
Technischen Universität München
Institut für Informatik

Lehrstuhl für Computer Graphik und Visualisierung

Growing Surface Structures
an Iterative Refinement Surface Reconstruction Approach

Deduced from Artificial Neural Networks

Hendrik Annuth

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universiät
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Gudrun Johanna Klinker
Prüfer der
Dissertation: 1. Univ.-Prof. Dr. Rüdiger Westermann

2. Univ.-Prof. Dr. Heinrich Müller, Technische Universität Dortmund
3. Prof. Dr. Christian-Arved Bohn, Fachhochschule Wedel

Die Dissertation wurde am 17.02.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 22.05.2014 angenommen.

2

Abstract
This thesis presents a high quality surface reconstruction approach based on an iterative refine-
ment strategy deduced from artificial neural networks. The presented approach is composed of
three novel developments extending the capabilities as well as the concept of the growing cell
structures algorithm.
An introduction to the associated fields of research is given and the problem of surface recon-
struction from unorganized points is discussed in detail. A state of the art overview of all major
surface reconstruction methods and their performance is presented. A detailed introduction to the
development stages of the growing cell structures algorithm is given, which enables localizing
algorithm properties for possible modification.
The distinctions between the growing cell structures and the growing neural gas algorithm are
discussed.
The presented filter chain concept enables easy editability of the algorithm behavior and adds ad-
ditional flexibility. The twist solving method efficiently and reliably fixes inconsistently oriented
surface areas within the reconstruction process. The potential of the novel data structures used to
solve this problem for other computer graphics applications is demonstrated. The growing cell
structures algorithm concept is redesigned to incorporate an explicit surface representation into
its learning scheme. This introduces novel possibilities to direct the algorithm’s approximation
behavior.
The final algorithm, composed of the combined presented developments, is evaluated in compar-
ison to classical reconstruction algorithms as well as in reconstructing extremely challenging
point clouds. The algorithm proves to be an efficient all-round high quality approach. Finally,
the presented results and their implications for future work are discussed.

3

Kurzfassung
In dieser Dissertation wird ein qualitativ hochwertiges Oberflächenrekonstruktionsverfahren
vorgestellt, welches auf einer iterativen Verfeinerungsstrategie basiert, die von künstlichen
neuronalen Netzen abgeleitet ist. Der vorgestellte Ansatz setzt sich aus drei neuen Entwicklungen
zusammen, welche sowohl die Leistungsfähigkeit als auch die Konzeption des Growing Cell
Structures Algorithmus erweitern.
Die zugehörigen Forschungsfelder der Arbeit werden vorgestellt und das Problem der Ober-
flächenrekonstruktion von unorganisierten Punkten wird im Detail dargestellt. Alle wesentlichen
Oberflächenrekonstruktionsmethoden werden in einem aktuellen Überblick gemeinsam mit
deren Eigenschaften präsentiert. Durch die detaillierte Vorstellung der Entwicklungsstadien des
Growing Cell Structures Algorithmus wird die Lokalisierung von Algorithmuseigenschaften für
potenzielle Modifikationen ermöglicht.
Die Unterschiede von Growing Cell Structures zu Growing Neural Gas werden diskutiert.
Das präsentierte Filterkettenkonzept ermöglicht die einfache Editierbarkeit des Algorithmus
und macht diesen zusätzlich flexibler. Die Verdrehungsauflösungsmethode korrigiert inkon-
sistente Oberflächenorientierungen innerhalb des Rekonstruktionsprozesses auf effiziente und
zuverlässige Weise. Das Potenzial innerhalb der zur Lösung verwendeten Datenstrukturen
wird demonstriert indem diese zusätzlich für andere Computergraphik-Anwendungen eingesetzt
werden. Durch eine Neukonzeption des Growing Cell Structures Algorithmus wird eine explizite
Flächenrepräsentation in dessen Lernschema mit einbezogen. Dies eröffnet neue Möglichkeiten
bei der Steuerung des Approximationsverhaltens des Algorithmus.
Der finale Algorithmus, welcher sich aus den vorgestellten Entwicklungen zusammensetzt,
wird durch Vergleiche mit klassischen Rekonstruktionsalgorithmen evaluiert und durch die
Rekonstruktion von extrem anspruchsvollen Punktwolken. Der Algorithmus erweist sich dabei
als ein effizienter und qualitativ hochwertiger Ansatz, der sich für viele Einsatzfelder eignet. Die
Arbeit wird durch eine Diskussion über die erzielten Ergebnisse und deren Bedeutung für die
zukünftige Forschung abgeschlossen.

4

Contents

1 Introduction 9
1.1 Surface Reconstruction . 9
1.2 Artificial Neural Networks . 12
1.3 Structure . 14

1.3.1 Overview . 14
1.3.2 Figures . 15
1.3.3 Algorithms . 15
1.3.4 Complexity Analysis . 15
1.3.5 Measurements . 17
1.3.6 Point Clouds . 17
1.3.7 Test Hardware . 17

1.4 Contribution . 18

2 Problem Analysis 19
2.1 Problem – Reconstruction from Unorganized Points 19
2.2 Input – Unorganized Points . 20

2.2.1 Sample Set Size . 20
2.2.2 Non-Uniform Sample Densities . 21
2.2.3 Holes . 21
2.2.4 Noise . 22
2.2.5 Outliers . 22
2.2.6 Unrecognizable Surface Structures . 22
2.2.7 Mutually Dependent Ambiguities . 23

2.3 Output – Surface Model . 23
2.3.1 Surface Types . 23
2.3.2 Topology . 26
2.3.3 Surface Orientation . 27
2.3.4 Solid and Non-Solid Objects . 28

2.4 Function – Reconstruction Methods . 29
2.4.1 Interpolation . 29
2.4.2 Deformation . 32
2.4.3 Distance Function . 35
2.4.4 Model Based . 38

2.5 Conclusion . 39

5

6 CONTENTS

3 Growing Cell Structures 41
3.1 Evolution of Growing Cell Structures . 41

3.1.1 k-Means Clustering . 41
3.1.2 Self-Organizing Map . 43
3.1.3 Growing Cell Structures . 44
3.1.4 Smart Growing Cells . 49

3.2 Additional Usage . 53
3.2.1 Resampling . 53
3.2.2 Unwrapping . 53
3.2.3 Remeshing . 54
3.2.4 Level of Detail . 54

3.3 Growing Cell Structures vs. Growing Neural Gas 55
3.3.1 Growing Neural Gas . 55
3.3.2 Similarities . 58
3.3.3 Input – Unorganized Points . 58
3.3.4 Output – Surface Model . 60
3.3.5 Parallelization . 61
3.3.6 Modifications . 62

3.4 Results . 62
3.5 Conclusion . 67

4 The Filter Chain Concept 71
4.1 Introduction . 71
4.2 Approach . 73

4.2.1 Artifact Filters . 74
4.2.2 Removal Filters . 74
4.2.3 Editing and Constructing Filters . 75

4.3 Additional Usage . 76
4.4 Results . 76
4.5 Conclusion . 77

CONTENTS 7

5 Solving Twisted Surface 79
5.1 Introduction . 79

5.1.1 Emergence of Twisted Surface . 79
5.1.2 Solving a Global Problem on a Local Level 80
5.1.3 Geodesic Distances . 82

5.2 Approach . 82
5.2.1 Semi-Local Processing . 83
5.2.2 Vertex Front . 83
5.2.3 Minimal Edge Front . 84
5.2.4 Minimal Distance Front . 88
5.2.5 Calculating Connection Path . 91
5.2.6 Twist Solving . 91

5.3 Additional Usage . 96
5.3.1 Mesh Distance Processing . 96
5.3.2 Normal Estimation . 96

5.4 Results . 97
5.5 Conclusion . 101

6 Growing Surface Structures 105
6.1 Introduction . 105

6.1.1 Likelihood Distribution . 106
6.1.2 Distance Minimization . 106
6.1.3 Topology Optimization . 107

6.2 Approach . 109
6.2.1 Topology Focused Approximation . 109
6.2.2 Implementation of Growing Surface Structures 110

6.3 Additional Usage . 114
6.3.1 Unifying Sample Density . 114
6.3.2 Remeshing and Mesh Optimization 114

6.4 Results . 114
6.5 Conclusion . 117

7 Results 121
7.1 Comparison with Classical Reconstruction Approaches 123
7.2 Reconstruction of Challenging Models . 126

8 Conclusion 133
8.1 Summary . 133
8.2 Discussion . 133
8.3 Future Work . 136
8.4 Epilog . 137

Notation 139

Bibliography 145

8 CONTENTS

Chapter 1

Introduction

In this chapter, an introduction to surface reconstruction and artificial neural networks (ANN) –
the associated fields of research of this thesis – is given. The structure of the thesis is explained
and its contribution is presented.

1.1 Surface Reconstruction
Due to the rapid development in 3D scanning technology, real world objects can be scanned
faster, more accurately and at higher resolutions. State of the art laser scanning devices are able
to acquire a hundred million points with one single scan. This allows creating high quality virtual
representations of these objects as shown in Fig. 1.1.

Figure 1.1: A photograph of Michelangelo’s David (left); A point cloud of the David statue (middle); A
surface fitted into that point cloud (right).

Application Cases: The digitalization of physical surfaces has many different applications. In
archaeology and crime scene investigation, sites can be analyzed independent of their location
and permanently preserved through time.

9

10 CHAPTER 1. INTRODUCTION

Architecture and plant manufacturing involve accurate construction planning and precise mea-
suring which can be efficiently accomplished by introducing digital surface models. In medical
applications, memory intensive volume models or contour data from stacks of pictures are
reconstructed for visualization purposes. In films, reconstructed surfaces are applied as sup-
port structures for manually created models. Computer games use 3D scanning technology to
incorporate real world objects and environments into their otherwise virtual worlds.
Reverse engineering is a process where existing products or physical prototypes are used as
a template to create virtual models for production processes. These models are then used for
computer-aided design (CAD) and in computer-aided manufacturing (CAM). The reconstruction
is usually only the first step in a process where the surface is additionally segmented, elements
are classified, a parametric surface is fitted and additional constraints are recognized and added
to the model description. The complete process is called digital shape reconstruction [VF05].
This application case is currently gaining additional attention due to the growing popularity of
3D printing devices.
In quality control – often seen as part of reverse engineering – the digital representation of
a physically created object is used to verify the accuracy of a production process. This is
especially important for complex shaped objects, for which conventional measuring techniques
are impractical.
Mobile robots can profit from surface reconstruction in different contexts, such as path planning,
localization, scene interpretation, and grasping. Robotic maps are the basis for all actions of a
mobile robot.
Scanning Devices: The applied scanning devices are as numerous as the described application
cases. They differ in their accuracy, the complexity of their scanning process, their limitations
due to their physical working principle and the reconstruction relevant information in their data
output.
By using a touch probe, points, or contours on a physical surface are determined mechanically,
which is very accurate, but leads to an extremely slow scanning process. Medical applications
usually need to scan the inside of a body rather than its surface. Scanning techniques such as
computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound imaging are
used. These techniques often produce stacks of pictures that represent cross-sections of the body,
which lead to contour data as input data for the reconstruction process.
Multi-view stereo (MVS) methods use a collection of images as input data for the reconstruction
process. There are different techniques to create 3D information from those 2D images. Binocular,
trinocular, and multi-baseline methods, also called single shot methods, seek to create a single
depth map by identifying corresponding feature points on two or three images [SS02].
However, MVS is mostly associated with methods that use a higher number of images taken
from different points of view to create 3D models of greater complexity [SCD+06]. They use
photo-consistency measure to find correlating pixels in the images. Usually they also include a
visibility model that retrieves 3D information based on the visibility or the occlusion of certain
features in the images.
Structured light measurement devices project a calibrated reference pattern into the scene. Nat-
urally, the surface of the present object distorts this pattern. Based on the difference between
referenced and sensed pattern, the 3D coordinates of samples on the object surfaces are deter-
mined. These methods can achieve very high resolutions and accuracy. The scanning process
normally produces range images, which already represent oriented partial surface segments.
A technique which also uses the projection of a structured light pattern, typically a grit, is time of
flight (TOF). TOF has a very high scanning frequency at the expense of scanning accuracy. Thus,
it is used in many real-time applications.

1.1. SURFACE RECONSTRUCTION 11

The first prominent use of such systems in practical applications was the Stanford Digital
Michelangelo Project [Lev99]. While these systems deliver point clouds of high quality, they
need a very controlled setup and have a limited sensing area. Thus, they are normally used to
capture single objects rather than large scenes. As these devices depend on sensing the reference
pattern, they are sensitive to additional light sources that outshine the pattern. Hence, they are
mostly used in indoor environments.
The most versatile applicable scanning devices are 3D laser scanners, which use a laser beam
that samples a surface point by point. The device determines the distance of the scanner to a
surface point by measuring the time it takes the light to be reflected from the surface to the
scanner. Together with the current beam direction, this defines a 3D position. To produce a cloud
of points, a mechanical system using rotating mirrors directs the laser beam around two axes to
create a spherical sampling.
In most real world applications, one single scan is insufficient to capture an entire scene.
Normally, several scans are performed and united into a single point cloud. There are various
techniques for integrating point clouds of different scans into a global coordinate system. It can
either be done manually, which is quite a time-consuming task or geo-reference markers such as
spheres can be placed in the scene. These markers are then detected in the different point clouds
and enable an automatic or semi-automatic alignment process.
The development of 3D laser scanners has shown a tremendous improvement over the recent
years. A 3D laser scanner combines a high accuracy with a time efficient and straightforward
scanning process. It has a large scanning range and its physical scanning principle exposes only
few limitations such as shiny object surfaces, which reflect the emitted signal, or dark surfaces,
which absorb the laser light, and thus create low or even not sampled surfaces. The sampling
density is generally non-uniform. Due to the consistent spherical sampling, objects that are closer
to the scanner are captured with a higher density than objects that are far away. Additionally,
when integrating several scans, interlaced areas have higher sample densities than non-interlaced
areas.
Unorganized Point Clouds: The result of a 3D laser scan is an unorganized point cloud. Only
spatial point positions are known and no additional information is given, such as relations
between points or the orientation of a point. Since unorganized point clouds carry a minimum of
information, data from most scanning devices can be transformed easily into this format, but not
vice versa. Algorithms working with unorganized points are therefore usable quite universally.
However, not using all available information might compromise the quality of the produced
result.
Surface Reconstruction Motivation: An unorganized point cloud already has many appli-
cations even before it is transformed into a surface. When scanning a physical surface, the
representation is digital and can therefore very easily be copied, transferred and permanently
retained. Point clouds can also be used directly in point-based computer graphics applications
[KB04].
A point cloud, however, does not represent a coherently defined subspace in 3D space as a
surface does, which limits its application. Surface models enable very sophisticated measuring
processes, such as distances based on intersection and projection operations, distances on the
surface or volume calculations.
In visualization, lighting calculations involve entry and exit angles of light beams reflected from
surfaces. This makes the gradient of a surface necessary. Using common texturing techniques
initially requires the parameterization of a surface. Closed surfaces which do not self-intersect
can be transferred to volumetric models, such as tetrahedron meshes [TWAD09]. Such models
can be exposed to simulated forces such as tension and pressure.

12 CHAPTER 1. INTRODUCTION

Although a surface model is a more complete representation of a physical surface than a point
cloud, it is generally more memory efficient. Complex shaped surface areas, such as thin and
curved ones, need more samples to be represented adequately. Since scanning processes cannot
be adapted in their resolution, most other surface areas are overrepresented by many redundant
samples.
An unorganized point cloud may include noise, outliers, non-uniform sample densities and
insufficiently sampled structures and holes. Since many of these problems are inherently
ambiguous and mutually dependent, surface reconstruction approaches as well as pre- and post-
processes suggested to the problem are numerous. Although the problem has great importance
in different application cases and has been dealt with intensively since the early eighties [Boi84],
a generally satisfactory solution to the process has not yet been found.

1.2 Artificial Neural Networks
The beginning of artificial intelligence (AI) research was characterized by great optimism. In
1967 Marvin Minsky, cofounder of the term itself, was quoted to have said, “within a generation
... the problem of creating ‘artificial intelligence’ will be substantially solved.” ([JHB95], p.
109).
At that time AI research was directly associated with the attempt to rebuild or even exceed human
intelligence, which is today an AI subdiscipline termed “strong AI”. The strong AI problem was
basically approached from two directions.
One was to examine the results of human intelligence and to reproduce those results within a
process. This top-down approach led to so called “expert systems”. A second approach was to
recreate the building blocks of natural intelligent systems. Here, AI is created due to emergence,
where many simple units create complex behavior as a result of their interactions.
The inspiration for this bottom-up approach came from the increasing understanding of biological
neural networks. Which was expressed, for instance, in the Hebbian theory postulated by Donald
Hebb in 1949 [Heb49]. Biological neural networks are built of relatively simple base units, the
neurons, that can only emit and receive simple signals, but if connected in networks and in vast
numbers, are able to create something as complex as human behavior. In 1951, Marvin Minsky
created the first ANN at Princeton University.
With passing time, the possibility to actually create a strong AI became increasingly unlikely. In
1982, Marvin Minsky wrote, “The AI problem is one of the hardest science has ever undertaken.”
([Kol82], p. 1237). However, ANNs had proven to be a useful tool.
Statistical Learning Theory: In computation, ANNs are used due to their “learning capabil-
ity”. In statistical learning theory, learning describes the ability to build a predictive function
derived from given examples. Common tasks are function approximation, regression analysis,
classification, pattern recognition, dimensionality reduction, clustering, and feature extraction.
Input Data: ANNs typically use Euclidian distance as a metric for data comparison. Thus, in
order to apply them to a problem at hand, the given input data (examples) has to be represented
as numerical vector data. The input vectors represent a sampling of the function of interest in the
input data space. Since ANNs are known to be very stable and robust they are often used for
tasks which are characterized by complex, blurred and incomplete input data.
Output: ANNs can be distinguished by the model they use for representing the created predictive
function. One is to divide the input data space by a series of hyperplanes using the scalar product.
In a perceptron [MP88], for instance, input data is multiplied by a series of weight vectors.
This associates an input sample (vector) with a certain fraction of space, which is also known
as a subspace. Such subspaces are again associated with one of several predefined classes in
classification applications.

1.2. ARTIFICIAL NEURAL NETWORKS 13

When using hyperplanes, processes such as perceptrons model subspaces by defining the bound-
aries between them. The number of hyperplanes which an input sample passes, defines the
complexity in which the input data space can be subdivided.
A second concept is to directly model subspaces by placing reference vectors into the input data
space. Here, subspaces are defined by single reference vectors or groups of them. An input
sample is then associated with the reference vector with the smallest Euclidian distance. The
complexity of created subspaces is determined by the number of reference vectors used to shape
them.
Supervised Learning: There are different learning concepts available, depending on the given
input data and the task to fulfill. Supervised learning is strongly connected to the task of
classification. Here, every input sample comes with an associated output.
In a training phase, input samples are presented to the algorithm which then predicts an output
for them. Since the actual output values are known, a feedback can be created to “supervise”
the learning process. This feedback is represented by a distance metric, which expresses how
correct or incorrect the predicted output for a given input sample is. This distance metric could,
for instance, be the square distance between predicted and actual output.
The training phase is finished when a certain threshold for the error in these predictions is reached.
The process can then be used to make predictions for input samples of unknown output.
Unsupervised Learning: In unsupervised learning, input samples come without associated
output values and the learning process therefore has to be “unsupervised”. Such processes find
hidden structures in the input data to allow for predictive capabilities. A typical task is clustering.
Clustering is also referred to as “automatic classification”, since it is equivalent to classification,
but without predefined classes.
While in supervised learning correctly determined classes or outputs are of interest, unsupervised
learning focuses on the differentiation and determination of significant aspects within the input
data and their visualization. This includes tasks such as pattern recognition, dimensionality
reduction, and feature extraction.
Competitive Learning: Competitive learning is characterized by the “competition” of multiple
units for presented input samples. If a unit in this competition “wins” for a given input sample, it
is modified. The modification increases the likelihood for this unit to win again for the given and
for alike input samples. Gradually, these modifications structure the units to represent clusters of
input samples. Thus, the approach represents an unsupervised learning technique.
There are hyperplane based implementations modifying weight vectors to segment the input
space as well as distance based approaches, where reference vectors compete and represent
clusters.
A distance based approach is categorized as hard competitive learning if only one reference
vector (unit) is modified when an input sample or several input samples are presented. This
learning scheme is also known as winner-take-all. The k-means clustering [Mac67] and the
Linde-Buzo-Gray (LBG) [LBG80] approach use this learning scheme. In clustering, clusters
of input samples are represented by a single reference vector. In vector quantization, data
compression is achieved by representing many input vectors as one single prototype vector.
In comparison to hard competitive learning, reference vectors in soft competitive learning are
connected to one another creating a graph. Not only the winning reference vector is modified to
better match an input sample, but also connected neighbors in the graph. The learning scheme
is also known as winner-take-most. Since reference vectors are not moved independently, their
movements are stabilized by one another, creating smoother distributions. Depending on the
restrictions of a graph’s connectivity, additional applications are enabled.
A graph can be used to additionally recognize the underlying continuous aspects of the recreated
subspace of the input data, as in regression analysis. Neural gas (NG) [MS91, MS94] and

14 CHAPTER 1. INTRODUCTION

Figure 1.2: Approximation series of a subspace of multiple dimensions with GNG (left) (from [Fri95]).
Series of approximate results for the travelling salesman problem with GCS (right) (from [FW91]).

growing neural gas (GNG), for instance, produce graphs of arbitrary connectivity. If a subspace
is modeled with such a graph, its connectivity can resemble structures of arbitrary dimension.
If a subspace has the characteristics of a curve (1D), it can connect reference vectors as line
segments, it can connect them to triangles in case of a surface (2D), tetrahedrons in case of a
volume (3D) and even to simplices of higher dimension (see Fig. 1.2). However, if only one
particular dimension is desired its sole construction cannot be guaranteed.
The self-organizing map (SOM) [Koh82] uses a static connectivity that remains unchanged
throughout the process. Normally, a square shaped 2D grid is used, since it is easy to parameterize
by width and height. The grid is adapted to resemble the input data subspace. The input
samples, which might originate from high dimensional space, can then be projected onto the two
dimensional grid-space. The input data is then easier to visualize or analyze as in dimensionality
reduction and pattern recognition.
In growing cell structures (GCS) [Fri93], the connectivity of the graph is not static. However,
the graph is restricted to only include structures of a predefined dimension. In [FW91], GCS
was applied to approximate a result for the travelling salesman problem and was restricted to
solely include line segments (see Fig. 1.2).
Which soft competitive learning approach is selected for a certain task depends on the expecta-
tions toward the resulting graph. If used for surface reconstruction, e.g., a graph needs to expose
the structure of a 2D surface.

1.3 Structure
In the following section, a contents overview is given and general information on shown illustra-
tions, algorithm representations, complexity analyses, used point clouds, measured values, and
the used test hardware is presented.

1.3.1 Overview
In chapter 1, an introduction to the fields of research associated with this thesis is given, an
overview of contents and general information on the structure of the thesis is provided, and
finally, its contribution is presented.

1.3. STRUCTURE 15

Chapter 2 presents the main problem addressed in this thesis. The specific surface reconstruction
scenario is defined, the problems based on the input data – unorganized points – and aspects
concerning the output – the surface model – are analyzed and a state of the art overview of all
major reconstruction methods is given.
When presenting the GCS algorithm in chapter 3, different development stages of the algorithm
toward a surface reconstruction approach are shown, novel computer graphics uses of the
algorithm additional to reconstruction are demonstrated, the GCS algorithm is distinguished
from the GNG approach, and different parameter settings are tested for both algorithms.
Chapter 4 introduces the novel filter chain concept to the GCS algorithm. The filters – used to
generalize the way algorithm behavior can be edited – are presented alongside the concept.
If a surface is reconstructed with the GCS approach it might expose inconsistently oriented
surface areas. A method to resolve such “twists” in the surface, which is based on a novel set of
data structures, is presented in chapter 5.
Chapter 6 introduces growing surface structures (GSS), a conceptual redesign incorporating an
explicit surface representation into the learning scheme of the GCS approach. An implementation
of this new algorithm concept is presented and evaluated.
In chapter 7, all presented algorithm developments are evaluated in a final combined reconstruc-
tion algorithm. This algorithm is evaluated in comparison to classical reconstruction algorithms
as well as in reconstructing a series of extremely challenging point clouds.
In chapter 8, the findings of this thesis are summarized and discussed, the challenges of future
work are considered, and finally, the thesis is concluded by an epilog.

1.3.2 Figures
Illustrations: The algorithm presented in this thesis uses a mesh based surface representation
(see section 3.3.4). In illustrations, meshes are presented in different render modes and schematic
representations. An overview of these types is illustrated in Fig. 1.3.
Photographs: The photograph of “Michelangelo’s David” in Fig. 1.1 is distributed under the
GNU Free Documentation License [Fre14], the photograph of the “Farm Building in Ethiopia”
in Fig. 7.5 was provided by the Hamburg HafenCity University, the photograph of the “Kornhaus
Bridge” in Fig. 7.6 was given into public domain by the author, and the photograph of the “Office”
of the laser scanning division of the criminal investigation department in Hamburg in Fig. 7.7
was provided by that same department.

1.3.3 Algorithms
Algorithms are presented as a schematic set of instructions. Such schematic representations
might include minimized images of actual illustrations of algorithm aspects to further improve
orientation and to underline specific algorithm parts. The representation also highlights if an
algorithm is based on a previously presented algorithm and which of its instructions are added
or removed from the previous algorithm. This presentation scheme is exemplarily outlined in
Alg. 1.

1.3.4 Complexity Analysis
All upcoming discussions concerning the complexity of presented algorithms are done under
certain realistic use case assumptions if not explicitly stated otherwise.

16 CHAPTER 1. INTRODUCTION

Figure 1.3: An illustration of different mesh representations: (a) Ambient-Occlusion is used to emphasize
surface depth; (b) Phong-Shading is used as the default representation. A wire frame is used to show
triangle shapes; (c) Distance fields are represented with a color gradient from a starting point (blue)
over an intermediate state (green) to the farthest distant points (red). Superimposed on the gradient are
contours (black) representing a coherent space of equal distance; To simplify the presentation of certain
mesh aspects they are shown as (d) a schematic mesh cross section. To precisely demonstrate mesh
modifications (e) a schematic mesh topview is used. The representations (b) and (e) both use a color
code to differentiate mesh outside (yellow) and inside (red).

This concerns the distribution of input samples, which are generally assumed to represent a
surface sampling. Such distributions might include severe imperfections, such as non-uniform
sample distributions, noise, and outliers, but exclude cases where distributions actually sample
a volume instead of a surface or the majority of all samples in a distribution are compressed
in a small spatial region or other equally unfavorable but artificially creatable distributions.
To assume such scenarios for real laser scanned data, even under worst-case conditions, is
considered unreasonable.
When complexity statements involving mesh-editing operations, the number of edges for vertices
is assumed constant and unrelated to the overall mesh size. With edge adding and removing
operations applied constantly and evenly on the mesh – given a normal sample distribution
as explained above – it is unreasonable to assume a vertex might accumulate a number of
connections that is related to the mesh size. A theoretical analysis to mathematically evaluate the

Algorithm 1 This algorithm example is given to explain the different elements used in this thesis to
present algorithm concepts.

1: This is a new algorithm instruction which is explained in the corresponding algorithm section.
2: This algorithm instruction is unchanged and has been explained in an early algorithm stage or is

part of an entirely new algorithm, where almost all instructions are new.
This algorithm instruction was performed in an early algorithm stage. It is exchanged for a new
instruction or not needed any longer.

A specific algorithm part

3: Instruction of this specific algorithm part
(Specific algorithm parts are additionally represented by visual identifiers, in this example, a blue
cogwheel. Their meaning is explained in the corresponding section.)

4: An already presented specific algorithm part

1.3. STRUCTURE 17

unlikelihood of this aspect, given the number and configurability of the presented algorithms
would, however, exceed the scope of this thesis.
Thus, complexity statements refer to sensible surface reconstruction cases with appropriate
sample distributions and reasonable assumptions about the mesh construction process.

1.3.5 Measurements
The following reappearing measurements are taken. Measurements not shown in this enumeration
are explained in the corresponding section.
Time: The time a process took. Normally, it is itemized in "hours : minutes : seconds".
Dist and Dist2: The average distance or average square distance between the created surface
and the samples in the point cloud. For better comparability all point clouds are normalized
so that the diagonal of their bounding box equals one. To be in a convenient scope, results for
average distance have been multiplied by 104 and results for average square distance by 107.
Equilaterality: The average percentage of equilaterality for triangles. To calculate the equilater-
ality of a triangle, first its actual surface area is calculated. Then this surface area is divided by
the surface area of a hypothetical triangle. This hypothetical triangle is an equilateral triangle
built with the longest edge of the initial triangle. If triangles are equilateral this division results
in 100% equilaterality and in smaller values otherwise.
Valence[5;6;7]: The average percentage of vertices having a valence of five, six, or seven. The
valence of a vertex is determined by the number of connections it has to other vertices. The ideal
value is six, since it is best to shape equilateral triangles, allowing for six divisions with an angle
of 60◦.

1.3.6 Point Clouds
The point clouds used in this thesis were kindly provided by the Stanford University Computer
Graphics Laboratory, the Hamburg HafenCity University, and the laser scanning division of the
criminal investigation department in Hamburg.

1.3.7 Test Hardware
In this thesis, different novel algorithm developments for the GCS algorithm are presented.
The properties of major developments are constantly proven in practical experiments. For the
committed experiments the following hardware was used:

A Dell R©Precision M6400 Notebook with Intel R©Core 2 Extreme Quad Core QX9300 (2.53GHz,
1066MHz, 12MB) processor with 8GB 1066 MHz DDR3 Dual Channel RAM

18 CHAPTER 1. INTRODUCTION

1.4 Contribution
All publications cited in this section were published as part of the scientific work of this thesis.
No texts or pictures in this thesis were copied from prior scientific work, neither were contents
copied from collaborative, i.e., not first author publications. In the following, the scientific
contributions produced as part of the thesis are presented.
In this thesis, a detailed analysis of surface reconstruction from unorganized points is presented.
A state of the art overview of all major surface reconstruction methods and their performances
on these problems is given. This enables a more differentiated perspective on the correlation
between a reconstruction method and its performance. The presented overview allows for a
novel perspective on reconstruction methods and the strengths and weaknesses they lead to.
The GCS algorithm is presented as a surface reconstruction approach including all its devel-
opment stages prior to this thesis, such as the smart growing cells (SGC) approach, which is
summarized in [AB12c]. The differences as well as the similarities of the GCS and the GNG
approach are analyzed and experimentally proven [AB12a].
The versatility of the GCS concept is demonstrated by showing novel additional uses for
computer graphics applications, such as point cloud filters and mesh-processing algorithms.
When combined, those applications can be used to visualize complex virtual scenes [AB11] with
efficient rendering techniques, such as normal mapping.
The filter chain concept generalizes the way algorithm behavior can be edited in order to
account for individual application cases. This introduces new flexibility to the GCS algorithm
to automatically exchange, test, and potentially even automatically adjust algorithm behavior
toward given input data.
A surface reconstructed with the GCS approach might expose inconsistently oriented surface
areas. The twist solving method presented in this thesis efficiently and reliably removes this
limitation from the GCS algorithm [AB12b]. This method is achieved with novel data structures.
Additional computer graphics application cases for these data structures, such as geodesic
distance calculations, are presented to demonstrate the potential within the introduced processing
strategy [AB14a].
Growing surface structures (GSS) represent a redesigned GCS algorithm concept, which explic-
itly incorporates the created surface into the algorithms learning scheme [AB13, AB14b]. This
introduces entirely novel possibilities to direct the approximation behavior of the algorithm. The
capabilities of the new concept are proven by evaluating an implemented surface reconstruction
approach.
A final algorithm composed of the combined presented developments is compared to classical
reconstruction algorithms [WALH13] and used to reconstruct especially challenging models.
The algorithm is proven to be a universal, flexible, and robust high quality surface reconstruction
approach, which outperforms classical approaches. With the newly added developments a novel
approach is introduced which can be modified toward desired reconstruction behaviors, creates
soundly oriented surfaces, and quickly adapts to given topologies even in extremely challenging
reconstruction scenarios.

Chapter 2

Problem Analysis

This chapter includes a detailed analysis of unorganized point based surface reconstruction. It
starts with the definition of the general problem, then focuses on problems within the input data,
then presents properties concerning the output surface model and finally gives an overview of
reconstruction methods to solve the problem.

2.1 Problem – Reconstruction from Unorganized Points
Surface reconstruction creates a 2D subspace S in 3D space R3 that represents a digital
equivalent of a real world physical surface Sphy. How well S resembles Sphy can be measured
as the Euclidian distance of corresponding points on both surfaces. Minimizing these distances
is known as the surface fitting problem (see section 2.3.1.4).
The more substantial problem, however, is to create S in a way that points actually have a unique
correspondence on both surfaces. This requires S to be a topologically correct representation of
Sphy (see section 6.1.3).
For surface reconstruction from unorganized points the information available about Sphy is
a finite collection of surface samples P = {p1...pn} in 3D space R3. This information is
inconclusive, since points cannot uniquely define a surface unless an additional set of rules
is given. Thus, the task to determine Sphy from P is considered an ill-posed problem (see
Fig. 2.1).

Figure 2.1: Different surfaces that both interpolate a group of samples. The samples could theoretically
be a sampling of both surfaces.

The task is to search for a subspace S that is the most probable under the condition that P
originates from scanning Sphy. Since P result from a physical measuring process it contains im-

19

20 CHAPTER 2. PROBLEM ANALYSIS

perfections. These imperfections and their influence on the reconstruction process are explained
in detail in section 2.
The most basic reconstruction problem, however, remains even if every sample p is measured
flawlessly p ∈P ⇒ p ∈Sphy and the samples are uniformly distributed over Sphy.
Surface reconstruction methods seek to find implications about the unknown surface Sphy in
P . Those implications are neighborhood relations in P from which on-surface neighborhoods
can be derived. The problem is P being only accessible by 3D search queries, while on-surface
neighborhoods following the 2D distribution of the yet unknown surface (see Fig. 2.2).

Figure 2.2: On-surface neighborhoods are investigated with 3D search queries: First, a high surface
sampling, where the two on-surface neighbors to a certain sample can be easily found (left). Then the
same surface with a lower sampling. The search space for the two closest neighbors has grown (middle).
And at last, a low sampling where the two closest neighbors are not the correct topological (on-surface)
neighbors (right).

The degree of difficulty of a reconstruction process lies in the imperfections and ambiguities in
P and the surface model quality criteria that need to be satisfied by S .

2.2 Input – Unorganized Points
In a realistic unorganized point based surface reconstruction scenario, P is obtained by an
actual scanning process. Such scanned data contains imperfections, in contrast to synthetic or
pre-processed data. Fig. 2.3 illustrates common challenges within unorganized point data. In the
following, these challenges are explained and possible solutions are presented.

Figure 2.3: Common challenges for a reconstruction process within an unorganized point cloud.

2.2.1 Sample Set Size
Assuming every sample p is correctly measured p ∈P ⇒ p ∈Sphy and the samples in P are
uniformly distributed over Sphy, then more samples deliver more information about Sphy. The
more information is available about Sphy, the easier the reconstruction. With a dense sampling,

2.2. INPUT – UNORGANIZED POINTS 21

however, the size of P becomes a problem. Especially spatial data structures such as octrees or
k-d trees require huge memory resources.
If the input data is highly redundant, data reduction can be applied. Randomly selecting a sample
subset is a straightforward approach. A more sophisticated approach is to insert the samples into
an octree of fixed minimum voxel size. Then the center of every leaf node or an existing sample
closest to that center is used to create a resampling. This also produces a uniform sampling (see
section 2.2.2).
Large scanning areas, however, can involve huge amounts of samples |P| that cannot be reduced
without compromising information about the investigated surface. In order to process such point
clouds, they can be separated into single pieces, which are then reconstructed by a method that
can handle open surfaces. Finally, those pieces are put together, as in [CLK09]. Algorithms such
as the co-cone [DGH01] (see section 2.4.1.1) and Poisson surface reconstruction [BKBH09] (see
section 2.4.3.4) have been modified to reconstruct huge point clouds by avoiding overloading the
system memory, also known as an “out-of-core” solution.

2.2.2 Non-Uniform Sample Densities
Laser scanning does not produce uniform sample distributions over Sphy. With the same angular
resolution surfaces more distant to the scanning device are sampled with lower resolution. Also,
the relative orientation of a surface to the scanner influences the sampling. Orthogonal surfaces
are sampled denser than tilted ones.
Certain materials also have an effect on the sample density: transparent, dark, or reflective
materials lead to very low or non-sampled areas. When several scans of the same scene are
superimposed, the overlapping areas have a higher sample density than non-overlapping areas.
If a reconstruction approach assumes a fixed distance between samples, two problems can occur:
too low assumptions lead to surface areas existing in Sphy but missing in S ; and too high
assumptions lead to surface areas included in S that are non-existent in Sphy.
To create a uniform sampling P can be added into an octree as described in section 2.2.1. Also, a
temporary surface can be fitted into P . Based on that surface a new evenly distributed sampling
can be created [ABCO+01]. This obviously already involves a surface reconstruction technique.

2.2.3 Holes
Scanners can only register samples on surfaces in sight. Occluded areas, also known as “scanner
shadows”, are not sampled. Materials that are not reflecting the laser beam back to the scanner
due to absorption or non-diffuse reflection also cause holes. For single objects this can be
avoided by taking scans from different positions and “powdering” problematic surfaces. For
large scanning areas, however, holes are inevitable.
If a reconstruction aims to create a solid object (see section 2.3.4), any hole needs to be closed.
Algorithms which guaranty solid objects often include hole filling mechanisms. In many cases,
those approaches can be applied as post-processes on previously created surfaces that exposes
holes [SSZCO10, SLS+06].
If an object in contrast is desired to be non-solid, the distinction between desired and undesired
holes becomes very hard. For those cases different hole filling or completion processes are
needed [SWK07, CBM+03].
Hole filling can be differentiated in the general ability to close holes in a surface and more so-
phisticated approaches that extrapolate the progression of missing geometry [SDK09, SACO04].

22 CHAPTER 2. PROBLEM ANALYSIS

2.2.4 Noise
When reconstructing a real world object, P is the result of a physical measuring process. It is
therefore bound to the precision and technical imperfections of the used scanning device. Noisy
data points are displaced from Sphy and thus reduce accuracy. Noise results from several factors
such as temperature, surface material, and measurement distance. Thus, point clouds usually do
not have a unique noise pattern. This makes it difficult to compensate noise related distortions
without causing the loss of surface detail.
Evaluating a surface fitting result by taking the distances of the points in P to S hardly makes
sense in the presence of noise. If a reconstructed surface S mimics given noise, the supposed
improved fitting that represents Sphy is actually less accurate.
Although ideal noise filters would depend on the local noise patterns, most noise removing
techniques assume a constant noise pattern and a constant noise distribution. A common noise
removal technique is to move a new set of points into the median of local point subsets of the
initial points. This smoothes the entire point distribution, but thereby also generally reduces
geometrical detail [LCOLTE07]. This approach has been improved by making the smoothing
process dependent on local sample distributions [HLZ+09].
Also, the surface of a noise resistant reconstruction process can be used to create a resampling
[ABCO+01]. In [JBS+06], P is seen as a probability distribution for which in a resampling the
most likely sample positions are estimated by using Bayesian statistics.

2.2.5 Outliers
While noise only represents a distortion of the sampling, outliers represent false information
about Sphy. The reason why a sample is being seen as false can vary and thus also the meaning
of the term “outlier”.
Since the laser of a laser scanner is not infinitely thin, the edge of a surface and the surface
behind it can both be hit partially by the laser. The measuring principle then creates a sample
between both surfaces that represents neither of them. Also, the laser might hit a dust grain or an
insect flying through the scene while scanning.
Outliers are commonly removed by statistical analysis of the sample distribution. In [RMB+08],
outliers are eliminated by calculating the mean distance of a sample to its k nearest neighbors.
Based on this information, a mean distribution for the whole point cloud is computed. The mean
and standard deviation of this distribution are then used to identify and remove outliers.
In addition, undesired objects such as cars, people, or technical equipment captured in a scanned
scene, also referred to as “ghost geometry”, can be classified as outliers. Such structures consist
of sparse but correctly registered surface samples, which are afterwards defined as false samples.
The differentiation between a desired low sample surface and an undesired geometry of this kind
is very hard. To deal with this type of outlier an algorithm needs to be adjustable to account for
individually desired behavior.

2.2.6 Unrecognizable Surface Structures
Sparse sampled geometry might be entirely unrecognizable when investigating neighboring
points in P . This often occurs when scanning thin and fragile structures such as cables, wires
and sheet metals, sharp features, and vegetation. Scanning these areas with special attention
is often impractical when scanning complex and large scenes. To reconstruct these structures
correctly, normally requires a higher level of point cloud interpretation, often implemented in a
pre-process.

2.3. OUTPUT – SURFACE MODEL 23

Figure 2.4: Cross-sections: A mesh (left) an implicit surface (middle), and a parametric surface (right).

Pre-processing may include the recognition of certain structures within a point cloud which a
reconstruction process might not be able to handle, such as detecting sharp features [PLL12,
DHOS07, JBS+06, FCOS05, XMQ04].
In [HLZ+09], the sampling in areas of thin surface areas is supplemented by adding additional
samples. But also more complex elements can be recognized in order to be specially treated.
This includes vegetation [LYO+10] or elements of special interest such as stairs, windows and
rooftops [SWWK08]. Model based reconstruction (see section 2.4.4) creates entire surfaces only
of recognized surface elements.

2.2.7 Mutually Dependent Ambiguities
In the sections above, different point base problems were discussed. When presenting the
performance of a pre-process or an algorithm for these problems, the focus is usually on one
problem at a time. Some of the ambiguities of point based reconstruction, however, arise from
their combined occurrence, which is common in a realistic scanning scenario.
The recognition process of sharp features becomes increasingly hard if P has been smoothed
by noise filtering. The deletion of outliers and the reconstruction of sparsely sampled surface
areas are in direct conflict. Some sample pre-processes such as noise filters, resampling, up-
and down-sampling already involve a surface reconstruction method. This often makes them
vulnerable to the very same problems they are meant to cure. Since many problems within P
are mutually dependent, it is very hard to actually increase the quality of the input data without
compromising its content.

2.3 Output – Surface Model
The result of a surface reconstruction process is a digital surface model S . The quality criteria
S needs to satisfy depend on the application case. For most practical applications S is an
orientable 2-manifold with or without boundaries. Most fundamental for S is the chosen surface
type, which generally defines how a surface is digitally represented. Surface properties such as
its topology, orientation, and closeness depend on the operations performed to model it. In the
following, these concepts and their effects on the reconstruction process are presented.

2.3.1 Surface Types
The three most common surface types in practical applications are: polygon meshes, implicit
surfaces, and parametric surfaces (see Fig. 2.4).

24 CHAPTER 2. PROBLEM ANALYSIS

2.3.1.1 Mesh

A polygon mesh is a piecewise linear surface, since the surface is composed of 2D polygons,
which are planes that are circumscribed by a cycle of straight edges. The connection points
between such edges are termed “vertices”. Several polygons are connected at their edges and
vertices to form a network of interconnected facets. Edges belong to two polygons inside the
surface area or to one polygon at a surface boundary. The most common base polygons are
triangles, leading to triangular meshes, and quads leading to quadrilateral meshes.
Triangular meshes are easy to maintain while editing and processing. Quadrilateral meshes are
more intuitive in modeling and have the advantage of being more suitable for parameterization.
The latter can be exploited in texturing and when fitting splines [BLP+12]. If a surface has a lot
of plane areas, a mesh allowing different polygons might be more efficient in terms of memory
consumption.
Mesh Optimization: There are different mesh aspects for optimization. A mesh can be
smoothed [Tau95] to improve the representation of curved surface areas or to eliminate rough
surface areas caused by noise in a reconstruction. It can be optimized to use up as little memory
as possible, while at the same time compromising as little accuracy as possible. This optimization
leads to lower triangle resolutions in flat surface areas compared to curved ones. This process is
often associated with the term “mesh optimization” [HDD+93].
Remeshing is an optimization that aims to create a homogeneous vertex distribution over the
surface area [YLL+09, SLS+06]. This leads to equilateral triangles, since their sides’ equal
lengths allow for the vertices to be placed in equally distant positions. The closeness of a triangle
to be equilateral is often referred to as the triangle quality. The triangle quality of a mesh is
important for many subsequent processes that rely on uniform vertex distributions and uniformly
divided surface spaces. The different optimizations can also be combined [LTJW07].

2.3.1.2 Implicit Surface

An implicit surface is defined as a function that returns a value for any spatial position p ∈ R3. It
returns zero for positions on the surface, values smaller than zero for positions inside and values
greater than zero for positions outside of the surface:

F(p) =

< 0 for p insideS

0 for p ∈S
> 0 for p outsideS

(2.1)

The subspace in R3 for which this function returns zero – also known as the zero-level-set of this
function – is just the surface for which ∀p ∈ R3 : F(p) = 0⇔ p ∈S holds. The function F(p)
can be composed of a multitude of linear functions [HDD+92], quadratic functions [KBH06,
XMQ04, OBA+03], polynomials of any degree [Lev03], varying polynomials [LCOL07], radial
base functions (RBF) [SSZCO10, CBC+01], and can even be a hyperplane in a Hilbert space
[SSB05]. Some of these approaches use a weight function θ to blend locally fitted functions into
one continuous surface.

2.3.1.3 Parametric Surface

A parametric surface is a piecewise smooth surface composed of spline patches. Splines are often
cubical polynomial functions determined by a fixed number of control points. Spline patches are
conceptualized to create smooth transitions when joined. In contrast to an implicit surface, spline
patches have a parameterization and positions on the surface can therefore be accessed explicitly.

2.3. OUTPUT – SURFACE MODEL 25

Common splines are Bezier-splines and B-splines [PBP02]. B-Splines have been extended to
non-uniform rational B-splines (NURBS) [PT97] which are widely established in CAD and
CAM. Building complex geometries of NURBS involves composing it by putting several non-
joining pieces together. Subdivision surfaces [CC78] allow for modeling such surfaces as one
coherent construct. They are based on a control mesh, which can be recursively subdivided
to accomplish the desired degree of smoothness. To combine the advantages of NURBS and
subdivision surfaces T-Splines have been proposed [SZBN03]. Parametric surfaces are typically
created in a process subsequent to the reconstruction normally based on a mesh.
Segmentation: When transforming a mesh into a parametric surface, it is not replaced as a
whole, but single parametric surface patches are fitted to resemble only segments of the surface.
Although criteria can differ, surface segments are usually selected to be as low in curvature as
possible and to have an outline of minimum length, while including as much surface area as
possible [AKM+06].

2.3.1.4 Continuity

The surface type of S determines how accurate the progression or continuity of Sphy can be
expressed when represented with S . Thus, the surface type determines the potential ability of a
reconstruction algorithm to fulfill the surface fitting aspect of the surface reconstruction task.

2.3.1.4.1 Curvature If the progression of a surface is not linear but expresses the character-
istics of a quadric or a function of higher degree, this surface area exposes curvature. Meshes
are theoretically incapable of expressing curved surface areas, since they are composed of flat
shapes. However, by increasing the polygon resolution in curved areas the level of inaccuracy
can be minimized. With a higher resolution the model requires more memory and is less suitable
for analysis, editing, and modeling processes, since more elements have to be processed. It also
creates a memory consumption asymmetry between flat and curved areas.
Most base functions for implicit surfaces exceed linear functions, thus smooth areas can be
represented adequately. For many use cases, however, an explicit representation is required,
which makes the extraction of an isosurface necessary (see section 2.3.1.5). This transforms the
implicit surfaces into a mesh exposing known problems and additionally might cause surface
defects.
Parametric surfaces are also able to represent smooth surface areas and also occasionally need to
be transformed into a mesh. For the parametric surface, however, the transition is well defined
and can easily be adjusted. Also, the parametric surface is never actually exchanged for a mesh,
but only temporarily represented as one. Therefore, parametric surfaces are extensively used
when constructing and editing 3D models.

2.3.1.4.2 Sharp Features Technical structures often expose sharp features – tangential dis-
continuities – such as corners and creases which are crucial to represent the characteristics of
an object correctly. At a tangential discontinuity the progression of a surface is not uniquely
defined. Although anomalies such as infinite sharpness are not actually real world phenomena,
sharp features have to be specially represented in surface modeling.
Since the transition of two polygons in a mesh is already expressed by a sharp feature, they
can naturally be modeled. Some surface processing operations, however, need an explicit
representation. Since all polygon transitions are expressed as sharp features, actual sharp features
need to be identified first [HG01]. Implicit surfaces are normally not able to model sharp
features. Here, sharp features are recognized in advance (see section 2.2.6 on recognizing surface
structures) and the reconstruction is performed separately. Since parametric surfaces are already

26 CHAPTER 2. PROBLEM ANALYSIS

fused together from surface patches, most models are able to express non-smooth transitions
between those patches.

2.3.1.4.3 Boundaries An open surface exposes boundaries. Boundaries represent the ending
of the modeling of a surface. Boundaries can be created manually when cutting off surface
areas in an editing process or automatically when reconstructing areas which were deliberately
excluded from a scan leading to desired holes. In a mesh, it is possible to model boundaries
if the edges of a polygon are allowed to be connected to one polygon only. These edges then
represent boundaries. If parametric surface patches are allowed to remain unconnected, these
open ends represent boundaries. Theoretically, an implicit surface cannot represent a boundary,
since its surface definition results from spatial positions being either inside or outside an object,
thus excluding open objects. With some distance threshold, however, open surfaces can be
represented nevertheless [HDD+92, CBC+01].

2.3.1.4.4 Self-Intersections The self-intersection of a surface, such as in the Klein bottle, is
a progression which is normally not desired. For a common reconstruction case S should be a
2-manifold and for open surfaces a 2-manifold with boundaries. Unfortunately, all presented
surface types can potentially expose self-intersections. Therefore, self-intersections have to be
actively avoided in the reconstruction process.
For a mesh there are two ways to express self-intersections, the explicit way where an edge is
actually connected to three or more facets, which can easily be avoided by not allowing such
constructs in the first place. The second way are polygons that spatially intersect one another at
some arbitrary position.

2.3.1.5 Conversion

The most common transformation is the extraction of an isosurface from an implicit surface.
This is typically done with the marching cubes approach [LC87] mostly for visualization and
evaluation purposes. The approach creates a uniform voxel grid around the surface. Afterwards,
the surface is composed of triangles derived from cubic corners being either inside or outside the
object. An extensive overview of marching cubes based polygonalization procedures is given in
[NY06]. Vice versa, a mesh can be transformed into an implicit surface, for instance, by a moving
least squares (MLS) fitting [SOS05]. Meshes are used as a basis to create a simplified control
mesh for a parametric B-spline surface [LHL+12, EH96] or subdivision surface [HDD+94].

2.3.2 Topology
A sphere and a cube have different shapes, but can match one another when deformed – they
are homeomorphic to each other. A torus, however, cannot be deformed in one of the previous
objects, since it has a hole in the middle. Its transformation into a shape such as a sphere would
involve cutting the surface, which is a topological change.
Two surfaces are homeomorphic to each other if they are topologically isomorphic, meaning that
every point on one surface needs to have a unique equivalent on the other surface and vice versa,
while neighbor relations for such point equivalents remain. Finding the correct homeomorphism
of an object is very important in reconstruction, since a correct topology is assumed in subsequent
surface processing.
In the context of mesh processing the term “topology” – conceiving the mesh as a graph – can
also refer to a discrete topology. This discrete topology involves a finite number of positions

2.3. OUTPUT – SURFACE MODEL 27

(vertices) and a finite number of atomic neighborhood relations (edges). To avoid confusion, this
type of topology is always referred to as the connectivity of a mesh.
Unconnected Surfaces: Some reconstruction approaches only create S as one single connected
surface [SLS+06, DG03, Boi84]. With such an approach a point cloud P that contains several
unconnected point subsets cannot be reconstructed correctly. This problem is often connected to
the concept of having only one coherent inside space within an object (see section 2.3.4 on solid
objects). To nevertheless apply these algorithms, point clouds must be separated.

2.3.3 Surface Orientation
In most computer graphics applications, surfaces are oriented in order to use texturing and
efficient rendering techniques. To be orientable a surface needs to have a uniquely defined inside
and outside at any surface position. This is also true for open surfaces with boundaries. An
example for a non-orientable surface is a Möbius strip, which exposes only one side and therefore
prohibits a unique definition of both inside and outside. There are three ways to establish an
orientation within a reconstruction process.
Non-Oriented Surface: A reconstruction can create a non-oriented surface which is then
oriented in a post-processing step. For closed surfaces (see section 2.3.4) this is trivial,
since inside and outside are clearly distinguished. For open surfaces, however, an orienta-
tion propagation through the finished surface is a very complex and often ambiguous problem
[DRADLN10, CLK09, HF08].
Initial Orientation Estimate: An initial orientation can be used as a basis to estimate the
orientation of a newly created surface in a reconstruction process. In a region growing approach,
the orientation of the first triangle determines the orientation of new triangles connected to the first
[GK02, BMR+99] (see section 2.4.1.2). These approaches often fail for locally unrecognizable
point constellations.
An initially oriented surface can also be adapted in a deformation approach [SLS+06, IJS03b,
HV98] (see section 2.4.2). These techniques might fail if an adaptation process is caught in
a local minimum or one surface area is represented by two different surfaces, which expose
different orientations. This problem is discussed in more detail in section 5.1.1.
Normal Estimation: Many common surface reconstruction algorithms estimate the orientation
in advance of the actual reconstruction process. They do not use unorganized points, but
data points augmented with normals, which explicitly define the surface orientation [KBH06,
OBA+03, ABCO+01, CBC+01] (see Fig. 2.5).
If range image data is used or a point cloud is derived from a mesh or an implicit surface, normals
are available. Normals can also be derived from certain technical conditions. For example, in
[SSZCO10] the direction to the scanner head from each sample point is utilized.
For unorganized points normals are generally not provided and have to be estimated. Normal
estimation typically consists of two steps: the independent estimation of the normal of each
single sample point, and a consolidation step which unites the independent normals to deliver a
consistent global surface orientation.
A normal estimation process is similar to a surface reconstruction process, since the normal
estimation requires knowledge about the unknown surface Sphy. Therefore, problems such as
noise, outliers, and non-uniform sample densities concern this process equally. Most normal
calculation concepts assume that normal directions can be calculated on a local point level.
This assumption does not hold in cases where noise and insufficiently sampled structures create
ambiguous point constellations. An approach that extends the calculation domain is likely to be
a fully-fledged surface reconstruction approach already.

28 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.5: A sampling of a surface augmented with normals.

Normal Direction: A common normal estimation technique is fitting a plane to the k nearest
neighbors to a sample under investigation [HDD+92]. The normal can be determined via
principal component analysis (PCA). Finding the best fit to a local plane then requires finding
the eigenvector of the lowest eigenvalue of the covariance matrix. An approach that uses filtering
and thinning to improve the quality of this fit is presented in [HLZ+09]. The plane fitting
problem can also be solved by random sample consensus (RANSAC) [RMB+08, FB81] which
is robust against noise. When a Voronoi diagram for P is created, the normal directions can be
associated with the connection vectors from a sample and the Voronoi vertices of its Voronoi
cell farthest away from that sample (poles) [ABK98] or by using the edges of the Voronoi cells
crossing through the samples [CLK09].
Normal Consolidation: To define a continuous, unique orientation, normals have to be consol-
idated. For densely scanned volumetric objects this can be accomplished reliably by defining
the orientation based on the inner and outer poles of a vertex [ABK98]. For non-solid objects
or noisy and non-uniform sampled data the orientation of the estimated normals needs to be
consistently propagated through the point cloud. In [HDD+92], the orientation is propagated
from one initial sample over the edges of the minimal spanning tree of the absolute dot products
of neighboring sample normals. This causes the propagation paths to include the most parallel
normals. In [HLZ+09], the propagation priority especially in areas of thin surfaces has been
improved.

2.3.4 Solid and Non-Solid Objects
An aspect that majorly distinguishes reconstruction algorithms from one another is their ori-
entation toward a surface or a volume. An open surface or a non-solid object has intended
boundaries and therefore does not have a clearly defined inside area, which is typical when
scanned environments or terrains are reconstructed. A closed surface on the other hand is called
“watertight” or “solid”. If such surfaces expose no self-intersections, they define a volume and
can be transformed into a volume oriented representation [TWAD09].
If an object is known to be solid, this property can be exploited within the reconstruction pro-
cess to create a higher quality result [SSZCO10, KBH06, HK06, SLS+06, OBA+03, CBC+01,
CL96]. For such surfaces the normal estimation (see section 2.3.3) process is easier to perform.
Also, the problem of differentiating between desired and undesired boundaries is non-existent,
since holes can simply generally be closed. These algorithms are therefore normally suitable for
hole filling tasks. Many applications that process 3D objects require watertight surfaces.

2.4. FUNCTION – RECONSTRUCTION METHODS 29

Method S
ur

fa
ce

Ty
pe

A
pp

ro
xi

m
at

io
n

/
In

te
rp

ol
at

io
n

Lo
ca

l/
G

lo
ba

l

O
pe

n
S

ur
fa

ce
s

N
ee

ds
N

or
m

al
s

N
oi

se

In
co

m
pl

et
e

D
at

a

S
ha

rp
Fe

at
ur

es

R
un

tim
e

M
em

or
y

Delaunay / Voronoi Mesh I G no no - - - + - - -

Region Growing Mesh I L yes no - - - - ++ +

Graph Guided
Region Growing Mesh I G yes no - - + + -

Warping Mesh A L yes no + + + - ++

Refinement Mesh A L yes no ++ + + - - ++
Balloon Model Mesh A L no no + + + ++ +

Linear Base
Functions Implicit A L yes yes + + - - ++ +

Quadric Base
Functions Implicit A L yes yes ++ + - - + -

Radial Base
Functions Implicit A G yes yes ++ ++ - - - - - -

Model Based Implicit A L yes no + ++ ++ + +

Table 2.1: Comparison of the presented reconstruction categories. Ratings for handling certain problems
or aspects are very weak (- -), weak (-), strong (+), and very strong (++).

2.4 Function – Reconstruction Methods
As diverse as the problem cases concerning surface reconstruction are, so are the suggested
concepts to solve them. It is challenging to find a sensible categorization that overlaps as little as
possible.
Common categorizations are: the way the point data P is accessed, in local subgroups or globally
all points at once; the solidity of the modeled object, being a non-solid open surface or a solid
closed surface defining a volume; the used regression strategy, being either an approximation
or interpolation of P; the boundlessness toward the created topology of S ; and input data
restrictions such as the requirement of estimated normals.
In the following, approaches are categorized by their working principle. A short explanation of
each concept is given, followed by a discussion on what kind of advantages and disadvantages
the corresponding principle has and which improvements have been suggested. In Table 2.1,
a comparison of the concept dependent properties is presented, showing how these concepts
basically perform without additional improvements. If some property can be specified by multiple
values, the most common one is presented.

2.4.1 Interpolation
A mesh created by an interpolation method includes points of P as vertices in the resulting
mesh. Since P is represented in S , those points are considered to exactly match Sphy, which
is a problem if P includes noise and outliers.

2.4.1.1 Delaunay Triangulation and Voronoi Diagrams

A Delaunay triangulation is a triangulation of a set of 2D samples where a circle can be drawn
through the vertices of any triangle and none of the other vertices arise inside of that circle.

30 CHAPTER 2. PROBLEM ANALYSIS

Such a triangulation creates triangles as equilateral as possible while using the input samples. A
Delaunay triangulation can also be accomplished in 3D space. In that case, samples are either
projected onto a local tangent plane for a following 2D triangulation or a tetrahedralization can
be created using the criteria from 2D with a sphere instead of a circle.
Note that in the context of surface reconstruction a Delaunay tetrahedralization is mostly just
called Delaunay triangulation or 3D Delaunay triangulation. With a sufficient sample density,
many of these methods can provide guaranties concerning the watertightness and the resulting
homeomorphism of a surface. A broad survey that also includes the theoretical foundation of
these methods can be found in [CG04].
Boissonnat suggests to carve out an object from a 3D Delaunay triangulation of P [Boi84]. The
outside of the tetrahedralization represents the convex hull of P . Tetrahedrons including the
longest edges on the outside of the tetrahedralization are successively removed until all points of
P are exposed. In his α-shapes approach, Edelsbrunner [EM92] also constructs a 3D Delaunay
triangulation and erases all triangles or edges that do not fit into a sphere of a certain radius α .
The approach is able to handle open surfaces, but it needs a very uniform sample distribution in
order to have some reasonable setting for α . To avoid the latter problem it has been proposed to
use varying α values [PLK05].
Amenta presented the crust [ABE98] algorithm for curve reconstruction of 2D samples and
expanded it to 3D samples [ABK98]. The algorithm creates a 3D Voronoi diagram from P .
From every Voronoi cell of a sample p ∈P those Voronoi vertices are determined that lay
farthest apart from p and expose opposite directions from p to each other. These vertices – called
“poles” – create the estimated normal line when connected to p. A 3D Delaunay triangulation
of P together with all poles is constructed. All triangles that include only points in P are
considered to be part of the surface (see Fig. 2.6). A final filtering process deletes triangles with
normals that differ too much from the estimated normal lines.
Another improvement was the replacement of the Delaunay triangulation by a local search
function which uses the space in between a double cone – called a “co-cone” – with p as its apex
and with the orientation defined by the estimated normal line. The triangulation of p is performed
with all points of the adjacent Voronoi cells that are inside the co-cone space [ACDL00]. The
algorithm guaranties watertight meshes under the condition of densely sampled surfaces and in
the absence of noise. The tight-cocone [DG03] was an additional fixing mechanism for holes in
a co-cone surface that were caused by noise and non-uniform sample density. It was improved,
leading to the robust-cocone which has additional advantages concerning the processing of noise
[DG06].
The power-crust [ACK01] places spheres on every pole (see above) to create the polar balls
to approximate the medial axis transform (MAT) of an object. The polar balls are then used
to create a weighted Voronoi diagram – the power-diagram – which is – similar to the Voronoi
diagram – a polyhedral mesh from which the surface is extracted. The surface is defined by the
sum of the faces located between two cells of the power-diagram of which one belongs to an inner
and the other to an outer pole. The approach is more noise resistant due to its backwards surface
definition over the MAT. The approach also includes a mechanism which handles sharp features.
Mederos shows an improved noise resistance technique [MAVdF05]. As these approaches define
the surface over the approximated MAT, they produce an approximated surface rather than an
interpolated one. Since this approach uses the Voronoi diagram, it is still added into the Voronoi
category, although it is not an actual interpolation method.

2.4. FUNCTION – RECONSTRUCTION METHODS 31

Figure 2.6: Voronoi diagram and Delaunay triangulation of the initial samples and its Voronoi vertices
(top). Different stages of a region growing approach (bottom).

2.4.1.2 Region Growing

Region growing approaches are surface oriented searching strategies that try to locally interpret
P to find Sphy. Since the search strategy is based on a surface and not on a volume represen-
tation, these approaches are capable of reconstructing open surfaces. They start with a simple
boundary mesh such as a single triangle that is fitted to a certain local surface area in P . This
initial surface is incrementally expanded from its boundaries (see Fig. 2.6). Since only the
boundary of a surface has to be represented as data structure such approaches can be designed
to be very time and memory efficient. However, merging of boundaries may create ambiguous
situations and because of the local working principle, these approaches are problematic when
dealing with sharp features, and with noisy and non-uniformly sampled data.
Boissonnat presented an approach [Boi84] where a list of outer triangle edges are expanded by
new triangles. When a new triangle is added to one of the edges in the list, the process aims
to select the yet unconnected sample which creates the triangle with the smallest angle to the
surface it is connected to. Thus, if a new triangle is connected to an edge of the list, the two
resulting triangles connected to the selected edge are as parallel as possible. The new edges
from the new triangle are added to the list. An extension of this approach presents a more
sophisticated method for adding triangles and a mechanism for dealing with non-uniform sample
densities. The idea of varying the number of nearest points that are investigated is presented by
Huang [HM02]. An essentially optimized version of the algorithm that solves local ambiguities
is presented by Gopi [GK02].
Bernardini uses the ρ-ball to determine the surface [BMR+99]. If the surface is densely sampled
and the size ρ of the ball is correctly chosen, the ball is “rolled” over the edges of an initial
triangle and creates new triangles if the ball is “caught” from the point behind that edge. Every
new triangle creates new edges. The algorithm stops if all edges have been tested without creating
a new triangle.

32 CHAPTER 2. PROBLEM ANALYSIS

2.4.1.3 Graph-Guided Region Growing

The following approaches introduce a surface oriented searching strategy, but utilize a global
rather than a local perspective on P by using an additional global graph for reconstruction.
Kuo presents a region growing approach that uses a 3D Delaunay triangulation for its search
base [KY05]. Cohen-Steiner shows an approach that chooses points and edges from a previously
built 3D Delaunay triangulation which avoids singularities in the triangle construction [CSD04].
It includes a mechanism for handling unconnected point subsets and sharp features. Mencl uses
a Euclidian minimal spanning tree (EMST) of the points in P which he extends with additional
edges as a base framework for the construction of triangles [Men01]. Since the approach is
surface rather than volume oriented, it can handle open surfaces, and the EMST based framework
is insensitive to non-uniform sample densities. The approach also includes a mechanism for
handling sharp features.
Chang [CLK09] uses a medial scaffold (MS) which is a one dimensional unique simplification
of the medial axis (MA) of an object. The calculation of the MS is comparable with the creation
of a Voronoi diagram. The approach creates a queue of shock curves which are the edges of
Voronoi cells next to sample points. The approach considers the points to be the result of several
surface deletion operations called “gap transforms”. These gap transforms need to be reversed
in order to reconstruct the surface. The shock curves that run through three points can directly
be associated with a triangle. Shock curves are ordered in a queue to create triangles in flat
and smooth regions first. The evaluation of the order is based on the MS. The triangles are
considered according to the order of the queue. The approach also presents an error recovery
function for ambiguous situations. The algorithm stops if all shock curves have been considered.
The algorithm can handle open meshes, noise, sharp features and can additionally create meshes
that are not 2-manifolds and non-orientable structures. Created open meshes are non-oriented.

2.4.2 Deformation
Most deformation approaches are based on meshes which are “deformed” for creating an
approximation of P . Therefore, these approaches are conceptually able to deal with noise and
non-uniform sample densities, due to their independence of exact sample locations in P (see
Fig. 2.7). Since these approaches often have no mechanism to change the topology of their initial
surface estimate, arbitrary topologies can often not be reconstructed. If a surface is falsely fitted
to P , a false state might be further optimized, but can generally not be left anymore – a local
minimum.

2.4.2.1 Warping

Warping algorithms start with an initial surface estimation which then is improved by deforming
it toward the samples in P . The adaptations only involve geometric properties of the initial
surface estimation and exclude the mesh connectivity. These approaches strongly depend on
their initial positioning of the first surface estimate. The demanded resolution for the surface
needs to be known in advance which is not easy to accomplish in the presence of noise and
complex shaped geometries.
A very early work of this kind is [TV91] where a range image is approximated by deformating
a grid of the same size to match it. Many more advanced approaches of this type are based on
the neural network concept of the self-organizing map (SOM) by Kohonen [Koh82]. In these
approaches [BF02, Yu99, HV98, BH93], an initial mesh with a fixed connectivity – mostly a
regular grid – is iteratively deformed to match P . Single samples are accessed randomly and the
closest vertex to a selected sample and its neighbors are moved toward the sample. This basic

2.4. FUNCTION – RECONSTRUCTION METHODS 33

Figure 2.7: The initial (left), an intermediate (middle), and the final (right) stage of different deformation
strategies, first warping (first row) then refinement (second row) and finally a balloon model (third row).

step is iteratively repeated until some error or time condition is matched (for more detail on this
approach see section 3.1.2).
Since the surface is the result of multiple surface adaptations instead of a representation of exact
samples such approaches are very robust when dealing with noise, non-uniform sample densities,
and outliers. Since only single samples of P are accessed, the number of points |P| which can
be processed is virtually unlimited.
Another class of warping algorithms use physics based models [AS96]. Here, masses are
assigned to every vertex of a quadrilateral mesh and the mesh edges are interpreted as springs.
Every vertex is connected with another spring to its closest point p ∈P . The springs drag
the mesh toward P . This is performed iteratively. The initial mesh is generated by adding P
into a regular voxel grid and using the corners of the outer squares as vertices. This allows for
reconstructing surfaces of arbitrary genus. The problem with the initial mesh generation is that a
uniform sample density is essential for this approach and that it is only practical in the case of
solid objects.
In [EBV05], P is also added into a regular voxel grid, but the empty voxels are also kept,
building a bounding box. The algorithm then determines the biggest areas of aligned voxels on
each of the six sides of the bounding box. At the initial stage all voxels at every side are aligned.
Empty voxels of these aligned voxels, that are not surrounded by voxels which contain points, are
continuously removed. The process is repeated with the newly created aligned voxel areas until
no voxel can be removed anymore. Intrusions of the surface are avoided through a backtracking
mechanism. Generally speaking the process shrinks a discrete surface onto the object surface

34 CHAPTER 2. PROBLEM ANALYSIS

and can therefore also be seen as warping algorithm. After that the discrete surface is obtained
and an implicit surface is created based on it.
Zhao’s method [ZOF01] also includes shrinking a voxel grid to the volume of the actual object.
The voxel grid is then used to build an initial surface that is applied as a flexible membrane to P
and fitted by using partial differential equations. Again, the result is an implicit surface.

2.4.2.2 Refinement

A refinement approach can basically be seen as a warping approach (see previous section) that
is enhanced by a mechanism which adapts the surface resolution if an area in P cannot be
represented accurately. Such algorithms usually start with a low resolution surface. The final
mesh is the result of a vast number of gradual refinements toward the sample distribution, thus
the result depends very little on the mesh initialization. The process shapes – as in warping –
and refines the mesh to create S . Here, any mesh stage within the refinement process represents
a valid solution S for the reconstruction of Sphy.
[VT92] presents a refinement process working on a springs and masses model (see section above)
that deforms a sphere-shape. The mesh is initialized as an icosahedron. If the spring model
reaches a force equilibrium, the distance between P and the surface is calculated. If the distance
of a triangle exceeds a certain threshold, a subdivision is triggered. This process is repeated until
there is no need for further subdivisions.
An extension of the SOM (see section above) is the growing cell structures (GCS) approach
introduced by Fritzke [Fri93]. When the process adapts mesh vertices, it additionally tracks an
approximation error. The process then adds new vertices in areas of high approximation errors.
Usually the approach is initialized with a simple tetrahedron. A GCS based surface reconstruction
approach [VHK99, IJS03a, IJS03b, AB12c] is very powerful when creating soundly orientated
surfaces since it builds newly created surfaces upon former versions of that surface. This gives a
surface a certain “inertia” when being modified which avoids local failures caused by ambiguous
point constellations (for more detail on this approach see chapter 3).
Since the current mesh can be taken as the result S at any given time, the process can be
stopped and resumed when demanded, creating different resolutions of S . In [VHK99], the
use of GCS for surface reconstruction is introduced. The process has been further improved by
optimizing the produced mesh quality [IJS03a]. The resulting topology of the process is limited
to be homeomorphic to its initial mesh. Cutting and coalescing of the mesh during the iterative
growing process are demanded to match homeomorphisms to arbitrary topologies. In [IJS03b],
the triangle size is suggested as an indicator for a cutting operation and in [AB10a] cutting the
mesh is triggered by high vertex valences. A mechanism to specifically handle sharp features
was suggested in [AB10a]. A disadvantage of the concept is that every vertex in the mesh is
visited and refined over and over again, making it inefficient in runtime.
Growing neural gas (GNG) [Fri95] is another iterative refinement concept that works quite
similarly to GCS, but it builds its refinement on an arbitrary graph instead of an oriented mesh
when it is used for surface reconstruction [HF08, DRADLN10]. The mesh needs to be derived
from that graph at the end of the process, which can be very challenging. Additionally, the surface
is less stable in comparison to mesh based methods, since former surface stages are represented
less distinctly with the arbitrary graph (for more detail on this approach see section 3.3.1).
Hornung [HK06] suggests a voxel based algorithm which additionally uses a recursive refinement
concept. The process initially calculates a low resolution mesh based surface by a voxelization
of the object’s visual hull. Then all points P are added into those voxels that cut that surface.
The voxelisation is then spatially increased to a voxel region which is termed “crust”. An
unsigned distance function is defined by propagating the occupation of the voxels through the

2.4. FUNCTION – RECONSTRUCTION METHODS 35

crust by building averages of the surrounding voxels. The crust is extended to a graph by adding
octahedral subgraphs to any of its voxels. The edges of the graph are weighted according to the
distance function and by determining edges which intersect the current surface. Then a min-cut
[BK04] of this graph is calculated to determine the voxel faces that are used to build a new
surface.
With the new surface the process can be repeated until a predetermined minimal voxel resolution
is reached. The process is very powerful in handling noise and outliers and, since it is bound to
volumetric objects, it is very efficient in closing holes. Similar to the iterative refinement process
from above, the process is very suitable when local point ambiguities have to be solved, since
new surfaces are based on former surface stages. But this stability may also produce problems
if a thin surface region has been recognized incorrectly, since the process also adds inertia to a
falsely recognized surface.

2.4.2.3 Balloon models

Balloon models construct a volumetric object surface by the “inflation” of a balloon inside of
P . The process finishes if the balloon cannot be further expanded. These models are limited to
solid objects and are very capable of dealing with incomplete data. They are also very efficient
compared to other deformation approaches since the adaptation process is limited only to fronts
of the balloon which still expand.
When a mesh is used as surface base [CM95, MBL+91], the process is initialized with a low
resolution sphere-shaped mesh, for example an icosahedron. The initial mesh is placed inside the
object. In order to simulate surface tension and to keep the surface smooth, springs are attached
at the mesh edges. The inflation force depends on the samples lying ahead of a vertex in their
normal direction. The normals can be estimated from the surrounding triangles of a vertex. If
vertices reach their corresponding samples, they are considered anchored and cannot be moved
anymore. If triangles exceed a certain size through the dragging process, they are subdivided.
The process ends when all vertices are anchored. An extension of that model has been presented
in [SLS+06], where the positioning of the vertices is additionally improved by adapting them to
a MLS fit (see section 2.4.3.2). The approach also allows for reconstructing objects of different
topologies by adding a function that can merge fronts of the balloon.

2.4.3 Distance Function
P can be transformed into a discrete distance function by estimating oriented normals Pori
(see section 2.3.3). A normal and its origin point define an oriented plane. If point p ∈ R3 lies
above or beneath the origin point of a plane and relatively close to it, the signed distance to this
plane can be assumed to be the distance of p to Sphy. This defines a signed distance function
F(p) with a limited domain p ∈ DF (see the discrete distance function in Fig. 2.8). If F(p) can
be correctly completed DF = R3 (see Fig. 2.8), its zero-level-set would be the surface under
investigation:

∀p ∈ R3 ∧ F(p) = 0⇔ p ∈Sphy (2.2)

The main concept of the following reconstruction approaches is to complete an incomplete
distance function. The prior estimation of normals is necessary to define the incomplete distance
function which makes the previous normal estimation process a vital step in these approaches.
As the signed distance indicates an inside or outside position, approaches of this kind are volume
oriented. Since the measuring of P is known to be imperfect, the resulting surface S usually
approximates P . S can by constructed as a global function or can be composed of many locally

36 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.8: The principle of a reconstruction approach based on a distance function: The point cloud
augmented with normals (top left), the discrete distance function based on it (top middle), and the
completed distance function which is the result of the process (top right). The distance function can be
composed of linear base functions (bottom left) or of quadric base functions (bottom right).

fitted functions which are blended together by a weight function θ . Approaches of this type
are usually very powerful when processing data including noise, outliers, non-uniform sample
densities, or holes. On the downside they often smooth out sharp features and small details, and
in locally ambiguous point constellations normals might be orientated incorrectly which leads to
models of incorrectly complex topologies.

2.4.3.1 Linear Function Base

Hoppe [HDD+92] completed the distance function with piecewise linear functions. The distance
to S for a point p is the distance to the plane that is defined by the normal of the closest
sample to p in Pori. For closed surfaces this definition is sufficient to define S . However,
existing surface boundaries might be stretched to infinity. For that case the approach includes
a distance threshold that depends on the assumed sample density and noise level. Note that
Hoppe’s approach also includes one of the most common normal estimation approaches (see
section 2.3.3). The advantage of this approach is the simple calculation of F(p), which makes
the approach extremely runtime efficient.

2.4.3.2 Moving Least Squares

The moving least squares (MLS) approach, introduced by Backus and Gilbert [BG67], can
be used for surface reconstruction in different ways [LS81]. Levin showed the infinite dif-
ferentiability of a MLS surface [Lev98]. Here, generally polynomials are fitted to have the
weighted-least-square distance to the surrounding points of a local center point. The farther
away a point is from that center point, the less it “weighs” for the local polynomial fit. This is
expressed by a non-negative weight function θ that, depending on the distance d ∈ R, returns a

2.4. FUNCTION – RECONSTRUCTION METHODS 37

weight w∈R. θ also blends the polynomials together smoothly. Many different weight functions
have been suggested. The most prominent ones are the Gaussian and the Wendland function.
If θ decreases to zero slowly, the surface becomes very smooth, but many points have to be
considered in the fitting process, making it expensive in runtime. If θ decreases fast, S gets
closer to an interpolation. Since all points in Pori are used as centers, the weighted-least-square
fit “moves” over the surface. If all polynomials have been fitted, the surface is defined as the
weighted sum of them.
A surface definition based on this concept was presented and further specified by Alexa and
Levin [Lev03, ABCO+01]. Levin presented a general framework for a mesh independent surface
representation in arbitrary dimensional space based on the MLS concept. He suggested using
a double least-square approach and a Gaussian function for θ . In a first step, local reference
domains are defined. In 3D those domains are planes, and their orientation can be taken
from Pori, but for the origin (center point) of these planes the first least-square fit must be
accomplished. The sample to which a normal belongs is moved alongside the normal line until
the weighted-least-square distance to its surrounding points is minimal. This guarantees that – in
the case of noise and outliers – the center point is close to the assumed surface to have a surface
centered weight in the next step.
Then a polynomial is fitted in this local coordinate system to have the weighted-least-square dis-
tance to the surrounding points. Afterwards, the center points are projected onto the polynomial
and define a new set of points. This new set of points represents S by performing the same
calculation again without the last projection step. Usually S can be accurately represented with
a fraction of the initial samples in P .
Alexa implemented such an approach by using quadric polynomials. The approach can handle
noisy data sets and also incomplete data to a certain degree. It reduces the sample density by the
removal of redundant samples and adds points at surface locations of low sample density.
MLS surface is used in many additinal computer graphics applications, such as point-rendering
[ABCO+01, AK04, KB04] and model animation [MKN+04]. To model sharp features they have
to be recognized initially [FCOS05] or the polynomials have to vary depending on the locally
approximated data [LCOL07].

2.4.3.3 Multi-Level Partition of Unity Implicits

Ohtakes approach [OBA+03] locally fits quadric functions into Pori which are then blended
together with a weight function. The core asset of this approach is domain decomposition.
An octree-based subdivision is applied which subdivides spherical regions that expose a high
normal variance. The different spatial expansion of the local functions is accounted for in the
weight function. Sharp features are recognized in a clustering process. Since every sphere has
to include a certain minimum of points, incomplete data can also be handled. Because of the
spatial decomposition scheme the process is very fast and suitable for huge point clouds.

2.4.3.4 Poisson Surface Reconstruction

In Kazhdan’s approach, the surface is represented as an indicator function χ which indicates – for
a position p ∈ R3 – whether it is inside or outside the surface [KBH06]. Pori can be interpreted
as a sampling of the gradient ∇χ of that indicator function χ and therefore Pori can define a
continuous vector field

−→V of this gradient. Then χ can be determined as the scalar function that
best matches

−→V , which is an optimization problem that can be formalized as a Poisson equation:

∆χ̃ = ∇ ·−→V (2.3)

38 CHAPTER 2. PROBLEM ANALYSIS

Pori is added into an octree where every node contains a tri-variate B-spline. All splines together
define the function-space of the Poisson equation. The approach finds a global solution, since
F(p) is represented by connected spline patches, but is local in the way that patches are locally
fitted, which makes it runtime efficient. The process is very robust against noise and non-uniform
sample densities, but cannot explicitly represent sharp features.

2.4.3.5 Radial Base Function

To model S as a single global function that is continuous and differentiable is desirable for
object simplicity and further processing. One way of achieving this is to compose an object of
radial base functions (RBF). F(p) is then defined as the sum of the outputs of all RBFs that are
centered at the data-points P or a subset of these points.
Muraki [Mur91] defines the surface as an implicit function composed of Gaussian primitives
[Bli82] and terms it the “Blobby model”. The surface fitting is formulated through an energy
function. The model starts with one primitive and then iteratively splits those primitives that
reduce the energy the most until the energy function reaches below a certain threshold. The
problem with these approaches is the enormous computational effort for fitting the parameter
settings of the base functions.
Carr [CBC+01] suggests the use of poly-harmonic base functions. First, he defines a signed
distance function by introducing off-surface points by displacing points in both directions
of their associated normal in Pori. The RBFs only have to approximately fit this distance
function, also known as the fast multi-pole method, which significantly lowers the computation
effort. Additionally, the number of RBF centers is minimized by only adding new centers if
the desired error margin cannot be reached. This technique is the most robust one when using
incomplete data sets and it is also extremely robust when dealing with noise, which has been
even further enhanced in [CBM+03]. Shalom presents an improvement of the definition of the
distance function that uses visibility cones that improve the hole filling ability of the approach
[SSZCO10].

2.4.3.6 Support Vector Machines

Support vector machines (SVM) are an algorithmic concept originating from the area of machine
learning. SVMs can be used for classification or regression analysis. Their basic concept for
classification is to separate point groups by projecting them into a higher – or even infinite –
dimensional space where they can be separated via a hyperplane.
In the reconstruction algorithm of Steinke [SSB05], the point groups are created by displacing
every sample in Pori along and against the normal direction, creating an inside and an outside
point group. These points are then projected into a Hilbert space where a hyperplane is calculated
with the so called “kernel-trick” to separate them. The hyperplane represents the implicit surface.
Since the hyperplane performs a linear separation of inside and outside space, the resulting
implicit function is very efficient. Due to its machine learning background the SVM concept is
very powerful when handling noise and outliers. The authors noted that the concept should be
able to basically map any demanded function type that a surface could theoretically be composed
of.

2.4.4 Model Based
Model based reconstruction approaches recognize and fit entire surface components into P . S
is then composed from these surface components (see Fig. 2.9). This means that sharp features
can directly be recognized as such. Incomplete surface areas can be fixed if their surrounding is

2.5. CONCLUSION 39

Figure 2.9: A surface composed of predetermined model elements, a semicircle and a line segment.

set into a bigger context of components that might have been recognized already. Since complete
surface components are fitted, the resulting surface is robust concerning noise and outliers. These
approaches are often used for creating models for CAD applications, since composing the model
of primitives can achieve very compact surface representations. The problem of these approaches
is to define the recognizable surface components while limiting the surface progression flexibility
as little as possible. Since the surface components are predetermined specific surface details are
often lost.
Buildings and indoor areas expose many plane areas which, if they can be modeled as such, lead
to very space-efficient scenes [Rot03, BZ00]. In Gal’s reconstruction approach [GSH+07], an
implicit surface is defined by a composition of a-priori defined components that are least-square
fitted into P . In Schnabel’s work [SDK09], a set of primitive shapes are recognized in a point
cloud to reconstruct high quality models from incomplete data sets. In Pauly’s work [PMW+08],
repetition patterns in the point cloud can be recognized and are used to complete even areas that
are missing entirely in the data.

2.5 Conclusion
This chapter presented a detailed problem analysis of the unorganized points surface reconstruc-
tion task. The problem was first defined and then reduced to the essential problem of finding 2D
surface indications in a point cloud of 3D samples.
Challenges in the input data, such as noise, non-uniform sample densities, and outliers are
often created in the scanning process itself. Since the presented solutions are often measured in
different metrics, it is hard to compare them. Also, many problems are addressed separately, but
rarely in combination, like they actually occur in real world data. Since some of the ambiguities
in the point data arise from mutually dependent aspects, presented results often do not apply to
real world data. Artificially created noise is another specific problem since in real world data
noise levels often vary in intensity and type. Calculating the average distance of S to P as an
accuracy measurement is only reasonable if P does not include noise.
The resulting surface model S can be represented in different surface types, such as a polygon
mesh, an implicit surface, and a parametric surface, which determine the continuity properties of
the model. Surface properties such as topology, orientation, and watertightness depend very much
on the reconstruction process applied. To precisely determine the capabilities of an approach
can be very challenging, since most involve many parameters. It is hard to tell how much “fine
tuning” went into a particular presented reconstruction result.
An overview of common surface reconstruction methods was presented. The results of the
SVM based reconstruction approach were quite impressive, since the process creates a global
solution and could basically map any demanded function type. Model based approaches with

40 CHAPTER 2. PROBLEM ANALYSIS

their abilities in hole filling and regaining information of completely missing surface regions
appeared very promising. It is the only approach that naturally integrates sharp feature handling.

Chapter 3

Growing Cell Structures

In this chapter, the different development stages of the growing cell structures (GCS) algorithm
toward a surface reconstruction approach are presented. The versatility of the approach is
demonstrated by showing novel additional uses of the algorithm concept. The GCS algorithm is
additionally distinguished from the GNG algorithm and the effects of different parameter settings
are tested for both algorithms.

3.1 Evolution of Growing Cell Structures
GCS as a surface reconstruction approach is presented in a successive algorithm buildup including
prior algorithm stages and algorithm extensions. All algorithm stages are presented in a fixed
pattern. First, a short outline of an algorithm is given. This is followed by an introduction in
which problem aspects are discussed that led to the novel algorithm. Then the approach to solve
the problem is presented, first by an illustration highlighting its important features, then in a
schematic presentation of its instructions (see Alg. 1 for an example). The algorithm features
and instructions are then explained in detail.
This detailed algorithm presentation allows certain algorithm properties to be specifically distin-
guished and localized. Understanding the origin of such properties enables the required changes
for the upcoming algorithm improvements in the following chapters to be identified.

3.1.1 k-Means Clustering
The k-means clustering approach [Mac67] (see Fig. 3.1 and Alg. 2) is a clustering algorithm
based on hard competitive learning. It places a predefined number of unconnected reference
vectors into a cloud of input points. The positioned reference vectors are used for clustering and
vector quantization.
Although the term “vertex” is typically used to describe constellations of interconnected vectors,
in this section, the not interconnected reference vectors are referred to as vertices to be consistent
with the upcoming sections.

3.1.1.1 Introduction

When clustering measured input data, processes need to deal with noise and outliers and large
amounts of input data. These are also common problems in surface reconstruction. In order to
represent the input data P robustly in the presence of noisy or misplaced samples, a process
needs to generalize the data in P . To deal with large amounts of input data, operations that load
the input data as a whole need to be avoided.

41

42 CHAPTER 3. GROWING CELL STRUCTURES

3.1.1.2 Approach

When the algorithm is initialized, it needs an initial number of vertices. The Voronoi regions
of these vertices represent clusters after the algorithm finishes (see (c) in Fig. 3.1). The initial
positioning of the vertices is set by randomly drawn positions from P (see (a) in Fig. 3.1 and
line 1 and 2 in Alg. 2).

Figure 3.1: k-means clustering: (a) the initial placement of the vertices; (b) the basic adaptation process
toward the sample distribution; (c) an illustration of the final point cloud clustering.

Algorithm 2 k-Means Clustering

Initialization

1: Select an initial number of vertices
2: Initialize the positions of those vertices by random positions drawn from P

3: repeat

Basic Step

4: Select random sample px of P
5: Find the winning vertex vx that exposes the smallest Euclidian distance to px
6: Move vx as much toward px as determined by the learning rate: ∆vx = lr(px−vx)
7: Decrease the learning rate: ∆lr =− f (t)
8: Increment the iteration counter: ∆t = 1
9: until No further learning takes place: lr = 0

Then the main loop of the algorithm is started, which iteratively repeats the basic step (see
(b) in Fig. 3.1). The basic step starts by only loading one random sample px from P (see line 4
in Alg. 2). At any given time during the process only one point of P is loaded.
Find Closest Vertex: The vertex vx that exposes the smallest Euclidian distance to px is found
(see line 5 in Alg. 2). vx is also referred to as the “winner”, since it won the competition for
the signal px. The search process for the winner is repeated many times in the algorithm and
therefore needs to be executed as efficiently as possible. To avoid calculating the distance of
a sample to all existent vertices, an additional geometric data structure, such as an octree, is
needed. An octree divides space by starting with one cube – including all vertices – which is
then subdivided in eight sub-cubes. This subdivision is recursively repeated. When searching for
a closest vertex, only a logarithmically small fragment of search space needs to be visited.
Adapt Vertex Position: The algorithm aims to place the vertices to be a generalization of the
data in P . To achieve that, vertex positions are adapted to represent all samples for which they

3.1. EVOLUTION OF GROWING CELL STRUCTURES 43

won. To represent a sample px in a vertex vx, the vertex is moved toward the sample position.
Since previous sample positions already represented in vx should not be lost, its position is only
changed by a fraction. The size of this fraction is determined by the learning rate lr. The vector
from vx to px defines the movement from vx toward px, which is scaled by the learning rate and
added to position vx (see line 6 in Alg. 2). On the one hand the learning rate determines how
strong new samples are “learned” by moving vx, on the other hand it also determines how many
positions of older samples are preserved or memorized. After a vertex has been adapted many
times to represent the positions of its surrounding samples, it is positioned in the “means” of
these samples.
The learning rate in the k-means clustering approach is constantly decreased by a function f (t)
(see line 7 in Alg. 2) until no further learning takes place (see line 9 in Alg. 2). t is represented
as a simple loop counter (see line 8 in Alg. 2) f (t) can be implemented in different ways, such
as a constantly, linearly, or exponentially progressing function.

3.1.2 Self-Organizing Map
The self-organizing map (SOM) [Koh82] (see Fig. 3.2 and Alg. 3) is a soft competitive learning
approach. Where as in hard competitive learning only one vertex is adapted (winner-take-
all) within the SOM process additionally neighboring vertices are adapted (winner-take-most).
Neighbor relations are established by connecting vertices through edges. Mostly vertices and
edges are arranged as a rectangular shaped 2D grid. With the vertices being part of a rectangular
surface, the adaptation process can recognize underlying topologies in P . This can be used for
data visualization, pattern recognition, dimensionality reduction, and regression analysis.

3.1.2.1 Introduction

When recognized, the underlying topology in P can be used to visualize, process, and identify
additional information about the subspace the samples originate from. A vertex adaptation
process guided by an underlying topology can also add stability to the vertex distribution. This
creates a smoother vertex distribution, provided that the applied topology matches the one
underlying P . To establish a topology, it first needs to be created and secondly the adaptation
process needs to take it into account when adapting vertex positions.

3.1.2.2 Approach

The final topology of the SOM is created immediately at initialization. The initially chosen
vertices are typically connected like a rectangular 2D grid (see line 2 in Alg. 3). This initially
chosen topology remains unchanged throughout the process. The 2D grid is regular and consists
of triangles or quads, making the surface type of the model S a mesh M .

Neighbor Position Adaption: When the vertices in M are initialized, their positioning is
randomized creating a chaotic situation in M (see (a) in Fig. 3.2). To finally establish a
consistently spread surface (see (c) in Fig. 3.2), the movements of vertices need to depend
on their connectivity. This dependence is expressed in the neighbor adaptation process (see
(b) in Fig. 3.2 and line 8 in Alg. 3). When a winning vertex vx is moved, all its adjacent –
connected with an edge to vx – neighbors Nx are moved as well. This decreases the created
surface tension caused by moving vx (see line 7 in Alg. 3). This additional movement implicitly
adds elasticity when adapting the surface. The neighbor movement is done in the same way as
for vx but with a smaller learning rate, resulting in a smaller movement.

44 CHAPTER 3. GROWING CELL STRUCTURES

Figure 3.2: Self-organizing map: (a) the initialization of the 2D grid at randomly chosen sample positions;
(b) the basic adaptation process including the adaptation of neighboring vertices; (c) a finalized grid
positioning.

Algorithm 3 Self-Organizing Map (based on k-means clustering Alg. 2)

Initialization

1: Select an initial number of vertices
2: Connect these vertices to a rectangular 2D grid
3: Initialize the positions of those vertices by random positions drawn from P

4: repeat

Basic Step

5: Select random sample px of P
6: Find the winning vertex vx that exposes the smallest Euclidian distance to px
7: Move vx as much toward px as determined by the learning rate: ∆vx = lr(px−vx)
8: Move all neighbors Nx of vx as much toward px as determined by the neighbor learning rate:

∀vi ∈Nx ∆vi = lrn(px−vi)
9: Decrease the learning rate: ∆lr =− f (t)

10: Increment the iteration counter: ∆t = 1
11: until No further learning takes place: lr = 0

In the numerous use cases of the SOM, different neighbor movements and neighbor relations
above the first neighborhood degree have been suggested to the process. This is due to different
application cases and the – unlike GCS – static connectivity for M in case of the SOM.

3.1.3 Growing Cell Structures
The growing cell structures (GCS) algorithm [Fri93] (see Fig. 3.4 and Alg. 4) is like the SOM a
soft competitive learning approach. While the mesh connectivity in the SOM process remains
unchanged, it is constantly changed in the GCS approach. Using vertex-local signal counters, the
process keeps track of how often a vertex has been winning during the basic step. In areas where
many signals have been counted the mesh is refined by subdivisions, while in areas of low counts
the mesh is simplified by removing subdivisions. The mesh becomes more sophisticated during
the process and can therefore be initialized with a very simple structure only, as illustrated in
Fig. 3.3.
The GCS approach is inspired by “growing” organic tissue and the connected vertices are seen
as a “structure” of “cells”.
The original GCS algorithm has mainly been presented for samples in a 2D space. The GCS
algorithm presented in this section includes some changes to deal with samples in a 3D space and

3.1. EVOLUTION OF GROWING CELL STRUCTURES 45

Figure 3.3: Different successive surface stages in the surface adaptation of the GCS algorithm.

to make it more suitable for surface reconstruction. These developments were mostly presented
in [IJS03a].

3.1.3.1 Introduction

In SOMs, all final vertices are already present at the beginning of the process. The initial
positioning of these vertices is then rearranged to create a result. This result is highly dependent
on its initialization, since the rearrangement is built upon it. The result, however, is not only
dependent on the initial positioning of the vertices, but also on the chosen number of vertices. If
their number is insufficient to approximate the shape of the subspace of interest, a proper result
is unachievable. A static initial connectivity additionally inhibits the adaptation process from
adjusting the mesh resolution to the required spatial distribution.
To remove these weaknesses, the initialization of vertex positions, their number, and their specific
placement in the mesh need to depend on the given sample distribution P .

3.1.3.2 Approach

Initialization: The GCS algorithm starts with a very simple mesh M , such as a tetrahedron (see
(a) in Fig. 3.4 and line 1 in Alg. 4). M is placed in the means of P and scaled accordingly,
meaning its vertices are more or less immersed in P (see line 2 in Alg. 4).

Figure 3.4: Growing cell structures: (a) the process is initialized with a tetrahedron; (b) during basic
adaptation, the process additionally increases signal counters; high signal counts lead to (c) subdivisions
via vertex split operations and low signal counts to (d) edge collapse operations; (e) a finalized mesh
adaptation. Note that in (b) the neighbor movements do not point to the selected sample, since Laplacian
smoothing is applied.

46 CHAPTER 3. GROWING CELL STRUCTURES

Algorithm 4 Growing Cell Structures (based on SOM Alg. 3)

Initialization

1: Select an initial simple mesh M (In 3D, typically a tetrahedron)
2: Place its middle point on the average of P and scale it according to P

3: repeat
4: repeat
5: repeat

Basic Step

6: Select random sample px of P
7: Find the winning vertex vx that exposes the smallest Euclidian distance to px
8: Move vx as much toward px as determined by the learning rate: ∆vx = lr(px−vx)

Move all neighbors Nx of vx as much toward px as determined by the neighbor learning
rate: ∀vi ∈Nx ∆vi = lrn(px−vi)

9: Perform Laplacian smoothing on all neighbors Nx of vx as much as determined by the
neighbor learning rate lrn
Decrease the learning rate: ∆lr =− f (t)

10: Increase signal counter scx of vertex vx by one: ∆scx = 1
11: Decrease signal counters of all other vertices by a fraction: ∀sci(i ∈M) ∆sci =−β · sci
12: Increment the iteration counter: ∆t = 1
13: until The basic step has been performed cadd times: t mod cadd = 0

Vertex Split

14: Select vertex vx with the highest signal counter value: ∀sci(i ∈M)<= scx
15: Select the longest edge of vx and perform a vertex split operation
16: Split scx between vx and the new vertex vnew: scnew = scx/2 ∧ scx = scx/2

17: until The basic step has been performed cdel times: t mod cdel = 0

Edge collapse

18: Select vertex vx with the lowest signal counter value ∀sci(i ∈M)>= scx
19: if Signal counter value scx is too low: scx < minsc then
20: Perform an edge collapse operation on the edge leading to valences closest to six.
21: end if
22: until A certain number of vertices is reached: |M |>= n f inal

No further learning takes place lr = 0

Basic Step: The learning rate lr determines how far a vertex moves toward a sample. The
SOM starts with a chaotic mesh, to leave this unordered state a large learning rate is used in
the beginning. In later algorithm stages, vertex positions are assumed to represent surrounding
samples and movements are decreased to preserve this knowledge.
The GCS algorithm uses a constant learning rate, since vertices are always considered to be
roughly at a correct position and only need marginal adaptations. Decreasing vertex movements
in later algorithm stages is implicitly reached by successively increasing the number of vertices.
The subset of samples being closest to a vertex constantly decreases, making farther movements
unlikely over time.
Neighbor Position Adaption: In [IJS03a], the neighbor movement (see (b) in Fig. 3.4 and
line 8 in Alg. 3) has been replaced by Laplacian smoothing [Tau95] (see line 9 in Alg. 4). This
increases the triangle quality, i.e., their similarity to equilateral triangles (see Fig. 3.5). This

3.1. EVOLUTION OF GROWING CELL STRUCTURES 47

Figure 3.5: The GCS process with the Laplacian smoothing (left) and the standard neighbor movement
(right). The former shows more equilateral triangles.

still fulfills the purpose of implementing surface elasticity and also the neighbor learning rate
still determines how far this movement is executed. However, instead of a movement toward a
sample, it now represents the movement that smoothes the surface.
Signal Counters: To refine M , the GCS approach constantly needs to determine the best
position for a subdivision. This position is determined by the highest sample to vertex ratio.
Every vertex carries a signal counter, which counts the times a vertex wins (see (b) in Fig. 3.4
and line 10 in Alg. 4). Counted signals lose significance over time since vertices move and their
subset of closest samples changes. Therefore, signal counters are gradually decreased. For every
winning vertex, all other signal counters are decreased (see line 11 in Alg. 4). For meshes of
small size a constant decreasing factor β is sensible, as suggested in [IJS03a, Fri93].
When reconstructing huge meshes, small decreasing rates are too slow in the beginning and large
rates lead to signal counters converging to zero in later phases of the algorithm. In [IJS03b], a
dynamic β value has been introduced, sensitive to the current mesh size:

β = 1− (γ · |M |)√minsc (3.1)

After performing the basic step as many times as vertices exist in the current mesh |M |, every
vertex is supposed to have won once. The last winning vertex should “survive” all decrements
while other vertices were winning, before reaching the deletion threshold minsc. However, this
assumes that the vertex distribution would perfectly resemble the sample distribution. The
parameter γ determines how many times a vertex is allowed to be missed if |M | samples have
been processed.
Vertex Split: After a constant number of iterations a vertex split operation is performed (see
(c) in Fig. 3.4 and line 13 in Alg. 4). The process also selects the vertex with the highest signal
counter in M as well as the longest edges emerging from that vertex. The edge and its connected
triangles are split and a new vertex is placed in the middle of the edge. As suggested in [IJS03a],
additional edges of the split vertex are connected to the new vertex to get both vertices as close as
possible to a valence of six. The signal counter value is equally spread between the two vertices.
Edge Collapse: After a constant number of iterations the vertex with the lowest signal counter
is selected and its signal counter is tested (see line 19 in Alg. 4). If the signal counter is below
the deletion threshold minsc, it is removed by an edge collapse operation (see (d) in Fig. 3.4 and
line 17 in Alg. 4). The process selects the edge which, if collapsed, leaves behind vertices with
valences as close as possible to six (see [IJS03a]).

48 CHAPTER 3. GROWING CELL STRUCTURES

Tumble-Tree: The basic step involves decreasing all signal counters. The vertex split operation
involves finding the highest and the edge collapse operation involves finding the lowest of all
signal counters. To avoid visiting the signal counters of all vertices for those operations, a
specific binary search tree termed “tumble-tree” [AB10b] is used. It reduces these operations to
logarithmic runtime complexity by using a lazy evaluation concept. This lazy evaluation lies
in the decreasing factor, which is only applied to the top node of the tree. Only when actually
visiting signal counter values in the tree, decreasing factors are applied to the visited signal
counters and their neighboring nodes. With every search path decreasing factors “tumble” down
the tree. The basic tumble-tree is implemented as a red-black tree and since the introduced
multiplications are only performed in proportion to nodes visited in the basic red-black tree
scheme in any case. The complexity properties of the initial tree remain unchanged.
k-d Tree: The most often executed function in the GCS approach is the rearrangement of
vertices in the spatial subdivision data structure. Due to the winner-take-most concept, not only
the winning, but also its neighboring vertices are moved and need to be updated in the spatial
subdivision data structure. Thus, optimization is most valuable here.
To increase the efficiency of this operation a k-d tree is used, which is adapted to the given task.
A k-d tree divides space by a series of planes standing orthogonal to the dimensional axes of a
Cartesian coordinate system. While for an octree the placement of the spatial fragmentation is
predetermined by the initial cube, the k-d tree uses an initialization process to determine the best
placement for the spatial separation planes.
The classic k-d tree repeatedly alternates through the different dimensional axes and places the
planes to split the input samples as equally as possible. Thus, the input data is more evenly
distributed throughout the spatial fragmentation, making fewer fragments necessary and fewer
fragments need to be visited in the search process. This spatial separation is therefore more
efficient than using an octree.
For the GCS approach, however, the classic k-d tree would be less efficient than an octree.
The classic k-d tree is based on the notion that the points searched for are on exactly the same
positions as the input data P . This is not the case for the GCS approach. The points searched for
are the vertices, which only approximately resemble the samples in P . If these vertices move,
as they do during the process, they might pass through a separation plane. If this occurs, a vertex
needs to be repositioned in the k-d tree. If separation planes lie close to each other, even minor
positional changes lead to vertex repositioning, making the data structure inefficient.
When placing the planes for the GCS vertices, the aim to efficiently separate space to minimize
the number of spatial fragments still remains. Additionally, the distance between the input
samples and the separating planes must be maximized. To achieve this, for every new separation
plane the axis is chosen where the sample to sample-median distances are at the maximum. If,
e.g., a long object is fragmented, space might be repeatedly separated on the same axes, until
fragments are separated into cube-like bounding volumes.
Finalization: The GCS algorithm can use an accuracy measurement to stop the refinement
process, such as the average distance of the vertices to the samples. However, this is not
the sample-to-surface distance and its significance might be very low if sample densities vary
throughout P (see chapter 6 for further discussion on this topic). For surface reconstruction most
implementations use the number of vertices in the mesh as an abort criterion (see (e) in Fig. 3.4
and line 22 in Alg. 4).

3.1. EVOLUTION OF GROWING CELL STRUCTURES 49

Figure 3.6: At the mouth of the Dragon (left) a surface area was formed by drawing it from a topologically
incorrect surface area, creating a “pocket” in an early mesh stage. This stage cannot be left anymore
and is further optimized creating a local minimum. The tail of the Dragon (right) cannot be approximated
correctly, since the process was initialized with a tetrahedral (sphere-shaped), which has a different
topology from the Dragon (torus-shaped).

3.1.4 Smart Growing Cells
The smart growing cells (SGC) approach [AB12c] (see Fig. 3.7 and Alg. 5) is a conceptual
extension of GCS. Where in GCS all vertices (cells) behave identically, a smart growing cell
exposes individual behavior to handle certain aspects of interest during the refinement process.
If customized for surface reconstruction, different behavior at surface boundaries, sharp features
and curved surface regions can be implemented. The SGC approach also allows for introducing
behavior to cut and to coalesce surface regions.

3.1.4.1 Introduction

When using the suggested signal counter operation, GCS creates a likelihood distribution. Here,
vertices are evenly distributed over the supposed surface. Solely following this aim, however,
misses some important reconstruction aspects.
At boundaries, vertices need to be placed at the end of a boundary instead of in the means of
their surrounding samples. Sharp features need to be explicitly modeled, since they are otherwise
smoothed out. In areas of curved surfaces, a higher triangle resolution than in plane areas is
required to reach the same approximation quality. When optimizing those triangle resolutions,
the process is more memory efficient and more importantly gets closer to its target Sphy at an
earlier algorithm stage.
An attempt to deal with this problem is presented in [JIS03] where the change in normal directions
of vertices is tracked and used for adding additional vertices in such areas. A disadvantage of
the suggested method is the requirement of an additional vertex adding process and normal
movement counters, creating an additional process within the actual GCS algorithm.
The vertex split and edge collapse operations both preserve the pre-existing surface topology.
The inability of GCS to create surfaces of arbitrary topology is their most significant constraint
for surface reconstruction (see Fig. 3.6). To choose the needed topology in advance, assuming it
is known or could be calculated, would not solve the problem. A more complex initial topology
would make it even more likely for the process to get stuck in a local minimum. Here, a state of
falsely fitted surfaces is further optimized, but cannot be resolved (see Fig. 3.6).
In [IJS03b], the cutting of a surface is triggered by the size of its triangles and the coalescing by
a certain threshold of the Hausdorff distance of two boundaries facing each other. The triangle
sizes that reliably indicate topologically incorrect surfaces take a long time to appear. In the case
of non-uniform sample densities, where triangles naturally are of different sizes, the process is

50 CHAPTER 3. GROWING CELL STRUCTURES

Figure 3.7: Smart growing cells: (a) a supposed sharp feature has been identified and only movements
toward it are accepted; (b) a movement of a boundary vertex in surface direction is rejected while a
movement away from it is accepted; (c) when the signal counter of a vertex is increased the surface
curvature determines the increment; (d) the coalescing process searches for a connection partner vopp to
create new triangles; (e) a deletion vertex is tested for representing a misplaced surface area and cut-out
from the surface entirely.

impractical. Excluding those sample distributions would take away an important advantage of
the GCS approach. Additionally, the cutting and coalescing processes in the suggested form do
not actually integrate into the GCS algorithm. Since especially the coalescing process is costly
in runtime, it is only seldom performed in an independent loop. A solution that would be an
integral component of the refinement process would be more desirable.

3.1.4.2 Approach

Discontinuity Adaption: The standard GCS approach assumes Sphy to be positionally continu-
ous, i.e., any point on Sphy has a uniquely defined neighbor in any direction (2-manifold without
boundaries), and to be tangentially continuous, i.e., any point on Sphy has a uniquely defined
surface progression. To use the same movement operation for all vertices is reasonable under this
latter assumption. However, if Sphy exposes discontinuities, differentiated vertex adaptations
are needed.

Sharp Feature: The standard GCS movement moves vertices in the means of their surrounding
samples, this, however, would smooth-out sharp features. Therefore, a different movement is
applied. First, a winning vertex needs to be identified to expose a sharp feature (see line 7
in Alg. 5).
A vertex is first tested for exposing an above-average curvature (see equation 3.2). If so, the
curvature values around the vertex are search for two values of high curvature, while elsewise

3.1. EVOLUTION OF GROWING CELL STRUCTURES 51

Algorithm 5 Smart Growing Cells (based on GCS Alg. 4)

1: Initialization
2: repeat
3: repeat
4: repeat

Basic Step

5: Select random sample px of P
6: Find the winning vertex vx that exposes the smallest Euclidian distance to px

Discontinuity Adaptation

7: if (vx neither exposes a sharp feature OR is a boundary vertex) OR
(vx exposes sharp feature AND movement is toward sharp feature) OR
(vx is boundary vertex AND boundary is moved forward: (px−vx) ·bnx > 0) then

8: Move vx as much toward px as determined by the learning rate: ∆vx = lr(px−vx)
9: end if

10: Exclude vertices of sharp features and boundaries from Laplacian smoothing

Curvature Adaptation

11: repeat
12: Perform Laplacian smoothing on all neighbors Nx of vx as much as determined by

the neighbor learning rate lrn
13: until Iterations i proportional to roughness: i <= (curvx− curvM)/σcurv

14: Increase signal counter scx according to its curvature: ∆scx = curvx/curvM

15: Decrease signal counters of all other vertices by a fraction: ∀sci(i ∈M) ∆sci =−β · sci

Coalescing

16: if vx is boundary vertex AND correctly oriented partner vopp was found then
17: Perform coalescing operation with vx and vopp
18: end if

19: Increment the iteration counter: ∆t = 1
20: until The basic step has been performed cadd times: t mod cadd = 0

21: Vertex Split

22: until The basic step has been performed cdel times: t mod cdel = 0

Remove
23: Select vertex vx with the lowest signal counter value ∀sci(i ∈M)>= scx
24: if vx meets criteria for misplaced vertex then

Aggressive Cut Out

25: Cut vx out including its surrounding faces and edges
26: Clean M from undesired structures
27: else
28: Edge Collapse

29: end if
30: until A certain number of vertices is reached: |M |>= n f inal

52 CHAPTER 3. GROWING CELL STRUCTURES

exposing average curvature. If all this is the case, a vertex is considered being part of a sharp
feature. Then the normal of the feature is estimated and inverted if the feature is directed inwards.
The movement toward the sample is compared with the feature normal. Only when pointing
to a certain degree in the direction of the normal it is performed and otherwise rejected (see
(a) in Fig. 3.7). Thus, vertices move to the farthest point of a feature instead of the means of the
samples representing it. Since Laplacian smoothing also produces smooth surfaces, such vertices
are excluded from the smoothing process (see line 10 in Alg. 5).
Boundary: Similar to sharp features, boundary vertices are also constrained in their movement.
They are recognized by including an edge which is connected to one triangle only (see line 7
in Alg. 5). They are only allowed to move in the direction of the boundary normal bnx (see
(b) in Fig. 3.7). The boundary normal bnx points in the direction where the surface at vx would
proceed if it was not interrupted. It is parallel to the surface and orthogonal to the boundary
tangent when conceiving the boundary as a contour. This constraint makes vertices move to
the end of a surface boundary instead of moving to the means of the samples in that region.
Additionally, it causes open surface regions, created by the surface cutting process (see below),
to close faster. Since boundary vertices have solely neighbors on one side, they would only be
pulled in one direction during the smoothing process. Therefore, they are also excluded from the
Laplacian smoothing (see line 10 in Alg. 5).

Curvature: Curved areas need more triangles to be accurately approximated. To set the triangle
resolution in relation to the approximation accuracy, the surface curvature needs to affect the
subdivision process.
The criterion for placing new vertices is the number of signals for which a vertex has won. To
integrate the surface curvature into this process, signals received by curved vertices are valued
higher when counted. The curvature curvx of a vertex vx is calculated as one minus the average
scalar product of nx and the normals of its surrounding vertices Nx:

curvx = 1− 1
|Nx| ∑

∀ni (i∈Nx)

ni ·nx (3.2)

This curvature curvx is divided by the average curvature curvM and added to the signal counter
(see line 14 in Alg. 5). Thus, signal counters of average vertices still get increments of one,
curved ones get higher increments and flat ones lower ones (see (c) in Fig. 3.7). This leads to
more vertex split operations in areas of high surface curvature.
Since more vertices in the same region lead to fewer sample hits, the Laplacian smoothing
is applied fewer times, reducing the mesh quality in areas of high curvature. With different
operations per vertex the smoothing can be made dependent on the relative curvature of a vertex,
so that in areas of high curvature more smoothing is performed. The global curvature is set in
relation to the local curvature of vx. The number of smoothing processes is set to be the number
of times curvx exceeds the standard deviation σcurv of the average curvature value curvM (see
line 13 in Alg. 5).
Coalescing: While the cutting process (see below) enables the process to cut the mesh, the
coalescing enables it to connect surface regions. If a boundary vertex vx is winning, a potential
partner vopp is searched for within a search radius relative to the length of the surrounding edges
of vx. The surface region of vopp needs to have an orientation like the one of vx. Thus, when
connected, the new surface has a continuous orientation. If vopp meets this criterion, a minimum
of two triangles is built to connect the vertices. The triangles are chosen to expose the best
possible triangle quality (see (d) in Fig. 3.7 and line 17 in Alg. 5).
Remove: The deletion process in the SGC process is more differentiated. If a surface region is
overrepresented by too many vertices, these are removed by an edge collapse operation similar

3.2. ADDITIONAL USAGE 53

to the GCS approach (see line 28 in Alg. 5). An additional effect of the curvature adaptation
process is the deletion of vertices which are geometrically redundant. Flat surface regions do
not need many vertices in order to be represented geometrically correct. With the curvature
adaptation, vertices in those regions have low signal counts, due to their low curvature.
Aggressive Cut Out: Before a vertex is, however, processed in the edge collapse operation it
is tested for being “misplaced” (see line 24 in Alg. 5). A misplaced vertex vx is recognized by
its valence |Nx|. This indicator works since high valences are a result of the misrepresentation
of the underlying sample distribution. Although vertices cannot directly be moved into sample
free spaces, they might be drawn there as neighbors, due to falsely recognized topology. Such
vertices are repeatedly removed, but also quickly replaced by newly drawn vertices. Since no
subdivisions take place there, valences tend to grow in these regions.
If a misplaced vertex is recognized, it is removed including its surrounding edges and triangles
(see (e) in Fig. 3.7 and line 25 in Alg. 5). All vertices involved in the first cutting process need to
be tested for certain unwanted structures. Such structures include unconnected vertices, edges
without triangles connected to them and vertices connected to a multitude of boundaries. The
most important structures, however, are vertices with high valence, which are supposedly also
misplaced and therefore are removed as well. This process is called aggressive cut out (ACO),
since regions of misplaced vertices are not successively cut in the course of many iterations, but
in one “aggressive” attempt.

3.2 Additional Usage
With marginal changes the presented approaches can be used in many different ways in computer
graphics applications.

3.2.1 Resampling
The input data P of a reconstruction process often includes noise and outliers. Many reconstruc-
tion algorithms, however, cannot process such data, making initial noise and outlier removal
necessary. The described k-means clustering approach can be used to create a resampling. The
re-sampled P is represented by the resulting vertex distribution. Since the vertices represent
the means of their surrounding samples, a generalization of the data in P is created. This
generalization avoids noisy or misplaced samples from having too much of an impact on the
resulting resampling. The worse the distortions in P are, the more generalization is required.
More generalization means more samples are represented by fewer vertices, leading to an ad-
ditional down-sampling. This concept has successfully been used in many distortion filters
[LCOLTE07, HLZ+09].

3.2.2 Unwrapping
The SOM approach typically uses a rectangle as it is easy to be parameterized by width and height.
Since the rectangle topology remains unchanged throughout the process, this parameterization
can always be performed. High dimensional input data can be efficiently projected into the 2D
space of the rectangle. In pattern recognition and dimensionality reduction, coherences are easier
to recognize and more efficient to calculate in a space of lower dimension.
The processing strategy of the SOM very closely resamples the unwrapping problem in computer
graphics. Here, a unique projection of the surface of a 3D model S into a 2D rectangular shaped
space is required. The process shows resemblance to “unwrapping” the packaging paper (2D

54 CHAPTER 3. GROWING CELL STRUCTURES

space) of a package (3D model). After this projection is found, the 2D space can be used for
texturing the model.
The SOM basically wraps a surface around a model, which simply is an inverse unwrapping
process. Therefore, its model creation inherently includes a surface unwrapping. For an existing
model, an unwrapping is created by sampling the surface of that model first, and then, by using
these samples to create a wrapping of this model with the SOM. For simple models the SOM
can be used as an efficient unwrapping algorithm. However, for complex shaped models it is
unlikely to find a proper unwrapping due to self-intersections and misplaced surface regions.

3.2.3 Remeshing
Many of the GCS changes presented in [IJS03a], such as the Laplacian smoothing and valence
optimization in the vertex split and edge collapse operations lead to higher triangle quality. This
makes the algorithm suitable to be used as a remeshing algorithm. A sampling of a given input
mesh Minput can be used as P . Instead of a tetrahedron Minput is used as the initial mesh. cadd
and cdel are both set to the same value, e.g. 100, so the mesh would neither grow nor shrink. The
algorithm then runs until every vertex is likely to have been moved a certain number of times,
e.g. t is equal to five times the number of vertices in Minput (see Fig. 3.8).

Figure 3.8: A mesh with low triangle quality created with a marching cubes algorithm from a MLS surface
(left); Mesh after treating it with the GCS remeshing algorithm (right).

3.2.4 Level of Detail
If the GCS approach is used for reconstruction, M is steadily growing. In the previous described
remeshing algorithm, the size of M stagnates. The GCS algorithm can also be entirely reversed,
making M shrink steadily. The remeshing algorithm from above can be used, but cadd is changed
from 100 to 500 and the abort criterion is modified to stop if the algorithm reaches or gets below
a certain number of vertices. With these simple changes the GCS algorithm is transformed into a
level of detail (LOD) algorithm. Creating differently detailed versions of the same model can,
for instance, be used for normal mapping. Here, a low resolution version of a model is used for
rendering and the geometric detail of its high resolution version is carried in a normal map (see
Fig. 3.9).

3.3. GROWING CELL STRUCTURES VS. GROWING NEURAL GAS 55

Figure 3.9: Visualization of the normal mapping process with a mesh (40K triangles) produced with the
GCS LOD algorithm, modeling the Stanford Dragon (871K triangles): With (top left) and without (top right)
wire frame; Normal map created from full resolution model shown as color texture (bottom left) and used
as normal map in Phong shading (bottom right).

3.3 Growing Cell Structures vs. Growing Neural Gas
In the following section, the GCS approach is compared with the growing neural gas (GNG)
approach. Both algorithms are applied in clustering, dimensionality reduction, data visualization,
and approximation tasks. The comparison focuses on their usability as surface reconstruction
processes. First, the GNG algorithm is presented. Then the similarities and differences of both
algorithms are investigated, in input data, output model, topological properties, and parallelization
potential.

3.3.1 Growing Neural Gas
The GNG algorithm was, as well as the GCS approach, introduced by Bernd Frizke [Fri95]
and represents another competitive learning strategy. It is also based on the vertex distribution
principle of the k-means clustering approach. The construction of connectivity, however, is
different. GCS refines its mesh connectivity by subdivisions, but has a static topology and

56 CHAPTER 3. GROWING CELL STRUCTURES

Figure 3.10: Growing neural gas: (a) two vertices connected by an edge are initialized on randomly
chosen positions from P; (b) a winning vertex and its neighbors are moved toward a sample and the age
of the edge between the closest vertices to that sample is set to zero; an edge is (c) split by adding a new
vertex in its middle and an edge is (d) removed and additionally a vertex is removed, since it is not longer
connected; (e) a finalized graph. Note that the graph can include arbitrary connections and therefore
does not represent a surface.

represents an extension of the SOM concept. GNG is an extension of Martinetz’s neural gas
(NG) [MS91, MS94]. Here, connections between two vertices are created if they are closest to
a given sample. The topological structures built through these connections are arbitrary. Thus,
the process can create line segments, triangles, and tetrahedra. Although the created graph first
needs to be interpreted to recognize an actual surface, NG approach itself can already be used
for surface reconstruction [MHH08].
Just as for the SOM the number of used vertices is fixed throughout the process for NG. This
creates the same initialization problem as for the SOM. The sufficient number of vertices needs
to be known in advance and the result depends strongly on the initial placement of the vertices.
Fritzke solved the problem with a growing capability of the GNG approach. GNG, like GCS, uses
vertex-local signal counters to determine areas for subdivision. The deletion process, however,
is determined by the “aging” of edges and therefore is independent of signal counts. Since
connectivity is created similarly to NG, the result is an arbitrary graph. GNG has also been used
for surface reconstruction purposes [HF08, DRADLN10, MHH08].
Initialization: GNG is initialized with one edge and two vertices (see (a) in Fig. 3.10 and line 1
in Alg. 6).
Basic Step: The basic step is nearly identical to the GCS approach (see (b) in Fig. 3.10).
However, since the Laplacian smoothing involves triangle normals, which GNG cannot provide,
the process uses the standard neighbor movement (see line 10 in Alg. 6). In addition to the
closest vertex vx of a sample px, the second closest vertex vy is searched for (see line 8 in Alg. 6).
If an edge exy between these vertices does not exist, it is created. In either case, the age of exy
is set to zero. Then the age of all edges surrounding vx excluding exy is increased (see line 15
in Alg. 6).

Edge Split and Removal: Similar to GCS, a new vertex is added after some number of iterations.
The structures in the GNG graph are arbitrary, thus operations involving higher order structures,
such as triangles in the classic vertex split operation, cannot be performed. GNG simply splits
an edge in two and adds a new vertex in the middle (see (c) in Fig. 3.10). For the GNG process

3.3. GROWING CELL STRUCTURES VS. GROWING NEURAL GAS 57

Algorithm 6 Growing Neural Gas (based on GCS Alg. 4)

Initialization

1: Add two vertices to M , which are connected by an edge.
2: Initialize the positions of those vertices by random positions drawn from P

3: repeat
4: repeat
5: repeat

Basic Step

6: Select random sample px of P
7: Find the winning vertex vx that exposes the smallest Euclidian distance to px
8: Find the second closest vertex vy to px
9: Move vx as much toward px as determined by the learning rate: ∆vx = lr(px−vx)

10: Move all neighbors Nx of vx as much toward px as determined by the neighbor learning
rate: ∀vi ∈Nx ∆vi = lrn(px−vi)

11: if vx and vy are not connected by an edge then
12: Connect vx and vy by an edge exy
13: end if
14: Set the age axy of exy to zero
15: Increase the age of all edges surrounding vx but exy: ∀axi(i ∈Nx \vy) ∆axi = 1
16: Increase signal counter scx of vertex vx by one: ∆scx = 1
17: Decrease signal counters of all other vertices by a fraction: ∀sci(i ∈M) ∆sci =−β · sci
18: Increment the iteration counter: ∆t = 1
19: until The basic step has been performed cadd times: t mod cadd = 0

Edge Split

20: Select vertex vx with the highest signal counter value: ∀sci(i ∈M)<= scx
21: Select the longest edge exy of vx and add a new vertex vnew in its middle.
22: Split scx between vx and the new vertex vnew: scnew = scx/2 ∧ scx = scx/2

23: until The basic step has been performed cdel times: t mod cdel = 0

Edge Removal

24: Select the edge exy with the highest age axy: ∀ai j(i, j ∈M)>= axy
25: if Age axy of exy is too high: axy > maxa then
26: Delete exy and vx or vy in case they are not not connected to any other vertex anymore.
27: end if

28: until A certain number of vertices is reached: |M |>= n f inal

58 CHAPTER 3. GROWING CELL STRUCTURES

removing connections and subdividing the graph are operations determined by different algorithm
aspects. In order to be remove an edge, it has to exceed a certain maximum age. If such an
edge is identified in the edge removal operation (see line 25 in Alg. 6), the edge is removed.
Unconnected vertices are removed as well (see (d) in Fig. 3.10).
Finalization: The result of the GNG proces – in contrast to GCS – is not a surface (see
(e) in Fig. 3.10). For surface reconstruction purposes, the resulting graph therefore needs to be
interpreted and processed to be transformed into a surface. This can be a complex task.

3.3.2 Similarities
Both GCS and GNG use a competitive learning approach and both inherit all advantages from
the k-means clustering approach. This includes the ability to process virtually an infinite number
of samples, the possibility of online changes of the sample points and a strong noise resistance
(see Fig. 3.11).
Their base loop is fairly simple and easy to understand, making them maintainable and easy to
alter for individual needs. Both processes can be stopped or continued at any given time during
the iterations and always expose a current approximation result. S is represented as a mesh or a
graph which is eventually transformed into a mesh. Neither approach has been presented using
an implicit surface.

3.3.3 Input – Unorganized Points
Like in every surface reconstruction algorithm, both GCS and GNG are supposed to recognize
Sphy with as few samples as possible.
The basis for the existence of structures in S , such as vertices, edges, and triangles, is differently
positioned in these algorithms. In GCS, a signal counter determines whether a vertex is deleted
or not. In GNG, the deletion is determined by the age of an edge. In order for both structures
to “survive”, they need to be closest to a sample point. Since a mesh typically includes fewer
vertices than edges, a GNG graph simply needs more samples in order to create an equivalent
approximation (see Fig. 3.12).
For GCS any signal counter is associated with one vertex. In order for every vertex to constantly
receive signals, the number of vertices should not exceed the number of samples |P|.
Given that every vertex in a GNG graph has the ideal valence of six, then the total number of
edges is three times the number of vertices, since every edge is shared by two vertices. In order
for these edges to constantly receive signals, the number of samples needed is three times as high
as the number of vertices.

3.3. GROWING CELL STRUCTURES VS. GROWING NEURAL GAS 59

Figure 3.11: Both GCS and GNG have a natural ability to deal with noisy data. Point clouds (top row),
GCS (middle row), GNG (bottom row), 2% Gaussian noise (left column) and 4% Gaussian noise (right
column).

However, in practical tests, the estimate of needing three times more samples proved to be too
low. The true value, most likely due to actual point distributions not being perfect, seems to be
between ten to twenty times. This problem cannot, as it might seem, be solved by increasing
the maximum life-time maxa of the edges, since this would strongly compromise the adaptation
quality of the process (see Fig. 3.13).
The edge age can be implemented in different ways. Fritzke suggested adding a counter to each
edge. These counters are increased if connected vertices are winning. This is also the case in the
implementation presented in Alg. 6. This solution requires no additional data structures.
However, detached and misplaced parts of the graph might never be removed, since their vertices
are not winning anymore. To avoid this, the edges can be stored in a ordered, doubly linked list.
Here, the winning edge is simply put to the front to refresh its age. At the end of the list are all
old edges. Besides the extra memory for the list, both implementations perform equally well and
notable differences could not be determined in the performed tests.

60 CHAPTER 3. GROWING CELL STRUCTURES

Figure 3.12: If the number of samples in the GNG process is not sufficient to match the distribution of
connections in the graph, the structure starts to dissolve. From left to right Dragon model reconstructed
with GNG with 60K, 120K, and 240K triangles.

3.3.4 Output – Surface Model
For GCS and GNG S is a graph. GCS is only allowed to include simplices of the previously
chosen dimension, triangles in the case of surface reconstruction. For GNG S can contain any
kind of simplex that does not exceed the dimension of the input space, for instance, tetrahedra in
the case of samples in a 3D space.
Given that the dimension of the desired output graph is unknown or needs to be variable, then
GNG is one of the few algorithms to provide this flexibility. However, in surface reconstruction
this is not the case. Here, S finally needs to resemble an actual 2D surface.
GNG cannot guarantee for S to consist only of triangles. Thus, a post-process needs to delete or
transform all structures in S which differ from triangles. Additionally, edges with more than two
triangles attached to them need to be fixed, since they infringe the criteria for a 2-manifold (see
section 2.3.1.4.4 on self-intersection). Also, a hole filling mechanism is needed to fill polygons
with more than three edges. In Fig. 3.14, an overview of these structures is given.
In the presented GNG algorithm, such a hole-filling method is not implemented. First, to give an
impression of the actual result of the GNG algorithm, and secondly, since such a method could
be implemented in many different ways. This would lead to very different results for the final
mesh, creating an undesired independence of the actually created graph of the GNG approach.
In the presented figures, S is shown as a graph of non-oriented triangles, not bound to be a
2-manifold. Neither GCS nor GNG in their initial papers [Fri93, Fri95] define an oriented surface.

Figure 3.13: Reconstruction of the Stanford Dragon with 20K triangles: With the maximum age of
maxa = 88 (left), maxa = 176 (middle) and maxa = 352 (right). Although the two latter reconstructions
expose no holes, their adaptation process is compromised proven by many incorrectly left connections.

3.3. GROWING CELL STRUCTURES VS. GROWING NEURAL GAS 61

Figure 3.14: Different possible structures in a GNG graph: (a) a none-manifold edge with three triangles
attached; (b) many holes in the surface; (c) a tetrahedron, which rather represents a volume than a
surface.

In computer graphics applications, however, S is supposed to be oriented (see section 2.3.3 on
orientation).
Although this is not part of the basic GCS definition all reconstruction algorithms presented so
far used a mesh that already includes oriented triangles. For GCS a new surface is refined from a
pre-existing surface, creating sound oriented surfaces even for locally ambiguous constellations
of points.
Since the connection building process in GNG is not restricted, S cannot be constrained to
consist of oriented triangles throughout the process. Therefore, refinements in S are not based
on a pre-existing surface. If the process is finished and the necessary cleaning mechanism has
been performed, the orientation of the determined triangles needs to be propagated through S .
As demonstrated in Holdstein’s implementation [HF08], this can lead to inconsistencies in the
surface orientation, especially in noisy areas.
Since connectivity changes are unrestricted, GNG is naturally able to adapt any topology in Sphy.
The standard GCS algorithm can only create topologies equal to its initial surface structure. This
limitation, however, has been removed, as discussed in section 3.1.4.

3.3.5 Parallelization
On first impression both algorithms offer great potential for parallelization. If two random
samples at two very different positions in S are selected, their processing is entirely independent.
The difference in GCS and GNG lies in the graphs they use. In case of GNG, it is a simpler
data structure, which only represents vertices and the connections between them. A CPU based
parallelization only needs to lock the connection and disconnection process, since this avoids
vertices from being connected twice or incorrect deletions of connected vertices. Operations such

62 CHAPTER 3. GROWING CELL STRUCTURES

as moving winning or neighboring vertices, however, can still be performed by other threads
even during graph manipulations.
When a thread iterates through the neighbors of a vertex, a neighbor might appear or disappear,
but the data structure is still functioning correctly. The connections a vertex has to other vertices
are implemented as a simple, singly linked list. If such a connection is created or deleted, this can
be performed by changing the content of one single pointer. The operation is therefore atomic,
meaning it cannot be interrupted by an operation of another thread.
Additionally, the k-d tree needs to be modified for parallel use and instead of the tumble-tree the
signal counters have to be stored in a hash-map, which is easy to parallelize.
The GCS approach in the presented implementation uses a more complex data structure – the
half-edge data structure. If this data structure is altered, it cannot be accessed at the same time.
Here, changes of the mesh cannot be designed to be atomic without additional locking techniques.
When a surface area is processed by a thread, it always needs to be locked before any operation
can be performed.
None of the created experimental implementations of parallel GCS algorithms achieved any
increase in runtime. This was mostly due to the locking process to shield working areas from
being accessed by other threads. Most operations performed in these working areas are drastically
faster performable than the locking process. Note that these considerations already assume that
changes to the surface can be performed in the basic algorithm step.

3.3.6 Modifications
Both methods [DRADLN10, MHH08] introduced a mechanism to decrease the rate in which
vertices are added. In [MHH08], with increasing size of the network S the number of basic
steps before adding a vertex is increased. In [DRADLN10], after the demanded size for S is
reached another learning phase is introduced, where only the basic step is performed. The reason
for these operations is that the basic vertex adding step creates holes because it creates vertices
that have only two connections.
A different approach to tackle this problem is presented in [dRAdLN07], where the basic
adaptation step and the adding step are modified. Three instead of two closest points to a random
sample are searched for. This is supposed to promote the creation of triangles rather than arbitrary
dimensional structures. The adding of vertices is performed by a vertex split operation as in the
GCS method, creating a hybrid approach. To enable this operation, S has to be some form of a
triangular mesh. The problem with this concept is that the connections that are made in the basic
step are still arbitrary. Therefore, the approach still creates cross connections and overlapping
triangles, which have to be cleaned up in a post-process.

3.4 Results
k-Means Clustering: The presented approach is stochastic and the same input data can produce
different results, since P is accessed in a random series. The input data P is only accessed one
sample at a time and never has to be loaded or processed entirely. The approach can therefore
process an infinite number of procedurally generated data points from an analytically unknown
function or as many measured samples as a modern hard drive can carry. However, the desired
number of vertices and the spatial subdivision data structure – in which these vertices are stored
and organized – need to be held in main memory in order for the process to run efficiently.
The process is very robust when dealing with noise and outliers and can even be used as sample
distortion filter.

3.4. RESULTS 63

With a spatial subdivision data structure, such as an octree, the search for the winner – given
an average vertex distribution – has the runtime complexity of O(log n). Leading to a process
runtime complexity of O(n log n), given the number of loops relates to number of vertices n.
This can be assumed, since any single vertex needs a more or less constant number of updates
until it represents its surrounding samples appropriately.
Within the adaptation process vertices might by moved into sample free regions. Before they
move out of these regions, other vertices might move toward their surrounding samples. Thus, if
these surrounding samples are randomly chosen, these vertices are winners instead of the vertices
in the sample free regions. Such vertices – shielded from being winners – are called “dead units”.
They do not contribute meaningful information to the processes result. Dead units are the result
of the winner-take-all concept of the hard competitive learning paradigm.
Self-Organizing Map: Due to the winner-take-most concept in the SOM approach, the problem
of dead units does not occur, since vertices in isolated sample free regions are still moved as
neighboring vertices.
As the SOM produces a mesh M with a topology, it can and has been used for surface reconstruc-
tion [BF02, Yu99, HV98]. Its strengths are the inherited robustness toward noise and outliers
from the k-means clustering approach and its ability to deal with non-uniform sample densities
and holes. The SOM drags the initially existent surface area toward samples, instead of using
some sample-to-sample distance assumption to recognize the surface area. Within that process
the number of samples dragging a surface area into place does not matter, therefore non-uniform
sample densities do not cause problems. When the surface area around a hole is pulled into place,
holes are likely to be covered, since the surface area is simply dragged over it.
The SOM uses a static mesh connectivity for parameterization purposes. This static mesh con-
nectivity limits its usability in surface reconstruction. It also leads to a static surface topology, the
one of a bounded plane. As it cannot be changed, the initial topology of S needs to coincide with
the topology of Sphy to achieve a fitting reconstruction. With the static connectivity the process
can additionally not adapt the resolution of M . Thus, if the surface in its spatial distribution does
not coincide with the one of a rectangle, irregular and distorted vertex distributions are created.
Given that the initial surface coincides in topology and spatial distribution with Sphy, the process
can still end up in a local minimum. Here, a state of falsely fitted surface is further optimized to
represent Sphy, but the topologically false surface construction cannot be resolved anymore.
The outcome of the process very much depends on its initialization, making repeated executions
necessary. Also, the appropriate mesh resolution to represent Sphy needs to be known in advance.
In the presence of noise and complex shaped geometry, this is hardly possible, again making
repeated executions necessary.
Growing Cell Structures: The most basic surface reconstruction problem is deriving implica-
tions about an unknown surface Sphy from P , which is only accessible by 3D search queries.
Therein lies an important distinction between a SOM and GCS. While the SOM initializes
all vertices at the beginning and then successively corrects their placement (warping strategy),
the GCS algorithm starts with a simple mesh and initializes new vertices to refine a current
surface estimate (refinement strategy). While the result of the SOM is created at the end of the
process, the current surface estimate of the GCS algorithms always represents a result for the
approximation of Sphy. The process is very flexible, since it can be stopped and resumed at any
time whether it is sufficiently accurate or not. Note that a balloon surface reconstruction process
(see section 2.4.2.3) also initializes new vertices within the process, but fills up a space confined
by P . An actual reconstruction result again is only created at the end of the process when that
space is fully filled.
Whenever the information (samples in P) about the unknown surface Sphy is accessed, it is set
in relation to a pre-existing surface estimate S . This makes the GCS approach very powerful

64 CHAPTER 3. GROWING CELL STRUCTURES

Figure 3.15: The strength of a refinement surface reconstruction approach. A challenging region at the
Dragon’s leg (left) and different stages of the GCS reconstruction process (right).

when avoiding local failures caused by ambiguous point constellations. In GCS, a newly created
surface is built upon former surface stages, giving the surface a certain inertia when changed. In
Fig. 3.15, this strength is demonstrated.
While M can be changed in resolution to specifically fit the spatial distribution of a surface,
unlike the SOM, M cannot be changed in its topology. The topology of M is defined by the
initial surface structure. In case of a tetrahedron, it is the topology of a sphere. Even if the initial
topology coincides with the one of Sphy the process can still end up in a local minimum. It is,
however, less likely to happen as for the SOM, since vertices are initially placed more sensibly.
Changing the topology of M within the process would require operations, which can open the
surface and seal it again.
As the presented algorithm adds vertices dependent on a local signal count the adding process
automatically adapts to non-uniform sample densities (see Fig. 3.16).

Figure 3.16: Non-uniform sample densities (left) only lead to different sized triangles (right) in a GCS
reconstruction.

Although the GCS algorithm is built upon two previous algorithm stages it still involves only
a simple set of instructions. The algorithm solves complex problems in reconstruction, not
by a variety of specific instructions for any situation, but as a result of emergence. Here,
units themselves just follow simple rules, but they create complex behavior as a result of their
interaction. This simplicity makes such an algorithm easy to maintain. Also, the rules applied

3.4. RESULTS 65

can be extended or changed easily. In Fig. 3.17, the reconstruction of a scanned tree is shown.
The algorithm produces a suitable result even in this complex case.

Figure 3.17: Without any explicit operations added to the GCS algorithm a tree in a scanned environment
is suitably reconstructed (right), although the point cloud (left) appears to be chaotic.

For any creation of a vertex – belonging to the final n vertices – a constant number of basic steps
has to be performed. Since this number is constant, the overall number of basic steps performed
has a linear relation to n. Using the k-d tree, the search for the winning vertex – given an average
vertex distribution – has the runtime complexity of O(log n). When using the tumble-tree, the
additional signal counter operations can be performed with a runtime complexity of O(log n) as
well. This creates an overall runtime complexity of O(n log n).
Growing Cell Structures vs. Growing Neural Gas: The data structures used for the GCS
process can equally be used for the GNG approach, also leading to an average case runtime
complexity of O(n log n). The GNG edge aging process has constant complexity O(c) in both
suggested implementations, given the edges have a pointer to their list position in the second
implementation. However, the GNG algorithm has a slightly smaller constant, since the simple
graph structures used by the algorithm make some of its operations less costly in runtime.
The presented comparison of GCS and GNG focused on aspects and tests concerning their
working principles. In the following, their surface reconstruction abilities with different parameter
settings are presented (see Table 3.1). For comparability purposes the Stanford Dragon is
reconstructed with a fixed mesh resolution of 60K triangles. The model has non-uniform sample
densities, some detailed areas such as the horns, and a relatively challenging overall shape.
The applied GCS approach already uses a mechanism to change its otherwise static topology
(see section 3.1.4). To avoid holes from having a negative effect on the distance results of the
GNG process, distance values are measured differently here. The sample-to-surface distance is
measured as the average distance of all samples, which are closest to a triangle centroid. Thus,
the considered samples are likely to lie above and close to existing triangles.
The benchmark versions (see Fig. 3.18) use the following parameter settings:

66 CHAPTER 3. GROWING CELL STRUCTURES

Figure 3.18: The Stanford Dragon reconstructed with GCS (left) and GNG (right) with the benchmark
settings.

Parameter Settings:

Symbol GCS GNG Meaning

lr 0.1 0.08 Learning rate

lrn 0.08 0.02 Neighbor learning rate
cadd 100 100 Basic step count before a vertex is added
cdel 500 500 Basic step count before a vertex is removed
γ 7 / Allowed misses before deletion theshold

minsc 0.3 / Deletion theshold
maxa / 88 Maximum edge age before deletion

In the performed tests, the GCS approach is less runtime efficient due to its more sophisticated
underlying data structure. The Laplacian smoothing operation requires more runtime, but has
very positive effects on the triangle quality. It also improves sample-to-surfaces distances. This
operation cannot be used for GNG, since the operation uses triangle normals. The task specific
k-d tree led to 30% gain in runtime efficiency in comparison to an octree. This proves the
efficiency of the created data structure. It additionally shows the importance of the nearest
neighbor search and the rearrangement of vertices concerning the overall runtime.
When lowering maxa in the GNG process, triangle quality can be gained in exchange for
more deletions and thereby more holes in the surface. When increasing cadd , runtime can be
exchanged for an overall better approximation in triangle quality and sample-to-surface distances.
A reasonable tradeoff appeared at a setting for cadd of 200.
Smart Growing Cells: The SGC approach represents a very general solution for a variety of
problems. Since it only involves local units – the vertices – rather than the global processing of
significant amounts of mesh data, it is efficient and smoothly integrates into the local refinement
approach.
The ACO process uses a local property – the vertex valence – to identify surfaces to cut. Also,
the presented coalescing process only locally connects vertices. In [IJL+04] in contrast, separate
processes are introduced to cut and coalesce surfaces. These separate processes make the
approach less flexible. The global triangle size criterion creates a demand for generally equally
sized triangles, causing problems with non-uniform sample densities.
A disadvantage of locally performed cutting and coalescing operations is the inability to guaran-
tee, for instance, solid objects. This would demand a comprehensive perspective on the mesh
situation.

3.5. CONCLUSION 67

Parameter & Setting time dist equilaterality valence[5;6;7]

GCS

Benchmark 0:0:17 3.57 78.5% 90.0%
Different cadd

200 0:0:35 3.41 78.7% 90.6%
400 0:1:16 3.28 78.9% 91.3%
2000 0:6:55 3.16 79.0% 92.4%

octree instead of k-d tree 0:0:22 3.57 78.5% 90.0%
Standard Neighbor Movement

(instead of Laplacian smoothing) 0:0:13 4.99 61.0% 86.1%

Different # of smouthing rounds
5 0:0:40 3.67 78.6% 90.5%

20 0:3:54 3.69 79.0% 90.7%

GNG

Benchmark 0:0:7 7.67 63.6% 67.9%
Different cadd

200 0:0:12 7.41 67.5% 80.2%
400 0:0:25 7.28 70.5% 87.3%
2000 0:1:53 7.15 75.0% 94.4%

Different # of Threads
2 0:0:4 7.72 63.0% 67.2%
4 0:0:3 7.70 62.6% 66.7%

Different maxa

44 0:0:7 7.25 68.5% 79.7%
176 0:0:6 11.30 45.9% 31.8%

Table 3.1: Reconstruction of Stanford Dragon (# samples 438K; # triangles 60K) with different parameter
settings for the GCS and GNG algorithm.

The curvature dependent placement of vertices makes the model M more memory efficient and
leads to a faster adaptation of S toward Sphy. Also, the process is less vulnerable to holes or
non-uniform sample densities, since surface geometry additionally influences the placement of
vertices. By integrating the curvature dependent subdivisions into the signal counter process, the
algorithm does not need any additional data structures. In [JIS03], additional normal movement
counters and data structures to organize them are added.
With the SGC concept special behaviors such as constraint movements for vertices at sharp
features or boundaries can be created. Combined with the algorithm abilities of handling open
surfaces, noise, outliers, non-uniform sample densities, and ambiguous sample constellations, the
algorithm is very suitable for the creation of virtual environments, as presented in [AB11]. The
creation of virtual environments is a very demanding reconstruction task. Special precautions,
which are usually taken for certain materials or complex surface shapes, are impractical when
scanning large scenes.

3.5 Conclusion
k-Means Clustering: The approach is efficient, robust against noise and outliers, and capable
of processing point clouds of any size, which are produced in a realistic scanning scenario.
For surface reconstruction purposes the algorithm would additionally need to determine the
underlying topology which P originates from.

68 CHAPTER 3. GROWING CELL STRUCTURES

The occurrence of dead units and the overall quality of the produced clustering highly depends
on the initialization of the process. Thus, to increase the likelihood of a high quality clustering,
the process needs to be executed multiple times.
Self-Organizing Map: With the introduction of topology to the process, the SOM can be used
as a reconstruction algorithm. Since the surface is “dragged” into the samples, incomplete data
such as non-uniform sample densities and holes can be compensated. Its worst limitation is its
static mesh connectivity.
Growing Cell Structures: In this section, the reconstruction strategy which all following
algorithm developments are based on – iterative surface refinement – has been presented. In the
refinement concept, every stage of M is an actual estimate of Sphy creating the flexibility to use
the algorithm as a remeshing or LOD approach. This also establishes robustness when dealing
with ambiguous point constellations.
While k-means clustering and the SOM change their learning rate throughout the process, the
GCS algorithm uses a constant learning rate. This makes it suitable to be used as an online
process, where samples are added while the process is running. Since the learning rate is
unchanged, these new samples have the same chance to be learned as old ones.
Since the GCS approach can arbitrarily change the local resolution of M the guaranteed
parameterization of the SOM is lost. The most significant limitation of the process, however, is
its inability to leave the initial mesh topology. Vertex split and edge collapse change the meshes
connectivity, but not its topology. In order to do so, operations to cut and reconnect the surface
would be required.
The presented approach uses signal counters creating a likelihood distribution. It aims to create
equal likelihoods for all vertices to be winners. A distance minimization on the other hand would
aim to minimize the distances between vertices and surrounding samples. This topic is further
discussed in chapter 6 where different approximation techniques for GCS are presented.
Growing Cell Structures vs. Growing Neural Gas: Both GCS and GNG are potentially
suitable for surface reconstruction. They are resistant to noise and non-uniform sample densities
and they are virtually independent of sample set sizes. Both algorithms can be implemented
with a relatively low average case runtime complexity of O(n log n). The GNG approach is
better suited for parallelization and can adapt its graph to models of arbitrary topologies. But
GNG needs inherently more points to reconstruct an approximation of the same resolution in
comparison to the GCS approach. Also, GNG needs a cleaning phase that can only be done in a
post-process.
The progressively evolving surface represented as an actual triangulated mesh in the GCS
approach is its major advantage over the GNG approach. The presented Laplacian smoothing, for
instance, accesses the surface triangles to calculate surface normals, and most of the upcoming
developments of the algorithm access information provided by the exiting surface. The upcoming
redesign of the GCS concept in chapter 6 even extends the availability of surface related
information.
To achieve this potential with the GNG approach makes an explicit surface model necessary.
This is possible by creating a hybrid approach [dRAdLN07]. However, it is questionable if such
an approach actually still qualifies as a GNG approach, since the freedom to build arbitrary
simplices is discarded. This, however, conflicts with the basic idea of a neural gas. An alternative
would be to build an additional implicit surface model on top of the GNG graph. In [Fri96], a
RBF model has been suggested, but no reconstructions approach has been presented so far.
Smart Growing Cells: The enhancement of the concept behind the ACO process enable a
generally more flexible algorithm implementation. Here, every created structure – not only the
ones created in the deletion process – could be identified and then edited or removed. This
development is discussed in detail in chapter 4.

3.5. CONCLUSION 69

Although locally the GCS approach creates soundly oriented surfaces, it can globally fail to
create a consistent surface orientation. This problem is strongly connected to the local working
principle of a refinement strategy. The problem itself and its solution are discussed in chapter 5.
The presented mechanisms to deal with sharp features, boundary vertices, curvature and topology
can be set into a broader context. These mechanisms only compensate shortcomings caused
by a vertex focused model in the GCS approach. Here, the algorithm focuses on creating a
distribution of vertices. In chapter 6, a new learning scheme using a surface focused model is
presented, which eliminates these shortcomings at the conceptual level.

70 CHAPTER 3. GROWING CELL STRUCTURES

Chapter 4

The Filter Chain Concept

The filter chain concept (see Fig. 4.1 and Alg. 7) introduces a generalized method to individualize
and precisely model the GCS algorithm behavior. The ACO process involves finding undesired
structures in the mesh after the cutting process. The filter chain concept is inspired by this
process and extends it to arbitrary structures that should be removed or edited. When different
chains of filters are applied at different places of the algorithm, the modifications to the surface
can be controlled very precisely.

4.1 Introduction
Reconstruction from unorganized points involves many different problem cases, which can even
be ambiguous, i.e., a sample constellation could be interpreted in different ways. Outliers in a
broader sense, such as ghost geometry (see section 2.2.5), are an example for such a constellation.
These undesired structures are identified by their very low sample resolution. But a low resolution
might also be caused by a material, which is hard to scan. Very thin and tiny structures (see
section 2.2.6), hardly captured by a scanner, such as cables, are another example. Such samples
might also be caused simply by outliers or strong noise.
For such cases, a reconstruction algorithm has to be editable to account for individual preferences.
Subsequent mesh processing approaches might also have certain requirements on the meshes
they process.
A problem specific for iterative refinement approaches are structures, which are likely to lead
to undesired surface constructs in later stages of the refinement process. These should also be
identified and removed or edited.
To account for these necessities in the editability of the algorithm behavior, a concept is needed
that allows for precise changes on the one hand, but is general enough to allow for easy adding
and removing of such changes on the other hand.

71

72 CHAPTER 4. THE FILTER CHAIN CONCEPT

Algorithm 7 Filter Chain Concept (based on SGC Alg. 5)

1: Initialization
2: repeat
3: repeat
4: repeat

Basic Step

5: Select random sample px of P
6: Find the winning vertex vx that exposes the smallest Euclidian distance to px

7: Discontinuity Adaption

8: Curvature Adaption

9: Decrease signal counters of all other vertices by a fraction:
∀sci(i ∈M) ∆sci =−β · sci

10: Coalescing

Filter Chain

11: repeat
12: Select a vertex vx from the vertices to filter V f ilt
13: Expose vx to all filters in F. f ilt
14: until V f ilt contains no more vertices: |V f ilt |= 0

15: Increment the iteration counter: ∆t = 1
16: until The basic step has been performed cadd times: t mod cadd = 0

Vertex Split

17: Select vertex vx with the highest signal counter value: ∀sci(i ∈M)<= scx
18: Select the longest edge of vx and perform a vertex split operation
19: Split scx between vx and the new vertex vnew: scnew = scx/2 ∧ scx = scx/2
20: Filter Chain

21: until The basic step has been performed cdel times: t mod cdel = 0

Edge collapse

22: Select vertex vx with the lowest signal counter value ∀sci(i ∈M)>= scx
23: if Signal counter value scx is too low: scx < minsc then
24: Perform an edge collapse operation on the edge leading to valences closest to six.
25: end if
26: Filter Chain

27: until A certain number of vertices is reached: |M |>= n f inal
28: Add all vertices in M into V f ilt

29: Filter Chain

4.2. APPROACH 73

Figure 4.1: A broad selection of artifact, removal, construction, and editing filters. The illustrations show
mesh structures before (left) and after (right) applying a certain filter.

4.2 Approach
The aim of the filter chain concept is to gain more control over the results of every single editing
step of the mesh. When vertices are changed in the basic step, the vertex split or the edge collapse
operation adds them into a set of vertices V f ilt . These vertices are then one by one taken out of
that set (see line 12 in Alg. 7) and exposed to a singly linked list of filters F. f ilt (see line 13
in Alg. 7). F. f ilt may contain different filters depending on where in the algorithm it is used. If
a vertex of V f ilt is filtered and it passes all filters in F. f ilt , it is deleted from V f ilt . If one of the

74 CHAPTER 4. THE FILTER CHAIN CONCEPT

filters in F. f ilt is activated, vertices might be edited and therefore added to V f ilt or deleted and
therefore removed from V f ilt . If all vertices in V f ilt have passed the filters in F. f ilt , the process
ends (see line 14 in Alg. 7).
The key in the design of the algorithm behavior lies in the choice of filters added to the different
filter lists. Although the order of the filters in F. f ilt makes a difference, it is not considered an
actual algorithm behavior design choice. Generally, simple filters, e.g., a filter looking for edges
without faces connected to them, come first and more complex ones, e.g., a filter looking for tiny
surface segments, are placed later in the list. This order leads to editing more general problems
which might render the execution of more complex filter operations futile first. In the following,
a selection of important filters is presented.

4.2.1 Artifact Filters
The following filters are typically used as and after cutting processes, where parts of the surface
such as vertices, edges, and faces are removed. The structures they search for and remove are
undesired in most mesh processing algorithms. These structures mostly were searched for in the
initial ACO process as well.
Edgeless Vertex: If a vertex has no edges and is therefore not connected to any triangle, it is in
fact an artifact in a triangle based surface representation. It is also worthless for the GCS process
and is therefore removed (see (a) in Fig. 4.1). Note that in order to represent point clouds with a
mesh file format, these unconnected points (vertices) are accepted in many implementations.
Edge Without Triangles: An edge which has no triangles connected alongside it, is also an
artifact. Such a structure can only occur in a mesh data structure explicitly representing edges,
such as a half-edge data structure. In triangle based file formats, however, they cannot be
represented. They are also not needed in the GCS process and hence they are removed (see
(b) in Fig. 4.1).
Multiple Boundary Vertex: A vertex can be connected to multiple boundaries and then have
more than two boundary edges (see (c) in Fig. 4.1). For most mesh processing applications such
vertices are not valid. This mesh structure can be fixed by removing all triangles and edges of a
vertex, except those belonging to the biggest “wedge” (see (c) in Fig. 4.1).

4.2.2 Removal Filters
While artifact filters remove structures that are invalid in a mesh, the following filters remove
structures that are generally valid, but have proven to either lead to bad results in the course of
the refinement process or are generally undesirable in a resulting mesh.
Valence Two Vertex: A boundary vertex can have a valence of two (see (d) in Fig. 4.1). Such
a vertex is very unlikely to support a correct reconstruction process. It is more likely to cause
twists and malformed mesh regions if involved in a coalescing process, and is therefore deleted.
High Valence Vertex: A vertex of a high valence (see section 3.1.4.2 on the ACO process)
is a good indicator for topologically misplaced surfaces. It can be cut out of the mesh (see
(e) in Fig. 4.1). This filter, as in the ACO process, might cause a series of deletions, since the
remaining vertices are once again added to the filter process.
Bridge: When close surfaces are differentiated by the refinement process, former falsely built
connections between those surfaces are constantly diminished, until they are completely deleted.
If only a hole is left from a former connection, it is sealed by the coalescing process. However, if
a connection remains between two surfaces, the remaining hole cannot be sealed. In such a case,
all sealing operations can be performed, until reaching a hole size of only three vertices (one
missing triangle), which has the additional connection to another surface (see (f) in Fig. 4.1).

4.2. APPROACH 75

This connection in form of a one edge broad “triangle fan” needs to be deleted in order to close
the remaining hole. If the hole is seen as a “gate”, this fan is its “bridge”. A bridge is very likely
to be part of a misplaced surface and is therefore deleted. This speeds up the differentiation
process between close surface regions.
Bottleneck: The bottleneck filter is a generalization of the bridge filter. Every bridge is also a
bottleneck and thereby the filter is a more aggressive version, tackling the same problem. While
the bridge filter focuses on a one edge broad connection to a triangle sized hole, the bottleneck
filter focuses on every pathway in the mesh of triangle size (see Fig. 4.2). Three vertices are the
minimum perimeter for a pathway in a triangular mesh – being a 2-manifold – and therefore
always resemble a “bottleneck”. Whenever such a pathway is found the number of triangles on
both sides is counted and the ones that are of the lower count are deleted. The filter is efficient if
a reconstruction is known to contain many close surfaces but no thin structures, which this filter
might hinder in their construction.

Figure 4.2: An early stage in the reconstruction of the Dragon model. Neck and back of the Dragon are
falsely connected. The connection is already minimized to a bottleneck, which is a pathway in the mesh
of three vertices perimeter.

Triangle Size: The triangle size filter locates and deletes triangles of above-average size. The
filter needs a setting of how far the average triangle size is allowed to be exceeded by a triangle,
before it is considered to be “too big”. In cases of distorted samples, where huge triangles are
caused by outliers or constructed due to ghost geometries, it is very helpful to clean up the mesh.
Since the filter cannot be used in combination with a hole closing filter (see below) it is best used
after the main loop (see line 29 in Alg. 7).
Crumb: A crumb is a mesh structure of a certain size of vertices unconnected to the rest of the
surface. This size can reach from one to a few thousand vertices. If this structure is identified, it
is deleted (see (g) in Fig. 4.1). Crumbs are often caused by noise, outliers, and complex shaped
surface regions, which are not yet correctly recognized. As they are less stabilized during the
refinement process by surrounding surfaces, crumbs can cause twisted and degenerated surface
regions. The crumb filter is effective against these effects, but can also be used after the main
loop to delete ghost geometry.

4.2.3 Editing and Constructing Filters
All filters presented so far solved the occurrence of undesired mesh structures by their removal.
This limits the process to finding undesired structures and implies that after their deletion the
GCS process creates desired structures. But filters can also be used to edit and construct mesh
structures.
Multiple Boundary Vertex: Multiple boundary vertices, presented above in section 4.2.1 on
artifacts, can also be fixed constructively. In this solution, triangles are added until a vertex is
only connected to one boundary instead of multiple (see (h) in Fig. 4.1).

76 CHAPTER 4. THE FILTER CHAIN CONCEPT

Hole: Holes of sizes between three to five vertices in perimeter are rarely desired. The GCS
process is thereby speeded up by sealing them immediately, instead of waiting for them to be
closed by the coalescing process. The GCS algorithm therefore should always include a hole
closing filter (see (i) in Fig. 4.1). If the result of the GCS process is supposed to be a solid
object and the point cloud is known to include multiple undesired holes, the perimeter can be
set to higher values. Values up to twenty are sensible. Above that, however, the simple closing
mechanism by “zigzagging” triangles might be insufficient and could create degenerated mesh
structures.
Optimize Valences: The valence optimization filter searches for potential edge swap operations
which optimize vertex valences. In order to perform an edge swap operation, an edge has to be
connected to two triangles. An edge connects two vertices a and b (see (j) in Fig. 4.1). With these
two vertices and the two opposite to the edge, two triangles are defined (a,b,c) and (a,d,b). If
the edge between a and b is swapped, those triangles are transformed into (a,d,c) and (d,b,c).
An edge is considered a swapping candidate (see (j) in Fig. 4.1) if the sum of the square distances
to valence six of its triangle vertices can be lowered by an edge swap operation:

(valc(a)−6)2 +(valc(b)−6)2 +(valc(c)−6)2 +(valc(d)−6)2 (4.1)

Square distances are used to express the undesirability of extremely high or low valences. If all
edges for a vertex are tested, the swapping candidate exposing the largest old to new valence
difference (see equation 4.1) is chosen to perform an edge swap operation (see (j) in Fig. 4.1). If
no candidate exists, none is chosen.
This optimization can easily lead to circular or alternating swapping operations, causing infinite
filter loops. To avoid this, the filter needs to either not add modified vertices to V f ilt or it needs
to have a memory of performed edge swap operations to exclude those from consideration.

4.3 Additional Usage
Most of the presented filters remove or transform undesired mesh structures. This is not only
reasonable within the GCS process, but also to clean arbitrary meshes form artifacts or distortions.
The filter chain concept can therefore be used as a general mesh cleaning approach. An example
of such a filtering process is shown in its use after the main loop (see line 28 in Alg. 7).

4.4 Results
With the filter concept the GCS algorithm can easily be edited to account for very different
reconstruction scenarios. This can be achieved just by adding and removing filters from the
different filter chains. In the following, some standard filter configurations are presented as well
as some individual configurations to solve specific problem cases.
When cutting processes are used, all artifact filters should be enabled to guarantee a valid mesh.
Valence two vertices and bridges have proven to slowdown the correct adaptation of Sphy and
should therefore always be removed. The high valence filter should be added to the filter chain
in the deletion section (see line 26 in Alg. 7) to cut out misplaced surface regions.
The valence optimization filter has proven to generally increase the mesh quality (see Fig. 4.3)
and can be added to any filter chain. The optimization of the valences leads to higher triangle
quality and also allows for improved sample-to-surface distances.
A hole filter, sealing all holes up to perimeters of five, is also a general improvement of the
adaptation speed of the algorithm. If the finished mesh is expected to be a solid object, a higher

4.5. CONCLUSION 77

Figure 4.3: A reconstruction of the Stanford Dragon with 30K triangles with (left) and without (right)
the valence optimization filter. Visually, the difference of better valences is hardly recognizable. When
measured, the triangle quality (equilaterality) with the filter (81.19%) is clearly higher than without it
(78.05%). Additionally, the sample-to-surface distance (dist) with the filter (5.20) is also lower than without
it (5.27).

perimeter can be used. Since the hole filter is still a local operation, no perimeter setting can
guarantee the resulting mesh to be a solid object.
The bottleneck, the triangle size, and the crumb filter are more specific filters, which can be used
to deal with certain situations. If surfaces are close to each another, the bottleneck filter speeds
up the differentiation process of those surfaces. It can, however, also inhibit the construction of
thin structures.
Using editing and constructing filters can give rise to mutually dependent filters. This can lead to
infinite filtering loops, where one filter repeatedly constructs the deletion-target of another filter.
Such a dependency can be created, e.g, if the triangle size filter is used in combination with the
constructive multiple boundary vertex filter or the hole filter. The latter filters create triangles,
while the triangle size filter deletes them. Thus, it is reasonable to place it in the final filter chain
to delete oversized triangles (see Fig. 4.4).
The crumb filter can also be used as a post-processing filter, as shown in Fig. 4.4. If, however,
many crumb structures tend to disturb the refinement process the filter can also be used within
the algorithm.

4.5 Conclusion
The filter chain concept allows for easy editability of the algorithm behavior. New behavior can
easily be added and removed. The expressiveness of the concept is demonstrated by replacing the
ACO process by a collection of filters. Additional modifications of the algorithm behavior have

78 CHAPTER 4. THE FILTER CHAIN CONCEPT

Figure 4.4: Reconstruction of an environment around a farm building. The two pictures at the top show
the uncleaned mesh. It exposes many crumbs, due to disturbances in the scan. People and scanning
equipment represent ghost geometries. Oversized triangles are exposed in ghost geometries due to
outliers. The two bottom pictures show the same mesh after applying a triangle size (size limit: three
times average triangle size) and a crumb (# vertices: 300) filter.

been experimentally demonstrated. Since cleaning filters can be added anywhere in the process,
operations cutting the mesh can also be implemented wherever needed without additional effort.
This adds flexibility when introducing new algorithm operations.
Filter combinations mutually invoking each other are a conceptual weakness. This problem can
generally be addressed by executing certain filters always in separate chains or by preventing
filters from executing the same operation twice.
The presented implementation uses a singly linked list to represent a filter chain. However, a
filter hierarchy where a tree of filters is passed or the results of filters invoke adding additional
filters might also be an interesting direction for the filter chain concept.
Filters are basically local mesh constellation modification operators like all SGC operations are.
Thus, they are conceptually suitable to also express and replace other former SGC operations,
such as Laplacian smoothing or the coalescing operation. Modeling the entire algorithm func-
tionality as filters would elevate the local rule based SGC concept to a new level. Expressed as
filters, rules could automatically be exchanged and tested. Possibly the rule set could even be
adapted to the given input data, exploiting the editability of the filter chain concept to create
automatically adjusting refinement processes.

Chapter 5

Solving Twisted Surface

For complex geometries and especially for non-solid objects, the GCS approach may fail to create
a consistently orientated surface. The twist solving process [AB12b] (see Alg. 11) identifies and
corrects such inconsistently oriented surface regions. To properly integrate into the GCS process,
the solution needs to be efficient in runtime and memory consumption. The approach involves a
novel data structure – the edge-front – which enables an efficient and at the same time compact
solution.
To demonstrate the potential within the edge-front based processing scheme, it is applied to
approximate geodesic distances.

5.1 Introduction
The problem of inconsistently oriented surface regions involves the emergence of such regions,
their identification, and their correction. The problem affects the surface on a global level, while
an iterative refinement approach uses a local optimization strategy. This creates an additional
integration problem for a viable solution.
The edge-front based data structure used to solve this problem can also be applied to geodesic
calculations.

5.1.1 Emergence of Twisted Surface
A refinement strategy uses a current surface estimate S of the surface under investigation
Sphy. S has an orientation and is constantly optimized in course of the refinement process.
Iterative refinement approaches are very capable of creating sound orientated surfaces even when
confronted with locally ambiguous point constellations. Other reconstruction approaches often
fail in these cases, since they try to derive the surface progression directly from the samples.
The GCS approach evolves new surfaces from former surface stages and thereby stabilizes the
surface development process. S is always an attempt to approximate all of the data in P at any
given algorithm stage.
Thus, in early stages some complex shaped geometry might be represented by a very crude and
simplistic shape. The transition from that simple to a more sophisticated shape is performed as a
series of local adaptations. Without any global overview or supervision, these local adaptations
might produce results that are inconsistent on a global level. This can lead to surfaces ending up
in a local minimum, which can only be left if cutting operations are introduced. It can also lead
to inconsistencies in the orientation of surfaces.
A twisted surface region is created if one continuous surface has evolved from two different
surface origins with two different orientations. Since these two surfaces have different orienta-

79

80 CHAPTER 5. SOLVING TWISTED SURFACE

Figure 5.1: A series of reconstruction stages in the GCS approach creating an inconsistently oriented
surface (top row). When further optimized, the differently oriented surfaces remain with a gap in between
(bottom left and middle). The correct reconstruction of the Vault model (bottom right). The twist occurs,
since the back and front of the Vault have the same orientation, but since the initial GCS estimate is
box-shaped, it exposes different orientations for front and back.

tions, they cannot be coalesced, leaving a gap where the two surfaces meet. Typical sources of
twists are: long surface structures, such as pipes, where surface areas are drawn inside out; small
surface segments (see section 4.2.2 on crumbs) evolving without the stabilization from a larger
surface area; and generally failed attempts in recognizing a correct surface orientation in an early
algorithm stage. Independent of their origin twisted surface regions remain in S and are further
optimized, but cannot be resolved by local refinement operations (see Fig. 5.1).
Twist Example: If a s-shaped plane is reconstructed (see (a) in Fig. 5.2), it might be recognized
as being box-shaped at an early algorithm stage (see (b) in Fig. 5.2). This initial estimate
assigns the same orientation to the ends of the plane, but a s-shaped plane exposes different
orientations at its ends. When further refined, the actual shape of the surface becomes more
evident (see (c) in Fig. 5.2). However, the different orientations remain and collide at some
point (see (d) in Fig. 5.2). Due to different orientations, the surface regions cannot be joined by
coalescing and remain twisted toward one another, while the surface is further refined and locally
improves its approximation quality.

5.1.2 Solving a Global Problem on a Local Level
The surface refinement in the GCS approach is realized by local mesh optimization operations.
Resolving twisted surface regions is a global problem, which possibly involves modifying up to
half of the entire mesh surface. This additionally poses the challenge of finding a solution that
sensibly integrates into the locally operating GCS scheme.
One simple solution to the orientation problem would be to create a first surface estimate
with a different algorithm. An algorithm which involves a global orientation concept is, for
instance, Hoppe’s approach [HDD+92], which uses globally oriented linear base functions (see
section 2.4.3.1). This reconstruction result can then be used instead of the initial tetrahedron.
When using this result in the GCS algorithm, however, possible reconstruction mistakes from
that first approach are incorporated. Even worse, instead of having one coherent algorithm the
approach would become a patchwork algorithm. This would make it complex in maintenance and
finding a correct parameter setting would become increasingly difficult. It would be especially

5.1. INTRODUCTION 81

Figure 5.2: Emergence of twisted surface: (a) a sampled s-shaped surface with normals; (b) an early
reconstruction stage of those samples, which is box-shaped; (c) topologically misplaced surface is
recognized and deleted. The false initial orientation estimate of the box-shape, however, remains; (d) the
surface is further optimized, but the differently oriented surfaces cannot be connected and the surface
exposes a twist.

challenging to choose the transition point between the two algorithms. Setting such a point
implies that all aspects concerning orientation would not be critical from this point on.
In [ILL+04], the GCS approach is used to create numerous low-resolution meshes of the same
point cloud with different random series. Then the random series, which created the mesh closest
to the average of those meshes is chosen for the actual surface reconstruction in high resolution.
Again, two separate algorithm phases are created that require a predetermined transition point. A
solution that is an integral component of the refinement process is more desirable.
Solving a twist can involve the processing of huge mesh segments, making a purely locally
operating approach unfeasible. A global approach would analyze the orientation of the entire
current surface estimate and then search for and fix inconsistent orientations. Such a process
could be performed in intervals throughout the GCS process.
Such a solution, however, would still not integrate to create one consistent approach. It would
again executed outside the actual GCS process, necessitating additional pre-processing data
structures to analyze the orientation. This solution would also not scale to a current problem at
hand, but always independently process the entire current surface estimate.
A semi-local solution on the other hand would only process surface segments actually involved
in a twisted surface region. To enable such a semi-local solution, a data structure is needed that
can efficiently process limited surface regions. During the approach, the mesh is constantly
changing, therefore an operation cannot be based on global, pre-processed mesh data. To be able
to virtually process regions of arbitrary size, the working set of such a data structure can only
include the fraction of surface between processed and not yet processed surface.

82 CHAPTER 5. SOLVING TWISTED SURFACE

5.1.3 Geodesic Distances
Making on-surface distances available for mesh analyzing, searching, and editing processes,
has many application cases in geometry processing. For example, it can be used for mesh
parameterization to define texture coordinates [ZKK02]. It is also used in mesh segmentation,
where mesh segments are determined, which are then replaced by B-spline patches to create
smooth surfaces [KL96]. When comparing the distribution of distances, the process can be used
for topology matching [HSKK01]. In animation, a mesh decomposition is needed to distinguish
surface components in the animation of a model, which again can be determined by analysing
on-surface distance distribution [KT03]. When using procedural textures on complex meshes,
geodesic coordinates can be used to determine a transfer function between the space of the
procedural function and the topological space of the mesh [OTC+10].
All these applications require a surface distance metric, which can be established with geodesic
distances. Geodesic distance calculations can be divided into exact and approximated solutions.
A first implemented exact solution [KO00] used a graph based search strategy on a sequence
tree. The theory for this technique was suggested in [CH90]. The algorithm has quadratic
runtime complexity. Current applications mostly use approximated solutions. The fast marching
method (FMM) [Set95] approximates distances on triangular meshes [KS98]. In this approach,
distances are calculated from a starting vertex. All vertices currently reachable are considered
and the closest one is added to the “known” vertices. If a vertex is newly added, all vertices
reachable from this new vertex are added to the “reachable” vertices. By always adding the
closest vertex, the FMM works similar to the algorithm of Dijkstra. Although significantly more
precise approximation methods exist, which are only marginally slower than the FMM, still they
are the most widely use approaches due to their simple implementation. The accuracy of the
approach strongly depends on the given triangulation, since the discrete calculation points are
determined by the vertex distribution.
To achieve a higher independent of the given mesh triangulation and to increase accuracy,
subdivision techniques were used, which subdivide the initial mesh by creating additional edges
[LMS97]. In [KS00], the shortest path is first calculated on the original edges of the mesh with
Dijkstra’s algorithm and then the area of the resulting path is repeatedly subdivided. The search
is then repeated, until a certain subdivision level is reached. A recent breakthrough in shortest
path calculation has been achieved in [CWW12], whose approach has a close to linear runtime.
Here, the problem is solved by transferring it into a Poisson equation.
In [MMP87], an exact solution was presented. Here, for a starting point, the mesh was subdivided
to expose so called windows. These windows guarantee the possibility to compute an exact
shortest path on the given mesh edges. When established, the path can be calculated with
Dijkstra’s algorithm. The suggested method has a worst-case runtime complexity slightly above
quadratic. However, when first implemented [SSK+05] it proved to be significantly more
efficient in practice. Due to the intensive subdividing of the windows, the approach has a
significantly higher memory consumption than other approaches. Based on the initial approach
an approximate solution was presented in the same work, which reduced this problem. In [BK07],
the approach was extended to additionally allow line segments as starting points. A more detailed
overview of the subject of geodesic path calculation can be found in [BMSW11].

5.2 Approach
In the following, a method is presented which resolves twisted surface regions reliably and
efficiently on a semi-local level and which properly integrates into the iterative refinement

5.2. APPROACH 83

process. This solution can be compactly expressed due to a novel data structure based on an
edge-front.

5.2.1 Semi-Local Processing
Semi-local processing involves surface computations of limited domain around a point of interest.
Such computations require a defined on-surface starting point and having control over the
expansion of the processed area. Additionally, the processing is supposed to create a small
memory footprint, to enable the processing of vast surface areas.
First, the vertex front (VF) a pre-form of the minimal edge front (MEF) is presented. Then a
definition followed by a detailed explanation of the MEF data structure is given. The minimal
distance front (MDF) is presented which enhances the processing strategy to include geodesic
distance calculations. Finally, based on those data structures, an efficient way of calculating
minimal connecting paths between vertices is presented.

5.2.2 Vertex Front
The need to access vertex neighborhoods gave the inspiration for the VF. First degree neighbors
can easily be accessed by iterating through all connected edges of a vertex. When, however, the
first neighborhood of an edge, a triangle, or higher degrees of neighborhoods are accessed, an
advanced concept is needed.

Algorithm 8 Vertex Front

1: Clean all vertex containers: V f ront = Vold = Vnew = {}
2: Add starting point vertex/vertices to V f ront
3: while Expansion level not reached AND front not empty: nexp > 0 ∧ |V f ront |> 0 do
4: repeat
5: Select a vertex vx from V f ront that has not been processed so far
6: Get first degree neighborhood Nx of vx
7: repeat
8: Select a vertex vy from Nx that has not been processed so far
9: if vy is a new vertex: vy /∈ Vold ∧ vy /∈ V f ront ∧ vy /∈ Vnew then

10: Add vy to new vertices: Vnew = Vnew∩vy
11: end if
12: until All vertices in Nx have been processed
13: until All vertices in V f ront have been processed
14: Swap containers: Vold = V f ront ∧ V f ront = Vnew ∧ Vnew = {}
15: Decrement expansions: ∆nexp =−1
16: end while

The VF is an expandable set of vertices (see Alg. 8). It is initialized with a set of vertices (see
line 2 in Alg. 8), e.g., the vertices of a triangle. These initial vertices can then be expanded.
The VF includes three data containers for old Vold , current V f ront and new Vnew vertices. These
containers need to offer optimized operations to add, to find, and to iterate through vertices.
In the presented implementation, a red-black tree is used for each container. When expanding
the current front – being a set of vertices – the algorithm iterates through all vertices in V f ront
(see line 13 in Alg. 8). The surrounding vertices Nx of each vertex vx in V f ront are tested for
being either vertices of the previous front Vold (empty on initial expansion) or of the current
front V f ront or if they are actually new and have not yet been added to Vnew. After processing
all vertices, the containers are swapped (see line 14 in Alg. 8). The old front is replaced with
the current one, the current front is replaced with the new vertices, and the new vertex container

84 CHAPTER 5. SOLVING TWISTED SURFACE

is cleaned for the next expansion. After the expansion, V f ront contains all unprocessed vertices
reachable from the former front.
The VF is an efficient way to investigate the surroundings of a vertex. It is easy to implement
and works on a semi-local level. Its most severe disadvantage is the front V f ront being defined as
a loose set of unconnected vertices. These vertices, depending on the underlying mesh, are often
scattered and do not expose a consistent ordered front line, as an edge-front does (see below).
This vertex based front does not clearly separate the surface into two distinct surface areas. A
front expansion direction is not defined for the VF. Without an expansion direction the VF cannot
take advantage of the 2D characteristics of a surface to make the process more runtime efficient.
If a front collides with itself, it is indeterminable for the process. Neighboring vertices in the
front cannot be distinguished from those coming from far distant segments of the front.

5.2.3 Minimal Edge Front
A MEF consists of one or multiple closed edge paths of mesh edges that enclose all vertices of a
certain edge-wise distance to an initial starting point. This starting point can be one or several
vertices or a closed not self-intersecting edge path, for instance, the outline of a triangle. The
edge paths posses a front side where the expansion takes place and a back side where the already
processed surface connects. In that sense, the MEF behaves like a sweep line algorithm where
calculations only take place at the front of the current sweeping line. In contrast to most such
techniques, the MEF creates no additional geometric support structures of any kind, but only
uses the given mesh edges. Edge paths are allowed to have shared edges and vertices, but only if
both paths touch with their back sides. Touching or crossing front sides are invalid.
For example, if a MEF is expanded two times from a single vertex as starting point, it encloses
all vertices which are connected to the initial vertex by two mesh edges (see (a) in Fig. 5.3).

Figure 5.3: Different cases while expanding a minimal edge front: (a) expansion from an initial vertex
to the second expansion level; (b) collision and merging while expanding; (c) annihilation of a front that
cannot be expanded any further.

5.2. APPROACH 85

A MEF is “minimal” in the way that the vertices which are enclosed by the edge-front cannot be
enclosed by a smaller number of mesh edges, unless a front collision would be executed earlier
to decrease the number of edges (see below on collision).
Implementation: While the VF contains a loose set of unconnected vertices V f ront , the front of
the MEF is defined by closed edge paths, represented by doubly linked lists (see Alg. 9). So,
for every list element /e.x of such an edge path previous and posterior edges can easily be
investigated. The process includes different containers. In E f ront are the edge elements of the
current front for a completed expansion level. Enew contains the new edge elements of the front
which is currently in progress. V f ront contains the vertices of the current front, that are needed to
detect collisions. In contrast to the VF, V f ront can include duplicates, since two different edge
paths can lead through the same vertex twice. As before, these containers can be implemented as
red-black trees.

Algorithm 9 Minimal Edge Front

1: Clean all containers: V f ront = E f ront = Enew = {}
2: Add starting vertex or edge path to V f ront and E f ront
3: if Starting point is vertex: E f ront = {} then
4: Translate vertex into edge path
5: end if
6: while Expansion level not reached AND front not empty: nexp > 0 ∧ |V f ront |> 0 do
7: repeat
8: Select an edge path element /e.x from E f ront
9: Calculate the edge path segment /E.x in front of /e.x and previous(/e.x)

10: Minimize edge path segment /E.x
11: repeat
12: Add vertex from the edge path segment /E.x to front V f ront
13: if Vertex is already present in V f ront then
14: Split path in /E.x in path before and after collision
15: Minimize the edge path segments in /E.x
16: end if
17: until All vertices of segment(s) /E.x have been added to V f ront
18: Connect the new edge path segment(s) /E.x to the edge-front
19: Delete processed previous elements from V f ront , E f ront and Enew
20: until No more edge path elements to process: E f ront = {}
21: Swap containers: E f ront = Enew ∧ Enew = {}
22: Decrease expansions: ∆nexp =−1
23: end while

Expansion: If the edge-front defines a complete extension level, all edge path elements are in
E f ront and Enew is empty. If this front is expanded all single edge elements in E f ront need to be
expanded, creating a new edge path which is added to Enew. If all former edges of a previous
expansion level are expanded and E f ront is empty (see line 20 in Alg. 9), a new expansion level
is reached (see (a) in Fig. 5.3). Then the content of Enew and E f ront is swapped (see line 21
in Alg. 9), so Enew is empty again and E f ront contains the new expansion level. The parameter
nexp determines the number of expansion levels performed to reach the desired final front state.
Single Edge Expansion: The expansion of the front to a new expansion level includes the
expansion of single edge path element, as illustrated in Fig. 5.4. The expansion of a single edge
path element starts by picking one edge path element of the former front from E f ront (see line 8
in Alg. 9). Since edge path elements are doubly linked list elements, the edge path element
previous to the picked one can be easily accessed. In between those two edge path elements lies
a vertex. The process iterates through all vertices, which are connected to that vertex and that lie
in expansion direction. The path of edges /E.x connecting those vertices is determined (see
(a) in Fig. 5.4 and line 9 in Alg. 9). /E.x is supposed to be added to the front. First, however, the
path needs to be minimized (see (b) in Fig. 5.4 and line 10 in Alg. 9). Whenever the edge path

86 CHAPTER 5. SOLVING TWISTED SURFACE

Figure 5.4: Expansion of a single edge path element: (a) the new edge path segment /E.x in front
of /e.x and previous(/e.x) is determined; (b) the segment length is minimized in length; (c) the new
segment is connected to the front and processed front elements are deleted from their corresponding
data structures. Note that more than the initial two edge path elements have been deleted.

passes two edges of a triangle – where the third one is not part of the path – the edge path can
be shortened by redirecting the path through that third edge (see (b) in Fig. 5.4). Given that no
collision takes place, the shortened path /E.x can be connected with the edge-front and its edge
path elements added to Enew (see (c) in Fig. 5.4 and line 18 in Alg. 9). Vertices and edge path
elements which lie behind the current front after the expansion are now part of the processed
surface and can be deleted from the corresponding data structures (see line 19 in Alg. 9).
Since the MEF works based on edges, a vertex as a starting point represents an anomaly. However,
when using one of its triangles as an edge path, adding one edge incident to the vertex into E f ront
– so that it is expanded for the next expansion level – and the other two into Enew – so that they
will not be expanded for the next expansion level – the next expansion builds the front in one
edge-wise distance to that vertex (see (a) in Fig. 5.3).
Annihilation: If the minimization of /E.x leaves no remaining surface area to process, then
the front has been annihilated and ceases to exist (see (c) in Fig. 5.3). The annihilation of an
edge-front often marks the end of a search process, since the front cannot be further expanded.
Boundaries: If an edge-front is expanded at a boundary, its vertices are deleted from V f ront ,
since collisions cannot take place anymore, and its edge elements are deleted from the E f ront ,
since they cannot be expanded anymore. However, the edge path elements are still kept in the
doubly linked list. From a memory efficiency perspective this is not ideal, since all boundary
edges passed by the MEF are kept, and thus use up memory. However, this implementation
has the advantage that edge paths are always closed and complete, therefor making special case
handling unnecessary when accessing edge path elements.

5.2. APPROACH 87

Figure 5.5: A wide range of collision cases at a single edge path element expansion: (a) determination of
path segment /E.x; (b) the path segment is minimized and five collisions are detected; (c) due to the
collisions the path is split in six and the resulting path segments are again minimized and two of them are
annihilated; (d) finally four new path segments are connected to the front.

Collision: Since an edge-front defines a continuous contour, instead of an unorganized vertex
set, collisions can and have to be detected. The detection is necessary to inhibit fronts from
permeating each other (see (b) in Fig. 5.3).
The detection of collisions takes place at a single edge expansion (see Fig. 5.5). If a former
edge path element has been expanded and minimized, a new expansion path segment /E.x can
be added to the front. Before a new path is connected, however, it needs to be tested whether
it collides with an existing edge-front. All vertices of the new path are successively added to
the front vertices V f ront (see line 12 in Alg. 9). If one of these vertices is already present in
V f ront , this indicates a collision (see (b) in Fig. 5.5). The path in /E.x is then split (see line 14
in Alg. 9) and the new path segments need to be minimized again (see (c) in Fig. 5.5 and line 15
in Alg. 9). The collision test has to be vertex based, since a collision can involve one vertex
only (see (b) in Fig. 5.5). A single edge element expansion can include several collisions (see
Fig. 5.5). If all collision tests are performed, the potentially separated segments in /E.x are
connected to the front.
Bottleneck: When allowing minimum pathways with a perimeter of only three vertices in a
mesh (see bottleneck in section 4.2.2), certain cases will require further consideration in the
implementation of the MEF. If a new expansion path segment /E.x has been calculated and
minimized, it is connected to the pre-existent edge-front. If bottlenecks exist in a mesh, it is
possible for that pre-existent edge-front to be entirely skipped by the minimization process, while
/E.x contains a valid new edge-front purely by itself. This creates a variety of special cases
if fronts at bottlenecks are expanded or collide. Since those cases are highly implementation
specific, they are not listed here.

88 CHAPTER 5. SOLVING TWISTED SURFACE

5.2.4 Minimal Distance Front
The presented MEF is an efficient processing tool to analyze and search for aspects concerning
the connectivity in a mesh. From a connectivity focused perspective any vertex connection
or edge is equally valued. This setting therefore only considers discrete mesh connectivity
aspects in its calculation. If, for instance, vertex positions are altered and thereby also the mesh
geometry, the MEF processing would remain unchanged. The MEF, however, exposes a front
line straightened by the path minimization. This front line can be directionally set in relation
to the surface, establishing on-surface distances to the front line. The minimal distance front
(MDF) (see Alg. 10) is a MEF with a distance driven selection process for the expanded edge
path elements.

Algorithm 10 Minimal Distance Front (based on MEF Alg. 9)

1: Clean all containers: V f ront = E f ront = Enew = {}
2: Add starting vertex or edge path to V f ront and E f ront
3: if Starting point is vertex: E f ront = {} then
4: Translate vertex into edge path
5: end if
6: Calculate the anticipated distances for all edges in E f ront after expansion and add to Dexp
7: while Expansions not empty AND next one does not exceed maximum distance:

|Dexp|> 0 ∧ min(Dexp)<= dmax
Expansion level not reached AND front not empty: nexp > 0 ∧ |V f ront |> 0 do

8: Get edge path element /e.x associated with the smallest anticipated distance min(Dexp)
repeat

9: Select an edge path element /e.x from E f ront
10: Calculate the edge path segment /E.x in front of /e.x and previous(/e.x)
11: Minimize edge path segment /E.x
12: repeat
13: Add vertex from the edge path segment /E.x to front V f ront

with on-surface distance dstart and direction to starting point dstart
14: if Vertex is already present in V f ront then
15: Split path in /E.x in path before and after collision
16: Minimize the edge path segments in /E.x
17: end if
18: until All vertices of segment(s) /E.x have been added to V f ront
19: Connect the new edge path segment(s) /E.x to the edge-front
20: Delete processed previous elements from V f ront , E f ront , Enew and Dexp
21: Anticipate the expansion distances of all new edge path elements and add those to Dexp
22: Add all edge path elements to current front: E f ront = E f ront ∩Enew ∧ Enew = {}

until No more edge path elements to process: E f ront = {}
Swap containers: E f ront = Enew ∧ Enew = {}
Count down expansions: ∆nexp =−1

23: end while

To select an edge path element for expansion depending on the resulting distance to the starting
point makes the anticipation of these distances necessary. All these anticipated distances with
their associated edge path elements are added into a container, which orders them by their
anticipated distances. Again, a red-black tree is suitable for this task. The MEF has discrete
expansion levels. Those are defined as the total of single expansions needed to move the front
one single edge forward (see line 20 in Alg. 9). The MDF is not bound to such distinct levels
as defined by nexp, instead a front defines the farthest distant edge path to a starting point not
exceeding a certain on-surface maximum distance dmax (see line 7 in Alg. 10). In Fig. 5.6, the
difference of these expansion behaviors is illustrated.
If front vertices are added to V f ront , additionally their on-surface distance dstart and the on-surface
direction toward the starting point dstart are added (see line 13 in Alg. 10). For the initial vertices
dstart is zero. For a single vertex dstart is set to the zero vector. If a vertex is part of an edge path

5.2. APPROACH 89

Figure 5.6: Comparison of MEF and MDF: Distance field on the Dragon (left column), the Heating
Pipes (middle column) and a distance field close up (right column). The distances in the MEF (top row)
represent discrete edge counts, while the MDF (bottom row) represents geometric distances. Due to
skipped vertices and discrete distances in case of the MEF, all vertices of a triangle can have the same
distance, creating a unicolored triangle.

that is the initial starting point of the algorithm, dstart can be calculated similar to a boundary
normal of a vertex at a mesh boundary, conceiving the backside of the edge path (opposite side
to the front expansion direction) as a surface boundary.
Expansion: The MDF continuously expands with the expansion of every single edge path
element. In contrast, the MEF expands all former edge path elements to reach the next discrete
expansion level. If a single edge path element in the MDF is expanded, the element with the
smallest anticipated on-surface distance is selected (see line 8 in Alg. 10). The smallest distance
is chosen to keep the front at minimum distance to the starting point. The expansion of a single
edge path element itself remains unchanged to one presented for the MEF.
If an edge path element /e.x has been expanded, the vertices of the new edge path segment
/E.x are added to V f ront (see line 13 in Alg. 10). For every given vertex vx of the new edge path
additionally the distance dstart and vector dstart need to be calculated.
The previous edge-front is seen as a collection of separated spatial subdivisions delimited by
planes between them. Those subdivisions are either associated with an edge, or between two
edge subdivisions with a vertex.
A subdivision of an edge esub between vertex vle f t at its left and vright at its right is a space
determined by two planes, one intersecting vle f t and the other one intersecting vright (see
(b) in Fig. 5.7).
For a vertex vx to be considered inside a subdivision, it has to lie on or above both of these planes
(see (a) in Fig. 5.7). Both planes run parallel to the normal of the triangle tsub that lies on the
backside of esub and is parallel to dstart of either vle f t for the left plane and vright for the right
plane (see (b) in Fig. 5.7).
The calculation starts by identifying the subdivision which covers the vertex vx under investi-
gation. First, the subdivision associated with the edge of /e.x is tested. vx might be inside of
this subdivision, right, or left from it. If vx lies left from it, the previous subdivision of the front
previous(/e.x) is tested if vx is right from it the next subdivision next(/e.x) is tested. If vx lies
first at the left and for the following tested subdivision at the right or vice versa, vx lies in the
subdivision of the vertex in between. It is sensible to limit the number of tested subdivisions.
In the presented implementation, maximally 5 subdivisions are tested. If this limit is exceeded,

90 CHAPTER 5. SOLVING TWISTED SURFACE

Figure 5.7: The calculation of dstart and dstart : (a) with all aspects combined; (b) the subdivision of edge
esub; (c) 1. the distance of vx to the subdivision planes is determined; 2. it is used to scale dstart of vle f t
and vright ; 3. finally the normalized average of these vectors is calculated as a first estimate of dstart for vx;
(d) this first estimated vector is projected onto the surface to determine the intersection point pconnect of
esub with the starting point path of vx. Note that the subdivision planes do not necessarily intersect at the
starting point.

the result of the search is set to the subdivision associated with the vertex in between /e.x and
previous(/e.x) as a fallback solution. This fallback is also used in case a subdivision cannot be
calculated, since tsub does not exist or an accessed vector dstart is the zero vector.
For vx lying in the subdivision of a vertex vsub the calculations are simple. dstart for vx is the
distance form vx to vsub plus the distance form vsub back to the starting point dstart , which already
has been calculated and can be accessed through V f ront . The vector dstart is the normalized
vector running from vx to vsub.
If vx lies in the subdivision of an edge esub, a first estimate of dstart is approximated (see
(c) in Fig. 5.7). The direction of dstart for vx needs to lie in between dstart of vle f t and dstart
of vright . To what degree one of these vectors is represented in dstart , is supposed to resemble
to which plane vx lies closer to. Since a low distance implies more importance, the relation
from representation to distance is inversely proportional. Therefore, dstart of vle f t is scaled to
the distance of vx to the right plane and dstart of vright is scaled to the distance of vx to the left
plane. Then the normalized average of these vectors is used as a first estimate for dstart for vx.
Now, dstart represents the direction to the starting point under the assumption that the surface
progresses like a plane.
If the surface curved, this first estimate needs to be projected onto the surface (see (d) in Fig. 5.7).
This is achieved by setting up another plane which has vx as its origin point and runs parallel
to the estimated vector for dstart and to the normal of triangle tsub. The point pconnect , where

5.2. APPROACH 91

this plane intersects with esub, represents the point where the on-surface path from the starting
point to vx crosses the front. With this intersection point distance dstart and vector dstart can be
determined for vx.
The distance dstart of vx is the distance from vx to pconnect plus the distance back to the starting
point. The latter distance is again calculated as the average of dstart of vle f t and vright inversely
proportionally weighted by the distances to the subdivision planes. The final dstart for vx is the
normalized vector from vx to pconnect .
If a single edge expansion has been finished and the segment(s) in /E.x have been connected
to the front (see line 19 in Alg. 10), the process iterates through all new front edges. The
on-surface distances these edges would lead to, in case of their expansion, are anticipated.Then
edge path elements with their corresponding, anticipated distances are added to Dexp (see line 21
in Alg. 10).
The anticipated distance for an edge path element /e.x is calculated as the maximum of the
distances dstart its expansion would create. So, the dstart values of all vertices in the edge path
segment /E.x that would be created have to be determined. dstart can be calculated as before
when adding new vertices to the front.

5.2.5 Calculating Connection Path
One of the many applications of the presented data structures is to calculate a connection path
between two vertices in a mesh efficiently in runtime and memory consumption. To accomplish
this, two fronts are initialized, one at each vertex. Both are alternatingly expanded and new front
vertices are tested for being present in both fronts. If so, the fronts overlap at this vertex. If one
front cannot be further expanded, the initial vertices are not connected, otherwise an overlapping
vertex must have been found. This vertex then lies in the middle of the path between the initial
search vertices. With the new vertex the process can be recursively repeated, until the point
where two initial search vertices are adjacent to one another. The edges of adjacent vertices are
added to the connection path. When all recursive search processes for vertices have been brought
down to adjacent vertices, the entire path has been determined.
In order to search for the edge-wise shortest connection path, the VF as well as the MEF can be
applied (see Fig. 5.8). The MEF is more efficient in runtime and memory consumption. Since
every edge is equally valued an edge-wise shortest connection path is normally one of many
possible paths of the same edge-wise length.
When using the MDF, the shortest on-surface path is determined (see Fig. 5.8). To calculate the
length of this path, the sum of the distances dstart to the first overlapping vertex of both initial
fronts can be built. This length resembles the one of the path as actually projected onto the
surface, a path that passes across a triangle. However, the resulting path is constructed of exiting
mesh edges and does not resemble the projected path. This projected path would be a valuable
additional asset in geometry processing, since it is independent of the given mesh edges. With
the available dstart vectors this path could potentially be calculated. Note that the MDF based
path calculation is only one possible example of applying the presented data structure.

5.2.6 Twist Solving
The twist solving mechanism for the GCS approach involves three steps. First, a twist within the
current surface estimate is identified, second, the twisted surface regions are separated from one
another, and third, the twisted segment is turned around.
The third step is fairly easy. Depending on the underlying data structure, explicit normals are
inverted, or vertex orders are reversed when changing the orientation of a mesh segment.

92 CHAPTER 5. SOLVING TWISTED SURFACE

Figure 5.8: Calculation of a connection path between two vertices (top) with the MEF (left column) and
the MDF (right column). Showing the first (second row), the second (third row) and the third (bottom row)
recursive search level. Note how the expansion of the MEF is determined by the local triangle resolution
and how the equal edge-wise expansions differ in size and shape.

The first step is invoked in combination with the coalescing operation. This is a convenient
location to attach this function, since the operation already involves a boundary vertex vx,
the search for an opposing boundary vertex vopp, and a surface orientation test (see line 18
in Alg. 11).

5.2.6.1 Twist Detection

A twist between two boundaries is determined by opposite normal orientations at the same planar
domain. This is the case if, first, the size of the angle α between the normals nx and nopp of the
opposing vertices vx and vopp exceeds 170◦ (see line 13 in Alg. 11), and second, if vx and vopp
lie at the same planar domain, i.e., if the angle β between nx and the vector from vx to vopp lies
in between 80◦ and 100◦ (see Fig. 5.9).

5.2. APPROACH 93

Algorithm 11 Twist Solving (based on filter chain Alg. 7)

1: Initialization
2: repeat
3: repeat
4: repeat

Basic Step

5: Select random sample px of P
6: Find the winning vertex vx that exposes the smallest Euclidian distance to px

7: Discontinuity Adaption

8: Curvature Adaption

9: Decrease signal counters of all other vertices by a fraction: ∀sci(i ∈M) ∆sci =−β · sci

10: if vx is boundary vertex AND coalescing partner vopp was found then

11: Coalescing

12: else

Solve Twist

13: if nx and nopp and their surrounding indicate a twisted surface region then
14: while A connection path between vx and vopp has been found do
15: Cut connection path between vx and vopp at its smallest width
16: if Connection path could not be cut then
17: break
18: end if
19: end while
20: if Separate surface segments were created then
21: Swap the orientation of the smaller surface segment
22: end if
23: end if
24: end if
25: Filter Chain
26: Increment the iteration counter: ∆t = 1
27: until The basic step has been performed cadd times: t mod cadd = 0

28: Vertex Split

29: until The basic step has been performed cdel times: t mod cdel = 0

30: Edge Collapse

31: until A certain number of vertices is reached: |M |>= n f inal

94 CHAPTER 5. SOLVING TWISTED SURFACE

Figure 5.9: Detection of a twisted surface through angles α between two vertex normals and β between
a normal and the vector connecting the two vertices under consideration.

Since resolving a twist is very costly in runtime, superfluous resolving operations need to be
avoided. Thus, the above test is repeated for both neighbors of vx and vopp, and only if all three
tests expose a twist a valid detection is assumed.
This kind of detection is chosen arbitrarily and one can think of several alternatives. However,
the specific kind of this test is not significant for the overall algorithm’s validness or performance,
since it is not required to detect a twist at its earliest stage as long as it is detected at some time.
The latter is guaranteed by the refinement process, since twisted surface areas are refined until
the twist is recognized by the detection mechanism. This approximate detection can only fail if
the twist is not exposed at any boundary or if the twisted surface has not been clearly exposed
before the process ends.

5.2.6.2 Twist Separation

If the surfaces, which vx and vopp belong to, are detected as being twisted, one of them needs
to be turned around. As long as the surfaces are connected, the turning operation would fail
since both surfaces would be turned together. It seems to be surprising that differently orientated
surface areas could be connected since the coalescing process would avoid such a connection.
Nevertheless, this case may happen if these surfaces are connected during an earlier refinement
stage where the difference of the normals has not yet been developed that far. Fig. 5.10 gives an
impression of the various kinds of connections that may exist between twisted surfaces.
To isolate these different structures by heuristics, using geometric properties such as vertex
positions and normals, is extremely difficult and unreliable. The presented process therefore
relies only on the mesh connectivity for detecting these cases. This is achieved by using the
presented MEF.
To find out if vx and vopp are connected, the edge-wise shortest connection path between them
is calculated (see (a) in Fig. 5.11). This is done as presented in section 5.2.5 with initially
expanding two MEFs. If one front is annihilated and no connection path exists, then vx and vopp
are unconnected. Since the expansion of both fronts has been done concurrently, the vertex of
the annihilated front belongs to the smaller surface segment. At this point the separateness of vx
and vopp is proven and the orientation of one segment can be turned around. The smaller one is
chosen for this operation to minimize the effort.
If a connection path between vx and vopp has been found, the corresponding mesh parts must be
separated before turning one of them around. To separate them, the shortest cut that interrupt
this connection path is searched for.

5.2. APPROACH 95

Figure 5.10: Several examples of twisted connections of surface pieces. Twists at boundary vertices
(right and left), and a self intersection (middle). Note that contrarily oriented triangles are never connected
directly.

In a first stage, the shortest cut across the path that starts and ends at a boundary vertex is
determined. The search starts with the cut length of zero, involving a multiple boundary vertex
(see (b) in Fig. 5.11). The search is conducted for all vertices on the path. If a zero length cut
cannot be found, the search length is increased by one. To search for a cutting length higher
than zero along the path, the two closest boundary vertices to a given vertex of the connection
path are determined by applying the MEF. The connection between these two boundary vertices
defines a cutting path. In (c) in Fig. 5.11, a cutting path of length one is shown. The cut need to
be tested whether it would actually interrupt the path between vx and vopp. In (e) in Fig. 5.11, a
cutting path of length one that fails to interrupt the connection path is shown. An additional test
whether the cut would detach vx or vopp from the surface as shown in (f) in Fig. 5.11 is needed.
If no sufficient cut is found in the first stage, the second search stage is started. Here, circular cuts
are investigated, which do not necessarily involve boundary vertices, and which are defined by a
cutting path with circular connected edges. The search for circular cuts starts with a length of
three as shown in (d) in Fig. 5.11. To test a vertex on the path, a MEF is initialized at that vertex
and the front is expanded until a collision of the front takes place, or the current search length
is exceeded. If this path interrupts the connection path between vx and vopp and the triangles
intersect each other, as in (d) in Fig. 5.11, it is a valid cutting path.
If a cutting path is found that satisfies the presented criteria, that cut is performed (see line 15
in Alg. 11). All edges of the side of the cutting path that includes fewer triangles are deleted (see
Fig. 5.11). Now vx and vopp are tested again for a connection and the process repeats itself until
vx and vopp are separated (see line 14 in Alg. 11). If a maximum cutting length for boundary to
boundary and circular cut is set, it is possible for surface regions to remain connected and no
orientation swap can be performed (see line 20 in Alg. 11).

96 CHAPTER 5. SOLVING TWISTED SURFACE

Figure 5.11: Cutting connection path: (a) vx and vopp with their connection path; A cut of (b) length zero
and (c) length one from boundary to boundary; (d) a circular cut of length three through a self-intersecting
surface; (e) an illegal cutting path that would not interrupt the connection path; (f) an illegal cutting path
that would detach vx from the surface.

5.3 Additional Usage

5.3.1 Mesh Distance Processing
Edge-Wise Distances: The presented semi-local data structures resemble very general mesh
processing tools. They, for instance, allow easy implemention of the crumb and the bottleneck
filter from section 4.2.2 on filters. A crumb can be investigated by adding a vertex of a mesh
segment into a VF or a MEF as a starting point. If the front is annihilated before the maximum
crumb size is reached, the segment is identified as a crumb. For a bottleneck a MEF simply
needs to be expanded twice. If a collision takes place, a bottleneck has been identified.
Geodesic Distances: The MDF allows for geodesic mesh processing, which can be used for
unwrapping (see section 3.2.2) and mesh segmentation (see section 2.3.1.3). The MDF also has
obvious potential in geodesic applications, where on-surface distances are investigated.

5.3.2 Normal Estimation
Common normal estimation processes mostly attempt to calculate normals at a local point level
(see section 2.3.3). Noise and outliers often cause such approaches to fail. The GCS process is
very capable in creating soundly oriented surfaces at locally challenging point constellations.
With the presented twist solving mechanism the process is also capable in creating globally

5.4. RESULTS 97

sound orientations. Since the orientation process is superior to most approaches, a GCS surface
estimate can be used as a normal estimation process.
Here, a surface estimate is created. Then the process iterates through all points in P . For any
point the closest three vertices are calculated. Depending on the respective distances to these
vertices a weighted average of their normals is built to estimate the normal of this point.
The calculated Pori can then be used in combination with a distance function based surface
reconstruction approach (see Fig. 5.12).

Figure 5.12: The Heating Pipes model contains noise and outliers. Reconstruction of the model with
Poisson surface reconstruction using a nearest neighbor based normal estimation (top left). GCS
reconstruction with the twist solving process (bottom left). Poisson surface reconstruction with the GCS
based normal estimation (right column).

5.4 Results
Complexity Analysis: In all upcoming complexity discussions concerning VF, MEF, and MDF,
the algorithms are considered to be performed on a flat infinite regular grid, where every vertex
is connected to exactly six neighbors and all edges in the grid are of the same length. The benefit
of this assumption is that the VF, MEF and MDF expand almost the same way – that is to say
circular. In this setting, the number of processed surface elements – area of a circle – and the
length of the front – circumference – are easy to calculate. Also, cases such as front annihilations,
collisions and fronts reaching boundaries do not have to be consideration.
Shortest Path Calculation: The calculation of the shortest connecting path nicely demonstrates
the advantages of the presented semi-local processing principle. If the vertices under investigation
are not connected, only the smaller surface segment is fully processed and the calculation is
thereby held as local as possible. When determining a connection path of a length dpath, the
maximal memory consumption is the one needed for the two initial circular fronts whose radii
are half of the size of the path length:

98 CHAPTER 5. SOLVING TWISTED SURFACE

2 · (2π
dpath

2
) (5.1)

The processed area is the area of the two initial circular areas, plus the ones of the recursive
descent:

2 ·π(dpath
2)2 +4 ·π(dpath

4)2 +8 ·π(dpath
8)2 + . . .=

∞

∑
n=1

2n ·π(dpath
2n)2 = 1 ·π(dpath

1)2 (5.2)

The first summand in the formula above represents the processed area of the initial two circles,
which are processed to find the first overlapping point; the second summand represents the circles
for searching the next two overlapping points, processing four circles. The following summands
in the series represent deeper recursion levels. For every recursion level the circle radii are
halved, the number of circles doubles while the area to process is therefore halved as a result.
When infinitely proceeding this recursive descent – assuming the distance to be continuous – the
last or n-th summand represents an exponentially receding area converging toward zero. When
adding up all summands, this last summand is the missing fraction to a sum of one. Assuming
an infinitely receding area, the addition of all fragments of the series results to one.
The distance is based on mesh edges, thus, it actually is a discrete instead of a continuous value.
Therefore, the processed area is slightly smaller than the formula suggests, depending on the
number of edges in a calculated path. The longer a path is edge-wise, the smaller is the area of
the last summand in relation to the calculated processed area in total.
In both formulas, the calculation effort eventually only depends on the length of the path and is
independent of the mesh size. With a memory consumption proportional to the square root of the
processed surface area – assuming the front line to be an actual 1D contour – the operation has a
very small memory footprint. The runtime complexity of all the fronts is O(n log n), where n is
the number of processed mesh elements. All n elements are processed and accessed a constant
number of times and balanced trees are used for all element accesses O(log n).
Since the same surface is processed multiple times, the presented shortest path calculation has
a bigger constant c in runtime than the Dijkstra-based shortest path calculation algorithms
mentioned in the introduction. However, this advantage is achieved by storing all visited vertices.
Therefore, their memory consumption is proportional to the processed surface area, instead
of being proportional to its square root. Additionally, the presented path calculation could be
optimized by taking advantage of the search direction as in the A∗ algorithm. Additionally, the
already calculated fronts of previous recursive search levels could be used to narrow the search
domain.
Minimal Edge Front: The presented MEF is a very fast way for gaining edge-wise distances
and other mesh connectivity related information. On average for 1000 different starting vertices,
a MEF needs 0.343s to visit all 438K vertices of the Stanford Dragon model, while the maximum
edge count is 3069. The same test performed with the VF needs 0.531s on average. The MEF
exploits the properties of a 2D surface for its efficiency by using a minimized directed front line
that represents a 1D contour. Only elements in front expansion direction are processed and the
front is minimized, thereby many elements are skipped during the process.
Additionally, the connected and sealed edge-front is a more meaningful representation of the
surface area under investigation. An edge-front can detect and localize collisions and due to the
straightened front line additional surface aspects can be set in relation to the front.
Minimal Distance Front: Geodesic distance calculations with an edge-front can be performed
with the MDF. Using on-surface distances makes the MDF expansion independent from the
given mesh triangulation and it performs equally well even on challenging triangulations, as
illustrated in Fig. 5.13.

5.4. RESULTS 99

Figure 5.13: An illustration of a distance field on a reconstruction (# triangles: 100K) of the Dragon model
(first column) and the original (# triangles: 871K) Dragon model (second column). Although the Dragons
expose very different triangle distributions and shapes, the local distance lines progress nearly equally on
both models. The same demonstration for the MEF (third column) exposes very different progressing
fronts for the reconstructed (bottom) and original (top) model already at the starting point.

If a vertex cannot be attributed to a corridor in the MDF distance calculation, the fallback solution
uses the distance to the vertex where the initial expansion took place. This distance estimate is
likely to overshoot the actual front-to-vertex distance. Since only minimum distance expansions
are selected, these possibly oversized estimates are less likely to be chosen. This provides the
distance approximation process with a certain self-correction property, thus making it more
robust.
If the MDF is performed 1000 times on the Dragon model, it takes 1.420s on average and
uses only 2334 edges at its maximum. The latter measurement confirms a more straightened
circular front, since fewer edges are required. The MDF is less efficient than the MEF, since
it additionally involves the distance calculation. Also, the MDF with its anticipated distances
always needs to be one step ahead of the current front. Additionally, the distance anticipation
has to be performed for all expandable edges, although many of them are likely to be skipped
and never to be expanded.
However, the presented implementation has been built on top of the MEF implementation,
leaving quite some potential for optimization. For instance, the costly distance calculation is
done twice for every vertex, once for anticipated distances, and again when actually adding

100 CHAPTER 5. SOLVING TWISTED SURFACE

Model (# triangles) time
in sec

difference in
mesurement

Hand (76K) 0.11 0.115%
Happy (1.1M) 2.16 0.083%
Statue (10M) 23.5 0.112%

Asian Dragon (7.3M) 17.2 0.077%

Table 5.1: The MDF was performed on four different models. The average time for the MDF to visit the
entire mesh surface from 1000 different starting points was measured. Also, the distance differences for
1000 randomly picked pairs of vertices were measured with the calculation performed twice, once starting
from the one and once from the other vertex.

them to the front. This redundancy can be removed by saving the initial calculation in another
container, for instance.
The front-to-vertex calculation heuristic assumes that the path from the current front to new
vertices is always a straight line. This heuristic fails if two or more triangles are passed which
expose curvature. By using the available dstart vectors to project the shortest path onto those
triangles the correct path could be determined, nevertheless.
Despite these imperfections the presented implementation of the MDF calculates entire distance
fields even for meshes consisting of millions of triangles within a few seconds and distance
calculations of the same path on average differed in the one per mill range, as shown in Fig. 5.14)
and Table 5.1. Assuming this latter estimate represents the actual distance error range, the
approach does come close to the accuracy of Surazhsky’s approach, while not losing accuracy
on complex models, such as the Happy Buddha, as the FMM approach does (these statements
refer to the measurements presented in [SSK+05]). Additionally, the already fast approach has
major potential for runtime optimization.
Solving Twisted Surface: Twist resolving in an iterative refinement algorithm is a novel addition
to the GCS approach.
The runtime complexity of the algorithm without the presented solution is O(n log n) for the
average case as discussed in chapter 3 with the basic GCS approach, where n is the number
of vertices in the final mesh. In the following, the complexity of the presented operations is
discussed informally, i.e., several assumptions are made, which are reasoned, but would need
formal proving to satisfy the standards of a mathematical proof.

Figure 5.14: The Hand, the Happy Buddha, the Thai Statue and Asian Dragon model with a distance field
calculated with the MDF.

5.5. CONCLUSION 101

If the twist detection is assumed to work correctly and the unknown surface is orientable, then –
once detected – twists are resolved and cannot reappear, which strongly limits the number of
twists that can realistically occur in a reconstruction process.
The worst case concerning memory and runtime complexity would take place at the end of the
algorithm if both twisted surface segments have the same size of n

2 . In this case, the searching
mechanism visits the biggest possible number of vertices. Since all data structures within the
MEF have a memory usage proportional to number of edge elements in the front, the memory
complexity of the MEF is O(

√
n), assuming that the dimension of the front is one and it expands

uniformly, i.e., non-fractal, over the surface.
The runtime complexity can be determined by the number of vertices visited while searching
the connection path and the number of search passes that are performed until the regions are
separated. The search for a cut along the connection path and the switching operation are both
done in addition to the search for the connection path, but both do have smaller complexities.
The number of vertices visited by the search operation is proportional to n and the search has to
be accomplished for all incorrect connections that require cutting. Since the gap between the
differently oriented surface segments can be assumed as being one-dimensional and not exposing
a fractal structure, the number of possible wrong connections is proportional to

√
n. This creates

an overall worst case complexity of O(n
3
2).

However, that a twist in a huge surface area remains undetected throughout the entire process is
very unlikely. Twists are detected at a relatively constant stage in their development. Thus, in the
average case the effort of the twist resolving process does not depend on n, but twits are rather
resolved during the early stages of the mesh development.
The Stanford Dragon model serves as a good example for a point cloud that should not produce
twisted surfaces at all, the Vault model is a suitable example for a simple twisted surface, and
finally, the complex Heating Pipes model includes noise, outliers, and non-uniform sample
densities which require multiple twist resolvings. Finally, the algorithm is tested with an extreme
model concerning twists – the point cloud of a Möbius strip. All tests were performed without
and without enabling the presented twist resolving step (see Table 5.2 and Fig. 5.15).
The Heating Pipes model was run using many different random seeds leading to different numbers
of resolving processes, but finally a soundly oriented surface was always created. This reliability
is achieved through the use of mesh connectivity rather than the geometric properties of the
vertices. The maximum number of twist resolving processes during the Heating Pipes model
reconstruction was three. The impact on runtime is obviously beneath the standard deviation of
the processes duration (see Table 5.2), since the Heating Pipes reconstruction was even faster in
the test including the twist resolving process.
To prove stability and robustness of the presented method, it was also applied to the toughest
conceivable model in relation to surface orientation, the non-orientable Möbius strip. For
the Möbius strip the twist resolving process was started 274 times until the demanded vertex
resolution was reached, although this had a significant impact on the overall runtime of the
process, it still performed soundly.

5.5 Conclusion
The presented edge-front data structures show great potential for computer graphics applications.
The edge based front line allows the differentiation of events, such as collisions. Surface related
properties can be set into relation to the front, such as the distance of vertices. The edge-front also
exploits the characteristics of a 2D surface to gain efficiency. Some extensions to the edge-front
model might be “static edge path elements” that do not expand, but confine the space in which

102 CHAPTER 5. SOLVING TWISTED SURFACE

Figure 5.15: The Dragon, Vault, Heating Pipes and Möbius strip model reconstructed without (left) and
with (right) the twist solving mechanism (also see Table 5.2).

5.5. CONCLUSION 103

Point Cloud
(# samples) # triangles

time
without twist

solving
time

with twist solving
resolving
processes

Dragon (438K) 100K 0:0:51 0:0:51 0
Vault (368K) 40K 0:0:16 0:0:16 1
Pipes (918K) 100K 0:1:13 0:1:12 3

Möbius Strip (163K) 40K 0:0:13 0:1:16 274

Table 5.2: The table shows reconstruction results of different models without and with the twist resolving
method. The last column shows the number of performed twist resolving processes.

the edge-front expands. For instance, in the connection path calculation the edge-fronts at the
point when an overlapping vertex is found could be saved in that way. When calculating the
next recursive search level, the saved edge path of the previous level could be used to confine
the search space, thus making the search more efficient. A disadvantage of the edge-front data
structure is its complex implementation in comparison to vertex based front.
The geodesic calculations performed with the MDF proved the potential of the presented
processing strategy. The data structure is virtually parameter free and can easily be altered for
individual problem cases. A front can be started from a point as well as from a line and it can
deal with challenging triangulations and non-solid meshes.
Nevertheless, the presented MDF is not yet a fully-fledged geodesic algorithm. In the presented
form, the algorithm cannot be used for arbitrary positions projected onto a mesh, but only
for vertices. The same holds when starting the algorithm from a line. Here, only existing
mesh edges can be used. To start from arbitrarily shaped lines, as in [BK07], a mechanism for
adding the required edges to a mesh would be needed. To calculate actual shortest distance
paths independent of the existing edges and triangles of a mesh, the introduction of temporary
vertices and temporary edges could be considered. The necessary vectors dstart , which represent
the on-surface projected path back to the starting point, are already available in the current
implementation. With this additions to the presented algorithm, it could be fully compare with
other geodesic algorithms. However, this would exceed the scope of this thesis.
When using the MDF for unwrapping in texturing or for a surface segmentation, an alternative
collision behavior might be reasonable. If fronts would not merge at collision, but remain and
build a collision line instead, a MDF would always contain only one single continuous edge-front.
Using the collision line as a cutting line, a surface could be cut into one single connected sheet
to be fitted into a texture space. For this task it would also be reasonable to add curvature into
the expansion selection process to avoid flat surface regions from being cut.
As discussed an iterative refinement process for surface reconstruction offers a lot of advantages.
However, up to now, this process was limited to point data which do not cause twists in the
produced surface. With the presented method this limitation is removed, making iterative
refinement approaches a yet more universal reconstruction tool.
The MEF delivers a very general solution to the problem of separating two surface areas, that does
not depend on geometry based heuristics. The method is based on the assumption that surfaces
with different orientations can always be encountered at a boundary edge. This assumption can
fail if two entirely separate objects are contained in one point cloud or if the only crossing of
two differently oriented surfaces is a self-intersection, which is unlikely, but possible. If a point
cloud contains structures that are represented only by a few points, it may happen that a twisted
surface cannot be recognized due to that low resolution.

104 CHAPTER 5. SOLVING TWISTED SURFACE

Furthermore, the process has shown weaknesses when solving twists that are caused by thin
structures – surfaces with contradicting orientations that lie close together – which the approach
covered as one surface at initial stages. These structures can then lead to greater calculation
times. Nevertheless, finally, twists are resolved correctly.

Chapter 6

Growing Surface Structures

In previous chapters, GCS approaches have been proven to be efficient surface reconstruction
algorithms. GCS can easily be adjusted to a given problem, such as reconstruction, by inventing
simple local learning rules, while still remaining simplistic and robust.
The growing surface structures (GSS) algorithm [AB13] (see Fig. 6.5 and Alg. 12) is a major
conceptual change in the GCS approach. Instead of “adjusting” the learning behavior, the
central learning scheme is shifted from optimizing the distribution of vertices to the creation of a
valid surface model. Where in former GCS approaches the created topology is only implicitly
represented in the process, it is explicitly integrated and represented in the refinement process of
the GSS approach. Here, the closest surface structure, such as a vertex, an edge or a triangle is
determined for a given sample and the actual sample-to-surface distance is measured. With this
additional information the adaptation process can be focused on the created topology.

6.1 Introduction
The foundation of the placement of vertices in the GCS algorithm lies in the competitive learning
strategy of the k-means clustering approach, which aims to create sensible vertex distributions.
This placement is kept in the SOM algorithm, but extended by moving neighboring vertices,
integrating topology guided movements. The vertex distribution is stabilized by an underlying
topology. If the actual result of the process is the vertex distribution, as in vector quantization,
this focus on vertices is a reasonable choice. If, however, the result is represented by the created
surface and its topology, as in surface reconstruction, the inherited focus on vertices might
discard valuable surface related information.
GCS uses a refinement strategy for reconstruction, where a current surface estimate S is
successively refined to make it progressively more similar to Sphy. Improving a process working
with such a strategy, means to minimize the refinement operations needed to make S more
similar to Sphy. Since a newly created surface is built on older surface stages, a closer surface
estimate reached earlier provides later refinements with a superior basis. S progressing toward
Sphy can be measured as the distance of corresponding points, as in the surface fitting problem,
and more importantly as how topologically correct S represents Sphy.
To minimize the number of refinement steps needed, the adaptation operations need to gain the
maximum information out of every sample and avoid incorrect adaptations. Information about
Sphy in an iterative refinement strategy is derived as a combination of a current estimate S in
relation to a given sample. However, instead of putting samples in relation to a surface S , the
GCS algorithm sets them in relation to a vertex distribution and due to this limited perspective
discards valuable information.

105

106 CHAPTER 6. GROWING SURFACE STRUCTURES

The GCS approximation can be set to follow different aims, such as a likelihood distribution
(signal counters), an error minimization (distance error), and a topology optimization, which
each lead to different results.

6.1.1 Likelihood Distribution
Vertices represent a likelihood distribution if for every given vertex v ∈M the likelihood to
be the closest neighbor to a randomly chosen sample p ∈P is equal. If vertices being closest
neighbors are seen as the result of a probability experiment, this approximation resembles
entropy maximization. This means that the information carried by any given sample is of
the same importance to the process. Such representations are especially important in pattern
recognition and statistical analysis.
To implement a likelihood distribution, every vertex carries a signal counter. To approximate
the likelihood distribution (see line 10 in Alg. 4), these counters are simply incremented when a
vertex is closest to an input sample. If a new vertex is added (see line 14 in Alg. 4), the highest
error term refers to the space where most samples share the same vertex.
Since older signals tend to be less representative, all signal counters are decreased by a certain
factor at every iteration cycle (see line 11 in Alg. 4). By using a likelihood distribution signal
counters can also be used to determine misplaced vertices in spaces that contain few or even no
samples, since their signal counters are very low due to the constant decreasing. This concept
has therefore been used in most implementations for surface reconstruction.
These algorithms, however, determine likelihoods of vertices, instead of the likelihood of a sur-
face. If, for instance, a flat surface is approximated, the algorithm creates lots of vertices, which
are in proportion to the number of samples, although the area could be accurately approximated
with a few triangles only.

6.1.2 Distance Minimization
If the approximation is changed to account for a quantization error, vertices are placed to expose
the smallest Euclidian distance to the samples in P . If the samples P are equally distributed,
the goals of a likelihood distribution compared to ones of a distance minimization are nearly
equal.
If, however, some regions are represented by a denser sampling than others, these regions are
represented by fewer vertices in the distance minimization scenario. The error, which is measured
as the Euclidian distance, can be lowered more significantly in regions where samples lie farther
apart. Thus, vertices are more likely to be added there.
This approximation is typically used for vector quantization in data compression. To implement
this behavior, every vertex carries an error value err which is increased by the distance or the

Figure 6.1: Samples and an approximated surface (left), distance between vertices and samples (middle),
distance between surface and samples (right). In the case of a surface approximation, using the distance
from samples to the surface is more sensible.

6.1. INTRODUCTION 107

Figure 6.2: Problems of vertex focused approximation errors: Two surfaces with the same vertices, the
same samples, and thus, the same sample-to-vertex approximation errors. Both surfaces expose an
undesired (left) and a desired (right) solution. A triangle placed in an empty space (top) and an incorrect
dent in the surface (bottom).

squared distance between the winning vertex and the given sample. The highest approximation
error refers to the space where the samples lie farthest away from a vertex, thus a new vertex is
added there.
In contrast to the previously discussed likelihood values in the form of signal counters, removing
a vertex with low distance error would make no sense, since these vertices indicate that they are
well placed. If this approximation error is used, the deletion process for topologically incorrect
vertices needs to be handled separately.
Despite this disadvantage, minimizing the distance error might be more convenient for placing
a surface as close as possible to given input samples. However, the presented approximation
minimizes the distance to the vertices, instead of the one to the surface (see Fig. 6.1).
So far, the idea of involving the surface approximation error in the refinement process has been
addressed only indirectly. In the presented SGC approach [AB12c], the curvature adaptation
compares the average surface curvature to the one of a winning vertex and curved areas lead
to higher signals (see line 14 in Alg. 5) and thus more subdivisions in such areas. In [JIS03],
vertices additionally contain normals and the algorithm counts how many times these normals
are adapted to increase subdivisions in such areas.
These changes lead to an implicit representation of the surface approximation error within the
algorithm, since curved surface regions need more subdivisions to be correctly approximated.
But the surface approximation error itself is not explicitly represented.
A more direct approach was presented in [MSP+08], where distances of newly added triangles to
the points in P are directly calculated. If distances can be lowered by an edge swap operation, it
is performed. This leads to a certain improvement of the geometrical quality of the approximation.
At the same time, however, it discards one of the fundamental advantages of the GCS algorithm,
the independence of the sample set size, since in this approach P is accessed directly for the
additional distance calculation.

6.1.3 Topology Optimization
In the presented algorithm development, the SOM introduced topology. A topology can increase
the performance of creating smoother and more stable distributions of vertices. But the created

108 CHAPTER 6. GROWING SURFACE STRUCTURES

Figure 6.3: Samples that originate from a curved surface (top left); A fitting approximation of this surface
and a magnification showing the sample-to-vertex distance and the sample-to-surface distance (top right);
Vertex Voronoi regions, which assign a sample to the incorrect surface area (bottom left); Surface Voronoi
regions, which assign the same sample correctly (bottom right).

topology can also be used to map data of a high dimensional input space onto a space of
lower dimension to visualize or analyze data with less computational effort, as in classical
dimensionality reduction. It can also be used to directly reconstruct the subspace the samples
in P originate from, as in surface reconstruction. Where the SOM as well as the basic GCS
algorithm use a static surface topology, the SGC approach can approximate arbitrary topologies.
A significant problem of all GCS based algorithms concerning topology is the missing represen-
tation of the actual surface in the adaptation process. With the same constellation of vertices,
however, different triangles can be constructed. Since the presented approximation techniques
solely focus on sample-to-vertex properties, these different triangle constellations have no effect
on the approximation behavior (see Fig. 6.2). As a result, many insufficient approximation states
are simply invisible to the process and therefore cannot be treated.
Although the process refines an existing 2D surface S , the surface is still represented as a
collection of Voronoi regions of the vertices, since sample-to-vertex and not sample-to-surface
distances are considered. This implicitly includes the assumption that the Voronoi regions of two
connected vertices are not interrupted within their attached surface. But for close or complex
shaped surfaces, this is not the case (see Fig. 6.3). Here, the actual representation of S becomes
apparent, a permeable space of independent Voronoi regions.
Topology optimization and error minimization (surface fitting) are two different things. Error
minimization tries to create the smallest possible sample-to-surface distances. Topology opti-
mization is concerned with creating a topology with S that is as close as possible to the topology
of Sphy.
In order to be topologically correct, every point on one surface needs to have a unique equivalent
on the other surface and vice versa, while neighbor relations are preserved. This means the
shortest on-surface path between any two corresponding points on S and Sphy should always
pass through the same corresponding points on both surfaces (see Fig. 6.4).

6.2. APPROACH 109

Figure 6.4: Surface and samples (left); An approximation of that surface and the sample-to-surface
distances (middle); Another approximation of that surface exposing a topological mismatch, but having a
similar distance error (right).

An approximation technique focusing on topology optimization during the refinement process
has not yet been presented in the GCS process.

6.2 Approach
The GCS algorithm has proven to be a high quality surface reconstruction tool. However, the
analysis of the algorithm has shown that topology is only created implicitly. In the following,
changes to the general approximation concept and improvements that can be made based on
these changes are presented.

6.2.1 Topology Focused Approximation
The basic algorithm concept focuses on placing vertices in positions likely to reach the chosen
approximation aim, such as a likelihood distribution or a distance minimization. Up to now
no setting has been presented to aim for topology optimization. To put the actually created
surface topology into focus, the approximation error needs to be set in relation to the sample-
to-surface distance. Instead of a vertex the process needs to find the closest surface structure.
Setting samples in relation to a triangle or an edge gives rise to several different local surface
modifications.
In the basic GCS implementation, either signal counters or error values are carried by the vertices.
The surface structure element that most distance errors are measured toward and which is also
the building block of the surface discretization is, however, a triangle. It is therefore the most
sensible structure to carry the local approximation error values. The most reasonable place for
the error value of any topology focused function approximation is always the simplex of the
highest dimension in the GCS algorithm. This simplex is the building block of the subspace
that is approximated and distance values toward these elements are the most significant for the
current approximation state. Thus, they are the most valuable ones for decisions concerning
modifications of the current subspace estimate. Using them allows for better judgments about
current local approximation states and the choice of location for subdivisions.
The new approximation error also allows and demands for a differentiation between topology
changing deletions to correct topologically misplaced surface structures and non-topology
changing deletions that remove geometrically redundant structures from the surface. This

110 CHAPTER 6. GROWING SURFACE STRUCTURES

Figure 6.5: Growing surface structure: (a) the closest surface structure is searched for; (b) the basic step
moves a triangle, increases its error values, and sets its age to the triangle size; The (c) vertex split and
(d) edge collapse operation; (e) the surface cutting operation.

distinction is realized by adding an “age” indicator to every triangle, which is then used to
determine topologically misplaced surface structures.

6.2.2 Implementation of Growing Surface Structures
With the conceptual changes presented above, additional and more accurate information about
the current approximation state is available within the GCS process. This information can be used
to create a better approximation in sample-to-surface distance accuracy as well as in topological
correctness, as presented in the following implementation (see Fig. 6.5 and Alg. 12).

6.2.2.1 Search for Closest Structure

For runtime efficiency reasons the presented implementation does not use a triangle based
spatial subdivision data structure, but still uses a vertex based k-d tree. By examining a number
of vertices and testing their surrounding triangles, the closest structure to a given sample is
heuristically determined. This heuristic might fail if a curved surface lies very close to a flat
surface, but this case is considered to be rare (see Fig. 6.6). The new search process has three
possible outcomes: a vertex, an edge, or a triangle (see (a) in Fig. 6.5 and line 6 in Alg. 12).

6.2.2.2 Surface Movement

Instead of having only a vertex as a closest element, as in the basic GCS process, now it can
additionally be an edge or a triangle. The type of movement is differentiated depending on
sample-to-surface distances. The known distance dx of a given sample px to the surface can
be compared to the average sample-to-surface distance dP . If dx falls below a limit in relation
to dP , the movement is entirely discarded, since the sample already lies close enough to the
surface (see line 10 in Alg. 12). If dx is higher than limskip, but falls below a limit in relation to
dP , only the closest vertex is moved, since the surface can be considered generally correct, but
the placement of the edges can be optimized (see line 11 in Alg. 12).
For larger distances all vertices of the given structure are moved toward the sample (see
(b) in Fig. 6.5). The neighborhood movement (see line 15 in Alg. 12) is kept unchanged

6.2. APPROACH 111

Algorithm 12 Growing Surface Structure
(based on GCS Alg. 4 and additionally incorporating aspects of SGC Alg. 5 and the filter chain Alg. 7)

1: Initialization
2: repeat
3: repeat
4: repeat

Basic Step

5: Select random sample px of P
6: Find the winning structure [s] that exposes the smallest Euclidian distance dx to px
7: Increase the approximation error err of [s] if [s] is a triangle and to all adjacent triangles if

[s] is an edge or a vertex: errnew = (dx + errold(k−1))/k
Decrease signal counters of all other vertices by a fraction: ∀sci(i ∈M) ∆sci =−β · sci

8: Set the age a of [s] if [s] is a triangle and of all adjacent triangles if [s] is an edge or a
vertex to their initial age: a = size(t)/sT

9: Increase the age of all other triangles according to β : ∀ai(i ∈T) ∆ai = β ·ai
10: if dx in relation to dP indicates an adaption is needed: dx/ dP > limskip then
11: if Only a slight adaption is needed: dx/ dP > limsingle then
12: Set [s] to be the closest vertex in [s] to px
13: end if
14: Move all vertices in [s] as much toward px as determined by the learning rate lr
15: Perform Laplacian smoothing on all neighbors N[s] of [s] as much as determined by the

neighbor learning rate lrn
16: end if
17: Coalescing

18: Filter Chain
19: Increment the iteration counter: ∆t = 1
20: until The basic step has been performed cadd times: t mod cadd = 0

Vertex Split

21: Select triangle tx with the highest approximation error value: ∀erri(i ∈T)<= errx
22: Select the longest edge of tx and perform a vertex split operation.
23: Split errx evenly between the old and newly created triangles.
24: Set all triangle ages a to their initial age: a = size(t)/sT .

25: Filter Chain

26: until The basic step has been performed cdel times: t mod cdel = 0

Remove

27: Select triangle tx with the lowest approximation error value ∀erri(i ∈T)>= errx
28: if tx exposes an edge exy, which is geometrically redundant: nx ·ny < max∇n then
29: Perform an edge collapse operation on exy
30: end if
31: Select triangle ty with the highest age ay: ∀ai(i ∈T) ai <= ay
32: if The age ay of ty is too high: ay > maxa then
33: Cut out ty entirely.
34: end if
35: Filter Chain

36: until Approximation accuracy exceeds a certain threshold

112 CHAPTER 6. GROWING SURFACE STRUCTURES

Figure 6.6: The search for a closest surface structure based on investigating a number nv of surrounding
elements of a vertex: (a) a sampling of a curved and a flat surface close to one another; (b) approximation
of that surface; (c) the search heuristic works correctly for nv = 3, where three vertices are investigated; (d)
the search heuristic fails for nv = 2, where the vertex connected to the closest triangle is not investigated.

and conducted with the Laplacian smoothing mechanism for all first neighbors N[s] of the
examined structure.

6.2.2.3 Distance Error

A sample can either be closest to a vertex, an edge, or a triangle. If it is closest to a triangle, its
distance error is changed. In case of an edge, this is done for both triangles connected alongside
that edge. In case of a vertex, this is done for all triangles connected to this vertex.
If the error value was directly set to the given distance, all previous distance errors would be lost.
If all distance errors were accumulated, distance errors of the beginning of the process, exposing
huge distances, would solely determine the subdivision process. If all error values were just
constantly decreased, as signal counters in a likelihood distribution, a constant distance error
improvement over the entire surface would falsely be implied.

Therefor a formula is used (see line 7 in Alg. 12) where the influence of an error value halves
after k additional updates. The following formula creates this local half-life λ for distance error
updates:

(k−1
k)

λ
= 0.5

k = 1
1− λ
√

0.5

errnew = dx+errold(k−1)
k

(6.1)

6.2.2.4 Refinement

Instead of a vertex the triangle with the highest approximation error is determined. Subdivision is
performed with a vertex split operation using the longest of the triangle edges (see (c) in Fig. 6.5).
The error value of each new triangle is set to the half of the error value of its predecessor (see
line 21 in Alg. 12). Triangles ages are set to their initial value.

6.2. APPROACH 113

6.2.2.5 Deletion

The deletion process is one of the most important changes in the new algorithm. When using
a sample-to-surface distance error, the error values can be used to locate triangles that are
geometrically redundant (see line 28 in Alg. 12). In order to create a model representation that is
as memory efficient as possible, these triangles can be deleted by an edge collapse operation of
one of their three edges (see line 29 in Alg. 12).
The best triangle edge for the collapse operation is the one which is surrounded by triangles
whose normals expose the smallest differences to each other. Collapsing this edge changes
the surface geometry the least. This edge can be determined as the one with the highest dot
product of the normals of its two vertices, since these normals are calculated based on the
surrounding triangles. It is reasonable to set a curvature threshold to avoid decreasing the surface
approximation quality when collapsing vertices that are actually exposing curvature.
In addition to the distance error value a triangle age is needed that indicates if a triangle reached
the maximum age maxa. This is supposed to happen if the triangle has not been winning for a
certain number of times γ . Those triangles are considered to be misplaced and topologically
wrong. A misplaced triangle is detached from the rest of the mesh and then deleted (see
(e) in Fig. 6.5). After the deletion process, as also done in previous sections, the mesh can be
cleaned by the application of certain filters (see line 18 in Alg. 12).
The concept to locate misplaced constructions by an age is inspired by the GNG edge removal
process (see line 24 in Alg. 6). For GNG the age increment is, however, constant. Since the
likelihood for a triangle to win is proportional to its size, the aging process needs to be more
differentiated. For every iteration the age of all triangles is therefore increased by a tiny factor β

(see line 9 in Alg. 12), which relates to the overall number of triangles |T | in the mesh:

β = (γ · |T |)
√

maxa−1 (6.2)

Instead of increasing the age of the triangles by constant incrementation, as in the GNG process,
it is done by multiplication, again allowing the use of a tumble-tree [AB10b]. The aging process
reaches an upper bound, whereas the signal counter reaches a lower bound. This, however, is
only done to resemble an aging process.
For all triangles selected during the basic step, whose error values are updated (see above), the
age is renewed (see line 8 in Alg. 12). Since small triangles are less likely to be winners, the
initial age of a triangle is its size(t) divided by the average triangle size sT . Thus, the average
triangle starts with an age of one, while small triangles start “younger” and big triangles “older”.
The deletion process now explicitly distinguishes distance driven and topologically driven
deletions.

6.2.2.6 Finalization

One of the assets of the GCS algorithm is the fact that S is an approximation of Sphy at any
time during the process – the algorithm can be stopped and resumed at any given time. With the
novel surface distance approximation error a potential stopping point for the algorithm can be
chosen more sensibly, since it can be set to an actual sample-to-surface error value.

114 CHAPTER 6. GROWING SURFACE STRUCTURES

Figure 6.7: A progression series of the Dragon model from left to right with 2500, 5000 and 10000 triangles
with the GCS algorithm (top) and with the GSS algorithm (bottom). With the new algorithm the surface
converges faster toward the final topology.

6.3 Additional Usage

6.3.1 Unifying Sample Density
If the approximation of the basic GCS algorithm is set to distance minimization – using sample-
to-vertex distance errors instead of signal counters – it can also be used as a sample distance
unifying process. Reconstruction processes that rely on evenly distributed sample distances
could pre-process point clouds with non-uniform sample densities.

6.3.2 Remeshing and Mesh Optimization
The GCS algorithm can be used as a remeshing algorithm. With the presented changes, the
process can additionally use the available triangles more efficiently to create evenly distributed
approximation errors. Potentially the GSS approach could be used to create a pure mesh
optimization process where solely the approximation quality matters. However, this would mean
to suspend all operations that increase the triangle quality. This idea is further discussed in the
conclusion section.

6.4 Results
Different tests have been performed with the Stanford Dragon model as a good example for a
point cloud that is relatively challenging by its shape and sample distribution, the Hand model
exposes sharp features, the Asian Dragon and the Thai Statue expose a lot of curved areas,
the Heating Pipes model includes some extremely noisy areas, non-uniform sample densities
and open surface areas, the Happy Buddha has regions of surfaces lying close together. As a

6.4. RESULTS 115

Figure 6.8: Some thin areas of the Happy Buddha model, reconstructed with 200K triangles with GCS
(top) and GSS (bottom) algorithm. The new algorithm is able to build a correct topology in thin areas in
an earlier algorithm stage.

comparison an extended GCS approach is used which incorporates the SGC topology adaptation
(see section 3.1.4), but vertices are not adapting to curvature or sharp features. For the GSS
algorithm the following parameter settings have been used:

Parameter Settings:

Symbol Setting Meaning

λ 9 Half-life of a distance error
γ 7 Allowed misses before deletion theshold is reached

maxa 10 Maximum age for triangles
max∇n 0.9 Threshold before edge collapse
limskip 0.9 Distance threshold before mesh change

limsingle 1.2 Distance threshold before multiple vertex change
nv 3 Number of investigated vertices in structure search

Theoretically, any surface would be correctly reconstructed with the SGC algorithm if infinite
samples, memory, and time were available. A reasonable parameter to judge the efficiency of a
refinement based surface approximation is the time that is needed to reach a certain accuracy.
With the new approach, for instance, the topology of the Dragon model was approximated a lot
faster, shown in Fig. 6.7.
Due to the advanced closest structure search, incorrectly assigned samples are less likely. This
makes twists, caused by surface pulled inside out, less likely. Also, the approximation of surfaces
close to each other profits from this correct assignment. With the presented method the number
of required iterations to avoid permeating Voronoi regions is drastically reduced, as shown in
Fig. 6.8.
Although the GCS algorithm is already quite robust when dealing with noise, it can be shown
that spikes and rough surface gradients can be greatly reduced with the presented GSS method.
The moving of entire structures proved to have a smoothing effect on the surface (see Fig. 6.9).

116 CHAPTER 6. GROWING SURFACE STRUCTURES

GCS GSS error=dp GSS error=d2
p

Model (# triangles) time dist dist2 time dist dist2 time dist dist2

Hand (20K) 0:0:6 3.19 4.38 0:0:7 4.29 4.11 0:0:6 4.70 5.00
Dragon (100K) 0:1:01 2.29 3.42 0:1:05 2.55 2.97 0:1:16 3.05 4.34
Asian Dragon

(100K) 0:0:55 2.36 3.62 0:1:01 2.71 2.53 0:1:01 2.83 2.78

Statue (200K) 0:2:26 3.21 15.4 0:2:27 3.00 4.02 0:2:28 4.05 7.17
Buddha (200K) 0:2:30 1.48 14.1 0:2:38 1.89 11.7 0:2:40 4.02 63.0

nv = 1 nv = 5 nv = 10

Model (# triangles) time dist dist2 time dist dist2 time dist dist2

Dragon (100K) 0:1:02 2.35 3.01 0:1:11 2.55 3.05 0:2:01 2.57 2.95

Table 6.1: Results for different models with the standard and the novel GSS algorithm. Also, different
settings for nv have been tested.

The SGC approach considered distance errors only indirectly by incorporating surface curvature
into the process, whereas the GSS subdivision process is directly connected to actual distance
errors. The advantage of this more direct approach is that subdivisions are more independent from
a current surface development stage. This leads to a superior surface fitting, visible especially at
the jaw of the Asian Dragon model. When comparing the behavior at sharp features, the explicit
sharp features adaptation of the SGC approach builds a more continuous feature line. But the
sharp feature is still properly represented in the GSS reconstruction, although no explicit feature
line is created (see Fig. 6.10).
In Table 6.1, the new and the old algorithm are compared. Generally the old algorithm creates a
lower average sample-to-surface distance, since it evenly distributes its subdivisions over S ,
whereas the new algorithm focuses its subdivisions on areas of high approximation error. This is
visible through a 25% decrease of the mean squared error. Especially for curved models such as
the Asian Dragon and the Thai Statue this effect is very salient.
Although the search process is more complex, the extra time costs are nearly leveled by the
discarded operations. During the reconstruction of the Dragon model 43.3% of the adaptations
were discarded and a rate of 26.3% of surface movements were downgraded to vertex movements.
If the square distance was used as approximation error, the results for both the average distance
error as well as the square distance error were worse than the results of the GCS algorithm. The
reason is that most triangles are used up to model tiny but steep curvature (see Fig. 6.11). In
addition, triangles tended to clump even for low error half-lifes λ . For the Happy Buddha model

Figure 6.9: Very noisy section of the Heating Pipes model (left); Pointy vertices or spikes on the surface
of the GCS algorithm (middle) and a smoother surface with the GSS approach (right).

6.5. CONCLUSION 117

Figure 6.10: Reconstructions with SGC (left) and GSS (right). The Asian Dragon exposes curvature (top),
while the Hand has a sharp feature (bottom). Note that the more direct connection between curvature
and subdivisions of the GSS process leads to more detail at the jaw of the Dragon, while using the same
number of triangles. The feature line of the Hand is more pronounced with the SGC algorithm, while it
also exposes some low quality triangles.

this led to many clump-like artifacts. Due to this results using the square distance error can be
generally considered impractical.

6.5 Conclusion
The presented GSS approach was derived from the analysis of different approximation settings
for the GCS algorithm. Basically three goals were presented: creating a likelihood distribution
with the vertices, i.e., their placement resembles a generalization of the samples; creating a
distance minimization with the vertices, where the approximated subspace (Sphy for surface
reconstruction) is evenly sampled by the vertices; and creating a topology as close as possible to
the one of the approximated subspace.
While the first two goals focus on measurements toward vertices, the latter novel one focuses
on the actual created surface and its topology. The basic idea of the presented approach is to
incorporate the constructed topology into the GCS learning scheme and to use sample-to-surface
relations to provide more sensible information to recognize Sphy. A vital part of this idea is to
use sample-to-surface distances. The minimization of these distances is considered to lead to a
faster recognition of a correct topology. Experimental results confirm this notion.

118 CHAPTER 6. GROWING SURFACE STRUCTURES

Figure 6.11: Two magnifications of the Dragon model reconstructed with100K triangles with the squared
sample-to-surface distance as approximation error (top) and with just the distance error (bottom). In
the former case, the triangle resolutions at the back and between tail and body are very high and
overrepresent these areas.

When looking upon surface reconstruction as a problem of statistics, it is part of the regression
analysis. However, most common problems in that area focus on optimizing sample-to-subspace
distances only. For instance, when placing a line into a set of samples in a 2D space, as in linear
regression. But this solely resembles the (surface) fitting problem. Here, the topology of the
subspace is already determined, making the surface a function. In surface reconstruction with a
refinement strategy, however, this function is determined while being optimized.
Surface fitting and topology optimization are two clearly separated problems when judged upon
the surface properties to be satisfied. However, when setting 3D samples in relation to a current
surface estimate to determine information about the investigated surface in a refinement approach,
these problems merge.
The differentiation of approximation errors in the form of sample-to-surface distances and
topological misconstructions is the single most important ability and also the most important
task when implementing a GSS based reconstruction algorithm. The separate deletion processes
for geometric redundancy and for topological misconstructions are examples of considering this
dichotomy.
Although the presented GSS implementation works well, the concept by itself does not solve the
general differentiation problem, but rather offers the necessary information to enable a differenti-
ated handling. Given that the topology of a surface is correct, using sample-to-surface distances
to determine locations for subdivisions is absolutely plausible. However, when introducing
topological misconstructions, this methodology becomes problematic.
A large distance of a sample to the surface can mean the surface needs to be subdivided to get
closer to the sample or that there is an entirely missing surface region and topological changes
are needed. Since entirely new surface regions still have to be drawn out of existing surfaces,
there is a transition between surface fitting and the actual creation of new topological structures
(see Fig. 6.12). In this case, due to huge distances, huge amounts of subdivisions create surface,
which is then adapted to represent the missing surface region. Although the correct surface
is created eventually, the error values temporarily do not actually resemble sample-to-surface

6.5. CONCLUSION 119

distances. These distances result from a misrepresented subspace, which in this case falsely sets
a surface in relation to a sample, while the surface related to that sample does not yet exist.

Figure 6.12: Creation of an entirely missing surface area at the leg of the Dragon model (top). Creation of
a clump-like artifact, due to a falsely recognized surface topology at the noisy floor of the Heating Pipes
model (bottom). Note that these pictures have been created purposefully by using an out of proportion
crumb filter for the Dragon model and by setting error values equal to single sample-to-surface distances
(errnew = dx).

When alternating between one single and multiple surfaces, the problem becomes even worse. If
the topology of a flat surface has been correctly recognized, sample-to-surface distances are very
low, correctly leading to very few triangles. However, as soon as topologically incorrect structure
is temporarily built in such an area, the sample-to-surface distances based on the incorrect
subspace are huge. So, such a structure is very likely to grow through many subdivisions
and build clump-like artifacts (see Fig. 6.12). The initial creation of such incorrect temporary
structures is often caused by noise in the samples.
It is important to notice that the sample-to-surface distances do not cause this problem, but it
only become clearly apparent due to this advanced information available in the GSS concept.
With the GSS approach the process could theoretically abandon all operations to optimize triangle
shapes, such as the Laplacian smoothing process and the outbalancing of valences, and only
modify the surface to minimize sample-to-surface distances. However, this is very likely to
destabilize the process, since its robustness against noise and other distortions is mainly based
on evenly distributed vertices, which result from triangles tending to be equaliteral.
The shown results for the presented implementation of the novel learning scheme are a proof of
concept and give rise to many improvements for the algorithm in future work.

120 CHAPTER 6. GROWING SURFACE STRUCTURES

Chapter 7

Results

This thesis presented a detailed analysis of unorganized point based surface reconstruction. A
broad overview of all major surface reconstruction methods and their performances was given.
The origin of problems, their solutions as well as their dependencies were discussed. This
enabled a more detailed perspective on the capabilities of the GCS algorithm and on its newly
added features.
With the presented approaches or only marginally changed versions of them an extensive mesh
and point cloud processing tool-kit can easily be created. It includes filters for point clouds for
noise and non-uniform sample density removal, or suchlike to clean and edit meshes. It also
includes algorithms for mesh unwrapping, LOD, remeshing, mesh optimization, and normal
estimation tasks.
The search for an efficient and integrable solution on twisted surface regions led to a semi-local
processing strategy. This strategy and the data structures used alongside it have great potential.
Processed surfaces are independent of the mesh size. Assuming the front line to be an actual 1D
contour, the memory consumption is proportional to the square root of the processed surface area.
The runtime complexity is O(n log n), where n is the number of processed surface structures.
Using a directed sealed edge-front exploits the properties of a 2D surface to gain efficiency and
additionally allows for detecting and localizing front collisions.
The MDF was not used in the final reconstruction algorithm, but served as a proof of the potential
lying in the edge-front based semi-local processing strategy. Making on-surface distances
accessible for mesh analyzing, searching and editing is a valuable asset for computer graphics
applications in general. The use of on-surface distances makes the MDF more independent of
the actual underlying mesh structure.
The comprehensive overview of the GCS approach not only included additional uses of the
algorithm, but also the successive buildup of the GCS algorithm with a focus on surface recon-
struction. This systematic algorithm buildup allowed for localizing every algorithm property,
optimization and problem solution, even as heritage from algorithm stages prior to the GCS
approach.
GCS based reconstruction algorithms inherit the stochastic sample access from the k-means
clustering approach, allowing virtually the processing of an infinite number of input samples.
Placing vertices in the means of samples leads to robustness against noise and outliers. The SOM
approach – introducing topology – enables surface reconstruction applications. As the surface is
dragged over the samples, the process is robust against non-uniform sample densities and holes.
As a reconstruction algorithm, the most important difference of the actual GCS approach to
its algorithmic predecessors is its strategy to derive implications about the unknown surface
Sphy from P . The GCS algorithm starts with a simple mesh and uses an iterative refinement
strategy. Every current estimate S always represents a result for the approximation of Sphy.

121

122 CHAPTER 7. RESULTS

This makes the GCS approach very powerful in avoiding local failures caused by ambiguous
point constellations. It also adds flexibility, since it enables stopping and resuming the process
at any time. With the tumble-tree and the k-d tree the algorithm has an average case runtime
complexity of O(n log n).
Comparing GCS with GNG proved the former to be the more fitting for surface reconstruction.
Both share many advantages, such as an independence of the point cloud size and a resistance
against noise and non-uniform sample densities. The simpler GNG graph has fewer constraints
when changing its connectivity, making it more suitable for parallelization. The GCS concept
on the other hand needs fewer points to sustain a surface once constructed. More important,
its surface model actually represents a triangular mesh and is therefore more sophisticated. If
samples are set in relation to such a surface model, more meaningful information can be derived.
For example, the Laplacian smoothing operation, the inertia of the surface evolving process, the
presented filter processes, the twist solving process, and the new topology focused approximation
concept are all based on an existing surface model.
An enhancement in the differentiation and variety of rules, which vertices follow during their
adaptation process, were presented in the SGC approach. Here, the local behavior of vertices
can be precisely modeled to deal with specific mesh aspects such as curvature, sharp features
and boundaries. The cutting and coalescing mechanisms establish independence of the initial
mesh topology and solve the problem of surfaces getting stuck in local minima. However, many
surface progression related problems the SGC concept deals with were shown to be symptoms
of a more general problem, as discussed in the chapter on the GSS concept.
The filter chain was introduced to enable easy editability for the implementation of individually
desired behaviors, which then account for different reconstruction scenarios. Filter chains
achieved this by allowing easy adding and removal of filters for different chains. Besides the
cleaning of the mesh after cutting operations, this also allows artifacts such as huge triangles
caused by outliers or undesired small crumb alike mesh segments, to be filtered out.
The presented valence optimization filter proved to be a valuable contribution to the mesh quality
in general. The filter chains make the algorithm behavior very flexible and easy to edit, as
experimentally demonstrated. However, the possibility of mutually dependent filters causing
infinite loops is an important drawback of the concept.
To fix twisted surface regions in a current surface estimate included finding a solution to a global
problem, which had to be integrated into a process only using local refinement operations. The
solution to this complex problem lay in a semi-local processing strategy using the MEF, which
enables a compact solution efficient in runtime and memory consumption. The presented twist
resolving mechanism proved to be reliable and efficient on a variety of tested models. It had
practically no significant impact on the runtime of the algorithm, since it was only seldomly
triggered and no falsely detected twists were noted.
The surface creation in the GCS algorithm is based on iterative refinement operations, which
constantly improve a current surface estimate. Within these operations, however, the current
surface estimate is only represented implicitly. A direct representation of the created topology
within the process allows for creating precisely modeled algorithm operations involving actual
sample-to-surface distances. This shifts the focus on topology rather than the distribution of
vertices. This novel GSS concept represents a major conceptual algorithm change, which enables
redirecting of the GCS approximation behavior.
This concept was implementated and tested on a variety of challenging models. Tests showed
that the new approximation behavior is faster in topology adaptation, superior in handling thin
structures, produces fewer twists, handles sharp features, and creates smoother surfaces in the
presence of noise. Although the closest surface structure search process is more complex, the
extra time costs are compensated by discarded operations. However, using sample-to-surface

7.1. COMPARISON WITH CLASSICAL RECONSTRUCTION APPROACHES 123

distances as the only criterion for subdivision can cause artifacts, due to the dichotomy of the
surface fitting and topology finding problem.
In the following considerations the filter chain concept, the twist resolving mechanism, and GSS
algorithm are all incorporated in one final algorithm for evaluation purposes. Besides the GSS
algorithm, all algorithm components are used as presented in their corresponding chapter (see
Alg. 13).
For the final algorithm the GSS concept is changed in two aspects. The sample-to-surface
distance is not added as an approximation error, but is divided by the average sample-to-surface
distance and then added. This makes it a hybrid between signal counter and distance error
(see line 16 in Alg. 13). Still, huge distances create bigger signal counts, thus leading to more
subdivisions. These subdivisions are, however, more evenly distributed avoiding artifacts. As the
distribution of the vertices becomes more uniform, the distance error counters can be re-located
from the triangles to the vertices, making the process more efficient both in runtime and memory
consumption. Also, an age is assigned to the vertices, which resembles the one presented in
the GNG algorithm. Most benefits of the concept are preserved by these changes, such as the
search process being superior in topological correctness, the time efficient of the process due to
skipping samples, the smoother surface through the movement of whole triangles and edges, and
most importantly the differentiated deletion process.

The algorithm is evaluated by reconstructing surfaces from a series of reference data sets that
represent a variety of problem cases. It then is compared to some well-known reconstruction
algorithms. The described algorithm is referred to as the “final GSS algorithm”.

7.1 Comparison with Classical Reconstruction Approaches
For the comparison four models are selected. The Hand (38K samples) being a relatively easy
model to reconstruct, but which exposes a sharp feature, the Stanford Dragon (438K samples)
with its challenging shape, the Happy Buddha (544K samples) model with thin surface areas and
a challenging topology and the Heating Pipes (918K samples) which expose noise, outliers and
open surfaces.
Four algorithms are tested including the final GSS algorithm. All used implementations originate
from the open source mesh processing tool MeshLab [IST13]. The region growing algorithm
ball pivoting [BMR+99] from section 2.4.1.2 is an example for a surface oriented interpola-
tion method. Volume oriented interpolation methods such as α-Shapes [EM92] and the crust
[ABK98] are not included in the comparisons, since they did not produce reasonable results
concerning the underlying test geometries. Using those approaches, surfaces were represented by
strongly interlaced triangles exposing neither a sensible orientation nor a continuous 2D triangle
surface. As an example for a distance function based approximation method robust implicit
moving least squares (RIMLS) [OGG09] (see section 2.4.3.2) is used, which represents a MLS
approach. As a volume oriented distance function, instead of the surface oriented MLS functions,
the Poisson surface reconstruction is used [KBH06] (see section 2.4.3.4).
The comparison is on the one hand designed to resemble a realistic reconstruction scenario and
on the other hand to take the different requirements of the algorithms into consideration. In
order for the interpolation methods to perform properly, evenly distributed samples are required.
Therefore, all point clouds are down-sampled with a clustering algorithm which also creates
evenly distributed samples as described in section 2.2.2. The Heating Pipes point cloud is
down-sampled to 150K points, but only for the interpolation method.
The distance function based approaches rely on samples augmented with surface normals.
These normals are estimated with a standard approach described in [HDD+92]. However, in

124 CHAPTER 7. RESULTS

Algorithm 13 Final GSS Algorithm
(combines the filter chain Alg. 7, twist solving Alg. 11, and GSS Alg. 12)

1: Initialization
2: repeat
3: repeat
4: repeat

Basic Step

5: Select random sample px of P
6: Find the vertex vx in [s] that exposes the smallest on-surface distance dx to px
7: Set the age ax of vx to zero: a = 0
8: Increase the age of all other vertices: ∀ai(i ∈M) ∆ai = 1
9: if dx in relation to dP indicates an adaption is needed: dx/ dP > limskip then

10: if Only a slight adaption is needed: dx/ dP > limsingle then
11: Set [s] to be the closest vertex in [s] to px
12: end if
13: Move all vertices in [s] as much toward px as determined by the learning rate lr
14: Perform Laplacian smoothing on all neighbors N[s] of [s] as much as determined by the

neighbor learning rate lrn
15: end if
16: Increase signal counter scx of vertex vx by one: ∆scx = dx/dP
17: Decrease signal counters of all other vertices by a fraction: ∀sci(i ∈M) ∆sci =−β · sci
18: if vx is boundary vertex AND coalescing partner vopp was found then

19: Coalescing

20: else
21: Solve Twist
22: end if
23: Filter Chain
24: Increment the iteration counter: ∆t = 1
25: until The basic step has been performed cadd times: t mod cadd = 0

26: Vertex Split

27: until The basic step has been performed cdel times: t mod cdel = 0

Remove

28: Select vertex vx with the lowest signal counter value ∀sci(i ∈M)>= scx
29: if vx exposes an edge exy, which is geometrically redundant: nx ·ny < max∇n then
30: Perform an edge collapse operation on exy
31: end if
32: Select vertex vy with the highest age ay: ∀ai(i ∈M) ai <= ay
33: if The age ay of vy is too high: ay > maxa then
34: Cut vy out including its surrounding faces and edges
35: end if
36: Filter Chain

37: until A certain number of vertices is reached: |M |>= n f inal

7.1. COMPARISON WITH CLASSICAL RECONSTRUCTION APPROACHES 125

Point Cloud
(# samples) time # triangles dist dist2 equilaterality valence[5;6;7]

Ball Pivoting

Hand (19K) 0:0:4 37K 1.534 1486 59.0% 87.6%
Dragon (150K) 0:2:36 239K 2.596 1.750 53.3% 63.3%
Buddha (157K) 0:2:50 295K 2.027 0.948 56.3% 77.2%
Pipes (150K) 0:2:42 277K 3.107 2.001 53.3% 54.5%

RIMLS
Hand (19K) 0:0:3 48K 1.235 116.1 47.8% 92.2%

Dragon (150K) 0:0:25 312K 1.098 0.300 47.1% 89.2%
Buddha (157K) 0:0:35 447K 1.048 0.169 47.9% 91.5%
Pipes (918K) 0:5:31 1,322K 1.006 0.134 48.1% 70.1%

Poisson Reconstruction
Hand (19K) 0:0:2 31K 15.68 13132 50.5% 73.6%

Dragon (150K) 0:0:18 257K 6.787 6.135 50.1% 72.5%
Buddha (157K) 0:0:21 353K 6.993 2.586 49.9% 73.5%
Pipes (918K) 0:1:02 1,166K 45.23 39189 51.9% 63.8%

Final GSS
Hand (19K) 0:0:6 35K 1.818 151.7 82.1% 98.7%

Dragon (150K) 0:2:21 290K 1.496 0.373 81.1% 97.9%
Buddha (157K) 0:2:31 300K 1.171 0.071 81.4% 98.2%
Pipes (918K) 0:0:18 50K 6.994 38.84 80.4% 98.0%
Farm (10M) 5:09:02 14M 0.719 0.113 86.6% 98.1%

Bridge (26M) 6:58:10 18M 0.296 3.534 85.1% 97.0%
Office (451M) 6:03:21 22M 0.636 0.371 84.1% 98.2%

Table 7.1: Performance comparison of different reconstruction algorithms.

case of the Happy Buddha model no reasonable normal estimation could be achieved. To
avoid the intentional creation of bad reconstructions results for this point cloud, the original
normals from the ground truth model are used. The Heating Pipes point cloud exposes the
same problem. The normals show contradicting orientations for pipes and floor. Since using the
normal estimation built upon the twist solving GCS algorithm (see section 6.3) would distort an
algorithm comparison, the known to be incorrect normals are used for the reconstruction. For
comparison purposes, the algorithms are set to produce roughly the same number of vertices
for the resulting models. The Heating Pipes model is an exception, since its high noise level
detaches its sample number from the number of vertices actually required.
All MeshLab algorithms are performed multiple times with different parameter settings especially
if results appear insufficient. For the comparison the best results are chosen.
The results of the comparisons are presented in Table 7.1 and Fig. 7.1, Fig. 7.2, Fig. 7.3, and
Fig. 7.4. The distance measurements are performed on the full resolution point clouds and not
the down-sampled ones used for the reconstruction.
When comparing the speed, the final GSS algorithm is rather slow. Only the ball pivoting
algorithm is slower. This is actually very surprising when considering its working principle (see
section 2.4.1.2). With an optimized implementation, it should be one of the fastest algorithms.
At sample-to-surface distances the RIMLS algorithm and the final GSS algorithm reach the
best results especially when comparing the square distances. This happens due to a mechanism

126 CHAPTER 7. RESULTS

Figure 7.1: Reconstructions of Hand model: Ball pivoting (top left), RIMLS (top right), Poisson reconstruc-
tion (bottom left), and the final GSS algorithm (bottom right).

to specially preserve curved areas in the RIMLS algorithm and the topology led subdivision
process in the final GSS algorithm. When examining the produced triangle quality, the final GSS
algorithm produces by far the best shaped triangles. It can also be observed that the closeness of
triangles to being equilateral is a more sensible measurement for triangle quality than the valence
distribution, since the former values have proven to be steadier for the different approaches.
The sharp feature at the Hand model is decently reconstructed by all algorithms, however, the
marching cubes based triangulations form the most differentiated feature line. The Poisson
surface reconstruction constantly produced closed meshes, even if an open surface was intended
for the Heating Pipes model. The final GSS algorithm also produces sealed models although
providing no theoretical guaranty for this. Additionally, it reconstructs the open surface correctly.
The final GSS algorithm and Poisson reconstruction are the best performing approaches in the
presence of noise when ignoring the effects caused by the incorrect normals. While the Poisson
reconstruction always has a smoothing effect on the resulting surface, the final GSS algorithm
can still match the accuracy of the MLS based approach. Besides its runtime the final GSS
algorithm is always close or at the top of the ranking when investigating different reconstruction
problems. This proves the algorithm as an efficient all-round high quality approach.

7.2 Reconstruction of Challenging Models
In the comparison to other algorithms, the final GSS algorithm proved its strong all-round
abilities. These abilities to robustly deal with very different and demanding problems at the
same time is tested in the following with three objects scanned by terrestrial laser scanners.

7.2. RECONSTRUCTION OF CHALLENGING MODELS 127

Figure 7.2: Reconstructions of Dragon model: Ball pivoting (top left), RIMLS (top right), Poisson recon-
struction (bottom left), and the final GSS algorithm (bottom right).

These objects expose most challenges addressed in the sections on the analysis of the surface
reconstruction problem.
The first data set is the “Farm Building in Ethiopia” (10M samples). It shows an open landscape
with vegetation, noise, outliers, non-uniform sample densities, large holes and a lot of ghost
geometry. The “Kornhaus Bridge” (26M samples) exposes thin metal structures, noise, outliers
and strongly non-uniform sample densities. The final scan comes from the laser scanning
department for crime scene investigation in Hamburg (Germany) and shows their “Office” (451M
samples). This data set has many outliers, sharp features and many thin and tiny structures. In
Table 7.1, the results of the reconstructions are presented and they are shown in Fig. 7.5, Fig. 7.6,
and Fig. 7.7.
Although the final GSS algorithm was rather slow in the presented comparison, it has a low
average case runtime complexity. When reconstructing these huge point clouds, the process
takes several hours. This is still in the range of a “one night” process, which is convenient when
considering the high quality reconstruction results. With the filter chain the Farm Building in

128 CHAPTER 7. RESULTS

Figure 7.3: Reconstructions of the Happy Buddha model: Ball pivoting, RIMLS, Poisson reconstruction,
and the final GSS algorithm (top row). Ball pivoting (middle left), RIMLS (middle right), Poisson (bottom
left), and the final GSS algorithm (bottom right).

Ethiopia could be completely freed of its ghost geometries and other disturbances within the
point cloud. Even the thin metal structures of the Kornhaus Bridge are correctly reconstructed
despite of its challenging sample distribution. The office environment exposes the algorithm to
a variety of problems at the same time. Here, the general robustness of the approach becomes
most apparent. All model surfaces are accurate and expose high triangle quality and a consistent
global surface orientation. Although, the Kornhaus Bridge is reconstructed with fewer triangles,
its reconstruction takes more time than the one of the Office. The reason for the difference lies
in the sample distribution of the Office, which exposes many flat surface regions, that are very
suitable to be organized in the presented k-d tree.
If flaws occur during the reconstruction process, they only lead to minor artifacts in the resulting
mesh. Some imperfections are bars at the bridge railing being falsely coalesced and some twisted
metal structures staying undetected, since they are yet too low in resolution for the twist resolving
process. The Office exposes some surface distortions due to noise at the jackets. Solutions for
these cases are discussed in section 8.3.

7.2. RECONSTRUCTION OF CHALLENGING MODELS 129

Figure 7.4: Reconstructions of Heating Pipes model: Ball pivoting (top left), RIMLS (top right), Poisson
reconstruction (bottom left), and the final GSS algorithm (bottom right).

130 CHAPTER 7. RESULTS

Figure 7.5: Image of the Farm Building in Ethiopia and its reconstruction with the final GSS algorithm.

7.2. RECONSTRUCTION OF CHALLENGING MODELS 131

Figure 7.6: Image of the Kornhaus Bridge and its reconstruction with the final GSS algorithm.

132 CHAPTER 7. RESULTS

Figure 7.7: Image of the crime scene investigation Office and its reconstruction with the final GSS
algorithm.

Chapter 8

Conclusion

In this chapter, the findings of this thesis are summarized and the core contributions are discussed.
This is followed by considerations on the challenges future work might hold and a finalizing
epilog.

8.1 Summary
This thesis presented a detailed overview of the subject of surface reconstruction. The GCS algo-
rithm was presented with all its inherited, inherent and added properties concerning the surface
reconstruction task. Furthermore, its additional uses were presented and it was differentiated
from the GNG algorithm.
Novel algorithm developments and concepts were introduced to create a more efficient, robust,
reliable and high quality surface reconstruction algorithm. It was given more flexibility with the
filter chain concept, enabled to deal with twisted surface regions and conceptually improved to
account for topology focused approximation behavior.
The resulting algorithm was compared with classical reconstruction algorithms and tested by
reconstructing surfaces from extremely challenging point clouds. The presented algorithm
proved to be an efficient all-round high quality approach.

8.2 Discussion
Growing Cell Structures: GCS as an algorithm concept is a very versatile computer graphics
tool, as proven by the many presented point cloud filters and mesh-processing algorithms based
on it.
A comprehensive overview of the GCS algorithm was given including algorithm stages prior to
GCS. This detailed presentation allowed for perceiving GCS based reconstruction algorithms, not
as one indistinguishable algorithm, but as a systematically composed collection of distinct and
localized properties. This overview enabled precise discussion and the introduction of conceptual
changes, such as the GSS.
Growing Cell Structures vs. Growing Neural Gas: The most important differences between
GCS and GNG lie in their mechanisms to build and incorporate topology in their processing
scheme. Whereas GCS produce an explicit 2D surface solely constructed of triangles, GNG
produces an arbitrary graph. For surface reconstruction this is not only interesting at the end of
the process, where the GNG graph has to be transformed into a valid 2D surface, but also within
the main processing phase. GCS can put samples in relation to an actual surface estimate and

133

134 CHAPTER 8. CONCLUSION

thereby deduce additional information. The pinnacle of the use of this strategic advantage lies in
the presented GSS concept.
Filter Chain Concept: The filter chain concept enables great editability of the algorithm
behavior, since new behavior can easily be added and removed. The capabilities of the concept
were experimentally demonstrated by modifying the algorithm toward different problem cases.
The problem of mutually dependent filters causing infinite loops is a conceptual weakness that
needs consideration when implementing and combining filters. With a composition of filters
complex algorithm behavior can be implemented systematically and is easy to edit.
When representing the entire algorithm functionality as filters, the local rule based SGC concept
could be elevated to a new level, where rules could be automatically exchanged and tested.
Possibly, rule sets could even automatically adjust to the given input data.
Twist Solving: Finding a suitable solution to resolve twisted surface regions, which properly
integrates into the iterative refinement process of the GCS approach, was theoretically as well as
in its implementation a complex task. The presented semi-local processing strategy is able to
cope with the global characteristics of falsely oriented surface regions and integrates into the
otherwise local optimization process.
With the presented twist solving mechanism one of the last vital limitation for using the GCS
algorithm as a universal surface reconstruction approach was removed. The presented mechanism
is a very general solution to the problem, since its surface separating process is based solely on
mesh connectivity aspects and thereby does not rely on geometry based heuristics. The process
was experimentally proven to be reliable and efficient, nevertheless it might fail in cases where
inconsistent orientations are not recognized before the process finishes.
Edge-Front: The presented solution is very compact, due to the use of a highly efficient and
universal data structure – the edge-front. Edge-fronts hold great potential for computer graphics
applications, which was proven by the results of MDF in geodesic distance calculations. Many
other extensions and improvements of edge-front based computations, not needed for the twist
solving process, are left for further investigation, such as static front line elements, curvature
driven expansion processes, and front elements which remain on collision.
The edge-front data structure itself represents an important contribution to this thesis.
Growing Surface Structures: The presented GSS concept introduces a topology focused
approximation behavior to the GCS approach. Instead of focusing on the vertex distribution, this
approach aims to create a topology as close as possible to one of the approximated subspaces.
The presented approach incorporates the constructed topology into the GCS learning scheme.
Sample-to-surface distances and closest surface structures become available within the algorithm
operations. The novel GSS concept enables a better differentiation between approximation
errors in form of sample-to-surface distances and topological misconstructions. This ability is
vital for creating topologically correct reconstructions. The presented implementation of the
novel learning scheme provided convincing practical results on test data sets. However, many
alternative implementations, which might use the additional information in different ways, are
left for further investigation. While the common GCS learning scheme focuses on creating
vertex distributions, a possible implementation of the GSS learning scheme could focus on
creating a “surface distribution”. Such a distribution would solely aim to minimize sample-to-
surface distances and would discard all operations with the sole task to increase triangle quality.
Although this increases the risk of artifact creation it would also open up a novel interesting
algorithm behavior for further investigations.
Final Combined Reconstruction Algorithm: In this thesis, a universal surface reconstruction
algorithm was presented. It processes unorganized points as input data, which may be distorted
by noise, outliers, non-uniform sample densities and which may expose holes in the sampling.
Compared to classical reconstruction approaches, it can virtually cope with any number of

8.2. DISCUSSION 135

input samples and has a low average case runtime complexity of O(n log n). The algorithm
constantly optimizes a surface estimate of a currently investigated surface. This refinement
strategy makes it very robust when dealing with ambiguous point constellations. Equipped with
cutting and coalescing operations the algorithm can handle open surfaces and create arbitrary
topologies. It can easily be modified to account for individually desired reconstruction behavior.
The resulting surfaces are soundly oriented on a local as well as on a global level even for
extremely challenging point clouds. The current surface estimate quickly adapts to the demanded
topology even for thin surface areas.

Concerning mesh quality, flexibility, universality, and robustness, it clearly outperforms classical
reconstruction approaches.

136 CHAPTER 8. CONCLUSION

8.3 Future Work
The presented approach has a low average case runtime complexity, but is still relatively slow
when, for instance, compared to a reconstruction approach using linear base functions. To
decrease the runtime of the process, the iterative refinement could be exchanged with a recursive
refinement process as presented in [HK06]. However, this might change the essence of the
algorithm entirely. The efficiency could also be improved using the parallelized GNG algorithm.
The most important GNG disadvantage is the absence of an actual surface model. This could be
solved by using an implicit surface type as suggested in [Fri96].
The presented approach uses local optimization operations and therefore cannot set surface
structures into a global context as, for instance, a model based approach does, where information
of completely missing surface regions can be regained. The presented approach gathers infor-
mation about the surface under investigation by setting samples in relation to a current surface
estimate. A current surface estimate is a global structure, since it is an estimate of the entire
surface. However, the refinement operations put samples only in relation to locally limited areas
of the surface. To remove this limitation, again a semi-local processing strategy could be applied.
The degree of locality could vary when putting samples in relation to the surface. If a sample
lies on a flat surface, for instance, the given information is likely to be sufficient. If it lies on a
curved distorted surface, the investigated surface area could be expanded. This would increase
the degree to which the current surface estimate is “interpreted” when information is gathered.
The SGC approach with its differentiated vertex behaviors has proven to increase the reconstruc-
tion quality. The more specific types of behavior are created, the more specific cases can be
treated. With the additional information available in the GSS concept, the algorithm behavior
could be differentiated in many novel ways. However, creating such heuristics based behaviors
is very time consuming and might quickly lead to a “trial and error” type of approach. Such an
approach is likely to become unsystematic and thereby hard to test and even harder to verify
theoretically. An approach based on extremely diversified algorithm behaviors would need to be
created and tested automatically to ensure systematic results instead of “ad hoc” solutions. The
presented filter chain concept already holds the potential for the automatic testing of different
algorithm configurations. A mechanism to automatically create different filter operations would
be needed to diversify the algorithm behavior.
An approach able to adapt its operations specifically toward the surface reconstruction task would
need point clouds with ground truth data. It would also require having a supervised training
phase where behaviors are learned, while the actual reconstruction process would be performed
as an unsupervised learning approach.
If an algorithm would specifically mimic the behavior of a scanning device including aspects
such as noise and varying sample densities, challenging point clouds could be created from a
virtual surface. Such synthetic point clouds could be used for the training phase where the virtual
surface then would represent the ground truth data.
Where in classic approaches, handling noise generally compromises surface detail, such an
approach could offer individually fitted algorithm behaviors. Thus, noisy regions could be treated
differently from the rest of the point cloud.

8.4. EPILOG 137

8.4 Epilog
When investigating a subspace with an iterative refinement approach, the subspace is molded
from a structure of interconnected base units. The task of fitting the structure into the possibly
complex shaped subspace is solved as a result of emergence, where the structure’s base units
themselves just follow simple rules, but create complex behavior as a result of their interaction.

The plasticity of this behavior is determined by the plasticity of the rules applied.

Smart growing cells allow for greater rule variety, filter chains enable automated rule adjustment
and exchange, semi-local processing makes it possible to seamlessly scale the impact of rules
from local to global, and growing surface structures introduce a learning scheme to adjust rules
specifically to an investigated subspace.

In surface reconstruction, a 2D subspace is investigated and a mesh is fitted as a structural basis.
While the abilities of the presented reconstruction method result from the novel rule plasticity
suggested in this thesis, the complex behavior this plasticity gives rise to does not result from
the reconstruction task.

Thus, the investigated subspace in this thesis might only be one of many to come.

138 CHAPTER 8. CONCLUSION

Notation

Mathematical Symbols

Basics
b A scalar value b ∈ R. [x] The suggested parameter setting for b is x.
b The average of all b-values.
b A vector b = (x,y,z) and b ∈ R3.
bx A specific vector with the index x from a set of vectors.
B A set of elements B = {a,b,c}.
|B| The number of elements in B.
b. Singly linked list element.
/b. Doubly linked list element.
B. Connected singly linked list elements.
/B. Connected doubly linked list elements.

Surface Reconstruction
P Input point cloud of the surface reconstruction process. A finite collection of

scattered surface samples P = {p1...pn} in 3D space R3.
Pori A point cloud P where every sample additionally possesses a normal vector,

which indicates its orientation.
Sphy A real world physical surface that has been scanned and is proposed to be

digitalized in a reconstruction process.
S The resulting surface model produced by a reconstruction.

Mesh
v A mesh vertex v ∈M .
e An edge connecting two vertices e = (vx,vy), vx 6= vy

and vx,vy ∈M .
t A mesh triangle t = (vx,vy,vz), vx 6= vy 6= vz and vx,vy,vz ∈M .
M A mesh consisting of vertices M = {v1...vn}. Between those vertices connec-

tions to facets exist, such as triangles or quads.
T All triangles in a mesh T = {t1...tn}.

139

140 NOTATION

Growing Cell Structures
n f inal The number of vertices in M that are the abort criterion for a process.
t The current iteration count of a process.
px The currently selected and processed random sample from P .
vx A specific vertex from M with the index x.
nx The surface normal of vx, which indicates the surface orientation at position vx.
bnx The boundary normal of vx, which indicates how the surface at position vx

would progress at the boundaries cutting edge.
vopp A specific vertex from M that is in some way “opposite” to vx, e.g., as a

coalescing partner for vx.
Nx The neighboring vertices of vertex vx.
scx The signal counter of vertex vx.
minsc If a signal counter comes below this threshold, it is deleted. [0.3]
lr The learning rate determines how much a winning vertex is moved toward a

sample. [0.1]
lrn The neighbor learning rate determines how much the neighbors of a winning

vertex are moved. [0.08]
cadd Number that determines how many times the basic algorithm step is performed,

before a new vertex is added. [100]
cdel Number that determines how many times the basic algorithm step is performed,

before a vertex is removed. [500]
β Value that determines how much all signal counters are constantly decreased.
γ The number of times a vertex can be missed before reaching minsc. [7]
curvx The curvature of vx calculated as one minus the average scalar product of nx

and the normals of its surrounding vertices Nx.
curvM The average curvature of all vertices in M .
σcurv The standard deviation of the curvature.

The Filter Chain Concept
V f ilt A set of vertices that have been exposed to changes and are about to be tested

for certain undesired or improvable structures.
F. f ilt A list of filters vertices have to pass after they have been edited.
valc(v) The valence, i.e., the number of edges connected to vertex v.

Minimal Edge Front
nexp Number of expansions to be performed.
V f ront Collection of vertices representing the current front.
Vold Collection of vertices surpassed by a VF.
Vnew Collection of vertices currently added during the expansion process of a VF.
E f ront Collection of edges representing the current edge front.
Enew Collection of edges representing the new edge front in progress.
/e.x Specific element of an edge path in a MEF with index x.
next(/e.x) . . . The edge path element subsequent to /e.x.
previous(/e.x) The edge path element previous to /e.x.
/E.x The edge path running in front of previous(/e.x) and /e.x.

NOTATION 141

Minimal Distance Front
dmax The maximum allowed expansion distance.
Dexp All currently possible expansions ordered by their anticipated distance to the

starting point.
dstart The on-surface distance back to the starting point from a front vertex.
dstart The normalized on-surface direction back to the starting point from a front

vertex.
vsub A vertex associated with a subdivision in between two edge associated subdivi-

sions.
esub An edge associated with a certain subdivision.
tsub A triangle connected at the backside of a subdivision esub.
vle f t The vertex to the left of a subdivision edge esub.
vright The vertex to the right of a subdivision edge esub.
pconnect A point on an edge esub connecting a vertex vx with the front.

Growing Surface Structures
[s] A mesh structure, such as either a vertex, an edge, or a triangle.
N[s] All adjacent vertices to structure [s].
tx A specific triangle from the triangles T with the index x.
errx The approximation error of triangle tx.
size(t) The surface area of triangle t.
sT The average surface area of all triangles in T .
dx The Euclidian distance of a sample px to the closest surface structure [s].
dP The average sample-to-surface distance.
∇n The dot product of vertex normals of an edge about to be collapsed to reduce

geometric redundancy.
max∇n A threshold for ∇n to surpass to allow for an edge collapse operation. [0.9]
a The age of an edge in GNG or a triangle in GSS.
maxa Maximum age for a triangle to reach before it is considered misplaced. [10]
β The aging rate for not winning triangles.
γ The number of times a triangle can be missed before reaching maxa. [7]
λ The half-life of a distance error actualization. It takes λ updates until a distance

value dx only has half of its impact on err. [9]
limskip If a distance value dx divided by the average distance dP drops below this

threshold, the geometric properties of M remain unchanged. [0.9]
limsingle If a distance value dx divided by the average distance dP drops below this

threshold, the general surface is considered correct and only a vertex instead of
an edge or triangle is adapted. [1.2]

nv The number of vertices used in the search process of the GSS algorithm to find
the closest surface structure [s]. [3]

142 NOTATION

Abbreviations
ACO aggressive cut out
AI artificial intelligence
ANN artificial neural network
CAD computer-aided design
CAM computer-aided manufacturing
CT computed tomography
EMST Euclidian minimal spanning tree
FMM fast marching method
GCS growing cell structures
GNG growing neural gas
GSS growing surface structures
LBG Linde-Buzo-Gray
LOD level of detail
MA medial axis
MAT medial axis transform
MDF minimal distance front
MEF minimal edge front
MLS moving least squares
MRI magnetic resonance imaging
MS medial scaffold
MVS multi-view stereo
NG neural gas
NURBS non-uniform rational B-splines
PCA principal component analysis
RANSAC random sample consensus
RBF radial base function
RIMLS robust implicit moving least squares
SGC smart growing cells
SOM self-organizing map
SVM support vector machine
TOF time of flight
VF vertex front

NOTATION 143

Illustration Key

144 NOTATION

Bibliography

[AB10a] Hendrik Annuth and Christian-A. Bohn. Surface reconstruction with smart
growing cells. In Intelligent Computer Graphics 2010, volume 321 of Studies in
Computational Intelligence, pages 47–66. Springer Verlag, 2010.

[AB10b] Hendrik Annuth and Christian A. Bohn. Tumble tree: reducing complexity of
the growing cells approach. In Proceedings of the 20th international conference
on Artificial neural networks: Part III, ICANN’10, pages 228–236, Berlin,
Heidelberg, 2010. Springer-Verlag.

[AB11] Hendrik Annuth and Christian-A. Bohn. Reconstruction for Virtual Reality
Scenes. In Proceedings of Virtuelle und Erweiterte Realität, volume 8, pages
121–133. SHAKER Verlag, 2011.

[AB12a] Hendrik Annuth and Christian-A. Bohn. Approximation of geometric structures
with growing cell structures and growing neural gas - a performance comparison.
In Proceedings of International Conference on Neural Computing Theory and
Applications (NCTA 2012), pages 552–557. SciTePress, 2012.

[AB12b] Hendrik Annuth and Christian-A. Bohn. Resolving Twisted Surfaces within an
Iterative Refinement Surface Reconstruction Approach. In Proceedings of Vision,
Modeling, and Visualization (VMV 2012), pages 175–182, 2012.

[AB12c] Hendrik Annuth and Christian-A. Bohn. Smart growing cells: Supervising
unsupervised learning. In Computational Intelligence, volume 399 of Studies in
Computational Intelligence, pages 405–420. Springer Berlin / Heidelberg, 2012.

[AB13] Hendrik Annuth and Christian-A. Bohn. Growing surface structures. In Proceed-
ings of International Conference on Neural Computing Theory and Applications
(NCTA 2013), page 7. SciTePress, 2013.

[AB14a] Hendrik Annuth and Christian-A. Bohn. Geodesic mesh processing with edge-
front based data structures. In Proceedings of International Conference on Com-
puter Graphics Theory and Applications (GRAPP 2014), page 43. SciTePress,
2014.

[AB14b] Hendrik Annuth and Christian-A. Bohn. Growing surface structures: A topology
focused learning scheme. In Computational Intelligence, Studies in Computa-
tional Intelligence. Springer Berlin / Heidelberg, 2014.

[ABCO+01] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,
and Claudio T. Silva. Point set surfaces. In Proceedings of the conference on
Visualization ’01, VIS ’01, pages 21–28, Washington, DC, USA, 2001. IEEE
Computer Society.

145

146 BIBLIOGRAPHY

[ABE98] Nina Amenta, Marshall Bern, and David Eppstein. The crust and the beta-
skeleton: Combinatorial curve reconstruction. Graphic Models and Image
Processing, 60(2 of 2):125–135, 1998.

[ABK98] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoi-based
surface reconstruction algorithm. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’98, pages 415–
421, New York, NY, USA, 1998. ACM.

[ACDL00] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for home-
omorphic surface reconstruction. In Proceedings of the sixteenth annual sym-
posium on Computational geometry, SCG ’00, pages 213–222, New York, NY,
USA, 2000. ACM.

[ACK01] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. In
Proceedings of the sixth ACM symposium on Solid modeling and applications,
SMA ’01, pages 249–266, New York, NY, USA, 2001. ACM.

[AK04] Nina Amenta and Yong Joo Kil. Defining point-set surfaces. In ACM SIGGRAPH
2004 Papers, SIGGRAPH ’04, pages 264–270, New York, NY, USA, 2004.
ACM.

[AKM+06] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. Mesh
segmentation - a comparative study. In Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2006, SMI ’06, page 7, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[AS96] Maria-Elena Algorri and Francis Schmitt. Surface Reconstruction from Unstruc-
tured 3D Data. Computer Graphics Forum, 15(1):47–60, 1996.

[BF02] Jacob Barhak and Anath Fischer. Adaptive reconstruction of freeform objects
with 3d som neural network grids. Computers & Graphics, 26(5):745–751, 2002.

[BG67] G. Backus and F. Gilbert. Numerical applications of a formalism for geophysical
inverse problems. Geophys.J.R oy.Astr on Soc., Vol. 13:247–276, 1967.

[BH93] A. Baader and G. Hirzinger. Three-dimensional surface reconstruction based on
a self-organizing feature map. In Proc. 6th Int. Conf. Advan. Robotics, pages
273–278, 1993.

[BK04] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern
Anal. Mach. Intell., 26(9):1124–1137, September 2004.

[BK07] David Bommes and Leif Kobbelt. Accurate computation of geodesic distance
fields for polygonal curves on triangle meshes. In Hendrik P. A. Lensch, Bodo
Rosenhahn, Hans-Peter Seidel, Philipp Slusallek, and Joachim Weickert, editors,
Proceedings of Vision, Modeling, and Visualization (VMV 2007), pages 151–160.
Aka GmbH, 2007.

[BKBH09] Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues Hoppe. Parallel
poisson surface reconstruction. In Proceedings of the 5th International Sym-
posium on Advances in Visual Computing: Part I, ISVC ’09, pages 678–689,
Berlin, Heidelberg, 2009. Springer-Verlag.

BIBLIOGRAPHY 147

[Bli82] James F. Blinn. A generalization of algebraic surface drawing. ACM Trans.
Graph., 1(3):235–256, July 1982.

[BLP+12] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silv a, M. Tarini, and D. Zorin.
State of the art in quad meshing. In Eurographics STARS, 2012.

[BMR+99] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and
Gabriel Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE
Transactions on Visualization and Computer Graphics, 5(4):349–359, October
1999.

[BMSW11] Prosenjit Bose, Anil Maheshwari, Chang Shu, and Stefanie Wuhrer. A survey of
geodesic paths on 3d surfaces. Comput. Geom. Theory Appl., 44(9):486–498,
November 2011.

[Boi84] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape
representation. ACM Trans. Graph., 3(4):266–286, October 1984.

[BZ00] C. Baillard and A. Zisserman. A plane-sweep strategy for the 3D reconstruc-
tion of buildings from multiple images. In ISPRS Congress and Exhibition,
Amsterdam, 2000.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans. Reconstruction and representation of 3d objects
with radial basis functions. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’01, pages 67–76,
New York, NY, USA, 2001. ACM.

[CBM+03] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLennan,
and T. J. Mitchell. Smooth surface reconstruction from noisy range data. In
Proceedings of the 1st international conference on Computer graphics and
interactive techniques in Australasia and South East Asia, GRAPHITE ’03, page
119, New York, NY, USA, 2003. ACM.

[CC78] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary
topological meshes. Computer-Aided Design, 10(6):350 – 355, 1978.

[CG04] Frederic Cazals and Joachim Giesen. Delaunay Triangulation Based Surface
Reconstruction: Ideas and Algorithms. Technical Report RR-5393, INRIA,
November 2004.

[CH90] Jindong Chen and Yijie Han. Shortest paths on a polyhedron. In SCG 90:
Proceedings of the Sixth Annual Symposium on Computational geometry, pages
360–369. ACM Press, 1990.

[CL96] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’96, pages 303–312,
New York, NY, USA, 1996. ACM.

[CLK09] Ming-Ching Chang, Frederic Fol Leymarie, and Benjamin B. Kimia. Surface
reconstruction from point clouds by transforming the medial scaffold. Comput.
Vis. Image Underst., 113(11):1130–1146, November 2009.

148 BIBLIOGRAPHY

[CM95] Yang Chen and Gérard Medioni. Description of complex objects from multiple
range images using an inflating balloon model. Comput. Vis. Image Underst.,
61:325–334, May 1995.

[CSD04] David Cohen-Steiner and Frank Da. A greedy delaunay-based surface recon-
struction algorithm. Vis. Comput., 20(1):4–16, April 2004.

[CWW12] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. Geodesics in heat.
CoRR, abs/1204.6216, 2012.

[DG03] Tamal K. Dey and Samrat Goswami. Tight cocone: a water-tight surface recon-
structor. In Proceedings of the eighth ACM symposium on Solid modeling and
applications, SM ’03, pages 127–134, New York, NY, USA, 2003. ACM.

[DG06] Tamal K. Dey and Samrat Goswami. Provable surface reconstruction from noisy
samples. Comput. Geom. Theory Appl., 35:124–141, August 2006.

[DGH01] Tamal K. Dey, Joachim Giesen, and James Hudson. Delaunay based shape
reconstruction from large data. In Proceedings of the IEEE 2001 symposium
on parallel and large-data visualization and graphics, PVG ’01, pages 19–27,
Piscataway, NJ, USA, 2001. IEEE Press.

[DHOS07] Joel II Daniels, Linh K. Ha, Tilo Ochotta, and Claudio T. Silva. Robust smooth
feature extraction from point clouds. In Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2007, SMI ’07, pages 123–136,
Washington, DC, USA, 2007. IEEE Computer Society.

[dRAdLN07] Renata L. M. do Rego, Aluizio F. R. Araújo, and Fernando Buarque de Lima Neto.
Growing self-organizing maps for surface reconstruction from unstructured point
clouds. In IJCNN, pages 1900–1905. IEEE, 2007.

[DRADLN10] Renata Lúcia Mendonça Ernesto Do Rêgo, Aluizio Fausto Ribeiro Araújo, and
Fernando Buarque De Lima Neto. Growing self-reconstruction maps. Trans.
Neur. Netw., 21(2):211–223, February 2010.

[EBV05] Jordi Esteve, Pere Brunet, and Alvar Vinacua. Approximation of a variable
density cloud of points by shrinking a discrete membrane. Comput. Graph.
Forum, pages 791–807, 2005.

[EH96] Matthias Eck and Hugues Hoppe. Automatic reconstruction of b-spline surfaces
of arbitrary topological type. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’96, pages 325–334,
New York, NY, USA, 1996. ACM.

[EM92] Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. In
Volume Visualization, pages 75–82, 1992.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[FCOS05] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust moving
least-squares fitting with sharp features. In ACM SIGGRAPH 2005 Papers,
SIGGRAPH ’05, pages 544–552, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 149

[Fre14] Free Software Foundation. Gnu free documentation license. https://gnu.
org/licenses/fdl.html/, 2014.

[Fri93] Bernd Fritzke. Growing cell structures - a self-organizing network for unsuper-
vised and supervised learning. Neural Networks, 7:1441–1460, 1993.

[Fri95] Bernd Fritzke. A growing neural gas network learns topologies. In G. Tesauro,
D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Pro-
cessing Systems 7, pages 625–632. MIT Press, Cambridge MA, 1995.

[Fri96] Bernd Fritzke. Automatic construction of radial basis function networks with
the growing neural gas model and its relevance for fuzzy logic. In Proceedings
of the 1996 ACM symposium on Applied Computing, SAC ’96, pages 624–627,
New York, NY, USA, 1996. ACM.

[FW91] Bernd Fritzke and Peter Wilke. FLEXMAP—A neural network with linear time
and space complexity for the traveling salesman problem. In Proceedings of the
International Joint Conference on Neural Networks (Singapore), pages 929–934.
Piscataway, NJ: IEEE, 1991.

[GK02] M. Gopi and Shankar Krishnan. A fast and efficient projection-based approach
for surface reconstruction. In Proceedings of the 15th Brazilian Symposium
on Computer Graphics and Image Processing, SIBGRAPI ’02, pages 179–186,
Washington, DC, USA, 2002. IEEE Computer Society.

[GSH+07] Ran Gal, Ariel Shamir, Tal Hassner, Mark Pauly, and Daniel Cohen-Or. Surface
reconstruction using local shape priors. In Proceedings of the fifth Eurographics
symposium on Geometry processing, SGP ’07, pages 253–262, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Alan McDonald, and Werner
Stuetzle. Surface reconstruction from unorganized points. In James J. Thomas,
editor, SIGGRAPH, pages 71–78. ACM, 1992.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Mesh optimization. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’93, pages 19–26,
New York, NY, USA, 1993. ACM.

[HDD+94] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John
McDonald, Jean Schweitzer, and Werner Stuetzle. Piecewise smooth surface
reconstruction. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’94, pages 295–302, New
York, NY, USA, 1994. ACM.

[Heb49] D. O. Hebb. The organization of behavior: a neuropsychological theory. John
Wiley & Sons, New York, 1949.

[HF08] Y. Holdstein and A. Fischer. Three-dimensional surface reconstruction using
meshing growing neural gas (mgng). Vis. Comput., 24:295–302, March 2008.

[HG01] Andreas Hubeli and Markus Gross. Multiresolution feature extraction for un-
structured meshes. In Proceedings of the conference on Visualization ’01, VIS
’01, pages 287–294, Washington, DC, USA, 2001. IEEE Computer Society.

https://gnu.org/licenses/fdl.html/
https://gnu.org/licenses/fdl.html/

150 BIBLIOGRAPHY

[HK06] Alexander Hornung and Leif Kobbelt. Robust reconstruction of watertight 3d
models from non-uniformly sampled point clouds without normal information.
In Proceedings of the fourth Eurographics symposium on Geometry processing,
SGP ’06, pages 41–50, Aire-la-Ville, Switzerland, Switzerland, 2006. Euro-
graphics Association.

[HLZ+09] Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. Consolidation
of unorganized point clouds for surface reconstruction. ACM Trans. Graph.,
28(5):176:1–176:7, December 2009.

[HM02] Jianbing Huang and Chia-Hsiang Menq. Combinatorial manifold mesh recon-
struction and optimization from unorganized points with arbitrary topology.
Computer-Aided Design, pages 149–165, 2002.

[HSKK01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii.
Topology matching for fully automatic similarity estimation of 3d shapes. In
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’01, pages 203–212, New York, NY, USA, 2001. ACM.

[HV98] Miklós Hoffmann and Lajos Várady. Free-form surfaces for scattered data by
neural networks. Journal for Geometry and Graphics, 2:1–6, 1998.

[IJL+04] I.P. Ivrissimtzis, W.-K. Jeong, S. Lee, Y. Lee, and H.-P. Seidel. Neural meshes:
surface reconstruction with a learning algorithm. Research Report MPI-I-2004-
4-005, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saar-
brücken, Germany, October 2004.

[IJS03a] I. P. Ivrissimtzis, W-K. Jeong, and H-P. Seidel. Using growing cell structures
for surface reconstruction. In SMI ’03: Proceedings of the Shape Modeling
International 2003, page 78, Washington, DC, USA, 2003. IEEE Computer
Society.

[IJS03b] Ioannis Ivrissimtzis, Won-Ki Jeong, and Hans-Peter Seidel. Neural meshes:
Statistical learning methods in surface reconstruction. Technical Report MPI-I-
2003-4-007, Max-Planck-Institut f’́ur Informatik, Saarbrücken, April 2003.

[ILL+04] Ioannis Ivrissimtzis, Yunjin Lee, Seungyong Lee, Won-Ki Jeong, and Hans-
Peter Seidel. Neural mesh ensembles. In 3DPVT ’04: Proceedings of the 3D
Data Processing, Visualization, and Transmission, 2nd International Symposium,
pages 308–315, Washington, DC, USA, 2004. IEEE Computer Society.

[IST13] ISTI - CNR Research Center. Meshlab homepage. http://meshlab.
sourceforge.net/, 2013.

[JBS+06] P. Jenke, M. Bokeloh, A. Schilling, W. Straßer, and M. Wand. Bayesian point
cloud reconstruction. In EUROGRAPHICS 2006, 2006.

[JHB95] Daniel crevier. ai: The tumultuous history of the search for artificial intelligence.
ny: Basic books, 1993. 432 pp. (reviewed by charles fair). Journal of the History
of the Behavioral Sciences, 31(3):273–278, 1995.

[JIS03] W.-K. Jeong, I.P. Ivrissimtzis, and H.-P. Seidel. Neural meshes: Statistical learn-
ing based on normals. Computer Graphics and Applications, Pacific Conference
on, 0:404, 2003.

http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/

BIBLIOGRAPHY 151

[KB04] Leif Kobbelt and Mario Botsch. A survey of point-based techniques in computer
graphics. Comput. Graph., 28(6):801–814, December 2004.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface recon-
struction. In Proceedings of the fourth Eurographics symposium on Geometry
processing, SGP ’06, pages 61–70, Aire-la-Ville, Switzerland, Switzerland, 2006.
Eurographics Association.

[KL96] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon
meshes. In SIGGRAPH, pages 313–324, 1996.

[KO00] Biliana Kaneva and Joseph O’Rourke. An implementation of chen & han’s
shortest paths algorithm. In CCCG, 2000.

[Koh82] Teuvo Kohonen. Self-Organized Formation of Topologically Correct Feature
Maps. Biological Cybernetics, 43:59–69, 1982.

[Kol82] Gina Kolata. How can computers get common sense? Science, 217(4566):1237–
1238, 1982.

[KS98] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. In Proc.
Natl. Acad. Sci. USA, pages 8431–8435, 1998.

[KS00] Takashi Kanai and Hiromasa Suzuki. Approximate shortest path on polyhedral
surface based on selective refinement of the discrete graph and its applications.
In Proceedings of the Geometric Modeling and Processing 2000, GMP ’00, page
241, Washington, DC, USA, 2000. IEEE Computer Society.

[KT03] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy cluster-
ing and cuts. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 954–961,
New York, NY, USA, 2003. ACM.

[KY05] Chuan-Chu Kuo and Hong-Tzong Yau. A delaunay-based region-growing ap-
proach to surface reconstruction from unorganized points. Comput. Aided Des.,
37(8):825–835, July 2005.

[LBG80] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, 28:84–95, 1980.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169,
August 1987.

[LCOL07] Yaron Lipman, Daniel Cohen-Or, and David Levin. Data-dependent mls for
faithful surface approximation. In Proceedings of the fifth Eurographics sympo-
sium on Geometry processing, SGP ’07, pages 59–67, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association.

[LCOLTE07] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer.
Parameterization-free projection for geometry reconstruction. In ACM SIG-
GRAPH 2007 papers, SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

[Lev98] David Levin. The approximation power of moving least-squares. Mathematics
of Computation, 67:1517–1531, 1998.

152 BIBLIOGRAPHY

[Lev99] M. Levoy. The digital michelangelo project. In Proceedings. Second Interna-
tional Conference on 3-D Digital Imaging and Modeling, pages 2 –11, 1999.

[Lev03] D. Levin. Mesh-independent surface interpolation. Geometric Modeling for
Scientific Visualization, pages 37–49, 2003.

[LHL+12] Kuan-Yuan Lin, Chung-Yi Huang, Jiing-Yih Lai, Yao-Chen Tsai, and Wen-Der
Ueng. Automatic reconstruction of b-spline surfaces with constrained boundaries.
Comput. Ind. Eng., 62(1):226–244, February 2012.

[LMS97] Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. Approximating
weighted shortest paths on polyhedral surfaces. In Proceedings of the thir-
teenth annual symposium on Computational geometry, SCG ’97, pages 485–486,
New York, NY, USA, 1997. ACM.

[LS81] P. Lancaster and K. Salkauskas. Surfaces Generated by Moving Least Squares
Methods. Mathematics of Computation, 37(155):141–158, 1981.

[LTJW07] Ligang Liu, Chiew-Lan Tai, Zhongping Ji, and Guojin Wang. Non-iterative
approach for global mesh optimization. Comput. Aided Des., 39(9):772–782,
September 2007.

[LYO+10] Yotam Livny, Feilong Yan, Matt Olson, Baoquan Chen, Hao Zhang, and Jihad
El-Sana. Automatic reconstruction of tree skeletal structures from point clouds.
ACM Trans. Graph., 29(6):151:1–151:8, December 2010.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability, pages 281–297, 1967.

[MAVdF05] Boris Mederos, Nina Amenta, Luiz Velho, and Luiz Henrique de Figueiredo.
Surface reconstruction from noisy point clouds. In Proceedings of the third Eu-
rographics symposium on Geometry processing, SGP ’05, Aire-la-Ville, Switzer-
land, Switzerland, 2005. Eurographics Association.

[MBL+91] James V. Miller, David E. Breen, William E. Lorensen, Robert M. O’Bara, and
Michael J. Wozny. Geometrically deformed models: a method for extracting
closed geometric models form volume data. In Proceedings of the 18th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’91,
pages 217–226, New York, NY, USA, 1991. ACM.

[Men01] Robert Mencl. Reconstruction of surfaces from unorganized three-dimensional
point clouds. phd, Universität Dortmund, 2001.

[MHH08] Markus Melato, Barbara Hammer, and Kai Hormann. Neural gas for surface
reconstruction. IfI Technical Report Series, 2008.

[MKN+04] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point
based animation of elastic, plastic and melting objects. In Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA
’04, pages 141–151, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics
Association.

BIBLIOGRAPHY 153

[MMP87] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. The
discrete geodesic problem. SIAM J. Comput., 16(4):647–668, August 1987.

[MP88] Marvin Minsky and Seymour Papert. Perceptrons : an introduction to computa-
tional geometry. The MIT Press, Cambridge (Mass.), London, 1988.

[MS91] T. Martinetz and K. Schulten. A ”Neural-Gas” Network Learns Topologies.
Artificial Neural Networks, I:397–402, 1991.

[MS94] T. Martinetz and K. Schulten. Topology representing networks. Neural Networks,
7(3):507–522, 1994.

[MSP+08] F. Mari, Jo José Hiroki Saito, Gustavo Poli, Marcelo R. Zorzan, and Alexandre
L. M. Levada. Improving the neural meshes algorithm for 3d surface reconstruc-
tion with edge swap operations. In SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, pages 1236–1240, New York, NY, USA, 2008.
ACM.

[Mur91] Shigeru Muraki. Volumetric shape description of range data using “blobby
model”. In SIGGRAPH ’91: Proceedings of the 18th annual conference on
Computer graphics and interactive techniques, pages 227–235, New York, NY,
USA, 1991. ACM.

[NY06] T. S. Newman and H. Yi. A survey of the marching cubes algorithm. Computers
& Graphics, 30(5), 2006.

[OBA+03] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter
Seidel. Multi-level partition of unity implicits. In ACM SIGGRAPH 2003 Papers,
SIGGRAPH ’03, pages 463–470, New York, NY, USA, 2003. ACM.

[OGG09] A. C. Öztireli, G. Guennebaud, and M. Gross. Feature preserving point set
surfaces based on non-linear kernel regression. Computer Graphics Forum,
28(2), 2009.

[OTC+10] Guilherme N. Oliveira, Rafael P. Torchelsen, Joao L. D. Comba, Marcelo Walter,
and Rui Bastos. Geotextures: A multi-source geodesic distance field approach
for procedural texturing of complex meshes. In Proceedings of the 2010 23rd
SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI ’10, pages
126–133, Washington, DC, USA, 2010. IEEE Computer Society.

[PBP02] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bezier and B-Spline
Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[PLK05] Si Hyung Park, Seoung Soo Lee, and Jong Hwa Kim. A surface reconstruction
algorithm using weighted alpha shapes. In Proceedings of the Second interna-
tional conference on Fuzzy Systems and Knowledge Discovery - Volume Part I,
FSKD’05, pages 1141–1150, Berlin, Heidelberg, 2005. Springer-Verlag.

[PLL12] Min Ki Park, Seung Joo Lee, and Kwan H. Lee. Multi-scale tensor voting for
feature extraction from unstructured point clouds. Graph. Models, 74(4):197–
208, July 2012.

154 BIBLIOGRAPHY

[PMW+08] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut Pottmann, and Leonidas J.
Guibas. Discovering structural regularity in 3d geometry. ACM Trans. Graph.,
27(3):43:1–43:11, August 2008.

[PT97] Les Piegl and Wayne Tiller. The NURBS book (2nd ed.). Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[RMB+08] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Emanuel Dolha,
and Michael Beetz. Towards 3D point cloud based object maps for household
environments. Robot. Auton. Syst., Special Issue on Semantic Knowledge in
Robotics, 56(11):927–941, 2008.

[Rot03] Franz Rottensteiner. Automatic generation of high-quality building models from
lidar data. IEEE Comput. Graph. Appl., 23(6):42–50, November 2003.

[SACO04] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based surface comple-
tion. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 878–887, New
York, NY, USA, 2004. ACM.

[SCD+06] Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. A comparison and evaluation of multi-view stereo reconstruction
algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Volume 1, CVPR ’06, pages 519–528,
Washington, DC, USA, 2006. IEEE Computer Society.

[SDK09] Ruwen Schnabel, Patrick Degener, and Reinhard Klein. Completion and recon-
struction with primitive shapes. Computer Graphics Forum (Proc. of Eurograph-
ics), 28(2):503–512, March 2009.

[Set95] J. A. Sethian. A fast marching level set method for monotonically advancing
fronts. In Proc. Nat. Acad. Sci, pages 1591–1595, 1995.

[SLS+06] Andrei Sharf, Thomas Lewiner, Ariel Shamir, Leif Kobbelt, and Daniel Cohen-
Or. Competing fronts for coarse-to-fine surface reconstruction. In Eurographics
2006 (Computer Graphics Forum), volume 25, pages 389–398, Vienna, october
2006. Eurographics.

[SOS05] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating and
approximating implicit surfaces from polygon soup. In ACM SIGGRAPH 2005
Courses, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

[SS02] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1-3):7–42,
April 2002.

[SSB05] Florian Steinke, Bernhard Schölkopf, and Volker Blanz. Support vector machines
for 3d shape processing. Comput. Graph. Forum, pages 285–294, 2005.

[SSK+05] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and
Hugues Hoppe. Fast exact and approximate geodesics on meshes. In ACM
SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 553–560, New York, NY,
USA, 2005. ACM.

BIBLIOGRAPHY 155

[SSZCO10] Shy Shalom, Ariel Shamir, Hao Zhang, and Daniel Cohen-Or. Cone carving
for surface reconstruction. ACM Trans. Graph., 29(6):150:1–150:10, December
2010.

[SWK07] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient ransac for point-
cloud shape detection. Computer Graphics Forum, 26(2):214–226, June 2007.

[SWWK08] Ruwen Schnabel, Raoul Wessel, Roland Wahl, and Reinhard Klein. Shape
recognition in 3d point-clouds. In V. Skala, editor, The 16-th International Con-
ference in Central Europe on Computer Graphics, Visualization and Computer
Vision’2008. UNION Agency-Science Press, February 2008.

[SZBN03] Thomas W. Sederberg, Jianmin Zheng, Almaz Bakenov, and Ahmad Nasri.
T-splines and t-nurccs. ACM Trans. Graph., 22(3):477–484, July 2003.

[Tau95] Gabriel Taubin. A signal processing approach to fair surface design. In Pro-
ceedings of the 22nd annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’95, pages 351–358, New York, NY, USA, 1995. ACM.

[TV91] D. Terzopoulos and M. Vasilescu. Sampling and Reconstruction with Adaptive
Meshes. In Proceedings of the 1991 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 70–75, Lahaina, HI, 1991.

[TWAD09] Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. Inter-
leaving delaunay refinement and optimization for practical isotropic tetrahedron
mesh generation. ACM Trans. Graph., 28(3):75:1–75:9, July 2009.

[VF05] Tamás Várady and Michael A. Facello. New trends in digital shape reconstruc-
tion. In Proceedings of the 11th IMA international conference on Mathematics
of Surfaces, IMA’05, pages 395–412, Berlin, Heidelberg, 2005. Springer-Verlag.

[VHK99] Lajos Várady, Miklós Hoffmann, and Emőd Kovács. Improved free-form mod-
elling of scattered data by dynamic neural networks. Journal for Geometry and
Graphics, 3:177–183, 1999.

[VT92] M. Vasilescu and Demetri Terzopoulos. Adaptive meshes and shells: Irregular
triangulation, discontinuities, and hierarchical subdivision. In Proceedings of
Computer Vision and Pattern Recognition conference, pages 829–832. IEEE
Computer Society Press, 1992.

[WALH13] Thomas Wiemann, Hendrik Annuth, Kai Lingemann, and Joachim Hertzberg. An
evaluation of open source surface reconstruction software for robotic applications.
In 16th International Conference on Advanced Robotics (ICAR 2013), pages 1–7.
IEEE, 2013.

[XMQ04] Hui Xie, Kevin T. McDonnell, and Hong Qin. Surface reconstruction of noisy
and defective data sets. In Proceedings of the conference on Visualization ’04,
VIS ’04, pages 259–266, Washington, DC, USA, 2004. IEEE Computer Society.

[YLL+09] Dong-Ming Yan, Bruno Lévy, Yang Liu, Feng Sun, and Wenping Wang. Isotropic
remeshing with fast and exact computation of restricted voronoi diagram. In
Proceedings of the Symposium on Geometry Processing, SGP ’09, pages 1445–
1454, Aire-la-Ville, Switzerland, Switzerland, 2009. Eurographics Association.

156 BIBLIOGRAPHY

[Yu99] Yizhou Yu. Surface reconstruction from unorganized points using self-organizing
neural networks. In IEEE Visualization 99, Conference Proceedings, pages 61–
64, 1999.

[ZKK02] G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface
flattening via multidimensional scaling. IEEE Transactions on Visualization and
Computer Graphics, 8(2):198–207, April 2002.

[ZOF01] Hong-Kai Zhao, Stanley Oshery, and Ronald Fedkiwz. Fast surface reconstruc-
tion using the level set method. In VLSM ’01: Proceedings of the IEEE Workshop
on Variational and Level Set Methods, 2001.

	Introduction
	Surface Reconstruction
	Artificial Neural Networks
	Structure
	Overview
	Figures
	Algorithms
	Complexity Analysis
	Measurements
	Point Clouds
	Test Hardware

	Contribution

	Problem Analysis
	Problem – Reconstruction from Unorganized Points
	Input – Unorganized Points
	Sample Set Size
	Non-Uniform Sample Densities
	Holes
	Noise
	Outliers
	Unrecognizable Surface Structures
	Mutually Dependent Ambiguities

	Output – Surface Model
	Surface Types
	Topology
	Surface Orientation
	Solid and Non-Solid Objects

	Function – Reconstruction Methods
	Interpolation
	Deformation
	Distance Function
	Model Based

	Conclusion

	Growing Cell Structures
	Evolution of Growing Cell Structures
	k-Means Clustering
	Self-Organizing Map
	Growing Cell Structures
	Smart Growing Cells

	Additional Usage
	Resampling
	Unwrapping
	Remeshing
	Level of Detail

	Growing Cell Structures vs. Growing Neural Gas
	Growing Neural Gas
	Similarities
	Input – Unorganized Points
	Output – Surface Model
	Parallelization
	Modifications

	Results
	Conclusion

	The Filter Chain Concept
	Introduction
	Approach
	Artifact Filters
	Removal Filters
	Editing and Constructing Filters

	Additional Usage
	Results
	Conclusion

	Solving Twisted Surface
	Introduction
	Emergence of Twisted Surface
	Solving a Global Problem on a Local Level
	Geodesic Distances

	Approach
	Semi-Local Processing
	Vertex Front
	Minimal Edge Front
	Minimal Distance Front
	Calculating Connection Path
	Twist Solving

	Additional Usage
	Mesh Distance Processing
	Normal Estimation

	Results
	Conclusion

	Growing Surface Structures
	Introduction
	Likelihood Distribution
	Distance Minimization
	Topology Optimization

	Approach
	Topology Focused Approximation
	Implementation of Growing Surface Structures

	Additional Usage
	Unifying Sample Density
	Remeshing and Mesh Optimization

	Results
	Conclusion

	Results
	Comparison with Classical Reconstruction Approaches
	Reconstruction of Challenging Models

	Conclusion
	Summary
	Discussion
	Future Work
	Epilog

	Notation
	Bibliography

