =~ 0.38, which is significantly higher than the clustering coef-
ficients Cg ~ 0.104 and Cg,,, ~ 0.1438. The average shortest path increases from
4.152 £ 0.58 for G to 3.6745 + 0.55 for Gyo. A two-sided unpaired t-test confirms
the significance of the change in the average shortest path p(e) = 1.09 * 1072%).

] Type Clustering Coefficient ‘ ¢ Shortest path: ‘
All: 0.104 4.152 £+ 0.58
Active users: 0.1438 3.8 £ 0.57
Active home city | 0.38118 3.6745 £+ 0.55

Table 4.6: A comparison between the results of both clustering coefficients and average shortest
path for three different graphs induced by all users, active users and users from San Francisco
respectively.

A new correlation analysis using random pairs of users from Gpc substantiates
the above findings. Table 4.7 shows how the correlation between mobile homophily
and network proximity significantly increases. The significance of the changes in CN,
AA, Jacc and DoC is confirmed by 3 two-sided unpaired t-tests (with p(e) values
0.000601, 0.0122&0.000124 respectively).

CN | AA | DoC | Jace
Scos: 0.417{0.225|0.168 | 0.315
SCos-User: 0.24 | 0.185|0.184 | 0.327
SCos-Dens: | 0.418 | 0.221 | 0.169 | 0.32
scos-Dist: | 0.389(0.154 | 0.153 | 0.273
SCos-Entr: | 0.267(0.192 | 0.175 | 0.313

Scol: 0.141]0.101 | 0.188| 0.25
Col: 0.309 | 0.122 | 0.188 | 0.234
5t 0.326 | 0.242 | 0.151| 0.25
s-Dens: 0.309 | 0.281 | 0.16 | 0.341
s-Dist: 0.342 1 0.272 | 0.169 | 0.353
s-User: 0.215{0.231| 0.178 | 0.349
s-Entr: 0.28 | 0.261 | 0.176 | 0.35

s-Extra Role: 0052 0163 0145 0351

Table 4.7: Pearson’s correlation coefficient » between mobile homophily and network proximity
for 100,000 randomly chosen pairs of users from Grc (setting At = 1 hour for spatial-temporal
overlap).

The correlation analysis between social and mobility proximity for users from the
same home city emphasizes the propinquity effect that physically close friends in-
fluence each other more than distant users. Further, the result shows a statistical
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dependency between the movements of friends, which is promises success for im-
proving the accuracy of individual mobility prediction considering the movements
of friends. Furthermore, the weighting factors distance and density increase the cor-
relation coefficients, which means that people are willing to cover greater distances,
more likely in order to meet important friends. In addition, a meeting in a loca-
tion in a region dense with interesting locations, is more conscious than random in
comparison to a meeting at a location in a sparsely populated region in a rural area.

4.6.2.2 The Effect of Cohesive Subgroups

As in real-life, most of the users in online communities interact mainly with a small
group of their acquaintances ([Wilson et al., 2009, Jiang et al., 2010] as cited by
[Kaltenbrunner et al., 2012]). These acquaintances are usually close friends with
a high tie strength, who together form with a higher probability a cohesive sub-
group. This section describes an investigation into the correlation between group
cohesion and mobile homophily. From the behavioral-perspective, members of a
cohesive subgroup share information and have homogeneity of interests and be-
liefs[Balasundaram. et al., 2009], therefore they exhibit a high similarity in their
behavior including mobile homophily.

The method described in section 4.2.2.4 detects all maximal cliques to which a
user belongs. For each user u;, let G[u;] = (N(i) U u;, E,,) be the graph induced
by the user, their friends and the edges between them FE,,. The graph Glu,| is
considerably smaller Glu;] < G than the total network graph G. Every maximal
clique U in G[y;] is also a maximal clique in G, otherwise it would mean that G
contains a vertex v;, that is connected to user u; in G and is not a member of the
graph G[u;]. The binary tree for the detection of all maximal cliques in G[u;] has
|N(i)| 41 levels, where | N (7)] is the degree of user u;. We could detect 8700 maximal
cliques consisting of at least three vertices in the social network graph G, with the
largest detected clique consisting of 17 vertices. The 8700 maximal cliques are not
complete, the dataset contains pretty sure more maximal cliques. As stated earlier,
the completeness-requirement of cliques makes them impractical for the detection
of real-life cohesive subgroups, therefore we slightly relax the detected cliques to
2-plexes in the graph G (in order to not significantly changing the clique properties)
as follows:

For each clique U, let CU be a set containing all adjoinable vertices that have
only one missing edge to all vertices of the clique U. Similarly to the detection of
maximal cliques, we detect 2-plexes by constructing a binary tree based on CU and
U as follows: The root of the tree is U, the tree has |CU| + 1 levels, each level i > 1
corresponds to a vertex v; € CU. Each node of the tree at level i corresponds to
a 2-plex PL and has one or two children at level ¢ + 1. The left child is a node
corresponding to PL, the second child is PL U v;41 if and only if the vertex v; is
connected to |PL| — 1 vertices in PL. The tree contains one or more leaves. The
first leaf on the left corresponds to U, the remaining leaves (if any) correspond to
all maximal 2-plexes in G that contain at least |U| — 1 vertices of U and one vertex
of CU. Based on this procedure, the social network contains 29591 2-plexes of size
|PL| > 3, the plexes contain on average 7.79 + 2.41 vertices. The largest 2-plex
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contains 20 vertices, which is in rough agreement with the human social perception
limit in [Fischer and Wiswede, 1997].

We made a new correlation analysis between mobile homophily and network prox-
imity among members of the same 2-plexes by randomly sampling 100000 pairs of
users, where each pair is chosen from the same 2-plex. We present our results in a
different style compared to the style of table 4.7, because the pairs of users in the
new correlation analysis are chosen from the same 2-plexes, which means all social
proximity measures are always high, independently from the values of mobile prox-
imity measures. Table 4.8 compares the average values of all mobile homophily and
social proximity measurements with the corresponding values of the previous corre-
lation analysis between pairs of users from the same home city, let G ¢ be the graph
induced by the users from the same home city. All average values are significantly
higher among members of the same 2-plexes, on average the network proximity mea-
surements are as much as a factor of 50 and the mobile homophily measurements
as much as a factor of 23 higher. The results show a significantly stronger interde-
pendence between mobile homophily and social proximity among the members of
cohesive subgroups, compared to arbitrary chosen pairs of users. The result gives us
confidence that an influential effect exists between social proximity and individual
mobility.

Home city 2-plex
Scos: 0.013 £ 0.012| 0.11 + 0.101
WsCos-Dens: | 0.014 £+ 0.012 | 0.111 £+ 0.101
wscos-Dist: | 0.008 £ 0.007 | 0.055 £ 0.051
wscos-User: | 0.008 £ 0.006 | 0.099 + 0.075
wscos-Entr: | 0.01 £ 0.008 | 0.107 £ 0.09
Scol: 0.001 £ 0.001| 0.009 £ 0.007
Col: 1.626 4+ 1.27 | 40.006 + 29.176
s 0.058 £ 0.03 | 4.538 £+ 3.284
s-Dens: 0.006 £ 0.003 | 0.158 4+ 0.124
s-Dist: 0.003 £ 0.001 | 0.054 4+ 0.042
s-User: 0.002 £+ 0.001 | 0.044 £ 0.035
s-Entr: 0.004 £ 0.002 | 0.131 4+ 0.103
sExtra Role: | 0.002 £ 0.001 | 0.054 £+ 0.037
CN: 0.193 £ 0.103 | 14.842 4+ 17.881
AA: 0.102 £ 0.054 | 7.804 + 10.526
Jacc: 0.005 £ 0.002 | 0.059 4+ 0.112
DoC: 0.002 £ 0.001 | 0.082 £ 0.081

Table 4.8: The average values for network proximity and mobile homophily measurements for
100 000 random pairs chosen from 2-plexes and 100 000 random pairs chosen from Grc.

In order to investigate the interdependence between mobile homophily and group
cohesion, we calculated the cohesion measure for the detected 2-plexes according to
equation 4.2. Figure 4.4 shows the relationship between the size and the measure of
cohesion of the 2-plexes. A negative trend exists between group cohesion and group
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size, the smaller the 2-plex, the higher the cohesion. The cohesion among members
of groups with a size > 6 decreases marginally compared to the cohesion among
members of groups with a size < 6.
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Figure 4.4: A plot representing the relationship between 2-plex size and the measure of cohesion
according to equation 4.2.

Furthermore, a strong correlation exists between group cohesion and mobile ho-
mophily as shown in table 4.9. The measurements of spatial overlap (asynchronous)
show a correlation coefficient varying between r = 0.22, p = 0.23 for co-locations
within one week and r = 0.51, p = 0.65 for W.SCos — Entr. The spatial-temporal
(synchronous) overlap shows a higher correlation coefficient varying between r =
0.48,p = 0.63 for social situation rates (s)and r = 0.66,p = 0.81 for s — Dist,
which confirms the importance of social situations for understanding the fundamen-
tal properties of social relations ([Groh et al., 2010]).

Spearman’s rank correlation coefficient shows an even stronger correlation com-
pared to Pearson’s correlation coefficient due to the following two reasons. Firstly,
the relationship between mobile homophily and network proximity seems to follow
rather a monotonic than a linear function, and secondly because of the low sensitiv-
ity of Spearman’s rank correlation coefficient to outliers. The relationship between
group cohesion and mobile homophily is shown on two log-log plots on figure 4.6
and figure 4.5 for measurements based on spatial and spatial-temporal overlap re-
spectively. The results do indeed show a more monotonic relationship than linear
relationship, which explains the higher coefficient values for Spearman’s rank corre-
lation coefficient. Moreover, the log-log plot for the spatial-temporal overlap shows
a higher coefficient of determination R? = 0.74 than the square of the correlation
coefficients, which is an evidence for the non-linear nature of the relationship.

The members of a cohesive groups have most of their ties inside the group, and



108 4.6.

CORRELATION BETWEEN SOCIAL PROXIMITY AND MOBILE HOMOPHILY

r | p | ple
Scos: 0.45| 0.6 0
WSCos-Dens: | 0.43 | 0.6 0
wscCos-Dist: | 0.5 | 0.63 0
wsCos-User: | 0.46 | 0.67 0
WsCos-Entr: | 0.01 | 0.65 0
Scol: 0.15 | 0.43 | 0.0006
Col: 0.22 1 0.23 | 0.0562
s 0.48 | 0.63 0
s-Dens: 0.5710.73 0
s-Dist: 0.66 | 0.81 0
s-User: 0.6 [0.78 0
s-Entr: 0.58 | 0.79 0
s-Extra Role: | 0.32 ] 0.75 0

Table 4.9: The correlation between 2-plex cohesion measurement calculated according to equa-
tion 4.2 and all mobile homophily measurements. The last column contains the p-value of the
corresponding Spearman’s correlation coefficient. The p-value indicates the probability that social
proximity and mobile homophily have no relationship (page 11).
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Figure 4.5: The correlation between the co-
hesion measurement according to equation 4.2
and different weighted social situation rates.
The correlation between the cohesion measure-
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Figure 4.6: A log-log plot representing the
distribution of cohesion measurement accord-
ing to equation 4.2 with respect to different
weighted spatial cosine similarities.

A log-log plot representing the distribution of
cohesion measurement according to equation
4.2 with respect to different weighted social
situation rates.

most cohesive groups are of a small size (< 6). This accords perfectly with the
strong negative correlation between group cohesion and both common neighbors
and Adamic & Adair (table 4.10), because the social proximity measures rather are
low and the cohesion very high. The positive correlations between group cohesion on
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one hand and both Jaccard’s coefficient and the degree of cliquishness on the other
hand confirm that most cohesive groups have most of their ties inside the group
(table 4.10). The most cohesive groups have most of their ties inside the group,
which means higher degree of cliquishness and a higher jaccard coefficient, thus the
positive correlation coefficients.

r p_| ple)
cn: |-0.341-086| O
aa: |-0.421-0.75 0
Jace: | 0.06 | 0.2 0.0
poc: | 0.37 | 0.44 0

Table 4.10: The correlation between 2-plex cohesion measurement calculated according to equation
4.2 and all social network measurements

Finally it is worth mentioning, that the weighting factors used all led to higher
correlation coefficients, with ”distance from home” proving to be the best weighting
factor. Although the results show that people tend to form ties with people in their
neighborhood, a meeting between two users living distant from each other is an
indicator for the importance of their tie, because as stated earlier, people are rather
willing to cover greater distances, mostly in order to meet close/important friends.
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Chapter 5

Causation Effect Between Social
Network and Mobility
Prediction

The location history of a user is not sufficient for explaining the whole mobility behavior of
the user. Human beings are members of a social network. They influence and are influenced
by other members of the social network. The social relationships of a user can be coarsely
divided into two types, namely close friends (strong ties) and acquaintances (weak ties).
The user and their close friends exhibit some kind of homogeneity in their beliefs, thoughts,
goals, emotional needs, movements etc. resulting in high interaction and spatial-temporal
overlap. The user interacts less and spends less times with their acquaintances, hence their
goals, thoughts, emotional needs, movements, etc. exhibit considerably higher heterogeneity,
thus, acquaintances are important for transmitting more novel information between different
social communities. The focus of this chapter is on extending the ST PPM VOMM mobility
model for integrating influences from the social network, in order to enhance the prediction
accuracy.

Chapter summary: Section I contains a short introduction to the causation effect. Section
1I presents a few social influence models that can improve prediction of the effects resulting
from preceding causes are presented. Section III looks at the integration of both synchronous
social influences and general social trends into the ST PPM VOMM. This section also
includes an introduction to the drift function which describes the decay of social network
influence. Due to extensive reasons the location history of a user may not be complete,
section IV contains a method for handling missing data. Section V contains the empirical
results based on the Foursquare dataset, in order to show how social influences flow inside
and between different social groups. Further, the section contains an in-depth correlation
analysis between improvement in accuracy and mobility measurements, in order to emphasize
the importance of social networks in explaining the movement behavior of an individual.

111
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5.1 Introduction

The correlation between mobile homophily and social proximity was discussed in the
previous chapter, but correlation is not the same as causation. Correlation shows a
statistical dependence between two events rather than a relationship of cause and
effect. The order of events in correlation analysis is of little importance, but is far
more significant in causation effect, because causation requires the cause to precede
or coincide with the consequence.

In general, three types of causation effect can be distinguished, namely necessary
(a cloud is necessary for rainfall), sufficient (wind is a sufficient cause for the rustling
of the trees) and contributory. A cause is contributory ”If the presumed cause
precedes the effect, and altering the cause alters the effect. It does not
require that all those subjects which possess the contributory cause ex-
perience the effect. It does not require that all those subjects which are
free of the contributory cause be free of the effect. In other words, a
contributory cause may be neither necessary nor sufficient, but it must
be contributory” [Riegelman, 1979]. John Leslie Mackie introduced the INUS
condition for contributory causes in [Mackie, 1974], the INUS condition refers to
”insufficient but non-redundant parts of a condition which is itself un-
necessary but sufficient for the occurrence of the effect” [Mackie, 1974].

The influence of the mobility of users on the mobility of their neighbors is a contrib-
utory cause. This chapter describes an investigation into whether a visit(cause) of a
user(influencer) to a location, can cause (contribute to) a visit(effect) of friends(followers)
to the same location, either the cause precedes the effect(asynchronous influence, i.e.
the influencer is absent during the visit of the friends) or it coincides with it (syn-
chronous influence, i.e. the influencer accompanies the follower during their visit).
The term social influence indicates the causation effect between influencers, from
whom the influence originates, and followers. From the perspective of a mobile user
u;, an influencer is another mobile user u;, whose mobility influences the mobility
of the user u; and the two users are socially connected, i.e. a tie exists between the
two users e;; € E on the social network graph G.

5.2 Social Influence Models

Social or group influence has been studied for several decades and is defined as
the behavior of an influencer (entity/user/item) at time ¢; which can influence the
behavior of a follower (another entity/user/item) at time ¢; where ¢ < j [Pan et al.,
2012]. A model that incorporates the behavior of the influencers in a predictive
model and consequently improves prediction of the behavior of the follower is called
a social influence model. A few social influence models are introduced below.

5.2.1 Periodic & Social Mobility Model

[Cho et al., 2011] proposed a Periodic Mobility Model (PMM) for predicting the
locations of an individual. The Author uses data collected from two online location-
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based social network platforms (Gowalla and Brightkite), and the traces of 2,000,000
mobile phone users from a European country for evaluating their mobility model.
From their analysis they found that people return to places they’ve visited earlier
with a probability of 53% and visit the home of a friend with a probability of 63%.
Based on the intuition that most human movements are centered around work and
home, they built a Periodic Mobility Model (PMM) to consist of two states only,
namely "home” and ”work”. PMM models the mobility of a user as a time-variant
stochastic process, where the temporal dynamics of human mobility are captured
based on a day-specific periodic transition model. To extract the geographical lo-
cation of the "home” and ”work” states, they subdivide the space into cells of 25
km. The geographical position of each of the two states is calculated based on the
distribution of check-ins within the 25 km cells. After inferring the centers of the
two states, PMM uses a mixed Gaussian distribution centered around the two states
for predicting the future location of the user. PMM uses equation 5.1 for predicting
the location of the user.
Pz =2) = p(xy =x|cey(t) = H)P(cyu(t) = H) (5.1)
+ plxy = x|ey(t) = W)P(cy(t) = W) ’
where H denotes the "home” and W the "work” state of the model and ¢,(t) is
a function of the time of the day that can calculate the probability of the model
being in one of the two states. Based on the Shannon entropy for each hour of the
week, they found that the entropy during the evenings of the work days and during
the weekends is higher, which means that the mobility of people during these time
periods is less predictable. The Periodic & Social Mobility Model (PSMM) is an
extension of the PMM model integrating the effect of social influence on mobility.
Check-ins during workday evenings and during weekends are denoted as social check-
ins. Assuming a user is making a social check-in, the PSMM calculates the social
influence and adds it to the result of the PMM. Social influence is calculated as
a power law of two factors, namely the time and the location of the check-in of
each friend of the user. The researchers’ experimental results showed that PMM
can predict the location of a user with an accuracy of 42% with an average relative
distance error of 2.9%. The social model PSMM can predict the location of a user
with a similar probability to PMM, but improves the average relative distance error
to 2.7%, which corresponds to an improvement by 10%. Further they took into
account the population density in urban and rural areas and found that people tend
to meet within a radius of ”reach” of less than 100 km from their homes. They
found that the influence of the mobility of distant friends is higher than that of
those friends who live in the neighborhood. PSMM is a very simple model having
only two states, the average relative distance error of 2.7% for a movement over
10km is equivalent to an absolute error of 270 meters from the exact location, which
is indeed a significant error.

5.2.2 Random Utility Decision Models (RUM)

Random Utility Decision Models (RUM) (or discrete choice models) are statistical
procedures that predict the choice of a user among alternatives based on a utility
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function [Mcfadden, 2001], which can take many factors into account. [Hackney
and Axhausen, 2006] proposed a work investigating the interdependence between
social network and travel behavior based on RUM. It models a user’s utility for
a location j based on both the travel cost from a start location to a destination
location j and the social influence of the destination location. The social influence
of a location is calculated based on factors such as the number of friends at the
location and/or number of friends-of-friends. The model is able to insert and update
new ties based on the presence of co-locations. The model is also able to remove
ties between members of the social network if the last co-location of two users is
older than a threshold. The authors do not consider any individual or geographical
characteristics, their focus is only on social travel. The methods are evaluated based
on simulated data, therefore it is not clear how the model will behave when using
real life data

5.2.3 Topical Affinity Propagation (TAP)

[Tang et al., 2009] has analyzed topical influence and proposed an influence model
called Topical Affinity Propagation (TAP). For each topic they determined a set
of representative members of a social network and investigated the influence of a
member on their friends. The proposed Topical Factor Graph (TFG) incorporates
both user-specific topic distribution and network structure into one probabilistic
model. For a social network G = (V, E) and a topic s they define a Topical Factor
Graph G, = (V;, Es) for all topics 1 > s > T. They use the Topical Affinity Prop-
agation (TAP) learning for learning the model parameters. This method is based
on the sum-product algorithm described in [[Kschischang et al., 2001]. Their experi-
mental results show the success of TAP in identifying topic-based influence between
members of a social network in large-scale databases. The topics are assumed to
be independent, ignoring any kind of dependencies, which usually exist between lo-
cations if the model is applied to the mobility of human beings. In addition, the
interest of a person in a location is highly dependent on the time (daily routines),
certain places are visited only during certain times. Temporal dynamics and the
temporal dependencies are not considered in this work either. Finally, the tie be-
tween connected members of the network is integrated using a binary variable that
ignores the tie strength between friends.

5.2.4 Influence Models Based on DBN

A group mobility model has been proposed in [Musolesi et al., 2004] which takes
into account the social ties between members of the group (in contrast to random
group mobility models [Camp et al., 2002]). Based on the DBN approach, the au-
thors investigated the influence of groups on individual human movement. They
distinguish between two types of groups, namely the social and the geographical
group. A social group represents a set of connected members in the social network,
whereas a geographical group is formed and dispersed more dynamically at a certain
time and location (such as home or work groups). The users in a social group are
socially connected and potentially can be co-located, whereas geographical groups
contain a set of users, who are co-located at a certain time and location, but are not
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necessarily socially connected. An individual moves within the sphere of influence of
a geographical group at any point in time, until they decide either to move between
the groups or leave all the groups and move independently. An individual joins a
group based on the attractiveness of the group and the difficulty of reaching that
group. The attractiveness of a group for a user u; is modeled using an interaction
matrix according to the past co-locations shared by this user and each member of
the group. Each element of the matrix e;; is an interaction factor e;; between the two
users u; and u;. Each user u; has a sociability factor SF,,, which indicates their at-
titude towards a group. The authors used a social threshold of 0.25 while calculating
SF,, and considered only those members of the group who had an interaction factor
ej; higher than this threshold. The difficulty of reaching a group is considered in the
model as a function of physical distance. The experimental results show a strong
influence of groups on individuals moving in and between these groups. Unfortu-
nately the authors evaluated their model based on (possibly unrealistic) artificially
generated social relationships among mobile phone users.

[Sadilek et al., 2012] used the twitter API to collect publicly available tweets from
two distinct areas (LA and NY). They collected all the tweets within a time period of
one month. They considered only the users who had at least 100 GPS-tagged tweets
during this one month. The authors introduced a lot of restrictions by their choice
of locations and friendships. For example, they considered only those locations that
were visited at least five times by a user. Further, two users were only considered
friends if they ”did reciprocate following” (reciprocate following means two users
follow each other on Twitter), i.e. only strong ties were considered. Furthermore,
they considered only n friends of each user and selected n from the range 0 — 9.
Taking into account both temporal and social dependencies in a location prediction
model based on a DBN approach, they could predict the future location of a user
with an accuracy of approximately 84%. The reason for the high performance lies
in the restrictions they made. The locations are coarse as all the locations within
100 meter are clustered to a single unique location. For each user, locations having
less than 5 visits are ignored, which means that only frequently visited locations
were considered. Another restriction is the short 20 minute time interval they use,
which is not really far into the future. In addition, they use an advantageous accuracy
calculation. Let us consider a user who has visited four locations. Let us suppose the
user spent ten hours at home, eight hours at work and the rest of the 24 hours at two
other locations. Calculating the performance of a predictor by considering only real
movements between locations as true predictions, the predictor reaches an accuracy
of > %50, whereas predicting every 20 minutes and counting it as true prediction,
even if the user the user does not move, the predictor reaches an accuracy of > 75%.
On the network side, they only consider users who ”do reciprocate following”, which
means that mutual influence is considerably higher.

[Pan et al., 2012] have proposed a general social influence model that can be ap-
plied to any interaction network in any social system (including social networks like
Foursquare, Facebook, etc.). Their general social influence model is based on a sim-
ple mixture approach with fewer parameters than the Hidden Markov models called
the dynamical influence model. The model tries to find the conditional property

P($§u¢)|$£7i1l)’ ,wﬁ]l)) indicating the influence of the previous states of neighbors
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on the current state of an individual u; as follows:

Ug u (u uz
Pl e a0y = 3 g,k T |")) (5.2)
u; €N (7)

where N (i) is the set containing the neighbors of the user u;, T is the (weighted)

adjacency matrix capturing the tie strength between the users in the interaction

network, I is a matrix that captures the influence from the previous states of the
(uy) (us)

neighbors x; %/, u; € N (i) to the user u;, over the current state of that user x,

In the above social influence model, the tie strength matrix remains the same over
time. Due to the existence of extensive evidence that tie strength may change over
time, the authors extended the static model. Instead of using only one static tie
strength matrix ¥, the extended model uses a set of different tie strength matrices
{2 .,2®} for capturing dynamic changes over time (in a brain storming sce-
nario, two users may interact differently over time), where k is a hyper-parameter
set by the authors for controlling the number of tie strength matrices. The authors
use a switching latent state variable r; € {1,2,..., K} which controls the current tie
strength matrix to be used among a set ¥ of K tie strength matrices, equation 5.2
is then changed to:

Pz . gon = 3 Trun, x L™ |2f")) (5.3)
u; €N (2)

where 7, € {1,2, ..., K} indicates the current tie strength matrix ‘3(7}) and ¢ is the
current time step, for more details please refer to [Pan et al., 2012]. The model is
evaluated on three different scenarios; the most interesting scenario is the prediction
of turn-taking in discussions. Each user in the model used a wearable sociometric
badge, ”a wearable electronic device capable of automatically measuring the amount
of face-to-face interaction, conversational time, physical proximity to other people,
and physical activity levels using social signals derived from vocal features, body
motion, and relative location” [soc, 2013]. The model tries to predict when a user
starts and ceases speaking using only the audio volume variance. Each user has
two hidden states, ”speaking” and "not speaking”. The dynamical influence model
should capture how the states of a user are influenced by the states of their neigh-
bors. The model considers only synchronous influence, because all the neighbors are
present at the same location at any time step. The evaluation results are promising
and show an accuracy improvement of up to 25% compared to human guesswork
and up to 40% compared to random guessing. However, it is questionable how the
dynamic influence model will perform when applied to a huge social network with
some users having thousands of friends and a state space that covers ten thousands
of locations plus temporal features, additional contexts and discrete knowledge from
external information sources (such as calendar entries).
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5.3 Integration of Social Context

The ST VOMM PPM mobility model introduced in the previous chapters incorpo-
rates features related to both the spatial and temporal context of a mobile user. The
movement of human beings is subject to social influences. The mobility of one user
can be influenced by the mobility of other users from the same community (such
as their circle of friends). The Socio-Spatial-Temporal (SOST) PPM VOMM is an
improved ST PMM VOMM that incorporates social influence factors in order to
improve the accuracy of next location prediction. The influence factors arising from
the social network on the mobility behavior of an individual are of different types,
generally, we distinguish between two types of social influence, namely synchronous
specific and general social (trends) influences.

A Synchronous specific influence factor represents the cases when a user and a set
of their friends are involved in the same social situation. We refer to the friends from
whom the influence originates as influencers. An example of synchronous specific
social influence factor is a social situation, in which one or more friends visit a
restaurant they have visited earlier, either together or with other friends (because
they like the restaurant). The current visit to the restaurant is a social situation,
which is synchronously influenced by past visits of the friends to the same restaurant,
either in the form of social situations or single visits. We refer to past visits of friends
as social influence factors. Thus, synchronous social influence has two preconditions,
first the user must be currently involved in a social situation, second the availability
of location histories of friends. The introduce Synchronous specific influence factors
in more details in the next subsection.

General social influence factors represent the general movement patterns and social
trends in a user’s community, for example the favorite bar or club of their circle of
friends, a hip new restaurant in the city or an inexpensive shopping mall, etc. The
users in the same circle of friend or the same community share common interests,
hobbies, thoughts, beliefs, etc. which precipitate interest in common locations, or
similar movement behavior in the same spatial-temporal context. For general social
trends, the users are not necessarily together at the same time. The influencers of
general social influence factors are not (synchronously) observable, the influence is
more likely to be transmitted in the form of recommendations through media like
the phone, e-mail, SMS, online social networking platforms, etc. or may simply be
a general mobility pattern in the community. General social influence has only one
precondition, namely the availability of location histories of friends.

5.3.1 Synchronous Specific Social Influence

Synchronous specific social influence occurs when a user is currently involved in a
social situation. We refer to the friends in the social situation as influencers. As
stated earlier, a precondition for synchronous specific social influence to take place
is the involvement of the user in a social situation, thus the detection of social
situations is very important. We assume that the current social situation of the
user is known at any point in time [Groh et al., 2010]. The second precondition is
the existence of location histories of friends. A past visit of a user to a location is
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conditionally not independent from other users being present at the same location
within a specific period of time §t from the time of the visit. Therefore we group
the visits of friends U to the same location within ¢ to a social situation.

The value of 6t must be well considered, because on one hand choosing a high value
for dt increases the uncertainty of detecting the correct social context of a visit, on
the other hand choosing a low value for d¢ increases the probability of overlooking a
valid social situation. The correlation analysis between mobile homophily and social
proximity from the previous chapter has shown a moderate to a strong correlation
when setting dt to one hour, therefore we keep on setting dt to one hour.

The Social context of a visit to a location from the point of view of a user u;
is a tuple s =< U,q,\,t,c >, where U is the set of users present at location ¢
representing a synchronous specific social influence factor, A represents the set of
temporal features (such as work day or weekend, day of week, hours of day etc.)
extracted from the time stamp ¢ of the visit and c is a counter that bookkeeps the
occurrence of that specific social influence factor. Let user u; be the user whose next
location is going to be predicted and N (i) the neighbors (friends) of u;, then U is a
subset of U C N(7) Uu;. According to the users present in U, the social context of
a visit can be categorized into three different classes of synchronous specific social
influence factors s:

e Class I social influence factors - is a social situation that contains the user
u; and at least one of their neighbors, i.e. u; is visiting a location with at least
one of their friends.

e Class II social influence factors - is a social situation that contains at least
two neighbors of the user u; without the presence of u; in the social situation.

e Class III individuals based social influence factors - Contains single
visits of the neighbors without the presence of other users.

The inclusion of class II & III social influence factors injects a vast amount of
extra knowledge into the mobility model of an individual. It helps predict locations
which have been visited by friends even if the user themselves has never been there
before. The prediction of locations where the user has never been before is almost
impossible if only the location history of the individual user is available (but may be
possible to a limited extent if additional data sources such as their personal calendar
are considered).

Social influences arising from past visits of friends to a location ¢ depend on the
current social situation of the user and the temporal features A extracted from the
current time step t. The probability a user visits a location under consideration of the
spatial-temporal context and synchronous specific social influence factors is captured
by the conditional probability P(q|U, s, ), where s is the current spatial context, A
the set of current temporal features and U contains the users involved in the current
social situation. We assume the current social situation to be independent from the
spatial context except from the current location, i.e. previously visited locations have
no influence on the current social situation. This assumption seems reliable, because
people usually meet at a location and only in rare cases visit multiple locations
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sequentially. Even though, sequential visits to multiple locations with friends may
be a trend for a particular circle of friends. Such generalities and trends are subjects
of the next section about general social influences. We assume that the probability
mass P(q|U, s, \) can be estimated according to equation (5.4):

P(q|U,s,\) = P(q|U,\) = P(q|s,\) (5.4)

Social influence Individual mobility

Where A contains the set of temporal features, U the current social situation
and s the current spatial context of the user u; in question for location prediction.
Estimation of the probability mass P(q|U, s, \) is the multiplication of two terms.
The right term represents the probability of visiting a location given both spatial
and temporal contexts, which can be estimated from the individual location history
as in the previous chapters. The left term represents influences arising from the
current social situation and temporal context of the user.

5.3.1.1 Social Situation Detection

Detection of a social situation is a key operation of the SOST PPM VOMM model.
SOST PPM VOMM detects social situations based on spatial-temporal overlaps
among the movements of two neighbors (friends). Thus, the detection of social sit-
uations is closely related to the underlying sensor data and requires comparison of
the location data of different users. Specifically the detection of a class 11 & III
social influence factors depends on the availability of global location identifiers. The
Foursquare dataset contains global identifiers for the locations making social sit-
uations easy to detect, whereas the Reality Mining dataset [Fagle and Pentland,
2006] contains GSM cell tower IDs of the mobile phone provider. The users in the
Reality Mining dataset are responsible for labeling the cell tower IDs at the signif-
icant locations they have visited. Unfortunately the labels are very user-specific so
comparison of labels used by different users is impossible, because each user labels
the same cell tower ID differently. The Foursquare dataset on the other hand has
the disadvantage of not containing sensor data (such as device-to-device communi-
cation) that can indicate whether two users have interacted. Therefore, SOST PPM
VOMM assumes two users were involved in the same social situation if they check-in
at the same location within a time period of one hour. SOST PPM VOMM proceeds
to detect social influence factors of the three different classes as follows:

e Class I social influence factors: For each Foursquare check-in < u, q,t > of
a user, SOST PPM VOMM searches their friends’ histories for check-ins at the
same location within a time period of one hour. The Reality Mining dataset
contains user-unique IDs for the mobile phone cell towers, but since the cells
are relatively large (3x3 KM), and since the mobile device can be observed by
multiple cell towers even if the user u; stays at exactly the same location, SOST
PPM VOMM instead uses device-to-device communication via Bluetooth to
detect social influence factors. Each time two friends communicate over their
devices SOST PPM VOMM considers it a social situation and looks at each
user’s individual data for their current location.
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e Class II social influence factors: SOST PPM VOMM iterates through
the friends of the user and proceeds similarly for detection of class I social
influence factors looking for class II social influence factors. The only difference
is the absence of the user u; in the social situation. As stated earlier, class II
social influence factors can evolve at locations where the user u; has never
been before, therefore their detection helps to add a huge amount of valuable
information that cannot be detected from the individual’s location history of
Uj.

e Class ITI individual-based social influence factors: The remaining (unas-
signed) check-ins of the friends are considered social influence factors with only
one user.

Unfortunately it is not possible to detect class II & III social influence factors in
the Reality Mining dataset, because the user-specific labels do not allow a global
comparison of the locations of different users.

5.3.1.2 SOST PPM VOMM Tree

The standard PPM VOMM uses the number symbols Y| appearing after a context
s in the equations (2.11) and (2.12). Inclusion of class II and class III social influ-
ence factors causes the number of symbols in the alphabet of the model and the
number of symbols appearing after a context to increase rapidly, therefore it affects
the whole probability distribution and consequently has a significant effect on the
performance of the individual mobility model. In order not to decrease the accuracy
of the individual mobility models of the users, we add a new tree for managing the
influence the social factors have on the mobility of the user. We refer to the new
Socio-Spatial-Temporal tree as the SOST PPM VOMM tree. We use the SOST PPM
VOMM tree to calculate the conditional probability P(q|U, A) in equation (5.4).

Table (5.1) shows the features and their domains, that are used in the SOST PPM
VOMM tree.

’ Variables ‘ Domain Description
Yioe {li,la,...,1;} The set of locations visited by the user
a binary variable representing whether it is a
w {Wd, We} weekend day or a work day
D {Sun, Mon,...,Sat} | The day of week
The number of time slots calculated by dividing
SAt {51,52,...,5;} the hours of day by At, setting At = 1 means
that each hour of day represents a slot
The set of users present in the current
U {’LLl,’LLQ,...,’LLj} . . .
social situation

Table 5.1: The features included in the SOST PPM VOMM model.

The nodes of both PPM VOMM tree shown on figure (2.7) and ST PPM VOMM
tree shown on figure (3.1) corresponds to locations visited by a user u; and temporal
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features related to the times user u; visited these locations respectively. Each node
of both trees manages a counter for bookkeeping the number of its occurrences
in the location history of the user u;. The nodes of the SOST PPM VOMM tree
immediately under the root node are labeled with locations and nodes at deeper
levels are labeled with temporal features contained in the location histories of the
user u; and their friends N (7). The nodes of SOST PPM VOMM tree manage a set
of tuples of form < U, t, ¢ > instead of single counters. Each tuple corresponds to a
social influence factor evolved at a location ¢ and temporal context A represented
by a node of the SOST PMM VOMM tree. Each tuple consists of a set of users U,
the time stamp t of the last occurrence and a counter for bookkeeping the number
of occurrences of a social influence factor up to time step ¢t. Each path in the SOST
PPM VOMM tree corresponds to a location ¢ and a temporal context A contained
in the location histories of a user u; and their friends N (7). Figure 5.1 shows an
example SOST PMM VOMM tree and zooms into a node in order to illustrate how
SOST PMM VOMM manages different social influence factors.

4 N

I Class |

<{23, 32, 435, 434}, 2.04.2012 15:43, (4)>
<{23, 543}, 15.04.2012 21:15, (9)>

<{435, 434, 543}, 23.05.2012 08:12, (7)>
<{32, 435, 434, 543}, 9.05.2012 11:16, (5)>

I Class I

<{543}, 13.06.2012 12:13, (13)>

Il Class Il '

Figure 5.1: An example SOST PPM VOMM tree of a user with ID = 23, the nodes immediately
under the root node are labeled with locations, the nodes at deeper levels are labeled with temporal
features such as work and weekend days and time slots of day. Unlike the PPM VOMM tree on figure
(2.7), each node in the SOST PPM VOMM tree has multiple tuples for managing the occurrence
of social influence factors. The figure zooms into the red node in order to illustrate how SOST
PPM VOMM manages the three classes of social influence factors at location ¢: on weekend days.
Each social influence factor is a tuple consisting of a set of users who build together the social
influence factor (the numbers in curly braces represent the IDs of the users), the time stamp of
its latest occurrence and a counter (the number in parenthesis) for bookkeeping the number of its
occurrences. Social influence factors of different classes are colored differently.

Once a social influence factor is identified, SOST PPM VOMM creates a key by
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simply sorting the user IDs and concatenating them using a separator (semicolon).
For simplicity reasons, we use the set of users U involved in a social influence factor
to refer to a synchronous specific social influence factor. We integrate social influence
factors into SOST PPM VOMM tree as follows:

We traverse the SOST PPM VOMM tree to find a corresponding node according
to the current location ¢ and temporal context A of each of the social influence
factors. We insert a new path if a corresponding node does not yet exist in the tree
(necessary for class II & III social influence factors). We initialize a new counter
for a social influence factor that occurs for the first time. The integration of social
context into our mobility model simply corresponds to adding new paths to the
SOST VOMM PMM tree, incrementing or initializing counters for each different
social influence factor.

The elegance of this method lies in the simplicity of incorporation of a huge amount
of additional social knowledge into the individual mobility model of the specific user
u;. Hence the inclusion of class IT and class III social influence factors merely requires
adjustment of the prediction tree instead of a multiplicatively growing transition
matrix as observed in the naive Markov model implementations [Bapicrre et al.,
2011].

5.3.1.3 Synchronous Specific Social Influence Estimation

SOST PPM VOMM has to estimate the social influence part P(q|U, A) of equation
(5.4) in order to predict the future location of a user using synchronous specific
social influence factors and both spatial and temporal features. Unlike the temporal
features, social influence factors do not support any inclusion semantic. For exam-
ple, a social influence factor is not necessarily included in another social influence
factor. Further, social influence factors do not have an order of occurrence such as
consequentially visited locations, i.e. different social influence factors do not occur in
a specific order. Therefore, it is not possible to use the standard escape mechanism
of PPM VOMM and use a more general social influence factor when the current
social influence factor is not yet seen in the location histories of the users. SOST
PPM VOMM makes use of the overlap between two social influence factors as a
similarity measure in order to compare two social influence factors. The Jaccard
Similarity Coefficient (JSC) [Jac, 2013] is a measure for calculating the similarity
or diversity between two sample sets. JSC is defined as the size of the intersection
divided by the size of the union of the two sample sets (5.5):

Unu
UulU

SOST PPM VOMM uses JSC for comparing two social influence factors. The use
of social situation (social influence factor with multiple users) has the advantage
of capturing the conditional dependence between visits of different users involved
in the same social situations. The combination of social influence factors and JSC
helps determine the amount of influence arising from past synchronous specific social
influence factors at a location on the current visit of the user to that location using
the current social situation of the user as follows:

Jace(U,U) = (5.5)
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Let U be the set of users involved in the current social situation, further let n be
a node that corresponds to a spatial-temporal context (a location ¢ and the set of
temporal features A extracted for the prediction time). Equation 5.6 calculates the
impact of synchronous specific social influence factors by modifying the counter of
the node 7:

Com(Urg) = Z Compg) * Jace(U,U) (5.6)
U

where C s=(U M) is a counter that hold the number of occurrences of a synchronous

specific social influence factor with a set of users U at location q and temporal
context A. Cs—(y75,q) 15 an estimate of the occurrence of the current social situation
with a set of users U according to the spatial-temporal context (¢, \). SOST PPM
VOMM makes use of equation (5.6) for estimating the probability mass P(q|U, ).
Let ¢ be the set containing a node n = (g, \) corresponding to a location ¢ and

temporal context A and its ancestors, equation (5.7) estimates the probability mass
P(q|U, N):

Co=(um)
P(q|U,\) = ’ 5.7
(@t ) X + Zypes, Comuay) >0

Equation (5.8) represents another possibility to estimate the probability mass
P(q|U, \) by changing the denominator of equation (5.8)

C._
P(qIUN) = 01 (5.8)
ZU Cs:(U,n)

The denominator in equation (5.8) is smaller than the denominator in equation
(5.7), because it depends only on the node 7 and not its ancestors. Thus equa-
tion (5.8) gives synchronous specific social influence factors more importance than
equation (5.7).

The mobility model behaves like an individual mobility model when the current
social context contains only the current user u;, because the individual movements
of the user will have the highest possible Jaccard coefficient of one and in most cases
a higher number of occurrence compared to other locations with social situations
containing the user u;. All social influence factors that do not contain the user will
have a Jaccard coefficient of zero, thus will have no effect on the prediction of the
future location of the user u;.

5.3.1.4 The Impact of Tie Strength

Equation 5.5 weights the social ties of the user u; to their friends who are involved
in synchronous specific social influence factors equally. Each user ranks their social
ties according to the importance of their relationship to each of their neighbor. The
strength of a tie is not easy to classify, because according to [Krackhardt, 1992],
the definition of tie strength is tightly related to subjective criteria like emotional
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intensity and intimacy. Nevertheless, a strong tie is a relationship that meets three
necessary and sufficient conditions, namely interaction: both users must interact
with each other, time: both users must have a history of interaction over a long
period of time, and finally affection: both users must feel affection for one another
[Krackhardt, 1992]. Although affection feeling is hard to be quantified, but interac-
tion can be measured using the amount of communication, the amount of shared
information, the amount of spatial-temporal overlap between their movements, the
duration of time spent together, etc. Due to the lack of more information, we simply
assume (even if insufficient), that, the strength of a tie can be quantified using the
amount of spatial or spatial-temporal overlap between their movements, following
the intuition that close friends have more locations in common compared to distant
friends. In order to increase the adaptability of the model, we modify equation (5.5)
as follows:

EUjEUﬂU ‘I(ul’ UJ)

ZukGUUU T, uk)

Jace(U,U) = (5.9)

where T(u;, u;) is the tie strength between the users u; and u;.

The tie strength between two users can be calculated using either spatial, or
spatial-temporal overlap between the mobility of two users (see section 4.4). The
correlation analysis between network proximity and mobile homophily has shown
a higher correlation coefficient when calculating mobile homophily using measure-
ments based on spatial-temporal overlap. Nevertheless, using measurements based
on spatial-temporal overlap unfortunately has the disadvantage of ignoring the in-
fluence of visits of friends prior to the first social situation involving both users.
In other words spatial-temporal overlap means calculating tie strength considering
only class I social influence factors, whereas spatial overlap means using all three
classes of social influence factors.

Let N(i) be the set of neighbors of user u;, SOST VOMM PPM calculates tie
strength based on spatial overlap only between user u; and a friend from the set
N (i) according to equation 5.10:

2ier coli(u;)
> ueN () 2ter Oli(ug)

where L is the set of locations visited by the user w;, colj(u;) is the number of
visits of user u; to location | € L. Note that the tie strength according to equation
5.10 is not commutative, i.e. T(u;, u;j) # T(uj, u;), because the users have different
sets of neighbors, thus the denominator in equation 5.10 differs according to the
point of view of each user. The non-commutative tie strength is closer to reality,
because (psychologically) each of the two users may value the importance of their
relationship differently.

‘I(ui, Uj) =

(5.10)

Equation 5.10 does not consider the importance of a location for the users. Dif-
ferent weighting factors 4.4.3 such as the distance from home, the density and the
entropy of a location can help calculate a weighted version of tie strength according
to equation 5.11.
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> 1er coli(ug)w(l)
ZukeN(i) > e, coli(ug)w(l)

w(l) is a function that weights visits to location [ according to one of the weighting
factors.

5.3.1.5 Drift Function

People are members of various social groups and communities such as a family,
a circle of friends, a working environment. Members of the same group to some
extent exhibit similarity in their interests, beliefs, norms, goals, activities, need for
emotional closeness, feelings of security, etc. Group affiliation, common goals, norms,
activities, interests, etc. produce similarities in the behavior of the members, which
are subject to continuous change over time. The changes lead to the formation of
new and/or weakening of existing social ties [Thomas and of Sociology, 2009] which
in turn leads to changes in the mobility behavior of the users. Therefore, the amount
of influence on the mobility of an individual resulting from a synchronous specific
social influence factor is highly dynamic and subject to decay over time. Suppose [
to be the location of the favorite bar of a circle of friends where the friends meet
every Saturday evening. The friends may lose interest in the bar after a while, for
example because a new hip bar attracts them more. The drift function weights the
influence from a synchronous specific social influence factor on the mobility of a user
according to its frequency and the times of its latest occurrence.

We define two different drift functions ¢; and s, namely a power drift function
according to equation (5.12) and an exponential drift function according to equation
(5.13):

P (U, 1) = (1 — B)Eta)/At (5.12)

PYo(U, t) = e~ PlE=t/AL (5.13)

where 3 is a hyper-parameter that controls the degree of drift and U a synchronous
specific social influence factor and ¢; < t is the time stamp of the last occurrence
of U. The unit of the factor ¢t — t; is the average stay time At in hours. If a user
spends on average three hours at a location, the social influence factor decays every
three hours by a factor of 1 — 3 or e~# according to both equations (5.12) and (5.13)
respectively.

In addition, the drift function  leads to a reduction in the impact of rigor-
ous statistics for synchronous specific social influence factors by accelerating their
obsolescence. The influence of a social influence factor decays as time goes on
and it reaches zero after a certain period of non-occurrence. Note that the hyper-
parameter [ for synchronous specific social situation factors is different from the
hyper-parameter « used for drifting the individual user movements, because social
influence factors are highly dynamic and become obsolete faster than individual
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movements [Wang et al., 2011, Cho et al., 2011] (individual movements are valid for
a longer period of time).

SOST PPM VOMM increments the occurrence of a synchronous specific social
influence factor according to equations (5.14):

Cti(q,N) = C g, (W (U, 1) + 1) (5.14)

5.3.2 General Social (Trends) Influence

General social influences represent either general trends in the community of the user
or influences transmitted asynchronously using other media such as e-mail/phone,
for example when a friend recommends a restaurant or a shopping mall to another
friend via phone/e-mail, or using online social networking platforms in order to share
visits to interesting locations with friends. Contrary to synchronous specific social
influence factors, the influencers are not directly observable. The influence arises
from an unobservable subset of the community (the neighbors N(i)) of the user.
Incorporating asynchronous influence helps detect global patterns in the mobility
of the neighbors, for example, whenever a user discovers a good restaurant or an
inexpensive shop, they recommend it to their friends, who in turn visit the restaurant
or the shop with a time delay, which can be a few hours, days or even weeks. Another
example would be a pattern such as a visit to location x is always followed by a visit
to location y, no matter which user made the visits, for example, in large amusement
parks, tourist complexes or when sight-seeing people tend to visit several locations
in a specific order according to the geographical conditions of the terrain. A hip club
or bar in the community of a user is a further example of general social influence.

Unlike synchronous specific social influence factors, general social influences are
difficult to determine because of the lack of reliable evidence to check whether a visit
is paid under the influence of previous visits of friends. Furthermore, it is difficult
to estimate for how long a visit of a user can influence the future movements of
their friends. Therefore, we consider general social influences only in cases where
the predicted location has a smaller probability than the probability of an unknown
location (the probability P(escape|s) in equation (2.12) after escaping to an empty
context s = ). The extended mobility model integrates the trajectories of all friends
in an additional (general) VOMM tree (M’) that is constructed by adding the tra-
jectories of all friends as if they were generated by the same user. The extended
mobility model predicts the future location of a user u; in two steps. It uses first the
SOST PPM VOMM tree to predict the next location of the user w;. If the proba-
bility of the predicted location is greater than the escape probability, it returns this
location and terminates, otherwise it switches to the new general VOMM tree M’
in order to predict the next location of the user (equation 5.15)

{ argmax (P(q|U,s,\)), P(z|U,s,\) > P(escape|s)
x = , (5.15)
argmax P’(q|s,\)pr, else
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5.4 Handling Missing Data

The time elapsing between two consecutive check-ins in online location based social
network services (such as Foursquare) exhibits a very high heterogeneity ranging
from a few minutes to several days, because check-ins in these services are volun-
tarily. The heterogeneity can have many reasons such as the users tend to make
check-ins at new and interesting locations, which they want to share with their
friends rather than reporting every movement they make; a user may forget to make
check-ins at some locations or due to privacy issues a user may not want to make
a check-in at a private location such as home, work or the home of certain friends
[Noulas et al., 2011a]. Therefore it is reasonable to assume that two consecutive
check-ins with a temporal lapse exceeding a threshold are not related, i.e. not con-
sequential. In order to decide whether two consecutive check-ins are consequential,
SOST PPM VOMM defines a further hyper parameter for the average stay time k.
Two check-ins are assumed to be consequential if the time elapsing between the two
check-ins does not exceed k (this is also applicable when gps traces are available
and some measurements are missing). Both training and testing phases are changed
in consideration of k as follows:

At any time step t, the order n of the model is considered as an upper bound of the
context length |s;|. During both the training and test phase, SOST PPM VOMM
uses a context of a variable length |s;| < n. At each time step t, SOST PPM VOMM
reads a new symbol of the training sequence and calculates the time elapsed since
the occurrence of the previous symbol. Missing data is assumed when the elapsed
time exceeds k. Instead of removing the first symbol of the previous context sy 1,
SOST PPM VOMM discards the whole context s;—; and builds a new context s;
that consists only of the new symbol. If the elapsed time is smaller than s, SOST
PPM VOMM builds a new context s; by appending the new symbol at the end of
st—1 and removing the first symbol only if the length of |s;_1| is greater than n.
This process is repeated during both the training and test phase until the end of
both sequences. The path which should be inserted into the SOST PPM VOMM
tree at each time step thus has a variable length with an upper bound of n. The
constructed model is now twice variable. It is variable first in the sense of partial
matching and it is variable as it switches to a lower order whenever it detects missing
data. Using a lower order has the welcome side-effect of having fewer escape cases
(a shorter context is escaped in less steps to an empty context), which in turn leads
to a reduction in the time needed for processing.

5.5 Empirical Results

We use two datasets for evaluating the performance of SOST PPM VOMM, namely
both Reality Mining and Foursquare datasets. Unfortunately the Reality Mining
dataset only allows detection of class I social influence factors. It contains 862 social
situations, which improves the prediction accuracy for the users who are involved
in these social situations by =~ 1% compared to the pure spatial temporal ST PPM
VOMM model. The Reality Mining dataset does not allow an in-depth investigation
of the influence of social networks on the mobility behavior of users. In contrary, the
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Foursquare dataset allows detection of considerably more social influence factors,
which allows the empirical investigation of the influence of social networks on the
mobility behavior of humans. The following results are all based on the Foursquare
dataset.

5.5.1 Limits of Predictability

The statistics of the Foursquare dataset indicate a very low predictability of the
users. Below we define three measures of predictability:

e Lower bound of Predictability: An active user can randomly be found on
average at one of |L| = 62.35 locations, the average entropy of the users is
found to be & = 3.48. A user who visits locations with the same probability
has the highest entropy, thus we can determine the average minimum number
of locations |L| required for producing an average entropy value of & = 3.48.
The probability of visiting a location will then be P(l;) = ﬁ The calculation
of Shannon entropy is simplified by substituting P(l;) in equation (4.12) with

1 .
m to:

1 1
¢ =— —In—=In|L 5.16

knowing that value of Shannon entropy & = 3.48, we can determine the average
minimum number of location by €348 = 32.46. A user in the Foursquare dataset
is found on average in one of 32.46 different locations, which corresponds to a
minimum predictability of 1/32.46 = 3% [Song et al.. 2010D]).

e Upper bound of Predictability: In almost 38% of cases the users move
on to new locations where they have never been before, we assume that these
locations are not predictable. Further the users make on average 2.04 check-ins
at a location. This means the users visit the remaining 62% of locations with
a frequency of 2.68 (0.38 + x % 0.62 = 2.04, z = 2.68). Any mobility model will
need at least one of the 2.68 check-ins for training. Assuming that a model
can predict the remaining locations, the maximum accuracy of 1.68/2.68 =
0.63 can be achieved for 62% of the check-ins. The mobility of users in the
Foursquare dataset is predictable to an upper bound of 0.63 % 0.62 = 39%.

e Unfortunately the dataset does not provide us with the amount of time spent at
any of the locations, thus we are not able to calculate the predictability of the
user’s mobility in more detail (in accordance with the limits of predictability
by [Song et al., 2010b]). Nonetheless, the focus of next location prediction
is on real movement to a new location, thus the contribution of a correctly
predicted location is the same for all locations independently of stay time.
Thus we can still make use of Fano’s inequality ([Fano, 1961] as cited by [Song
et al., 2010b]) to calculate the predictability II"** of the mobility of the users:

¢ = H(IT™*) + (1 — ™) In(|L| — 1) (5.17)
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H(IT™%) = —TI™ s In(I7™) — (1 — II™9%) « In(1 — [I™9%)  (5.18)

where € is the entropy, |L| is the number of locations and II"™%* is the pre-
dictability of the mobility of a user. Note: in we use natural logarithm in
equation (5.18) because we calculated Shannon entropy using natural loga-
rithm in equation (4.12). The average value of II"** over all users is found
to be less than 29%. Using the average entropy € = 3.48 and the average
number of locations visited by the users 62.35 of all users, the average pre-
dictability increases to 31%. In both cases, the mobility of the active users is
less predictable than 31%.

As stated earlier, in almost 38% of the cases the users move to new locations where
they have never been before, but many of these locations have already been visited
by friends of the users. Indeed, 74.6% of the 38% new locations have already been
visited by one of the friends of the users, thus the amount of unknown locations in
the circle of friends of the user reduces to 9.8%. Further, in almost 13% of cases the
check-in of a user is followed by a check-in of a friend within one hour, which means
in about 13% of the cases the users are involved in a social situation. Two thirds
of the active users are already involved in a social situation. The aforementioned
statistics show a high potential of at least 10% for improving the prediction accuracy
of the mobility model based on social influences.
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Figure 5.2: The accumulated total number of social situations within a At represented by the
x axis. For example, setting At to one hour, the data set contains less than 150,000 cases where a
visit of a user w; is followed by a visit of a friend w; within a time span of one hour.
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Figure 5.2 plots on the x-axis the time span (in minutes) during which a user
follows a friend to a location, and on the y-axis the accumulated number of visits
within a time span. The social situations detected by setting At to a lower value
leads to the detection of less but more realistic social situations. The number of
social situations increases when building social situations using a time span At
greater than an hour, but setting At to a higher value leads to the detection of more
unrealistic social situations. Thus, the full potential of accuracy improvement due
to social influences is higher than 10%.

5.5.2 Performance Analysis
5.5.2.1 Social Influence Estimations

The spatial-temporal (ST) PPM VOMM model from chapter (3) is able to predict
the next location of a user with an accuracy of 18.6% by setting the order of the
model to two, At = 1 and the average stay time « to three. The SOST PPM VOMM
model is able to incorporate social influences beside spatial and temporal features.
Section (5.3.1.3) provides two models for estimating social influences in SOST PPM
VOMM according to equations (5.7) and (5.8). The accuracy of SOST PPM VOMM
increases to 21.2% when estimating synchronous specific social influences according
to equation (5.7), and increases to 22.5% when estimating synchronous specific so-
cial influences according to equation (5.8), because estimation according to equation
(5.8) gives social influences more importance than equation (5.7) as stated earlier in
section (5.3.1.3). The absolute improvements in accuracy corresponds to 0.026 and
0.039, the relative improvements in accuracy corresponds to 14% and 21% respec-
tively. The empirical results using both estimations imply that social influences in
general have a high impact on the mobility behavior of human beings.

5.5.2.2 Drift Function

The prediction accuracy of SOST PPM VOMM increases significantly when apply-
ing both the drift functions introduced in section (5.3.1.5). The improvement in
prediction accuracy is slightly lower, i.e. 0.13% relative improvement in accuracy
when using the exponential drift function according to equation (5.13) compared to
the power drift function according to equation (5.12). The prediction accuracy of
SOST PPM VOMM using equation (5.8) for estimating social influences and setting
the degree of drift to 5 = 0.02 increases to 23.1%, which corresponds to an absolute
improvement in accuracy of 0.006 and a relative improvement in accuracy of 2.7%.
The prediction accuracy of SOST PPM VOMM using equation (5.7) for estimat-
ing social influences and setting the degree of drift to § = 0.05 increases to 23.8%,
which corresponds to an absolute improvement in accuracy of 0.026 and a relative
improvement in accuracy of 12%. The prediction accuracy of SOST PPM VOMM is
higher when synchronous specific social influences are estimated according to equa-
tion (5.8) than compared to equation (5.7), but contrarily, when applying the drift
function the prediction accuracy of SOST PPM VOMM using equation (5.7) for
estimating synchronous specific social influences is higher by 3% in comparison with
equation (5.8).
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Integrating a drift function increases the prediction accuracy of SOST PPM VOMM
significantly, regardless of the synchronous specific social influence estimator used.
Two two-sided unpaired Students t-tests for both estimators confirmed the signifi-
cance of the improvement in accuracy (P(e) = 2.5%1073! for the estimator according
to equation (5.7) and P(e) = 0.02 for the estimator according to (5.8))
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Figure 5.3: The y-axis shows the share of check-ins and the x-axis the time span in minutes for
which a visit of a user follows a visit of a friend.

We tried different values for the degree of drift for individual location histories,
the maximum prediction accuracy is achieved by setting o = 0.0005, which is very
low, because the dataset is very sparse and the period of data short. Therefore, we
believe that the degree of drift of o = 0.007 as stated in chapter (3) is more reliable.
The value of o = 0.007 implies that the influence of a previous visit of a user to
a location on the future mobility of that user decays within two years. The degree
of drift given by the hyper parameter § maximizes the prediction accuracy when
setting its value to 0.02 and 0.05 for the estimators of synchronous specific social
influences according to equations (5.8) and (5.7) respectively. The value of 5 implies
that social influences decay in three to six weeks, which is significantly faster than
the decay of individual location history. The value of 3 is in perfect accordance with
figure (5.3), which shows the percentage of cases a user follows a friend to a location
within a specified time period (in minutes). Figure (5.3) shows that in almost ~ 85%
of the cases a user follows a friends to a location within six weeks, and in only 15%
of the cases does a user follow a user to a location within a period greater than six
weeks.
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5.5.2.3 The Impact of Tie Strength

The accuracy of the model increases when using the version of the Jaccard Coef-
ficient that considers the tie strength between the users in equation 5.9 compared
to the original Jaccard Coeflicient in equation 5.5. Consideration of tie strength in
equation (5.9) improves prediction accuracy by 0.002 which corresponds to 0.8%
relative improvement in accuracy compared to the pure Jaccard coefficient of equa-
tion (5.5). A two-sided unpaired Student’s t-test for checking the significance of the
improvement in accuracy shows only minor significance (0.18).

Equation 5.10 calculates the tie strength between two users based on the co-
locations (spatial overlap) in the location histories of the two users. Equation 5.11
weights the co-locations according to the importance of the location for the user, for
whom the next location is going to be predicted (tie strength is not transitive, see
section (5.3.1.4)). We used different weighting factors from section 4.4.3. None of the
weighting factors could improve the accuracy significantly, possibly because of the
sparsity of the location history of the users (a check-in in Foursquare is voluntarily,
the users make check-ins sporadically at locations they find interesting and avoid
check-ins at locations where privacy is an issue).

5.5.2.4 Synchronous Specific Social Influence

Table (5.2) shows the improvement in accuracy achieved by incorporating syn-
chronous specific social influence factors compared to the accuracy of the spatial-
temporal PPM VOMM. The best results are achieved by setting the hyper-parameters
to 8 =0.05, Kk =3 and At = 1.

’ s-class Abs. Improvement | Rel. Improvement % | Two-Sided Unpaired T-Test P(e)
Class I: 0.0088 (0.0118) 4.7 (6.1) 0.0012 (0.00113)
Class I & II: | 0.0235 (0.0313) 12.6 (16.3) 3.8 ¥ 10728 (1.4 * 10743)
Class I-IIT | 0.0344 (0.0458) 18.5 (23.9) 1.4 * 10739 (1.5 * 10-76)

Table 5.2: Empirical results: Column 2 represents the absolute improvement in accuracy compared
to ST PPM VOMM model, column 3 represents the relative improvement in accuracy compared
to ST PPM VOMM model, column 4 the results of two-sided unpaired t-tests (probability of
error p(e)) for showing the significance of the improvements. The numbers in braces represent the
corresponding values for the portion of users who are involved in at least one social situation (setting
B =0.05and At =1, k = 3).

The accuracy of the spatial-temporal model is 18.6%. Inclusion of class I syn-
chronous specific social influence factors increases the prediction accuracy to 19.48%
for all users and for the users who are at least involved in one social situation to
19.78%. The absolute improvement in accuracy is 0.88 and 1.18, the relative im-
provement in accuracy is 4.7% and 6.1% respectively.

Incorporation of class II synchronous specific social influence factors causes the
accuracy to increase to 20.95% for all users and to 21.73% for the users with at least
one social situation. The accuracy improves to 22.04% when class III synchronous
specific social influence factors are also incorporated. The total absolute improve-
ment in accuracy by incorporating all classes of synchronous specific social influence
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factors is 0.0344, the relative improvement in accuracy corresponds to 18.5%. In-
clusion of class IT & III social influence factors injects a vast amount of knowledge
to the individual mobility model of a user. The empirical results underline the im-
portance of social influences for improving the accuracy of next location prediction.
The improvement in accuracy in all cases is statistically significant, corresponding
Student’s t-tests shown in table (5.2) confirm the significance of the results.

5.5.2.5 General Social (Trends) Influences

Almost one third of the users were not involved in any social situation, and an
improvement in accuracy can only be achieved by incorporating general (trends)
social influences. The numbers in braces in table (5.2) show the empirical results for
those users who are involved in a minimum of one social situation.

General social trends/influences have a significant impact on the mobility of a
user. General social influences occur even a user is not involved in an obvious social
situation. General social influences occur either due to trends in the community of a
user or due to transferring social influence via other media such as internet, phone,
etc. Thus, a user might be under social influence even if they move alone. Many
people recommend restaurants, shopping malls, sport activities, cinema films, art
exhibitions, etc. to their friends via phone, e-mail, SMS, online social networking
platforms, etc. and these friends follow them with a time delay to these locations.

The incorporation of general social influence factors improves the accuracy of
prediction further to 23.8%. The additional absolute improvement in accuracy due
to the incorporation of general social influences is 0.0178 which corresponds to a
relative improvement in accuracy of 8%. The total improvement in accuracy due
to the incorporation of social influences increases to 0.0522, which corresponds to
a relative improvement in accuracy of 28%. The significance of the improvement
is confirmed by a two-sided unpaired Student’s t-test (P(e) = 2.0 * 10719), the
significance of the total improvement in accuracy is confirmed by a further two-sided
unpaired t-test P(e) = 2.6 ¥ 10712, The importance of general social influences is
emphasized by considering only users who are not involved in any social situation.
Almost one third of the users are not involved in any social situation. Incorporating
synchronous specific social influence factors does not lead to an improvement in
accuracy for those users. In contrast, the incorporation of general social influences
leads to an absolute improvement in accuracy of 0.0221, which corresponds to a
relative improvement in accuracy of 11%. This result shows that even if a user is
not accompanied by friends, they might still be under social influence.

5.5.2.6 Assessment of the Improvement in Accuracy

The total accuracy when considering all kinds of social influence factors improves
to 23.8%. The total absolute improvement in accuracy when considering all kinds of
social influences increases to 0.0522, which corresponds to a relative improvement
in accuracy of 28%. The significance of the improvement in accuracy can be em-
phasized by a two-sided unpaired Student’s t-test (P(e) = 2.6 * 10~102) confirming
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the importance of social influence factors for improving individual next location
prediction.

The accuracy of the SOST PPM VOMM predictor is low because the users are
high entropic, thus their mobility is less predictable. According to Fano’s inequality
[Fano, 1961], on average, the users are predictable to 29% as shown in section (5.5.1).
The prediction power of SOST PPM VOMM can be demonstrated taking the predi-
cability of the users into account. SOST PPM VOMM is able to achieve a prediction
accuracy of 23.8% from a maximum predictability of 29% , which corresponds to an
accuracy of at least 23.8/29 > 82%.

The impact of social influences on improving location prediction can be convinc-
ingly demonstrated, if only those users who were involved in a minimum of one
social situations are considered. For those users, the total absolute improvement
in accuracy increases to approximately = 0.0615 which corresponds to a relative
improvement in accuracy of 32%. The absolute accuracy improvement for users in-
volved in at least 10 social situations actually rises to ~ 0.085 which corresponds to
a relative improvement in accuracy of 43%.

5.5.2.7 The Prediction of Unknown Locations

The lack of sufficient location history leads to the zero-frequency problem. This
problem occurs when an observation occurs for the first time during the test phase.
As stated earlier, incorporating the location history of friends into the model adds a
vast amount of knowledge to the individual mobility model and enables locations to
be predicted which have been visited by friends, but where the user has never been
before. Integration of social networks resulted in being able to make a total number
of 437231 non-trivial (non-trivial == without having to refrain to the uniform
escape probability) predictions of the next location, when the current location was
visited for the first time ever. Of these 437 231 predictions, 36 469 were successful.
The absolute improvement in total prediction accuracy by incorporating these non-
trivial 437 231 predictions was 0.0319 which corresponds to 61% of the total absolute
improvement in accuracy. The significance of the improvement is confirmed by a two-
sided unpaired Student’s t-test (P(¢) = 8%10~!!). The best improvement in accuracy
for predicting unknown locations was during the hours from seven p.m. to 12 p.m.
on work days and after 11 a.m. on weekend days when people usually spend time on
social activities. Figure (4.1) from the previous chapter shows that most of the check-
ins are indeed at public locations in the categories that are tightly related to social
activities such as eating, entertainment, nightlife, outdoor activities and shopping.
The prediction of unknown locations once again emphasizes the importance of social
networks in next location prediction.

5.5.2.8 The Distribution of Improvements in Accuracy

Humans tend to have free time during the evening hours of all days or during the
afternoon hours of weekend days. Examples of free time activities are a visit to
a swimming pool, museum, theatre, cinema, sport stadium, music concert, fitness
studio, etc. Further examples of free time activities are visits to a restaurant, a
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favorite bar, a shopping mall, etc. Most of the above activities simultaneously are
social activities, which means people are usually accompanied by their friends during
these activities. As stated earlier, figure (4.1) from the previous chapter confirms
that indeed most of the check-ins are at public locations typical for social activities.

Further, people are most explorative during the aforementioned time periods, thus
the uncertainty of predicting their next location is the highest. Therefore, we believe
that specifically during these hours information gleaned from the social network can
contribute to reducing the uncertainty of prediction.
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Figure 5.4: The proportion of absolute improvement in accuracy over a work day.

Figure (5.4) shows that the improvement in accuracy on work days has two peaks.
The first peak occurs at lunch time when it is likely that people meet their friends
for lunch. The second peak is during the evening hours when people meet friends
after work for a drink in a bar, for dinner in a restaurant or for a window shopping
stroll around the city or shopping Mall, etc.

Figure (5.5) plots the proportion of improvement in accuracy for the hours of the
weekend days. The plot shows a maximum plateau rather than peaks, which covers a
period between 11 a.m. and 12 p.m, which is in accordance with the typical behavior
of humans. Humans clearly spend time with their friends between 11 a.m. and 12
p.m. during the weekend.

Both figures show that the most improvement in accuracy due to social influences
occurs during the time periods with the highest uncertainty for next location pre-
diction. The figures impressively underline the importance of social influences for
improving the prediction accuracy during time periods with high uncertainty, when
the individual mobility model fails to find mobility patterns.
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Figure 5.5: The proportion of absolute improvement in accuracy over weekend days.

5.5.3 Social Network Measurements

This subsection focuses on the empirical analysis of the correlation between vari-
ous social network measurements and improvement in accuracy from including the
location histories of friends.

5.5.3.1 Number of Influencers

An influencer is a user whose mobility influences the mobility of a friend who we
denote as follower. A user (potential follower) visits a location ¢ at time step ¢ after
previous visits of friends (potential influencers) to the same location ¢ at earlier time
steps < t. The majority of users (potential followers) in the Foursquare dataset are
influenced by a few friends (potential influencers). Fewer than 1% of the users have
more than 20 potential influencers. Figure (5.6) shows the relationship between
potential influencers (a-axis) and potential followers (y-axis) using a logarithmic
scale for both axes. The plot shows a power law relationship between both followers
and influencers with a coefficient of determination of 0.97, confirming that the most
of the users follow only a few potential influencers.
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Figure 5.6: The log-log relationship between followers (y-axis) and influencers (x-axis).

Inclusion of the location histories of a few friends (influencers) is sufficient to
improve prediction accuracy significantly. The inclusion of the location histories
of only two friends is sufficient to improve prediction accuracy of an individual
by 0.0415 absolute improvement and 21% relative improvement compared to the
mobility model based on the location history of the individual only. The inclusion
of location histories of more friends increases the improvement in accuracy more.
Figure (5.7) plots the relationship between the number of influencers (x-axis) and
the improvement in accuracy. The plot shows a positive trend, which is confirmed
by a moderate positive correlation coefficient according to Pearson’s correlation
coefficient (r = 0.37) and a strong positive correlation according to Spearman’s
rank correlation coefficient (p = 49) with a probability of error of zero (e = 0.0).
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Figure 5.7: The relationship between the number of influencers (y-axis) and absolute improvement
in accuracy (x-axis).

5.5.3.2 Injected History Size

The size of location histories injected by the influencers exhibits the same trend as
the number of influencers (both general and synchronous specific social influencers).
The inclusion of only 50 visits by influencers is sufficient to improve the accuracy
by a significant 0.0266 absolute improvement and 14% relative improvement. Figure
(5.8) plots the average size of the location history of influencers which has been
injected. The plot shows a positive trend showing that the inclusion of more lo-
cation history from influencers improves accuracy. The positive trend is confirmed
by a moderate positive correlation of 0.23 according to Pearson’s correlation coeffi-
cient, and a similar positive correlation of 0.21 according to Spearman’s correlation
coefficient with a probability of error of zero (e = 0.0).
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Figure 5.8: The relationship between absolute improvement in accuracy and the size of the
injected location history from influencers exhibits a positive correlation with correlation coefficients
r = 0.23,p = 0.21, P(e) = 0.0. The size of the bubbles indicates the number of users at that data
point.

5.5.3.3 Social Situation Rate

Synchronous specific social influence factors are integrated in SOST PPM VOMM
using social situations, thus it is expected that the number of social situations cor-
relates positively with improvement in accuracy. Figure 5.9 shows a positive trend
between the improvement in accuracy and the social situation rate, which means a
higher social situation rate implies a higher improvement in accuracy. The positive
trend is confirmed by both Pearson’s and Spearman’s correlation coefficients. The
correlation coefficients were found to be 0.71 and 0.61 respectively. Users with higher
social situation rates represent extrovert users, who are socially active and thus
their mobility behavior is more predictable via social amendments to the spatial-
temporal ST PPM VOMM approach (due to synchronous specific social influence
factors). Users with lower social situation rates may be considered as more intro-
vert users and their prediction accuracy can be improved less by using synchronous
specific social influence factors, but nonetheless their prediction accuracy may still
be improved using general social trends.
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Figure 5.9: Absolute accuracy improvement correlates with the average social situation rate
r=0.71,p = 0.61, P(e) = 0.0.

5.5.3.4 Cohesive Subgroups (Strong Ties)

The dataset contains 149 700 social situations that have been integrated in the SOST
PMM VOMM tree. As many as 105 087 of the social situations are between the mem-
bers of the same cohesive subgroups (maximal 2-plexes), which corresponds to more
than 70% of the social situations. Accordingly, most of the improvement in accuracy
is due to social situations among members of the same maximal 2-plexes. This result
emphasizes the importance of cohesive subgroups for transferring influence in the
circle of friends and is in accordance with the results of the correlation analysis be-
tween the measure of cohesion in maximal 2-plexes and mobile homophily in section
(4.6.2.2).

The number of users involved in a social situation defines its size. The size of a
social situation varies between 2 and 16 users. Figure (5.10) plots the size of social
situations (x-axis) and the number of social situations (y-axis). The distribution of
number of social situations over their size follows a power law with a coefficient of
determination of R? > 0.99, which means most of the social situations are of a size
between two and five, and only a small portion are of a higher size.

The measure of cohesion according to equation (4.2) can be directly applied to the
users involved in a social situation, but since we are interested in investigating the
influence of maximal 2-plexes on the improvement of next location prediction, and
since the measure of cohesion between the users involved in a social situation does
not necessarily reflect the true cohesion between the user and the friends involved
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Figure 5.10: A comparison of the distribu-
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Figure 5.11: A comparison of the distribu-
tion of absolute accuracy improvement over
the hours of weekend days for all social situa-
tions (red bars) and social situations between
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in the social situation, because the social situation may contain friends from the
same maximal 2-plexes and others from outside. Further, many social situations
are only between two users which does not allow a reliable calculation of cohesion.
Because of the aforementioned reasons, the cohesion inside the whole social situation
is lower compared to the cohesion between the user in question for prediction and
another user in the social situation if the two users are members of the same 2-plex,
therefore, we calculated a measure of cohesion for each social situation as follows.
We identify a set 3 of all maximal 2-plexes which contain at least the user and one
of their friends involved in the social situation. We calculate the measure of cohesion
of the social situation by averaging the measure of cohesion of all maximal 2-plexes
in B. Figure (5.11) plots the measure of cohesion of the social situations (y-axis)
against their sizes (x-axis). The distribution follows a power law with a coefficient
of determination of R? > 95. The higher the number of users involved in the social
situation the lower the measure of cohesion, which is in perfect accordance with the
measure of cohesion of the maximal 2-plexes in the previous chapter (figure 4.4).

The greatest improvement in accuracy should thus be achieved with social situa-
tions of a lower size if we assume that cohesion and prediction accuracy are positively
correlated. Figure (5.12) sets the proportion of improvement in accuracy and the
size of social situations in relation to one another. The relationship follows a power
law with a coefficient of determination of R? > 99, which is in accordance with the
distribution of social situations over their sizes. Figure (5.13) sets the average mea-
sure of cohesion for the different social situation sizes in relation to the proportion
of improvement in accuracy. Similarly to the relationship of the measure of cohesion
and the size of social situations, the distribution follows a power law with a coeffi-
cient of determination of R? > 95. In accordance with the correlation analysis in the
previous chapter, a strong positive correlation exits between accuracy improvement
and the measure of cohesion.
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Figure 5.12: The relationship between the Figure 5.13: The relationship between the

percentage of total absolute improvement in percentage of total absolute improvement in
accuracy and the size of social situations fol- accuracy and the average measure of cohesion
lows a power law with a coefficient of determi- in the social situations follows a power law
nation of 0.99. with a coefficient of determination of « 0.96.

5.5.3.5 Degree Centrality & Weak Ties

A user u in a social network has typically many social ties to other users in the social
network, which we have already denoted as neighbors. People, typically, maintain
their social relationships on different scales, because they have cognitive, emotional,
spatial and temporal limits, which prevent them from maintaining all their rela-
tionship with the same intensity [Granovetter, 2005]. Dunbar suggests the number
of neighbors, with whom a user can maintain stable cognitive social relationships
to be 150 ([Dunbar, 1992] as cited by [Dun, 2013]. Almost 9% of the users in the
Foursquare dataset have more than 150 neighbors, and 22 of the users have at least
1000 neighbors, which means that the users have at lot of weak ties. A user with 1000
neighbors has intuitively more ties, than they can cognitively maintain or interact
with. Such a users is most probably a prominent user with a lot of followers (fans),
the only interaction between them and their followers occurs via sharing check-ins.
The followers are probably keen to visit the same locations, which these prominent
users find interesting. A prominent user is thus important for setting/transmitting
general social trends.

The neighbors of a user u and their ties contains dense regions of knit clump,
most of whom are in touch with one another [Granovetter, 2005]. The users inside
such a knit clump build a cohesive subgroup with strong ties among them. We have
already found out in the previous chapter, that the majority of maximal 2-plexes
are of small size. The biggest maximal 2-plex found was containing 20 users, a user
can maintain tight social relationships to subset of their friends less than 20 friends,
which is in perfect agreement with the human social perception limit in [Fischer and
Wiswede, 1997]. The sizes of maximal 2-plexes again emphasize that most of the
social relationships in the Foursquare dataset represent weak ties. The focus of the
previous section was on strong ties, in this section we investigate the importance of
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weak ties in social networks.

The neighbors of a user can be subdivided into strong and weak ties. Each user
in a social network have a knit clump of strong ties, and a lot of weak ties to
less close friends, let us say acquaintances (in accordance to Granovetter). Each
acquaintance is in turn enmeshed in their own (different) knit clump of strong ties,
thus a weak tie is a bridge between two knit clumps of social ties. The weak ties
in a social network are responsible for connecting different communities and social
circles together [Granovetter, 1982]. Although the behavior of a typical user in a
social network is rather similar with the behavior of their close friends, but the
weak ties are important for transmitting general social trends beyond the borders of
the own social group. Users interact and spend time mostly with their close friends,
thus they exhibit some kind of homogeneity which results in a considerably high
overlap in their behavior, life styles, emotional needs, thoughts, beliefs, movements,
goals, information, etc. Weak ties provide users with more novel information because
of the heterogeneity in their beliefs, thoughts, goals, information, emotional needs,
etc. The heterogeneity in the information of two users connected via a weak tie
occurs because each of the two users spends time and interacts with people, who
the other user does not know and, thus, the two users exchange rather more novel

information [Granovetter, 2005].

Degree centrality is a notion that refers to the extent in which a user is connected
to others. A user with a lot of friends is more central or prominent and is important
for the flow of information in the social network, because they have a lot of weak
ties and get in touch with numerous others from different social groups. As shown
by [Gladwell, 2002], there are people in every social group whose social circle is
four or five times the size of other people’s. These people have the habit of making
introductions. Gladwell refers to these people as connectors, we prefer to call them
central users. Central users are a few people who have the extraordinary knack of
making friends and acquaintances and who can bring users from different social
circles together ([Gladwell, 2002, Pages 38-41] as cited by [tip, 2013]). The best
explanation for the abilities of connectors is probably Gladwell’s, ” Their ability to
span many different worlds is a function of something intrinsic to their personality,
some combination of curiosity, self-confidence, sociability, and energy.” ([Gladwell,
2002, Page 49] as cited by [tip, 2013]).

As stated earlier, the foursquare dataset contains 22 users with at least 1000
friends, we refer to these users with central users (in the sense of degree centrality).
We enclosed the users with more than 1000 in red ellipses in the following three
figures. The Foursquare dataset contains 147,900 social situations, almost > 70%
of the social situations are between members of the same maximal 2-plexes, i.e.
between users connected with a strong tie. The social situations between the strong
ties are responsible for 88% of the total improvement in accuracy. The remaining
30% of social situations are responsible for 12% of the improvement in accuracy. It
can be easily seen that the users spend most of their time with their close friends,
but nevertheless, the users interact in 30% of the cases with their acquaintances.

Pursuing the idea of degree centrality, figure 5.14 represents the relationship be-
tween the average degree and the improvement in accuracy. The focus of this section
is rather on the existence of the central users than on a trend between improvement
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Figure 5.14: The average absolute improvement in accuracy shows a negative trend as the degree
increases, the correlation coefficients were found to be (r = —0.26, p = —0.29, P(e) = 0.0).

in accuracy and average degree of the users, nevertheless, a negative trend is easy
to see between both quantities. The negative trend means that the mobility of cen-
tral users (red ellipse) is only slightly improved using the location histories of their
friends, because a central user interacts more with their weak ties from different
social communities. The low improvement in accuracy for the central users is in
accordance with their extraordinary ability to span different social circles as stated
earlier. A user who has 1000 neighbors can influence the mobility of much more
users than a user with few neighbors. For example, a check-in of a central user at a
location in Foursquare can be seen by 1000 neighbors. A part of the neighbors may
visit the same location during a later time period, Influenced by this check-in. We
conclude that central users are trend setters or trend transmitters between different
social communities and are followed by rather than following others.

Central users get about a lot and are explorative in nature. Figure (5.15) plots the
relationship between the degree and the average size of location history. The plot
shows a positive trend r = 0.16, p = 0.15, P(¢) = 0.00016, confirming that central
users do get about a lot. Figure (5.16) plots the relationship between the degree
and the average number of locations visited for the first time. The plot shows a
positive correlation r = 0.33, p = 0.25, P(¢) = 0.0 confirming the explorative nature
of central users. We conclude from the above results that although the prediction
accuracy of central users is not improved very much by including the location histo-
ries of their friends, but they are very important, because their mobility contributes
greatly to improving the prediction accuracy of many other users.
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Figure 5.16: A plot showing the positive cor-
relation between the degree and the average
number of locations visited for the first time
(r =0.24,p = 0.21, P(e) = 0.05). The size of
the bubbles indicates to the number of users
with a given degree.

Figure 5.15: A plot showing the positive
trend between the degree and the average loca-
tion history (r = 0.33,p = 0.25, P(¢) = 0.02).
The size of the bubbles indicates to the num-
ber of users with a given degree.

5.5.4 Location History Measurements

The focus of this subsection is on investigating the correlation between the improve-
ment in accuracy and various measurements relating to the location history of the
user such as average location history per location, entropy, the number of visited
locations per user, etc. in order to emphasize the importance of social influences for
enhancing prediction accuracy.

5.5.4.1 History Size

The size of the available training sequence has a major influence on the performance
of all predictive models based on probabilistic reasoning. As has already been stated
in previous chapters, the performance of such models depends to a high extent on
the availability of sufficient training data per state (location). It would seem likely
that by including social networks, accuracy would be improved only for those users
with insufficient training data, in other words a sufficiently large training sequence
makes the inclusion of location histories of friends obsolete (apart from visits to new
locations, that are not yet contained in the location history).

Figure (5.17) sets both the size of location history and the improvement in accu-
racy in relation to one another. The figure shows only a very slight negative trend
r = —0.06,p = —0.06, P(¢) = 0.0. The result seems surprising, the improvement in
accuracy due to the inclusion of social influences seems to be less dependent on the
size of training data. A closer look at the location histories of the users provides a
plausible explanation as follows:
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Figure 5.17: The absolute improvement in accuracy shows only a slight negative trend in relation
to the size of training data by including social network influences r = —0.06, p = —0.06, P(¢) = 0.0.

As stated earlier, human beings are explorative in nature and love to visit new
and interesting locations. Further, the mobility behavior of users is subject to huge
change over the course of years, each user has only a few significant locations such
as "home” and "work” and a lot of less significant locations, which are visited
irregularly. This means a long sequence of location history contains more loca-
tions and causes the entropy of the user to increase. Figure (5.18) plots the size
of location history (x-axis) and the number of locations contained in the location
history. The plot shows a very strong positive trend, the number of locations cor-
relates very strongly positive to the size of the training data. The strong positive
correlation is confirmed by both Pearson’s and Spearman’s correlation coefficients
(r=20.77,p = 0.75, P(¢) = 0.0 respectively). Figure (5.19) sets the size of location
history in relation with average number of locations, the trend becomes even more
obvious, both correlation coefficients increase to r = 0.79 and p = 0.85.
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Figure 5.19: The number of locations vis-
ited by a user increases as the average size of
their location history increases r = 0.79,p =
0.85, P(e) = 0.0.

Figure (5.20) sets the size of training data and user entropy in relation to one
another. Similarly to the number of locations, the entropy shows a positive trend
compared with the size of location history. The users in the Foursquare dataset visit
more and more locations with similar frequency of visits as time goes on. This trend
is confirmed by the positive correlation between entropy and history size according
to Pearson’s r = 0.26 as well as Spearman’s p = 0.30, P(¢) = 0.0 correlation coeffi-
cients. The correlation between both quantities increases significantly when Setting
the average entropy in relation to the size of location history, both correlation coeffi-
cients increase to r = 0.45, p = 0.55, P(e) = 0.0 showing a strong positive correlation

(figure (5.21)).
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Figure 5.20: The entropy of a user shows a
positive trend with the size of their location
history r» = 0.26, p = 0.30, P(e) = 0.0.
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Figure 5.21: The entropy of a user shows a
positive trend with the size of their location
history r = 0.45, p = 0.55, P(e) = 0.0.



148 5.5. EMPIRICAL RESULTS

The assumption that a larger location history contributes to improving accuracy
is only partly true. From the previous explanations it is more than reasonable to
conclude that history size only partially contributes to improving accuracy and
that consequently, social influences will always remain indispensable for enhancing
prediction accuracy.

5.5.4.2 Number of Locations

The average number of locations visited by a user is another quantity that nega-
tively influences the accuracy of a location predictor. Users who are explorative in
nature visit a lot of locations with similar probabilities, thus their mobility is less
predictable. Incorporating a social network injects a vast amount of data generated
by the friends of a user which can be used in training the model and which indeed
increase the predictability of the mobility of the user. Figure 5.22 plots the rela-
tionship between the average number of locations visited by the different users and
the improvement in accuracy. The plot shows a positive trend, which confirms that
the inclusion of social networks indeed increases the predictability of explorative
users who visit a lot of locations. The positive trend is confirmed by a moderate
positive correlation coefficient according to Pearson r = 0.20. Spearman’s rank cor-
relation coefficient shows an even stronger positive correlation of p = 0.35,p(e) = 0
respectively). The trend becomes more clear when setting average improvement in
accuracy in relation to number of locations (figure (5.23)). The correlation between
both quantities increases, both Pearson’s and Spearman’s correlation coefficients
show a strong positive trend (r = 0.51 and p = 0.42 respectively).
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Figure 5.23: The plot shows a positive corre-
lation between the number of locations visited
by each user and average absolute improve-
ment in accuracy r = 0.51,p = 0.42, P(¢) =
0.0.

Figure 5.22: The plot shows a positive corre-
lation between the number of locations visited
by each user and absolute improvement in ac-
curacy r = 0.20, p = 0.35, P(e) = 0.0.
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5.5.4.3 Average Frequency of Visit per Location

Users with a high average frequency of visit per location are the easiest to predict.
The average frequency of visit per location in the Foursquare dataset is very low,
each user makes on average 2.04 check-ins per location. The predictability of the
mobility of users with low average frequency of visit per location is accordingly
low. The inclusion of location histories of friends helps increase their predictability.
Figure (5.24) plots the average frequency of visit per location for each user with their
corresponding improvement in accuracy. The plot does indeed show that including
social networks has a stronger positive impact on increasing the predictability of
the mobility of users with a low average frequency of visit per location compared
to those with a higher average frequency of visit per location. The positive impact
is confirmed by a moderate negative correlation coefficient of r = —0.21 according
to Pearson, and a strong negative correlation coefficient of p = —0.40, P(e) = 0
according to Spearman. Figure (5.25) sets the average improvement in accuracy to
frequency of visit per location in relation. The negative trend becomes dramatically
more clear. A very strong negative trend is easy to see, the trend is confirmed by
a strong correlation r = —0.34 according to Pearson and a very strong correlation
p = —0.80 according to Spearman.
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Figure 5.24: The plot shows a negative cor- Figure 5.25: The plot shows a negative cor-
relation between the frequency of visit per lo- relation between the frequency of visit per lo-
cation and absolute improvement in accuracy cation and average absolute improvement in
r=—0.21,p = —0.40, P(e) = 0.0. accuracy r = —0.34, p = —0.80, P(e) = 0.0.

5.5.4.4 User Entropy

The users in the Foursquare dataset were found to be very entropic, i.e. they visited
many locations with similar probabilities. The average entropy of the users in the
Foursquare dataset is 3.48 & 0.71, which means, on average, a user can be expected
to be in one of 2348 = 11.16 locations. Thus the uncertainty of predicting the next
location of a user in this dataset is very high. As stated in previous chapters, en-
tropy is a very good indicator of the predictability of the mobility of a user. A low
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entropic user, for example, has a few significant locations, which they regularly visit
with different high probabilities, and possibly a few non-significant locations with
low probabilities. A highly entropic user, in contrast, visits many locations with
similar a probability, therefore prediction of their next location is subject to a high
degree of uncertainty. The inclusion of the location histories of friends helps find
more evidence (being with a friend) which can reduce the uncertainty during pre-
diction of the next location. Indeed, the improvement in accuracy by incorporating
the social network of the users shows a strong positive trend with the entropy of the
users (figure (5.26)). The positive trend is confirmed by both Pearson’s and Spear-
man’s correlation coefficient values of r = 0.38 and p = 0.45, P(e) = 0.0 respectively.
Figure (5.27) shows the relationship between entropy (x-axis) and average improve-
ment in accuracy. The positive trend becomes more clear, the correlation between
both quantities increase significantly. Pearson’s correlation coefficient shows a very
strong positive trend of » = 0.64. The positive trend is even stronger according to
Spearman’s rank correlation coefficient p = 0.72.
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Figure 5.26: Absolute improvement in accu- Figure 5.27: Average absolute improvement
racy shows a positive trend with the increas- in accuracy shows a positive trend with in-
ing entropy of the users. Both Pearson’s and creasing entropy of the users. Both Pearson’s
Spearman’s correlation coefficients are found and Spearman’s correlation coefficients are
to be r = 0.38,p = 0.45, P(e) = 0.0 respec- found to be r = 0.64,p = 0.72, P(¢) = 0.0
tively. respectively.

5.5.4.5 Location Entropy

Location entropy is a measure that quantifies the predictability of a location. A
highly entropic location is visited by many users with a comparably similar fre-
quency. Examples of highly entropic locations are airports, sport stadiums, under-
ground stations, etc. A mediocre entropic location is visited by many users with dif-
ferent frequencies, for example, a restaurant in the neighborhood is visited frequently
by the neighboring residents and sporadically by visitors from elsewhere. A low en-
tropic location, for example, could be the private domicile of a user where friends
come by occasionally. Therefore, location entropy is a good indicator of the pre-
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dictability of a location. The lower the location entropy, the higher the predictabil-
ity. The incorporation of location histories of friends increases the predictability of
highly entropic locations, which are public locations accessible for everybody (see
figure (4.1)). Figure 5.28 sets both improvement in accuracy (y-axis) and location
entropy (x-axis) in relation to one another. Indeed, the improvement in accuracy
increases as the location entropy increases. This positive trend is confirmed by a
moderate positive correlation according to both Pearson’s correlation coefficient
r = 0.23 and Spearman’s rank correlation coefficient p = 0.23, P(¢) = 0.0. The rela-
tionship between average improvement in accuracy and location entropy on figure
(5.29) show a very strong positive trend. Both Pearson’s and Spearman’s correlation
coefficients increase significantly to r = 0.57 and p = 0.60, confirming the strong
positive trend.
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Figure 5.28: Absolute improvement in accu-
racy shows a positive tendency with the in-
creasing entropy of the locations. Pearson’s
and Spearman’s correlation coefficients were
found to be r = 0.23,p = 0.23,P(e) = 0.0
respectively.
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Figure 5.29: Average absolute improvement
in accuracy shows a positive tendency with the
increasing entropy of the users. Pearson’s and
Spearman’s correlation coefficients were found
to be r = 0.57,p = 0.60, P(¢) = 0.0 respec-
tively.

5.6 Mobility Models Based on Discrete HMMs

The Hidden Markov Model (HMM) is probably one of most popular, well-studied
and powerful DBN approach (2.2.3.3). HMM is 5-tuple $ = (S;T; F; B; ), where
S is the state space and represents the values of the random state variable x¢, T is
a transition matrix (model) whose elements a;; specify the probability of transiting
from one state z; to another x;, E is the alphabet of possible observations, B is the
emission matrix (model) matrix whose elements specify the probability of making an
observation in a certain state P(e|x;), and finally 7 represents the initial probability
distribution whose elements specify the probability that m; = P(x1 = s;) is the start
state of the model at time step ¢ = 1. HMM assumes that an observation e; € E
is generated by one component of a mixed distribution containing n components.
Although the components are hidden, their number must be known a priori. The
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components are modeled as a single latent state variable X of the underlying HMM,
each component corresponds to a state of X.

Each of the observations e; € FE is related to a state x; € X of the model at
time step t. The conditional probability p(e;|z;) forms the emission matrix B and
represents the probability of an observation e; being generated when the model is
in state x;. The transition matrix 7" holds the probability distribution of moving
from one state to another p(z;|z;—1), thus its size is bounded by the state space
S x S. The states of the model are generally interconnected in such a way that
any state can be reached from any other state [Rabiner, 1989]. Thus the number
of states in the model and the number of observations are both critical issues of
HMM, because the observations must be large enough to allow a transition between
two arbitrary states. Otherwise the transition matrix contains zero entries meaning
that some states cannot be reached from some other states and the model is said to
suffer from the zero-frequency problem.

Given the initial state, state transition and both transition and emission model
of an HMM, the unknown model parameters, i.e. the state transition matrix T
and the emission matrix B can be learned using different algorithms, for example,
the Baum-Welch learning algorithm [Baum et al., 1970] which uses the forward-
backward algorithm [Russell and Norvig, 2010, P 579], [Duda et al., 2001, P 137-
138]. Learning the exact parameters of an HMM and the complexity of the solution
represents an intractable task, because as none of the known learning algorithms
can find an exact solution, they tend to find a solution with local maxima [Ron
and Singer, 1996]. Therefore, selection of the initial parameters of an HMM is of
immense importance.

As stated earlier, the state space of a HMM must be known a priori, otherwise
the proper state space of the model must either be guessed or learned. The state
space can be guessed by testing different state spaces and choosing the state space
that maximizes the accuracy of the model. Alternatively, the state space can be
learned in a preprocessing step using different classifiers such as k-means (2.4.1.1)
and DBScan (2.4.1.3) in order to find regions of high observation occurrence. Thus,
the state space of an HMM is even more critical.

The initial state distribution 7 and both transition 7' and emission B models
can be chosen randomly (for example, a uniform distribution), but learning us-
ing randomly chosen initial parameters is very time consuming. Further, there is no
guarantee that the model will converge to a globally optimal solution instead of local
maxima. To reduce the convergence time and to increase the probability of conver-
gence to a true solution, it is very important to select good initial model parameters
(for example, an a priori distribution can be estimated using the distribution of
the observations over the states in order to determine the initial model parameters).
Thus modeling an HMM requires in-depth understanding of the application domain.

An HMM can also be used for mobility modeling, the components of the model
can be thought as states of mind or moods of a mobile user and observations as
the locations they visit. An HMM such as this can be interpreted as follows, the
user visits different locations according to their mood, thus the locations visited
represent the outputs of their moods. The mood of a user and the number of different
moods cannot be directly observed and are both unknown. An unknown number of



CHAPTER 5. CAUSATION EFFECT BETWEEN SOCIAL NETWORK AND MOBILITY PREDICTION 153

unknown states influences the movement behavior of a user, hence the term ”hidden”
in "Hidden Markov Model”.

In [Jesdabodi, 2012], two different HMMs have been constructed, one model with
and the other without considering influences from social networks. The first model
uses the hours of the day and the day of the week as a state vector. The second model
additionally uses a binary variable to indicate whether the user is accompanied by
friends. Choosing a different number of states, the initial model parameters are
estimated by clustering the sequence of observations using the k-means (2.4.1.1)
clustering algorithm. Both models have been evaluated using the same dataset used
for the evaluation of SOST PPM VOMM Model. In order to reduce the effects arising
from the zero-frequency problem, evaluation is performed only for users who have at
least 200 check-ins with a minimum of one check-in per day. The model’s parameters
are learned using the Baum-Welch algorithm. Table 5.3 reports the evaluation results
using different numbers of states.

’ # States | Av. Accuracy | Av. Accuracy Social

2 16.4 16.6
5 15 15.2
10 14 14.1
20 12 12.1

Table 5.3: HMM accuracy in percent

The results show that the integration of the social network leads to a non-significant
absolute improvement in accuracy ranging from 0.001 to 0.002. This improvement
in accuracy is significantly less than the improvement in accuracy achieved when
incorporating social influences in an SOST PPM VOMM. Further, the accuracies of
both HMM models are significantly less than the accuracy of the spatial-temporal
PPM VOMM model. The poorer results of the two HMM models are not due to
an HMM being less powerful, but are rather due to the difficulty of modeling and
learning the model parameters.

Further, the results show that accuracy decreases as the number of states increases
for one of two reasons, either the data has been drawn from one distribution (the
users have only one state of mind), or the location histories of the users are insuf-
ficient to learn the exact model parameters. The second reason seems more proba-
ble, as observation size is known to be a critical issue for HMM [Ron and Singer,
1996, Begleiter et al., 2004]. The assumption that a larger history size contributes to
improvement in accuracy is partially correct, because there is no history size which
guarantees that a transition between two arbitrary states will occur, and even if
this were so, the larger history size could lead to other problems such as overfitting
(the model describes artifacts of the dataset rather than the true solution). A larger
location history may lead to a changed mix of distributions (figure 5.20 and 5.18
show that the entropy and the number of locations visited by a user increases as
the history size increases), this in turn requires the model to be re-trained, which is
another critical issue of HMM. Even if the number of states does not change, a larger
history size leads to a severe readjustment of the model parameters, especially when
frequently occurring states are no longer relevant for a user (for example, behavioral
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changes due to marriage, moving or a new job, etc.).

Finally, HMM uses one state variable, thus, incorporation of new information
sources is possible by increasing the dimensionality of the state variable. The state
space of an HMM model grows multiplicatively with the dimensionality of the state
space, which implies the need for even more training data.



Chapter 6

Additional Context (AC) &
Discrete Knowledge (DK)

Contextual data is not limited to spatial, temporal or social features. Nowadays mo-
bile devices are equipped with a set of additional sensors that can deliver valuable
information about the behavior of a user. Examples of such sensors are accelerome-
ters, W-LAN, Bluetooth, system programs, GSM sensors, etc. Beside these sensors,
additional sources of information exist that may provide information that can help
detect temporary deviations from the usual routines of a user. For example, the cal-
endar function may contain information about appointments, indicating that a user
most probably is abandoning their normal routine temporarily, but they will return
to their routine behavior after a certain time period elapses. We classify this type
of information as discrete knowledge, because the information is only temporarily
valid. It has a short life time beyond which influence on the behavior of the user is
lost (unlike contextual knowledge which is valid for a longer period of time).

Chapter summary: Section I provides an introduction to additional information
sources, the integration of additional information sources into the mobility model,
related work, the MDC dataset and empirical results. Discrete knowledge, people’s
adherence to schedule, the extension of the mobility model in order to incorporate
discrete knowledge and finally empirical results are presented in section II.
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6.1 Additional context

The rapid development of both hardware (smart phones equipped with numerous
sensors) and software (mobile applications - APPs) has opened up new perspectives
as well as challenges in research into human behavior generally and human mobility
specifically. The new integrated smart phone features and mobile applications allow
huge amounts of data to be collected, this is data such as W-LAN, GPS and GSM
observations, as well as call logs, SMS, Bluetooth use, clock alarms, user profiles,
calendar entries, etc.

Different types of data provide different information about different behavioral
aspects of a mobile user. For example, WLAM, GSM and GPS provide data about
the position of the mobile user. Bluetooth, call logs and SMS provide information
about exchanges of information or communication among the users, whereas a user’s
personal calendar, clock alarm or device settings provide information about sched-
uled tasks of the user at a certain point of time. All these data types can either be
directly related to a location, i.e. W-LAN, GSM and GPS, or be indirect evidence
for being at a certain location, for example the clock alarm setting is a indirect
indication of the user being at a place where they can relax/sleep and setting the
system profile of the device to silent is an indication they may be entering a meeting
at a work place or a doctor’s surgery, for example. Bluetooth communication may
also indicate the user is with friends, which in turn may be associated with being
at certain locations, such as the home of a friend or their favorite bar.

Formally, let A = Ay, Ag, A3, Ay, ..., A; be the set of additional information sources.
Assuming conditional independence between the different information sources, the
probability of the user being at location q € ¥, given the current spatial context
s, time t and additional observations O; = o1 € Aj,02 € Ay, ..., A; € A from the
sensors contained in A can be calculated according to equation (6.1).

_ P50 _ p(Ous8,q:t)
p(q|87t7 Ot) - p(57t70t§ - p(Ott737t) (6 1)
p(Otls,q,t) _ 11 p(oi|s,q,t) )
— p(O¢ls,;t) T Lloj€a; p(os]s,t)

where g € Y, is a possible future location of the user. If we assume O; depends
on the current location only then the probability p(q|s,t, O;) changes according to
equation (6.2).

7Ot S,
p(q‘87 t7 Ot) = %
p(q,0¢ls,t) = p(q|s,t) = p(Otls,q,t) (6.2)

p(qls,t) * p(Otlq)
= plgls,t) * [1,,cq, Poilq)

The future location ¢ of the user is the location that maximizes the probability
p(Q|S> t, Ot):
q = argmax,p(q|s,t, O) (6.3)

If the set of observations at prediction time ¢ is empty then the model switches
back to the spatial-temporal model detailed in the previous chapters.
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6.1.1 Additional Context (AC) PPM VOMM Tree

The extension of the PPM VOMM tree must enable estimate of probabilities in
the form p(o;|s, q,t), where o; € A; is an observation from the information source
A; € A, q is a candidate future location, s is the current spatial context and ¢ is
the current time step. Fach node in the AC PPM VOMM tree corresponds to a
spatial-temporal context g, s, t, thus we just need to extend all nodes so that they
hold counters for each observation o; € A; that count the occurrence of patterns of
the form o;, s, q,t. The counters for both ¢, s,t and o;, s, q,t allow estimate of the
probability p(o;|s, g,t) according to equation (6.4):

OS2 (s, q,1)

Clsa ) (6.4)

p(0i|87 q:t) =

Where Céj‘i) is an additional counter for counting the occurrence of observation
o; from information source 4; and C(s, q,t) is the spatial-temporal counter as in the
previous chapters. AC PPM VOMM manages the additional counters in the nodes
of both spatial tree and temporal sub-tree. The probability p(o;|q) can be estimated
from the additional counters as follows:

C5M(e)

C(Ai)

ploilg) = C{M (q) ———
EakeAi ag (6)

7

(6.5)

where € represents the root of the VOMM tree and C’é’:i)(e) is the counter that
holds the occurrence of observation a; € A; at the root node e.

Extending the PPM VOMM tree to integrate additional information sources is
effectively adding counters for the observations of each new information source in
order to hold the occurrence of the observations according to the spatial-temporal
context represented by the node itself.

6.1.2 Related Work

The winner of Nokia Data Challenge (MDC) [Etter et al., 2012] has compared dif-
ferent mobility model approaches and combined them using a blending strategy
aimed at improving the prediction accuracy. The authors report an accuracy of
60.07%, 60.83% and 57.63% for three mobility models which are based on a Dy-
namical Bayesian Network (DBN), Artificial Neural Networks (ANN) and Gradient
Boosted Decision Trees (GBDT) respectively. The authors used only spatial and
temporal features and reported no improvement when incorporating additional con-
textual knowledge such as GSM or W-LAN.

The second winner of MDC was [Wang and Prabhala, 2012]. The authors predict
the next location of a user by combining a 1-order Markov Model and a Periodicity
Based Model PDM. The next location of the user is predicted by the 1-order Markov
Model as long as the probability exceeds a threshold, otherwise the PDM model is
used. The PDM model determines dense clusters of visits in time for each location,
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i.e. the most frequent periods of the week when the user visits the location. The next
location is the location with the largest cluster according to the current (prediction)
time. The authors used only spatial and temporal features and report their best
prediction accuracy to be 55.69%.

The third winner of MDC was [Gao et al., 2012]. They used a mobility model
called Hierarchical Pitman-Yor (HPY), which was originally used in language pro-
cessing. The HPY mobility model considers both spatial and temporal information
for predicting the future location of the user. Assuming that the time of a visit
depends only on the current location (not the whole spatial context) and assuming
that the time of visits to a location is a Gaussian distribution, they calculate the
probability of a visit to a location [ and time ¢ according to the following equation:

p(lilt, i) = p(lillia) * [ M (e, 07) (6.6)

TEA

where [; is the location of the i — th visit, A contains the set of temporal features
extracted from time ¢ (such as the hour of day and the day of week) and N (7|, o2)
represents the Gaussian distribution of the visits to location [; over the temporal
feature 7 € A. The authors report that the mobility model that considers both
temporal features ”hour of day” and ”day of week” has the best prediction accuracy
of 50.53%. Assuming the distribution of visits over the hours of day and the days of
week to be Gaussian is less applicable in this case, for example, consider a student
who visits a certain course at the same lecture hall every Monday afternoon and
every Thursday morning, it is clear that the visits of the student to the lecture hall
are a mixture of two distributions.

An approach based on user-specific decision trees learned from each user’s history
has been proposed in [Tran et al., 2012] in order to predict the next location of the
user. The authors report an accuracy of 61.11% after preprocessing the dataset for
detecting holidays, Home and Working locations and huge gaps between consecutive
data points in order to interrupt the current trajectory sequence. A weakness of this
model is the elaborate pre-processing, which is most possibly responsible for the
good results.

6.1.3 Evaluation

The mobility models presented in the related work subsection were evaluated using
the MDC dataset [Laurila et al., 2012]. We evaluate our AC PPM VOMM mobility
model based on the same dataset, which allows us to compare the performance of
our mobility model with the performance of these mobility models.

6.1.3.1 Nokia Data Challenge (MDC) Dataset

”The Mobile Data Challenge (MDC), a large-scale research initiative aimed at gener-
ating innovations around smart phone-based research, as well as community-based
evaluation of related mobile data analysis methodologies.” [Laurila et al., 2012].
The Lausanne Data Collection Campaign (LDCC) is an initiative started to collect
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a unique, longitudinal smart phone dataset for the basis of MDC [Laurila et al.,
2012]. The LDCC dataset contains quasi-continuous measurements covering all sen-
sory and other available information from a smart phone [Laurila et al., 2012]. Table
(6.1) contains statistics of LDCC relevant for AC PPM VOMM model that incor-
porates additional contextual knowledge.

’ Data type ‘ Quantity ‘
# Users: 80
# Location points: 26152673
# Unique cell towers (GSM): 99 166
# Application events: 8096 870
# Bluetooth observations: 38259 550
# Unique Bluetooth devices: 498 593
# W-LAN observations: 31013270

# Unique W-LAN access points: | 560441
Av. unique locations per user: 66.30 + 33.90

Av. history size: 573.66 £ 324.33
Av. history size per location: 8.78 £ 3.92
Av. entropy: 2.42 £+ 0.39

Table 6.1: An extract from the MDC dataset statistics provided in part by [Laurila et al., 2012]
or calculated during our further analysis of the dataset.

The dataset is strongly anonymized so that the construction of any joint models for
improving the prediction accuracy for one user based on knowledge from other users
is impossible. The dataset is also rather sparse (the average history size per user for
14 months is just 573.66 + 324.33) and contains huge gaps with no observations, for
example some users only have observations during the start and the end of the data
collection period, but no observations in the intervening time.

6.1.3.2 Feature Extraction

Additional information sources can contain features related to different aspects of
the contexts of the user. Feature selection is an important task in constructing
predictive models. The aim of feature selection is to remove irrelevant and redundant
features and to select only those features that are relevant for the model (taking into
account how these features are related). The selection of relevant features influences
the performance and interpretability of the model, it reduces the training time and
avoids overfitting. We use features relating to the spatial, social and individual
contexts of the user. The following list shows the information sources we used as
additional information sources:

e GSM G - contains the anonymized GSM cell IDs that the user has seen. This
additional feature provides further (coarser) information about the location of
the mobile users.

e W-LAN WL - contains the anonymized MAC-addresses of the W-LAN de-
vices seen by the device of a user. W-LAN observations also relate to the
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spatial context of a user. Its values are evidence for the location of W-LAN
access points.

System settings S - contains the system profile selected by a user(for ex-
ample silent, general, etc.) and the type of ring as "normal”, ”ascending”,
"ring once”, "beep” or "silent”. Both profile and ring settings are related to
the individual context of a user, for example a user sets their ring to ”beep”
whenever they go to bed or a user sets their system profile to silent whenever
they enter certain locations (a meeting room, doctor’s surgery). Thus both
profile and ring settings may be evidence for being at such locations.

Bluetooth B - contains the anonymized MAC-addresses of the Bluetooth
devices seen by the device of a user. The observations from the Bluetooth
device relate to the social context of the user. Bluetooth covers a small area
ranging between 1 and 100 meters, therefore the observation of other devices
means that the users have met.

Table (6.2) provides the set of features to be included in the AC PPM VOMM

model:
’ Variables ‘ Domain Description ‘
Eloc {ll, lg, ceny ll} The set of locations visited by the user
a binary variable representing whether it is a
w {Wd,We} ' &
weekend day or a work day
D {SUH,MOTL, ...,Sat} The day of week
The number of time slots calculated by dividing
SAt {51,52,..., 55} the hours of day by At, setting At = 1 means
the each hour of day represents a slot
a binary variable representing whether it is a
W {0,1} Y &
week end day or a working day
G {91, g2, ..., gs} The set of cell tower IDs
MAC-addresses of Bluetooth devices observed by
B (b1, o, ., by} . .
the mobile device of the user
MAC-addresses of W-LAN devices observed by
WL {wl,wg,...,wl} . .
the mobile device of the user
The set of device settings of the mobile device
S {51,552, .., Sm } of the user, each setting is a combination
of current ring and active profile

Table 6.2: The list of variables and their domains that are used by AC PPM VPMM.

According to the MDC instructions, a time interval is defined as follows. The start

point

of an interval is set to ten minutes before the start of a visit and the end point

of the interval is set to the end of that visit [Laurila et al., 2012]. The competitors
are allowed to use whatsoever data they wish within an interval to build a context.
We use the observations made within the last 30 Minutes of an interval for building
the context because we believe that the last 30 minutes of observations have the

most

impact on the next visit of the user. A nice side effect of our decision is the

reduction in the amount of data to be considered at any time step.
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6.1.3.3 Empirical Results

The maximum accuracy of the AC PPM VOMM is 60.63%. The performance of
AC PPM VOMM is as good as the mobility models introduced in the related work
subsection. A comparison between the models is reliable, because all models are
evaluated using the same dataset. We have applied our model to the raw data and
omitted any pre-processing (for example, for the detection of holidays and user-
specific off-days). Moreover, we have chosen the parameters of our model to be
global and not user-specific (for example, user-specific drift functions or user-specific
subdivision of the hours of the day into time slots). Therefore, we believe that the
AC PPM VOMM has the potential to achieve an even better performance and that
it can outperform the other models.

The inclusion of Bluetooth, W-LAN and system information results in an im-
provement in accuracy for some users, but the overall improvement in accuracy is
negligible. Hence, we state that their inclusion does not contribute to an improve-
ment in the performance of the model. Both system information and W-LAN are
tightly related to the actual location of the user and do not provide any evidence
about the future location of the user. Therefore these information sources may con-
tribute to the prediction of the current location of the user, but not to the prediction
of the next location. A user sets their system profile to silent when they enter a doc-
tor’s surgery or a meeting room and not much earlier, for example they do not
change their system profile in advance at their previous location. A W-LAN access
point can only be observed by the mobile device of the user when they arrive at the
location and not earlier. Furthermore, Bluetooth observations are dependent on the
presence of other devices in the neighborhood, which means the presence of other
users at the current location of the user. Therefore the contribution of Bluetooth is
highly dependent on knowledge about the social network of the users. Unfortunately
we did not have access to the social network, therefore using Bluetooth contributes
no significant improvement in accuracy.

Features ST PPM VOMM | AC PPM VOMM DEP | AC PPM VOMM INDEP
Accuracy %: 58.11 58.54 60.63

Abs. Improvement: - 0.0043 0.0252

Rel. Improvement %: | - 0.74% 4.34%

Two-Sided Unpaired

T-Test p(E): - 0.3442 0.0638

Table 6.3: Empirical results: Column 2 represents the basic spatial-temporal ST PPM VOMM
model, column 3 the model that includes additional information sources assuming dependency
on the whole spatial context s, column 4 the model that includes additional information sources
assuming dependency on the most recent location.

Table (6.3) shows the experimental results of evaluating AC PPM VOMM taking
only GSM observations into account. The inclusion of GSM leads to an absolute
improvement in accuracy of 0.0043 and a relative improvement in accuracy of 0.74%
assuming dependency between GSM and the whole spatial context s and an absolute
improvement in accuracy of 0.0252 and a relative improvement in accuracy of 4.34%
assuming that GSM depends only on the current location rather than the whole
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spatial context s. The higher improvement in accuracy for the later model is an
indicator that GSM does indeed only depend on the current location of the user.

6.2 Discrete Knowledge (DK)

Discrete knowledge is a unit of evidence about the occurrence of an event at a certain
point of time. The evidence expires after the point in time elapses.Discrete knowledge
represents temporal interruptions of standard movement patterns (daily routine) of
a user for a certain period of time before returning back to the standard routines. In
contrast to the features mentioned previously such as time, space, social, etc. discrete
knowledge has no continuous influence on the behavior of a user. Discrete knowledge
has no history of observations that could help to infer the mobility behavior of the
user beyond the expiration date. Examples of discrete knowledge are appointments
in the personal calendar of a user, cinema or restaurant reservations made over a web
browser or via a mobile phone, news feeds from the local police or city authorities
about events, blocked routes or metro timetables, etc.

As already stated, discrete knowledge has no observation history and no context,
thus no patterns can be detected. Discrete knowledge helps detect a preliminary
interruption of a standard routine of a user, when the user makes an unusual move-
ment at a certain point in time, but then returns to their usual routine after this
time has lapsed. For example, when a user visits a doctor after work instead of
going straight home as usual. Such an unusual movement does not cause only a
false prediction of the next location, but it also causes n false future predictions
(according to the order of the underlying mobility model). Therefore integration
of discrete knowledge during the prediction task can improve the accuracy of the
mobility model. Furthermore, discrete knowledge can contribute to the prediction
of locations where a user has never been before, for example such as the location of
an event or an appointment with a new doctor.

In the following subsection we assume that discrete knowledge is scheduled, i.e.
the start point in time is known, and that it is always be associated with known
locations. Discrete knowledge that is not scheduled or cannot be associated with a
location is beyond the scope of this chapter.

6.2.1 Adherence to Schedules

The influence of discrete knowledge on the mobility of a user depends on the user’s
adherence to appointments. Adherence to schedule varies from user to user. Whereas
some users exhibit a very high adherence to schedules of any kind, the behavior of
others depends on the type of the schedule. Users are usually vigilant about keeping
medical appointments, but some users take cinema or restaurant reservations less
seriously. It is tempting to assume a user would not bother to make an appointment
if they did not intend to keep the appointment, nevertheless some users have a lax
attitude to keeping their appointments.

Due to the lack of a dataset that allows an individual’s adherence to schedules to
be estimated, we used another method, namely a survey. A survey allows a global
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estimation of people’s adherence to schedules. We called a number of cinemas, restau-
rants, medical offices, beauty and hairdressing saloons and simply asked for data on
how often customers kept their appointments. In addition, we asked for the per-
centage of users who cancelled their appointments if they could not keep them. We
categorized the schedules into different types. We distinguished between food, en-
tertainment, health care and others. Table (6.4) shows the average results of the
survey.

Schedule type ‘ Compliance rate ‘ Cancelling rate

Food 0.92 0.60
Health Care 0.95 0.90
Entertainment | 0.90 0.60
Others 0.85 0.60

Table 6.4: The results of the survey on users’ adherence to schedules.

We used the results of the survey as the initial values for the adherence to schedules
for each user in following subsections.

6.2.2 Integrating Discrete Knowledge (DK) into PPM VOMM

We assume a user’s adherence to schedules is known at any time step. Further, we
assume the user’s time schedule is known at any time step. Upon notification of
the existence of a schedule, we temporarily boost the probability of the location
associated with the schedule by multiplying the probability of this location being
the next location of the user p(gl|s,t) with the user’s adherence to schedules . The
probability of the remaining locations is then dampened by the factor 1 — 9.

For each type of schedule we have two counters, one for saving the occurrence of
schedules of the associated type and the second counter for schedules, i.e. appoint-
ments that have been kept by the user. Initially we set the first counter to 100 and
the second counter is calculated by multiplying 100 with initial value from the sur-
vey. We update the counters according to futures occurrences of schedules, thus the
initial values of the respective types are adapted according to the user’s adherence
to schedules.

6.2.3 Empirical Results

Due to the lack of a dataset enriched with schedules, we made use of the Reality
Mining dataset. The users label the cell tower IDs when they have visited a signifi-
cant location. Although the labels are user specific, the users often use known names
and addresses as labels. Thus, some labels can be associated with real locations such
as restaurants, doctors, theaters, cinemas, bars, hospitals, etc. We enriched the Re-
ality Mining dataset with artificially created schedules for around 2% of the visits
of all users. We selected those visits that can obviously be associated with locations
where people usually arrange an appointment or make a reservation prior to their
visit.
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The accuracy of an order 3 ST PPM VOMM is 82.65% without consideration being
given to discrete knowledge. DK PPM VOMM is the mobility model which considers
discrete knowledge. Prediction accuracy increases to 83.81% when applying DK
PPM VOMM to the Reality Mining dataset enriched with schedules. The absolute
improvement in accuracy compared to ST PPM VOMM corresponds to 0.012 and
the relative improvement in accuracy corresponds to 1.4%. The significance of the

improvement is confirmed by a two-sided unpaired Student’s t-test with a value of
0.038.



Chapter 7

Conclusion

Location prediction has been the subject of many investigations and various ap-
proaches have been applied to building mobility models, such as random, computa-
tional and probabilistic reasoning. Random mobility models are not able to model
realistic human movement, because human movement is not random and follows a
mobility pattern. However, mobility models which can calculate the exact location
of the user based on physical laws such as distance, velocity and acceleration are
suitable for short-term predictions of a few seconds. Long-term predictions of a few
hours to a few days into the future are subject to high uncertainty, because a user
can travel long distances spanning hundreds of kilometers within a time period of
only a few hours or a few days, thus the computational estimation of the future loca-
tion of a user is almost impossible. However, mobility models based on probabilistic
reasoning can handle such uncertainty and appear to be well-suited for long-term
predictions.

Mobility models based on probabilistic reasoning predict the future location of
users given their location histories. Probabilistic estimation of the future location
of a user is unfeasible using the complete joint probability over the whole location
history, therefore, a Markov assumption is often used to simplify the probability
estimation of the user being at one particular location. The Markov assumption
states that at any time step, the influence of the whole history on the probability of
the user being at a location is included in the n most recent observations (visits).
Thus, the n most recent observations are sufficient for estimating this probability,
the underlying mobility model is then said to be of the order n.

Mobility models based on probabilistic reasoning usually consist of two steps,
namely the training and the prediction step. The training step uses the location
history of the user to detect as many movement patterns as possible. The length of
the patterns depends on the order of the mobility model n. The prediction phase is
used for assigning a probability mass to each location in the location history of the
user given the movement patterns and the current n observations of the user. The
model predicts the location with the highest probability mass.

The patterns detected in the location history of a user vary according to their
length and dimensionality. The length of a pattern is bounded by the order of
the underlying mobility model, whereas dimensionality is defined by the features
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included in the mobility model. A feature can be related to the spatial, temporal,
social or additional context of the user. The number of features and the size of the
pattern detected have a direct influence on both the training and prediction steps
of the underlying mobility model. The critical issues related to mobility models
based on probabilistic reasoning were addressed in previous chapters, most critical
issues are both cold-start and zero-frequency problems, as well as the size of location
history, the frequency of visit per location and the entropy of the users. The focus
of this work has been on looking at methods for alleviating the drawbacks of these
models and improving their performance by integrating features related to location,
time, social network, additional context and discrete knowledge into the mobility
model.

7.1 Mobility Model & Empirical Results

The following subsections provide a summary of the results and findings of each
chapter.

7.1.1 The Mobility Model Approach

Two promising approaches based on probabilistic reasoning are the Fixed Order
Markov Model (FOMM) and the Hidden Markov Model (HMM). FOMM treats the
whole location history as a single distribution, therefore, FOMM consists of one
(observable) parameter, namely the transition matrix for estimating the probability
of moving on to a location given a context s of length n = [s|. The size of the
transition matrix grows exponentially with the order of the model. In contrast to
FOMM, HMM treats the location history as a mixed distribution of ¢ unknown
components. Thus HMM consist of two parts, namely the hidden (or latent) state
model, which controls the component from which an observation (output) is drawn,
and an observable emission model, which represents the output (for example, the
future locations of the user) of the model. The Markov assumption is applied to
the state model in HMM, which is managed in a transition matrix. The emission
probabilities are managed in the emission matrix. A pattern in HMM consists of a
sequence of n states. HMM is much more flexible than FOMM, but training HMM is
a non-trivial task, which has not yet been solved by any of the learning techniques.

Both FOMM and HMM have a fixed order, thus the patterns detected by them
have a fixed size. Choosing a higher order n for the model increases the number of
patterns that could be detected, but at the same time increases the need for training
data. Thus both models suffer from the cold-start and the zero-frequency problem.
A predictive model suffers from cold-start when insufficient data is available for
training the model. A model suffers from zero-frequency problem when the training
data does not contain all the patterns that can be detected by the model, thus the a
priori probability of a pattern that does not occur in the location history is zero. An
a priori probability of zero causes the posteriori (prediction) probability to be zero.
A posterior probability of zero based on the a priori probability is far from reality,
because a user can visit a location for the first time at any point in time in the
future. The zero-frequency problem can be alleviated by using more training data,
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but there is no guarantee that more training data will contain all possible patterns,
thus the zero-frequency problem remains unresolved.

Human behavior is continuously subject to change over time, therefore a mobility
model has to be able to adapt to the changing behavior of the user. The adaptability
to the changing behavior of users is another problem of FOMM and especially HMM.
When the frequent patterns of a user change, the model has to be retrained, which is
costly and requires a lot of effort. Another problem of HMM is its training, which is
non-trivial as stated earlier. Selection of the initial parameters is very important so
that HMM learning converges to a true solution. Therefore, training HMM requires
in-depth understanding of the application domain so that suitable initial parameters
can be selected. Furthermore, it is questionable as to how much extra performance
is gained when the initial parameters are near to the true solution. In many cases,
the initial parameters can be sufficient for achieving reasonable performance and
consequently the hidden parts of HMM just complicate the model unnecessarily,
hence the arduous journey of training an HMM can be spared.

7.1.2 Spatial Context

We use an approach based on context specific Bayesian networks, more specifically
we use a variant of the Variable Order Markov Model (VOMM) called Prediction by
Partial Matching (PPM). The PPM VOMM mobility model has a variable order, the
model switches automatically to a lower order if it cannot find a pattern of length
equal to the higher order. PPM VOMM uses an escape mechanism for switching to
a lower order. The escape mechanism of PPM VOMM is a Laplace-like estimator
for assigning a probability mass to patterns that do not appear in the location
history. Thus PPM VOMM is able to alleviate the drawbacks of zero-frequency to
a high extent. The variable order of PPM VOMM allows detection of patterns of
variable size between one and n, therefore PPM VOMM is able to detect significantly
more patterns in the same amount of location history. Hence, PPM VOMM is less
dependent on the size of the location history and suffers less from cold-start or
zero-frequency problems.

PPM VOMM is structurally much simpler than HMM, it manages the patterns in
a tree structure. Each node of the tree is labeled with a symbol from the (spatial)
alphabet and corresponds to a pattern constructed by traversing the tree from the
root to that specific node and concatenating the label of all nodes on that path.
Each node has a counter for bookkeeping its occurrence. Learning PPM VOMM is
actually the process of inserting paths into the tree or updating the node counters.
Therefore PPM VOMM allows both the training and prediction phases to be con-
ducted simultaneously, which further alleviates both cold-start and zero-frequency
problems and reduces the dependency of PPM VOMM on the quantity of location
history.

We have tested the performance of PPM VOMM using different datasets, namely
Reality Mining [Fagle and Pentland. 2006], GeoLife [Geo, 2013a, Geo, 2013b], Foursquare
[Fou, 2012b] and Mobile Data Challenge (MDC) [Laurila et al., 2012] dataset. PPM
VOMM outperformed FOMM for all datasets. The datasets we used have also been
used by other researchers to evaluate other mobility model approaches. The mobil-
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ity model approaches were based on Dynamic Bayesian Networks, Artificial Neural
Networks, Principal Component Analysis, Gradient Boosted Decision Trees, Hier-
archical Pitman-Yor (HPY), etc. PPM VOMM outperforms, or at least is as good
as the accuracies reported in other works.

Extensive empirical analysis demonstrates the significance of the improvements
in accuracy using PPM VOMM compared to FOMM (up to 18%). The mobility
model based on PPM VOMM is less dependent on the size of training data or the
order of the model. PPM VOMM has significant advantages when the user travels
in unknown terrain, where he has never been before. Although PPM VOMM is
not yet able to predict locations visited for the first time, it is able to predict the
future location of a user even if the n most recent locations of the user (current
spatial context) contain unknown locations. PPM VOMM was able to predict the
next location of the user in almost 48.84% of the cases when the current context of
the user contains unknown locations. This corresponds to an overall improvement
in accuracy of 11.59%. The distribution of the improvements over the hours of work
and weekend days shows that most of the improvements occur during the morning
hours of work days prior to arriving at the work location, evening hours after leaving
the work location and during the evening and night hours of weekend days. People
are most explorative and visit new locations during the aforementioned hours, which
underlines the advantages of both the variable order and escape mechanism of PPM
VOMM for predicting the next location of a user during the most interesting (for
service providers) hours of the week.

The improvement in accuracy gained by using PPM VOMM compared to FOMM
correlates negatively with the frequency of visits per location and positively with
the number of locations visited by the user, hence PPM VOMM is less dependent
on either the number of locations or the frequency of visits per location compared
to FOMM. The performance of both PPM VOMM and FOMM becomes similar for
locations visited with a very high frequency. Furthermore, PPM VOMM shows a
better performance for highly entropic users who visit a lot of locations. The mobility
of those users is usually associated with high uncertainty, because these users are
very explorative in nature and consequently their location histories do not have
dominant mobility patterns. The empirical results have impressively underlined the
advantages of PPM VOMM compared to FOMM.

7.1.3 Temporal Context

The mobility of humans also obeys temporal regularities besides spatial-pattern.
Humans visit many locations periodically, for example, many users go to their work
locations every work day morning and they go home every evening between 6 and 8
p-m. The periodic behavior of humans is defined by hierarchically structured tem-
poral features. Temporal features correspond to time units such as week of the year,
day of the week, hour of day, etc. Temporal features follow an inclusion semantic,
i.e. a temporal feature at level i in the hierarchy consists of n units of the (more
specific) temporal feature in the hierarchy level i 4+ 1. For example a day of the
week consists of 24 hours in that day. Inclusion of temporal features in the mobility
model helps detect more patterns. These patterns can be categorized according to
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their dependency on spatial and/or temporal features into pure spatial-pattern, pure
temporal-pattern and mixed spatial-temporal pattern.

The inclusion of more features in a mobility model increases the state space of
the model. Including a new feature in HMM or FOMM causes both the transition
and/or emission matrices to grow exponentially to the domain of the new feature.
Thus inclusion of more features increases the need for more location history and the
dependency of the mobility model on the size of training data. Both the variable
order and the escape mechanism of PPM VOMM allow the inclusion of more features
without increasing the need for more training data. We refer to the PPM VOMM
model enriched with temporal features as the Spatial-Temporal (ST) PPM VOMM.
The empirical results show that inclusion of temporal features increases the accuracy
of the model using the same amount of training data up to 7% compared to PPM
VOMM based only on spatial features and up to 25% compared to FOMM.

The empirical results show that the movement of a user to the next location and
the amount of time they spend there depends on the arrival time at that location.
Thus the mobility of a user is conditionally dependent on the temporal features
extracted from previous locations of the user, thus it is conditionally independent
from the spatial context s of the user. As stated earlier, the mobility behavior of a
user is subject to continuous change over time. ST PPM VOMM uses a drift function
in order to let non-recurrent patterns decay faster and to increase the adaptability
of the model. The use of the drift function increases the performance of the model
by almost 1.29%. The patterns of a user decay by factor of 0.007 every 6 hours,
which means the patterns of a user have a life cycle of two years on average. On
average, the influence of a mobility pattern on the movements of a user vanishes
after two years of non-occurrence.

Extensive empirical analysis shows that inclusion of temporal features in an ST
PPM VOMM significantly alleviates the drawbacks of cold-start and zero-frequency
problems. When the current context of the user is unknown accuracy increases to
61.18%, which corresponds to a total accuracy improvement of 3.08% compared to
PPM VOMM and almost 14.67% when compared to FOMM. ST PMM VOMM has
further advantages over PPM VOMM in that it is able to detect pure temporal
and mixed spatial-temporal patterns, thus it can further decrease the drawbacks
of the zero-frequency problem. Again most improvements occur during the evening
and night hours and during the morning hours of work days, when people are most
active and explorative. As stated earlier, these hours are most attractive for service
providers, because people usually conduct their free time activities during these
hours.

An in-depth correlation analysis emphasizes the importance of temporal patterns
for enhancing prediction accuracy. The correlation analysis shows that the ST PPM
VOMM is less dependent on the size of training data and the frequency of visits
per location. The improvements correlate negatively with both measurements. Fur-
ther, the improvements in accuracy correlate even more strongly positively with
both number of locations and entropy, which again confirms our finding that ST
PPM VOMM is well-suited for predicting the mobility of users during their most
active/explorative hours. ST PPM VOMM is able to find more patterns in the same
amount of location history and thus is able to predict the even less frequent mobility
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patterns of users such as locations where they spend their free time.

7.1.4 Mobile Homophily

The mobility of humans cannot be explained by focusing solely on the individual
location history of a user. Humans are social beings and are subject to social in-
fluences. They influence and are influenced by others, who are socially connected
to them. The mobility behavior of an individual is not excluded from social influ-
ences. Mobile homophily is the tendency of similar individuals to be interested in the
same locations. Mobile homophily implies an interdependency between two quan-
tities, namely social and mobile proximity. Social proximity measures the overlap
between the social relationships of two users. We calculate social proximity based on
measurements from social network analysis (SNA) like common neighbor, Jaccard
Coefficient and Admic & Adair. Mobile proximity quantifies the similarity between
the mobility of two users, i.e. to what extent two users are interested in the same
locations. We calculate mobile proximity by quantifying the amount of spatial and
spatial-temporal overlap between the location histories of two users. Additionally
we have calculated a weighted version of both spatial and spatial-temporal overlap
using measurements such as entropy, the distance travelled from the home location
to a meeting location, the number of users who visit a location (in order to differ-
entiate between public locations and private domiciles), and location density, i.e.
the number of other locations in the neighborhood of the meeting location (because
two users may be at the same location by chance if the users do not have a lot of
location choice such as in a suburban area, whereas in urban areas people have a
lot of choice, thus they visit the same location intentionally).

We used data collected from the online location -based social networking platform
Foursquare between 23.03 and 23.07.2012, for demonstrating the interdependency
between social and mobile proximities based on an extensive correlation analysis
between network and mobility measurements. The dataset contained the location
histories of 113,000 users, the social network contains approximately 7.5 % 10% users.
The social network has a clustering coefficient of 0.104 and an average shortest path)
of 4.15, which confirmed that the users were building a real social network.

The correlation analysis shows a weak to moderate correlation between social and
mobile proximities. The low correlation is due to the nature of online communities
(Foursquare is one), social ties in online communities can be formed regardless of
geographical barriers. The propinquity effect states that close things influence each
other more than distant things. In line with this theory, we repeated the correlation
analysis between users from the same city. The new correlation analysis showed a
moderate to strong correlation between social and mobile proximities.

The majority of users interact mainly with a small group of their acquaintances.
The acquaintances in the group exhibit a high degree of cohesion, which means
that each member of the group spends time and interacts with almost all the other
members of the group. The members of the same subgroups exhibit a high degree
of similarity in their beliefs, thoughts, norms, goals, movements, emotional needs,
etc. thus they are connected together will strong ties. We detected more than 8,700
maximal cliques and more than 29,000 maximal 2-plexes in the dataset. The av-
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erage size of the maximal 2-plexes was 7.79 4+ 2.41 and the largest 2-plex contains
20 users, which is in perfect agreement with the human social perception limit in
[Fischer and Wiswede, 1997]. For each maximal 2-plex we calculated a measure of
cohesion according to equation (4.2). A correlation analysis between group cohesion
and mobile proximity showed a very strong correlation. The correlation analysis
demonstrated that a moderate to a strong statistical dependence between social
and mobile proximities exists.

7.1.5 Social Influence

Although the correlation analysis showed a moderate to strong correlation between
social and mobile proximities, correlation does not necessarily mean causation. The
actual causation effect can be shown by building an influence model for integrating
the location histories of friends into the mobility model of an individual. We ex-
tended the ST PPM VOMM mobility model for modeling social influences. We refer
to the extended model as SOST PPM VOMM. We distinguish between different
types of social influences, namely synchronous specific and general (trend) social in-
fluences. Synchronous specific social influences have two preconditions, namely the
user must be currently involved in a social situation and the location histories of
the friends in the current social situation must be available. We categorize the influ-
ences arising from the location histories of friends into three classes of synchronous
specific social influence factors according to the set of users who build a social in-
fluence factor together. In contrast, general social (trends) influences have only one
precondition, namely the existence of location histories of friends. The influencers in
synchronous specific social influences are the users present in the current social situ-
ation of the user, whereas all the friends of the user who have a location history build
the influencers in general social (trend) influences. General social trends/influences
represent generalities in the mobility of the community of a user, or represent friend
recommendations transmitted via unobservable media such as phone, SMS, LBSN
platforms (e.g. Foursquare) or mail.

Considering both types of social influence factor, SOST PPM VOMM outperforms
ST PPM VOMM by almost 5.22%. The improvement in accuracy occurs mainly
during the evening hours of work days and the hours of weekend days starting
from 11 a.m. These hours are the typical times when human beings are involved in
social activities, thus their mobility exhibits the highest entropy, which means the
uncertainty of predicting their next location is at its highest. The incorporation of
social networks improves the accuracy of next location prediction during times with
high mobility uncertainty, which emphasizes the importance of social influences on
the individual mobility of a user. Further, the inclusion of social networks leads to
locations which have been previously visited by their friends, but where the user
has possibly never been before can be predicted. The improvement in accuracy due
to the prediction of locations where the user has never been is 3.19%, which again
impressively underlines the importance of social networks.

Similarly to individual location histories, social influences are also subject to decay.
We applied two different drift functions, both drift functions led to a significant
increase in the accuracy of the model. The degree of drift has shown that social
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influences decay within three to six weeks, which is significantly faster than the
drift of individual location histories.

Most of the social situations that occurred were between members of maximal 2-
plexes. The size of the social situations follows a power law, the majority of the social
situations occur between two and five friends and only a few social situations occur
between more friends. We calculated a measure of cohesion for each social situation
based on the maximal 2-plexes for which the users involved in the social situation
are members. The measure of cohesion shows a strong negative correlation with
the size of social situations indicating that most cohesive social situations are of a
smaller size. The most improvement in accuracy is achieved through social situations
among members of maximal 2-plexes. The relationship between the improvement in
accuracy and both size and measure of cohesion of the social situation follow power
laws. The smaller the size of the social situation, the higher the improvement in
accuracy. The higher the measure of cohesion of a social situation, the higher the
improvement in accuracy.

Human beings have cognitive, emotional, spatial and temporal limitations, that
prevents them from maintaining all their social relationships with the same intensity
[Granovetter, 2005]. A user interacts mainly and spends most of their time with their
strong ties, who form together the circle of close friends, to which we refered with
cohesive subgroups. The emotional needs, beliefs, thoughts, information, locations,
times, norms, goals, etc. of the users in the same cohesive subgroup overlap to a high
extent. Beside the strong ties, a user has a certain number of social relationships,
with whom they interact less, thus, these social relationships represent the weak
ties of the user, to which we refered with acquaintances. An interaction between two
users connected with a weak tie is most interesting, because the users have their own
circle of close friends with own beliefs, thoughts, goals, norms, information, emo-
tional needs, movements, etc. The overlap between their information of both users is
considerably less, compared to the members of their own circle of friends. Thus, an
interaction between two users connected with a weak tie leads to exchanging more
novel information. Centrality is the extent, in which a user is socially connected. A
central user has a lot of social ties, most of which are weak ties. Central users have
the intrinsic ability of bridging the gap between various social communites, thus
they are important for transmitting novel information, trends, influences between
different communites. The foursquare dataset contains 22 users with more than 1000
social ties, they represent central users in the social network.

In order to emphasize the importance of weak ties and central users, we set im-
provement in accuracy and degree in relation. The improvement in accuracy of the
22 central users is lower compared to other users. Generally, the relationship netween
both quantities shows a negative tendency. Central users come a lot around and are
more explorative in nature, because they have many social relationships and bridge
different worlds and communities. Empirical results has shown that the central users
visit a lot of unknown locations, and have a larger location history. These results
emphasize the importance of central users and weak ties for flow of information
(trends) between different communities. Although the mobility of central users can
only be improved slightly using their social network, they represent trend setters and
transmitters between different social communities and bring about an improvement
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in the prediction accuracy for their followers (friends).

We conducted an in-depth correlation analysis of mobility measurement and im-
provement in accuracy to highlight the importance of social networks in next location
prediction. The improvement in accuracy using SOST PPM VOMM compared to
ST PPM VOMM shows a strong positive correlation with both entropy and number
of locations, whereas it correlates strongly negatively to the average frequency of
visit per location. The improvement in accuracy shows only a very slight correla-
tion to the size of location history, because both number of locations and entropy
exhibit a positive correlation with the history size. This means a higher history size
implies higher entropy and more visited locations. The correlation analysis empha-
sized the importance of social networks for alleviating the drawbacks of cold-start
and zero-frequency problems.

7.1.6 Additional Context & Discrete Knowledge

Context is not limited to spatial, temporal or social features. Today’s mobile de-
vices (smart phones) are equipped with a series of sensors which can deliver valu-
able information about the current context of the user. GSM, W-LAN, Bluetooth,
Accelerometer, system programs, alarm clock, etc. are examples of these sensors.
Setting the alarm clock may indicate the user is at home or at a hotel. Setting the
system profile of the device could indicate the user is entering a meeting room or a
doctor’s surgery. GSM cell tower IDs or W-LAN access points can be associated with
physical locations, Bluetooth observations with other users in the neighborhood of
the user, etc. We extended the ST PPM VOMM so that additional information from
sources such as the sensors mentioned above could be integrated. We used the Mo-
bile Data Challenge (MDC) [Laurila et al., 2012] dataset to evaluate the extended
model. The empirical results show that incorporation of GSM improves the accuracy
of ST PMM VOMM from 58.11% to 60.63%. The other sensors improve the predic-
tion accuracy for some users, but on average the improvements are less significant,
because many of these sensors depend on the existence of further information. For
example, the social network must be known in order to achieve improvements in
accuracy while using Bluetooth observations, because observation of other devices
in the neighborhood of the user is only relevant when the observed devices belong
to friends. Therefore we conclude that these sensors can indeed improve prediction
accuracy if they can be combined with other information sources. Unfortunately the
MDC dataset does not contain the social network of the user, which would enable
us to test the dependency of Bluetooth on the social network of the users.

Human beings might interrupt their daily routine for a visit to the doctor, the-
atre, cinema, restaurant, cosmetic saloon, music concert, sport stadium, etc. The
interruption is temporary and the user soon returns to their normal routine. We
refer to knowledge about these visits as discrete knowledge, because there is no
pattern to it and it is valid only for a certain period of time. Although these visits
occur rarely and irregularly, evidence for many of these visits can be uncovered in
advance. For example, users note their appointments in their personal calendar or
they dial phone numbers or visit websites corresponding to these locations. Thus
they can be detected using information sources like the personal calendar or the web
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browser. Although adherence to schedule varies according to the type of appoint-
ment and character of the user, users do not generally take the trouble to make an
appointment if they do not intend keeping it. A survey has shown that adherence to
schedule is very high (> 90%) on average, additionally, people usually cancel when
they cannot keep an appointment. We extended ST PPM VOMM to incorporate
discrete knowledge by taking user’s adherence to schedule into account. Due to the
lack of a dataset containing scheduled visits, we enriched the Reality Mining dataset
with schedules for around 2% of the visits. The user specific labels for the cell tower
IDs allow detection of many visits to doctors, cinemas, theaters, etc. We adjusted
the user’s adherence to schedule depending on the user’s compliance to scheduled
visits. The empirical results showed that inclusion of discrete knowledge improves
the prediction accuracy by 1.81%.

7.2 Critique

Despite the many positive and innovative aspects our work is not free of critical
points. We mention some of these points below, which in our opinion should have
received more attention.

The empirical results rely on datasets collected during experiments conducted
over a certain time span for a certain number of subjects. The subjects are usually
students or university employees. Although the Foursquare dataset contains real-life
data, the dataset is very sparse and mainly contains incomplete location histories
for the users. Unfortunately, we cannot state whether the same level of accuracy
can be achieved for all users, regardless of their occupation or social status. Further,
it is possible that the improvements in accuracy achieved by incorporating social
networks are in fact due to this artifact of the Foursquare dataset. Figure (4.1) from
chapter 4 shows that most check-ins are at publicly accessible locations and only
very few check-ins are at significant and frequently visited locations such as home
and work locations. The behavior of the model under the availability of complete
location histories of the users remains uninvestigated. Hence, we cannot make a
statement as to whether the incorporation of social networks would improve the
accuracy of the model to the same extent if complete location histories of the users
were available. It is possible that the high improvement in accuracy is due to the
sparsity of the dataset and the fact it predominantly contains locations where social
situations typically evolve. Unfortunately we did not have access to a dataset with
complete location histories for the users, but it would be quite feasible to collect
such a dataset using mobile devices equipped with GPS, Bluetooth, W-LAN, various
Apps and with access to the Internet (like smart phones).

Privacy issues remain a serious issue when predicting the next location of a user.
Although next location prediction has many useful applications, it is still a double
edged sword and poses risks of privacy violation. People have a basic trust, which
as long as they have not yet had a negative experience remains intact. The recent
NSA spying scandal [nsa, 2013] has shown the danger of sensitive data getting into
the wrong hands, for example, as a vehicle to draw illegal benefits, or in the sim-
plest case for illegal monitoring and surveillance of people. Next location prediction,
unfortunately, can also be misused to harm people. It is clear that peoples’ trust
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in a location-based service can be increased if they have the option to opt-out of
the service and delete their data whenever and wherever they want, however an
affair like the NSA spying scandal destroys trust in location-based services. Unfor-
tunately we have not paid attention to privacy protection in this work, especially to
the possibility of a mobility model algorithm that guarantees an appropriate level
of (context-aware) privacy protection.

We believe that the solutions proposed in this work, especially the mobility model,
are of low complexity, nevertheless, a further point of criticism is that no attention
was paid to the computational complexity (with respect to both time and storage
costs) of the proposed solutions. Computational complexity has a direct influence
on the architectural design of a mobility model. For example, whether the proposed
solutions can run on a mobile device with limited capabilities, or whether client
server architecture is needed. The architectural design in turn has influence on the
risks of privacy violation and strategies for privacy protection, etc.

The periodic pattern detection method in this work relies on a heuristic a priori
approach. The approach exploits naturally occurring periodicities that are valid in
Western societies. The approach subdivides the time into weeks, the weeks into
work days (Monday-Friday) and weekend (Saturday and Sunday). We assume the
universal validity of these periodicities and believe that all users exhibit different
mobility behavior on work days compared to their off days. Further, we implicitly
assume that all users have their off days on weekend days. The approach might
be valid for Western societies, but not for all countries. For example, almost all
Islamic societies have Friday off, other countries could have their own specific non-
working days. Even in Western societies, not all users have their off days at the
weekend, for example the off days of a user may vary according to their profession,
most employees in the gastronomy industry have their off days on days other than
weekend days. Finally, we haven’t considered any country-specific holidays, on which
people exhibit a very different mobility behavior than on normal work days. A user
and a country-specific periodicity will most probably increase the performance of
the proposed mobility model.

The mobility model proposed in this work is able to assign a probability mass to a
context (social-spatial-temporal pattern) that does not appear in the location history
of the user. We refer to this ability as the escape mechanism. The escape mechanism
of the proposed mobility model uses the number of symbols appearing after a context
s in the calculation of any probability masses (according to both equation (2.11)
and (2.11)). Using the number of symbols appearing after a context for calculating
the probability of any context has turned out to be problematic when including
the location histories of friends, because the number of symbols appearing after a
context increases very quickly, which influences the whole probability distribution.
In fact, for this reason we were forced to use a separate tree (SOST PPM VOMM)
for bookkeeping influences from the social network. We haven’t paid any attention
to calculating the escape probabilities based on an alternative approach.
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7.3 Outlook

The following fields of study could significantly contribute to improving the task of
predicting the next location of a mobile user.

The PPM VOMM models introduced in this work are able to learn and predict
simultaneously as has been seen in the previous chapters. Both learning and pre-
diction are based on discrete locations, which means movement-traces in continuous
spaces such as GPS, must be transformed into discrete locations in a preprocessing
step. A preprocessing step requires separating both learning and prediction steps.
But, the PPM VOMM model can be easily combined with an online clusterer such
as 2.4.1.2 in order to simultaneously learn and predict in continuous spaces.

Many location-based services use geographical locations without any contextual
information about the locations. Geographical locations do not allow a further com-
parison between locations except using their physical properties such as distance. A
semantic location is a form of location enriched with contextual information such as
the type of location (restaurant, cinema, etc.), temporal accessibility (open between
10 a.m. and 8 p.m.), the activities that can be performed at these locations (sport,
entertainment, eating, drinking, dancing, etc.), specific properties (inexpensive shop,
Chinese restaurant, Latin bar, quality goods, all you can eat, etc.). Semantic loca-
tions allow a comparison among them, which can help predicting locations where a
user has never been before, even without the consideration of location histories of
friends. For example if a user often visits Chinese restaurants, then it may be as-
sumed that the user will probably visit a Chinese restaurant for lunch when visiting
a city they have never been to before.

Further, semantic locations can bridge the gap between users and locations. The
interests of a user can be learned using the semantic properties of the locations they
visit. The interests of the users allow comparison between two users even if no spatial
overlap exists between their movements. Semantic locations allow the detection of
much wider communities than 2-plexes or a circle of friends. Examples of wider
communities are the fans of a sports club, a certain singer, a certain life style, etc.
These wider communities allow detection of generalities beyond the border of circles
of friends. The prediction accuracy of the mobility of a user can then be improved,
even if the social network of the user is not given or the location histories of their
friends are unknown.

A social tie characterizes the relationship between two socially connected individ-
uals. The strength of a social tie also depends on subjective criteria like emotional
intensity and intimacy [Krackhardt, 1992], nevertheless, the strength of a tie can
be measured by observable measurements like the amount of information exchanged
between the two individuals, the duration of interaction between them and the af-
fection of the individual for the other, for example when the visit of one of the two
individuals causes the other individual to visit the same location. The development
of powerful mobile devices equipped with many sensors such as smart phones allows
the calculation of tie strength based on message exchange (e-mail, SMS, Bluetooth,
Instant Messaging, etc.), duration of interaction (phone call), information sharing
(file and image exchanges, co-locations, common activities, etc.). Due to the lack
of information, SOST PPM VOMM calculates tie strength based on spatial overlap
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between the mobility of two friends. A high spatial overlap does not automatically
mean a tight relationship between two users. For example, two working colleagues
may have a high spatial overlap because they share a frequently visited location,
in this case the work location. The strength of a tie in future can be accurately
calculated using the above metrics.

Natural language processing (NLP) [nlp, 2013] is concerned with computer-human
interactions and the derivation (for example) of information from written and spo-
ken language input. The following tasks of NLP may be of interest in next location
prediction. Named Entity Recognition (NER) determines which items in a sequence
of text refer to names such as persons, locations or organization names. Natural Lan-
guage Understanding, which converts a chunk of text into a more formal representa-
tion, so it can be further manipulated by computer programs. Speech Recognition,
which can determine the textual representation of an audio stream. Information Ex-
traction for extracting semantic information in a text sequence. Rapid developments
in NLP in recent years have facilitated the incorporation of more sources of informa-
tion for retrieving valuable evidence about the mobility of an individual. Examples
of new sources of information are, phone calls, SMS, e-mail, messengers (such as
Skype), websites, news feeds from local authorities (police), information from local
public transport services (public transport timetables), etc. The above sources of
information contain a vast amount of valuable information about locations, times,
persons, etc. which without doubt can help increase the prediction accuracy of a
mobility model.
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