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Abstract

In this thesis, efficient methods for the solution of inverse problems, combin-
ing adaptive regularization and discretization are proposed. For the computation of a
Tikhonov regularization parameter, we consider an inexact Newton method based on
Morozov’s discrepancy principle for noisy data. In each step, a regularized problem
is solved on a different discretization level, which we control using dual-weighted
residual error estimators. In the second part of this thesis, we combine this method
with iteratively regularized Gauss-Newton methods. For both approaches, we provide
a convergence analysis as well as numerical results.

Zusammenfassung

In dieser Arbeit werden effiziente Verfahren zur Lösung inverser Probleme
vorgestellt, die adaptive Regularisierungs- und Diskretisierungsmethoden kom-
binieren. Zur Bestimmung eines Tichonov-Regularisierungsparameters betrachten
wir ein inexaktes Newton-Verfahren basierend auf Morozov’s Diskrepanzprinzip für
gestörte Daten. In jedem Schritt wird ein regularisiertes Problem auf einer anderen
Diskretisierungsebene gelöst, welche wir mittels residuenbasierter Fehlerschätzer
steuern. Im zweiten Teil der Arbeit kombinieren dies mit iterativ regularisierten
Gauß-Newton-Methoden. Für beide Ansätze liefern wir Konvergenzresultate sowie
numerische Ergebnisse.
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1. Introduction

Many complex processes in the field of natural sciences, medicine, and engineering are described
by mathematical models with nonlinear partial differential equations (PDEs). The mentioned
systems of PDEs mostly contain unknown parameter, e.g., space-dependent coefficient functions,
source terms, initial or boundary data, whose determination leads to high-dimensional inverse
problems. Many inverse problems are ill-posed in the sense that their solution does not depend
continuously on the data, which in case of noisy data can lead to significant misinterpretations
of the solution. This instability requires the use of appropriate regularization techniques, one
of them being Tikhonov regularization which this thesis focusses on. The intensity of the
regularization, i.e., how much the problem is changed to obtain a stable approximation of the
solution, is controlled via a regularization parameter. The question is, how the regularization
parameter should be chosen. A well-established method for the determination of a regularization
parameter is Morozov’s discrepancy principle where the residual norm, considered as a function
of the regularization parameter, should equal an appropriate multiple of the noise level.
Alternatively to applying Tikhonov regularization to the nonlinear problem of parameter
identification, we consider Newton type methods [69]. For approaching the solution to the
inverse problem in an iterative manner, there, in each iteration step, a linearization of the
operator equation F (q) = g around some approximate solution is solved. In particular,
we investigate the iteratively regularized Gauss-Newton method, where in each Newton step
Tikhonov regularization is applied to the linearized problem. Also here, the discrepancy
principle plays a crucial role for selecting the regularization parameter in each iteration and to
appropriately terminate the overall iteration.

The numerical effort for solving inverse problems with PDEs is usually much higher than for
the numerical simulation of the underlying process with a given data set. Large potential
for the construction of efficient algorithms for the solution of such inverse problems lies in
adaptive discretizations. While the use of adaptive concepts for the choice of the discretization
for numerical simulation has become state of the art in the last years, adaptivity in the context
of inverse problems presents a new and highly relevant topic.

The central subject of this thesis consists in finding as generally applicable and analytically
established methods as possible for the adaptive discretization of inverse problems, combining
discretization and regularization. In this process, the main focus is on the efficiency of the
constructed algorithms on the one hand and on the rigorous convergence analysis on the other
hand.

This thesis is organized as follows:
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1. Introduction

Chapter 2: Basic concepts for the analysis and solution of inverse problems

In this chapter we give an overview of the existing methods for the numerical solution of
ill-posed inverse problems, starting with the definition of a nonlinear inverse problem in the
sense of Hadamard [41]. For a full introduction to the general theory of inverse problems we
refer to [6, 21, 27, 107]. A classical reference on uniqueness results for parameter identification
in PDEs is [53]. We continue by introducing Tikhonov regularization, which has been discussed,
i.a., in [57, 59, 62, 80, 105, 107], and Morozov’s discrepancy principle as a posteriori parameter
choice rule, cf. [42, 89, 90]. Next, we build a bridge between inverse problems and optimal
control, i.e., we formulate the inverse problem as an optimization problem constrained by the
underlying PDE. We rely on the basic theory for PDEs [31, 40], and their numerical solution via
finite element methods [20, 25, 76]. The monographs [19, 34, 46, 78, 108] represent a profound
introduction to optimal control. We formulate the discretized problem and explain the use of
dual-weighted-residual error estimators (DWR) for adaptive discretizations, cf. [9–11]. In the
last section of Chapter 2 we briefly present the optimization methods considered in this thesis,
namely Newton’s method, iteratively regularized Gauss-Newton methods, SQP methods and
Penalty methods, which are presented in more detail, e.g., in [19, 36, 95].

Chapter 3: Computation of a Tikhonov regularization parameter with adaptive
discretizations

In this chapter we derive an algorithm for the efficient computation of a Tikhonov regularization
parameter with adaptive mesh refinement.

To our knowledge, parameter choice rules and convergence analysis for uniform refinement
go back to Natterer [92] and Engl, Neubauer [28]. Adaptive discretizations for parameter
estimation have been considered by Chavent, Bisselll in [24] and Ben Ameur, Chavent, and
Jaffré in [1], where the mesh is refined according to refinement and coarsening indicators. Later,
Neubauer suggested an adaptive method for inverse problems which refines at discontinuities
by means of appropriate weight factors, cf. [94]. In the context of adaptivity for inverse
problems, we would also like to mention the publications [2] by Benameur, Kaltenbacher and
[13] by Beilina, Klibanov as well as the recent paper by Wachsmuth [110], where an adaptive
regularization and discretization method is presented for problems with control constraints.

We focus on Morozov’s discrepancy principle as a posteriori parameter choice and suggest to
solve the resulting scalar nonlinear equation by an inexact Newton method, where in each
iteration step, a regularized problem is solved at a different discretization level. Dual-weighted-
residual error estimators are used for adaptive refinement with respect to two quantities of
interest, in order to keep the discretization level as coarse as possible but fine enough to
guarantee global convergence of the inexact Newton method. The proposed algorithm is an
extension of the method suggested in [39] for linear inverse problems. This concept leads to a
highly efficient method for determining the Tikhonov regularization parameter for nonlinear
ill-posed problems. Moreover it is shown that with the so obtained regularization parameter
and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization
results from the continuous setting can be recovered. For the convergence analysis, we extend
the ideas of Potra [98], using the existence of a lower and an upper bound to the second
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derivative of some quantity of interest. The efficiency of the proposed method is demonstrated
by means of numerical experiments.

In the second part of Chapter 3 we extend the proposed method to parabolic problems. A
detailed introduction to the theory of parabolic PDEs and their discretization can be found
for instance in the textbook of Eriksson, Estep, Hansbo, and Johnson [29]. For the time
discretization, we adopt the results obtained by Meidner and Vexler from [85–87], and use
Galerkin finite element methods as well as an equilibrium criterion for an adaptive refinement
strategy. Finally, we provide numerical results for a parabolic example to show the efficiency
of the proposed method.

Chapter 4: Iteratively regularized Gauss-Newton methods

In this chapter we combine the method proposed in Chapter 3 with iteratively regularized
Gauss-Newton methods.

A detailed overview of iterative regularization methods for ill-posed problems is given in the
textbook [69] by Kaltenbacher, Neubauer, and Scherzer. We would also like to mention the
publications [42, 51, 52, 60, 67, 91], which deal with iterative regularization methods. To our
knowledge, the iteratively regularized Gauss-Newton method (IRGNM) has been introduced by
Bakushinskii [4], together with a local convergence result in the continuous setting. Logarithmic
rates have been shown by Hohage [50], and the results from [4] were extended to more general
regularization methods by Kaltenbacher in [60]. Besides, IRGNM and its convergence in
different settings has been considered by Kaltenbacher, Neubauer, and Ramm in [68], as well
as Jin in [54, 55]. Generalized or related versions of IRGNM can be found in [18, 22, 23, 81].
To our knowledge, there exists no convergence analysis of IRGNM for adaptive regularization
and discretization in the current literature.

We study adaptive discretizations of the iteratively regularized Gauss-Newton method IRGNM
with a discrepancy principle choice of the regularization parameter in each Newton step. The
stopping index plays the role of an additional regularization parameter, which is also chosen
according to the discrepancy principle.

We first of all prove convergence and convergence rates under some accuracy requirements
formulated in terms of four quantities of interest. Then computation of error estimators for
these quantities based on a dual-weighted-residual method is discussed, which results in an
algorithm for adaptive refinement.

Finally we extend the results from the Hilbert space setting with quadratic penalty to Banach
spaces and general Tikhonov functionals for the regularization of each Newton step, where
we base our analysis on the results obtained by Hofmann, Kaltenbacher, Pöschl, Scherzer
[49], Kaltenbacher, Schöpfer, Schuster [71], Hofmann, Kaltenbacher [48], and Hohage, Werner
[52].

In the second part of Chapter 4 we investigate all-at-once formulations of the iteratively
regularized Gauss-Newton method. All-at-once formulations considering the PDE and the
measurement equation simultaneously allow to avoid (approximate) solution of a potentially
nonlinear PDE in each Newton step as compared to the reduced form. We analyze a least
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1. Introduction

squares and a Generalized Gauss-Newton formulation and in both cases prove convergence and
convergence rates with a posteriori choice of the regularization parameter in each Newton step
and of the stopping index under certain accuracy requirements on four quantities of interest.
Estimation of the error in these quantities by means of a dual-weighted-residual method is
discussed, which leads to an algorithm for adaptive mesh refinement. Numerical experiments
with an implementation of this algorithm show the numerical efficiency of this approach, which,
in some aspects, outperforms the nonlinear Tikhonov regularization considered in Chapter 3.

Chapter 5: Conclusion and perspectives

In this chapter we summarize the results from the previous chapters and discuss possible
extensions and future work.

Appendix

In the appendix the reader can find some additional material that is not included in the
previous chapters in order to not distract the reader unnecessarily from the main presentation
of this thesis.
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2. Basic concepts for the analysis and solution
of inverse problems

An inverse problem in general is a problem where the effect is known, but the source is not, in
contrast to a direct problem, where we deduce the effect from the source. In abstract form an
inverse problem can be written as

F (q) = g ,

where q is the source, g is the data (effect) and F is some operator describing the underlying
(physical, chemical, etc.) process. Depending on the linearity or nonlinearity of F , we speak
of a linear inverse problem or nonlinear inverse problem. A typical example for a linear
inverse problem is computer tomography. X-rays are sent through the patient’s body and a
detector measures the remaining outcoming rays on the other side. From these measurements
(attenuation of X-rays) it is possible to infer the density distribution (source of the attenuation)
and hence the different types of tissue. Another medical application and an example for a
nonlinear inverse problem would be electrical impedance tomography, where electrodes on the
patient’s body measure the electric potentials on the skin while one of the electrodes plays the
role of a current source. From these data one can conclude the conductivity (and implicitly the
type) of the particular tissue inside the body. There are many more applications that could be
named, e.g., inverse scattering, inverse seismic problems, inverse gravimetry and many more.
Details on the mathematical modelling can be found, e.g., in [6, 21, 27, 53, 107]. Although we
will keep the modelling PDE rather general, our numerical experiments will concentrate on
parameter and coefficient identification, where we want to determine the unknown parameter
standing for, e.g., unknown material properties.

2.1. Ill-Posedness, Tikhonov regularization, and Morozov’s
discrepancy principle

2.1.1. Inverse problem

In 1902, J. Hadamard established the notion of well-posedness [41] through the following
characterization: A problem is well-posed if and only if

1. for all admissible data there exists a solution, (existence)
2. the solution is unique, (uniqueness) and
3. the solution depends continuously on the data. (stability).
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2. Basic concepts for the analysis and solution of inverse problems

Throughout this thesis, we consider the nonlinear ill-posed operator equation

F (q) = g , (2.1)

where F : D ⊆ Q→ G is a nonlinear operator between Hilbert spaces Q and G, and D is some
subset of Q, for instance the domain of F . We are interested in the situation that the solution
of (2.1) does not depend continuously on the data g, i.e., where the ill-posedness is caused by
violation of 3. Due to this lack of continuity (and possibly even non-existence) of F−1 equation
(2.1) is not stably solvable. In addition, we assume that we are only given noisy data gδ with
(maximum) noise level δ, i.e.,

‖gδ − g‖G ≤ δ . (2.2)
So we aim to find q ∈ D, such that

F (q) ≈ gδ . (2.3)
(There may be no q fulfilling (2.3) with equality.)

2.1.2. Tikhonov regularization

In order to get a stable approximation of the exact solution q† of (2.1), we need to apply
regularization methods. A well-known method for doing so is Tikhonov regularization [107],
where an approximate solution is obtained by solving the minimization problem

min
q∈D
‖F (q)− gδ‖2G + 1

β
‖q − q0‖

2
Q (2.4)

for some given intial guess q0 ∈ D. We call β > 0 regularization parameter, which is crucial for
the balance between minimizing the missfit term ‖F (q)− gδ‖2G and keeping the penalization
term ‖q − q0‖

2
Q small.

Remark 2.1. We use the unusual notation 1
β with β > 0 called “regularization parameter”

instead of the more common use of a regularization parameter α = 1
β , which we adopt from

[39]. The reason behind this is that the resulting problem becomes “a little less nonlinear” with
respect to β. In case of a linear inverse problem Tq = g with T : Q → G linear, this can be
seen very easily: A stationary point q of (2.4) (with F = T ) satisfies

q = q(β) =
(
T ∗T + 1

β
id
)−1

T ∗gδ ,

where id denotes the identity operator. For small singular values of T there holds(
T ∗T + 1

β
id
)−1
≈ β id ,

such that the map β 7→ q(β) is not “too nonlinear”.

Existence of a global minimizer of the Tikhonov functional (and thereby of a stationary point,
provided that the minimizer is an interior point of the domain D) can be guaranteed if F is
weakly sequentially closed, i.e.,

(qn ⇀ q ∧ F (qn) ⇀ g) ⇒ (q ∈ D ∧ F (q) = g) (2.5)

for all (qn)n∈N ⊆ D cf., e.g., [105, Theorem 1].
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2.1. Ill-Posedness, Tikhonov regularization, and Morozov’s discrepancy principle

2.1.3. Regularization parameter choice

We are interested in the (subsequential) convergence of a solution qδβ of the Tikhonov minimiza-
tion problem (2.4) to an exact solution q† of the inverse problem equation (2.1) for vanishing
noise, i.e., qδβ → q† as δ → 0. It is obvious that this cannot hold for arbitrary regularization
parameter β > 0, but that it is reasonable to choose β depending on the noise δ. Rules to do so
are called parameter choice rules. They are divided into two classes: a priori and a posteriori
choice rules. A priori choice rules pick a regularization parameter β only in dependence of
δ, i.e., β = β(δ) and are fixed a priori, whereas a posteriori choice rules choose β also in
dependence of the noisy data gδ, i.e., β = β(δ, gδ).

A priori parameter choice

It is evident that, the less noise, the weaker the regularization should be. In line with this,
a reasonable and intuitive a priori choice for β would be such that β = β(δ)→∞ as δ → 0.
If this convergence holds and is not too fast, i.e., δ2β(δ) → 0 as δ → 0, it can in fact be
shown that the optimization problem (2.4) is stable in the sense that solutions of (2.4) depend
continuously on the data gδ, cf. [27]. It can also be shown that a solution qδβ(δ) of (2.4)
converges subsequentially to a solution q† of (2.1), in the sense that it has a convergent
subsequence and each convergent subsequence converges (strongly) to a solution of (2.1) as
δ → 0, cf. [27, 105].

Unfortunately, the convergence qδβ → q† can be arbitrarily slow. To obtain convergence rates,
most parameter choice rules require a source condition of the form

q† − q0 ∈ R((F ′(q†)∗F ′(q†))ν) , (2.6)

for some ν ∈ [0, 1], where R denotes the range and we have assumed that F is continuously
Fréchet-differentiable with derivative F ′. These kinds of Hölder type source conditions in case
ν < 1

2 in (2.6) or logarithmic source conditions (cf. [62]) represent a strong restriction on the
exact solution, but the alternative tools for showing convergence rates need strong structural
assumptions on the operator F (cf. [67]). In some (indeed practically relevant) cases those
operator assumptions may be violated while some kind of source condition can still be fulfilled
for moderately ill-posed problems (cf. [61, 63, 73]).

In this context the main disadvantage of a priori parameter choice rules arises: to obtain
optimal rates, they usually need knowledge about ν (or q†), which makes them not applicable
in most practically motivated settings.

For an appropriate a priori choice using this knowledge (cf., e.g., [27]) the optimal convergence
rate

‖qδβ − q
†‖Q = O

(
δ

2ν
2ν+1

)
(2.7)

for a solution qδβ to (2.4) can be obtained under the source condition (2.6). Appropriate a priori
parameter choice rules for iterative regularization methods (instead of Tikhonov regularization)
yielding optimal rates can be found in [69].

7



2. Basic concepts for the analysis and solution of inverse problems

A posteriori parameter choice, Morozov’s discrepancy principle

However, due to the frequent lack of a priori information, we will concentrate on an a posteriori
choice rule for β, namely the famous Morozov’s discrepancy principle [89, 90].

An overview and analysis of the most popular a posteriori choice rules, as for instance, the
discrepancy principle, the generalized cross-validation, the quasi optimality criterion and the
L-curve criterion, is given in [45, 51, 57, 58], where the latter two do not require the knowledge
of the noise level. Other a posteriori noise-free choice rules are the balancing principle analyzed,
e.g., in [77], [96] or the choice rule presented in [103].

Morozov’s discrepancy principle is motivated by the idea of not solving the given ill-posed
equation more accurately than the given data. We therefore seek a regularization parameter
β = β(δ) depending on δ, such that there exists a solution qδβ of (2.4) fulfilling

‖F (qδβ)− gδ‖G = τδ (2.8)

for some τ ≥ 1. If such a parameter β exists, the optimal rates (2.7) are shown for ν < 1
2 and

τ = 1 in [27].

Since the residual norm will play the role of a quantity of interest later on when it comes to
error estimation and mesh refinement (for a discretized version of (2.4), cf. Section 2.3), we
introduce the following notation:

ι : Q→ R , ι(q) := ‖F (q)− gδ‖2G (2.9)

i : R+ → R , i(β) := ι(qδβ) = ‖F (qδβ)− gδ‖2G , (2.10)

where qδβ is a (global) minimizer (or a stationary point) of (2.4).

Remark 2.2. In fact, this definition is a bit sloppy in case the global minimum of (2.4) is
not unique with respect to β, since then, i is not a proper function. In that case (2.10) is taken
to mean picking one of the minimizers/stationary points.

The discrepancy principle then reads: Find β∗ > 0 fulfilling

i(β∗) = τ2δ2 . (2.11)

We will see that we don’t have to solve (2.11) exactly. Namely, it will be shown that for
obtaining convergence and optimal convergence rates it suffices to have a regularization
parameter β that satisfies

τ2δ2 ≤ i(β) ≤ τ2δ2 (2.12)

for some constants 0 < τ ≤ τ ≤ τ .

8



2.2. Inverse problem as optimal control problem

2.2. Inverse problem as optimal control problem

Our study is motivated by inverse problems for partial differential equations such as parameter
identification problems, where F is the composition of a parameter-to-solution map

S : Q → V
q 7→ u

(2.13)

with some measurement operator
C : V → G

u 7→ g ,
(2.14)

where V is an appropriate Hilbert space. (A typical choice for Q and G would be, e.g., the
Lebesgue space L2(Ω) and for V the Sobolev space H1(Ω) or H1

0 (Ω), see Example 2.1)

The underlying (nonlinear) stationary PDE in a weak form is written as

A(q, u) = f in W ∗ (2.15)

for some second order differential operator A : Q × V → W ∗, and f ∈ W ∗ is some given
right-hand side in the dual of a Hilbert space W . (Often the test space W is chosen as the
state space, i.e., a typical choice would be W = H1(Ω) or W = H1

0 (Ω), see Example 2.1).

Let (·, ·)Q denote the inner product in the control (parameter) space Q, let (·, ·)G be the
inner product in the observation space G and let 〈·, ·〉V ∗,V be the duality pairing between the
Hilbert spaces V and its dual V ∗ (analogously for W ). We introduce the semi-linear form
a : Q× V ×W → R which is linear in its third argument and defined by

a(q, u)(ϕ) := 〈A(q, u), ϕ〉W ∗,W (2.16)

and the notation f(ϕ) := 〈f, ϕ〉W ∗,W . Correspondingly, if A is Fréchet-differentiable we write

a′q(q, u)(δq, ϕ) := 〈A′q(q, u)(δq), ϕ〉W ∗,W and a′u(q, u)(δu, ϕ) := 〈A′u(q, u)(δu), ϕ〉W ∗,W

for δq ∈ Q, δu ∈ V (for higher derivatives analogously).

With this, we reformulate the state equation (2.15): Find for given control q ∈ Q the state
variable u ∈ V such that

a(q, u)(ϕ) = f(ϕ) ∀ϕ ∈W . (2.17)

There are several sets of assumptions on the nonlinearity in a(·, ·)(·) and its dependence on
the control variable q allowing the state equation (2.17) to be well-posed. Due to the fact that
the analyis of this paper does not depend on the particular structure of the nonlinearity in a,
we do not specify a set of assumptions on it, but assume throughout this thesis:

Assumption 2.1. All arising state, dual, and tangent equations are uniquely stably solvable.

9



2. Basic concepts for the analysis and solution of inverse problems

In this setting Tikhonov regularization can be written in the form:

min
(q,u)∈Q×V

Jβ(q, u)

s.t. a(q, u)(ϕ) = f(ϕ) ∀ϕ ∈W ,

q ∈ D ⊂ Q

(2.18)

where the functional Jβ is defined as

Jβ : Q× V → R , Jβ(q, u) := I(u) + 1
β
‖q − q0‖

2
Q

with
I(u) := ‖C(u)− gδ‖2G (2.19)

and some initial guess q0.

A sample setting for (2.18) could be the following example.

Example 2.1. Let Ω ⊂ R3 be a Lipschitz domain. We consider

min
q∈L2(Ω),v∈H1

0 (Ω)
‖u− gδ‖2

L
2(Ω) + 1

β
‖q − q0‖

2
L

2(Ω)

s.t.
{
∆u+ u3 = q in Ω

u = 0 on ∂Ω

(in strong form), which corresponds to (2.18) with the choice Q = L2(Ω), V = W = H1
0 (Ω),

a(q, u)(ϕ) =
∫
Ω∇u(x)∇ϕ(x) + u3ϕ− qϕ dx, G = L2(Ω), C = id: V → G.

Existence of a solution to this problem as well as existence and differentiability of the solution
operator S of the PDE is shown, e.g., in [108, Theorem 4.15, 4.16, 4.17].

Given the existence of the control-to-state mapping S : Q→ V, q 7→ u = S(q), we can define
the reduced cost functional jβ : Q→ R by

jβ(q) := Jβ(q, S(q)) = ‖F (q)− gδ‖2G + 1
β
‖q − q0‖

2
Q , (2.20)

which is consistent with (2.4) for F = C ◦ S.

This definition allows to reformulate problem (2.18) as

min
q∈D⊂Q

jβ(q) . (2.21)

Remark 2.3. In the theoretical analysis we consider the constraint q ∈ D to show the generality
of the developed results, since in many examples (e.g., coefficient identification problems) the
domain of F is a proper subset of Q or certain applications offer a priori knowledge (e.g.,
nonnegativity, monotonicity, convexity) about the searched-for parameter. Furthermore, some
assumptions (cf. Assumption 3.3 and 3.6) are required to hold in D, which in general would
make them too strong assumptions on F for the choice D = Q.

10



2.2. Inverse problem as optimal control problem

In Chapter 4, we can even restrict these assumptions to a neighborhood of q0, and show that
every minimizer/stationary point of an unconstrained version of (2.21) lies in this neighborhood
(cf. Theorem 3.2, 4.2, 4.4, 4.8 and 4.11 as well as Assumption 3.1), such that (depending on
the used optimization algorithm) the constraint q ∈ D plays no role.

For these reasons we will neglect this constraint in Chapter 4, and for simplicity also when
it comes to the actual solution process in the numerics of (2.20), i.e., in Section 3.6, and
consider the unconstrained problem

min
q∈Q

jβ(q) (2.22)

instead.

Throughout this thesis we assume sufficient smoothness, i.e.,

Assumption 2.2. Jβ, A, S, jβ, C and F are three times continuously Fréchet-differentiable.
(For some results, two times Fréchet-differentiability will suffice.)

To find a stationary point of jβ in D we seek q ∈ D solving

j′β(q)(δq) = 0 ∀δq ∈ Q , (2.23)

where j′β(q)(δq) denotes the directional derivative of jβ with respect to its component q in the
direction δq.

Remark 2.4. Throughout this thesis we will switch between qδβ being either a stationary point,
i.e., a solution to (2.23), or a global minimizer.

In Chapter 3 we will consider stationary points most of the time and make use of the stationarity
condition (2.23). At some points, we will provide an alternative proof for global minimizers
and use minimality instead of stationarity. In order to transfer the results for stationary
points to minimizers directly, we could claim that D has a nonempty interior and that the
concerned minimizer lies in the interior of D. This condition however is quite strong and can
not be guaranteed in some cases, see Section 3.4, which is why we go without this condition in
Chapter 3.

In Chapter 4 we require indeed that D contains an open ball, i.e., has nonempty interior,
but in return, we get rid of the constraint D in a way, since we will show that, starting with
an approximation (to the exact solution q†) which lies in a ball around q0 that is contained
in D, the subsequent iterates/minimizers of the unconstrained problem don’t leave this ball.
Hence, the minimizers lie in the interior of D. Together with the fact that we deal with convex
optimization problems in Chapter 4, this implies that we don’t have to distinguish between
minimizers and stationary points.

Summarizing, in Chapter 3 we don’t need the assumption that D has a nonempty interior, but
we have to assume that there exists a stationary point in D. In Chapter 4, on the contrary,
we assume that D has a nonempty interior, but in return we automatically get that the
iterates/minimizers lie in D.

11



2. Basic concepts for the analysis and solution of inverse problems

To construct suitable expressions for the first and second derivatives of the reduced cost
functional j and in view of Remark 2.4 as well as the upcoming discussion of error estimation,
we introduce the Lagrangian L : Q× V ×W → R, defined as

L(q, u, z) := Jβ(q, u) + f(z)− a(q, u)(z). (2.24)

With its aid, we obtain the following standard representation of the first derivative j′β(q)(δq)
[9]: If for given q ∈ D the state u ∈ V fulfills the state equation

L′z(q, u, z)(ϕ) = 0, ∀ϕ ∈W (2.25)

(i.e., (2.17)), and if additionally z ∈W is chosen as solution of the adjoint state/dual equation

L′u(q, u, z)(ϕ) = 0, ∀ϕ ∈ V, (2.26)

then the following expression of the first derivative of the reduced cost functional holds for
given δq ∈ Q:

j′β(q)(δq) = L′q(q, u, z)(δq). (2.27)
Finding x = (q, u, z) ∈ D × V ×W such that

L′(x)(ϕ) = 0 ∀ϕ ∈ Q× V ×W (2.28)

is equivalent to finding a stationary point to the optimization problem (2.21).

In the following we denote such a stationary point for some fixed β by qδβ ∈ D.

In the same manner one can obtain representations of the second derivatives of j in terms of
the Lagrangian. It is possible to derive two different kinds of expressions: one is preferable
for building up the whole Hessian, the other one for computing matrix-vector products of the
Hessian times a given vector. Details on this can be found, e.g., in [9]. If the state equation
(2.25) and the adjoint equation (2.26) are fulfilled, for given directions δq, τq ∈ Q there holds:

(a) If δu ∈ V satisfies the linearized state/tangent equation

L′′qz(q, u, z)(δq, ϕ) + L′′uz(q, u, z)(δu, ϕ) = 0 ∀ϕ ∈W, (2.29)

and if δz ∈W is chosen as the solution of the additional adjoint/dual-for-hessian equation

L′′qu(q, u, z)(δq, ϕ) + L′′uu(q, u, z)(δu, ϕ) + L′′zu(q, u, z)(δz, ϕ) = 0 ∀ϕ ∈ V, (2.30)

then the second derivative of the reduced cost functional is given as:

j′′β(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′uq(q, u, z)(δu, τq) + L′′zq(q, u, z)(δz, τq).

(b) If δu, τu ∈ V satisfy the linearized state/tangent equations

L′′qz(q, u, z)(δq, ϕ) + L′′uz(q, u, z)(δu, ϕ) = 0 ∀ϕ ∈W,
L′′qz(q, u, z)(τq, ϕ) + L′′uz(q, u, z)(τu, ϕ) = 0 ∀ϕ ∈W,

(2.31)

then the second derivative of the reduced cost functional is given as:

j′′β(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′qu(q, u, z)(δq, τu)
+ L′′uq(q, u, z)(δu, τq) + L′′uu(q, u, z)(δu, τu).
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2.3. Discretization

Whether (a) or (b) is preferable depends on the dimension of the (discretized) control space.
If it is low dimensional it is cheaper to build up the whole Hessian, thus choosing alternative
(b), whereas for a large control space alternative (a) is less expensive.

For a profound introduction to the concepts of optimal control we refer to the monographs
[19, 34, 46, 78, 108].

2.3. Discretization

In the main parts of this thesis, i.e., in Chapter 3 and 4 (except for the sections containing
numerical experiments) we work with unspecified finite-dimensional spaces Vh, Wh, and Qh.
However, we assume the discretization to be such that the approaches discretize-then-optimize
and optimize-then-discretize are equivalent (cf., e.g., [46, chapter 3]).

In this section, we briefly discuss a possible discretization of the optimization problem (2.18) (cf.
[72]), which we use for our numerical experiments. We apply the Galerkin finite element method
to discretize the state equation. This allows us to give a natural computable representation of
the discrete gradient and Hessian similar to the continuous problem. The discretization of the
control space Q is kept rather abstract by choosing a finite dimensional subspace Qh ⊂ Q. A
possible concrete choice is given below.

To describe the finite element discretization of the state space, we consider two- or three-
dimensional shape-regular meshes, see, e.g., [25]. A mesh consists of quadrilateral or hexahedral
cells K, which constitute a non-overlapping cover of the computational domain Ω ⊂ Rn,
n ∈ { 2, 3 }. We allow hanging nodes (see, e.g., [84]) with the following restriction: We allow
at most one hanging node on each face and this node has to lie on the midpoint of the face.

The corresponding mesh is denoted by Th = {K }, where we define the discretization parameter
h as a cellwise constant function by setting h

∣∣
K

= hK with the diameter hK of the cell K.

On the mesh Th we construct a conforming finite element space Vh ⊂ V in a standard way:

Vh =
{
v ∈ V ∩ C(Ω̄)

∣∣∣ v∣∣
K
∈ Qs(K) for K ∈ Th

}
,

where Qs denotes a suitable space of polynomial-like functions of degree s on the cell K [84].
The Hilbert space W is discretized the same way, such that we get a discretized version Wh of
W . (For the typical case W = V one usually chooses Wh = Vh.)

Then, the discretization of the state equation (2.17) can be stated as: Find for given control
q ∈ Q a state uh = Sh(q) ∈ Vh with Sh : Q→ Vh such that

a(q, uh)(ϕ) = f(ϕ) ∀ϕ ∈Wh. (2.32)

This discrete state equation is assumed to possess a unique solution for each q ∈ Q.

To discretize the control, we distinguish two cases: the control space is finite-dimensional,
i.e., Q = R

d for some d ∈ N, or the control space is infinite-dimensional, e.g., Q = L2(Ω). In
the first case, the control space does not have to be discretized. Hence, we may choose here
Qh = Q. In the latter case, we consider a nodewise discretization (i.e., a representation by
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2. Basic concepts for the analysis and solution of inverse problems

nodal basis functions; cf., e.g., [84, 85, 99]) of the control variable on the same mesh as the
state variable.

The optimization problem with discrete state and control variables is then given as follows:

min
(qh,uh)∈(D∩Qh)×Vh

Jβ(qh, uh)

s.t. a(qh, uh)(ϕ) = f(ϕ) ∀ϕ ∈Wh .
(2.33)

Similar to the continuous case, we introduce the discrete reduced cost functional jβ,h : Q→ R

by

jβ,h(q) := Jβ(q, Sh(q)) = ‖C(Sh(q))− gδ‖2G + 1
β
‖q − q0‖

2
Q = ‖Fh(q)− gδ‖2G + 1

β
‖q − q0‖

2
Q

with Fh = C ◦ Sh. We assume that the observation operator C is already finite-dimensional or
does not need to be discretized for other reasons, e.g., if C = id. Then the discrete optimal
control problem (2.33) can be reformulated as

min
q∈D∩Qh

jβ,h(q) . (2.34)

Similar to the previous section a stationary point qδβ,h ∈ D ∩Qh of jβ,h in D is defined by

j′β,h(qδβ,h)(δq) = 0 ∀δq ∈ Qh , (2.35)

In the same manner we get discretized versions of ι(q) (cf. (2.9)) and i(β) (cf. (2.10)):

ιh(q) := ‖Fh(q)− gδ‖2G (2.36)

ih(β) := ιh(qδβ,h) = ‖F (qδβ,h)− gδ‖2G . (2.37)

Here we have the same situation as in the continuous case concerning uniqueness of qβ,h, see
Remark 2.2.

Since the state discretization as well as the control discretization are conforming Galerkin
methods, the representation formulas for the first and second derivatives of j from Section 2.2
can directly be transferred to the discrete level for representing the derivatives of jβ,h [9], i.e.,
in our setting discretize-then-optimize and optimize-then-discretize lead to the same result. A
discretized form of (2.28) is defined by inserting the finite dimensional spaces Qh ⊂ Q, Vh ⊂ V ,
andWh ⊂W in place of Q, V , andW , i.e., we search for xh = (qh, uh, zh) ∈ (D∩Qh×Vh×Wh)
such that

L′(xh)(ϕ) = 0 ∀ϕ ∈ Xh = Qh × Vh ×Wh (2.38)

to get a discretized stationary point qh = qδβ,h ∈ D ∩Qh of jβ,h.

Analogously, the corresponding equations for the second derivatives in (2.29), (2.30) and (2.31)
from Section 2.2 are considered in the discretized spaces Qh, Vh, and Wh, and the optimization
algorithms from Section 2.5 can be applied directly to the discretized versions jβ,h, j

′
β,h, and

j′′β,h of jβ, j
′
β, and j

′′
β .

Throughout this thesis we assume the following:
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2.4. Adaptivity and error estimation

Assumption 2.3. The operator C and the semilinear form a : Q × V ×W → R as well as
the norms in G and Q are evaluated exactly, i.e.,

‖.‖Qh = ‖.‖Q , ‖.‖Gh = ‖.‖G .

(In Chapter 4 the fact that the norm in the dual space W ∗ of W is not evaluated exactly will
play an important role).

2.4. Adaptivity and error estimation

In order to solve PDEs numerically efficiently, it is reasonable to use local mesh refinement,
e.g., in order to save computational effort or for the resolution of nonlinearities/singularities.
Having computed an approximate (discrete) solution uh, we are interested in estimating the
error between this approximation and the exact (continuous) solution u and adapting the finite
element mesh accordingly. There, a posteriori error estimators come into play. In particular
we will use goal-oriented error estimators, which can serve to estimate the mentioned error
with respect to some quantities of interest. The dual-weighted residual (dwr) method is a
well-known and, due to its efficiency, very popular method to deduce such error estimators in
the context of PDEs and optimal control, developed by Becker and Rannacher in [10] for the
error in the cost functional Jβ and extended to the case of a general quantity of interest by
Becker and Vexler in [11], [12]. The naming may already tell that the concerned error can be
estimated by weighted residuals of imposed adjoint/dual problems.

We aim to estimate the error with respect to a given quantity of interest E : Q× V → R, i.e.,
we seek ηE ∈ R such that

E(q, u)− E(qh, uh) = ηE + R

with some negligible higher order remainder term R. For this we define an auxiliary La-
grangian

M : X2 → R , M(x, ξ) := E(q, u) + L′(x)(ξ) , (2.39)

where x = (q, u, z) ∈ X = Q× V ×W and L is the Lagrangian from (2.24). According to [11],
for stationary points y := (x, ξ) ∈ X2 ofM in X and yh := (xh, ξh) ∈ X2

h = (Qh × Vh ×Wh)2

ofM in Xh there holds the error respresentation

E(q, u)− E(qh, uh) = 1
2M

′(yh)(y − ŷh) + R ,

where ŷh ∈ X
2
h is arbitrary and

R = 1
2

∫ 1

0
M′′′(yh + se)(e, e, e)s(s− 1) ds (2.40)

with e = y − yh. The term y − ŷh will be computed approximately by using a suitable
interpolation operator IO: X2 → X2

h [7] and approximating the resulting interpolation error
using an operator π : X2

h → X̂2
h, with X̂h 6= Xh such that y−πyh has a better local asymptotical

behavior than y − IO y [39]. Then we compute

ηE = 1
2M

′(yh)(πyh − yh) .

15



2. Basic concepts for the analysis and solution of inverse problems

A stationary point y = (x, ξ) ofM can be computed in a very efficient manner (similarly to
Section 2.2), especially in combination with an optimization algorithm (see Section 3.3 for
more details). In this context, note that a stationary point of L represents the first part x of a
stationary point ofM.

2.5. Optimization methods

As mentioned at the end of Section 2.1, in order to solve the discrepancy principle equation
(2.11) iteratively, we need to solve the optimization problem (2.34) in each iteration. There
are plenty of ways to do so. We will give a short overview of some of them which will play a
role later in this thesis: Newton’s method, (Generalized) Gauss-Newton methods, Sequential
Quadratic Programming (SQP) methods, and Penalty methods.

Details can be found in [19, 36, 95].

2.5.1. Newton’s method

Thanks to its fast local convergence properties, the method of choice for solving unconstrained
(smooth) optimization problems is Newton’s method (cf., e.g., [95]) as well as almost every
textbook about optimization). The computation of a stationary point of the unconstrained
problem (2.22) via Newton’s method leads to the computation of a solution δq ∈ Q to

j′′β(q)(δq, ϕ) = −j′β(q)(ϕ) ∀ϕ ∈ Q (2.41)

in each iteration step, and updating q via line search (cf., e.g., [95, Section 3.5]). This means
we solve (2.41) and set q = q + θδq with some step size θ ∈ (0, 1] until ‖∇jβ(q)‖Q is smaller
than some given tolerance. The gradient ∇jβ(q) ∈ Q and the Hessian ∇2jβ(q) : Q → Q are
hereby defined via Riesz’s representation as

(∇jβ(q), δq)Q = j′β(q)(δq)
(∇2jβ(q)δq, τq)Q = j′′β(q)(δq, τq)

for all δq, τq ∈ Q.

In our setting the gradient and the Hessian are explicitly given as

∇jβ(q) = 2F ′(q)∗(F (q)− gδ) + 2
β (q − q0)

∇2jβ(q) = 2F ′′(q)∗(F (q)− gδ) + 2F ′(q)∗F ′(q) + 2
β id .

The Newton equation (2.41) reads[
F ′′(q)∗(F (q)− gδ) + F ′(q)∗F ′(q) + 1

β id
]
δq = −F ′(q)∗(F (q)− gδ)− 1

β (q − q0) , (2.42)

and analogously in the discrete setting (cf. Section 2.3) with jβ, F , and Q replaced by jβ,h,
Fh, and Qh.
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2.5. Optimization methods

2.5.2. Iteratively regularized Gauss-Newton methods

As already mentioned in the two previous subsections, computing second order information
can be very expensive, which motivates the idea of neglecting the second order term F ′′(q) in
(2.42), such that we get the following iteration rule: Solve

(F ′(q)∗F ′(q) + 1
β id)δq = −F ′(q)∗(F (q)− gδ)− 1

β (q − q0) (2.43)

and set q = q + δq for the next iteration.

The equation (2.43) is a necessary and (due to convexity) sufficient optimality condition for
the minimization problem

min
δq∈Q

‖F (q) + F ′(q)(δq)− gδ‖2G + 1
β‖q + δq − q0‖

2
Q . (2.44)

Considering a different regularization parameter in each iteration, this leads to the iterative
regularized Gauss-Newton method (IRGNM)

qk = qk−1 − (F ′(qk−1)∗F ′(qk−1) + 1
βk

id)−1
[
F ′(qk−1)∗(F (qk−1)− gδ) + 1

β (qk−1 − q0)
]
,

which belongs to the class of Newton type methods [69].

This method was introduced by Bakushinskii in [4], where he showed local convergence on the
continuous level under the assumption that F ′ is Lipschitz continuous and the source condition
(2.6) holds for ν ≥ 1. For the noise free case (i.e., δ = 0) he even proved the convergence rate

‖qk − q†‖Q = O
(

1
βk

)
, as βk →∞ ,

under the following condition on the regularization parameter

βk →∞ as k →∞ and 1 ≤ βk+1
βk
≤ ϑ

for some ϑ > 1, which is satisfied, e.g., for the choice βk := β0ϑ
n, cf. [51].

This result has been extended in the last years by Kaltenbacher, Neubauer, Ramm, Scherzer,
Schöpfer and Schuster in [17, 68, 69] to the case ν < 1, where for ν < 1

2 restrictions on the
nonlinearity of F , such as

‖F (q)− F (q†)− F ′(q†)(q − q†)‖G ≤ C‖F (q)− F (q†)‖G‖q − q
†‖Q (2.45)

for all q from a neighborhood of q† and some constant C > 0, are required.

Since (2.44) is equivalent to

min
(δq,δu)∈Q×V

‖C(u) + C ′(u)(δu)− gδ‖2G + 1
β‖q + δq − q0‖

2
Q

s.t. a′q(q, u)(δq, ϕ) + a′u(q, u)(δu, ϕ) = 0 ∀ϕ ∈W ,
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2. Basic concepts for the analysis and solution of inverse problems

with u ∈ V solving a(q, u)(ϕ) = f(ϕ) for all ϕ ∈W , this method is related to the Generalized
Gauss-Newton method [18]: Solve

min
(δq,δu)∈Q×V

‖C(u)− gδ + C ′(u)(δu)‖2G + 1
β‖q + δq − q0‖

2
Q

s.t. a′q(q, u)(δq, ϕ) + a′u(q, u)(δu, ϕ) + a(q, u)(ϕ)− f(ϕ) = 0 ∀ϕ ∈W ,
(2.46)

and set q = q + δq, u = u + δu for the next iteration. The optimization problem (2.46) is
formed by linearizing the functions u 7→ C(u)− gδ, (q, u) 7→ a(q, u)(ϕ)− f(ϕ) (and q 7→ q− q0)
in (2.18) separately, such that one circumvents the solution of the nonlinear PDE. We will
discuss this method in more detail in Chapter 4 in combination with adaptivity and the choice
of the regularization parameter β.

2.5.3. SQP methods

The idea of Sequential Quadratic Programming (SQP) is the solution of a constrained opti-
mization problem by solving a sequence of linear-quadratic optimal control problems using
the Lagrangian and the first order optimality condition. They can be used in combination
with line search as well as trust region methods (cf. [95]), but we will focus on the local SQP
method, because this section mainly serves as motivation for Chapter 4 and Section 4.2 in
particular.

Since SQP methods are tailored for constrained optimization problems, in contrast to the
previously considered optimization methods, here we do not consider the reduced problem
(2.22), but the formulation (2.18), again neglecting the constraint q ∈ D (cf. Remark 2.3),
i.e.,

min
(q,u)∈Q×V

Jβ(q, u) := ‖C(u)− gδ‖2G + 1
β‖q − q0‖

2
Q

s.t. a(q, u)(ϕ) = f(ϕ) ∀ϕ ∈W .
(2.47)

Applying the Lagrange-Newton method to the optimization problem (2.47) consists in using
Newton’s method to solve (2.38), which leads to the iteration rule

L′′(x)(δx, ϕ) = −L′(x)(ϕ) ∀ϕ ∈ X = Q× V ×W
x = x+ δx .

This is equivalent to solving the quadratic program (SQP subproblem)

min
(δq,δu)∈Q×V

Φ(δq, δu)

s.t. b(δq, δu)(ϕ) := a′q(q, u)(δq, ϕ) + a′u(q, u)(δu, ϕ) + a(q, u)(ϕ)− f(ϕ) = 0 ∀ϕ ∈W ,
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where

Φ(δq, δu) := Jβ(q, u) + (Jβ)′q(q, u)(δq) + (Jβ)′u(q, u)(δu)
+ 1

2(L)′′qq(q, u, z)(δq, δq) + 1
2(L)′′uu(q, u, z)(δu, δu) + (L)′′qu(q, u, z)(δq, δu)

= ‖C(u)− gδ‖2G + 1
β‖q − q0‖

2
Q

+ 2
β (q − q0, δq)Q + 2(C(u)− gδ, C ′(u)(δu))G

+ 1
β‖δq‖

2
Q + ‖C ′(u)(δu)‖2G + (C(u)− gδ, C ′′(u)(δu, δu))G

− 1
2a
′′
qq(q, u)(δq, δq, z)− 1

2a
′′
uu(q, u)(δu, δu, z)− a′′qu(q, u)(δq, δu, z)

= ‖C(u)− gδ + C ′(u)(δu)‖2G + 1
β‖q + δq − q0‖

2
Q

+ (C(u)− gδ, C ′′(u)(δu, δu))G
− 1

2a
′′
qq(q, u)(δq, δq, z)− 1

2a
′′
uu(q, u)(δu, δu, z)− a′′qu(q, u)(δq, δu, z) ,

and setting q = q + δq, u = u+ δu and z as solution to the dual equation

b′δu(δq, δu)(ϕ, z) = Φ′δu(δq, δu)(ϕ) ∀ϕ ∈ V

for the next iteration. Neglecting second derivatives, in our setting, this turns into the
Generalized Gauss-Newton method (2.46) (see also Levenberg-Marquardt SQP in [22], [23]).

Although we will not treat SQP methods as such, they present a basis for the ideas in
Section 4.2.

2.5.4. Penalty methods

Another common way to treat constrained optimization problems ist via penalty methods
(cf., e.g., [95]). The main idea is to couple the constraint and the objective functional in the
following way (applied to (2.47)):

min
(q,u)∈Q×V

Jβ(q, u) + %‖A(q, u)− f‖rW ∗

(cf. the relation (2.16)) for r = 1 or r = 2 and a penalty parameter % > 0. In fact, we won’t
apply a penalty method to the nonlinear optimization problem (2.18) directly, but to the
linearized version (2.46) (see Section 4.2), which we rewrite in a condensed form as

min
(q,u)∈Q×V

T (q, u) s.t. B(q, u) = f in W ∗ (2.48)

with a convex functional T : Q × V → R and a linear operator B : Q × V → W ∗, with
corresponding penalty problem

min
(q,u)∈Q×V

P(q, u) := T (q, u) + %‖B(q, u)− f‖rW ∗ . (2.49)

In Section 4.2.2 we will especially be interested in exact penalty methods (cf., e.g., [95, Section
17.2]), i.e., the case r = 1 and % sufficiently large. More precisely, if % ist chosen larger than
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2. Basic concepts for the analysis and solution of inverse problems

the norm of the adjoint state (cf. (2.26)), a solution to the optimal control problem (2.48)
solves the penalty problem (2.49):

Let (q̄, ū) be a solution of (2.48) with corresponding adjoint state z̄, i.e., let (q̄, ū, z̄) solve

L′(q̄, ū, z̄)(dx) = 0 ∀dx ∈ Q× V ×W

for the corresponding Lagrangian L(q, u, z) := T (q, u) + f(z)−B(q, u)(z). Then there holds

P(q̄, ū) = T (q̄, ū) = L(q̄, ū, z̄) ≤ L(q, u, z̄)
≤ T (q, u) + ‖z̄‖W ‖B(q, u)− f‖W ∗
≤ T (q, u) + ρ‖B(q, u)− f‖W ∗ = P(q, u)

for all (q, u) ∈ Q× V , where we have used convexity of the Lagrangian L.

Remark 2.5. For ρ > ‖z̄‖W we even get the other direction: For a solution (q∗, u∗) of the
penalty problem (2.49) there holds

L(q∗, u∗, z̄) = T (q∗, u∗) + 〈B(q∗, u∗)− f, z̄〉W ∗,W
≤ T (q∗, u∗) + ‖z̄‖W ‖B(q∗, u∗)− f‖W ∗
≤ T (q∗, u∗) + ρ‖B(q∗, u∗)− f‖W ∗
≤ T (q̄, ū) + ρ‖B(q̄, ū)− f‖W ∗
= T (q̄, ū)
= T (q̄, ū) + 〈B(q̄, ū)− f, z̄〉W ∗,W
= L(q̄, ū, z̄)
≤ L(q∗, u∗, z̄) ,

such that there holds in fact equality in the previous inequalities. This implies

ρ‖B(q∗, u∗)− f‖W ∗ = ‖z̄‖W ‖B(q∗, u∗)− f‖W ∗ ,

which finally yields ‖B(q∗, u∗)− f‖W ∗ = 0, since ρ > ‖z̄‖W .
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3. Computation of a Tikhonov regularization
parameter with adaptive discretizations

The aim of this chapter is to combine the choice of the Tikhonov regularization parameter β
(cf. (2.11), (2.12)) with adaptive mesh refinement (cf. Section 2.3 and 2.4).

In [39] Griesbaum, Kaltenbacher, and Vexler already formulated an algorithm, which iteratively
determines a regularization parameter β fulfilling the relaxed version (2.12) of the discrepancy
principle in the discretized setting and adaptively refines the discretization by means of
goal-oriented a posteriori error estimators (cf. Section 2.4) for linear inverse problems

Tq = g (3.1)

with T : Q→ G linear.

The presented algorithm for linear problems leads not only to a considerable saving of compu-
tational effort when solving a single regularized problem, but yields an even higher gain in
CPU time and storage when used within a Newton method for determining the regularization
parameter according to the discrepancy principle (2.11), which involves several regularized
problems to be solved at different discretization levels.

As a matter of fact, many interesting parameter identification problems are governed by
nonlinear PDEs, which motivated us to extend the results from [39] as much as possible to
the nonlinear case. Like in [39] we apply an inexact Newton method to the equation (2.11).
In this process, we have to solve (2.34) in each iteration in order to obtain a minimizer or
rather (2.38) to get a stationary point qδβ,h of jβ,h for the current value of β, which is required
to evaluate ih(β) = ‖Fh(qδβ,h)− gδ‖2G. In accordance with Section 2.3 and 2.4, we propose to
do so on adaptively refined discretizations of the problem, which enables to save a considerable
amount of computational effort.

Most of the results of this chapter have been published in [65].

3.1. Convergence of adaptively discretized stationary points to an
exact solution for vanishing noise

We will first of all carry over the convergence analysis of Tikhonov regularization from the
continuous setting to an adaptively discretized one. The crucial point here is that we do not
impose accuracy in the sense of smallness of operator norms or closeness of Hilbert space
elements, but only three scalar valued quantities have to be computed precisely enough, namely
the value of i and its derivative i′ at the current iterate β, and finally the value of the Tikhonov
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

functional jβ(qδβ). In order to do so, throughout this thesis, we will need some assumptions on
the operator F .

First, througout this chapter, we assume the existence of an exact solution to the inverse
problem, i.e.,

Assumption 3.1. There exists q† ∈ D, such that q† solves (2.1).

In order to obtain convergence F (qn)→ g (as n→∞) for some appropriate sequence qn we
need that F is weakly sequentially closed, which is formulated in the following assumption.

Assumption 3.2. Let the reduced forward operator F be continuous and satisfy

(qn ⇀ q ∧ F (qn)→ g) ⇒ (q ∈ D ∧ F (q) = g)

for all (qn)n∈N ⊆ D ⊆ Q

Note that Assumption 3.2 is less restrictive as compared to (2.5), since the premiss contains
strong convergence of (F (qn))n∈N.

Furthermore F can not be “too nonlinear”(cf. (2.45))

Assumption 3.3. Let the tangential cone condition

‖F (q)− F (q̄)− F ′(q̄)(q − q̄)‖G ≤ ctc‖F (q)− F (q̄)‖G

hold for all q, q̄ ∈ D ⊆ Q and for some 0 < ctc < 1.

These two assumptions (Assumption 3.2 and 3.3) are very typical means in the analysis
of regularization methods. Some of the first ones who used the tangential cone condition
Assumption 3.3, to show convergence of the Landweber iteration, were Hanke, Scherzer, and
Neubauer [44] and although it is an open question whether this condition is fulfilled for some
standard examples, it is the weakest condition on the operator F found so far to guarantee
convergence of methods working with the first derivative of F (cf., e.g., [27], [69], [71], [102]).
We will discuss the validity of Assumption 3.2 and 3.3 in more detail by means of some
examples in Section 3.4.

Assumption 3.4. Let 0 < β ≤ β ∈ R. For all β ∈ [β, β] there exist stationary points qδβ and
qδβ,h in D of the Tikhonov functionals jβ and jβ,h (cf. (2.23) and (2.35)).

Since Assumption 3.1 and 3.4 constitute the basic prerequisites of this chapter, we will not list
them again explicitly in the following theorems.

Theorem 3.1. Let Assumption 3.2 and 3.3 hold and let qδβ ∈ D and qδβ,h ∈ D∩Qh be stationary
points of jβ and jβ,h respectively (cf. (2.28), (2.38)). Let further the regularization parameter
β = β(δ, gδ) and the discretizations Qh,Vh,Wh be chosen such that for ih as in (2.37) (see also
(2.10))

τ2δ2 ≤ ih(β) ≤ τ2
δ2 (3.2)
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3.1. Convergence of discretized stationary points to an exact solution for vanishing noise

for constants τ > τ > τ > 1+ctc
1−ctc

as well as

|ih(β)− i(β)| ≤ τ̃2δ2 (3.3)

for some constant τ̃ > 0 with
τ̃2 < τ2 −

(
1+ctc
1−ctc

)2
. (3.4)

Then there holds:

(i) With
τ2 = τ2 − τ̃2 , τ2 = τ

2 + τ̃2 (3.5)
(2.12) is fulfilled.

(ii) For any solution q† ∈ D of (2.1) there holds the estimate

‖qδβ − q0‖Q ≤ ‖q
† − q0‖Q . (3.6)

(iii) The sequence qδβ = qδβ(δ) converges (weakly) subsequentially to a solution of (2.1) as δ → 0
in the sense that it has a weakly convergent subsequence and each weakly convergent
subsequence converges strongly to a solution of (2.1). If the solution q† to (2.1) is unique,
then qδβ(δ) converges to q† as δ → 0.

Proof. (i): With τ , τ , τ , τ , τ̃ as in (3.5) we can conclude from (3.2) that

τ2δ2 + τ̃2δ2 ≤ ih(β) ≤ τ2δ2 − τ̃2δ2

holds, and using (3.3) we have

τ2δ2 ≤ ih(β)− τ̃ δ2 ≤ i(β) ≤ ih(β) + τ̃2δ2 ≤ τ2δ2 .

(ii): Since qδβ is a stationary point of jβ, there holds

∇jβ(qδβ) = F ′(qδβ)∗(F (qδβ)− gδ) + 1
β (qδβ − q0) = 0 . (3.7)

Forming the inner product with the error qδβ − q
†, we get

(F (qδβ)− gδ, F ′(qδβ)(qδβ − q
†))G + 1

β‖q
δ
β − q

†‖2Q = 1
β (q0 − q

†, qδβ − q
†)Q ,

hence for β satisfying (3.2), by (2.2), (2.12), Assumption 3.3, and (3.4)

‖F (qδβ)− gδ‖2G + 1
β‖q

δ
β − q

†‖2Q − 1
β (q0 − q

†, qδβ − q
†)Q

= (F (qδβ)− gδ, F (qδβ)− gδ − F ′(qδβ)(qδβ − q
†))G

≤ ‖F (qδβ)− gδ‖G‖F (qδβ)− gδ − F ′(qδβ)(qδβ − q
†)‖G

≤ ‖F (qδβ)− gδ‖G
(
‖F (qδβ)− F (q†)− F ′(qδβ)(qδβ − q

†)‖G + δ
)

≤ ‖F (qδβ)− gδ‖G
(
ctc‖F (qδβ)− g‖G + δ

)
≤ ‖F (qδβ)− gδ‖G

(
ctc‖F (qδβ)− gδ‖G + (1 + ctc)δ

)
≤ ‖F (qδβ)− gδ‖G

(
ctc‖F (qδβ)− gδ‖G + 1+ctc

τ ‖F (qδβ)− gδ‖G
)

=
(
ctc + 1+ctc

τ

)
‖F (qδβ)− gδ‖2G ,
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

and therewith

‖qδβ − q0‖
2
Q = ‖qδβ − q

†‖2Q − (q0 − q
†, qδβ − q

†)Q + (q† − q0, q
δ
β − q0)Q

≤ β
(
ctc + 1+ctc

τ − 1
)
‖F (qδβ)− gδ‖2G + (q† − q0, q

δ
β − q0)Q

≤ β

ctc + 1+ctc√
τ

2−τ̃2
− 1

 ‖F (qδβ)− gδ‖2G + ‖q† − q0‖Q‖q
δ
β − q0‖Q

≤ β (ctc + (1− ctc)− 1) ‖F (qδβ)− gδ‖2G + ‖q† − q0‖Q‖q
δ
β − q0‖Q

= ‖q† − q0‖Q‖q
δ
β − q0‖Q

(3.8)

which implies (3.6).

(iii): Due to (3.6) there exists a weakly convergent subsequence of qδβ = qδ
β(δ,gδ). By

‖F (qδβ)− g‖G ≤ ‖F (qδβ)− gδ‖G + δ ≤ (τ + 1)δ → 0 as δ → 0

(due to (3.2)) and the (weak) sequential closedness of F , the weak limit of any weakly
convergent subsequence of qδβ is a solution to (2.1) and therefore can be inserted in place
of q† in (3.8), which implies even strong convergence by a standard argument (see, e.g,
[27]):

Due to (3.6) and weak convergence we can conclude

‖qδβ − q
†‖2Q = ‖qδβ − q0‖

2
Q + ‖q† − q0‖

2
Q − 2(qδβ − q0, q

† − q0)Q
≤ 2‖q† − q0‖

2
Q − 2(qδβ − q0, q

† − q0)Q
→ 0 as δ → 0 .

Remark 3.1. In Chapter 4 we will show a similar convergence results (cf. Theorem 4.2).
The difference to here will be that there, no tangential cone condition Assumption 3.3 is needed
to show (3.6).

Remark 3.2. Instead of (3.3) it suffices to require

|ih(β)− i(β)| ≤ max{c · ih(β), τ̃2δ2} (3.9)

for some constant c ≤ τ̃
2

τ
2 , since this less restrictive condition implies (3.3), once (3.2) is

satisfied.

Remark 3.3. In case qδβ ∈ D is a global minimizer instead of a stationary point (cf. Re-
mark 2.4), the tangential cone condition Assumption 3.3 is unnecessary, (3.4) can be changed
to the weaker condition τ̃2 < τ2 − 1 and τ > τ > τ > 1, and the proof of (ii) in Theorem 3.1
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3.1. Convergence of discretized stationary points to an exact solution for vanishing noise

can be simplified as follows:
1
β‖q

δ
β − q0‖

2
Q ≤ (τ2 − τ̃2 − 1)δ2 + 1

β‖q
δ
β − q0‖

2
Q

≤ ih(β)− τ̃2δ2 − δ2 + 1
β‖q

δ
β − q0‖

2
Q

≤ ‖F (qδβ)− gδ‖2G − δ
2 + 1

β‖q
δ
β − q0‖

2
Q

≤ ‖F (q†)− gδ‖2G − δ
2 + 1

β‖q
† − q0‖

2
Q

≤ 1
β‖q

† − q0‖
2
Q

For proving convergence rates, we additionally need a source condition of the form (2.6):

Assumption 3.5. Let
q† − q0 ∈ R

(
κ
(
F ′(q†)∗F ′(q†)

))
hold with some κ : R+ → R

+, such that κ2 : λ 7→ κ(λ)2 is strictly monotonically increasing on
(0, ‖F ′(q†)‖2Q→G], ϕ defined by ϕ−1 = κ2 is convex and ψ defined by ψ(λ) := κ(λ)

√
λ is strictly

monotonically increasing on (0, ‖F ′(q†)‖2Q→G].

By ‖T‖X→Y we denote the operator norm ‖T‖X→Y := supx∈X,x 6=0
‖Tx‖Y
‖x‖X

for some operator
T : X → Y and Hilbert spaces X,Y .

Remark 3.4. For some operator T : Q → G the function κ in Assumption 3.5 should be
understood as spectral representation κ(T ∗T ) =

∫ a
0 κ(λ) dEλ , where {Eλ| 0 ≤ λ ≤ a} denotes

the spectral family of (the nonnegative and self-adjoint operator) T ∗T with a > 0 such that
for the spectrum σ(T ∗T ) of T ∗T there holds σ(T ∗T ) ⊂ [0, a] and ‖T‖2Q→G ≤ a (cf., e.g.,
[27, 51, 69, 91]).

Since the following result is not restricted to Tikhonov minimizers, we consider a quite
general approximation q̃ of q†. Due to this universality the following theorem is of interest
on its own and might serve as very useful tool for the convergence theory in the context of
regularized problems in combination with the discrepancy principle (see also, e.g., the proof of
Theorem 4.2).

Theorem 3.2. Let Assumption 3.5 hold. Moreover let F satisfy the tangential cone condition
Assumption 3.3 and let q̃ be a regularized approximation (not necessarily defined by Tikhonov
regularization) of a solution q† of F (q) = g with ‖g − gδ‖G ≤ δ such that

‖q̃ − q0‖Q ≤ ‖q
† − q0‖Q , (3.10)

‖F (q̃)− gδ‖G ≤ τ̂ δ (3.11)

with some τ̂ > 0 independent of δ. Then the rate

‖q̃ − q†‖Q = O

 δ√
ψ−1(Cδ)

 (3.12)

holds for some constant C > 0 independent of δ.
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Proof. If ‖q̃ − q†‖Q vanishes we are trivially done. So we assume ‖q̃ − q†‖Q 6= 0 for the rest of
the proof.

By Assumption 3.5 there exists δq ∈ Q such that

|(q† − q0, q − q
†)Q| = |(δq, κ(F ′(q†)∗F ′(q†))(q − q†))Q| (3.13)

for any q ∈ Q. With Jensen’s inequality (cf. [51, Lemma 3.5]), analogously to [51, Proposition
3.6]) for a ≥ ‖F ′(q†)‖2Q→G, we get

ϕ

(
‖κ(F ′(q†)∗F ′(q†))(q − q†)‖2G

‖q − q†‖2Q

)

= ϕ

(∫ a
0 κ(λ)2d‖Eλ(q − q†)‖2∫ a

0 d‖Eλ(q − q†)‖2

)
≤
(∫ a

0 ϕ(κ(λ)2)d‖Eλ(q − q†)‖2∫ a
0 d‖Eλ(q − q†)‖2

)

=
(∫ a

0 λd‖Eλ(q − q†)‖2

‖q − q†‖2Q

)
= ‖(F

′(q†)∗F ′(q†))1/2(q − q†)‖2G
‖q − q†‖2Q

= ‖F
′(q†)(q − q†)‖2G
‖q − q†‖2Q

,

which implies

‖κ(F ′(q†)∗F ′(q†))(q − q†)‖2G ≤ ‖q − q
†‖2Q κ

2
(
‖F ′(q†)(q − q†)‖2G
‖q − q†‖2Q

)
,

since ϕ−1 = κ2 is strictly monotonically increasing. The used notation is the same as explained
in Remark 3.4. For an introduction to functional calculus in this context, we refer to [27].
Together with (3.13) this yields

|(q† − q0, q − q
†)Q| ≤ ‖δq‖Q ‖q − q

†‖Qκ
(
‖F ′(q†)(q − q†)‖2G
‖q − q†‖2Q

)
(3.14)

for any q ∈ Q. Combining (3.10) and (3.14) we obtain

0 ≥ ‖q̃ − q0‖
2
Q − ‖q

† − q0‖
2
Q

= ‖q̃ − q†‖2Q + 2(q† − q0, q̃ − q
†)Q

≥ ‖q̃ − q†‖2Q − 2‖δq‖Q ‖q̃ − q
†‖Qκ

(
‖F ′(q†)(q̃ − q†)‖2G
‖q̃ − q†‖2Q

)
.

(3.15)

With Assumption 3.3 and (3.11) we get the following estimate

‖F ′(q†)(q̃ − q†)‖G ≤ ‖F (q̃)− F (q†)‖G + ‖F ′(q†)(q̃ − q†) + F (q†)− F (q̃)‖G
≤ (1 + ctc)‖F (q̃)− F (q†)‖G
≤ (1 + ctc)(‖F (q̃)− gδ‖G + δ)
≤ (1 + ctc)(τ̂ + 1)δ ,
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3.1. Convergence of discretized stationary points to an exact solution for vanishing noise

which together with (3.15) and by monotonicity of κ yields

‖q̃ − q†‖2Q ≤ 2‖δq‖Q ‖q̃ − q
†‖Qκ

(
C̄2δ2

‖q̃ − q†‖2Q

)
(3.16)

with C̄ = (1 + ctc)(τ̂ + 1). As we consider the case ‖q̃ − q†‖Q 6= 0, we can multiply both sides
of (3.16) by C̄δ

‖q̃−q†‖2
Q

to obtain

C̄δ ≤ 2‖δq‖Q
C̄δ

‖q̃ − q†‖Q
κ

(
C̄2δ2

‖q̃ − q†‖2Q

)
= 2‖δq‖Qψ

(
C̄2δ2

‖q̃ − q†‖2Q

)
.

By strict monotonicity of ψ, this yields

ψ−1
(

C̄

2‖δq‖Q
δ

)
≤ C̄2δ2

‖q̃ − q†‖2Q
,

which proves (3.12).

Now, we come back to the specific setting from this thesis and prove convergence rates for a
stationary point of the Tikhonov functional, and discretizations according to Theorem 3.1.

Corollary 3.3. Let the source condition Assumption 3.5 and the assumptions from Theorem 3.1
be fulfilled. Then the following convergence rate is obtained:

‖qδβ − q
†‖Q = O

 δ√
ψ−1(Cδ)

 . (3.17)

for some constant C > 0 independent of δ.

Proof. Since (3.6) and (2.12) (see also Theorem 3.1 (i)) provide exactly the assumptions from
Theorem 3.2, the proposition follows directly with Theorem 3.2.

Remark 3.5. With κ = κν : λ 7→ λν, ν ∈ (0, 1
2 ], λ > 0 in Assumption 3.5, we can conclude

the usual optimal Hölder type rates (cf. (2.7),[27])

‖qδβ − q
†‖Q = O

(
δ

2ν
2ν+1

)
:

Obviously κ2
ν : λ 7→ λ2ν is strictly monotonically increasing. For ϕ : µ 7→ µ

1
2ν there holds

ϕ−1 = κ2 and ϕ′′(µ) = 1
2ν

(
1
2ν − 1

)
µ

1
2ν−2. Thus, ϕ is convex for ν ∈ (0, 1

2 ]. Further, we have

ψ(δ) = κν(δ)
√
δ = δν+ 1

2 , i.e., ψ is strictly monotonically increasing and there holds

δ√
ψ−1(δ)

= δ
1− 1

2(ν+1/2) = δ
2ν

2ν+1 .

For a convergence (rates) proof under different conditions on the forward operator than those
used here we refer to [58].
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To obtain convergence rates for the discrete version ‖qδβ,h − q
†‖Q we need another quantity of

interest to be computed with sufficient precision, namely jβ,h(qδβ,h), which is shown by means
of the following proposition.

Theorem 3.4. Let the conditions of Theorem 3.1 be fulfilled. Let moreover τ , τ̃ be chosen
such that √

τ2 − τ̃2 >
1 + ctc +

√
(1 + ctc)

2 + 2(1− ctc)(1 + τ̃2)
1− ctc

(3.18)

is fulfilled (instead of the weaker condition (3.4)). If, for the discretization error with respect
to the cost functional,

|jβ(qδβ)− jβ,h(qδβ,h)| ≤ Θ2 δ2 (3.19)

holds, where Θ is sufficiently small so that

√
τ2 − τ̃2 ≥

1 + ctc +
√

(1 + ctc)
2 + 2(1− ctc)(1 +Θ2 + τ̃2)
1− ctc

, (3.20)

then a stationary point qδβ,h = qδβ(δ),h(δ) converges (weakly) subsequentially to a solution of (2.1)
in the same sense as in Theorem 3.1, and strongly in case q† is unique as δ → 0.

If additionally the source condition Assumption 3.5 holds with f , ψ as in Theorem 3.2, then
the convergence rate (3.17) is obtained for qδβ,h in place of qδβ.

Proof. There holds

jβ(qδβ)− jβ(q†) = ‖F (qδβ)− gδ‖2G − ‖F (q†)− gδ‖2G + 1
β

(
‖qδβ − q0‖

2
Q − ‖q

† − q0‖
2
Q

)
= ‖F (qδβ)− gδ‖2G − ‖F (q†)− gδ‖2G + 1

β (qδβ + q† − 2q0, q
δ
β − q

†)Q
= ‖F (qδβ)− gδ‖2G − ‖g − g

δ‖2G + 2
β (qδβ − q0, q

δ
β − q

†)Q − 1
β‖q

δ
β − q

†‖2Q
≤ ‖F (qδβ)− gδ‖2G + 2

β (qδβ − q0, q
δ
β − q

†)Q − 1
β‖q

δ
β − q

†‖2Q .

(3.21)

From the first order optimality condition (3.7) we get

1
β (qδβ − q0, q

δ
β − q

†)Q = −(F (qδβ)− gδ, F ′(qδβ)(qδβ − q
†))G ,

hence using the tangential cone condition Assumption 3.3

‖F (qδβ)− gδ‖2G + 1
β (qδβ − q0, q

δ
β − q

†)Q = (F (qδβ)− gδ, F (qδβ)− gδ − F ′(qδβ)(qδβ − q
†))G

≤ ‖F (qδβ)− gδ‖G‖F (qδβ)− gδ − F ′(qδβ)(qδβ − q
†)‖G

≤ ‖F (qδβ)− gδ‖G
(
ctc‖F (qδβ)− g‖G + δ

)
≤ ‖F (qδβ)− gδ‖G

(
ctc‖F (qδβ)− gδ‖G + (1 + ctc)δ

)
≤ ctc‖F (qδβ)− gδ‖2G + (1 + ctc)δ‖F (qδβ)− gδ‖G
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3.1. Convergence of discretized stationary points to an exact solution for vanishing noise

and with (3.21)

jβ(qδβ)− jβ(q†) ≤ −‖F (qδβ)− gδ‖2G − 1
β‖q

δ
β − q

†‖2Q

+ 2
(
ctc‖F (qδβ)− gδ‖2G + (1 + ctc)δ‖F (qδβ)− gδ‖G

)
= −(1− 2ctc)‖F (qδβ)− gδ‖2G + 2(1 + ctc)δ‖F (qδβ)− gδ‖G − 1

β‖q
δ
β − q

†‖2Q .

By (3.19) and Assumption 3.3, for the discretized quantity we further get

jβ,h(qδβ,h) ≤ jβ(qδβ) +Θ2δ2

≤ jβ(q†) +Θ2δ2 − (1− 2ctc)‖F (qδβ)− gδ‖2G + 2(1 + ctc)δ‖F (qδβ)− gδ‖G
= ‖g − gδ‖2G + 1

β‖q
† − q0‖

2
Q +Θ2δ2 − (1− 2ctc)‖F (qδβ)− gδ‖2G

+ 2(1 + ctc)δ‖F (qδβ)− gδ‖G
≤ (1 +Θ2)δ2 − (1− 2ctc)‖F (qδβ)− gδ‖2G + 2(1 + ctc)δ‖F (qδβ)− gδ‖G

+ 1
β‖q

† − q0‖
2
Q ,

i.e., by (3.3)

‖qδβ,h − q0‖
2
Q − ‖q

† − q0‖
2
Q = β

(
jh,β(qδβ,h)− ‖Fh(qδβ,h)− gδ‖2G

)
− ‖q† − q0‖

2
Q

≤ β
(
jh,β(qδβ,h)− ‖F (qδβ)− gδ‖2G + τ̃2δ2

)
− ‖q† − q0‖

2
Q

≤ β
(
(1 +Θ2)δ2 − (1− 2ctc)‖F (qδβ)− gδ‖2G

+2(1 + ctc)δ‖F (qδβ)− gδ‖G − ‖F (qδβ)− gδ‖2G + τ̃2δ2
)

≤ β
(
(1 +Θ2 + τ̃2)δ2 − 2(1− ctc)‖F (qδβ)− gδ‖2G

+2(1 + ctc)δ‖F (qδβ)− gδ‖G
)
.

(3.22)

From the fact that (2.12) holds with (3.5) (see Theorem 3.1 (i)) and by (3.20) we can conclude

‖F (qδβ)− gδ‖G ≥
√
τ2δ2 = δ

√
τ2 − τ̃2 ≥ δ 1+ctc+

√
(1+ctc)

2+2(1−ctc)(1+Θ2+τ̃)
2(1−ctc)

,

which implies

β
(
(1 +Θ2 + τ̃)δ2 + 2(1 + ctc)δ‖F (qδβ)− gδ‖G − 2(1− ctc)‖F (qδβ)− gδ‖2G

)
≤ 0 ,

since
x1/2 = δ

1+ctc±
√

(1+ctc)
2+2(1−ctc)(1+Θ2+τ̃)

2(1−ctc)

are the only solutions to the quadratic equation

(1 +Θ2 + τ̃)δ2 + 2(1 + ctc)δx− 2(1− ctc)x
2 = 0 ,

and −2(1− ctc) < 0. By (3.22) this finally leads to

‖qδβ,h − q0‖Q ≤ ‖q
† − q0‖Q . (3.23)

The rest of the proof follows the lines of the proof of Theorem 3.1 as well as Theorem 3.2,
since (2.12) (see also Theorem 3.1 (i)) implies (3.11).
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Remark 3.6. Again (like for Theorem 3.1, see Remark 3.3), the given proof can be simplified
in case a global minimizer (and not only a stationary point) is available, insofar as the
tangential cone condition Assumption 3.3 and (3.18) are not needed to show convergence
(without convergence rates). Besides, instead of (3.20) we require

τ2 ≥ 1 +Θ2 .

Then the inequality (3.23) is obtained as follows:
1
β‖q

δ
β,h − q0‖

2
Q = jβ,h(qδβ,h)− ih(β)

≤ jβ(qδβ) +Θ2δ2 − τ2δ2

≤ 1
β‖q

† − q0‖
2
Q + ‖F (q†)− gδ‖2G +Θ2δ2 − τ2δ2

≤ 1
β‖q

† − q0‖
2
Q + (1 +Θ2 − τ)δ2

≤ 1
β‖q

† − q0‖
2
Q .

Remark 3.7. Please note that (3.18) guarantees the existence of Θ > 0 fulfilling (3.20), e.g.,

Θ2 :=

(√
τ2 − τ̃2(1− ctc)− 1− ctc

)2
− (1 + ctc)

2

2(1− ctc)
− 1− τ̃ ,

which is how Θ will be chosen in the numerical test; cf. Section 3.6.

3.2. Inexact Newton method for the computation of a
regularization parameter

After having deduced conditions on the regularization parameter β and the discretizations,
which guarantee convergence of the discretized control qδβ,h → q† as δ → 0 (cf. Section 3.1),
in this section, we will discuss how to determine such a β and discretizations Qh, Vh, Wh

fulfilling (3.2), (3.3) (or (3.9)) and (3.19) iteratively. We will do so by applying an inexact
Newton method to the discrepancy principle equation (2.11) and deriving refinement criteria
to guarantee convergence of the resulting sequence of regularization parameters.

As in [39], we use goal-oriented error estimators (see Section 3.3), where i and i′ turn out to
be appropriate quantities of interest. The main difficulty in transferring the results from the
linear case [39] is the following: while β 7→ i(β) is convex and monotone in the linear case,
which implies global monotone convergence of Newton’s method for (2.11), these properties
partially get lost in the nonlinear case. Still, monotonicity follows in a very general setting
from minimality arguments.

First, we restrict ourselves to a closed interval β ∈ [β, β], with some β > β > 0 and show later
that our iterates do not leave this interval.

Lemma 3.5. Provided, for any β ∈ [β, β] there exists a minimizer of the Tikhonov func-
tional, then the function i (defined by (2.10) with any selection qδβ ∈ argminq∈D jβ(q)) is a
monotonically decreasing function on [β, β]
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3.2. Inexact Newton method for the computation of a regularization parameter

Proof. For any β ≤ β1 ≤ β2 ≤ β and any q(βi) = qδβi ∈ argminq∈D(jβi), i = 1, 2, we have by
minimality

jβ2
(q(β2)) ≤ jβ2

(q(β1)) = jβ1
(q(β1)) +

(
1
β2
− 1

β1

)
‖q(β1)− q0‖

2
Q

≤ jβ1
(q(β2)) +

(
1
β2
− 1

β1

)
‖q(β1)− q0‖

2
Q

= jβ2
(q(β2)) +

(
1
β2
− 1

β1

) (
‖q(β1)− q0‖

2
Q − ‖q(β2)− q0‖

2
Q

)
,

(3.24)

which implies
(

1
β2
− 1

β1

) (
‖q(β1)− q0‖

2
Q − ‖q(β2)− q0‖

2
Q

)
≥ 0, thus monotone increase of the

mapping β 7→ ‖q(β)− q0‖
2
Q. This yields monotone decrease of i:

i(β2) = jβ2
(q(β2))− 1

β2
‖q(β2)− q0‖

2
Q

≤ jβ2
(q(β2))− 1

β2
‖q(β1)− q0‖

2
Q

≤ jβ2
(q(β1))− 1

β2
‖q(β1)− q0‖

2
Q

≤ i(β1) + 1
β2
‖q(β1)− q0‖

2
Q −

1
β2
‖q(β1)− q0‖

2
Q

= i(β1).

Two-times differentiability of i as well as bounds on the second derivative i′′ will be shown in
Lemma 3.6 under sufficient optimality conditions of second order

Assumption 3.6. For every β ∈ [β, β] let a stationary point qδβ of jβ exist, which fulfills the
second order optimality condition

j′′β(qδβ)[δq, δq] = 2‖F ′(qδβ)δq‖2G + 2(F (qδβ))− gδ, F ′′(qδβ)(δq, δq))G + 2
β‖δq‖

2
Q ≥ 2η‖δq‖2Q

for all δq ∈ Q.

We are well aware of the fact that sufficient optimality conditions of second order are strong
assumptions and in general hard to check. But at the same time, we would like to point out
that in nonlinear optimization there are common means for extending results from a convex
setting to non-convex objective functionals.

Lemma 3.6. Let Assumption 3.3 and 3.6 be satisfied.

(i) Then for every β ∈ [β, β] there exists a neighborhood Uβ of β and a choice of stationary
points q(β) of jβ such that the function i (defined by (2.10)) is continuously differentiable
and monotonically decreasing on Uβ with

i′(β) ≤ −2βη‖q′(β)‖2Q ≤ 0 . (3.25)
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

(ii) If additionally F ′′′ is continuous, we obtain continuity of i′′ on the compact interval
[β, β]; hence, there exist γ, γ ∈ R such that

γ ≤ i′′ ≤ γ in Uβ . (3.26)

(iii) Provided
‖F (qδβ)− gδ‖G >

1+ctc
1−ctc

δ , (3.27)

(which is fulfilled, e.g., by the choice (3.2)–(3.4)) there even holds strict monotonicity in
(3.25), i.e.,

i′(β) ≤ −2βη‖q′(β)‖2Q < 0 . (3.28)

Proof. (i): We define the function

Ψ : Q×R→ Q∗ , Ψ(q, β) := βF ′(q)∗(F (q)− gδ) + q − q0 ,

or in terms of inner products and using Riesz’s representation

Ψ(q, β)(δq) = β(F (q)− gδ, F ′(q)(δq))G + (q − q0, δq)Q . (3.29)

Then a stationary point qδβ satisfies the equation Ψ(qδβ, β)(δq) = 0 for all δq ∈ Q. Due to
Assumption 3.6 there holds

(Ψ ′q(q
δ
β, β)δq, δq)Q = β

(
‖F ′(qδβ)(δq)‖2G + (F (qδβ)− gδ, F ′′(qδβ)(δq, δq))G

)
+ ‖δq‖2Q

≥ βη‖δq‖2Q − ‖δq‖
2
Q + ‖δq‖2Q

= βη ‖δq‖2Q .

Hence the bilinear form (ϕ,Φ) 7→ (Ψ ′q(q
δ
β, β)ϕ,Φ)Q is coercive in Q×Q and therewith the

mapping Ψ ′q(q
δ
β, β) : Q→ Q∗ is continuously invertible. The implicit function theorem

provides the existence of a neighboorhood Uβ of β and a smooth path q(β) = qδβ for
β ∈ Uβ with the claimed differentiability under the respective differentiability assumptions
on F . This implies

i ∈ C1(Uβ) if F ∈ C2(Q) and i ∈ C2(Uβ) if F ∈ C3(Q) . (3.30)

To obtain (3.25), we differentiate the necessary first order optimality condition equation

Ψ(q(β), β)(δq) = 0 ∀δq ∈ Q (3.31)

with respect to β:

(F (q(β))− gδ, F ′(q(β))(δq))G + β(F (q(β))− gδ, F ′′(q(β))(q′(β), δq))G
+ β(F ′(q(β))(q′(β)), F ′(q(β))(δq))G + (q′(β), δq)Q = 0 ∀δq ∈ Q .

(3.32)

Setting δq = q′(β) yields

(F (q(β))− gδ, F ′(q(β))(q′(β)))G
= −β(F (q(β))− gδ, F ′′(q(β))(q′(β), q′(β)))G − β‖F

′(q(β))(q′(β))‖2G − ‖q
′(β)‖2Q
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3.2. Inexact Newton method for the computation of a regularization parameter

and finally

i′(β) = d
dβ‖F (q(β))− gδ‖2G

= 2(F (q(β))− gδ, F ′(q(β))q′(β))G
= −2β

(
(F (q(β))− gδ, F ′′(q(β))(q′(β), q′(β)))G + ‖F ′(q(β))q′(β)‖2G

)
− 2‖q′(β)‖2Q

≤ −2βη‖q′(β)‖2Q
≤ −2βη‖q′(β)‖2Q ,

where we have used, once again, (3.31), Assumption 3.6, and β ≤ β. This implies the
first estimate in (3.28).

(ii): (3.30) implies (3.26).

(iii): It remains to show that q′(β) 6= 0. Let us assume that q′(β) = 0. Then (3.32) would
simplify to

(F (q(β))− gδ, F ′(q(β))(δq))G = 0 ∀δq ∈ Q .

Setting δq = q(β)− q† we would then arrive at

0 = (F (q(β))− gδ, F ′(q(β))(q(β)− q†))G
≥ ‖F (q(β))− gδ‖2G − (F (q(β))− gδ, F (q(β))− gδ − F ′(q(β))(q(β)− q†))G
≥ ‖F (q(β))− gδ‖2G − ‖F (q(β))− gδ‖G‖F (q(β))− gδ − F ′(q(β))(q(β)− q†)‖G
≥ ‖F (q(β))− gδ‖2G − ‖F (q(β))− gδ‖G

(
‖F (q(β))− g − F ′(q(β))(q(β)− q†)‖G + δ

)
≥ ‖F (q(β))− gδ‖2G − ‖F (q(β))− gδ‖G (ctc‖F (q(β))− g‖G + δ)

≥ ‖F (q(β))− gδ‖2G − ‖F (q(β))− gδ‖G
(
ctc‖F (q(β))− gδ‖G + (1 + ctc)δ

)
= ‖F (q(β))− gδ‖G

(
(1− ctc)‖F (q(β))− gδ‖G − (1 + ctc)δ

)
,

which gives a contradiction to (3.27).

Therewith, we are led to make use of globally and superlinearly convergent monotone modifica-
tions of Newton’s method, cf., e.g., [98], where the solution is approached from above and below
by two simultaneously computed sequences of iterates. In the simple one-dimensional situation
we deal with here, we can use the fact that quadratic equations can be solved explicitly (see
(3.52) below) to get rid of the necessity of computing two sequences. For this purpose we
follow the ideas of [98], i.e., using the existence of a lower and an upper bound to the second
derivative of the quantity of interest i to guarantee quadratic convergence of the sequence of
regularization parameters β. But we will see that for showing linear convergence the existence
of a lower bound suffices. An approximation i′′h to the second derivative i′′ can be computed
very efficiently in the context of goal oriented error estimation, see Section 3.3 and [39, Section
2].
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Correspondingly we formulate the following convergence theorem for a sequence (βk)k∈N
produced by an inexact Newton method for (2.11), which represents an extension of [39,
Theorem 1] to nonlinear inverse problems.

We wish to point out that Theorem 3.7 is not restricted to the definition of i as in (2.10). In
fact, the results hold for any function fulfilling

i ∈ C2(R+) , i′(β) < 0 , and i′′ is bounded from below.

for all β > 0, such that Theorem 3.7 might also be of interest for a different setting outside of
this thesis.

Theorem 3.7. Let i be twice continuously differentiable and let γ < γ for some γ ≥ 0
independent of β, denote a lower bound on i′′, i.e.,

γ ≤ i′′(β) ∀β ∈ R (3.33)

and assume that
i′(β) < 0 ∀β ∈ R . (3.34)

Choose β0 > 0 so that
i0h = ih(β0) ≥ τ2δ2 (3.35)

for some τ < τ and define

k∗ = min{k ∈ N | ikh − τ
2
δ2 ≤ 0} (3.36)

for some τ > τ ,

sk+1
N = − i

k
h − τ

2δ2

i′
k
h

, σk+1 = 2

1 +
√

1− 2γsk+1
N /i′

k
h

sk+1 = σk+1 sk+1
N , βk+1 = βk + sk+1 (3.37)

with ikh, i
′k
h satisfying

|i(βk)− ikh| ≤ c1|i
k
h − τ

2δ2| (3.38)

|i′(βk)− i′kh| ≤ c2|i
′k
h| (3.39)

|i(βk)− ikh|+ |i
′(βk)− i′kh| |s

k+1| ≤ γ+γ
2 |s

k+1|2 (3.40)

for all k ∈ N and
|i(βk∗)− ik∗h | ≤ (τ2 − τ2)δ2 (3.41)

for some constants c1 ∈ (0, 1), c2 ∈ (0, 1
2) independent of k and k∗, as well as for k ≥ k∗ − 1

additionally

|i(βk+1)− ik+1
h |+ |i(βk)− ikh|+ |i

′(βk)− i′kh| |s
k+1| < γ+γ

2 |s
k+1|2 . (3.42)

Then there holds
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3.2. Inexact Newton method for the computation of a regularization parameter

(i) negativity of the approximate derivative, i.e.,

i′
k
h < 0 ∀k ∈ N , (3.43)

(ii) well-definedness, i.e.,

skN ≥ 0 ∀k ∈ N and σk ∈ (0, 1] ∀k ∈ N , (3.44)

(iii) monotonicity
βk−1 ≤ βk ≤ β∗ ∀k ∈ N , (3.45)

(iv) boundedness of i′kh, i.e., existence of constants a, b > 0, such that for all k ∈ N

a ≤ |i′kh| ≤ b , (3.46)

(v) finiteness of k∗,

(vi) convergence
σk → 1 as k →∞ , (3.47)

(vii) convergence
βk → β∗ as k →∞ , (3.48)

(viii) boundedness of ik∗h with
τ2δ2 ≤ ik∗h ≤ τ

2
δ2 . (3.49)

Remark 3.8. At this point we give a short motivation for the strange-looking step size σk+1

in (3.37) before this is analysed in more detail in the subsequent proof. Let s = β∗−β
k. Taylor

expansion yields

0 = i(βk)− i(β∗) + i′(βk)s+ 1
2 i
′′(βk)s2 +O(s3) ≈ ikh − i(β∗) + i′

k
hs+ γ2

2 s
2 +O(s3) ,

and it can be shown that for s = sk+1 there holds ikh − i(β∗) + i′
k
hs+ γ

2

2 s
2 = 0.

Proof. (i): By (3.39) we have

|i′(βk)| = −i′(βk) ≥ |i′kh| − |i
′(βk)− i′kh| ≥ (1− c2)|i′kh| ∀k ∈ N ,

and thus

i′
k
h ≤ i

′(βk) + |i′(βk)− i′kh| ≤ i
′(βk) + c2|i

′k
h| ≤ i

′(βk) + c2
1−c2
|i′(βk)|

= i′(βk)− c2
1−c2

i′(βk) = 1−2c2
1−c2

i′(βk) < 0
(3.50)

for all k ∈ N.
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(ii): We show (3.44) by induction. By (3.35) together with (3.43) we have s1
N ≥ 0 and

σ1 ∈ (0, 1]. For the induction step we assume that sk+1
N ≥ 0 and σk+1 ∈ (0, 1] for some

k ≥ 0.

Then there holds
βk + tsk+1 ≥ 0 ∀t ∈ (0, 1] . (3.51)

Observe that the roots of the quadratic equation

ikh − τ
2δ2 + i′

k
hs− γ

2s
2 = 0 (3.52)

are
s = 1

γ

(
i′
k
h ±

√
(i′kh)2 + 2γ(ikh − τ

2δ2)
)
.

Consequently

sk+1 = σk+1sk+1
N

= − 2(ikh − τ
2δ2)

i′
k
h(1 +

√
1− 2γsk+1

N /i′
k
h)

= − 2(ikh − τ
2δ2)

i′
k
h +

√
(i′kh)2 − 2γsk+1

N i′
k
h

= − 2(ikh − τ
2δ2)

i′
k
h +

√
(i′kh)2 + 2γ(ikh − τ

2δ2)

=
2(ikh − τ

2δ2)(i′kh −
√

(i′kh)2 + 2γ(ikh − τ
2δ2))

2γ(ikh − τ
2δ2)

= 1
γ

(
i′
k
h −

√
(i′kh)2 + 2γ(ikh − τ

2δ2)
)

solves (3.52) and there holds

i(βk+1)− i(β∗) = i(βk+1)− τ2δ2

= i(βk+1)− ikh − i
′k
hs
k+1 + γ

2 (sk+1)2

= i(βk) + i′(βk)sk+1 +
∫ 1

0
(1− t)i′′(βk + tsk+1) dt (sk+1)2

− ikh − i
′k
hs
k+1 + γ

2 (sk+1)2

≥ i(βk) + i′(βk)sk+1 + γ

2 (sk+1)2 − ikh − i
′k
hs
k+1 + γ

2 (sk+1)2

≥ γ+γ
2 |s

k+1|2 − |i(βk)− ikh| − |i
′(βk)− i′kh||s

k+1| ,

(3.53)

where we have used (3.51).

Now we distinguish two cases: k < k∗ − 1 and k ≥ k∗ − 1. If k < k∗ − 1, the definition
of k∗ (cf. (3.36)) implies ik+1

h ≥ τ
2
δ2 ≥ τ2δ2, which together with (3.43) leads to the

desired assertion sk+2
N ≥ 0 and σk+2 ∈ (0, 1].

36



3.2. Inexact Newton method for the computation of a regularization parameter

If k ≥ k∗ − 1, (3.53) together with (3.42) implies

i(βk+1)− i(β∗) > |i(β
k+1)− ik+1

h | (3.54)

and finally
ik+1
h > i(β∗) = τ2δ2 ,

which together with (3.43) again leads to sk+2
N ≥ 0 and σk+2 ∈ (0, 1].

(iii): Since we already showed (3.44), we can conclude that (3.53) holds for all k ∈ N. With
(3.40) we have

i(βk) ≥ i(β∗) ∀k ∈ N , (3.55)

and with i′(β) < 0 (cf. (3.34)) there holds βk ≤ β∗ for all k ∈ N, which gives the right
inequality in (3.45). The left inequality in (3.45) follows directly from (3.44).

So (βk)k∈N is a monotonically increasing sequence which is bounded from above by β∗
and consequently convergent. In the following we show that its limit is in fact β∗. In
order to do so, we first prove the boundedness of |i′kh|.

(iv): To show (3.46), we use (3.45) with the fact that by our assumption i′ < 0 (cf. (3.34))
we have

0 < c := min
β∈[β0

,β∗]
−i′(β) ≤ −i′(βk) ≤ max

β∈[β0
,β∗]
−i′(β) =: c̄

and therewith, by (3.50)
|i′kh| = −i

′k
h ≥

1−2c2
1−c2

c

as well as by (3.39)

|i′kh| = −i
′k
h ≤ −i

′(βk) + |i′(βk)− i′kh| ≤ −i
′(βk) + c2

1−c2
|i′(βk)| = 1

1−c2
|i′(βk)| ≤ 1

1−c2
c̄

for all k ∈ N. So with a := 1−2c2
1−c2

c and b := 1
1−c2

c̄, (3.46) is satisfied.

(v): By (3.45) the sequence (βk)k∈N is convergent, such that

σk+1sk+1
N = βk+1 − βk → 0 as k →∞ . (3.56)

This leads to two cases:

1. case: sk+1
N 6→ 0, hence there exists a subsequence (skl+1

N )l∈N which is bounded away
from zero, which by (3.56) implies σkl+1 → 0. This, by the definition of σkl+1 and
(3.43) implies

s
kl+1
N

|i′klh |
→ ∞ ,

which by (3.46)/(v) implies skl+1
N →∞, so that

σkl+1s
kl+1
N ≥ 2skl+1

N

1 +
√

1 + 2γ s
kl+1
N
a

→∞ ,

which is a contradiction to (3.56).
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2. case: sk+1
N → 0. Then

|ikh − τ
2δ2|

b
≤ |i

k
h − τ

2δ2|
|i′kh|

= sk+1
N → 0,

hence |ikh − τ
2δ2| → 0.

As the first case led to a contradiction we can conclude

sk+1
N → 0 and |ikh − τ

2δ2| → 0 as k →∞ , (3.57)

which implies that k∗ is finite.

(vi): From (3.57) and (3.46) it follows directly that σk → 1 as k →∞.

(vii): The convergence βk → β∗ can now be shown using the Mean Value Theorem for
differential calculus

i(β∗) = i(βk) + i′(ξ)(β∗ − β
k)

for some ξ ∈ (βk, β∗) as well as (3.38) and (3.57):

c|βk − β∗| ≤ |i(β
k)− i(β∗)| ≤ |i(β

k)− ikh|+ |i
k
h − i(β∗)|

≤ (c1 + 1)|ikh − τ
2δ2| → 0 as k →∞ .

(viii): To show (3.49), we use monotonicity (3.34), (3.45) and (3.41) to conclude the lower
bound

i
k∗
h ≥ i(β

k∗)− |ik∗h − i(β
k∗)| ≥ i(β∗)− |i

k∗
h − i(β

k∗)| ≥ τ2δ2 − (τ2 − τ)δ2 ,

while the upper bound follows directly from the definition of k∗.

Please note that the condition (3.35) together with (3.38) implies i(β0) ≥ τ2δ2, since there
holds i0h − i(β

0) ≤ |i(β0)− i0h| ≤ c1(i0h − τ
2δ2), which implies i(β0)− i0h ≥ −c1(i0h − τ

2δ2) and
finally

i(β0)− τ2δ2 ≥ i0h − τ
2δ2 − c1(i0h − τ

2δ2) = (1− c1)(i0h − τ
2δ2) ≥ 0 .

With this inital choice a start with a too large regularization parameter β is avoided. The
resulting monotonicity (3.45) implies that we approach the exact parameter β∗ in fact from
the stable side in the sense that a smaller β corresponds to a more stable Tikhonov problem.

Knowing that the sequence (βk)k ∈ N is monotonically increasing and that β0 ≤ βk ≤ β∗
∀k ∈ N (cf. (3.28)), tracking the proof of Theorem 3.7, we note that we don’t need i to be
monotonically decreasing in all R, but that i′ < 0 in [β0, β∗] is sufficient, which is guaranteed
by Lemma 3.6.

Please note that (3.42) is only a theoretical bound for proving finiteness of the stopping index
k∗ and does not get active, since in practice, we stop the iteration at the index k∗. That is
because we only aim at achieving (3.49) (also see (2.12)), instead of ikh = τ2δ2 for some h, k.

By means of the results of Theorem 3.7 we will prove that the convergence βk → β∗ as k →∞
is in fact linear.
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Proposition 3.1. Let the assumptions of Theorem 3.7 hold. If additionally 2c1 + c2 < 1, we
get linear convergence, i.e., for all C ∈ ( c1+c2

1−c1
, 1) there exists k0 ∈ N such that for all k ≥ k0

|βk+1 − β∗| ≤ C|β
k − β∗| . (3.58)

Proof. There holds

|βk+1 − β∗| = β∗ − β
k+1

= β∗ − β
k + σk+1 i

k
h − τ

2δ2

i′
k
h

= 1
i′
k
h

(
i′
k
h(β∗ − β

k) + σk+1(ikh − τ
2δ2)

)
= 1
i′
k
h

(
(1− σk+1)i′kh(β∗ − β

k) + σk+1(ikh − τ
2δ2 + i′

k
h(β∗ − β

k))
)

= 1
|i′kh|

(
(1− σk+1)|i′kh|(β∗ − β

k) + σk+1(τ2δ2 − ikh − i
′k
h(β∗ − β

k))
)

= (1− σk+1)(β∗ − β
k) + σk+1

|i′kh|
(τ2δ2 − ikh − i

′k
h(β∗ − β

k)) .

Using the Taylor expansion/Mean value theorem for differential calculus

τ2δ2 = i(β∗) = i(βk) + i′(ξ)(β∗ − β
k) (3.59)

for some ξ ∈ [βk, β∗], we further get

|βk+1 − β∗| = (1− σk+1)(β∗ − β
k)

+ σk+1

|i′kh|

(
i(βk) + i′(ξ)(β∗ − β

k)− ikh + (i′(βk)− i′kh)(β∗ − β
k)− i′(βk)(β∗ − β

k)
)

= (1− σk+1)(β∗ − β
k)

+ σk+1

|i′kh|

(
(i′(ξ)− i′(βk))(β∗ − β

k) + (i(βk)− i
k
h) + (i′(βk)− i

′k
h)(β∗ − β

k)
)

=
[
1− σk+1 + σk+1

|i′kh|

(
i′(ξ)− i′(βk) + i(βk)− i

k
h

β∗ − β
k

+ (i′(βk)− i
′k
h)
)]

(β∗ − β
k) .

The term i(βk)− i
k
h can be estimated via (3.38) and (3.59) as follows:

|i(βk)− ikh| ≤ c1|τ
2δ2 − ikh|

≤ c1
(
|i′kh||β∗ − β

k|+ |τ2δ2 − ikh − i
′k
h(β∗ − β

k)|
)

≤ c1
(
|i′kh||β∗ − β

k|+ |i(βk)− ikh|+ |i
′(ξ)− i′kh||β∗ − β

k|
)

≤ c1
(
|i′kh||β∗ − β

k|+ |i(βk)− ikh|+ |i
′(ξ)− i′(βk)||β∗ − β

k|

+|i′(βk)− i′kh||β∗ − β
k|
)
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and further

(1− c1)|i(βk)− ikh| ≤ c1
(
|i′kh||β∗ − β

k|+ |i′(ξ)− i′(βk)||β∗ − β
k|+ |i′(βk)− i′kh||β∗ − β

k|
)
,

which finally gives

|i(βk)− ikh|
|β∗ − β

k|
≤ c1

1− c1

(
|i′kh|+ |i

′(ξ)− i′(βk)|+ |i′(βk)− i′kh|
)
. (3.60)

Going back to (3.60), using (3.38), (3.39), (3.44), (3.46), (3.59), and (3.60), we have

|βk+1 − β∗|
|βk − β∗|

≤ 1− σk+1 + σk+1

|i′kh|

[
|i′(ξ)− i′(βk)|

+ c1
1− c1

(
|i′kh|+ |i

′(ξ)− i′(βk)|+ |i′(βk)− i′kh|
)

+ |i′(βk)− i
′k
h|
]

= 1− σk+1 + σk+1

|i′kh|

[ 1
1− c1

|i′(ξ)− i′(βk)|+ c1
1− c1

|i′kh|+
1

1− c1
|i′(βk)− i′kh|

]
≤ 1− σk+1 + 1

|i′kh|

[ 1
1− c1

|i′(ξ)− i′(βk)|+ c1 + c2
1− c1

|i′kh|
]

≤ 1− σk+1 + 1
a(1− c1) |i

′(ξ)− i′(βk)|+ c1 + c2
1− c1

.

(3.61)
Since |i′(ξ)− i′(βk)| → 0 and (1− σk+1)→ 0 for k →∞, for any C ∈ ( c1+c2

1−c1
, 1), there exists

k0 ∈ N, such that the right-hand side of (3.61) is smaller than C for all k ≥ k0, which shows
the linear convergence result (3.58).

Remark 3.9. Note that we here also recover the superlinear convergence stated in the case of
exact evaluation c1 = c2 = 0 in [98] with only a lower bound on i′′. Nevertheless, we will even
obtain quadratic convergence for our setting (with non-exact evaluation) in the following.

Under additional quadratic conditions on the errors in i and i′ as well as the assumption that
i′′ is bounded from above, there even holds quadratic convergence βk → β∗, which we will
show in terms of the following proposition.

Proposition 3.2. Let the assumptions of Theorem 3.7 be satisfied. If additionally i′′(β) ≤ γ
for some γ ∈ R independent of β, and

|i(βk)− ikh| ≤ C1
|ikh − τ

2δ2|2

|i′kh|
2 (3.62)

|i′(βk)− i′kh| ≤ C2
|ikh − τ

2δ2|
|i′kh|

(3.63)

holds, then we obtain the quadratic convergence estimate

|βk+1 − β∗| ≤ Ck|β
k − β∗|

2 (3.64)
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with
Ck := 1

|i′kh|

(
max{0, γ}

2 + C1

(1− c1)2
|i′(ξ)|2

|i′kh|
2 + 2C2 + γ

2(1− c1)
|i′(ξ)|
|i′kh|

)

for some ξ ∈ (βk, β∗).

Proof. The quadratic convergence estimate (3.64) can be concluded by continuing the estimate
(3.59) via the Taylor expansion

i(β∗)− i(β
k) = −(βk − β∗)

2
∫ 1

0
(1− t)i′′(β∗ + t(βk − β∗)) dt

as follows:

|βk+1 − β∗| = (1− σk+1)(β∗ − β
k) + σk+1

|i′kh|
(i(β∗)− i

k
h − i

′k
h(β∗ − β

k))

= (1− σk+1)(β∗ − β
k)

+ σk+1

|i′kh|

(
i(β∗)− i(β

k) + (i(βk)− ikh)− (i′(βk)− i′kh)(β∗ − β
k)− i′(βk)(β∗ − β

k)
)

= (1− σk+1)(β∗ − β
k) + σk+1

|i′kh|

(
−
∫ 1

0
(1− t)i′′(β∗ + t(βk − β∗)) dt (βk − β∗)

2

+(i(βk)− ikh)− (i′(βk)− i′kh)(β∗ − β
k)− i′(βk)(β∗ − β

k)
)

= (1− σk+1)(β∗ − β
k) + σk+1

|i′kh|

(1
2 max{0, γ}(β∗ − β

k)2

+(i(βk)− ikh)− (i′(βk)− i′kh)(β∗ − β
k)− i′(βk)(β∗ − β

k)
)

≤ (1− σk+1)(β∗ − β
k) + σk+1

|i′kh|

(1
2 max{0, γ}(β∗ − β

k)2

+|i(βk)− ikh|+ |i
′(βk)− i′kh|(β∗ − β

k)
)

≤ 1
|i′kh|

|i′kh|
1− 2

1+
√

1−2γsk+1
N /i

′k
h

 (β∗ − β
k) + 1

2 max{0, γ}(β∗ − β
k)2

+|i(βk)− ikh|+ |i
′(βk)− i′kh|(β∗ − β

k)
]
.

(3.65)
It can easily be shown that 1− 1

2λ

1+ 1
2λ

√
1 + 2λ ≤ 1 ∀λ ≥ 0, which implies 1− 2

1+
√

1+2λ ≤
1
2λ ∀λ ≥ 0

and therefore

|i′kh|

1− 2

1 +
√

1 + 2γsk+1
N /|i′kh|

 ≤ γ

2 s
k+1
N = γ

2
|ikh − τ

2δ2|
|i′kh|

. (3.66)

Besides, (with (3.59) there holds

|ikh − τ
2δ2| ≤ 1

1− c1
|i(βk)− τ2δ2| ≤ 1

1− c1
|i′(ξ)||βk − β∗| (3.67)
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for some ξ ∈ (βk, β∗). With the estimates (3.66), (3.67) and using (3.62), (3.63) we can
continue (3.65) as

|βk+1 − β∗| ≤
1
|i′kh|

[
γ

2
|ikh − τ

2δ2|
|i′kh|

(β∗ − β
k) + 1

2 max{0, γ}(β∗ − β
k)2

+C1
|ikh − τ

2δ2|2

|i′kh|
2 + C2

|ikh − τ
2δ2|

|i′kh|
(β∗ − β

k)
]

= 1
|i′kh|

[(
γ

2 + C2

) |ikh − τ2δ2|
|i′kh|

(β∗ − β
k) + 1

2 max{0, γ}(β∗ − β
k)2

+C1
|ikh − τ

2δ2|2

|i′kh|
2

]

≤ 1
|i′kh|

[
γ
2 + C2
1− c1

|i′(ξ)|
|i′kh|

+ 1
2 max{0, γ}+ C1

(1− c1)2
|i′(ξ)|2

|i′kh|
2

]
|βk − β∗|

2

for some ξ ∈ (βk, β∗).

Note that discrete versions i′h(β) and i′′h(β) of i′(β) and i′′(β) and therewith also a posteriori
estimates for the lower and upper bounds on i′′h ≈ i

′′(β) can be computed with low numerical
effort, once the error estimator for i′ has been evaluated (see Section 3.3 and [39]).

In case upper and lower bounds on i′′ are not known, bisection still provides a globally and
R-linearly convergent method for obtaining β such that (3.49) holds.

To summarize the results from this section, for obtaining convergence of qδβ according to
Theorem 3.1 and Theorem 3.4 and linear (and quadratic) convergence of the sequence of β’s
produced by the proposed inexact Newton method according to Proposition 3.1 and 3.2, we
check if (3.9), (3.19), (3.38), (3.39), (3.40), (3.41) (and (3.62), (3.63)) hold in our search for the
correct regularization parameter and refine the discretization according to the corresponding
error estimator if one of these conditions is violated. Note that these bounds allow for a rather
rough approximation as long as the regularization parameter βk under consideration is still
“far away” from the actual one in the sense that i(βk)− τ2δ2 is not small yet.

We also wish to point out that the conditions (3.9), (3.19), (3.38), (3.39), (3.40), (3.41), (3.62),
(3.63) are tailored to the use with goal oriented error estimators (see the next section). Indeed,
adaptive refinement according to these estimators allows to enforce error bounds on terms
of the type I(q, F (q))− I(qh, Fh(qh)), whereas terms of the type I(q, F (q))− I(qh, F (qh)) or
I(q, F (q))− I(q, Fh(q)) would not be directly tractable with this technique.

Vice versa, the same reasoning encourages the use of the inexact Newton method: Although
we consider the scalar equation i(β∗) = τ2δ2, for which methods of first order (e.g., bisection)
might seem to be the means of choice, the fact that second derivatives of i have to be computed
anyway in the course of error estimation via Newton’s method, we obtain better convergence
without putting much more effort into the computations during the optimization process.
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3.3. Use of goal oriented error estimators

For evaluating the error estimates needed for the determination of β according to Theorem 3.7
we employ the goal oriented error estimators (cf. Section 2.4) proposed in [11] and [12].
We make use of the results from [39], where concrete error estimators for j, i and i′ and
computation formulas for i′ and i′′ are derived.

We begin with an error estimator for j, which is needed to estimate (3.19). According to [39,
Proposition 1] for continuous and discrete stationary points x = (q, u, z) ∈ X = Q× V ×W
(cf. (2.28)) and xh = (qh.uh) ∈ Xh = Qh × Vh ×Wh (cf. (2.38)) of L and Lh respectively, an
error representation is given by

jβ(q)− jβ,h(qh) = Jβ(q, u)− Jβ(qh, uh) = 1
2L
′(xh)(x− x̂h) + R1 (3.68)

for arbitrary x̂h = (q̂h, ûh, ẑh) ∈ Xh, where R1 is a third order remainder term.

For the purpose of formulating an error estimator for i (needed in (3.3), (3.38), (3.40), (3.41),
(3.62) and (3.9)), we define the auxiliary functional

M : X2 → R, M(x, x1) := I(u) + L′(x)(x1)

(with I defined by (2.19)), where x = (q, u, z) and x1 = (q1, u1, z1).

Let x = (q, u, z) and xh = (qh, uh, zh) solve (2.28) and (2.38) respectively. According to
[39, Proposition 3] we get continuous and discrete stationary points y =: (x, x1) and yh :=
(xh, x1,h) = (qh, uh, zh, q1,h, uh,1, zh,1) ofM by solving

L′′(x)(δx, x1) = −I ′(u)(δu) ∀δx = (δq, δu, δz) ∈ X ,

L′′(xh)(δxh, x1,h) = −I ′(uh)(δuh) ∀δxh = (δqh, δuh, δzh) ∈ Xh .
(3.69)

For such stationary points the error representation

I(u)− I(uh) = i(β)− ih(β) = 1
2M

′(yh)(y − ŷh) + R2 (3.70)

holds for arbitrary ŷh ∈ Xh ×Xh, where R2 is a third order remainder term.

By means of (x, x1) and (xh, x1,h) the continuous and discrete version of the first derivative i′

can be evaluated by

i′(β) = 2
β2 (q, q1)Q and i′h(β) = 2

β2 (qh, q1,h)Q , (3.71)

see [39, Proposition 4].

We define an additional auxiliary functional in order to express an error estimator for i′ (needed
in (3.39), (3.40), (3.63))

N : X2 ×X2 → R, N (y,y) := K(q, q1) +M′x(x, x1)(x2) +M′x1
(x, x1)(x3) ,
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where x1 = (q1, u1, z1), x2 = (q2, u2, z2), x3 = (q3, u3, z3), y = (x, x1), y = (x2, x3), and K is
defined by

K(q, q1) = i′(β) = − 2
β2 (q, q1)Q .

According to [39, Proposition 6] we obtain continuous and stationary points (x, x1, x2, x3) ∈ X4

and (xh, x1,h, x2,h, x3,h) ∈ X4
h of N by solving

L′′(x)(x2, δx1) = −K ′q1
(q, q1)(δq1) ∀δx1 = (δq1, δu1, δz1) ∈ X ,

L′′(x)(x3, δx) = −K ′q(q, q1)(δq)− I ′′uu(q, u)(u2, δu)− L′′′(x)(x1, x2, δx)
∀δx = (δq, δu, δz) ∈ X ,

(3.72)

and
L′′(xh)(x2,h, δx1,h) = −K ′q1,h

(qh, q1,h)(δq1,h) ∀δx1,h = (δq1,h, δu1,h, δz1,h) ∈ Xh ,

L′′(xh)(x3,h, δxh) = −K ′q(qh, q1,h)(δqh)− I ′′uu(qh, uh)(u2,h, δuh)− L′′′(xh)(x1,h, x2,h, δxh)
∀δxh = (δqh, δuh, δzh) ∈ Xh .

(3.73)

For these stationary points there holds the error representation

K(q, q1)−K(qh, q1,h) = i′(β)−i′h(β) = 1
2N

′
y(yh,yh)(y−ŷh)+ 1

2N
′
y(yh,yh)(y−ŷh)+R3 (3.74)

for arbitrary ŷh, ŷh ∈ X
2
h, where R3 is a third order remainder term, cf. [39, Proposition 5].

Finally, the second derivative i′′ and its discrete equivalent can be evaluated by

i′′(β) = 4
β3 (q, q1)Q −

2
β2 (q2, q1)Q −

2
β2 (q, q3)Q

and
i′′h(β) = 4

β3 (qh, q1,h)Q −
2
β2 (q2,h, q1,h)Q −

2
β2 (qh, q3,h)Q , (3.75)

see [39, Proposition 7].

The error estimators ηJ , ηI , and ηK for Jβ, I, K are computed by

ηJ = 1
2L
′(xh)(exh) , ηI = 1

2M
′(yh)(eyh) and ηK = 1

2N
′
y(yh,yh)(eyh) + 1

2N
′
y(yh,yh)(ey

h) ,
(3.76)

where exh, e
y
h and ey

h are approximations of interpolation errors (see Section 2.4) obtained by
local averaging or higher order approximations, cf., e.g., [85]. When using spaces Qh, Vh,
Wh with locally supported basis functions, the estimators can be written as a sum of local
contributions, which enables to implement a local refinement strategy based on the estimators,
cf. [11]. Additionally to that, each local error can be decomposed into its components due to
the discretization of Q on the one hand and of V on the other hand. Therewith the proposed
method for determining β could also be applied when using different discretizations of Q and V .
Then in each iteration step it can be decided whether to refine Qh or Vh (or Wh), if necessary,
cf. [85].

For further details on the evaluation of the error estimators we refer to [11, 39].
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Remark 3.10. Although these error estimators are known to work efficiently in practice (see,
e.g., [11, 14, 39]), they are not reliable, i.e., the conditions (3.38)–(3.40) cannot be guaranteed
in a strict sense in our computations since we have to neglect the remainder terms R1, R2,
and R3 and use an approximation for x− x̂h, y − ŷh, and y− ŷh. Since our analysis is kept
rather general, it is not restricted to dual-weighted-residual error estimators. However, since
they are based on residuals which are computed in the optimization process, the additional costs
for estimation are very low, which makes the DWR error estimators tailored for our purposes.

3.4. Test examples and verification of assumptions

For illustrating the performance of the presented method, we consider the following parame-
ter/coefficient identification sample PDEs:

Let ζ ∈ R+, f ∈ L2(Ω), and Ω be a bounded smooth or polygonal and convex domain in
R
d, d ∈ {1, 2, 3}, and C = id. The control space is chosen as Q = L2(Ω) and the state

and test spaces are V = W = H1
0 (Ω) in case of homogeneous Dirichlet boundary data and

V = W = H1(Ω) in case of homogeneous Neumann boundary data. The observation space is
chosen as G = L2(Ω).

Example 3.1. For q ∈ L2(Ω) find u ∈ H1
0 (Ω) such that{

−∆u+ ζu3 = q in Ω
u = 0 on ∂Ω .

Example 3.2. For q ∈ L2(Ω), q ≥ 0 almost everywhere in Ω find u ∈ H1
0 (Ω) such that{

−∆u+ ζqu = f in Ω
u = 0 on ∂Ω .

Example 3.3. For q ∈ L2(Ω), q ≥ 0 almost everywhere in Ω find u ∈ H1
0 (Ω) such that{

−∆u− ζ(1 + q)u = f in Ω
u = 0 on ∂Ω .

This example is also called “Helmholtz equation” with homogeneous Dirichlet boundary data.

Example 3.4. For q ∈ L2(Ω), q ≥ 0 almost everywhere in Ω find u ∈ H1(Ω) such that{
−∆u− ζ(1 + q)u = f in Ω

∂nu = 0 on ∂Ω .

This example is also called “Helmholtz equation” with homogeneous Neumann boundary data.

Throughout this section let (·, ·) = (·, ·)
L

2(Ω) denote the inner product in L2(Ω), i.e., (ϕ,ψ) :=∫
Ω ϕ(x)ψ(x) dx. Concerning the notation of scalar products (in L2(Ω), H1(Ω), etc.) we make
no difference whether we deal with vector valued functions or not, for instance, (ϕ,ψ) =
(ϕ,ψ)

L
2(Ω) = (ϕ,ψ)

L
2(Ω)d :=

∫
Ω(ϕ(x), ψ(x))

R
d dx, where (·, ·)

R
d denotes the euclidian scalar

product.
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Remark 3.11. Note that, since W = H1(Ω) is densely embedded in L2(Ω), the duality pairing
〈·, ·〉W ∗,W can be interpreted as an inner product in the space L2(Ω) in the following sense:
Let inj denote the injection from W to L2(Ω). Then its adjoint inj∗ is the injection from
L2(Ω)∗ = L2(Ω) to W ∗. Let further v ∈W ⊂ L2(Ω). Then every element v ∈ L2(Ω) can be
understood as linear continuous functional from W to R, in the sense that

〈inj∗(v), ϕ〉W ∗,W = (v, inj(ϕ)) ∀ϕ ∈W .

Thus, for f ∈ L2(Ω) there exists an element in W ∗, which we also denote by f , such that
f(ϕ) = 〈f, ϕ〉W ∗,W = (f, ϕ) for all ϕ ∈W .

Before taking a look at the results from applying the proposed method (cf. Algorithm 3.1
in the subsequent section) to these sample equations, we will discuss whether the imposed
conditions on F of the last sections are satisfied for the considered examples. We will analyse
whether

(i) the assumption that F is well–defined and bounded,

(ii) the weak sequentially closedness condition Assumption 3.2 (or (2.5)),

(iii) the tangential cone condition Assumption 3.3

are fulfilled for the considered examples.

We are well aware of the fact that Lemma 3.6 (and implicitly also Theorem 3.7) additionally
requires Assumption 3.6, which represents the sufficient optimality condition of second order
and is known to be hard to verify. We refer to [65], where the condition is discussed at least
for Example 3.1.

We will see that the tangential cone condition Assumption 3.3 can only be assured if the
domain D is sufficiently small. To put this in perspective, please note that provided that
global minimizers (instead of stationary points) are available, the tangential cone condition
Assumption 3.3 is only needed in Lemma 3.6 and for showing convergence rates (cf. Remark
3.3 and 3.6).

1. Example 3.1: We consider the weak formulation

(∇u,∇ϕ) + ζ(u3, ϕ) = (q, ϕ) ∀ϕ ∈ H1
0 (Ω) . (3.77)

(i): Well–definedness and boundedness of F as a mapping from L2(Ω) to H1
0 (Ω) together

with the estimate
‖∇u‖

L
2(Ω) + ‖u‖C(Ω̄) ≤ C ‖q‖L2(Ω) (3.78)

for a constant C > 0 follows directly from [108, Theorem 4.7], for instance.

(ii): To verify Assumption 3.2, we consider an arbitrary sequence (qn)n∈N ⊆ D with
qn ⇀ q in L2(Ω). This implies that (qn)n∈N is bounded in L2(Ω) and because
of (3.78) also that (un)n∈N is bounded in H1

0 (Ω) ∩ C(Ω̄). This implies that there
exists a weakly convergence subsequence, which we also denote by (un)n∈N with
un ⇀ g in H1

0 (Ω) and that ‖un‖L∞(Ω) ≤ M for some constant M > 0. Using
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the compact embedding of H1
0 (Ω) into L2(Ω) we get un → g in L2(Ω). Since the

set {w ∈ L2(Ω)| ‖w‖L∞(Ω) ≤ M} is closed in L2(Ω) we also have ‖g‖L∞(Ω) ≤ M .
Then, according to [108, Lemma 4.11], there exists a constant L(M) > 0 such that
‖u3

n − g
3‖
L

2(Ω) ≤ L(M)‖un − g‖L2(Ω). Finally, we get 0 = (∇un,∇ϕ) + ζ(u3
n, ϕ)−

(qn, ϕ) → (∇g,∇ϕ) + ζ(g3, ϕ) − (q, ϕ) as n → ∞, which implies F (q) = g. If we
choose D ⊂ Q as a weakly sequentially closed set we also get q ∈ D.

(iii): First of all we state that the necessary smoothness of F , a and all other upcoming
semilinear forms follows from [108, Section 4.3].

Let q, q̄ ∈ D. It can easily be checked that v = F (q)−F (q̄)−F ′(q̄)(q− q̄) is a weak
solution to the PDE{

−∆v + 3ζF (q)2v = ζ(F (q̄) + 2F (q))(F (q̄)− F (q))2 in Ω
v = 0 on ∂Ω .

Using the Hölder inequality, Sobolev’s embedding theorem

‖ϕ‖Lp(Ω) ≤ cs ‖ϕ‖H1(Ω) for all p ≤ 6 for some constant cs > 0 (3.79)

and Poincaré’s inequality

‖ϕ‖
L

2(Ω) ≤ cp ‖∇ϕ‖L2(Ω) (3.80)

for all ϕ ∈ H1
0 (Ω), we get

‖∇[F (q)− F (q̄)− F ′(q̄)(q − q̄)]‖2
L

2(Ω)

= ζ((F (q̄) + 2F (q))(F (q̄)− F (q))2, F (q)− F (q̄)− F ′(q̄)(q − q̄))
− 3ζ‖F (q)(F (q)− F (q̄)− F ′(q̄)(q − q̄))‖2

L
2(Ω)

≤ ζ‖F (q̄) + 2F (q)‖
L

6(Ω)‖F (q̄)− F (q)‖
L

6(Ω)‖F (q̄)− F (q)‖
L

2(Ω)

· ‖F (q)− F (q̄)− F ′(q̄)(q − q̄)‖
L

6(Ω)

≤ ζc3
sp‖∇[F (q̄) + 2F (q)]‖

L
2(Ω)‖∇[F (q̄)− F (q)]‖

L
2(Ω)‖F (q̄)− F (q)‖

L
2(Ω)

· ‖∇[F (q)− F (q̄)− F ′(q̄)(q − q̄)]‖
L

2(Ω) ,

where csp := cs

√
1 + c2

p.

Division by ‖∇[F (q)− F (q̄)− F ′(q̄)(q − q̄)]‖
L

2(Ω) leads to

‖∇[F (q)− F (q̄)− F ′(q̄)(q − q̄)]‖
L

2(Ω)

≤ ζc3
sp‖∇[F (q̄) + 2F (q)]‖

L
2(Ω)‖∇[F (q̄)− F (q)]‖

L
2(Ω)‖F (q̄)− F (q)‖

L
2(Ω)

≤ ζc3
sp

(
‖∇F (q̄)‖

L
2(Ω) + 2‖∇F (q)‖

L
2(Ω)

)
‖∇[F (q̄)− F (q)]‖

L
2(Ω)

· ‖F (q̄)− F (q)‖
L

2(Ω) . (3.81)

47



3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Let ū = F (q̄) and u = F (q). It can easily be shown that w = F (q)−F (q̄) is a weak
solution to −∆w + 1

2ζ
(
ū2 + u2 + (ū+ u)2

)
w = q − q̄ in Ω

w = 0 on ∂Ω ,

which yields the estimate

‖∇[F (q)−F (q̄)]‖2
L

2(Ω)+
1
2ζ‖

√
F (q̄)2 + F (q)2 + (F (q̄) + F (q))2(F (q)−F (q̄))‖2

L
2(Ω)

≤ cp‖∇[F (q)− F (q̄)]‖
L

2(Ω)‖q − q̄‖L2(Ω) .

Dividing this by ‖∇[F (q)− F (q̄)]‖
L

2(Ω) we get

‖∇[F (q)− F (q̄)]‖
L

2(Ω) ≤ cp‖q − q̄‖L2(Ω) .

Inserting this into (3.81) as well as using the fact that F (q) (and F (q̄)) solve (3.77)
(with q replaced by q̄), we finally arrive at

‖F (q)− F (q̄)− F ′(q̄)(q − q̄)‖
L

2(Ω) ≤ cp‖∇[F (q)− F (q̄)− F ′(q̄)(q − q̄)]‖
L

2(Ω)

≤ ζc3
spcpC

(
‖q̄‖

L
2(Ω) + 2‖q‖

L
2(Ω)

)
‖q − q̄‖

L
2(Ω)

· ‖F (q̄)− F (q)‖
L

2(Ω) ,

which implies Assumption 3.3 with small ctc upon restriction of the domain D to a
sufficiently small neighborhood of a solution q†.

2. Example 3.2: The validity of the claimed assumptions, except for Assumption 3.6, has
been discussed by Kaltenbacher, Schöpfer, and Schuster in [71] in a Banach space setting.
We will follow their approach for showing the same results for the choice Q = L2(Ω),
V = W = H1

0 (Ω), which has not been considered in [71].

Let D = {q ∈ Q = L2(Ω)| q ≥ 0 a.e. in Ω}. The weak formulation reads

a(q, u)(ϕ) := (∇u,∇ϕ) + ζ(qu, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω) . (3.82)

(i): Since with (3.79) we have

|a(q, u)(ϕ)| ≤ ‖∇u‖
L

2(Ω) ‖∇ϕ‖L2(Ω) + ζ ‖q‖
L

2(Ω) ‖u‖L4(Ω) ‖ϕ‖L4(Ω)

≤ ‖∇u‖
L

2(Ω) ‖∇ϕ‖L2(Ω) + ζ ‖q‖
L

2(Ω) c
2
sp ‖∇u‖L2(Ω) ‖∇ϕ‖L2(Ω)

≤ (1 + c2
spζ ‖q‖L2(Ω)) ‖∇u‖L2(Ω) ‖∇ϕ‖L2(Ω)

and
a(q, u)(u) = ‖∇u‖2

L
2(Ω) + ζ(qu, u) ≥ ‖∇u‖2

L
2(Ω)

for all q ∈ D, the semilinear form a is continuous and coercive, so that F is
well–defined and bounded from D to H1

0 (Ω).
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3.4. Test examples and verification of assumptions

(ii): To verify Assumption 3.2, by the same argumentation as in the previous example, we
get that for any sequence (qn)n∈N ⊆ D with qn ⇀ q in L2(Ω) and un := F (qn)→ g
in L2(Ω) even un ⇀ g in H1(Ω) and un → g in L4(Ω) holds. Therewith, g ∈ H1

0 (Ω)
and for any ϕ ∈ H1

0 (Ω) we have

lim
n→∞

(qn(un − g), ϕ) ≤ lim
n→∞

‖qn‖L2(Ω) ‖un − g‖L4(Ω) ‖ϕ‖L4(Ω) = 0

and consequently

lim
n→∞

(∇un,∇ϕ) + ζ(qnun, ϕ)− (f, ϕ)

= lim
n→∞

(∇un,∇ϕ) + ζ(qn(un − g), ϕ) + ζ(qn, gϕ)− (f, ϕ)

= lim
n→∞

(∇un,∇ϕ) + ζ(qn, gϕ)− (f, ϕ)

= (∇g,∇ϕ) + ζ(q, gϕ)− (f, ϕ)
= 0 ,

i.e., F (q) = g, which implies Assumption 3.2.

(iii): The tangential cone condition has already been investigated by Hanke, Neubauer,
and Scherzer in [44] for our example, but for the choice

D = {q ∈ L2(Ω)| ‖q − q†‖
L

2(Ω) ≤ ε and q† ≥ 0 almost everywhere in Ω} ,

which does not allow our argumentation in (i). In fact, well-definedness of F from
L2(Ω) to H2(Ω) is shown by Colonius and Kunisch in [74], but only in 1D.

First we show that the PDE posesses a unique solution in H2(Ω). According to [40,
Theorem 4.4.3.7] (in 2D) and [83, Theorem 4.3.2] (in 3D) a solution to the Poisson
equation {

−∆u = f̃ in Ω
u = 0 on ∂Ω .

is unique in W 2,p(Ω) with ‖u‖
W

2,p(Ω) ≤ cp‖f̃‖Lp , if there exists a pΩ > 2, such
that the right-hand side f̃ lies in Lp(Ω) for all 1 < p < pΩ. Thus, we have to show
that f − qu ∈ L2(Ω). We do this by a boot strapping argument: Since u ∈ H1

0 (Ω),
which is continuously embedded in L6(Ω) and q ∈ L2(Ω), we get qu ∈ L3/2(Ω) by
Hölder’s inequality. This implies u ∈W 2,3/2(Ω). Using the continuous embedding
from W 2,3/2(Ω) into Lk(Ω) for all 1 ≤ k <∞, i.e., in particular into L7(Ω) we get
qu ∈ L14/9 and therewith u ∈W 2,14/9(Ω) by the same argumentation. Since 14

9 > 3
2 ,

W 2,14/9(Ω) is continuously embedded in L∞(Ω). Finally we get that qu ∈ L2(Ω)
and therewith u ∈W 2,2(Ω) = H2(Ω).

Let q, q̄ ∈ D. With the abbreviations u = F (q), ū := F (q̄), w := F ′(q)(q̄− q), w can
be written as a weak solution of the tangent equation (2.29){

−∆w + ζqw = −ζ(q̄ − q)u in Ω
w = 0 on ∂Ω .
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Since

(∇(ū− u− w),∇ϕ) + ζ(q(ū− u− w), ϕ)
= (∇ū,∇ϕ) + ζ(q̄ū, ϕ) + ζ((q − q̄)ū, ϕ)
− [(∇u,∇ϕ) + ζ(qu, ϕ)]− [(∇w,∇ϕ) + ζ(qw, ϕ)]

= ζ((q − q̄)ū, ϕ)− ζ((q − q̄)u, ϕ)
= −ζ ′((q̄ − q)(ū− u), ϕ)

for all ϕ ∈ H1
0 (Ω), v = F (q̄)− F (q)− F ′(q)(q̄ − q) = ū− u− w solves{

−∆v + ζqv = −ζ(q̄ − q)(ū− u) in Ω
v = 0 on ∂Ω .

(3.83)

With the same argumentation as before, we have ū, w, v ∈ H2(Ω). We introduce
the dual variable y as solution to{

−∆y + ζqy = v in Ω
y = 0 on ∂Ω ,

(3.84)

which exists in H2(Ω) with

‖y‖
H

2(Ω) ≤ c‖v‖L2(Ω)

for some constant c > 0, again with the same argumentation. Testing (3.84) with v
yields

‖v‖2
L

2(Ω) = (∇y,∇v) + ζ(qy, v) ,

and testing (3.83) with y yields

(∇v,∇y) + ζ(qv, y) = (−ζ(q̄ − q)(ū− u), y) .

Putting this together we get

‖v‖2
L

2(Ω) = −ζ((q̄ − q)(ū− u), y)

≤ ζ‖q̄ − q‖
L

2(Ω)‖ū− u‖L2(Ω)‖y‖L∞

≤ ζC‖q̄ − q‖
L

2(Ω)‖ū− u‖L2(Ω)‖y‖H2(Ω)

≤ ζC‖q̄ − q‖
L

2(Ω)‖ū− u‖L2(Ω)‖v‖L2(Ω)

for some constant C > 0, where we have used the fact that H2(Ω) is continuously
embedded in L∞(Ω). Finally we have

‖v‖
L

2(Ω) ≤ ζC‖q̄ − q‖L2(Ω)‖ū− u‖L2(Ω) .

Restricting D to a sufficiently small L2-neighborhood of q†, would keep the term
ζ‖q̄ − q‖

L
2(Ω) small, such that the tangential cone condition Assumption 3.3 would
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be satisfied, but this choice does not ensure that q ≥ 0 almost everywhere in Ω for
all q ∈ D. This problem can be avoided by choosing

D = {q ∈ L2(Ω)| q ≥ 0 almost everywhere in Ω and ‖q − q†‖
L

2(Ω) ≤ ε} (3.85)

for some ε > 0 sufficiently small.

At this point, we would like to refer to Remark 2.4, where we mentioned that it can
happen that D has an empty interior. This would be the case here for the choice
(3.85). We also mentioned that the assumption that D has a nonempty interior
would allow to use stationarity for a minimizer. By means of this example, we can
see, that this assumption is too strong in general for this purpose:

As usual for optimal control problems with control constraints, the constraint
q ≥ 0 almost everywhere leads to a variational inequality as necessary opti-
mality condition, which can be expressed equivalently as a projection formula.
For a minimizer qδβ > 0 a.e., the projection operator becomes the identity, and
the variational inequality turns into an equality. Together with the fact that
the ball ‖q − q†‖Q has a nonempty interior, a minimizer qδβ ∈ {q ∈ L2(Ω)| q >
0 almost everywhere in Ω and ‖q − q†‖

L
2(Ω) < ε} satisfies indeed the stationarity

equation (2.28).

3. Example 3.3

We will only carry out the case that ζ is small (the notion “small” in this context will
be specified in the following, cf. (3.86)), which corresponds to a small wave number
in a scattering problem modeled by the Helmholtz equation (cf., e.g., [15]), and refer
to [79] for different choices of boundary control. The main difficulty and difference to
Example 3.2 is the lack of coercivity of the semilinear form in case that the wave number
matches an eigenvalue of the Laplacian, such that existence and continuity of the solution
operator F cannot be shown for arbitrary ζ (cf. [88]).

The weak formulation reads

a(q, u)(ϕ) := (∇u,∇ϕ)− ζ((1 + q)u, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω) .

(i): Similarly as in Example 3.2 (i) we get

|a(q, u)(ϕ)| ≤ (1 + c2
spζ ‖1 + q‖

L
2(Ω)) ‖∇u‖L2(Ω) ‖∇ϕ‖L2(Ω)

and

a(q, u)(u) = ‖∇u‖2
L

2(Ω) − (ζ(1 + q)u, u)

≥ ‖∇u‖2
L

2(Ω) − ζ‖1 + q‖
L

2(Ω)‖u‖
2
L

4(Ω)

≥
(
1− ζc2

sp‖1 + q‖
L

2(Ω)

)
‖∇u‖2

L
2(Ω) ,

which implies continuity and coercivity of a for

q ∈ D := {q ∈ L2(Ω)| ‖1 + q‖
L

2(Ω) <
1

ζc
2
sp

} , (3.86)
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hence well–definedness of F : D → H1
0 (Ω).

Further there holds

‖∇u‖2
L

2(Ω) ≤ cp ‖f‖L2(Ω) ‖∇u‖L2(Ω) + ζc2
sp ‖1 + q‖

L
2(Ω) ‖∇u‖

2
L

2(Ω) ,

which implies
‖∇u‖

L
2(Ω) ≤

cp

1− ζc2
sp ‖1 + q‖

L
2(Ω)

‖f‖
L

2(Ω) .

So F is also bounded from D to H1
0 (Ω).

(ii),(iii): Assumption 3.2 and Assumption 3.3 follow analogously to Example 3.2.

4. Example 3.4:

In this case we cannot proceed as for Example 3.3, since then, 0 is an eigenvalue of
the Laplacian due to the Neumann zero boundary condition (cf. [38]), such that for
small ζ the given Helmholtz equation is not coercive. A possible setting, which avoids
the mentioned difficulty, would be the use of impedance boundary conditions, i.e.,
∂nu− i

√
ζu = ξ, cf. [88], since the eigenvalues of the Laplacian with impedance boundary

are not real.

Due to the lack of coercivity in our setting, we won’t provide a theoretical analysis
here, but discuss the numerical results in Section 3.6 anyway. We will also consider a
linearization of the Helmholtz equation, which is obtained via the Born approximation cf.
[15] and apply the algorithm from [39] to this simplified linear problem (see Appendix D).
The claimed assumptions are trivially satisfied in that case, since the operator F is linear.

3.5. Algorithm and implementational realization

Summarizing the results from this and the previous section, the concrete algorithm for
determining the regularization parameter β according to Theorem 3.7 and Proposition 3.1 can
be seen in Algorithm 3.1.

The last loop (step 18– 20 in Algorithm 3.1) only serves as a refinement loop, with β fixed and
represents the implementation of Theorem 3.4.

As the theoretical assumption γ ≤ i′′(β) for all β > 0 (see Theorem 3.7) is not exactly
transferable to practice, we decided to choose γ as follows:

γ = γ
k

:= i′′
k
h , γ = γk :=


0 , if i′′kh ≥ 0

−3
2 i
′′k
h , if i′′kh < 0 .

(3.87)

Note that only existence of an upper bound γ but not its explicit value is needed in order to
compute the regularization parameter according to Theorem 3.7 and Proposition 3.1. For the
tested examples, the numerical results of the version of the algorithm for quadratic convergence
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Algorithm 3.1: Inexact Newton method for determining a regularization parameter
for nonlinear inverse problems

1: Choose ctc < 1, τ > τ > τ > 1, τ̃ < τ such that (3.20) is fulfilled, c1 ∈ (0, 1),
c2 ∈ (0, 1

2) such that 2c1 + c2 < 1 and c ≤ τ̃
2

τ
2 and choose Θ > 0 such that (3.20).

2: Choose initial guess β0 > 0, initial discretizations Qh, Vh, set k = 0.
3: Compute xh = (qh, uh, zh) by solving (2.38) .
4: Evaluate ikh by (2.37).
5: while ikh > τ

2
δ2 do

6: Compute xh,1 = (qh,1, uh,1, zh,1) by solving (3.69).
7: Evaluate i′kh by (3.71).
8: Evaluate the error estimator ηI (for i(βk)) according to (3.76).
9: Compute xh,2 and xh,3 by solving (3.73).

10: Evaluate the error estimator ηK (for i′(βk)) according to (3.76).
11: if (3.38), (3.39), (3.40), (3.41) and (3.9) are satisfied then
12: Evaluate γ according to (3.87).
13: Set βk+1 = βk + σk+1sk+1 and k = k + 1.
14: else
15: Refine with respect to the corresponding error estimator.
16: Compute xh = (qh, uh, zh) by solving (2.38) .
17: Evaluate ikh by (2.37).
18: while (3.19) is violated do
19: Refine with respect to the error estimator for j (see (3.19) and (3.68)).
20: Compute xh = (qh, uh, zh) by solving (2.38).

(cf. Proposition 3.2) did not differ significantly from the one given above for linear convergence,
which may be caused by the fact that we stop at k∗ and do not check whether (3.42) holds.

In Section 3.3 we discussed the evaluation of the error estimators needed for Algorithm 3.1
insofar as we formulated the equations, which have to be solved. We will now go into more
detail and explain how these equations can be solved efficiently.

Although, of course, in practice we solve the discrete versions of the equations in Section 3.3,
for notational simplicity, we consider the continuous equations in all following algorithms in
this section. The discrete counterparts are obtained by replacing Q,V,W by Qh, Vh,Wh, see
also Section 2.3.

We start with the error estimator ηJ for Jβ, which is given by

Jβ(q, u)− Jβ(qh, uh) ≈ ηJ := 1
2L
′(xh)(πxh − xh)

(cf. Section 3.3 and Section 2.4) and computed according to Algorithm 3.2 using the notation
eu := πuh − uh, ez := πzh − zh, eq := πqh − qh.

For obtaining x1 according to [39, Proposition 3] we need to solve (3.69). We do this in the
manner presented in Algorithm 3.3 (as in [85]).
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Algorithm 3.2: Computation of ηJ

1: Compute ηstate := L′z(xh)(ez)
2: Compute ηdual := L′u(xh)(eu)
3: Compute ηcontrol := L′q(xh)(eq)
4: Compute ηJ = ηstate + ηdual + ηcontrol

Algorithm 3.3: Computation of x1

1: Determine z(0)
1 ∈W as a solution to the dual equation “DualQI” (see Appendix A).

2: Determine q1 ∈ Q by solving the hessian equation“QIEq”:

j′′(q)(q1, ϕ) = −L′′zq(x)(z(0)
1 , ϕ) ∀ϕ ∈ Q . (3.88)

We thereby evaluate the second derivative j′′(q)(δq) for given δq ∈ Q as in
Section 2.2

3: u1 is a solution to (2.29) for given δq = q1. It is already computed in the process
of solving (3.88).

4: Set z1 = z
(0)
1 + z

(1)
1 , where z(1)

1 is the solution of (2.30) for given δq = q1 and
δu = u1, which is already computed in the process of solving (3.88).

By means of x1 we can then compute the error estimator ηI for I according to Section 3.3,
i.e.,

I(u)− I(uh) ≈ ηI := 1
2M

′
y(yh)(y − πhy)

= 1
2
[
I ′u(q, u)(eu) + L′′qq(x)(q1, eq) + L′′qu(x)(q1, eu)

+ L′′qz(x)(q1, ez) + L′′uq(x)(u1, eq) + L′′uu(x)(u1, eu)
+ L′′zq(x)(z1, eq) + L′′zu(x)(z1, eu) + L′′uz(x)(u1, ez)

+L′q(x)(eq1
) + L′u(x)(eu1

) + L′z(x)(ez1
)
]
,

which leads to Algorithm 3.4, where we use the notation eu1
:= πuh,1−uh,1, ez1

:= πzh,1− zh,1,
eq1

:= πqh,1 − qh,1.

Computing x2, i.e., solving the first part of (3.72) is easier than the computation of x1, since
the right-hand side only contains q and q1, which leads to Algorithm 3.5 for the computation
of x2.

The second equation in (3.72) can be solved efficiently as formulated in Algorithm 3.6 for the
computation of x3.

Finally we can compute the error estimator ηK according to Section 3.3, i.e.,

K(q, q1)−K(qh, q1,h) ≈ ηK := 1
2N
′
y(yh,yh)(πyh − yh) + 1

2N
′
y(yh,yh)(πyh − yh) ,
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3.5. Algorithm and implementational realization

Algorithm 3.4: Computation of ηI

1: Compute ηstate := L′z(xh)(ez1
)

2: Compute ηdual := L′u(xh)(eu1
)

3: Compute ηcontrol := L′q(xh)(eq1
)

4: Compute ηtangent := L′′qz(xh)(q1,h, ez) + L′′uz(xh)(u1,h, ez)
5: Compute

ηdualForHessianQI := L′′qu(xh)(q1,h, eu)+L′′uu(xh)(u1,h, eu)+L′′zu(z1,h, eu)+I ′(uh)(eu)

6: Compute ηI = ηstate + ηdual + ηcontrol + ηtangent + ηdualForHessianQI

Algorithm 3.5: Computation of x2

1: Determine q2 ∈ Q by solving the hessian equation “K1Eq”:

j′′(q)(q2, ϕ) = −K ′q1
(q, q1)(ϕ) ∀ϕ ∈ Q . (3.89)

We thereby evaluate the second derivative j′′(q)(δq) for given δq ∈ Q as in
Section 2.2

2: u2 is a solution to (2.29) for given δq = q2. It is already computed in the process
of solving (3.89).

3: z2 is a solution to (2.30) for given δq = q2 and δu = u2, which is already computed
in the process of solving (3.89).

where

N ′y(yh,yh)(πyh − yh) = K ′q(qh, q1,h)(πqh − qh) +K ′q1
(qh, q2,h)(πqh,1 − qh,1)

+M ′′yy(yh)(yh, πyh − yh)
= K ′q(qh, q1,h)(πqh − qh) + +K ′q1

(qh, q2,h)(πqh,1 − qh,1)
+ I ′′(uh)(u2,h, πuh − uh) + L′′xx(xh)(πxh,1 − xh,1, x2,h)
+ L′′xx(xh)(x3,h, πxh − xh) + L′′′xxx(xh)(x1,h, x2,h, πxh − xh)

N ′y(yh,yh)(πyh − yh) =M′′yy(yh)(yh, πyh − yh)
= I ′(uh)(πu2,h − u2,h) + L′′xx(xh)(x1,h, πx2,h − x2,h)

+ L′x(xh)(πx3,h − x3,h) .

With

eu2
:= πu2,h − u2,h ez2

:= πz2,h − z2,h eq2
:= πq2,h − q2,h

eu3
:= πu3,h − u3,h ez3

:= πz3,h − z3,h eq3
:= πhq3,h − q3,h
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Algorithm 3.6: Computation of x3

1: Determine u
(0)
3 ∈ V as a solution to the tangent equation “Tan-

gentK2For3rdDerivative” (see Appendix A).
2: Determine z(0)

3 ∈W as a solution to the dual equation “DualK2” (see Appendix A).

3: Determine q3 ∈ Q by solving the hessian equation “K2Eq” (see Appendix A). We
thereby evaluate the second derivative j′′(q)(δq) for given δq ∈ Q as explained in
Section 2.2

4: Set u3 = u
(0)
3 + u

(1)
3 , where u(1)

3 is a solution to (2.29) for given δq = q3. It is
already computed in the process of solving “K2Eq”.

5: Set z3 = z
(0)
3 + z

(1)
3 , where z(1)

3 is the solution of (2.30) for given δq = q3 and
δu = u

(1)
3 , which is already computed in the process of solving “K2Eq”.

this leads to the computation of ηK according to Algorithm 3.7, where

ηdualForHessianK2 := L′′qu(xh)(q3.h, eu) + L′′uu(xh)(u3.h, eu)
+ L′′zu(xh)(z3.h, eu) + I ′′(uh)(u2,h, eu)
+ L′′′quu(xh)(q1,h, u2,h, eu) + L′′′quu(xh)(q2,h, u1,h, eu)
+ L′′′qzu(xh)(q1,h, z2,h, eu) + L′′′qzu(xh)(q2,h, z1,h, eu)
+ L′′′zuu(xh)(z1,h, u2,h, eu) + L′′′zuu(xh)(z2,h, u1,h, eu)
+ L′′′uuu(xh)(u1,h, u2,h, eu) + L′′′qqu(xh)(q1,h, q2,h, eu)

(3.90)

and
ηcontrolK2RHSO := L′′qq(xh)(q3,h, eq) + L′′uq(xh)(u3,h, eq)

+ L′′zq(xh)(z3,h, eq) +K ′q(qh, q1,h)(eq)
+ L′′′qzq(xh)(q1,h, z2,h, eq) + L′′′qzq(xh)(q2,h, z1,h, eq)
+ L′′′uzq(xh)(u1,h, z2,h, eq) + L′′′uzq(xh)(u2,h, z1,h, eq)
+ L′′′quq(xh)(q1,h, u2,h, eq) + L′′′quq(xh)(q2,h, u1,h, eq)
+ L′′′uuq(xh)(u1,h, u2,h, eq) + L′′′qqq(xh)(q1,h, q2,h, eq) .

(3.91)

Remark 3.12. Will will not go into more detail concerning the localization of the error
estimators, but refer to [30, 84]. Also see [84, Remark 6.3], which states that in simple cases,
e.g., when the control enters the right-hand side linearly, and in case we choose the same
discrete space for the state and the control, via optimality conditions the terms containing the
control error vanish.
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3.6. Numerical results

Algorithm 3.7: Computation of ηK

1: Compute ηstate := L′z(xh)(ez3
)

2: Compute ηdual := L′u(xh)(eu3
)

3: Compute ηcontrol := L′q(xh)(eq3
)

4: Compute ηtangent := L′′qz(xh)(q1,h, ez2
) + L′′uz(xh)(u1,h, ez2

)
5: Compute

ηdualForHessianQI := L′′qu(xh)(q1,h, eu2
)+L′′uu(xh)(u1,h, eu2

)+L′′zu(z1,h, eu2
)+I ′(uh)(eu2

)

6: Compute ηHVO := L′′qq(xh)(q1,h, eq2
) + L′′uq(xh)(u1,h, eq2

) + L′′zq(xh)(z1,h, eq2
)

7: Compute ηtangentA1 := L′′qz(xh)(q2,h, ez1
) + L′′uz(u2,h, ez1

)
8: Compute

ηdualForHessian := L′′qu(xh)(q2.h, eu1
) + L′′uu(xh)(u2.h, eu1

) + L′′zu(xh)(z2.h, eu1
)

9: Compute

ηHVOA1 := L′′qq(xh)(q2,h, eq1
)+L′′uq(xh)(u2,h, eq1

)+L′′zq(xh)(z2,h, eq1
)+K ′q1

(qh, q1,h)(eq1
)

10: Compute

ηtangentA2 := L′′qz(xh)(q3.h, ez) + L′′uz(xh)(u3.h, ez) + L′′′qqz(xh)(q1,h, q2,h, ez)
+ L′′′uuz(xh)(u1,h, u2,h, ez) + L′′′quz(xh)(q1,h, u2,h, ez) + L′′′quz(xh)(q2,h, u1,h, ez)

11: Compute ηdualForHessianK2 according to (3.90)
12: Compute ηcontrolK2RHSO according to (3.91)
13: Compute

ηK = ηstate + ηdual + ηcontrol + ηtangent + ηdualForHessianQI + ηHVO + ηtangentA1

+ ηdualForHessian + ηcontrolHVOA1 + ηtangentA2 + ηdualForHessianK2 + ηcontrolK2RHSO

3.6. Numerical results

For illustrating the performance of the proposed method for the computation of a Tikhonov
regularization parameter for nonlinear inverse problems with adaptive discretizations “(NT)”
(for Nonlinear Tikhonov) according to the algorithms from Section 3.5 (especially Algorithm 3.1)
we apply it to the example PDEs from Section 3.4.

All the computations in this thesis have been done using the optimization toolbox RoDoBo
[101] in combination with the finite element toolbox Gascoigne [35] and the visualization
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

software VisuSimple [109]. Some graphics have been created via MATLAB [82].

In our numerical computations of this section, step 3 and step 16 in Algorithm 3.1 are realized
by applying Newton’s method (cf. Section 2.5.1) to the optimization problem (2.22).

In all considered examples we aim to identify the parameter q ∈ Q = L2(Ω) from noisy
measurements gδ ∈ G of the state u ∈ H1(Ω) in Ω = (0, 1)2 ⊂ R2. As for the measurements
we consider two cases:

(i) via point functionals in nm = 100 uniformly distributed points ξi, i = 1, 2, . . . , nm and
perturbed by uniformly distributed random noise of some percentage p > 0. Then the
observation space is chosen as G = R

nm and the observation operator is defined by
(C(v))i = v(ξi) for i = 1, . . . , nm. The noisy data is created via gδi = g(ξi)(1 + εip) for
i = 1, . . . , nm, where εi ∈ (−1, 1) are random numbers and the exact data g is simulated
as solution u† of the given PDE on a very fine mesh with 1050625 nodes and equally
sized quadratic cells.

(ii) via L2-projection. Then we have G = L2(Ω), C = id, and

gδ = g + δ
r

‖r‖
L

2(Ω)
= g + p ‖g‖

L
2(Ω)

r

‖r‖
L

2(Ω)
,

where r denotes some uniformly distributed random noise and p the percentage of
perturbation. The exact state u† is simulated on a very fine mesh with 1050625 nodes
and equally sized quadratic cells. We denote the corresponding finite element space
by VhL . In order to evaluate ‖C(u)− gδ‖

L
2(Ω) = ‖u− gδ‖

L
2(Ω) on coarser meshes and

the corresponding finite element spaces Vhl with l = 0, 1, . . . , L during the optimization
algorithm, gδ has to be transferred from VhL to the current grid Vhl . As usual in the
finite element context, this is done by the L2-projection as the restriction operator.

We consider configurations with three different exact sources q† (with (x, y) ∈ Ω):

(a) A Gaussian distribution

q† = c

2πσ2 exp
(
−1

2

((
sx− µ
σ

)2
+
(
sy − µ
σ

)2
))

with c = 10, µ = 0.5, σ = 0.1, and s = 2.

(b) Two Gaussian distributions added up to one distribution

q† = q1 + q2,

where
q1 = c1

2πσ2 exp
(
−1

2

((
s1x− µ

σ

)2
+
(
s1y − µ

σ

)2
))

,

q2 = c2

2πσ2 exp
(
−1

2

((
s2x− µ

σ

)2
+
(
s2y − µ

σ

)2
))

with σ = 0.1, µ = 0.5, s1 = 2, s2 = 0.8, c1 = 1, and c2 = 1.
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3.6. Numerical results

(c) The step function

q† =
{

0 for x ≥ 0.5
1 for x < 0.5 .

Figure 3.1 shows the exact source distributions q†.

Figure 3.1.: Exact source distribution/control q†. FLTR: (a),(b),(c)

The concrete choice of the parameters for the numerical tests is the following: τ̃ = 0.1, τ = 3.1,
τ = 4, τ = 5, ctc = 10−7, c1 = 0.9, c2 = 0.4, ctc = 10−7 and

Θ2 :=

(√
τ2 − τ̃2(1− ctc)− 1− ctc

)2
− (1 + ctc)

2

2(1− ctc)
− 1− τ̃ ,

which guarantees (3.20).

Remark 3.13. In order to fulfill (3.20), τ and τ̃ have to be chosen such that
√
τ2 − τ̃2 >

1 +
√

3.

As explained in the previous section (Section 3.5), we restrict ourselves to linear convergence of
the sequence of β’s. That means all presented numerical results refer to Proposition 3.1, which
guarantees (only) linear convergence of the produced sequence of β’s, but uses less restrictive
accuracy requirements, thus allowing for coarser grids than the quadratically convergent
version.

We start with a regularization parameter β0 = 10, an initial guess for the control q0 = 0 ∈ L2(Ω)
and a mesh of 25 equally sized quadratic cells. In each refinement step the corresponding
selected cell is divided into four equally sized quadratic cells.

Please note that throughout this thesis, the color maps for the different images are not the
same, such that the presented images of the reconstructions only give evidence about the shape
and not about absolute values. To make up for this we will mostly give the relative error of
the reconstruction of the source, i.e.,

‖qδβ,h − q
†‖Q

‖q†‖Q
. (3.92)
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

3.6.1. Example 1

First we consider Example 3.1 from Section 3.4:

For q ∈ L2(Ω) find u ∈ H1
0 (Ω) such that{

−∆u+ ζu3 = q in Ω
u = 0 on ∂Ω .

For the choice ζ = 1000, the corresponding exact states for the sources given in Figure 3.1 are
displayed in Figure 3.2.

Figure 3.2.: Exact states u† for Example 1 with ζ = 1000. FLTR: configuration
(a),(b),(c)

For the configuration (a) we also present the exact states for different choices of ζ in Figure 3.3
with the intention of showing that a different choice of ζ barely changes the shape of the state
and that the upcoming images of the reconstructions of the state for different choices of ζ can
be interpreted by comparing them to Figure 3.2.

Figure 3.3.: Exact states u† for Example 1 with configuration (a). FLTR: ζ = 10,
ζ = 1

In Figure 3.4 we can see the reconstructed control, the reconstructed state and the adaptively
refined mesh produced by Algorithm 3.1 for the choice ζ = 1, 1% noise and point measurements
(a). As we would expect, the algorithm refines mostly in the left lower corner, where the source
is located. Also the control and the state seem to be reconstructed satisfactorily.

60



3.6. Numerical results

Figure 3.4.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (a)(i), ζ = 1, 1% noise using (NT)

In Table 3.1 we give a closer insight in the functioning of the presented algorithm and at the
same time, compare the results of this adaptive strategy to uniform refinement. In the first
column we indicate the iteration number of the inexact Newton method for β (see Theorem 3.7
and Algorithm 3.1), in the second and forth column we find the number of nodes in the
adaptively or uniformly refined mesh respectively, and in the third and fifth column we display
the size of β. Recapitulating Table 3.1, the algorithm first refines four times, then updates
β seven times, until the “optimal” β is found. The subsequent four steps denote the second
refinement loop, i.e., step 18–20 in Algorithm 3.1. Both versions, adaptive and uniform
refinement, lead to the same regularization parameter, but with adaptivity we save about 96%
of nodes.

Table 3.1.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (a)(i) with ζ = 1 and 1% noise

Adaptive refinement Uniform refinement

k # nodes β
k # nodes β

k

0 25 10 25 10
0 41 10 81 10
0 137 10 289 10
0 413 10 1089 10
0 1309 10 4225 10
1 1309 30 4225 30
2 1309 71 4225 71
3 1309 154 4225 154
4 1309 320 4225 319
5 1309 652 4225 652
6 1309 1257 4225 1256
7 1309 2140 4225 2140
- 2473 2140 16641 2140
- 5327 2140 66049 2140
- 15081 2140 263169 2140
- 38665 2140 1050625 2140

In order to show the influence of the regularization parameter on the objective functional,
we present some sort of L-curve for the same example (i.e., Example 1 (a)(i), ζ = 1, 1%
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

noise) in Figure 3.5. The L-curve is a log-log graph with the misfit term (i.e., in our setting
‖F (qδh,β)− gδ‖2G) on the x-axis and the regularization term without regularization parameter
(i.e., in our setting ‖qδh,β‖

2
Q) on the y-axis (see, e.g., [45]) for various choices of the regularization

parameter β. In a continuous setting with respect to β, i.e., considering all β ∈ (0,∞) for
a fixed noise level and a fixed discretization, such a graph usually has an L-shape. A
“good” regularization parameter is obtained in its corner, where there is a balance between
regularization and data fitting. What can be seen in Figure 3.5, is simply the horizontal line of
this “L”. We start from the stable side, i.e., with small β and large misfit term, then increase
β iteratively, such that the misfit term is decreased and ‖qδh,β‖

2
Q is increased. Finally the

algorithm stops before the “imaginary” corner is reached. Strictly speaking, the right part of
the line and the green circles representing refinement steps do not belong to a proper L-curve
graph, but only the red squares representing β updates. The four last refinement steps (see
Table 3.1) are not included into the L-curve graph, since in this last refinement loop (cf. step
18–20 in Algorithm 3.1) β is fixed.
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Figure 3.5.: L-Curve for Example 1 (a)(i) with ζ = 1 and 1% noise

In Table 3.2 we display the results for different choices of the scalar factor ζ in the PDE. In the
second and fifth column the reader can see the relative control error (3.92), in the third and
sixth column the size of the computed regularization parameter, and in the forth and seventh
column the number of nodes in the resulting refined mesh for adaptive and uniform refinement
respectively. Finally, the last column shows the reduction of computation time (CTR) using
adaptivity instead of uniform refinement, namely 69%− 98%. Although a higher factor ζ, i.e.,
a boosted nonlinearity of the PDE, leads to higher computation times in general, the saving of
computation time has not been affected much. The same holds for the number of nodes and
the relative control error. Only the obtained regularization parameter seems slightly larger,
the larger ζ. Besides, we wish to point out that the relative control error (≈ 0.456) as well
as the obtained regularization parameter (≈ 5000) is about the same with adaptivity as with
uniform refinement.

In order to get more representative results concerning the comparison of the measured compu-
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tation times, we will consider ζ = 1000 or ζ = 100 in the following, because of the presumably
higher computation times (probably caused by a larger β∗).

Table 3.2.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (a)(i) for different choices of ζ with 1% noise). CTR:
Computation time reduction using adaptivity
ζ adaptive uniform CTR

error β # nodes error β # nodes

1 0.456 3085 38665 0.456 3087 1050625 98%
10 0.452 3194 38377 0.452 3197 1050625 98%
100 0.443 4999 31967 0.443 4990 1050625 96%
1000 0.475 11463 44413 - - - > 97%

We also tested the proposed method with noisy data produced via L2-projection, i.e., alternative
(ii). Figure 3.6 shows the reconstructed control, the reconstructed state, and the resulting
adaptively refined mesh for the source (a), ζ = 1000, and 1% noise. Here the refined mesh
looks even more efficient than in Figure 3.4, because it refines less and more concentrated on
the location of the source.

Figure 3.6.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (a)(ii), ζ = 1000, 1% noise using (NT)

Again, analogously to Table 3.1, we present the behavior of the algorithm concerning refinement
and β updating steps in Table 3.3. Unfortunately, here we have the unusual case that the
adaptively refined mesh has more nodes than the one obtained by uniform refinement, if only
slightly. However, we interpret this fact as an accident, since this did not occur in any other
tested example.

Please note that neither with adaptive nor with uniform refinement additional refinement
according to step 18–20 in Algorithm 3.1 was needed here.

In Figure 3.7 one can see the L-curve diagram (cf. Figure 3.5) for the proposed algorithm
applied to Example 1 (a)(ii), ζ = 1000, 1% noise.

Next, we consider the source distribution (b) (see the beginning of Section 3.6). The recon-
structed control, the reconstructed state, and the adaptively refined mesh for point measure-
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Table 3.3.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (a)(ii) with ζ = 1000 and 1% noise

Adaptive refinement Uniform refinement

k # nodes β
k # nodes β

k

0 25 10 25 10
0 69 10 81 10
1 69 462 81 460
1 137 462 289 460
1 413 462 1089 460
1 1305 462 - -
2 1305 2232 1089 2232
3 1305 7956 1089 7947
4 1305 23397 1089 23387
5 1305 62004 1089 62053
6 1305 153697 1089 153648
7 1305 347474 1089 348885
8 1305 714429 1089 721494
9 1305 1344973 1089 1370237
10 1305 2211183 1089 2282419
11 1305 4368044 1089 4609382
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Figure 3.7.: L-Curve for Example 1 (a)(ii) with ζ = 1000 and 1% noise using (NT)
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ments (i) and ζ = 1000 are displayed in Figure 3.8. Also for this configuration, the algorithm
produces reasonable reconstructions and a reasonably refined mesh.

Figure 3.8.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (b)(i), ζ = 1000, 1% noise using (NT)

The refinement steps and β updating steps can be seen in Table 3.4 as well as in the L-curve
Figure 3.9. Here we have four refinement steps, one β updating step, again one refinement step
and from then on only β updating steps until the final β is found. The additional refinement
loop only consists of one step in the adaptive case, whereas in the uniform case no additional
refinement is needed. Again, both versions produce about the same β and the same relative
error (3.92) of about 0.3, but using adaptivity we save about 69% of mesh nodes which leads
to 54% saving of computation time.
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Figure 3.9.: L-Curve for Example 1 (b)(i) with ζ = 1000 and 1% noise using (NT)

Considering the same example (Example 1 (b), ζ = 1000, 1% noise) with noisy data (ii) (via
L2-projection) we obtain the reconstructions and the mesh from Figure 3.10.

As for Example 1 (a), the L2-projection alternative (ii) produces a coarser mesh than the
setting with point measurements (i). This is probably mainly because in case (i) the algorithm
additionally refines at the measurement points, which are uniformly distributed in the domain.
The reconstructions look even better comparing Figure 3.10 and Figure 3.8, which is also
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Table 3.4.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (b)(i) with ζ = 1000 and 1% noise

Adaptive refinement Uniform refinement

k # nodes β
k # nodes β

k

0 25 10 25 10
0 81 10 81 10
0 137 10 289 10
0 497 10 1089 10
0 1721 10 4225 10
1 1721 15 4225 16
1 4793 15 16641 16
2 4793 22 16641 22
3 4793 30 16641 30
4 4793 40 16641 40
5 4793 52 16641 52
6 4793 68 16641 68
7 4793 88 16641 88
8 4793 113 16641 113
9 4793 144 16641 144
10 4793 183 16641 183
11 4793 232 16641 231
12 4793 291 16641 290
13 4793 364 16641 363
14 4793 452 16641 450
15 4793 554 16641 552
16 4793 672 16641 669
17 4793 803 16641 799
17 10115 803 66049 799
18 10115 947 66049 943
- 20231 947 - -

Figure 3.10.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (b)(ii), ζ = 1000, 1% noise using (NT)
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confirmed by numbers considering Table 3.5, meaning that (ii) results in a slightly smaller
relative control error. This is also plausible in view of the fact that (ii) provides information
on u in all of Ω, whereas in (i) we only have measurements at 100 points. To put this in
perspective we have to mention that the evaluation of this error (3.92) is done (numerically)
on the final mesh of the particular example, which implies that this value is less accurate for
(ii) than for (i) in this case here. With respect to uniform refinement we can see from the
same table that again, uniform and adaptive refinement lead to about the same regularization
parameter and that we save 73% of computation time due to 30% less nodes.

Table 3.5.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (b) with 1% noise. CTR: Computation time reduction
using adaptivity

noisy data adaptive uniform CTR

error β # nodes error β # nodes

(i) 0.300 947 20231 0.301 943 66049 54%
(ii) 0.276 151048 761 0.275 150342 1089 73%

Table 3.6 and the L-curve Figure 3.11 show about the same behavior of the proposed algorithm
(Algorithm 3.1) as in the previous test cases.

Table 3.6.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (b)(ii) with ζ = 1000 and 1% noise

Adaptive refinement Uniform refinement

k # nodes β
k # nodes β

k

0 25 10 25 10
0 81 10 81 10
0 253 10 289 10
1 253 229 289 229
1 761 229 1089 229
2 761 758 1089 757
3 761 2023 1089 2022
4 761 4798 1089 4796
5 761 10468 1089 10464
6 761 21246 1089 21238
7 761 40405 1089 40384
8 761 71171 1089 71095
9 761 110885 1089 110621

10 761 151048 1089 150341

Finally, we approach our last test configuration, namely the step function (c) (see the beginning
of Section 3.6). The fact that, because of the different values of initial guess and exact solution
on large parts of the boundary, only a very weak source condition (or possibly none at all)
holds, makes this a challenging example. Additionally, the quadratic L2-norm regularization
term that we use here is the wrong type of regularization for such a piecewise constant function,
which would require total variation regularization.
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Figure 3.11.: L-Curve for Example 1 (b)(ii) with ζ = 1000 and 1% noise using (NT)

Nevertheless, the shape of the control is reconstructed quite well by Algorithm 3.1, see
Figure 3.12, and the corresponding control error of 0.450 is not larger than for the previous
test configurations. Unfortunately, in the reconstruction of the source there appear some
unwelcome peaks where the measurement points are located. Moreover, the mesh looks slightly
overrefined, since it is refined on large parts of the domain where the solution is constant and
nothing “is happening”. The corresponding control error amounts to 0.450. Still we save 29%
of nodes and 61% of computation time.

Figure 3.12.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (c)(i), ζ = 1000, 1% noise using (NT)

In the same manner as for the previous examples, the iterations and the resulting reduction of
the misfit term can be read out of Table 3.7 and Figure 3.13.

The L2-norm alternative (ii) for the same example (Example 1 (c), ζ = 1000, 1% noise) leads
to the reconstructions from Figure 3.14. The mesh, again, is coarser than in case of point
measurements, but the jump is not detected very well either. This is not suprising however,
since the L2-projection is known to not perform well for the identification of discontinuities.

Table 3.8, Figure 3.15, and Table 3.9 confirm the general observations from the preceding
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3.6. Numerical results

Table 3.7.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (c)(i) with ζ = 1000 and 1% noise

Adaptive refinement Uniform refinement

k # nodes β
k # nodes β

k

0 25 10 25 10
0 55 10 81 10
0 189 10 289 10
0 673 10 1089 10
1 673 21 1089 21
1 1837 21 4225 21
1 5367 21 16641 21
2 5367 39 16641 39
3 5367 68 16641 68
4 5367 114 16641 114
5 5367 180 16641 180
6 5367 261 16641 260
- 11785 261 - -
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Figure 3.13.: L-Curve for Example 1 (c)(i) with ζ = 1000 and 1% noise using (NT)

Figure 3.14.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (c)(ii), ζ = 1000, 1% noise using (NT)
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test cases. Only the reduction of computation time with respect to uniform refinement is
significantly smaller here (only 9%).

Table 3.8.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (c)(ii) with ζ = 1000 and 1% noise

Adaptive refinement Uniform refinement

k # nodes β
k # nodes β

k

0 25 10 25 10
0 81 10 81 10
0 81 246 81 246
0 239 246 289 246
0 651 246 1089 246
0 651 672 1089 672
0 651 1486 1089 1486
0 651 3005 1089 3002
0 651 5679 1089 5669
0 651 10165 1089 10141
0 651 16867 1089 16798
0 651 27502 1089 27311
0 651 42541 1089 41946
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Figure 3.15.: L-Curve for Example 1 (c)(ii) with ζ = 1000 and 1% noise using (NT)

In all the tests made so far, we restricted ourselves to 1% noise. We will now present the
results for different noise levels by Example 1 (a) with ζ = 100. In Figure 3.16 the reader finds
the reconstructions of the control for 1%, 4%, and 8% noise. The intuitive expectations are
indeed fulfilled: the larger the noise, the worse the reconstruction. The same holds for the
reconstructions of the state in Figure 3.17.

Also when it comes to the adaptively refined meshes, the observations from Figure 3.18 satisfy
the natural expectations, being: the more noise, the less refinement.

Table 3.10, where the relative control error, the obtained regularization parameter, as well
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Table 3.9.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refinement
for Example 1 (c) with 1% noise. CTR: Computation time reduction
using adaptivity

noisy data adaptive uniform CTR

error β # nodes error β # nodes

(i) 0.450 261 11785 0.450 260 16641 61%
(ii) 0.461 42541 651 0.460 41946 1089 9%

Figure 3.16.: Reconstructed control for Example 1 (a)(i), ζ = 100 for different noise
levels. FLTR: 1%, 4%, 8% noise using (NT)

Figure 3.17.: Reconstructed state for Example 1 (a)(i), ζ = 100 for different noise
levels. FLTR: 1%, 4%, 8% noise using (NT)

Figure 3.18.: Adaptively refined mesh for Example 1 (a)(i), ζ = 100 for different
noise levels. FLTR: 1%, 4%, 8% noise using (NT)

71



3. Computation of a Tikhonov regularization parameter with adaptive discretizations

as the number of nodes in the obtained mesh is shown for 0.5%, 1%, 2%, 4%, and 8% noise,
even reveals more coherences: the larger the noise, the larger the control error, the smaller the
regularization parameter (i.e., the stronger the regularization), the coarser the mesh.

Table 3.10.: Different noise levels for Example 1 (a)(i), ζ = 100 using (NT)
noise error β # nodes

0.5% 0.387 13063 59151
1% 0.443 4999 31967
2% 0.588 1398 35995
4% 0.761 345 17065
8% 0.927 50 8191

3.6.2. Example 2

In this section we apply Algorithm 3.1 to Example 3.2 from Section 3.4, i.e., we consider the
following PDE:

For q ∈ L2(Ω), q ≥ 0 almost everywhere in Ω find u ∈ H1
0 (Ω) such that{

−∆u+ qu = f in Ω
u = 0 on ∂Ω .

The control constraint q ≥ 0 is needed for theoretical purposes, but is neglected in the
computations here. We try to make up for this by choosing the starting value for q appropriately,
q0 = 0 ∈ L2(Ω).

We consider again the exact source distributions (a) and (b) cf. the beginning of Section 3.6.
(Due to the possible lack of a source condition, which we mentioned in the previous example,
we skip source distrbution (c) here.) The corresponding exact states simulated on a very fine
mesh are shown in Figure 3.19.

Figure 3.19.: Exact state u† for Example 2. FLTR: configuration (a),(b)

The recontructions of the control and the state as well as the adaptively refined mesh obtained
by Algorithm 3.1 (NT) can be seen in Figure 3.20 (for source (a)) and Figure 3.21 (for source

72



3.6. Numerical results

Figure 3.20.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 2 (a)(i), 1% noise using (NT)

Figure 3.21.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 2 (b)(i), 1% noise using (NT)

(b)), both with 1% noise contained in 100 point measurements, see (i) at the beginning of
Section 3.6.

The resulting relative control error (3.92), the number of mesh nodes, and the obtained
regularization parameter β is indicated in Table 3.11 for adaptive and for comparison also
uniform refinement. For the test configuration (a) we get 29% and for (b) 51% reduction of
computation time using adaptivity. For (a) and also for (b), the obtained relative error and
the regularization parameter are about the same. Unfortunately, we note that the control error
is large, especially for (a).

Table 3.11.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refine-
ment for Example 2 with 1% noise. CTR: Computation time reduction
using adaptivity

Example adaptive uniform CTR

error β # nodes error β # nodes

(a)(i) 0.930 43504 2033 0.930 43154 1089 29%
(b)(i) 0.669 6027 7663 0.669 6022 16641 51%

To put this in perspective, we have to mention that for implementational reasons, in Example
2 (and also Example 3 in the following), we neglected the control error and only computed
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

estimators for the state and adjoint errors (see Section 3.3 and Section 3.5). What makes the
difference to Example 1 is the bilinearity of the PDE, meaning the coupled term qu. In cases,
where the control enters linearly the right-hand side, the boundary conditions, or the intial
condition and the control space is discretized in the same way as the state space, the error
estimator for the error caused by discretization of the control vanishes. This is due to the
optimality conditions, cf. [84, Remark 6.3].

3.6.3. Example 3

Finally, we consider the Helmholtz equation Example 3.3 and Example 3.4, where we set
ζ = 1.

For q ∈ L2(Ω), q ≥ 0 almost everywhere in Ω find u ∈ H1(Ω) such that

−∆u− (1 + q)u = f in Ω

under Dirichlet zero boundary conditions

u = 0 on ∂Ω ,

or Neumann zero boundary conditions

∂nu = 0 on ∂Ω .

We consider two possible right-hand sides:

f1 = −1
f2 = 4π2 [sin(2πx− π

2 )(sin(2πy − π
2 ) + 1) + sin(2πy − π

2 )(sin(2πx− π
2 ) + 1)

]
− (sin(2πx− π

2 ) + 1)(sin(2πy − π
2 ) + 1) .

Like for the previous example (Example 2), we choose the starting value q0 = 0 ∈ L2(Ω) for q
and neglect the constraint q ≥ 0.

We restrict ourselves to the test configuration (a), where we choose c = 1 (instead of c = 10
like in the previous examples) since from Section 3.4 we know that Example 3 is a challenging
problem and that ‖q†‖

L
2(Ω) should not be “too large”. For the same reason, we consider only

a small perturbation of 0.01% noise.

In Figure 3.22 we show the exact states for f = f1 and f = f2 for Dirichlet and Neumann
boundary conditions.

Figure 3.23 shows the recontructions of the control and the state as well as the adaptively refined
mesh produced by Algorithm 3.1 (NT) for f = f1 and Dirichlet zero boundary conditions.
The relative control error (3.92) is 0.655. The corresponding results for Neumann boundary
conditions are shown in Figure 3.24, where we have an error of 0.364. For f = f2 and Dirichlet
boundary conditions we obtain the reconstructions from Figure 3.26 with a relative error of
0.415 and finally, for f = f2 and Neumann boundary conditions the proposed method yields
the results from Figure 3.26 and a control error of 0.450.
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Figure 3.22.: Exact state u† for Example 3 (a)(i) with 0.01% noise for different right-
hand sides and boundary conditions. FLTR: f = f1 with Dirichlet
zero boundary conditions, f = f1 with Neumann zero boundary
conditions, f = f2 with Dirichlet zero boundary conditions, f = f2
with Neumann zero boundary conditions

Figure 3.23.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 3 (a)(i), 0.01% noise, f = f1, Dirichlet zero bound-
ary conditions using (NT)

Figure 3.24.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 3 (a)(i), 0.01% noise, f = f1, Neumann zero
boundary conditions using (NT)
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Figure 3.25.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 3 (a)(i), 0.01% noise, f = f2, Dirichlet zero bound-
ary conditions using (NT)

Figure 3.26.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 3 (a)(i), 0.01% noise, f = f2, Neumann zero
boundary conditions using (NT)

The sources seem to be reconstructed a little worse than for the two previous examples
(Example 1 and 2) and the mesh refinement is not as concentrated on the source location
(especially for the choice f = f2). This is probably due to the smaller noise level on the one
hand, which implies more iterations in general, and on the other hand due to the challenging
Helmholtz equation itself.

3.7. Extension to parabolic equations

In practice, many inverse problems governed by partial differential equations additionally
have a time component, which hails from time-dependence of the underlying PDE. We will
concentrate on parabolic PDEs in the following. A detailed introduction to the theory of
parabolic PDEs and their discretization can be found for instance in the textbook of Eriksson,
Estep, Hansbo, and Johnson [29]. An introduction to inverse parabolic problems as well as
examples and solution methods is given in [53, 112, 113]. Adaptive discretization and solution
techniques as well as error estimates for parabolic PDEs and optimal control problems governed
by parabolic PDEs have been investigated in [75, 84–87, 93, 104], for instance.

In this section we will extend the idea from Section 3.1–Section 3.5 to parabolic PDEs. This
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requires a reformulation of the PDE (2.15):

∂tu(t) +A(q(t), u(t)) = f(t) for almost all t ∈ I := (0, T )
u(0) = u0

(3.93)

with some end time point T > 0 and some given inital data u0 ∈ L
2(Ω). For simplicity we

choose V = W = H1
0 (Ω) and the “new” state space

Ṽ := {ϕ ∈ L2(I,H1
0 (Ω))| ∂tϕ ∈ L

2(I,H1
0 (Ω)∗)} .

This is a special case of the definition in [85]. The notation ϕ ∈ L2(I,H) connotes that ϕ
lives in L2(I) in time with values in H. Note that the space Ṽ is continuously embedded in
C(Ī , L2(Ω)) with Ī = [0, T ]. We will only consider examples where the control is constant
in time, i.e., q(t) = q such that the control space doesn’t need to be changed. For setting
up the weak formulation of the state equation we again denote the L2(Ω) inner product by
(·, ·) := (·, ·)

L
2(Ω) and, due to Remark 3.11, we introduce the inner product

(ϕ,ψ)I :=
∫
I
〈ϕ(t), ψ(t)〉W ∗,W dt =

∫
I
(ϕ(t), ψ(t))

L
2(Ω) dt . (3.94)

Consistent with (2.16) we define the semilinear form

ã(q, u)(ϕ) := (A(q, u), ϕ)I =
∫
I
〈A(q(t), u(t)), ϕ(t)〉W ∗,W dt =

∫
I
a(q(t), u(t))(ϕ(t)) dt , (3.95)

such that the weak formulation can be written as

(∂tu, ϕ)I + ã(q, u)(ϕ) + (u(0), ϕ(0)) = (f, ϕ)I + (u0, ϕ(0)) ∀ϕ ∈ Ṽ . (3.96)

The cost functional J(q, u) in this section is defined by

J(q, u) := I(u) + 1
β
‖q − q0‖

2
Q with I(u) =

∫
I
J1(u(t)) dt+ J2(u(T )) (3.97)

and J1 : V = H1
0 (Ω) → R, J2 : L2(Ω) → R. The Lagrange functional is consistently given

by
L̃(q, u, z) = J(q, u) + (f − ∂tu, z)I − ã(q, u)(z) + (u0 − u(0), z(0)) . (3.98)

The equations from Section 2.2 and Section 3.5 for L := L̃ then read as presented in Ap-
pendix B.

3.7.1. Space-time discretization

The numerical treatment of parabolic PDEs (3.93) requires a discretization in time additional
to the space discretization presented in Section 2.3. As mentioned at the beginning of this
chapter, the control is constant in time, such that we only need to discretize the state variables
in time. To define such a semidiscretization, we partition the interval Ī = [0, T ] into M
subintervals Im of size km (m = 1, . . .M):

[0, T ] = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM ,
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where Im = (tm−1, tm] and 0 = t0 < t1 < · · · < tM = T . We define the time discretization
parameter k as a piecewise constant function k|Im = km for all m = 1, 2, . . . ,M . Then we can
define the semidiscretized space V r

k by

Ṽ r
k := {vk ∈ L

2(I, L2(Ω))| vk|Im ∈ Pr(Im, H
1
0 (Ω)), m = 1, 2, . . . ,M and vk(0) ∈ L2(Ω)}

(cf. [84]), where Pr(Im, V ) denotes the space of polynomials up to order r defined on the
interval Im with values in V . By means of these spaces we formulate the discretized state
equation using the Discontinuous Galerkin method “dG(r)” (cf. [9]) of order r as follows.

Let v+
k,m := limt→0,t>0 vk(tm + t) be the limit “from the right-hand side”,

v−k,m := limt→0,t>0 vk(tm − t) = vk(tm) the limit “from the left-hand side” and [vk]m :=
v+
k,m − v

−
k,m the jump in between. For given q ∈ Q find uk ∈ Ṽ

r
k such that

M∑
m=1

(∂tuk, ϕ)Im + ã(q, uk)(ϕ) +
M−1∑
m=0

([uk]m, ϕ
+
m) + (u−k,0, ϕ

−
0 ) = (f, ϕ)I + (u0, ϕ

−
0 ) (3.99)

for all ϕ ∈ Ṽ r
k . We consistently define the Lagrangian as

L̃(q, uk, zk) := J(q, uk) + (f, zk)I −
M∑
m=1

(∂tuk, zk)Im

− ã(q, uk)(zk)−
M−1∑
m=0

([uk]m, z
+
k,m) + (u0 − u

−
k,m, z

−
k,0) .

The time-discretized version of (2.21) can be formulated as

min
q∈D⊂Q

jk(q) := J(q, uk) ,

where uk solves (3.99). Similarly to the space discretization (Section 2.3), semi-discretized
versions of the equations (2.25), (2.26), (2.29), (2.30) and (2.31) from Section 2.2 and Section 3.5
are obtained by simply replacing L(q, u, z) by L̃(q, uk, zk) and the spaces V and W by Ṽ r

k .

Now, we combine the Continuous Galerkin discretization “cG(s)” of order s from Section 2.3
with the dG(r) discretization in time such that the fully “cG(s)dG(r)” discretized state
equation reads

M∑
m=1

(∂tukh, ϕ)Im + ã(qh, ukh)(ϕ) +
M−1∑
m=0

([ukh]m, ϕ
+
m) + (u−kh,0, ϕ

−
0 ) = (f, ϕ)I + (u0, ϕ

−
0 )

for all ϕ ∈ Ṽ r,s
k,h , where Ṽ

r,s
k,h is the fully discrete space-time finite element space

Ṽ r,s
k,h := {vkh ∈ L

2(I, L2(Ω))| vkh|Im ∈ Pr(Im, V
s,m
h ), m = 1, 2, . . . ,M and vkh(0) ∈ V s,0

h } ⊂ Ṽ
r
k .

In here, V s,m
h denotes the finite element space from Section 2.3 associated with the time end

point tm.

Again, one gets the fully-discretized versions of j and the equations (2.25), (2.26), (2.27),
(2.29), (2.30), (2.31) from Section 2.2 and Section 3.5 by replacing the index k by kh and Ṽ r

k

by Ṽ r,s
k,h in the semidiscrete formulation.
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As special case of cG(s)dG(r) discretization with r = 0, we consider the implicit Euler time
stepping scheme (see, e.g., [106]). For a detailed presentation of the resulting state, dual and
tangent equations from Section 3.5 we refer the reader to Appendix C. A single time step is
solved by means of a Newton solver for treating the nonlinearities and by applying multigrid
methods to the resulting linear subproblems. For details we refer to [8].

3.7.2. Space-time mesh refinement

Having established a space-time discretization for (3.93), the next step is the derivation of a
posteriori error estimators (cf. Section 2.4 and 3.3), which allow us to estimate the error in
space as well as the error in time, since our goal is to modify Algorithm 3.1, insofar as we
either refine in space, or in time or in both in step 15 and 19.

DWR error estimators for parabolic problems

In order to extend the results from the stationary case (cf. Section 2.4 and 3.3) to parabolic
PDEs, we use the results from [85, 104]. For a given quantity of interest functional E, there
hold the same results as in Section 3.3 with h replaced by k, but in order to distinguish between
time and space error, we split the total error as follows

E(q, u)− E(qhk.uhk) = E(q, u)− E(qk, uk) + E(qk, uk)− E(qkh, ukh) ≈ ηEk + ηEh ,

and define analogously to (2.39), the auxiliary Lagrangian

M̃ : X̃ × X̃ → R , M̃(x, ξ) := E(q, u) + L′(x)(ξ) ,

where X̃ := Q× Ṽ × Ṽ . Adapted from [85], for continuous, semi-discrete and fully-discrete
stationary points (x, ξ) ∈ X̃ × X̃, (xk, ξk) ∈ X̃k× X̃k with X̃k := Q× Ṽ r

k × Ṽ
r
k and (xkh, ξkh) ∈

X̃kh × X̃kh with X̃kh := Q× Ṽ r,s
k,h × Ṽ

r,s
k,h of M̃, there holds

E(q, u)− E(qk, uk) = 1
2M̃

′(xk, ξk)(x− x̂k, ξ − ξ̂k) + Rk

E(q, u)− E(qkh, ukh) = 1
2M̃

′(xkh, ξkh)(x− x̂kh, ξ − ξ̂kh) + Rh ,

where (x̂k, ξ̂k) and (x̂kh, ξ̂kh) are arbitrary and Rk and Rh are remainder terms of the form
(2.40).

So for E := I we can estimate the errors ηIk ≈ i(β) − ik(β) = I(q, u) − I(qk, uk) and ηIh ≈
i(β)− ikh(β) = I(q, u)− I(qkh, ukh). An error estimator for the cost functional J (or j) can
be derived in the same way (cf. Section 2.4, [85]) such that there holds

J(q, u)− J(qk, uk) = 1
2 L̃
′(xk)(x− x̂k) + Rk ≈ η

J
k

J(q, u)− J(qkh, ukh) = 1
2 L̃
′(xkh)(x− x̂kh) + Rh ≈ η

J
h .
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for continuous, semi-discrete and fully-discrete stationary points x ∈ X̃, xk ∈ X̃k and xkh ∈ X̃kh

of L̃. Since i′(β) = K(q, q1) = − 2
β

2 (q, q1)Q (cf. Section 3.3) and q, q1 are constant in time
there holds qk = q, q1,k = q1, such that i′(β)− i′k(β) = K(q, q1)−K(qk, q1,k) = 0. This implies
that we can set ηKk = 0 and that the results from Section 3.3 concerning i′ still hold if we
replace the index h by hk.

For details on the numerical realization of the error estimators we refer to [85, 104].

Refinement criterion

As in Algorithm 3.1 we base our decision whether to refine or not on (3.9), (3.19) and (3.38)–
(3.41). But the question is whether to refine in time, in space or in both. To answer this
question, we adopt the concept from [85, 104] and aim to obtain a discretization fulfilling

|ηIk| ≈ |η
I
h| and |ηJk | ≈ |η

J
h | .

For this purpose we define an “equilibration factor” e ∈ (1, 5) and formulate Algorithm 3.8,
which replaces Step 15 and Step 19 in Algorithm 3.1. With η = ηk + ηh being the error
estimator corresponding to the violated condition (3.9), (3.19), (3.38), (3.39), (3.40) or (3.41)
(i.e., η ∈ {ηI , ηJ , ηK}).

Algorithm 3.8: Space-time refinement

1: if |ηh| ≥ e|ηk| then
2: Refine spatial discretization.
3: else if |ηk| ≥ e|ηh| then
4: Refine temporal discretization.
5: else
6: Refine spatial and temporal discretization.

3.7.3. Numerical results

Example 4

In order to test how the proposed method formulated in Algorithm 3.1 performs on parabolic
problems, we consider the following initial-boundary value problem:

For given q ∈ L2(Ω) find u ∈ Ṽ such that
∂tu−∆u+ ζu3 = q in Ω × I

u = 0 on ∂Ω × I
u = 0 on Ω × {0} .

We choose the domain and the time interval as Ω = (0, 1)2 ⊂ R2 and I = (0, 1). The noisy data
is simulated via point functionals in nm = 100 uniformly distributed points ξi, i = 1, 2, . . . , nm
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and the end point, perturbed by some percentage p of uniformly distributed random noise.
We set J1 = 0 in (3.97), and J2(u(T )) = ‖u(T )− gδ‖2G with observation space G = R

nm .
Like in Section 3.6, the noisy data is created via gδi = g(ξi)(1 + εip) for i = 1, . . . , nm, where
εi ∈ (−1, 1) are random numbers and the exact data g is simulated as g = u†(T ), where u† is
the solution of the given PDE on a very fine mesh with 16641 space nodes (and equally sized
quadratic cells) and 6000 equidistant time steps. The equilibration factor, affecting whether
we refine in space or in time (see Algorithm 3.8), is chosen as e = 20.

We will use the same type of figures and tables as in Section 3.6. Therefore, we will not go
into detail concerning a description of the means of presentation.

We consider the same exact source distributions (a), (b), and (c) as in Section 3.6 , which are
visualized in Figure 3.1.

The corresponding exact states at the end point are presented in Figure 3.27.

Figure 3.27.: Exact state u†(T ) for Example 4. FLTR: configuration (a),(b),(c)

We start with a space mesh of 25 nodes (like in Section 3.6 ) and a time mesh of 10 equally
sized time steps. One refinement step in time looks as follows: a selected cell is divided into
two cells of half the size.

For the source distribution (a) and 1% noise, Figure 3.28 shows the reconstructions of the
source and of the state as well as the adaptively refined space mesh at the end point. In
Figure 3.29 the reader can find the resulting time mesh.

Figure 3.28.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 4 (a)(i), 1% noise using (NT)
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

Figure 3.29.: Adaptively refined time mesh for Example 4 (a)(i) with 1% noise

The refinement and β iteration steps can be tracked by taking a look at Table 3.12 and
Figure 3.30. We can see that the algorithm starts with a refinement step in space and time,
then refines three times in space only, then updates β six times, refines in space twice again
before it increases β three times and terminates. The time mesh is refined – as one would
expect – at the end of the interval. The space mesh is refined where the source is located and
at the measurement points, similar to the results from Section 3.6 .

Table 3.12.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refine-
ment for Example 4 (a)(i) with 1% noise
Adaptive refinement Uniform refinement

k # nodes in space # nodes in time β
k # nodes in space # nodes in time β

k

0 25 10 10 25 10 10
0 81 12 10 81 20 10
0 277 12 10 289 20 10
0 797 12 10 1089 20 10
1 2137 12 10 4225 20 29
2 2137 12 29 4225 20 10
3 2137 12 68 4225 20 68
4 2137 12 146 4225 20 146
5 2137 12 299 4225 20 299
6 2137 12 606 4225 20 606
6 5011 12 606 16641 20 606
6 12521 12 606 66049 20 606
7 12521 12 1157 66049 20 1157
8 12521 12 1964 66049 20 1964
9 12521 12 2825 66049 20 2825

Compared to uniform refinement, we save 81% of space nodes, 40% of time steps, while both
alternatives produce the same regularization parameter. The L-curve graph Figure 3.30 (also
see Section 3.6 for a more detailed description) for the parabolic Example 4 has a typical
shape.

Beside the single Gauss distribution (a) we also tested Algorithm 3.1 together with Algorithm 3.8
by the example sources (b) and (c) from Section 3.6 (also with 1% noise). The results can be
seen in Figure 3.31 and Figure 3.32. As for the time mesh, we only mention that the algorithm
did not refine in time at all for the source (b), and for (c) it refined exactly like for (a), i.e.,
from 10 to 12 time steps at the end. Apart from that, the reconstructions and the space mesh
look similar to the elliptic case (see Section 3.6 , Example 1).

In Table 3.13, we present a collection of computation time, regularization parameter, and
space and time nodes for adaptive as well as uniform refinement for Example 4 with the three
source distributions (a), (b), and (c). In all three cases, we save at least 31% of computation
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Figure 3.30.: L-Curve for Example 4 (a)(i) with 1% noise

Figure 3.31.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 4 (b)(i), 1% noise using (NT)

Figure 3.32.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 4 (c)(i), 1% noise using (NT)
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3. Computation of a Tikhonov regularization parameter with adaptive discretizations

time. Again, as for all the previous test setting, both, adaptive and uniform refinement yield
the same β and a similar relative control error (3.92).

Table 3.13.: Adaptive refinement using Algorithm 3.1 (NT) versus uniform refine-
ment for Example 4 with 1% noise. CTR: Computation time reduction
using adaptivity

Example adaptive uniform CTR

error β space nodes time nodes error β space nodes time nodes

(a)(i) 0.466 2825 12521 12 0.466 2825 66049 20 84%
(b)(i) 0.350 272 35237 10 0.350 272 66049 20 31%
(c)(i) 0.452 251 3231 12 0.452 251 3231 20 49%

Testing configuration (a) again with a larger noise level p = 4%, we obtain a worse reconstruc-
tion, as one can see at first glance by looking at Figure 3.33. The resulting error of 0.789
confirms this visual impression. It is also not surprising that – just like in the elliptic case –
the algorithm refines much less (1913 space nodes) and stops with a smaller regularization
parameter (β = 175) than with smaller noise.

Figure 3.33.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 4 (a)(i), 4% noise using (NT)
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4. Iteratively regularized Gauss-Newton
methods

The implementation of variational regularization methods (i.e., regularization methods which
approximate the exact solution by a (stable) solution of a minimization problem), such as
Tikhonov regularization, requires an iterative algorithm for the minimization of the objective
functional. Thus, it suggests itself to consider such iterative (mostly Newton type, cf. Section
2.5.2 and 2.5.3) methods directly and to make the regularization parameter β grow in the
course of the iterations. Based on the existing literature about iterative regularization methods
(see, e.g., [5, 69]) we will consider adaptive discretizations for these methods with the goal of
saving computational effort compared to Algorithm 3.1. This is not an unrealistic hope due to
weaker accuracy requirements and possibly associated coarser discretizations in the beginning
of the iteration. The stopping index plays the role of an additional regularization parameter,
which will also be chosen according to the discrepancy principle.

For the stable solution of (2.1) with noisy data, we will consider two types of iterative Newton
type methods: a reduced form of the iteratively regularized Gauss-Newton method (IRGNM)
(cf. Section 4.1) and all-at-once formulations, where we treat the PDE and the measurement
equation at the same time. More specifically, as all-at-once formulations, we consider a least
squares type (cf. Section 4.2.1) and a Generalized Gauss-Newton type [18] form of the IRGNM
(cf. Section 4.2.2). The reduced formulation will not be implemented and serves mainly as
theoretical basis for the all-at-once formulations. Since the analysis in Section 4.1 is done for a
general forward operator, the obtained results hold for general inverse problems formulated
as operator equations, and can also be applied to a system of equations as considered in the
all-at-once formulations Section 4.2.

Most of the results from this chapter can be found in [64, 66].

4.1. Reduced form of the discretized IRGNM

In this section we consider the iteratively regularized Gauss-Newton method (IRGNM) (2.44)
from Section 2.5.2. For a better understanding, we first discuss the method on the continuous
level, i.e., in each iteration step we seek qδk as the solution to

min
q∈Q
‖F ′(qδ,k−1)(q − qδ,k−1) + F (qδ,k−1)− gδ‖2G + 1

βk
‖q − q0‖

2
Q , (4.1)
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4. Iteratively regularized Gauss-Newton methods

which leads to the iteration rule

qδ,k = qδ,k−1 −
(
F ′(qδ,k−1)∗F ′(qδ,k−1) + 1

β k
id
)−1

·
(
F ′(qδ,k−1)∗(F (qδ,k−1)− gδ) + 1

βk
(qδ,k−1 − q0)

) (4.2)

(see, e.g., [4, 5, 17, 50, 54, 55, 69]).

Remark 4.1. In case the reader might wonder why the condition q ∈ D has disappeared in
this formulation, the author would like to refer to Remark 2.3 and 2.4. In Theorem 4.2 we
will show that all iterates stay in the ρ-neighborhood of q0, where the tangential cone condition
Assumption 4.4 holds. This implies qδ,k ∈ D, provided that this neighborhood lies in D, which
we will claim in the following assumption.

Througout this chapter, we assume the existence of an exact solution to the inverse problem
in a neighborhood of the inital guess q0, i.e.,

Assumption 4.1. There exist ρ > 0 and q† ∈ Bρ(q0) ⊂ D, such that q† solves (2.1).

We would like to point out that the assumption Bρ(q0) ⊂ D is nontrivial, since it implies that
D contains an open set/has nonempty interior. Although this assumption is not necessary in
all cases, depending on the PDE (see Section 3.4, Example 2), we keep this condition and
refer, once again, to Remark 2.3 and Remark 2.4.

The regularization parameter βk and the overall stopping index k∗ have to be chosen in
an appropriate way in order to guarantee convergence. We will here use an inexact New-
ton/discrepancy principle type strategy, as it has been shown to yield convergence of the
IRGNM even in a Banach space setting in [71], see also [52] for a convergence analysis in an
even more general setup but with different parameter choice strategies for βk and k∗.

Again, as in Chapter 3, our aim is to consider adaptively discretized versions of the formulations
(4.2) defined by replacing the spaces Q, V , W by finite dimensional counterparts Qh, Vh, Wh

(see Section 2.3). These should be sufficiently precise so that the convergence results from the
continuous setting can be carried over, but we save computational effort by using degrees of
freedom only where really necessary. For this purpose we will again make use of goal oriented
error estimators (cf. Section 2.4 and 3.3), that control the error in some quantities of interest.
Different from Chapter 3, we do not treat the nonlinear problem directly here, but use an
iterative solution algorithm, the iteratively regularized Gauss-Newton method (4.2) and treat
a sequence of linearized problems instead.

We start with a detailed description of a single iteration step (4.2) for fixed (discretized)
previous iterate qδ,k−1 = qold ∈ Q in the continuous setting. Afterwards, we transfer the
formulation to the discretized setting actually used in the computations and specify the
quantities of interest required in error estimation and adaptive refinement.

As in Section 2.2 we can formulate the optimization problem (4.1) as optimal control problem
using the decomposition of the forward operator into solution and observation map.

min
(q,uold,v)∈Q×V×V

‖C ′(uold)(v) + C(uold)− gδ‖2G + 1
βk
‖q − q0‖

2
Q (4.3)
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4.1. Reduced form of the discretized IRGNM

s.t. a(qold, uold)(ϕ) = f(ϕ) ∀ϕ ∈W , (4.4)
a′u(qold, uold)(v, ϕ) + a′q(qold, uold)(q − qold, ϕ) = 0 ∀ϕ ∈W , (4.5)

since for a solution qδ,k of (4.1) the triple (qδ,k, S(qold), S′(qold)(qδ,k−qold)) solves (4.3)–(4.5).

In most of this section we omit the superscript δ (denoting dependence on the noisy data) to
be able to better indicate the difference between continuous and discretized quantities.

In order to apply Algorithm 3.1 to a sequence of problems of the type (4.1) we need other
quantities of interest than i(β), i′(β), and jβ from Chapter 3, namely quantities with respect to
the “old” iterate from step k − 1 as well as the “current” iterate from step k. To this purpose,
for fixed qold (the previous iterate) we consider the following quantities of interest

I1 : Q×Q×R→ R , (qold, q, β) 7→ ‖F ′(qold)(q − qold) + F (qold)− gδ‖2G + 1
β
‖q − q0‖

2
Q

I2 : Q×Q→ R , (qold, q) 7→ ‖F ′(qold)(q − qold) + F (qold)− gδ‖2G
I3 : Q→ R , qold 7→ ‖F (qold)− gδ‖2G
I4 : Q→ R , q 7→ ‖F (q)− gδ‖2G ,

(4.6)
which, for uold ∈ V and v ∈ V solving (4.4) and (4.5), and u ∈ V solving

a(q, u)(ϕ) = f(ϕ) ∀ϕ ∈W , (4.7)

satisfy the identities

I1(qold, q, β) = ‖C ′(uold)(v) + C(uold)− gδ‖2G + 1
β
‖q − q0‖

2
Q

I2(qold, q) = ‖C ′(uold)(v) + C(uold)− gδ‖2G
I3(qold) = ‖C(uold)− gδ‖2G
I4(q) = ‖C(u)− gδ‖2G .

The (continuous) quantities of interest in the k-th iteration step are then defined as follows:
For a solution (qk, ukold, v

k) of (4.3)–(4.5) for given qold = qkold and β = βk, and u
k fulfilling

a(qk, uk)(ϕ) = f(ϕ) ∀ϕ ∈W

in the k-th iteration, let

Ik1 := I1(qkold, q
k, βk) = ‖F ′(qkold)(qk − qkold) + F (qkold)− gδ‖2G + 1

βk
‖qk − q0‖

2
Q

= ‖C ′(ukold)(vk) + C(ukold)− gδ‖2G + 1
β k
‖qk − q0‖

2
Q

Ik2 := I2(qkold, q
k) = ‖F ′(qkold)(qk − qkold) + F (qkold)− gδ‖2G = ‖C ′(ukold)(vk) + C(ukold)− gδ‖2G

Ik3 := I3(qkold) = ‖F (qkold)− gδ‖2G = ‖C(ukold)− gδ‖2G
Ik4 := I4(qk) = ‖F (qk)− gδ‖2G = ‖C(uk)− gδ‖2G .

(4.8)
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4. Iteratively regularized Gauss-Newton methods

To formulate the quantities of interest (4.6)/(4.8) for a discrete setting, we consider finite
element spaces Qh, Vh,Wh as in Section 2.3 and formulate the discretized version of the optimal
control problem (4.3) for given qold ∈ Qh.

min
(q,uold,v)∈Qh×Vh×Vh

‖C ′(uold)(v) + C(uold)− gδ‖2G + 1
β
‖q − q0‖

2
Q (4.9)

subject to

a(qold, uold)(ϕ) = f(ϕ) ∀ϕ ∈Wh (4.10)
a′u(qold, uold)(v, ϕ) + a′q(qold, uold)(q − qold, ϕ) = 0 ∀ϕ ∈Wh . (4.11)

According to (2.32), the equation (4.10) is equivalent to uold = Sh(qold) and (4.11) is equivalent
to v = S′h(qold)(q − qold), such that the reduced form of (4.9)–(4.11) reads

min
q∈Qh

‖F ′h(qold)(q − qold) + Fh(qold)− gδ‖2G + 1
β
‖q − q0‖

2
Q (4.12)

with Fh = C ◦ Sh (cf. Section 2.3).

Then the discrete counterparts to (4.6) are defined by

I1,h : Q×Q×R→ R , (qold, q, β) 7→ ‖F ′h(qold)(q − qold) + Fh(qold)− gδ‖2G + 1
β
‖q − q0‖

2
Q

I2,h : Q×Q→ R , (qold, q) 7→ ‖F ′h(qold)(q − qold) + Fh(qold)− gδ‖2G
I3,h : Q→ R , qold 7→ ‖Fh(qold)− gδ‖2G
I4,h : Q→ R , q 7→ ‖Fh(q)− gδ‖2G .

(4.13)
Correspondingly, for a solution (qkh, u

k
old,h, v

k
h) = (qkhk , u

k
old,hk , v

k
hk

)of (4.9) for given qold = qkold ∈
Qh and ukh = ukhk solving

a(qkh, u
k
h)(ϕ) = f(ϕ) ∀ϕ ∈Wh ,

the discrete quantities of interest in the k-th iteration step (i.e., the discrete counterparts to
(4.8)) can be formulated as

Ik1,h := Ik1,hk(qkold, q
k
hk
, βk) = ‖F ′hk(qkold)(qkhk − q

k
old) + Fhk(qkold)− gδ‖2G + 1

βk
‖qkhk − q0‖

2
Q

= ‖C(ukold,hk)(ukhk − u
k
old,hk) + C(ukold,hk)− gδ‖2G + 1

βk
‖qkhk − q0‖

2
Q

Ik2,h := Ik2,hk(qkold, q
k
hk

) = ‖F ′hk(qkold)(qkhk − q
k
old) + Fhk(qkold)− gδ‖2G

= ‖C(ukold,hk)(ukhk − u
k
old,hk) + C(ukold,hk)− gδ‖2G

Ik3,h := Ik3,hk(qkold) = ‖Fhk(qkold)− gδ‖2G = ‖C(ukold,hk)− gδ‖2G
Ik4,h := Ik4,hk(qkhk) = ‖Fhk(qkhk)− gδ‖2G = ‖C(ukhk)− gδ‖2G ,

(4.14)
where we introduced the notation hk (replacing h), denoting the discretization in step k, in
order to distiguish between the possibly different discretizations during the iterative process in
the following.

88



4.1. Reduced form of the discretized IRGNM

At the end of each iteration step we set

qk+1
old := qkhk . (4.15)

Remark 4.2. The sequence of iterates we actually consider is the discrete one (qkhk)k∈N, which
we also update according to (4.15). Besides that, for theoretical purposes we keep a sequence
of continuous iterates (qk)k∈N, where each member qk of this sequence emerges from a member
qkold = qk−1

hk−1
of the sequence of discretized iterates (qkhk)k∈N, but not from qk−1, see Figure 4.1.

One of the reasons for the necessity of considering this auxiliary continuous iterates is the
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Figure 4.1.: Sequence of discretized iterates and auxiliary sequence of continuous
iterates for the reduced form of IRGNM

key inequality (4.35) in the proof of the convergence Theorem 4.2 below, which makes use of
minimality of the iterate qk in all of Q (and not only in the finite dimensional subspace Qh),
thus allowing for comparison to the infinite dimensional exact solution q†.

We stress once more that the discretization may be different in each iteration, as indicated
by the subscripts hk, hk−1 here. In order to keep the notation readable we will suppress the
iteration index k in the subscript hk whenever this is possible without causing confusion.

Remark 4.3. Please note that, in spite of (4.15), Ik+1
3,h and Ik4,h are not the same, since hk

and hk+1 may differ, such that

Ik+1
3,h = ‖Fhk+1

(qk+1
old )− gδ‖2G = ‖C(Shk+1

(qk+1
old ))− gδ‖2G = ‖C(uk+1

old,h)− gδ‖2G ,

whereas

Ik4,h = ‖Fhk(qk+1
old )− gδ‖2G = ‖C(Shk(qk+1

old ))− gδ‖2G = ‖C(Shk(qkhk))− gδ‖2G = ‖C(uhkk )− gδ‖2G ,
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4. Iteratively regularized Gauss-Newton methods

i.e., Ik+1
3,h contains uk+1

old,h = Shk+1
(qk+1

old ), the solution of the state equation with respect to the
discretization from step k + 1, whereas in Ik4,h we have ukhk = Shk(q

k+1
old ), the solution of the

state equation with respect to the discretization from step k.

Remark 4.4. Also Ik+1
3 = ‖F (qk+1

old )−gδ‖2G and Ik4 = ‖F (qk)−gδ‖2G are not the same, because

qk+1
old = qkhk 6= qk ,

see Figure 4.1.

Remark 4.5. Please note that even the discretizations hk for fixed k can differ in the different
quantities of interest during one Gauss-Newton iteration cf. Algorithm 4.1. Tracking the proof
of the main convergence result Theorem 4.2 the reader can verify that only Ik1,h and Ik2,h have
to be evaluated on the same mesh, since in the proof we will need the identity

Ik1,h = Ik2,h + 1
βk
‖qkhk − q0‖

2
Q , (4.16)

which is guaranteed by assuming exact evaluation of the Q-norm ‖qkh − q0‖Q (cf. Assump-
tion 2.3).

In order to assess and – by adaptive refinement – control the differences

|Iki,h − I
k
i | ≤ η

k
i , i ∈ {1, 2, 3, 4} (4.17)

between the exact quantities of interest and their counterparts resulting from discretization,
we will again make use of the goal oriented error estimators from the Section 2.4 and 3.3. In
Section 4.1.2 and 4.2.1, we will explain in more detail what these estimators look like for the
specific quantities of interest from this chapter.

We select the regularization parameter βk according to an inexact Newton condition (cf.
[42, 100]) which can be interpreted as a discrepancy principle with “noise level” θ̃Ik3,h

θ̃Ik3,h ≤ I
k
2,h ≤ θ̃I

k
3,h , (4.18)

i.e.,

θ̃‖Fh(qkold)− gδ‖2G ≤ ‖F
′
h(qkold)(qkh − q

k
old) + Fh(qkold)− gδ‖2G ≤ θ̃‖Fh(qkold)− gδ‖2G

for some 0 < θ̃ ≤ θ̃ ≤ θ̃ < 1
2 .

Note that we could compute this regularization parameter according to Algorithm 3.1 (as
for (3.49) in Theorem 3.7, Chapter 3), but, as mentioned in the beginning of Chapter 3,
Algorithm 3.1 is an extension of [39] to nonlinear inverse problems. Since (4.1)/(4.3) is in fact
a linear-quadratic optimization problem and [39] is tailored for this case (e.g., by the use of
explicit formulas of the quantity of interest with respect to β), we expect the algorithm from
[39] to be more efficient and decide to use that one instead.

To this purpose we adopt the main result from [39, Theorem 1], whose counterpart for the
nonlinear case is Theorem 3.7 with i(β) = ‖F ′(qkold)(qδβ − q

k
old) + F (qkold)− gδ‖2G and τ2

βδ
2
β =

θ̃‖F (qkold)− gδ‖2G.
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4.1. Reduced form of the discretized IRGNM

Theorem 4.1. Let i ∈ C3(R+), i′(β) < 0, i′′(β) > 0, i′′′(β) ≤ 0 for all β > 0 and β∗ solve

i(β∗) = τ2
βδ

2
β .

for some τβ ≥ 1 and δβ > 0. Let moreover a sequence (βk)k∈N be defined by

βk+1 = βk −
ikh − τ

2
βδ

2
β

i′
k
h

, 0 < β0 ≤ β∗ , (4.19)

with some ikh, i
′k
h ∈ R satisfying

|i(βk)− ikh| ≤ min
{
cβ,1|i

k
h − τ

2
βδ

2
β| ,

C2,β‖g
δβ‖2G

|i′kh|
2(βk)2 |i

k
h − τ

2
βδ

2
β|

2
}

(4.20)

|i′(βk)− i′kh| ≤ min
{
C3,β|i

′k
h| ,

C2,β‖g
δβ‖2G

|i′kh|
2(βk)2 |i

k
h − τ

2
βδ

2
β|
}

(4.21)

for some constants C2,β, C3,β > 0, 0 < c1,β < 1 independent of k. Let moreover k∗ be given as

k∗ = min
{
k ∈ N| ikh ≤

(
τ2
β +

τ̃2
β

2

)
δ2
β

}
(4.22)

and the following conditions be fulfilled:

i′
k
h < 0 ∀k ≤ k∗ − 1 ,

|i(βk∗−1)− ik∗−1
h |+

∣∣∣∣∣ i
k∗−1
h − τ2

βδ
2
β

i′
k∗−1
h

∣∣∣∣∣ |i′(βk∗−1)− i′k∗−1
h | ≤ τ̃2

β ,

|i(βk∗)− ik∗h | ≤
τ̃2
β

2 δ
2
β (4.23)

for some τ̃β < τβ.

Then k∗ is finite and there holds

βk+1 ≥ βk and βk ≤ β∗ for all k ≤ k∗ − 1 ,

βk satisfies the local quadratic convergence estimate

|βk+1 − β∗| ≤
C‖gδβ‖2G
|i′(βk)|(βk)2 (βk − β∗)

2 +O((βk − β∗)
4) ∀k ≤ k∗ − 1

for some C > 0 independent of βk and k, and

(τ2
β − τ̃

2
β)δ2

β ≤ i(β
k∗) ≤ (τ2

β + τ̃2
β)δ2

β . (4.24)

Proof. See [39, proof of Theorem 1].
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Moreover in [39, Lemma 1] Griesbaum, Kaltenbacher and Vexler show that the choice i(β) :=
‖Tqδββ − t‖

2
G with some linear operator T : Q → G and some constant term t (with respect

to qδββ ) fulfills all the requirements from Theorem 4.1. This includes our setting, since we
can write I2(qold, q) = ‖F ′(qold)(q − qold) + F (qold)− gδ‖2G as ‖Tq − t‖2G with T := F ′(qold)
and t := F ′(qold)(qold) + gδ − F (qold). The relation (4.24) would as well allow us to use the
continuous version Ik2 in (4.18), but we prefer to formulate the condition with the discretized
actually computed quantities.

The overall Newton iteration is stopped according to a discrepancy principle similar to (3.36)

k∗ = min{k ∈ N| Ik3,h ≤ τ
2δ2}. (4.25)

In our convergence analysis we will again (as in Section 3.1) make use of the weak sequential
closedness Assumption 3.2 and a tangential cone condition similar to Assumption 3.3.

4.1.1. Convergence of adaptively discretized minimizers/stationary points to an
exact solution for vanishing data noise

Similarly as in Section 3.1 (more specifically Theorem 3.4), in the following theorem we show
convergence of the form q

k∗
old = q

δ,k∗−1
βk∗−1,hk∗−1

→ q† as δ → 0 for a sequence (qδ,kβk,hk)k∈N produced
by iteratively solving (4.9) with β := βk and updating according to (4.15).

Throughout Section 4.1 we assume that continuous and discrete solutions of the IRGNM
subproblem exist, which means

Assumption 4.2. For all βk ∈ [β, β] (for some 0 < β < β) and all iterations k the subproblem
(4.1)/ (4.3)–(4.5) is solvable, i.e., there exists a solution qk = qδ,k = qδ,kβk to (4.1), where
qδ,k−1 = qkold is chosen according to (4.15).

Assumption 4.3. For all βk ∈ [β, β] (for some 0 < β < β) and all iterations k the discretized
subproblem (4.12)/ (4.9)–(4.11) is solvable, i.e., there exists a solution qkh = qkhk = qδ,khk = qδ,kβk,hk
to (4.12), where qold is chosen according to (4.15).

Remark 4.6. Please note that different from Assumption 3.4 in Chapter 3, we do not assume
that these minimizers lie in D; cf. Remark 2.3, 2.4 and 3.1.

Since the three assumptions Assumption 4.1, 4.2 and 4.3 constitute the basic prerequisites of
this section, we will not list them again explicitly in the following theorems.

Different to Chapter 3 the tangential cone condition Assumption 3.3 doesn’t need to be satisfied
in the whole of D, but only in a neighboorhood of q0:

Assumption 4.4. Let the tangential cone condition (cf. e.g., [27],[102])

‖F (q)− F (q̄)− F ′(q)(q − q̄)‖G ≤ ctc‖F (q)− F (q̄)‖G

hold for all q, q̄ ∈ Bρ(q0) ⊆ D ⊂ Q (cf. Assumption 4.1) and for some 0 < ctc < 1 sufficiently
small (in order to fulfill (4.26) in the following).
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4.1. Reduced form of the discretized IRGNM

Assumption 4.5. Let τ be chosen sufficiently large and 0 < θ̃ < θ̃ sufficiently small (see
(4.18), (4.25)), such that

2
(
c2
tc + (1 + ctc)

2

τ2

)
< θ̃ and 2θ̃ + 4c2

tc

1− 4c2
tc

< 1 . (4.26)

Finally, let for the discretization error with respect to the quantities of interest (4.17) hold,
where ηk1 , η

k
2 , η

k
3 , η

k
4 are selected such that

ηk1 + 2c2
tcη

k
3 ≤

(
θ̃ − 2

(
c2
tc + (1 + ctc)

2

τ2

))
Ik3,h , (4.27)

ηk3 ≤ c1I
k
3,h and ηk2 → 0 , ηk3 → 0 , ηk4 → 0 as k →∞ , (4.28)

Ik3,h ≤ (1 + c3)Ik−1
4,h + rk , and (1 + c3)2θ̃ + 4c2

tc

1− 4c2
tc

≤ c2 < 1 (4.29)

for some constants c1, c2, c3 > 0, and a sequence rk → 0 as k →∞.

Remark 4.7. Condition (4.26) can be satisfied fir ctc sufficiently small, which (via the
tangential cone condition Assumption 4.4) is a local restriction on the nonlinearity of F , and
by choosing τ sufficiently large. Conditions (4.27) and (4.28) (where the right-hand side is
always strictly positive by definition of the stopping index (4.25)) are smallness conditions
on the ηki (i = 1, 2, 3, 4), whereas the first condition in (4.29) links the discretizations of the
forward operator at qkold = qk−1

h in the old and the new iteration. The second condition in
(4.29) is enabled by the right inequality in (4.26).

By means of these assumptions we can formulate the following convergence theorem (similar
to Theorem 3.1).

For a better legibility, depending on which parameter will be of interest at a certain point,
we will omit some indices and switch between the different notations qk = qδ,k = qδ,kβk ,
qkh = qkhk = qδ,khk = qδ,kβk,hk .

Theorem 4.2. Let Assumption 3.2, 4.4 and 4.5 be satisfied. Further, let q† ∈ Bρ(q0) ⊂ D be
a solution to (2.1) and let the starting value be chosen such that q1

old = q0
h0
∈ Bρ(q0) (which is

obviously satisfied, for instance, by the choice q1
old = q0).

Then with βk and h = hk fulfilling (4.18) and k∗ selected according to (4.25), for a solution
qkhk to (4.12) there holds:

(o) for all k < k∗, provided

‖F ′h(qkold)(q0 − q
k
old) + Fh(qkold)− gδ‖2G ≥ θ̃‖Fh(qkold)− gδ‖2G , (4.30)

there exists βk satisfying (4.18),

(i) the estimate
‖qkhk − q0‖Q ≤ ‖q

† − q0‖Q ∀1 ≤ k < k∗ (4.31)
holds, which implies that all iterates stay in the ball Bρ(q0),
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4. Iteratively regularized Gauss-Newton methods

(ii) k∗ is finite,

(iii) qk∗old = q
k∗(δ)
old = q

k∗(δ)−1,δ
βk∗(δ)−1,hk∗(δ)−1

converges (weakly) subsequentially to a solution of (2.1)

as δ → 0 in the sense that it has a weakly convergent subsequence
(
q
k∗(δl)
old

)
l∈N

and each
weakly convergent subsequence converges strongly to a solution of (2.1). If the solution
q† to (2.1) is unique, then qk∗(δ)old converges strongly to q† as δ → 0.

Proof. (o): Let Ik1 (β), Ik1,h(β), Ik2 (β), Ik2,h(β) denote Ik1 , I
k
1,h, I

k
2 , I

k
2,h (see (4.14), (4.8)) with

βk replaced by β.

For all 1 ≤ k < k∗ and any solution q† of (2.1), by (4.17) and minimality of qk for the
continuous Tikhonov functional, there holds

Ik2,h(β) ≤ Ik1,h(β)

≤ Ik1 (β) + ηk1

≤ ‖F ′(qkold)(q† − qkold) + F (qkold)− gδ‖2G + ηk1 + 1
β
‖q† − q0‖

2
Q .

(4.32)

Using (2.2), Assumption 4.4, the inequality (a+ b)2 ≤ 2a2 + 2b2 for arbitrary a, b ∈ R,
as well as (4.25), we can estimate as follows

‖F ′(qkold)(q† − qkold) + F (qkold)− gδ‖2G ≤
(
‖F ′(qkold)(q† − qkold) + F (qkold)− F (q†)‖G + δ

)2

≤
(
ctc‖F (q†)− F (qkold)‖G + δ

)2

≤
(
ctc
(
‖gδ − F (qkold)‖G + δ

)
+ δ

)2

≤
(
ctc

√
Ik3 + (1 + ctc)δ

)2

≤ 2c2
tcI

k
3 + 2(1 + ctc)

2δ2 + ηk1

≤ 2c2
tc(I

k
3,h + ηk3 ) + 2(1 + ctc)

2 I
k
3,h

τ2

= 2
(
c2
tc + (1 + ctc)

2

τ2

)
Ik3,h + 2c2

tcη
k
3 .

(4.33)
Together with (4.32) and Assumption 4.5 this yields

Ik2,h(β) ≤ θ̃Ik3,h + 1
β
‖q† − q0‖

2
Q .

Hence, we have
lim sup
β→∞

Ik2,h(β) ≤ θ̃Ik3,h .

On the other hand, since
lim
β→0

qkβ,h = q0 ,
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4.1. Reduced form of the discretized IRGNM

we have by (4.30)

lim
β→0

Ik2,h(β) = ‖F ′h(qkold)(q0 − q
k
old) + Fh(qkold)− gδ‖2G ≥ θ̃I

k
3,h .

Thus, by continuity of the mapping β 7→ Ik2,h(β) (see e.g., [39]) and the Intermediate
Value Theorem the assertion follows.

(i): We will prove (4.31) as follows: We will show that, for fixed k > 0, provided that
qkold = qk−1

hk−1
∈ Bρ(q0), there holds

‖qkhk − q0‖Q ≤ ‖q
† − q0‖Q ∀1 ≤ k < k∗ ,

which implies qk+1
old = qkhk ∈ Bρ(q0). Then (4.31) follows recursively, since q1

old = q0
h0
∈

Bρ(q0).

So we assume that qkold ∈ Bρ(q0) in the following.

From (4.16), (4.18) it follows that

Ik1,h = Ik2,h + 1
βk
‖qkh − q0‖

2
Q ≥ θ̃I

k
3,h + 1

βk
‖qkh − q0‖

2
Q . (4.34)

As in (4.32), by (4.17) and minimality of qk for (4.1) we have

Ik1,h ≤ I
k
1 + ηk1 ≤ ‖F

′(qkold)(q† − qkold) + F (qkold)− gδ‖2G + 1
βk
‖q† − q0‖

2
Q + ηk1 , (4.35)

which together with (4.34), (4.33), and (4.27) gives

θ̃Ik3,h + 1
βk
‖qkh − q0‖

2
Q ≤ ‖F

′(qkold)(q† − qkold) + F (qkold)− gδ‖2G + 1
βk
‖q† − q0‖

2
Q + ηk1

≤ 2
(
c2
tc + (1 + ctc)

2

τ2

)
Ik3,h + 1

βk
‖q† − q0‖

2
Q + ηk1 + 2c2

tcη
k
3

≤ θ̃Ik3,h + 1
βk
‖q† − q0‖

2
Q ,

which implies (4.31).

(ii): Furthermore, for all 1 ≤ k < k∗ we have by the triangle inequality as well as Assump-
tion 4.4 and (4.18)√
Ik4 = ‖F (qk)− gδ‖G
≤ ‖F ′(qkold)(qk − qkold) + F (qkold)− gδ‖G + ‖F ′(qkold)(qk − qkold)− F (qk) + F (qkold)‖G

≤
√
Ik2 + ctc‖F (qk)− F (qkold)‖G

≤
√
θ̃Ik3,h + ηk2 + ctc(

√
Ik4 +

√
Ik3 ) . (4.36)
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4. Iteratively regularized Gauss-Newton methods

(Note that applying the tangential cone condition Assumption 4.4 to qk here is allowed
due to (4.31).) Hence, by (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R

Ik4 ≤ 2(θ̃Ik3,h + ηk2 ) + 2c2
tc(2I

k
4 + 2Ik3 ) ,

which implies

Ik4 ≤
1

1− 4c2
tc

(
2θ̃Ik3,h + 2ηk2 + 4c2

tcI
k
3
)

∀1 ≤ k < k∗ .

With (4.17) and (4.29) we can further deduce

Ik4,h ≤
1

1− 4c2
tc

(
(2θ̃ + 4c2

tc)I
k
3,h + 2ηk2 + 4c2

tcη
k
3
)

+ ηk4

≤ 2θ̃ + 4c2
tc

1− 4c2
tc

(1 + c3)Ik−1
4,h + 1

1− 4c2
tc

(
(2θ̃ + 4c2

tc)r
k + 2ηk2 + 4c2

tcη
k
3
)

+ ηk4

≤ c2I
k−1
4,h + 1

1− 4c2
tc

(
(2θ̃ + 4c2

tc)r
k + 2ηk2 + 4c2

tcη
k
3
)

+ ηk4

for all 1 ≤ k < k∗. With the notation

ai := 1
1− 4c2

tc

(
(2θ̃ + 4c2

tc)r
i + 2ηi2 + 4c2

tcη
i
3
)

+ ηi4 ∀i ∈ {1, 2, . . . , k} (4.37)

there follows recursively

Ik4,h ≤ c
k
2I

0
4,h +

k−1∑
j=0

cj2a
k−j ∀1 ≤ k < k∗ . (4.38)

Note that by the second part of (4.28), the second part of (4.29) and the fact that
rk → 0 as k → ∞ (by definition of rk) , we have ck2I

0
4,h +

∑k−1
j=0 c

j
2a
k−j → 0 as k → ∞.

So, if the discrepancy principle never got active (i.e., k∗ =∞), the sequence (Ik4,h)k∈N
and therewith by (4.28) also (Ik3,h)k∈N would be bounded by a sequence tending to zero
as k → ∞, which implies that Ik3,h would fall below τ2δ2 for k sufficiently large, thus
yielding a contradiction. Hence the stopping index k∗ < ∞ is well-defined and finite.
(Note that here, we could not just argue Ik3,h ≤ CI

k
4,h → 0, hence eventually smaller than

τδ, since the estimate (4.38) only holds for k < k∗.)

(iii): With (2.2), (4.17), (4.28) and the definition of k∗, we have

‖F (qk∗old)−g‖G ≤
√
I
k∗
3 +δ ≤

√
I
k∗
3,h + η

k∗
3 +δ ≤

√
(1 + c1)Ik∗3,h+δ ≤ (τ

√
1 + c1 +1)δ → 0

(4.39)
as δ → 0. Due to (4.31) qk∗old = q

k∗−1
hk∗−1

has a weakly convergent subsequence
(
q
k∗(δl)
old

)
l∈N

and due to the weak sequential closedness of F (Assumption 3.2) and (4.39) the limit of
every weakly convergent subsequence is a solution to F (q) = g.

Strong convergence in the case of uniqueness of q† follows by a standard argument as in
(3.9).
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4.1. Reduced form of the discretized IRGNM

Remark 4.8. In view of the proof of Theorem 3.1 note that the estimate (4.35) can alternatively
be shown using stationarity instead of minimality of qk (which is equivalent by convexity together
with the assumption that D has a nonempty interior; cf. Assumption 4.1): For all δq ∈ Q
stationarity means

0 = (F ′(qkold)(qk − qkold) + F (qkold)− gδ, F ′(qkold)(δq))G + 1
βk

(qk − q0, δq)Q .

Setting δq = qk − q† this yields

0 = ‖F ′(qkold)(qk − qkold) + F (qkold)− gδ‖2G
+ (F ′(qkold)(qk − qkold) + F (qkold)− gδ, F ′(qkold)(qk − q† − (qk − qkold))− F (qkold) + gδ)G

+ 1
βk

(qk − q0, q
k − q†)Q

= ‖F ′(qkold)(qk − qkold) + F (qkold)− gδ‖2G
− (F ′(qkold)(qk − qkold) + F (qkold)− gδ, F ′(qkold)(q† − qkold) + F (qkold)− gδ)G

+ 1
βk
‖qk − q0‖

2
Q −

1
βk

(qk − q0, q
† − q0)Q ,

hence, by Cauchy-Schwarz and ab ≤ 1
2a

2 + 1
2b

2 for all a, b ∈ R,

Ik1 = ‖F ′(qkold)(qk − qkold) + F (qkold)− gδ‖2G + 1
βk
‖qk − q0‖

2
Q

= (F ′(qkold)(qk − qkold) + F (qkold)− gδ, F ′(qkold)(q† − qkold) + F (qkold)− gδ)G

+ 1
βk

(qk − q0, q
† − q0)Q

≤ ‖F ′(qkold)(qk − qkold) + F (qkold)− gδ‖G‖F
′(qkold)(q† − qkold) + F (qkold)− gδ‖G

+ 1
βk
‖qk − q0‖Q‖q

† − q0‖Q

≤ 1
2‖F

′(qkold)(qk − qkold) + F (qkold)− gδ‖2G + 1
2‖F

′(qkold)(q† − qkold) + F (qkold)− gδ‖2G

+ 1
2βk
‖qk − q0‖

2
Q + 1

2βk
‖q† − q0‖

2
Q

= 1
2I

k
1 + 1

2‖F
′(qkold)(q† − qkold) + F (qkold)− gδ‖2G + 1

2βk
‖q† − q0‖

2
Q .

This finally yields

Ik1 ≤ ‖F
′(qkold)(q† − qkold) + F (qkold)− gδ‖2G + 1

βk
‖q† − q0‖

2
Q .

To prove convergence rates we will again (like in Section 3.1) consider Hilbert space source
conditions as in Assumption 3.5 and apply Theorem 3.2.

Corollary 4.3. Let the conditions of Theorem 4.2 and additionally the source condition
Assumption 3.5 be fulfilled. Then there exist δ̄ > 0 and a constant C > 0 independent of δ such
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that for all δ ∈ (0, δ̄]

∥∥∥qk∗old − q
†
∥∥∥
Q

=
∥∥∥∥qδ,k∗−1
βk∗−1,hk∗−1

− q†
∥∥∥∥
Q

= O

 δ√
ψ−1(Cδ)


Proof. The proposition follows directly from Theorem 3.2 due to (4.31) and (4.39).

4.1.2. Computation of the error estimators

The computation of the error estimators ηk1 , η
k
2 , η

k
3 and ηk4 is done similarly to Section 3.3

and [39]. The only difference lies in the fact that in Ik1 we have three variables subject to
discretization, namely q, uold and v instead of only two (q and u) as usual, which leads to the
following error estimators. In this section we omit the iteration index k for simplicity. The
previous iterate qold is fixed and not subject to new discretization and the dependence on β is
not important for error estimation; so we neglect qold and β as arguments.

Error estimator for I1

We consider

I1(q, uold, v) = ‖C ′(uold)(v) + C(uold)− gδ‖2G + 1
β
‖q − q0‖

2
Q ,

where the reader should not be confused about the ambiguity of I1 as compared with (4.6),
since both definitions represent the same thing and are just expressed by different arguments.
We define the Lagrange functional

L(q, uold, v, w,wold) := I1(q, uold, v)
+ a′u(qold, uold)(v, w) + a′q(qold, uold)(q − qold, w)
+ a(qold, uold)(wold)− f(wold) .

Proposition 4.1. Let X = Q× V × V ×W ×W and Xh = Qh × Vh × Vh ×Wh ×Wh. Let
x = (q, uold, v, w,wold) ∈ X be a stationary point of L, i.e.

L′(x)(dx) = 0 ∀dx ∈ X

and let xh = (qh, uold,h, vh, wh, wold,h) ∈ Xh be a discrete stationary point of L, i.e.

L′(xh)(dx) = 0 ∀dx ∈ Xh . (4.40)

Then there holds

I1(q, uold, v)− I1(qh, uold,h, vh) = 1
2L
′(xh)(x− x̂h) +R ,

for an arbitrary x̂h ∈ Xh and

R = 1
2

∫ 1

0
L′′′(x+ sex)(ex, ex, ex)s(s− 1) ds

with ex := x− xh.
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4.1. Reduced form of the discretized IRGNM

Proof. cf. [39] and [10].

Explicitly, such stationary points can be computed by solving the equations

uold ∈ V : a(qold, uold)(dvold) = f(dvold) ∀dvold ∈W (4.41)
v ∈ V : a′u(qold, uold)(v, dw) = −a′q(qold, uold)(q − qold, dw) ∀dw ∈W (4.42)
w ∈W : a′u(qold, uold)(dv, w) = −I ′1,w(q, uold, v)(dv) ∀dv ∈ V (4.43)

wold ∈W : a′u(qold, uold)(du,wold) = −I ′1,uold
(q, uold, v)(du) (4.44)

− a′′uu(qold, uold)(v, du,w) (4.45)
− a′′qu(qold, uold)(q − qold, du, w) ∀du ∈ V (4.46)

q ∈ Q : I ′1,q(q, uold, v)(dq) = −a′q(qold, uold)(dq, w) ∀dq ∈ Q . (4.47)

and their discrete counterparts.

Via interpolation and the operator πh from Section 2.4 the error estimator η1 for I1 can be
computed as

I1 − I1,h = I1(q, uold, v)− I1(qh, uold,h, vh) ≈ 1
2L
′(xh)(πhxh − xh) = η1

(cf. [10]).

Remark 4.9. Please note that the equations (4.40) / (4.41)–(4.47) (or their discrete counter-
parts) are solved anyway in the process of solving the optimization problem (4.3)–(4.5) (or its
discrete equivalent (4.9)–(4.11)).

Error estimator for I2

We consider
I2(uold, v) = ‖C ′(uold)(v) + C(uold)− gδ‖2G ,

where the reader should not be confused about the ambiguity of I2 as compared with (4.6),
since both definitions represent the same thing and are just expressed by different arguments.
For x1 := (q1, uold1

, v1, w1, wold1
) ∈ X we define the Lagrange functional

M(x, x1) := I2(uold, v) + L′(x)(x1) .

By doing so, we combine information on the quantity of interest I2, whose precision is
to be assessed, with information on the underlying minimization problem (represented by
the derivative of the Lagrangian L) into one functional. This approach is standard DWR
technique and can be found, e.g., in [11] (also see Section 2.4). This allows us to conclude
a similar result to Proposition 4.1 for the difference I(uold, v) − I(uold,h, vh) for stationary
points y = (x, x1) ∈ X ×X and yh = (xh, x1,h) ∈ Xh ×Xh of M (cf. [11]). Such a discrete
stationary point yh can be computed by solving the discrete counterparts of the equations
(4.40)/(4.41)–(4.47) and

x1,h ∈ Xh : L′′(xh)(x1,h, dx) = −I ′2,v(uold,h, vh)(dv)− I ′2,uold
(uold,h, vh)(duold) (4.48)
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for all dx = (dq, duold, dv, dw, dwold) ∈ Xh. The error estimator η2 for I2 can then be computed
by

I2 − I2,h = I2(uold, v)− I2(uold,h, vh) ≈ 1
2M

′(yh)(πhyh − yh) = η2 .

Remark 4.10. Once the optimality system (4.40) / (4.41)–(4.47) has been solved, computation
of the auxiliary variable x1,h in yh = (xh, x1,h) only requires the solution of the linear system
(4.48). To avoid the computation of second order information in (4.48) the author would like
to refer to [11], where (4.48) is replaced by an approximate equation of first order.

Error estimator for I3

For I3 we again proceed similarly as for I1 and I2, i.e., we consider

I3(uold) = ‖C(uold)− gδ‖2G ,

where the reader should not be confused about the ambiguity of I3 as compared with (4.6),
since both definitions represent the same thing and are just expressed by different arguments.
For x2 ∈ X we define the Lagrangian

N(x, x2) := I3(uold) + L′(x)(x2) .

As there holds again a similar results to Proposition 4.1, we compute a discrete stationary
point χh = (xh, x2,h) ∈ Xh ×Xh of N by solving the equations (4.40)/(4.41)–(4.47) and

x2,h ∈ Xh : L′′(xh)(x2,h, dx) = −I ′3(uold,h)(duold) ∀dx ∈ Xh , (4.49)

(where dx = (dq, duold, dv, dw, dwold)) and compute the error estimator for I3 as

I3 − I3,h = I3(uold)− I3(uold,h) ≈ 1
2N
′(χh)(πhχh − χh) = η3 .

Remark 4.10 also holds for the computation of x2,h, i.e., x2,h can be computed at low additional
costs.

Error estimator for I4

Different to the other error estimates, the bound on the error in I4 only appears in connection
with the very weak assumption ηk4 → 0 as k →∞, which may be satisfied in practice without
refining explicitly with respect to η4, but simply by refining with respect to the other error
estimators η1, η2, and especially η3. Another way to make sure that ηk4 → 0 as k →∞, is, of
course, to refine globally every now and then, although this is admittedly, not a very efficient
solution.

If one doesn’t want to rely on such practically motivated speculations and actually wants to
compute an error estimator for I4, one has to include the decoupled constraint

A(q, u)(v) = f(v) ∀v ∈W
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4.1. Reduced form of the discretized IRGNM

in the definition of the Lagrangian L for I1. In that case we redefine the Lagrange functional
L as

L(q, uold, v, w,wold, u, z) := I1(q, uold, v)
+ a′u(qold, uold)(v, w) + a′q(qold, uold)(q − qold, w)
+ a(qold, uold)(wold)− f(wold)
+ a(q, u)(z)− f(z) .

and the spaces X := Q×V ×V ×W×W×V ×W and Xh := Qh×Vh×Vh×Wh×Wh×Vh×Wh.
Then we consider

I4(u) := ‖C(u)− gδ‖2G ,

where the reader should not be confused about the ambiguity of I4 as compared with (4.6),
since both definitions represent the same thing and are just expressed by different arguments.
For x3 ∈ X we define the auxiliary Lagrange functional

K(x, x3) := I4(u) + L′(x)(x3)

for x, x3 ∈ X. Then we could estimate the difference I4(u)− I4(uh) by computing a discrete
stationary point ξh = (xh, x3,h) of K; that means, we would solve the discrete counterparts of
the equations (4.40)/(4.41)–(4.47) and

x3,h ∈ Xh : L′′(xh)(x3,h, dx) = −I ′4(uh)(du) ∀dx ∈ Xh ,

(where dx = (dq, duold, dv, dw, dwold, du, dz)) and compute the error estimator η4 for I4 by

I4 − I4,h = I4(u)− I4(uh) ≈ 1
2K
′(ξh)(πhξh − ξh) = η4 .

Remark 4.10 also holds for the computation of x3,h, i.e., x3,h can be computed at low additional
costs.

4.1.3. Algorithm

By means of the error estimators from Section 4.1.2 and the results from [39], in particular
Theorem 4.1, we formulate the following two algorithms. The main algorithm is given in
Algorithm 4.1 and illustrated by means of a flowchart in Figure 4.2. It controls the Gauss-
Newton iteration in which Algorithm 4.2 is used to produce a regularization parameter
and a discretization by iteratively solving the IRGNM subproblem as in [39] and similar to
Algorithm 3.1.

As mentioned and justified in Section 4.1.2, we neglect ηk4 and the conditions ηk2 → 0 and
ηk3 → 0 as k →∞ from (4.28). In order to verify the condition (4.27) more easily, we split it
into

ηk1 ≤ c4I
k
3,h with c4 := 1

2

(
θ̃ − 2

(
c2
tc + (1 + ctc)

2

τ2

))
(4.50)
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4. Iteratively regularized Gauss-Newton methods

and

ηk3 ≤ c5I
k
3,h with c5 := 1

4c2
tc

(
θ̃ − 2

(
c2
tc + (1 + ctc)

2

τ2

))
. (4.51)

Additionally, we combine the inequality in (4.28), the first inequality in (4.29) and (4.51), since
there holds

Ik3,h ≤ I
k
3 + ηk3 and Ik−1

4,h ≥ I
k−1
4 − ηk−1

4 ,

such that the condition

ηk3 + (1 + c3)ηk−1
4 ≤ (1 + c3)Ik−1

4 − Ik3 + rk (4.52)

implies the first inequality in (4.29). As mentioned in Remark 4.4, Ik3 and Ik−1
4 and Ik3,h and

Ik−1
4,h only differ in the discretization level, which motivates the assumption that for small h

(i.e., for a fine discretization), we have Ik3 ≈ I
k−1
4 and ηk−1

4 ≈ ηk3 , such that instead of (4.52)
we check whether

ηk3 ≤
c3

2(1 + c3)I
k
3,h + rk

2(1 + c3) . (4.53)

Thus, as a combination of the inequalities in (4.28), (4.53) and (4.51), we formulate the
condition

ηk3 ≤ min
{
c1, c5,

c3
2(1 + c3)

}
Ik3,h , (4.54)

which we check in each iteration step (see step 5 and 22 in Algorithm 4.1).

In the statement “Refine grids according to the error estimator ...” within the algorithms
below, refinement of the spaces Qh, Vh, and Wh is supposed to be done in principle separately
according to the corresponding contributions within the error estimators. In fact, an error
estimator of the form described in Section 4.1.2 comes as a sum of contributions corresponding
to the different components of the variable that is subject to discretization (xh, x1,h, x2,h, x3,h),
which would allow refinement with respect to one component. However, in our computations
we set V = W and use the same discretization for Q, V (and W ).
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4.1. Reduced form of the discretized IRGNM

Algorithm 4.1: Reduced form of discretized IRGNM

1: Choose τ , τβ, τ̃β, θ̃, θ̃ such that 0 < θ̃ ≤ θ̃ < 1, max{1 , τ̃β} < τβ ≤ τ and (4.26)
holds, set θ̃ = (θ̃ + θ̃)/2 and choose the constants c1, c2 and c3, such that the
second part of (4.29) is fulfilled.

2: Choose a discretization h = h0 and a starting value q0
h = q0

h0
(not necessarily

coinciding with q0 in the regularization term) , and set q0
old = q0

h0
.

3: Determine u0
old = u0

old,h0
, I0

3,h = I0
3,h0

and η0
3 = η0

3,h0
by applying Algorithm 4.3

with m = 0 (and h = h0).
4: Set h1

0 = h0.
5: while (4.54) is violated do
6: Refine grids according to the error estimator η0

3, such that we obtain a finer
discretization h1

0.
7: Determine u0

old = u0
old,h1

0
, I0

3,h = I0
3,h1

0
and η0

3 = η0
3,h1

0
by applying Algorithm 4.3

with h = h1
0 and m = 0.

8: Set k = 0 and h = h1
0 (possibly different from h0).

9: while Ik3,h ≥ τ
2δ2 or k = 0 do

10: Set h = h1
k.

11: With qkold, u
k
old,h fixed, apply Algorithm 4.2 starting with the current mesh

h(= h1
k) to obtain a regularization parameter βk and a possibly different

discretization h2
k such that (4.18) holds and the corresponding vkh = vk

h
2
k
,

qkh = qk
h

2
k
.

12: Set h = h2
k.

13: Evaluate error estimator ηk1 = ηk1 (h2
k).

14: Set h3
k = h2

k.
15: while (4.50) is violated do
16: Refine grids according to the error estimator ηk1 , such that we obtain a finer

discretization h3
k.

17: Set h = h3
k.

18: With qkold and ukold,h fixed, determine qkh = qk
h

3
k
and vkh = vk

h
3
k
by solving (4.55)

19: Set qk+1
old = qkh

20: Compute uk+1
old = uk+1

old,h3
k
, Ik+1

3,h = Ik+1
3,h3

k
, and ηk+1

3 = ηk+1
3,h3

k
by applying Algo-

rithm 4.3 with m = k + 1 and h = h3
k.

21: Set h4
k = h3

k.
22: while (4.54) is violated do
23: Refine grid according to the error estimator ηk+1

3 , such that we obtain a finer
discretization h4

k.
24: Determine uk+1

old,h = uk+1
old,h4

k
, Ik+1

3,h = Ik+1
3,h4

k
and ηk+1

3 = ηk+1
3,h4

k
by applying

Algorithm 4.3 with m = k + 1 and h = h4
k.

25: Set h1
k+1 = h4

k (i.e., use the current mesh as a starting mesh for the next
iteration)

26: Set k = k + 1

103
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(4.54)?

Refine

Alg. 4.3

Alg. 4.3

            ?

RefineAlg. 4.3

Solve (4.55)

(4.54)?

(4.50)?

Refine

Alg. 4.3

Alg. 4.2STOP

yes

no

yes

yes

yes

no

no

no

I 3≼τ ²δ ²

⇒uold , I 3,η3

⇒uold , I 3,η3 ⇒h

⇒h

⇒h

⇒β , h ,q , v , η1
⇒uold , I 3,η3

⇒q , v ,uold , I 3, η3,η1

⇒uold , I 3,η3

Figure 4.2.: Illustration of Algorithm 4.1. The arrow within the blocks point to
variables that are computed in this step.
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4.1. Reduced form of the discretized IRGNM

Algorithm 4.2: Inexact Newton method for the determination of a regularization
parameter for the IRGNM subproblem

1: Set δβ =
√
θ̃Ik−1

3,h /τβ.
2: Compute a Lagrange triple xh = (qh, vh, zh) to the linear-quadratic optimization

problem
min

(q,v)∈Qh×Vh
‖C ′(ukold,h)(v) + C(ukold,h)− gδ‖2G + 1

βk
‖q − q0‖

2
Q

s.t. a′u(qkold, u
k
old,h)(v, ϕ) + a′q(q

k
old, u

k
old,h)(q − qkold, ϕ)

+ a(qkold, u
k
old,h)(ϕ)− f(ϕ) = 0 ∀ϕ ∈Wh

(4.55)

3: Evaluate ih = Ik2,h = ‖C ′(ukold)(vh) + C(ukold)− gδ‖2G (also see (2.37)).

4: while ih > (τ2
β + τ̃

2
β

2 )δ2
β do

5: Evaluate i′h (cf. [39], Chapter 3).
6: Evaluate error estimator for i(β) = I(v(β)) with I : v 7→ I2(ukold, v) (cf. [39]).
7: Evaluate error estimator for i′(β) = d

dβ I(v(β)) (cf. [39], Chapter 3).
8: if accuracy requirements (cf. [39]) are violated then
9: Refine with respect to the corresponding error estimator.

10: else
11: Update β according to an inexact Newton method (cf. [39]) β ← β − ih

i
′
h
.

12: Compute a Lagrange triple xh = (qh, vh, zh) to (4.55).
13: Evaluate ih = Ik2,h = ‖C ′(ukold)(vh) + C(ukold)− gδ‖2G.

Remark 4.11. Algorithm 4.2 is equivalent to the algorithm given in [39] with the following
replacements

in [39] here
q q − q0
T F ′(qkold)
gδ F ′(qkold)(qkold) + gδ − F (qkold)
τ2δ2 θ̃Ik3,h
(τ − τ̃)2δ2 θ̃Ik3,h
(τ + τ̃)2δ2 θ̃Ik3,h

With respect to loops and the solution of PDEs and optimization problems, the algorithm has
the form sketched in Algorithm 4.4.

(We do not display the refinement loops of Algorithm 4.1 and Algorithm 4.2 but only the
iteration loops.)
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4. Iteratively regularized Gauss-Newton methods

Algorithm 4.3: Evaluation of Im3

1: Determine

umold ∈ Vh : a(qmold, u
m
old)(ϕ) = f(ϕ) ∀ϕ ∈Wh .

2: Evaluate Im3,h according to (4.14).
3: Evaluate error estimator ηm3 .

Algorithm 4.4: Loops in reduced form of discretized IRGNM

1: while · · · (Newton iteration) do
2: Apply algorithm from [39], i.e.,
3: while · · · (Iteration for βk) do
4: Solve linear-quadratic optimization problem (i.e., solve linear PDE).
5: Update β and refine eventually.
6: Solve nonlinear PDE.

Algorithm 4.5: Loops in inexact Newton method (for nonlinear problems)

1: while · · · (Iteration for β) do
2: Solve nonlinear optimization problem (i.e., solve nonlinear PDE).
3: Update β and refine eventually.

In contrast with the nonlinear Tikhonov method

min
q∈D⊂Q

‖F (q)− gδ‖2G + 1
β
‖q − q0‖

2
Q

investigated in Chapter 3 (cf. Algorithm 3.1 or rather its simplified version Algorithm 4.5), we
have one additional loop, but we only have to solve a linear-quadratic optimization problem
instead of a nonlinear problem. On the other hand, we still have to solve (at least) one
nonlinear PDE in each outer loop. For this reason we doubt whether Algorithm 4.1 pays off
with respect to computation time as compared to the method from Chapter 3. Therefore we
do not implement this algorithm, but are going to consider more efficient modifications in
Section 4.2.

4.1.4. Extension to more general data misfit and regularization terms

Motivated by the increasing use of nonquadratic, non-Hilbert space misfit and regularization
terms for modelling, e.g., sparsity of the solution, or non-Gaussian data noise (cf., e.g., [32, 97]
for Tikhonov regularization, and [52] for IRGNM), we now extend our results to a more general
setting (also see [33, 49]). Inspection of the proofs in Section 4.1.1 gives reason to believe that
this can be done in a straight-forward manner.
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4.1. Reduced form of the discretized IRGNM

To this purpose, we consider a more general version of (4.9):

min
q∈Q
Tβ(q) := S(F ′(qkold)(q − qkold) + F (qkold), gδ) + 1

β
R(q) (4.56)

with quantities of interest (cf. (4.6))

Ik1 := S(F ′(qkold)(qk − qkold) + F (qkold), gδ) + 1
β
R(qk)

Ik2 := S(F ′(qkold)(qk − qkold) + F (qkold), gδ)

Ik3 := S(F (qkold), gδ)

Ik4 := S(F (qk), gδ)

(4.57)

and their discrete counterparts

min
q∈Qh

S(F ′h(qkold)(q − qkold) + Fh(qkold), gδ) + 1
β
R(q) (4.58)

(cf. (4.12)) with

Ik1,h := S(F ′hk(qkold)(qkhk − q
k
old) + Fhk(qkold), gδ) + 1

β
R(qkhk)

Ik2,h := S(F ′hk(qkold)(qkhk − q
k
old) + Fhk(qkold), gδ)

Ik3,h := S(Fhk(qkold), gδ)

Ik4,h := S(Fhk(qkhk), gδ)

(4.59)

(cf. (4.14)).

Let the data misfit and regularization functionals S : G × G → R̄ and R : Q → R̄ have the
following properties.

Assumption 4.6.

1. The mapping y 7→ S(y, gδ) is convex.

2. S is symmetric, i.e., S(y, ỹ) = S(ỹ, y) for all y, ỹ ∈ G.

3. S is positive definite, i.e., S(y, ỹ) ≥ 0 and S(y, y) = 0 for all y, ỹ ∈ G.

4. There exists a constant cS such that for all y, ỹ, ŷ ∈ G there holds S(y, ỹ) ≤ cS(S(y, ŷ) +
S(ŷ, ỹ)).

5. The regularization functional R is proper (i.e., the domain of R is non-empty) and
convex.

The domain of a functional R : M → R̄ should be understood as

D(R) := {m ∈M | R(m) 6=∞} . (4.60)
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4. Iteratively regularized Gauss-Newton methods

Remark 4.12. In fact, in item 3 in Assumption 4.6 it suffices to require S(y, y) = 0 only for
y = g (i.e., for the exact data), but since item 3 is a more ”natural“ assumption in terms of
general operator properties, we stick with the stronger assumption item 3.

We refer once more to [52], where convergence and convergence rates for the IRGNM have
already been established in an even more general (continuous) setting and mention that
we consider a somewhat simpler situation with stronger assumptions on S, R here, since
our intention is mainly to demonstrate transferability of the adaptive discretization concept.
Moreover, note that we rely on a different choice of the regularization parameter here. The
results obtained here will allow us to easily establish convergence rates results for an exact
penalty formulation of an all-at-once formulation of the IRGNM in Section 4.2.2.

Although we will, again, restrict ourselves to Hilbert spaces in the next sections, at this point
we discuss convergence in a Banach space setting to emphasize the generality of the subsequent
results. To this purpose we introduce the Bregman distance

Dξ
R(q, q) := R(q)−R(q)− 〈ξ, q − q〉Q∗,Q (4.61)

with some ξ ∈ ∂R(q) ⊂ Q∗, which coincides with 1
2‖q − q‖2Q for R(q) = 1

2‖q − q0‖
2
Q and

ξ = q − q0 in a Hilbert space Q. With ∂R(q) we denote the subdifferential of R at q.

Well-definedness (i.e., for every gδ ∈ G and βk > 0 there exists a solution qkhk to (4.58)) and
stable dependence on the data (i.e., for every fixed βk > 0 the solution qhkk depends continuously
on gδ) can be shown under the following assumptions (cf., e.g., [97, Assumption 1.32], [52,
Remark 2.1], [49, Theorem 3.1, Theorem 3.2])

Assumption 4.7.

1. Q and G are Banach spaces, with which there are associated topologies TQ and TG, which
are weaker than the norm topologies.

2. The mapping y 7→ S(y, gδ) is sequentially lower semi-continuous with respect to TG.

3. F ′(qkold) : Q→ G is continuous with respect to the topologies TQ and TG.

4. R : Q→ (−∞,+∞] is proper, convex and TQ-lower semi continuous.

5. D := D(F ) ∩ D(R) 6= ∅ is closed with respect to TQ.

6. For every ρ > 0 the set
Bρ := {q ∈ D| R(q) ≤ ρ}

is TQ-sequentially compact in the following sense: every sequence (qn)n∈N in this set has
a subsequence, which is convergent in Q with respect to the TQ-topology.

Remark 4.13. For the setting from Chapter 3, i.e., Hilbert spaces Q and G and the choice
S(y, ỹ) := 1

2‖y − ỹ‖
2
G and R(q) := 1

2‖q − q0‖
2
Q Assumption 4.6 and 4.7 are obviously fulfilled.

As for examples in a real Banach spaces setting, we refer to [48, 71, 97].

Consistently, the conditions on F , Assumption 3.2 and Assumption 4.4 are generalized to the
following two assumptions.
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4.1. Reduced form of the discretized IRGNM

Assumption 4.8. Let the reduced forward operator F be continuous with respect to TQ,TG
and satisfy

(qn
TQ→ q ∧ S(F (qn), g)→ 0) ⇒ (q ∈ D ∧ F (q) = g)

for all (qn)n∈N ⊆ Q.

Assumption 4.9. Let the generalized tangential cone condition

S(F (q), F (q̄) + F ′(q̄)(q − q̄)) ≤ c2
tcS(F (q), F (q̄))

hold for all q, q̄ ∈ Q in the level set Bρ ⊂ D for some ρ > 0 and for some 0 < ctc < 1.

Moreover, the source condition in Assumption 3.5 and Assumption 4.5 are replaced by the
following conditions.

Assumption 4.10. Let the multiplicative variational inequality

|〈ξ, q − q†〉Q∗,Q| ≤ c
√
Dξ
R(q, q†)κ

(
S(F (q), F (q†))
Dξ
R(q, q†)

)

hold for all q ∈ D (cf. (3.14)) and some constant c > 0, where κ is defined as in Assumption 3.5.

Assumption 4.11. Let τ be chosen sufficiently large and 0 < θ̃ < θ̃ sufficiently small (see
(4.18), (4.25)), such that

cS

(
cSc

2
tc + 1 + cSc

2
tc

τ2

)
< θ̃ and 0 < cS θ̃ + c2

Sc
2
tc

1− c2
Sc

2
tc

< 1 . (4.62)

Finally, let the estimates (4.17) hold for the discretization error with respect to the quantities
of interest (4.57), (4.59), where ηk1 , η

k
2 , η

k
3 , η

k
4 are selected such that

ηk1 + c2
Sc

2
tcη

k
3 ≤

(
θ̃ − cS

(
cSc

2
tc + 1 + cSc

2
tc

τ2

))
Ik3,h , (4.63)

ηk3 ≤ c1I
k
3,h and ηk2 → 0 , ηk3 → 0 , ηk4 → 0 as k →∞ , (4.64)

Ik3,h ≤ (1 + c3)Ik−1
4,h + rk , and (1 + c3)cS θ̃ + c2

Sc
2
tc

1− c2
Sc

2
tc

≤ c2 < 1 (4.65)

hold for some constants c1, c2, c3 > 0, and a sequence rk → 0 as k → ∞ (where the second
condition in (4.65) is possible due to the right inequality in (4.62)).

Based on this groundwork, we can now formulate a convergence theorem similar to Theo-
rem 4.2:

Theorem 4.4. Let Assumption 4.6, 4.7, 4.8, 4.9 and 4.11 be satisfied with 0 < ctc <
1
cS

sufficiently small and let q† (solution to (2.1)) lie in the neighborhood of q0 where Assumption 4.9
holds, i.e., q† ∈ Bρ ⊂ D. Let the starting value be chosen such that q1

old = q0
h0
∈ Bρ and let

S(g, gδ) ≤ δ2 . (4.66)

Then with βk and h = hk fulfilling (4.18) and k∗ selected according to (4.25), there holds:
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(i) the estimate
R(qkhk) ≤ R(q†) ∀1 ≤ k < k∗ , (4.67)

(ii) k∗ is finite,

(iii) qk∗old = q
k∗(δ)
old = q

k∗(δ)−1,δ
βk∗(δ)−1,hk∗(δ)−1

converges (weakly) subsequentially to a solution of (2.1)
as δ → 0 in the sense that it has a TQ-convergent subsequence and each TQ-convergent
subsequence converges to a solution of (2.1). If the solution q† to (2.1) is unique, then
q
k∗(δ)
old converges to q† with respect to TQ as δ → 0.

Proof. The proof basically follows the lines of the proof of Theorem 4.2, where we have to
replace the specific fitting and regularization terms by S and R:

(i): We will prove (4.31) as follows: We will show that, for fixed k > 0, provided that
qkold = qk−1

hk−1
∈ Bρ, there holds

R(qkhk) ≤ R(q†)

which implies qk+1
old = qkhk ∈ Bρ. Then (4.31) follows recursively, since q1

old = q0
h0
∈ Bρ.

So we assume that qkold ∈ Bρ in the following.

According to (4.66), (4.25) and Assumption 4.9 as well as the inequaltity (a + b)2 ≤
2a2 + 2b2 for arbitrary a, b ∈ R, we can estimate as follows

S(F ′(qkold)(q† − qkold) + F (qkold), gδ) ≤ cS
(
S(g, F ′(qkold)(q† − qkold) + F (qkold)) + S(g, gδ)

)
≤ cS

(
S(F (q†), F ′(qkold)(q† − qkold) + F (qkold)) + δ2

)
≤ cS

(
c2
tcS(g, F (qkold)) + δ2

)
≤ cS

(
c2
tccS

(
S(gδ, F (qkold)) + δ2

)
+ δ2

)
= c2

Sc
2
tc

(
Ik3 + δ2

)
+ cSδ

2

= c2
Sc

2
tcI

k
3 + cS(1 + cSc

2
tc)δ

2

≤ c2
Sc

2
tc(I

k
3,h + ηk3 ) + cS(1 + cSc

2
tc)
Ik3,h

τ2

≤ cS

(
cSc

2
tc + 1 + cSc

2
tc

τ2

)
Ik3,h + c2

Sc
2
tcη

k
3 .

On the other hand, from (4.18) and the fact that Ik1,h = Ik2,h + 1
βk
R(qkh) (cf. (4.16)) it

follows that
Ik1,h = Ik2,h + 1

βk
R(qkh) ≥ θ̃Ik3,h + 1

βk
R(qkh) ,
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4.1. Reduced form of the discretized IRGNM

which together with the previous inequality and (4.63) gives

θ̃Ik3,h + 1
βk
R(qkh) ≤ Ik1 + ηk1

≤ S(F ′(qkold)(qk − qkold) + F (qkold), gδ) + 1
βk
R(qk) + ηk1

≤ S(F ′(qkold)(q† − qkold) + F (qkold), gδ) + 1
βk
R(q†) + ηk1

≤ cS

(
cSc

2
tc + 1 + cSc

2
tc

τ2

)
Ik3,h + c2

Sc
2
tcη

k
3 + 1

βk
R(q†) + ηk1

≤ θ̃Ik3,h + 1
βk
R(q†) ,

where we have used minimality of qk for (4.56). This finally implies (4.67).

(ii): Furthermore, for all k < k∗ we have by the triangle inequality as well as Assumption 4.9
and (4.18)

Ik4 = S(F (qk), gδ)

≤ cS
(
S(F ′(qkold)(qk − qkold) + F (qkold), gδ) + S(F ′(qkold)(qk − qkold) + F (qkold), F (qk))

)
≤ cS

(
Ik2 + c2

tcS(F (qk), F (qkold))
)

≤ cS
(
Ik2,h + ηk2

)
+ c2

Sc
2
tc

(
S(F (qk), gδ) + S(F (qkold), gδ)

)
≤ cS

(
θ̃Ik3,h + ηk2

)
+ c2

Sc
2
tc

(
Ik4 + Ik3

)
,

(4.68)
which implies

Ik4 ≤
1

1− c2
Sc

2
tc

(
cS θ̃I

k
3,h + cSη

k
2 + c2

Sc
2
tcI

k
3
)
. (4.69)

With (4.17) and (4.65) we can further deduce

Ik4,h ≤
1

1− c2
Sc

2
tc

(
(cS θ̃ + c2

Sc
2
tc)I

k
3,h + cSη

k
2 + c2

Sc
2
tcη

k
3
)

+ ηk4

≤ cS θ̃ + c2
Sc

2
tc

1− c2
Sc

2
tc

(1 + c3)Ik−1
4,h + 1

1− c2
Sc

2
tc

(
(cS θ̃ + c2

Sc
2
tc)r

k + cSη
k
2 + c2

Sc
2
tcη

k
3
)

+ ηk4

≤ c2I
k−1
4,h + 1

1− c2
Sc

2
tc

(
(cS θ̃ + c2

Sc
2
tc)r

k + cSη
k
2 + c2

Sc
2
tcη

k
3
)

+ ηk4 .

With the notation

ai := 1
1− c2

Sc
2
tc

(
(cS θ̃ + c2

Sc
2
tc)r

i + cSη
i
2 + c2

Sc
2
tcη

i
3
)

+ ηi4 ∀i ∈ {1, 2, . . . , k}

there follows recursively

Ik4,h ≤ c
k
2I

0
4,h +

k−1∑
j=0

cj2a
k−j .
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4. Iteratively regularized Gauss-Newton methods

Note that by the second part of (4.64), the second part of (4.65) and the fact that rk → 0
as k → ∞ (by definition of rk), we have ck2I

0
4,h +

∑k−1
j=0 c

j
2a
k−j → 0 as k → ∞. So, if

the discrepancy principle never got active (i.e., k∗ = ∞), the sequence (Ik4,h)k∈N and
therewith by assumption (4.64) also (Ik3,h)k∈N would be bounded by a sequence tending
to zero as k →∞, which implies that Ik3,h falls below τ2δ2 for k sufficiently large, thus
yielding a contradiction. Hence the stopping index k∗ <∞ is well-defined and finite.

(iii): With (2.2), (4.17), (4.64) and definition of k∗, we have

S(F (qk∗old), g) ≤ cS
(
S(F (qk∗old), gδ) + δ2

)
≤ cS

(
I
k∗
3,h + ηk3 + δ2

)
≤ cS

(
(1 + c1)Ik∗3,h + δ2

)
≤ cS

(
(1 + c1)τ2 + 1

)
δ2 → 0

(4.70)
as δ → 0. By (i), (ii) and item 6 in Assumption 4.7 qk∗old = q

k∗
hk∗−1

has a TQ-convergent
subsequence and due to Assumption 4.8 and (4.70) the limit of every TQ-convergent
subsequence is a solution to F (q) = g.

As far as convergence rates are concerned, Theorem 3.2 (where R, S are defined by squared
Hilbert space norms) can be generalized as follows:

Theorem 4.5. Let the conditions of Theorem 4.4 be satisfied and let q̃ be a regularized
approximation (not necessarily defined by Tikhonov regularization) of q† such that

R(q̃) ≤ R(q†) (4.71)

and
S(F (q̃), gδ) ≤ τ̂2δ2 (4.72)

with some τ̂ independent of δ as well as Assumption 4.10 are fulfilled. Then the rate

√
Dξ
R(q̃, q†) = O

 δ√
ψ−1(Cδ)


with Bregman distance Dξ

R (cf. (4.61)) holds for some constant C > 0 independent of δ.

Proof. The proof can be done similarly to the proof of Theorem 3.2 with the same replacements
as in the proof of Theorem 4.4:

If Dξ
R(q̃, q†) vanishes we are trivially done. So we assume Dξ

R(q̃, q†) 6= 0 for the rest of the
proof.

From (4.71) and Assumption 4.10 there follows

Dξ
R(q̃, q†) = R(q̃)−R(q†)− 〈ξ, q̃ − q†〉Q∗,Q ≤ |〈ξ, q̃ − q

†〉Q∗,Q|

≤ c
√
Dξ
R(q̃, q†)κ

(
S(F (q̃), F (q†))
Dξ
R(q̃, q†)

)
.
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4.1. Reduced form of the discretized IRGNM

By monotonicity of κ, (4.72), (4.66) and Assumption 4.6 we further get

Dξ
R(q̃, q†) ≤ c

√
Dξ
R(q̃, q†)κ

(
cS
S(gδ, F (q†)) + S(F (q̃), gδ)

Dξ
R(q̃, q†)

)
≤ c

√
Dξ
R(q̃, q†)κ

(
cS
δ2(1 + τ̂2)
Dξ
R(q̃, q†)

)
.

Since Dξ
R(q̃, q†) 6= 0, we can multiply both sides by δ

√
1+τ̂2

D
ξ
R(q̃,q†)

and obtain

δ

√
1 + τ̂2 ≤ c

δ

√
1 + τ̂2√

Dξ
R(q̃, q†)

κ

(
cSδ

2(1 + τ̂2)
Dξ
R(q̃, q†)

)
= c
√
cS
ψ

(
cSδ

2(1 + τ̂2)
Dξ
R(q̃, q†)

)
.

By strict monotonicity of ψ, this yields

ψ−1
(√

cS
c
δ

√
1 + τ̂2

)
≤ cSδ

2(1 + τ̂2)
Dξ
R(q̃, q†)

,

which implies √
Dξ
R(q̃, q†) ≤

δ

√
1 + τ̂2

ψ−1
(√

cS
c δ

√
1 + τ̂2

) .

Due to Theorem 4.4 these rates particularly hold for qk∗h .

So far we have not commented on well-definedness of the regularization parameter βk by (4.18)
with Ik2,h and Ik3,h according to (4.59). As a matter of fact, this can be shown analogously to
[71, Lemma 1, Theorem 3] (where the analysis is restricted to Banach space norms) under some
additional assumptions on S and R. For simplicity of exposition we will only do so for the
continuous setting. The corresponding proof in the discrete setting can be done in a straight
forward manner by combining the proof from the continuous setting (see Lemma 4.6 below)
and the proof of Theorem 4.2 (o), where we showed well-definedness in a discrete Hilbert space
setting.

Lemma 4.6. Let Assumption 4.6, 4.7, 4.8 and 4.9 with (lower) semi-continuity replaced by
continuity in the item 2 and 4 of Assumption 4.7 and convexity by strict convexity in item 5
of Assumption 4.6 hold. Moreover, let the first inequality in (4.62) (from Assumption 4.11) be
satisfied and let

S(g, gδ) ≤ δ2 .

For k < k∗ we assume for the (then existent and unique) minimizer q0 of R that

S(F ′(qkold)(q0 − q
k
old) + F (qkold), gδ) ≥ θ̃S(F (qkold), gδ) (4.73)

holds. Then there exists βk such that

θ̃S(F (qkold), gδ) ≤ S(F ′(qkold)(qk − qkold) + F (qkold), gδ) ≤ θ̃S(F (qkold), gδ) .
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4. Iteratively regularized Gauss-Newton methods

Proof. We define the functional

Ψ : R+ → R
+
0 , β 7→ S(F ′(qkold)(qδβ − q

k
old) + F (qkold), gδ) ,

where qδβ is the (under the stated conditions existent and unique) minimizer of the Tikhonov
functional Tβ(q). Since by minimality of qδβ we have

Ψ(β) + 1
β
R(q0) ≤ Ψ(β) + 1

β
R(qδβ) = Tβ(qδβ) ≤ Tβ(q†)

= S(F ′(qkold)(q† − qkold) + F (qkold), gδ) + 1
β
R(q†) ,

we can conclude, using the generalized triangle inequality (item 4 in Assumption 4.6), the
generalized tangential cone condition Assumption 4.9 as well as the definition of k∗ (3.36)

lim sup
β→∞

Ψ(β) ≤ S(F ′(qkold)(q† − qkold) + F (qkold), gδ)

≤ cS
(
S(F ′(qkold)(q† − qkold) + F (qkold), g) + δ2

)
≤ cS

(
c2
tcS(F (qkold), g) + δ2

)
≤ cS

(
c2
tccS

[
S(F (qkold), gδ) + δ2

]
+ δ2

)
≤ c2

Sc
2
tcS(F (qkold), gδ) + cS

(
1 + cSc

2
tc

)
δ2

≤ c2
Sc

2
tcS(F (qkold), gδ) + cS

(
1 + cSc

2
tc

) Ik3
τ2

≤ cS

(
cSc

2
tc + 1 + cSc

2
tc

τ2

)
S(F (qkold), gδ)

≤ θ̃S(F (qkold), gδ) .

On the other hand, we have by minimality

1
β
R(qδβ) ≤ Ψ(β) + 1

β
R(qδβ) = Tβ(qδβ) ≤ Tβ(q0)

= S(F ′(qkold)(q0 − q
k
old) + F (qkold), gδ) + 1

β
R(q0) ,

hence (by minimality of q0 for R)

0 ≤ lim sup
β→0

R(qδβ)−R(q0) ≤ lim sup
β→0

βS(F ′(qkold)(q0 − q
k
old) + F (qkold), gδ) = 0 ,

i.e.,
R(qδβ)→ R(q0) as β → 0 .

Hence, by the compactness of the level sets of R (cf. item 6 in Assumption 4.7)), every
subsequence of qδβ has a TQ-convergent subsequence whose limit is a minimizer of R due to the
lower semi-continuity of R, and hence, by strict convexity of R coincides with q0. Thus, by a
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4.2. All-at-once formulations

subsequence-subsequence argument qδβ converges to q0 in TQ as β → 0. By item 2 and 3 in
Assumption 4.7 we have

lim inf
β→0

Ψ(β) = lim inf
β→0

S(F ′(qkold)(qδβ − q
k
old) + F (qkold), gδ)

≥ S(F ′(qkold)(q0 − q
k
old) + F (qkold), gδ) ≥ θ̃S(F (qkold), gδ) ,

where the latter inequality was just assumed to hold, cf. (4.73). Summarizing, we have

lim sup
β→∞

Ψ(β) ≤ θ̃S(F (qkold), gδ) < θ̃S(F (qkold), gδ) ≤ lim inf
β→0

Ψ(β) .

If Ψ is continuous, application of the Intermediate Value Theorem yields existence of a β
fulfilling

θ̃S(F (qkold), gδ) ≤ Ψ(β) ≤ θ̃S(F (qkold), gδ) .

Thus, it remains to show the continuity of Ψ , which we will do in the following:

Let β ∈ (0,∞) be fixed and (βn)n∈N a sequence converging to β. Then, for sufficiently large n
there holds

β

2 ≤ βn ≤ 2β .

By minimality we have

1
2βR(qδβn) ≤ 1

βn
R(qδβn) ≤ Tβn(qδβn) ≤ Tβn(qδβ) = Ψ(β) + 1

βn
R(qδβ) ≤ Ψ(β) + 2

β
R(qδβ) .

Hence by item 6 in Assumption 4.7 every subsequence of qδβn has a TQ-convergent subequence.
By item 2., 3., and 4. in Assumption 4.7, and

Tβn(qδβn) ≤ Tβn(qδβ)→ Tβ(qδβ) as n→∞ ,

the limit of every TQ-convergent subsequence of qδβn is a minimizer of Tβ . By uniqueness of this
minimizer and a subsequence-subsequence argument the whole sequence qδβn converges to qδβ in
TQ as n→∞. Continuity of F ′(qkold), S(·, gδ), and R implies Ψ(βn)→ Ψ(β) as n→∞.

In case (4.73) is violated and therefore well-definedness of the choice of βk cannot be guaranteed,
we set the iterate qkh to q0, which formally corresponds to setting βk = 0 and implies that the
crucial estimate (4.67) trivially holds for such iterates.

4.2. All-at-once formulations

A major drawback of the method discussed in Section 4.1 is the necessity of solving the nonlinear
PDE (to a certain precision) in each Newton step in order to evaluate F (q) = C(S(q)). As
already mentioned in Section 2.5 this can be avoided by considering optimization methods
that only work with linearizations of the constraint(s).
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4. Iteratively regularized Gauss-Newton methods

To this purpose we simultaneously consider the measurement equation and the PDE:

C(u) = g in G (4.74)
A(q, u) = f in W ∗ (4.75)

as a system of operator equations for (q, u), which we will abbreviate by

F(q, u) = g, (4.76)

where

F : Q× V → G×W ∗ , F(q, u) :=
(
C(u)
A(q, u)

)
, and g :=

(
g
f

)
∈ G×W ∗ . (4.77)

The noisy data for this all-at-once formulation is defined by

gδ =
(
gδ

f

)
∈ G×W ∗ .

Therewith, we will arrive at iterations of the form: Determine (qk, uk) as solution to

min
(q,u)∈Q×V

%‖A′q(q
k−1, uk−1)(q − qk−1) +A′u(qk−1, uk−1)(u− uk−1) +A(qk−1, uk−1)− f‖rW ∗

+ ‖C(uk−1) + C ′(uk−1)(u− uk−1)− gδ‖2G + 1
βk

(
‖q − q0‖

2
Q + ‖u− u0‖

2
V

)
(4.78)

with % > 0, r ∈ {1, 2}.
For r = 2, this yields a least squares formulation, see Section 4.2.1.
In case r = 1 and % sufficiently large, by exactness of the norm with exponent one as a penalty
(cf. Section 2.5.4) this leads to a Generalized Gauss-Newton type [18] form of the IRGNM:
Determine (qk, uk) as solution to

min
(q,u)∈Q×V

‖C(uk−1) + C ′(uk−1)(u− uk−1)− gδ‖2G + 1
βk

(
‖q − q0‖

2
Q + ‖u− u0‖

2
V

)
s.t. A′q(q

k−1, uk−1)(q − qk−1) +A′u(qk−1, uk−1)(u− uk−1) +A(qk−1, uk−1) = f in W ∗ ,

see Section 4.2.2.

Remark 4.14. Although qk, uk obviously depend on δ, i.e., qk = qk,δ, uk = uk,δ, again, we
omit the superscript δ for better legibility.

All-at-once formulations for the solution of inverse problems have also been considered in
[22, 23], where they investigate a Levenberg-Marquardt approach. However, we consider
a least squares and a Generalized Gauss-Newton formulation of the iteratively regularized
Gauss-Newton method, which facilitates the convergence analysis compared to the regularizing
Levenberg-Marquardt setting, where optimal convergence rates with a posteriori parameter
choice rule have been shown only relatively recently in [43, 47, 56]. Besides we will use the
discrepancy principle choice rule as in Chapter 3, whereas Burger and Mühlhuber [22, 23] use
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4.2. All-at-once formulations

the so-called generalized discrepancy principle introduced by Goncharsky et al. in [37]. In
addition, our focus lies on adaptive discretization using a posteriori error estimators. SQP
type formulations are also considered e.g., in [3, 16], but there, the authors put more emphasis
on computational aspects and applications than we do here.

For both cases r = 1, r = 2 in (4.78) we will investigate convergence and convergence rates in
the continuous and adaptively discretized setting with discrepancy type choice of βk and some
overall stopping index k∗ similar to (3.36), (4.22) and especially (4.25) (with a different choice
of I3). Again, the discretization errors with respect to certain quantities of interest will serve
as refinement criteria during the Gauss-Newton iteration, where at the same time, we control
the size of the regularization parameter. In Section 4.3, we will provide numerical results and
compare the method from this chapter to the one from Chapter 3.

Throughout this section, we assume

Assumption 4.12. There exists a solution (q†, u†) ∈ Bρ(q0, u0) ⊂ D × V ⊂ Q× V to (4.76),
where Bρ(q0, u0) is a ball with some initial guess (q0, u0) as center and radius ρ > 0, in which
local convergence of the Newton type iterations under consideration will be shown. This means

‖q† − q0‖
2
Q + ‖u† − u0‖

2
V ≤ ρ

2 .

For simplicity we assume that the domains of A and C are the whole space, i.e., D(A) = Q×V
and D(C) = V . Otherwise we would have to restrict our consideration to (q, u) ∈ D(A)∩ (Q×
D(C)) in the following.

Remark 4.15. With the same reasoning as in Remark 4.1 in Section 4.1, we do not minimize
over D, but over the whole of Q, since starting with (q0, u0) ∈ Bρ(q0, u0) (see Assumption 4.12),
we will show that all iterates stay in a neighborhood of (q0, u0) (cf. Theorem 4.8 and 4.11).

4.2.1. A least squares formulation

Direct application of the IRGNM to the all-at-once system (4.76) yields the iteration(
qk

uk

)
=
(
qk−1

uk−1

)
−
(

F′(qk−1, uk−1)∗F′(qk−1, uk−1) +
(
αk id 0

0 µk id

))−1

·
(

F′(qk−1, uk−1)∗(F(qk−1, uk−1)− gδ) +
(
αk(q

k−1 − q0)
µk(u

k−1 − u0)

))

with regularization parameters αk, µk for the q and u part of the iterates, respectively.

Although we assumed the unique and stable solvabilty of the state, adjoint, and tangent
equations in Section 2.2 already, we state this assumption once more here, in order to point
out its importance for this chapter.

Assumption 4.13. The linear mapping A′u(q, u) : V →W ∗ is continuously invertible for all
(q, u) ∈ Q× V .
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4. Iteratively regularized Gauss-Newton methods

We will first of all show that Assumption 4.13 allows us to set the regularization parameter µk
for the u part to zero. For this purpose, we introduce the abbreviations

K : V →W ∗ , K := A′u(q, u) and L : Q→W ∗ , L := A′q(q, u)

with Hilbert space adjoints K∗ : W ∗ → V and L∗ : W ∗ → Q, i.e.,

(Lq,w∗)W ∗ = (q, L∗w∗)Q ∀q ∈ Q,w∗ ∈W ∗ ,
(Kv,w∗)W ∗ = (v,K∗w∗)V ∀v ∈ V,w∗ ∈W ∗ ,

where (·, ·)W ∗ and (·, ·)V denote the inner products in W ∗ and V .

We denote the derivate of F at a pair (q, u) by T, i.e.,

T : Q× V → G×W ∗ , T = F′(q, u) =
(

0 C ′(u)
A′q(q, u) A′u(q, u)

)
=
(

0 C ′(u)
L K

)

and define the norm∥∥∥∥∥
(
q
u

)∥∥∥∥∥
2

Q×V
:= ‖q‖2Q + ‖u‖2V with operator norm ‖O‖Q×V := sup

x∈Q×V,x6=0

‖Ox‖Q×V
‖x‖Q×V

.

(4.79)
for some x ∈ Q× V and some operator O : Q× V → Q× V .

Further, we define

Yα,µ : Q× V → Q× V , Yα,µ := T∗T +
(
α id 0

0 µ id

)

for α > 0, µ ≥ 0.

The following Lemmas yield useful results for the application of the IRGNM (4.2) to the
system (4.76), which will be done in the next subsections.

Lemma 4.7. Under Assumption 4.13 there holds:

(i) For any α > 0, µ ≥ 0 the inverse Y−1
α,µ of Yα,µ exists,

(ii) ∥∥∥Y−1
α,µT∗T

∥∥∥
Q×V

≤ 1 + max{α, µ}
∥∥∥Y−1

α,µ

∥∥∥
Q×V

,

(iii) ∥∥∥Y−1
α,µ

∥∥∥
Q×V

≤ cT
( 1
α

+ 1
)

(4.80)

for all α ∈ (0, 1], µ ≥ 0 and some cT > 0 independent of α, µ. If the operators K, K−1,
and L are bounded uniformly in (q, u), the bound cT in (4.80) is independent of q and u.
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4.2. All-at-once formulations

Proof. (i): We introduce the abbreviations

P = L∗L+ α id and M = C ′(u)∗C ′(u) +K∗K + µ id ,

where C ′(u)∗ : G→ V is the Hilbert space adjoint of C ′(u) : V → G. We have

Yα,µ =
(

P L∗K
K∗L M

)
.

Next, we will show that M is invertible. M is linear and bounded, since

‖Mv‖V ≤ ‖C
′(u)∗C ′(u)v‖V + ‖K∗Kv‖V + µ‖v‖V

≤
(
‖C ′(u)‖2V→G + ‖K‖2V→W ∗ + µ

)
‖v‖V ≤ c‖v‖V ∀v ∈ V

for some constant c > 0. M is also positive definite: There holds

(Mv, v)V = ‖C ′(u)v‖2G + ‖Kv‖2W ∗ + µ‖v‖2V ≥ ‖Kv‖
2
W
∗ ≥ 1
‖K−1‖2W ∗→V

‖v‖2V ∀v ∈ V ,

(4.81)
since K is invertible due to Assumption 4.13.

Consequently M−1 exists (e.g., according to Lax-Milgram, cf., [108, Lemma 2.2.]) and
we can define some kind of Schur complement

N := P − L∗KM−1K∗L = L∗L+ α id−L∗KM−1K∗L .

We will now show that also N is invertible. Using the fact that

‖M−1/2K∗‖2W ∗→V = ‖KM−1/2‖2V→W ∗

= sup
v∈V,v 6=0

‖KM−1/2v‖2W ∗
‖v‖2V

= sup
v∈V,v 6=0

‖Kv‖2W ∗
‖M1/2v‖2V

= sup
v∈V,v 6=0

‖Kv‖2W ∗
‖C ′(u)(v)‖2G + ‖Kv‖2W ∗ + µ‖v‖2V

≤ 1

for any ϑ ∈ Q, we get

(Nϑ, ϑ)Q = (L∗Lϑ+ αϑ− L∗KM−1K∗Lϑ, ϑ)Q
≥ ‖Lϑ‖2W ∗ + α‖ϑ‖2Q − ‖M

−1/2K∗‖2W ∗→V ‖Lϑ‖
2
W
∗

≥ α‖ϑ‖2Q ,

(4.82)

which together with

‖Nϑ‖Q ≤ ‖L
∗Lϑ‖Q + α‖ϑ‖Q + ‖L∗KM−1K∗Lϑ‖Q

≤
(
‖L‖2Q→W ∗ + α+ ‖L‖2Q→W ∗‖K‖

2
V→W ∗‖M

−1‖V→V
)
‖ϑ‖Q

≤ c‖ϑ‖Q ∀ϑ ∈ Q
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implies the existence of N−1.

For

Oαµ :=
(

N−1 −N−1L∗KM−1

−M−1K∗LN−1 M−1 +M−1K∗LN−1L∗KM−1

)
(4.83)

there holds

Oαµ

(
P L∗K
K∗L M

)
=
(
A B
C D

)

with

A := N−1
(
P − L∗KM−1K∗L

)
= id

B := N−1L∗K −N−1L∗KM−1M = 0

C := −M−1K∗LN−1P +
(
M−1 +M−1K∗LN−1L∗KM−1

)
K∗L

= −M−1K∗L
[
N−1

(
P − L∗KM−1K∗L

)
− id

]
= 0

D := −M−1K∗LN−1L∗K +
(
M−1 +M−1K∗LN−1L∗KM−1

)
M = id .

Therefore, we have

Oαµ = Y−1
α,µ . (4.84)

(ii): We immediately get

∥∥∥Y−1
α,µT∗T

∥∥∥
Q×V

=
∥∥∥∥∥Y−1

α,µ

(
Yα,µ −

(
α id 0

0 µ id

))∥∥∥∥∥
Q×V

=
∥∥∥∥∥id−Y−1

α,µ

(
α id 0

0 µ id

)∥∥∥∥∥
Q×V

≤ 1 + max{α, µ}
∥∥∥Y−1

α,µ

∥∥∥
Q×V

.

(iii): From (4.81) and (4.82) we can conclude

‖N−1‖Q→Q ≤
1
α

and ‖M−1‖V→V ≤ ‖K
−1‖2W ∗→V . (4.85)
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4.2. All-at-once formulations

For Oαµ (cf. (4.83)) this yields

‖Oαµ‖
2
Q×V

≤ sup
(q,u)∈Q×V,(q,u)6=0

∥∥∥N−1q −N−1L∗KM−1u
∥∥∥2

Q

‖q‖2Q + ‖u‖2V

+ sup
(q,u)∈Q×V,(q,u)6=0

∥∥∥−M−1K∗LN−1q +
(
M−1 +M−1K∗LN−1L∗KM−1

)
u
∥∥∥2

V

‖q‖2Q + ‖u‖2V

≤ sup
(q,u)∈Q×V,(q,u)6=0

2
∥∥∥N−1q

∥∥∥2

Q

‖q‖2Q + ‖u‖2V
+ sup

(q,u)∈Q×V,(q,u) 6=0

2
∥∥∥N−1L∗KM−1u

∥∥∥2

Q

‖q‖2Q + ‖u‖2V

+ sup
(q,u)∈Q×V,(q,u)6=0

2
∥∥∥−M−1K∗LN−1q

∥∥∥2

V

‖q‖2Q + ‖u‖2V

+ sup
(q,u)∈Q×V,(q,u)6=0

2
∥∥∥(M−1 +M−1K∗LN−1L∗KM−1

)
u
∥∥∥2

V

‖q‖2Q + ‖u‖2V

≤ sup
q∈Q,q 6=0

2
∥∥∥N−1q

∥∥∥2

Q

‖q‖2Q
+ sup
u∈V,u 6=0

2
∥∥∥N−1L∗KM−1u

∥∥∥2

Q

‖u‖2V

+ sup
q∈Q,q 6=0

2
∥∥∥−M−1K∗LN−1q

∥∥∥2

V

‖q‖2Q
+ sup
u∈V,u0

2
∥∥∥(M−1 +M−1K∗LN−1L∗KM−1

)
u
∥∥∥2

V

‖u‖2V
≤ 2

(
‖N−1‖2Q→Q + ‖N−1L∗KM−1‖2V→Q

+‖M−1K∗LN−1‖2Q→V + ‖M−1 +M−1K∗LN−1L∗KM−1‖2V→V
)

≤ 2
(
‖N−1‖2Q→Q + 2‖N−1‖2Q→Q‖L‖

2
Q→W ∗‖K‖

2
V→W ∗‖M

−1‖2V→V

+2‖M−1‖2V→V + 2‖N−1‖2Q→Q‖L‖
4
Q→W ∗‖K‖

4
V→W ∗‖M

−1‖4V→V
)

= 2
(
‖N−1‖2Q→Q

[
1 + 2‖L‖2Q→W ∗‖K‖

2
V→W ∗‖M

−1‖2V→V

+2‖L‖4Q→W ∗‖K‖
4
V→W ∗‖M

−1‖4V→V
]

+ 2‖M−1‖2V→V
)

≤ 2‖N−1‖2Q→Q
[
1 + 2‖L‖2Q→W ∗‖K‖

2
V→W ∗‖M

−1‖2V→V

+2‖L‖4Q→W ∗‖K‖
4
V→W ∗‖K

−1‖8W ∗→V
]

+ 4‖K−1‖4W ∗→V

≤ 2
α2

[
1 + 2‖L‖2Q→W ∗‖K‖

2
V→W ∗‖M

−1‖2V→V

+2‖L‖4Q→W ∗‖K‖
4
V→W ∗‖K

−1‖8W ∗→V
]

+ 4‖K−1‖4W ∗→V

where we have used that (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R twice.
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4. Iteratively regularized Gauss-Newton methods

Motivated by Lemma 4.7, we set the regularization parameter for the component u to zero
(which is justified by (i) in Lemma 4.7), we set αk = 1

βk
, and define a regularized iteration by

(
qk

uk

)
=
(
qk−1

uk−1

)
−
(

F′(qk−1, uk−1)∗F′(qk−1, uk−1) + 1
βk

(
id 0
0 0

))−1

·
(

F′(qk−1, uk−1)∗(F(qk−1, uk−1)− gδ) + 1
βk

(
qk−1 − q0

0

))

or equivalently
(
qk

uk

)
as solution to the unconstrained minimization problem

min
(q,u)∈Q×V

‖Lk−1(q − qk−1) +Kk−1(u− uk−1) +A(qk−1, uk−1)− f‖2W ∗

+ ‖C(uk−1) + C ′(uk−1)(u− uk−1)− gδ‖2G + 1
βk
‖q − q0‖

2
Q (4.86)

with the abbreviations

Lk−1 = A′q(q
k−1, uk−1) and Kk−1 = A′u(qk−1, uk−1) . (4.87)

The optimality conditions of first order for (4.86) read

0 = 2(Lk−1(q − qk−1) +Kk−1(u− uk−1) +A(qk−1, uk−1)− f, Lk−1(δq))W ∗ + 2
βk

(q − q0, δq)Q ,

0 = 2(Lk−1(q − qk−1) +Kk−1(u− uk−1) +A(qk−1, uk−1)− f,Kk−1(δu))W ∗

+ 2(C(uk−1) + C ′(uk−1)(u− uk−1)− gδ, C ′(uk−1)(δu))G .

Like in Section 4.1, in each step k we will replace the infinite dimensional spaces Q,V,W in
(4.86) by finite dimensional ones Qh = Qhk , Vh = Vhk ,Wh = Whk

and get(
qkh
ukh

)
= arg min

q∈Qh,u∈Vh
‖Lk−1(q − qold) +Kk−1(u− uold) +A(qold, uold)− f‖2W ∗h

+ ‖C(uold) + C ′(uold)(u− uold)− gδ‖2G + 1
βk
‖q − q0‖

2
Q .

where (qold, uold) = (qk−1, uk−1) = (qk−1
hk−1

, uk−1
hk−1

) is the previous iterate, which itself is dis-
cretized by the use of spaces Qhk−1

, Vhk−1
,Whk−1

. Again (cf. Remark 4.2) the discretization
hk may be different in each Newton step (typically it will get finer for increasing k), but as in
Section 4.1 we suppress dependence of h on k in our notation in most of what follows.

Analogously to (4.6) and (4.8), we define quantities of interest via the functionals

I1 : Q× V ×Q× V ×R→ R

I2 : Q× V ×Q× V → R

I3 : Q× V → R

I4 : Q× V → R ,

122



4.2. All-at-once formulations

where we insert the previous and current iterates (qold, uold), (q, u), respectively:

I1(qold, uold, q, u, β) =
∥∥∥∥∥F′(qold, uold)

(
q − qold
u− uold

)
+ F(qold, uold)− gδ

∥∥∥∥∥
2

G×W ∗
+ 1
β
‖q − q0‖

2
Q

=
∥∥∥A′q(qold, uold)(q − qold) +A′u(qold, uold)(u− uold) +A(qold, uold)− f

∥∥∥2

W
∗

+
∥∥∥C ′(u)(u− uold) + C(uold)− gδ

∥∥∥2

G
+ 1
β
‖q − q0‖

2
Q

I2(qold, uold, q, u) =
∥∥∥∥∥F′(qold, uold)

(
q − qold
u− uold

)
+ F(qold, uold)− gδ

∥∥∥∥∥
2

G×W ∗

=
∥∥∥A′q(qold, uold)(q − qold) +A′u(qold, uold)(u− uold) +A(qold, uold)− f

∥∥∥2

W
∗

+
∥∥∥C ′(u)(u− uold)C(uold)− gδ

∥∥∥2

G

I3(qold, uold) =
∥∥∥F(qold, uold)− gδ

∥∥∥2

G×W ∗

= ‖A(qold, uold)− f‖2W ∗ +
∥∥∥C(uold)− gδ

∥∥∥2

G

I4(q, u) =
∥∥∥F(q, u)− gδ

∥∥∥2

G×W ∗

= ‖A(q, u)− f‖2W ∗ +
∥∥∥C(u)− gδ

∥∥∥2

G
.

(4.88)
This leads to the quantities of interest

Ik1 = I1(qkold, u
k
old, q

k, uk, βk)

Ik2 = I2(qkold, u
k
old, q

k, uk)

Ik3 = I3(qkold, u
k
old)

Ik4 = I4(qk, uk) .

(4.89)

Their discrete analogs (cf. (4.13), (4.14)) are correspondingly defined by

I1,h : Q× V ×Q× V ×R→ R

I2,h : Q× V ×Q× V → R

I3,h : Q× V → R

I4,h : Q× V → R ,
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4. Iteratively regularized Gauss-Newton methods

I1,h(qold, uold, q, u, β) =
∥∥∥∥∥F′(qold, uold)

(
q − qold
u− uold

)
+ F(qold, uold)− gδ

∥∥∥∥∥
2

G×W ∗h

+ 1
β
‖q − q0‖

2
Q

=
∥∥A′q(qold, uold)(q − qold) +A′u(qold, uold)(u− uold)

+A(qold, uold)− f
∥∥2
W
∗
h

+ ‖C ′(u)(u− uold) + C(uold)− gδ‖2G + 1
β
‖q − q0‖

2
Q

I2,h(qold, uold, q, u) =
∥∥∥∥∥F′(qold, uold)

(
q − qold
u− uold

)
+ F(qold, uold)− gδ

∥∥∥∥∥
2

G×W ∗h

=
∥∥A′q(qold, uold)(q − qold) +A′u(qold, uold)(u− uold)

+A(qold, uold)− f
∥∥2
W
∗
h

+ ‖C ′(u)(u− uold)C(uold)− gδ‖2G

I3,h(qold, uold) =
∥∥∥F(qold, uold)− gδ

∥∥∥2

G×W ∗h

= ‖A(qold, uold)− f‖2W ∗h + ‖C(uold)− gδ‖2G

I4,h(q, u) =
∥∥∥F(q, u)− gδ

∥∥∥2

G×W ∗h

= ‖A(q, u)− f‖2W ∗h + ‖C(u)− gδ‖2G ,
(4.90)

and
Ik1,h = I1,h(qkold, u

k
old, q

k
h, u

k
h, βk)

Ik2,h = I2,h(qkold, u
k
old, q

k
h, u

k
h, )

Ik3,h = I3,h(qkold, u
k
old)

Ik4,h = I4,h(qkh, u
k
h) .

(4.91)

Just like in Section 4.1 we assume bounds on the discretization errors with respect to these
four quantities of interest (see (4.17)), which will serve as refinement criteria and which, at
least partly, will be estimated by goal oriented error estimators. At the end of each iteration
step we set

qk+1
old = qkh and uk+1

old = ukh . (4.92)

Remark 4.16. Note that here, neither qold nor uold are subject to new adaptive discretization
in the current step, but they are taken as fixed quantities from the previous step. This is
different from Section 4.1, where uold also depends on the current discretization.

For (4.89) and (4.91) we assume that the norms in G and Q are evaluated exactly cf. Assump-
tion 2.3.

As in Section 4.1, in our convergence proofs we will compare the quantities of interest Iki,h
with those Iki that would be obtained by exact computation on the infinite dimensional spaces,
starting from the same (qold, uold) = (qoldhk−1

, uoldhk−1
) as the one underlying Iki,h (cf. (4.17)).

Thus analogously to Section 4.1 (see Remark 4.2 and Figure 4.1), in our analysis besides the
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4.2. All-at-once formulations

actually computed sequence (qkh, u
k
h) = (qkhk , u

k
hk

) there appears an auxiliary sequence (qk, uk),
see Figure 4.3.
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Figure 4.3.: Sequence of discretized iterates and auxiliary sequence of continuous
iterates for the all-at-once formulation of IRGNM

We formulate all-at-once versions of Assumption 3.2 and Assumption 4.4, i.e., we assume F to
be weakly sequentially closed and to satisfy a tangential cone condition:

Assumption 4.14. Let the all-at-once forward operator F be continuous and satisfy

(qn ⇀ q ∧ un ⇀ u ∧ C(un)→ g ∧A(qn, un)→ f)⇒ (q ∈ D ∧ C(u) = g ∧A(q, u) = f)

for all sequences ((qn, un))n∈N ⊆ D × V .

Assumption 4.15. Let

‖C(u)−C(ū)−C ′(u)(u− ū)‖G + ‖A(q, u)−A(q̄, ū)−A′q(q, u)(q− q̄)−A′u(q, u)(u− ū)‖W ∗
≤ ctc

(
‖C(u)− C(ū)‖G + ‖A(q, u)−A(q̄, ū)‖W ∗

)
hold for all (q, u), (q̄, ū) ∈ Bρ(q0, u0) and some 0 < ctc < 1.

Like in Theorem 4.2 in Section 4.1 we obtain convergence and convergence rates results, which
are formulated in the following theorem.

Theorem 4.8. Let Assumption 4.14 and 4.15 with ctc sufficiently small be satisfied. Let the
starting value be chosen such that (q0

old, u
0
old) ∈ Bρ(q0, u0) and let (q†, u†) ∈ Bρ(q0, u0) be a

solution to (4.76). For the quantities of interest (4.89) and (4.91), let further the estimate
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4. Iteratively regularized Gauss-Newton methods

(4.17) as well as Assumption 4.5 hold. Then with βk according to (4.18) and k∗ selected
according to (4.25), (qk∗old, u

k∗
old) = (qk∗(δ)old , u

k∗(δ)
old ) = (qk∗(δ)−1,δ

βk∗(δ)−1,hk∗(δ)−1
, q
k∗(δ)−1,δ
βk∗(δ)−1,hk∗(δ)−1

) defined by

(4.86) converges (weakly) subsequentially to a solution (q†, u†) of (4.76) as δ → 0 in the sense
that it has a weakly convergent subsequence and each weakly convergent subsequence converges
strongly to (q†, u†). If the solution (q†, u†) to (4.76) is unique, then (qk∗(δ)old , u

k∗(δ)
old ) converges

strongly to (q†, u†) as δ → 0.

Proof. The claimed convergence (as well as well-definedness of the regularization parameter)
follows directly along the lines of the proof of Theorem 4.2 replacing F there by F according
to (4.77).

For proving rates, as usual (cf., e.g., [5, 27, 51, 69], Assumption 3.5 and 4.10) source conditions
are assumed.

Assumption 4.16. Let

(q† − q0, u
† − u0) ∈ R

(
κ
(
F′(q†, u†)∗F′(q†, u†)

))
hold with some κ : R+ → R

+ such that κ2 : λ 7→ κ(λ)2 is strictly monotonically increasing on
(0, ‖F′(q†, u†)‖2Q×V ], ϕ defined by ϕ−1(λ) = κ2(λ) is convex and ψ defined by ψ(λ) = κ(λ)

√
λ

is strictly monotonically increasing on (0, ‖F′(q†, u†)‖2Q×V ].

Like in Theorem 3.2, Corollary 4.3, and Theorem 4.5 we get the following convergence rates:

Theorem 4.9. Let the conditions of Theorem 4.8 and additionally the source condition
Assumption 4.16 be fullfiled. Then there exist δ̄ > 0 and a constant C > 0 independent of δ
such that for all δ ∈ (0, δ̄] the convergence rates

‖qk∗old − q
†‖2Q + ‖uk∗old − u

†‖2V = O
(

δ2

ψ−1(Cδ)

)

with qk∗old = q
k∗(δ)
old = q

δ,k∗(δ)−1
βk∗(δ)−1,hk∗(δ)−1

, uk∗old = u
k∗(δ)
old = u

δ,k∗(δ)−1
βk∗(δ)−1,hk∗(δ)−1

are obtained.

Proof. The proposition follows directly from Theorem 3.2.

Remark 4.17. Comparing the source conditions from Assumption 3.5 for the reduced formu-
lation with Assumption 4.16 for the all-at-once formulation, we consider the case κ(λ) =

√
λ.

Namely, in that case Assumption 3.5 reads: There exists g ∈ G such that

q† − q0 = F ′(q†)∗g = S′(q†)∗C ′(S(q†))∗g . (4.93)

On the other hand, Assumption 4.16 with the same κ reads: There exists g̃ =
(
g̃

f̃

)
∈ G×W ∗

such that
(q† − q0, u

† − u0) = F′(q†, u†)∗g̃ =
(

0 A′q(q
†, u†)∗

C ′(u†)∗ A′u(q†, u†)∗

)
g̃ ,
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4.2. All-at-once formulations

which is equivalent to

q† − q0 = A′q(q
†, u†)∗f̃

u† − u0 = C ′(u†)∗g̃ +A′u(q†, u†)∗f̃ ,

and by elimination of f̃ and use of the identities

u† = S(q†)

S′(q†) = −A′u(q†, u†)−1A′q(q
†, u†)

we get
q† − q0 = S′(q†)∗

(
C ′(S(q†))∗g̃ + u0 − u

†
)
,

which, setting ḡ = g̃ + C ′(u†)−∗(u0 − u
†) becomes (4.93), provided u0 − u

† ∈ R(C ′(u†)∗). For
a further discussion we refer to [66].

Computation of the error estimators

Theoretically the error estimators for this subsection can be computed similarly to those from
Section 4.1. The fact that we consider an unconstrained optimization problem should make
things easier, but we get another difficulty in return: For estimating the discretization error
with respect to I1 and I2 we have to estimate terms like

‖E(q, u)‖W ∗ − ‖E(qh, uh)‖W ∗h (4.94)

for some operator E : Q× V →W ∗, which makes things slighty more complicated concerning
the use of goal-oriented error estimators. Since we will treat an easier/less costly formulation
concerning this matter in Section 4.2.2, here, we won’t generate numerical results, but only
sketch an idea of how one could compute an error estimator for an error of the form (4.94) for
the typical case V = W = H1

0 (Ω).

We denote the objective functional in (4.86) by T , i.e., T : Q× V → R,

T (q, u) = ‖Lk−1(q − qold) +Kk−1(u− uold) +A(qold, uold)− f‖2V ∗

+ ‖C(uold) + C ′(uold)(u− uold)− gδ‖2G + 1
βk
‖q − q0‖

2
Q

for fixed βk, qold, uold. We further define Ψ : V → R,

Ψ(v) = ‖∇v‖
L

2(Ω)

as well as the auxiliary Lagrangian M : Q× V ×Q× V × V × V ,

M(q, u, δq, δu, v, w) = T ′q (q, u)(δq) + T ′u(q, u)(δu) + Ψ(v) + 〈E(q, u), w〉V ∗,V − (∇v,∇w)
L

2(Ω) .
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4. Iteratively regularized Gauss-Newton methods

We consider continuous and stationary points x := (q, u) ∈ Q×V and xh := (qh, uh) ∈ Qh×Vh
of T , i.e., let

T ′(x)(ϕ) = 0 ∀ϕ ∈ Q× V ,
T ′(xh)(ϕ) = 0 ∀ϕ ∈ Qh × Vh .

Let v ∈ V, vh ∈ Vh solve

(∇v,∇ϕ)
L

2(Ω) = 〈E(q, u), ϕ〉V ∗,V ∀ϕ ∈ V ,

(∇vh,∇ϕ)
L

2(Ω) = 〈E(qh, uh), ϕ〉V ∗,V ∀ϕ ∈ Vh ,

and w be defined by
w = 1

‖∇v‖
v , wh = 1

‖∇vh‖
vh .

Let further δx := (δq, δu) ∈ Q× V, δxh := (δqh, δuh) ∈ Qh × Vh solve

T ′′(x)(δx, ϕ) = −〈E′(x)(ϕ), w〉V ∗,V ∀ϕ ∈ Q× V
T ′′(xh)(δxh, ϕ) = −〈E′(xh)(ϕ), wh〉V ∗,V ∀ϕ ∈ Qh × Vh .

Then it is easily checked that ξ := (x, δx, v, w) and ξh := (xh, δxh, vh, wh) are continuous and
discrete stationary points of M . By the usual DWR reasoning we obtain

‖E(q, u)‖V ∗ − ‖E(qh, uh)‖V ∗h = ‖∇v‖
L

2(Ω) − ‖∇vh‖L2(Ω)

= Ψ(v)− Ψ(vh)

= 1
2M

′(ξh)(ξ − ξ̃h) +R

for arbritrary ξ̃h ∈ Qh× Vh×Qh× Vh× Vh× Vh, where R is some remainder term (see Section
2.4, 3.3 and 4.1.2). The term ξ − ξ̃h can be approximated as described in the previous sections
about error estimation (Section 2.4, 3.3 and 4.1.2) by high order approximations.

4.2.2. A Generalized Gauss-Newton formulation

A drawback of the unconstrained formulation (4.86) is the fact that a rescaling of the state
equation (4.75) changes the solution of the optimization problem. Moreover, depending on
the given inverse problem and its application, in some cases, it does not make sense to only
minimize the residual of the linearized state equation, instead of setting it to zero. Another
disadvantage is the necessity of computing the W ∗-norm of the (linearized) residual and
especially of computing error estimators for this quantity of interest.

A formulation that is much better tractable is obtained by defining (qk, uk) = (qk,δ, uk,δ) as a
solution to the PDE constrained minimization problem

min
(q,u)∈Q×V

Tβk(q, u) := ‖C(uk−1) + C ′(uk−1)(u− uk−1)− gδ‖2G + 1
βk

(
‖q − q0‖

2
Q + ‖u− u0‖

2
V

)
(4.95)

s.t. Lk−1(q − qk−1) +Kk−1(u− uk−1) +A(qk−1, uk−1) = f in W ∗ (4.96)
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4.2. All-at-once formulations

(see also [22], [23]) with the abbreviations (4.87).

We consider the Lagrangian L : Q× V ×W → R

L(q, u, z) := Tβk(q, u) + 〈f −A(qk−1, uk−1)− Lk−1(q − qk−1)−Kk−1(u− uk−1), z〉W ∗,W ,

and formulate the optimality conditions of first order for (4.95),(4.96):

L′z(q, u, z)(δz) = 〈f −A(qk−1, uk−1)− Lk−1(q − qk−1)−Kk−1(u− uk−1), δz〉W ∗,W = 0 ,
(4.97)

L′u(q, u, z)(δu) = 2(C(uk−1) + C ′(uk−1)(u− uk−1)− gδ, C ′(uk−1)(δu))G
+ 2

βk
(u− u0, δu)V − 〈Kk−1δu, z〉W ∗,W = 0 , (4.98)

L′q(q, u, z)(δq) = 2
βk

(q − q0, δq)Q − 〈Lk−1δq, z〉W ∗,W = 0 (4.99)

for all δq ∈ Q, δu ∈ V , δz ∈W (cf. Section 2.2).

We assume boundedness of the operators A(q, u), Lk−1,K
∗
k−1,K

−1
k−1, C(u) and C ′(u) in the

following sense.

Assumption 4.17. There holds

sup
(q,u)∈Bρ(q0,u0)

‖A(q, u)‖W ∗ + ‖A′q(q, u)‖Q→W ∗ + ‖A′u(q, u)∗‖W ∗→V + ‖A′u(q, u)−1‖W ∗→V <∞

and
sup

(q,u)∈Bρ(q0,u0)
{‖C(u)‖G + ‖C ′(u)‖V→G} <∞ ,

where ‖.‖X→Y denotes the operator norm, i.e., for T : X → Y , ‖T‖X→Y := sup‖x‖X 6=0
‖T (x)‖Y
‖x‖X

.

The following lemma about boundedness of the adjoint will serve as tool for uniformly bounding
the penalty parameter % in (4.78).

Lemma 4.10. Let Assumption 4.17 hold and (qk−1, uk−1) ∈ Bρ(q0, u0). Provided the sequence
of βk’s is bounded away from 0, for a stationary point (qk, uk, zk) ∈ Q×V ×W of L (cf. (4.97)
– (4.99)) there holds the estimate

‖zk‖W ≤ cadj
(
‖qk−1 − q0‖Q + ‖uk−1 − u0‖V + 1

)
(4.100)

with a constant cadj independent of k.

Proof. To formulate the optimality system (4.97)–(4.99) in a matrix-vector form, we introduce
another dual variable p ∈W ∗ defined by

p = JW ∗z ∈W
∗ (4.101)

via the map JW ∗ , which maps z ∈W to the Riesz representation JW ∗z ∈W
∗, such that

L(q, u, z) = Tβk(q, u) + (f −A(qk−1, uk−1)− Lk−1(q − qk−1)−Kk−1(u− uk−1), p)W ∗ .
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Using the abbreviations (4.87) and

Ck−1 := C ′(uk−1) , rfk−1 := A(qk−1, uk−1)− f , rgk−1 := C(uk−1)− gδ (4.102)

the optimality system (4.97)–(4.99) can be written as

L′z(q
k, uk, zk)(δz) = 〈−rfk−1 − Lk−1(qk − qk−1)−Kk−1(uk − uk−1), δz〉W ∗,W = 0 , (4.103)

L′u(qk, uk, zk)(δu) = 2(rgk−1 + Ck−1(uk − uk−1), Ck−1δu)G + 2
βk

(uk − u0, δu)V (4.104)

− (Kk−1δu, p)W ∗

= (2C∗k−1[rgk−1 + Ck−1(uk − uk−1)] + 2
βk

(uk − u0)−K∗k−1p
k, δu)V = 0 ,

(4.105)

L′q(q
k, uk, zk)(δq) = 2

βk
(qk − q0, δq)Q − (Lk−1δq, p

k)W ∗ = ( 2
βk

(qk − q0)− L∗k−1p
k, δq)Q = 0

(4.106)

for all δq ∈ Q, δu ∈ V and δz ∈W , or equivalently as

qk = q0 + βk
2 L

∗
k−1p

k

uk =
[ 2
βk

id +2C∗k−1Ck−1

]−1 (
2C∗k−1

(
Ck−1u

k−1 − rgk−1

)
+ 2
βk
u0 +K∗k−1p

k
)

uk = K−1
k−1

(
Lk−1q

k−1 +Kk−1u
k−1 − rfk−1 − Lk−1q

k
)
.

Eliminating qk and uk yields[ 2
βk

id +2C∗k−1Ck−1

]−1 (
2C∗k−1

(
Ck−1u

k−1 − rgk−1

)
+ 2
βk
u0 +K∗k−1p

k
)

= K−1
k−1

(
Lk−1q

k−1 +Kk−1u
k−1 − rfk−1 − Lk−1

(
q0 + βk

2 L
∗
k−1p

k
))

,

which we reformulate as

− βk
2 K

−1
k−1Lk−1L

∗
k−1p

k −
[ 2
βk

id +2C∗k−1Ck−1

]−1
K∗k−1p

k

=
[ 2
βk

id +2C∗k−1Ck−1

]−1 (
2C∗k−1

(
Ck−1u

k−1 − rgk−1

)
+ 2
βk
u0

)
−K−1

k−1

(
Lk−1(qk−1 − q0) +Kk−1u

k−1 − rfk−1

)
and finally

−
[ 1
βk

id +C∗k−1Ck−1

]
βkK

−1
k−1Lk−1L

∗
k−1p

k −K∗k−1p
k

= 2C∗k−1
(
Ck−1u

k−1 − rgk−1

)
+ 2
βk
u0

− 2
[ 1
βk

id +C∗k−1Ck−1

]
K−1
k−1

(
Lk−1(qk−1 − q0) +Kk−1u

k−1 − rfk−1

)
.
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With

Cβ :=
( 1
βk

id +C∗k−1Ck−1

) 1
2

this is equivalent to

− βkC
2
βK
−1
k−1Lk−1L

∗
k−1p

k −K∗k−1p
k

= 2C∗k−1
(
Ck−1u

k−1 − rgk−1

)
+ 2
βk
u0

− 2C2
βK
−1
k−1

(
Lk−1(qk−1 − q0) +Kk−1u

k−1 − rfk−1

)
,

which upon premultiplication with C−1
β becomes

−
(
βkCβK

−1
k−1Lk−1(K−1

k−1Lk−1)∗Cβ + id
)
C−1
β K∗k−1p

k

= −2C−1
β C∗k−1r

g
k−1 + 2

βk
C−1
β (u0 − u

k−1) + 2CβK
−1
k−1

(
Lk−1(q0 − q

k−1) + rfk−1

)
+
[
2C−1

β C∗k−1Ck−1 − 2Cβ + 2
βk
C−1
β

]
uk−1

= −2C−1
β C∗k−1r

g
k−1 + 2

βk
C−1
β (u0 − u

k−1) + 2CβK
−1
k−1

(
Lk−1(q0 − q

k−1) + rfk−1

)
+
[
2C−1

β

( 1
βk

id +C∗k−1Ck−1

)
− 2Cβ

]
uk−1

= −2C−1
β C∗k−1r

g
k−1 + 2

βk
C−1
β (u0 − u

k−1) + 2CβK
−1
k−1

(
Lk−1(q0 − q

k−1) + rfk−1

)
.

Since βkCβK
−1
k−1Lk−1(K−1

k−1Lk−1)∗Cβ = βk(CβK
−1
k−1Lk−1)(CβK

−1
k−1Lk−1)∗ is positive semidefi-

nite, we can conclude∥∥∥C−1
β K∗k−1p

k
∥∥∥
V

≤
∥∥∥∥−2C−1

β C∗k−1r
g
k−1 + 2

βk
C−1
β (u0 − u

k−1) + 2CβK
−1
k−1

(
Lk−1(q0 − q

k−1) + rfk−1

)∥∥∥∥
V

,

and with the estimates

‖C−1
β C∗k−1‖G→V ≤ 1 , ‖C−1

β ‖V ≤ β
1
2
k , and ‖Cβ‖V ≤

( 1
βk

+ ‖Ck−1‖
2
V→G

) 1
2

we have∥∥∥K∗k−1p
k
∥∥∥
V
≤
∥∥∥CβC−1

β K∗k−1p
k
∥∥∥
V

≤
( 1
βk

+ ‖Ck−1‖
2
V→G

) 1
2 ∥∥∥C−1

β K∗k−1p
k
∥∥∥
V

≤2
( 1
βk

+ ‖Ck−1‖
2
V→G

) 1
2 {
‖rgk−1‖+ 1√

βk
‖u0 − u

k−1‖V

+
( 1
βk

+ ‖Ck−1‖
2
V→G

) 1
2
‖K−1

k−1

(
Lk−1(q0 − q

k−1) + rfk−1‖
)}

,

which by Assumption 4.17 and (qk−1, uk−1) ∈ Bρ(q0, u0) yields (4.100)..
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We will prove inductively that the iterates indeed remain in Bρ(q0, u0), and even

‖qkh − q0‖
2
Q + ‖ukh − u0‖

2
Vh
≤ ‖q† − q0‖

2
Q + ‖u† − u0‖

2
V ∀1 ≤ k ≤ k∗ .

Thus, due to Lemma 4.10, which remains valid in the discretized setting (4.110), i.e.,

‖zkh‖Wh
≤ cadj

(
‖qkh − q0‖Q + ‖ukh − u0‖Vh + 1

)
, (4.107)

we get uniform boundedness of the dual variables by some sufficiently large %, namely

% ≥ cadj
(
‖q† − q0‖Q + ‖u† − u0‖V + 1

)
. (4.108)

This allows us to use an exact Penalty formulation

min
(q,u)∈Q×V

P(q, u) := ‖C(uk−1) + C ′(uk−1)(u− uk−1)− gδ‖2G + 1
βk

(‖q − q0‖
2
Q + ‖u− u0‖

2
V )

+ %‖A′q(q
k−1, uk−1)(q − qk−1) +A′u(qk−1, uk−1)(u− uk−1) +A(qk−1, uk−1)− f‖W ∗ ,

(4.109)
since for % larger than the norm of the dual variable, any solution of (4.95),(4.96) is a solution
of (4.109), see Section 2.5.4.

The formulation (4.109) of (4.95),(4.96) will be used in the convergence proofs only. For a
practical implementation we will directly discretize (4.95),(4.96).

The discrete version of (4.95),(4.96) reads

min
(q,u)∈Qhk×Vhk

‖C(uold) + C ′(uold)(u− uold)− gδ‖2G + 1
βk

(
‖q − q0‖

2
Q + ‖u− u0‖

2
Vhk

)
s.t. Lk−1(q − qold) +Kk−1(u− uold) +A(qold, uold) = f in W ∗hk ,

(4.110)

where (qold, uold) = (qk−1, uk−1) = (qk−1
hk−1

, uk−1
hk−1

) is the previous iterate and we assume again
that the norms in G and Q as well as the semilinear form a and the operator C are evaluated
exactly (cf. Assumption 2.3).

With % chosen sufficiently large such that (4.108) holds, we define the quantities of interest as
follows

I1 : V ×Q× V ×R→ R , (uold, q, u, β) 7→
∥∥∥C ′(uold)(u− uold) + C(uold)− gδ

∥∥∥2

G

+ 1
β

(
‖q − q0‖

2
Q + ‖u− u0‖

2
V

)
I2 : V × V → R , (uold, u) 7→

∥∥∥C ′(uold)(u− uold) + C(uold)− gδ
∥∥∥2

G

I3 : Q× V → R , (qold, uold) 7→
∥∥∥C(uold)− gδ

∥∥∥2

G
+ % ‖A(qold, uold)− f‖W ∗

I4 : Q× V → R , (q, u) 7→
∥∥∥C(u)− gδ

∥∥∥2

G
+ % ‖A(q, u)− f‖W ∗

(4.111)
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(cf. (4.88)) and
Ik1 = I1(ukold, q

k, uk, βk)

Ik2 = I2(ukold, u
k)

Ik3 = I3(qkold, u
k
old)

Ik4 = I4(qk, uk) ,

(4.112)

(cf. (4.89)), where qkold, u
k
old are fixed from the previous step and qk, uk are coupled by the

linearized state equation (4.96) for qk−1 = qkold and uk−1 = ukold.

Consistently, the discrete counterparts to (4.111) and (4.112) are

I1,h : V ×Q× V ×R→ R , (uold, q, u, β) 7→
∥∥∥C ′(uold)(u− uold) + C(uold)− gδ

∥∥∥2

G

+ 1
β

(
‖q − q0‖

2
Q + ‖u− u0‖

2
Vhk

)
I2,h : V × V → R , (uold, u) 7→ I2(uold, u)

I3,h : Q× V → R , (qold, uold) 7→
∥∥∥C(uold)− gδ

∥∥∥2

G
+ % ‖A(qold, uold)− f‖W ∗hk

I4,h : Q× V → R , (q, u) 7→
∥∥∥C(u)− gδ

∥∥∥2

G
+ % ‖A(q, u)− f‖W ∗hk

and
Ik1,h = I1,h(ukold, q

k
hk
, ukhk , βk)

Ik2,h = I2,h(ukold, u
k
hk

)

Ik3,h = I3,h(qkold, u
k
old)

Ik4,h = I4,h(qkhk , u
k
hk

)

(4.113)

(cf. (4.91)), where qkold, u
k
old are fixed from the previous step, since (like in (4.92)) we set

qk+1
old = qkhk and uk+1

old = ukhk at the end of each iteration step.

Remark 4.18. Here, as compared to (4.89), we have removed the W ∗-norms in the definition
of Ik1 and Ik2 .

The W ∗-norm still appears in Ik3 , but only in connection with the old iterate (qkold, u
k
old), such

that the only source of error in Ik3 is the evaluation of the W ∗-norm. This means, we have
replaced the expression

‖E(q, u)‖W ∗ − ‖E(qh, uh)‖W ∗h
from Section 4.2.1 by an expression of the form

‖E(qold, uold)‖W ∗ − ‖E(qold, uold)‖W ∗h . (4.114)

For the typical case W = V = H1
0 (Ω) (see Section 4.3), we will discuss the computation of a

goal-oriented error estimator for this kind of error in the subsection “Computation of the error
estimators” of this section.

Another way to deal with the discretization error in Ik3 is the following: Tracking the upcoming
convergence proof (cf. Theorem 4.11) the reader should realize that the discretization for Ik3,h
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does not have to be the same as for Ik1,h, I
k
2,h, such that Ik3,h could be evaluated on a very fine

separate mesh and ηk3 could be neglected. This alternative is of course, more costly, but since
everything else is still done on the adaptively refined (coarser) mesh, the proposed method could
still lead to an efficient algorithm.

The W ∗-norm also appears in Ik4 , and unfortunately, in combination with the current q and u,
which are subject to discretization, such that in principle we face the same situation as in the
least squares formulation from Section 4.2.1. Since, however, ηk4 only appears in connection
with the very weak assumption ηk4 → 0 as k → ∞ (cf. (4.28)), as in Section 4.1, we save
ourselves the computational effort of computing an error estimator for Ik4 .

Like in Section 4.2.1 we need the weak sequential closedness of F, i.e., Assumption 4.14 and
the following tangential cone condition are assumed to hold in this section.

Assumption 4.18. There holds

‖C(u)− C(ū)− C ′(u)(u− ū)‖G ≤ ctc‖C(u)− C(ū)‖G
‖A(q, u)−A(q̄, ū)−A′q(q, u)(q − q̄)−A′u(q, u)(u− ū)‖W ∗ ≤ 4c2

tc‖A(q, u)−A(q̄, ū)‖W ∗ ,

for all (q, u), (q, u) ∈ Bρ(q0, u0), and some 0 < ctc < 1.

By means of Lemma 4.10 and Assumption 4.14 and 4.18 we can now formulate a convergence
result like in Theorem 4.2, 4.4 and 4.8 for (4.95),(4.96). This can be done similarly to the
proof of Theorem 4.4 replacing F there by F according to (4.77) and setting

S
((

yC
yA

)
,

(
ỹC
ỹA

))
= ‖yC − ỹC‖

2
G + %‖yA − ỹA‖W ∗ ,

R
((

q
u

))
= ‖q − q0‖

2
Q + ‖u− u0‖

2
V ,

cS = 2 .

(4.115)

For clarity of exposition we provide the full convergence proof (Theorem 4.11) without making
use of the fact that a solution to the contrained optimization problem (4.95), (4.96) is a solution
to the penalty problem (4.109) here (since this implication only holds if the sequence of adjoint
states is uniformly bounded, which will be shown at a later point only cf. Corollary 4.12).
Only for the convergence rates result Corollary 4.13 we refer to Theorem 4.4 with (4.115)
and the relation to (4.109). So in the proof of Theorem 4.11 we will not use minimality with
respect to (4.109) but only with respect to the original formulation (4.95),(4.96)

Theorem 4.11. Let Assumption 4.14 and 4.18 with ctc sufficiently small be satisfied. For the
quantities of interest (4.112) and (4.113), let further Assumption 4.11 with cS = 2 and (4.17)
hold. Let the starting value (q1

old, u
1
old) = (q0

h0
, u0

h0
) be chosen such that

‖q1
old − q0‖

2
Q + ‖u1

old − u0‖
2
Vh
≤ ‖q† − q0‖

2
Q + ‖u† − u0‖

2
V

(which is obviously satisfied, for instance, by the choice (q1
old, u

1
old) = (q0, u0)).

Then with βk, h = hk fulfilling (4.18), k∗ selected according to (4.25), and (qkhk , u
k
hk

) being a
solution to (4.110), for any solution (q†, u†) ∈ Bρ(q0, u0) of (4.76) there holds:
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(i) the estimate

‖qkhk − q0‖
2
Q + ‖ukhk − u0‖

2
Vh
≤ ‖q† − q0‖

2
Q + ‖u† − u0‖

2
V ∀1 ≤ k ≤ k∗ , (4.116)

which implies that all iterates stay in the ball Bρ(q0, u0),

(ii) k∗ is finite.

(iii) (qk∗old, u
k∗
old) = (qk∗(δ)old , u

k∗(δ)
old ) = (qk∗(δ)−1,δ

βk∗(δ)−1,hk∗(δ)−1
, u

k∗(δ)−1,δ
βk∗(δ)−1,hk∗(δ)−1

) converges (weakly) sub-
sequentially to a solution of (4.76) as δ → 0 in the sense that it has a weakly convergent
subsequence and each weakly convergent subsequence converges strongly to a solution of
(4.76). If the solution (q†, u†) to (4.76) is unique, then (qk∗(δ)old , u

k∗(δ)
old ) converges strongly

to (q†, u†) as δ → 0.

Proof. (i): We will prove (4.31) as follows: We will show that, for fixed k > 0, provided that

‖qk−1
hk−1
− q0‖

2
Q + ‖uk−1

hk−1
− u0‖

2
Vh
≤ ‖q† − q0‖

2
Q + ‖u† − u0‖

2
V

(which implies (qk−1
hk−1

, uk−1
hk−1

) ∈ Bρ(q0, u0)), there holds

‖qkhk − q0‖
2
Q + ‖ukhk − u0‖

2
Vh
≤ ‖q† − q0‖

2
Q + ‖u† − u0‖

2
V .

Then (4.31) follows recursively, since

‖q1
old − q0‖

2
Q + ‖u1

old − u0‖
2
Vh
≤ ‖q† − q0‖

2
Q + ‖u† − u0‖

2
V .

So we assume

‖qk−1
hk−1
− q0‖

2
Q + ‖uk−1

hk−1
− u0‖

2
Vh
≤ ‖q† − q0‖

2
Q + ‖u† − u0‖

2
V (4.117)

in the following.

Let

Ch,k−1 := C ′(uk−1
hk−1

) , Lh,k−1 := A′q(q
k−1
hk−1

, uk−1
hk−1

) , Kh,k−1 := A′u(qk−1
hk−1

, uk−1
hk−1

)
(4.118)

and
rfh,k−1 := A(qk−1

hk−1
, uk−1

hk−1
)− f , rgh,k−1 := C(uk−1

hk−1
)− gδ . (4.119)

We consider a continuous step emerging from discrete qkold = qk−1
hk−1

, ukold = uk−1
hk−1

(cf.
Figure 4.3), i.e., let (qk, uk) be a solution to (4.95) for qk−1 = qkold = qk−1

hk−1
. Then the

first order optimality condition L′(qk, uk, zk) = 0 (cf. (4.97)–(4.99)) implies

0 = (Ch,k−1(uk − uk−1
hk−1

) + rgh,k−1, Ch,k−1δu)G + 1
βk

[
(qk − q0, δq)Q + (uk − u0, δu)V

]
+ 1

2〈Lh,k−1δq +Kh,k−1δu, z
k〉W ∗,W
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for all δq ∈ Q and δu ∈ V , where we have used the same abbreviations as in (4.87) and
(4.102) as well as pk = JW ∗z

k (see (4.101)).

Setting δq = qk − q†, δu = uk − u†, this yields

0 = ‖Ch,k−1(uk − uk−1
hk−1

) + rgh,k−1‖
2
G

− (Ch,k−1(uk − uk−1
hk−1

) + rgh,k−1, Ch,k−1(u† − uk−1
hk−1

) + rgh,k−1)G

+ 1
βk
‖qk − q0‖

2
Q −

1
βk

(qk − q0, q
† − q0)Q + 1

βk
‖uk − u0‖

2 − 1
βk

(uk − u0, u
† − u0)V

− 1
2〈Lh,k−1(q† − qk−1

hk−1
) +Kh,k−1(u† − uk−1

hk−1
) + rfh,k−1, z

k〉W ∗,W ,

where we have used the fact that (qk, uk) satisfies the linearized state equation (4.96),
i.e.,

Lh,k−1(qk − qk−1
hk−1

) +Kh,k−1(uk − uk−1
hk−1

) + rfh,k−1 = 0 .

Hence by Cauchy-Schwarz and the fact that ab ≤ 1
2a

2 + 1
2b

2 for all a, b ∈ R ,

Ik1 ≤ ‖Ch,k−1(uk − uk−1
hk−1

) + rgh,k−1‖G‖Ch,k−1(u† − uk−1
hk−1

) + rgh,k−1‖G

+ 1
βk
‖qk − q0‖Q‖q

† − q0‖Q + 1
βk
‖uk − u0‖V ‖u

† − u0‖V

+ 1
2‖Lh,k−1(q† − qk−1

hk−1
) +Kh,k−1(u† − uk−1

hk−1
) + rfh,k−1‖W ∗‖z

k‖W

≤ 1
2‖Ch,k−1(uk − uk−1

hk−1
) + rgh,k−1‖

2
G + 1

2‖Ch,k−1(u† − uk−1
hk−1

) + rgh,k−1‖
2
G

+ 1
2βk
‖qk − q0‖

2
Q + 1

2βk
‖q† − q0‖

2
Q + 1

2βk
‖uk − u0‖

2
V + 1

2βk
‖u† − u0‖

2
V

+ 1
2‖Lh,k−1(q† − qk−1

hk−1
) +Kh,k−1(u† − uk−1

hk−1
) + rfk−1‖W ∗h‖z

k‖W

= 1
2I

k
1 + 1

2‖Ch,k−1(u† − uk−1
hk−1

) + rgh,k−1‖
2
G

+ 1
2βk
‖q† − q0‖

2
Q + 1

2βk
‖u† − u0‖

2
V

+ 1
2‖Lh,k−1(q† − qk−1

hk−1
) +Kh,k−1(u† − uk−1

hk−1
) + rfh,k−1‖W ∗‖z

k‖W ,

which multiplying by 2 and applying Lemma 4.10 with (4.108), and (4.117) leads to

Ik1 ≤ ‖Ch,k−1(u† − uk−1
hk−1

) + rgh,k−1‖
2
G + 1

βk
‖q† − q0‖

2
Q + 1

βk
‖u† − u0‖

2
V

+ ‖Lh,k−1(q† − qk−1
hk−1

) +Kh,k−1(u† − uk−1
hk−1

) + rfh,k−1‖W ∗‖z
k‖W

≤ ‖C ′(uk−1
hk−1

)(u† − uk−1
hk−1

) + C(uk−1
hk−1

)− gδ‖2G + 1
βk
‖q† − q0‖

2
Q + 1

βk
‖u† − u0‖

2
V

+ %‖A′q(q
k−1
hk−1

)(q† − qk−1
hk−1

) +A′u(uk−1
hk−1

)(u† − uk−1
hk−1

) +A(qk−1
hk−1

, uk−1
hk−1

)−A(q†, u†)‖W ∗
(4.120)

for all 1 ≤ k < k∗.
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The rest of the proof basically follows the lines of the proof of Theorem 4.4 with the
choice (4.115), but for convenience of the reader we will follow through the proof anyway.

Using the fact that (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R and Assumption 4.18, we get
from (4.120)

Ik1 ≤ 2c2
tc‖C(uk−1

hk−1
)− C(u†)‖2G + 2δ2 + 1

βk
‖q† − q0‖

2
Q + 1

βk
‖u† − u0‖

2
V

+ 4c2
tc%‖A(qk−1

hk−1
, uk−1

hk−1
)−A(q†, u†)‖W ∗

≤ 4c2
tc‖C(uk−1

hk−1
)− gδ‖2G + 2(1 + 2c2

tc)δ
2 + 1

βk
‖q† − q0‖

2
Q + 1

βk
‖u† − u0‖

2
V

+ 4c2
tc%‖A(qk−1

hk−1
, uk−1

hk−1
)− f‖W ∗

≤ 4c2
tcI

k
3 + 2(1 + 2c2

tc)
τ2 Ik3,h + 1

βk
‖q† − q0‖

2
Q + 1

βk
‖u† − u0‖

2
V

≤ 2
(

2c2
tc + 1 + 2c2

tc

τ2

)
Ik3,h + 4c2

tcη
k
3 + 1

βk

(
‖q† − q0‖

2
Q + ‖u† − u0‖

2
V

)

for all 1 ≤ k < k∗. This together with (4.18) and the fact that

Ik1,h = Ik2,h + 1
βk

(
‖qkh − q0‖

2
Q + ‖ukh − u0‖

2
Vh

)

yields

θ̃Ik3,h + 1
βk

(‖qkhk − q0‖
2
Q + ‖ukhk − u0‖

2
Vh

)

≤ Ik2,h + 1
βk

(‖qkhk − q0‖
2
Q + ‖ukhk − u0‖

2
Vh

)

≤ Ik1 + ηk1

≤ 2
(

2c2
tc + (1 + 2ctc)

2

τ2

)
Ik3,h + 1

βk
(‖q† − q0‖

2
Q + ‖u† − u0‖

2
V ) + ηk1 + 4c2

tcη
k
3 .

Hence by (4.63) with cS = 2 we get (4.116), which implies (qk+1
old , uk+1

old ) = (qkhk , u
k
hk

) ∈
Bρ(q0, u0) for all 0 ≤ k ≤ k∗.

(ii): By the triangle inequality as well as (4.18), Assumption 4.18 and the fact that (qk, uk)
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4. Iteratively regularized Gauss-Newton methods

satisfies the linearized state equation (4.96), we have

Ik4 = ‖C(uk)− gδ‖2G + %‖A(qk, uk)− f‖W ∗

≤ 2‖C ′(ukold)(uk − ukold) + C(ukold)− gδ‖2G
+ 2‖C ′(ukold)(uk − ukold) + C(ukold)− C(uk)‖2G
+ %‖A′q(q

k
old, u

k
old)(qk − qkold) +A′u(qkold, u

k
old)(uk − ukold) +A(qkold, u

k
old)− f‖W ∗

+ %‖A′q(q
k
old, u

k
old)(qk − qkold) +A′u(qkold, u

k
old)(uk − ukold)

+A(qkold, u
k
old)−A(qk, uk)‖W ∗

≤ 2Ik2 + 2c2
tc‖C(uk)− C(ukold)‖2G + 4c2

tc%‖A(qkold, u
k
old)−A(qk, uk)‖W ∗

≤ 2Ik2 + 4c2
tc

(
‖C(uk)− gδ‖2G + ‖C(ukold)− gδ‖2G

)
+ 4c2

tc%
(
‖A(qkold, u

k
old)− f‖W ∗ + ‖A(qk, uk)− f‖W ∗

)
≤ 2

(
θ̃Ik3,h + ηk2

)
+ 4c2

tc(I
k
4 + Ik3 ) ,

which implies
Ik4 ≤

1
1− 4c2

tc

(
2θ̃Ik3,h + 2ηk2 + 4c2

tcI
k
3
)
.

The rest of the proof of (ii) follows exactly the lines of the proof of Theorem 4.2 after
(4.69).

(iii): With (2.2), (4.17), (4.28) and the definition of k∗, we have

‖C(uk∗old)− g‖2G + %‖A(qk∗old, u
k∗
old)− f‖W ∗ ≤ 2Ik∗3 + 2δ2

≤ 2
(
I
k∗
3,h + ηk3 + δ2

)
≤ 2

(
(1 + c1)Ik∗3,h + δ2

)
≤ 2δ2

(
(1 + c1)τ2 + 1

)
→ 0

(4.121)

as δ → 0. Thus, due to (ii) (4.116) (qk∗old, u
k∗
old) = (qk∗(δ)old , u

k∗(δ)
old ) has a weakly convergent

subsequence
(
(qk∗(δl)old , u

k∗(δl)
old )

)
l∈N

and with Assumption 4.14 and (4.121) the limit of
every weakly convergent subsequence is a solution to (4.76). Strong convergence of any
weakly convergent subsequence again follows by a standard argument like in (3.9).

Well-definedness of the regularization parameter βk by (4.18) follows along the lines of
Lemma 4.6 with the replacements (4.115).

Please note that Theorem 4.11 is a new result also in the continuous case ηki = 0.

Corollary 4.12. The sequence (zk)k∈N,k≤k∗ is bounded, i.e.

%̄ = sup
k≤k∗
‖zk‖W ≤ cadj(‖q

† − q0‖
2
Q + ‖u† − u0‖

2
V + 1)
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4.2. All-at-once formulations

Proof. The assertion follows directly from Theorem 4.11 (i) and Lemma 4.10.

The convergences rates from Theorem 3.2, Corollary 4.3, and Theorem 4.5 also hold for the
all-at-once formulation (4.76), due to equivalence with (4.109), which we formulate in the
following theorem.

Instead of standard source conditions (like in Assumption 3.5 and 4.16) we use variational
source conditions (cf., e.g., [32, 48, 52, 97]) here, due to the nonquadratic penalty term in
(4.109).

Assumption 4.19. Let

|(q† − q0, q − q
†)Q + (u† − u0, u− u

†)V |

≤ c
√
‖q − q†‖2Q + ‖u− u†‖2V κ

(
‖C(u)− C(u†)‖2G + %‖A(q, u)−A(q†, u†)‖W ∗

‖q − q†‖2Q + ‖u− u†‖2V

)

for all (q, u) ∈ D×D(C) with % sufficiently large (cf. (4.108)) and independent from q, u, hold
with κ defined as in Assumption 4.16.

Corollary 4.13. Let the conditions of Theorem 4.11 and additionally the variational inequality
Assumption 4.19 be fulfilled. Then there exist δ̄ > 0 and a constant C > 0 independent of δ
such that for all δ ∈ (0, δ̄] the convergence rates

‖qk∗old − q
†‖2Q + ‖uk∗old − u

†‖2V = O
(

δ2

ψ−1(Cδ)

)

with qk∗old = q
k∗(δ)
old = q

δ,k∗(δ)−1
βk∗(δ)−1,hk∗(δ)−1

, uk∗old = u
k∗(δ)
old = u

δ,k∗(δ)−1
βk∗(δ)−1,hk∗(δ)−1

are obtained.

Proof. With (4.115) the rates follow directly from Theorem 4.5 due to Theorem 4.11 (especially
(4.116) and (4.121)).

Remark 4.19. In fact, no regularization of the u part would be needed for stability of the
single Gauss-Newton steps, since by Assumption 4.13 the terms

%‖A′q(q
k−1, uk−1)(q − qk−1) +A′u(qk−1, uk−1)(u− uk−1) +A(qk−1, uk−1)− f‖W ∗

and 1
βk
‖q − q0‖

2
Q as regularization term together ensure weak compactness of the level sets of

the Tikhonov functional (cf. item 6 in Assumption 4.7).

However, we require even uniform boundedness of ukhk in order to uniformly bound the dual
variable and come up with a penalty parameter % that is independent of k, cf. the discrete version
of Lemma 4.10 (see (4.107)). Trying to show this uniform boundedness without regularization
term with respect to u, we fail at the following point:
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4. Iteratively regularized Gauss-Newton methods

We use the equality constraint (4.96) (for qk−1 = qk−1
hk−1

) together with the tangential cone
condition Assumption 4.18 for c2

tc <
1
2 and get

‖A(qk, uk)− f‖W ∗

= ‖Lh,k−1(qk − qk−1
hk−1

) +Kh,k−1(uk − uk−1
hk−1

) +A(qk−1
hk−1

, uk−1
hk−1

)−A(qk, uk)‖W ∗

≤ 4c2
tc‖A(qk−1

hk−1
, uk−1

hk−1
)−A(qk, uk)‖W ∗

≤ 4c2
tc‖A(qk−1

hk−1
, uk−1

hk−1
)− f‖W ∗ + 4c2

tc‖A(qk, uk)− f‖W ∗ ,

such that
‖A(qk, uk)− f‖W ∗ ≤

4c2
tc

1− 4c2
tc

‖A(qk−1
hk−1

, uk−1
hk−1

)− f‖W ∗ .

However, without error estimators on the difference between ‖A(qk, uk)−f‖W ∗ and ‖A(qkhk , u
k
hk

)−
f‖W ∗, this does not give a recursion

‖A(qkhk , u
k
hk

)− f‖W ∗ ≤ c‖A(qk−1
hk−1

, uk−1
hk−1

)− f‖W ∗

(from which, by uniform boundedness of qkhk and Assumption 4.17 we could conclude uniform
boundedness of ukhk).

Computation of the error estimators

Since – different to Section 4.1 – uold ist not subject to discretization in this section, the
computation of the error estimators is “easier” and can be done exactly as in [39] and [65].
Thus, we omit the arguments qold and uold in the quantities of interest in this subsection and
(like in Section 4.1.2) we also omit the iteration index k and the explicit dependence on β.

In order to obtain uniform boundedness of ukhk we introduced the term 1
βk
‖u − u0‖

2
V for

theoretical purposes. For our practical computations we will assume that the error by
discretization between ‖A(qk, uk)− f‖W ∗ and ‖A(qkhk , u

k
hk

)− f‖W ∗ is small enough, so that
the mentioned gap in this argument for uniform boundedness of ukhk (see Remark 4.19) can be
neglected and the part 1

βk
‖u− u0‖

2
V of the regularization term is omitted.

Error estimator for I1:

We consider

I1(q, u) = ‖C ′(uold)(u− uold) + C(uold)− gδ‖2G + 1
β
‖q − q0‖

2
Q

and the Lagrange functional

L(q, u, z) := I1(q, u) + h(z)−B(q, u)(z)

with h ∈W ∗ and B(q, u) ∈W ∗ defined as

h := f −A(qold, uold)−A′q(qold, uold)(qold)−A′u(qold, uold)(uold)
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4.2. All-at-once formulations

and
B(q, u) := A′q(qold, uold)(q) +A′u(qold, uold)(u) .

As already mentioned in Section 2.4, 3.3, 4.1.2 and 4.2.1, this approach is based on [11],
combining the current quantity of interest with information on the minimization problem.
There holds a similar result to Proposition 4.1 (see also [39]), which allows to estimate the
difference I1(q, u) − I1(qh, uh) by computing a discrete stationary point xh = (qh, uh, zh) ∈
Xh = Qh × Vh ×Wh of L. This is done by solving the equations

zh ∈Wh : A′u(qold, uold)(du)(zh) = I ′1,u(qh, uh)(du) ∀du ∈ Vh (4.122)
uh ∈ Vh : A′q(qold, uold)(qh)(dz) +A′u(qold, uold)(uh)(dz) = h(dz) ∀dz ∈Wh (4.123)
qh ∈ Qh : I ′q(qh, uh)(dq) = A′q(qold, uold)(dq)(zh) ∀dq ∈ Qh (4.124)

Then the error estimator η1 for I1 can be computed as

I1 − I1,h = I1(q, u)− I2(qh, uh) ≈ 1
2L
′(xh)(πhxh − xh) = η1 (4.125)

(cf. Section 4.1.2 and [39]).

Remark 4.20. Please note that the equations (4.122)–(4.124) are solved anyway in the process
of solving the optimization problem (4.95),(4.96).

Error estimator for I2:

The computation of the error estimator for I2 can be done similarly to the computation of η2
in Section 4.1.2 (or ηI from [39]) by means of the Lagrange functional L. We consider

I2(u) := ‖C ′(uold)(u− uold) + C(uold)− gδ‖2G

and compute a discrete stationary point yh := (xh, x1,h) ∈ Xh ×Xh of the auxiliary Lagrange
functional

M(y) := I ′2(u) + L′′(x)(x1)

by solving the equations

xh ∈ Xh : L′(xh)(dx1) = 0 ∀dx1 ∈ Xh

x1,h ∈ Xh : L′′(xh)(x1,h, dx) = −I ′2(uh)(du) ∀dx ∈ Xh .

Then we compute the error estimator η2 for I2 by

I2 − I2,h = I2(u)− I2(uh) ≈ 1
2M

′(yh)(πhyh − yh) = η2 .

Error estimator for I3:

In Remark 4.18 we already mentioned that the W ∗-norm in I3 can be evaluated on a separate
very fine mesh, so that we will neglect the difference between ‖A(qold, uold)− f‖W ∗ and
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4. Iteratively regularized Gauss-Newton methods

‖A(qold, uold)− f‖W ∗h . This implies that we don’t need to compute the error estimator η3,
since then we assume I3 = I3,h, such that (4.29) holds, and the first part of (4.28) is trivially
fullfilled.

Nevertheless, for completness, we will give a rough idea how one could estimate an error of the
form

‖E(qold, uold)‖W ∗ − ‖E(qold, uold)‖W ∗h
for the typical case V = W = H1

0 (Ω). We exclude the trivial case E(qold, uold) = 0 and define
the functional Ψ : V → R,

Ψ(v) = ‖∇v‖
L

2(Ω)

and the auxiliary Lagrangian M : V × V ,

M(v, w) = Ψ(v) + 〈E(qold, uold), w〉V ∗,V − (∇v,∇w)
L

2(Ω) .

Let v ∈ V , vh ∈ Vh solve the equations

(∇v,∇ϕ)
L

2(Ω) = 〈E(qold, uold), ϕ〉V ∗,V ∀ϕ ∈ V ,

(∇vh,∇ϕ)
L

2(Ω) = 〈E(qold, uold), ϕ〉V ∗,V ∀ϕ ∈ Vh

and let
w = 1

‖∇v‖
v , wh = 1

‖∇vh‖
vh . (4.126)

Then it is easily checked that (v, w) ∈ V × V and (vh, wh) ∈ Vh × Vh are continuous and
discrete stationary points of M , i.e.,

M ′v(v, w)(ϕ) = (‖∇v‖
L

2(Ω))
−1(∇v,∇ϕ)

L
2(Ω) − (∇ϕ,∇w)

L
2(Ω) = 0 ∀ϕ ∈ V , (4.127)

M ′w(v, w)(ϕ) = 〈E(qold, uold), ϕ〉V ∗,V − (∇v,∇ϕ)
L

2(Ω) = 0 ∀ϕ ∈ V ,

M ′v(vh, wh)(ϕ) = (‖∇vh‖L2(Ω))
−1(∇vh,∇ϕ)

L
2(Ω) − (∇ϕ,∇wh)

L
2(Ω) = 0 ∀ϕ ∈ Vh , (4.128)

M ′w(vh, wh)(ϕ) = 〈E(qold, uold), ϕ〉V ∗,V − (∇vh,∇ϕ)
L

2(Ω) = 0 ∀ϕ ∈ Vh ,

and there holds

‖E(qold, uold)‖V ∗ − ‖E(qold, uold)‖V ∗h
= ‖∇v‖

L
2(Ω) − ‖∇vh‖L2(Ω)

= Ψ(v)− Ψ(vh)
= 1

2M
′(vh, wh)(v − v̂h, w − ŵh) +R

= 1
2

[
〈E(qold, uold), w − ŵh〉V ∗,V − (∇vh,∇(w − ŵh))

L
2(Ω)

]
+R

for arbitrary v̂h, ŵh ∈ Vh with some remainder term R (cf. Section 2.4, 3.3 and 4.1.2). Please
note that due to the relation (4.126) the dual variable wh is obtained without solving an
additional system of equations; different to Section 4.2.1, where we have an additional variable
δx, for which this is not the case.
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Error estimator for I4:

We already mentioned in Remark 4.18 that we will not compute η4 (with the same reasoning
as in Section 4.1.2), as the error |I4 − I4,h| needs to be controlled only through the very weak
assumption ηk4 → 0 as k →∞ (cf. (4.28)).

Remark 4.21. We wish to mention once more that these error estimators are not reliable,
see Remark 3.10.

Algorithm

Since we only know about the existence of an upper bound % on ‖zk‖W and ‖zkhk‖Whk
(cf.

Corollary 4.12), but not its value, we choose % (cf. (4.108)) heuristically, i.e., in each iteration
step we set % = %k = max{%k−1 , ‖z

k
hk
‖Whk

} for the discrete counterpart zkhk of zk.

As already mentioned in the discussion about error estimation in this section, we neglect the
part 1

βk
‖u− u0‖

2
V of the regularization term.

As motivated in the previous subsection “Computation of the error estimators”, we assume
ηk3 = 0 for all k, such that we neither compute η3 nor η4, although, for simplicity, we evaluate
Ik3,h on the current mesh instead of a very fine mesh. Thus, we only check for the condition

ηk1 ≤
(
θ̃ − 2

(
2c2
tc + (1 + 2ctc)

2

τ2

))
Ik3,h

on ηk1 in Assumption 4.11.

For computing βk, h = hk fulfilling (4.18), we can resort to the Algorithm from [39] (cf.
Algorithm 4.2, Theorem 4.1).

The presented Generalized Gauss-Newton formulation can be implemented according to the
following Algorithm 4.6. The algorithm is illustrated by a flowchart in Figure 4.4.

The structure of the loops is the same as in Algorithm 4.1 from Section 4.1, but here, we
only have to solve linear PDEs (i.e., step 6 in Algorithm 4.4 is replaced by “Solve linear
PDE”), which justifies the drawback of an additional loop in comparison to [65] (see also
Algorithm 4.5).

We mention once again that the Penalty problem is only considered for the evaluation of I3,h.
When it comes to optimization, we always solve the constrained problem (4.110), and not the
penalty problem (4.78).
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Algorithm 4.6: Generalized Gauss-Newton Method

1: Choose τ , τβ, τ̃β, θ̃, θ̃ such that 0 < θ̃ ≤ θ̃ < 1 and (4.62) holds with cS = 2.
θ̃ = (θ̃ + θ̃)/2 and max{1 , τ̃β} < τβ ≤ τ , and choose c1, c2 and c3, such that the
second part of (4.29) is fulfilled.

2: Choose a discretization h = h0 and starting value q0
h(= q0

h0
) and set q0

old = q0
h.

3: Choose a starting value u0
h(= u0

h0
) (e.g., by solving the nonlinear PDE

A(q0
old, u

0
old) = f in W ∗h0

) and set u0
old = u0

h.
4: Compute the adjoint state z0

h(= z0
h0

) (see (4.98)), evaluate ‖z0
h‖Wh

, set %0 =
‖z0
h‖Wh

. and evaluate I0
3,h (cf. (4.91)).

5: Set k = 0 and h = h1
0 = h0.

6: while Ik3,h > τ2δ2 or k = 0 do
7: Set h = h1

k.
8: Solve the optimization problem (4.55).
9: Set h2

k = h1
k and δβ =

√
θ̃Ik3,h.

10: while Ik2,h >
(
τ2
β + τ̃

2
β

2

)
δ2
β do

11: With qkold, u
k
old fixed, apply Algorithm 4.2 (with quantity of interest Ik2

and noise level δβ) starting with the current mesh h(= h1
k) to obtain a

regularization parameter βk and a possibly different discretization h2
k such

that (4.18) holds. Therewith, also the corresponding vkh = vk
h

2
k
, qkh = qk

h
2
k

according to (4.55) are computed.
12: Set h = h2

k.
13: Evaluate the error estimator ηk1 (cf. (4.89), (4.91)).
14: Set h3

k = h2
k.

15: if (4.63) with cS = 2 and ηk3 = 0 is violated then
16: Refine grid with respect to ηk1 such that we obtain a finer discretization h3

k.
17: Solve the optimization problem (4.55) and evaluate ηk1 .
18: else
19: Set qk+1

old = qkh, u
k+1
old = ukold + vkh.

20: Set h = h3
k.

21: Compute the adjoint state zk+1
h (= zk+1

h
3
k

) (see (4.98)), evaluate ‖zk+1
h ‖Wh

, set

%k = max{%k−1 , ‖z
k+1
h ‖Wh

} and evaluate Ik+1
3,h .

22: Set h1
k+1 = h3

k (i.e., use the current mesh as a starting mesh for the next
iteration).

23: Set k = k + 1.
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4.2. All-at-once formulations

(4.63) ?

STOP

I3≤τ2δ2?

I 2≤(τβ
2
+

τ̃β
2

2 )δβ
2

Solve (4.55)

Alg. 4.2

Gauss-Newton step Refine

Solve (4.55)

⇒β , h , q , v

⇒q , v

⇒q ,v

⇒h⇒qold , uold

Figure 4.4.: Illustration of Algorithm 4.6. The arrow within the blocks point to
variables that are computed in this step.
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4.3. Numerical results

As mentioned and justified in Section 4.1.3, we will not implement the reduced form of IRGNM
from Section 4.1 (cf. Algorithm 4.1), but concentrate on the all-at-once formulation from
Section 4.2. We already discussed the implementational aspect in the subsection “Algorithm”
in Section 4.2 and we presented a possible implementation in Algorithm 4.6.

We consider again the test examples from Section 3.4 with the same sources (a), (b), and (c)
and observation operators (i), (ii) as in Section 3.6.

The concrete choice of the parameters for the numerical tests is as follows: ctc = 10−7,
θ̃ = 0.4999, θ̃ = 0.2, τ = 5, τβ = 1.66, τ̃β = 1, (c2 = 0.9999, c3 = 0.0001). The coarsest
(starting mesh) consists of 25 nodes and 16 equally sized squares, the inital values for the
control and the state are q0 = 0 and u0 = 0 and we start with a regularization parameter
β = 10.

Considering the numerical tests, we are mainly interested in saving computation time compared
to Algorithm 3.1 (NT) from Chapter 3, where the inexact Newton method for the determination
of the regularization parameter β is applied directly to the nonlinear problem, instead of the
linearized subproblems (4.55). The choice of the parameters from Section 3.6 implies that
both algorithms (NT) and the Generalized Gauss-Newton Algorithm 4.6 (GGN) are stopped,
if the concerning quantities of interest fall below the same bound (τ2

δ2 for (NT) and τ2δ2 for
(GGN)).

4.3.1. Example 1

First we consider Example 3.1 from Section 3.4, for which we have already seen the numerical
results using Algorithm 3.1 (NT):

For q ∈ L2(Ω) find u ∈ H1
0 (Ω) such that{

−∆u+ ζu3 = q in Ω
u = 0 on ∂Ω .

For the same configuration as in Section 3.6.1, i.e., source (a), point measurements (i), ζ = 1
and 1% noise, we present the reconstructions obtained by Algorithm 4.6 (GGN). Despite the
linearizations, the algorithm detects the location of the source very well and refines the mesh
accordingly.

Taking a look at Figure 4.6 the reader can track the behavior of Algorithm 4.6 (GGN). The
algorithm goes from right to left in Figure 4.6, where the quantities of interest I2 and I3 (or
rather their discrete counterparts I3,h and I2,h) are rather large. The noise level for the inner
iteration θ̃I3,h is about 0.68 in the beginning. For this noise level the stopping criterion for
the β-algorithm (step 10 and 11 in Algorithm 4.6) is already fulfilled, such that only one
Gauss-Newton step is made without refining or updating β. This decreases the noise level
θ̃I3,h to about 0.41. Then the β-algorithm comes into play, with one refinement step and
three β-steps, which in total reduces I2,h from 1.340 to 0.48, with which the β-algorithm
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4.3. Numerical results

Figure 4.5.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (a)(i), ζ = 1, 1% noise using (GGN)

terminates. The subsequent run of the β-algorithm (with a smaller noise level of 0.25) consists
of one refinement step and two β enlargement steps and so on. Finally, after 7 Gauss-Newton
iterations, both quantites of interest I2,h and I3,h fulfill the required smallness conditions such
that the whole Gauss-Newton Algorithm terminates. (The fact that it looks like the line for
I2 touches the one for I3 is just a coincidence, see the corresponding graph for another test
configuration Figure 4.7.)
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Figure 4.6.: GGN algorithm for Example 1 (a)(i) with ζ = 1 and 1% noise using
(GGN)

In Table 4.1 we present the respective results (i.e., Example 1 (a) (i), 1% noise) for different
choices of ζ (first column). In order to better be able to compare the results from Algorithm 3.1
with the ones from Algorithm 4.6, we show here once more the values from Table 3.2. In
the second and fifth column in Table 4.1 one can see the relative control error (3.92), in the
third and sixth column is the number of nodes in the adaptively refined mesh, and in the
forth and seventh column one can see the regularization parameter obtained by (GGN) and
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(NT) respectively. The eighth column shows the gain with respect to computation time using
(GGN) instead of (NT). We can see that we have the same situation as in Section 3.6: The
reduction of computation time is about the same for all ζ, where the computation times in
general are higher (thus more representative) for larger ζ. The same holds for the number of
nodes and the relative control error. Only the obtained regularization parameter is larger, the
larger ζ is. At the same time, it yields a smaller control error, which at first glance seems to be
somewhat surprising, since (GGN) only works with the linearized state equation. One possible
explanation could be the less accurate evaluation of the norms in (3.92), since we evaluate these
norms on the final mesh of the particular algorithm, i.e., for (GGN) we evaluated on a much
coarser mesh than for (NT). But on the other hand, a comparison between the reconstructions
from Figure 4.5 and Figure 3.4 confirms the better results by (GGN). So it seems that (GGN)
finds a better regularization parameter, which causes the better reconstruction.

Table 4.1.: Algorithm 4.6 (GGN) versus Algorithm 3.1 (NT) for (a)(i) for different
choices of ζ with 1% noise. CTR: Computation time reduction using
(GGN) instead of (NT)
ζ GN NT CTR

error β # nodes error β # nodes

1 0.395 4899 781 0.456 3085 38665 98%
10 0.395 5155 769 0.452 3194 38377 99%

100 0.393 7579 761 0.443 4999 31967 95%
1000 0.421 17445 677 0.475 11463 44413 99%

Due to the mentioned larger and consequently more significant computation times, we only
consider ζ = 1000 or ζ = 100 in the following.

To see that the algorithm behaves similarly when considering an L2 tracking type functional,
i.e., configuration (ii) (see the beginning of Section 3.6), we invite the reader to take a look at
Figure 4.7, where the Gauss-Newton steps, the refinement steps, and the β updating steps are
presented for Example 1 (a) (ii) with ζ = 1000 and 1% noise.

Algorithm 4.2 starts with noise level θ̃I3,h = 2.8 · 10−2, decides to increase β three times, until
I2,h is small enough (decreased from 6.2 · 10−3 to 2.9 · 10−3). There follows a Gauss-Newton
step, which slightly increases I2.h, but at this point more importantly decreases I3,h. The next
run of Algorithm 4.2 consists of a refinement step and three β steps. After six Gauss-Newton
iterations, I2,h is decreased to 1.2 · 10−5 and I3,h to 3.1 · 10−5 and Algorithm 4.6 terminates.

In Figure 4.8 we present the reconstruction and the adaptively refined mesh produced by
Algorithm 4.6 (GGN). The mesh is much coarser than with Algorithm 3.1 (NT) (only 137
instead of 1305 nodes), which causes a saving of computation time of 99%. The regularization
parameter is slightly smaller and the relative control error (3.92) is a bit larger, see Table 4.2.

The results for a different exact source distribution (b) can be found in Figure 4.9 for point
measurements (i) and in Figure 4.10 for the L2-projection alternative (ii).

In both cases (GGN) produces much coarser meshes than (NT), especially for (i), which leads
to a remarkable reduction of computation time, which can be read out of Table 4.2. The
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Figure 4.7.: GGN algorithm for Example 1 (a)(ii) with ζ = 1000 and 1% noise
using (GGN)

Figure 4.8.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (a)(ii), ζ = 1000, 1% noise using (GGN)

Figure 4.9.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (b)(i), ζ = 1000, 1% noise using (GGN)
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4. Iteratively regularized Gauss-Newton methods

Figure 4.10.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (b)(ii), ζ = 1000, 1% noise using (GGN)

obtained regularization parameter is larger than for (NT), which explains the smaller control
error.

Figure 4.11.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (c)(i), ζ = 1000, 1% noise using (GGN)

The same observations can be made for the reconstruction of the source (c), see Figure 4.11
and Figure 4.12.

Figure 4.12.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 1 (c)(ii), ζ = 1000, 1% noise using (GGN)

The key results of the previous test configuration for Example 1 for (GGN) as well as (NT)
are collected in Table 4.2.

We come back to the example source (a) and examine the results for different noise levels.
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4.3. Numerical results

Table 4.2.: Algorithm 4.6 (GGN) versus Algorithm 3.1 (NT) for Example 1 with
1% noise. CTR: Computation time reduction using (GGN) instead of
(NT)

Example GN NT CTR

error β # nodes error β # nodes

(a) (i) 0.421 17445 677 0.475 11463 44413 99%
(a)(ii) 0.318 3449334 137 0.302 4368044 1305 53%
(b) (i) 0.225 1764 241 0.300 947 20231 98%
(b)(ii) 0.247 243290 241 0.276 151048 761 33%
(c) (i) 0.431 396 673 0.450 261 11785 91%
(c)(ii) 0.467 36831 189 0.461 42541 651 28%

In Figure 4.13 and Figure 4.14 we display the reconstructions of the control and the state
obtained by (GGN) for configuration (i) with ζ = 100 for the noise levels 1%, 2%, and 4%.

Figure 4.13.: Reconstructed control for Example 1 (a)(i), ζ = 100 for different noise
levels. FLTR: 1%, 2%, 4% noise using (GGN)

Figure 4.14.: Reconstructed state for Example 1 (a)(i), ζ = 100 for different noise
levels. FLTR: 1%, 2%, 4% noise using (GGN)

The corresponding refined meshes can be found in Figure 4.15.

In Table 4.3 we list the relative control error (3.92), the computed final regularization parameter
β, and the number of nodes in the obtained mesh for p = 0.5%, p = 1%, p = 2%, p = 4%, and
p = 8% and come to the same conclusion as for Algorithm 3.1 (NT) in Section 3.6: The more
noise, the worse the reconstruction, the stronger the regularization, the coarser the mesh.
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Figure 4.15.: Adaptively refined mesh for Example 1 (a)(i), ζ = 100 for different
noise levels. FLTR: 1%, 2%, 4% noise using (GGN)

Table 4.3.: Different noise levels for Example 1 (a)(i), ζ = 100 using (GGN)
noise error β # nodes

0.5% 0.360 13689 761
1% 0.393 7579 761
2% 0.549 1748 361
4% 0.770 817 41
8% 1.03 53 41

4.3.2. Example 2

In the following we consider Example 3.2 (also see Section 3.6.2):

For q ∈ L2(Ω), q ≥ 0 almost everywhere in Ω find u ∈ H1
0 (Ω) such that{

−∆u+ qu = f in Ω
u = 0 on ∂Ω .

Like in Section 3.6.2, we choose the initial guess as well as the starting value q0 = q0 = 0 ∈ L2(Ω)
for q and neglect the constraint q ≥ 0 in our computations.

In Section 3.6.2 we have seen the results of Algorithm 3.1 (NT). Here, we will present how the
Generalized Gauss-Newton Algorithm 4.6 (GGN) performs on this particular example.

Figure 4.16 shows the reconstructions of the control and the state as well as the adaptively
refined mesh produced by (GGN) for the exact source distribution (a) (see the beginning of
Section 3.6) and 1% noise.

For the source distribution (b) the corresponding reconstructions and the obtained mesh are
displayed in Figure 4.17. The key results for both configurations are collected in Table 4.4,
where we present the results of (NT) from Table 3.11 once again for comparison.

For both, (a) and (b), (GGN) is faster than (NT), mainly because it refines a lot less. The
control errors are within the same range. For (a) (NT) yields a better reconstruction – probably
due to a larger regularization parameter – while for (b) it is the other way around. For (a)
the error ist strikingly large for both algorithms. In Section 3.6.2 we already tried to give
an explanation for this behavior of (NT), namely the negligence of the control error. This
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4.3. Numerical results

Figure 4.16.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 2 (a)(i), 1% noise using (GGN)

Figure 4.17.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 2 (b)(i), 1% noise using (GGN)

Table 4.4.: Algorithm 4.6 (GGN) versus Algorithm 3.1 (NT) for Example 2 with
1% noise. CTR: Computation time reduction using (GGN) instead of
(NT)

Example GN NT CTR

error β # nodes error β # nodes

(a) 0.946 30168 725 0.930 43504 2033 10%
(b) 0.590 11732 641 0.669 6027 7663 35%

153



4. Iteratively regularized Gauss-Newton methods

argumentation, however, cannot hold for (GGN), since there, the control enters the right-hand
side linearly: {

−∆u+ qoldu = f + qolduold − quold in Ω
u = 0 on ∂Ω

,

such that the error estimator for the control discretization vanishes (see the explanation in
Section 3.6.2). So the large error seems actually to be down to the bilinearity of the PDE (also
see Section 3.4). In order to still obtain a better reconstruction one could for instance reduce
the size of τ (τ for (NT)).

4.3.3. Example 3

Finally, we consider Example 3.3 and Example 3.4, where (as in Section 3.6) we replaced q by
(1 + q):

For q ∈ L2(Ω), q ≥ 0 almost everywhere in Ω find u ∈ H1(Ω) such that

−∆u− (1 + q)u = f in Ω

under Dirichlet zero boundary conditions

u = 0 on ∂Ω ,

or Neumann zero boundary conditions

∂nu = 0 on ∂Ω .

We consider two possible right-hand sides:

f1 = −1
f2 = 4π2 [sin(2πx− π

2 )(sin(2πy − π
2 ) + 1) + sin(2πy − π

2 )(sin(2πx− π
2 ) + 1)

]
− (sin(2πx− π

2 ) + 1)(sin(2πy − π
2 ) + 1) .

Like for the previous example (Example 2), we choose the initial guess and the starting value
q0 = q0 = 0 ∈ L2(Ω) for q and neglect the constraint q ≥ 0 for simplicity.

We restrict ourselves to the test configuration (a), where, in order to compare the results to
the ones from Section 3.6 (NT), we choose c = 1 and 0.01% of noise.

The reconstructions of the control and the state as well as the adaptively refined mesh produced
by (GGN) for the right-hand side f = f1 and Dirichlet zero boundary conditions can be seen
in Figure 4.18.

The corresponding results for f = f2 are shown in Figure 4.19 and the key results for both
right-hand sides are collected in Table 4.5.

The observations from the previous examples are confirmed once again. (GGN) refines a lot
less than (NT), where the resulting control error and the regularization parameter only differ
slightly. Overall (GGN) is again much faster than (NT).

154



4.3. Numerical results

Figure 4.18.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 3 (a)(i), 1% noise, f = f1, Dirichlet zero boundary
conditions using (GGN)

Figure 4.19.: FLTR: reconstructed control, reconstructed state, adaptively refined
mesh for Example 3 (a)(i), 1% noise, f = f2, Dirichlet zero boundary
conditions using (GGN)

Table 4.5.: Algorithm 4.6 (GGN) versus Algorithm 3.1 (NT) for Example 3 (a)(i)
with 1% noise. CTR: Computation time reduction using (GGN) instead
of (NT)

right-hand side NT GN CTR

error β # nodes error β # nodes

f1 0.649 682138 3001 0.655 715479 6789 45%
f2 0.419 2859 8397 0.415 3008 65623 82%
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To summarize the results from Section 4.3, the proposed Generalized Gauss-Newton method
(GGN) seems to avoid overrefinement, which leads to a remarkable reduction of computation
time with respect to (NT). At the same time it usually finds a larger regularization parameter,
which yields good reconstructions despite the coarse mesh. Unfortunately the replacement
of the nonlinear state equation by a linear one as such was not the crucial factor for the
shorter computation time, but rather the fact that this enabled the use of Algorithm 4.2, which
exploits the advantages of a linear-quadratic optimal control problem.

For this example, we also tested another way of replacing the nonlinear PDE in (NT) by a
linearized one. Since this, however, does not fit into the framework of this chapter, we refer the
reader to Appendix D, where we consider the Born approximation for the Helmholtz equation
(cf., e.g., [15]).
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In this thesis, we considered strategies for the efficient solution of nonlinear inverse prob-
lems combining the computation of a regularization parameter with adaptive discretization
methods.

In the first part (Chapter 3), we presented an extension of the adaptive discretization strategy
for parameter identification from [39] to the case of nonlinear ill-posed problems. For this
purpose we used the discrepancy principle and applied an inexact Newton method to the
resulting quantity of interest. By imposing conditions on the quantity of interest and the
reduced forward operator F , we provided a general rates result based on Jensen’s inequality,
which is not restricted to the context of this thesis. In order to guarantee convergence of
the resulting sequence of regularization parameters, we derived refinement criteria, which we
combined with goal-oriented error estimators [10, 11]. Main difference of our approach to [39]
consisted in compensating the lack of convexity of the cost funtional and the lack of knowledge
about lower and upper bounds on the first, second and third derivative of the quantity of
interest with respect to the regularization parameter. We considered quadratic convergence (as
in [39]), but also linear convergence conditions, where we extended the idea from [98] regarding
bounds on the second derivative. In addition to the original stationary formulation, we also
considered parabolic problems in Section 3.7, where the proposed algorithm decides whether
to refine in space or in time. The strength of the presented method lies in the ability to save
a considerable amount of degrees of freedom in the beginning of the Newton type iteration
for determining the regularization parameter. Indeed, our numerical experiments showed a
remarkable gain in computation time with our strategy as compared to uniform refinement.

In the second part (Chapter 4), we combined this idea with iteratively regularized Gauss-
Newton methods; first, in a reduced form using the parameter-to-solution map (see Section 4.1),
and second in an all-at-once formulation (see Section 4.2), where the measurement equation
and the PDE are treated simultaneously. We considered two types of all-at-once approaches:
a least squares form and a Generalized Gauss-Newton formulation. In both cases, i.e., for
reduced and all-at-once form, we showed convergence and proved convergence rates which we
carried over from the continuous to the discretized setting by controlling precision only in four
real valued quantities per Newton step. The choice of the regularization parameter in each
Newton step and of the overall stopping index have been done a posteriori, via a discrepancy
type principle. We only provided numerical experiments for the all-at-once formulation, more
specifically for the Generalized Gauss-Newton approach. The reason for this is that this
formulation allows us to consider only the linearized PDE as a constraint in each Newton step,
which seemed to be the more promising alternative to save computational effort. From the
numerical tests we have seen that the presented method yields reasonable reconstructions and
can even lead to a large reduction of computation time compared to the non-iterative method
from Chapter 3.
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An idea to possibly even further reduce the computational effort lies in the combination with
the Hierarchical Trust region method proposed in [72]. Instead of using Newton’s method
for the solution of the optimal control problem (in each step of the inexact Newton method
for the computation of the regularization parameter), we could use this modification of the
usual trust region method (cf., e.g., [26, 95]), where second order information is computed on
a coarser mesh than all other computations in order to save computational costs. The choice
of this mesh (in terms of resolution) and the trust region radius are controlled simultaneously,
which finally leads to a respectable reduction of computation time (see [72]) compared to a
usual trust region method.

We expect that the adaptive strategy using goal oriented error estimators can also be used in
the context of different parameter choice rules such as the balancing principle [80], which is
of particular interest in case ν > 1

2 in the Hölder type source condition (cf. Assumption 3.5,
Remark 3.5), where the discrepancy principle fails to provide optimal rates. Moreover, we hope
that the use of the balancing principle with a sufficiently strong source condition will allow us
to avoid conditions on F like the tangential cone condition (see Assumption 3.3), such that
we can also take strongly nonlinear problems into consideration. Another (discrepancy type)
choice rule is presented in [114], which enables the use of Poisson instead of Gaussian noise.

In our considerations for the parabolic setting, we assumed that the control is constant in
time and that the spatial discretization is fixed for all time intervals. However, the proposed
method could be extended to the case of time-dependent control and dynamic meshes, i.e.,
meshes that change in each time step. A corresponding formulation for the discretization of
the optimal control problem including adaptivity is given in [104].

Another interesting question is if and how the derived results can be extended to the case of
control bounds. In this context, approaches combining the choice of a regularization parameter
with adaptive discretizations can be found in [110, 111].

Moreover, a possible combination of adaptivity with regularization by projection onto finite
dimensional spaces in place of, or in addition to, Tikhonov regularization could be interesting.
Instead of the regularization parameter, we would have to choose the discretization level.
Using dual-weighted-residual error estimators, this could be done in an efficient manner
during a multi-level method, where the discrepancy principle serves as a stopping criterion.
We distinguish two approaches: discretization in the image space and discretization in the
preimage space. The former, however, seems to require a large number of quantities of interest,
which may diminish the efficiency of the adaptive approach. Theoretical results concerning
regularization by discretization in the preimage space without adaptivity are provided in
[70].

158



Acknowledgments

I gratefully acknowledge the funding received by the German Research Foundation (“Deutsche
Forschungsgesellschaft”, DFG) within the frame of the project “Adaptive Discretization methods
for the Regularization of Inverse Problems” (KA 1778/5-1 and VE 368/2-1) for most of my
time at the Technische Universität München. I also thank the Federal Ministry of Education
and Research (“Bundesministerium für Bildung und Forschung”, BMBF) for their financial
support for two months. My research stay at the University of Texas at Austin was financially
supported by the entrepreneurial program of the TUM program “Women for Math Science”
and by the TUM Graduate School, for which I am very grateful.

Above all, I would like to thank my supervisor Prof. Dr. Boris Vexler and my mentor and
reviewer Prof. Dr. Barbara Kaltenbacher for proposing the interesting DFG project and
subject of my thesis, and especially for their help, advice, patience as well as their friendly
ear and their empathy. I am also very grateful that Prof. Dr. Boris Vexler gave me the
opportunity of attending international conferences to broaden my horizon on a scientific level
and for letting me concentrate on my research as well as enable me to gain more experience in
teaching. I especially appreciate the close collaboration with Prof. Dr. Barbara Kaltenbacher,
since this can not be taken for granted living in two different countries.

Further, I thank Prof. Dr. Arnd Rösch for reviewing this thesis and for the interesting
discussions we had on conferences/workshops.

Also thanks to Prof. Dr. George Biros for inviting me for a research visit at the University of
Texas at Austin and for giving me an insight in his work.

All the numerical experiments in this thesis have been done with the optimization toolkit
RoDoBo [101] and the finite element library Gascoigne [35]. So a special credit is due to all
the people who have contributed to the development of these software packages.

Next, I would like to thank my colleagues at the university for the enjoyable time we spent
together inside and outside the workplace, for the exchange of ideas, and for their open doors
when it comes to organizational, as well as scientific questions. Especially I thank Martin,
Moritz, Konstantin, and Andreas, the colleagues I shared my office with, for treating all
my questions with patience and for the nice atmosphere they created. Thanks to Dominik,
Konstantin, and Andreas for helping me with implementational and technical matters and
thanks to Moritz, Florian K., Florian L., Ira, Dominik, Christian, and Andreas for proof-reading
parts of the manuscript.

Last but not least I thank my family and friends for the support they gave me over the years
in every kind of way and for always believing in me.

159





A. State, dual, and tangent equations

“State”: Find u ∈ V such that
L′z(q, u, z)(ϕ) = 0

for all ϕ ∈W .

“Dual”: Find z ∈W such that
L′u(q, u, z)(ϕ) = 0

for all ϕ ∈ V .

“Gradient”: Find q ∈ Q such that

L′q(q, u, z)(ϕ) = 0

for all ϕ ∈ Q.

“Tangent”: Find δu ∈ V such that

L′′uz(q, u, z)(δu, ϕ) = −L′′qz(q, u, z)(δq, ϕ)

for all ϕ ∈W .

“DualForHessian”: Find δz ∈W such that

L′′zu(q, u, z)(δz, ϕ) = −L′′qu(q, u, z)(δq, ϕ)− L′′uu(q, u, z)(δu, ϕ)

for all ϕ ∈ V .

“DualQI”: Find z(0)
1 ∈W such that

L′′zu(x)(z(0)
1 , ϕ) = −I ′u(u)(ϕ)

for all ϕ ∈ V .

“QIEq”: Find q1 ∈ Q such that

j′′(q)(q1, ϕ) = −L′′zq(x)(z(0)
1 , ϕ)

for all ϕ ∈ Q.

“K1Eq”: Find q2 ∈ Q such that

j′′(q)(q2, ϕ) = −K ′q1
(q, q1)(ϕ)

for all ϕ ∈ Q.
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A. State, dual, and tangent equations

“TangentK2For3rdDerivative”: Find u(0)
3 ∈ V such that

L′′uq(x)(u(0)
3 , ϕ) = −L′′′quz(x)(q1, u2, ϕ)− L′′′quz(x)(q2, u1, ϕ)

− L′′′uuz(x)(u1, u2, ϕ) + L′′′qqz(x)(q1, q2, ϕ)

for all ϕ ∈W .

“DualK2”: Find z(0)
3 ∈W such that

L′′zu(x)(z(0)
3 , ϕ) = −I ′′uu(x)(u2, ϕ)− L′′uu(x)(u(0)

3 , ϕ)− L′′quu(x)(q1, u2, ϕ)
− L′′′qzu(x)(q1, z2, ϕ)− L′′′quu(x)(q2, u1, ϕ)
− L′′′qzu(x)(q2, z1, ϕ)− L′′′zuu(x)(z1, u2, ϕ)
− L′′′uuu(x)(u1, u2, ϕ)− L′′′zuu(x)(z2, u1, ϕ)
− L′′′qqu(x)(q1, q2, ϕ)

for all ϕ ∈ V .

“K2Eq”: Find q3 ∈ Q such that

j′′(q)(q3, ϕ) = −L′′uq(x)(u(0)
3 , ϕ)− L′′zq(x)(z(0)

3 , ϕ)−K ′q(q, q1)(ϕ)
− L′′′uuq(x)(u1, u2, ϕ)− L′′′uzq(x)(u1, z2, ϕ)
− L′′′uzq(x)(u1, z1, ϕ)− L′′′qqq(x)(q1, q2, ϕ)
− L′′′qzq(x)(q1, z2, ϕ)− L′′′qzq(q2, z1, ϕ)
− L′′′quq(x)(q1, u2, ϕ)− L′′′quq(q2, u1, ϕ)

for all ϕ ∈ Q.
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B. Dual and tangent equations for the
parabolic setting

“Adjoint” (2.26): Find z ∈ Ṽ such that

− (∂tz, ϕ)I + ã′u(q, u)(z, ϕ) + (z(T ), ϕ(T )) =
∫
I
J ′1(u(t))(ϕ(t)) dt+ J ′2(u(T ))(ϕ(T )) (B.1)

for all ϕ ∈ Ṽ .

“Tangent” (2.29): Find δu ∈ Ṽ such that

(∂tδu, ϕI) + ã′u(q, u)(δu, ϕ) + (δu(0), ϕ(0)) = −ã′q(q, u)(δq, ϕ) + (u′0(q)(δq), ϕ(0))

for all ϕ ∈ Ṽ .

“Additional Adjoint” (2.30): Find δz ∈ Ṽ such that

−(∂tδz, ϕ)I + ã′u(q, u)(ϕ, δz) + (δz(T ), ϕ(T )) = −ã′′uu(q, u)(δu, ϕ, z)− ã′′qu(q, u)(δq, ϕ, z)

+
∫
I
J ′′1 (u(t))(δu(t), ϕ(t)) dt

+ J ′′2 (u(T ))(δu(T ), ϕ(T ))

for all ϕ ∈ Ṽ .

“DualQI”: Find z(0)
1 ∈ Ṽ such that

−(∂tz
(0)
1 , ϕ)I + ã′u(q, u)(ϕ, z(0)

1 ) + (z(0)
1 (0), ϕ(0)) = 2

∫
I
J ′1(u(t))(ϕ(t)) dt+ 2J ′2(u(T ))(ϕ(T ))

for all ϕ ∈ Ṽ .

“TangentK2For3rdDerivative”: Find u(0)
3 ∈ Ṽ such that

(∂tu
(0)
3 , ϕ)I + ã′u(q, u)(u(0)

3 , ϕ) + (u(0)
3 (0), ϕ(0))− (u′′0(q)(q1, q2), ϕ(0))

= −ã′′qu(q, u)(q1, u2, ϕ)− ã′′qu(q, u)(q2, u1, ϕ)− ã′′uu(q, u)(u1, u2, ϕ)− ã′′qq(q, u)(q1, q2, ϕ)

for all ϕ ∈ Ṽ .
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“DualK2”: Find z(0)
3 ∈ Ṽ such that

− (∂tz
(0)
3 , ϕ)I +˜̃a′u(q, u)(ϕ, z(0)

3 ) + (z(0)
3 (T ), ϕ(T ))

=
∫
I
J ′′1 (u(t))(u2(t), ϕ(t)) dt+ J ′′2 (u(T ))(u2(T ), ϕ(T ))

+
∫
I
J ′′1 (u(t))(u3(t), ϕ(t)) dt+ J ′′2 (u(T ))(u3(T ), ϕ(T ))

− ã′′uu(q, u)(u3, ϕ, z)− ã
′′
qu(q, u)(q1, ϕ, z2)− ã′′qu(q, u)(q2, ϕ, z1)− ã′′uu(q, u)(u2, ϕ, z1)

− ã′′uu(q, u)(u1, ϕ, z2)− ã′′′quu(q, u)(q1, u2, ϕ, z)− ã
′′′
quu(q, u)(q2, u1, ϕ, z)

− ã′′′uuu(q, u)(u1, u2, ϕ, z)− ã
′′′
qqu(q, u)(q1, q2, ϕ, z)

+
∫
I
J ′′′1 (u(t))(u1(t), u2(t), ϕ(t)) dt+ J ′′′2 (u(T ))(u1(T ), u2(T ), ϕ(T ))

for all ϕ ∈ Ṽ .

164



C. Implicit Euler scheme

Using the abbreviations

Qm := q−h,m , Um := u−h,m , Zm := z−h,m

∆Qm := δq−h,m , ∆Um := δu−h,m , ∆Zm := δz−h,m

Qim := q
(0),−
i,h,m , U im := δu

(0),−
i,h,m , Zim := z

(0),−
i,h,m for i = 1, 2, 3

the implicit Euler scheme for the State, Adjoint, Additional Adjoint, DualQI, TangentK2For3rdDerivative,
and DualK2 equations read for all Ψ ∈Wh:

State:

m = 0 : (U0, Ψ) = (u0(Q0), Ψ)
m = 1, . . . ,M : (Um, Ψ) + kmã(Qm, Um)(Ψ) = (Um−1, Ψ) + km(f(tm), Ψ)

Adjoint:

m = M : (Ψ,ZM ) + kM ã
′
u(QM , UM )(Ψ,ZM ) = −kMJ

′
1(UM )(Ψ) + J ′2(UM )(Ψ)

m = M − 1, . . . , 1 : (Ψ,Zm) + kmã
′
u(Qm, Um)(Ψ,Zm) = (Ψ,Zm+1) + kmJ

′
1(Um)(Ψ)

m = 0 : (Ψ,Z0) = (Ψ,Z1)

Tangent:

m = 0 : (∆U0, Ψ) = (u′0(Q0)(∆Q0), Ψ)
m = 1, . . . ,M : (∆Um, Ψ) + kmã

′
u(Qm, Um)(∆Um, Ψ) = (∆Um−1, Ψ)− kmã

′
q(Qm, Um)(∆Qm, Ψ)

Additional Adjoint:

m = M : (Ψ,∆ZM ) + kM ã
′
u(QM , UM )(Ψ,∆ZM )

= −kM ã
′′
uu(QM , UM )(∆UM , Ψ, ZM )− kM ã

′′
qu(QM , UM )(∆QM , Ψ,∆ZM )

+ kMJ
′′
1 (UM )(∆UM , Ψ) + J ′′2 (UM )(∆UM , Ψ)

m = M − 1, . . . , 1 : (Ψ,∆Zm) + kmã
′
u(Qm, Um)(Ψ,∆Zm)

= (Ψ,∆Zm+1)− kmã
′′
uu(Qm, Um)(∆Um, Ψ,∆Zm)

− kmã
′′
qu(Qm, Um)(∆Qm, Ψ, Zm) + kmJ

′′
1 (Um)(∆Um)(Ψ)

m = 0 : (Ψ,∆Z0) = (Ψ,∆Z1)
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(cf. [9]). Similarly we can formulate the implicit Euler scheme for

DualQI:

m = M : (Ψ,Z1
M ) + kM ã

′
u(QM , UM )(Ψ,Z1

M ) = 2kMJ
′
1(UM )(Ψ) + 2J ′2(UM )(Ψ)

m = M − 1, . . . , 1 : (Ψ,Z1
m) + kmã

′
u(Qm, Um)(Ψ,Z1

m) = (Ψ,Z1
m+1) + 2kmJ

′
1(Um)(Ψ)

m = 0 : (Ψ,Z1
0 ) = (Ψ,Z1

1 )

TangentK2For3rdDerivative:

m = 0 : (U3
0 , Ψ) = (u′′0(Q0)(Q1, Q2), Ψ)

m = 1, . . . ,M : (U3
m, Ψ) + kmã

′
u(Qm, Um)(U3

m, Ψ)
= (U3

m−1, Ψ)− kmã
′′
qu(Qm, Um)(Q1

m, U
2
m, Ψ)− kmã

′′
qu(Qm, Um)(Q2

m, U
1
m, Ψ)

− kmã
′′
uu(Qm, Um)(U1

m, U
2
m, Ψ)− kmã

′′
qq(Qm, Um)(Q1

m, Q
2
m, Ψ)

DualK2:

m = M : (Ψ,Z3
M ) + kM ã

′
u(QM , UM )(Ψ,Z3

M )
= kMJ

′′
1 (UM )(U3

M , Ψ) + J ′′2 (UM )(U3
M , Ψ) + kMJ

′′
1 (UM )(U2

M , Ψ) + J ′′2 (UM )(U2
M , Ψ)

− kM ã
′′
uu(QM , UM )(U3

M , Ψ, ZM )− kM ã
′′
qu(QM , UM )(Q1

M , Ψ, Z
2
M )

− kM ã
′′
qu(QM , UM )(Q2

M , Ψ, Z
1
M )− kM ã

′′
uu(QM , UM )(U2

M , Ψ, Z
1
M )

− kM ã
′′
uu(QM , UM )(U1

M , Ψ, Z
2
M )− kM ã

′′′
quu(QM , UM )(Q1

M , U
2
M , Ψ, ZM )

− kM ã
′′′
quu(QM , UM )(Q2

M , U
1
M , Ψ, ZM )− kM ã

′′′
uuu(QM , UM )(U1

M , U
2
M , Ψ, ZM )

− kM ã
′′′
qqu(QM , UM )(Q1

M , Q
2
M , Ψ, ZM ) + kMJ

′′′
1 (UM )(U1

M , U
2
M , Ψ)

+ J ′′′2 (UM )(U1
M , U

2
M , Ψ)

m = M − 1, . . . , 1 : (Ψ,Z3
m) + kmã

′
u(Qm, Um)(Ψ,Z3

m)
= (Ψ,Z3

m+1)− kmã
′′
uu(Qm, Um)(U3

m, Ψ, Zm)
+ kmJ

′′
1 (Um)(U3

m, Ψ) + kmJ
′′
1 (Um)(U2

m, Ψ)
− kmã

′′′
quu(Qm, Um)(Q1

m, U
2
m, Ψ, Zm)− kmã

′′
qu(Qm, Um)(Q1

m, Ψ, Z
2
m)

− kmã
′′′
quu(Qm, Um)(Q2

m, U
1
m, Ψ, Zm)− kmã

′′
qu(Qm, Um)(Q2

m, Ψ, Z
1
m)

− kmã
′′
uu(Qm, Um)(U2

m, Ψ, Z
1
m)− kmã

′′
uu(Qm, Um)(U1

m, Ψ, Z
2
m)

− kmã
′′′
qqu(Qm, Um)(Q1

m, Q
2
m, Ψ, Zm)

− kmã
′′′
uuu(Qm, Um)(U1

m, U
2
m, Ψ, Zm) + kmJ

′′′
1 (Um)(U1

m, U
2
m, Ψ)

m = 0 : (Ψ,Z3
0 ) = (Ψ,Z3

1 )
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D. Numerical results for the Helmholtz
equation via Born approximation

Instead of considering a sequence of linearized problems and iteratively updating the iterates qk

like we did in Chapter 4 , we treat here only the linearization at one initial guess q0 by Example
3. We will not provide any theoretical convergence results, but give a short motivation of the
basic idea and present numerical results for this approach.

For a motivation let us first consider the inverse medium problem in scalar scattering (cf. [15]),
i.e., the time-harmonic scalar wave equation

−∆ũ− k̃2ũ = f (D.1)

(plus some boundary conditions) with wavenumber k̃, which we divided into a parameter k0
characterizing the background, and a parameter k denoting the unkown perturbation of the
background medium, i.e., k̃2 = k2

0 + k2. The total scattered field is given as ũ = u0 + u with
incident field u0. Therewith, (D.1) becomes

−∆(u0 + u)− (k2
0 + k2)(u0 + u) = −∆u0 − k

2
0u0 − k

2u0 −∆u− k
2
0u− k

2u = f

Via Born approximation, i.e., considering the incident field instead of the total field, we neglect
the term k2u, such that we get

−∆u− k2
0u = k2u0

with u0 solving
−∆u0 − k

2
0u0 = f .

Transfering this reasoning to our setting

−∆ũ− (q0 + q)ũ = f (D.2)

we arrive at the following optimal control problem

min
(q,u)∈Q×V

‖C(u+ u0)− g̃δ‖2G + 1
β
‖q‖2Q

s.t. −∆u− q0u = qu0 ,

(D.3)

where u0 is given as solution to
−∆u0 − q0u0 = f , (D.4)

and noisy data g̃δ created as described in Section 3.6 (i),(ii) via exact data ũ† simulated as
solution to the bilinear PDE (D.2) on a very fine mesh. For our tests, we solved the linear
PDE (D.4) analytically.
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D. Numerical results for the Helmholtz equation via Born approximation

Since (D.3) is a linear-quadratic optimization problem, we can apply Algorithm 4.2. The
obtained reconstructions of the control and the state as well as the adaptively refined mesh for
the exact source distribution (a) with point measurements (i) (see the beginning of Section 3.6)
with q0 = 1, f = f1 (see Section 3.6.3) and Neumann zero boundary conditions are displayed
in Figure D.1.

Figure D.1.: Reconstructed control and adaptively refined mesh for the linearized
version of Example 3 (a)(i), 1% noise, f = f1, Neumann zero boundary
conditions

The corresponding results for f = f2 with Neumann and also with Dirichlet zero boundary
conditions can be found in Figure D.2 and Figure D.3.

Figure D.2.: Reconstructed control and adaptively refined mesh for the linearized
version of Example 3 (a)(i), 1% noise, f = f2, Neumann zero boundary
conditions

The resulting relative control error (3.92), the number of mesh nodes, and the computed
regularization parameter are shown in Table D.1.

Table D.1.: Algorithm 4.2 for the linearized version of Example 3 (a) (i), 1%
right-hand side and boundary conditions error β # nodes

f1, Neumann 0,38 15669 26048
f2, Neumann 0,427 8371 9942
f2, Diichlet 0,363 9877 12417

For f = f1 with Neumann boundary conditions we save 47% of computation time with respect
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Figure D.3.: Reconstructed control and adaptively refined mesh for the linearized
version of Example 3 (a)(i), 1% noise, f = f2, Dirichlet zero boundary
conditions

to (NT) and for f = f2 with Neumann boundary, we even save 95% of computation time. For
f = f2 and Dirichlet boundary conditions, we save 84% of computation time compared to
Algorithm 3.1 (NT) and 11% compared to Algorithm 4.6 (GN). To put this in perspective, we
mention once more that, although the proposed approach seems to work well for the tested
configurations, we did not give any theoretical results.
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Nomenclature

• F : operator in inverse problem equation (cf. (2.1))

• q: searched-for control/parameter (cf. (2.1), (2.15))

• Q: control space (Hilbert space) (cf. (2.1), (2.15))

• (., .)Q: inner product in Q (cf. beginning of Section 2.2) (analogously for L2(Ω))

• D: subdomain of Q (e.g., domain of F ) (cf. (2.1))

• g: exact data (cf. (2.1))

• q†: exact solution to F (q) = g (cf. Assumption 3.1,Assumption 4.1)

• G: observation space (Hilbert space) (cf. (2.1))

• gδ: noisy data (cf. (2.2))

• δ: noise (cf. (2.2))

• q0: initial guess for q

• R: range (cf. (2.6),Assumption 3.5)

• ‖.‖X→Y : operator norm (cf. Assumption 3.5)

• β: regularization parameter (cf. (2.4))

• i(β): misfit term of the reduced cost functional jβ for a solution of (2.4) in terms of β.

• τ : given parameter τ ≥ 1 in the discrepancy principle (cf. (2.8))

• β∗: “optimal” regularization parameter according to the discrepancy principle (cf. (2.8))

• C: observation operator (cf. (2.13))

• S: control-to-state operator (cf. (2.14))

• u: state (cf. (2.15))

• f : right-hand side of the state equation (cf. (2.15))

• A: state equation operator (cf. (2.15))

• V : state space (Hilbert space) (cf. (2.15))

• W : test space (Hilbert space) (cf. (2.15))

• W ∗ dual spaces of W (cf. beginning of Section 2.2)(analogously for V ∗)
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D. Numerical results for the Helmholtz equation via Born approximation

• 〈·, ·〉W ∗,W : duality pairing betweenW andW ∗ (cf. beginning of Section 2.2) (analogously
for V, V ∗)

• a: state equation operator (cf. (2.16))

• Jβ(q, u) cost functional (non-reduced) (cf. (2.18))

• I(u) misfit term of Jβ(q, u) (cf. (2.18))

• jβ(q): reduced cost functional (cf. (2.20))

• j′β(q)(δ): directional derivative (cf. (2.23))

• ι(q): misfit term of the reduced cost functional jβ

• i(β): misfit term of the reduced cost functional jβ for a solution of (2.4) in terms of β
(cf. (2.10))

• L: Lagrangian (cf. (2.24), if not defined otherwise locally)

• qδβ solution/stationary point to (2.4) for fixed β and δ. (cf. Remark 2.4, Chapter 2,
Assumption 3.4)

• Vh, Qh,Wh, Sh, Fh, jβ,h(= jh), ιh, ih, q
δ
β,h discretized versions of the quantities above (cf.

Section 2.3)

• id: identity map (cf., e.g., (2.42))

• ∇jβ(q): gradient of j at q, i.e., j′β(q)(δq) = (∇jβ(q), δq)Q (cf. Section 2.5.1)

• ∇2jβ(q): Hessian of j at q, i.e., j′′β(q)(δq, τq) = (δq,∇2jβ(q)τq)Q (cf. Section 2.5.1)

• ctc: constant in tangential cone condition (cf. Assumption 3.3, 4.4, 4.9 and 4.18)

• ψ: function used in the source condition Assumption 3.5

• β, β: lower and upper bound on β (cf. beginning of Section 3.2)

• τ , τ , τ̃ , τ , τ : bounds on τ (cf. Theorem 3.1, Theorem 3.4)

• η: constant in Assumption 3.6

• γ, γ: bounds on i′′(β) (cf. (3.26))

• k∗ stopping index for inexact Newton method for β (cf. (3.36) in Theorem 3.7)

• ikh, i
′k
h: approximations to i(βk),i′(βk) (cf. Theorem 3.7)

• Ṽ : “parabolic version” of V (cf. beginning of Section 3.7)

• (·, ·): L2 scalar product (cf. Section 3.4 below Example 3.4)

• (·, ·)
R
d : euclidian scalar product (cf. Section 3.4 below Example 3.4)

• cs: constant used in Sobolev’s embedding inequality (cf. (3.79))

• cp: Poincaré’s constant (cf. (3.80))
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• csp = cs

√
1 + c2

p (cf. Example 3.1 (iii))

• (NT): “Nonlinear Tikhonov”, standing for the method proposed in Chapter 3 (also see
Algorithm 3.1)

• FLTR: “From Left To Right”

• L2(I,H): space containing functions living in L2(Ω) in time with values in H (cf.
Section 3.7)

• (·, ·)I : L
2(Ω) inner product integrated over time (cf. (3.94))

• ã: “parabolic version” of a (cf. (3.95))

• J(q, u), I(u) in Section 3.7: “parabolic versions” of J, I listed above (cf. (3.97))

• L̃: “parabolic version” of L (cf. (3.98))

• (IRGNM): “Iteratively Regularized Gauss-Newton Method”, the method proposed in
Chapter 4 (also see Algorithm 4.6)

• I1, I2, I3, I4: quantities of interest for IRGNM in reduced form (cf. (4.6), (4.88))

• Ik1 , I
k
2 , I

k
3 , I

k
4 quantities of interest for IRGNM in step k in reduced form (cf. (4.8), (4.57),

(4.89))

• I1,h, I2,h, I3,h, I4,h: quantities of interest for IRGNM in reduced and discrete form (cf.
(4.13), (4.90))

• Ik1,h, I
k
2,h, I

k
3,h, I

k
4,h: quantities of interest for IRGNM in step k in reduced and discrete

form (cf. (4.14), (4.59), (4.91))

• qkold, u
k
old, u

k, vk, uold,h, uh, vh, u
k
old,h, u

k
h, w

k
h in Section 4.1: cf. beginning of Section 4.1

• τβ, δβ: cf. Theorem 4.1

• qk = qδ,k = qδ,kβ and qkh = qkhk = qδ,khk = qδ,kβ,hk (cf. Assumption 4.2)

• c1, c2, c3: constants used in Theorem 4.2

• c4, c5: constants used in (4.50), (4.51)

• S,R general misfit and regularization terms (cf. beginning of Section 4.1.4)

• D(R): domain of R (cf. (4.60))

• Dξ
R(q, q): Bregman distance (cf. (4.61))

• cS : constant used in Theorem 4.4

• TQ, TV : topologies (cf. Assumption 4.7)

• F,g,gδ, u†,T, L,K, P,M,Yα,µ: cf. beginning of Section 4.2

• ‖.‖Q×V : cf. (4.79)

• %: penalty parameter, cf. (4.78)
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• Lk−1,Kk−1: cf (4.87)

• Ck−1, r
g
k−1, r

f
k−1: cf. (4.102)

• Ch,k−1, Lh,k−1,Kh,k−1, r
g
h,k−1, r

f
h,k−1: cf. (4.118), (4.119)

• Tβk(q, u) objective functional for Generalized Gauss-Newton formulation (cf. (4.95)).

• ‖.‖X→Y : operator norm (cf. Assumption 4.17)

• (GGN): “Generalized Gauss-Newton”, the method proposed in Section 4.2.2 (see also
Algorithm 4.6)
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