
AUTOMATIC RECOGNITION OF PHYSIOLOGICAL PARAMETERS IN THE  

HUMAN VOICE: HEART RATE AND SKIN CONDUCTANCE 

 

Björn Schuller
1,2

, Felix Friedmann
2
, Florian Eyben

2 

 
1
Institute for Sensor Systems, University of Passau, Germany 

2
Machine Intelligence & Signal Processing Group, MMK, Technische Universität München, Germany 

Bjoern.Schuller@uni-passau.de 

 
 

ABSTRACT 

 

We show that high pulse/low pulse, heart rate and skin 

conductance recognition can reach good accuracies using 

classification on a large group of 4k audio features extracted from 

sustained vowels and breathing periods. A database containing 

audio, heart rate and skin conductance recordings from 19 subjects 

is established for evaluation of audio-based bio-signal recognition. 

On this database in speaker-dependent testing, heart rate and skin 

conductance can be determined with a correlation coefficient of 

.861/.960 and mean absolute error of 8.1 BPM/88.2 µMhO for 

regression based on sustained vowels recorded from a room 

microphone. Using the same set-up, a high pulse/low pulse 

classification can reach an unweighted accuracy of 82.7%. The 

results are largely independent from microphone type and the two 

bio-signals can be determined from breathing periods as well. 

Performance does, however, degrade in speaker-independent 

setting.  

 

Index Terms— Speech Analysis, Computational 

Paralinguistics, Heart Rate, Skin Conductance 

 

1. INTRODUCTION 

 

The traditional model of a person visiting a doctor to receive 

medical treatment is being revolutionized at this moment. The 

variety of affordable and portable medical devices allowing a 

person to actively contribute to diagnosis and treatment is 

permanently increasing. Particularly for persons whose motility is 

limited or who are living remotely this trend may significantly 

improve quality of life. There are devices for measuring blood 

pressure, heart rate, body core temperature, respiration rate and 

many other physiological parameters autonomously, but yet they 

are still rather expensive and inconvenient for an everyday use. 

Ideally, monitoring of vital signals should require a minimal effort 

by a user and cause minimal disturbance; a user should not have to 

spend time thinking about the use of a monitoring device or even 

notice monitoring particularly. Monitoring should be easy enough 

to perform it in emergency situations, for example when calling a 

hospital, and monitoring should also be carried out over longer 

periods of time so that it could spontaneously react on emergencies 

or collect vital data for creating a health profile. For these reasons, 

physiological data should be recorded by sensors that are best 

‘unnoticed’ in terms of intrusiveness. Disturbance of daily life 

would be minimal, if not a separate device had to be carried, but if 

monitoring of physiological parameters could be performed by 

computers or mobile phones which provide computational power 

in reach most of the time already. These considerations draw 

attention on signal types which can be recorded by mobile phones 

and computers easily: video and audio. In addition to the 

advantages mentioned above, video- and audio-based recognition 

can also be performed on past recordings, e.g., movies, songs and 

other voice recordings. A major advantage of audio-based over 

video-based recognition is that a microphone does not have to be 

directed towards a user’s face or skin. It can also be employed as a 

complimentary technology in any situation in which a video 

camera is not available or able to record, e.g., in the dark. 

 

2. RELATION TO PRIOR WORK 

 

Given video- and audio-based bio-signal recognition’s manifold 

advantages over competing technologies, there is already research 

and development in this area though, recently, the efforts in 

research have mainly focused on video-based recognition. Poh et 

al. [1] show that heart rate, breath rate and heart rate variability can 

be determined by a laptop’s built-in video camera with great 

accuracy. Scully et al. [2] use the video of a subject’s finger resting 

on a mobile phone’s camera lens to extract heart rate, heart rate 

variability, breathing rate and blood oxygen saturation. There are 

several applications for mobile phones performing video-based 

heart rate and breath rate recognition on the market right now, 

based on a webcam as well as based on a mobile phone’s camera. 

For audio-based recognition, comparably few efforts have been 

made recently, but in 1989, Orlikoff and Baken [3] substantiated 

the connection between human voice and heartbeat. In the study, 

six male and six female participants had to produce sustained 

vowels while measured with an electroglottograph (EGG). By 

signal-averaging and autocorrelation, the study found that the 

heartbeat accounts for approximately 0.2% to 19% of absolute 

perturbation of the fundamental frequency (jitter) measured on 

pronunciations of sustained vowels. The influence of heart beats on 

jitter shown by Orlifkoff and Baken implies that heart rate 

information can be found in periodic changes of F0. The present 

study evaluates heart rate (HR) recognition, skin conductance (SC) 

recognition and high pulse / low pulse (HP/LP) classification on 

features extracted from audio recordings. For this purpose an 

experiment is carried out during which subjects’ HR and SC is 

recorded during breathing, pronunciation of sustained vowels and 

text reading. The recordings are connected with the subjects’ 

personal data to create a database allowing further processing and 

evaluation. This study aims at providing a general evaluation of 

audio-signals for HR and SC recognition to determine whether 

audio-based recognition can be used as an alternative or 

supplement to current technologies. This has so far to our best 
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knowledge only been attempted for HR in vowels [4,5]. 

Furthermore, the study aims to examine in which settings audio-

based recognition performs particularly bad or well in order to 

identify possible fields of application. Additionally possibilities for 

further improvements of the technology shall be identified. In a 

long-term perspective the outcomes of this study shall support the 

current development towards accurate, affordable, available and 

autonomous bio-signal monitoring, with the vision that usage of 

mobile medical diagnosis will ultimately become as common and 

natural as making a phone call. In the following sections, the 

experiment designed and carried out for HR and SC acquisition is 

described together with the methods employed to evaluate HR, 

HP/LP and SC recognition before results of the evaluation are 

shown and interpreted. 

 

3. THE MUNICH BIOVOICE CORPUS 

 

To collect the data for evaluation of audio-signal based recognition 

of physiological parameters, an experiment in which HR and SC 

are recorded simultaneously with vocal expressions was carried out 

with suited equipment: Wild Divine Inc.’s “iom” is a lightweight 

hardware device that records HR and SC data. It was initially 

designed for the “Journey to the Wild Devine” video game, but can 

also be used independently from the game for HR and SC 

recording. Data is collected from 3 sensors attached to a subject’s 

fingers. The sensors are connected to a computer via USB. A 

Zoom Q3Hd camcorder equipped with an X-Y hd microphone was 

used to record audio (“room microphone”) with a sampling rate of 

92 kHz in PCM-wave format. In addition, a Logitech Clearchat 

Headset (“close-talk microphone”) was used as representative of a 

typical headset available on the market connected to the laptop via 

USB. Overall, 19 subjects (4/15 female/male, 3 Chinese, 15 

German, 1 Italian) gave their consent and participated in the 

experiment. All were free of temporary diseases, but the subjects 

include smokers and such with cardiac and neurological disorders. 

All subjects had to sign a letter of consent and fill out a 

questionnaire about their height, weight, nationality and health 

condition as well as the BFI-10 short personality test [6]. All 

subjects were recorded breathing, pronouncing the sustained vowel 

/a/ and reading a text with low pulse and with high pulse under 

constant, pre-defined conditions. For this purpose the subjects had 

to undergo a training period first before being recorded. The 

subjects raised their pulse by physically exercising (cf. Fig. 1, left). 

 

   
 

Fig. 1: Left: a subject exercising, middle: a subject being recorded, 

right: a subject's hand grounded and connected to the “iom” 

sensors. 

 

They were recorded sitting on a chair in front of a desk with the 

laptop used for recording and feedback (cf. Fig. 1, middle). The 

Zoom Q3Hd was placed on the desk in a distance of 50 centimeters 

from the subjects’ lips, the Logitech Clearchat headset was head-

worn. The Wild Divine iom’s sensors were attached to the 

subject’s left hand to measure BPM and SCL (cf. Fig. 1, right). 

The iom’s heart rate sensor was connected to the middle finger and 

the two skin conductance sensors to the ring and forefinger of the 

subject. Iom data is collected with the Wild Divine Grapher. The 

subjects’ left hands are grounded to minimize influence of noise by 

the computer’s power supply on the headset recordings. 

For each subject, a comfortable frequency Fc for the pronunciation 

of a sustained /a/ vowel is determined through a live frequency 

analysis. Fc is marked, and the subject has to train repeating the /a/ 

vowel in comfortable frequency (/a/c) as precise as possible for 

several times. After the subject is able to intentionally produce /a/c 

within a tolerance of ± 7 Hz during 5 subsequent attempts, it is 

assumed that /a/c can be produced reliably during the recording. 

Following [3], the subject has to undergo the same training for /a/l, 

an /a/ vowel with a frequency Fl 4 semi tone levels below Fc. In 

equal temperament, raising a frequency by one octave equals 

multiplying the frequency with 2, and raising it by one semitone 

equals multiplying it with √ 
  

. Therefore,    is determined by 

   √   
  

   . 
 

After the subjects finished their training, recording of both 

microphones was started. A short beep tone was produced 

simultaneously with starting recording with the Wild Divine iom. 

The subjects then had to pronounce /a/l and /a/c 4 times each and 

read a text with resting pulse. Native German speakers read out 

loud the text “Der Nordwind und die Sonne” – a standard text 

frequently used in phonetics – other subjects read the English 

version of the text “The Northwind and the Sun”. Next, the 

subjects had to repeat these three tasks, but each of them preceded 

by a physical exercise break – mostly running including staircases 

– to raise their pulse. During exercise breaks, the iom’s sensors are 

removed from the subject’s fingers and the subjects had to 

physically exercise until their pulse exceeded 90 BPM. After the 

subjects finished reading the text with high pulse, a second beep 

was generated and recording was stopped.  

 

HR and SC data from the Wild Divine Grapher was stored in a 

table together with values of the fundamental frequency (F0) over 

time for the audio recordings. F0 is used for distinction between 

vowels pronounced in comfortable frequency and vowels 

pronounced in low frequency of a subject. The timestamps for HR 

and SC data show delay and protraction when compared to the 

audio recordings. This was corrected by a linear transformation 

that takes into account that ‘beep’ sounds in the audio recordings 

should be in sync with the beginning and end of recorded SC data 

as well as that ‘clac’ sounds in the audio recordings produced by 

removing the iom sensors from a subject’s fingers should be in 

sync with sudden drops of SC data to zero. Sound chunks (vowel, 

breath or text) are selected and named according to their type. HR, 

SC and F0 were looked up in the table for each sound chunk and 

are included in the chunk’s name. Audio was then cut manually 

according to the beginning and end of according name tags. 

Overall, the final database – referred to as Munich BioVoice 

Corpus (or MBC for short) in the ongoing – consists of 1,420 

BPM- and SCL-labeled audio recordings from 19 speakers. The 

instances are divided into 74 text periods, 644 breath periods and 

630 sustained vowel expressions. They are further divided into low 

pulse and high pulse recordings and into headset and Q3Hd 

microphone recordings. Sustained vowels are labeled with F0 data 

and divided into vowels sustained in comfortable or low frequency. 

Personal information, health state and the results of the 

psychological test of the subjects are included in the database 

which is available for scientific studies as per request including 

partitioning for reproduction of oncoming results. 
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Table 1: Results for the automatic classification of high/low pulse (HP/LP), and regression of heart rate and skin conductance by 

unweighted accuracy (UA), correlation coefficient (CC) and mean absolute error (MAE) on the Munich BioVoice Corpus.  

min/mean/max values: Heart Rate (BPM): 51.6/86.5/158.6, Skin Conductance (µMhO): 115.3/921.1/3,311.2. 

 

Setting 

 

HP/LP 
 

Heart Rate 
 

Skin Conductance 

  

 

UA [%] 
 

CC 
MAE 

[BPM]  
CC 

MAE 

[µMhO] 

S
u

st
ai

n
ed

 V
o

w
el

s 

C
lo

se
-t

al
k
 

H
ea

d
se

t Speaker independent (LOSO) 

 

64.0 
 

.343 17.5 
 

.298 571.2 

Speaker only (SCV) 

 

83.1 
 

.809ᶠ 8.4ᶠ 
 

.978ᶠ 84.4ᶠ 

All speakers (SCV) 

 

79.6 
 

.770 10.6 
 

.891 265.3 

R
o

o
m

 

M
ic

ro
p
h

o
n

e 

Speaker independent (LOSO) 

 

63.0 
 

.366ᶠ 17.0ᶠ 
 

.170ᶠ 626.9ᶠ 

Speaker only (SCV) 

 

82.7 
 

.861ᶠ 8.1ᶠ 
 

.960ᶠ 88.2ᶠ 

All speakers (SCV) 

 

76.0 
 

.574 11.7 
 

.633 311.2 

B
re

at
h

in
g

 P
er

io
d

s 

C
lo

se
-t

al
k
 

H
ea

d
se

t Speaker independent (LOSO) 

 

70.2 
 

.382 17.5 
 

.131ᶠ 732.0ᶠ 

Speaker only (SCV) 

 

84.1 
 

.722ᶠ 10.7ᶠ 
 

.908ᶠᶤ 153.7ᶠᶤ 

All speakers (SCV) 

 

78.6 
 

.629ᶠ 13.1ᶠ 
 

.632ᶠ 469.7ᶠ 

R
o

o
m

 

M
ic

ro
p
h

o
n

e 

Speaker independent (LOSO) 

 

62.8 
 

.382ᶠ 17.3ᶠ 
 

-.204ᶠ 881.3ᶠ 

Speaker only (SCV) 

 

81.9 
 

.718ᶠ 10.6ᶠ 
 

.905ᶠᶤ 165.3ᶠᶤ 

All speakers (SCV) 

 

72.9 
 

.521 14.8 
 

.483 570.8 
 

ᶠ   Predictions with an obvious error greater than 3000 µMhO or 200 BPM were excluded (cf. Section 6) 

ᶤ   Three subjects were excluded from analysis, due to sparse breath recordings 
  

 

4. EXPERIMENTS  

 

We use our openSMILE toolkit [7] to perform extraction of 4,368 

acoustic features that we had defined as baseline features for the 

INTERSPEECH 2011 Speaker State Challenge [8]. The features 

consist of 4 energy-, 50 spectral- and 5 voice-related Low Level 

Descriptors (LLD) to which functionals are applied. To the energy 

related and spectral LLD and their first order deltas, base 

functionals are applied together with min, mean, max and the 

standard derivation of the segment length. To the voice related 

LLD and their first order deltas, the base functionals are applied 

together with quadratic mean, rise duration and fall duration of the 

signal in case of voicing probability greater than .7. The F0 

functionals are applied on the F0 LLD and its first order derivate.  

In detail, the LLD are: 

 4 energy related LLD: Sum of auditory spectrum 

(loudness), Sum of RASTA-style filtered auditory 

spectrum, RMS Energy, Zero-Crossing Rate,  

 50 spectral LLD: RASTA-style filt. auditory spectrum, 

bands 1–26 (0–8 kHz), MFCC 1–12, Spectral energy 25–

650 Hz, 1 k–4 kHz, Spectral Roll Off Point 0.25, 0.50, 

0.75, 0.90, Spectral Flux, Entropy, Variance, Skewness, 

Kurtosis, Slope  

 5 voice related LLD: F0, Probability of voicing, Jitter 

(local, delta), Shimmer (local) 

 

Accordingly, functionals consist of: 

 33 base functionals: quartiles 1–3, 3 inter-quartile 

ranges, 1% percentile (≈min), 99% percentile (≈max), 

percentile range 1 %–99%, arithmetic mean, standard 

deviation, skewness, kurtosis, mean of peak distances, 

standard deviation of peak distances, mean value of 

peaks, mean value of peaks – arithmetic mean, linear 

regression slope and quadratic error, quadratic regression 

a and b and quadratic error, contour centroid, duration 

signal is below 25% range, duration signal is above 90% 

range, duration signal is rising/falling, gain of linear 

prediction (LP), LP Coefficients 1–5 

 6 F0 functionals: percentage of non-zero frames, mean, 

max, min, standard deviation of segment length, input 

duration in seconds  

 

For further good reproducibility of findings, we decided for the 

open-source Weka implementations [9] of support vector 

regression (SVR) for regression and support vector machines 

(SVM) for classification trained with the sequential minimal 

optimization algorithm using a linear kernel. Intra-speaker and 

speaker-independent classification performance measures are 

calculated from the distribution of the individual results for each 

speaker. For the nominal class HP/LP, unweighted accuracy (UA, 

i.e., recalls per classes added and divided by number of classes to 

cope with imbalance) is used as evaluation measure. Correlation 

coefficient (CC), and mean absolute error (MAE) are determined 

from the distribution of prediction results for numeric classes (HR 

and SC) following the standards set in the INTERSPEECH series 

of Computational Paralinguistics.  

 

5. EXPERIMENTAL RESULTS 

 

In the ongoing, we want to explore the influence of microphone 

setting, sound type and inclusion of a specific speaker’s training 

data on the performance of recognition. The influence of 

microphone type and sound type on classification performance has 
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been investigated and is summarized in Table 1 for HR, SC and 

HP/LP. Recognition performance analysis was performed for 

vowels and breathing recordings via close-talk or room 

microphone with subject dependent testing (10-fold stratified 

cross-validation (SCV) with standard random seed in Weka) using 

either only the speaker or all data, and speaker independent testing 

(leave-one-speaker-out, LOSO). With a speaker’s own training 

input, HR prediction shows a maximal CC of .861 with a MAE of 

8.1 BPM for vowels via room microphone. Best CC reached for 

SC resembles .978 for vowels via close-talk microphone together 

with the lowest MAE of 84.4 µMhO. HP/LP classification shows a 

maximal UA of 84.1% for breathing via close-talk microphone. 

Speaker independent classification shows comparably low results 

with CCs smaller than .5 for HR and SC value prediction, but UAs 

above 60% for HP/LP classification, with a maximal UA of 70.2% 

observed for breathing via close-talk microphone. 

 

6. DISCUSSION 

 

The meaning of the results of this study is bound to the methods 

and tools employed to reach these. The influence of potentially 

erroneous reference recordings by the reference hardware, the 

validity of HP/LP classification and the meaning of the erroneous 

regressions are thus discussed now. A first aspect for discussion of 

the validity of this study’s results is that HR and SC labels are 

inaccurate to a certain extent because of occasionally occurring 

temporary signal loss of the Wild Divine iom. Signal loss has been 

observed particularly for HR recordings, but also for SC 

recordings. As sound chunks were labeled with the mean HR and 

SC recorded by the iom during the duration of those chunks, the 

absence of measuring points led to reduced accuracies for the HR 

and SC values assigned to these sound chunks. Concerning the 

validity of HP/LP classification, it has to be considered that the 

employed threshold to decide between high pulse and low pulse 

was the mean of the HR labels of all recorded sustained vowels of 

a subject. The threshold is therefore based on a user-specific HR 

value, which means that the user-independent HP/LP 

classifications carried out in this study are in fact user-dependent 

classifications if considered as HR classifications. User 

independence of HP/LP classifications is valid on the other hand if 

the classification is not interpreted as a HR classification but as a 

classification for physical excitement. The underlying problem of 

this classification is that the resting pulse varies from person to 

person, making it impossible to find one fixed threshold that 

separates high from low pulses which is equally valid for all 

humans. For this reason, an individual threshold was chosen for 

each speaker for HP/LP classification. For comparison one 

examination was carried out employing a fixed threshold of 90 

BPM for all subjects, and reached an UA of 78.6% for recognition 

on vowels via close-talk microphone. The prediction errors 

observed for speaker-only and speaker-independent recognition 

can be partially avoided by implementation of a predictor which 

classifies predictions as erroneous when they are not within a range 

of expected values (e.g., 20-250 BPM). Like this, a person 

performing audio-based recognition of bio-signals could be 

informed about the erroneous recognition and be queried to repeat 

the recognition. The erroneous predictions may be caused by a lack 

of training data. The examinations show a weak dependence of 

recognition accuracy on microphone type and a distinct, but not 

strong dependence on sound type, with vowel-based recognition of 

heart rate showing particularly good accuracy. CC’s of HR and SC 

recognition are about .1 lower for breath periods than for sustained 

vowels, which might be explained by considering that the voice-

related features (jitter, shimmer, F0, probability of voicing) are not 

providing useful information but only add noise when extracted 

from breath periods. HP/LP classification shows little influence of 

sound type and even achieves better results for recognition on 

breath periods than for recognition on sound periods. This may be 

explained if HP/LP classification is interpreted as recognition of a 

state of physical excitement, since the influence of physical 

excitement on breath rate and depth can be recognized by humans. 

 

7. CONCLUSION AND OUTLOOK 

 

It was shown by this study that it can be determined by audio 

recordings of breath and sustained vowels whether a person’s pulse 

is high or low. This was reached with good accuracy and largely 

independent from setting using large space acoustic feature 

extraction and support vector classification. Further, it was 

demonstrated that even heart rate value and skin conductance value 

can be recognized by according feature extraction and regression 

on breathing periods and sustained vowels. The performance 

observed was good, but far away from competing with the 

accuracy of medical equipment available today and also subject of 

partially severe outliers. Furthermore, good results for HR and SC 

values always required a speaker’s training input, which limits 

spontaneous recognition as well as analysis of audio recordings 

without physiological reference data in possible applications. To 

improve future performance, we aim to increase recognition 

accuracy by selection of features, and to compare the importance 

of different feature groups. Recognition accuracy could be further 

increased by enlargement of the data set and development of a 

predictor able to recognize predictions out of an expected range of 

values. The fact that also breath periods allowed recognition with 

acceptable accuracy suggests that the technology can be used 

passively, for example by a mobile phone continuously recording a 

subject without its specific “contribution”, i.e., talking. In this 

scenario, it would require less effort to provide sufficient training 

data, and a predictor could be implemented that considers the 

successive nature of predictions to recognize and eliminate outlier 

predictions within a more narrow range than the one possible with 

general upper and lower limits. Further, we had not used the read 

text chunks from the Munich BioVoice Corpus, yet. This section 

can be used in future studies to investigate performance on 

continuous speech, which may require an additional segmentation 

unit such as a phoneme or broader sound class recognizer, such as 

the one in [10]. Then, results as reached by fusion of physiological 

signals and speech, e.g., for stress [11] or emotion recognition 

[12,13] or related paralinguistic tasks [14] such as public speaking 

anxiety [15] could be reached using only speech, but deriving 

physiological data as “higher level features” in addition to typical 

speech features. Also, one could attempt to predict the HR and SC 

induced in a listener, such as babies listening to their mother’s 

voice [16], any persons listening to stutterers [17] or in dependence 

of the text one reads [18], e.g., poems. Further, it is believed that 

stuttering can be expected according to HR [19]. If HR can be 

derived from speech, an Automatic Speech Recogniser can use this 

information to “expect” increased or decreased stuttering from 

speech. Altogether the study finds that audio-based recognition has 

the potential to be used in a software application on mobile phones 

and computers for remote monitoring of heart rate and skin 

conductance. If the technology can be further improved, it could be 

used for passive non-contact monitoring requiring a minimum of 

attendance by its user and improving live quality for many people. 
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