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Abstract
Automatic emotion recognition and computational paralinguis-
tics have matured to some robustness under controlled labora-
tory settings, however, the accuracies are degraded in real-life
conditions such as the presence of noise and reverberation. In
this paper we take a look at the relevance of acoustic features
for expression of valence, arousal, and interest conveyed by a
speaker’s voice. Experiments are conducted on the GEMEP and
TUM AVIC databases. To simulate realistically degraded con-
ditions the audio is corrupted with real room impulse responses
and real-life noise recordings. Features well correlated with the
target (emotion) over a wide range of acoustic conditions are
analysed and an interpretation is given. Classification results
in matched and mismatched settings with multi-condition train-
ing are provided to validate the benefit of the feature selection
method. Our proposed way of selecting features over a range of
noise types considerably boosts the generalisation ability of the
classifiers.

Index Terms: paralinguistics, affect, emotion, noise robust-
ness, acoustic features

1. Introduction
In the light of rapidly growing interest in and market value of
social signal and media analysis [1, 2, 3], interactive speech sys-
tems [4, 5], and multi-modal user profiling [6, 7, 8] or stress
measurement [9], technologies for automatic affect recogni-
tion from speech gain increasing commerical attention. While
good results are reported in research papers under laboratory
conditions (cf. [10]) or with systems tailored towards spe-
cific databases, real-life applications still remain challenging
[11, 12, 13] due to various factors. These factors can be roughly
summaries by three categories: The large variability of affective
expression across different speakers, languages, and cultures;
contextual dependencies of the meaning and significance of af-
fective expressions; and varying and degraded acoustic condi-
tions caused by reverberation, background noise, and acoustic
properties of the recording devices used.

In this paper we adress the challenge of degraded acous-
tic conditions through reverberation (convolutive noise) in con-
junction with additive background noise. Previous work in this
line has mainly focussed on additive noise (e.g., [14]) or rever-
beration in isolation ([15]). Techniques from Automatic Speech
Recognition (ASR) for acoustic pre-processing and signal en-
hancement or multi-condition training have typically been ap-
plied to boost performances in these conditions (cf. [14, 16]).
Now we take a deeper look at the acoustic features. Thereby
the main idea is to find acoustic features which are least de-
graded by noise and most correlated to affective states of inter-

est. We investigate different strategies for feature selection in
combination with training on multi-condition noisy data as well
as training on clean data.

The paper is structured as follows: In Section 2 we intro-
duce the two affective speech corpora which are analysed in
this study and we describe how these corpora were degraded
in four different acoustic conditions to produce noisy test and
training sets. Next, the set of acoustic parameters considered is
described in Section 3 followed by a description of the feature
selection method and analysis of selected features in Section 4.
Finally we provide and discuss results for automatic regontion
of affect under various conditions in Section 5 before conclud-
ing our study in Section 6.

2. Databases
In order to capture both acted emotions as well as natural, spon-
taneous affect, we consider two corpora for this study: The
“Geneva Multimodal Emotion Portrayals” (GEMEP) and the
TUM Audio-Visual Interest Corpus (TUM-AVIC).

2.1. GEMEP

The GEMEP database [17] contains 1.2 k instances of emo-
tional speech enacted by ten professional actors (five female) in
18 emotional categories which cover all quadrants of the arousal
/ valence space. The categories comprise the well-known ‘Big
Six’ emotions as well as more subtle differentiations of these
(e. g., anxiety). Actors did not receive any instruction how to
express the emotion. They worked with a professional director
during the recording session and choose one personally rele-
vant scenario to induce the emotion, either by recall or mental
imagery. In contrast to earlier work (cf. [18]), for the present
study a subset of 154 instances is used which comes with a con-
tinuous valued dimensional observer annotation. Continuous
dimensional annotations are required in order to show the full
potential of our feature selection approach which is based on
correlations. To obtain the annotation, twenty participants (10
male) rated each of these expressions in terms of arousal and
valence by using a continuous slider (range -1 to +1). The eval-
uator weighted estimator [19] of the twenty raters is computed
as ‘gold standard’ per instance. Actors expressed each emotion
by using three verbal contents (two pseudo-sentences and one
sustained vowel) – in this study, only the pseudo-sentences are
used. A fixed training and evaluation partitioning is used where
actors 1, 2, 3, 4, 6, and 7 are assigned to the training set and
actors 5, 8, 9, and 10 are assigned to the evaluation (test) set.
Classification experiments are performed on discretised binary
arousal and valence labels (high and low) with -0.1 as threshold.

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013

2044



2.2. TUM-AVIC

As a second and larger set, containing natural, spontaneous af-
fect, the TUM-AVIC database was chosen [6]. TUM AVIC was
used for the interest sub-challenge of the INTERSPEECH 2010
Paralinguistic Challenge [20]. For this challenge, continuous
labels for the level of interest were provided, which have been
estimated by averaging the four human ratings which have dis-
crete labels from -2 – +2. For details please refer to [20] and
[6]. The mean level of interest was discretized to three discrete
LOI labels (loi1, loi2, loi3), as used in [10, 13], for example.
Thereby LOI -2, -1, and 0 were combined to loi1 due to sparse-
ness of LOI -2 and -1. LOI +1 was assigned loi2, and +2 was
assigned loi3. The partitioning of the INTERSPEECH 2010
Challenge was kept and the training and development partitions
were jointly used for training.

2.3. Noise and Reverberation

Realistic noise samples of three types as used in [21] serve
as additive noise: Babble noise (babble), city street noise
(city), and music (music). Babble noise recordings are samples
from the freesound.org website out of the categories pub-noise,
restaurant chatter, and crowd noise. Music recordings are in-
strumental and classical music from the last.fm website. The
city recordings were recorded in Munich, Germany with smart-
phones while cycling and walking through the city similar to the
task described in [22]. The noise samples for the training and
test sets are fully disjunctive, i.e., no original sample occurrs in
both sets. The length of the noise pool is 30 minutes for each
type in the test set and 94 minutes for babble, 116 minutes for
city, and 176 minutes for music noise in the training set.

Furthermore, room impulse responses (RIRs) from the
Aachen Impulse Response Database [23] were used to add con-
volutive noise. To keep complexity low, yet simulate realistic
conditions, we selected a few meaningful combinations of noise
types and RIRs: babble noise and lecture room, babble noise
and stairway, city noise and meeting room, and music noise and
chapel (Aula Carolina). Conditions range from rather favor-
able reverberation conditions (meeting room) to heavily rever-
berated (chapel) and represent a wide range of non-stationary
additive noises. Three different virtual microphone distances
from the virtual sound sources in an azimuth angle of 90 ◦ (fac-
ing the sound source) in ‘near’, ‘mid’, and ‘far’ distance cat-
egories are employed to simulate various signal to convolutive
noise ratios. The further the virtual microphone is away from
the virtual sound source, the larger the amount of convolutive
noise is in relation to the direct source signal.

In order to eliminate the influence of the average energy
per utterance, all utterances in GEMEP and TUM-AVIC were
normalised to -1 dB peak amplitude. From these normalised
utterances, speech samples with degraded acoustic conditions
were created for each corpus. An original utterance is thereby
convolved with a RIR, then normalised to -6 dB peak amplitude,
and finally mixed with an additive noise sample, which is scaled
in order to achieve a given signal to noise ratio (SNR). The test
set of each corpus is convolved with the ‘near’, ‘mid’, and ‘far’
impulse responses and noise at SNRs from 0 to 12 dB in steps of
3 dB is added resulting in 18 test sets (including three reverber-
ated sets without noise) for each acoustic condition. The train-
ing set for each acoustic condition has three times the size of
the original training set because each utterance is included once
for the 3 RIR distances. Noise at random SNRs (uniformly dis-
tributed on the range 0–15 dB and with 10% probability of clean
utterances) is added. SNRs are calculated after first order high

pass filtering from the difference signal of speech and noise,
approximating A-weighting to better match human perception.
Additive noise samples matching the length of the speech sam-
ples are picked at random positions in the training and test noise
pools. These are then convolved with the RIR of the current
acoustic condition (‘far’ distance) and normalised to -6 dB peak
amplitude before mixing with the speech sample.

4 energy related LLD Group
Sum of auditory spectrum (loudness), pros.
Sum of RASTA-style filtered auditory spectrum, pros.
RMS Energy, Zero-Crossing Rate. pros.

55 spectral LLD Group
RASTA-style auditory spectrum, bands 1–26 (0–8 kHz) spec.
MFCC 1–14. ceps.
Spectral energy 250–650 Hz, 1 k–4 kHz. spec.
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90. spec.
Spectral Flux, Centroid, Entropy, Slope, spec.
Psychoacoustic Sharpness, Harmonicity, spec.
Variance, Skewness, Kurtosis. spec.

6 voicing related LLD Group
F0 (SHS & Viterbi smoothing), pros.
Prob. of voice, voice qual.
log. HNR, Jitter (local, delta), Shimmer (local). voice qual.

Table 1: 64 ComParE low-level descriptors (LLD).

Functionals applied to LLD /Δ LLD Group
quartiles 1–3, 3 inter-quartile ranges percentiles
1 % percentile (≈min), 99 % percentile (≈max) percentiles
percentile range 1 %–99 % percentiles
position of min / max, range (max – min) temporal
arithmetic mean1, root quadratic mean moments
contour centroid, flatness temporal
standard deviation, skewness, kurtosis moments
rel. duration LLD is above 25 / 50 / 75 / 90% range temporal
rel. duration LLD is rising temporal
rel. duration LLD has positive curvature temporal
gain of linear prediction (LP), LP Coefficients 1–5 modulation
mean, max, min, std. dev. of segment length2 temporal

Functionals applied to LLD only Group
mean value of peaks peaks
mean value of peaks – arithmetic mean peaks
mean / std.dev. of inter peak distances peaks
amplitude mean of peaks, of minima peaks
amplitude range of peaks peaks
mean / std.dev. of rising / falling slopes peaks
linear regression slope, offset, quadratic error regression
quadratic regression a, b, offset, quadratic error regression
percentage of non-zero frames3 temporal

Table 2: Applied functionals. 1: arithmetic mean of LLD / positive

Δ LLD. 2: not applied to voice related LLD except F0. 3: only applied

to F0.

3. ComParE feature set
In order to cover an exhaustive set of acoustic features, we de-
cided for the ComParE feature set – the baseline feature set for
the INTERSPEECH 2013 Computational Paralinguistics Eval-
uation (ComParE) Challenge [18]. The set contains a total of
6 373 acoustic features, which are brute-force combinations of
an extensive set of acoustic low-level descriptors (LLD) and
their delta coefficients with a large set of functionals (cf. Tables
1 and 2, respectively). The acoustic features were extracted with
the openSMILE feature extraction toolkit [24], which is actively
maintained by the authors.
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4. Feature analysis
We select features relevant for the target task by computing the
Pearson correlation coefficients (CC) of each feature with the
continuous target label; this method is referred to as CC-FS in
the ongoing. In this section, we summarize the top 400 features
in the CC-FS feature set, for each of the arousal, valence, and
LOI tasks, by LLD and functional type. We contrast the fea-
tures obtained on the clean training set with those obtained on
the multi-condition training sets (training sets of all four noisy
conditions combined). For both arousal and valence, it can be
seen that the relative importance of prosodic features decreases
when introducing noise and reverberation. For example, enery
change features seem to be much less reliable in the reverber-
ated and noisy cases, such as the root quadratic mean of loud-
ness delta coefficients (CC = .651 with arousal on clean, CC =
-.052 on multi-condition). Regarding the functional types, we
observe that the relative importance of the temporal functionals
(e. g., up-level and rise times) increases in the reverberant and
noisy case. This might indicate that in the presence of noise
the overall distribution of a signal over time remains more in-
tact than other parameters like means and moments. Overall,
however, there is more change in feature group relevance for
between the individual tasks than between selecting features on
the clean or noisy multi-condition sets.

LOI (MC)

LOI (clean)

V (MC)

V (clean)

A (MC)

A (clean)

All features

0.0 0.2 0.4 0.6 0.8 1.0

cepstral
prosodic
spectral
voice quality

(a) LLD

LOI (MC)

LOI (clean)

V (MC)

V (clean)

A (MC)

A (clean)

All features

0.0 0.2 0.4 0.6 0.8 1.0

modulation
moments
peaks
percentiles
regression
temporal

(b) Functionals

Figure 1: Full ComParE feature set vs. 400 top features selected
by CC-FS on clean and multi-condition (MC) sets for arousal
(A), valence (V), and level of interest (LOI) classification: Per-
centage of LLD and functional types.

5. Noise robust classification
We show how the reduction of the feature set size to 400 fea-
tures affects the automatic classification performance and how
the data set on which the CC based feature selection is per-
formed on influences the results. We contrast clean and multi-
condition training. In multi-condition training (MCT) we join
the training sets of three noisy acoustic conditions (e.g, A, B,
C) and evaluate for all test sets of the other condition (e.g., D)
in the case of mismatched evaluations and on the test sets for
each of the three training conditions (e.g., A, B, C) for matched
evaluations. We repeat the evaluations four times, in order to

[%] UAR A B C D

Binary Arousal/Valence

clean T 73.4/52.0 73.7/54.9 73.4/56.6 70.2/52.4
MCT mi 74.0/59.2 78.8/65.0 75.3/63.2 77.7/58.9
MCT ma 76.4/63.5 79.1/61.8 77.4/66.1 77.3/61.1

Ternary Level of Interest

clean T 42.9 44.0 48.7 40.8
MCT mi 50.2 50.6 53.0 46.1
MCT ma 50.6 51.6 52.2 49.3

[%] UAR A V LOI A V LOI
all features CC-FS

clean 74.7 53.1 44.2 72.6 54.0 44.1
clean MC-FS - - - 74.8 59.9 45.1
MCT mi. 74.4 56.9 49.5 76.5 61.6 50.0
MCT ma. 75.7 56.1 49.9 77.6 63.1 50.9

Table 3: Average classification results (UAR) for each acoustic
condition averaged over distances and SNRs (top) and further
averaged over all acoustic conditions (bottom). Training (T)
on clean, and multi-condition training (MCT) on other condi-
tions than the test condition (mismatched, mi.) and conditions
including the test condition (matched, ma.). Top: all features.
Bottom: Comparison of all features and top 400 features after
CC-FS. Feature selection for clean training on clean set (clean)
and on joint training set of all four conditions (MC FS); best
two results per target in bold.

have each condition once as a mismatched test set. Note, that
the training set in multi-condition training is 9 times the size of
the original (clean) training set (three acoustic conditions and
three RIR distances).

As classifier we use Support-Vector Machines (SVM) with
a linear kernel, trained with the Sequential Minimal Optimiza-
tion Algorithm using the WEKA toolkit [25]. The complexity
parameter was set to C = 0.1 for the GEMEP corpus (arousal
and valence) and C = 0.01 for the larger TUM-AVIC corpus.
Before training the classifier the features were standardised to
have mean zero and unit variance on the training set. The means
and variances estimated from the training set are then used to
standardize the features in the test sets. To avoid overfitting to
the majority class on the TUM-AVIC corpus (1.88k instances
of loi2 vs. 349 instances of loi1), the training set was balanced
by random subsampling so that each class had the same number
of instances as the minority class. As an upper benchmark of
performance the results in terms of Unweighted Average Recall
(UAR) for training on the clean training set and testing on the
clean test set are as follows: 77.2% for binary arousal, 61.7%
for binary valence, and 56.0% for three levels of interest. Please
note, that the result for interest is below results in other pub-
lications (e.g., [10, 6]). However, this is due to two factors:
a) the full set of instances as in the Paralinguistic Challenge is
used (other studies used a set where instances with low labeller
agreement were removed) and b) each utterance is normalised
to peak amplitude -1 dB, eliminating mean energy as cue.

Table 3 (top) shows the performance for the four test set
acoustic conditions (A–D) averaged over all 18 sub-conditions
(SNRs and RIR distances). Chapel RIR and music noise is
clearly the most challenging condition, both for clean and MCT
cases. Overall, MCT boosts the performance over clean train-
ing, which is in line with [14]. Matched conditions is thereby
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Figure 2: Unweighted average recall (UAR) of binary arousal, valence and ternary LOI classification: Influence of SNR across all
acoustic conditions. Clean or multi-condition training (MCT) including (matched) or not including (mismatched) the test condition.
Full ComParE feature set (All) vs. CC-FS on clean set or multi-condition sets.

only marginally better than mismatched conditions training. Ta-
ble 3 (bottom) shows the performances averaged over all acous-
tic conditions in order to contrast CC based feature selection
(CC-FS) with the full feature set. While for clean training there
is only little difference between CC-FS and all features, the best
result is achieved by combining MCT and CC-FS performed on
the MCT training set. Even the performance of clean training
can be significantly boosted by selecting features on the MCT
sets instead of the clean set.

In Figure 2, we show the UARs on the binary arousal and
valence, as well as the ternary LOI tasks obtained with clean
training or multi-condition training, and with optional feature
selection. For arousal, it turns out that there is only a slight
performance difference between clean and MCT if all features
are used; however, a drop in performance at lower SNRs is ob-
served (below 60 % UAR) for clean training and feature selec-
tion on the clean data. If features are selected from the MC set,
results are similar to training on the whole MC set. This shows
that the feature selected on the clean data do not generalize well
to unfavourable acoustic conditions, yet MC feature selection
can remedy this. For valence, unfortunately, we do not obtain
robust results even in the noise free case (only up to 63 % UAR)
– this can be attributed to the general difficulty of determin-
ing valence from pure acoustics. It is encouraging, though, that
through MCT a result largely independent of the SNR can be
obtained. Finally, in the task of LOI determination, we observe
a hugh influence of MCT, yet a small influence of feature selec-
tion. Notably, the worst result (at 0 dB SNR) with MCT is sim-
ilar to the best result (at SNR = ∞) without MCT. This points
at a deterioration caused by reverberation. Overall, the LOI re-
sults indicate that there are little features that stand out across
multiple acoustic conditions – for this task one apparently has to
learn how the feature behavior changes in unfavorable acoustic

conditions.
Regarding feature selection, we can conclude that in most

cases, similar or better results with respect to the full feature
set can be obtained with only a fraction (6.3 %) of the features.
The combination of MCT and feature selection seems espe-
cially powerful to cope with challenging acoustic conditions,
even under mismatched settings.

6. Conclusions and Outlook
We have investigated the influence of convolutive and additive
noise on the performance of automatic affect recognition sys-
tems in realistic conditions. Considerable performance degra-
dations are observed for both convolutive noise (10% UAR ab-
solute on TUM-AVIC for three levels of interest) and additive
noise (an additional 8% absolute loss in UAR for 0 dB SNR). As
known from previous work, the performance can be improved
by multi-condition training. In this study we have discovered
that an additional gain in performance – and thus more robust
systems – can be achieved by automatic selection of acoustic
parameters on a multi noisy condition data-set. The increase in
performance is also present when training only on clean data; it
is thus complimentary to the gain by multi-condition training.

In future work a detailed study of the relevance of individ-
ual features for the specific SNR conditions could reveal more
insight towards which features are robust noise to what extent.
Human perception tests could be combined with the automatic
analysis to verify at which SNRs human affect recognition per-
formance suffers and to which acoustic features this relates.
This will pave the way to automated methods for a better un-
derstanding of how humans perceive acoustic affect and how
technical system be made ready for reliable use in real-world
commercial applications.
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