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ABSTRACT

The following short paper presents an experimental algo-
rithm for onset detection which applies multi-resolution
and auditory spectral features to Bidirectional Long Short-
Term Memory (BLSTM) recurrent neural networks. The
proposed algorithm exploits multi-resolution time-frequency
features via the discrete wavelet transformation to decom-
pose the input audio signal into sub-bands. Each sub-band
is processed by a linear prediction error filters, obtaining
the prediction error. The prediction errors together with
the wavelet coefficients, their temporal differences and the
well-known auditory spectral features are used as input
units for the supervised learning. The algorithm has been
tested against the MIREX 2013 onset dataset.

1. ALGORITHM DESCRIPTION

The main challenge of this task lies in the audio input rep-
resentation which should provide optimal features for the
onset detection. Our approach is based on linear predic-
tion filtering in the wavelet domain as in [3]. The main
difference with the cited approach lies in the application of
a bidirectional recurrent neural network with Long Short-
Term Memory units (LSTM [6]) to obtain an Onset Detec-
tion Function (ODF).

Audio signals are generally composed by stationary or
quasi-stationary parts and by transients which, conversely,
violates the stationary condition playing an important role
in the perception of music for humans and consequently
in the onsets detection. Indeed a signal modelled by a lin-
ear prediction filter gives a prediction error signal tending
to zero during the stationary parts but, at the note bound-
ary, the prediction error envelope increases. Consequently,
the onset can be located by analysing the prediction error
signal. Wavelet analysis is applied to obtain a subbands
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Figure 1. General algorithm block-scheme. x[n] repre-
sents the discrete input audio file, FNxM indicates the fea-
tures matrix and ODF is the Onset Detection Function.

signal representation and for the fast convergence speed of
adaptive prediction filters approach in the transformed do-
main [9].

In order to obtain a suitable audio input representation,
the input signal x[n] is firstly decomposed in different sub-
bands using a dyadic filter bank based on wavelet filter
coefficients. Each band is, thus, modelled by a Linear
Prediction Error Filter (LPEF) and its coefficients are up-
dated by a modified version of a well-know adaptive tech-
nique: Normalized LMS (NMLS). We preferred an adap-
tive approach instead of optimal solution search because
the filter’s coefficients are continuously updated so that
non-stationary parts (i.e., note boundary) produce a signif-
icant increment of prediction error envelope. Due to dif-
ferent lengths of the wavelet coefficients (i.e., filter bank
output signals) and prediction errors (i.e., LPEF output sig-
nals) and in order to use them as neural network inputs,
they are re-sampled at a predetermined rate and normal-
ized. Furthermore their first order positive differences are
computed. Finally, in order to obtain better performance,
a subset of auditory spectral features [2] are added to pre-
ceding sets leading to the features matrix FNxM where M
is the number of features and N is the ”frame” index.

This matrix is, thus, used as input of a bidirectional
recurrent neural network with Long Short-Term Memory
units (BLSTM). Network acts as a reduction operator lead-
ing to the ODF.

Finally a thresholding and peak-picking algorithm is ap-
plied to ODF in order to identify the correct onset posi-
tions. Algorithm block-scheme is showed in Figure 1 and
block details are described in the following sections.



1.1 Feature Extraction

Discrete input audio files, mono sampled at Fs = 44.1kHz,
have been used for our experiments.

1.1.1 Discrete Wavelet Transformation

The input file is decomposed in sub-bands applying a multi-
resolution analysis computed by a dyadic filter bank (cf.
Figure 2) as in [3].
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Figure 2. Scheme of a dyadic filter band with j decompo-
sition level.

Concerning the filters impulse response, the Coiflets func-
tions have been used due to their properties: bi-orthogonality,
which gives linear or nearly linear phase; high number of
vanishing points, that increases convergence properties of
the LMS algorithm. We chose J = 8 decomposition level
obtaining 9 subbands. Due to several experiments we de-
cided to discard the lowest band (from 0 Hz to 86 Hz) be-
cause it carries noise and less information that degrades the
overall performance.

The alignment among bands is necessary for our task
since we need to avoid misalignment which compromises
the algorithm precision. Indeed, the wavelet output coeffi-
cients require a delay compensation due to asymmetric tree
structure of filter bank. The down-sampling must be taken
into account during delays evaluation. The chosen wavelet
function has nearly linear phase property, thus, the group
delay can be approximated to the one of a linear phase filter
with (N − 1)/2 samples, where N is the impulse response
length.

Considering that Coiflet wavelet of order 5 has an im-
pulse response length N = 30, we are able to precisely
evaluate each band delay with regard to the applied down-
sampling.

The highest band is delayed by: bD1 = [(N −1)/2]/2c
samples, the band immediately below by: bD2 = D1 +
[(N − 1)/2]/4c and so on. In general:

Dj =

⌊
J∑

j=1

N−1
2

2j

⌋
(1)

where j = 1 is the highest band while j = J is the lowest
band and b.c indicates the floor operation.

1.1.2 Linear Prediction Error Filter

Each sub-band signal is fed to a LPEF whose coefficients
are updated with each input sample by a modified version
of NLMS algorithm that is explained below.

Referring to Figure 2, dj [k] is the j-th input of the
LPEF and assume that ej [k] is the j-th prediction error
signal. For each j, common LMS iteration consist of:

yj [k] = wT
j [k]uj [k]

ej [k] = dj [k]− yj [k]
wj [k + 1] = wj [k] + µej [k]uj [n]

(2)

where uj [k] = (dj [k − 1], . . . , dj [k − p])T represent the
previous p input samples, wj [k] = (a1, . . . , ap)

T refer to
the FIR filter coefficients, p is the predictor order and µ is
the step-size.

In order to detect onsets by observing prediction error,
the choice of µ is crucial. Generally we desire that filters
coefficients converge as fast as possible to the optimal so-
lution. Dealing with musical signals, the NLMS approach
is often chosen for its suitability to signals with large en-
ergy variations, such as music:

µj =
µ′

|u[k]|2 + c
(3)

where 0 < µ′ < 2, c is a small constant to avoid division
by zero and |.| acts as estimate of the signal energy, which
varies in time, making the step-size varying as well. How-
ever, if the convergence of the filter coefficients is too fast,
increment of the prediction error envelope at note bound-
ary may became less evident, thus, a large value of the
step-size (as in (3)) is not desired for our task.

The best choice concerning the step-size is reported in
[7]:

µ = min

(
A

rms[k] · p
,

1

|u[k]|2
, 100

)
(4)

where rms[k] is the root mean-square value of samples in a
20ms window just after the k-th sample of dj [k]. Constant
A is empirically set to 0.5. The second term in the mini-
mum operation ensures the convergence 3, while the third
term prevents the step-size from getting too large when the
signal energy becomes very small. This version of NLMS
adaptive approach is chosen in our algorithm.

Finally, we used different values for the filter order p
for each sub-band. The lowest signal band d8[k] is fed to
a LPEF of order pmin = 10 while an order pmax = 24
is used with the highest signal band d1[k]. The following
rule is applied:

pj = 10 + 2 · (J − j) j = 1, . . . , J = 8 (5)

1.1.3 Features refinement

Wavelet Coefficients (WCs) and Prediction Errors (PEs)
of each band are used as features but a further processing
is required in order to use them with the neural network.
Due to the multi-resolution nature of the wavelet transfor-
mation, each sub-band signal has different resolution (i.e.,
different length respect to other bands). We adopted a suit-
able time resolution for our task: Tres = 10 ms, thus, WCs
and PEs have been rectified by a full-wave rectifier func-
tion and re-sampled to obtain the desired time resolution.
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Figure 3. Features extraction details.

Furthermore, to obtain a better functioning of the neural
network, they were normalised by a min-max normalisa-
tion. Figure 3 shows the complete signal flow.

To exploit the information brought about bt the time
evolution of preceding features, the first order positive dif-
ferences are added applying the function H(x) = x−|x|

2 .

WC+
n,j =WCn,j −WCn−1,j

PE+
n,j = PEn,j − PEn−1,j

(6)

with n being the frame index and j the band index

1.2 BLSTM Neural Network

The best neural network for our purpose is a bidirectional
RNN with LSTM units instead of usual non-linear units.
As inputs we used 112 features per frame, composed by:

• The prediction errors of each sub-band (PE) and
their corresponding first order positive differences
(PE+), resulting in 16 features.

• The wavelet coefficients (WC) obtained by the fil-
ter bank and their corresponding first order positive
differences (WC+), resulting in 16 features.

Plus a subset of auditory spectral features [2]:

• Mel-spectrogram (M log
46 (n,m)) computed with win-

dow size of 46.4 ms and its first order positive dif-
ferences (D+

46(n,m)), resulting in 80 features.

The network has four hidden layers in total (two for each
direction) with 10 LSTM units each.

The output layer has one unit and its output activation
function lies between 0 and 1. It represents the probability
for the class ’onset’ and allows the use of the cross entropy
error criterion to train the network [5].

1.2.1 Network Training and Dataset

Supervised learning with early stopping was adopted to
train the network. The dataset consists of 199 audio ex-
cerpts. It was created taking Bello’s dataset [1], the dataset
used by Glover et al. in [4], audio files used by Leveau et
al. in [8] and some excerpts from ISMIR 2004 Ballroom
set 1 .

The final set was processed as monaural signals sam-
pled at 44.1 kHz. It is composed by different categories of
music 2 pitched percussive (PP e.g., piano), pitched non-
percussive (PNP e.g., bowed strings), non-pitched percus-
sive (NPP e.g., drums), complex mixture (MIX e.g., pop
music) and others sound (OTHER is composed by ISMIR
2004 Ballroom dataset) for a total amount of 7989 onsets.

Presenting each audio sequence frame by frame to the
network, its weights are recursively updated by standard
gradient descent with back-propagation of the output er-
ror. The gradient descent algorithm requires the network
weights to be initialised with non zero values. We ini-
tialise the weights with a random Gaussian distribution
with mean 0 and standard deviation 0.1.

1.3 Thresholding and Peak Picking

The network obtained after training can classify each frame
as ’onset’ and consequently as ’non-onset’ class. Frames
containing the onsets are identified by processing the out-
put unit function. Higher output activation function val-
ues indicate an high probability that the frame is an onset-
frame.

An adaptive threshold technique has to be implemented
before peak picking due to the dependency among the in-
put units, namely: detection function, input signal, short
time spectrum, wavelet coefficients and prediction errors.

In order to obtain the best classification for each song,
a threshold θ is computed per song in accordance with
the mean of the activation function, fixing the range from
θmin = 0.1 to θmax = 0.3:

θ′ = β ·mean{a0(1), ..., a0(N)} (7)

θ = min(max(0.1, θ′), 0.3) (8)

where ao(n) is the output activation function of the BLSTM
network (frames n = 1...N ) and the scalar value β is cho-
sen to maximise the F -measure on the validation set. Its
value is fixed to β = 3.7.
The final onset function oo(n) contains only the activation
values greater than this threshold.

oo(n) =

{
1 oo(n− 1) ≤ oo(n) ≥ oo(n+ 1)
0 otherwise

1 http://mtg.upf.edu/ismir2004/contest/
tempoContest/node5.html

2 Bello and Glover datasets specify the music categories. ISMIR 2004
Ballroom dataset does not specify these information and we refer to it as
OTHER.



2. RESULTS

The presented onset detector attained good performance in
the MIREX 2013 evaluation (cf. gray row in Table 1).

Algorithm F-measure Precision Recall
SB1 0.8727 0.8641 0.8946

ZHZD1 0.8233 0.7858 0.9009
FMESS1 0.8062 0.7770 0.8732
FMEGS1 0.8025 0.7880 0.8593

CF4 0.7345 0.6966 0.8507
CB1 0.6308 0.8506 0.5367

MTB1 0.3785 0.5429 0.3418

Table 1. Results for the MIREX 2013 onset detection eval-
uation. Only the best results of other participants or groups
are shown with the exception for our two submissions.
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