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Abstract

Detecting segments of overlapping speech (when two or
more speakers are active at the same time) is a challenging
problem. Previously, mostly HMM-based systems have been
used for overlap detection, employing various different audio
features. In this work, we propose a novel overlap detection sys-
tem using Long Short-Term Memory (LSTM) recurrent neural
networks. LSTMs are used to generate framewise overlap pre-
dictions which are applied for overlap detection. Furthermore, a
tandem HMM-LSTM system is obtained by adding LSTM pre-
dictions to the HMM feature set. Experiments with the AMI
corpus show that overlap detection performance of LSTMs is
comparable to HMMs. The combination of HMMs and LSTMs
improves overlap detection by achieving higher recall.

Index Terms: Speech Overlap Detection, Speaker Diarization,
Neural Networks, Long Short-Term Memory

1. Introduction

In spontaneous, conversational speech, it occurs very often that
two or more speakers are speaking simultaneously [1]. Over-
lap occurs at speaker turn points or as backchannel utterances
or interruptions. Recent studies try to further analyse the nature
of overlapping speech, revealing results about the duration and
when it is likely to occur or about different types of overlap-
ping speech [2, 3, 4]. Overlapping speech is still a major source
of error for many speech processing applications [5]. For ex-
ample, it is a problem for speech recognition systems for con-
versational speech [6]. In [7], overlap detection is applied to
improve a speaker recognition system. Another important field
of application for overlap detection systems is overlap handling
in speaker diarization [8]. In speaker diarization, overlap leads
to impure speaker models and furthermore directly provokes in-
creases in the missed speaker rate. Overlap detection systems
with good performance in precision and recall can address these
two problems.

The first system for detection and handling of overlap in
speaker diarization was presented in [9]. An HMM system with
three classes (non-speech, speech, and overlapping speech) em-
ploying mainly spectral audio features (MFCCs, RMS energy,
LPC residual energy, and diarization posterior entropy) was
used to detect overlap. Detected overlap segments were then
excluded prior to speaker clustering to obtain better speaker
models. To reduce the missed speaker rate, a second speaker
was introduced in all detected overlap segments. More re-
cently, other features have been investigated for overlap de-
tection. Prosodic [10] and spatial [11] features were able to
improve the performance of an HMM-based overlap detection
system.

In our previous work, we explored the use of convolutive
non-negative sparse coding (CNSC) for overlap detection [12].
CNSC is a signal separation technique which is used to sepa-
rate potentially overlapping speech signals into their contribut-
ing sources. The resulting speaker activations are used to de-
tect overlap. In [13], we combined CNSC-based overlap de-
tection with an HMM system by using features derived from
CNSC activations within the HMM framework. In addition,
more spectral, energy and voicing-related features were inves-
tigated for their suitability for overlap detection. An analysis
of detected overlap segments showed that especially short seg-
ments of overlapping speech are hard to detect [14]. Such seg-
ments include backchannel utterances or interruptions, which
are characterised by a low degree of actual acoustic overlap.
Therefore, systems that go beyond pure acoustic features and
try to analyse the context could help to improve overlap de-
tection. An approach presented in [15] uses the output of a
voice activity detection system and the silence distribution to
detect overlap. This work was extended by exploiting long-term
conversational features for overlap detection [16]. Neural net-
works could improve overlap detection by analysing the con-
text. In the domain of speech recognition, tandem architectures
which combine neural networks and HMMs have been applied
succesfully [17]. However, the amount of context a conven-
tional recurrent neural network (RNN) can exploit is limited.
Long Short-Term Memory (LSTM) RNNs have been proposed
to overcome this so-called vanishing gradient problem [18]. Re-
cently, we used LSTMs for voice activity detection [19].

In this work, we apply LSTM-RNNs to the the task of
speech overlap detection. Using conventional MFCC features
and energy, spectral, vocing-related and CNSC-based features
that were proposed in [13], LSTMs are used as a regressor to
predict frame-wise overlap scores. These scores are employed
to detect segments of overlapping speech. In addition, we use
the predicted overlap scores as features within the HMM frame-
work. Experiments are conducted with the AMI corpus of meet-
ing recordings containing spontaneous speech. Results show
the efficacy of LSTMs for overlap detection.

2. Overlap Detection System

The proposed overlap detection system is depicted in Figure 1.
It consists of a conventional HMM system for overlap detec-
tion. In addition, extracted audio features can also be fed to
the LSTM-RNN to generate overlap predictions. These overlap
predictions are either directly used (by applying a threshold) to
detect overlap or they are added to the other features and de-
coded with the HMM, resulting in a tandem HMM-LSTM sys-
tem.
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Figure 1: System overview for the overlap detection system

2.1. HMM System

As a baseline system, a standard HMM-based overlap detection
system, as first presented in [9], is applied. Speech, non-speech
and overlapping speech are each modelled by a three-state
HMM. Observations are modelled with a multivariate Gaus-
sian Mixture Model (GMM) with diagonal covariance matri-
ces. Due to unbalanced training data each mixture in the speech
model has 256 components, while those in both the nonspeech
and overlap models have 64 components. Models are trained
with an iterative mixture splitting technique with successive re-
estimation. In the decoding grammar, self-transitions and tran-
sitions from non-speech to overlapping speech are forbidden. In
order to trade off false positive detections versus false negatives,
different system operating points are tested. The log-likelihood
transition penalty from speech to overlapping speech is the tun-
ing parameter to obtain these operating points. This parameter
is also referred to as the overlap insertion penalty OIP. Higher
OIP leads to fewer false positive detections and in turn higher
precision and lower recall.

2.2. Audio Features

Two different sets of audio features are tested with the HMM
and the LSTM. The first feature set (denoted as MFCC) con-
sists of MFCCs 1-12. The second feature set (denoted as
ESVC) contains, in addition to MFCCs, various energy, spec-
tral, voicing-related and CNSC-based audio features. Table 1
lists all features in the ESVC feature set. This feature set has
been determined in a previous work [13], where feature selec-
tion was employed, based on a larger feature set, to determine
features that are best suited for overlap detection. In addition
to conventional MFCCs, which have been used for overlap de-
tection in prior work [9], energy features are expectably good
indicators for overlapping speech. Jitter and shimmer are mea-
sures of fluctuations in fundamental frequency and amplitude
respectively, and are thus also ideally suited. All energy, spec-
tral and voicing-related features are computed with our freely
available openSMILE feature extraction toolkit [20].

CNSC [21, 22] is an approach to represent non-negative,
multi-variate data as a linear combination of lower rank bases.
The application to overlap detection was first reported in [12].
In all work reported here, we used an approach proposed
in [23, 24]. Bases W are learned for each speaker in an au-
dio document using spectral magnitude features extracted from
segments of preferably pure (non-overlapping) speech. These
speaker-specific training data are obtained with a speaker di-
arization algorithm. For this work, the LIA-Eurecom speaker
diarization system [25] was used. The base patterns of each

Energy & spectral features (18)

MFCC 1-12

loudness (auditory model based)
energy in band 250 - 650 Hz
energy in band 1 kHz - 4 kHz
spectral flux

spectral kurtosis

spectral harmonicity

Voicing-related features (3)

probability of voicing
jitter
shimmer (local)

CNSC-based features (2)

CNSC energy ratio
CNSC total energy

Table 1: Employed energy, spectral, voicing-related and CNSC-
based (ESVC) features

speaker are concatenated to create a global basis. When the
spectral magnitude features of a recording are decomposed or
projected onto each speaker basis, the resulting activations H
reflect each speaker’s activity. Summing over all activations for
a given speaker s leads to an estimate of the speaker energy
E;(s) for frame j. Two features are computed from this speaker
energy. The first CNSC-based feature is the CNSC energy ratio,

Ej(32)

BRi = B
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which reflects the difference in activation energy between the
two most active speakers. The second CNSC-based feature is
the CNSC total energy,

ET; = Ej(s) - ﬁ > Eis) 2

seS JEJsp sES

which is the sum of all speaker energies, normalised by the
mean over all the speech frames J,,. Here, f is a regularisa-
tion factor tuned on held-out development data. Full details of
the CNSC feature extraction are reported in [13].

Finally, the feature set is augmented with first order regres-
sion coefficients and normalised using the statistics of the train-
ing set to have zero mean and unity variance.

3. Long Short-Term Memory Recurrent
Neural Networks for Overlap Detection

3.1. LSTM-RNNs

Recurrent neural networks (RNNss) are a widely used technique
for context-sensitive sequence labeling. They exploit context
in the form of inputs from past time steps by using cyclic con-
nections. Due to the so-called vanishing gradient problem (the
influence of a certain input on the hidden and output layer of
the network decays exponentially over time), the context that
is used by an RNN is limited. In order to overcome this prob-
lems, Long Short-Term Memory RNNs (LSTMs) were intro-
duced in [18]. LSTMs use memory cells to store information
over a longer period of time. An LSTM hidden layer is com-
posed of so-called memory blocks. Each memory block con-



sists of multiple self-connected memory cells and three mul-
tiplicative gate units (input, output, and forget gates). These
gates allow for write, read, and reset operations within a mem-
ory block. The amount of context information that the network
uses is learned during training. Due to their ability to model
long-range dependencies between the inputs, LSTMs seem to
be a promising approach for overlap detection.

3.2. LSTM Regression to Generate Overlap Predictions

We apply LSTMs as linear regressors to predict framewise over-
lap scores. Therefore, the output layer of the network consists
of a single linear unit with output o(t) at time ¢. The input fea-
ture vectors to the network are defined as

X = [Xl,,..,XT] (3)

where 7" is the number of frames in the target sequence. In our
network, the output o(t) at time ¢ is dependent on the past input
vectors X¢ = [X1, ..., X¢],

o(t) = f(X) @

due to the LSTM principle and recurrent nature of the network.
During network training, targets are defined as

1 if x¢ € overlap
o(t) = 0 if x¢ € speech 3)
-1 if x¢ € non-speech

which results in a larger distance between nonspeech and over-
lap. This punishes confusions between non-speech and overlap
more than between speech and overlap. The predictions o(t)
of the trained network are used for classification by applying a
threshold 6,
1 if o(t) >0
oft) = { 1 if 08 <0 ©)

where the predicted class ¢(t) differentiates only between over-
lap and non-overlap. The threshold 6 is varied to obtain differ-
ent system operating points with a different trade-off between
precision and recall.

The size of the input layer of the network is equivalent to the
number of employed audio features. One recurrent hidden layer
with four memory blocks is used and each memory block con-
sists of 50 LSTM cells. This topology proved to be efficient for
voice activity detection [19]. The LSTM-RNNS are trained and
evaluated with the rnnlib by Alex Graves [26]. LSTM training is
performed with the backpropagation through time (BPTT) algo-
rithm; the weights are updated using the gradient descent algo-
rithm with a learning rate of 10~° and momentum 0.9. Weights
are required to be initialised with non-zero values, thus we ini-
tialise the weights with uniform random values sampled from
]0;0.1]. To enhance generalisation, Gaussian noise with zero
mean and standard deviation of 0.3 is added to all inputs. A
maximum of 40 training epochs is run to avoid over-adaptation.
We use an early stopping criterion by stopping training if there
is no error improvement on the development set for 10 epochs.
As an error measure during network training, we use the frame-
wise root mean quadratic error between the targets 6(t) and the
network predictions o(t).

Figure 2 shows LSTM predictions o(t) for a 20-second ex-
cerpt from the test set. It can be seen that LSTM predictions are
well correlated with the ground truth, yielding low values for
non-speech regions and high values for overlap segments. By
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Figure 2: LSTM predictions for a 20-second excerpt from the
test set. The dashed line marks the ground truth (-1: nonspeech,
0: speech, 1: overlap).

Test set

EN2003a  EN2009b  ES2008a  ES2015d
IN1008 IN1012 IS1002c  1S1003b
1S1008b TS3009¢

Table 2: Meetings from the AMI evaluation dataset used for the
tests

applying a threshold, overlap segments can be detected from
these LSTM predictions.

To combine LSTM and HMM overlap detection, the LSTM
predictions o(t) are used as an additional feature for the HMM.
As for all other features, delta coefficients are computed for
LSTM predictions. However, LSTM predictions are not nor-
malised, based on results of preliminary experiments.

4. Experiments
4.1. Experimental Setup

Experiments are conducted using the AMI Corpus [27]. A sub-
set of 40 meeting recordings is used for training, 6 meetings for
tuning and 10 for testing. We use the same set of 10 recordings
(see Table 2) for testing as was used in a previous study by other
authors [28]. The length of the recordings in the test set varies
between 17 and 57 minutes and in total, the length of the test
set is more than 6 hours. All are single-channel, far-field micro-
phone recordings — the most challenging scenario. On average
the amount of overlapping speech is in the order of 20 % in the
test set.

To obtain the MFCC and ESVC features, we apply the fol-
lowing system parameters, based on our previous experience:
Energy, spectral and voicing-related features are computed ev-
ery 20ms. A window size of 60 ms is applied for MFCC and
voicing-related features, whereas other energy and spectral fea-
tures are determined using a window size of 25 ms. CNSC is ap-
plied using magnitude spectra computed from 40 ms windows
with a window shift of 20ms. We used R = 35 bases per
speaker, a convolutional range of P = 4 and a sparseness pa-
rameter A = 0.05. The regularisation factor in Eq. (2) is set
to f = 1.2. Speaker bases are learned using speaker-specific
training data obtained with the LIA-Eurecom speaker diariza-
tion system [25].

Experiments are performed with the HMM-based and the
LSTM overlap detection systems. Both systems are tested with
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Figure 3: Precision and Recall for HMM (solid lines), LSTM
(dashed lines) and their combination (dashed-dotted lines), each
time using either MFCC (black) or ESVC (grey) audio features.
An ‘X’ marks the operating point with minimal overlap detec-
tion error as determined with the development set.

MFCC features and with ESVC features. In addition, we evalu-
ate the combination of HMM and LSTM, where LSTM predic-
tions are added to the HMM feature set. This tandem system is
also tested with MFCC features and with ESVC features. Thus,
in sum, 6 different system configurations are tested.

System performance is measured in terms of frame-wise
overlap precision, recall and detection error. The overlap de-
tection error is equivalent to the total duration of missed and
false positive overlap time divided by the reference overlap
time. Note that, since overlap makes up only around 20 % of
the recordings, false positive detections can result in an overlap
detection error above 100 %. For a typical application such as
overlap handling for speaker diarization, the detection error is
the most meaningful metric.

4.2. Results

In Figure 3, recall is plotted vs. precision for all six tested sys-
tems. In addition, for each system, the operating point with
the minimum overlap detection error on the development set is
marked with an ‘X’ and displayed in Table 3. For the LSTM
system, different operating points are obtained by varying the
threshold for overlap detection, leading to a rather straight curve
in the precision-recall plot. Different operating points for the
HMM systems are obtained by increasing OIP. At first, in-
creased OIP results in higher precision and lower recall, while
for higher OIP, precision drops as well. This can be seen in the
result curves for all HMM systems.

With MFCC features, LSTM-based overlap detection per-
formance is comparable to HMM in the high-recall region. Be-
yond that, LSTMs with MFCC features are capable of achieving
high-precision operating points. HMMs achieve a minimum er-
ror of 93.4 % while LSTMs have an error of 88.9 %, which is
the result of higher precision. Using ESVC features instead of
only MFCCs in the HMM system results in higher precision and
lower recall. Yet again, performance of LSTM is comparable to
that of HMM with ESVC features, with minimum error rates of
81.6 % and 82.3 %, respectively. For both feature sets, adding
LSTM predictions to the HMM feature set to obtain the tandem

Features System Prec. Rec. Err.
MFCC HMM 553 342 934
ESVC HMM 778 258 81.6
MFCC LSTM 652 238 889
ESVC LSTM 757 26.1 823

MFCC + LSTM pred. HMM 543 440 93.1
ESVC + LSTM pred. HMM 786 31.7 769

Table 3: Precision (Prec.), recall (Rec.) and overlap detection
error (Err.) on the test set for the six tested system and feature
combinations. Operating points are tuned to achieve minimum
overlap detection error on the development set.

system improves the recall performance while achieving simi-
lar precision values. In the case of using MFCC features, for the
minimum-error operating point, recall increases from 34.2 % to
44.0 % while precision stays roughly the same. Due to the com-
parably low precision, the overlap detection error does not im-
prove. With ESVC features, the system combination increases
recall from 25.8 % to 31.7 %, with precision staying constant.
The minimum error decreases from 81.6 % to 76.9 %, which is
the consequence of increased recall performance.

The experimental results show that LSTMs alone perform
comparable to HMMs in terms of overlap detection error. The
combination of HMM and LSTM can substantially improve the
overlap detection performance, due to higher recall. One rea-
son for higher overlap detection recall with the tandem system
could be that the ability of LSTMs to exploit long-range context
helps to detect overlap segments which are hard to detect by the
HMM with acoustic features alone, such as short backchannel
utterances.

5. Conclusions

We presented a system for speech overlap detection based on
LSTM networks. LSTMs are trained as a regressor to predict
a frame-wise overlap score. This prediction score is either di-
rectly used to detect overlap by applying a threshold, or it is
utilised in a tandem HMM-LSTM system. Experiments were
conducted with the AMI corpus and two feature sets: standard
MFCCs and a larger set of energy, spectral, voicing and CNSC-
based features. LSTMs showed performance comparable to
a standard HMM system for both feature sets. Realising the
tandem system by adding LSTM predictions to the HMM fea-
ture set resulted in improved system performance. Overlap de-
tection recall was improved (23 % relative improvement in the
case of using ESVC features) while keeping precision constant.
Thereby, the overlap detection error was substantially reduced.

While LSTMs are able to increase the overlap detection re-
call, there is still a lot of room for improvement. Exploiting
information that goes beyond pure acoustical features, like lin-
guistic information, might help to further improve overlap de-
tection.

6. Acknowledgements

This research was supported by the ALIAS project (AAL-2009-
2-049) co-funded by the EC, the French ANR and the German
BMBF. We would like to thank Nicholas Evans, Ravichander
Vipperla and Dong Wang for their contributions to the CNSC
features.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

(13]

(14]

7. References

E. Shriberg, “Spontaneous Speech: How People Really
Talk and Why Engineers Should Care,” in Proc. Eu-
rospeech, Lisbon, Portugal, 2005, pp. 1781-1784.

K. Laskowski, M. Heldner, and J. Edlund, “On the Dy-
namics of Overlap in Multi-Party Conversation,” in Proc.
Interspeech, Portland, OR, USA, 2012.

M. Wlodarczak, J. Simko, and P. Wagner, “Temporal en-
trainment in overlapped speech: Cross-linguistic study,”
in Proc. Interspeech, Portland, OR, USA, 2012.

A. Gravano and J. Hirschberg, “Turn-taking cues in task-
oriented dialogue,” Computer Speech & Language, vol.
25, no. 3, pp. 601-634, 2011.

E. Shriberg, A. Stolcke, and D. Baron, “Observations
on Overlap: Findings and Implications for Automatic
Processing of Multi-Party Conversation,” in Proc. Eu-
rospeech, Aalborg, Denmark, 2001, pp. 1359-1362.

F. Brugnara, D. Falavigna, D. Giuliani, and R. Gretter,
“Analysis of the Characteristics of Talk-show TV Pro-
grams,” in Proc. Interspeech, Portland, OR, USA, 2012.

H. Sun and B. Ma, “Study of Overlapped Speech De-
tection for NIST SRE Summed Channel Speaker Recog-
nition,” in Proc. Interspeech, Florence, Italy, 2011, pp.
2345-2348.

M. Huijbregts, D. van Leeuwen, and C. Wooters,
“Speaker Diarization Error Analysis Using Oracle Com-
ponents,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 20, no. 2, pp. 393-403, 2012.

K. Boakye, B. Trueba-Hornero, O. Vinyals, and G. Fried-
land, “Overlapped Speech Detection for Improved Di-
arization in Multi-Party Meetings,” in Proc. ICASSP, Las
Vegas, NV, USA, 2008, pp. 4353—-4356.

M. Zelenak and J. Hernando, “The Detection of Over-
lapping Speech with Prosodic Features for Speaker Di-
arization,” in Proc. Interspeech, Florence, Italy, 2011, pp.
1041-1044.

M. Zelenak, C. Segura, J. Luque, and J. Hernando, “Si-
multaneous speech detection with spatial features for
speaker diarization,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 2, pp. 436—
446, 2012.

R. Vipperla, J. Geiger, S. Bozonnet, D. Wang, N. Evans,
B. Schuller, and G. Rigoll, “Speech Overlap Detection
and Attribution Using Convolutive Non-Negative Sparse
Coding,” in Proc. ICASSP, Kyoto, Japan, 2012, pp. 4181—
4184.

J. Geiger, R. Vipperla, S. Bozonnet, N. Evans, B. Schuller,
and G. Rigoll, “Convolutive Non-Negative Sparse Cod-
ing and New Features for Speech Overlap Handling in
Speaker Diarization,” in Proc. Interspeech, Portland, OR,
USA, 2012.

J. Geiger, R. Vipperla, N. Evans, B. Schuller, and
G. Rigoll, “Speech Overlap Detection and Attribution Us-
ing Convolutive Non-Negative Sparse Coding: New Im-
provements and Insights,” in Proc. EUSIPCO, Bucharest,
Romania, 2012, pp. 340-344.

[15]

(16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

S. H. Yella and F. Valente, “Speaker Diarization of Over-
lapping Speech based on Silence Distribution in Meeting
Recordings,” in Proc. Interspeech, Portland, OR, USA,
2012.

S. H. Yella and H. Bourlard, “Improved Overlap Speech
Diarization of Meeting Recordings using Long-Term Con-
versational Features,” in Proc. ICASSP, Vancouver,
Canada, 2013.

Barry Chen, Qifeng Zhu, and Nelson Morgan, “Learn-
ing long-term temporal features in lvcsr using neural net-
works,” in Proc. Interspeech, Jeju Island, Korea, 2004,
pp. 612-615.

S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735—
1780, 1997.

F. Eyben, F. Weninger, S. Squartini, and B. Schuller,
“Real-life Voice Activity Detection with LSTM Recur-
rent Neural Networks and an Application to Hollywood
Movies,” in Proc. ICASSP, Vancouver, Canada, 2013.

F. Eyben, M. Wollmer, and B. Schuller, “openSMILE:
The Munich Versatile and Fast Open-Source Audio Fea-
ture Extractor,” in Proc. ACM Multimedia (MM), Flo-
rence, Italy, 2010, pp. 1459-1462.

P. O. Hoyer, “Non-negative Matrix Factorization with
Sparseness Constraints,” Journal of Machine Learning
Research, vol. 5, pp. 1457-1469, 2004.

P. Smaragdis, “Convolutive Speech Bases and Their Ap-
plication to Supervised Speech Separation,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol.
15, no. 1, pp. 1-12, 2007.

D. Wang, R. Vipperla, and N. Evans, “Online pattern
learning for non-negative convolutive sparse coding,” in
Proc. Interspeech, Florence, Italy, 2011, pp. 65-68.

D. Wang, R. Vipperla, N. Evans, and T. F. Zheng, “Online
non-negative convolutive pattern learning for speech sig-
nals,” IEEE Transactions on Signal Processing, vol. 61,
no. 1, pp. 44-56, 2013.

S. Bozonnet, N. Evans, and C. Fredouille, “The LIA-
Eurecom RT09 Speaker Diarization System: Enhance-
ments in Speaker Modelling and Cluster Purification,” in
Proc. ICASSP, Dallas, TX, USA, 2010, pp. 4958-4961.

A. Graves, S. Fernandez, and J. Schmidhuber, “Multi-
dimensional recurrent neural networks,” in Proc. of the
2007 International Conference on Artificial Neural Net-
works, Porto, Portugal, 2007.

J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guille-
mot, T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kro-
nenthal, et al., “The AMI meeting corpus: A pre-
announcement,” Machine Learning for Multimodal Inter-
action, pp. 28-39, 2006.

K. Boakye, O. Vinyals, and G. Friedland, “Improved
Overlapped Speech Handling for Speaker Diarization,” in
Proc. Interspeech, Florence, Italy, 2011, pp. 941-944.



