
Technische Universität München
Lehrstuhl für Informatik mit Schwerpunkt Wissenschaftliches Rechnen

Cluster-Based Parallelization of
Simulations on Dynamically Adaptive Grids

and Dynamic Resource Management

Martin Schreiber

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Florian Matthes

Prüfer der Dissertation: Univ.-Prof. Dr.Hans-Joachim Bungartz

Univ.-Prof. Christian Bischof, Ph.D.

Die Dissertation wurde am 30.01.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 11.05.2014 angenommen.

2

Contents

I Introduction 9

II Essential numerics of hyperbolic PDEs 13

1 Continuity equation and applications 15

1.1 Continuity equation . 15

1.2 Examples of hyperbolic systems . 16

2 Discontinuous Galerkin discretization 19

2.1 Grid generation . 19

2.2 Triangle reference and world space . 20

2.3 Basis functions . 22

2.4 Weak formulation . 23

2.5 Mass matrix M . 24

2.6 Stiffness matrices S . 24

2.7 Flux matrices E . 25

2.8 Source term . 26

2.9 Rotational invariancy and edge space . 26

2.10 Numerical flux F . 27

2.11 Boundary conditions . 28

2.12 Adaptive refining and coarsening matrices R and C 29

2.13 CFL stability condition . 33

2.14 Time stepping schemes . 33

III Efficient framework for simulations on dynamically adaptive grids 35

3 Requirements and related work 37

3.1 Simulation: grid, data and communication management 37

3.2 HPC requirements . 38

3.3 Space-filling curves . 39

3.4 Related work . 39

4 Serial implementation 43

4.1 Grid generation with refinement trees . 44

4.2 Stacks . 45

4.3 Stack-based communication . 45

4.4 Classification of data lifetime . 53

4.5 Stack- and stream-based simulation on a static grid 54

4.6 Adaptivity . 58

4.7 Verification of stack-based edge communication 61

4.8 Higher-order time stepping: Runge-Kutta . 65

4.9 Software design, programmability and realization 66

4.10 Optimization . 70

4.11 Contributions . 76

3

CONTENTS

5 Parallelization 79
5.1 SFC-based parallelization methods for DAMR . 81
5.2 Inter-partition communication and dynamic meta information 84
5.3 Parallelization with clusters . 90
5.4 Base domain triangulation and initialization of meta information 95
5.5 Dynamic cluster generation . 96
5.6 Shared-memory parallelization . 106
5.7 Results: Shared-memory parallelization . 110
5.8 Cluster-based optimization . 115
5.9 Results: Long-term simulations and optimizations on shared-memory 124
5.10 Distributed-memory parallelization . 124
5.11 Hybrid parallelization . 129
5.12 Results: Distributed-memory parallelization . 131
5.13 Summary and Outlook . 133

6 Application scenarios 135
6.1 Prerequisites . 135
6.2 Analytic benchmark: solitary wave on composite beach 138
6.3 Field benchmark: Tohoku Tsunami simulation 143
6.4 Output backends . 148
6.5 Simulations on the sphere . 151
6.6 Multi-layer simulations . 152
6.7 Summary and outlook . 154

IV Invasive Computing 155

7 Invasive Computing with invasive hard- and software 157
7.1 Inavsive hardware architecture . 157
7.2 Invasive software architecture . 158
7.3 Invasive algorithms . 159
7.4 Results . 161

8 Invasive Computing for shared-memory HPC systems 163
8.1 Invasion with OpenMP and TBB . 163
8.2 Invasive client layer . 165
8.3 Invasive resource manager . 167
8.4 Scheduling decisions . 170
8.5 Invasive programming patterns . 173
8.6 Results . 174

9 Conclusion and outlook 179

V Summary 181

A Appendix 183
A.1 Hyperbolic PDEs . 183
A.2 Test platforms . 187

4

Acknowledgements

First of all, I like to thank my supervisor Hans-Joachim
Bungartz for supporting and encouraging me during this
work. I’m also grateful to many colleagues involved in the
feedback process of this thesis and like to mention all of
them: Alexander Breuer, Benjamin Peherstorfer, Christoph
Riesinger, Konrad Waldherr, Philipp Neumann, Sebastian
Rettenberger, Tobias Neckel, Tobias Weinzierl. Thank you
all for your valuable feedback! My special thanks goes to
my family for their ongoing support.

The software development of this thesis is based on many open-source products and I like to
thank all developers who published their code as open source. For sake of reproducibility, the
source code related to this thesis as well as the related publications is also available at one the
following URLs:
http://www5.in.tum.de/sierpinski

http://www.martin-schreiber.info/sierpinski

5

http://www5.in.tum.de/sierpinski
http://www.martin-schreiber.info/sierpinski

6

Abstract

The efficient execution of numerical simulations with dynamically adaptive mesh refinement
(DAMR) belongs to the major challenges in high performance computing (HPC). With simula-
tions demanding for steadily changing grid structures, this imposes efficiency requirements on
handling grid structure and managing connectivity data. Large-scale HPC systems furthermore
lead to additional requirements such as load balancing and thus data migration on distributed-
memory systems, which are non-trivial for simulations running with DAMR.

The first part of this thesis focuses on the optimization and parallelization of simulations
with DAMR. Our dynamic grid generation approach is based on the Sierpiński space-filling
curve (SFC). We developed a novel and efficient parallel management of the grid structure,
simulation data and dynamically changing connectivity information, and introduced the cluster
concept for grid partitioning. This cluster-based domain decomposition directly leads to efficient
parallelization of DAMR on shared-, distributed- as well as hybrid-memory systems, and further
yields optimization methods based on such a clustering.

The second part of this work is on optimization of HPC parallelization models currently
assigning compute resources statically during the program start. This yields a perspective for
dynamic resource distribution addressing the following issues: First, static resource allocation
restricts starting other applications in case of insufficient resources available at program start.
Second, changing efficiency of applications with different scalability behaviour is not consid-
ered. We solve both issues with a resource manager based on Invasive Computing paradigms,
dynamically redistributing resources to applications aiming at higher application throughput
and thus efficiency.

For several executions of simulations based on our DAMR, we are now able to redistribute
the computation resources dynamically among concurrently running applications on shared-
memory systems. With dynamic resource assignment, this results in improved throughput and
thus higher efficiency.

7

8

PART I

INTRODUCTION

Computational fluid dynamics (CFD) play an important role in a variety of disciplines. They
are essential in fields such as car manufacturing, weather forecasting and combustion-engine
design where they are used to optimize the aerodynamic behavior of car designs, to predict the
weather and to understand processes inside an engine, respectively.

In this work, we focus on CFD simulations that are based on models described by partial
differential equations (PDE), in particular by hyperbolic PDEs such as the shallow water and
Euler equations. These hyperbolic PDEs model wave-propagation dominated phenomena and
cannot be solved analytically in general. Therefore, these equations have to be discretized,
which typically leads to a grid on which the scenario is computed. However, these simulations
have a high computational intensity and, hence, require high-performance computing (HPC)
systems.

Implementing such simulations with a static and regularly refined grid perfectly fits to the
HPC parallel architectures and well-known parallelization techniques are applicable. Despite
achieving high scalability, the time-to-solution for wave-dominated CFD simulations on regularly
resolved domains is non-optimal. Considering a simulation of a wave propagation, such regular
grids result in a very high resolution in the entire simulation domain despite the fact that the
wave is propagating only in parts of the domain. Hence, many computations are invested in
grid areas without a large contribution to the numerical solution.

With grids refining and coarsening during run time, this seems to be an easy-to-accomplish
approach if only considering a non-parallel implementation and using standard computer science
algorithms. However, further requirements for an efficient grid traversal and parallelization on
state-of-the-art HPC systems lead to additional challenges with the major ones briefly summa-
rized here:

(a) Memory-bandwidth and -hierarchy awareness:
As memory access is considered to be one of the main bottlenecks for the next decades
of computing architectures, the algorithms should aim at reducing the memory footprint,
e.g. during grid traversals. Regarding the data exchange between grid cells, the grid traversal
should focus on reaccessing data which is already stored on higher cache levels.

(b) Parallelization models for shared- and distributed-memory systems:
For current HPC architectures, a cache-coherency is available within each compute node,
hence supporting shared-memory parallelization models. However, a cache-coherency of
memory access among all compute nodes is not feasible and demands for distributed-memory
parallelization models. Furthermore, for an efficient parallelization on accelerators such as
XeonPhi, shared- as well as distributed-memory parallelization models are mandatory for
efficiency reasons.

(c) Load-balancing with dynamically changing grids:
Since the grid is refined and coarsened over the simulation’s runtime, load imbalances are
created which lead to idle times and hence reduced efficiency. To avoid such idle times on
large-scale systems, a load-balancing scheme is required to compensate these idle times.

9

(d) Usability :
Considering all the aforementioned HPC aspects (a)-(c), it is in general challenging to keep
a sufficient usability which hides the complexity of the traversals of a dynamically changing
grid, the utilization of both parallelization models and the load-balancing approach from
the application developer.

Former work on the execution of simulations with stack- and stream-based algorithms already
provides a solution for the memory-awareness issues (a). However, a scalable and efficient
parallelization (b) with both parallelization models (c) is still subject of research and with a
new parallelization approach also its usability (d).

We first give a basic introduction to the discontinuous Galerkin discretization of wave-
propagation-dominated models in Part II. Based on this knowledge, we present our framework
and the cluster-based parallelization in Part III. Simulations on a dynamically changing grid
lead to a changing workload, hence also profit from dynamically changing resources on which
we focus on Part IV for concurrently executed simulations.

Content overview

Part II: Essential numerics of hyperbolic PDEs
For the development of our framework, we first determine the interface requirements with repre-
sentative standard models for wave propagations. Here, we consider the shallow water equations
(which are depth-averaged Navier-Stokes equations) and the Euler equations as two represen-
tatives of the fundamental equations in fluid mechanics. For the discretization, we use the
discontinuous Galerkin method which is well-researched for the considered models. Afterwards,
we determine data access and data exchange patterns of this model.

Part III: Efficient framework for simulations on dynamically adaptive grids
We start with an introduction to existing work on stack- and stream-based simulations based
on SFC-induced grids. These stacks and streams account for issue (a). This is followed by a
verification of the correct stack communication and extensions to higher-order time-stepping
methods. For usability reasons (d), we separate the grid traversals and the kernels operating
on the grid data. Based on the underlying grid traversal, we present further optimizations.

Then, we introduce our new parallelization approach which is based on a partitioning of the
domain into intervals of the SFC. We derive properties of the SFC-based stack communication
system which shows the validity of a run-length encoded (RLE) communication scheme, yield-
ing a cluster-based parallelization approach. This RLE communication scheme yields several
advantages, e.g. the possibility of implicitly updating the meta information based on transferred
adaptivity markers and block-wise communication resulting in shared- and distributed-memory
support (c). In combination with the stack-based communication system, clustering directly
leads to an efficient data migration for distributed-memory systems (d). We close the par-
allelization section with cluster-based optimizations and scalability results for simulations on
dynamically adaptive grids which are parallelized with OpenMP and TBB for shared- and MPI
for distributed-memory parallelization models.

The scalability benchmarks show the efficiency of the parallelization, whereas we tested the
real applicability of our dynamically adaptive simulations with analytical benchmarks and a
realistic Tsunami simulation. Furthermore, we present other implemented application scenarios
such as interactive steering with an OpenGL back end, efficient writing of grid data to persistent
memory, simulations on the sphere and multi-layer simulations.

10

Part IV: Invasive Computing
Once running simulations on dynamically adaptive grids, the workload can change over the
simulation’s run time, hence also the resource requirements vary. For state-of-the-art paral-
lelization models in high-performance computing, such a change in resource requirements is not
considered so far for concurrently running applications. Here, a dynamical redistribution of
resources would have the potential of improving the overall system’s efficiency.

In Part IV, we evaluated such a dynamic resource management on shared-memory HPC
systems with the Invasive Computing paradigm. We realized this with an Invasive resource
manager which receives application-specific information to optimize the distribution of the com-
putational resources among concurrently running applications. Several experiments have been
conducted with this resource manager based on our simulations on dynamically adaptive grids
developed in the previous part of this thesis.

11

12

PART II

ESSENTIAL NUMERICS OF
HYPERBOLIC PDES

This part provides the fundamental basics behind simulations of hyperbolic partial differential
equations (PDEs) and their numerical discretization. These aspects are relevant for taking
appropriate decisions concerning the development of the framework discussed in Part III of this
thesis. Also closing the gap between a theoretical mathematical formulation of a model and its
concrete implementation can only be achieved by a deep knowledge of the requirements set up
by the problem to be solved.

Chapter 1: Continuity equation and applications
We start with an introduction to the governing equation to provide a better understanding of
the underlying system of equations. For a concrete applicability of our framework, we introduce
the shallow water and the Euler equations which are numerically solved by the discretization
and solvers presented in the next chapter.

Chapter 2: Discontinuous Galerkin discretization
The basic discretization for higher-order discontinuous Galerkin (DG) methods on triangular
grids is presented, followed by refinement and coarsening projections for dynamic adaptivity.

13

14

1
Continuity equation and applications

Mathematical descriptions of scenarios should conserve particular quantities. We use the conti-
nuity equation as the underlying equation, which conserves these quantities for our considered
simulations and start with a short derivation of this equation. This is followed by presenting
two typical applications which are used in this work and introduce a notation for the con-
served quantities. These conserved quantities are then successively discretized in the upcoming
chapters.

1.1 Continuity equation

As a starting point for the derivation of the continuity equation, we consider a one-dimensional
simulation scenario (see Fig. 1.1) placed at an infinitesimal small interval of size dx. The quan-
tities we are interested in are given continuously by Û(x, t) ∈ Rn for n conserved quantities
at position x at time t. Furthermore a so-called flux function F (Û(x, t)) : Rn → Rn is given.
Its values account for the change of the conserved quantities at a particular position x ∈ R for
the current state Û(x, t) at time t ∈ R. To give an example, we consider a single simulated
quantity, such as the gas density or the water height, only. Based upon an advection model
assuming a constant advection speed vc of conserved quantity, then, the flux function is given
by F (Û(x, t)) := vc Û(x, t).

Figure 1.1: Conservation of quantities in an infinitesimal small one-dimensional shallow water
simulation interval.

A sketch of a single interval I(i) := [xi − dx
2 ;xi + dx

2] of our model is given in Figure 1.1. In

each interval, we consider the average quantities Û (i)(t) := 1
dx

∫
I(i) Û(x, t)dx. We further should

track the incoming and outgoing quantities at the interval boundaries dI(i) := {xi− dx
2 , xi+

dx
2 }

with the change of quantities given by the flux function which is evaluated at the corresponding
boundary points. Assuming a change in conserved quantities Û (i) in an interval with a mesh
size dx in space and time-step size dt, we describe the change of the system by the change on

15

CHAPTER 1. CONTINUITY EQUATION AND APPLICATIONS

the boundaries and get

Û (i)(t+ dt)dx = Û (i)(t)dx+ dt
(
F (Û(xi − dx

2 , t))− F (Û(xi + dx
2 , t))

)
. (1.1)

The left side of Equation (1.1) represents the average of conserved quantities in the interval
I(i)) at the next time step whereas the right side represents the old state and the change of this
state over time via the flux at both interval boundaries.

These terms can be rearranged to a forward finite differencing scheme, yielding

Û (i)(t+ dt)− Û (i)(t)

dt
=
F (Û(xi − dx

2 , t))− F (Û(xi + dx
2 , t))

dx
. (1.2)

Assuming that the solution Û is sufficiently smooth, the limits dt→ 0 and dx→ 0 of (1.2)
then gives the one-dimensional continuity equation

Ût(x, t) + Fx(Û(x, t)) = 0 (1.3)

with Û as the set of conserved quantities and the subscript x and t used as an abbreviation for
the derivative w.r.t. to space and time.

We further add a source term S(Û(x, t)) at the right side of the Eq. (1.3). This source term
is frequently used to account for non-homogeneous effects such as external forces, changing
bathymetry, etc. An extension to two and three dimensions is directly given by including flux
functions with a derivative with respect to y and z. For flux functions based on two-dimensional
conserved quantities such as the momentum, we use the notation G for the flux function derived
to x and H derived to y

Ût(x, y, t) +Gx(Û(x, y, t)) +Hy(Û(x, y, t)) = S(Û(x, y, t)). (1.4)

Using the gradient ∇ = (∂
∂x ,

∂
∂y)T and F (Û , t) = G(Û , t)(1, 0)T + H(Û , t)(0, 1)T , this equation

can be written compactly with the two-dimensional equation of conservation

Ût(x, y, t) +∇ · F (Û(x, y, t)) = S(Û(x, y, t)). (1.5)

1.2 Examples of hyperbolic systems

Up to now, the governing equation was derived using the conserved quantities U , the flux
function F and the source term S. This section concretizes these terms by presenting two
different scenarios: simulations assuming a shallow water, based on the shallow water equations,
and compressible gas simulations neglecting the viscosity, based on the Euler equations.

1.2.1 Shallow water equations

Simulation of water with free surfaces is mainly considered to be a three-dimensional problem.
Using depth averaged Navier-Stokes equations (see e.g. [Tor01]), this three-dimensional problem
can be reformulated to a two-dimensional problem under special assumptions. Among others,
vertical moving fluid is assumed to be negligible. This leads to the so-called shallow water
equations (SWE) giving a description of the water by its water surface height h, the two-
dimensional velocity components (u, v)T and the bathymetry b.

Several ways of a mathematical representation of these quantities are used such as specifying
the water surface relative to the horizon or to the bathymetry. We use the shallow water
formulation storing the bathymetry b relative to the steady state of the water and the water

16

1.2. EXAMPLES OF HYPERBOLIC SYSTEMS

Figure 1.2: Sketch of shallow water equation with the conserved quantities at a particular
spatial position. The bathymetry b is specified relative to the horizon, the quantity h represents
the depth-averaged height and (hu, hv) the momentum of the fluid. Since we work with depth-
averaged values, (hu, hv) is equal over the entire height at position x

surface height h relative to the bathymetry [LeV02,BSA12]. For a sea without waves and tidals,
b is positive for terrain and negative for the sea floor.

By using the velocity components as conserved quantities, this is considered not to be a
momentum conserving formulation. Thus, instead of storing the velocity components, we store
both momentums hu and hv as the conserved quantities. This leads to the tuple of conserved
quantities

U := (h, hu, hv, b)T

for each nodal point with a sketch in Fig. 1.2. Despite that hu and hv are frequently described
as momentum, we should be aware that h actually describes the height of a volume above a
unit area. Therefore, this momentum may not be seen as a momentum per cell, but rather as
momentum per unit area.

Using this form based on the conserved quantities and assuming a constant bathymetry
without loss of generality, we formulate the flux functions G and H (see Eq. (1.4)):

G(U) :=

 hu
hu2 + 1

2gh
2

huv

 H(U) :=

 hv
huv

hv2 + 1
2gh

2

For the flux computations (see Section 2.10), we need the eigenvalues of the Jacobian dG(U)

dU .

We start by substituting all v with (hv)
h and u with (hu)

h . This yields

G(U) =

 hu
(hu)2

h + 1
2gh

2

(hu)(hv)
h

 . (1.6)

By computing the derivative with respect to each of the conserved quantities (h, hu), this yields

dG(U)

dU
=

 0 1 0
−u2 + gh 2u 0
−uv v u

 . (1.7)

Finally, the sorted eigenvalues of the Jacobian of G are given by∣∣∣∣dG(U)

dU

∣∣∣∣ =

u−√ghu
u+
√
gh

 (1.8)

which are required for the computation of the maximum time step size.

17

CHAPTER 1. CONTINUITY EQUATION AND APPLICATIONS

1.2.2 Euler equations

For compressible flow with a negligible viscosity, the Navier-Stokes equations can be simplified
to the so-called Euler equations which belongs to one of the standard models used for fluid si-
mulations. For this work, we consider the two-dimensional Euler equations with the conserved
quantities given by U := (ρ, ρu, ρv, E) with ρ being the fluid density, (u, v)T the velocity com-
ponents and E the energy. The similarities to the shallow water equations are clearly visible by
considering the density instead of the height of a water surface. The flux terms G and H are
then given with

G(U) :=

ρu

p+ ρu2

ρuv
u(E + p)

 H(U) :=

ρv
ρuv

p+ ρv2

v(E + p)

 . (1.9)

In this terms, the pressure p depends on the type of gas being simulated. For our simulations,
we only consider an isothermal gas with

p = ρa2

and a constant a specific to the simulated gas (see [LeV02], page 298). For the computation of
the wave speed, the Jacobian G is given by

dG(U)

dU
:=

0 1 0 0

−u2 + a2 2u 0 0
−uv v u 0

a2u− (E+a2ρ)u
r

E+a2ρ
r 0 u

with the associated eigenvalues of its Jacobian

∣∣∣∣dG(U)

dU

∣∣∣∣ =

u− au
u+ a

 . (1.10)

18

2
Discontinuous Galerkin discretization

With the continuity equation given in its continuous form (1.5), solving this system of equations
analytically has been accomplished only for special cases so far. Those special cases are e.g. one-
dimensional simplifications and particular initial as well as boundary conditions [SES06,Syn91].
Therefore, we have to solve these equations numerically by discretization of the continuous form
of the continuity equation.

Several approaches exist to solve such a system of equations numerically. Here, we give
a short overview of the most important ones with an Eulerian [Lam32] approach in spatial
domain:

• Finite differences belong to one of the most traditional methods. They approximate the
spatial derivatives by computing derivatives based on particular points in the simulation
domain. Following this approach, conserved quantities are given per point.

• Classical finite elements methods (FEM) discretize the equations based on an overlapping
support of basis functions of disjunct cells. This leads to continuous approximated so-
lutions at the cell boundaries. However, continuous finite element methods suffer from
complex stencils with access patterns over several cells.

• With the Discontinuous Galerkin finite elements method (DG-FEM), a similar approach
as for the classical FEM is taken. However, the basis functions are chosen in a way that
their support is cell-local. On the one hand, this avoids complex access patterns, whereas
on the other hand, this generates discontinuities at cell borders requiring solvers for the so
called Riemann problem. Finite volume simulations can be interpreted as a special case
of the DG-FEM formulation with a single basis function of 0-th order.

With our main focus on wave-propagation dominated problems and the DG-FEM being
well-suited to solve such problems (see e.g. [LeV02, HW08, Coc98]), we continue studying the
discretization of the continuity equation for the remainder of this thesis with the DG-FEM. To
determine the framework requirements to run such DG-FEM simulations on dynamic adaptive
grids, a basic introduction to the discretization and approximations of the solution in each grid
cell is required and given in the next sections.

2.1 Grid generation

To store our simulation data at spatially related positions, we require a grid-generation strategy
which decomposes the domain into non-overlapping cells. Relevant simulation data can then
be stored on each grid cell and at hyperfaces separating the grid cells. The most commonly
used cell-wise grid generation for DG simulations on two-dimensional domains are Cartesian,
Voronoi and triangular ones:

19

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

Figure 2.1: Voronoi grid-based generation (dashed line) and the corresponding triangle-based
grid generation (solid lines). See e.g. [Ju07] for information about generation.

(a) A Cartesian two-dimensional grid generation results in cells with edges parallel to the basis
vectors of a Cartesian coordinate system. Using such a structured grid, direct access of
the neighboring cells can lead to more efficient access of data in adjacent cells. However,
due to refinement of the grid in particular areas, hanging nodes are created (see [BL98] for
AMRClaw) and have to be handled in a special manner which is typically based on explicit
knowledge of the developer (cf. [BHK07,MNN11]).

(b) Simulations executed on grids generated by Voronoi diagrams (e.g. [Wel09,Ju07], see dashed
lines in Fig. 2.1) provide an alternative meshing, but make computations with higher-order
methods challenging due to the manifolds (e.g. different number of corners) of different
shapes.

(c) Using triangular grids for simulations, this yields two major beneficial components: First,
there is a duality between triangular grids generated by Delaunay triangulation and Voronoi
diagrams [She02,DZM07] as shown in Fig. 2.1. Thus, using a triangular grid would also allow
us to use it as a grid created by a Voronoi diagram algorithm. Second, adaptive Cartesian
grid generation leads to hanging nodes. These nodes can be avoided by inserting additional
edges. However, this also requires interfaces provided by the simulation developer. Using
adaptive triangular grids based on bisection of the triangle, such hanging nodes can be
directly avoided by inserting additional edges.

Due to the hanging nodes created by Cartesian-aligned grids and the very common usage of
triangular grids for two-dimensional DG-FEM (cf. [HW08,AS98]), we decided to use a triangu-
lation of our simulation domain.

2.2 Triangle reference and world space

The entire simulation domain can be represented by a set of triangles

Ω = ∪{Ci|1 ≤ i ≤ #cells}

with triangle cell primitives Ci only overlapping at their boundaries. Dropping the subindex i,
each cell area is given with

C :=
{

(x0 + ξ(x1 − x0) + η(x2 − x0), y0 + ξ(y1 − y0) + η(y2 − y0))|ξ ≥ 0 ∧ η ≥ 0 ∧ ξ + η ≤ 1
}

and (xn, yn) referring to one of the three vertices of the triangle C, see Fig. 2.2 for an example.
We refer to the space of the coordinates (x, y) as world space, whereas (ξ, η) are coordinates in
reference space.

20

2.2. TRIANGLE REFERENCE AND WORLD SPACE

Ci

(x0,y0)

(x1,y1)

(x2,y2)

ξ

η

Figure 2.2: Triangular cell Ci in world space.

By applying affine transformations, each triangle Ci and the conserved quantities can be
mapped from world space to a so-called reference triangle. For the sake of clarity, the formulae
in the following sections are given relative to such a reference triangle.

1

1

ξ

η

Figure 2.3: Triangle reference space with isosceles triangle

We use the triangle reference space with both triangle legs of a length of 1 and aligned at
the x- and y-axes, see Fig. 2.3. The support in reference space is then given by

T =
{

(ξ, η) ∈ [0, 1]2 | ξ ≥ 0 ∧ η ≥ 0 ∧ ξ + η ≤ 1
}
. (2.1)

Using a homogeneous point representation, mappings of points from reference to world space
are achieved with

W∗i (ξ, η) :=

(
x1 − x0 x2 − x0 x0

y1 − y0 y2 − y0 y0

)
·

ξη
1

 .

Assuming a mathematical formulation which is independent of the spatial position of the tri-
angle, we can drop the orientation-related components and simplify this mapping to

Wi(ξ, η) :=

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
·
(
ξ
η

)
,

by defining one of the triangle’s vertices as the world space origin. Only considering the matrix
formulation, this is more commonly known as the Jacobian

JWi(ξ, η) :=

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
(2.2)

computing the derivatives in world space with respect to reference space coordinates (ξ, η).
Affine transformations to and from world space can then be accomplished by additional projec-
tions of particular terms (see [AS98,HW08]) and for our simulations on the sphere in Section 6.5.

21

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

With the points

e′1(w) := (1− w,w),
e′2(w) := (0, 1− w), and
e′3(w) := (w, 0)

(2.3)

parameterized with w, the interval for each edge is given by ei := {e′i(w)|w ∈ [0, 1]}. Note the
unique anti-clockwise movements of the points e′i(w) for all edges and a growing parameter w
which is important for the unique storage order of quantities at edges.

For the remainder of this chapter, we stick to the world-space coordinates.

2.3 Basis functions

To approximate the conserved quantities in each reference element, a representation of our
state U(ξ, η, t) at coordinate ξ and η at time stamp t has to be chosen. We use a basis which is
generated by i polynomial functions ϕi(ξ, η) for each reference element. A linear combination
of these polynomials and their associated weights qki (t) for each conserved quantity k then
approximates the solution

Uk(ξ, η, t) ≈ qk(ξ, η, t) =
∑
i

qki (t)ϕi(ξ, η) = Ûk(ξ, η, t)

and in vector form

U(ξ, η, t) ≈

∑

i q
1
i (t)ϕi(ξ, η)∑

i q
2
i (t)ϕi(ξ, η)
. . .∑

i q
k
i (t)ϕi(ξ, η)

 = Û(ξ, η, t). (2.4)

Next, we choose a set of basis functions for the approximation of our solution and introduce
the nodal and modal basis functions. These different sets of basis functions have different prop-
erties such as their direct applicability to flux computations and their computational intensity,
see e.g. [LNT07]. We introduce nodal and modal basis functions to show the applicability of
the developed interfaces for both of them.

2.3.1 Nodal basis functions

Nodal polynomial basis functions are generated for a particular set of nodal points pi ∈ T
with T the triangle reference space. Evaluating the corresponding basis function at each nodal
point holds ϕi(pj) = δi,j with δ being the Kronecker delta. Thus, the related coefficient qi
directly represents the approximated solution at a nodal point pi. Based on a given set of
nodal points, the basis functions can then e.g. be computed using a Lagrange interpolation
method. For triangles, a manifold of choices for nodal points exists and the locations of nodal
points are chosen very carefully. Otherwise, this leads to ill-conditioned or even singular mass
matrices [SSD03]. Integrals which are evaluated during or in advance of DG simulations can be
computed with numerical integration. Therefore, choosing quadrature points from numerical
integration as nodal points would be an obvious choice.

Extending the well known one-dimensional Gaussian quadrature formula to two-dimensions
using tensor product would lead to quadrature points outside the reference triangle and more
quadrature points would have to be evaluated than necessary. Dunavant [Dun85] developed a
distribution of quadrature points with symmetric layout also minimizing the number of quadra-
ture points, however with quadrature points still outside the triangle for higher-order quadra-
ture.

22

2.4. WEAK FORMULATION

An alternative to these quadrature points is given by Gauss-Lobatto (GL) points [HW08].
In contrast to Dunavant quadrature points, Gauss-Lobatto quadrature points are also placed at
the boundaries of the reference triangle and have the advantageous property of creating sparse
matrices for flux computations (see Section 2.7). An additionally required property of our nodal
basis is a unique representation of the polynomials used as basis, also denoted as unisolvency
[SSD03]. This unisolvency can be assured by testing for a non-singular Vandermonde matrix
e.g. by inverting it to compute the coefficients for the basis polynomials. This property is
also fulfilled by the (GL) points. With the properties of creating sparse matrices for flux
computations and non-singular Vandermonde matrices, we focus on using these (GL) nodal
points in our simulation.

Independent of the nodal points, we further assume a given degree d of the polynomials
which we use for our discretization. Then, the maximum number of basis functions is given by

N :=
(d+ 1)(d+ 2)

2
.

2.3.2 Modal basis functions

Using orthogonal basis functions, this would lead to diagonal mass matrices (derived in Sec-
tion 2.5). This is stated to lead to a computational efficient way to compute the mandatorily
required inverted mass matrix [KDDLPI07]. Whereas one-dimensional Jacobi polynomials pro-
vide such an orthogonality on the unit interval, Dubiner presented a required extension to the
projection of those polynomials to conserve the orthogonality also for integrals over our reference

triangle [Dub91]. Here, n-th Jacobi polynomial P
(a,b)
n (ξ) is parameterized with the coefficients

a and b and the spatially related component ξ.

Using PQ(n, a, b, ξ) := P
(a,b)
n (2ξ − 1), the m and n-th orthogonal Jacobi polynomial on a

triangle is then given by

Potri(m,n, ξ, η) := PQ

(
m, 0, 0,

ξ

1− η

)
(1− η)m · PQ (n, 2m+ 1, 0, η) . (2.5)

These orthogonal Jacobi polynomials can be further transformed into orthonormal polynomials
for a triangle by normalization:

Ptri(m,n, ξ, η) :=
Potri(m,n, ξ, η)√∫

T Potri(m,n, ξ, η)2d(ξ, η)
. (2.6)

Examples are given in Appendix A.1.2.

2.4 Weak formulation

We restrict the support of our basis functions to the reference triangle and continue by formu-
lating the continuity equation (1.5) in the weak form [Bra07]. Using the basis functions as a
particular set of test functions, this yields∫

T
Ût(ξ, η, t)ϕj(ξ, η) +

∫
T
∇ · F (Û(ξ, η, t))ϕj(ξ, η) =

∫
T
S(Û(ξ, η, t))ϕj(ξ, η). (2.7)

Applying the Gauss divergence theorem yields∫
T Ût(ξ, η, t)ϕj(ξ, η) Time derivative

−
∫
T F (Û(ξ, η, t)) · ∇ϕj(ξ, η) Spatial derivative

+
∮
dT F (Û(ξ, η, t))ϕj(ξ, η) · ~n(ξ, η) Flux

=
∫
T S(Û(ξ, η, t))ϕj(ξ, η) Source

(2.8)

23

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

with ~n(ξ, η) the normal on each edge. Expanding Û , this yields the Ritz-Galerkin formulation∫
T

∑
i
Ui(t)
dt ϕi(ξ, η)ϕj(ξ, η) Time derivative

−
∫
T F (

∑
i Ui(t)ϕi(ξ, η)) · ∇ϕj(ξ, η) Spatial derivative

+
∮
dT F (

∑
i Ui(t)ϕi(ξ, η)) · ~n(ξ, η)ϕj(ξ, η) Flux

=
∫
T S(

∑
i Ui(t)ϕi(ξ, η))ϕj(ξ, η) Source.

(2.9)

The following sections continue with successive discretization of those terms, aiming at a
matrix and vector representation of all terms, see [GW08].

2.5 Mass matrix M

Discretizing the time step term from Eq. (2.9). We can factor out U by considering that ϕ are
functions only depending on spatial parameters. This yields∫

T

∑
i

Ui(t)

dt
ϕi(ξ, η)ϕj(ξ, η) =

∑
i

Ui(t)

dt

∫
T
ϕi(ξ, η)ϕj(ξ, η)︸ ︷︷ ︸

Mass matrix entry Mj,i

. (2.10)

The integrals on the right-hand side of Eq. (2.10) can then be precomputed and their values
stored to the mass matrix M. Using vector notation ~U , we get a matrix-vector formulation∫

T

∑
i

Ui(t)

dt
ϕi(ξ, η)ϕj(ξ, η) =M · ~Ut (2.11)

with ~Ut also a matrix in case of several conserved quantities.

See Appendix A.1 for examples of matrices derived in this section and used in our simu-
lations. Those matrices are computed with Maple1, a computer algebra system for symbolic
computations.

Applying the explicit Euler time-stepping method, this can then be rearranged to

U(t+ ∆t) = U(t) + ∆t · M−1(. . .),

thus requiring the computation of the inverse of the mass matrix (see Section A.1.3 for exam-
ples). Higher-order integration in time is further discussed in Sec. 2.14.

2.6 Stiffness matrices S

For a partial evaluation of the stiffness terms, we follow the direct approach of expanding the
approximated solution, yielding∫

T
F (Û(ξ, η, t)) · ∇ϕj(ξ, η) =

∫
T
F

(∑
i

Ui(t)ϕi(ξ, η)

)
· ∇ϕj(ξ, η).

Since an accurate integration for flux functions with rational terms would be computationally
infeasible, approximations are typically used for this evaluation [Coc98,HW08,Sch03]. Such an

1http://www.maplesoft.com/products/maple/

24

http://www.maplesoft.com/products/maple/

2.7. FLUX MATRICES E

n

n
UL UR

UL UR

Figure 2.4: Sketch of flux evaluation. Right handed image: The conserved quantities UL
and UR are in the triangles in world space evaluated at edge quadrature points. Left handed
image: After projecting the conserved quantities to the edge space, the flux computation is
then based on one-dimensional conserved quantities. These quantities are then used for the flux
computation in edge space.

approximation is the nodal-wise evaluation of the flux term at nodal points and reconstruction
of a continuous function with the basis functions ϕi(ξ, η). This simplifies our stiffness term to∫

T F
(
Û(ξ, η, t)

)
· ∇ϕj(ξ, η) ≈

∫
T

∑
i F (Ui(t))ϕi(ξ, η) · ∇ϕj(ξ, η)

=
∑

i F (Ui(t))
∫
T ϕi(ξ, η) · ∇ϕj(ξ, η).

(2.12)

For the modal basis function, a projection to/from nodal basis is required. We continue by
replacing F with two flux functions G and H (see Section 1.1). Then, we can again evaluate
integrals and rearrange the equations to a matrix-matrix formulation

∑
i

F

(∑
i

Ui(t)ϕi(ξi, ηi)

)
ϕj(ξ, η) ≈ Sjx ·G(Ui(t)) + Sjy ·H(Ui(t))

with Sj selecting the j-th row of matrix S (see Appendix A.1.4).

2.7 Flux matrices E

The flux term
∮
dT (F (

∑
i Ui(t)ϕi(ξ, η))ϕj(ξ, η)) · ~n(ξ, η) in Eq. (2.9) represents the change of

conserved quantities via a flux across an edge. With the non-overlapping support of any two
adjacent triangles, also the approximated solution is unsteady at the triangle boundaries. By
considering each triangle edge separately, we can evaluate the edge-flux term in three steps:

1. First, we evaluate our approximated solution at particular quadrature points on the edge,
see left image in Fig. 2.4. Here, we can use a beneficial property of the GL quadrature
points (see Sec. 2.3.1): one-dimensional GL quadrature points on the edge directly coincide
with the GL quadrature and are thus nodal points of the reference triangle. Therefore,
computing the conserved quantities at the quadrature points only involves the conserved
quantities stored at these points. See Appendix A.1.5 for the sparse matrix selecting the
corresponding conserved quantities.

2. Second, the flux is computed at the quadrature points based on pairs of selected co-
inciding quadrature points from the local and the adjacent cell. We can simplify this
two-dimensional Riemann problem to a one-dimensional one (see right image in Fig. 2.4)
by changing the basis to the edge normal taken as the x-basis axis and the discontinuity
on the edge at x = 0: Only considering a single conserved quantity on an edge, ÛL and ÛR

25

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

represent the current solution Û on the left and right side of the y-axis, respectively. The
change over time can then be computed by using flux solvers which is further discussed
in Sec. 2.10.

3. Third, we reconstruct our approximated solution
∑

i F (Ui(t))ϕi(ξ, η) for each edge based
on the computed flux crossing the edge [GW08]. By splitting the surface integral

∮
dT over

the triangle reference boundaries into three separate integrals
∑

e∈E
∮
de over each edge

e ∈ E (see Section 2.2) and factoring out the term with the computed flux approximation
from the integral, this yields∑

e∈E
F (Ui(t)) · ~n(ξ, η)︸ ︷︷ ︸

Approximated flux

∫
e
ϕi(ξ, η)ϕj(ξ, η)

with the evaluation of the Riemann problem term F (Ui(t)) · ~n(ξ, η) further described in
Section 2.10. Note that the “Approximated flux” term may also depend on other conserved
quantities than Ui. Solutions for this integral can again be stored in matrices similarly
to the previous sections. For GL points, these matrices are again sparse and influence
conserved quantities only if these are stored on the corresponding triangle’s edge (see
Appendix A.1.5).

The presented method is a quadrature of the flux on each edge with fluxes evaluated at pairs
of given quadrature points. Rather than evaluating the flux for several pairs of given points,
alternative approaches use flux computations based on a single pair of given functions [AS98].
These functions represent the conserved quantities on the entire edge. Since the interfaces
derived in this framework can be also used for such an implementation, we continue using the
previously described method without loss of applicability.

2.8 Source term

External effects such as gravitation, the Coriolis force and change of bathymetry can be included
in the equations. These effects are handled in the source term or the flux function.

Using the way of extending the source term, this term can be evaluated together with the
local cell operations such as the evaluation of the stiffness term. Since we are interested in
determination of framework requirements, we neglect this term and expect no impact on the
applicability of the framework for a system of equations including source terms.

2.9 Rotational invariancy and edge space

Working with triangles, a straightforward evaluation of the term F (Ui(t))·~n(x, y) involving both
flux functions G(U) and H(U) followed by a multiplication with the outward pointing normal
can be optimized. We use the so-called rotational invariancy [Tor01], with flux functions for
the hyperbolic systems considered in this thesis holding a crucial property.

We consider a two-dimensional normal vector ~ne = (cos(α), sin(α))T pointing outward the
edge e. Then, for the computation of the flux update, the equation

F (U) · ~ne = G(U) · nx +H(U) · ny = R(α)−1F (R(α)(U)) (2.13)

holds true for a given rotation matrix R(α). The matrix is setup with an n-dimensional rotation
matrix with the entries stored to the n×n direction dependent components such as the velocity
and momentums and 1 on the diagonal for direction independent components. This matrix

26

2.10. NUMERICAL FLUX F

rotates, e.g., orientation-dependent components such as the velocity and momentum which are
parallel to ~ne to the x-axis (see Appendix A.1.7 for an example).

For later purpose, the right hand side of Equation (2.13) is further described:

1. To compute the flux across an edge, the conserved quantities depending on a direction are
first rotated from the reference space to the so-called edge space [AS98].

2. Then, the change of conserved quantities is evaluated in the one-dimensional edge space.

3. Finally, the updates related to the flux are rotated back to reference space and applied to
the conserved quantities stored in the reference space.

2.10 Numerical flux F
With the evaluation of the flux function only involving pairs of selected conserved quantities on
the edge from the local and adjacent triangle, we can interpret this as a Riemann problem, for
which we consider two different ways of handling it:

• Net updates: For finite-volume simulations (DG-FEM with basis function of order 0),
Riemann solvers computing net updates (See e.g. [LeV02]) are most frequently used. Such
solvers compute the net-quantities of the conserved quantities crossing the considered cell
boundaries.

• Flux updates: On the other hand, Riemann solvers computing flux updates are typically
used for higher-order methods (e.g. [MBGW10,GW08]). Those solvers rely on flux update
computations directly involving the flux term. Even if no conserved quantity is exchanged,
a flux computation still leads to a flux generation. This is e.g. due to gravity terms
generating a flux despite no convection.

Since both types of Riemann solvers can be implemented with the same interfaces, we only
introduce the most frequently used flux solver for higher-order methods: the local Lax-Friedrichs
flux, also called Rusanov flux.

2.10.1 Rusanov flux

We consider flux computations which are based on the one-dimensional representation in edge
space (see Section 2.9) and a constant state representation of the solution on each side of the
edge with ULi and URi . This leads to a Riemann problem in edge space with

U(z) =

{
UL, if z ≤ 0

UR, otherwise
(2.14)

with the function
F(ULi (t), URi (t))

computing the change of conserved quantities for this one-dimensional Riemann problem. Note
the difference between F(ULi (t), URi (t)) and F (U) with F evaluating a Riemann problem on an
edge whereas F evaluates the flux function inside the reference triangle.

Averaging both points by using the equation

F
(
ULi (t), URi (t)

)
:=

1

2

(
F (ULi) + F (URi)

)
(2.15)

27

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

and using this average value as the flux over the edges would result in a numerically unstable
simulation. Therefore, an artificial numerical damping is frequently introduced to overcome
these instabilities. This damping is often referred to as numerical diffusion or artificial viscosity
[LeV02].

One example of such fluxes involving a numerical diffusion is the Rusanov flux [Rus62].
This flux function introduces a diffusive term with its magnitude depending on the speed of the
information propagation. This propagation speed is given by the eigenvalues of the Jacobian
matrix of the flux (see Section 1.2.1 and Section 1.2.2 for concrete examples). For the two-
dimensional Lax-Friedrichs flux function for Riemann problems given by ULj , URj and F (U) we
use the flux function [BGN00]

F̂ =
1

2

(
F (ULj) + F (URj)

)
· ~n+

e︸ ︷︷ ︸
average

− 1

2
ν
(
URj − ULj

)
︸ ︷︷ ︸

numerical flux viscosity

(2.16)

with the numerical Lax-Friedrichs viscosity component given by

ν = max(|JF (UR)|, |JF (UL)|). (2.17)

Here, JF (U) is the Jacobian of the function F with respect to the conserved quantities U .

2.10.2 Limiter

With higher-order spatial discretization methods, artificial oscillations can be generated in the
solution. To avoid these oscillations, limiters can be used to modify the solution based on
data either adjacent via edges or vertices (see [GW08, HW08]). Since the interfaces for edge-
based data exchange required for flux computations and vertex-based exchange for visualization
as further explained in Sec. 4.3.4 are considered in the framework, we resigned implementing
limiters.

An alternative approach to avoid oscillations is to introduce additional artificial viscosity
which was already applied to DG simulations for atmospheric simulations in [Mül12]. Since
this part of the thesis focuses on framework requirements for simulations with higher-order
DG, we used a similar concept to avoid implementation of challenging flux limiters. For DG
simulations and polynomial degrees which are larger than 2, we slightly slow down the fluid’s
velocity while still being able to test our algorithms for running higher-order simulations on
dynamically adaptive grids.

2.11 Boundary conditions

So far, we discretized our problem in space by decomposing the domain into non-overlapping
cells Ci. The simulation itself can be executed with cell-local computations and computations
based on adjacent cells. However, for the domain boundary ∂Ω, particular boundary conditions
have to be constructed and applied. Considering our flux computations, we need DoF at the
edges shared by both adjacent cells. Our approach is based on the construction of a ghost edge
layer based on the data of the cell which is sharing the ghost edge.

2.11.1 Dirichlet & Inflow

We can apply Dirichlet boundary conditions directly by setting the DoF on the edge to the
Dirichlet parameters instead of recomputing them based on cell information adjacent to the
boundary edge. Those boundary conditions are of particular interest for simulations of analytic
benchmarks with changing inflow conditions in each time step (see Section 6.2).

28

2.12. ADAPTIVE REFINING AND COARSENING MATRICES R AND C

2.11.2 Outflow

One possible way of handling outflow boundary conditions is to set the conserved quantities
at the ghost edges to be equal to those from the adjacent cell. However, one severe drawback
exists by directly applying this outflow boundary condition. In case of a flow into the domain
(e.g., due to a negative momentum), the non-directional dependent conserved quantity such as
mass or density would be reconstructed to be of equal quantity. This might lead to possible
undesired mass inflow. We circumvent this issue by a combination of Dirichlet and outflow
boundary conditions: the non-direction related components are set to Dirichlet values, whereas
the direction related components orthogonal to the edge are set to zero.

Combining in- and outflow for conserved quantities in edge space qL of the cell at the
boundary, the conserved quantities qR on the right side of the Riemann problem are respectively
set to

qRi =

qLi , if qLk > 0 # Outflow: set to left state

0, elif i = k # Inflow: Cancel momentum

qi, otherwise # Inflow: Dirichlet

(2.18)

with k the index of the direction dependent component orthogonal to the edge (e.g. the mo-
mentum) and q the Dirichlet conditions. Among others, this boundary condition is used in our
Tsunami simulations (see Sec. 6.3).

2.11.3 Bounce back

With bounce back boundaries, we can simulate walls streaming back the flow with components
orthogonal to the domain boundary. Let the DoF on an edge in edge space be given by uLi . We
can then reconstruct the DoF on the ghost layer boundary with UR := (uL1 , . . . ,−uLk , . . . , uLn)
in edge space and uk the direction-dependent component perpendicular to the edge. Among
others, this boundary condition is used in our analytic benchmark (see Sec. 6.2).

2.12 Adaptive refining and coarsening matrices R and C

With a simulation on a dynamically adaptive grid, we refine and coarsen our cells during runtime
by splitting triangles into two triangles and merging them respectively. Then, the conserved
quantities require projection to the refined or restricted grid cells.

2.12.1 Coefficient matrix

We start by determining a way to compute the coefficients of the approximating solution on our
reference triangle based on the weights of given basis functions. This also leads to computations
of the weights of the basis functions from a given approximating solution.

We start by denoting the coefficients of the monomials which assemble the basis polynomials

(see Section 2.3) ϕi(x, y) :=
∑

(a,b) α
(a,b)
i xayb, with α

(a,b)
i . Here, it holds that 0 ≤ a + b ≤ d,

29

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

left

right

ξ

η

η

ξ

ηξ

ξ

η
ξ

η

right

left

ξ

ηξ
η

rightleft
ξ

η

Figure 2.5: Left image: parent’s reference space split for left and right child triangle. Right
images: child reference spaces. Mapping to and from reference space can be expressed by
scaling, rotation and translation.

0 ≤ a and 0 ≤ b. We construct a d× n coefficient matrix

B(ϕ) :=

α
(0,0)
1 α

(0,0)
2 . . . α

(0,0)
N

α
(1,0)
1 α

(1,0)
2 . . . α

(1,0)
N

...
...

...
...

α
(0,1)
1 α

(0,1)
2 . . . α

(0,1)
N

...
...

...
...

α
(0,d)
1 α

(0,d)
2 . . . α

(0,d)
N

with the coefficients for each basis function polynomial given in a respective column and coeffi-
cients for identical monomials of basis functions in each row. With qi a single DoF corresponding
to the basis function φi, we can then rewrite our approximated solution ϕ(x, y) :=

∑
i qiϕi(x, y)

in the reference space to a matrix-vector product

~α = B(ϕ) ~q.

Then the entries α(a,b) in the vector ~α represent the coefficients of the monomials of our ap-
proximated solution ϕ(x, y) :=

∑
i qiϕi(x, y).

In case of only one conserved quantity, we are now able to compute the coefficients of the
polynomial related to our approximating solution

U(x, y) :=
d∑
a=0

d−a∑
b=0

~α(a,b)xayb.

with a matrix-vector product. For multiple conserved quantities, a matrix-matrix product can
be used.

We use this matrix formulation for computing the basis function weights ~qk of the basis
functions for a given approximating solution by inverting the coefficient matrix B(ϕ), yielding

~qk := B(ϕ)−1~α.

2.12.2 Affine transformations to and from the child space

Due to splits and joins, a transformation of the DoF to and from different triangles is required,
see Fig. 2.5. We respectively denote the triangle space which is split as the parent triangle space
and both split ones which have to be possibly joined as the children triangle spaces.

30

2.12. ADAPTIVE REFINING AND COARSENING MATRICES R AND C

Let

R(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 (2.19)

be a two-dimensional rotation matrix computing rotations in clockwise direction for positive α,

T(ξ, η) =

1 0 ξ
0 1 η
0 0 1

 (2.20)

a translation matrix and

S(s) =

s 0 0
0 s 0
0 0 1

 (2.21)

a scaling matrix. A transformation matrix returning the sampling point in the child’s left
reference space if sampling in parent reference space is then given by

PM
toLeft := R

(
3

4
π

)
S
(√

2
)

T
(
−1

2 ,−
1
2

)
with the corresponding function

PtoLeft(ξ, η) := PM
toLeft ·

(
ξ
η

)
=

(
−ξ − η + 1
ξ − η

)
,

applying the matrix at the point (ξ, η) given as parameters. E.g. this transforms the point (1, 0)
in the parents reference space, thus at the right triangle corner, to (0, 1) in the parents reference
space. An example is given in the left image of Fig. 2.5: First the left child’s origin is translated
to the origin of the parent’s reference space, then the child’s space is scaled up followed by a
final rotation.

For the right reference triangle, this yields

PM
toRight := R

(
−3

4
π

)
S
(√

2
)

T
(
−1

2

)
PtoRight(ξ, η) := PM

toRight ·
(
ξ
η

)
=

(
−ξ + η
−ξ − η + 1

)
.

Projections from the child triangles to parent triangles are then similarly given by

PfromLeft(ξ, η) := (PM)−1
toLeft ·

(
ξ
η

)
=

(
−1

2ξ + 1
2η + 1

2
−1

2ξ −
1
2η + 1

2

)
and (2.22)

PfromRight(ξ, η) := (PM)−1
fromRight ·

(
ξ
η

)
=

(
−1

2ξ −
1
2η + 1

2
1
2ξ −

1
2η + 1

2

)
. (2.23)

2.12.3 Prolongation to child space

Sampling of the child’s approximated solution using reference coordinates from the parent ref-
erence space then gives

ϕtoLeft(ξ, η) := ϕ(PtoLeft(ξ, η)) and ϕtoRight(ξ, η) := ϕ(PtoRight(ξ, η)) (2.24)

31

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

By using a representation of the child’s basis functions in parent’s reference space, the refine-
ment matrix is determined by first computing the polynomial coefficients for the approximating
polynomial in parent space with B(ϕ) and then reconstructing the weight qk for the child’s
polynomials by using the representation of the child’s polynomials ϕtoLeft(ξ, η) in the parent
space:

Rleft := B(ϕtoLeft)
−1B(ϕ) and Rright := B(ϕtoRight)

−1B(ϕ) (2.25)

2.12.4 Restriction to the parent space

Restriction operations can be computed in a similar manner to the prolongation (see Eq. (2.25)).
However, due to the discontinuity at the shared edges of the children, the approximated solution
of both children cannot be represented by a single parent triangle.

We choose a restriction which is averaging the polynomial basis functions of both children
extended to the parent’s support yielding

ϕtoLeft(ξ, η) := ϕ(PtoLeft(ξ, η)) ϕtoRight(ξ, η) := ϕ(PtoRight(ξ, η)) (2.26)

Cparent :=
1

2

(
B(ϕ)−1B(ϕfromLeft) + B(ϕ)−1B(ϕfromRight)

)
(2.27)

Such an averaging is obviously not able to reconstruct the polynomial accurately in case of
discontinuities at the shared edges as this is typically the case for our DG simulations. We
want to emphasize, that other coarsening computations, e.g. reconstructing the basis polyno-
mial with minimization with respect to a norm, can yield improved results. With improved
reconstruction methods being transparent to the determined interface requirements and since
this section focuses on the determination of the basic requirements for the computation of
DG-based simulations, we continue using this coarsening method.

The derived restriction and prolongation matrices can be applied transparently to either
nodal or modal basis functions since their construction is based on the coefficient matrix, which
is again based on the coefficients of the basis polynomials.

2.12.5 Adaptivity based on error indicators

To trigger refining or coarsening requests on our grid, we use error indicators to distinguish
between refining, coarsening or no cell modifications.

For this work, we considered two different adaptivity indicators:

• The first one is based on the nodal points of our approximated solution. Considering
in particular the shallow water equations, our error indicator for most of the benchmark
studies is based on the relative deviation of the water surface from the horizon: |h+ b|.

• The second indicator is based on net-updates which is further discussed in Section 6.1.3.

If an indicator exceeds a particular refinement threshold value, a split of the cell is requested.
In case of undershooting the coarsening threshold value, the indicator allows joining this cell
with an adjacent one in case of both cells agreeing in the coarsening process.

32

2.13. CFL STABILITY CONDITION

2.13 CFL stability condition

Using an explicit time-stepping scheme, the size of a time step to run a stable simulation must
not exceed a particular value. We use the Courant-Friedrichs-Lewy (CFL) [CFL28] condition
which relates the maximum time-step size in each cell to its shape and size as well as the wave
propagation speed in the cell.

Several methods for advancing the simulation in time can then be used, each one different
in the number of cells being advanced with the same time-step size: Cell-local [HW08], patch-
wise [BGLM11], cluster-based [CKT09] and global time stepping methods with the cluster-based
one not yet existing for dynamically adaptive grids. We decided to implement the global time
stepping method with the same integration width over time for all cells.

Considering isosceles triangles, the cell size and shape dependent factor is computed with
the in-circle radius

rinner := (2−
√

2) · |cathetus|

with |cathetus| representing the length of one of the triangle legs of cell Ci in the world space.

The propagation speed of the wave itself depends on the solution computed for the Riemann
problem. For flux solvers based on linearization of the flux function (see Sec. 1.2.1, 1.2.2), this
wave propagation speed swave is given by the eigenvalues of the Jacobian of the linearized flux
function. For our Rusanov flux, this propagation speed is equal to the viscosity parameter ν.
This yields

∆te :=
rinner

swave
· CFL (2.28)

for all time-step sizes ∆te based on the flux computations on all cell edges e with the CFL set to
a constant value depending on the maximum degree of basis functions and the used flux solver.
For basis functions of degree N , we set this value to

CFL := 0.5
1

2N + 1
,

see [KD06]. The global time-step size is then determined with ∆t = min
e

(∆te).

2.14 Time stepping schemes

Regarding the derivative of our conserved quantities with respect to time, we only considered
the explicit Euler method which is of first order. This section is about higher-order Runge-Kutta
time stepping schemes and sets up the basic requirements of the integration of our simulation
in time. For sake of readability, the spatial parameters ξ and η for the conserved quantities are
dropped in this section.

Typical higher-order time stepping methods such as Runge-Kutta (RK) are a commonly
chosen alternative to the explicit Euler due to their higher accuracy in time. Regarding our
requirement analysis, such higher-order methods should be obviously be considered in our de-
velopment.

With the RK method, accuracy of higher-order is achieved combining the conserved quantity
updates based on several smaller time-step computations. A generalization of the RK method
for higher-order time integration leads to s stages i = (1, 2, . . . , s) [But64,CS01,HW08]:

V0 := U(t);
Vi := V0 + ∆t

∑s
j=1 ai,jDj ;

Di := R(Vi);

(2.29)

33

CHAPTER 2. DISCONTINUOUS GALERKIN DISCRETIZATION

yielding an explicit formulation for ai,j = 0 for i < j. The solution is finally given by

Û(t+ ∆t) := V0 + ∆t

s∑
i=1

biDi.

Considering the framework development in Part III, we store both update values Di and con-
served quantities Vi for each stage and finally update the conserved quantities by the formula
given with ai,j and bi. The coefficients ai,j and bi depend on the desired order of the method
and are typically given in the format of the Butcher tableau [But64] (See Appendix A.1.6).

34

PART III

EFFICIENT FRAMEWORK FOR
SIMULATIONS ON DYNAMICALLY

ADAPTIVE GRIDS

This part of the thesis introduces an efficient simulation of wave propagations based on a model
with hyperbolic equations. With waves propagating over time, refining the grid in feature-rich
areas and coarsening it otherwise is one major requirement. This requires efficient implementa-
tions of simulations on dynamically adaptive grids which represents one of the great challenges
in nowadays HPC. Typical requirements are fast grid traversals, memory-hierarchy-aware data
access and parallelization approaches for large-scale systems including fast load balancing to
name just a few of them. Our software development approach aims at solving these issues and
is presented in this part.

Chapter 3: Requirements and related work
Since our main goal is an efficient implementation of simulations on dynamically adaptive grids,
we first specify requirements on the framework mainly driven by the underlying hardware and
show the related work.

Chapter 4: Serial implementation
Based on this requirements analysis, spacetrees provide a solution. After a short introduction
to these spacetrees, we provide a formal description of existing work on the grid-data manage-
ment and communication system based on stacks and streams. This is followed by extensions,
modifications and optimizations compared to previous developments.

Chapter 5: Parallelization
We then introduce the parallelization of the inherently serial simulation with our cluster-based
domain decomposition. The resulting software design directly offers parallelization on shared-
and distributed-memory systems with the results presented in the respective sections.

Chapter 6: Application scenarios
To show the applicability of our development, we extended the framework with state-of-the-art
solvers for analytical convergence studies and a realistic Tsunami simulation. Furthermore, we
present different output backends for the simulation data. This chapter closes with extensions
for simulations on the sphere and multi-layers.

Chapter 6.7: Summary and outlook
Based on our new parallelization approach, we will give conclusions and an outlook for further
extensions of the framework in this Chapter.

35

36

3
Requirements and related work

Based on the discretization to solve the hyperbolic system of equations, we continue with a
requirement analysis for our development. These requirements are mainly driven by the consid-
ered simulation and the underlying hardware. This is followed by a short introduction to the
SFCs and a presentation of the related work.

3.1 Simulation: grid, data and communication management

For our simulations, the grid management has to allow adaptivity during runtime due to de-
mands on the resolution to be increased by refining the grid in feature-rich areas (e.g. close to
the wave front) and coarsening the grid in areas which do not have a large contribution to the
final result.

The shallow water equations are frequently used models to research wave-propagations and
a simulation of them only requires a two-dimensional domain discretization. Therefore, we
focus on efficient simulations of two-dimensional scenarios with triangles as the basic primitives.
Despite its two-dimensional nature, particular domain triangulations can be created to assemble
a two-dimensional surface on a sphere (see Sec. 6.5). Using multiple layers in each cell, this leads
to further possible applications such as weather simulations (see Sec. 6.6).

For the simulation of our considered hyperbolic equations, we particularly focus on the
following requirements:

• Data access: To advance the simulation in time, data in other cells has to be made
accessible, e.g. to flux limiters via edge- or node-based communication.

We developed clear interfaces (Section 4.9) yielding efficient parallel communication schemes
(Sections 5.2)

• Usability and parallelization: For usability reasons, a parallelization approach should
lead to a grid, data and communication management which is almost transparent to the
application developer.

A multi-layer framework design was chosen to provide appropriate abstraction levels and
extendibility (Section 5.3).

• Flexible simulation domain: Under consideration of the communication schemes de-
veloped in this work, we are able to generate domains which can be assembled with triangle
primitives.

Different kinds of domain triangulations such as those required for a simulation on a sphere
can then be assembled (Section 5.4).

• Flexible cell traversals: For several scenarios, not all cells of the simulation domain
require to be traversed. A well-known example is the optimization of the execution of

37

CHAPTER 3. REQUIREMENTS AND RELATED WORK

iterative solvers. Additional smoother iterations on grid areas with a residual already
undershooting a threshold can be avoided, yielding a local relaxation method [Rüd93].
Another optimization is given for the generation of a conforming grid without hanging
nodes. Here, areas with an already conforming grid do not require further execution of
traversals generating a conforming grid.

These issues require sophisticated cell traversals and a software design offering the corre-
sponding flexibility. We provide a possible solution by introducing clustering on dynamic
adaptive grids and show results for the skipping of cluster traversals for creating a con-
forming grid, see e.g. Section 5.8.2

3.2 HPC requirements

We highlight several mandatory aspects in the context of next-generation HPC systems. These
systems demand for consideration of memory hierarchies, cache-oblivious behavior as well as
data locality. For the memory access optimizations, we focus on the following three aspects:

(a) Size of accessed memory: With the memory wall assumed to be one of the main bottlenecks
in the future [Xie13], the memory transfers should be reduced to a minimum.

(b) Data migration: For load balancing reasons, also efficient data migration has to be provided.
Such a data migration should use asynchronous communication, lowering the amount of
migrated data and provide an efficient method to update the adjacency information.

(c) Energy efficiency: With memory access on the next generation architectures expected to
require increasing energy consumption compared to the computations [BC11], a reduction
of memory accesses is expected to directly lead to energy optimized algorithms.

Next, we discuss the parallelization on thread and instruction level. Current hardware
generations are not able to scale with Moore’s law by increasing the frequency only due to
physical constraints [BC11]. To reduce the computation time for simulations with a given
discretization, the current way out of this frequency limitation is a parallelization on thread and
instruction level. Therefore, the algorithm design further requires the capability to run efficiently
on highly parallel systems with dozens and even hundreds of cores. With a dynamically changing
grid, this is considered to be challenging due to the steadily changing workload, and in our case
changing workload after each time step. Two different parallelization methods regarding Flynn’s
taxonomy [Fly66] are considered nowadays:

(a) MIMD (multiple instructions, multiple data): For thread level parallelization, future paral-
lel HPC systems provide a mix of cache coherency and are considered for the framework
design: on shared-memory systems, cache-coherent memory is typically available whereas
non-cache-coherent memory is provided across distributed-memory systems. Considering
accelerator cards such as the Xeon Phi, a hybrid parallelization is getting mandatory.

(b) SIMD (single instruction, multiple data): On instruction level parallelism, today’s HPC
computing architectures demand data to be stored and processed in vector format. This
allows efficient data access and processing with vector operations executing multiple op-
erations on each vector element in parallel. E.g. on the current XeonPhi architecture, one
vector can store 16 single-precision numbers. Using such operations is mandatory for getting
close to the maximum flop rate of one chip, thus should also be considered in the software
development.

38

3.3. SPACE-FILLING CURVES

3.3 Space-filling curves

We give a very brief introduction to space-filling curves (SFCs) and refer the interested reader to
[Sag94] for more information on SFCs. These SFCs were motivated by Cantor’s discovery of an
equivilant cardinality of higher-dimensional manifolds and a one-dimensional interval. However,
the higher-dimensional curve generated by the one-dimensional interval was not continuous.
Peano then searched for such a continuous curve parametrized with the one-dimensional form
and touching every point in the higher-dimensional manifold and discovered the SFCs, yielding
these properties. For a long time, SFCs were only considered from a theoretical point of view
to show that there is a mapping between [0; 1]2 and [0; 1]. Nowadays, their discrete form based
on iterations play an increasing role in multiple areas such as databases [FR89], computer
graphics [GE04], adaptive mesh refinement [BZ00] and performance optimized computations of
linear algebra operations [HT12]. Hence, space-filling curves (SFC) provide beneficial properties
which can provide an efficient solution to the memory hierarchy and load balancing challenges.
Using scaling and translation of our simulation domain, we assume our simulation space being
enclosed by a unit-hypercube Ωd := [0; 1]d. The SFCs considered in this work then provide a
surjective mapping from a one-dimensional interval Ω1 := [0; 1] to each point in the simulation
domain Ωd.

Frequently used SFCs for higher dimensions are Hilbert and Peano curves for a 2d- and
3d-section of each cell on Cartesian grids. For two-dimensional grids, the Sierpiński curve on
triangular grids offers bi-section of triangular cells.

Further considering cache-oblivious communication structures, stack- and stream-based com-
munications structures [GMPZ06] yield cache-oblivious communications. With our simulation
based on two-dimensional triangular grids, this leads us to the bi-secting Sierpiński curve with
a stack-based communication which was initially presented for a serial traversal in [BSVB08]
and is further described in Section 4.

We can use SFCs to optimize for spatial and temporal data access locality and to enumerate
the cell primitives on Ω1, yielding beneficial properties:

(a) Spatial local data access:
Spatial locality refers to data access which is close to the previously accessed data. Storing
the simulation data consecutively ordered along the one-dimensional mapping of the multi-
dimensional SFC coordinates hence improves the spatial local access.

(b) Temporal locality:
This refers to the same data being accessed again after a short time interval. If accessing
adjacent data such as conserved quantities computed on edges, the probability of this data
being already stored in cache can be increased due to the recursively structured domain.

(c) Load balancing:
SFCs furthermore provide an efficient way of partitioning simulation domains, see Sec-
tion 3.4.1. This is due to their capability of enumerating all available grid cells, hence
reducing the complexity to a one-dimensional partitioning problem.

3.4 Related work

With a wide range of already existing research for dynamic grid creation and management, we
give a brief overview of the related work. We describe this work top-down, starting with the pure
mesh-generation and decomposition approaches, followed by frameworks to run simulations on

39

CHAPTER 3. REQUIREMENTS AND RELATED WORK

dynamically changing meshes and then related work which investigated the Sierpiński SFC for
running simulations.

3.4.1 Dynamic mesh partitioning

We first introduce different approaches for dynamic mesh partitioning as well as dynamic mesh
rebalancing and assume the mesh to be already given. We do not aim for a complete literature
survey, but only give an overview of most related work.

Graph partitioner

One way to deal with mesh generation and its partitioning is to consider the mesh as a graph
connecting mesh elements via their hyperfaces and apply graph partitioning algorithms on this
graph. Such HPC partitioning algorithms aim at creating partitions of meshes with very good
properties for efficient parallelization. One optimization property is e.g. reducing the number of
interfaces shared with other partitions to reduce the data to be communicated by reducing the
number of edge cuts for two-dimensional meshes and face cuts for three-dimensional meshes.

For dynamically adaptive meshes, additional optimization objectives for optimized remesh-
ing are given by minimizing communication data, considering the costs for meshes after load
balancing [KSK03] and maximizing quality of load balancing. Examples for such graph-based
meshing and partitioning tools are e.g. ParMETIS [KK98]1 and PT-Scotch [CP08]2.

Geometric partitioner using SFCs

Instead of using graph theory for optimized mesh partitioning, the underlying geometry and
spatial placement of the mesh elements can be used. Such geometric partitioners can be based
on e.g. SFCs curves. They yield one property which is of particular importance for partitioning:
The surjective mapping of each point in an d-dimensional space to a one-dimensional interval, re-
taining the location of the d-dimensional space in the one-dimensional representation [MJFS01].
Thus, load balancing can be reduced to a one-dimensional representation: each partition is as-
signed an interval of the one-dimensional problem with similar workload [BZ00]. Libraries
supporting SFC-based partitioning are e.g. amatos [BRH+05]3 and Zoltan [BCCD12]4.

Graph- vs. SFC-based partitioning

Handling dynamic partitioning based on graph partitioners obviously involves complex graph
operations [BZ00], resulting in an NP-hard problem [Zum00]. Even with a multilevel diffusive
scheduling to compensate the NP-hard problem, a partitioning based on SFCs still leads to
faster load balancing while still yielding partition optimality regarding the edge cut close to
graph-based partition algorithms [Mit07].

3.4.2 Simulation software including grid generation

We give an overview of well-known frameworks with a built-in grid generation. Again, we
also do not aim for a complete survey, but only consider the work which is of most relevance
for our considered simulations. We compare the possibilities of each framework regarding our
requirements described in the previous sections.

1http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
2http://www.labri.fr/perso/pelegrin/scotch/
3http://www.amatos.info/
4http://www.cs.sandia.gov/Zoltan/ug_html/ug_intro.html

40

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.labri.fr/perso/pelegrin/scotch/
http://www.amatos.info/
http://www.cs.sandia.gov/Zoltan/ug_html/ug_intro.html

3.4. RELATED WORK

• OpenFOAM: Features of OpenFOAM include a PDE toolbox implemented with an embed-
ded language, capabilities for simulations of CFD with different models, and also dynamic
mesh generation. For adaptive mesh refinement which is required for efficient simulation
of wave propagations, OpenFOAM requires additional memory to store e.g. connectivity
information on cells.

• Dune: The Dune Project5 (Distributed and Unified Numerics Environment) also offers
dynamic adaptive grids with the ALUGrid module with ParMETIS [BBD+08]. Dune
stores connectivity information on each cell and therefore also requires additional memory
similar to OpenFOAM.

• p4est: The p4est [BWG11] software library offers mesh management for parallel dynamic
AMR-based forest of octrees and is only partly an entire simulation framework by itself. It
already proofed its high scalability [BGG+08] also in the context of DG simulations. Since
it is based on octrees, this obviously yields hanging nodes. Since we require triangular
grids, inserting edges to each cell can be used to reconstruct triangles, however this would
lead to requirements of rearranging mesh triangles in case of additional hanging nodes
created or removed in a cell.

• Peano: This framework is a mesh-based PDE solver on Cartesian grids with the mesh gen-
erated by the Peano SFC. Outstanding features are e.g. support for arbitrary dimensions
and dynamically adaptive mesh refinement with a recursive trisection in each dimen-
sion [Nec09, Wei09]. Since it is based on Cartesian grids, the drawbacks are similar to
those of p4est with our requirements of triangle cells.

With the memory efficiency requirement for dynamically adaptive simulations on triangular
grids being the main driving requirement of this work, none of the frameworks mentioned above,
and to our best knowledge also no other frameworks fulfill our demands.

3.4.3 Related software development

This section outlines our contributions compared to the preceding work on the serial and parallel
simulation with the Sierpiński stack- and stream-based approach. Based on the dissertation of
Csaba Vigh [Vig12], our major algorithmic differences and achievements are the following:

• Our adaptivity automaton and the cluster-based parallelization allows skipping of adap-
tivity traversals with already consistent clusters.

• The parallelization in [Vig12] is only focused on MPI, whereas our run-length encoded
communication scheme and the way how the meta information is updated provides an
efficient parallelization for shared- and distributed-memory systems.

• We introduced an efficient node-based communication scheme for the parallelization.

• The Riemann solvers in our work are more sophisticated and require an improved com-
munication scheme.

• In [Vig12], a data migration is presented with an enumeration of cells following the SFCs.
These numbers are propagated via edges after refinement and coarsening operations. In
contrast, our approach does not require such a global information, resulting e.g. in a
considerable improvement for data migration.

5http://www.dune-project.org

41

http://www.dune-project.org

CHAPTER 3. REQUIREMENTS AND RELATED WORK

3.4.4 Impact on and from related work

The serial traversal with the stack- and stream-based approach used in this thesis is based on
the preceeding research on serial traversals, e.g. [GMPZ06,BSVB08]. In our work, we developed
a software design and algorithms for an efficient parallelization on shared- as well as distributed-
memory systems.

There are several groups working on SFC-based traversal and organization schemes for
PDE solvers; to our knowledge, only the work of Prof. Michael Bader and his co-workers is also
Sierpiński -based and is called sam(oa)2. Their work has the closest relation to this thesis, and
that’s why we mention it here. Their focus was initially on a software design and a parallelization
approach which only supports MPI parallelization, see e.g. [Vig12] which was developed in
cooperation with Kaveh Rahnema.

Several discussions with him and his group led to certain assimilations of our approaches.
However, the major difference still lies in their focus on SFC cuts for partitioning. These SFC
cuts lead to further research-related challenges such as the construction of consistent meta
information.

42

4
Serial implementation

This chapter describes the development of the non-parallel simulation based on the stack- and
stream-based grid traversals following the Sierpiński SFC. We present interface demands to run
discontinuous Galerkin simulations on dynamically adaptive grids and to visualize the results.
This serial implementation is the basis of the parallel development described in the next chapter.

• Section 4.1: Grid generation with refinement trees
We start with the grid generation based on a SFC refinement tree.

• Section 4.3: Stack-based communication
Based on the grid generation, the data exchange via shared edges and vertices is described.

• Section 4.4: Classification of data lifetime
This is followed by a classification of the required data access.

• Section 4.5: Stack- and stream-based simulation on a static grid
This section shows a concrete implementation of a stack- and stream-based simulation.

• Section 4.6: Adaptivity
A description of how to handle the adaptivity with simulations on dynamically adaptive
grids is then presented.

• Section 4.7: Verification of stack-based edge communication
So far, we assumed our communication via the stack system to be correct. This section
gives a formal proof for edge-based communication.

• Section 4.8: Higher-order time stepping: Runge-Kutta
The implementation of higher-order Runge Kutta methods with our stack- and stream-
based simulation approach is described.

• Section 4.9: Software design, programmability and realization
For usability reasons, the software was developed with a layered framework approach.
This software design is presented and gets important for the new parallelization method.

• Section 4.10: Optimization
We also developed optimizations, some of them presented in this Section.

• Section 4.11: Contributions
Finally, we summarize our contributions to the serial development.

43

CHAPTER 4. SERIAL IMPLEMENTATION

|001 |001 001 1 |0 001 1 001 001 11 |00011 001 001 1
 001 001 111

Figure 4.1: Top row: bitstream array and illustration for successively refined grids. 0 rep-
resents a leaf node and 1 an inner tree node. The symbol “” denotes the beginning of the
array. During a spacetree traversal, the array is read from right to left. Bold face numbers
represent cells which are refined in the next right handed image. Bottom row: respective cell
tree structure.

4.1 Grid generation with refinement trees

With spacetrees [Fra00,Gün04,Pög04,Mun06,Nec09,Wei09], a particular domain Ω is initially
represented in its non-refined state by a single cell. In a tree-like structure, this cell is repre-
sented by the root node of a tree. For refining a cell, two or more nodes are appended to the
corresponding leaf tree node [Mit07], one node for each additional cell. Following this refine-
ment scheme, the grid can be represented in a hierarchical tree with the leaf nodes representing
the entire grid with non-overlapping cells. A serialization of the spacetree is then given by a
depth-first traversal of the spacetree.

The spacetree used in this work is based on triangles and refinements of a cell based on
the so-called newest vertex bisections [Mit07]. This bisection splits the triangle cell with the
inserted refinement edge starting at the latest newest inserted vertex and the other vertex
placed on the opposite edge. Such a bisection of triangles allows an adaptive mesh generation
with an underlying binary tree with the Sierpiński SFC [HDJ04]. Bisecting an isosceles right-
angled triangle, this refinement creates triangles of the same shape, only different in rotation,
orientation and size. However, this does not limit the applicability to other triangle shapes:
we can map triangle cells to a different shape and present this possibility for simulations on a
sphere (Section 6.5).

We can store the grid structure with a bit-stream (0 and 1) representing the spacetree
structure. Traversing the grid can then be accomplished by successively reading elements of
this structure stream and following the tree in a depth-first tree traversal in case of a 1 marker.
In case of reading a 0 marker, we reached a leaf element which is a representative for a grid cell.

Refining a cell with newest vertex bisection can then be accomplished by replacing a single
leaf-child bit 0 with 0, 0, 1 assuming that the bit stream is read from right to left. Coarsening
of a cell is achieved by joining two cells which are children on the recursive tree traversal, thus
replacing a sequence 0, 0, 1 with 0. Examples of different refinement states are given in Fig. 4.1.
Note, that this can also lead to hanging nodes whereas we require a conforming grid (i.e. a
grid without hanging nodes). The generation of a conforming grid with this property is further
discussed in Section 4.6.

44

4.2. STACKS

4.2 Stacks

We assume that the structure of a grid is stored on a stack. Then, we can traverse the grid by
successively fetching the top-most element of this stack on each spacetree node.

Formally, a stack Sk is modified via push and pop functions, respectively, pushing data to
the top of the stack or removing a data item from the top of the stack.

Given a stack Sk = (sk1, s
k
2, . . . , s

k
|Sk|) with its stack elements ski , a push of element α can be

formalized via
push : (Sk, α) 7→ (sk1, s

k
2, . . . , s

k
|Sk|, α) (4.1)

and pop by returning a tuple with the stack and the fetched data, yielding

pop : (Sk) 7→ ((sk1, s
k
2, . . . , s

k
|Sk|−1), sk|Sk|). (4.2)

Regarding the implementation of such a stack access, the push and pop operations are offered
with different implementations: Pushing and fetching of single or multiple stack elements. The
topmost element is referenced via a pointer. Stack size modifications can, thus, be achieved
by increments and decrements on this pointer only. Due to the small number of operations
related to stack access, all methods are marked to be inlined by the compiler, thus no function
call is involved for the execution of a push or pop operation. The stack is preallocated with
the maximum capacity of possible elements being stored on the stack during a traversal (see
Section 4.10.6).

The bit stream for a forward spacetree traversal used so far is not directly applicable for a
backward traversal. Using our stack structure as the input stream only and following the in-
put/output scheme suggested in [GMPZ06,Nec09,Wei09], this demands for creating a structure
stack usable for backward traversals.

For generation of the backward structure stack, we use post-order push operations of the
structure markers to a stack. The spacetree traversal is then based on bits fetched from Sstructureforward

and setting up a backward structure stack Sstructurebackward by pushing the structure bits in postfix
order, after the children have been visited. This creates a structure stack with its input usable
for traversals in reversed direction.

4.3 Stack-based communication

Since our simulations require data exchange between grid cells, we describe a cache-aware way
of exchanging data stored for different grid cells based on stack operations.

The high variety of possible application requirements on the grid traversals and data ex-
change patterns demands for a code generator. Otherwise, these variety requirements would
lead to either (a) generic code including computations not required for the particularly con-
sidered application, thus wasted computation time, or to (b) handwritten code, specialized for
each application which leads to code which has to be modified each time before being capable
of using them for different grid traversal and communication requirements. Therefore, we de-
cided to use a code generator and continue by introducing a structured formulation of the grid
traversal and communication approach to allow the creation of the traversal code with a code
generator (See Section 4.9.5). This is contrary to the approach taken before for a stack- and
stream-based SFC traversal which was based only on hand-written traversal code.

4.3.1 SFC-labeled grid generation

We extend the grid generation approach from Section 4.1 by labeling each cell with additional
information which is described in this and the next section. Such labels yield properties which

45

CHAPTER 4. SERIAL IMPLEMENTATION

K H V
V'
H'

K'
V'

K'
H'

K' H' V'
V
H

K
V

K
H

ev
en

o
d
d

Figure 4.2: Geometric refinement grammar we use in our scheme. The bisection is described
with the tick arrow. The right side of a thick gray arrow shows application of the grammar rule
with the resulting children types. Triangles of type even are denoted with K, H and V and
those of type odd are marked with an additional prime: K ′, H ′ and V ′ [SBB12].

are getting beneficial in upcoming Sections.
The Sierpiński SFC can be defined via a grammar [BSVB08] being recursively applied with

different basic triangle traversal types given in

G := {K,V,H}. (4.3)

The notation of these types are related to the location of the SFC entering and leaving the
triangle, see Fig. 4.2. K traversals enter a triangle via a cathetus (Kathete in German), H via
the hypotenuse and V entering and leaving the triangle via a cathetus, creating a V-like shape.
Additional properties are used for default and mirrored traversal by

O := {even, odd}. (4.4)

The marker odd mirrors the traversal direction along the newest vertex bisection edge. The
tuple

T := (G,O) (4.5)

then defines all SFC traversal combinations (see Fig. 4.2 for an overview) required for our com-
munication scheme. For visualization, we always draw the SFC close to the hypotenuse of each
triangle as suggested in [Sch06].

To recursively traverse the spacetree, the function childT stores the grammar applied to the
tree traversal (see cells on the right side of the gray arrow in Fig. 4.2).

childT : (G,O)→ ((G,O), (G,O))

childT : (K, even) 7→ ((H, odd), (V, odd))
(H, even) 7→ ((V, odd), (K, odd))
(V, even) 7→ ((H, odd), (K, odd))

(K, odd) 7→ ((H, even), (V, even))
(H, odd) 7→ ((V, even), (K, even))
(V, odd) 7→ ((H, even), (K, even))

(4.6)

Theorem 4.3.1 (Shared edge with SFC order) The SFCs provide a unique order of the cells.
This implies that each cell Ci+1 shares exactly one edge with Ci.

46

4.3. STACK-BASED COMMUNICATION

e2: right edgeleft edge: e3

e1
hypotenuse edge

left vertex: v1 v2: right vertex

top vertex
v3

Figure 4.3: Normalized triangle with enumerated edges ei and vertices vi. This normalization
is similar to the reference space used in the DG simulation. Here, we use it for a unique
enumeration of all communication primitives without considering the orientation of the triangle.

Proof: The proof is given by the recursive refinement grammar based on the Sierpiński SFC
(see Fig. 4.2): the SFC pierces exactly one edge which is inserted by newest vertex bisection.
This is the edge shared by the two child triangles for a refined cell.

The edges of each triangle in its normalized orientation (see Fig. 4.3) are enumerated e1, e2 and
e3 by starting at the hypotenuse and then enumerating the triangle legs in counter-clockwise
order yielding the unique identifiers

E := {ei|1 ≤ i ≤ 3}. (4.7)

The vertices are enumerated similarly starting at the vertex left to the hypotenuse, resulting in
unique identifiers

V := {vi|1 ≤ i ≤ 3}. (4.8)

4.3.2 Communication access order and edge types

We continue with the requirements of efficient data exchange between cells. Using the Sierpiński
SFC, we can exchange data among adjacent cells via pushing and fetching data to and from a
stack system (see next Section).

Using such a stack-based communication demands for (a) particular access order in each
cell and (b) an edge-type labeling :

(a) Access order: This order is directly related to the SFC induced order of the interfaces
shared by adjacent cells and whether the communication edge or vertex, further referred to
as communication primitives, is either on the left or right side of the SFC:

S := {left, right}

A distinction between left- and right-handed communication primitives is required for our
correct stack-based communication system.

We follow the suggestion for an access order of edge and vertex primitives in [BSVB08], and
write down the order in a formal way including edges ei and vertices vi with the function
A : (T,S)→

⋃
i∈{2,3,4}(E ∪ V)i:

47

CHAPTER 4. SERIAL IMPLEMENTATION

A : ((K, even), left) 7→ (e3, v3, e2, v2) ((K, odd), left) 7→ (v2, e1)
((K, even), right) 7→ (v1, e1) ((K, odd), right) 7→ (e2, v3, e3, v1)

((H, even), left) 7→ (v1, e3, v3, e2) ((H, odd), left) 7→ (e1, v1)
((H, even), right) 7→ (e1, v2) ((H, odd), right) 7→ (v2, e2, v3, e3)

((V, even), left) 7→ (e3, v3, e2) ((V, odd), left) 7→ (v2, e1, v1)
((V, even), right) 7→ (v1, e1, v2) ((V, odd), right) 7→ (e2, v3, e3)

(4.9)

To give an example, A((K, even), left) describes the communication primitive access order
of the even K triangle type (see top left image in Fig. 4.2). The access order is given by the
SFC traversal direction. With the SFC drawn close to the hypotenuse, the left edge e2 is
the first primitive on the left side of the SFC traversal where the SFC enters the triangle.
Therefore, primitive e3 is the first one, followed by the top vertex v3 and the edge e2. Since
the SFC leaves the triangle via the hypotenuse, the right vertex v2 is also on the left side
of the SFC and, thus, is the last primitive regarding primitives at the left side to the SFC
traversal for triangle type (K, even).

Lemma: 4.3.2 Distinguishing cases of A for different G for edge communication becomes
obsolete.

Proof: Restricting A to edge communication ei only, i.e. dropping all vi, the following
condition holds:

∀α ∈ O, β ∈ S : A((K,α), β) == A((V, α), β) == A((H,α), β)

(b) Edge type labels: We further introduce cell-local labels to each edge:

• The edge is of type new, if data is created for this edge. The cell adjacent to this edge
is then traversed during the remaining SFC based grid traversal.

• The same edge on the adjacent cell is then marked with old. This accounts for data
being previously prepared and pushed to a stack system by the adjacent cell and read
by the current cell from the very same stack system.

• An edge on a domain boundary is labeled as boundary edge demanding for appropriate
boundary handling.

The labels for edges are then given by

C := {n, o, b}3 (4.10)

for new, old or boundary edge types on the three edges enumerated in anti-clockwise order
with the enumeration starting at the hypotenuse, see Fig. 4.3. An example for labeled edges
is given in Fig. 4.4. The communication itself can then be realized in a cache-aware manner
based on a stack system (see Section 4.3.2).

The communication information C for the first and second child, respectively, due to cell
bisection is given by

childCfirst/second : (C,T)→ C3

48

4.3. STACK-BASED COMMUNICATION

V'

H'
bK
nb

VK

H

K

n
o

n

n

b

b

n

nnn

n

b

b

b b

o

o
o

Figure 4.4: Edge types are recursively inherited [SBB12].

with

childCfirst(c, even) 7→ (c3, c1, n)
childCsecond(c, even) 7→ (c2, o, c1)

childCfirst(c, odd) 7→ (c2, n, c1)
childCsecond(c, odd) 7→ (c3, c1, o)

(4.11)

only considering edge communication information so far.

4.3.3 Edge-based communication and edge-buffer stack

We use two stacks, the left and right communication stack which we continue to use for our
edge-based communication, see e.g. [BRV12]. This communication is based on the inherited
edge types and uses push and pop operations acting on stacks. A push operation is applied for
edges of type new, storing new data on the stack which is to be fetched by a pop operation from
another cell for the corresponding edge of type old.

With this push and pop operations to/from the respective stacks, this yields our algorithm
for edge-based communication: For each traversed leaf-node, we apply push and pop operations
on the left and right communication stack. The stack access is specified with our access order
A : (T,S). The information whether data has to be read (pop) or written (push) to the stack is
given by the edge types C.

During a forward traversal, this communication scheme is able to transfer information to
cells subsequently traversed by the current grid traversal. Due to this propagation direction only
towards subsequently traversed cells, we require an additional backward traversal for transferring
data to cells in the other traversal direction. Therefore we require a grammar with reversed
access order, given by changing push and pop operations to communicate in the reversed order
and also by reversing the node and edge communication order from function A.

Data forwarded during the forward traversal can be either processed directly, e.g. by updat-
ing cell-local data or can be stored to an edge buffer stack with data being read from this buffer
during the backward traversal. An example of the latter approach is illustrated in Fig. 4.5.

4.3.4 Vertex-based communication

For applications such as node-based flux limiter [KT04], finite element methods [Sch06] and
visualization (see Section 6.4.2), efficient data transfer via vertices is required.

We use such vertex-based communication schemes for a visualization of a water surface
based on a DG shallow water simulation. Since DG discretizations are discontinuous at the cell
boundary, a direct visualization of cell-wisely reconstructed water surface would lead to gaps in
the surface. To overcome this non-intuitive visualization distracting the observer due to visible
background color, we can construct a closed surface for visualization at each cell’s boundary,
see Section 6.4.2 for details on the surface reconstruction.

49

CHAPTER 4. SERIAL IMPLEMENTATION

A

BCE

F

G

a
bc

d
e

f
g

h

i

j
kl

m

n D

o

p
q r

st

u

EdgeComm Stack
Left/Right

a b
c

EdgeBuffer
Stack

A

BCE

F

G

a
bc

d
e

f
g

h

i

j
kl

m

n D

o

p
q r

st

u

EdgeComm Stack
Left/Right

a b
fd

EdgeBuffer
Stack

c

A

BCE

F

G

a
bc

d
e

f
g

h

i

j
kl

m

n D

o

p
q r

st

u

EdgeComm Stack
Left/Right

a b
f
h
i

EdgeBuffer
Stack

c
d

A

BCE

F

G

a
bc

d
e

f
g

h

i

j
kl

m

n D

o

p
q r

st

u

EdgeComm Stack
Left/Right

a b
f
h
l

EdgeBuffer
Stack

c
d
i

j

A

BCE

F

G

a
bc

d
e

f
g

h

i

j
kl

m

n D

o

p
q r

st

u

EdgeComm Stack
Left/Right

a b
f
h
o

EdgeBuffer
Stack

c
d
i

j
m

l

A

BCE

F

G

a
bc

d
e

f
g

h

i

j
kl

m

n D

o

p
q r

st

u

EdgeComm Stack
Left/Right

a b
f

EdgeBuffer
Stack

c
d
i

j
m

lp
o

A

BCE

F

G

a
bc

d
e

f
g

h

i

j
kl

m

n D

o

p
q r

st

u

EdgeComm Stack
Left/Right

a b
f

EdgeBuffer
Stack

c
d
i

j
m

lt
o

s

p

Figure 4.5: Illustration of an edge-based communication scheme for successively traversed
leaf cells with the domain boundary edges labeled with type new. The data to be transferred is
drawn close to each edge. The edge types and communication order is inferred based on the rules
given in Section 4.3.2 and are not visualized. For the first leaf triangle A, the edge data b and
c are stored in the SFC order to the right communication stack and the edge data a to the left
communication stack. In the second leaf triangle B, c is first read from the communication buffer
and stored to the edge communication buffer to be processed during the backward traversal.
Then, the data f associated to the edge right handed to the SFC is stored to the respective right
edge communication stack and data d to the left one. After processing the communication data
for the last cell G, all communication data for edges pierced by the SFC are stored consecutively
on the edge buffer stack.

50

4.3. STACK-BASED COMMUNICATION

Edge communication with each edge shared by up to two cells requires storing of, receiving
of and running computations on pairs of edge communication data only. For vertices, more than
two cells typically share a vertex. Therefore, additional access policies are required:

Vertex touch policies:
During a grid traversal, vertices shared by other cells are either accessed the first, the last
or between the first and last time. We follow the terminology first-, middle- and last-touch
[Nec09,Wei09]:

• first-touch:
The vertex is accessed for the first time of the traversal.

• middle-touch:
The vertex data is assumed to be alrady first-touched with the last touch pending.

• last-touch:
This vertex data is accessed for the last time of the traversal.

Instead of fetching an element from the stack, updating it and pushing it back, we only fetch
the reference of this element and use the reference to update this data. This does not strictly
follow the algorithmic and formal stack access pattern, but yields less operations and thus more
performance.

We just described different vertex access policies involved during grid traversal but still miss
the knowledge which policy to apply. These policies are inferred based on the edge type labels
only, with

P : (C× C)→ P
(ei, ej) 7→ {first,middle, last}

(4.12)

and both edges communication types (ei, ej) spatially touching the vertex as parameters. The
vertex-access policy is then determined in the following way:

• (new, new): first-touch policy
If both edges are of type new, the corresponding vertex data on the vertex communication
stacks cannot exist since adjacent cells were not visited yet. This is due to the continuous
Sierpiński SFC curve: The curve continues traversing the cells sharing the vertex with
(new, new) edge types. This yields a first touch policy.

• (new, old) or (old, new): middle-touch policy
An edge of type old denotes an already visited adjacent cell, thus the vertex data on the
stack is already allocated. An edge of type new concludes the adjacent cell to be visited
and the vertex data thus still required to remain on the stack. Thus this vertex data is
accessed with a middle touch policy.

• (old, old): last-touch policy
In case that the vertex is not shared with successively traversed cells, using similar argu-
ments than for the (new, new) edge type constellation, it is touched for the last time.

This also leads to the order of pair-wise edge communication types not being relevant for
vertex access policy, yielding

51

CHAPTER 4. SERIAL IMPLEMENTATION

A

BCE

F

G

a

b

c
d

e

fg

h

i
j

k

l
m

n

D

o
p

q

r
st

u

VertexComm Stack
Left/Right

c a
b

VertexBuffer
Stack

A

BCE

F

G

a

b

c
d

e

fg

h

i
j

k

l
m

n

D

o
p

q

r
st

u

VertexComm Stack
Left/Right

cd a
be
f

VertexBuffer
Stack

A

BCE

F

G

a

b

c
d

e

fg

h

ij

k

l
m

n

D

o
p

q

r
st

u

VertexComm Stack
Left/Right

VertexBuffer
Stack

cdi a
be

h
fg

A

BCE

F

G

a

b

c
d

e

fg

h

i
j

k

l
m

n

D

o
p

q

r
st

u

VertexComm Stack
Left/Right

VertexBuffer
Stack

cdij a
be

hk
fg

l

A

BCE

F

G

a

b

c
d

e

fg

h

i
j

k

l
m

n

D

o
p

q

r
st

u

VertexComm Stack
Left/Right

VertexBuffer
Stack

cdij a
be

hkn
fg

lm
o

A

BCE

F

G

a

b

c
d

e

fg

h

i
j

k

l
m

n

D

o
p

q

r
st

u

cdij a
be

hknq

fgr
lm
op

VertexComm Stack
Left/Right

VertexBuffer
Stack

A

BCE

F

G

a

b

c
d

e

fg

h

i
j

k

l
m

n

D

o
p

q

r
st

u

VertexComm Stack
Left/Right

VertexBuffer
Stack

cdij a
be

hknq

fgrs
lm
opt
u

Figure 4.6: Illustration of vertex-based communication scheme for successively traversed leaf
cells with the domain boundary edges labeled with type new. The vertex data to be transferred
is depicted close to each vertex.

P : (ei, ej) 7→ first if (ei, ej) ∈ {({n, b}, {n, b})}
middle if (ei, ej) ∈ {({n, b}, o), (o, {n, b})}
last else.

(4.13)

Finally, using the communication access order and edge types derived for each leaf element
(see Section 4.3.2), the vertex-based communication for semi-persistent vertices via the stack
system can be derived and applied with the information given above. An illustration is given
in Fig. 4.6.

We like to emphasize, that we optimized the inference of the vertex access policies with a
code generator, see Sec. 4.10.1. Hence, there are no if-branchings involved to distinguish between
the different access policies presented above.

52

4.4. CLASSIFICATION OF DATA LIFETIME

4.4 Classification of data lifetime

We continue by showing variants of how different data is accessed with a stack system.

(a) Persistent access: Persistent data is never released during a traversal by either updating
the associated data only or fetching it from one buffer and pushing it to another one.
Examples:
Structure stack: With the stack data handled during a forward and backward traversal,
fetching data from one and pushing all data to the other stack such as the structure stack
can keep the grid structure persistently in memory.
Cell data stack: This stack stores the data which is stored for every cell, e.g. the DoF stored
for the DG simulation. This data can be kept persistently either by updating the data on
the stacks or by copying the data from one source stack to another destination stack and
using the destination as the source stack in the next traversals.

(b) Semi-persistent access: For this type of access, we distinguish between creating access
and clearing access, respectively, for the forward and backward traversal:

• Creating access:
For communication via edges and vertices, the data is first created with a forward
traversal and stored to an additional buffer for reusage during backward traversal.

Examples:
Flux preprocessing: Nodal quadrature points on the edges are stored during the forward
traversal1.

Vertex computations: Storing surface vertex data, e.g. for visualization: initialization
and updating such data stored at vertices shared by cells.

• Clearing access:
A clearing access starts with an already filled buffer and reads the data resulting in
an empty buffer.
Examples:
Flux postprocessing: After the forward traversal and flux computations, the flux up-
dates are fetched from the buffers and are further processed with time step integration
for the cells.

Vertex computations: With the vertex data stored to the buffer system during the
forward traversal, it is fetched from the buffer system for processing, e.g. writing vertex
data to a vertex buffer array, resulting in an empty buffer system.

(c) Non-persistent access:
This access starts with an empty stack and finishes with an empty stack. Thus, it is an
interplay of creating and clearing accesses.

Adaptivity information: To refine or coarsen cells, adaptivity information requesting re-
finement or coarsening for cells is forwarded to adjacent cells via a stack system with the
adjacent cell’s adaptivity states immediately updated. After either the forward or backward
traversal is finished, the stack is empty.

1Depending on the implementation, this can also be a non-persistent access by moving the data to another
buffer

53

CHAPTER 4. SERIAL IMPLEMENTATION

This work puts its focus on data which has persistent cell- and structure-stacks only. The
other stacks are assumed to be semi-persistent such as the edge communication data. Here, we
describe two ways how to handle persistent edge and node data with a stack system:

• The first approach is storing the node and edge data in cell data, resulting in as many
duplicates as cells share the node or edge primitives. This approach is directly applicable
with this development by mapping cell data to edges and vertices.

• A second approach uses stack systems for storing node and edge data only once and
separated from the cell data. This avoids storing duplicated data in grid cells resulting in
less memory consumption. The Peano framework [Nec09,Wei09] uses a storage system for
such persistent vertices. An implementation with the serial version using the Sierpiński
SFC can be e.g. found in [Vig12] and is not part of this thesis.

4.5 Stack- and stream-based simulation on a static grid

We continue with a concrete description on how we execute a stack- and stream-based simulation
on a static grid. Due to the static grid, we assume the grid structure already stored in the
structure stream.

4.5.1 Required stacks and streams

In order to run a simulation for solving the hyperbolic equations with our stack-based commu-
nication system, we continue determining further buffer requirements. We introduce different
stack types:

• Communication stacks Slr: Two stacks are required for communication patterns via edges
or vertices due to stack operations distinguishing between the left and right side of the
SFC.

• Buffer stack St: This stack is used for semi-persistent data, e.g. to store edge communi-
cation data during the forward traversal and fetch it from the buffer to perform the time
step integration.

• Traversal persistent stacks Sfb: Two stacks are used for forward and backward traversal
direction fetching data from one stack and pushing it to the other stack.

Then, the basic stack for grid storage, usable for a pure grid traversal without any computations,
is given by

Stack S Description of purpose Classification

Sstructurefb Grid representation persistent

Depending on the simulation requirements, additional stacks are used. For a simulation with
a DG method on a static grid and flux computations requiring an edge-based communication,
this leads to the following additional stacks:

Stack S Description of purpose Classification

SsimCellDatafb Storage for cell data (e.g. DoF) persistent

SsimEdgeCommlr Edge data communicated to adjacent cells semi-persistent

SsimEdgeBuffert Buffer for data exchange via edges semi-persistent

54

4.5. STACK- AND STREAM-BASED SIMULATION ON A STATIC GRID

The buffer SsimEdgeBuffert is required to buffer the communication data during the forward
traversal. This data from adjacent cells is then fetched during the backward traversal.

4.5.2 DG simulation with stacks and streams

With our knowledge on the basics of a hyperbolic simulation, we are going to assemble a
simulation with the stack- and stream-based approach introduced in the previous Sections.

For flux computations, we do not follow the approach of splitting the flux computations as
suggested in [BBSV10] which basically avoids computing the flux based on the DoF on each
cell’s edge. Such an approach is not applicable with the Rusanov flux solvers from Section 2.10
as well as many other solvers.

A single time step is then computed with the following algorithmic pattern using a forward
and backward traversal.

Forward traversal:

(a) Storing flux paramters: For each cell traversed along the SFC, we distinguish between
edge types (see Section 4.3.2).

• new : For edge types new, the DoF on an edge required for the flux evaluation are
first computed (see Section 2.7) and then communicated to the cell adjacent to the
edge. Due to the stack-based communication, each edge of type new is followed by a
corresponding traversal of the cell adjacent to the edge.

• old : For each edge type old, the previously written flux parameters are read from
the communication stacks and pushed to the semi-persistent stack SsimEdgeBuffert ,
directly followed by a push of the cell-local edge coefficients. This operation converts
non-persistent data to semi-persistent data.

• boundary : In case of a boundary condition, the parameters for the flux computa-
tion are reconstructed based on the selected type of boundary condition (see Sec-
tion 2.11) and are, together with the corresponding DoF of the local edge, pushed to

the SsimEdgeBuffert .

Additionally to the flux parameters, the inner cell radius is also transfered for computing
the CFL condition (see Section 2.13) to allow a time step size computation which depends on
the inner cell radius of each cell.

Traversal-intermediate processing:

(b) Compute fluxes: After storing the cell size as well as all flux DoF consecutively on the
simEdgeBuffer stack, the fluxes are evaluated and the flux updates written to the same
buffer storage (see Section 2.10).

(c) Compute time-step size: Based on the flux computations, the maximum time-step size
is directly derived from the CFL condition, the maximum wave speed and the cell size (see
Section 2.13). The cell size, in addition to the flux parameters, has also been stored to the
edge buffer stack.

55

CHAPTER 4. SERIAL IMPLEMENTATION

0.000

0.000

0.000

0.001

0.001

0.001

0.001

0.001

0.002

0.002

0 20000000 40000000 60000000 80000000

S
ec

on
ds

Problem size

Time non-destructive

Time destructive

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

100 1000 10000 100000 1000000 10000000 100000000

R
el

at
iv

e
im

pr
ov

em
en

t

Problem size

Figure 4.7: Benchmark for non-destructive streams vs. destructive streams with different
stream sizes showing robust improvement for larger problem sizes with non-destructive streams.

Backward traversal:

(d) Receive flux updates (Section 2.7): During the backward traversal, for each edge type
new, the pair of flux-updates on the shared edge is read from the buffer. The flux update
associated to the currently traversed cell is then used for the time stepping and the other
flux update is pushed to the communication stacks to be processed by the adjacent cell.

Flux updates for edges of type old have previously been pushed to the corresponding left
or right edge communication stack and are read from the respective stack.

(e) Advance the time step on the data stored at each cell (Section 2.14): The flux-
updates for each edge of a cell are available either via the edge buffer for edges of type new
or via the stack system for edges of type old. Thus the cell can be advanced in time based
on the flux updates and the computed time-step size.

An alternative approach for flux computations presented in the traversal-intermediate pro-
cessing is computing the flux updates during the first forward traversal before pushing the
flux parameters to the edge buffer (see [SBB12] for an implementation). This avoids the mid-
processing and, thus, also additional bandwidth requirements; However, it does not yield the
optimization of vectorized flux evaluation for finite volume simulations (see Section 4.10.4) and
hence was not considered in this work.

4.5.3 Non-destructive streams

With a software concept using input- and output-streams and temporary stacks only (cf.
[MRB12, Nec09, Wei09]), all the data has to be read from one memory location and written
to another memory location. Among others, this results in increased cache utilization due
to additional memory being accessed and additional cache blocks used. Another performance
aspect are additional index computations for the second stack.

We tested this hypothesis with two different benchmarks based on an array of size n. Both
benchmarks operate on an array of integers and successively increment the stored values. The
first benchmark operates in-situ, reading a floating point value, incrementing it and writing
the data back to the same array entry, whereas the second benchmark writes the result to an
additional array.

Figure 4.7 shows results for both benchmarks with different block sizes. It suggests that non-
destructive streams are mandatory for memory performance. This leads to a robust performance
improvement of more than 20% for larger streams using non-destructive streams.

56

4.5. STACK- AND STREAM-BASED SIMULATION ON A STATIC GRID

Thus, we use an approach with non-destructive access to our stack structures and further
motivate this by highlighting possible applications in our algorithm:

• Avoid generation of structure stacks for reversed traversal :
Writing the structure stream to the memory with an additional memory buffer leads to
increased pullution of the cache despite no changing grid. With adaptivity traversals
introduced in the next section, several forward- and backward-traversals are executed
obviously without requiring reconstruction of structure stacks during each traversal since
the structure is fixed. Hence, we reuse the structure stacks.

• In-situ cell updates for each time step:
During the forward traversal, an input/output stream would lead to obsolete copy opera-
tions of data stored per cell which does not require any modifications. Such data can be
e.g. the Jacobi matrix, vertex coordinates or distorted grids.

This yields two different kinds of non-destructive streams. Assuming e.g. a grid traversal in
forward direction accessing cell data, a top-down stream is used to iterate over the stack data
top-down. A bottom-up stream can be used in a similar way to start iterating over the data
from the very first element on the bottom of the stack. All these stream operations do not
remove or add any data to stack, they only update the stack entries.

Optimizing our input/output scheme with these non-destructive streams, this modifies our
stack system used for the simulation on static grids (Sec. 4.5.2) in the following way:

Forward traversal:

• Structure input : top-down stream (read only (RO))
The forward structure stack is read with a non-destructive top-down stream which allows
for being reused by successive traversals.

• Cell data: top-down stream (RO)
The cell data is read with a non-destructive top-down stream with read access only.

• Structure output : stack (write-only (WO))
The backward structure stack is cleared before the traversal and written with standard
push operations to create the structure information for a backward traversal. In case of
no modification of the grid structure and with the backward structure stack information
already existing, we can skip creating this structure information.

Backward traversal:

• Structure output : NONE
No structure output is required since the forward structure stack already exists.

• Cell data: bottom-up stream (read-write (RW))
The backward structure stack is read with a non-destructive top-down stream with read-
write access allowing update of cell data.

• Structure input : top-down stream (RO)
The backward structure stack is read with a stream access. Since it was sucessively pushed
post-order to the stack, it has to be read top-down.

We just presented the modifications of our stack system to a non-destructive system with a
static grid. Next, we continue with the adaptivity traversals.

57

CHAPTER 4. SERIAL IMPLEMENTATION

Figure 4.8: Different adaptivity states of each triangle. The red dashed lines represent the
new edges of the refined triangle or the removed edges for a coarsening operation joining two
triangles [SBB12].

4.6 Adaptivity

We introduce two additional stack systems for adaptivity. The first one accounts for the current
adaptivity state in each cell, the second one for the adaptivity communication information to
create a conforming grid, a grid without hanging nodes, by inserting additional edges.

Stack or stream S Comment

SadaptiveEdgeCommlr

Left and right stack for edge communication information to
transfer the three different adaptivity markers M

SadaptiveState Adaptivity state for each cell, see Fig. 4.8

The stacks SadaptiveEdgeCommlr are then used to forward three different adaptivity markers

M := {MR,MC ,M0}

to adjacent cells, requesting a refinement on an edge, a coarsening or no adaptivity request.

• Refinement request: For adaptivity states inserting edges and, thus, creating a hanging
node, the adjacent cell also has to insert one or more corresponding edges finally avoiding
the hanging node. We use a refinement marker MR forwarding these insertion requests.
The receiving cell can then use this refinement marker to switch to an adaptivity state
(see Fig. 4.8) avoiding a hanging node.

• Coarsening request: The markers MC forward coarsening requests along the triangle legs
only. With the stack-based communication, this can be established by edge-based com-
munication (see Section 4.6.2 for more information).

We store the adaptivity state on a separate stack SadaptiveState. This allows for the com-
putation of the conforming transitions without touching the simulation cell data stack in the
middle traversals to reduce memory bandwidth requirements during the adaptivity traversals.

The adaptivity process (for optimizations, see Sections 4.10.3 and 5.8.2) is then given with
a three-pass system which we can execute iteratively:

1. First forward traversal - marking of refine/coarsen operation requests:
Based on the adaptivity indicators (See Section 2.12.5), three adaptivity states are in-
troduced: each cell either requests a (3) local refine operation on the cell, a (2) joining
with another cell or (0) no adaptivity request, see Fig. 4.8. Adaptivity markers are then
forwarded to adjacent cells similar to the middle traverals which are discussed next.

58

4.6. ADAPTIVITY

Triangle B requesting
a split operation

1st forward trav.
(refinement information
forwarded during single

traversal)

1st backward trav.
(no state change

detected)

2nd backward trav.

A

B C

*
*
** *

Figure 4.9: Basic adaptive refinement traversals. Adaptivity with a forward and two backward
traversals. Note, that the 1st backward traversal was only required to determine a conforming
adaptive state.

2. Middle backward/forward traversals - determine conforming transition:
To create a conforming grid, a conforming transition of the grid cells to the new grid has
to be determined. This requires two markers forwarding refinement and coarsening oper-
ations. The middle traversals are done by successively executing backward and forward
traversals until a conforming grid state is reached. All edges then have to be marked with
the same markers. Further details on the creation of this conforming transition are given
in Section 4.6.3.

3. Applying conforming transition to grid cell data:
The last backward traversal applies the transition states determined by refining/coarsening
cells and the actual modification of the element data. Regarding the persistent cell data
stored on the stack system, this is accomplished by streaming the cell data and inserting
or removing additional cells. For interpolation and restriction operations, see Section 2.12.

4.6.1 Refinement

A single forward or backward traversal does not propagate information to all adjacent cells.
This is due to edge communication information only propagated to cells which are traversed in
the direction of the SFC.

Hence, additional forward and backward traversals are required. The determination of the
conforming transition is thus similar to an iterative method: As many iterative smoother steps
are done until the residual, in our case the conforming state, is reached.

Considering all possible refinement states required to create a conforming grid, additional
split states for a refinement triggered via e3, e2 and via both edges are required (See Fig. 4.8
for refinement states (4) to (7)).

4.6.2 Coarsening

Using the knowledge on spacetrees and with the constraint of no hanging nodes, a coarsening
operation is only permitted under particular circumstances. Figure 4.10 gives a sketch of a
coarsening operation. Two constraints have to be fulfilled for a valid, conforming grid generating
coarsening operation:

1. The first constraint is obviously given by the spacetree with only leaf nodes with the same
parent node allowed to coarsen. Following the recursive grammar from Section 4.1, these

59

CHAPTER 4. SERIAL IMPLEMENTATION

4 triangles requesting a
join operation

Detailed view:
Forwarding the join

operation along the edges

Mc

ne
wnew

new
ne

w

old

old

old

old

Triangulation after
last backward traversal

A

B

D

C A

B

D

C
McMc

Mc

Figure 4.10: Coarsening agreement of cells due to adaptivity traversals. During the first
forward traversal, coarsening markers are forwarded along the triangle legs of cells requesting
a coarsening operation. A successful coarsening is applied with the last backward traversal
[SBB12].

leaf nodes always share an edge with one of the triangle legs and different triangle legs
(left or right) for the leaf nodes.

2. The second constraint is raised by the conforming grid property: if only both leaf nodes
are joined to a single cell, the resulting triangle can have a hanging node on its hypotenuse.
This also demands for coarsening of both cells adjacent to the hypotenuse of the coarsened
triangle.

The requirements driven by both constraints lead to a “diamond”-like shape [HDJ04] of
triangles involved in coarsening as depicted in Fig. 4.10. Note, that the diamond is created by
the touching triangle legs of the four triangles. In case of a coarsening request, a conforming
grid can only be obtained if all four involved triangles agree to the coarsening and thus forward
coarsening markers MC along all triangle leg edges. Using the cell traversal order induced by
the Sierpiński SFC, a forward followed by a backward traversal is sufficient to propagate the
coarsening information: during the first forward traversal, the coarsening request markers MC

are propagated via the triangle legs to the adjacent cells accounting for the diamond like shape.
As soon as one cell does not request a coarsening, the marker is not forwarded anymore. In case
of the coarsening information not being fully propagated to the last cell in the diamond, the
coarsening requests are all invalidated during the backward traversal by the same approach.

In case of a refinement marker forwarded via an edge to a cell that requests a coarsening, this
coarsening becomes invalid and the state is transferred to one of the corresponding refinement
states (3)-(7).

Hence, the computational grid can be a superset of the required mesh.

4.6.3 Termination of adaptivity traversals

One approach for testing for a transition state resulting in a conforming grid was suggested
in [BBSV10]. With this approach, the traversal is stopped if no change of state is determined
(cf. Fig. 4.9).

This number of conforming grid traversals is limited even with the cascade of edge insertions
to avoid hanging nodes. We consider the two possible reasons for cascades.

(a) A pseudo cascade forwards the information on the hanging node to the adjacent cell with
both considered cells sharing only the hypotenuse. In this case, the forwarding of refinement
markers directly leads to a conforming grid once the marker has been forwarded.

60

4.7. VERIFICATION OF STACK-BASED EDGE COMMUNICATION

(b) A real cascade forwards the refinement marker via the hypotenuse to a cell sharing one of
its cathetus. This adjacent cell is related to a leaf node one level higher in the refinement
tree. Thus, the cascading process can only occur on higher levels, directly leading to the
upper limit given by the refinement depth. With the refinement markers forwarded at least
once in each pair of forward and backward traversal, this assures the termination of the
adaptivity algorithm.

Joining adaptivity and time step traversals

The adaptivity traversals can be combined with the simulation traversals. Since its feasibility
was already shown in [Nec09,Wei09], this was not further considered in this work.

4.7 Verification of stack-based edge communication

This section gives a formal proof of a valid edge-oriented communication between cells with the
stack system using push and pop operations for the Sierpiński SFC. Using push operations on
edges of type new and pop operations on edges of type old, the following theorem holds:

Theorem 4.7.1 (Valid stack-based communication) Using the communication schemes with
the pop and push operations on the communication stack yields correct data transfer to each cell
adjacent to the corresponding edge.

Proof: The proof of the theorem is supported by axiomatic rules closely related to those of
the Hoare calculus [Hoa69]. We define inference rules given in the form A

B with A stating
the condition which has to hold true and B the condition to replace A. The conditions are
given by a tuple of tuples {{P}S{Q}}n with the precondition P , the code-statement S and the
postcondition Q.

We further assume push and pop operations specified via push(S, a), pushing the element a
to stack S, and pop(S, a) fetching element a from the stack.

The push and pop operations are extended with the pre- and postconditions

{Sk} push(Sk, α) {Sk = (s1, s2, . . . , s|Sk|, α)},
{Sk, Sk|Sk| = β} pop(Sk, β) {Sk = (sk1, s

k
2, . . . , s

k
|Sk|−1

)}. (4.14)

with the superscript k generating a unique labeling of the stacks.

Reduction and commutative rules

Correct communication: The success of a correct pop operation by applying the grammar
and inheritance of types lead to pop operations pop(S, α), testing for correct fetching of element
α from the top of the stack. This leads to the rule

R6 :
{Sk|Sk| = α}pop(Sk, α){Sk = (sk1, s

k
2, . . . , s

k
|Sk|−1

)}
{Sk|Sk| = α}(Sk, α) = pop(Sk){Sk = (sk1, s

k
2, . . . , s

k
|Sk|−1

)}
. (4.15)

This converts the pop operation into the pop operation introduced in Section 4.2, which allows
reduction:

61

CHAPTER 4. SERIAL IMPLEMENTATION

Reduction: Correct communication via push/pop to/from stack Sk is recognized and reduced
via

R1 :
{}push(Sk, α){Sk = (sk1 , s

k
2 , . . . , s

k
|Sk|, α)}; {Sk

|Sk| = α}(Sk, α) = pop(Sk){Sk = (sk1 , s
k
2 , . . . , s

k
|Sk|−1)}

ε
(4.16)

This assures correct communication information received by the communication partner by
pushing the same data α to the stack and fetching the same data α from the same stack.
A reduction statement tests for such a correct communication and removes the statements,
resulting in ε. We are allowed to do so, since the stack is kept in an unmodified state for all
other edges accesses.
Commutativity: Commutative property for accessing different communication stacks

R2 : {A}push(Sm,α){B};{C}push(Sn 6=m,β){D}
{C}push(Sn,β){D};{A}push(Sm,α){B} , R3 : {A}push(Sm,α){B};{C}(Sn,β)=pop(Sn 6=m){D}

{C}(Sn,β):=pop(Sn){D};{A}push(Sm,β){B}

R4 : {A}pop(S
m,α){B};{C}pop(Sn 6=m){D}

{C}pop(Sn,β){D};{A}pop(Sm){B} , R5 : {A}(S
n,α)=pop(Sn){B};{C}push(Sm 6=n,β){D}

{C}push(Sm,β){D};{A}(Sn,α)=pop(Sn){B}

.(4.17)

Those inference rules allow rearranging statements in case that they access different stacks. We
emphasize here that this is only valid with constant data on each edge to be pushed to and
fetched from stacks. This assumption would not be valid if e.g. data is fetched from one stack
and data depending on this one pushed to another stack.

Joining consecutive communication data: In case of pushing or fetching edge data in the
correct order with respect to the parent triangle allows to join data stored on the stack:

R7 :
{A}push(Sk,αr,1){B};{C}push(Sk,αr,2){D};

{A}push(Sk,αr){D} , R8 :
{A}pop(Sk,αr,1){B};{C}pop(Sk,αr,2){D};

{A}pop(Sk,αr){D} (4.18)

Here, αr represents the edge data of the parent element. The edge data αr on the hypotenuse
of the parent’s cell can be split into two edges creating edge data αr,1 and αr,2. This rule has
to be proven to assure correct refinement operations.

Application of inference rules

We apply the rules R1-R8 to show the valid stack access for edge-based communication. Con-
sidering only new and old communication types, the proof is given without loss of generality
by boundary edges assumed to not modify any communication stacks. For even traversals, the
access order for the root triangle only considering the edge access (see Section 4.3.2) is given by

A(∗,even),left := (e3, e2) A(∗,even),right := (e1) . (4.19)

Distinguishing between K, V and H traversals is not required (see Theorem 4.3.2). We associate
the edge information (a, b, c) to the edges (e1, e2, e3). Splitting a triangle using newest vertex
bisection would then splits the communication information on the hypotenuse a by appending

,1 or ,2 to the subindex into (a,1, a,2). This would push two elements to the stack associated to
e1 in the correct order. We assume the inserted edge information to be equal to an arbitrarily
choosen d.

We map each new and old communication type of edge data α to push(Sk, α) and pop(Sk, α)
to/from stack Sk. To avoid verification for all push/pop combinations, we use a generalization
of stack operations

pp : C→ {push, pop}

for the parent edges only.

62

4.7. VERIFICATION OF STACK-BASED EDGE COMMUNICATION

For the parent element of type even, this leads to the push and pop operations

pp(c3)(Sleft, c); pp(c2)(Sleft, b); pp(c1)(Sright, a); .

It has to be proven that by applying the stack operations for both children, the stack modifica-
tions are equal to only applying the stack communication patterns of the parent element.

Our communication scheme with type inheritance

childCfirst(c, even)→ (c3, c1, n) and childCsecond(c, even)→ (c2, o, c1)

can then be applied resulting directly in the code for the stack operations being executed:

// firstchild;
{M1} pp(c3)(Sleft, c); {N1};
{M2} pp(c1)(Sright, a1); {N2};
{} push(Sright, d); {Sr = (sr1, s

r
2, . . . , s

r
|Sr|, d)}

// secondchild;
{M3} pp(c2)(Sleft, b); {N3};

{Sr, Sr|Sr| = d} pop(Sright, d); {Sr = (sr1, s
r
2, . . . , s

r
|Sr|−1)}

{M4} pp(c1)(Sright, a2); {N4};

Using commutative rules (R2-R5), we can exchange the stack operations to

{M1} pp(c3)(Sleft, c); {N1};
{M3} pp(c2)(Sleft, b); {N3};

{M2} pp(c1)(Sright, a1); {N2};
{} push(Sright, d); {Sr = (sr1, s

r
2, . . . , s

r
|Sr|, d)}

{Sr, Sr|Sr| = d} pop(Sright, d); {Sr = (sr1, s
r
2, . . . , s

r
|Sr|−1)}

{M4} pp(c1)(Sright, a2); {N4};

and by applying the reduction rule, this yields the half-diamond operations

{M1} pp(c3)(Sleft, c); {N1};
{M3} pp(c2)(Sleft, b); {N3};

{M2} pp(c1)(Sright, a1); {N2};
{M4} pp(c1)(Sright, a2); {N4};

. (4.20)

Further applying our reduction rule R7/8 completes the first part of the proof since the reduction
is only achieved in case of an exchange of data in correct order and correct order of push
operations. This leads to

{M1} pp(c3)(Sleft, c); {N1};
{M3} pp(c2)(Sleft, b); {N3};

{M2} pp(c1)(Sright, a); {N4};

These stack operations on the data a, b and c are equal to the stack operations of the parent
cell, assuming that this is the leaf cell. For odd element types, the verification is analogously
given.

63

CHAPTER 4. SERIAL IMPLEMENTATION

new

new
new

new

old
old

old

old

A

B

D

C

new

oldL R

Figure 4.11: Coarsening and refine operations with diamond shaped structure

With our grids generated by the spacetree, we still have to prove the stack system for an
entire grid. Without loss of generality, we only present this proof for diamond-shaped grid areas
by applying coarsening rules, see Fig. 4.11.

We assemble two half-diamond operations (see Eqs. (4.20)) to operations of a full diamond
and apply the coarsening operations. With operations on the right stack access represented by
the symbol [X], this yields the following code

{M1} pp(c3)(Sleft, b); {N1};
{M2} pp(c2)(Sleft, c); {N2};

{} push(Sright, a1); {Sr = (sr1, s
r
2, . . . , s

r
|Sr|, a1)};

{} push(Sright, a2); {Sr = (sr1, s
r
2, . . . , s

r
|Sr|, a2)};

. . . [X] . . .

{Sr, Sr|Sr| = a2} pop(Sright, a2); {Sr = (sr1, s
r
2, . . . , s

r
|Sr|−1)};

{Sr, Sr|Sr| = a1} pop(Sright, a1); {Sr = (sr1, s
r
2, . . . , s

r
|Sr|−1)};

{M7} pp(c3)(Sleft, d); {N7};
{M8} pp(c2)(Sleft, e); {N8};

.

Applying the commutative and reduction rules, we can further reduce both push and pop
operations to

{M1} pp(c3)(Sleft, b); {N1};
{M2} pp(c2)(Sleft, c); {N2};

{M7} pp(c3)(Sleft, d); {N7};
{M8} pp(c2)(Sleft, e); {N8};

and with recursive induction, this results in a validated stack access.

Theorem 4.7.2 (SFC stack communication order) We consider a traversal with stack-based
communication and communicate the cell identifiers Ii via edges. Here, the identifiers Ii are
increasing by traversing the cells following the SFC. Then it holds that at any time during the
traversal all identifiers are ordered on the communication stack.

Proof: By communicating cell identifiers to adajcent cells, we follow the SFC. Then all push
operations push identifiers of cells with the same or higher index. With the previous proof, we
also assured the correct communication.

64

4.8. HIGHER-ORDER TIME STEPPING: RUNGE-KUTTA

We just introduced a method for validating the correct communication via the left- and right
stacks for two-dimensional triangular grids. Such a way of validation can play an important
role on the search for valid stack-communication properties for other SFC-induced grids such
as hexagons or higher-dimensional shapes.

4.8 Higher-order time stepping: Runge-Kutta

With DG simulations and their higher-order spatial discretization, the time-stepping method
should be of a similar (higher-)order. To determine the framework requirements, we selected
the explicit Runge-Kutta (RK) method. Considering the demands and algorithms shown in
Section 2.14, RK methods require storing conserved quantities at particular points in time to Vi
and their corresponding derivative Di. Computing RK time step updates can then be achieved
by additional stacks SV0 for V0 and SDi for Di computed in each stage [BBSV10]. For an explicit
RKn method assuring accuracy up to n-th order with V1 := V0 due to ak,k = 0, we compute
each stage i ∈ {1, . . . , n} with the following algorithm:

Algorithm: RK time stepping

Before iterating over the RK stages, the cell data SsimCellDataf at the current time step is

copied to SV0 .

For i in (1, . . . , n) do:

(a) Compute Di := R(Vi):
The simulation cell data stack SsimCellDataf is assumed to be set to Vi (see next step),
the conserved quantities computed within the current RK stage. The time step-typical
computations including edge communications are executed for SsimCellDataf . However,
instead of updating the conserved quantities, only the change of the conserved quantities
over time is stored to SsimCellDataf , yielding Di.

(b) Compute Vi := V0 + ∆t
∑n

j=1 ai,jDj :

After the grid traversal, Di is copied to SDi
f . Then Vi is computed and stored to

SsimCellDataf by iterating over all elements of the stacks associated to V0 and Dj and
applying equation (2.29).

Finally the time step is computed with

Û(t+ ∆t) := V0 + ∆t
n∑
i=1

biDi.

Since we use pointers to mark the beginning of the stack for both push and pop operations,
it is not necessary to copy stack data when assigning e.g.V0 := U . Instead of copying the entire
stack, we can efficiently swap the stack pointers.

65

CHAPTER 4. SERIAL IMPLEMENTATION

Stacks: Simulation data, communication, ...

Kernel

Grid traversals

Simulation driver: Setup, timesteps, sampling of domain, ...

Timestep

Kernel

Grid traversals

Adaptivity

Kernel

Grid traversals

Backend(s).....

.....

.....

A
p

p
lic

at
io

n
la

ye
r

F
ra

m
ew

o
rk

la
ye

r

Trigger execution
of grid traversal

Stack
access

Kernel
access

Figure 4.12: Overview of the serial framework design.

4.9 Software design, programmability and realization

Using the introduced communication via stacks and streams, no direct access of adjacent prim-
itives is possible2. Also implementing SFC grid traversals with a stack- and stream-based
approach, a solution was already suggested in the Peano framework [Wei09]: the application
developer has to implement a kernel with the grid traversal calling corresponding kernel meth-
ods. However, this framework uses only interfaces for vertices and cells whereas we require
additional access to e.g. semi-persistent edge- and node-based data. Therefore, we follow a simi-
lar software concept compared to the one of the Peano framework for the vertices and introduce
additional interfaces as well as additional framework considerations. The building blocks used
for the software design, capable of running single-threaded simulations, are given in Fig. 4.12.

4.9.1 Framework and application layer

For the application layer, we follow the concept “what to do rather than how to do it” from
Intel’s Array Building Blocks [NSL+11]. With a kernel-based software design, the framework
user thus specifies what to compute on the grid rather than how to traverse and access the grid
data.

Framework layer: How to access grid data and how to store grid and communication data
is based on the stack- and stream-based approach presented in the previous Sections. Which
data is associated to grid primitives and in which way these are accessed (see Section 4.4 on
classification of stack data access) typically depends on the simulation requirements and, thus,
is only known and has to be specified by the application developer. “How to” manage the data
stored on the grid and to hide the way how it is accessed is then the task of the framework
layer. “What to do” with the data offered by the framework layer then has to be specified by
the application developer.

Application layer: Based on the framework layer providing access to the grid data, the
application developer then specifies operations to this grid data in the kernels.

4.9.2 Simulation driver

Starting grid traversals and corresponding operations on grid data is initiated by the simulation
driver. Such traversals can be the simulation time step itself, traversals for adaptivity, writing

2Here, we assume that no additional index access for the grid primitives is used

66

4.9. SOFTWARE DESIGN, PROGRAMMABILITY AND REALIZATION

simulation data to permanent storage using backends, etc. This driver is either implemented
by the application developer or provided by a default driver from the framework.

4.9.3 Grid traversals and kernels

Grid traversals manage the data access by executing push and pop operations on stacks. These
operations depend on the data access demands specified by the application developer. The data
references are then forwarded to the kernels to store, update or read the data which is managed
by the grid traversal.

4.9.4 Kernel interfaces

For efficiency reasons, we use specialized kernel interfaces based on the grid data access re-
quirements instead of providing all possible grid data accesses, leading to data management
overhead in the case that obsolete data is accessed (e.g. if no vertex data is required) or has
to be generated. To give an example, vertex coordinates are not required for mid-adaptivity
traversals. Next, we describe how to specify the specialized kernel interfaces.

We can specify the grid data access relations of a single traversal in a matrix. This matrix
relates the input (row) and output (column) relations between data stored at grid primitives
C := {cell, edge, vertex, adaptiveState}. The additional adaptivityState is required for the
adaptivity state information used by the adaptivity traversals and is stored on an additional
stack structure.

A single forward or backward traversal can then be represented with the matrixM(a,b) with
a, b ∈ C describing the operations executed on data associated to the cell primitives. Then each
matrix entry describes the standard grid data access type (persistent, creating, clearing, see
Section 4.4).

We give an example for the forward traversal of the simulation which computes the flux
parameters. Here, we can specify the kernel interface requirements with the following matrix
and only include columns and rows which are relevant:

Output
cell edge

Input
cell flux creating
edge

Whereas these matrices account for accessing the grid data itself, further kernel parameters
can be e.g. cell vertices and cell normals which are computed during the grid traversal on-the-fly.
Such kernel parameters are computed during the grid traversal and are not stored in each cell to
reduce the bandwidth requirements. We can optimize grid traversals without any requirements
of such kernel parameters by avoiding computations of obsolete kernel parameters during the
traversal. E.g. traversals such as the middle adaptivity traversal only update the adaptivity
state information and do not require cell’s vertex coordinates and normals.

Furthermore, we restrict the kernel interfaces for accessing grid data to one or two grid
primitives. Hence, interfaces such as storing cell-based data to a vertex and to an edge are not
allowed. Those interfaces are described by

c1[to c2[P]](parameters)

with c{1,2} ∈ {cell,E,V} and the brackets [] denoting optional interfaces depending on the
requirements 3.

3This interface description was partly derived in collaboration with Oliver Meister.

67

CHAPTER 4. SERIAL IMPLEMENTATION

1. c1(parameters){. . .}:
In case of only c1 given, this describes kernel interfaces accessing data stored in the prim-
itive c1, e.g. a cell. Input data stored on primitives such as edges and vertices required to
update the data associated to c1 is then handed over via the parameters, e.g. results of flux
computations stored on edges. We differentiate between different input data primitives
with a C++ language feature by using different types for data stored at primitives.

For our DG simulation, we use this interface type to update the conserved quantities stored
in each cell (c1 = {cell}) based on the computed fluxes stored on edges, {edge1, edge2, edge3} ∈
parameters.

For the visualization tasks, such a type of kernel function is also used to generate the trian-
gle data to be used for visualization, based on vertex data, {vertex1, vertex2, vertex3} ∈
parameters

2. c1 to c2(parameters){. . .}:
For an interface name depending on c1 and c2, this describes kernel interfaces for storing
data to the primitive c2, based on the primitive c1. To give an example with our DG
simulation, we use it to compute the DoF on the edges with the concrete interfaces given
by c1 = {cell} and c2 = {edge1, edge2, edge3}. For DG boundary conditions (see Sec-
tion 2.11), the edge primitives are further extended with boundary edge interfaces
c2 = {edge1, edge2, edge3, boundaryEdge1, boundaryEdge2, boundaryEdge3}.
In the case that c1 = c2, this accounts for updating the data stored on both primitives.
This is e.g. used for edges to compute the fluxes after storing the DoF to the edge buffers.

3. c1[to c2[P]](parameters){. . .}:
For vertex primitives, we require additional access policies P (see Sec. 4.3.4) differentiating
between first-, middle- and last-touch operations.

These interfaces are then used for the visualization to store the DG surface data to vertex
primitives c2 = {vertex1, vertex2, vertex3}.

For the parallel implementation, additional framework interfaces are used for the synchro-
nization of the replicated shared interfaces with only partly updated data.

4.9.5 Code generator

All the possible parameter combinations discussed in the previous section lead to a manifold of
grid traversal variants.

Creating different optimized kernels using template features of C++ allows for a modification
of particular features and requirements of grid traversals; however, it does not allow for the
modification of the number of parameters e.g. to disable computing vertex coordinates forwarded
via parameters during recursive grid traversal.

As previously mentioned, we decided to create grid traversals using a code generator and
discuss it here in more detail. This generator creates optimized code for the grid traversal which
is tailored to the grid traversal requirements based on the knowledge of the application developer.

Configuration parameters for this generator besides T (see Section 4.9.4) are e.g.

• Traversal direction: forward or backward direction.

• Input for kernel parameters: cell vertex coordinates, edge normals, grid depth, etc.

• Adaptivity requirements: min/max limiters for adaptivity traversals.

68

4.9. SOFTWARE DESIGN, PROGRAMMABILITY AND REALIZATION

• Special demands: flux computations, conforming grid indicators, create forward/backward
structure stack, etc.

For efficiency reasons, vtable calls have been avoided for the interfaces by inheriting a kernel
class to the grid traversal class since overhead optimizations of such vtable calls mainly depend
on the used compiler.

Simulation traversal

For a forward DG simulation traversal storing fluxes, we get

Output
cell edge

Input
cell flux creating
edge

with flux clearing as a special tag to create specialized code for flux computations. For the
backward traversal the matrix is given by

Output
cell edge

Input
cell
edge flux clearing

for executing cell operations with fluxes (edge data) as input.

Adaptivity traversal:

We can then implement the first adaptivity traversals with

Output
cell adaptiveState edge

Input
cell creating non-persistent

adaptiveState
edge

,

thus computing the adaptive state based on cell-wise stored data and forwards adaptivity mark-
ers via edges. In case that the adaptivity state flags were created during the backward traversal
of the simulation time step, we can skip this forward traversal and start directly with the middle
adaptivity traversal.

The middle adaptivity traversals are required to assure a conforming grid and are specified
by

Output
cell adaptiveState edge

Input
cell

adaptiveState persistent non-persistent
edge

.

This operates on the adaptive state flag only. Thus, no access of simulation cell data is required.
Finally, a last backward traversal refines and coarsens cells depending on the adaptivity

state flags while still transferring adaptivity markers along edges. This transfer is required to
transfer coarsening “disagreement” information to adjacent cells in case of no middle traversal.
Otherwise, this can lead to a coarsening which creates a hanging node. Furthermore, the last
adaptivity traversal is specially tagged to execute kernel methods to compute the DoF of the
refined or coarsened cells.

69

CHAPTER 4. SERIAL IMPLEMENTATION

Output
cell adaptiveState edge

Input
cell persistent

adaptiveState clearing (non-persistent)
edge

Presistent cell data is updated (refine or coarsen cells) and the adaptive states are cleared
from the stacks. Creating non-persistent adaptivity information on the edges is an impor-
tant component for the meta communication information used for our parallelization which is
discussed in Section 5.2.3.

Vertex-based communication for visualization:

To show the applicability of our vertex-based communication, we compute the vertex data based
on the data stored in each cell. This results in the following communication matrix

Output
cell vertex

Input
cell creating

vertex non-persistent

which computes the vertex data based on cell-wise stored DoF. Here, the non-persistent vertex
access type is implemented with a reduce operation on each vertex. The backward traversal is
then given by

Output
cell vertex

Input
cell

vertex clearing

finally assembling the vertex information for each cell.

4.10 Optimization

So far, we presented several framework requirements and how they can be accomplished with a
serial traversal of the Sierpiński SFC. This section presents several performance improvements
with hardware optimizations and algorithmic developments.

4.10.1 Parameter unrolling

Stack push and pop operations depend on the edge (Section 4.3.3) or vertex types (Section 4.3.4)
as well as the order in which they are accessed (Section 4.3.2). A straightforward implementa-
tion would lead to inheritance of such types and utilizations of if-branchings for distinguishing
between whether a push or pop operation has to be done as well as on which stack such an
operation has to be executed.

We only consider new and old edge types without loss of generality and start by describing
the issues with the non-optimized version: For different if-branches used to distinguish between
these two edge types, a typical branch prediction would lead to a miss rate of 50% in average.
We expect this to lead to less performance due to discarding instructions in the pipeline and
thus reduced efficiency for the grid traversal.

70

4.10. OPTIMIZATION

With our code generator (Section 4.9.5), we can consider the recursive spacetree traversal
code be given by

S := foobar(P1, P2, . . . , Pn, . . .){Source(P1, P2, . . . , Pn, . . .)}

With Source(. . .) representing a source code with Pi as parameters. Here, the considered
parameters Pi are within a relatively small parameter range Pi ∈ (p1

i , . . . , p
ni
i) with ni the

number of possible parameters for the i-th parameter. Such a parameter range can e.g. be the
edge types {new, old, boundary}, the orientation, etc. With the traversal source code, we can
create specialized code for each state which we further refer to as parameter unrolling. This
yields

∏
i Pi possible specializations of the form

SP1 P2 ... Pn(. . .){SourceP1,P2,...,Pn(. . .)}

which on the first glimpse seems to be a drawback due to increased lines of code and hence in-
creased code size. However, this approach allows avoiding all if-branchings required by different
parameters Pi, thus avoiding if-branch mispredictions induced by new and old edge type labels.

We compared grid traversals with and without parameter unrolling on an Intel(R) Xeon(R)
CPU X5690 with 3.47GHz. A regular grid resolution with 22 refinement levels is used with
12 floating point operations in each cell. The vertices are computed during the grid traversal
on-the-fly.

On the one hand, this leads to increased size of machine code and therefore a severely in-
creased instruction cache miss rate by a factor of 33.7. On the other hand, the if-branching
mispredictions are reduced by a factor of 4.7 in average. Having a look at concrete runtime
results shows that the avoidance of if-branching mispredictions outperforms the increased in-
struction cache misses:

parameter unrolling with parameters performance increase

GNU Compiler 5.066 sec 6.044 sec 19.3%

Intel Compiler 3.806 sec 5.130 sec 34.8%

Hence, such an optimization is important for kernels with only a few operations.

4.10.2 Recursive grid traversal and inlining

Due to the recursive grid traversal, we should be aware of the overhead of recursive methods.
This overhead involves calls of our methods as well as the parameter handling of the methods.
Therefore, kernels and traversal methods are prefixed with the inline statement, instructing
the compiler not to use a function call to this method but to inline the code of the method
directly. This aims at avoiding function calls. Similar inline optimizations are also used for the
stack and other core operations.

4.10.3 Adaptivity automaton

With the adaptivity traversals presented in Section 4.6, a single traversal only considers the
change of adaptivity state, but not the direction of propagation of the adaptivity markers.

In case that a refinement marker is forwarded via an edge and the traversal direction propa-
gates this information to the adjacent cell within the same traversal, this assures the processing
of the refinement marker within the same traversal. Thus forwarding and processing the refine-
ment marker in the same traversal is assured for edges of type new. If all refinement markers
can be forwarded in the traversal, also the grid is assumed to be in conforming state.

71

CHAPTER 4. SERIAL IMPLEMENTATION

incoming edge marker
state t 000 001 010 011 100 101 110 111

no request 0 000,0 100,5 100,6 100,7 000,4 000,5 000,6 000,7
INVALID 1 000,1 000,1 000,1 000,1 000,1 000,1 000,1 000,1

local coarsening req. 2 000,2 100,5 100,6 100,7 000,4 000,5 000,6 000,7
local refine request 3 100,4 100,5 100,6 100,7 000,4 000,5 000,6 000,7

refined: hyp 4 000,4 000,5 000,6 000,7 000,4 000,5 000,6 000,7
refined: hyp, left 5 000,5 000,5 000,7 000,7 000,5 000,5 000,7 000,7

refined: hyp, right 6 000,6 000,7 000,6 000,7 000,6 000,7 000,6 000,7
ref.: hyp, right, left 7 000,7 000,7 000,7 000,7 000,7 000,7 000,7 000,7

Table 4.1: Transistion table for our adaptivity automaton. Each row represents the current
transition state t and each column the incoming state change request based on the incoming
adaptivity markers MR (bit is set) and M0 (bit is unset). The new transition state (f,t) is then
given by the transition to the adaptivity state t and bitencoded information on edges for which
edge markers MR still have to be forwarded to generate a conforming grid.

We construct an automaton with initial states given by the adaptivity states, transition
states based on the adaptivity markers read via edge communication and remaining adaptivity
markers to be forwarded. This automaton can be written in a tabular format (see Table 4.1)
and is used as follows.

Each grid cell has its own adaptivity state S := (f, t) which consists out of the refinement
information which still has to be forwarded via each edge in a bit field f := {0, 1}3 for edges
(e1, e2, e3); t represents one of the adaptivity states from (0) to (7).

Considering refinement operations only, the transition function is then based on a table
lookup using the current adaptivity state f selecting the row and the input bit fields storing the
incoming edge markers selecting the column in Table 4.1. The new state of a single cell is then
given by the entry (f, t) of the table cell. Bits set in fupdate represents the required refinement
information which still has to be forwarded via edges.

(a) Initialization: For initialization, the adaptivity state t is set to (0) for no adaptivity request,
(2) for a local coarsening request and (3) for a local refinement request. The forward
information bits f are set to (100) for state (3) avoiding the hanging node, otherwise to
(000). The transition state tuple (f, t) is then stored to the adaptivity state stack and
updated during the following grid traversals to generate a conforming grid state.

(b) Transition: The transition is based on the incoming edge markers for refinement requests
which we store to the tuple T := (e1, e2, e3).

Based on the current transition state (f, t), the tuple of the refinement requests t to be for-
warded to adjacent cells and the new transition state can be determined via a lookup in the
automaton table with the current incoming refinement requests T , yielding (fupdate, tnew).

In case of a cell transition set to coarsening (2), the propagation of the coarsening agreements
marker MC is immediately stopped in case of an incoming marker fetched via a cathetus is
not of type MC .

Forwarding of refinement information: Since the information to be forwarded is already
included in f , required refinement markers are also stored in fupdate. A bitmask is used
with bits set for edges of type old. This bitmask is ANDed to f to account for edges of type
(a) new with refinement information propagated during the current cell traversal and (b)
boundary which do not require forwarding of refinement information.

72

4.10. OPTIMIZATION

This adaptivity automaton is able to avoid at most one traversal for serial traversals. However
it turns into a crucial component for the optimization with the cluster skipping approach in the
parallelization (See Section 5.8.2).

4.10.4 CPU SIMD optimizations for inter-cell computations (fluxes)

With the trend of computing cores requiring operations on data stored in vectors to get close
to the peak of floating point operations, utilization of vector instructions is mandatory for
HPC-oriented developments.

Regarding the flux computations on the edges for higher-order DG simulations, multiple
nodal points for flux evaluation are available on each edge. This allows a straightforward
optimization with SIMD operations.

For 0th-th order discretization, however, only DoF of a single node on the edge is stored per
edge. Here, SIMD optimizations are still possible for a pair of nodal points e.g. by computing
multiple square roots in the Rusanov solver with a single SIMD operation.

In this section, we like to focus on an alternative method for 0th-th order discretizations. We
consider, that the nodal-wise given conserved quantities are stored consecutively on the edge
buffer stacks. 4 Since the DoF on the edge buffer stack are stored in the format of arrays of
structure and since SIMD operations typically demand for a structure of arrays, the data has
to be rearranged. We consider a block of multiple conserved quantities U+

i , U
−
i for the left and

right state of an edge stored to the edge buffer stack:

S = (U+
e1, U

−
e1, U

+
e2, U

−
e2, U

+
e3, U

−
e3, U

+
e4, U

−
e4) (4.21)

= ((q+1
e1 , q

+2
e1 , q

+3
e1 , q

+4
e1), (q−1

e1 , q
−2
e1 , q

−3
e1 , q

−4
e1), (4.22)

(q+1
e2 , q

+2
e2 , q

+3
e2 , q

+4
e2), (q−1

e2 , q
−2
e2 , q

−3
e2 , q

−4
e2), (4.23)

(q+1
e3 , q

+2
e3 , q

+3
e3 , q

+4
e3), (q−1

e3 , q
−2
e3 , q

−3
e3 , q

−4
e3), (4.24)

(q+1
e4 , q

+2
e4 , q

+3
e4 , q

+4
e4), (q−1

e4 , q
−2
e4 , q

−3
e4 , q

−4
e4)). (4.25)

Assuming that this is an 8×4 matrix, we can transpose this matrix. This yields four components
of the same conserved quantity on either the left or the right side of the edge in each vector:

S = ((q+1
e1 , q

+1
e2 , q

+1
e3 , q

+1
e4), (4.26)

(q+2
e1 , q

+2
e2 , q

+2
e3 , q

+2
e4), (4.27)

(q+3
e1 , q

+3
e2 , q

+3
e3 , q

+3
e4), (4.28)

(q+4
e1 , q

+4
e2 , q

+4
e3 , q

+4
e4), (4.29)

(q−1
e1 , q

−1
e2 , q

−1
e3 , q

−1
e4), (4.30)

(q−2
e1 , q

−2
e2 , q

−2
e3 , q

−2
e4), (4.31)

(q−3
e1 , q

−3
e2 , q

−3
e3 , q

−3
e4), (4.32)

(q−4
e1 , q

−4
e2 , q

−4
e3 , q

−4
e4)). (4.33)

With a typical flux solver such as the Rusanov flux solver, an optimized SIMD evaluation of
the conserved quantities is then possible. After flux computations, the data layout has to be
converted back from the structure-of-arrays to the arrays-of-structure format. Such a reordering
in its generic form is also known as gather and scatter operations, respectively, for packing data
into a vector-processable format and inverting this packaging (cf. [EHB+13]). In our case, a
matrix transposition was sufficient.

4 The idea of computing fluxes on this edge buffer stacks was also developed independently by Oliver Meister
and Kaveh Rahnema.

73

CHAPTER 4. SERIAL IMPLEMENTATION

As a proof of concept, we conducted benchmarks based on the augmented Riemann solver
[Geo06] which were SIMD optimized in [Höl13]. In this work, the SIMD-optimized augmented
Riemann solver is implemented with single precision. We compare the SIMD performance
improvements with this solver based on simulations with a radial dam break szenario. The
simulation is executed with an initial refinement depth of d = 16 and with a = 10 additional
levels of adaptive grid refinement. The SIMD optimization which we used for the benchmarks
stores 4 single-precision components in each vector, and we execute the simulation for 100 time
steps.

We measure the optimization for the edge communication and adaptivity traversal times
given in seconds:

SIMD disabled SIMD enabled

Time step 10.86 6.66

Adaptivity 3.99 3.93

The time to compute a time step is improved by 38.7% but the maximal theoretical im-
provement of 75% was not reached. We account for that by (a) the branch divergence inside
the flux solver resulting in non-parallalelized sections and (b) the grid traversal time which was
not optimized with the SIMD flux evaluation. The runtime for the adaptivity traversals is not
reduced since the SIMD optimized solvers are only used in the time step traversals.

4.10.5 Structure of arrays for cell-local computations

Considering the flux computations of conserved quantities with higher-order basis functions (see
Section 2.3), we can use SIMD instructions by storing the weights for the basis functions in a
structure of arrays. We store the n weights qij with j ∈ {1, . . . , n} for a particular conserved
quantity i of a cell consecutively in memory. For four conserved quantities, this yields(

q1
1, q

1
2, . . . , q

1
n, q2

1, q
2
2, . . . , q

2
n, . . . q4

1, q
4
2, . . . , q

4
n

)
.

Using this structure of arrays with the matrix formulation of the DG time stepping scheme
(see Part II), allows us to compute the time step integration mainly with matrix-vector or
matrix-matrix multiplications.

In this work, we followed this structure-of-arrays format for our conserved quantities, how-
ever, we did not further focus on optimization of such matrix-matrix computations.

4.10.6 Prospective stack allocation

A straightforward implementation of the stack system with the C++ std::vector class from
the standard library would lead to a performance slowdown: an obvious example is given by
frequent memory free() and alloc() operations if not pre-allocating sufficient memory and thus
re-utilization of already allocated memory. Pre-allocating far more memory than required leads
to a severe additional memory consumption, possibly exceeding the available memory.

With a prospective stack size allocation based on an upper limit for the maximum required
allocated stack, we can overcome testing for exceeding stack access and avoid any stack resize
operations during grid traversals. Using the knowledge on the number of cells c (See [Vig12])
for our simulation domain assembled by a triangle, upper limits for the storage requirements
on all stacks can be determined. The number of cells c after all adaptivity traversals on a grid
can be derived based on the adaptivity state information before updating the grid structure.

74

4.10. OPTIMIZATION

The number of grid cells are increased for each inserted edge and decreased for a pair of coars-
ening requests stored on the adaptivity state stack. See e.g. Fig. 4.8 with the red-dashed lines
representing the inserted edges for the refinement operations (3) to (7).

Here, we infer the upper limits of the required stack storage:

Simulation cell data SsimCellData:

The cell data stack size is directly set to c.

Structure stack Sstructure:

An upper limit of the size of the structure stack is directly given by the recursive structure.
With a cell split achieved by replacing 0 with 100 on the structure stack, this creates 2 additional
bits for each new cell. Starting with a single cell represented by a stack storing |0 only, i.e. only
one entry, this yields

max(|Sstructure|) := 1 + 2(c− 1) = 2c− 1

Edge communication data SsimEdgeComm, SadaptiveEdgeComm:

Edge communication data such as SsimEdgeComm for running the simulation or SadaptiveEdgeComm

for adaptivity traversals is limited by recursive bisection of the communication edges. We
follow a greedy approach successively splitting triangles targeting at creating as many edges
as possible at the triangle boundary at the root spacetree node. This leads to a sequence
of maximum edge communication elements E with Ei representing the upper limit of re-
quired stack storage for the i-th inserted edge. For the right communication stack, this yields
Eright := (1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, . . .) and Eleft := (2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, . . .) for the left

communication stack. With Ei := max(Elefti , Erighti) = Elefti , an upper limit is given by

max(|S{sim,adaptive}EdgeComm|) := floor(c2) + 2.

By splitting the root triangle into two children and considering the maximum number of com-
munication edges between both children, the cardinality is still less or equal to floor(c2) + 2.

Edge buffer data SsimEdgeBuffer:

For the root triangle, at least six edge buffer elements are required due to storing up to six
boundary edge data elements on the buffer stacks. With each refinement of child triangles, two
additional edges are created for the shared edge and two additional edges are created due to
splitting the edge on the hypotenuse. This demands for additional storage of four elements on
the stack system. Thus, the maximum number of required edge buffer data for edge data is

max(|SsimEdgeBuffer|) := 6 + 4(c− 1) = 2 + 4 c.

Vertex communication data SvertexComm:

For vertex data, only two nodes can be stored on each communication stack. Following a greedy
edge insertion focussing on creating as many vertices as possible on the boundary of the domain
created by the spacetree, this yields

vleft := (3, 3, 4, 5, 5, 6, 6, 7, 7, . . .)

vright := (2, 3, 3, 4, 4, 5, 5, 6, 6, . . .)

75

CHAPTER 4. SERIAL IMPLEMENTATION

With max(vlefti , vrighti) = vlefti , an upper limit is given by

max(|SvertexComm|) := floor(c2) + 3 .

Vertex data buffer SvertexBuffer:

For the visualization, the vertex buffer only requires data storage for the vertices inside the
domain since the boundary vertex data is stored to the vertex communication stacks. Each
insertion of an edge creates one additional vertex. Since those inner vertices can be created
only with more than 4 cells and one additional vertex is generated for each new cell, this yields:

max(|SvertexBuffer|) := max(c− 4, 0)

We like to emphasize, that e.g. a node-based communication for flux limiters of DG simulations
can lead to other limits.

Resizing stacks:

We derived maximum stack size capacities to store all data during a traversal based on a
given number of simulation cells c. This new snumber of simulation cells was derived with the
adaptivity state flags on the stack after the conforming adaptivity state was detected.

Before the last backward adaptivity traversal, we then reallocate the output stacks with the
new capacity. The other stacks are reallocated after the last backward adaptivity traversal.
This avoids resize operations during all traversals.

However this would still yield a frequent reallocation of stack data if the number of cells
changes. Therefore, we introduce two additional padding values: P padding and P undershoot.
These thresholds are applied in case of exceeding and undershooting a particular number of
simulation cells.

A reallocation is done only if |SsimCellData| < c or |SsimCellData| − P undershoot > c. This
reallocates the stacks for c+ P padding simulation cells.

4.11 Contributions

So far, we presented a single-threaded framework for DG simulations based on the Sierpiński
SFC with stack- and stream-based communication via edges and vertices. These communica-
tion schemes are based on previous research for vertex- [BSVB08] and edge-based [BBSV10]
simulations. Our new contributions are summarized here:

• We gave a formal introduction of the Sierpiński SFC including a formal proof of the correct
stack-communication system.

• We developed a framework for such communication schemes and introduced clear inter-
faces offered to the application developer to hide the stack-based communication com-
plexity.

• The code generator does not only lead to an efficient method to generate tailored and
thus optimized code based on the user requirements, but also leads to optimizations such
as parameter unrolling to avoid most if-branching mispredictions.

• We separated the stacks into their functional utilization, see Section 4.5. This avoids
obsolete access of memory e.g. by separation of structure, cell-data and adaptivity state
stacks.

76

4.11. CONTRIBUTIONS

• An automaton table considers the propagation direction of adaptivity information.

• SIMD optimizations allow vectorized computation of fluxes for finite volume simulations.

• A prospective stack reallocation for a good balance between memory requirements and
frequent stack reallocation is derived.

77

78

5
Parallelization

The parallelization of inherently serial code as it is the case for the Sierpiński SFC grid traversal
with its stack- and stream-based data management is a challenging task. This chapter is on the
extension of the so far serial grid traversal to a cluster-based parallelization approach.

• Section 5.1: SFC-based parallelization methods for DAMR
We start with an overview of common parallelization methods with dynamic adaptive
mesh refinement to show differences, but also common aspects of our approach.

• Section 5.2: Inter-partition communication and dynamic meta information
To offer efficient data exchange between our partitions, we developed communication meta
information which is represented by a run-length encoding. We present the concept of
this encoding, its applicability to edge- and vertex-based communication and how to use
it for the dynamically changing grids.

• Section 5.3: Parallelization with clusters
Despite the parallelization of a serial code, the abstraction layers introduced for the serial
simulation should be maintained for usability reasons. Also the parallelization should be
hidden from the application developer with an appropriate software design. We account
for both issues with a cluster-based software solution.

• Section 5.4: Base domain triangulation and initialization of meta information
For the simulation domain itself, a typical requirement is a flexible assemblation of simu-
lation domains of different kind of shapes.

• Section 5.5: Dynamic cluster generation
With the dynamically changing grids, we have to cope with load imbalances. This is
accomplished by dynamically generating clusters. With our clusters based on tree-splits,
we use tree-splits and -joins and show implicit handling of the communication meta in-
formation for these splits and joins.

• Section 5.6: Shared-memory parallelization
The shared-memory parallelization describes the cluster-to-thread scheduling, the dy-
namic cluster generation strategies and the used threading libraries.

• Section 5.7: Results: Shared-memory parallelization
Results on the shared-memory parallelization with different cluster generation strategies
on different platforms are presented in this section.

• Section 5.8: Cluster-based optimization
With clustering at hand, we present different optimization possibilities.

79

CHAPTER 5. PARALLELIZATION

• Section 5.9: Results: Long-term simulations and optimizations on shared-
memory
Scalability tests of parallelization concepts are typically executed only for a few time
steps of the simulation. Here, we present the impact of long-term simulation runs on
the scalability, resulting in a different optimal choice of cluster generation and scheduling
compared to the short-term simulations.

• Section 5.10: Distributed-memory parallelization
The extension to distributed memory parallelization is presented in this section. Whereas
the RLE meta information solves the efficiency issues of our distributed-memory communi-
cation scheme, the cluster-based software design allows straightforward cluster migration.

• Section 5.12: Results: Distributed-memory parallelization
With the distributed-memory parallelization introduced in the previous section, here we
present small- and large-scale scalability studies.

• Section 5.13: Summary and Outlook
The last section concludes and highlights the new contributions developed in this thesis.

80

5.1. SFC-BASED PARALLELIZATION METHODS FOR DAMR

Node1 Node2 Node3

Figure 5.1: Domain partitioning with SFC cuts. Top image: 2D Sierpinski partitioning with
each partition given in a different color. Bottom image: 1D representation of the partitioning,
each interval representing a partition.

5.1 SFC-based parallelization methods for DAMR

Parallelization of simulations with (dynamic) adaptive mesh refinement has a rich history in
scientific computing. SFC-based domain decomposition and load-balancing strategies are con-
sidered to be among the most efficient regarding our requirements of a changing grid in each
time step (see related work in Section 3.4.1), and we continue with a more detailed introduction
to SFC-based domain decomposition methods.

5.1.1 SFC-based domain partitioning

We start with an SFC-based domain decomposition of a discretized domain Ωd =
⋃
i{Ci} with

cells Ci. By ordering and enumerating all cells along the SFC, a partitioning into N non-
overlapping partitions Pk ∈ Ωd with 1 ≤ k ≤ N can be achieved: This associates cells to a
partition k by generating an interval for each partition with the start cell id Sk and an end id
given by the next partition’s cell start id Sk+1,

Pk :=

{⋃
i

Ci|Sk ≤ i < Sk+1

}
, Sk ∈ N+

with SN+1 := |C|+ 1. The communication interfaces I between two different partitions Pi and
Pj with i 6= j are given by a set of hyperfaces

Ii,j := {Pi ∩ Pj}.

We further refer to hyperfaces created by the Sierpiński SFC to be edges (hyperfaces of
dimension d− 1) and nodes (hyperfaces of dimension d− 2).

With the spacetree-based grid greneration inducing a serialization of the underlying grid
cells with the SFC, there are two common ways on partitioning such a grid:

• SFC cuts:
With SFC cuts [Beh05,DBH+05], partitions are generated by cutting the one-dimensional

81

CHAPTER 5. PARALLELIZATION

Figure 5.2: Partitioning of a triangular-shaped domain partitioning with tree splits. Left
image: domain triangulation with each partition marked with a thick red border. Right image:
representation of the tree split domain partitioning with the refinement tree. The triangle nodes
represent the cells, the gray-filled circles the subtree’s root node.

representation of the SFC into equally sized chunks. This aims at improving the load
balancing by cutting the SFC at appropriate positions. An example of generated partitions
based on the Sierpiński SFC is given in Fig. 5.1.

• Tree splits:
With the grid generation based on the recursively defined spacetree, we can generate
partitions by using the naturally given bisection. A partitioning is then based on tree
splits (see also [Wei09]) with cells represented by leaf nodes of subtrees, see Fig. 5.2. These
subtrees are a special case of the SFC cuts.

The communication, data migration and code-generator-based optimizations (see Sec. 4.10.1)
which we derive in this thesis can be applied to spacetree splits and also SFC cuts. Due
to historical reasons and the existing code generator for recursive traversals of subtrees, we
decided to continue with the parallelization based on the tree splits.

5.1.2 Shared- and replicated-data scheme

We distinguish between parallelization approaches by considering methods with shared and
replicated parallelization [SWB13b] 1. Both methods are based on a domain decomposition into
multiple partitions, each partition sharing hyperfaces of dimension d − 1 or less with adjacent
partitions. We refer to these shared hyperfaces as shared interfaces dPk. With each compute
unit executing operations and modifying data associated on each partition in parallel, data on
these shared interfaces is accessed in parallel and has to be kept consistent. Based on our grid
generated with a spacetree, we consider two different data access schemes, each one resulting in
a different parallelization approach:

• Shared data scheme (shared access synchronization):
The SFC induces a serialization of the domain data into a stream. With a shared data
scheme following the SFC input stream, multiple compute units can operate on the same
input data stream, but on different chunks of the input stream. Due to accessing the same
data, an access synchronization to avoid race conditions is required. This would lead to a
parallelization approach that requires frequent access synchronizations using e.g. mutices,
or spin locks.

1 Parallelization methods with multiple threads executing operations for each cell (see e.g. [NUW12]) are not
further considered since we do not consider them to be scalable due to overheads for executing tasks in each cell.

82

5.1. SFC-BASED PARALLELIZATION METHODS FOR DAMR

A
B

C D core0 core1 core2 core3

A B C D

16 "Computation time units"

Idle Time

Scheduling
overhead

A
B

C
D

core0 core1 core2 core3

E

GF H A B C D
E F G H

Scheduling
overhead

Idle Time

10 "Computation time units"

Figure 5.3: 1:1 (left) vs. N:1 (right) scheduling with partitions generated by subtrees. Each
yellow block is representative for a single grid cell. The blocks in dark-yellow color represent
execution overheads to run computations on a partition. The N:1 scheduling leads to less idle
time for typical grid structures of dynamically changing grids [SBB12].

• Replicated data scheme (replicated data synchronization):
Using a replicated data scheme, the data on shared interfaces is considered to be replicated.
This leads to a parallelization approach with computations on each partition executed
massively in parallel without any synchronization, followed by data synchronization, e.g. a
reduce operation on the replicated data on the shared interfaces (see [Vig12]).

The replicated data scheme with separated data buffers (stacks and streams, e.g.) for each
partition is typically used for distributed-memory environments since replicated data can be sent
and reduced after the receive operation by using distributed-memory messaging. For shared-
memory environments, such communication interfaces are typically not available or, lead to
additional overhead. In this work, we developed a run-length encoding of meta information to
make the replicated data scheme also feasible on shared-memory systems (see Section 5.2). Our
method does not only avoid these overheads for shared-memory systems, but also leads to an
elegant solution for distributed-memory parallelization. We continue to use the replicated-data
scheme in the present work.

5.1.3 Partition scheduling

Once the partitions are generated, several scheduling possibilities exist to assign computations
on SFC-based domain partitions to compute units.

• 1:1 scheduling:
With a 1:1 assignment of partitions to compute units, each partition of the domain is
assigned to a single compute unit. We refer to this as a 1:1 scheduling. Using a stack- and
stream-based communication scheme, this approach was taken so far for SFC cuts with
the Sierpiński SFC (see e.g. [Vig12]) as well as tree splits with the Peano SFC [Wei09] for
distributed memory only, both assigning a compute unit to a single partition.

• N:1 scheduling:
With a partitioning approach based on tree splits, a 1:1 scheduling approach would clearly
lead to high idle times due to workload imbalances (left image in Fig. 5.3). An alternative
to this approach is massive splitting [SBB12] creating by far more subtree-oriented parti-
tions than there are compute units available, resulting in an N:1 scheduling (right image
in Fig. 5.3).

For SFC-cuts, a 1:1 partition scheduling allows an optimized implementation due to avoiding
object-oriented overheads with single-threaded MPI (cf. [Vig12]). With the focus of our parti-
tion generation based on tree splits, such a 1:1 scheduling would lead to the above mentioned

83

CHAPTER 5. PARALLELIZATION

load imalances. Therefore, an N:1 scheduling as well as an object-oriented software approach
gets mandatory to tackle the N:1 load balancing.

5.2 Inter-partition communication and dynamic meta information

With partitions generated by the SFC intervals, we present communication patterns by gen-
erating and synchronizing data shared interfaces of partitions with a replicated data scheme.
First of all, a replicated data scheme requires independent communication buffers. To account
for these replicated data scheme, we use additional stack-based communication buffers for each
partition. We continue with a static number of partitions and refer to Section 5.5 for dynamic
partition generation.

5.2.1 Grid traversals with replicated data layout

For our Sierpiński stack- and stream-based traversals, we first describe the replicated data
layout in an abstract way. It can be implemented with a forward- and backward-traversal in
the following way:

(a) Forward traversal:
During the forward grid traversal of partition Pi, the edge types of all shared interfaces on
the partition are set to new. With our grid traversal based on recursion and inherited edge
types, the edge types for the shared interfaces can be directly set to new and old at the
sub-tree’s root node.

By executing an SFC-based grid traversal, communication data is written to the corre-
sponding edge- or vertex-communication stacks. Since those output buffers are replicated,
this access is race condition free. Now, the output stacks are filled with communication
data of dPi.

(b) Synchronization:
Working on replicated data, we execute a reduce operation for the data stored at shared
interfaces to synchronize the replicated data on the communication buffers. Information on
the placement of shared interface data dPi in memory buffers is provided in Section 5.2.3.

(c) Backward traversal:
Finally, a backward SFC traversal is reading the data from communication stacks by setting
the edge types of shared interfaces to old. This results in reading the communication data
on which the reduce operation was executed on.

A parallelization with a replicated data scheme allows the forward traversals being executed
on all partitions in parallel and also in arbitrary order. The same holds for the synchronization
operation and backward traversals. Therefore, the only required access-synchronizations are
between the forward, reduce and backward traversals. So far, this is a similar approach which
was also taken in [Vig12].

5.2.2 Properties of SFC-based inter-partition communication

We next discuss important properties by using the Sierpiński SFC with a stack- and stream-
based communication.

Lemma: 5.2.1 (Order of replicated data) After the first traversal, the elements on the com-
munication stack are ordered with their creating SFC cell indices.

84

5.2. INTER-PARTITION COMMUNICATION AND DYNAMIC META INFORMATION

Proof: This theorem directly follows from Theorem 4.7.2 on page 64 due to correct order of
the elements on the communication stacks also during the grid traversal.

With communication data ordered with the SFC cell indices, this also leads to additional
and for our development mandatory properties regarding the cardinality and uniqueness of data
exchange:

Theorem 5.2.2 (Unique adjacent partition) All communication data for an adjacent partition
Pk are consecutively stored on the communication stack. This induces an unique adjacency of
partitions.

Proof: The proof is given by reductio ad absurdum with the communication element order from
Lemma 5.2.1. Let at least two consecutively stored non-empty communication data sets S1 and
S3 on the communication stack shared with an adjacent partition Pa and a set S2 associated
to Pb be given. S1, S2 and S3 are consecutively stored on the communication stack. Further,
let the communication data consist out of SFC-ordered cell indices. Then, there has to be at
least one partition Pb with a 6= b accessing the elements stored between the communication
elements which are stored for partition Pa on the communication stack. However, this leads
to a contradiction to Lemma 5.2.1, page 84: with all cell indices from Pa within a particular
SFC interval, the cell indices from Pb then have to be within the range of Pa. With our
grid partitioning approach (see Section 5.1.1), this is not possible due to consecutive intervals
(without gaps) assigned exclusively to each partition.

5.2.3 Meta information for communication

So far, we assume the knowledge on which blocks of data stored on the communication stacks are
associated to which partition to be already given. We refer to this knowledge as communication
meta information.

We can store this information per partition and not per cell due to two properties given by
the SFC stack-based communication:

1. The adjacency information per cell is not required for inner-partition hyperfaces due to
stack-based communication.

2. We can store and manage data on shared interfaces Ii,j efficiently with a run-length
encoding per partition which we present next:

Run-length encoded adjacency information:

We continue with a description of the meta information for communication and how it is man-
aged. Searching for adjacency data for each communication element can be time-consuming
if iterating over all adjacency information stored for all shared hyperfaces or stored per cell.
For node-based communication with each node adjacent to up to 8 cells, managing adjacency
information can be also very memory demanding.

We present a solution based on both previously derived theorems:

• Lemma 5.2.1 provides the property of all shared interfaces particularly ordered on the
stack system with respect to the SFC-based index of the cell generating the data. Using
this property, we can access the data at the adjacent partition en bloc without considering
per-hyperface meta information. This is due to the same quantity of data also being
stored ordered and en bloc on the communication buffer of the other partition. Using the
order of both replicated chunks of communication data, the corresponding replicated data
placement for each hyperface can be induced.

85

CHAPTER 5. PARALLELIZATION

E, 2

RLE edge-adjacency
information for
partition B:

right edge
comm info

C, 1

left edge
comm info

A, 3 a

left edge comm
stack of B

b

left edge comm
stack of A

d

e

selected edge communication
stacks after forward traversal

for partitions B and A:

c f

A

C

B

a
b

d

e
f

c
D

E

F

Figure 5.4: Example for an RLE edge communication meta information. The domain is
partitioned via subtrees of the spacetree into partitions A-F. Here, we discuss the RLE edge
meta communication information for partition B. Regarding the left edge communication stack,
three edge communication data elements (a, b, c) are stored to the left edge communication stack
after the first forward traversal. These shared edges are adjacent to partition A and encoded
with the RLE (A, 3). For the right communication stack and following the SFC induced edge
access with the forward traversal in partition B, the first adjacent partition is E via two edges,
hence using the RLE entry (E, 2). This is followed by partition C with only one edge which is
encoded with RLE entry (C, 1).

Partitioning with subtrees Edge communication graph

Figure 5.5: An example of a sparse communication graph representing our RLE meta infor-
mation for edges. Each graph edge represents one entry in the RLE meta information.

• Theorem 5.2.2 assures that each consecutive chunk of data is stored only once per adjacent
partition. For partition Pi, let the consecutive set of shared interfaces Ii,k be given pre-
ceeded and followed by shared interfaces associated to other partitions. Then, there is no
other set of shared interfaces which is associated to partition Pk. For partitions generated
by spacetree splits, we can also use the geometric convexity of the subtree to assure the
uniqueness of a set of shared interfaces associated to an adjacent partition.

This allows introduction of a run-length-encoded (RLE) representation of the adjacency
information.

We first consider one-dimensional shared interfaces (edges) only and the information on com-
munication edges for adjacent partitions A, B and C, respectively, given by 2, 4 and 3 shared
edges. Without RLE, we can store the meta information with the tuple (A,A,B,B,B,B,C,C,C).
Using our RLE, we represent m entries for edge communication referring to the same adjacent
partition P with the tuple R := (P,m). We can compresses this with an RLE scheme to

86

5.2. INTER-PARTITION COMMUNICATION AND DYNAMIC META INFORMATION

Partitioning with subtrees Node communication graph

Figure 5.6: Sparse communication graph for edges and nodes. Left image: grid representa-
tion. Right image: communication graph for the given underlying grid. Solid line graph edges
represent communication for edges whereas a dashed graph represents communication for nodes
of partitions not represented by RLE for edge communication meta information.

((A, 2), (B, 4), (C, 3)). Figure 5.4 gives an example of such an RLE edge communication for a
single partition and Figure 5.5 shows the underlying representation of the sparse edge commu-
nication graph.

For the zero-dimensional hyperfaces (nodes), we can extend the RLE representations for the
edges directly accounting for nodes: We first require that no zero-length encoded communication
information for edges may be stored. This allows us to use RLE elements with m = 0 to
describe a vertex shared with an adjacent partition which was not considered by the edge-based
communication so far.

To give an example, we assume adjacent partitions A, B and C, sharing hyperfaces setup
with 2 edges, 1 vertex and 3 shared edges, respectively. Storing the information on edges and
vertices separately would result in edge encodings (A,A,C,C,C) for the edge communication
information and (A,A,A,B,C,C,C,C) for the vertex communication information. Unifying
both representations with tuples and additional markers e and v representing edges and vertices
yields ((A, e), (A, e), (B, v), (C, e), (C, e), (C, e)). Here, we assume that two consecutive and
identical entries also account for a vertex. Using our RLE scheme, this meta information can
be further compressed to ((A, 2), (B, 0), (C, 3)). The underlying sparse communication graph
is given in Fig. 5.6. This RLE meta information is stored separately for the left and right
communication buffers.

We summarize the main benetifs of using such an RLE compared to meta information stored
for each shared hyperface:

(a) Less memory is required to store adjacency information.

(b) We can use block-wise communication for shared- and distributed-memory communication.

(c) We can implement an efficient implicit management of RLE meta information for our adap-
tivity traversals (see e.g. Section 5.2.6).

By considering the communication of cell ids, the SFC traversal at the adjacent partition
generates the data on the communication stacks in reversed, descending, order. This leads to
the requirement of reversing the order of elements transferred block-wise.

87

CHAPTER 5. PARALLELIZATION

5.2.4 Vertices uniqueness problem

So far, we ignored the vertices at the cell touched at first and last during traversal of a partition.
The data associated to this vertex can be stored to either the left or right communication stacks.
We consider two solutions for this uniqueness problem:

• SFC traversal aware:
The algorithm for determining the position of the communication data considers whether
the vertices have been stored to the left or right communication stack. This can be done
by taking the SFC traversal for the first and last entered cell into account.

• SFC traversal modification:
An alternative approach is to modify the SFC traversal and, thus, forcing the first and
last node to be either stored to the left or right stack.

We decided to use the modification of the SFC traversal for the present work: with our
recursive subtree traversal, we override the underlying SFC traversal grammar G on the subtree’s
root node to force the placement of the first and last vertex to the left or right communication
stack. Then, we use this uniqueness to derive the knowledge on the placement of the vertices
on the communication stacks.

5.2.5 Exchanging communication data and additional stacks

So far, we know the amount of data and from which adjacent partition to read the data from.
With our parallelization based on the replicated data scheme (see Sec. 5.1.2), we use separated
buffers for the inter-partition shared hyperfaces. However, exchanging data with adjacent par-
titions using the same stacks for receiving data as for writing data leads to race conditions.
Therefore we extend the stack system with buffers storing the exchanged or, in combination
with the communication buffer, the reduced data in case of a reduce operation. This additional
exchange stack is then used by the backward traversal instead of the communication stack dur-
ing the forward traversal. Such additional exchange stack requirements lead to a duplication of
each communication stack due to our replicated data scheme.

We further differentiate between shared- and distributed-memory data exchange:

• For shared-memory systems, an access to communication data can be directly achieved
by additionally storing a pointer to the adjacent partition in each RLE information. This
allows accessing the adjacent partition directly and looking up the position of the repli-
cated interface data on the adjacent communication stack efficiently with the RLE meta
information, see Sec. 5.2.3.

• For distributed-memory implementations, we extend the RLE entry with a rank and set
this to the rank which owns the adjacent partition. We can then distinguish between
partitions stored on the same rank or on another rank by either comparing the rank in
the RLE entry with the local rank id or by introducing a special rank, e.g.−1 to represent
partitions in the same memory context.

In case that partitions are existing in the same memory context, the data exchange method
is identical to the shared-memory implementation.

If both partitions are stored on different MPI ranks, we send the local replicated data
block-wise by using our RLE meta information. Hwere, we lookup the memory location
on the communication stack and the rank information for the destination of the message,
followed by a non-blocking send. The receive operation is analogous to the send operation,

88

5.2. INTER-PARTITION COMMUNICATION AND DYNAMIC META INFORMATION

but uses the exchange communication stack as the receive buffer. Further information is
available in Section 5.10.

5.2.6 Dynamic updating of run-length-encoded adjacency information

The communication to/from cells adjacent via hyperfaces can be accomplished with our com-
munication stack system and the RLE adjacency information. Due to our dynamically adaptive
grids, this adjacency information has to be updated appropriately for dynamically changing
grids. To avoid a reconstruction of the meta information, e.g. based on the recursive spacetree
traversal, we use additional information stored on the communication stack during our last
adaptivity traversal.

Instead of running only the last backward adaptivity traversal to refine and coarsen cells, we
also transfer additional information on inserted and removed edges via the edge communication
stacks. To generate data for the partition boundary dPi, we set the edge types of the partition
boundaries to new and forward the following markers via edges:

• Refine marker MR:
The marker MR is pushed to the edge communication stack for edge ei in case that a
refine operation demands inserting an edge creating a vertex at edge ei.

• Coarsening marker MC :
For a coarsen operation, the marker MC is written to both edges associated to the triangle
legs. This accounts for this edge being involved into a coarsening operation. We consider
two cases: (a) the edge is shared between the two cells which are joined with the coarsening.
Then, this edge is removed and also the forwarded coarsening marker MC is fetched from
the stack system. (b) the edge is not shared between the two cells which are joined with
the coarsening. Then, this edge is not joined with the edge of the other cell involved in the
coarsening process. Hence, the marker MC is written twice to the communication stack.

• No operation M0:
In case that neither the marker MR, nor the markers MC was transferred via the edge,
the marker M0 is pushed to the edge communication system. This accounts for an edge
not being modified due to adaptivity.

After the grid traversal, the left and right edge communication stacks then store adaptivity
markers on split (MR: inserting a vertex) and joined (2×MC : removing a vertex) edges for the
partition boundary dPi. This allows us to update the RLE meta information of the modified
grid based on these markers only. An example is given in Fig. 5.7.

Updating the left and right RLE meta information is then accomplished by iterating over
the respective adaptivity communication stack to which the adaptivity markers were written
to. These markers describe the change in the RLE meta information due to the adaptivity step.

Algorithm: Updating communication meta information

• For markers MR, the RLE information associated to the adjacent partition has to be
incremented by 1 due to an additional edge inserted.

• The marker MC is handled in a different way: due to the diamond coarsening shape
(Fig. 4.10), only pairs of MC are allowed. The corresponding RLE is then decremented
by 1 for each pair of coarsening markers MC stored on the communication stack.

89

CHAPTER 5. PARALLELIZATION

C, 4

Stored initial adjacency
information about

sub-partitions A to D

left edge
comm. info

B, 3

right edge
comm. info

A, 4 0
right adapt.
comm stack

0

left adapt.
comm stack

Adaptive
edge-communication-stacks

after backward traversal
for local sub-partition

0C
C

R

R: Refine
S: Split

C
C

R

a
b

c
0

R
0

0

0

R
C

C

shared edge
comm. stack

0

0

C

C

a
b

c C, 5
left edge

comm. info

B, 3

right edge
comm. info

A, 4
shared edge
comm. stack

0

0

C

C

shared edge
comm. size

4

shared edge
comm. size

3

-1

+1

Shared edge communication
information stack and shared

edge communication size
counter

+1

C
C

-1

B

C

B

A

C

D

A

D

D, 1

D, 1

0

Figure 5.7: Updating meta information for the communication being based on adaptivity
refinement (MR = R) and coarsening markers (MC = C). Note that the adaptivity markers
are stored in backward traversal direction. For a single refinement marker R, the corresponding
RLE entry has to incremented by 1 to account for the inserted edge. Reading two coarsening
markers C from the adaptivity communication stack, this is a representative for a removed
single edge. Therefore the RLE entry is decremented by 1 [SBB12].

Updating the vertex communication data is also transparent to this adaptivity process. By
adding or removing edges via updating the RLE, this also accounts for updating the vertex-based
communication information due to three properties:

• Adding an edge by increasing the RLE also considers the additional vertex.

• Removing an edge by decreasing the RLE also considers the removed vertex.

• Explicitly stored vertices with RLE of 0 are transparent to edge insertions since all refine-
ment states do not modify 0-length encoded vertex information.

Special care has to be taken for partitions consisting only of a single cell since a coarsening
operation would lead to a partition only consisting of half a cell. These coarsening operations
must be deactivated by invalidating the coarsening state on the adaptivity state stack.

The presented communication schemes are also applicable to partitions generated by SFC
cuts.

5.3 Parallelization with clusters

Based on the previous sections which gave a description on our domain decomposition ap-
proach and the communication between partitions, we now describe implementation details of
our parallelization approach: how to store and manage partitions. This finally leads to an
efficient clustering of the grid as suggested in different contexts such as cluster-based local

90

5.3. PARALLELIZATION WITH CLUSTERS

time stepping [CKT09] and clustering based on intervals of one-dimensional representations of
SFCs preserving the locality of multi-dimensional grid traversals [MJFS01]. With our dynamic
adaptive grid, we extend these ideas to a dynamic clustering.

5.3.1 Cluster definition

We start with our definition of a cluster by its data storage, grid management, communication
meta information and traversal meta information properties:

• Bulk of connected cell data:
In general, a bulk of cells connected via hyperfaces is associated uniquely to a cluster.
There is a path from each cell to all other cells inside the cluster via shared hyperfaces
of cells in the cluster. Using a continuous SFC, the connectivity is directly given by our
partitioning approach based on SFC intervals and Theorem 4.3.1.

• Indepent memory areas:
The simulation data and the meta information associated to each cluster is allocated in
a way to be race-condition free with other clusters. In this work, we allocate the data for
each cluster on a separate heap memory. Among others, this allows shrinking and growing
of the number of grid cells in each cluster without forcing reallocations of data areas of
other clusters.

• Communication information:
The inter-partition communication should be managed efficiently for shared- and distributed-
memory parallelization. In our case, we store such communication meta information to
adjacent clusters using RLE. For the intra-partition communication, we use the stack-
based communication approach. Communicating via stacks makes our communication
invariant to the memory or rank location of the cluster, which becomes an important
property for data migration.

• Traversal meta information and user-specified data (optional):
Each cluster also has to store traversal meta data, e.g. initial vertex coordinates to start
the grid traversal, minimum and maximum adaptive refinement depth limiters and also
possibly required user-specified data. The traversal meta data is required to know where
to start traversals in the spacetree. The user-specified data can consist of e.g. parameters
for kernels and the face identifier of the cubed sphere, see Sec. 6.5.

For cluster-based local time stepping [CKT09], a decomposition of the domain in non-
overlapping bulks with communication schemes capable of independent time steps was sug-
gested, see Fig. 5.8. Since our development yields the same possibilities with a domain decom-
position based on the heuristic of the Sierpiński SFC, we continue to use the terminology cluster,
referring to a partitioning and software design fulfilling the previously mentioned properties.

5.3.2 Cluster-based framework design

With clustering at hand, we introduce a parallel framework design with a top-down approach
by assembling domains with a set of clusters: First, we encircle the simulation data, the grid
traversals as well as the corresponding kernels from the serial framework design (see Fig. 4.12)
into a cluster container. A sketch of the resulting structures and abstractions inside such a
container are depicted in Fig. 5.9.

91

CHAPTER 5. PARALLELIZATION

Figure 5.8: Examples of alternative clustering strategy: Shapes of clusters used for cluster-
based local time-stepping method [CKT09]. The connectivity information is given via the edges
shared by adjacent clusters. Such clusters are not generated by the approach presented in this
thesis.

Stacks: Simulation data, communication, ...

Kernel

Grid traversals

Simulation driver: Setup, timesteps, sampling of domain, ...

Timestep

Kernel

Grid traversals

Adaptivity

Kernel

Grid traversals

Backend(s).....

.....

.....

A
p

p
lic

at
io

n
la

ye
r

(A
L

)
F

ra
m

ew
o

rk
la

ye
r

(F
L

)

Trigger execution
of grid traversal

Stack
access

Kernel
access

Cluster

user data

meta data

user data

meta data

user data

meta dataFL

AL

Data Description Grid- and cluster
traversal

Figure 5.9: Cluster building block based on serial framework design.

92

5.3. PARALLELIZATION WITH CLUSTERS

Stacks
Sim., comm., ... data

Simulation driver
Setup, timesteps, sampling of domain, ...

A
p

p
lic

at
io

n
la

ye
r

F
ra

m
ew

o
rk

la
ye

r

Trigger execution
of grid traversal

Stack
access

Cluster

Stacks
Sim., comm., ... data

Cluster

Stacks
Sim., comm., ... data

Cluster

F
ra

m
ew

o
rk

la
ye

r

user data

A
p

p
lic

at
io

n
la

ye
r

Set of clusters

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

K
er

n
el

 T
ra

vs
.

Timest. Adapt. IO Timest. Adapt. IO Timest. Adapt. IO

Trigger execution of
functions on cluster

user data user data

meta data meta data meta data

Data Description Grid- and cluster
traversal

Figure 5.10: Overview of the parallel cluster-based framework design. See the text for a
detailed description.

For multiple clusters, we then extend this serial cluster-based framework design as it is
depicted in Fig. 5.10. We continue with a top-down description under consideration of the serial
framework design from Fig. 4.12:

• Top framework layer : each cluster has associated its own grid data which is stored on
stacks.

• On the application layer below, kernels can be executed in parallel for each cluster without
influencing each other due to replicated data scheme. The user data can be used to store
cluster-specific information, e.g. the face id for the cubed-sphere domain triangulation or
cluster-specific boundary conditions.

• The meta data is required for communication and information on grid traversals and hence
belongs to the framework layer. All clusters are kept in an efficient cluster management
structure, the set of clusters, which is discussed in Section 5.3.3.

• The simulation driver then executes operations specified via C++ lambda functions.
These lambda functions are executed on all clusters with the cluster as the parameter.
Such an operation in a lambda function can be e.g. a forward traversal or setting the
cluster parameters.

5.3.3 Cluster set

The dynamical creation and deletion of clusters demands for an efficient cluster management
data structure. Such an efficient management can be e.g. achieved with (double-)linked lists,

93

CHAPTER 5. PARALLELIZATION

Set of clusters

Cluster tree

Figure 5.11: Set of clusters based on tree-splits of the spacetree.

vectors and maps. All these containers represent a set which stores the clusters. With our
dynamic cluster generation based on subtree, we keep the recursive structure and use a binary
tree structure, the cluster tree, to insert and remove clusters.

In case of a cluster split, two nodes are attached to the formerly leaf node and the cluster
data is initialized at both leaf nodes.

For clusters stored at two leaves sharing the same parent, a join operation creates new
cluster data at the parent node. Here, we can also reuse the cluster storage of one children to
avoid copy operations. After joining two clusters, both leaf nodes are removed.

See Section 5.5 for a detailed description of dynamic clustering. An example of a cluster set
based on a tree is given in Fig. 5.11.

Regarding the base triangulation which allows us to assemble domains with triangles being
their building blocks (see Section 5.4), we follow the idea from p4est [BWG11] and combine
multiple cluster trees at the leaf of a super-cluster tree. This extends the cluster tree to a forest
of trees, a cluster forest, embedded into the super-cluster tree. We avoid joining clusters which
were not created by a cluster split, i.e. initially belonging to the base triangulation. Here, we
limit the cluster-join operations by considering the depth of the cluster in the super-cluster tree.
For sake of convenience, we continue referring to the super-cluster tree as the cluster tree.

5.3.4 Cluster unique ids

For identifying each cluster uniquely, we generate unique ids directly associated to the cluster’s
placement in the cluster tree. This is based on the parent’s unique id for a split operation and
childrens’ unique ids for join operation.

The cluster tree root id is initially set to 1b with the subscript b denoting binary number
notation. With the id of the parent node stored in parentId, the first child’s id traversed by
the SFC and the second child’s id following the first child is given by

firstChildId := 2 · parentId and secondChildId := 2 · parentId+ 1.

Using this unique id inference results in a cluster forest’s root node id of 1b - otherwise the same
id would be assigned to the first child. Based on one of the child ids, the parent’s unique id can
be inferred by

parentId :=

⌊
ChildId

2

⌋
.

This recursive unique id generation also provides information on the placement of the cluster
within the tree. This feature is used for cluster-based data migration in Section 5.10.3 to update
adjacency information about cluster stored on the same MPI node.

94

5.4. BASE DOMAIN TRIANGULATION AND INITIALIZATION OF META
INFORMATION

Furthermore these unique ids inherently yield an order of the cluster along the SFC. Given
id1 and id2, we can compute the order with the following algorithm: for each unique id, the
depth of the cluster in the cluster tree is given with

clusterDepthi := bsr(idi)

(bit scan reversed), returning the position of the most significant set bit in idi. E.g. bsr(0010012)
would yield 3. With the maximum depth of both clusters given by

maxClusterDepth := max(clusterDepth1, clusterDepth2),

we shift both unique ids to be on the same cluster tree level using

sidi := idi << (maxClusterDepth− clusterDepthi)

and finally get the order by direct comparison of both sidi using less-than relations on sidi
represented with integer numbers. We can use this order to avoid duplicated reduce operations
on replicated data shared by two clusters (see Section 5.8.1).

Alternative approaches would be e.g. based on a mix of MPI ranks and the MPI-node-local
cluster enumeration. This also leads to properties which can be similarly used in the next
sections. However, we decided to use the approach described above, since this unique id gets
beneficial if searching for a cluster in the cluster tree.

5.4 Base domain triangulation and initialization of meta information

Simulations frequently demand being executed on domains with a different shape than a triangle
or quadrilateral, e.g. a rectangular-shaped domain. The grid generation based on the Sierpiński
SFC with the communication via stacks was so far accomplished only for a continuous SFC
(see e.g. [Vig12]) traversal of the grid. This leads to limitations of the shape of the simulation
domain. Solutions which are also based on the linearized form of the leave nodes of a forrest
of spacetrees (see [NCT09], this work is based on the Hilbert curve) introduced discontinuous
SFC traverals. Such discontinuities in the SFC traversal allow spatial jumps on the simulation
grid leading to an increased flexibility in domain configurations.

Since spacetree traversal is based on recursion, this makes such discontinuities challenging.
Hence, we use an alternative domain assemblation: with our clustering based on subtrees, this
allows domains of flexible shape being assembled by triangle primitives. This assemblation is
considered to be valid, regarding our stack-based communication scheme, as long as all edges of
the triangles are either not shared with other triangles or shared with exactly one triangle, see
Figure 5.12 for examples. This requires setting up correct meta information in each cluster. Such
information is e.g. run-length encoded communication information to/from adjacent clusters for
communication with adjacent triangles and is further discussed in the next Section.

5.4.1 Initial communication meta information

We initialize the inter-cluster communication based on clusters initially representing an entire
spacetree. Each spacetree can also be based on a single leaf node. We refer to the spatial
representation of these clusters as base triangles.

With such base triangles, the number of edge-communication elements on the left and right
communication stack is given with

|edges on each cathetus| = 2b
d
2
c

95

CHAPTER 5. PARALLELIZATION

Figure 5.12: First two domains: examples for domain base triangulations with a traversal
on a continuous Sierpiński SFC. Next three domains: Examples for domain base triangulations
which cannot be represented by continuous 2D Sierpiński SFC traversal. The fourth domain is
of particular interest for the cubed sphere grid, see Sec. 6.5.

|edges on hypotenuse| = 2b
d+1
2
c

with d the initial refinement depth.

For each base triangle, we determine the base triangles which are adjacent via all three
triangle edges by searching for all possible adjacent base triangles via testing for shared edges
vertices. This O(n) complexity for n clusters to search for base triangles sharing an edge can be
assumed to be negligible for a small number of base triangles setting up the simulation domain.

The reconstruction of the vertex-based meta information requires further processing and is
described in Sec. 5.5.4.

5.5 Dynamic cluster generation

For our clusters based on tree splits, we use tree-split and -join operations for the cluster
generation.

5.5.1 Splitting

To split a cluster, we require information on (a) the number of shared hyperfaces along the
separating hyperfaces and (b) the association of persistent data to both child clusters.

We achieve inferring this information by stopping our grid traversal at particular positions
and implicitly derive the required quantities on the number of hyperfaces and cells based on the
communication stacks (meta communication information) and persistent data stack (simulation
data). We refer to this information as split information.

For optimization reasons, we can further join the determination of split information with the
last backward adaptivity traversal and present the algorithm based on this backward traversal
which is in reversed direction, see Fig. 5.13. The algorithm is based on the spacetree nodes on
the 2nd level relative to the cluster root tree node and follows the SFC in reversed direction with
(a, b, c, d). Here, we consider partitions (A,B,C) respectively set up by leaf nodes of subtrees
(a, b, c ∪ d).

The application of our algorithm is given in Fig. 5.13 with the left and right communication
stacks terminology used for the last adaptivity (backward) traversal and for grammars of type
even. We denote the stacks for the left and right adaptivity communication stack with Sleft
and Sright, respectively. The cell stack is given by C, and we determine the number of cells of
the parent element by considering the elements stored on the cell stack: c(parent) := |C|.

The information on the split operation is stored in s
(1)
{left,right} for the first and in s

(2)
{left,right}

for the second child. We also require the number of edges shared by both split clusters in

96

5.5. DYNAMIC CLUSTER GENERATION

(1) right stack

(1) left stack

(1
) r

ig
ht s

ta
ck

(2
)

le
ft

 s
ta

c
k

(1
,2

) s
har

ed
 s

ta
ck

s

(2
) r

ig
ht s

ta
ck

(2) right stack

create
splitting

information

A

B CC
B
A Sp

lit
tin

g
ed

ge

right stack

left stack

Figure 5.13: Backward traversal generating split information. The stacks generation direction
are given in forward traversal direction while the traversal itself is done in reversed direction
during the last backward adaptivity traversal [SBB12].

s(shared). The number of cells associated to the first and second child partition is stored to c(1)

and c(2).

1. After traversal of cells in subcluster A, the communication edges on the left stack for the
2nd subcluster are memorized with

s
(2)
right := |Sleft|

We like to emphasize again, that the left and right labels are reversed due to the informa-
tion derived in backward traversal whereas RLE meta information is stored in forward-
traversal direction.

2. After traversal of cells in B, the shared edges are computed by

s(shared) := |Sleft| − s
(2)
right

and the number of parent’s inter-cluster edges for the 2nd subcluster on the right stack
are saved in

s
(2)
left := |Sright|.

The processed number of cells which is then associated to the 2nd cluster created by the
split operation is inferred by

c(2) := c(parent) − |C|

with |C| the remaining number of cells to be processed. This also represents the number
of cells assigned to the first subpartition C:

c(1) := |C|.

3. Due to the adaptivity traversal, the information on the shared edges s(shared) only repre-
sents the quantity of shared hyperfaces before refining or coarsening the grid based on the
adaptivity states. Therefore, the amount of hyperfaces s(shared) has to be updated based
on the refinement and coarsening markers MR and MC stored on the adaptivity marker
communication stack, see Section 5.2.6.

97

CHAPTER 5. PARALLELIZATION

4. After traversal of cells in C, the information to reconstruct the communication information
is then given with

s
(1)
right := |Sleft| − s

(2)
right,

and

s
(1)
left := |Sright| − s

(2)
left.

Clusters with leaf elements stored on level 1 or 2 require to be handled appropriately in case
that subclusters A and B do not exist. E.g. with a domain only consisting of two cells, we can

directly set s
(2)
right := 1, s

(2)
left := 1, s(shared) := 1.

With the derived information, we can apply the split operation: The cell data on the stack
can be directly split based on the split information c({1,2}). The traversal meta information
(providing e.g. the starting point of the grid traversal) has to be updated to account for the new
traversal start. The communication meta information of both children can also be determined,

based on the information on the number of shared edges of both children given in s
({1,2})
{left,right},

s(shared) and c({1,2}). For the odd grid grammar, the inference of the required information is
similar and therefore not further discussed here.

The presented algorithm only accounts for updating the local cluster information and would
lead to inconsistencies to the meta information stored at adjacent cluster. Updating this meta
information on adjacent cluster is presented in Section 5.5.3.

The simulation data on the stacks is currently split after the traversal of the entire cluster.
However, copying chunks of stack data from the other clusters can result in stream-like copy
operations and result in a bandwidth-limited problem. A direct streaming of the persistent
simulation data during the last adaptivity traversal to the stacks of the corresponding new
child clusters has the potential to avoid this additionally required stream-copy operation but is
not implemented, yet.

5.5.2 Joining

Using clustering based on tree splits, our cluster-based approach is restricted to joining two
clusters only if they share the same parent node in the cluster tree. Joining two clusters is
accomplished by

(a) concatenating the cell data storage,

(b) joining both traversal meta information and

(c) joining both communication meta information and removing the RLE information about
the edges shared by both child cluster.

5.5.3 Split and join updates of meta communication information

So far, we can split and join clusters and update the meta information based on adaptivity
markers written to the edge communication stacks. However, we also have to consider possible
split and joins of adjacent clusters, e.g. if an RLE element has to be split to account for the
associated cluster being split. This requires updating the edge communication meta information.
We present an algorithm by modifying this edge communication information to synchronize
with the adjacent meta communication information in case of splits or joins. This algorithm is
based on local cluster and directly adjacent cluster access only and does not involve any global
communication operations.

98

5.5. DYNAMIC CLUSTER GENERATION

Transfer State Description
NO TRANSFER No split or join was executed on this cluster.
SPLIT PARENT This node was split and both children have the state SPLIT CHILD.
SPLIT CHILD Cluster generated by a split operation are set to this state.
JOINED PARENT This node was created by joining both children which have state

JOINED CHILD.
JOINED CHILD This cluster represents a former child node which was joined with its sibling.

This cluster is not deleted to allow accessing its communication meta informa-
tion.

Table 5.1: Different state flags assigned to each node in the cluster tree.

Split Join NOP

Split

Join

NOP

Split

Join

NOP

O
pe

ra
tio

n
 o

n
R

LE
 e

nt
ry

 o
f l

o
ca

l c
lu

st
er

Operation on RLE entry of adjacent cluster

Legend

Figure 5.14: Possible split and join constellations for adjacent clusters. Each thick black line
represents one RLE meta information after an update. The left thick line corresponds to the
local meta information and the right one to the adjacent meta information. Different split and
join constellations are possible: Split operations are marked with a red line, join operations
with a green dashed line. See Fig. 5.15 for a concrete example.

We continue refering to the cluster for which the RLE communication meta information is
updated as the local cluster and a cluster described by a single RLE communication data stored
for a local cluster as an adjacent cluster.

Updating edge-based meta communication is based on flags stored per cluster which describe
the split- and join-states of the cluster. All required states for markers of adjacent clusters are
given in Table 5.1 and an overview of all relevant cases which have to be considered in Fig. 5.14.

Shared memory

Similar to the exchange of edge communication data, updating the communication information
is accomplished by read-only access of adjacent cluster data for shared memory access. Examples
for the split-split constellations are given in Fig. 5.15.

The algorithm then consists of the following steps for each of the left and right RLE meta
information lists:

Algorithm: Outer loop of RLE consistency

99

CHAPTER 5. PARALLELIZATION

a

b

a

b

c

d

c

d

e

f

Figure 5.15: Two different split-split cluster states with the SFC traversal drawn closely to
the shared interface either in opposite or identical direction. The blue arrow shows the traversal
direction of the SFC curve close to the considered edge.

1. An iterator is set to the first RLE entry in the meta information list.

2. For each iteration on the next RLE entry, we test for adjacent cluster changes.

3. In case that neither a split nor a join operation was detected in the adjacent cluster
given by the RLE entry, we advance the iterator and continue with (3).

4. The RLE entry requires additional processing due to possible inconsistencies created by
split/join operations of the adjacent cluster. Since we are updating the communication
information and modifying data in parallel, we have to avoid race conditions. These
race conditions can occur since a processing of other clusters in parallel can lead to
accessing the meta information of this cluster.

If this is the first time of a modification of one entry in the local RLE list during
the list iteration, we duplicate the list of local RLE communication meta information
and continue iterating on the duplicate. The iterator is set to the same entry in the
duplicated data and further operations are only executed on the duplicated data.

5. We continue by distinguishing different split or join cases. First, a check of the
adjacent transfer state is done which can be NO TRANSFER, SPLIT PARENT
or JOINED CHILD, respectively, abbreviated with (NOP,SPLIT, JOIN).
The second decision is the type of the local transfer state which can be
NO TRANSFER, SPLIT CHILD or JOINED PARENT, also respectively abbre-
viated with (NOP,SPLIT, JOIN). An overview of possible cases is given in
Fig. 5.14.

6. For split transfer states of the adjacent partition, an additional counter remaining-
CommunicationElements is introduced and set to the number of edges of the currently
processed local RLE entry.

7. Update the local RLE entry with one of the algorithmic blocks below, advance the
iterator and continue at 3.

We distinguish the method for updating the RLE meta information depending on the transfer
state of the adjacent cluster to decide in which access order to traverse the RLE-related adjacent

100

5.5. DYNAMIC CLUSTER GENERATION

clusters:

Algorithm: Local RLE entry update - adjacent transfer state: SPLIT PARENT

• Local transfer state: SPLIT CHILD:
For this transfer state constellation, we further distinguish between the following cases:

1. The split operations for both adjacent clusters lead to RLE entries with equal
cardinality, see e.g. the right image in Fig. 5.15. Then only the information on the
new placement (pointer/rank) of the adjacent cluster (this information changed
due to the parent’s split) has to be updated.

2. The RLE meta information is on a split of both adjacent clusters with the quan-
tities not matching, see e.g. left image in Fig. 5.15.

In any case, we have to figure out the traversal order of the corresponding adjacent
child cluster nodes.

Whether the first or second adjacent child node is traversed first, plays an important role
to append additionally required RLE information in the correct order. This information
is given by D with 0 for a traversal in the order “first, then second child” and 1 for
“second, then first child”. We initialize our flag with D := 0. The traversal direction
is then updated based on the local and adjacent SFC traversal direction on the shared
cluster boundary:

– Rule 1) Traversal order of adjacently split children: If the cluster boundary traver-
sal directions of the local and the adjacent parent’s cluster are equal, the traversal
order of the adjacent children has to be in the same direction by setting D := 0,
otherwise reversed by setting D := 1.

– Rule 2) Traversal order of locally split children: The traversal order is reversed if
the RLE of the second local child is updated. This leads to a search of matching
RLE entries from the end of the adjacent parent’s meta information.

An example for applying these rules is given below. Once the order of adjacent child
access directions is known, the update process can start:

1. remainingCommunicationElements is initialized with the number of local RLE
elements for which the update is done.

2. An adjacent child is accessed according to the adjacent traversal direction D,
and the edge communication elements are updated in case of matching RLE ele-
ments including decreasing the variable remainingCommunicationElements with
the number of edge communication elements in the adjacent cluster.

3. If the variable remainingCommunicationElements is less or equal to zero, no fur-
ther updates are required.

4. Otherwise, the next child is searched for a matching RLE entry with meta infor-
mation of exactly remainingCommunicationElements elements.

• Local transfer state: JOINED PARENT
If the local cluster is a parent cluster which was created by joining two child clusters,
the first adjacent cluster is searched for corresponding RLE elements. In case of a

101

CHAPTER 5. PARALLELIZATION

perfect match of the RLE number of shared edges, no update is required. Otherwise, a
new RLE entry with the changed quantity of shared edges has to be inserted and the
search is continued on the next adjacent child cluster for the remaining matching RLE
element.

• Local transfer state: NO TRANSFER
In case that the local cluster was not modified, rules similar to the SPLIT CHILD case
can be applied. Because of this similarity, these are not further discussed here.

Given the rules introduced in the previous algorithm, we discuss the relevant scenarios given in
left image in Fig. 5.15 for cluster b by traversing the adjacent clusters.

Left image:

• Rule 1) The traversal on the cluster boundary of the shared edges of cluster b is counter-
clockwise and also the direction of e and f. This leads to a reversed child traversal order
(D := 1).

• Rule 2) Since cluster b is the first child’s triangle, the adjacent traversal order is not
changed.

• With D == 1, this leads to a reversal of the traversal of the adjacent child clusters, a
second-first order. This means, that first cluster f is searched for adjacent edge parts,
followed by cluster e. Each traversal leads to an insertion of corresponding new RLE
entries to the RLE meta information. These entries replace the RLE entry associated to
the split parent cluster.

Right image:

• Rule 1) The SFC traversal direction on the cluster boundary of shared edge of cluster b
is counter-clockwise and thus not equal to the cluster boundary direction of c which is
clockwise, leading to a non-reversed adjacent cluster tree traversal (D := 0).

• Rule 2) Since the triangle b is the first child triangle, the adjacent child traversal order is
not changed (D := 0).

• Combining both rules, the child traversal of the adjacent node is done in first-second order.
Thus cluster d is searched for adjacent edge parts first, followed by cluster c.

Algorithm: Local RLE entry update - adjacent transfer state: JOINED CHILD

In case of a joined adjacent child, the local RLE is tested for the possibility to join it with the
next local RLE. Such a join is producing a consistent state in case that both consecutively
stored adjacently joined children have the same parent. Otherwise, this would result in
a violation of our assumption of a unique RLE existing for shared interfaces, see Sec. 5.2.3.
Other updates of the RLE meta information can be applied similarly to the split case above.

102

5.5. DYNAMIC CLUSTER GENERATION

Algorithm: Local RLE entry update - adjacent transfer state: NO TRANSFER

With all local RLE entries being updated directly in case of split and join operations, no
modifications of the RLE entry are required in case of an adjacent cluster without split/join.

Algorithm: Postprocessing RLE updates

Finally, the possibly RLE meta information which was duplicated to avoiding race con-
ditions (see step 4 in the ’outer loop’ part of the algorithm above) is used as the new RLE
meta information.

This algorithm computes a consistent meta information fulfilling all theorems described so
far in this thesis.

Distributed memory

We like to give a short outlook to distributed-memory parallelization: Here, we use two-sided
communication and the read-only push/pull principle: We separate the updates of the meta
information into local and adjacent operations. Instead of looking up the required split/join
information by accessing the adjacent clusters stored at another MPI node, our updates of the
meta information for each local RLE entry rely on a cooperative communication:

All local clusters send the necessary split/join information about their local changes to the
adjacent clusters (push). The adjacent clusters can then receive (pull) this data and update the
meta communication information similar to the shared memory synchronization. This leads to
a straightforward extension of the shared-memory algorithm presented above.

5.5.4 Reconstruction of vertex communication meta information

We have not considered the vertex communication meta information for dynamic clustering,
yet. After cluster splits and joins, the vertex communication meta information can be in an
inconsistent state since zero-length encoded vertex RLE entries can be missing. However, we
can reconstruct the vertex communication information based on a valid edge communication
from the previous section.

The algorithmic idea is based on the assumption that all clusters sharing the vertex also store
one or two edge-related RLE meta information about edge-adjacent clusters (or a boundary)
which also share the vertex. By accessing the edge-adjacent clusters, we can continue our
search to the other vertex-sharing clusters. Then all clusters sharing a vertex can be traversed
via following the RLE edge communication information associated to this vertex. This allows
generation of a trace of all clusters sharing the vertex and, based on this trace, a reconstruction
of our zero-length encoded vertex RLE meta information.

Detailed algorithm

Without loss of generality, we only show the algorithm with the assumption that both SFC
traversal directions along the hyperfaces shared by two clusters are in opposite directions.

103

CHAPTER 5. PARALLELIZATION

R
j =
(D
,...)

Rj+1=(C,...)

A

B

C

D

E

Figure 5.16: Sketch of reconstruction of vertex communication meta information. The meta
information is reconstructed for the vertex shared by edge communication elements Rj and
Rj+1 of cluster A.

For each cluster Pi, let the left and right RLE edge communication meta information be

given by R
({left,right})
k = (Q,m)k with Q the adjacent cluster, m > 0 the number of edges shared

with the adjacent partition and 1 < k < N({left,right}) selecting the RLE entry. The cluster
associated to the first entry in the tuple Rj = (Q,m) is given by P (Rj) := Rj [1] == Q.

We use a flag F ∈ {front, back} describing whether the vertex for which the meta infor-
mation is determined is associated to the front or back of the currently processed edge-related
RLE entry. For the sake of convenience, we formally2 combine R({left,right}) to a single ring-like
buffer of RLE meta information

R :=
(
R

(right)
i=1,2,...,N(right)

, R
(left)
i=N(left),N(left)−1,...,1

)
with Nleft and Nright the number of tuples in the left and right RLE meta information list, re-
spectively. We further define a periodic padding with R0 := R|R| and R|R|+1 := R1. For domain
boundaries, we further introduce a special RLE tuple (−1,−1) to account for the boundary
edges.

Algorithm: Reconstruction of vertex meta information for cluster Pi

For all Rj ∈ R of the cluster Pi, execute the following operations:

• Initialize vertex tracing: We use flag F which is initialized to back since the vertex is
associated to the last edge processed by the RLE edge meta information. The previously
visited cluster is kept in P(prev) and initialized to Pi as the cluster to reconstruct the
vertex information for. The next processed cluster then becomes P(current) := P (Rj).

In case that P(current) represents a boundary, we set the flag F to front and continue
the search with P(current) := P (Rj+1). If this is also a boundary, the vertex is not
shared by any other cluster and we stop the algorithm.

• Trace generation:

1. For the currently processed cluster P(current), the communication meta information
R(conn) connecting the currently visited cluster to the previous one is determined
by conn := {i|P (Ri) = P(prev)}

2The implementation directly iterates over the left and right meta information.

104

5.5. DYNAMIC CLUSTER GENERATION

A
C

R2

R3R1

R2

R3
R1 E

R1

R3

R4

DR1
R2

R3

R2

B

Figure 5.17: Generation of vertex communication data based on RLE edge communication for
cluster C. Edge-based RLE information is given by blue arrows and the left and right information
combined to R (see text for further description).

2. Using flag F , we load the next (F = front: R(next) := R(conn+1)) or previous
(F = back: R(next) := R(conn−1)) RLE communication meta information toR(next).
The next cluster to visit is then given by P (R(next)).

(a) If the adjacent cluster is of type boundary (P (R(next)) == −1), we consider
two cases:
(I) In case that this is the second time that we run into a boundary, we
visited all adjacent clusters which are connected via edges and the algorithm
terminates.
(II) Otherwise, we rerun our trace generation (1) on the start cluster P(prev) :=
Pi but traversing in the other direction P(current) := P (Rj+1). The flag F is
then set to front.

(b) In case of visiting the original cluster P(current) == Pi, we found all clusters
connected to the vertex and finish the trace generation.

(c) The next cluster is visited by the following steps: First, we set the previously
visited cluster to the current one P(prev) := P(current) and set the current
cluster to the next cluster to visit P(current) := P (Rj+1). Then we continue
with our trace generation (1).

Based on the visited clusters, we can reconstruct the required RLE vertex meta information.
For each RLE, at most 8 adjacent clusters which share the vertex are visited. Therefore, this
algorithm has a constant runtime for each RLE. Furthermore, the algorithm is based on local
(only vertex-adjacent) access operations only. Giving the average number of RLE elements per
cluster in avgRLE, the runtime complexity is O(#Cluster · avgRLE).

Example

We give a concrete example of this algorithm for reconstructing the RLE information for cluster
C and the middle vertex at the top in Fig. 5.17. Here, we start with the RLE entry R3 := (A, .)
and initialize the algorithm to P(prev) := C, P(current) := A and F := back.

• Visiting cluster A, we first determine the RLE associated to the previous cluster to be
R3 = (C, .). Since the F is set to back, we load the previous RLE R2, yielding R(next) :=
R2 = (D, .).

• We update the previous and current cluster to process to P(prev) := P(current) = A and
P(current) := P (R(next)) = D

105

CHAPTER 5. PARALLELIZATION

A
B

C D core0 core1 core2 core3

A B C D

16 "Computation time units"

Idle Time

Scheduling
overhead

Figure 5.18: Parallelization by splitting cluster in a quantity equal to the number of processors.
This leads to a high idle time for adaptive grids [SBB12].

• Visiting cluster D, we determine the adjacent RLE to be R1 = (A, .). Since F is set to
back, we load the previous RLE R0 = R3, yielding R(next) := R3 = (−1,−1).

Due to the detected boundary, we set F := front, P(prev) := C and P(current) := Rj+1 = B.

• Processing cluster B, the RLE entry associated to the cluster C is given by R1 = (C, .). F
is set to front, thus we load the next RLE R2, yielding R(next) := R2 = (−1,−1). Since
this is the second time that we run into a boundary, the algorithm terminates.

We also like to mention an alternative way which was not implemented in this work: The infor-
mation on the adjacently generated vertices can also be inferred similar to the reconstruction
of edge meta information, see Sec. 5.5.3. With this method, we can also search on the adjacent
split/joined cluster meta information for a possible requirement of inserting or removing vertex
RLE meta information.

5.6 Shared-memory parallelization

We still have to choose when to split and join clusters as well as which computation units shall
execute operations on which clusters.

We start with annotations used for cluster generation and scheduling decisions. Considering
a parallelization by creating as many clusters as there are compute units available, this results in
a 1:1 scheduling with an example given in Section 5.1.3. With our dynamic clustering based on
tree splits, this would clearly lead to high idle times due to severe load imbalances, e.g. created
by refined grid cells in a single cluster, see Fig. 5.18.

In this work, we developed two different split approaches: massive-splitting and load-
balancing oriented splits. Both methods are based on annotating each cluster i with the work-
load Wi, e.g. the number of cells in each cluster. Then, the entire simulation workload is given
by W :=

∑
iWi. For the load-balanced-oriented splits, we further label each cluster with a

range-related information Ri := Ri−1 +Wi−1 and set R1 := 0. These labels are computed with
a parallel traversal of the cluster tree (see Section 5.3.3) with subindices lhs, rhs and parent
denoting the left or right child of the parent tree node, respectively:

• We run through the cluster tree bottom-up and annotate each inner cluster tree node with
W := Wlhs +Wrhs.

• During a second top-down traversal, we start at the root node and annotate it with
Rroot := 0. During the top-down traversal, we then annotate each left child node with
Rlhs := Rparent and each right child node with Rrhs := Rparent +Wlhs.

106

5.6. SHARED-MEMORY PARALLELIZATION

Figure 5.19: Annotation of a cluster with weights Wj and ranges Rj from left to right
[SWB13a]

.

Then, Wj represents the workload of all child clusters for a particular cluster tree node j and
Rj the range [Rj , Rj +Wj) of workloads, see Fig. 5.19. We continue using these annotations for
scheduling and generation decisions.

5.6.1 Scheduling strategies

We consider different scheduling strategies to assign the tasks on clusters to compute units. In
this context, tasks are any kind of operations to be executed on clusters: time step, particular
adaptivity traversal, backend, setup, etc.

Owner compute and affinities

With p compute units, let Wavg := W
p be the average workload for each compute unit. Each

cluster i is then assigned to compute unit

j :=

⌊
Ri + Wi

2

Wavg

⌋
. (5.1)

To avoid computations of this association for each traversal of the cluster tree, we cache
the range of thread ids i fulfilling Eq. (5.1) and store it to each leaf node during the dynamic
cluster-generation traversals. This yields a unique ownership of each cluster. Furthermore, we
also reduce this information bottom-up and extend the annotation of each node in the cluster
tree by a range of compute units which own at least one leaf node of the currently processed
node.

We implement two different scheduling strategies by either traversing only tree nodes for
which Equation (5.1) holds or by setting task affinities for tasks created on each node. These
two scheduling strategies are denoted with owner-compute and affinities and these strategies
can be used to consider the spatial locality of each cluster on a NUMA memory hierarchy.

Task flooding

Using the task-flooding scheduling, we create a task for each cluster tree node. This leads to
operations (task) being executed via work-stealing mechanisms with the used shared-memory
parallelization models.

5.6.2 Cluster generation strategies

We present two different strategies for the cluster generation in this section.

107

CHAPTER 5. PARALLELIZATION

A
B

C
D

core0 core1 core2 core3

E

G

F H A B C D
E F G H

Scheduling
overhead

Idle Time

10 "Computation time units"

Figure 5.20: Using massive splitting creating by far more clusters than there are processors.

Load-balanced splitting

An owner-compute scheme belongs to the classical domain decomposition since it directly aims
at assigning computations in a static way to compute units. For perfect load balancing, equal
workload should be assigned to each compute unit. Assigning clusters to compute units, the
load balancing can be improved by splitting clusters in which cells can be assigned to more than
one compute unit. Given p compute units, the average workload per compute unit is given by
Wavg := W

p . This leads to splitting a cluster i, if⌊
Ri
Wavg

⌋
6=
⌊
Ri +Wi − 1

Wavg

⌋
.

This targets at improved balancing of work decomposition and considers only the pure workload
under the assumption that there are overheads until the initialization of computations on each
cluster.

Massive splitting

An alternative parallelization method is given by massive splitting. We use the assumption
that the overhead for starting computations on a cluster is relatively small compared to the
computational workload in each cluster. This allows us to create more clusters compared to the
number of compute units available and to efficiently process them due to the small overhead.
Contrary to a 1:1 scheduling of tree splits which would yield high idle time due to work imbal-
ances, we expect decreased idle time by creating by far more clusters than there are compute
units available (See Fig. 5.20).

For massive splitting, we split each cluster if its workload exceeds a particular threshold Ts
and join two cluster, if the workload of both child clusters undershoots Tj . The join threshold
can therefore be evaluated cluster-locally only, and we only compare the boolean agreement to
the join operation of both child clusters.

In this work, we use a join threshold Tj :=
⌊
Ts
2

⌋
with Ts representing the split threshold.

Selecting a join threshold in this way assures that a join of two cluster does not directly result
in a split due to joined clusters directly exceeding the split threshold.

5.6.3 Threading libraries

With the growing number of cores on shared-memory systems, a high variety of threading
libraries are available. Considering dynamically changing resources (see Part IV), also support
for such extensions to a threading model is required.

108

5.7. RESULTS: SHARED-MEMORY PARALLELIZATION

Figure 5.21: Visualization of three different time steps for a representative radial dam break
test scenario. A radial dam break is used for most of the benchmarks in this section [SWB13a].

To introduce the parallel execution of operations on each cluster (see Section 5.6), we con-
sider two different threading tools which are representative for other thread-based parallelization
models: OpenMP3 and Threading Building Blocks (TBB)4. Both threading libraries offer paral-
lelism in different ways. With OpenMP, language extensions via pragma precompiler directives
are used to express parallelization in the program code, whereas parallelization features of TBB
are made available to the application developer via C++ and even more convenient features
via C++11 language features. Since information on both parallelization methods is available
in other work and reference guides, we refer the interested reader to the corresponding websites
and reference guides for an introduction and only highlight how these parallelization models are
used in our development.

Both threading extensions provide support for the very basic parallelization features re-
quired for our cluster-based framework: parallel processing of a for-loop as well as tasking. We
implemented three different ways for a parallel execution of operations on clusters.

(a) An owner-compute implementation starts a task for each compute unit via parallel execution
of a for-loop over the range of all compute units. Each for-loop iteration and, thus, each
compute unit executes operations only for a subset of clusters for which Eq. (5.1), page 107
holds.

(b) Creating a task for each cluster-tree node. In case of massive splitting, this leads to a flooding
of the overall system with tasks and uses work stealing with both considered threading
libraries. During the traversal of our cluster tree, the implementation emits a new task for
each cluster tree node.

(c) We can further use features offered by TBB to create tasks with affinities to compute units.
Such an attribute leads to enqueuing tasks into the working queue of the thread for which
the affinity was set for.

109

CHAPTER 5. PARALLELIZATION

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 10 20 30 40 50 60 70 80 90 100
Simulation time (sec)

initial depth = 14

initial depth = 13

initial depth = 12

initial depth = 15

N
u

m
b

e
r

o
f

c
e
ll
s

Figure 5.22: Changing number of cells over time for shallow water simulations executed with
different initial refinement depths. See the text for detailed information on the scenario [SBB12].

5.7 Results: Shared-memory parallelization

We conducted several benchmarks with the test platforms further denoted as Intel and AMD.
All computations are done in single precision. A sketch of a shallow water benchmark which
is simulating a radial dam break is given in Fig. 5.21. Detailed information on both systems is
given in Appendix A.2.

The first benchmark scenario is given by a flat sea-ground 300 meters below the sea surface
and a domain length of 5 km. We use up to 8 levels of refinements and allow the refinemen-
t/coarsening triggered according to the surface above/below 300.02/300.01 meter. Our domain
is set up by two triangles forming a square centered at the origin. The initial refinement depth
is given by d, resulting in 2d+1 coarse triangles without adaptivity. The dam is placed with its
center at (−1250m, 1000m) with a radius of 250m. The positive water displacement is set to 1m.
Performance results are given in “Million Cells Per Second” (MCPS) that can be computed.

The dynamically changing number of cells over the entire simulation is given in Fig. 5.22. A
visualization of a similar scenario with an initial radial dam break is given in Fig. 5.21.

Threshold-based split size

With the threshold-based cluster generation approach (see Sec. 5.6.2), we expect overheads in-
troduced depending on the number of clusters (i.e. on the maximum number of cells in each
cluster). The following benchmark is based on a regular and non-adaptive grid. We tested dif-
ferent initial refinement depths d, each depth resulting in a grid with 2d+1 cells. The simulation
is based on 1st-order spatial- and time-discretization of the shallow water equations.

The results in Fig. 5.23 show the dependency of the efficiency on the cluster split threshold.
We account for these performance increases and decreases with tasking overheads, synchroniza-
tion requirements and load imbalances. These aspects are further described and performance
increase and decrease is depicted with ↑ and ↓, respectively, in the following table:

3http://www.openmp.org/
4http://threadingbuildingblocks.org/

110

http://www.openmp.org/
http://threadingbuildingblocks.org/

5.7. RESULTS: SHARED-MEMORY PARALLELIZATION

0

10

20

30

40

50

60

70

80

100 1000 10000 100000 1e+06

M
C
P
S

split threshold

depth=18
depth=16

depth= 4

depth=20

1

Figure 5.23: MCPS for a simlation on a regular static grid. The performance is given for
different split thresholds and simulation workload (d={14,16,18,20})executed on 40 cores on
platform Intel [SBB12].

Smaller thresholds Larger thresholds

Tasking overhead ↓ Smaller thresholds lead to
more clusters, therefore more
overheads for starting tasks.

↑ With larger thresholds, less
clusters are created, thus re-
ducing the overhead related to
the number of tasks.

Replicated interfaces ↓ More clusters lead to more
replicated interfaces and thus
to more reduction operations.

↑ For larger thresholds, less
additional reduction opera-
tions are required.

Load imbalances ↑ Smaller clusters increase
the potential of improving the
load balancing.

↓ For larger thresholds, the
potential of load imbalance is
increased.

Thus, the optimal performance depends on the problem size, the number of cores and the
splitting of the clusters.

Threading overhead

We continue with a more detailed analysis of the overheads introduced by threading and, if not
otherwise mentioned, fix the split threshold size to Ts := 32768, i.e. the number of clusters is
kept constant. Several benchmark settings were used:

• Serial: This version is based on the serial software design, see Fig. 4.12. In particular, no
cluster set is used and no threading overheads exist.

• Parallel, no splitting, 1 thread: This version and the upcoming described versions are
based on the parallel software design, see Fig. 5.10. The splitting threshold was set to
infinity.

• Parallel, 1 thread: The simulation was executed with a single thread and the cluster
generation is based on the cluster split threshold size Ts.

• Parallel, N threads: The simulation was executed with N threads in parallel with the
cluster split threshold size Ts.

The threads are pinned to non-hyperthreaded cores in a compact way. A simulation domain set
up by a single base triangle with a typical radial dam break scenario was used. The maximum
refinement depth was set to 8 and 100 simulated seconds were computed. The results, based on

111

CHAPTER 5. PARALLELIZATION

0

0.5

1

1.5

2

2.5

3

10 12 14 16 18 20

M
C
P
S

 p
e
r

th
re

a
d

MCPS per thread for fixed splitting size of 32768

Parallel, 1 thread

Parallel, 10 threads

Parallel, 20 threads

Parallel, 40 threads

Serial
Parallel,
no splitting
1 thread

Parallel,
2 threads

Initial minimum refinement depth

Figure 5.24: Million cells per second (MCPS) for simulations on on a regular static grid. The
performance is given for the serial version and the parallel version with different number of
threads and split thresholds on 40 cores on platform Intel [SBB12].

the million processed cells per second divided by the number of threads, are given in Fig. 5.24.
The benchmarks were conducted on the platform Intel and we discuss the benchmark data in
the order of the test runs.

• Serial: The serial version slows down after a refinement depth of 12 to 14. The reason for
this is the problem size exceeding a cache level size.

• Parallel, no splitting, 1 thread: This version almost coincides with the serial version.
Thus, we can conclude that almost no overhead is introduced by the additional layers for
the parallelization.

• Parallel, 1 thread: With a larger problem size, we see that a parallel approach leads to an
improved performance compared to the serial version only. Detailed traversal statistics
show a performance improvement in both the simulation and adaptivity traversals.

We account for this improved performance with a cache-blocking effect: Our clustering
splits the domain into independent chunks with a size of equal or less than 215 = 32768.
This generates clusters with a size also fitting at least into the last-level cache. To account
for the temporal data reaccesses which is required for such a cache effect, we reconsider
our stack access strategies between traversals:

(a) In the edge-based communication scheme used in this implementation, we pushed the
flux DoF stored on both edges to a buffer and computed the fluxes after the cluster’s grid
was traversed. Thus, the DoF stored on this buffer can still be available in cache and
accessed with less latency.

(b) Regarding the adaptivity traversals, we only use the structure and adaptivity stack as
input. In our implementation, we only access 2 bytes on the structure and 1 byte for the
adaptivity state stack for each traversed cell during the traversals generating a conforming
grid. This perfectly fits into a higher cache level. By atomically executing the forward
traversal directly after a backward traversal in one operation executed on the cluster, the
structure and adaptivity information is still kept in a higher cache level and thus does not
have to be written back to main memory.

112

5.7. RESULTS: SHARED-MEMORY PARALLELIZATION

• Parallel, N threads: The simulation was executed with N threads in parallel. Effects based
on the cache-optimizations of the single-threaded version above could also be measured
for the 2-threaded simulation.

For higher number of threads (10, 20 and 40), no further improvements due to cache-
blocking could be gained for the considered problem sizes. Simulations and the scalability
with a larger number of threads are discussed in the next sections.

We conclude that our approach leads to optimizations with cache-aware cluster sizes and,
hence, can lead to a memory bandwidth reduction for dynamically adaptive meshes.

Strong-scaling benchmarks

We continue with strong-scaling benchmarks on shared-memory test platforms Intel and AMD
(see Appendix A.2). On the Intel platform, the first 40 cores are the physical ones, followed by
40 cores which are the hyperthreaded ones. The simulations were initialized with a minimum
refinement depth of 20. During the setup of the radial dam break, we use up to 8 additional
refinement levels. We computed 100 time steps, leading to about 19 Mio. grid cells processed in
average per time step. Tasking from TBB and OpenMP was used for the evaluation.

If not stated differently, we consider NUMA domain effects and try to avoid preemptive
scheduling with context switches by pinning threads to computing cores. This is also referred
as setting the thread affinities. We evaluated three different core-affinity strategies:

• no affinities: This implementation does not use any pinnings. Thus, the threads can be
preemted and their execution continues on another core.

• A1 : This pins all threads in a linearly increasing manner following the core enumeration.
On platform Intel, the enumeration is priorized first with all non-hyperthreaded cores on
a socket, then over all sockets, followed by all hyperthreaded cores on all sockets. The first
10 threads are then pinned to the non-hyperthreaded cores on the first socket, the next
10 threads to the second socket, etc. Threads 41 to 50 are pinned to the hyperthreaded
cores.

• A2 : Assuming a core enumeration starting with 1, this pinning skips every second core
until all odd-numbered cores are consecutively assigned. The next threads are then pinned
to the even-numbered cores. With our platform Intel and using 40 threads with A2
affinities, this results in the first 20 threads being assigned to the odd-numbered physical
cores followed by the odd-numbered hyperthreaded cores on all sockets.

The results for the platform Intel and AMD are given in Fig. 5.25 and 5.26 and are discussed
next.

• Platform Intel:
Using TBB, the best scalability can be measured for this platform with A1 scheduling.
With the A2 scheduling, the scalability gets worse after 20 threads due to threads 21 to
40 being assigned to the hyperthreaded cores with their non-hyperthreaded cores already
used for computations.

With OpenMP, less scalability is gained in general for the considered test case. We created
tasks with the untied clause for each cluster tree node. Due to known issues for OpenMP
task constructs (see e.g. [OP09]), the scalability is not as good for unbalanced trees as by
using TBB for parallelization.

113

CHAPTER 5. PARALLELIZATION

Figure 5.25: Strong scaling on a 40-core Intel platform with 40 additional hyperthreads
[SBB12].

• Platform AMD :
Sufficient scalability could be also determined for the AMD platform with an overall
performance close to the Intel system. Since the considered AMD platform shares the
floating point units (FPU) for 2 particular cores in the architecture, we account for the
bend visible at multiples of 8 for A1 and A2 affinities by this FPU sharing.

Strategies for scheduling and cluster generation

We next consider different combinations for scheduling, determining which thread executes
computations on which clusters (see Sec. 5.6.1) and how to dynamically generate clusters (see
Sec 5.5). The benchmark scenario is based on a 2nd-order discretization in space and 1st-order
discretization in time.

Regarding the scheduling stragtegies, we shortly recapitulate them in the following table:

Scheduling Description

Owner-compute
The clusters are assigned in a fixed way to the
threads. No work stealing is possible.

Affinities
Only affinities are set, enqueuing tasks executed
for a cluster to the worker queue of the owning
thread. This still allows work stealing.

Task-flooding

No affinities are used. With current thread-
ing models TBB and OpenMP, this enqueues
the task to the worker queue of the enqueuing
thread.

We also developed two different cluster-generation approaches shortly recapitulated in the
next table:

114

5.8. CLUSTER-BASED OPTIMIZATION

Figure 5.26: Million cells per second (MCPS) for strong scaling on a 64-core AMD platform
[SBB12].

Cluster generation Description

Threshold-based

The clusters are split or joined based on whether
the local workload (cells) exceeds or undershoots
the thresholds Ts or Tj . Thus, this is a local
cluster generation criterion.

Load-balanced splitting

The clusters are split and joined based on the
range information (see Sec. 5.6.2) and split in
case that the cluster can be assigned to more
than a single thread. This is a global cluster
generation criterion.

We conducted benchmarks with different combinations of the above mentioned scheduling
and cluster generation strategies (See Fig. 5.27). Here we see that a cluster generation ap-
proach with range-based treesplits does not result in improvements as expected, but leads to
less performance. We account for that by additional splits and joins compared to the pure
threshold-based method. Such splits and joins of clusters result in additional overhead due to
synchronizing updated meta information and additional memory access to split and join the
cluster. Using a threshold-based cluster generation, by far less changes due to cluster splits and
joins are required. This leads to improved performance for the threshold-based clustering.

5.8 Cluster-based optimization

We continue with an overview of possible optimizations:

• With clustering based on a replicated data scheme, reduce operations are required in order
to synchronize the replicated data. This synchronization can be achieved via duplicated
reduce operations executed on each cluster or a single reduce operation per shared hyper-
faces by considering the SFC order of the clusters. Details on this optimization are given
in 5.8.1.

• We expect performance improvements by cluster-based local-time stepping (see Section 5.6).
With communication interfaces (sequentially stored and duplicated) similar to dynamic

115

CHAPTER 5. PARALLELIZATION

0

10

20

30

40

50

60

70

80

0 20 40 60 80

M
ill

io
n

ce
lls

 p
er

 s
ec

on
d

Number of cores

TBB: Cluster skipping disabled

task flooding / threshold
owner-compute / range-based
affinities / range-based
linear (base: 10 cores)

Figure 5.27: Overview of scalability with different cluster generation strategies. The legend
is given in the format (scheduling strategy / cluster generation) [SWB13a].

adaptive block-structured grids in the Peano framework [UWKA13], this would yield a
similar algorithm, and thus we did not focus on such an implementation.

• Considering iterative solvers, we can skip computations on clusters. This allows imple-
mentation of the local relaxation method [Rüd93] with multiple clusters per compute
unit.

• With grid traversals only required for a particular spatial area, traversals on clusters which
are out of this area can be directly skipped during traversals. The bounding triangles for
our tree-split based clusters is directly available in the meta information which is stored
for each cluster. Thus, optimizations such as software-controlled frustum culling [GBW90,
LP01] are possible. We optimized the sampling of simulation data at particular points
(e.g. buoy data for Tsunami simulations or values for analytical benchmarks) by skipping
clusters which do not cover the sampling point, see e.g. Section 6.3 for an application.

• One of the main building blocks of this framework is a conforming grid within each clus-
ter. The consistency traversals for a conforming grid generation are typically executed by
traversing the entire grid. However, for clusters already in a conforming grid state and
without any edge creation requests from adjacent clusters, no additional adaptivity traver-
sals would be required. More information on this optimization is given in Section 5.8.2.

• With the parallelization typically getting stuck during the output of simulation data, we
can use a threaded parallelization model and a dedicated writer task or thread. This
task/thread stores the output data to persistent storage whereas the other threads can
continue running computations. These optimizations are presented in the Section 6.4.1.

5.8.1 Single reduce operation for replicated data

Using the replicated communication scheme (see Section 5.2), there are basically two ways to
reduce the replicated data:

• The first one is accessing the replicated data of the adjacent cluster in a read-only man-
ner and executing the reduce operation twice for each cluster. This strictly follows a

116

5.8. CLUSTER-BASED OPTIMIZATION

-0.0600

-0.0500

-0.0400

-0.0300

-0.0200

-0.0100

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

S
pe

ed
up

Cluster size

Speedup (Rusanov)

Speedup (Geoclaw)

Figure 5.28: Performance speed up and speed down if avoiding duplicated reduction of repli-
cated data.

distributed-memory parallelization with the replicated data sent to the adjacent cluster,
followed by a reduce operation.

• We present an alternative approach by executing the reduce operation only once for the
replicated data.

First, we have to make a decision which cluster should compute the reduction. We can
determine such a cluster which is responsible for computing the reduction by considering
the SFC order of the first cell in each cluster or the order of the unique ids assigned to
each cluster since they also follow the SFC order (see Section 5.3.4). In our development,
we use the cluster’s unique ids to determine the “owner” of the reduction operation.

Second, the owner computes the reduce operation and stores the reduced data which is to
be processed by the adjacent cluster to the communication buffer. Thus, this range of the
communication buffer does not contain anymore the data which is read for the reduction,
but the already reduced data. An additional synchronization is required to the next step,
which reads the reduced data to avoid race conditions.

Third, the “non-owner” can fetch the data from the communication buffer which is already
reduced e.g. by a flux computation and the data can be processed avoiding duplicated
reduce operations.

We conducted two experiments based on a shallow water simulation with a radial dam
break, 18 initial refinement levels and up to 8 additional levels of adaptivity. Since we assume
that the benefits of avoiding duplicated reduce operations depend on the costs of the flux
solvers, we run two different benchmarks - each one with a different flux solver: the relatively
lightweight Rusanov solver and the heavyweight augmented Riemann solver from the GeoClaw
package [Geo08].

The saved computations also depend on the number of shared cluster interfaces, hence we
executed benchmarks parametrized with different split thresholds. The results are based on
a single-core execution and are given in Fig. 5.28 and they show, that possible performance
improvements depend on the utilized flux solver.

1. For the lightweight flux solver, avoiding reduce operations results in a performance decrease
for smaller clusters. An explanation for this effect is given by the threading overheads:
since we require additional synchronization operations, there is an additional overhead

117

CHAPTER 5. PARALLELIZATION

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

S
pe

ed
up

Cluster size

50 computations per edge

100 computations per edge

150 computations per edge

200 computations per edge

Figure 5.29: Performance speed up and speed down if avoiding duplicated reduction of repli-
cated data.

introduced by executing additional tasks. For the Rusanov flux solver, the synchronization
overhead is higher than the benefits.

2. Using heavyweight solvers, we see a speedup for optimization and assume that the com-
putational intensity of the solver outperforms the tasking overheads for the additional
synchronization.

To verify these assumptions, we develop a simplified model based on the following quantities:

• d: We relate the number of cells in the cluster to the subtree’s refinement depth d.

• o: This accounts for the tasking overhead costs per cluster, e.g. the computations to
dequeue and start a task.

• e: Computational time per edge.

• c: Computational time per cell.

• b: The number of cluster boundaries which we approximate to linearly depend on d. We
approximate this with 2d.

Since the computational speedup can also be computed for each cluster, our model only
considers the computational costs for a single cluster. These costs for a cluster with a single
reduce operation are then given by

C(single)(o, e, c, d) := o︸︷︷︸
Additional synch. overhead

+ 2d · c︸ ︷︷ ︸
Computations for cells

+ 1.5 · 2d · e︸ ︷︷ ︸
Computations for edges

whereas the costs with two reduce operations per shared hyperface are given by

C(double)(o, e, c, d) := 2d · c︸ ︷︷ ︸
Computations for cells

+ 1.5 · 2d · e︸ ︷︷ ︸
Computations for edges

+ 2d · e︸ ︷︷ ︸
Additional comp. for edges

.

We compute the speedup using the single evaluation with
C(double)−C(single)

C(double)
and use rule-of-

thumb values o = 1000, e.g. 1000 cycles to dequeue a task from the worker’s queue and c = 100
as the computational workload per cell. The speedup graph for different refinement depths and
thus cluster sizes is given in Fig. 5.29 for different computational costs for edges.

118

5.8. CLUSTER-BASED OPTIMIZATION

The shapes of our experimentally determined results in Fig. 5.28 match to our model. We
find the agreement, that in case of a low computational cost involved in each edge, there’s no
benefit in using a single reduce operation. For computational intensive edge reductions as it is
the case for the augmented Riemann solver, using a single reduce operation can be beneficial.
However, as soon as the number of cells in each cluster is getting higher, the benefits tend
towards zero.

We conclude, that for small cluster sizes, avoiding duplicated reduction operations can be
beneficial for small cluster, e.g. required for strong-scaling problems and the algorithm presented
in the next section.

5.8.2 Skipping of traversals on clusters with a conforming state

So far, we only considered adaptivity conformity traversals being executed by traversing the
entire domain grid. For parallelization, we decomposed our domain with clusters and replicated
data scheme to execute traversals massively parallel also in a shared-memory environment. For
adaptivity traversals aiming at creating a conforming grid, the cluster approach is similar to
a red-black coloring approach with information on hanging nodes possibly not forwarded to
adjacent clusters in the current adaptivity traversal. Thus more traversals can be required in
case of parallelization.

However, a clustering approach offers a way to compensate these conformity traversals if
there are more than one clusters per compute unit: adaptivity traversals can be skipped on
clusters that (a) already have a conforming grid and (b) do not receive a request of an adjacent
cluster to insert an edge (adaptivity marker MR). Both requirements are discussed next:

(a) To determine whether the adaptivity states already lead to a conforming cluster, we tag
each cluster with a “non-conforming” boolean which is set to false before any adaptivity
traversals. During the adaptivity traversals, as soon as information on inserting an edge
is not propagated with the current traversal, this boolean is set to true. Such information
on non-propagated hanging nodes is directly given by the forward information bits f (see
Section 4.10.3): If these bits are not equal to zero, adaptivity information still has to be
propagated by an additional traveral.

(b) Testing for adaptivity request propagations from adjacent clusters is accomplished by check-
ing the left and right adaptivity communication buffers stored at the adjacent cluster which
store adaptivity markers MR for corresponding requests. In case that all values are not set
to MR, no adaptivity edge-insertion requests are propagated from the adjacent cluster.

This algorithm is based on the sparse graph representation (see Fig. 5.5 of our clustered
domain: using this graph representation, our algorithm can be represented by a Petri net
[SWB13a].

Algorithm: Skipping of clusters with a conforming adaptivity state

Here, each cluster is a node and the directed arcs exist for each RLE entry. Tokens represent
requests for additional conformity traversals. We then distinguish between local consistency
traversal tokens and adjacent consistency tokens with the latter one forwarded to, or received
from adjacent clusters.

• Local consistency tokens:
These tokens are generated by local consistency traversals (see (a) above) and are

119

CHAPTER 5. PARALLELIZATION

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

M
ill

io
n

ce
lls

 p
er

 s
ec

on
d

Number of cores

TBB: Cluster skipping enabled

task flooding / threshold
owner-compute / range-based
affinities / range-based
linear (base: 10 cores)

Figure 5.30: Overview of scalability using different cluster generation strategies with adaptive
conforming cluster skipping enabled. The legend is given in the format “scheduling strategy /
cluster generation” [SWB13a].

injected to each cluster’s graph node in case of the cluster still not in a conforming grid
state. These tokens are removed after each traversal, e.g. by a transition requiring one
or more tokens and firing no token.

• Adjacent consistency tokens:
Tokens are fired via the connectivity graph edges to an adjacent cluster in case that a
refinement marker is stored on the corresponding RLE encoded communication data.
In case that such an adjacent consistency token is received from an adjacent cluster,
an additional conformity traversal is started.

Results for short-term simulations:

We conducted several runs for the SWE benchmark scenario from Sec. 5.7. The results are
given in Fig. 5.30 with the linear scalability shown for the implementation without adaptive
conforming cluster skipping. In compliance with the results for the non-skipping version, the
range-based cluster generation suffers of additional overheads due to more frequent cluster
generation operations. However, considering the pure task-flooding with a threshold-based
cluster generation, we get a higher performance compared to the basic implementation due to
algorithmic cluster-based optimizations.

Detailed statistics on the skipping algorithm:

We further analyze the robustness of the adaptive cluster skipping and detailed statistics on the
run time separated into the three major phases of a single simulation time step: (a) generating
clusters, (b) adaptivity traversals and (c) time step traversals. The results are given in Fig. 5.31
for a different number of threads executed on the same benchmark scenario. For all tested num-
bers of threads, the skipping algorithm yielded a robust performance improvement. The time
spent for cluster generation is negligibly small. We account for that by the required decreased

120

5.8. CLUSTER-BASED OPTIMIZATION

Figure 5.31: Comparing run time of skipping and non-skipping of conforming cluster. Here,
we distinguish between the cluster generation time (Cluster) which is negligibly small, time
for adaptivity tarversals (Adaptivity) and time to run the computations for the time step
(Simulation) [SWB13a].

time step size due to the higher-order spatial discretization. This also leads to less changes
in the grid and therefore less executions of cluster generation. The presented adaptive cluster
skipping also leads to robust performance improvements on distributed memory simulations,
see Sec. 5.12.1.

5.8.3 Improved memory consumption with RLE meta information

Our run-length encoding provides an optimization for the blockw-wise data communication for
stack-based communications. This section highlight the potential of saved memory storage by
using our RLE meta information.

Improved memory consumption results based on simulation

With statistics gathered for executed simulations, we compare the number of RLE-stored meta
information to the number of elements required if we would store the communication primitive
separately [SWB13b].

Here, we assume the meta information on vertices associated to one RLE edge communi-
cation entry is not stored, but inferred by the per-hyperface stored edge meta information.
To give an example, we assume an RLE encoding ((A, 2), (B, 0), (C, 3)) to be stored with
((A, e), (A, e), (B, v), (C, e), (C, e), (C, e)), see Sec. 5.2.3. We then compute the ratio between
the quantity of entries required for our RLE scheme QR := |((A, 2), (B, 0), (C, 3))| to the num-
ber of non-RLE encoded entries QN := |((A, e), (A, e), (B, v), (C, e), (C, e), (C, e))|. This ratio
Q := QN

QR
then yields the factor of memory saved with our RLE meta information compared to

storing the meta-communication information separately for the communication hyperfaces.

We conducted empirical tests with a hyperbolic simulation based on (a) the Euler and (b)
the shallow water equations. Here, we used edge-based communication for the simulation and
node-based communication for a visualization in each time step. The simulation is started
with an initial refinement depth of d = 6 and up to a = 14 additional refinement levels. The
simulations are initialized with the same radial dam break, using the density as the height for

121

CHAPTER 5. PARALLELIZATION

0

5

10

15

20

25

16 64 256 1024 4096 16384

R
LE

 s
to

ra
ge

 im
pr

ov
em

en
t

Cluster splitting threshold

Saving ratio (Shallow water)

Saving ratio (Euler equation)

Figure 5.32: Ratio of entries for RLE meta information to non-RLE meta information for
different cluster sizes for the simulation based on the shallow water and Euler equation. The
error bars show the minimum and maximum savings of RLE meta information over the entire
simulation time [SWB13b].

the Euler simulation, and we simulate 100 seconds. This resulted in execution statistics given
in the table below:

time steps min. number of cells max. number of cells

Euler 31 34593 40228

Shallow water 733 34593 178167

We plot the ratio Q for our simulation scenario above in Fig. 5.32. Larger clusters lead
to an increased ratio due to more shared hyperfaces per cluster and hence more entries to be
compressed with our RLE meta information. The min/max bounds for the largest tested cluster
size with the Euler simulation is not as large as for the shallow water equation. We account for
that by two statistical effects: the first one is a shorter run time which leads to less possible
values involved in the min/max computation. The second one is, that less time steps for the
Euler simulation also lead to less cells generated in average with a maximum of 40228 cells over
the entire simulation (see the table above). This leads to only a low average number of clusters
during the entire simulation, almost no dynamic cluster generation in the simulation and thus
less values involved into the min/max error range. For typical cluster sizes of more than 4000
cells, the memory requirements for the meta information are reduced by factor of 9.

RLE vs. per-cell stored meta information

For simulations executed on unstructured grids, the meta communication information is typ-
ically stored for each cell. This is considered to be especially memory consuming for meta
information on vertices due to more than a single adjacent cell compared only a single ad-
jacent cell with edges. However, the ratio of the meta information overhead per-cell com-
pared to our cluster-shared-hyperface RLE encoding depends on the number of degrees of
freedom stored in each cell which we further analyze with a model [SWB13b]. Here, we
model the payload (DoF) per cell with W and assume a regular refinement depth d, yield-
ing 2d cells per cluster. We also assume that the non-RLE meta information takes the same

122

5.8. CLUSTER-BASED OPTIMIZATION

R
at

io
 o

f p
er

 c
el

l a
nd

 R
LE

ad
ja

ce
nc

y
in

fo
rm

at
io

n

Cells per cluster

per cell = 4
per cell = 8
per cell = 16
per cell = 32
per cell = 64

Payload
Payload
Payload
Payload
Payload

Figure 5.33: Ratio of saved memory by using our RLE encoding compared to per-cell stored
adjacency information [SWB13b].

amount of memory as a single DoF. Furthermore, we neglect the requirement of storing the
cell orientation since this can be bit-compressed and stored in a cell requiring less storage
than a single DoF. Such a cell orientation can be required if accessing the adjacent cell.

1 1

1

1

55

With the grid generated by the bipartitioning Sierpiński SFC and based
on our assumption of a regular grid, the required memory for the meta
information on adjacent cells for each triangle cell and the workload for
each cell are given by

S := 3 (3 edge adjacency information)
+ 2 · 5 + 1 (vertex adjacency information)
+ W

with 3 edge-adjacent cells and 2 · 5 + 1 required meta information on
the per-vertex additional cells, see right handed figure.

Storing the meta information only for the cluster boundaries, this yields R := 2 ·(3+2 ·5+1)
RLE entries to store the adjacent information with the factor 2 accounting for the two-element
tuple for each entry.

The ratio of the number of cells times the memory requirements to the RLE encoded memory
requirements then yields the memory saved for each cluster:

S · 2d

R+W · 2d
=

(3 + 2 · 5 + 1 +W) · 2d

R+W · 2d
2d→∞,L.H.

=
3 + 2 · 5 + 1 +W

W
=

14

W
+ 1

We get an upper bound of 14
W + 1 which only depends on the per-cell payload W .

We plotted this ratio for different cluster sizes and DoF per cell in Fig. 5.33. First, this plot
shows that less memory is saved for smaller cluster sizes. We account for this by clusters with
less cells requiring the same amount of RLE meta information compared to clusters with more
cells. Hence, for smaller clusters, the benefit of the ratio of cells to RLE encoding is getting
smaller. Second, for larger cluster sizes, the plot shows the potential of memory savings for
simulations with a small number of DoF per cell. According to the simplified model, this can
reduce the memory consumption up to a factor of 4.5. Third, with a larger number of DoF per
cell, as it is the case for higher-order simulations or by storing regular sub-grids for each cell, the
benefit of our stack- and stream-based simulations with RLE meta information is below 1.5 for
more than 32 DoF per cell. Though, the advantages of the RLE-based communication are still
given e.g. by the block-wise communication and cluster-based data migration for distributed-
memory systems (Section 5.10.3).

123

CHAPTER 5. PARALLELIZATION

Figure 5.34: Overview of runtimes for simulations with different cluster-generation strategies
with and without skipping of adaptive conforming clusters [SWB13a].

5.9 Results: Long-term simulations and optimizations on shared-
memory

In the previous sections, we conducted several benchmark experiments based on different clus-
ter generation apporaches, affinities and optimizations. However, these benchmarks did not
outline possible effects of long-term simulations. Therefore, we conducted long-term simulation
runs with 15000 time steps and surveyed different cluster generation, computation scheduling
and optimization strategies on our test platform Intel (see Appendix A.2). Such a long-term
simulation run also induces more grid changes compared to the short-term run, and thus, also
more cluster generations.

For a better comparison, the benchmark scenario is identical with the one already used
in Sections 5.7 and 5.8.2. We present the results of cells processed in average per second in
Fig. 5.34. Due to the longer run time of 15000 time steps, we also expect an increased noise in
the simulation run time. Therefore, we execute the long-term simulation three times.

With our benchmark results at hand, we first search for the formerly best choice, the cluster
skipping with the massive tree splitting, which provides the best short-term simulation perfor-
mance with 100 time steps. However, for long-term simulation runs, the best performance is
not anymore provided by this so far best choice: the owner-compute scheme pays off the work
stealing mechanism. We account for this by the additional grid changes, causing more cluster
generations. With the owner-compute scheme, the clusters are generated in a memory-locality
preserving way.

Since the owner-compute scheme also outperforms the affinities using TBB, this scheme is
the best choice for long-term simulations for this benchmark.

5.10 Distributed-memory parallelization

Our distributed-memory parallelization approach takes advantage of our cluster-based software
design with a replicated data scheme also for shared-memory parallelization. This also accounts
for the two major issues for distributed memory systems: (a) efficient block-wise communication
via RLE meta information and (b) efficient data migration with the cluster-based software

124

5.10. DISTRIBUTED-MEMORY PARALLELIZATION

design. Furthermore, our software design makes the extensions for distributed memory almost
transparent for a framework user since only minor additional requirements for the framework
user are induced such as the data migration of user-specified data.

Support for distributed memory can then be accomplished with the following extensions to
the framework design (Fig. 5.10):

1. Simulation driver:
The simulation driver is responsible for controlling the overall simulation. This includes
e.g. the determination of the amount of workload required for load balancing and the global
time-step size. Therefore we extend the simulation driver with e.g. min-reduce operations
on the time step sizes of each rank to compute the correct global time-step size.

2. Inter-cluster communication:
The data associated to hyperfaces which are shared with clusters of other ranks has to be
sent and received in a correct way (Section 5.10.1).

3. Dynamic cluster generation:
The dynamic cluster generation has to be extended to distributed memory to support
updating the RLE communication meta information for splits and joins of adjacent clusters
(Section 5.10.2).

4. Cluster-based data migration:
Each cluster is extended with instructions for transferring its meta-, stack- and user-
specified data to another rank. Also updating the RLE communication meta information
has to be considered (Section 5.10.3).

5. Base triangulation:
Not all base triangulations are valid anymore since our communication schemes for dis-
tributed memory relies on the SFC order of communication data (Section 5.10.4).

Considering the components relevant from an algorithmic point of view, the distributed
memory parallelization is then based on items (2)–(5) which are further discussed in detail.

5.10.1 Intra- and inter-cluster communication

Regarding the cell communication, requirements on (a) intra- and (b) inter-cluster communica-
tion are discussed next:

(a) Intra-cluster communication:
We can use the property of the data exchange between cells being accomplished via the stack
system. Communication via this stack system does not depend on any explicitly stored
adjacency information. Therefore, our stack-based communication method is invariant to
the memory location5 and rank. This leads to an intra-cluster communication not depending
on the memory- and rank-location of the cluster.

(b) Inter-cluster communication:
For inter-cluster communication, only a minor modification to support distributed memory
is required. The RLE communication meta information about adjacent clusters is extended
by the information on the adjacent rank with which to exchange the data.

5E.g. changed by reallocating the stack system

125

CHAPTER 5. PARALLELIZATION

Regarding the inter-cluster data exchange, we use non-blocking send operations to transfer
the replicated data to the rank of the adjacent cluster. Using our RLE, this data transfer can
be obviously accomplished directly block-wise, e.g. without gathering of smaller chunks of data
to be transferred.

We further use MPI send-recv tags to label each communication with the communication
data being either stored to the communication buffers in clockwise or counter-clockwise order
of the SFC close to the inter-cluster shared hyperfaces. This is required for base triangulations
consisting e.g. only of two triangles with periodic boundary conditions. This avoids the com-
municated data stored for clockwise edge directions being read for edges with counter-clockwise
direction and vice versa.

Depending on the method of data exchange on distributed-memory systems, our approach
can further demand for a particular order and tagging. To receive the data blocks in correct
order, the send operations follow the SFC order of the clusters and the receive operations
are then executed in reversed SFC order. Also the RLE meta information entries have to be
iterated in reversed order to consider the opposite direction of the traversal of the clusters at
the other rank (see Section 5.2.5 for information on reversing communicated data). Reversing
these receive operations assures the correct order.

5.10.2 Dynamic cluster generation

For load-balancing reasons, it can be advantageous to split a cluster in case that its one-
dimensional SFC interval representation can be assigned to several cores.

The cluster generation approach considered in this work is based on the rank-local number
of cells only. This makes the cluster generation approach independent of the global load distri-
bution. An extension with a global parallel prefix sum based on the number of cells [HKR+12]
to generate cluster in a global-aware manner is not further considered in this work.

After splitting and joining of clusters, we also require reconstruction of the communication
meta information to account for possible splits and joins of adjacent clusters. Updating local
RLE meta information that is associated to a cluster stored at another rank is not possible
anymore with our shared-memory approach, see Sec. 5.5.3. This is due to a missing direct access
to the meta information of the adjacent cluster. Therefore, the adjacent cluster is responsible
for deriving and sending the required split/join information. The local cluster then receives and
uses this information to update the RLE meta information accounting for adjacent split/join
operations.

5.10.3 Cluster-based load balancing

With dynamically adaptive grids, this results in load imbalances across several ranks. Data
migration is one of the typical approaches to migrate workload to another rank. With our
cluster-based data migration, we present a highly efficient method for migrating a set of clusters.
This efficiency results from three major components of our software design:

• Stack- and stream-based system:
All simulation DoF are stored on a stream system and the intra-cluster communication
via stacks is based on the cluster’s structure stack. Hence, this intra-cluster communica-
tion is independent to the memory location. Thus we can directly transfer this data in
raw-format6 to an adjacent cluster without requirements on updating adjacencies, e.g. by
updating pointers or relative indices of adjacent primitives stored in each cell. Since our

6assuming the same system, e.g. the same endian format on all compute nodes

126

5.10. DISTRIBUTED-MEMORY PARALLELIZATION

stacks only store the pure payload and the grid structure in a bitstream7, we assume this
to be quasi-optimal w.r.t. to the amount of transferred memory.

• Meta information and user-defined data:
Besides the communication meta information, only the remaining cluster-local data has
to be migrated separately.

• RLE update:
With all information on adjacent communication stored implicitly using the RLE com-
munication scheme and communication buffer, only the RLE communication meta infor-
mation has to be updated to yield a consistent communication meta information.

The migration algorithm of our cluster then consists of the following steps:

1. Destination labeling:
We label each cluster with the rank to which it has to be migrated to.

2. Prospective update of communication meta information:
For each RLE meta information entry and in case that this meta information represents
a communication with a cluster stored at another rank, send the destination rank to
the adjacent rank, otherwise use ε to represent no migration. Then the local RLE meta
information about the adjacent cluster is updated in case of a migration of the adjcent
cluster to another rank. This assures that each adjacent cluster can update its meta
information to the new destination of the migrated cluster.

For efficiency reasons, we joined this step with updating the RLE information during
forwarding the information for dynamic clustering (Section 5.10.2).

3. Cluster migration:
The cluster data (stacks, meta and user information, . . .) is then migrated to the adjacent
rank, see Section 5.10.3. This migration already includes the updated communication meta
information from the previous step.

4. Synchronize the cluster-local RLE information:
We distinguish between received and send clusters:

After receiving all clusters at a rank, the pointers to the adjacent clusters which are stored
on the same rank have to be recovered, e.g. for accessing meta communication data. By
also keeping the cluster-unique id in each RLE meta information entry, we can find the
clusters efficiently with the cluster set based on a binary tree structure. The pointers
from the adjacent cluster to the currently processed one can then be directly corrected by
writing to the RLE meta information of the adjacent cluster.

We emphasize that these writing operations to adjacent clusters violate our push and pull
concept (no writing access to adjacent clusters). However, we consider this to be the most
efficient way to update the communication meta information for clusters stored on the
same memory context.

For clusters migrated away from the considered rank, the RLE meta information of the
adjacent clusters on the same considered rank have to be updated. These entires are set
to the new rank to which the cluster was migrated to. This new rank is available with
the destination rank label, see the first item (1) of this list.

7In our implementation, we store each bit in one byte to avoid bit shift and and operations during the grid
traversals.

127

CHAPTER 5. PARALLELIZATION

Figure 5.35: Possible domain triangulation for simulations with a shared-memory paralleliza-
tion, forbidden for distributed-memory runs

The information where to send the clusters is derived based on the local and MPI parallel
prefix sum on the number of cells in each cluster. Then, each rank can determine the current
range of cells within the global number of cells of the entire simulation. The clusters are tagged
with a rank which leads to improved load balancing. Such a load balancing can be e.g. improved
by sending the clusters only to the next or previous rank. This is advantageous, since only the
next and previous rank have to test for a cluster migration from an adjacent node. For severe
load-imbalances, such a migration is not feasible anymore since only an iterative data migration
can solve such a load imbalance. Hence, we can tag the cluster to be directly sent to the rank
which should own the cluster for improved load balancing. Here, the rank is computed by

rank :=

⌊
Ri + Wi

2

Wavg

⌋

with Ri the global start id of the first cell in the cluster, Wi the workload in the cluster and
Wavg the average number of cells per rank (cells). This can be interpreted as extension of
the range information presented in Sec. 5.6 to distributed-memory systems. Then, an all-to-all
communication is used to inform ranks to receive one or more clusters from a rank. Further
details on such a load balancing can be e.g. found in [HKR+12]. Finally, we like to emphasize,
that the data migration of clusters still has to conserve the SFC order of the clusters on all MPI
ranks.

Since our cluster migration is based on setting the destination rank followed by the cluster
migration, this allows implementing a generic load-balancing interface [DHB+00] and, thus, also
different well-studied load-balancing and migration strategies, see e.g. [ZK05,Cyb89,Hor93].

5.10.4 Distributed base triangulation

With our communication scheme relying on the correct SFC order of the underlying grid cells,
we are not allowed anymore to generate domain triangulations such as the one given in Fig. 5.35.
In general, traversals with an initial base triangulation and an SFC traversal close to shared
edges in the same direction (see e.g. [NCT09] for a cubed sphere SFC traversal with the Hilbert
SFC) result in inconsistent communication schemes.

A different view of a correct communication order for base triangulations on distributed-
memory systems is the possibility of embedding our grid into a (regularly) recursively structured
grid based on the Sierpiński SFC. This consequently leads to the space-forrest assembled by
the nodes on a particular level of a regularly refined spacetree. Examples for invalid and valid

128

5.11. HYBRID PARALLELIZATION

Figure 5.36: Different base triangulations. Left image: Invalid base triangulation with the
middle two triangles not embeddable to the regularly refined grid. Right image: valid base
triangulation.

base triangulations with the corresponding embedding into a regular refinement are given in
Fig. 5.36.

The initial association of base triangles to ranks is accomplished by aiming for balanced
workloads. Embedding our base triangles into an SFC generated grid, we can again use the 1D
representation to assign clusters to ranks. Each rank then initializes the clusters assigned to it.
Regarding the cluster tree, each rank removes all leaf nodes not assigned to the current rank
and also the inner nodes which do not have any further child nodes.

5.10.5 Similarities with parallelization of block-adaptive grids

We continue by highlighting similarities between clustering and dynamically adaptive block-
adaptive grids.

• Communication meta information:
With our RLE communication meta information, the quantity and the location of the
data to be communicated is directly given. For block-adaptive grids, this quantity is also
directly known by the ranges in each dimension of the underlying grid in each block.

• Block-wise load-balancing :
In our case, we accomplish load-balancing by migrating the cluster-associated simulation
data and by updating the communication meta information. For migration of blocks, also
the block-associated simulation data is migrated, followed by the meta information which
is typically stored for each block.

Hence, a cluster-based parallelization approach allows similar optimizations such as hybrid
parallelizations, latency hiding, etc. with some of them being also further researched in this
work.

5.11 Hybrid parallelization

The number of cores on cache-coherent memory domains considerably increased during the last
decade. Shared-memory systems with several threads per CPU are nowadays omnipresent and
with Intel’s XeonPhi, even more than 100 threads have to be programmed in a shared-memory
environment in an efficient way. Such a hybrid parallelization yields several advantages; some
of them are:

129

CHAPTER 5. PARALLELIZATION

• Sampling of datasets:
Storage of either the entire or only a part of the bathymetry data for Tsunami simulations
for each single-threaded MPI rank could lead to severe memory consumptions. To give a
concrete example, we consider the ocean bathymetry datasets from General Bathymetric
Chart of the Oceans (GEBCO) [IOC] with the entire dataset of size of less than 2GB.
This alrady exceeds the sizes of memory typically available per core. E.g. on the cur-
rent generation of the SuperMUC, 16 cores share 32GB memory [EHB+13]. Thus with
2GB memory consumption per thread to store the entire GEBCO datasets, this already
occupies all available memory.

With a hybrid parallelization, the datasets can be directly shared among several threads.
This allows storing the dataset only once in each program context, resulting in more mem-
ory available for simulation data. We used this hybrid parallelization for the Tsunami
benchmarks in Section 6.3 with the entire bathymetry data loaded into each rank’s mem-
ory.

• Reduced data migration:
Using single-threaded MPI can result in severe communication overheads in case of several
clusters being migrated at the same time. This can lead to a memory transfer similar to
a streaming benchmark due to migrated stacks and streams compactly stored in memory
and transferred block-wise. Using a hybrid parallelization, some data migration can be
avoided. In case of the clusters required to be migrated to a thread (considered to be a
rank for single-threaded MPI implementation) which executes tasks in the same memory
space in which the cluster is stored at, the cluster can be directly processed by the other
thread without requiring any cluster migration process.

We discuss two alternative approaches for the inter-cluster communication presented in Section
5.10.1.

• The first approach can be used to overcome a sequentialization of the iteration over the
clusters in reversed order to receive the data on the shared interfaces. An extension
of the send/recv tag with unique communication tags associating two clusters can be
used, e.g. involving both cluster unique IDs. This unique communication tags also assure
a unique message tag and, thus, no particular order has to be considered to read the
message. However, the MPI interface standard 3.0 [For12] only assures a tag range from
0 to 32767. This range can be exceeded by our cluster-based approach being based on
tree-splits: First, we require at least one bit for distinguishing between the left and right
communication stack. This would restrict our remaining tag range to ≈ 16383. Second,
a massive splitting can lead to by far more clusters than the available tag range, possibly
violating the requirements given by the MPI implementation.

• The second considered alternative is based on the thread ids instead of the cluster ids.
Since the number of threads is limited, the utilization of a valid range of tags can be
assured. A set of clusters can then be deterministically assigned to each thread (e.g. by
using the affinity ids) and each thread processes the set of cluster in parallel. This requires
an extension of the RLE communication meta information by also adding a thread id next
to the MPI rank (see [Mav02] for a similar concept).

Since our results already yield sufficient efficiency for hybrid parallelization to simulate Tsunamis
on distributed-memory systems, we did not implement these alternatives.

130

5.12. RESULTS: DISTRIBUTED-MEMORY PARALLELIZATION

0

200

400

600

800

1000

1200

0 32 64 96 128 160 192 224 256

M
ill

io
n

C
el

ls
 p

er
 S

ec
on

d

Number of cores

Default, No threading

TBB

TBB, 2 threads

Skip conforming cluster

Linear Scaling (Default, 1 core)

Figure 5.37: Strong scalability on MAC cluster for different parallelization models and work-
load. The default method is based on the massive-splitting cluster generation.

5.12 Results: Distributed-memory parallelization

Based on the distributed-memory extensions, we executed benchmarks on a small-scale system
with up to 256 cores and large-scale system with thousands of cores. Compared to higher-order
spatial discretization schemes, a finite-volume discretization leads to larger time steps due to
a larger CFL condition and thus more requirements on load-balancing. Therefore, we used a
finite-volume simulation with the SWE and the Rusanov flux solver. The scenario was set up
with a radial dam break scenario on a quad-shaped domain. All computations are done in single
precision.

5.12.1 Small-scale distributed-memory scalability studies

We conducted small-scale scalability studies on the MAC cluster test platform Intel (see Ap-
pendix A.2.3). The initial refinement depth was set to 22 with 8 additional refinement levels
for dynamically adaptive mesh refinement. With this fixed problem size, we compute a strong
scalability problem.

The dynamic cluster generation is controlled by a massive-splitting method with a split
threshold of 4096. Cluster-based load balancing, grid adaptivity traversals and cluster genera-
tions are executed between each simulation time step. The cell throughput is given in Fig. 5.37
on up to 256 cores for different parallelization models and optimization activated. The linear
scalability is based on a single-core execution of the default massive-splitting cluster generation.
Applying our optimization with the conforming-cluster skipping algorithm (see Sec. 5.8.2 and
“Skip conforming cluster” in the plot), we generate robust improvements with this algorithmic
optimization also on distributed-memory systems.

The TBB threading has a clear overhead compared to our non-threaded version. We account
for this by the relatively small computational amount in each cluster and by the additional
requirement of a thread-safe MPI libary. However, the drop in performance comparing the
single-threaded and the double-threaded TBB benchmark is below 5% for the strong scalability
on 256 cores.

131

CHAPTER 5. PARALLELIZATION

0

0.2

0.4

0.6

0.8

1

1.2

256 512 1024 2048 4096 8192

P
ar

al
le

l e
ff

ic
ie

nc
y

Number of cores

168 Mio. Cells (strong scaling)
673 Mio. Cells (strong scaling)
2690 Mio. Cells (strong scaling)

168 Mio. Cells (~weak scaling)

Figure 5.38: Strong and weak scalability graphs on SuperMUC for different workloads for a
shallow water simulation with finite volumes.

5.12.2 Large-scale distributed memory strong-scalability studies

We conducted the large-scale scalability studies with several strong scaling benchmarks on the
SuperMUC.

For cluster generation, we used a massive-splitting with a threshold size of 32768. We tested
different initial refinement depths d = {24, 26, 28} with up to a = 8 additional dynamically
adaptive refinement depths and executed 100 time steps with each simulation. The measure-
ment is started after the last adaptivity traversals and until no further cluster migrations are
requested.

In this benchmark, we only migrated clusters to the next or previous ranks based on the
parallel MPI prefix sum over the workload, see [HKR+12] for further information. The results for
different initial problem sizes are given in Fig. 5.38. The baseline is given with the simulation on
256 cores, an initial refinement depth of 26 and up to 8 allowed refinement levels. This baseline
has a throughput of 1122.76 mio. cells per second.

The simulation with the smaller problem size resulted in worse scalability for a high number
of cores. We account for that by considering the cluster threshold size of 32768. This leads
to 168000000

32768·8192 ≈ 0.626 clusters in average per rank and, hence, accounts for the dropdown in
scalability due to severe load imbalances. Smaller cluster sizes or using a range-based splitting
(see Sec. 5.6.2) are expected to improve the scalability and is part of our ongoing research.

Executing the simulation with 2690 million cells was not possible on less cores than 1024 cores
due to memory requirements exceeding the physically available memory per compute node. We
expect that this can be overcomed by reducing the additional paddings for the prospective stack
allocations (see Sec. 4.10.6). However, executing problems of this size on such a relatively small
number of cores would never allow computing entire simulation runs due to the high workload
and thus very long computation time per core. Therefore we did not further investigate such
workloads per core.

Considering weak scaling, the efficiency is still above 90% for 8192 cores with the baseline
at 256 cores.

132

5.13. SUMMARY AND OUTLOOK

5.13 Summary and Outlook

We summarize our major developments and contributions, followed by an outlook to future
work:

• RLE meta communication information:
We used properties of the stack-based simulation to develop a parallelization based on a
run-length encoding which leads to the following advantages. Our communication meta
information is stored for inter-cluster shared hyperfaces only and is run-length encoded.
This RLE edge meta information is updated implicitly, based on the adaptivity markers.
We can also encode the vertex meta information efficiently with our RLE using a zero-run-
length encoding, resulting in a reduced memory consumption. The data access on shared-
and distributed-memory systems can then be accomplished block-wise. Considering the
DG simulations, the edge- and vertex-based communication allows an implementation of
possibly required flux limiters for edges and vertices.

• Parallelization:
Regarding the parallelization, we developed a cluster-based software design. Here, one
or more independent chunks of the simulation grid reside in the same memory context.
These chunks can be traversed in arbitrary order and the communication is accomplished
based on run-length encoded meta information.

• Dynamic cluster generation:
With the dynamically changing grids leading to a different number of grid cells in each
cluster, we derive the meta information after tree-splits and -joins in an efficient way.
Our dynamic cluster generation implicitly derives the new meta information based on the
number of entries stored on the stacks. Two different ways of dynamic cluster generation
have been investigated. The range-based clustering generates the clusters aiming for load
balancing. However, our tested scenario showed overheads compared to a threshold-based
cluster generation, leading to the best results.

• Parallelization models:
Our software and communication design results to direct applicability of different paral-
lelization models.

On shared-memory systems, we evaluated TBB and OpenMP on a 40-core NUMA system
yielding high scalability for short- and long-term simulations with NUMA-aware schedul-
ing. Here, the owner-compute scheme with a threshold-based splitting showed the best
results.

On distributed-memory systems, our software concept leads to an efficient data migration
with the clustering concept. Our benchmarks show a weak scalability of over 80% on more
than 8000 cores with the baseline at 256 cores.

• Skipping of conforming cluster traversals:
We used the adaptivity automaton with the skipping of clusters with an already con-
forming grid state. This results in robust performance improvements, also compensating
additionally required conforming grid traversals due to the domain decomposition.

• Data migration:
After the dynamic clustering phase, we can migrate clusters efficiently to adjacent MPI
ranks. This requires migrating the cluster’s raw data which is stored compactly on the

133

CHAPTER 5. PARALLELIZATION

stacks. Since all connectivity information is stored implicitly with the structure bit stream
and since the simulation stacks only contain the pure payload of the simulation (e.g. only
the DoF values), we assume the amount of transferred memory to be quasi-optimal. Fur-
thermore, only pre- and postprocessing of the RLE meta information is required which is
also quasi-optimal due to the run-length encoding.

We envision the following possible further developments:

• SFC cuts:
Our dynamic cluster generation is based on spacetree splits. This has drawbacks for our
load-balanced-aware splitting (see Sec. 5.6.2) with two of them mentioned here: First of
all, we can only iteratively split the spacetree to improve the load balancing. Second, in
case of two adjacent clusters processed by the same thread (e.g. using owner-compute),
their shared hyperfaces still require a reduction operation despite that they are processed
by the same thread. We expect that a cluster generation based on SFC cuts can also solve
the aforementioned issues.

• Loosening the conforming grid requirement :
For a conforming grid generation, we forward the adaptivity requirements with the stack-
based edge communication. This (a) requires multiple consistency traversals, (b) can
lead to additional traversals due to the domain decomposition and (c) involves additional
overheads for reduction operations on conforming grid states.

Regarding issue (a), we propose to generate an indexing structure to avoid any hanging
nodes inside each cluster in a single traversal. This indexing structure can be generated
with a single traversal by forwarding the current cell index with the edge communication.
The result is a directed-acyclic graph with its edges directed towards the adjacent cells
with a higher SFC-enumerated index. The root node is the latest traversed cell and its last
node is the first cell. Based on this directed graph, we can reconstruct the indexing to all
cells, yielding an bidirected graph. This indexing makes the direct forwarding of hanging
nodes markers within each cluster possible, hence not requiring additional traversals.

Considering issue (b), the synchronization barriers can be circumvented by allowing hang-
ing nodes on the cluster boundaries. We can represent hanging nodes by splitting an RLE
entry with appropriate handling required.

No global synchronizations, e.g. reductions on adaptivity conformity states, are required
due to solving (a) and (b).

• We assume, that the RLE meta communication information can also be used for Cartesian
and hexagonal grids and that it can be also applied to higher-dimensional grids, e.g. grids
generated by the Peano SFC.

134

6
Application scenarios

The previous chapters focused on the algorithms developed for the parallelization of simulations
on dynamically adaptive meshes. However, such an algorithmic description does not assure the
applicability of the presented algorithms in real scenarios. Hence, we show possible applica-
tion scenarios and discuss the benefits of our dynamically adaptive mesh refinement and the
clustering in the upcoming sections.

6.1 Prerequisites

Before running benchmarks with the shallow water equations, we need (a) solvers with the
capability of running accurate simulations, (b) an error norm for objective statements on the
accuracy, (c) an error indicator to trigger refinement and coarsening requests, and (d) an ex-
tension of the refinement and coarsening operations due to bathymetry. These issues are briefly
addressed in the upcoming sections.

6.1.1 GeoClaw solver

For a correct handling of wave propagations, we decided to use the augmented Riemann solver
from the GeoClaw package [Geo08,BGLM11]. This solver is well-tested in the context of shallow
water and Tsunami simulations [MGLT] and operates on the cell averaged conserved quantities
(h, hu, hv, b), respectively the distance of the water surface to the bathymetry, the momentum
in x-direction, the momentum in y-direction and the bathymetry relative to the horizon. Using
the augmented Riemann solver, the flux computations with the adjacent cells are replaced by
solvers computing so-called net updates. These solvers compute the net flux from one cell to
another one.

Then the conserved quantities are directly improved based on the computed net updates for
h, hu and hv and we use the b variable to store the wave speed for the accurate computation of
the time-step size. For usability issues, we reuse the reference space (see Sec. 2.2) and the same
framework interfaces as for the higher-order simulation.

6.1.2 Error norm

In the following benchmarks, we require an error norm for an objective comparison of simulations
conducted with different parameters. We followed the suggestion in [RFLS06] to use the L1
error norm on the surface heights over time for shallow water simulations. However, instead
of using the relative error, we decided to use the absolute error to avoid any influence in the
computed error induced by our adaptively changing bathymetry. Let the interval to compute
the error be given with t ∈ [Ts, Te]. The L1 norm is then applied to the absolute difference of

135

CHAPTER 6. APPLICATION SCENARIOS

our computed solution h(t) to the baseline b(t):

E(b, h) :=
1

Te − Ts

∫ Te

Ts

(||b(t)− h(t)||) .

In its discrete form based on N sampling points, where the first and last one are related to Ts
and Te, respectively, this yields

Ed(b, h) :=
1

N

N−1∑
i=0

(||b(Ts + i∆t)− h(Ts + i∆t)||)

with

∆t =
Te − Td
N − 1

.

With a given data set at discrete sampling points for comparison with our baseline, we use
spline interpolation and compute equidistantly distributed sampling points which are then used
to compute the error with Ed. We chose the number of equidistant sampling points to a robust
value which does not lead to significant changes in the computed error norm (typically larger
than 20000).

6.1.3 Error indicator

With our main focus on computing the solution within given error bounds as fast as possible,
only grid cells with a particular contribution (feature rich areas) to the final result should be
refined. We implemented two different adaptivity criteria, each one strictly depending on the
per-cell stored data to avoid additional edge-communication data.

• Horizontal deviation:
This adaptivity criterion is based on the absolute value of the water surface deviation
from the horizon, yielding

Ihorizon := |b+ h|

with b the bathymetry which is negative for the sea ground and h the water surface
distance to the bathymetry.

This error indicator does not consider the size of the cell and is therefore unaware of the
refinement depth. This would result in possible refinement operations up to the maximum
of the allowed refinement depth.

• Net-updates:
With net-update-based solvers, we can use an error indicator based on the net-update
component ∆h which represents the amount of fluid streamed over an edge with a unit
length and a unit time-step size. We use this to determine a steady state with respect
to the water surface elevation. In case that as much water is flowing into the cell as it is
flowing out (i.e. a balanced state), the amount of fluid in a cell is not modified. This yields
the following adaptivity criteria for the per edge communicated net-update components
∆hi:

Inet-update :=
∑

i=1,2,3

∆hi|ei|

with |ei| the length of the triangle edge i.

This error indicator is based on the edge length and is therefore sensitive to the refinement
depth.

136

6.1. PREREQUISITES

Then, each cell requests a refinement operation in each time step in case of I > αrefine and
the cell agrees to coarsening in case of I < αcoarsen.

For the benchmark studies in the following chapter, only the net-update based simulation
was successfully applied to improve the computational time with dynamically adaptive mesh
refinement for the considered simulations. Therefore, we restrict the presentation of our results
to these indicators. We like to emphasize, that this does not induce, that the height-based
adaptivity criteria cannot be used for efficient dynamic adaptive grids, but that our considered
parameters did not yield satisfying results.

Alternative error indicators are e.g. based on the derivative of the surface height [RFLS06]
and require additional data transfers via edges. With the focus of our studies on justification
of the dynamically adaptive grids and since we will see that our results already justify the
dynamical adaptivity, we did not further investigate alternative error indicators.

A final remark is given on the net-update-based error indicator: we expect, that this indi-
cator cannot be applied to flooding and drying scenarios since the water surface height close to
the shoreline tends towards zero. Hence our error indicator does not lead to refining the grid in
this area. Since the sampling points in our considered scenario are in a simulation area with a
relatively deep water compared with the average depth, a modification of the net-update-based
solver for flooding and drying scenarios, e.g. by dividing it with the average depth of the cell,
was therefore not required.

6.1.4 Refinement and coarsening with bathymetry

In contrast to the previous shallow-water test scenarios, the scenarios from the following section
have a non-constant bathymetry value. Due to refinement and coarsening operations with our
dynamically adaptive grid, we require an extension for the refinement and coarsening operations
for the conserved quantities including bathymetry.

We discuss the conservation schemes based on the conserved quantities U := (h, hu, hv, b)
and denote the conserved quantities in the parent cell with Up and for both children with U1/2.
We determine the bathymetry data b1/2 by sampling the bathymetry data set at the cell’s center
of mass.

We further assume that the water surface should stay on the same horizontal level after
a refinement operation to avoid spurious gravitation-induced waves. We can assure this by
initializing the water height for both cells with

h1 := max(0, (bp + hp)− b1) h2 := max(0, (bp + hp)− b2)

using the max operator to avoid non-physical negative mass.

With the velocity of the moving wave being one of the most important features for wave-
propagation dominated schemes, we used a velocity conserving scheme: We compute the velocity

of the parent cell with up :=
(hu)p
hp

, vp :=
(hv)p
hp

and initialize the momentum of each child cell

with (hu)1/2 := h1/2up, (hv)1/2 := h1/2vp, respectively. The coarsening operation uses the
averaged velocity of both joined cells to reconstruct the conserved quantities in the parent cell.

Using the velocity conservation yielded the best results for our simulations executed in the
ongoing sections. Alternative approaches such as conserving the momentum resulted in less
stable simulations and were thus not further considered.

137

CHAPTER 6. APPLICATION SCENARIOS

G10G9G7G5G4 G6 G8

0.90m2.93m4.36m2.40m

Figure 6.1: Scenario sketch for the solitary wave on composite beach benchmark.

Periodic boundary conditions

Wall
bounce-back
boundary
condition

Dynamic
Dirichlet

boundary
condition

Periodic boundary conditions

Figure 6.2: Base triangulation and boundary conditions for a solitary wave on composite
beach.

6.2 Analytic benchmark: solitary wave on composite beach

We selected the Solitary Wave On Composite Beach (SWOCB) benchmark of the NOAA1

benchmarks which is suggested for Tsunami model validation and verification2 to show the
correctness and applicability of the run-time adaptivity of the developed framework in the
context of an analytic benchmark. Despite its complex simulation scenario with non-constant
bathymetry, there is an analytical solution available [UTK98] which makes this benchmark
very interesting. Acknowledgement: This benchmark was implemented in collaboration with
Alexander Breuer.

6.2.1 Scenario description

We use scenario A of the benchmark, with a sketch of its scenario given in Fig. 6.1. This
benchmark is based on a wave which is first moving over a bathymetry with a constant depth
of 0.218 and then entering an area with three non-constant bathymetry segments, with a slope
of 1

53 , 1
150 , and 1

13 respectively.

Three different boundary conditions are required (see Fig. 6.2). We set the wall boundary
condition on the right side of Fig. 6.1 to bounce back boundary conditions (see Sec. 2.11.3).
The boundaries on the scenario sides (top and bottom side in Fig. 6.2) are set to be periodic
conditions, thus simulating an infinitely wide scenario. For the input boundary condition on the
left side with the wave moving in, we do not model the initial wave form and its momentum,
but use the boundary conditions of the analytical solution from the GeoClaw group provided
via the git repository3.

1nctr.pmel.noaa.gov
2http://nctr.pmel.noaa.gov/benchmark/Solitary_wave/
3https://github.com/rjleveque/nthmp-benchmark-problems/

138

nctr.pmel.noaa.gov
http://nctr.pmel.noaa.gov/benchmark/Solitary_wave/
https://github.com/rjleveque/nthmp-benchmark-problems/

6.2. ANALYTIC BENCHMARK: SOLITARY WAVE ON COMPOSITE BEACH

With our framework, we can setup such a geometry by assembling the domain with a
quadrilateral strip where each one is assembled by four base triangles, see Fig. 6.2. Due to our
requirement of uniquely shared hyperfaces (see Theorem 5.2.2), we are not allowed to assemble a
quadrilateral by only two triangles, since this would lead to the same adjacent cluster in the RLE
meta communication information for the left and right communication stacks. Therefore, we
used four triangles to assemble a quadrilateral, circumventing this issue for edge communication.
We initialize the domain with a strip of 128 quadrilaterals, hence resulting in 29 initial triangles
for refinement depth 0. Then, for initial refinement depth d, the domain is initialized with
2(9+d) triangle cells.

6.2.2 Gauge plots and errors

We first analyze the approximation behavior with different regular refinement depths without
the dynamic adaptivity enabled. The plots for water surface height at different water gauge
stations G5 - G10 are given in Fig. 6.3. We can see

• a good matching with the analytical solution and

• a convergence behavior to the analytic solution.

A more detailed analysis of the convergence error based on the L1 norm with the analytic
solution (see Sec. 6.1.2) is given in Fig. 6.4 for all water gauge stations. This is based on the L1
error norm computed over the interval [270, 295] and is decreasing for higher resolutions.

6.2.3 Dynamic adaptivity

Next, we select water gauge G8 for testing the possibilities of dynamic adaptivity based on the
L1 error norm computed for this gauge station. We executed several parameter studies with
the initial refinement depths d ∈ {0, 2, 4, 6, 8} and additional adaptive levels a ∈ {0, 2, 4, 6, 8}
with the constraint d+ a < 8. Hence, we do not allow any spacetree depths exceeding 8.

A good justification for dynamic adaptivity is to show improved accuracy results with less
cells involved in the computation. Following this idea, we executed the benchmark on a regular
grid with d = 6, yielding 29+6 = 32768 grid cells, computed the error norm (6.1.2) resulting in
an error of 3.80e–5 and use this as a baseline for comparison with simulations on dynamically
adaptive grids.

We execute the benchmark studies within the set of allowed d and a parameters described
above and compare the results using the net-update-based error indicators (see Sec. 6.1.3). The
refinement adaptivity parameter was chosen as r := 10−n with n ∈ N and the coarsening
paramter in a very conservative manner with c := r

10 . For a better overview, we only focus
on simulations yielding improved L1 error norm results compared to our baseline. The cell
distribution over time for these simulations is plotted in Fig. 6.5.

In the next step, we have a closer look on the parameter studies which do not only yield
improved results, according to the L1 error norm, but also require less cells in average. We use
d = [initialrefinementdepth]/[dynamicadaptiverefinementlevels] to abbreviate the adaptiv-
ity parameters. A plot for the corresponding cell distributions is given in Fig. 6.6 and detailed
information is presented in the next table:

139

CHAPTER 6. APPLICATION SCENARIOS

270 280 290 300

0.
00

0
0.

01
0

Gauge G5
he

ig
ht

270 280 290 300

0.
00

0
0.

01
0

Gauge G6

he
ig

ht

270 280 290 300

0.
00

0
0.

01
0

Gauge G7

he
ig

ht

270 280 290 300

0.
00

0
0.

01
0 Gauge G8

he
ig

ht

270 280 290 300

0.
00

0
0.

01
0 Gauge G9

he
ig

ht

270 280 290 300

0.
00

0
0.

01
0

Gauge G10

time (seconds)

he
ig

ht

time (seconds)

Analytic data
d=0
d=2
d=4
d=6
d=8

Figure 6.3: Analytic and computed solution for the surface elevation at the water gauge
stations.

140

6.2. ANALYTIC BENCHMARK: SOLITARY WAVE ON COMPOSITE BEACH

128 512 2048

L1
 E

rr
or

 n
or

m

Resolution in x direction

G5 G6 G7
G8 G9 G10

10-5

10-4

Figure 6.4: Error computed with the L1 error norm showing difference in analytic and com-
puted solution for the surface elevation at different water gauge stations. The resolution is given
for the edges on one of the long quad strips boundary. Both axes are in log scaling.

265 270 275 280 285 290 295

0e
+0

0
5e

+0
4

1e
+0

5

time (seconds)

nu
m

be
r

of
 c

el
ls

d=00/08, rc=1e−10/1e−11, error=2.511380e−05
d=00/08, rc=1e−09/1e−10, error=2.491782e−05
d=00/08, rc=1e−08/1e−09, error=2.379278e−05
d=00/08, rc=1e−07/1e−08, error=2.509860e−05
d=02/06, rc=1e−10/1e−11, error=2.519742e−05
d=02/06, rc=1e−09/1e−10, error=2.490752e−05
d=02/06, rc=1e−08/1e−09, error=2.394564e−05
d=02/06, rc=1e−07/1e−08, error=2.513387e−05
d=04/04, rc=1e−10/1e−11, error=2.509546e−05
d=04/04, rc=1e−09/1e−10, error=2.490265e−05
d=04/04, rc=1e−08/1e−09, error=2.388860e−05
d=04/04, rc=1e−07/1e−08, error=2.538650e−05
d=06/02, rc=1e−10/1e−11, error=2.512461e−05
d=06/02, rc=1e−09/1e−10, error=2.494631e−05
d=06/02, rc=1e−08/1e−09, error=2.393398e−05
d=06/02, rc=1e−07/1e−08, error=2.499876e−05
d=08/00, rc=1e−10/1e−11, error=2.519832e−05

Figure 6.5: Cell distributions over time for solitary wave on composite beach benchmark sce-
nario. The elements in the legend are encoded with “d=[initial refinement depth]/[dynamic
adaptive refinement levels], rc=[refine threshold]/[coarsen threshold], error=[L1 error to base-
line]”.

141

CHAPTER 6. APPLICATION SCENARIOS

265 270 275 280 285 290 295

0e
+0

0
5e

+0
4

1e
+0

5

time (seconds)

nu
m

be
r

of
 c

el
ls

d=00/08, rc=1e−08/1e−09, error=2.379278e−05
d=00/08, rc=1e−07/1e−08, error=2.509860e−05
d=02/06, rc=1e−08/1e−09, error=2.394564e−05
d=02/06, rc=1e−07/1e−08, error=2.513387e−05
d=04/04, rc=1e−08/1e−09, error=2.388860e−05
d=04/04, rc=1e−07/1e−08, error=2.538650e−05

Figure 6.6: Cell distributions over time for a simulation of a solitary wave on composite beach
benchmark on dynamically adaptive grids which require less cells and yield improved re-
sults. The elements in the legend are encoded with “d=[initial refinement depth]/[dynamic
adaptive refinement levels], rc=[refine threshold]/[coarsen threshold], error=[L1 error to base-
line]”.

142

6.3. FIELD BENCHMARK: TOHOKU TSUNAMI SIMULATION

Benchmark parameter error avg. cells time steps saved cells per time step

d=0/8, r=0.0001/0.00001 2.38e-5 23556.13 38839 28.1%

d=0/8, r=0.001/0.0001 2.51e-5 11795.13 30009 64.0%

d=2/6, r=0.0001/0.00001 2.39e-5 24326.79 40303 25.8%

d=2/6, r=0.001/0.0001 2.51e-5 12924.97 31354 60.6%

d=4/4, r=0.0001/0.00001 2.39e-5 28169.67 43500 14.0%

d=4/4, r=0.001/0.0001 2.54e-5 18075.68 36732 44.8%

d=6/0 (baseline) 3.80e-5 32768.00 37553 0.0%

d=8/0 (baseline 2) 2.52e-5 131072.00 75105 -300.0%

We can see, that for the “d=0/8, r=0.001/0.0001” parameter settings this yields an improve-

ment of 215−11795.13
215

≈ 64% cells used in average per time step and on the other hand, we get
more accurate results. Also considering the total amount of cells involved in the computations,
the benefit is increased to 37553·215−30009·11795.13

37553·215 ≈ 71.2% for the considered parameters.
With a domain regularly resolved with a refinement depth d = 8, the computed error is

2.52e–5 after 75105 time steps. We compare this to the parameter study “d=0/8, r=0.001/0.0001”

which yielded the best result for the same order of magnitude . This leads to 75105·217−30009·11795.13
75105·217 ≈

96.4% less cells involved in the computations.
These benefits are based on conservatively chosen adapvitiy parameters and on simulations

on a relatively small domain. Hence, we expect more improvements by further parameter studies
and larger domains. In the next chapter, we evaluate the potential of the dynamic adaptivity
on a realistic Tsunami simulation.

6.3 Field benchmark: Tohoku Tsunami simulation

With the simulation of the Tohoku Tsunami of 11 March 2011, a realistic benchmark is given
to show the potential of the developed algorithms for dynamically adaptive mesh refinement.
Here, we assume that the information on the water surface displacement information due to
earthquakes is available a short time after the earthquake.

Acknowledgements for the Tsunami simulation

The first dynamically adaptive Tsunami parameter studies with our cluster-based parallelization
approach were simulated in the beginning of 2012. These simulations were developed in collab-
oration with Alexander Breuer who contributed, among others, the required C++-interfaces to
the GeoClaw Riemann solver, the bathymetry and displacement datasets. Also Sebastian Ret-
tenberger contributed his development ASAGI [Ret12] to this studies to access the bathymetry
datasets.

However, this was not used anymore for the studies in this thesis due to reasons discussed
in the following section. We also like to thank the Clawpack- and Tsunami-research groups
for providing their software and the scripts as Open Source and a very good documentation to
reproduce their results.

Bathymetry and multi-resolution sampling

Due to dynamic adaptivity, the bathymetry data has to be sampled during run time.
The bathymetry datasets we used in this work are based on the GebCo4 dataset with its

highest resolution requiring 2GB of memory. With the different cell resolutions, sampling the

4http://www.gebco.net/

143

http://www.gebco.net/

CHAPTER 6. APPLICATION SCENARIOS

bathymetry dataset only on the finest level would lead to aliasing effects, and special care has to
be taken with interpolation [PHP02]. Therefore, we additionally preprocessed the bathymetry
computing multi-resolution bathymetry datasets. Using multiple resolutions, the coarser levels
then require 1

4 of memory compared to the next higher-resolved level, thus the overall memory
requirement is less than 3GB to store all levels. This memory requirement is considerably lower
than the total memory available per shared-memory compute node. Therefore, we decided to
use a native loader for the bathymetry data which loads the entire bathymetry datasets into
the memory.

For the Tohoku Tsunami simulation, the GebCo dataset is preprocessed with the Generic
Mapping Tools [WS91]; they map the bathymetry data given in longitude-latitude format to
the area of interest, see Fig. 6.7. We used a length-preserving mapping, which conserves the
length from each point on the bathymetry data to the center of the displacement data.

Initialization

For the Tohoku Tsunami, an earthquake resulted in displacements of the sea ground which led
to a change of the water surface height. We consider a model which assumes a change in the
water surface only at the beginning of the simulation. Hence, for the initial time step of the
Tsunami simulation, we require the information on the displacements describing these surface
elevation and follow the instructions provided within the Clawpack package5. The seismic data
we use is provided by the UCSB6 and used as input to the Okada model [SLJM11] computing
the displacements.

Our initialization is based on an iterative loop:

(1) In each iteration, the conserved quantities are reset to the state at time t = 0. These con-
served quantities are the water surface height including the displacement. The bathymetry
data is sampled from the multi-resolution datasets, and both momentum components are
set to zero.

(2) Then, a single time step is computed and the grid is refined with adaptivity requests based
on the net-update parameters (see Sec. 6.1.3).

(3) If the grid structure changed, continue at (1), otherwise continue with the simulation.

This setup relies on the local extrema of the displacement datasets already detectable by
the net-update error indicator.

Adaptivity parameters

Similar to the analytic benchmark in Sec. 6.2, we conducted several benchmarks with different
initial refinement parameters d = {10, 16, 22} and up to a = {0, 6, 12} additional refinement
levels. The refinement thresholds used by the error indicators are r = {50, 500, 5000, 50000}
and c = r

5 for the coarsening thresholds.

Comparison with buoy station data

We first conducted studies by comparing the smiulation data with the water-surface elevation
measured at particular buoy stations. This elevation data is provided by NOAA7. The tidal

5http://depts.washington.edu/clawpack/users/quick_tsunami.html
6http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2011/03/0311_v3/Honshu.html
7National Oceanic and Atmospheric Administration, National Data Buoy Center

144

http://depts.washington.edu/clawpack/users/quick_tsunami.html
http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2011/03/0311_v3/Honshu.html

6.3. FIELD BENCHMARK: TOHOKU TSUNAMI SIMULATION

Jap
an

0 5000 10000 15000 20000

-0
.4

0.
0

0.
4

0.
8

Dart station 21401

time since earthquake (seconds)he
ig

ht
 re

la
tiv

e
to

 s
ea

le
ve

l (
m

et
er

s)
0 5000 10000 15000 20000

-0
.5

0.
0

0.
5

1.
0 Dart station 21413

time since earthquake (seconds)he
ig

ht
 re

la
tiv

e
to

 s
ea

le
ve

l (
m

et
er

s)

0 5000 10000 15000 20000

-1
0

1
2 Dart station 21418

time since earthquake (seconds)he
ig

ht
 re

la
tiv

e
to

 s
ea

le
ve

l (
m

et
er

s)

0 5000 10000 15000 20000

-0
.4

0.
0

0.
4

Dart station 21419

time since earthquake (seconds)he
ig

ht
 re

la
tiv

e
to

 s
ea

le
ve

l (
m

et
er

s)

Bouy station data
d=10/12, rc=50000,10000
d=10/12, rc=50,10
d=16/06, rc=50000,10000
d=16/06, rc=50,10
d=22/00, rc=50,10

Figure 6.7: Tohoku Tsunami simulation with different buoy stations marked with yellow
arrows. The measured and simulated water surface displacements at the four relevant buoy
stations are plotted for selected adaptivity parameters.

waves are not modeled within our simulation, but included in the buoy station data. To remove
this tidal-wave induced water-surface displacement, we use the detide scripts (see [BGLM11]).

The simulation domain and the simulated and measured displacements of the buoy stations
are visualized in Fig. 6.7. This visualization of the simulation grid and the water and bathymetry
data is based on a simulation with adaptivity paramters chosen for a comprehensible visualiza-
tion of the grid.

Regarding the time of the wave front hitting the buoy station, the results show a very good
agreement with the data recorded by the buoy stations. However, we should consider that
the underlying simulation is based on displacement data computed with a model. Therefore,
no concrete statement in the direction of a realistic simulation should be made here, but we
continue determining the possibilities with our dynamically adaptive simulations.

Dynamically adaptive Tsunami simulations

We executed Tsunami simulations with the adaptivity parameters described in the previous
section. To reduce the amount of data involved in our data analysis, we selected a particular
buoy station. We expect, that wave propagations to buoy stations over a longer time are
more influenced by factors such as the grid resolution and other parameters compared to wave
propagations which take only a short time to reach a buoy station. Therefore we select buoy
station 21419, with the peak of the first wave front arriving at the latest point in time compared
to the other stations.

We compute the error norm (6.1.2) on the time interval [0, 20000] for several adaptivity
parameters; the results are given in Table 6.1. Figure 6.8 shows bar plots of the errors and
the normalized average number of cells relative to the maximum value. Dynamically adaptive
simulations require an improvement in the error and the number of cells. Detailed results are
discussed next.

We use da = 20/0 (initial refinement depth of 20, no additional refinement levels) as the

145

CHAPTER 6. APPLICATION SCENARIOS

d=10/0

d=10/6 r=50000/10000

d=10/6 r=5000/1000

d=10/6 r=500/100

d=10/6 r=50/10

d=10/12 r=50000/10000

d=10/12 r=5000/1000

d=10/12 r=500/100

d=10/12 r=50/10

d=16/0

d=16/6 r=50000/10000

d=16/6 r=5000/1000

d=16/6 r=500/100

d=16/6 r=50/10

d=18/0

d=20/0

d=22/0

0.001 0.01 0.1 1

Normalized L1 error norm Normalized number of cells

Error and number of cells relative to the maximum value

Figure 6.8: Visualization of computed error vs. required number of cells for the entire simu-
lation. More efficient implementations require smaller bars, both for the error and the number
of cells used in the entire simulation.

Parameter study L1 error Processed mio. cells Saved cells

da=22/0 0 88936.02 -719.16%
da=20/0 (baseline) 0.026121 10856.96 0%
da=18/0 r=50/10 0.0306024 1298.14 88.04%
da=16/6 r=50/10 0.0005550 51775.64 -376.89%
da=16/6 r=500/100 0.0013608 36650.05 -237.57%
da=16/6 r=5000/1000 0.0055551 7342.58 32.37%
da=16/6 r=50000/10000 0.0198121 1151.38 89.40%
da=16/0 0.0337187 150.34 98.62%
da=10/12 r=50/10 0.0005356 51275.72 -372.28%
da=10/12 r=500/100 0.0013975 36127.60 -232.76%
da=10/12 r=5000/1000 0.0055124 6784.04 37.51%
da=10/12 r=50000/10000 0.0213234 452.25 95.83%
da=10/6 r=50/10 0.0333180 97.43 99.10%
da=10/6 r=500/100 0.0333127 95.11 99.12%
da=10/6 r=5000/1000 0.0333143 75.89 99.30%
da=10/6 r=50000/10000 0.0325013 22.86 99.79%
da=10/0 0.0406040 0.26 100.00%

Table 6.1: Different parameter studies and computed error relative to the baseline da=22/0
and saved cells relative to the baseline da=20/0.

146

6.3. FIELD BENCHMARK: TOHOKU TSUNAMI SIMULATION

baseline for comparison with our dynamically adaptive grids. Comparing this baseline with
da = 22/0 shows that about 8 times more cells are involved in the computation. This is

(a) due to two additional refinement levels resulting in 4 times more cells and

(b) due to the reduced CFL condition.

With the computed error of 0.026121 for our baseline da = 20/0, we first highlighted each
computed error with bold face and each number of processed cells below 10856.96 mio. in Table
6.1. Then, the percentage of saved cells compared to the baseline is given in the right column.
The last column shows the possibilities with the impact of computational amount with our
dynamic adaptivity: we can save more than 95% of the cells required for yielding improved
results according to the L1 error norm.

We continue with a more detailed execution of the simulation on a Westmere 32-core shared-
memory system to determine the possible savings in computation time. The cluster split thresh-
old is automatically chosen, keeping the number of clusters close to 512. The regular resolution
created 512 clusters in average, yielding 16 clusters per core. We measure the time after the ini-
tialization of the earthquake induced displacements. The timings for the simulation traversals,
adaptivity traversals and split/join phases are presented separately in the following table:

Simulation parameters

da=10/12 r=50000/10000 da=20/0 da=22/0

Simulation traversals 13.63 sec 288.09 sec 2370.19 sec

Adaptivity traversals 10.44 sec 23.05 sec 157.47 sec

Split/join operations 7.84 sec 5.41 sec 11.22 sec

Sum 43.71 sec 336.03 sec 2557.11 sec

The sum of all values is slightly different to the sum of all measured program phases due to,
e.g., overheads induced by measurement. We can see, that the adaptivity traversals and the
time spend into the split/join operations exceed the time invested for the simulation traversals.
However, this relative overhead pays off due to the reduced overall computation time compared
to the regular grid resolution.

(a) da = 20/0:
We start by comparing the simulation-traversal time for running the wave propagation on
the regularly resolved domain da = 20/0 with the entire simulation time (time stepping,
adapvitity, split/joins) required by our dynamically adaptive simulation da = 10/12, r =
50000/10000. Compared to the simulation da = 22/0, this yields a performance improve-
ment of 288.09

43.71 = 6.6.

We next analyze the theoretical maximum performance improvements based on the average
number of cells per time step: for the simulation on a dynamically adaptive grid, only
69070 cells per time step are used in average whereas for the regular grid, 2097152 cells were
processed per time step, yielding a factor of 30.4 as the expected performance improvement.
However, we only gained a factor of 6.6 for which we account by the following three issues:

• The size of the dynamically adaptive grid with only 69070 cells in average per time
step is very small, resulting in a relatively low scalability.

• Additional overheads are introduced by the dynamically changing grid structure

• The number of required time steps is increased from 5177 for the da = 20/0 simulation
to 6543 for the simulation on the dynamically adaptive grid. This is due to smaller
grid cells on the dynamically adaptive grid lead to a decreased time-step size.

147

CHAPTER 6. APPLICATION SCENARIOS

(b) da = 22/0:
Here, we assume that the simulation on the dynamically adaptive grids are sufficiently
accurate so that we can compare the refinement depth of the regularly resolved domain
to the maximum refinement depth of the dynamical adaptive simulation. This also avoids
the aforementioned issue (3) with smaller time steps. Then, we can compare the runtime
of 43.71 seconds for the dynamically adapative simulation da = 10/12, r = 50000/10000
with the simulation runtime of 2370.19 seconds for a regularly resolved domain da = 22/0.
Here, we get a performance improvement of 2370.19

43.71 = 54.2. To give another example for the
dynamically adaptive simulation with da = 10/12, r = 10000/2000, we still get a speedup
of 2370.19

144,42 = 16.4. We want to emphazise again, that these speedups only hold under the
assumption, that the results of the dynamically adaptive simulation are sufficiently accurate.

With simulations on dynamically changing grids, this also results in dynamically changing
resource requirements over the simulation runtime. E.g. considering the results for the dynam-
ically adaptive simulation in the aforementioned benchmark scenario (a), the simulation is not
able to scale very well on the assigned number of cores due to its small problem size. With con-
currently executed applications with dynamically changing resource requirements, e.g. multiple
simulations for parameter studies on dynamically adaptive grids, an over-runtime changing re-
source assignment can result in increased efficiency on which we put our focus on in part IV of
this thesis.

6.4 Output backends

The presented application scenarios are mainly driven to gain some insight into the simulated
scenario. A visualization of the entire or a fraction of simulation data is one of the most
frequently used way to gain this insight and we present different visualization backends.

We aim at generality of our backend infrastructure by considering both on- and off-line
backends. For our off-line backend, we use VTK binary file output for off-line visualization
with Paraview. Our on-line backend is based on OpenGL and also offers interactive steering of
the simulation. The greatest common divisor for OpenGL and VTK backends regarding their
simulation data storage format is storing of geometry and primitive data in separated arrays
which we use as the input-data format to both backends.

Our main goals are then given by

(a) the development of an efficient off-line backend by writing the simulation data to persistent
storage while continuing the simulation in the background and

(b) the visualization of a closed surface for DG simulations.

6.4.1 VTK file backends

With the interest of scientists to analyze the simulation data at different time steps, this data
has to be made available for further processing. Using the VTK file backend, the data has to
be written to persistent memory. However, typically only a very low bandwidth is available
to access such a persistent memory compared to the main memory. Hence, also writing large
datasets to it would result in severe bottlenecks and thus idling cores. Here, we studied several
implementations to write the output data to persistent memory:

• No output :
This benchmark does not write any files to determine the peak performance.

148

6.4. OUTPUT BACKENDS

• Default (blocking):
The default output method blocks until the function which is called to write all simulation
data to persistent storage finished its execution.

• pthread :
A separate thread is started which is writing the simulation data in background to the
harddisk while still continuing with the execution of the simulation on all available cores.
This can lead to a single core shared among the writer and a simulation thread.

• pthread, lastcore:
This execution is similar to the aforementioned execution above, but does not use the last
core for the simulation. This aims at avoiding resource conflicts with the executed writer
thread.

• Writer task :
Using TBB for thread initialization, we can use TBB fire-and-forget tasks [MK11]. These
tasks are enqueued to a working queue without any thread waiting for the finishing of the
task. The idea is to solve the issues with both pthread versions:

(a) The default pthread version results in potential resource conflict due to preemption
with other threads. Using a writer task avoids this due to work stealing.

(b) The lastcore variant results in an idling core, once the output was written to the
persistent memory.

Using a writer task, other tasks can be processed by the same thread, e.g. with work
stealing, after the task finished writing data to persistent memory.

The domain triangulation is based on a quadrilateral and the simulation grid is initialized
with d = 10 and with up to a = 16 additional refinement levels. The simulation computes a
radial dam break with the Rusanov flux solvers for 201 time steps. The output data itself is
preprocessed in parallel by using all available cores. Such a simulation results in 4.55 mio. cells
processed in average per simulation time step and with binary VTK file sizes above 300 MB. We
used our Intel platform (see appendix A.2) and write the simulation output data to persistent
memory (Western Digital Hard Drive of the typ Red 2 TB with a 64 MB cache and a theoret-
ical transfer rate of up to 6 Gb/s). Results for different frequencies of writing output files to
persistent memory are given in Fig. 6.9.

The blocking version shows a clear disadvantage compared to the other methods since cores
idle until the function which writes the output data finished writing the data. Such idling
cores are compensated with the pthread versions. Both pthread versions show an improvement.
However, the dedicated writer core which we implemented to avoid oversubscription of cores
leads to decreased performance of 0.85%, 3.68% and 0.42% percent respectively for writing
output files each B = (25, 50, 100) time steps. Hence, avoiding resource conflicts does not
result in a robust performance improvements for the tested simulation parameters. Here, the
oversubscription of cores should be used.

With TBB fire-and-forget tasks, we get a robust performance improvement compared to all
other writer methods. Furthermore, for writing the simulation data only after more than 100
time steps, the performance loss for writing data to persistent memory is only at 4% compared
to writing no simulation data.

149

CHAPTER 6. APPLICATION SCENARIOS

B=25 B=50 B=100
0

20

40

60

80

100

120

Write grid data after B time steps

M
ill

io
n

ce
lls

 p
er

 s
ec

on
d

no output default (blocking) pthread, lastcore pthread TBB writer task

Figure 6.9: Benchmark statistics with million cells per second processed and for different
output backends. The parameter B specifies the number of time steps when to write data to
persistent memory.

Figure 6.10: Visualization methods of the surface of a shallow-water simulation. Left image:
the direct visualization of the finite-volume simulation leads to gaps in the surface. Right image:
the closed surface leads to less distraction and improved analysis of the data.

6.4.2 OpenGL

Besides the interactive steering possibilities of our OpenGL backend, here we like to focus on
the reconstruction of a closed surface for visualization with the OpenGL backend with the
vertex-based communication which was originally developed for node-based flux limiters. For
shallow-water simulations, a direct visualization of the approximated solution with simulations
based on the DG method leads to a surface with gaps. An examplanory visualization of a
particular time step for a radial dam break is given in Fig. 6.10. Such gaps lead to a distraction
of the person analyzing the data. For the visualization of a closed surface for shallow water DG
simulations, cell data such as the water surface height can be averaged based on the surface
height in cells sharing the vertex.

A generation of triangle strips for visualization was already considered with algorithms based
on the Sierpiński SFC [PG07]. To our best knowledge, no visualization was developed so far
which is capable of computing both vertex and normal data on-the-fly for surface reconstruction
with dynamically adaptive triangular grids based on simulation data with a close to O(#cells)
complexity.

We compute a closed surface with our vertex-based communication scheme. Here, the

150

6.5. SIMULATIONS ON THE SPHERE

A
B
CD

E

F
G
H I J

KL

Figure 6.11: Cubed sphere domain triangulation with periodic boundary conditions.

per-cell approximated height is averaged at the vertices and used as the vertex for the water
surface visualization. However, only considering vertex coordinates with a vertical displacement,
e.g. based on water surface displacement, would not result in proper shading since normals are
required at vertices. Therefore, we continue with additional traversals computing the normals
associated to the previously computed vertices. This is based on the face orientations and
quantitative properties for each triangle, see [JLW05] for further information.

Since traversing the cells is O(n) with a negligible overhead ε for reduce operations for
a large cluster, and by using a fixed number of grid traversals, this also yields an O(n + ε)
complexity for the reconstruction of our closed surface including the normals at each vertex.
Other algorithms to reconstruct a closed surface such as the Voroni triangulation require at least
an O(n log n) algorithm in the worst-case [AK00], whereas our SFC traversal yields a robust
O(n+ ε) algorithm for the surface reconstruction, including cluster-based parallel processing.

Examples of the resulting surface visualization with the OpenGL backend are e.g. given in
Fig. 6.10 and Fig. 6.12.

6.5 Simulations on the sphere

Here, we present the possibility of simulations on the sphere based on our development. Using
a two-dimensional quadrilateral domain shape and mapping this domain onto a sphere would
lead to so-called pole singularities with sharp angles. Several solutions are available such as an
icosahedral, a cubed sphere and a ying-yang grid (see [Beh06]). In this work, we use the cubed
sphere, which was originally intended to be used for quadrilateral-like primitives.

With our framework being optimized for triangular grids created with a bisection, we start
by assembling two triangles to a quadrilateral. Then each quadrilateral can be used as a cube
face. This cube can be unfolded to a two-dimensional mesh which assembles the faces of a cube
with a base triangulation given in Fig. 6.11. This figure also shows the cube-periodic boundary
conditions with the arrows.

The cube’s center is assumed to be placed into the sphere’s center with a grid on each side
of the cube. Then, each cube side is projected to the surface of the sphere and, due to the
changes in angles, creates a distorted grid. Projection methods can then be e.g. equidistant or
equiangular ones [NTL05].

To account for such a distortion of grid cells, the terms of our weak formulation of the
continuity equation (see Eq. (2.8)) need to be extended to account for the projection of the
cell from “sphere space” to “reference space”, see [Gir06] for detailed information. To compute
these distortions, we require the knowledge on the cube’s face as well as the vertex coordinates

151

CHAPTER 6. APPLICATION SCENARIOS

Figure 6.12: Visualization of the experimental earth-scale Tohoku Tsunami simulation exe-
cuted on dynamically adaptive grids with the OpenGL backend.

on the sphere. Based on the two-dimensional vertex coordinates, we can then

(a) determine the cube’s face id,

(b) compute the coordinates of the triangles on the spherical surface and compute the distortion
matrices with equations given in [Gir06,CLDL09].

Further extensions such as the Coriolis force and also the verification of the implementation of
these projections is work under progress.

Combining this simulation with our OpenGL output backend which was discussed in Sec-
tion 6.4.2, we can compute and directly visualize the propagation of the Tohoku Tsuami simula-
tion over the entire earth globe based on the augmented Riemann solvers [Geo08]. Examplanory
screenshots are given in Fig. 6.12.

6.6 Multi-layer simulations

With the shallow water equations, a simplification of an originally three-dimensional model is
used. This allows computationally more efficient simulations with results close to the three-
dimensional formulation. This is not possible in all cases such as weather and climate simula-
tions. Considering e.g. the model used by the Deutscher Wetter Dienst (DWD), a multi-layer
discretization in the vertical direction is used to simulate three-dimensional effects.

We also extended our framework with such a multi-layer approach. Here, we present the
multi-layer simulation of the Euler equation. A constant number of layers is assumed in each
grid cell. The two-dimensional cell-data storage is then used to store a pile of three-dimensional
cells. We introduce a new terminology for this extension: the three-dimensional cells are further
denoted as volumes. Edges are further described as adjacent faces and the shared interfaces of
two piled cells are named local face, see Fig. 6.13.

For a basic 3D DG simulation, the following major building blocks of a multi-layer simulation
are required:

152

6.6. MULTI-LAYER SIMULATIONS

shared face

local face

Figure 6.13: Multi-layer approach: multiple cells are stored triangular grid cell.

1. Gather flux parameters on faces.

2. Compute fluxes on adjacent faces and local faces.

3. Compute time step size.

4. Based on flux updates and time step size, integrate the time in each volume.

We also have to compute the time step size for the local faces. This would require an
extension of the framework with additional interfaces. However, we overcome this by utilization
of (a) the cluster-local user data to temporarily store flux updates and (b) the kernel interfaces
for storing edge communication data:

• Executing flux computations for local faces:
For communication of flux parameters via edges, the corresponding interface is executed
exactly once for each triangle edge and for each time step.

Hence, we can use one kernel handler, e.g. for the hypotenuse (cell to hyp). This allows
us to compute fluxes for the local faces.

• Storing flux updates:
After computing the fluxes for the local faces, these fluxes have to be temporarily stored
until the time step size is known. Since we aim at memory efficiency computations, we
do not store the fluxes in each cell, since they are e.g. not required during adaptivity, but
we extend the cluster-local user data with an additional stack system to temporarily push
computed fluxes to this stack.

• Computing time step size:
We also store the wave speed computed for the local faces to cluster-local user-data.
After computation of the fluxes with the adjacent faces of the cluster, the wave speed
from the local faces is involved in returning the per-cluster maximum wave speed required
for computing the maximum time step size.

• Time stepping:
With the flux updates for the adjacent faces and for the local faces fetched from the
cluster-local stack, the DoF are advanced in time.

This extension finally leads to the capability of handling multi-layered simulations transpar-
ently to the framework which was originally only developed for two-dimensional simulations.

153

CHAPTER 6. APPLICATION SCENARIOS

6.7 Summary and outlook

We presented several application scenarios to show the applicability and benefits of dynamically
adaptive grids. Based on an analytic benchmark, we showed the correct implementation and
that over 96% cells can be saved with a dynamically adaptive grid. Then a Tsunami simulation
was implemented to show the applicability of the dynamic adaptivity within a realistic scenario.
With a relatively small benchmark scenario, the computation time for the simulation was al-
ready improved by a factor of 6.6 with results of higher accuracy compared to the simulation
on a regular grid. Assuming, that the results with the dynamically adaptive simulation are suf-
ficiently accurate, the runtime improvement is larger than a factor of 54. For the data analysis
with an offline processing, we tested several output backends for online and offline processing.
Here, online processing allows direct visualization of the simulation as well as interactive steer-
ing methods. We further developed several ways of writing output data to persistent memory.
Here, writer tasks result in only 4% loss in performance compared to a simulation which is not
writing any output data. Finally, we presented our extensions for simulations on the sphere and
a multi-layer discretization.

There are a couple of issues that deserve further investigation in the future. Among others,
these are given as follows:

• Cluster-based local-time stepping:
With the naming “clustering” originating from the cluster-based local-time stepping idea,
this is obviously one possible utilization of our approach. Since our cluster-based approach
is similar to block-structured grids (see Sec. 5.10.5), we expect that an extension to cluster-
based local-time stepping can be accomplished in a similar way as in the PeanoClaw
[UWKA13] framework.

• Resiliancing:
The independency of clusters allows an efficient duplication and forwarding of one or
more clusters to other compute nodes for resiliancing. A replacement of a computation
node can then be accomplished by initializing the simulation at another node, based on
the duplicated clusters and a reconstruction of RLE adjacency information only on the
cluster-adjacent MPI ranks.

• Dynamically changing simulation data:
Considering our GUI which also offers interactive steering methods such as setting pa-
rameters during the simulation’s runtime and modifying the cell data and grid structure,
this yields further applications. Some of them are e.g. the interactive testing of flooding
scenarios or the simulation of dynamic earthquake-induced displacement data.

154

PART IV

INVASIVE COMPUTING

Current batch-job schedulers of super-computing centers rely on a static number of resources
assigned to a program during its execution time. This number of resources is typically specified
by the application developer at the time of enqueuing the application to the batch system.

Considering the overall system’s state with multiple applications executed in parallel, such
a static resource allocation is incapable to account for runtime-changing resource requirements
of applications. These changing resource requirements are e.g. induced by simulations with
dynamically adaptive mesh refinement. Hence, there is a demand for dynamic resource alloca-
tion which leads to challenging issues such as coping with the dynamic resource allocation for
concurrently executed applications on HPC systems.

With the Invasive Computing paradigm, a promising approach is suggested for a dynamic
resource management. This paradigm was initially suggested for multiprocessor System-on-
Chip (MPSoC), in particular tightly-coupled processor arrays [Tei08] focusing on the efficient
utilization of a two-dimensional array of computing cores for prospective computing architec-
tures with hundreds and thousands of cores. There, the authors introduce the idea of the ability
of programs to copy and execute themselves on computing resources in their proximity. Three
basic operations are suggested; here we give a brief description on the operations which are
relevant for this work:

• With invade, each computation resource can request additional resources. Desired prop-
erties of the requested resources can be specified by an additional constraints. Such
constraints can be e.g. the number of cores, floating-point support, etc.

• The next step is infect which replicates the program into the successfully invaded cores
and starts the program.

• Once the computations are finished, a retreat frees the previously invaded cores and makes
them available for further invades.

Despite originally designed for MPSoCs, the Invasive Computing paradigm also yields the
potential of being applied to our HPC computing issues.

Chapter 7: Invasive Computing with invasive hard- and software
We first give a brief introduction to our development on invasive extensions for algorithms
developed within the Transregio research project “Invasive Computing”. Since this thesis fo-
cuses on Invasive Computing on HPC shared-memory architectures, we only show the multigrid
algorithm as a representative application from the area of scientific computing to show the
differences of Invasive Computing on MPSoCs to Invasive Computing on HPC shared-memory
systems.

Chapter 8: Invasive Computing for shared-memory HPC systems
For Invasive Computing in HPC on shared-memory systems, a concrete realization of Invasive

155

Computing is presented in this chapter. This is followed by results on the paradigm applied to
simulations on dynamically adaptive grids, including Tsunami parameter studies.

156

7
Invasive Computing with invasive hard- and software

We give a brief overview of our work on Invasive Computing within the “Invasive Computing”1

transregio (TR) project which inspired the application of the invasive paradigm also in HPC.
Thousands and more heterogeneous cores are expected on future multi-processor systems on

chips [Tei08]. For concurrently executed applications or applications with changing resource re-
quirements during runtime, this demands an orchestration of resources. Our approach is based
on giving the application the possibility to specify resource requirements during run time with
the invasive commands invade, infect and retreat described in the previous section. E.g. if an
application fails to yield a particular parallel efficiency due to reduced workload, it can retreat
from resources. This makes the resources available to other applications. To support these
invasive commands in an efficient way, several challenges have to be solved such as scheduling of
resource-competing applications, programmability, algorithmic redesign, new hardware compo-
nents, etc. Contrary to our HPC approach which relies on extensions to standard parallelization
models and software extensions only, the invasive hardware platform developed in the TR also
offers invadable hardware components on a multiprocessor systems-on-a-chip (MPSoCs) and an
invasive software tool chain.

Our main task in this TR is to provide the knowledge on algorithms from the area of scientific
computing. Based on the requirements of our algorithms, we took part in the decision making
of several developments of the Invasive System on the hard- as well as software layers. To show
the differences to our HPC approach, we continue to give a brief introduction to the Invasive
System.

7.1 Inavsive hardware architecture

Here we give a short overview of the Invasive System architecture from the HPC perspective.
An example configuration of the Invasive Chip is given in Fig. 7.1.

• Network on Chip:
The hardware architecture is build upon a multi-tile infrastructure. The network on chip
(NoC) connects all tiles with a two-dimensional mesh network.

• Tile:
Each tile can have a local memory, a CiC, standard Leon cores and special accelerator
cores.

• CiC:
Programs are able to start computations on the same or on another tile. They enqueue
the kernels in the Core i-let Controller (CiC) of the target tile. The CiC is then able to
start the execution of kernels (i-lets) on the cores without software scheduling overheads.

1http://invasic.informatik.uni-erlangen.de

157

http://invasic.informatik.uni-erlangen.de

CHAPTER 7. INVASIVE COMPUTING WITH INVASIVE HARD- AND SOFTWARE

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

memory
tile

core core

core core

mem.CiC

core core

core core

mem.CiC

mem.CiC

TCPA

core core

core core

mem.CiC

iCore

CiC mem.

iCore

core core

core

Figure 7.1: Example configuration of the invasive multi-tile architecture. See the text for a
further information.

• Accelerators:
Besides standard Leon cores, two different types of cores are available with the Invasive
system: On the one hand, tightly-coupled processor arrays (TCPAs) which are based on
a regular mesh of cores. The resources used by an existing programs can be extended by
infecting processing elements in their proximity or shrunk by retreating from processing
elements. On the other hand, i -Cores provide a run-time adaptive instruction set and
adaptive micro architecture. This allows uploading of special instructions and modification
of the core parameters to support applications which have different requirements.

• Memory model:
Each tile has a local memory with cache-coherent access on each tile. The global memory
on the memory tile is segmented and each segment is assigned to a single tile. For the
global-memory model and the the vision of thousands of invadable cores on one System
on Chip (SoC) making a cache coherency very challenging, we decided to use no cache
coherency between tiles.

7.2 Invasive software architecture

Considering algorithms on a system without cache coherency among the tiles, this requires
extensions similar to distributed memory systems, e.g. a message-passing interface (MPI). Par-
allelizing an application on such distributed-memory systems typically results in an increased
complexity.

This complexity is compensated by the development of our algorithms in the X10 language
[ESS05]. Additionally, an X10 compiler [BBMZ12] is developed to generate optimized code for
the Invasive Chip and the OctoPOS operating system [OSK+11] running on the chip.

A decentralized agent system [KBL+11] then schedules the resources among the executed
applications, based on the constraints and possibly other input parameter from hardware mon-
itors.

The X10 language supports a so-called partitioned global address space (PGAS). This im-
proves the usability for accessing arrays which are distributed among several tiles via a virtual
continuously stored array structure. This hides the physical placement of the data chunk from

158

7.3. INVASIVE ALGORITHMS

Figure 7.2: Heat distribution on a metal plate with a laser engraving symbols from left to
right onto the metal [BRS+13].

the application developer. For our algorithms, we use the distributed arrays from the X10
library.

It is important to mention, that the PGAS features in X10 already compensate the additional
burden which is put on the developer due to the distributed-memory system. However, there’s
still an increased complexity due to required extensions of algorithms to cope with dynamically
changing number of compute resources.

For the programmability of the Invasive Computing paradigms, we contributed a variety of
algorithmic patterns to the research groups of Prof. Dr. G. Snelting and Prof. Dr. J. Teich, result-
ing in the invadeX10 framework. This framework offers basic invasive computing interfaces such
as invade, infect and retreat via the invadeX10 [BRS+13]. Furthermore, additional extensions
were required to compensate the complexity which is introduced by the Invasive Computing
paradigms. Such extensions are e.g. the redistribution of distributed arrays after a change of
resources to improve the data locality, infections supporting recursive reduce operations to
compute a surplus, etc.

7.3 Invasive algorithms

With the knowledge about algorithms from the area of scientific computing, we developed nu-
merical core algorithms in invadeX10. Such algorithms are a multigrid solver with changing
workload due to restrictions and prolongations, a dynamic adaptive quadrature based on recur-
sion and lightweight tasks and a Peano-SFC-based matrix-matrix multiplication [Bad08].

Since the multigrid solver with its multi-resolution access is one of the most interesting
algorithms for invasion, we selected this solver to highlight the required changes in the program
structure and like to refer to [TOS00] for a detailed introduction to such multigrid solvers.

As a representative application scenario, we selected a laser engraving symbols on a two-
dimensional metal plate, see Fig. 7.2. This process can be simulated with the discretization
of the heat equation which is discussed next, followed by a brief introduction to the multigrid
algorithm which is then used to solve the system of equations.

Let the change in heat distribution over time for a two-dimensional problem be given by

dT (x, y, t)

dt
= α∆T (x, y, t) + E(x, y, t), (x, y) ∈ Ω.

on a domain Ω = [0, 1]2 with the temperature T , the external energy E (e.g., a laser) and the
thermal diffusivity coefficient α. We use Dirichlet boundary conditions of 0 on the domain

159

CHAPTER 7. INVASIVE COMPUTING WITH INVASIVE HARD- AND SOFTWARE

boundaries dΩ. For the discretization in time, we use 1st-order forward differences and an
implicit update scheme for the time stepping, yielding

T (x, y, t+ ∆t)− T (x, y, t)

∆t
= ∆T (x, y, t+ ∆t) + E(x, y, t).

This can be formulated with a system of linear equations A~x = ~b which can be solved with
iterative solvers to compute an approximated solution.

Using a Jacobi solver, a single iteration mainly smooths the high-frequency errors, only.
In case of low-frequency errors, multigrid solvers are commonly used. Here, we use the error-
correction scheme of the multigrid solvers which restricts the residual ~r := ~b−A~x∗ successively
to coarser levels. Then, on each coarser level, we apply a Jacobi smoother iteration to compute
the residual and restrict the residual to the coarser level. Each restriction operation then results
in a reduction of the workload on each level by a factor of 4. After the execution of the smoother
on the coarsest level2, the computed error-correction is successively prolongated to the higher-
resolved levels and an additional smoother iteration is executed before prolongating it to the
next level.

With our heat equation and with a size of the simulation domain of 128× 128, 7 levels with
different resolutions are used. Since each level has a changing workload, this also results in a
dynamical resource requirement.

For the parallelization, we use the distributed arrays from X10 to store the approximated
solution ~x of the iteration, the right side ~b and the residual ~r for each level.

Next, we compare a pseudo code of a non-invasive and an invasified multigrid algorithm
in Fig. 7.1. To show the applicability of the dynamical resource management, we shrink the
number of compute resources during the restriction.

Standard multigrid Invasive multigrid

vcyc l e (N, x , b) :
r = computeResidual (N, x , b)
whi le | r | > th r e sho ld :

v c y c l e I t e r a t i o n (N, x , b)
r = computeResidual (N, x , b)

v c y c l e I t e r a t i o n (N, x , b) :
smoother (N, x , b) # Pre−smooth
r = r e s i d u a l (N, x , b) # Res idual

Nr = N/2 # Res t r i c t ed Level
r r = r e s t r i c t (N, r) # Re s t r i c t Res idual

To new Claim
er = f l oa tAr ray (Nr , 0) # Setup with 0
v c y c l e I t e r a t i o n (Nr , er , r r) # V−Cycle

e = pro longate (Nr , er) # Prolongate e r r o r
x = x + e # Apply c o r r e c t i o n

smoother (N, x , b) # Post−smooth
return

vcyc l e (N, x , b , homeClaim) :
r = computeResidual (N, x , b , homeClaim)
whi le | r | > th r e sho ld :

v c y c l e I t e r a t i o n (N, x , b , homeClaim)
r = computeResidual (N, x , b , homeClaim)

v c y c l e I t e r a t i o n (N, x , b , claim) :
smoother (N, x , b , claim) # Pre−smooth
r = r e s i d u a l (N, x , b , claim) # Res idual
nc = reinvade (Nr , claim) # Reinvade Claim

Nr = N/2 # Res t r i c t ed Level
r r = r e s t r i c t (N, r , nc) # Re s t r i c t Res idual

to new Claim
er = f l oa tAr ray (Nr , 0 , nc) # Setup with 0
nc2 = vcy c l e I t e r a t i o n (Nr , er , rr , nc) # vcyc l e

Red i s t r i bu t e due to changed Claim
i f (nc != nc2) :

nc = nc2 # Update Claim
x . redistribute (Nr , nc) # Data Migrat ion
b . redistribute (Nr , nc) # Data Migrat ion

e = pro longate (Nr , er , nc) # Prolongate Error
x = x + e # Apply Correct ion

smoother (N, x , b , nc) # Post−Smooth
return nc # Return po s s i b l y modi f ied claim

Table 7.1: Comparison of pseudo code for non-invasive and invasive versions of the X10
multigrid [BRS+13].

Based on the invadeX10 framework, each v-cycle iteration is extended with the claim as a
parameter which describes the currently invaded processing elements. The resources in these
claims can be dynamically changed with a reinvade, based on the number of slices of the solution

2Typically a direct solver is used here

160

7.4. RESULTS

5

10

15

20

25

30

35

40

Time

C
o
re
s

Appl. 1

Appl. 2

Appl. 3

Appl. 4

Figure 7.3: Dynamic resource distribution with four concurrently executed multigrid algo-
rithms. The huge gap represents the first v-cycle of all applications [BRS+13].

array on the currently restricted multigrid level. In case that a reinvade led to a change of
resources (nc != nc2), also the distributed arrays are redistributed to improve the locality to
the computing resources.

7.4 Results

To evaluate the feasibility of dynamical reassignment of compute resources with concurrently
running applications, we setup a test environment on a 40-core HPC system to show the func-
tionality of the dynamic resource redistribution. Four multigrid applications, which are started
concurrently (see Sec. 8.4), compute the same simulation of a laser engraving symbols on a metal
plate, see Fig. 7.2. The feasibility of the dynamic resource redistribution is shown in Fig 7.3.

Here, the v-cycle of the gray application is clearly visible, whereas the resources in the claims
of the other applications are not immediately released. Due to hardware issues, an evaluation
on the invasive System is not possible, yet.

161

162

8
Invasive Computing for shared-memory HPC systems

Today’s batch-job schedulers for HPC systems lead to an execution of jobs with a static resource
allocation over their runtime. Despite this static resource assignment being omnipresent on HPC
systems, this comes with two major drawbacks:

• First, starting applications is not possible in case of insufficient resources available. This is
due to compute resources used by other applications which cannot be reassigned to other
applications without stopping them. This lack of resource reallocation in the applications
then leads to idling resources until the remaining amount of requested resources becomes
available.

• Second, for concurrently executed applications with unforeseeable changing resource re-
quirements as it is the case for our simulations on dynamically changing grids, a static
resource allocation is obviously unable to cope with a changing resource requirement.

We suggest addressing these issues by applications adapting to changing resources and a
resource manager (RM) which optimizes the resource distribution towards improved applica-
tion throughput. Despite our framework is capable of being executed on distributed-memory
systems, we only consider Invasive Computing for shared-memory systems here as a proof of con-
cept. This was partly developed in collaboration with the research group of Prof. Dr. M. Gerndt,
see e.g. [GHM+12].

In this work, each application is assumed to be parallelized with OpenMP or TBB. The
required extensions for Invasive Computing on these parallelization models are discussed in
Sec. 8.1. The invasive client layer offers the API to request changing resources and to update
the resource requirements if requested by the resource manager, see Sec. 8.2. Scheduling of the
resources is based on information provided by the invasive applications with the scheduling
decisions evaluated in the RM which is described in Sec. 8.3.

8.1 Invasion with OpenMP and TBB

Our Invasive Computing extensions are build on existing functionality of OpenMP1 and In-
tel TBB2. Both parallelization models offer parallelization via pragma language extensions
or via embedding into the C++ language with a library, respectively. A parallelization on
shared-memory has similar restrictions compared to distributed-memory systems which are not
considered in HPC standard threading libraries so far:

• On shared-memory systems, an application can always be started using all available re-
sources. However, an application should not be started when some of the accessed com-
puting resources are used by other applications. Otherwise this leads to preemption and

1http://openmp.org/
2https://www.threadingbuildingblocks.org/

163

http://openmp.org/
https://www.threadingbuildingblocks.org/

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

Application 1

Parallelized
application code

...

iClient

Application 2 Application n

Parallelized
application code

Parallelized
application code

Invasive
client
layer

Application
layer

Invasive
server
layer

Resource manager

OMP/TBB iClient OMP/TBB iClient OMP/TBB

Figure 8.1: Overview of Invasive Computing layers on shared-memory system. Each applica-
tion is extended by a client layer adopting the resources and communicating with the resource
manager.

caches shared among both running applications [KCS04], hence leading to a severe loss of
performance. This is in particular important for urgent computing (see e.g. [BNTB07])
with requirements of starting an application despite other applications already use the
required resources.

• A changing scalability of algorithms cannot be considered in an a-priori thread allocation.
Our DAMR simulations introduced in Part III with their changing workload over the
simulation leads to a strongly varying scalability over runtime. For significantly smaller
workloads, see e.g. Tsunami parameter studies, this also leads to an underutilization of
resources if not dynamically and efficiently shared with other concurrently running appli-
cations.

The applications considered in this work are based on time-stepping schemes. Here, we
assume a loop, iterating over the time steps required for the simulation and the parallelization
only inside the loop. Due to insufficiencies of OpenMP and TBB to change the number of
threads inside a parallel region (see e.g. [Ope08] for OpenMP), we allow changes of threads
only at the very beginning of each loop, thus only between each simulation time step. To
support invasion of cores, we then have to (a) change the number of threads capable of work
stealing and (b) set the pinning of the work stealing threads to physical compute cores.

(a) For OpenMP, we set the number of threads with omp set num threads(#cores), and using
TBB, the worker threads are set by tbb::scheduler init(#cores).

(b) Regarding the pinning, we accomplish this by executing a single task for each thread,
e.g. using a parallel for loop over the number of available cores and a chunk size of 1. For
TBB, we first set the affinity of each task to the corresponding thread which is used to
invade a core. In each thread, mutices are then used to avoid work stealing. Otherwise,
such work stealing can result in unpinned threads or even a thread pinned to the wrong
core. Inside the task, the affinity of the executing thread is then set to the invaded core,
based on information provided by the RM.

We only update the number of active threads in each application and their pinning to cores
every time if there’s a change in resources either in the number of threads or their pinning.

Considering the previously mentioned requirements, this leads to a software design presented
in Fig. 8.1. This extends each application with an invasive client layer which offers the invasive

164

8.2. INVASIVE CLIENT LAYER

commands which are discussed in the next section. OpenMP and TBB are supported by this
client-side extension. The resource manager then orchestrates the resources for all registered
invasive applications.

8.2 Invasive client layer

The Invasive paradigm was originally developed for specialized Invasive hardware, whereas we
apply this paradigm on HPC shared-memory systems. This leads to different programming
interfaces which are discussed next.

• Joined invade and infect call:
We can join the invade and infect calls to a single invade. This is due to the shared-
memory systems not requiring to infect a compute resource by replicating the kernel code
since it is already accessible in each thread’s memory. As soon as the Invasive Computing
paradigm is extended to HPC with distributed-memory systems, the infect call is required,
e.g. to synchronize the simulation data such as the number of time steps.

• No claims:
For our target application, the main simulation loop leads to invasions only requiring a
single claim which represents the currently invaded resources. Thus, we assume a single
claim existing for each application and invasions modifying this claim only.

This results in a simplified command space without infects and also no claim for Invasive
Computing with our iteration-based shared-memory application. We next discuss the required
constraint system for our simulations on dynamically changing grids (Sec. 8.2.1), the communi-
cation to the resource manager (Sec. 8.2.2) and the Invasive Computing API for shared-memory
systems (Sec. 8.2.3).

8.2.1 Constraints

To schedule the compute resources for which the applications compete for, the applications
have to provide information on their current state. Such a constraint specification can lead to
very complex structures if requiring a general applicability on heterogeneous systems. E.g. an
application can either require 3 cores and one accelerator or in case that the accelerator was
not invadable, require more than three cores. This can be expressed with a tree-structure,
resulting in a constraint-hierarchy (see [BRS+13]). Then, different constraint constellations can
be combined with AND or OR relations. On the one hand, this constraint hierarchy yields a
high flexibility, whereas on the other hand, forwarding this information to the resource manager
can lead to expensive communication overheads to/from the resource manager. This is due to
serialization of the constraint tree, sending the serialized version to the RM, receiving it and
unpacking it by de-serialization. Additional complexity is generated inside the RM which has
to evaluate the constraint hierarchy by using the constraint trees of different applications to
optimize the resource assignment concurrently scheduled applications.

With our HPC shared-memory systems considered in this work which are only based on
homogeneous cores, we decided to avoid such a constraint hierarchy by using a fixed number
of non-hierarchical constraint properties in a list. Our constraint system is then based on the
following properties:

• min/max cores: This constraint limits the number of requested resources to the specified
range of resources which are claimed.

165

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

• scalability graph: Such a scalability graph is specified with a one-dimensional array with
each entry representing the scalability for the number of cores.

• workload : This hint can be used to distribute more cores to applications with more work-
load and vice versa.

Once specified by the application, these constraints then have to be communicated to the
resource manager with details on the resource scheduling for scalability graphs and distribution
hints further described in Section 8.4.

8.2.2 Communication to resource manager

A centralized resource manager is used which is responsible to optimize the resources based on
constraints received from applications. Our client-server design (see Fig 8.1) suggests a message-
based communication with the clients transferring constraints of a typically small message size
to the server running as a dedicated process. Then the server (resource manager) requires
receiving the message, processing it and sending one or more messages to the client (application).
To overcome message processing latencies, also the ability of asynchronous communication is
required.

All these requirements are fulfilled by the IPC System V message queues (MQ), supporting
small message sizes which can be efficiently exchanged with the server. MQs also support testing
whether a message can be dequeued for non-blocking communication.

During its setup, the centralized resource manager creates a message queue with a unique
identifier. This makes the message queue singleton-like for all invasive applications which use
the same identifier to communicate to the RM. Both the client and the server applications can
then en- and dequeue messages using this message-queue identifier. Each message further has
to be marked with a token specifying the receiver. We then mark the RM with identifier 0 and
each invasive application with the application’s system-wide unique process id.

8.2.3 Invasive Computing API

The following invasive interfaces are then offered to the application developer:

• setup()
This has to be executed directly after the program starts. It registers the application
at the resource manager which only sends back a message if at least a single core was
allocated to the application. Here we aim at avoiding initial resource conflicts.

• shutdown()
This sends a signal to the RM to release all resources associated to the application. The
application is then expected to exit immediately.

• invade blocking(constraints)
We further refer to the initially suggested invade call as a blocking invade since we also
introduce non-blocking invasions. To highlight the differences, we first describe message
processing of the blocking invade call:

(a) A message including the constraints is sent to the RM and the program looses the
control flow.

(b) Then the RM optimizes the resource utilization based on all available constraints of
each invasive application. This is further discussed in Sections 8.3 and 8.4.

166

8.3. INVASIVE RESOURCE MANAGER

(c) After evaluations and optimizations inside the RM, possible changes of resources are
sent to the application and the corresponding resources are marked to be used by
the application. Such a resource update message then includes the core ids which
are infected by setting appropriate affinities (see Sec. 8.1).

(d) Finally, the control flow is given back to the program.

• invade nonblocking(constraints)
As previously described, using a blocking call for invasions involves latencies when waiting
for feedback from the RM. These overheads lead to idling of all threads of an applica-
tion while waiting for the RM’s response. With non-blocking invasion, the RM sends
resource-update messages to the applications without a preceding invade. This allows the
application to directly process resource update messages similar to the blocking invade
by changing the number of cores and setting the pinning appropriately. Then, the con-
straints are forwarded to the RM, but without waiting for the reply message with the
invaded resources.

In contrast to the blocking-invade call, a message including the constraints which describe
the changing requirements is sent to the RM with the control flow directly given back
to the application after the message was enqueued. Thus, we can overcome an idling of
cores.

• reinvade blocking() and reinvade nonblocking()
With the standard invade calls, constraints are always specified and forwarded to the
RM. This leads to overheads of, first of all, serializing the constraint data and, secondly,
evaluating and possibly optimizing the resource distribution on the RM side. However,
if the resource requirements do not change, we avoid this serialization and optimization
procedure with the reinvade interfaces. Here, the RM assumes that the same constraints
which were previously forwarded to the RM should be used for optimization. Even if
the current resource requirement did not change for application A, a change in resource
requirements of application B can result in a change of resources for the application A.

• retreat()
To hand back the currently used resources, a retreat can be executed by the application.
Then, all resources except a single one is released with the remaining thread continuing
execution of the application’s master thread.

8.3 Invasive resource manager

The content and structure of this section is related to our work [SRNB13b] which is currently
under review. A separate process runs in the background on one thread without pinning and
executes the resource manager (RM). The task of the resource manager is then the optimization
of the resource distribution and is based on the information provided by the applications via
constraints. Such constraints can be e.g. scalability graphs, workload and range constraints, see
Sec. 8.2.1. For sake of clarity, Table 8.1 gives an overview of the symbols used in this and the
upcoming section.

Realization

The RM aims at optimizing the core-to-application assignment stored in the vector ~C. Here,
each entry represents the association of the R = |~C| physical cores to the applications. The

167

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

Symbol Description

R Number of system-wide available computing resources

N Number of concurrently running processes
~A List of running applications or MPI processes

ε Placeholder for ”no application”
~Cr State of resource assignments to applications
~Di Optimal resource distribution assigning Di cores to application Ai
~Pi Optimization information (scalability graphs, e.g.) for application

i
~Ti Optimization targets (throughput, energy, etc.) for each applica-

tion
~Gi Number of resources currently assigned to application i
~Fi List of free resources

~Wi Workload for application i

T (c) Throughput for c cores

Si(c) Scalability graph for application i.

Table 8.1: (source: [SRNB13b]) Overview of the symbols which are used in the data structures
of the resource manager.

application id is stored to ~Ci if core i is assigned to the application. In case of no core assignment,
ε is used as a placeholder.

Scheduling information

Here, we describe our algorithm which optimizes the resource distribution based on the con-
straints provided by the applications. Again, let R be the amount of system-wide available
compute resources. Further, let N be the amount of concurrently running applications, ε a
marker for a resource not assigned to any application and ~A a list of identifiers of concurrently
running applications, with | ~A| = N . Then, we distinguish between management data inside the
RM: uniquely per-application and system-wide data.

Per-application data: For each application ~Ai, there is a ~Pi storing the currently specified
constraints which were previously send to the RM via a (non-)blocking invade. The RM uses
these constraints for optimizations, depending on the desired optimization targets which are
discussed in Section 8.4.

System-wide data: The system-wide management data is defined with the current resource
assignment ~C and an optimization target. Such optimization targets e.g. request a maximization
of the application throughput or for future applications the minimization of energy consumption.
Then,

~C ∈ ({ε} ∪ ~A)R,

is the current state on the resource assignment. This assigns each compute resource uniquely
to either an application a ∈ ~A or to none ε. Then an optimization target is given e.g. by the
optimal resource distribution

~D ∈ {0, 1 . . . , R}N .

Here, each entry ~Di stores the number of cores which are assigned to the i-th application ~Ai.

168

8.3. INVASIVE RESOURCE MANAGER

We further demand ∑
i

~Di ≤ R (8.1)

to avoid oversubscription of these resources. This avoids assignment of more resources than
there are available on the system. The resource collision itself is avoided by assigning the
resources via the vector ~C. Here, each core can be assigned to only a single application. Cores
which are currently assigned to an application are additionally stored in a list for releasing them
without a search operation on ~C.

Optimization loop

A loop is used inside the RM which successively optimizes the resource distribution. Here,
the resource distribution is updated based on the constraints. Further, the current resource
distribution ~C is optimized towards the optimal target resource distribution ~D. The optimization
loop can be separated into three parts:

• Computing target resource distribution ~D:
New parameters for computing the target distribution are made available to the RM via
constraints during setup, shutdown and invade messages. Here, the setup message yields
the constraint with a single core, whereas the shutdown message includes a constraint
which frees all cores.

The optimization function is executed every time if a new one is available (setup), a
constraint is updated (invade) or removed (shutdown). This optimization function is
given by

(~D(i+1), ~C(i+1)) := foptimize(~D
(i), ~C(i), ~P , ~T) (8.2)

in its general form. Here, the vector of optimization targets is given in ~T , e.g. targets such
as throughput or load distribution. ~P contains the application constraints and the current
distribution of cores to applications is given in ~C(i).

The computation of the target distribution with foptimize is further described in Section 8.4.

Then, ~D(i+1) contains the configuration of the computing cores to which the resource
distribution has to be updated and the superscript (i) annotates the i-th execution of the
optimization function.

For applications which are sensitive to non-uniform memory access (NUMA), the target
core-to-application can be beneficial and is also returned in ~C(i+1). In the current imple-
mentation, this core-to-application assignment is not used and we continue using only the
quantitative optimization given in ~D(i+1).

• Optimizing current resource distribution ~C:
The RM successively updates the current resource distribution in ~C based on the theoret-
ically optimal resource distribution ~D(i+1). A direct release of a core from an application
is only possible under special circumstances, e.g. if the core to be released is associated to
the application which is currently executing the (re)invade call. Otherwise, a message is
send to the application which has to release the core and the core may only be set as free
in the resource manager if the application sends a corresponding response answer.

Given the list ~A of applications, the resource redistribution is then optimized either by
assigning additional cores or releasing cores for each application. Here,

~Gi := |{j| ~Ai = ~Cj ,∀j ∈ {1, . . . , R}}|

169

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

is the number of resources which are currently assigned to application ~Ai. We then use an
iterative process over all applications ~Ai to redistribute the resources over all applications:

– ~Gi = ~Di: No update
No further change in resources is required.

– ~Di < ~Gi: Release resources
If less resources should be used by the application ~Ai, a message with this new
core constellations is send to the application. For non-blocking communication, the
message is send immediately to the application and for blocking invades, the resources
can be directly assumed to be released since the application directly updates the
number of used threads after waiting for the message of the RM. For non-blocking
simulations, the current resource distribution ~C is not yet updated to avoid assigning
these resources to other applications.

– ~Di > ~Gi: Add resources
If additional resources should be assigned to the application, a search is executed in
the list of free resources ~F with ~C~Fj

= ε. Then, it assigns up to k ≤ ~Di− ~Gi resources

to the application with

∀j ∈ {~F1, . . . , ~Fk} : ~Cj := ~Ai.

• Client-side resource update messages:
Every time the RM receives a resource update message from one of the applications,
further optimizations are executed since the change in resource utilization can lead to
further possibilities of resource optimizations. This executes the previously described
iterative process of resource optimizations.

8.4 Scheduling decisions

The content and structure of this section is related to our work [SRNB13b] which is currently
under review. The optimized target resource distribution ~D is computed based on the previously
introduced data structures ~T as the specified optimization target and ~P as an per-application
specified information.

We further drop the core dependencies of our original optimization function (8.2), yielding
the simplified optimization function

~D(i+1) := foptimize(~D
(i), ~P , ~T). (8.3)

Optimizations are then applied with the constraints of all applications depending on ~P and the
per-application optimization target ~T .

Requirements on constraints: The constraints which are forwarded by resource-aware ap-
plications to the RM are then kept in ~P with one entry for each application. Then, the RM
schedules the available resources based on the optimization target and these constraints. Here,
we distinguish between local (optimizing resources for a single application) and global constraints
(optimizing resources for multiple applications).

Local constraints: With constraints given by the range of cores between 1 and the maximum
number of cores, an application can request a particular range of cores. These constraints
make is challenging to optimize concurrently running applications since no knowledge on their
performance state for a changing number of resources can be inferred and we refer to such
constraints as local ones.

170

8.4. SCHEDULING DECISIONS

Global constraints: Such constraints can be evaluated by the optimization function in a way
which optimizes the resources targeting at a global optimum of all applications.

• Application’s workload : If running similar applications, the workload can be used to sched-
ule resources. This is due to the workload also used e.g. in load balancing. Our target
function then redistributed R compute resources to each application Ai with

~Di :=

⌈
R · ~Wi∑
j
~Wj

⌉
− αi, αi ∈ {0, 1}.

Hence, it assigns ~Di resources to the application ~Ai. To avoid over-subscription (see
Eq. (8.1)), α has to be chosen in a particular way.

With the assigned number of resources ~Di, the problem can be reformulated to a scalability
optimization. Here, we assume that each application has a perfect strong scalability S(c)
for c cores within the range [1; ~Di] and no performance gain beyond ~Di cores:

S(c) := min(c, ~Di).

We can then assign the cores to the applications by adding a core until this leads to
no further gain in performance. Obviously, this approximation with a scalability graph
(explained in the next paragraph) is only an approximation of the real scalability graph.
Using real scalability graphs provided by application are discussed next as an alternative.

• Application’s scalability graph: Here, we assume that each application messages its over-
time changing strong scalability graph to the RM. There is a linear dependency of the
applications scalability and the workload throughput.

For a given number of cores c, the throughput T (c) represents the fraction of time to
compute a solution for a fixed problem size w = ~Wi. Next, we consider the throughput
improvement for a changing number of cores with the baseline given at the throughput

of a single core:
w

T (c)
w

T (1)
= T (1)

T (c) =: S(c). This yields the relation to the scalability graph of

strong scalability S(c). Hence, we can use the scalability graph as an optimization hint
for the application’s throughput. Furthermore, we can use a scalability graph to optimize
for the theoretical global maximum throughput even among heterogeneous applications
due to the normalization S(1) = 1 for a single core.

Let the scalability graph Si(c) be provided by application ~Ai. We further require a strictly
monotonously increasing behavior

Si(c)− Si(c− 1) > 0 ,

as well as a concavity

Si(c+ 1)− Si(c) ≤ Si(c)− Si(c− 1).

This also assumes that no super-linear speedups are possible.

The global throughput is then maximized by searching the most efficient resource-to-
application combination in ~D. This yields a multi-variate maximization problem in ~Dj

for our optimization target

max
~D

(∑
i

Si(~Dj)

)
. (8.4)

171

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

 0

 5

 10

 15

 20

 25

 30

 35

 40

0
/4

0

2
/3

8

4
/3

6

6
/3

4

8
/3

2

1
0

/3
0

1
2

/2
8

1
4

/2
6

1
6

/2
4

1
8

/2
2

2
0

/2
0

2
2

/1
8

2
4

/1
6

2
6

/1
4

2
8

/1
2

3
0

/1
0

3
2

/8

3
4

/6

3
6

/4

3
8

/2

4
0

/0

S
ca

la
b
ili

ty
 /

 t
h
ro

u
g

h
p
u
t

Core to client distribution (Appl. 1 / Appl. 2)

Throughput Appl. 1
Throughput Appl. 2

Throughput of Appl. 1 + Appl. 2

Figure 8.2: Two scalability graphs are given. The one for application A has an increasing
number of cores from left to right and the one for application B has an increasing number of
cores from right to left. The maximum throughput searches for the resource allocation to both
application which maximizes the overall throughput [SRNB13a].

Again, we avoid over-subscription with the side constraint
∑

j
~Dj ≤ R.

Fig. 8.2 shows an example of such an optimization. Two applications are considered which
provide a scalability graph. The graph with the red solid line represents the scalability of
the first application with increasing number of resources from left to right and the green
dashed line represents the scalability graph of the second application with the numbers of
resources increasing from right to left.

To optimize the resource distribution for our “maximizing throughput” optimization tar-
get, the optimal point is given by the maximum of the sum of both throughput graphs.

However, we can use our requested properties of strictly monotonously increasing and
concave scalability graphs. This allows us to solve the maximization problem for an
arbitrary number of applications with an iterative gradient method which is related to the
steepest descent solver [FP63] and assuming that there is only one optimum, the global
optimum.

Initialization: The iteration vector ~B(k) for the k-th iteration is introduced which assigns
~Bi computing cores to each application i. We start with ~B(0) := (1, 1, . . . , 1) which assigns
each application a single core at the start. This is required since each application demands
for at least a single core on which it is executed.

Iteration: We then compute the throughput improvement for each application i, for a
single core additionally assigned to it:

∆Si := Si(~Bi + 1)− Si(~Bi). (8.5)

Then, the application n, which yields the maximum throughput improvement is given by
∆Sn := maxj{∆Sj}.
We can update the resource distribution for the k + 1-th iteration by

~B(k+1) := ~B(k) + δi,n (8.6)

172

8.5. INVASIVE PROGRAMMING PATTERNS

with the Kronecker symbol δ.

Stopping criterion: If all resources are distributed (
∑

i
~B

(k)
i = R), we can stop our opti-

mization and the last iteration vector ~B contains the optimized target resource distribution
for ~D(k+1).

8.5 Invasive programming patterns

Using Invasive Computing on shared-memory systems requires implementation of invasive in-
terfaces at particular positions in the code. This section presents the invasive programming
pattern for iteration-based DAMR simulations and shows required extensions for simulations
which rely on cached thread associativity.

8.5.1 Iteration-based simulation

We assume that our application uses an iterative setup (initial refinement) and an iterative
time-stepping scheme (simulation) with the pseudo code given in the left column of Table 8.2.

Standard simulation steps Invasive simulation steps

;

gr idRef inement = True
whi l e gr idRef inement :

;
gr idRef inement = setupGrid () ;

f o r i in t imes teps :
;
t imestepAndAdapt iv i tyTraversa l s () ;

;

setup () ;

gr idRef inement = True
whi l e gr idRef inement :

invade nonblocking ([constr .]) ;
gr idRef inement = setupGrid () ;

f o r i in t imes teps :
(re) invade (non) blocking ([constr .]) ;
t imestepAndAdapt iv i tyTraversa l s () ;

shutdown () ;

Table 8.2: Comparison of pseudo code for our simulation based on a time stepping and setup
loop (left) with an invasified version (right). This invasified version only works for code without
owner-compute scheme.

An extension with our Invasive Computing API then requires the following interfaces:

• setup():
The setup routine registers the program at the invasive RM. In case of no resource avail-
able, this call blocks until at least one resource can be assigned to the application.

• invade (non)blocking(constraints):
Different variants of the invasive command space can be used for updating the resources
with the forwarding of constraints.

• reinvade (non)blocking():
Different variants of the reinvade are used for updating the resources without updating
the already forwarded constraints.

173

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

• shutdown():
After the simulation is finished, the RM is informed about the shutdown of the application,
making the resources available to other applications.

8.5.2 Iteration-based with owner-compute

Applying the Invasive Computing programming pattern to our owner-compute scheme (see
Section 5.6.1) can lead to invalid cluster-tree traversals. The reason can be found in the caching
of the thread id range on each node owning one of the leave nodes in the cluster tree. With
dynamically changing numbers of active threads in a program, this thread id can be associated
to a thread which does not exist anymore. In case of a shrinking number of resources, this leads
to missing traversals of nodes in the cluster tree. For a growing number of resources, one or
more cores remain unused. Hence, we additionally require to account for these cached thread
ids and show the required extension in the pseudo code presented in Table 8.3.

setup () ;

f o r i in t imes teps :
// re turn new number o f threads
new number of threads =

(re) invade (non) blocking ([constraints] , postponeThreadUpdate) ;

i f new number of threads < o l d t h r e a d s : // shr ink
updateCachedThreadIDs(new number of threads) ;
updateNumberOfRunningThreads(new number of threads) ;

e l i f new number of threads > o l d t h r e a d s : // grow
updateNumberOfRunningThreads(new number of threads) ;
updateCachedThreadIDs(new number of threads) ;

o l d t h r e a d s = new number of threads ;

timestepAndAdaptivityTrav () ;

shutdown () ;

Table 8.3: Pseudo code for changing number of threads with an owner-compute scheme.

Here, the function (re)invade (non)blocking also returns the new number of threads and
the additional constraint postponeThreadUpdate requests, that the number of threads are not
directly updated with the invade call. Instead, an additional function updateNumberOfRun-
ningThreads is provided which has to be executed for updating the threads based on the last
reinvade call.

In case that the number of threads was decreased, we then update the cached thread ids in
the cluster tree (updateCachedThreadIDs), followed by updating the number of actively running
threads including their pinning. For a growing number of threads, we can directly update the
number of running threads followed by updating the cached thread ids.

8.6 Results

This section presents several studies in the context of our formerly described Invasive Computing
implementation for HPC shared-memory systems.

174

8.6. RESULTS

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 5 10 15 20 25

invasive
invasive non-blocking

Standard OpenMP

Simulation test run

S
e
c
o
n

d
s

Figure 8.3: Plot of the seconds taken for each of 25 simulation runs and for each application
type: non-invasive with OpenMP, invasive with blocking communication to the RM and invasive
with non-blocking communication.

8.6.1 Micro benchmarks of invasive overheads

We start with overhead measurements of our Invasive Computing interfaces comparing the
blocking with the non-blocking (re)invade calls. For a measurement in a realistic environment,
we use the simulation framework presented in the previous part and start several small shallow
water simulations on a grid which is regularly refined with 128 cells. The invasive versions are
realized with extensions to OpenMP.

We analyzed the invasive overheads with three different versions:

(a) invasive: Here, we use blocking communication to the RM.

(b) invasive non-blocking : This uses non-blocking communication and asynchronous communi-
cation to the RM.

(c) OpenMP : No invasive commands are used and the parallelization is only accomplished with
OpenMP parallelization.

The invasive versions of the simulations send one invade request to the resource manager
between each time step. The measurements of the overall application’s runtime were conducted
for 25 executions of a single application. It is sufficient to consider a single application, since
we are currently only interested in the overheads of the RM. The required simulation times on
a single core are printed in Fig. 8.3. The blocking version of the invasion leads to an overhead
of 15% in average compared to the non-invasive version. However, this invasion is compensated
by the non-blocking version, yielding a robust improvement compared to the blocking one and
results in an overhead of only 5% in average compared to the non-invasive version. Hence, we
continue running our invasive benchmarks with the non-blocking version.

8.6.2 Dynamic resource redistribution with scalability graphs

Our main motivation for Invasive Computing in the area of HPC was driven by simulations on
dynamically adaptive grids. Next, we use our shallow water simulation to show the functionality
of dynamic resource distribution based on scalability graphs.

175

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

Number of grid cells

Figure 8.4: Scalability plot for different number of cells of a shallow water simulation on a
dynamically adaptive grid [BBS12].

Simulation timestamps

C
o
re

 u
ti

liz
a
ti

o
n

Figure 8.5: Dynamic resource redistribution for four shallow water simulations. The white
gaps represent idling resources until another application invades them [BBS12].

The scalability graphs we use are determined in advance with the execution of simulations
for a few time steps on different cores and different refinement parameters. An example of such
scalability graphs with different grid cells is given in Fig. 8.4, it was computed on the platform
Intel, a 40-core shared-memory system (see Appendix A.2). Given a particular number of grid
cells, e.g. based on the current number of cells used in the dynamically adaptive simulation, the
scalability graph can be extracted by a slice.

We can then optimize the resource distribution with the precomputed scalability graphs:
Given the number of current grid cells, we determine the scalability graph which is closest to
the given number of grid cells. Such a scalability graph is one slice of the plot in Fig. 8.4. If
the scalability graph is different to the previous one, it is forwarded to the RM. We can then
run multiple shallow water simulations in parallel without oversubscribed resources and the
resources optimized by the RM with the scalability graph.

For the benchmark scenario, we use four identical shallow water simulations. Each one is
started slightly delayed to the previous one with 10, 20, and 10 seconds. The simulation mesh
is initialized with an initial refinement depth of 4 and 14 additional adaptivity levels. The
splitting threshold is set to 8192.

Based on the scalability graphs, the dynamic resource redistribution of concurrently executed
applications which are started shortly delayed is presented in Fig. 8.5. The resource distribution
is based on the scalability optimization algorithm presented in Section 8.4.

Having a closer look on the execution times, the invasive version took 266 seconds for its
execution. We compare this execution time with an OpenMP parallelization which executes
the simulations one after another. This resulted in an execution time of 521 seconds. Our

176

8.6. RESULTS

approach is also competitive to a TBB parallelized version which starts the simulation as soon
as it is enqueued, taking 491 seconds for the execution. Here, the Invasive Computing shows a
clear benefit with an improvement of 49% compared to the OpenMP parallelization and 46% if
comparing it to the TBB parallelized execution.

8.6.3 Invasive Tsunami parameter studies

To show the real potential of Invasive Computing in the context of an application with an
iterative time-stepping scheme, we use a scenario of several Tsunami parameter studies in
parallel. Here, we use the Tohoku Tsunami simulation which was presented in Sec. 6.3. Here,
the simulation first loads the bathymetry datasets, then preprocesses it to a multi-resolution
format and initializes the simulation grid. Finally, the wave propagation is simulated.

As a parameter study, we executed five simulations with slightly different adaptivity param-
eters. Since starting all simulations at the same time does not yield a realistic HPC scheduling,
the enqueuing of the executions of each of these simulations is delayed with the seconds given
in the following vector: (10, 15, 15, 15).

We challenge OpenMP and TBB with our Invasive Computing approach, yielding three
different parallelization methods:

• OpenMP:
With the standard OpenMP environment, the execution of multiple applications in parallel
on all available cores would result in resource conflicts e.g. by frequent preemption of
applications and hence shared caches. Therefore, we have to execute them one after
another.

• TBB:
We further used the TBB parallelization of our simulation. One of the TBB features
is e.g. that in case of an idling worker thread, TBB hands back the control to the op-
erating system via the yield system call instead of doing a busy waiting. Such a busy
waiting results in a core utilization, hence the core cannot be used exclusively by another
application.

• Invasive Computing:
For the invasive execution, we use the non-blocking invade to forward the constraints to
the RM. Regarding the constraints, we avoided the scalability graphs since our current
implementation requires to determine them in advance of the simulation. Here, we use
the workload constraint and the number of cells involved in the current simulation as the
workload.

The overall execution time for several scenarios, each one based on five simulations, is de-
picted in Fig. 8.6 for different problem sizes. These problem sizes of the simulations in each
scenario are increased from left to right by increasing the initial refinement depth. The adap-
tivity refinement depth of (10, 10, 8, 8, 7) was used for the five simulations.

For smaller problem sizes, TBB yielded optimizations similar to our Invasive Computing
approach. However, these problem sizes were only considered for testing purpose and do not
yield any practical relevant data. For larger simulations as they were considered for the analysis
of our Tsunami simulations in Section 6.3, TBB looses its performance improvement compared
to the OpenMP non-invasive execution.

We further depicted the results of the scenarios E and F with a larger problem size and
a linear scaling in the right image in Fig. 8.6. Here, our Invasive Computing approach leads

177

CHAPTER 8. INVASIVE COMPUTING FOR SHARED-MEMORY HPC SYSTEMS

1

10

100

1000

10000

100000

Scen. A Scen. B Scen. C Scen. D Scen. E Scen. F

O
ve

ra
ll

ex
ec

ut
io

n
tim

e

Different Scenarios

Invasive Computing
OpenMP sequential
Threading Building Blocks

0

10000

20000

30000

40000

50000

60000

70000

80000

Scenario E Scenario F

O
ve

ra
ll

ex
ec

ut
io

n
tim

e

Different Scenarios

Invasive Computing
OpenMP sequential
Threading Building Blocks

Figure 8.6: Left image: execution of several Tsunami parameter studies with a growing
problem size from left to right. Right image: benchmark scenarios E and F visualized with
linear scaling.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Scenario A Scenario B Scenario C Scenario D Scenario E Scenario F

P
er

ce
nt

ag
e

of
 s

av
ed

 e
xe

cu
tio

n
tim

e

Different scenarios of concurrently executed parameter studies

Figure 8.7: Performance improvements of invasive benchmark scenarios A to F compared to
OpenMP consecutive execution.

to a robust performance improvement of 45% compared to a non-invasive parallelization with
standard OpenMP and TBB.

Assuming a simulation executed with a sufficiently large workload, a close-to-linear scala-
bility can be reached, see Sec. 5.7. Since the performance improvements of Invasive Computing
rely on a non-linear scalability of applications and furthermore a scalability which is changing
over the runtime, we further analyzed the behavior of the performance improvements of the in-
vasive execution from small to large simulation scenarios. We plotted the reduction in runtime
in percentage comparing the invasive to the non-invasive execution in Fig. 8.7. Here, we can
see that the performance improvements with Invasive Computing are less for larger simulation
scenarios. We account for that by the improved scalability of larger workloads.

We close this chapter by relating our results to a concrete example for the da = 22/0 Tsunami
simulation from Sec. 6.3. This simulation has an overall execution time of 2557.11 seconds and we
assume, that the execution time of scenarios E has the closest similarity regarding the runtime.
Then, assuming concurrently executed parameter studies of this workload, the improvement in
efficiency is above 50%.

178

9
Conclusion and outlook

Despite that the Invasive Computing paradigm was originally developed for TCPAs, it showed
its applicability also in areas of MPSoCs as well as HPC shared-memory systems.

For the Invasive MPSoC System with its heterogeneous computing components, we selected
the multigrid solver as a representative algorithm and presented the challenges for extensions
with Invasive Computing in X10. With the Invasive Computing interfaces offered by invadeX10,
this considerably improves the programmability of Invasive Computing on systems with no inter-
tile cache coherency.

Applying the Invasive Computing paradigm on shared-memory HPC systems comes with
benefits, but also drawbacks: An obvious drawback is the fact, that applications have to provide
information on their current resource requirements via the constraint system. Deriving resource
requirements such as scalability graphs is challenging, however the computational workload
yields an alternative. The application developer also has to consider the possibly changing
number of computing resources. For applications which make use of cached thread affinities
such as those shown in Sec. 8.5.2, another programming pattern has to be used. Besides these
drawbacks, we proofed that Invasive Computing in HPC can lead to severe performance bene-
fits if executing several resource-competing applications with Invasive Computing. We gained
an improvement of 45% in execution time for Tsunami parameter studies compared to other
parallelization models such as TBB or OpenMP.

With our large-scale simulations using dynamically adaptive mesh refinement on distributed-
memory systems (see Sec. 5.12) which is e.g. required to simulate wave propagations on earth
scale (see Sec. 6.5) and with multi-layers (see Sec. 6.6), we expect even more changing resource
requirements for each application, hence more optimization possibilities with Invasive Compu-
ting. This demands for Invasive Computing also on HPC distributed-memory systems. Contrary
to the hard- and software development for the Invasive MPSoCs, Invasive Computing on HPC
large-scale systems has be based on a standard parallelization model for distributed-memory
systems to allow the invasification of existing codes. However, this yields several challenges
such as modifications of the MPI communicator, replication of the program instance to new
computational resources and the synchronization of the simulation state. With such Invasion-
enabled large-scale simulations on distributed-memory systems, we expect even more improved
efficiency.

179

180

PART V

SUMMARY

In this work, we focused on the efficient implementation of dynamically adaptive mesh re-
finement for optimizing the execution of numerical simulations. In particular, we considered
wave-propagation dominated problems such as Tsunami simulations. We started with an in-
troduction to the very basics of a discontinuous Galerkin (DG) discretization scheme which
yielded our communication requirements with edge- and vertex-based communications for the
considered DG solvers. For the discretization, we decided to use triangles as grid primitives and
use a grid which is generated by the triangle-bisecting Sierpiński SFC.

Regarding the serial implementation, we first gave an introduction to existing work on stack-
and stream-based simulations. Then, we introduced clear interfaces for the communication and
data access to run DG simulations on dynamically adaptive grids. A code generator is developed
which does not only lead to an efficient method to generate traversal code with interfaces tai-
lored to the user requirements, but also yields optimizations with parameter unrolling, avoiding
most of the if-branching instructions. Furthermore, we avoid obsolete access of memory e.g. by
separation of structure, cell-data and adaptivity-state stacks. An automaton table considers
the propagation direction of adaptivity information and is further used for optimizations. With
a prospective stack reallocation, a good balance between memory requirements and frequent
stack reallocation was presented.

For the parallelization, we first developed a run-length encoded meta communication in-
formation with its connectivity information implicitly updated by adaptivity markers written
on the communication stacks. We use zero-length encodings for vertices which are not al-
ready represented by the edge-based meta information. Such a run-length encoded (RLE) meta
communication information further allows an efficient block-wise communication. Then, we
introduced clustering based on SFC-induced cell intervals and the aforementioned RLE com-
munication meta information. Our cluster generation is based on tree-splits and -joins and we
infer the new meta information after splits and joins implicitly via the elements stored on the
stacks during a traversal. Our software and communication methods lead to a direct applicabil-
ity of different parallelization models. We developed different cluster generation and scheduling
methods on shared- and distributed-memory systems. On a 40-core shared-memory system,
the owner-compute scheme yielded the best results due to the improved NUMA-domain aware-
ness. Besides the RLE meta encoding, we developed further algorithmic optimizations with
one of them the skipping of already conforming clusters. This results in a robust performance
improvement, also compensating the additionally required conforming grid traversals required
due to the domain decomposition. On distributed-memory systems the clustering leads to ef-
ficient block-wise communication as well as cluster-based data migration. With a dynamically
adaptive grid in each time step, the strong scalability measured with a baseline at 256 cores is
over 60% and the weak scalability is over 90% on 8192 cores.

Dynamically changing grids also lead to dynamically changing resource requirements. To
cope with these changing resource requirements, we achieved a dynamic resource allocation by

181

extending standard shared-memory HPC parallelization models with the Invasive Computing
paradigm. We presented a resource manager on a shared-memory system and the required
extensions to the simulation framework. This allows an optimization of resources based on
application-specific information. We conducted several benchmarks with a dynamical redistri-
bution of the computing resources among concurrently running applications on shared-memory
systems, resulting in throughput improvements for concurrently executed Tsunami simulations
of more than 43%.

182

A
Appendix

A.1 Hyperbolic PDEs

A.1.1 Gauss Lobatto Points

The following table gives examples of basis functions based on Gauss-Lobatto points and their
nodal points up to order 2.

Polynomial Nodal point
Degree 0: ϕ0(x, y) := 1 (1

3 ,
1
3)

Degree 1: ϕ0(x, y) := 1− x− y (1
2 ,

1
2)

ϕ1(x, y) := x (1
2 , 0)

ϕ2(x, y) := y (0, 12)
Degree 2: ϕ0(x, y) := 1− 3x+ 2x2 − 3y + 4xy + 2y2 (0, 0)

ϕ1(x, y) := 4x− 4x2 − 4xy (1
2 , 0)

ϕ2(x, y) := −x+ 2x2 (1, 0)
ϕ3(x, y) := 4y − 4xy − 4y2 (0, 12)
ϕ4(x, y) := 4xy (1

2 ,
1
2)

ϕ5(x, y) := −y + 2y2 (0, 1)

A.1.2 Jacobi polynomials

The orthogonal Jacobi polynomials on triangle basis up to degree 2 are given in the follow-
ing Table. Compared to the Gauss-Lobatto Points, the Jacobi polynomials are constructed
hierarchically.

Polynomial

Degree 0: ϕ0(x, y) :=
√

2

Degree 1: ϕ0(x, y) :=
√

2
ϕ1(x, y) := −2 + 6y

ϕ2(x, y) := 2
√

3(2x− 1 + y)

Degree 2: ϕ0(x, y) :=
√

2
ϕ1(x, y) := −2 + 6y

ϕ2(x, y) := (1− 8y + 10y2)
√

6

ϕ3(x, y) := 2
√

3(2x− 1 + y)

ϕ4(x, y) := 3
√

2(−1 + 5y)(2x− 1 + y)

ϕ5(x, y) := (1− 2y + y2 − 6x+ 6xy + 6x2)
√

30

183

APPENDIX A. APPENDIX

A.1.3 Mass Matrix

For nodal basis functions of degree 1 and 2 with Gauss-Lobatto points, the inverse mass matrices
are given by

18 −6 −6

−6 18 −6

−6 −6 18

72 −3 12 −3 12 12

−3 39
2

−3 − 27
4

− 27
4

12

12 −3 72 12 −3 12

−3 − 27
4

12 39
2

− 27
4

−3

12 − 27
4

−3 − 27
4

39
2

−3

12 12 12 −3 −3 72

.

Using orthonormal triangle basis functions based on normalized Jacobi Polynomials, the inverse
mass matrix is identical to the identity matrix for arbitrary degree.

A.1.4 Stiffness matrices

For Gauss-Lobatto nodal points, this leads to stiffness matrices each with a single zero-row for
degree 1:

−1/6 −1/6 −1/6

1/6 1/6 1/6

0 0 0

−1/6 −1/6 −1/6

0 0 0

1/6 1/6 1/6

Computing the matrices x and y for degree 2, this still leads to almost dense matrices.

−1/15 −1/10 1/30 −1/10 1/30 1/30

1/10 0 −1/10 2/15 −2/15 0

−1/30 1/10 1/15 −1/30 1/10 −1/30

1/30 −2/15 1/30 − 4
15

− 4
15

−1/15

−1/30 2/15 −1/30 4
15

4
15

1/15

0 0 0 0 0 0

−1/15 −1/10 1/30 −1/10 1/30 1/30

1/30 − 4
15

−1/15 −2/15 − 4
15

1/30

0 0 0 0 0 0

1/10 2/15 0 0 −2/15 −1/10

−1/30 4
15

1/15 2/15 4
15

−1/30

−1/30 −1/30 −1/30 1/10 1/10 1/15

.

The matrices created for the orthonormal basis function have a higher sparsity pattern. Stiff-
ness matrices for degree 1 are given by

0 0 0

0 0 0

2
√
3
√
2 0 0

0 0 0

3
√
2 0 0

√
3
√
2 0 0

and for degree 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
√

3
√
2 0 0 0 0 0

4 5
√
2 0 0 0 0

0 0 0 3
√
10 0 0

0 0 0 0 0 0

3
√
2 0 0 0 0 0

−4/3
√
3 10/3

√
6 0 0 0 0

√
3
√
2 0 0 0 0 0

2 5/2
√
2 0 5/2

√
3
√
2 0 0

2/3
√
15 −1/6

√
30 0 3/2

√
10 0 0

.

Those matrices have clearly a sparser layout and are thus better suited for computation con-
sidering the stiffness matrices only so far.
However, using modal basis functions, they have to be transferred to nodal basis functions.
Using Gauss-Lobatto nodal points and 1st degree basis functions, this results in the following

184

A.1. HYPERBOLIC PDES

three matrices:

√

2 −2 −2
√

3

√
2 −2 2

√
3

√
2 4 0

0 0 0

0 0 0

2/3
√

3 2/3
√
3 2/3

√
3

0 0 0

1 1 1

1/3
√
3 1/3

√
3 1/3

√
3

and to the following matrices for 2nd degree

√
2 −2

√
6 −2

√
3 3

√
2

√
30

√
2 −2

√
6 0 0 −1/2

√
30

√
2 −2

√
6 2

√
3 −3

√
2

√
30

√
2 1 −1/2

√
6 −

√
3 −9/4

√
2 1/4

√
30

√
2 1 −1/2

√
6

√
3 9/4

√
2 1/4

√
30

√
2 4 3

√
6 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 2/3
√

3 0 2/3
√
3 2/3

√
3 0

−1/4
√
2 0 −1/4

√
2

√
2

√
2 1/2

√
2

− 3
20

√
30 0 3

20

√
30 −1/5

√
30 1/5

√
30 0

0 0 0 0 0 0

0 1 0 1 1 0

−1/6
√
6 −2/3

√
6 −1/6

√
6 0 0 1/3

√
6

0 1/3
√
3 0 1/3

√
3 1/3

√
3 0

−1/2
√

2 0 1/4
√
2 0

√
2 1/4

√
2

−1/15
√
30 2/15

√
30 1/12

√
30 0 1/5

√
30 − 1

60

√
30

.

A.1.5 Flux matrices

Only a subset of conserved quantities is involved in the flux computation, see the following
matrices for GL nodal points of order 2:

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 .

Thus each row selects the conserved quantities for each nodal point. For modal representation,
a similar approach to the stiffness matrices has to be used.

After flux computations, the flux updates only involve the nodal points of the edge for which
the flux was computed for. Examples for such matrices generated for flux computations and
Gauss Lobatto nodal points in the order of hypotenuse, right and left edge are given by

0 0 0

0 0 0

−2/15
√
2 −1/15

√
2 1/30

√
2

0 0 0

−1/15
√
2 − 8

15

√
2 −1/15

√
2

1/30
√
2 −1/15

√
2 −2/15

√
2

−2/15 −1/15 1/30

0 0 0

0 0 0

−1/15 − 8
15

−1/15

0 0 0

1/30 −1/15 −2/15

−2/15 −1/15 1/30

−1/15 − 8
15

−1/15

1/30 −1/15 −2/15

0 0 0

0 0 0

0 0 0

.

A.1.6 Butcher tableau

For RK with 2 stages, one possible tableau is

a1,1 := 0 a1,2 := 0

a2,1 := 1
2 a2,2 := 0

b1 := 0 b2 := 1

185

APPENDIX A. APPENDIX

yielding

V0 := U(t)
V1 := V0 + ∆t(a1,1D1 + a1,2D2) = V0

D1 := R(V1)
V2 := V0 + ∆t(a2,1D1 + a2,2D2) = V0 + ∆t1

2D1

D2 := R(V2)
U(t+ ∆t) := V0 + ∆t(b1D1 + b2D2) = V0 + ∆tD2

. (A.1)

Another formulation for 2nd order accuracy is given by Heun’s method, yielding the tableau

a1,1 := 0 a1,2 := 0

a2,1 := 1 a2,2 := 0

b1 := 1
2 b2 := 1

2

The tableau for RK3 [But64] yielding 3-rd order accuracy is given by

a1,1 := 0 a1,2 := 0 a1,3 := 0

a2,1 := 1
2 a2,2 := 0 a2,3 := 0

a3,1 := −1 a3,2 := 2 a3,3 := 0

b1 := 1
6 b2 := 2

3 b3 := 1
6

The tableau for classical RK4 yielding 4-th order accuracy [SM03] is given by

a1,1 := 0 a1,2 := 0 a1,3 := 0 a1,4 := 0

a2,1 := 1
2 a2,2 := 0 a2,3 := 0 a2,4 := 0

a3,1 := 0 a3,2 := 1
2 a3,3 := 0 a3,4 := 0

a4,1 := 0 a4,2 := 0 a4,3 := 1 a4,4 := 0

b1 := 1
6 b2 := 1

3 b3 := 1
3 b4 := 1

6

A.1.7 Rotational invariance of Euler equations

Here, we present the rotational invariancy of the Euler equations [Tor01]: For an edge normal
~ne pointing towards (cos(α), sin(α))T , the rotation matrix R(α)e is given by

1 0 0 0

0 cos (α) − sin (α) 0

0 sin (α) cos (α) 0

0 0 0 1

We test for rotational invariancy by putting the flux terms from Eq. (1.9) into the rotational

invariancy formula given in Eq. 2.9 which yields for the left hand side

F (U) · ~ne =

cos (α) ru

cos (α)
(
ru2 + p

)
r cos (α)uv

cos (α) (E + p)u

+

sin (α) rv

ru sin (α) v

sin (α)
(
rv2 + p

)
sin (α) (E + p) v

 (A.2)

186

A.2. TEST PLATFORMS

and for the right hand side

R(α)−1F (R(α)(U)) = R(α)−1F ((ρ, cos(α)ρu+ sin(α)ρv,− sin(α)ρu+ cos(α)ρv,E)T) (A.3)

=

r (cos (α)u+ sin (α) v)

ru2 cos (α) + ru sin (α) v + cos (α) p

r cos (α)uv + rv2 sin (α) + sin (α) p

(E + p) (cos (α)u+ sin (α) v)

 (A.4)

which is equal to F (U) · ~ne using basic trigonometric calculus.

A.2 Test platforms

We give a detailed description on the test platforms used in this thesis.

A.2.1 Platform Intel

The first platform denoted as Intel is based on a four socket system with each socket equipped
with an Intel Xeon CPU (E7-4850@2.00GHz) with 10 cores per CPU and each core twice hyper
threaded, resulting in 20 hyper threads.

Cache level Size Sharing information

L1 32kB exclusive

L2 256kB exclusive

L3 24MB shared

Each CPU has its own memory controller assigned with 64GB of memory available via each
controller. With 4 CPUs, this leads to 256 GB of main memory.

A.2.2 Platform AMD

We refer to the second platform as AMD and like to thank the Institute for Multiscale Simu-
lation, Friedrich-Alexander Universität Erlangen-Nürnberg, for giving us access to their AMD
cluster. This is based on 4 AMD Opteron(TM) Processors 6276, each one with 16 cores. On
these CPUs, 2 cores share one FPU. The 16 cores are further separated in 2 modules, each
module with its own last level cache and NUMA domain. The cache hierarchy then looks as
follows

Cache level Size Sharing information

L1 16kB exclusive

L2 2MB shared by 2 cores

L3 6MB shared by 8 cores

Each NUMA domain has 16GB of memory attached to each memory controller. This leads
to 128GB available main memory.

A.2.3 Platform MAC Cluster

This cluster is based on 28 nodes, each one with a dual socket Intel SandyBridge-EP Xeon
E5-2670 and 128 GB RAM and 8 cores per socket. Hence, up to 448 cores are available.

187

188

The secret to creativity is knowing how to hide
your sources.

Albert Einstein (1879 - 1955)

Bibliography

[AK00] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. Handbook of computa-
tional geometry, 5:201–290, 2000.

[AS98] Harold L Atkins and Chi-Wang Shu. Quadrature-free implementation of discon-
tinuous Galerkin method for hyperbolic equations. AIAA journal, 36(5):775–782,
1998.

[Bad08] Michael Bader. Exploiting the locality properties of peano curves for parallel
matrix multiplication. In Euro-Par 2008–Parallel Processing, pages 801–810.
Springer, 2008.

[BBD+08] Peter Bastian, Markus Blatt, Andreas Dedner, Christian Engwer, Robert
Klöfkorn, Markus Ohlberger, and Oliver Sander. A generic grid interface for par-
allel and adaptive scientific computing. Part I: Abstract framework. Computing,
82(2-3):103–119, 2008.

[BBMZ12] Matthias Braun, Sebastian Buchwald, Manuel Mohr, and Andreas Zwinkau. An
x10 compiler for invasive architectures. KIT, Fakultät für Informatik, 2012.

[BBS12] Michael Bader, Hans-Joachim Bungartz, and Martin Schreiber. Invasive Com-
puting on High Performance Shared-memory Systems. In Facing the Multicore-
Challenge III, volume 7686 of Lecture Notes in Computer Science, pages 1–12,
September 2012.

[BBSV10] Michael Bader, Christian Böck, Johannes Schwaiger, and Csaba Vigh. Dynami-
cally Adaptive Simulations with Minimal Memory Requirement-Solving the Shal-
low Water Equations Using Sierpinski Curves. SIAM Journal on Scientific Com-
puting, 32(1):212–228, 2010.

[BC11] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun.
ACM, 54(5):67–77, May 2011.

[BCCD12] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. The Zoltan and
Isorropia Parallel Toolkits for Combinatorial Scientific Computing: Partitioning,
Ordering, and Colorin. Scientific Programming, 20(2), 2012.

[Beh05] Jörn Behrens. Multilevel optimization by space-filling curves in adaptive atmo-
spheric modeling. 2005.

[Beh06] Jörn Behrens. Adaptive atmospheric modeling: key techniques in grid generation,
data structures, and numerical operations with applications. Springer, 2006.

[BGG+08] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Georg Stadler, Eh Tan,
Tiankai Tu, Lucas C Wilcox, and Shijie Zhong. Scalable adaptive mantle con-
vection simulation on petascale supercomputers. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 62. IEEE Press, 2008.

[BGLM11] Marsha J Berger, David L George, Randall J LeVeque, and Kyle T Mandli. The
GeoClaw software for depth-averaged flows with adaptive refinement. Advances
in Water Resources, 34(9):1195–1206, 2011.

[BGN00] P Brufau and P Garcia-Navarro. Two-dimensional dam break flow simulation.
International Journal for Numerical Methods in Fluids, 33(1):35–57, 2000.

189

BIBLIOGRAPHY

[BHK07] Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. deal. IIa general-
purpose object-oriented finite element library. ACM Transactions on Mathemat-
ical Software (TOMS), 33(4):24, 2007.

[BL98] MJ. Berger and R. LeVeque. Adaptive mesh refinement for two-dimensional hyper-
bolic systems and the AMRCLAW software. SIAM J. Numer. Anal, 35:2298–2316,
1998.

[BNTB07] Pete Beckman, Suman Nadella, Nick Trebon, and Ivan Beschastnikh. SPRUCE: A
system for supporting urgent high-performance computing. In Grid-Based Prob-
lem Solving Environments, pages 295–311. Springer, 2007.

[Bra07] Dietrich Braess. Finite elements: Theory, fast solvers, and applications in solid
mechanics. Cambridge University Press, 2007.

[BRH+05] Jörn Behrens, Natalja Rakowsky, Wolfgang Hiller, Dörthe Handorf, Matthias
Läuter, Jürgen Päpke, and Klaus Dethloff. amatos: Parallel adaptive mesh gen-
erator for atmospheric and oceanic simulation. Ocean Modelling, 10(12):171 –
183, 2005. The Second International Workshop on Unstructured Mesh Numerical
Modelling of Coastal, Shelf and Ocean Flows.

[BRS+13] Hans-Joachim Bungartz, Christoph Riesinger, Martin Schreiber, Gregor Snelting,
and Andreas Zwinkau. Invasive Computing in HPC with X10. In X10 Workshop
(X10’13), Seattle, Washington, June 2013.

[BRV12] Michael Bader, Kaveh Rahnema, and Csaba Attila Vigh. Memory-Efficient
Sierpinski-Order Traversals on Dynamically Adaptive, Recursively Structured Tri-
angular Grids. In Kristjan Jonasson, editor, Applied Parallel and Scientific Com-
puting - 10th International Conference, PARA 2010, volume 7134 of Lecture Notes
in Computer Science, pages 302–311. Springer, March 2012.

[BSA12] André R Brodtkorb, Martin L Sætra, and Mustafa Altinakar. Efficient shallow
water simulations on GPUs: Implementation, visualization, verification, and val-
idation. Computers & Fluids, 55:1–12, 2012.

[BSVB08] Michael Bader, Stefanie Schraufstetter, Csaba Vigh, and Jörn Behrens. Memory
efficient adaptive mesh generation and implementation of multigrid algorithms
using Sierpinski curves. International Journal of Computational Science and En-
gineering, 4(1):12–21, 2008.

[But64] John C Butcher. Implicit runge-kutta processes. Mathematics of Computation,
18(85):50–64, 1964.

[BWG11] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. p4est: Scalable algo-
rithms for parallel adaptive mesh refinement on forests of octrees. SIAM Journal
on Scientific Computing, 33(3):1103–1133, 2011.

[BZ00] Jörn Behrens and Jens Zimmermann. Parallelizing an unstructured grid generator
with a space-filling curve approach. In Euro-Par 2000 Parallel Processing, pages
815–823. Springer, 2000.

[CFL28] Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die partiellen Differen-
zengleichungen der mathematischen Physik. Mathematische Annalen, 100(1):32–
74, 1928.

190

BIBLIOGRAPHY

[CKT09] CE Castro, M Käser, and EF Toro. Space–time adaptive numerical methods
for geophysical applications. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 367(1907):4613–4631, 2009.

[CLDL09] Richard Comblen, Sébastien Legrand, Eric Deleersnijder, and Vincent Legat. A
finite element method for solving the shallow water equations on the sphere. Ocean
Modelling, 28(1):12–23, 2009.

[Coc98] Bernardo Cockburn. An introduction to the discontinuous Galerkin method for
convection-dominated problems. Springer, 1998.

[CP08] Cédric Chevalier and François Pellegrini. PT-Scotch: A tool for efficient parallel
graph ordering. Parallel Computing, 34(6):318–331, 2008.

[CS01] Bernardo Cockburn and Chi-Wang Shu. Runge–Kutta discontinuous Galerkin
methods for convection-dominated problems. Journal of scientific computing,
16(3):173–261, 2001.

[Cyb89] George Cybenko. Dynamic load balancing for distributed memory multiproces-
sors. Journal of parallel and distributed computing, 7(2):279–301, 1989.

[DBH+05] Karen D Devine, Erik G Boman, Robert T Heaphy, Bruce A Hendrickson,
James D Teresco, Jamal Faik, Joseph E Flaherty, and Luis G Gervasio. New chal-
lenges in dynamic load balancing. Applied Numerical Mathematics, 52(2):133–152,
2005.

[DHB+00] Karen Devine, Bruce Hendrickson, Erik Boman, Matthew St John, and Courtenay
Vaughan. Design of dynamic load-balancing tools for parallel applications. In
Proceedings of the 14th international conference on Supercomputing, pages 110–
118. ACM, 2000.

[Dub91] Moshe Dubiner. Spectral methods on triangles and other domains. Journal of
Scientific Computing, 6(4):345–390, 1991.

[Dun85] DA Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the
triangle. International journal for numerical methods in engineering, 21(6):1129–
1148, 1985.

[DZM07] Ramsay Dyer, Hao Zhang, and Torsten Möller. Voronoi-Delaunay duality and
Delaunay meshes. In Proceedings of the 2007 ACM symposium on Solid and
physical modeling, pages 415–420. ACM, 2007.

[EHB+13] Wolfgang Eckhardt, Alexander Heinecke, Reinhold Bader, Matthias Brehm, Nico-
lay Hammer, Herbert Huber, Hans-Georg Kleinhenz, Jadran Vrabec, Hans Hasse,
Martin Horsch, et al. 591 TFLOPS multi-trillion particles simulation on Super-
MUC. In Supercomputing, pages 1–12. Springer, 2013.

[ESS05] Kemal Ebcioglu, Vijay Saraswat, and Vivek Sarkar. X10: an experimental lan-
guage for high productivity programming of scalable systems. In Proceedings of
the Second Workshop on Productivity and Performance in High-End Computing
(PPHEC-05). Citeseer, 2005.

[Fly66] Michael J Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901–1909, 1966.

191

BIBLIOGRAPHY

[For12] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard:
Version 3.0. High-Performance Computing Center, 2012.

[FP63] Roger Fletcher and Michael JD Powell. A rapidly convergent descent method for
minimization. The Computer Journal, 6(2):163–168, 1963.

[FR89] Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval. In
Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Prin-
ciples of database systems, pages 247–252. ACM, 1989.

[Fra00] Anton Frank. Organisationsprinzipien zur Integration von geometrischer Mod-
ellierung, numerischer Simulation und Visualisierung. Dissertation, München,
2000.

[GBW90] Benjamin Garlick, D Baum, and J Winget. Interactive viewing of large geomet-
ric databases using multiprocessor graphics workstations. SIGGRAPH90 course
notes: Parallel Algorithms and Architectures for 3D Image Generation, 1990.

[GE04] M Gopi and David Eppstien. Single-Strip Triangulation of Manifolds with Arbi-
trary Topology. In Computer Graphics Forum, volume 23, pages 371–379. Wiley
Online Library, 2004.

[Geo06] David L George. Finite volume methods and adaptive refinement for tsunami
propagation and inundation. PhD thesis, Citeseer, 2006.

[Geo08] David L George. Augmented Riemann solvers for the shallow water equations over
variable topography with steady states and inundation. Journal of Computational
Physics, 227(6):3089–3113, 2008.

[GHM+12] Michael Gerndt, Andreas Hollmann, Marcel Meyer, Martin Schreiber, and Josef
Weidendorfer. Invasive computing with iomp. In Specification and Design Lan-
guages (FDL), pages 225 –231, September 2012.

[Gir06] Francis X Giraldo. High-order triangle-based discontinuous Galerkin methods for
hyperbolic equations on a rotating sphere. Journal of Computational Physics,
214(2):447–465, 2006.

[GMPZ06] Frank Günther, Miriam Mehl, Markus Pögl, and Christoph Zenger. A cache-aware
algorithm for PDEs on hierarchical data structures based on space-filling curves.
SIAM Journal on Scientific Computing, 28(5):1634–1650, 2006.

[Gün04] Frank Günther. Eine cache-optimale Implementierung der Finite-Elemente-
Methode. Dissertation, TU München, May 2004.

[GW08] FX Giraldo and T Warburton. A high-order triangular discontinuous Galerkin
oceanic shallow water model. International journal for numerical methods in
fluids, 56(7):899–925, 2008.

[HDJ04] Lok M Hwa, Mark A Duchaineau, and Kenneth I Joy. Adaptive 4-8 texture
hierarchies. In Proceedings of the conference on Visualization’04, pages 219–226.
IEEE Computer Society, 2004.

192

BIBLIOGRAPHY

[HKR+12] Daniel F Harlacher, Harald Klimach, Sabine Roller, Christian Siebert, and Felix
Wolf. Dynamic load balancing for unstructured meshes on space-filling curves.
In Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages 1661–1669. IEEE, 2012.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, pages 576–585, 1969.

[Höl13] Wolfgang Hölzl. Vectorization and GPGPU-Acceleration of an Augmented Rie-
mann Solver for the Shallow Water Equations. Bachelor’s thesis, Institut für
Informatik, Technische Universität München, July 2013.

[Hor93] G Horton. A multi-level diffusion method for dynamic load balancing. Parallel
Computing, 19(2):209–218, 1993.

[HT12] Alexander Heinecke and Carsten Trinitis. Cache-oblivious matrix algorithms in
the age of multicores and many cores. Concurrency and Computation: Practice
and Experience, 2012.

[HW08] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications, volume 54. Springer, 2008.

[IOC] IHO IOC. BODC, Centenary Edition of the GEBCO Digital Atlas. British oceano-
graphic data centre, Liverpool.

[JLW05] Shuangshuang Jin, Robert R Lewis, and David West. A comparison of algorithms
for vertex normal computation. The Visual Computer, 21(1-2):71–82, 2005.

[Ju07] Lili Ju. Conforming centroidal Voronoi Delaunay triangulation for quality mesh
generation. Inter. J. Numer. Anal. Model, 4:531–547, 2007.

[KBL+11] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat,
and Jörg Henkel. DistRM: Distributed resource management for on-chip many-
core systems. In Proceedings of the seventh IEEE/ACM/IFIP international con-
ference on Hardware/software codesign and system synthesis, pages 119–128.
ACM, 2011.

[KCS04] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proc. of the 13th Int.
Conf. on Par. Arch. and Compilation Techniques, 2004.

[KD06] Martin Käser and Michael Dumbser. An arbitrary high-order discontinuous
Galerkin method for elastic waves on unstructured meshes–I. The two-dimensional
isotropic case with external source terms. Geophysical Journal International,
166(2):855–877, 2006.

[KDDLPI07] Martin Käser, Michael Dumbser, Josep De La Puente, and Heiner Igel. An ar-
bitrary high-order Discontinuous Galerkin method for elastic waves on unstruc-
tured meshes–III. Viscoelastic attenuation. Geophysical Journal International,
168(1):224–242, 2007.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–
392, 1998.

193

BIBLIOGRAPHY

[KSK03] George Karypis, Kirk Schloegel, and Vipin Kumar. Parmetis. Parallel graph
partitioning and sparse matrix ordering library. Version, 2, 2003.

[KT04] Dmitri Kuzmin and Stefan Turek. High-resolution FEM-TVD schemes based on a
fully multidimensional flux limiter. Journal of Computational Physics, 198(1):131–
158, 2004.

[Lam32] H Lamb. Hydrodynamics Cambridge University Press. Cambridge, UK, 1932.

[LeV02] Randall J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002.

[LNT07] Michael N. Levy, Ramachandran D. Nair, and Henry M. Tufo. High-order Galerkin
methods for scalable global atmospheric models. Computers & Geosciences,
33(8):1022 – 1035, 2007.

[LP01] Peter Lindstrom and Valerio Pascucci. Visualization of large terrains made easy.
In Visualization, 2001. VIS’01. Proceedings, pages 363–574. IEEE, 2001.

[Mav02] Dimitri J Mavriplis. Parallel performance investigations of an unstructured mesh
Navier-Stokes solver. International Journal of High Performance Computing Ap-
plications, 16(4):395–407, 2002.

[MBGW10] Andreas Müller, Jörn Behrens, Francis X Giraldo, and Volkmar Wirth. An adap-
tive discontinuous Galerkin method for modeling cumulus clouds. 2010.

[MGLT] Breanyn T MacInnes, Aditya Riadi Gusman, Randall J LeVeque, and Yuichiro
Tanioka. Comparison of earthquake source models for the 2011 Tohoku event
using tsunami 2 simulations and near field observations 3.

[Mit07] William F Mitchell. A refinement-tree based partitioning method for dynamic
load balancing with adaptively refined grids. Journal of Parallel and Distributed
Computing, 67(4):417–429, 2007.

[MJFS01] Bongki Moon, Hosagrahar V Jagadish, Christos Faloutsos, and Joel H. Saltz.
Analysis of the clustering properties of the Hilbert space-filling curve. Knowledge
and Data Engineering, IEEE Transactions on, 13(1):124–141, 2001.

[MK11] Andrey Marochko and Alexey Kukanov. Composable Parallelism Foundations in
the Intel Threading Building Blocks Task Scheduler. In PARCO, pages 545–554,
2011.

[MNN11] Miriam Mehl, Tobias Neckel, and Ph Neumann. Navier–Stokes and Lattice–
Boltzmann on octree-like grids in the Peano framework. International Journal
for Numerical Methods in Fluids, 65(1-3):67–86, 2011.

[MRB12] Oliver Meister, Kaveh Rahnema, and Michael Bader. A Software Concept for
Cache-Efficient Simulation on Dynamically Adaptive Structured Triangular Grids.
In Koen De Boschhere, Erik H. D’Hollander, Gerhard R. Joubert, David Padua,
and Frans Peters, editors, Applications, Tools and Techniques on the Road to
Exascale Computing, volume 22 of Advances in Parallel Computing, pages 251–
260, Gent, May 2012. ParCo 2012, IOS Press.

194

BIBLIOGRAPHY

[Mül12] Andreas Müller. Untersuchungen zur Genauigkeit adaptiver unstetiger Galerkin-
Simulationen mit Hilfe von Luftblasen-Testfällen. Mainz, Univ., Diss., 2012, 2012.

[Mun06] Ralf-Peter Mundani. Hierarchische Geometriemodelle zur Einbettung verteilter
Simulationsaufgaben. Dissertation, Aachen, 2006.

[NCT09] RD Nair, H-W Choi, and HM Tufo. Computational aspects of a scalable high-
order discontinuous Galerkin atmospheric dynamical core. Computers & Fluids,
38(2):309–319, 2009.

[Nec09] Tobias Neckel. The PDE Framework Peano: An Environment for Efficient
Flow Simulations. Dissertation, Institut für Informatik, Technische Universität
München, June 2009. Dissertation erhältlich im Verlag Dr. Hut unter der ISBN
978-3-86853-147-3.

[NSL+11] Chris J Newburn, Byoungro So, Zhenying Liu, Michael McCool, Anwar Ghuloum,
Stefanus Du Toit, Zhi Gang Wang, Zhao Hui Du, Yongjian Chen, Gansha Wu,
et al. Intel’s Array Building Blocks: A retargetable, dynamic compiler and em-
bedded language. In Code generation and optimization (CGO), 2011 9th annual
IEEE/ACM international symposium on, pages 224–235. IEEE, 2011.

[NTL05] Ramachandran D Nair, Stephen J Thomas, and Richard D Loft. A discontinu-
ous Galerkin transport scheme on the cubed sphere. Monthly Weather Review,
133(4):814–828, 2005.

[NUW12] Svetlana Nogina, Kristof Unterweger, and Tobias Weinzierl. Autotuning of Adap-
tive Mesh Refinement PDE Solvers on Shared-memory Architectures. In Roman
Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski, editors,
PPAM 2011, volume 7203 of Lecture Notes in Computer Science, pages 671–680,
Heidelberg, Berlin, 2012. Springer-Verlag.

[OP09] Stephen L Olivier and Jan F Prins. Evaluating OpenMP 3.0 run time systems on
unbalanced task graphs. In Evolving OpenMP in an Age of Extreme Parallelism,
pages 63–78. Springer, 2009.

[Ope08] OpenMP Arch. Review Board. OpenMP Application Program Interface Version
3.0, 2008.

[OSK+11] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars Bauer, Jörg Henkel,
Daniel Lohmann, and Wolfgang Schröder-Preikschat. OctoPOS: A parallel oper-
ating system for invasive computing. Sventek, J.(Hrsg.), pages 9–14, 2011.

[PG07] Renato Pajarola and Enrico Gobbetti. Survey of semi-regular multiresolution
models for interactive terrain rendering. The Visual Computer, 23(8):583–605,
2007.

[PHP02] Nathaniel G Plant, K Todd Holland, and Jack A Puleo. Analysis of the scale of
errors in nearshore bathymetric data. Marine Geology, 191(1):71–86, 2002.

[Pög04] Markus Pögl. Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens
für gros̈se Probleme. Dissertation, Düsseldorf, August 2004.

195

BIBLIOGRAPHY

[Ret12] Sebastian Rettenberger. Ein paralleler Server für adaptive Geoinformation in
Strömungssimulationen. Master’s thesis, Institut für Informatik, Technische Uni-
versität München, June 2012.

[RFLS06] Jean-François Remacle, Sandra Soares Frazao, Xiangrong Li, and Mark S Shep-
hard. An adaptive discretization of shallow-water equations based on discontin-
uous galerkin methods. International journal for numerical methods in fluids,
52(8):903–923, 2006.

[Rüd93] Ulrich Rüde. Fully adaptive multigrid methods. SIAM Journal on Numerical
Analysis, 30(1):230–248, 1993.

[Rus62] Vladimir Vasil’evich Rusanov. Calculation of interaction of non-steady shock
waves with obstacles. NRC, Division of Mechanical Engineering, 1962.

[Sag94] Hans Sagan. Space-filling curves, volume 18. Springer-Verlag New York, 1994.

[SBB12] Martin Schreiber, Hans-Joachim Bungartz, and Michael Bader. Shared-memory
Parallelization of Fully-Adaptive Simulations Using a Dynamic Tree-Split and -
Join Approach. Puna, India, December 2012. IEEE International Conference on
High Performance Computing (HiPC), IEEE Xplore.

[Sch03] Dirk Schwanenberg. Die Runge-Kutta-Discontinuous-Galerkin-Methode zur
Lösung konvektionsdominierter tiefengemittelter Flachwasserprobleme. PhD the-
sis, 2003.

[Sch06] Stefanie Schraufstetter. Speichereffiziente Algorithmen zum Lösen partieller Dif-
ferentialgleichungen auf adaptiven Dreiecksgittern. Diplomarbeit, TU München,
July 2006.

[SES06] Joe Sampson, Alan Easton, and Manmohan Singh. Moving boundary shallow
water flow above parabolic bottom topography. Anziam Journal, 47:C373–C387,
2006.

[She02] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh
generation. Computational Geometry, 22(13):21 – 74, 2002.

[SLJM11] Guangfu Shao, Xiangyu Li, Chen Ji, and Takahiro Maeda. Focal mechanism
and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake,
constrained with teleseismic body and surface waves. Earth, planets and space,
63(7):559–564, 2011.

[SM03] Endre Süli and David F Mayers. An introduction to numerical analysis. Cam-
bridge University Press, 2003.

[SRNB13a] Martin Schreiber, Christoph Riesinger, Tobias Neckel, and Hans-Joachim Bun-
gartz. Invasive compute balancing for applications with hybrid parallelization. In
Proceedings of the 25th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD’13). IEEE, October 2013.

[SRNB13b] Martin Schreiber, Christoph Riesinger, Tobias Neckel, and Hans-Joachim Bun-
gartz. Invasive Compute Balancing for Applications with Shared and Hybrid
Parallelization. 2013. submitted for publication.

196

BIBLIOGRAPHY

[SSD03] Pavel Solin, Karel Segeth, and Ivo Dolezel. Higher-order finite element methods.
CRC Press, 2003.

[SWB13a] Martin Schreiber, Tobias Weinzierl, and Hans-Joachim Bungartz. Cluster Opti-
mization and Parallelization of Simulations with Dynamically Adaptive Grids. In
F. Wolf, B. Mohr, and D. an Mey, editors, Euro-Par 2013, volume 8097 of Lecture
Notes in Computer Science, pages 484–496, Berlin Heidelberg, 2013. Springer-
Verlag.

[SWB13b] Martin Schreiber, Tobias Weinzierl, and Hans-Joachim Bungartz. SFC-based
Communication Metadata Encoding for Adaptive Mesh. In Proceedings of the In-
ternational Conference on Parallel Computing (ParCo), October 2013. accepted.

[Syn91] Costas Emmanuel Synolakis. Tsunami runup on steep slopes: How good linear
theory really is. In Tsunami Hazard, pages 221–234. Springer, 1991.

[Tei08] Jürgen Teich. Invasive Algorithms and Architectures, Invasive Algorithmen und
Architekturen. it-Information Technology, 50(5):300–310, 2008.

[Tor01] EF Toro. Shock-capturing methods for free-surface shallow flows. Chichester,
etc.: Wiley, 2001.

[TOS00] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid. Access
Online via Elsevier, 2000.

[UTK98] K UTKU. Long wave runup on piecewise linear topographies. J. Fluid Mech,
374:1–28, 1998.

[UWKA13] Kristof Unterweger, Tobias Weinzierl, David I. Ketcheson, and Aron Ahmadia.
PeanoClaw - A Functionally-Decomposed Approach to Adaptive Mesh Refinement
with Local Time Stepping for Hyperbolic Conservation Law Solvers. Technical
Report TUM-I1332, 2013.

[Vig12] Csaba A. Vigh. Parallel Simulation of the Shallow Water Equations on Struc-
tured Dynamically Adaptive Triangular Grids. PhD thesis, Institut für Informatik,
Technische Universität München, 2012.

[Wei09] Tobias Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive
Cartesian Grids. Dissertation, Institut für Informatik, Technische Universität
München, München, 2009.

[Wel09] Hilary Weller. Predicting mesh density for adaptive modelling of the global atmo-
sphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 367(1907):4523–4542, 2009.

[WS91] Paul Wessel and Walter H. F. Smith. Free software helps map and display data.
Eos, Transactions American Geophysical Union, 72(41):441–446, 1991.

[Xie13] Yuan Xie. Future memory and interconnect technologies. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2013, pages 964–969. IEEE,
2013.

[ZK05] Gengbin Zheng and Laxmikant V Kale. Achieving high performance on extremely
large parallel machines: performance prediction and load balancing. Citeseer, 2005.

197

BIBLIOGRAPHY

[Zum00] Gerhard Zumbusch. On the quality of space-filling curve induced partitions. Son-
derforschungsbereich 256, 2000.

198

	I Introduction
	II Essential numerics of hyperbolic PDEs
	Continuity equation and applications
	Continuity equation
	Examples of hyperbolic systems

	Discontinuous Galerkin discretization
	Grid generation
	Triangle reference and world space
	Basis functions
	Weak formulation
	Mass matrix M
	Stiffness matrices S
	Flux matrices E
	Source term
	Rotational invariancy and edge space
	Numerical flux F
	Boundary conditions
	Adaptive refining and coarsening matrices R and C
	CFL stability condition
	Time stepping schemes

	III Efficient framework for simulations on dynamically adaptive grids
	Requirements and related work
	Simulation: grid, data and communication management
	HPC requirements
	Space-filling curves
	Related work

	Serial implementation
	Grid generation with refinement trees
	Stacks
	Stack-based communication
	Classification of data lifetime
	Stack- and stream-based simulation on a static grid
	Adaptivity
	Verification of stack-based edge communication
	Higher-order time stepping: Runge-Kutta
	Software design, programmability and realization
	Optimization
	Contributions

	Parallelization
	SFC-based parallelization methods for DAMR
	Inter-partition communication and dynamic meta information
	Parallelization with clusters
	Base domain triangulation and initialization of meta information
	Dynamic cluster generation
	Shared-memory parallelization
	Results: Shared-memory parallelization
	Cluster-based optimization
	Results: Long-term simulations and optimizations on shared-memory
	Distributed-memory parallelization
	Hybrid parallelization
	Results: Distributed-memory parallelization
	Summary and Outlook

	Application scenarios
	Prerequisites
	Analytic benchmark: solitary wave on composite beach
	Field benchmark: Tohoku Tsunami simulation
	Output backends
	Simulations on the sphere
	Multi-layer simulations
	Summary and outlook

	IV Invasive Computing
	Invasive Computing with invasive hard- and software
	Inavsive hardware architecture
	Invasive software architecture
	Invasive algorithms
	Results

	Invasive Computing for shared-memory HPC systems
	Invasion with OpenMP and TBB
	Invasive client layer
	Invasive resource manager
	Scheduling decisions
	Invasive programming patterns
	Results

	Conclusion and outlook

	V Summary
	Appendix
	Hyperbolic PDEs
	Test platforms

