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Zusammenfassung

Eine spezielle Klasse statischer kohärenter Risikomaße wird durch die sog. Cho-
quet Integrale, die ”statische Version” verzerrter Risikomaße dargestellt. Will
man diese auf ”naive” Weise zu dynamischen Risikomaßen verallgemeinern, so
stellt man fest, dass das Resultat nicht Zeit-konsistent ist. Allerdings ist es
möglich, ein dynamisches Risikomaß in diskreter Zeit durch Aneinanderreihung
von Choquet Integralen auf den Subintervallen rekursiv zu erzeugen – das sog.
verzerrte Risikomaß. Man kann zeigen, dass dieses Risikomaß in einem im-
mer feiner werdenden Bernoulli Random Walk Approximationsschema (für die
Brownsche Bewegung) nach entsprechender Reskalierung gegen die Lösung einer
BSDE konvergiert. Ein numerischer BSDE-Lösungsalgorithmus wurde imple-
mentiert und in einem Beispiel angewandt. Im eindimensionalen Fall kann sogar
noch mehr gezeigt werden, nämlich, dass die Lösung der BSDE für pfadweise
steigende Positionen sich zu einer klassischen bedingten Erwartung unter einem
äquivalenten Wahrscheinlichkeitsmaß reduzieren lässt. Ein großer Nachteil des
Ansatzes ist, dass die im Grenzwert auftauchende BSDE vom angewendeten
Approximationsschema abhängt. Deshalb wird am Ende der Arbeit ein an-
derer Ansatz, der ohne Approximation der Brownschen Bewegung auskommt,
vorgestellt.





Abstract

A special case of static coherent risk measures is given by Choquet integrals,
the ”static version” of distorted risk measures. If one tries to generalize them to
dynamic risk measures in a ”naive” way, one faces the problem that the result
will in general not be time-consistent. However, it is possible to construct a
time-consistent dynamic risk measure – the so called distorted risk measure –
in discrete time recursively, which corresponds to the Choquet integrals on the
time increments. It can be shown that after rescaling this risk measure con-
verges under a Bernoulli random walk approximation scheme to the solution
of a backward SDE (BSDE) as the number of time increments tends to infin-
ity and the maximum size of the time increments tends to zero. A numerical
solver for BSDEs is used to calculate the limiting dynamic risk measure in an
example. In one dimension, for pathwise increasing claims even more will be
shown, namely that the limiting dynamic risk measure reduces to a classical
conditional expectation under a particular equivalent probability measure. One
big disadvantage of this approach is that the limiting BSDE depends on the
approximation scheme for Brownian motion that was chosen. For that reason,
a different approach that does not need an approximation for Brownian motion
is proposed in the conclusion.





Acknowledgement
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1 Introduction

When a bank (or another regulated financial institution) takes a financial posi-
tion, it has to quantify the corresponding risk somehow and it has to hold an
appropriate capital reserve. This is achieved by so called risk measures. Since
a financial position often has a longer time to maturity and market conditions
can change significantly within this time, it is not enough to measure its risk
only at the beginning, when the contract is settled. It should rather be tracked
over the whole period until maturity (updating the information continuously
and using at any point in time only the information available at this time).
That leads to an adapted stochastic process, a so called dynamic risk measure.
Of course it is of interest for the bank to study such dynamic risk measures
carefully. For example the bank (financial institution) or the regulator could
have defined a boundary which should not be exceeded at any time within the
term. If one knows enough properties of the dynamic risk measure it might be
possible to compute the probability of exceeding the boundary (analytically or
by simulation). It turns out that the generalization of risk measures to dynamic
risk measures is not trivial, since in the dynamic setting, more conditions have
to be fulfilled to get something meaningful.

We will study a particular class of dynamic risk measures, the so called
distorted risk measures. First we consider risk measures ρ in the static case,
that can be written as a so called Choquet integral or Choquet expectation, i.e.
ρ(X) = CΨ[−X] where

CΨ[X] =

∫ 0

−∞
(Ψ(P (X > x))− 1)dx+

∫ ∞
0

Ψ(P (X > x))dx.

Furthermore we require Ψ to be a so called distortion. Note that in the case
Ψ = id this is nothing else than the usual expectation, so the Choquet ex-
pectation can be interpreted as a usual expectation with probabilities that are
transformed by Ψ. In practice, the distortion Ψ will be chosen to be concave
which means that for any fixed level the probability for a loss to exceed this
level is increased which in the end means that risk will be evaluated higher than
just with negative usual expectation. I.e. the distortions lead to an additional
safety buffer. Furthermore, Choquet integrals lead to coherent risk measures
when Ψ is a concave distortion. As a consequence these risk measures have a
supremum representation

CΨ[−X] = sup
Q∈DΨ

EQ[−X],

where DΨ is a set of measures depending on Ψ. The generalization of these risk
measures to the dynamic case will be called distorted risk measures.

Dynamic risk measures are closely related to solutions of backwards stochas-
tic differential equations (BSDEs). For distorted risk measures under a Bernoulli
random walk approximation scheme we will prove some interesting properties
of this BSDE. Furthermore examples of how to use distorted risk measures are
given and a numerical solution-scheme for BSDEs is implemented to simulate
the dynamical AV aR in these examples.
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The content of this thesis is organized as follows: In Section 2, the static
case is considered. First the definition of a risk measure in the static setting is
recalled, then it is defined what is meant by a distortion and a Choquet integral
and a representation and coherence theorem is stated. All the definitions and
properties are presented together with some examples of risk measures that are
useful in practice. Section 3 is about the dynamic case. It is shown that the
canonical way of generalizing the supremum representation to the dynamic case
leads to time-inconsistency and is therefore not successful. Instead another ap-
proach is introduced, namely to devide the time-interval which is of interest into
sub-intervals and to establish static risk measures on these sub-intervals. Then
the static risk measures are concatenated recursively in a time-consistent way
which yields a dynamic risk measure (that is indeed time-consistent), which is
called distorted risk measure. This can only be done in discrete time, therefore
it is an interesting question what happens if the number of sub-intervals is in-
creased to infinity while the mesh tends to zero. It can be shown that under
a Bernoulli random walk approximation, these distorted risk measures in dis-
crete time converge to a dynamic risk measure in continuous time, when some
proper rescaling is done. This continuous-time risk measure is strongly related
to the solution of a particular BSDE, depending on the distortion Ψ. Section
4 contains a larger example about evaluating the risk of a hedging cost process
in an incomplete market (under cross hedging, to be precise) when a variance
minimizing hedging strategy is applied. A numerical scheme is implemented to
solve the two-dimensional BSDE which appears in this example. In Section 5
the 1-dimensional case is studied and for an arbitrary but fixed distortion Ψ, the
corresponding BSDE is given in explicit form. Furthermore it is shown that for
a pathwise increasing claim which is Malliavin and Fréchet differentiable, the
dynamic risk measure simplifies to a usual conditional expectation under some
equivalent measure Q# that depends on the distortion Ψ. Finally, in Section 6
a conclusion is given, where also the problem that the limiting BSDE depends
on the chosen approximation scheme for the Brownian motion is discussed and
an idea of improvement is given.
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2 Static Case

In this chapter we consider the static case. First we give a short introduction
to risk measures. Then we introduce the concept of a distortion and take a
look on the ”static version” of the distorted risk measures that are of interest
for us. Finally we state the coherence theorem that deals with the supremum
representation which was already mentioned in the introduction.

2.1 Basic Definitions

First we define what we mean by a risk measure in the static setting:

Definition 2.1 (Static Risk Measures).
(Ω,F , P ) probability space, H the space of random variables X : Ω→ R, repre-
senting the possible financial positions.

1. A monetary risk measure is a function ρ : H → R such that (s.t.):

∀X,Y ∈ H : X ≤ Y ⇒ ρ(X) ≥ ρ(Y ) (Monotonicity)

∀X ∈ H,m ∈ R : ρ(X +m) = ρ(X)−m (Cash-Invariance)

2. A convex risk measure is a monetary risk measure ρ that fulfills for all
X,Y ∈ H and all λ ∈ [0, 1]:

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) (Convexity)

3. If a convex risk measure ρ satisfies for all X,Y ∈ H and all λ ≥ 0:

ρ(λX) = λρ(X) (Positive Homogeneity)

then it is called a coherent risk measure.

For a better understanding, some examples might be helpful:

Example 2.1 (Some Risk Measures).

1. The negative expectation ρ(X) := E[−X] is a coherent risk measure.

2. The Value at Risk at level p, V aRp, which is defined as:

ρ(X) = V aRp(X) := q−−X(1− p),

where q−X(p) := inf{x ∈ R : P (X ≤ x) ≥ p}, is unfortunately not coherent.
For X ∼ N (µ, σ2), it takes the value V aRp(X) = −µ+ σΦ−1(1− p).

3. The Average Value at Risk (or Conditional Value at Risk) at level λ

ρ(X) = AV aRλ(X) :=
1

λ

∫ λ

0

V aRp(X)dp,

is a coherent risk measure. For X ∼ N (µ, σ2), it takes the value AV aRλ(X) =
−µ+ σ

λϕ(Φ−1(1− λ)).
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2.2 Static Version of Distorted Risk Measures: Choquet
Integrals

Since this work deals with distorted risk measure, we first have to define what
is meant by a ”distortion”.

Definition 2.2 (Distortion).
A probability distortion (or just distortion) is a continuous increasing sur-
jective function D : [0, 1]→ [0, 1]. To a given probability distortion D define the
corresponding probability distortion D̂ as D̂ := 1−D ◦ (1− id). Since requiring
D to be a distortion is sometimes to strict, we define an increasing function
D : [0, 1]→ [0, 1], with D(0) = 0, D(1) = 1 to be a generalized (probability)
distortion.

Now let (Ω,F , P ) be a probability space. We want to define the so called
Choquet integral of a position X : Ω→ R, therefore we first have to generalize
the concept of a measure to a set function called ”capacity”:

Definition 2.3 (Capacity).
A measure capacity on (R,B(R)) is a monotone set function c : B(R+)→ R+

with c(∅) = 0, c(R+) = 1 and ∀A,B ∈ B(R+) with A ⊂ B : c(A) ≤ c(B).

Example 2.2. Let D be a (generalized) distortion and P be a probability mea-
sure on (R,B(R)). Then D ◦ P given by

(D ◦ P )(A) := D(P (A)), ∀A ∈ B(R+)

is a capacity. Pay attention to the fact that D ◦ P does not denote the image
measure of P under D, PD.

This enables us now to define the Choquet integral which will directly lead
to a static version of a distorted risk measure.

Definition 2.4 (Choquet integral).
Let X be a random variable on the probability space (Ω,F , P ) and let Ψ be a
generalized distortion. Then the Choquet integral of X under Ψ ◦ P , CΨ[X]
is defined as:

CΨ[X] := −
∫ ∞

0

(Ψ̂ ◦ P )(X ≤ x)dx+

∫ ∞
0

(Ψ ◦ P )(X > x)dx

=

∫ 0

−∞
(Ψ(P (X > x))− 1)dx+

∫ ∞
0

Ψ(P (X > x))dx.

(1)

Remark 2.1. This is a generalization of the expectation of X, which can always
be written as

E[X] =

∫ 0

−∞
(P (X > x)− 1)dx+

∫ ∞
0

P (X > x)dx.

Therefore the Choquet integral is also called Choquet expectation.

Now we consider V aR and AV aR and show that they can be expressed as
a Choquet integral.
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Example 2.3 (V aR is a Choquet integral).
The Value at Risk at level p, V aRp, can be expressed as

V aRp(X) = CΨ[−X],

with the generalized distortion Ψ(x) = 1{x>p}.

This can be seen as follows: Let Ψ(x) = 1{x>p}. Then

CΨ[−X] =

∫ 0

−∞
(1{P (−X>x)>p} − 1︸ ︷︷ ︸

=−1{1−F−X (x)≤p}

)dx+

∫ ∞
0

1{P (−X>x)>p}︸ ︷︷ ︸
1{1−F−X (x)>p}

dx

=

∫ 0

−∞
−1{F−X(x)≥1−p}︸ ︷︷ ︸

=−1{x≥inf{y:F−X (y)≥1−p}}

dx+

∫ ∞
0

1{F−X(x)<1−p}︸ ︷︷ ︸
=1{x<inf{y:F−X (y)≥1−p}}

dx

=

∫ 0

min {0,q−−X(1−p)}
−1dx+

∫ max {0,q−−X(1−p)}

0

1dx

= −(0−min {0, q−−X(1− p)}) + (max {0, q−−X(1− p)} − 0)

= q−−X(1− p) = V aRp(X)

�

Example 2.4 (AV aR is a Choquet integral).
The Average Value at Risk at level λ, can be expressed as

AV aRλ(X) = CΨ[−X],

with the distortion Ψ(x) = min {1, xλ}.

From the representation of V aR as a Choquet integral and the definition of
AV aR, we get:

AV aRλ(X) =
1

λ

∫ λ

0

(∫ 0

−∞
(1{P (−X>x)>p} − 1)dx+

∫ ∞
0

1{P (−X>x)>p}dx

)
dp

By Fubini’s theorem, we have for the right double integral:∫ λ

0

∫ ∞
0

1{P (−X>x)>p}dxdp =

∫
R

∫
R

1[0,λ](p)1[0,P (−X>x))(p)1[0,∞)(x)dxdp

=

∫
R

∫
R

1[0,λ](p)1[0,P (−X>x))(p)1[0,∞)(x)dpdx

=

∫ ∞
0

∫ min {λ,P (−X>x)}

0

1dpdx

=

∫ ∞
0

min {λ, P (−X > x)}dx
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And for the left double integral:∫ λ

0

∫ 0

−∞
(1{P (−X>x)>p} − 1)dxdp

=

∫ λ

0

∫ 0

−∞
−1{P (−X>x)≤p}dxdp

=

∫
R

∫
R
−1[0,λ](p)1[P (−X>x),∞)(p)1(−∞,0)(x)dxdp

=

∫ 0

−∞

∫ max {λ,P (−X>x)}

P (−X>x)

−1dpdx

=

∫ 0

−∞
−max {λ, P (−X > x)}+ P (−X > x)︸ ︷︷ ︸

=min {λ,P (−X>x)}−λ

dpdx.

Combining both integrals and multiplying with the factor 1/λ yields

AV aRλ(X) =

∫ 0

−∞
min

{
1,
P (−X > x)

λ

}
− 1dx+

∫ ∞
0

min

{
1,
P (−X > x)

λ

}
dx

which completes the proof.

�
Now we are able to formulate a theorem that gives us a representation of risk

measures induced by Choquet integrals which will be very useful when trying
to generalize this concept to dynamic cases. Actually the theorem consists of
two parts – one representation part which was shown in Madan et al. (2013),
[1], Proposition 1, Remark 1 and one coherence part which was shown for all
risk measures with this representation, compare Gianin (2006) [3], Theorem 3.

Theorem 2.1 (Coherence of Choquet integrals).
Let Ψ be a concave probability distortion, X ∈ L2(P ) and suppose that

DΨ := {Q ∈ Pac2,P : Q(A) ≤ Ψ(P (A))∀A ∈ F} 6= ∅.

Then ρ(X) := CΨ[−X] defines a coherent risk measure which has the
representation

CΨ[−X] = sup
Q∈DΨ

EQ[−X]. (2)

Remark 2.2. It is not enough to require Ψ to be only a generalized probability
distortion as the example of V aR shows, which can be written as a Choquet
integral (as shown before) but which is not coherent.

Remark 2.3. Since concavity of the distortion is needed as well, we will from
now on mean a concave probability distortion, whenever we speak about a
distortion. As already justified in the introduction this is not really a constraint
when dealing with risk measures.
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3 Dynamic Case

In this chapter we study the dynamic case. First we define dynamic risk mea-
sures, afterwards we try to generalize the concept of Choquet expectations mak-
ing use of the supremum representation. We will see that the canonical idea of
just computing at any time point t the static risk measure making use of all the
information up to t does not work. Instead we will discuss another concept that
bases upon the concatenation of one-period static valuations and point out its
relation to BSDEs.

3.1 Basic Definitions

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtrated probability space with FT = F . First of
all let us define what we mean by a dynamic risk measure:

Definition 3.1 (Dynamic Risk Measure).

1. (ρt)t∈[0,T ], ρt : L2(FT )→ L2(Ft) is called dynamic risk measure, if it
fulfills for all X,Y ∈ L2(FT ), m ∈ L∞(Ft), A ∈ Ft and 0 ≤ s ≤ t ≤ T :

X ≤ Y ⇒ ρt(X) ≥ ρt(Y ) (Monotonicity)

ρt(X +m) = ρt(X)−m (Ft-Cash-Invariance)

ρt(1AX + 1AcY ) = 1Aρt(X) + 1Acρt(Y ) (Ft-Local Property)

ρt(X) ≤ ρt(Y )⇒ ρs(X) ≤ ρs(Y ) (Time-Consistency)

2. A dynamic risk measure is normalized if

ρt(0) = 0 (Normalization)

3. A dynamic risk measure is Ft-convex if ∀X,Y ;λ ∈ L∞(Ft) ∩ [0, 1] :

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y ) (Ft-Convexity)

Remark 3.1. For a normalized dynamic risk measure, time-consitency is equiv-
alent to the so called dynamic programming principle or tower property
(compare [6] Definition 2.2 and following):

∀X ∈ L2(FT ), 0 ≤ s ≤ t ≤ T : ρs(X) = ρs(−ρt(X)) (Tower Property).

Since we will now consider families of random variables and want to take
the ”sup” we have to generalize this concept since we can only compare ran-
dom variables up to almost sure uniqueness. Therefore we define an ”essential
supremum” (compare, for example [4], Definition A.1 or [5], Theorem A.32 and
Definition A.33):

Definition 3.2. (The essential supremum of a family of random variables)
Let (Xi)i∈I be a family of random variables with some index set I. The essential
supremum of this family of random variables is defined as a random variable X∗

which fulfills

1. ∀i ∈ I : Xi ≤ X∗ a.s.
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2. if X∗∗ is a r.v. with ∀i ∈ I : Xi ≤ X∗∗ a.s., then X∗ ≤ X∗∗ a.s..

We write esssupi∈I Xi := X∗. The essential infimum essinf is defined in an
analogous manner.

Remark 3.2.

1. This definition is not a generalization of the ”usual” definition of an es-
sential supremum, which would be as follows: Let (S,A, µ) be a measure
space and f : S → [−∞,∞] a measurable function. Then

esssupx∈S f(x) := inf{y ∈ [−∞,∞] : µ(f > y) = 0}.

2. In the following we will take essential suprema of the type ”esssupQ∈D EQ[...|Ft]”.
Here the conditional expectations are the random variables indexed by Q
and D is the index set. With the usual definition of essential suprema one
would need a measure on the set of measures D.

3. The esssup is not the same as the sup-almost-surely. Consider I = Ω =
[0, 1], Xi(ω) = 1{ω=i}, P = λ (Lebesgue measure):

supXi = 1 a.s. but esssupXi = 0 a.s.

4. All essential supremas and infimas are defined with respect to the measure
P , which can be understood either as the ”physical/real-world measure” or
just as some ”reasonable” reference measure.

3.2 Construction of Dynamic Version: First Attempt

Now we want to generalize the concept of those risk measures that can be
represented as a Choquet integral which we just studied in the chapter before
to the dynamic case. Recall the supremum representation from Theorem 2.1 for
Choquet integrals under distortions in the static case:

ρ(X) = sup
Q∈DΨ

EQ[−X], where DΨ := {Q ∈ Pac2,P : Q(A) ≤ Ψ(P (A))∀A ∈ F}

A natural generalization of this concept to the dynamic case would now be

CΨ[−X|Ft] := esssupQ∈DΨ
t
EQ[−X|Ft], t ≤ T, (3)

where

DΨ
t := {Q ∈ Pac2,P : Q(A|Ft) ≤ Ψ(P (A|Ft))∀A ∈ F}. (4)

The interpretation of CΨ[−X|Ft] is the risk one would attribute to X at
time t, given the information one has up to then (of course at time 0, when the
position is written, this is a random variable, depending on events in future).
The problem with this definition is that it leads to a dynamic risk measurement
which is in general not time-consistent (and which is therefore not even a
dynamic risk measure by our definition).

9



Counterexample 3.1. An example where time-consistency fails is the Average
(or Conditional) Value at Risk, i.e. Ψ(x) = min{1, xλ}.

To show this, we first have to establish some lemmas.

Lemma 3.1. Let t < T and define D̃Ψ
t := {Q ∈ DΨ

t : Q|Ft = P |Ft}. Then it
holds that

esssupQ∈DΨ
t
EQ[−X|Ft] = esssupQ∈D̃Ψ

t
EQ[−X|Ft]

Proof: Let Q ∈ DΨ
t . Then Q has a Radon-Nikodym density dQ

dP =: Z(T )
w.r.t. P . Let Z(t) = E[Z(T )|Ft]. Then (Z(t))t∈[0,T ] is a nonnegative martingale
with expectation 1 and it is easy to show that the following Bayes rule holds on
{Z(t) 6= 0}:

EQ[−X|Ft] =
EP [−Z(T )X|Ft]

Z(t)
.

On the other hand, we know that {Z(T ) = 0} is aQ-null-set (sinceQ(Z(T ) =
0) = EP [Z(T )1{Z(T )=0}] = 0) and {Z(t) = 0} ⊆ {Z(T ) = 0} P -a.s. (where we
define A ⊂ B P -a.s. :⇔ P (A ∩Bc) = 0) since

EP [Z(T )1{Z(t)=0}] = EP [EP [Z(T )1{Z(t)=0}|Ft]] = EP [Z(t)1{Z(t)=0}] = 0,

i.e. Z(T ) = 0 P -a.s. on {Z(t) = 0} if P (Z(t) = 0) > 0, because Z(T ) ≥ 0.
And if P (Z(t) = 0) = 0, then automatically {Z(t) = 0} ⊆ {Z(T ) = 0} P -a.s.,
because then P ({Z(t) = 0}∩{Z(T ) 6= 0}) = 0. Since EQ[−X|Ft] is only defined
Q-a.s. we are free to define what should happen on {Z(t) = 0}. Note that there
exists a nonnegative FT -measurable random variable ξ with EP [ξ|Ft] = 1 such
that Z(T ) = Z(t)ξ. It must be of the form

ξ =
Z(T )

Z(t)
1{Z(t)>0} + b1{Z(t)=0}

where b is a random variable such that EP [b|Ft] = 1. The easiest choice

would be b ≡ 1. Now define Q̃ via dQ̃
dP := ξ. Then of course Q̃ ∈ D̃Ψ

t (since
d(Q̃|Ft)
d(P |Ft) = dQ̃

dP |Ft = EP [ξ|Ft] = 1, i.e. Q|Ft = P |Ft). And on {Z(t) > 0}

EQ[−X|Ft] =
EP [−Z(T )X|Ft]

Z(t)

= EP [−ξX|Ft]

=
EP [−ξX|Ft]

1
= EQ̃[−X|Ft].

The set {Z(t) = 0} is a Q-null-set as already shown and therefore we just
define EQ[−X|Ft] := EQ̃[−X|Ft] := EP [−ξX|Ft].
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Especially the last definition is of interest, since this conditional expectation
is defined P -a.s. and we always use P -esssup’s. For this reason we will from
now on always mean this definition when writing EQ[...].

In the following we consider AV aR as a special case of a risk measure coming
from a distorted expectation and show that its generalization in the way given
above is not time consistent. That means that from now on, for the rest of this
section, we consider Ψ given by Ψ(x) = min{1, xλ}.

Lemma 3.2. Define Q̃t := {Q ∈ Pac2,P : Q|Ft = P |Ft, dQdP ≤
1
λ}. Then

D̃Ψ
t =

{
Q ∈ Pac2,P : Q|Ft = P |Ft, Q(A|Ft) ≤ min

{
1,
P (A|Ft)

λ

}}
= Q̃t.

Proof: Let Q ∈ P ac2,P with Q|Ft = P |Ft. We will show dQ
dP ≤

1
λ ⇔

Q(A|Ft) ≤ min
{

1, P (A|Ft)
λ

}
.

Step 1: ”⇐”

We show: Q /∈ Q̃t ⇒ Q /∈ D̃Ψ
t . Let A be a (P−)non-null set, i.e. P (A) > 0

with dQ
dP > 1

λ on A (exists by assumption). Since Q(A|Ft) is Ft-measurable and
Q|Ft = P |Ft, we get

EP [Q(A|Ft)] = EQ[Q(A|Ft)] = EQ[EQ[1A|Ft]]

= EQ[1A] = EP

[
dQ

dP
1A

]
> EP

[
1

λ
1A

]
= EP

[
1

λ
EP [1A|Ft]

]
= EP

[
P (A|Ft)

λ

]
.

Because P (A|Ft)
λ ≥ 0 and Q(A|Ft) ≥ 0, this implies that there is a non-null

set in F on which Q(A|Ft) > min
{

1, P (A|Ft)
λ

}
, i.e. Q /∈ D̃Ψ

t which concludes

the proof of ”⇐”.

Step 2: ”⇒”

Let Q /∈ D̃Ψ
t , i.e. there exists an A ∈ F with P (A) > 0 and a P -non-

null-set B ∈ Ft such that Q(A|Ft) > min
{

1, P (A|Ft)
λ

}
on B (B ∈ Ft and not

just ∈ F since both Q(A|Ft) and min
{

1, P (A|Ft)
λ

}
are Ft-measurable). Set

A′ := A ∩B ∩ {P (A|Ft) < λ} ∈ F ∩ Ft ∩ Ft ⊆ F .

There are two possible cases:

11



1. First case: P (A′) > 0. Then by assumption

Q(A ∩B ∩ {P (A|Ft) ≥ λ}) +Q(A ∩B ∩ {P (A|Ft) < λ}︸ ︷︷ ︸
=A′

)

= Q(A ∩B)

= EQ[1A1B ]

= EQ[EQ[1A 1B︸︷︷︸
Ft-msble

|Ft]]

= EQ[1BQ(A|Ft)︸ ︷︷ ︸
Ft-msble

].

And since Q|Ft = P |Ft, this is equal to EP [1BQ(A|Ft)], i.e.

Q(A ∩B ∩ {P (A|Ft) ≥ λ}) +Q(A′)

= EP [1BQ(A|Ft)]

> EP

[
1B min

{
1,
P (A|Ft)

λ

}]
= EP

[
1B1{P (A|Ft)≥λ} + 1B

P (A|Ft)
λ

1{P (A|Ft)<λ}

]
= P (B ∩ {P (A|Ft) ≥ λ}︸ ︷︷ ︸

∈Ft

) +
1

λ
EP [ 1B︸︷︷︸

Ft-msble

EP [1A|Ft] 1{P (A|Ft)<λ}︸ ︷︷ ︸
Ft-msble︸ ︷︷ ︸

=EP [1B1A1{P (A|Ft)<λ}|Ft]

]

= Q(B ∩ {P (A|Ft) ≥ λ}) + EP

[
1

λ
1A∩B∩{P (A|Ft)<λ}

]

≥ Q(A ∩B ∩ {P (A|Ft) ≥ λ}) + EP

 1

λ
1A ∩B ∩ {P (A|Ft) < λ}︸ ︷︷ ︸

=A′

 .
The last inequality is due to the fact that in general Pr[U ∩ V ] ≤ Pr[U ]
(for any probability measure Pr). Subtracting Q(A∩B∩{P (A|Ft) ≥ λ})
on both sides yields

EP

[
dQ

dP
1A′
]

= EQ[1A′ ] = Q(A′) > EP

[
1

λ
1A′
]
.

Since 1
λ > 0, dQ

dP ≥ 0 and P (A′) > 0 it follows that dQ
dP > 1

λ on a non-null
subset of A′.

2. Second case: P (A′) = 0. In this case the above inequality becomes
Q(A∩{P (A|Ft) ≥ λ}) > Q(A∩{P (A|Ft) ≥ λ}) which is a contradiction.

This completes the proof.
�
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Lemma 3.3. Let t < T . Then

esssupQ∈Q̃t EQ[−X|Ft] = esssupQ∈QEQ[−X|Ft],

where Q := {Q ∈ Pac2,P : dQdP ≤
1
λ}, which is the same set as DΨ from the static

setting when Ψ(x) = min{1, x/λ}.

The proof of this lemma is analogue to the proof of the two lemmas before
and thus skipped. Now we are able to prove the following counterexample:

Proof of the counterexample: We consider the case ofAV aR, i.e. Ψ(x) =
min{1, x/λ}, with X = W (T ) (W a Brownian motion) and Ft = σ(Ws, s ≤
t)∀t ∈ [0, T ], in particular, X is a continuous random variable and thus we
know that

E[−X| −X > q−X(1− λ)] = AV aRλ(X) = CΨ[−X] = esssupQ∈DΨ EQ[−X].

We will now show that the tower property does not hold, i.e. it does not
hold that CΨ[CΨ[−X|Ft]] = CΨ[−X]. The idea behind is that this is equivalent
to time-inconsistency, provided that all the other properties of a dynamic risk
measure are fulfilled. First notice that from Lemmas 3.1, 3.2 and 3.3 it follows
that

CΨ[−X|Ft] := esssupQ∈DΨ
t
EQ[−X|Ft] = esssupQ∈Q(=DΨ)EQ[−X|Ft]

Thus, we have

CΨ[CΨ[−W (T )|Ft]] = CΨ[esssupQ∈QEQ[−W (T )|Ft]]
= CΨ[esssupQ∈QEQ[−(W (T )−W (t))− W (t)︸ ︷︷ ︸

Ft-msble

|Ft]]

= CΨ[esssupQ∈Q{−W (t) + EQ[−(W (T )−W (t))|Ft]}]
= CΨ[−W (t) + esssupQ∈QEQ[−(W (T )−W (t))|Ft]].

At this point we cannot assume that (W (T ) −W (t)) is Q-independent of
Ft, but what we can do is to choose a particular member of Q knowing that the
expectation in this case is smaller or equal the supremum over all measures in Q:

Choose Q∗ such that

dQ∗

dP
=

1

λ
1{−(W (T )−W (t))>q−(W (T )−W (t))(1−λ)}. (5)

This clearly defines a measure with

Q∗(Ω) =

∫
Ω

dQ∗

dP
dP =

1

λ
P (−(W (T )−W (t)) > q−(W (T )−W (t))(1− λ)) =

λ

λ
= 1,

i.e., Q∗ is a probability measure and since dQ∗

dP ≤
1
λ (and thus of course also

in L2), we clearly have Q∗ ∈ Q. Therefore,

13



CΨ[CΨ[−W (T )|Ft]]
≥ CΨ[−W (t) + EQ∗ [−(W (T )−W (t))|Ft]]

= CΨ

[
−W (t) +

EP [−(W (T )−W (t)) 1
λ1{−(W (T )−W (t))>q−(W (T )−W (t))(1−λ)}|Ft]

EP [ 1
λ1{−(W (T )−W (t))>q−(W (T )−W (t))(1−λ)}|Ft]

]

where we use the Bayes rule we already used in the proof of Lemma 3.1. Since
(W (T ) −W (t)) is P -independent of Ft both conditional expectations become
”normal” expectations and the denominator reduces to 1, such that we get:

CΨ[CΨ[−W (T )|Ft]]

≥ CΨ

−W (t) + EP

[
−(W (T )−W (t))

1

λ
1{−(W (T )−W (t))>q−(W (T )−W (t))(1−λ)}

]
︸ ︷︷ ︸

∈R (deterministic)


= esssupQ∈QEQ[−W (t)]

+ EP

[
−(W (T )−W (t))

1

λ
1{−(W (T )−W (t))>q−(W (T )−W (t))(1−λ)}

]
≥ EP

[
−W (t)

1

λ
1{−W (t)>q−W (t)(1−λ)}

]
+ EP

[
−(W (T )−W (t))

1

λ
1{−(W (T )−W (t))>q−(W (T )−W (t))(1−λ)}

]
.

The last inequality can be shown exactly the same way as the one before.
Now let t = 1 and T = 2, then we get

CΨ[CΨ[−W (2)|F1]] ≥ 2EP

[
−W (1)

1

λ
1{−W (1)>q−W (1)(1−λ)}

]
=

2

λ

∫ ∞
Φ−1(1−λ)

zϕ(z)dz

>

√
2

λ

∫ ∞
Φ−1(1−λ)

zϕ(z)dz

= AV aRλ(W (2))

= CΨ[−W (2)]

(6)

This completes the proof.
�

3.3 Construction of Dynamic Version: A New Approach

In the last section, we have shown that ρ defined by ρt(X) := CΨ[−X|Ft] :=
esssupQ∈DΨ

t
EQ[−X|Ft] where DΨ

t := {Q ∈ Pac2,P : Q(A|Ft) ≤ Ψ(P (A|Ft))∀A ∈

14



F} is in general not time-consistent, i.e. it does not yield a dynamic risk
measure. Therefore we need to make another approach. Instead of defining
a dynamic risk measure in continuous time directly, we will construct a time-
consistent dynamic risk measure in discrete time and let the time increments
go to zero. As discribed in Stadje (2010) [2], without some proper rescaling this
will in general lead to an ”explosion” of the risk valuation in the limit.

We start by defining the so called ”valuations”, because they are related to
BSDEs as shown later.

Definition 3.3 (Valuations).
Let ρ be a risk measure (static or dynamic). The corresponding valuation φ is
defined as φ = −ρ.

We need to set up a discrete time framework first and we introduce the same
notation as in [2].

Definition 3.4 (Discrete Time Setup).
Let again (Ω,F , (Ft)t∈[0,T ], P ) be a filtrated probability space, FT = F . Assume

0 = t0 < t1 < ... < tk = T and define for i ∈ {0, ..., k − 1} the set of ith

one-period transition densities

Dti+1 := {ζ ∈ L1
+(Fti+1) : E[ζ|Fti ] = 1}.

Furthermore let ξ := (ξtj )j=1,...,k ∈ D := Dt1 × ... × Dtk . We now define
equivalent probability measures Qξ by

dQξ

dP
|Ftr :=

r∏
j=1

ξtj . (7)

But instead of looking at valuations of the form essinfQ∈DΨ
t
EQ[X|Ft] (which

are coming from the above time-inconsitent risk measures), we now consider the
so called one-period valuations.

Definition 3.5 (One-period valuations).
The one-period valuations Fti : L∞(Fti+1

)→ L∞(Fti), are defined by

Fti(X) := essinfξti+1
∈Dti+1

,Qξ(A|Fti )≤Ψ(P (A|Fti ))∀A∈Fti+1
EP [ξti+1

X|Fti ]. (8)

This is, by an argument like in the proof of Lemma 3.1, only a P -measurable
version of

Fti(X) := essinfQξ∈Dti EQξ [X|Fti ],

where Dti := {Qξ : ξti+1
∈ Dti+1

, Qξ(A|Fti) ≤ Ψ(P (A|Fti))∀A ∈ Fti+1
}.

Remember that we defined the esssup and essinf w.r.t. P so the second ver-
sion would not be sufficient since the conditional expectation inside is only
Qξ-measurable. But nonetheless we will use both representations later, always
meaning the P -measurable version.

An important observation is that Fti is nothing else than the valuation based
on the dynamic risk measure introduced in the last section (eq. (3)) but only
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evaluating at the timepoint ti and restricted on the probability space
(Ω,Fti+1

, P |Fti+1
). It is thus a static valuation, which means that we do not

run into trouble with time-inconsistency.

As in Definition 4.2 from Stadje (2010) [2], the so called penalty functions
are given by

ϕ
Fti
ti (Qξ) := ϕ

Fti
ti (ξti+1

) := esssupX∈L∞(Fti+1
){Fti(X)− EP [ξti+1

X|Fti ]}. (9)

There are only two values wich can be taken by the esssup:

1. Case 1: ξti+1 is such that Qξ(A|Fti) ≤ Ψ(P (A|Fti))∀A ∈ Fti+1 a.s.
In this case we clearly have for all X ∈ L∞(Fti+1

) that (by definition
of Fti) Fti(X) ≤ EP [ξti+1

X|Fti ]. And we know that equality holds for

X = 0. Thus, in this case ϕ
Fti
ti (ξti+1) = 0.

2. Case 2: ∃A ∈ Fti+1 with P (A) > 0 and P (Qξ(A|Fti) > Ψ(P (A|Fti))) > 0
In this case, we have

0 < P (Qξ(A|Fti) > Ψ(P (A|Fti))) = P (Qξ(A|Fti)−Ψ(P (A|Fti))︸ ︷︷ ︸
=:Y

> 0)

= 1− P (Y ≤ 0) = 1− FY (0)

⇔ FY (0) < 1.

Because of right-continuity of distribution functions we know that there
exists an ε > 0 such that FY (ε) < 1, i.e. (by the above calculations
backwards) P (Qξ(A|Fti) > Ψ(P (A|Fti)) + ε) > 0. Now fix ε and consider
the set of random variables (Xn)n∈N, given by

Xn = −n1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}∩A ∈ L
∞(Fti+1).

Notice that {Qξ(A|Fti) > Ψ(P (A|Fti)) + ε} ∩ A is not a null-set since
otherwise ξti+1

1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}∩A would be 0 a.s. but we have

EP [ξti+1
1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}∩A]

= EP [EP [ξti+1
1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}∩A|Fti ]]

= EP [EQξ [1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}∩A|Fti ]]

= EP [1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε} Qξ(A|Fti)︸ ︷︷ ︸
>Ψ(P (A|Fti ))+ε≥ε

]

> εP (Qξ(A|Fti) > Ψ(P (A|Fti)) + ε)

> 0,

since {Qξ(A|Fti) > Ψ(P (A|Fti)) + ε} is not a null-set by assumption.
Then (by definition of Fti)
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Fti(Xn)− EP [ξti+1
Xn|Fti ]

= essinfξ̃ti+1
∈Dti+1

,Qξ̃(Ã|Fti )≤Ψ(P (Ã|Fti ))∀Ã∈Fti+1

EP [−n1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}︸ ︷︷ ︸
Fti -msble

(ξ̃ti+1
− ξti+1

)1A|Fti ]

= essinfξ̃ti+1
∈Dti+1

,Qξ̃(Ã|Fti )≤Ψ(P (Ã|Fti ))∀Ã∈Fti+1

{−n1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}EP [(ξ̃ti+1 − ξti+1)1A|Fti ]︸ ︷︷ ︸
=E

Qξ̃
[1A|Fti ]−EQξ [1A|Fti ]

}

= essinfξ̃ti+1
∈Dti+1

,Qξ̃(Ã|Fti )≤Ψ(P (Ã|Fti ))∀Ã∈Fti+1

{n1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε} ( Qξ(A|Fti)︸ ︷︷ ︸
>Ψ(P (A|Fti ))+ε

− Qξ̃(A|Fti)︸ ︷︷ ︸
≤Ψ(P (A|Fti ))

)

︸ ︷︷ ︸
>ε

}

> nε1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}

→∞1{Qξ(A|Fti )>Ψ(P (A|Fti ))+ε}, a.s. for n→∞
→∞1{Qξ(A|Fti )>Ψ(P (A|Fti ))}, a.s. for ε→ 0.

In particular for every y ∈ R there exists an X ∈ L∞(Fti+1
), such that

Fti(X)−EP [ξti+1
X|Fti ] > y on {Qξ(A|Fti) > Ψ(P (A|Fti))}. This means

that in this case ϕ
Fti
ti (ξti+1) =∞ on {Qξ(A|Fti) > Ψ(P (A|Fti))}.

Now, it follows from Proposition 4.5 in Stadje 2010 [2], that we can define
a valuation (in particular time-consistent) in discrete time (φs)s∈t0,...tk , φs :
L∞(FT )→ L∞(Fs) by

φti(X) := essinfQ∈D EQ[X +
k−1∑
j=i

ϕ
Ftj
tj (Q)︸ ︷︷ ︸

=∞1∪k
j=i
{∃Aj∈Ftj+1

:Qξ(Aj |Ftj )>Ψ(P (Aj |Ftj ))}

|Fti ]

= essinfQ∈D̂ti EQ[X|Fti ],

where D̂ti = {Q ∈ Pac2,P : Q(Aj |Ftj ) ≤ Ψ(P (Aj |Ftj ))∀Aj ∈ Ftj+1
∀j ≥ i}

(w.l.o.g. it suffices to take these measures into account since the∞1...-part dis-
appears then). Again, by the Bayes argument which was already used before, the
essinf can also be taken over D̂ = {Q ∈ Pac2,P : Q(Aj |Ftj ) ≤ Ψ(P (Aj |Ftj ))∀Aj ∈
Ftj+1

∀j ≥ 1}, so that we get the following equivalent definition of φ.

Definition 3.6 (Discrete Valuations and Distorted Risk Measure).
Let

D̂ = {Q ∈ Pac2,P : Qξ(Aj |Ftj ) ≤ Ψ(P (Aj |Ftj ))∀Aj ∈ Ftj+1
∀j ≥ 1}.

Then

φti(X) = essinfQ∈D̂ EQ[X|Fti ], (10)
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defines a valuation in discrete time. The corresponding risk measure ρ = −φ is
called distorted risk measure.

This definition is used in Madan et al. (2013) [1] (Definition 5). On the other
hand, Proposition 4.5 in Stadje (2010) [2] states that this time consistent discrete
valuation can be cunstructed recursively using the one-period valuations:

Lemma 3.4 (Recursive Definition).
Let Ft0 , ..., Ftk−1

be the one-period valuations. Then the valuation φ from Defi-
nition 3.6 can be defined recursively by{

φT (X) = X
φti(X) = Fti(φti+1

(X)).
(11)

This recursive definition corresponds exactly to Proposition 2 (ii) in [1]. It
fulfills the tower property by construction (as Fti = φti |Fti+1

).

It can be shown (see for example Proposition 2 (iii) in [1]) that the one-period
valuations Fti can be written as a Choquet integral:

Lemma 3.5 (Choquet Representation of One-Period Valuations).
For X ∈ L2(Fti+1

), it holds that

Fti(X) =

∫ 0

−∞
(Ψ(P (X > x|Fti))− 1)dx+

∫ ∞
0

Ψ(P (X > x|Fti))dx. (12)

These were the basic definitions and properties in the discrete-time case.
Now we want to see if we can construct a valuation in continuous time by
increasing the number of time-points, such that the length of the subintervals
goes to zero. To do so, we will first define the discrete time valuations in a
Bernoulli random walk setting which converges to a Brownian motion setting
as it was practiced in [2]. But we have to be careful, since the resulting limiting
valuation in continuous time will depend on the approximating setting we chose
at the beginning. In fact, if one compares the results within this work with
the ones in [1] where a multinomial random walk was chosen to approximate
Brownian motion, one can see that the limiting valuations differ. So every
result from now on has to be seen as a result one gets when using
a Bernoulli random walk for approximation. The consequences will be
discussed later in the conclusion.

3.4 Bernoulli Random Walk Setting: Rescaling and Con-
vergence towards a BSDE

Consider a sequence (πN )N∈N of partitions πN = {t0, t1, ..., tk(N) : 0 = t0 <
t1 < ... < tk(N) = T} whose mesh converges to 0 as N → ∞ and define

(BN,lj )j=1,...,k(N);l=1,...,d to be i.i.d. translated and dilated Bernoulli random

variables, such that P (BN,lj = 1) = P (BN,lj = −1) = 0.5. For every N , the

d-dimensional Bernoulli random walk RN is now defined as the process which
is constant on any interval [ti, ti+1) and

RN,l(ti) =

i∑
j=1

√
∆tjB

N,l
j , i = 1, ..., k(N), l = 1, ..., d.
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Because we know (by a generalization of Donsker’s theorem) that RN con-
verges in distribution against a d-dimensional Brownian motion W , we can use
Theorem I.2.7 in Ikeda and Watanabe [13] to show that there exists a probability

space (Ω̃, F̃ , P̃ ) and processes R̃N
d
=RN and W̃

d
=W , such that

sup
t∈[0,T ]

|R̃N (t)− W̃ (t)| → 0 in a.s.

For uniform integrability of the sequence supt∈[0,T ] |R̃N (t) − W̃ (t)|2 (compare
Cheridito and Stadje (2013) [14]), we also get:

sup
t∈[0,T ]

|R̃N (t)− W̃ (t)| → 0 in L2.

From now on let us work on this probability space and let us skip the tilde
for simplicity, i.e. (Ω,F , P ) := (Ω̃, F̃ , P̃ ), RN := R̃N and W := W̃ . Denote
by (Ft)t∈[0,T ] the filtration generated by W and by (FNt )t∈[0,T ] the filtration
generated by RN . One of the main conclusions of [2] is, that in this setting,
valuations cunstructed as in (11) ”explode” for N → ∞. Concretely it states
the following:

Remark 3.3 (”Explosion” of Valuations, Stadje (2010)).
Define FNti as in Definition 3.5 (eq. (8)) and φN as in Lemma 3.4 (eq. (11)),
w.r.t. the filtration (FNti )i=0,...,k(N). Then, under some weak conditions, it
exists a payoff X ∈ L2(FT ) (from the Brownian setting) and a sequence of FNT -
measurable payoffs XN (i.e. from the Bernoulli random walk setting) such that
XN → X in L2 as N → ∞ and for all t ∈ [0, T ), φNt (XN ) → −∞ a.s. as
N →∞.

This means that the discrete valuations constructed this way are ”too con-
servative” and in particular it means that if one tries to construct a continuous
time valuation by letting N →∞, maxi=0,...,k(N)−1 |ti+1 − ti| → 0 this can not
be done directly but some proper rescaling is needed.

The rescaling suggested in [2] is the following: For X ∈ L2(FNti+1
), set

φNti,ti+1
(X) := (1−

√
∆ti+1)E[X|FNti ] +

√
∆ti+1F̂

N
ti (X), (13)

where

F̂Nti (X) =
√

∆ti+1F
N
ti

(
X√

∆ti+1

)
. (14)

Now a discrete dynamic valuation is defined by:

{
φNT (XN ) = XN

φNti (X
N ) = φNti,ti+1

(φNti+1
(XN )).

(15)

Another way of interpretation is that instead of rescaling the one-period
valuations directly the underlying distortion is rescaled. This is shown in the
following lemma:
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Lemma 3.6 (Square root scaling).
Consider the following family of distortions Ψ̃ : [0, 1]→ [0, 1]:

Ψ̃(p, δ) := p+
√
δ(Ψ(p)− p). (16)

Set Ψ̃N
i := Ψ̃(·,∆ti+1) and define F

Ψ̃Ni
ti (X) as in (8) but with the distortion

Ψ̃N
i instead of Ψ. Then for φti,ti+1

as just derived it holds that φti,ti+1
= F

Ψ̃Ni
ti ,

i.e. the rescaled risk measure from (15) is the same as in (11) with F
Ψ̃Ni
ti instead

of Fti .

Proof:

From (12) we know that F
Ψ̃Ni
ti (X) has the representation

F
Ψ̃Ni
ti (X)

=

∫ 0

−∞
(Ψ̃N

i (P (X > x|FNti ))− 1)dx+

∫ ∞
0

Ψ̃N
i (P (X > x|FNti ))dx

=

∫ 0

−∞
P (X > x|FNti ) +

√
∆ti+1[Ψ(P (X > x|FNti ))− P (X > x|FNti )]− 1dx

+

∫ ∞
0

P (X > x|FNti ) +
√

∆ti+1[Ψ(P (X > x|FNti ))− P (X > x|FNti )]dx

=

∫ 0

−∞
(P (X > x|FNti )− 1)dx+

∫ ∞
0

P (X > x|FNti )dx︸ ︷︷ ︸
E[X|Fti ]

+

∫ 0

−∞

√
∆ti+1[Ψ(P (X > x|FNti ))− 1]dx

−
∫ 0

−∞

√
∆ti+1[P (X > x|FNti )− 1]dx

+

∫ ∞
0

√
∆ti+1Ψ(P (X > x|FNti ))dx

−
∫ ∞

0

√
∆ti+1P (X > x|FNti )dx,

provided that all these integrals exist. Note that the term 0 =
√

∆ti+1 −√
∆ti+1 was added and pulled into the second and third integral. Further-

more note that the integrals with the minus sign in front form together the
term −

√
∆ti+1E[X|FNti ]. Thus, for T (x) = x

√
∆ti+1 (note that T ((−∞, 0]) =

(−∞, 0] and T ([0,∞)) = [0,∞)) we get by substitution rule
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F
Ψ̃Ni
ti (X) = (1−

√
∆ti+1)E[X|FNti ] +

∫ 0

−∞

√
∆ti+1[Ψ(P (X > x|FNti ))− 1]dx

+

∫ ∞
0

√
∆ti+1Ψ(P (X > x|FNti ))dx

= (1−
√

∆ti+1)E[X|FNti ]

+

∫ 0

−∞

√
∆ti+1[Ψ(P (X > T (x)|FNti ))− 1]|T ′(x)|dx

+

∫ ∞
0

√
∆ti+1Ψ(P (X > T (x)|FNti ))|T ′(x)|dx

= (1−
√

∆ti+1)E[X|FNti ]

+

∫ 0

−∞

√
∆ti+1

[
Ψ

(
P

(
X√

∆ti+1

> x

∣∣∣∣∣FNti
))
− 1

]√
∆ti+1dx

+

∫ ∞
0

√
∆ti+1Ψ

(
P

(
X√

∆ti+1

> x

∣∣∣∣∣FNti
))√

∆ti+1dx

= (1−
√

∆ti+1)E[X|FNti ] + ∆ti+1F
N
ti

(
X√

∆ti+1

)
.

This is just the same as φti,ti+1 (compare (13) and (14)).
�

It is shown in Stadje (2010) [2] that instead of ”exploding”, the valuation
after rescaling converges under some weak conditions to the solution of a BSDE
when N → ∞. The main idea of this proof shall only be sketched here. It
consists of five steps:

1. The first step is to show – by use of predictable representation theory for
Bernoulli random walks – that φNti+1

(XN ) can be represented as

φNti+1
(XN ) = βti + γti∆R

N
ti+1

+ γ̂ti∆R̂
N
ti+1

,

where R̂N is a 2d−d−1-dimensional Bernoulli random walk with pairwise
independent components and independent increments which is orthogonal
to RN , i.e. (RN R̂N ) is a martingale (constructed like RN with translated

and dilated Bernoulli r.v.s (B̂N,lj )j=1,...,k(N);l=1,...,2d−d−1).

2. In a second step one uses the recursive property (15) and the Ft-cash-
invariance of φNti,ti+1

(this follows from Ft-cash-invariance of FNti which is
preserved under rescaling) to show that

∆φNti+1
(XN ) = φNti+1

(XN )− φNti (X
N )

= −φNti,ti+1
(γti∆R

N
ti+1

+ γ̂ti∆R̂
N
ti+1

) + γti∆R
N
ti+1

+ γ̂ti∆R̂
N
ti+1

.
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3. Then one defines for z1 ∈ Rd and z2 ∈ R2d−d−1

gN (ti, z1, z2) := − 1

∆ti+1
φNti,ti+1

(z1∆RNti+1
+ z2∆R̂Nti+1

)

= −FNti

(
z1∆RNti+1

+ z2∆R̂Nti+1√
∆ti+1

)
= −FNti (z1B

N
i+1 + z2B̂

N
i+1).

(17)

4. Plugging this in and using a telescope sum argument one can show in a
third step that φN fulfills the backwards stochastic difference equation
(BS∆E)

φNti (X
N ) = XN −

k(N)−1∑
j=i

gN (tj , γ
N
tj , γ̂

N
tj )∆tNj+1

−
k(N)−1∑
j=i

(γtj∆R
N
tj+1

+ γ̂tj∆R̂
N
tj+1

).

5. Finally it is shown that if XN → X in L2 and if either gN (ti, z1, z2) is
deterministic and does not depend onN or gN (t, z1, 0) converges uniformly
in L2 to a (random) function g(t, z1), then φN converges uniformly in L2

to the solution of the BSDE

Y (t) = X −
∫ T

t

g(s, Z(s))ds−
∫ T

t

Z(s)dW (s),

which is therefore defined to be the continuous time valuation φt(X) :=
Y (t).

That is a powerful result, because under weak conditions on the driver g, solu-
tions of BSDEs automatically fulfill all properties of a valuation (see appendix
or, e.g. [11] for more information on that topic).

This offers a possibility to approximate a (time-consistent) dynamic risk
measure (actually a valuation) in continuous time if the filtration is driven by
a d-dimensional Brownian motion W and one has constructed a series XN of
r.v.s such that XN → X in L2 as N →∞:

1. Approximate the FT -measurable risk X by the FNT -measurable random
variable XN (remember that (Ft)t∈[0,T ] is generated by W and (FNt )t∈[0,T ]

by RN ),

2. Use (15) to define the N -th approximation of the continuous valuation,

3. Repeat this for several N and stop if some breaking criterion fulfilled.

Unfortunately this algorithm is very extensive on calculation power at least
if it is implemented this way. Since the algorithm works recursively and there
are 2d possible combinations of the random variables BN,1i , ..., BN,di , the algo-
rithm has to call itself 2d times at the i-th timestep, which means that for one
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fixed N , the algorithm needs a number of operations which is in the range of
2k(N)d. And since a Brownian motion must be approximated by a Binomial
random walk, it might be a large number of timesteps k(N) needed.

Therefore, in this work a different approach is used. Theoretically Equation
(17) gives us the possibility to write the driver in explicit form for any valuation
scheme that works in discrete time (it is not said that this is easy). However, in
[2] for some particular risk valuation schemes (one-period valuations) the driver
is explicitely given. This offers the opportunity to calculate the continuous
dynamical valuation directly by solving the BSDE. However it is very unusual
that a BSDE can be solved analytically, but there are several numerical schemes
to solve a BSDE approximately. One of these schemes which is a generaliza-
tion of the Picard iteration and should be very efficient in computation time is
the Bender-Denk Algorithm which can be found in the appendix and was in-
troduced and proven in [10]. It is the one which will be used later in an example.

An interesting question is in how far the rescaled discrete risk measure and
the continuous dynamic risk measure which comes from the solution of the lim-
iting BSDE correspond to the (static) risk measures we started from (i.e. with
the actual problem we wanted to solve).

The next section gives an example of how to use the dynamic risk measures
just derived.
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4 Risk Valuation of Hedging Cost in an Incom-
plete Market

In this chapter we apply locally risk minimizing (cross-)hedging to a Futures
contract in an incomplete market. First we develop the locally risk minimizing
strategy, secondly we calculate the dynamic AV aR that corresponds to the
hedging cost process.

4.1 Problem and Market Model

Consider a multivariate Black-Scholes type market consisting of one riskless
asset S0, one non-tradable asset SN (for example wheat) and one tradable asset
S1 (for example stocks of a big agriculture company):


dS0(t) = rS0(t)dt, S0(0) = 1,

dSN (t) = µNSN (t)dt+ σNSN (t)dW1(t),

dS1(t) = µ1S1(t)dt+ σ11S1(t)dW1(t) + σ12S1(t)dW2(t).

(18)

The associated discounted market model would be (where we write S instead
of S̃ for the discounted values since we will only use this model in the following)


S0(t) = 1, ∀t ∈ [0, T ]

dSN (t) = (µN − r)SN (t)dt+ σNSN (t)dW1(t),

dS1(t) = (µ1 − r)S1(t)dt+ σ11S1(t)dW1(t) + σ12S1(t)dW2(t).

(19)

We will consider a Futures contract F on SN with strike K and maturity T
and want to hedge it only using the riskless bank account S0 and the tradable
asset S1. The discounted value F̃ of F at time T (i.e. e−rTF ) is given by

F̃ = SN (T )− e−rTK. (20)

Since this market is incomplete, it will not be possible to hedge the Futures
perfectly, but there will be either a hedging error (e.g. minimum variance hedg-
ing) or a cost process (e.g. locally risk minimizing hedging). We decide for the
latter version. We want to measure the risk which is caused by the hedging cost.

4.2 Locally Risk Minimizing Hedge

In this section we follow the papers of Föllmer and Schweizer (1990) [7] and
Schweizer (2001) [8], more information can be found in the appendix.

Stucture Condition and Minimal Martingale Measure

From the market model we know that S1 is a local square integrable semimartin-
gale, i.e. S1 can be decomposed into

S1 = S1(0) +M +A
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where M is a local square integrable martingale and A is a predictable
process of bounded variation. M and A can be represented explicitely:

{
M(s) =

∫ s
0
σ11S1(t)dW1(t) +

∫ s
0
σ12S1(t)dW2(t),

A(s) =
∫ s

0
(µ1 − r)S1(t)dt.

Following [8] we now represent A as

A(s) =

∫ s

0

λ̂(t)d〈M,M〉t

=

∫ s

0

λ̂(t)[σ2
11S

2
1(t) + σ2

12S
2
1(t)]dt

⇒ λ̂(t) =
µ1 − r

S1(t)(σ2
11 + σ2

12)
.

Therefore,

K̂(s) :=

∫ s

0

λ̂2(t)d〈M,M〉t

=

∫ s

0

(µ1 − r)2

S2
1(t)(σ2

11 + σ2
12)2

S2
1(t)(σ2

11 + σ2
12)dt

=
s(µ1 − r)2

σ2
11 + σ2

12

<∞,

i.e. the structure condition (SC) from [8] is fulfilled, see also Definition A.6

in the appendix. Now define the minimal martingale measure P̂ by dP̂
dP = Ẑ(T )

where Ẑ is given by

dẐ(t) = −Ẑ(t)λ̂(t)dM(t),

i.e.

Ẑ(t) = exp

−
∫ t

0

λ̂(u)dM(u)− 1

2
〈
∫
λ̂dM〉t︸ ︷︷ ︸

=K̂(t)


= exp

(
−
∫ t

0

(µ1 − r)σ11

σ2
11 + σ2

12

dW1(u)−
∫ t

0

(µ1 − r)σ22

σ2
11 + σ2

12

dW2(u)

−1

2

∫ t

0

(µ1 − r)2

σ2
11 + σ2

12

du

)
= exp

(
−
∫ t

0

ψtdW (u)− 1

2

∫ t

0

|ψ|2du

)
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where ψ =

(
(µ1−r)σ11

σ2
11+σ2

12
(µ1−r)σ22

σ2
11+σ2

12

)
, dW =

(
dW1

dW2

)
.

By the multivariate Girsanov Theorem, we know that S1 is a martingale
under P̂ (so P̂ is one possible pricing measure) and

Ŵ (t) = W (t) +

∫ t

0

ψ(u)du

defines a 2-dimensional P̂ -Brownian motion. Furthermore, we know that all
martingales under P which are orthogonal to M (the P -martingale part of S1)
are martingales w.r.t P̂ .

The Pseudo-Optimal Strategy

Schweizer [8] defines a pseudo-optimal strategy as an L2-trading strategy ϕ =

(ϕ0, ϕ1) on S0 and S1, which fulfills V (ϕ, T ) := V F̃ ,P̂ (ϕ, T ) = F̃ and ϕ is mean-
self-financing and the martingale of costs C = C(ϕ) is strongly orthogonal to
M (i.e. CM is a martingale). It is shown in [8] Thm. 3.5 and can be referred
in Theorem A.7 in the appendix, that then

V (ϕ, t) = EP̂ [F̃ |Ft]. (21)

Let D1 and D2 be the Malliavin derivatives w.r.t. W1 and W2, respectively
(compare Remark A.1 in the appendix). Since ψ is deterministic, we have
D1,tψ = D2,tψ = 0 ∀t ∈ [0, T ]. And because F̃ only depends on W1 (via SN ),

it holds that D2,tF̃ = 0 ∀t ∈ [0, T ]. Thus, the Clark-Ocone representation of

EP̂ [F̃ |Ft] (under change of measure from P to P̂ ):

EP̂ [F̃ |Ft] = EP̂ [F̃ ] +

∫ t

0

EP̂ [D1,sF̃ |Fs]dŴ1(s). (22)

Step 1 - computing EP̂ [F̃ ]: We have EP̂ [F̃ ] = EP̂ [SN (T )]− e−rTK
and

EP̂ [SN (T )] = SN (0) exp([(µN − r)−
1

2
σ2
N ]T )EP̂ [exp(σNW1(T ))]

= SN (0) exp([(µN − r)−
1

2
σ2
N ]T )

× EP̂ [exp(σN ( Ŵ1(T )︸ ︷︷ ︸
∼N (0,T )

−
∫ T

0

ψ1(u)du︸ ︷︷ ︸
=ψ1T determ.

))]

= SN (0) exp([(µN − r)− σNψ1]T ),

so we get
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EP̂ [F̃ ] = SN (0) exp([(µN − r)− σNψ1]T )− exp(−rT )K

= SN (0) exp([(µN − r)−
σ11σN

σ2
11 + σ2

12

(µ1 − r)]T )− exp(−rT )K.

Step 2 - computing EP̂ [D1,sF̃ |Fs]: Because F̃ = SN (T ) − e−rTK and

e−rTK is deterministic, we get D1,sF̃ = D1,sSN (T ). Furthermore, SN (T ) =
SN (0) exp([(µN − r)− 1

2σ
2
N ]T + σNW1(T )), therefore, by the chain rule

D1,sF̃ = SN (0) exp([(µN − r)−
1

2
σ2
N ]T + σNW1(T ))︸ ︷︷ ︸

=SN (T )

×D1,s([(µN − r)−
1

2
σ2
N ]T + σNW1(T ))︸ ︷︷ ︸

=σN

= σNSN (T ).

Thus

EP̂ [D1,sF̃ |Fs] = EP̂ [σNSN (T )|Fs]

= σNSN (0) exp([(µN − r)−
1

2
σ2
N ]T )EP̂ [exp(σNW1(T ))|Fs]

= σNSN (0) exp([(µN − r)−
1

2
σ2
N ]T )

× EP̂ [exp(σN (Ŵ1(T )−
∫ T

0

ψ1(u)du︸ ︷︷ ︸
=ψ1T , determ.

))|Fs]

= σNSN (0) exp([(µN − r)−
1

2
σ2
N − σNψ1]T ) exp(σNŴ1(s))

× EP̂ [exp(σN ( Ŵ1(T )− Ŵ1(s)︸ ︷︷ ︸
∼N (0,T−s), ind. of Fs

))|Fs]

= σNSN (s) exp([(µN − r)−
1

2
σ2
N − σNψ1](T − s))

× exp(
1

2
σ2
N (T − s))

= σNSN (s) exp([(µN − r)− σNψ1](T − s)).

Inserting this result into (22) yields

EP̂ [F̃ |Ft] = EP̂ [F̃ ] +

∫ t

0

σNSN (s) exp([(µN − r)− σNψ1](T − s))︸ ︷︷ ︸
=:Y (s)

dŴ1(s)

!
= V F̃ ,P̂ (ϕ, t),

(23)
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or in stochastic dynamic terms:

{
dV (ϕ, t) = Y (t)dŴ1(t),

V (ϕ, 0) = EP̂ [F̃ ].
(24)

But due to Theorem A.7 in the appendix (compare [8]), the dynamics of V
should be

dV (ϕ, t) = ϕ1(t)dS1(t) + dL(t), (25)

where L is a martingale strongly orthogonal to S1, i.e. 〈L, S1〉 = 0. Therefore
we try the attempt

dV (ϕ, t) = Y (t)dŴ1(t)

= aY (t)dS1(t) + bY (t)dŴ1(t) + cY (t)dŴ2(t).

And since we know that the dynamic of S1 is

dS1(t) = (µ1 − r)S1(t)dt+ σ11S1(t)dW1(t) + σ12S1(t)dW2(t)

= σ11S1(t)dŴ1(t) + σ12S1(t)dŴ2(t)

(S1 is a martingale under P̂ ), we get

Y (t)dŴ1(t) = aY (t)d(σ11S1(t)dŴ1(t) + σ12S1(t)dŴ2(t))

+ bY (t)dŴ1(t) + cY (t)dŴ2(t).

Comparison of coefficients leads to the following system of equations:


aσ11S1(t) + b = 1

aσ12S1(t) + c = 0

bσ11 + cσ12 = 0

(the third equation is due to the orthogonality condition). This system of
equations has the solution


a = σ11

S1(t)(σ2
11+σ2

12)

b =
σ2

12

σ2
11+σ2

12

c = − σ11σ12

σ2
11+σ2

12
.

Inserting this result yields
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dV (ϕ, t) =
σ11

S1(t)(σ2
11 + σ2

12)
Y (t)dS1(t)

+
σ2

12

σ2
11 + σ2

12

Y (t)dŴ1(t)− σ11σ12

σ2
11 + σ2

12

Y (t)dŴ2(t)︸ ︷︷ ︸
=dL(t)

.

So in summary, inserting the definition of Y , we get



V F̃ ,P̂ (ϕ, T ) = F̃ ,

V F̃ ,P̂ (ϕ, 0) = EP̂ [F̃ ]

= SN (0) exp([(µN − r)− σ11σN
σ2

11+σ2
12

(µ1 − r)]T )− e−rTK,
V F̃ ,P̂ (ϕ, t) = V F̃ ,P̂ (ϕ, 0) +

∫ t
0
ϕ1(s)dS1(s) + L(t), where

ϕ1(s) = σ11σN
σ2

11+σ2
12

SN (s)
S1(s) exp([(µN − r)− σNψ1](T − s)).

(26)

This is the Kunita-Watanabe decomposition of F̃ under P̂ , since S1 and L
are P̂ -martingales with 〈L, S1〉 = 0. Since L is also a P -martingale, which can
be shown very easily,

L(t) =

∫ t

0

σ2
12

σ2
11 + σ2

12

Y (s) dŴ1(s)︸ ︷︷ ︸
=dW1(s)+ψ1ds

−
∫ t

0

σ11σ12

σ2
11 + σ2

12

Y (s) dŴ2(s)︸ ︷︷ ︸
=dW2(s)+ψ2ds

=

∫ t

0

(
σ2

12

σ2
11 + σ2

12

ψ1 −
σ11σ12

σ2
11 + σ2

12

σ12

σ11
ψ1)Y (s)ds︸ ︷︷ ︸

=0

+

∫ t

0

σ2
12

σ2
11 + σ2

12

Y (s)dW1(s)−
∫ t

0

σ11σ12

σ2
11 + σ2

12

Y (s)dW2(s),

(26) is also the Föllmer-Schweizer decomposition of F̃ under P .

4.3 Numerical Simulation of the Hedging Risk under AV aR

Now we want to measure the risk due to the hedging cost C or rather due to L
(because C = V (ϕ, 0)+L and V (ϕ, 0) is fix and can be passed immediately to the
customers as part of the Futures’ price) via a dynamical AV aR-scheme. We use
this particular scheme because in the static setting AV aR is a recommended risk
measure since it is coherent and focusses on the tail risk, i.e. the risk of extreme
losses. Following Stadje (2010) [2] the one-period valuations or ”generators” are
given by

Fti(X) = AV aRVti,λ,α(X) := E[X|Fti ]− λAV aRti,α(X − E[X|Fti ]),

for X ∈ L∞(Fti+1
), where

AV aRti,α(X) :=
1

α

∫ α

0

V aRti,γ(X)dγ,

29



and

V aRti,α(X) := essinf{m : m Fti −msble., P (X +m < 0|Fti) ≤ α}.

We choose λ = 1, i.e. the one-period valuations are just the usual AV aRα
on one period. The associated dynamic AV aRα in continuous time is given by
AV aRt,α(X) = −Y (t), where (Y,Z), Z = (Z1, Z2) is the solution to the BSDE

Y (t) = X −
∫ T

t

g(Z(s))ds−
∫ T

t

Z1(s)dW1(s)−
∫ T

t

Z2(s)dW2(s). (27)

The driver is (see, for example [2])

g(z) = − 1

α

χ
5−d4αe(z)

(
α− d4αe − 1

4

)
+

1

4

d4αe−1∑
j=1

χ5−j (z)

 , (28)

and χ
p
(z) the p-th largest value of the set {z1+z2, z1−z2,−z1+z2,−z1−z2}.

Since L is a loss process, i.e. positive values of L are our loss and nega-
tive ones are our gains, but we usually consider gains processes (the other way
around) we will consider the process −L in the following. Furthermore we make
the following simplifying assumption: We have infinite financial resources
outside the portfolio (bank account plus tradable asset) to pay the costs up to
expiry of the Futures contract and we only have to cover the losses at the end.
This could for example be achieved by an account at the central bank where
we can borrow as much money as we need for the riskless rate r (so that the
bank account can take any negative or positive value) until expiry – we just
have to settle the account at the end. This means, that the risk is determined
by X = −L(T ).

In the following we consider the above problem under concrete parameters:
T = 1, r = 0.01, SN (0) = 100 EUR, S1(0) = 50 EUR, µN = 0.05, µ1 = 0.04,
σN = 0.25, σ11 = 0.18, σ12 = 0.12 and K = 100 EUR. The number of timesteps
used for simulation was 100. Figure 1 shows a path of SN and S1 (upper left)
as well as the Clark-Ocone decomposition (22) (upper right) and the hedging

strategy V F̃ ,P̂ (middle left), both in comparison with the Futures value process.

Furthermore it shows the hedging strategy without the cost part (V F̃ ,P̂ − L),
also in comparison with the Futures value process (middle right) to see if the
good fitting is only achieved by the cost component (the permanent adjustment
part of the portfolio). This would of course indicate that we had done some-
thing wrong, but it looks quite okay. Eventually, Figure 1 includes 20 paths of
the cost process L (bottom left) plus 20 paths of the unhedged Futures process
(bottom right). One can observe that the Clark-Ocone decomposition and the
hedging strategy seem to work right (the quadratic deviation of the Clark-Ocone
decomposition at T from F̃ is about 0.21 EUR2 and the quadratic deviation of

V F̃ ,P̂ (T ) from F̃ is about 0.11 EUR2). Also it can be observed that the variance
of L(t) at any t > 0 is far less than the one of the unhedged Futures process
at time t (at time T , the variance of L is about 209 EUR2, whereas the one of
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the unhedged Futures is about 711 EUR2). If that was not the case, it would
clearly indecate a mistake in our considerations. This example was calculated in
Matlab and the seed which was used was 100, from the generator ”mt19937ar”.
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Figure 1: top left: SN (blue) and S1 (green), top right: Futures value evolution
(blue) and Clark-Ocone decomposition of F̃ (green), middle left: Futures value

evolution (blue) and V F̃ ,P̂ (green), middle right: Futures value evolution (blue)

and hedging strategy without the cost part (V F̃ ,P̂ −L) (green), bottom left: 20
plots of the hedging cost process L, bottom right: 20 plots of the Futures value
without hedging

In a second step the dynamic AV aR was calculated for α = 0.1 using the
algorithm of Bender and Denk [10]. The number of copies used for this simu-
lation was 100000, the number of time steps was 50, the projection basis was
ηik := ek(−L(ti)), k = 1, ..., 6,

ek(x) = xk−1, k = 1, ..., 6,

and the breaking criterion was Y (n+1)(0) − Y (n)(0) < 0.001. For reason of
computational time the maximal number of iterations was set to nStop = 6. Fig-
ure 2 shows on the top the hedging cost process L and the calculated dynamic
AV aR (which is −Ŷ with (Ŷ , Ẑ) numerical solution of BSDE (27) with terminal
condition X = −L(T )) at the level α = 0.1 – it is around 23.44 EUR. One can
observe that the dynamic AV aR increases whenever L increases and decreases
whenever L decreases, which is clearly what we would expect (remember that
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we measure the risk of −L(T )). Furthermore, as time goes by, the difference
between the dynamic AV aR and the process L decreases and becomes eventu-
ally 0. This is very intuitive, since the less time remains until expiry, the less
can happen. So the risk has some ”time-value” that decreases in time (or rather
increases in time remaining).

On the bottom, Figure 2 shows the first component Ŷ of the calculated nu-
merical solution (Ŷ , Ẑ) of BSDE (27) together with a ”forward solution” which
is calculated as follows: starting at Ŷ (0), use the BSDE dynamics forward in
time (by applying a simple Euler-scheme), plugging in Ẑ, which is also estimated
in the Bender-Denk algorithm. If Ŷ would be the true solution of the BSDE,
both graphs would match perfectly. Since Ŷ is only a numerical solution, the
graphs do not match, but are close which is an indication that the algorithm
works well and Ŷ is close to the true solution. Additionally, the static AV aR
at level α = 0.1 was estimated and its value is around 27.65 EUR. Again this
shows that the static AV aR is not its dynamic version, evaluated at 0, but it
somehow ”has something to do with it”.
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Figure 2: top: Hedging cost process (blue) and calculated dynamic AV aR0.1

(green), bottom: calculated dynamic AV aR0.1 (blue) and calculated forward
solution (green)

Eventually, a small statistical analysis of this numerical solution was done.
To do so, 29 more versions (seeds 101 to 129) of the numerical BSDE solution
were computed (every version with its own 100000 copies). The computed time-
zero values of the BSDE solution, Ŷ (0), have empirical mean -23.37 EUR and
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empirical variance 0.91 EUR2. The difference between the time-T values of the
BSDEs, Ŷ (T ), and their corresponding forward solutions have empirical mean
1.10 EUR and variance 52.60 EUR2. Histograms of both values can be found
in Figure 4. There is one outlier, where the absolute difference of numerical
BSDE solution and forward solution at time T is larger than 30 whereas in all
other cases it is smaller than 10. This is the version with seed 118. Without the
outlier, the empirical mean and empirical variance of Ŷ (0) are -23.29 EUR and
0.72 EUR2 and the empirical mean and variance of the difference between Ŷ (T )
and its forward solution at time T are -0.09 EUR and 10.53 EUR2. Moreover,
four more versions of what can be seen in Figure 2 can be found in Figure 5 in
the appendix. The seeds were 101, 102, 103 and 118 – the last one was to show
what can go wrong.

Now let us return to the example from the introduction, where the bank or
the regulator defines a boundary that should not be hitten by the risk process
at any time (otherwise the position must be cancelled, for example). Now the
bank could define a maximal probability of hitting the boundary it is willing to
accept, say 0.05. To see if the position is acceptable in this context, the bank
would now simulate a sufficiently large amount of paths. If more than 5% of
the simulated paths are hitting the boundary, the contract will not be closed
or an additional amount of money will be demanded, s.t. less than 5% of the
paths hit the boundary afterwards. But one has to be careful, paths like the one
achieved with seed 118 (at the bottom of Figure 5) must be excluded (or the
maximal number of time steps in the BSDE solving algorithm must be increased
for those paths), since they do not fit the solution of the BSDE well. Therefore
a comparison with the forward solution of the BSDE like done here is strongly
recommended.
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5 The 1-dimensional Case

This chapter deals with the results that were just developed in the 1-dimensional
case. We show that the limiting BSDE is of a special type and that for pathwise
increasing claims which fulfill some weak additional conditions, the dynamic
risk measure is given by a usual conditional expectation w.r.t. some measure
that depends only on the distortion. Then we check our results on an example.

5.1 Investigation of the Limiting BSDE

In this section we take a closer look at the BSDE which appears in the limit of the
rescaled distorted valuations. Recall the setting from before where W is a Brow-
nian motion generating a filtration (Ft)t∈[0,T ] and let again ((RN )N , ((FNt )t∈[0,T ])N )
be a sequence of Bernoulli random walks approximating W (as N → ∞)
and their canonical filtrations. But now let d = 1, i.e. W and RN are one-
dimensional processes.

We will show that in this particular case, the driver of the BSDE which
appears in the limit of the distorted valuations is of a quite simple type. Fur-
thermore it will be shown that if the claim to be evaluated is pathwise increasing
and some auxiliary conditions are fulfilled, the valuation (and thus also the dy-
namic risk measure) is just a conditional expectation with respect to a certain
measure which depends only on the distortion. The following theorem illustrates
the general type of the limiting BSDE in one dimension:

Theorem 5.1. Recall the Bernoulli random walk approximation from before,
but now let d = 1 and let X be an FT -measurable random variable. Then, as
N →∞, the dynamic valuation scheme (φNti )i=0,...,k(N) converges to the solution
of the BSDE

φt(X) = X −
∫ T

t

2

[
Ψ

(
1

2

)
− 1

2

]
|Z(s)|ds−

∫ T

t

Z(s)dW (s). (29)

Remark 5.1. This implies that the corresponding risk measure ρt(X) =
−φt(X) solves the BSDE

ρt(X) = −X +

∫ T

t

2

[
Ψ

(
1

2

)
− 1

2

]
|Z(s)|ds+

∫ T

t

Z(s)dW (s)

= −X −
∫ T

t

2

[
1

2
−Ψ

(
1

2

)]
|Z̃(s)|ds−

∫ T

t

Z̃(s)dW (s),

where Z̃ = −Z.

Proof:
By definition of the one-period valuations Fti (8), we have

FNti (X) = essinfξti+1
∈DNti+1

,Qξ(A|FNti )≤Ψ(P (A|FNti ))∀A∈FNti+1
EQξ [X|FNti ].

Furthermore using (17), the construction of the BSDE driver from before,
and (since d = 1) z := z1 ∈ Rd = R and z2 ∈ R2−1−1 = ∅ we get

34



gN (ti, z) = −FNti (zBNi+1)

= − essinfξti+1
∈DNti+1

,Qξ(A|FNti )≤Ψ(P (A|FNti ))∀A∈FNti+1
EQξ [zB

N
i+1|FNti ]

= −

{
z essinfQξ∈Dti,N EQξ [B

N
i+1|FNti ], for z ≥ 0

z esssupQξ∈Dti,N EQξ [B
N
i+1|FNti ], for z < 0

= −z+ essinfQξ∈Dti,N EQξ [B
N
i+1|FNti ] + z− esssupQξ∈Dti,N EQξ [B

N
i+1|FNti ],

where we defineDti,N := {Qξ : ξti+1
∈ DN

ti+1
, Qξ(A|FNti ) ≤ Ψ(P (A|FNti ))∀A ∈

FNti+1
} for convenience (again, we mean the P -a.s. defined versions of the con-

ditional expectations and the P − essinf and P − esssup). Note that since BNi+1

only takes the values −1 and 1,

BNi+1 + 1 = 2 · 1{BNi+1=1} − 0 · 1{BNi+1=−1} = 2 · 1{BNi+1=1},

and thus, since Qξ ∈ Dti,N ,

EQξ [B
N
i+1|Fti ] = EQξ [B

N
i+1 + 1|FNti ]− 1

= 2EQξ [1{BNi+1=1}|FNti ]− 1

≤ 2Ψ(P (BNi+1 = 1|FNti ))− 1

= 2

(
Ψ

(
1

2

)
− 1

2

)
.

(30)

Hence, also

esssupQξ∈Dti,N EQξ [B
N
i+1|FNti ] ≤ 2

(
Ψ

(
1

2

)
− 1

2

)
is true. Analogously we have

BNi+1 − 1 = 0 · 1{BNi+1=1} − 2 · 1{BNi+1=−1} = −2 · 1{BNi+1=−1},

and

EQξ [B
N
i+1|Fti ] = EQξ [B

N
i+1 − 1|FNti ] + 1

= −2EQξ [1{BNi+1=−1}|FNti ] + 1

≥ −2Ψ(P (BNi+1 = −1|FNti )) + 1

= −2

(
Ψ

(
1

2

)
− 1

2

) (31)

and also that

essinfQξ∈Dti,N EQξ [B
N
i+1|FNti ] ≥ −2

(
Ψ

(
1

2

)
− 1

2

)
.
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Therefore we can conclude that

gN (ti, z) = −z+ essinfDti,N EQξ [B
N
i+1|FNti ]

+ z− esssupDti,N EQξ [B
N
i+1|FNti ]

≤ −
(
−2

(
Ψ

(
1

2

)
− 1

2

))
z+ + 2

(
Ψ

(
1

2

)
− 1

2

)
z−

= 2

(
Ψ

(
1

2

)
− 1

2

)
(z+ + z−)

= 2

(
Ψ

(
1

2

)
− 1

2

)
|z|.

(32)

To show that this inequality is actually an equality, we just have to find
measures Qξ

1 ∈ Dti,N and Qξ
2 ∈ Dti,N such that (30) and (31) are fulfilled

with equality. This can be done by choosing ξ1
t0 = ... = ξ1

ti = 1 = ξ2
t0 = ... = ξ2

ti

(i.e. Qξ
1 |Fti = Qξ

2 |Fti = P |Fti) and

ξ1
ti+1

= 2

(
1−Ψ

(
1

2

))
1{BNi+1=−1} + 2Ψ

(
1

2

)
1{BNi+1=1},

ξ2
ti+1

= 2Ψ

(
1

2

)
1{BNi+1=−1} + 2

(
1−Ψ

(
1

2

))
1{BNi+1=1},

because then it can be seen immediately that Qξ
1 ∈ Dti,N and Qξ

2 ∈ Dti,N
and

EQξ1 [BNi+1|FNti ] = E[ξ1
ti+1

BNi+1|FNti ]

= (−1)
1

2
2

(
1−Ψ

(
1

2

))
+

1

2
2Ψ

(
1

2

)
= 2Ψ

(
1

2

)
− 1

= 2

(
Ψ

(
1

2

)
− 1

2

)
,

and analogously

EQξ2 [BNi+1|FNti ] = E[ξ2
ti+1

BNi+1|FNti ]

= (−1)
1

2
2Ψ

(
1

2

)
+

1

2
2

(
1−Ψ

(
1

2

))
= 1− 2Ψ

(
1

2

)
= −2

(
Ψ

(
1

2

)
− 1

2

)
.

Note that ξ1
ti+1

and ξ2
ti+1

really are probability densities, as they are nonneg-
ative for Ψ : [0, 1]→ [0, 1] concave and
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E[ξ1
ti+1

] =
1

2
2

(
1−Ψ

(
1

2

))
+

1

2
2Ψ

(
1

2

)
= 1,

and analogously E[ξ2
ti+1

] = 1. This shows that (32) is fulfilled with equality.

Finally we note that gN does not depend on N , i.e. gN (t, z) := g(t, z) is the
driver of the limiting BSDE and everything is proven.

�

One very important point of criticism is that the driver of the BSDE de-
pends only on Ψ evaluated at one point ( 1

2 ) so that most of the information
of Ψ is actually wasted. As one can see in the proof of the previous theorem,
this clearly comes from the fact that we use a Bernoulli random walk scheme
for approximation and the Bernoulli random variables BNi+1 only take values 1
and −1. In Madan et al. [1] a trinomial random walk approximation is consid-
ered and there, the limiting BSDE depends on Ψ( 1

6 ) and Ψ( 5
6 ) – still, a lot of

information is lost. That is a big disadvantage of the random walk approxima-
tion approach. Therefore, in the conclusion, a different method will be proposed.

The next theorem shows that for pathwise increasing claims X, the BSDE
can be simplified to a linear BSDE, i.e. the dynamic risk measure is a conditional
expectation with respect to a particular measure (if some additional conditions
are fulfilled). First of all some notation: We will consider Ω = C0([0, T ]), the
space of continuous functions starting in 0 at 0, representing the possible paths
of the Brownian motion W , i.e. ω = ω(·) = W (·)(ω). If the reader does not
want so much structure on the original probability space, think of the path
(W (t)(ω))t∈[0,T ] whenever ω appears in the following. The theorem is now:

Theorem 5.2. Let X be Malliavin and Fréchet differentiable and pathwise in-
creasing, i.e. for ω′ ≥ ω, it holds that X (ω′) ≥ X (ω) and let ∆+ and ∆− be
deterministic constants. Consider the solution of the BSDE

Y (t) = X −
∫ T

t

Z+(s)∆+ + Z−(s)∆−ds−
∫ T

t

Z(s)dW (s), (33)

where Z+ = max(0, Z) and Z− = max(0,−Z). Define the measure Q# via
its Radon-Nikodym derivative w.r.t. P ,

dQ#

dP
|Ft := exp

(
−
∫ t

0

∆+dW (s)− 1

2

∫ t

0

∆2
+ds

)
. (34)

Then, for all t ∈ [0, T ], Y (t) = EQ# [X|Ft].

Remark 5.2. Together with Theorem 5.1, this implies, that the risk valuation
φt(X ) of a pathwise increasing claim X can be written as a conditional expec-
tation φt(X ) = EQ# [X|Ft] with ∆+ = ∆− = 2

[
Ψ
(

1
2

)
− 1

2

]
.
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Proof:

Let X pathwise increasing, i.e. for ω′ ≥ ω, it holds that X (ω′) ≥ X (ω).
The claim is now that Y (t) = EQ# [X|Ft] where W#(s) = W (s) +

∫ s
0

∆+dr, i.e.

Y ≡ Y # for the two BSDEs

Y (t) = X −
∫ T

t

Z+(s)∆+ + Z−(s)∆−ds−
∫ T

t

Z(s)dW (s)

and

EQ# [X|Ft] = Y #(t) = X −
∫ T

t

Z#(s)dW#(s)

= X −
∫ T

t

Z#(s)∆+ds−
∫ T

t

Z#(s)dW (s).

(35)

If we can show that Z# ≥ 0 (λ⊗P )-a.s. then BSDE (35) becomes the same
as BSDE (33), which means that, for uniqueness of a solution of a BSDE with
Lipschitz driver, it holds (Y,Z) = (Y #, Z#) and everything is shown. As an
easy application of the Clark-Ocone Theorem under change of measure (compare
Theorem A.4 in the appendix or [9], Theorem 4.5), we see that

Z#(s) = EQ# [(DsX + X
∫ T

s

Ds(−∆+)︸ ︷︷ ︸
=0, since ∆+ determ.

dW#(r))|Fs]

= EQ# [DsX|Fs],

where D is the Malliavin derivative. Now take a look at the directional
derivative Dγ (compare Definition A.3 in the appendix) for a nonnegative di-
rection γ ∈ H1, γ ≥ 0 where

γ(·) =

∫ ·
0

g(t)dt,

it holds

DγX (ω) = lim
ε→0

X (ω + εγ)−X (ω)

ε
≥ 0,

because with ω′ := ω + εγ we have ω′ ≥ ω if ε > 0 and ω′ ≤ ω if ε < 0
and thus, for X pathwise increasing, the numerator and the denominator in the
limes have the same sign. On the other hand, we know (compare Definitions
A.3 and A.4 and Remark A.4 in the appendix) that

∫ T

0

DtX · g(t)dt = 〈DX , g〉L2([0,T ]) = DγX ≥ 0.

Since this is true for all nonnegative γ, it holds in particular for all nonneg-
ative g (since the integral of a nonnegative function g is nonnegative). Thus,
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we get that DX ≥ 0, i.e. DsX ≥ 0 for λ-a.a. s ∈ [0, T ] a.s. and therefore also
Z#(s) = EQ# [DsX|Fs] ≥ 0 (for λ-a.a. s ∈ [0, T ] a.s.). This completes the proof.

�
The next subsection shows by an example, that in general the pathwise

increasing assumption is necessary. I.e. equality of the valuation with the
conditional expectation w.r.t. Q# fails, if the claim is not pathwise increasing.

5.2 Risk Valuation of Call Option and Straddle (Unhedged)

Consider a Black-Scholes market with one riskless bank account and one risky
asset. Let w.l.o.g. be the riskless rate r = 0 (otherwise consider the discounted
setting): {

S0(t) = 1, t ∈ [0, T ]

dS1(t) = µS1(t)dt+ σS1(t)dW (t).
(36)

Furthermore, consider a European Call option and a Straddle on S1, both
with maturity T and Strike K:

XCall := (S1(T )−K)+,

XStraddle := |S1(T )−K|.
(37)

It is easy to see that the Call is pathwise increasing, while the Straddle is
not. We take the AV aRα-scheme with α < 1

2 as an example for a risk valuation.
Our aim is now to show, that for the Call, the solution of the limiting BSDE is
the same as the conditional expectation w.r.t. Q#, as stated in Theorem 5.2,
while for the Straddle the two processes differ.

First we take a look at the limiting BSDE for the dynamic AV aRα in one
dimension:

φt(X) = X −
∫ T

t

g(Z(s))ds−
∫ T

t

Z(s)dW (s). (38)

Due to Stadje (2010) [2], the driver is (where χ
p
(z) the p-th largest value of

the set {z,−z})

g(z) = − 1

α

χ2−d2αe+1
(z)

α− d2αe − 1

2︸ ︷︷ ︸
=0

+
1

2

d2αe−1∑
j=1

χ
2−j+1

(z)︸ ︷︷ ︸
=0


= −min{z,−z}
= |z|.

On the other hand, Theorem 5.2 states, that in case of a pathwise increasing
Malliavin and Fréchet differentiable claim, the valuation can be calculated as
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φt(X) = EQ# [X|Ft]. (39)

By Equation (35) and using that ∆+ = 2
[
Ψ
(

1
2

)
− 1

2

]
= 1 (since Ψ( 1

2 ) =
min{1, 1

2α} = 1 for α < 1
2 ), EQ# [X|Ft] solves the BSDE

EQ# [X|Ft] = X −
∫ T

t

Z#(s)ds−
∫ T

t

Z#(s)dW (s).

The question is now how to calculate EQ# [X|Ft]. Fortunately, the Black-
Scholes formula can be used to achieve the answer. It states that the fair value
of a Call option on S1 with strike K and maturity T is given by

Call(S1, t) := S1(t)Φ(d1(S1(t), T − t))−Ke−r(T−t)Φ(d2(S1(t), T − t)),

where

d1(s, t) =
log(s/K) + (r + σ2

2 )t

σ
√
t

,

d2(s, t) =
log(s/K) + (r − σ2

2 )t

σ
√
t

.

Besides, we know that

Call(S1, t) = ertEQ[e−rTXCall|Ft]

= e−r(T−t)

(
X −

∫ T

t

ZQ(s)dWQ(s)

)

= e−r(T−t)

(
X −

∫ T

t

ZQ(s)
µ− r
σ

ds−
∫ T

t

ZQ(s)dW (s)

)

where Q is the risk-neutral measure, given by

dQ

dP
= exp

(
−
∫ T

0

µ− r
σ

dt− 1

2

∫ T

0

(
µ− r
σ

)2

dW (t)

)
.

The BSDE appearing in the formula for Call(S1, t) looks quite similar to the
one for EQ# [X|Ft], the only difference is the term µ−r

σ in it. Fortunately the
riskless rate r did not play a role in the calculation of EQ# [X|Ft] and therefore
we can define a pseudo-riskless rate

r# := µ− σ, (40)

so that µ−r#

σ = 1 and the two BSDEs become the same. Thus, we get:

40



EQ# [XCall|Ft] = er
#(T−t)S1(t)Φ(d#

1 (S1(t), T − t))−KΦ(d#
2 (S1(t), T − t)),

(41)

where

d#
1 (s, t) =

log(s/K) + (r# + σ2

2 )t

σ
√
t

, (42)

d#
2 (s, t) =

log(s/K) + (r# − σ2

2 )t

σ
√
t

. (43)

To calculate EQ# [XStraddle|Ft], we first use the Put-Call parity and then
that XStraddle = XPut+XCall plus the linearity of the conditional expectation.
This yields

EQ# [XPut|Ft] = −er
#(T−t)S1(t)Φ(−d#

1 (S1(t), T − t)) +KΦ(−d#
2 (S1(t), T − t))

and thus

EQ# [XStraddle|Ft] = er
#(T−t)S1(t){Φ(d#

1 (S1(t), T − t))− Φ(−d#
1 (S1(t), T − t))}

+K{Φ(−d#
2 (S1(t), T − t))− Φ(d#

2 (S1(t), T − t))}.
(44)

Now let us compare the solution of BSDE (38) for the Call and the Straddle
with the solutions for EQ# [XCall|Ft] and EQ# [XStraddle|Ft] given in Equations
(41) and (44). Therefore we choose the following market parameters: the (an-
nual) drift rate µ = 0.05, (annual) volatility σ = 0.2, starting value of the stock
and strike S1(0) = K = 100 EUR and maturity T = 1 (year). This was im-
plemented in Matlab using again the seed 100 from the generator ”mt19937ar”
and again, the BSDEs were solved numerically by use of the Bender-Denk algo-
rithm. The number of timesteps used for the simulation of S1 was 100 and the
number of timesteps in the Bender-Denk algorithm was 50. Moreover, a polyno-
mial basis (with one exception: e1(x) = max{x−K, 0} was used to achieve the
replicating property at t = T for both claims) and 100000 copies of S1 where
used in the Bender-Denk scheme. The results can be seen in Figure 3. One can
clearly observe that for the Straddle, the solution of BSDE (38), which should
approximate the true path of the risk valuation differs very much from the so-
lution of Equation (44). This shows that the assumption in Theorem 5.2 that
the claim is pathwise increasing, really is necessary. For the Call, as expected,
both solutions do not differ much. Theoretically they are the same, but remem-
ber that we solved the BSDE only numerically, so we cannot expect that they
totally match (actually this gives us an idea about how big the approximation
error really is).

Again, 29 more paths of the BSDE solution and the conditional Expectations
of Call and Straddle were simulated (each time with 100000 new copies of S1).
The seeds that were used are 101 to 129. The results shall only be touched
on briefly. For the Call option, the empirical mean of the difference between
BSDE solution and conditional expectation solution at 0, Ŷ BSDECall −EQ# [XCall]
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was about −0.51 EUR and the empirical variance was about 5.62 · 10−4 EUR2.
For the Straddle, the empirical mean of this difference was −9.69 EUR and the
empirical variance was about 2.5 ·10−3 EUR2. A histogram for these differences
is to be found in Figure 6 in the appendix. In Figure 7 in the appendix the
solutions for the seeds 101, 102, 103 and 126 are plotted.
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Figure 3: left: BSDE-solution (blue) and Expectation solution (green) for the
Call (one path), right: BSDE-solution (blue) and Expectation solution (green)
for the Straddle (the same one path)
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6 Conclusion

This chapter consists of two parts: First, a short summary of what we have
learned is given. Afterwards the problem that the limiting BSDE of the valua-
tions depends on the approximation scheme for the Brownian motion that was
chosen is discussed and a proposal for solution is made.

6.1 Summary

Let us briefly recall the main steps in this thesis and point out the most impor-
tant perceptions. The first insight was that one cannot simply generalize the
concept of a static risk measure which is given by a Choquet integral w.r.t. a
distortion Ψ canonically to a dynamic risk measure because this leads to time-
inconsistency. Instead we defined a time-consistent valuation in discrete time by
concatenating static valuations recursively, which led to the so called distorted
risk measure. But some rescaling was needed. We showed that this can be done
either at the one-step valuation level or at the distortion level. Afterwards a
brief summary of the proof given in Stadje (2010) [2] showed that after rescaling
the valuations defined in a Bernoulli random walk setting tend to the solution
of a BSDE. This means that the properties of a risk valuation are automatically
fulfilled, so the outcome is indeed a risk valuation in continuous time. As an
example of practical relevance a case study concerning the risk related to cross-
hedging in incomplete markets was made. Eventually the 1-dimensional case
was investigated in detail. It was shown how the limiting BSDE simplifies in
this case and that for pathwise increasing claims the risk valuation can always
be written as a usual conditional expectation w.r.t. some measure Q# that de-
pends on the distortion Ψ. The example of an unhedged straddle showed that
the pathwise increasing property cannot be dropped.

6.2 Outlook

As mentioned before, the convergence of the discrete-time valuations against a
limiting BSDE was shown particularly in a Bernoulli random walk setting ap-
proximating the Brownian motion. Nothing is said about other approximation
schemes. Indeed it was shown in [1] that for a Trinomial random walk approxi-
mation, the valuations also converge to the solution of a BSDE, but this BSDE
differs from the one of the Bernoulli approximation scheme. This fact was also
pointed out in Stadje (2010) [2], where it was mentioned that even if the ap-
proximation schemes converge against the same Brownian motion, the drivers
of the limiting BSDEs and thus the resulting continuous time risk measures
could differ. Well, this is somehow dissatisfactory. Of course if one only wants
to construct a dynamic risk measure that is ”in some sense” a generalization of
a static risk measure induced by a distortion, then one can choose a scheme in
which convergence towards a solution of a BSDE is shown and use for example
a Bender-Denk scheme to solve the BSDE. But this approach seems quite hap-
hazardly.

An intuitive approach is the following: Instead of approximating the whole
continuous time setting driven by a Brownian motion by a discrete time setting,
for example driven by a Bernoulli random walk, one could rather stay in the
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Brownian setting but devide the time-interval into finitely many sub-intervals
and establish the one-period valuations on these intervals. Then one increases
the frequence of measurement, i.e. the number of sub-intervals. This would
correspond to the following interpretation: The financial institution measures
the risk dynamically via the recursive definition first weekly, then daily then at
every hour, and so on and so forth. These risk measurements converge to the
continuous time risk measure which corresponds to the valuation given by the
limiting BSDE (if there is a limiting BSDE). We will now show heuristically
that there should indeed exist a limiting BSDE in this setting. The idea of the
proof is quite similar to the one for the Bernoulli random walk approximation.
It consists of five steps:

1. Use the Clark-Ocone formula:

φNti+1
(X) = E[φNti+1

(X)|Fti ]︸ ︷︷ ︸
=:βNti

...Fti -msble

+

∫ ti+1

ti

E[Dsφ
N
ti+1

(X)|Fs]︸ ︷︷ ︸
=:ZNti

(s)

dW (s).

2. Use the recursive definition (15), i.e. use the same rescaling as in the
Bernoulli random walk case (this is because W (t) ”scales like”

√
t) to get

for the time-increments:

φNti+1
(X)− φNti (X) = φNti+1

(X)− φNti,ti+1
(φNti+1

(X))

= βti +

∫ ti+1

ti

ZNti (s)dW (s)

− φNti,ti+1
(βti +

∫ ti+1

ti

ZNti (s)dW (s)).

Here we used the first step of the proof. Because of the cash invariance,
we can pull βti out of φNti,ti+1

such that it cancels out and it remains

φNti+1
(X)− φNti (X) =

∫ ti+1

ti

ZNti (s)dW (s)− φNti,ti+1
(

∫ ti+1

ti

ZNti (s)dW (s)).

3. Using this result and a telescope sum argument yields:

φNti (X) = X −

k(N)−1∑
j=i

−φNtj ,tj+1
(

∫ tj+1

tj

ZNtj (s)dW (s))


−

k(N)−1∑
j=i

∫ tj+1

tj

ZNtj (s)dW (s)︸ ︷︷ ︸
=
∫ T
ti

∑k(N)−1
j=0 ZNtj

(s)1[tj ,tj+1)(s)dW (s)

.

Now define

ZN (s) :=

k(N)−1∑
j=0

ZNtj (s)1[tj ,tj+1)(s), (45)
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to get

φNti (X) = X −

k(N)−1∑
j=i

−φNtj ,tj+1
(

∫ tj+1

tj

ZN (s)dW (s))


−
∫ T

ti

ZN (s)dW (s).

(46)

4. The idea is now to figure out whether (or rather to find conditions under

which) it is justified to substitute
∫ tj+1

tj
ZN (s)dW (s) by ZN (tj)∆W (tj+1)

in the last equation, where we define ∆W (tj+1) := W (tj+1)−W (tj).

Assumption 1: Assume that Ψ is Lebesgue-a.e. differentiable and let
Ψ′ be bounded. Let us first focus on the case where Ψ is differentiable
everywhere, to see the idea behind this assumption. Let Q ∈ Dti with
Q|Fti = P |Fti . Then we have for any A ∈ Fti+1 that

EP [Q(A|Fti)] = EQ[Q(A|Fti)]
= EQ[EQ[1A|Fti ]]
= EQ[1A]

= EP

[
dQ

dP
1A

]
.

where we recall that we defined EQ[...] actually P -almost surely. Now

assume for contradiction that it exists a set A ∈ Fti+1
such that dQ

dP >
maxx∈[0,1] Ψ′(x). Then, by the mean value theorem, we know that for any
x, y ∈ [0, 1], x < y it exists a z ∈ (x, y) such that

Ψ(y)−Ψ(x)

y − x
= Ψ′(z).

Therefore we have that for M ≥ maxx∈[0,1] Ψ′(x), M(y−x) ≥ Ψ(y)−Ψ(x)
for all x, y ∈ [0, 1], x < y and thus

EP [Q(A|Fti)] = EP

[
dQ

dP
1A

]
> EP [ max

x∈[0,1]
Ψ′(x)1A]

= EP [ max
x∈[0,1]

Ψ′(x)EP [1A|Fti ]]

= EP [ max
x∈[0,1]

Ψ′(x)(P (A|Fti)− 0)]

≥ EP [Ψ(P (A|Fti))−Ψ(0)︸︷︷︸
=0

].

So there must be an Fti-measurable set B, s.t. Q(A|Fti) > Ψ(P (A|Fti)
on B which is a contradiction to Q ∈ Dti . Therefore we know that
dQ
dP ≤ maxx∈[0,1] Ψ′(x) i.e. it is bounded. This result should be easy
to generalize to the case where Ψ is differentiable only Lebesgue almost
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everywhere.

Assumption 2: A quite strong assumption is the following:

esssupj∈{1,...,k(N)}E

[∫ tj+1

tj

(ZN (s)− ZN (tj))
2

∆tj+1
ds

∣∣∣∣∣Ftj
]
→ 0 a.s. (47)

as N →∞. Let these assumptions be fulfilled. We have that

k(N)−1∑
j=i

[
φNtj ,tj+1

(∫ tj+1

tj

ZN (s)dW (s)

)
− φNtj ,tj+1

(ZN (tj)∆W (tj+1))

]

=

k(N)−1∑
j=i

∆tj+1

[
FNtj

(∫ tj+1

tj

ZN (s)√
∆tj+1

dW (s)

)
− FNtj

(
ZN (tj)∆W (tj+1)√

∆tj+1

)]
.

By definition, it holds

FNtj

(∫ tj+1

tj

ZN (s)√
∆tj+1

dW (s)

)

= FNtj

(∫ tj+1

tj

ZN (s)− ZN (tj)√
∆tj+1

dW (s) +
ZN (tj)∆W (tj+1)√

∆tj+1

)

= essinfQN∈Dtj EQN

[∫ tj+1

tj

ZN (s)− ZN (tj)√
∆tj+1

dW (s) +
ZN (tj)∆W (tj+1)√

∆tj+1

∣∣∣∣∣Ftj
]
.

For the first summand inside the essinf, using Hölder’s inequality for
conditional expectations and the fact that w.l.o.g. we can assume that
QN |Ftj = P |Ftj , we get

EQN

[∫ tj+1

tj

ZN (s)− ZN (tj)√
∆tj+1

dW (s)

∣∣∣∣∣Ftj
]

≤

√√√√E

[(
dQN

dP

)2
∣∣∣∣∣Ftj

]
︸ ︷︷ ︸
bounded by Assumption 1

√√√√√E

(∫ tj+1

tj

ZN (s)− ZN (tj)√
∆tj+1

dW (s)

)2
∣∣∣∣∣∣Ftj


︸ ︷︷ ︸

→0 a.s. by Ito’s isometry and Assumption 2

→ 0 a.s.

Analoguously (by intersecting an essinf and an esssup) one shows that

esssupj∈{1,...,k(N)}EQN

[∫ tj+1

tj

ZN (s)− ZN (tj)√
∆tj+1

dW (s)

∣∣∣∣∣Ftj
]
→ 0 a.s.

which means that

esssupj∈{1,...,k(N)} F
N
tj

(∫ tj+1

tj

ZN (s)√
∆tj+1

dW (s)

)
− FNtj

(
ZN (tj)∆W (tj+1)√

∆tj+1

)
→ 0 a.s.
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But then we also have that

k(N)−1∑
j=i

[
φNtj ,tj+1

(∫ tj+1

tj

ZN (s)dW (s)

)
− φNtj ,tj+1

(ZN (tj)∆W (tj+1))

]

=

k(N)−1∑
j=i

∆tj+1

FNtj
(∫ tj+1

tj

ZN (s)√
∆tj+1

dW (s)

)
− FNtj

(
ZN (tj)∆W (tj+1)√

∆tj+1

)
︸ ︷︷ ︸

→0


→ 0 a.s.

This legitimates the approximation

φNti (X) ≈ X −

k(N)−1∑
j=i

−∆tj+1F
N
tj

(
ZN (tj)∆W (tj+1)√

∆tj+1

)− ∫ T

ti

ZN (s)dW (s),

since in the limit, it is the same as in Equation (46). Now define

gN (tj , z) := −FNtj

(
z

∆W (tj+1)√
∆tj+1

)
, (48)

then we get

φNti (X) ≈ X −
k(N)−1∑
j=i

gN (tj , Z
N (tj))∆tj+1 −

∫ T

ti

ZN (s)dW (s). (49)

5. The rest of the proof should work quite similar to the Bernoulli random

walk case. In particular, if FNtj

(
z

∆W (tj+1)√
∆tj+1

)
is deterministic and does

not depend on j and N (as for example in case of an AV aR-scheme), the
limiting BSDE should exist.

Since this proof was not very strict but rather heuristically, and the result
is quite interesting, it probably deserves a more thorough investigation.

47



A Appendix

A.1 Malliavin Calculus

Through this whole section, let (Ω,FT , (Ft)t∈[0,T ], P ) be a filtrated probability
space and let the filtration (Ft)t∈[0,T ] be generated by a Brownian motionW . All
definitions and theorems within this section are taken from [9]. This section is
only meant to be a short reminder of the most important results from Malliavin
calculus and no complete derivation of theory. For a derivation of the theory,
reading [9] is recommended.

Definition A.1 (Iterated and Multiple Ito-Integrals).
Define Sn = {(t1, ..., tn) ∈ [0, T ]n : 0 ≤ t1 ≤ ... ≤ tn ≤ T}.

1. Let f be a deterministic function on Sn, such that∫
Sn

f2(t1, ..., tn)dt1...dtn <∞.

Then the n-fold iterated Ito-integral of f is defined as

Jn(f) :=

∫ T

0

∫ tn

0

...

∫ t2

0

f(t1, ..., tn)dW (t1)...dW (tn).

2. Let f ∈ L2([0, T ]n) be symmetric, i.e. f(t1, ..., tn) = f(tσ(1), ..., tσ(n)) for
any permutation σ of (1, ..., n). Then the n-fold multiple Ito-integral is
defined as

In(f) :=

∫
[0,T ]n

f(t1, ..., tn)dW (t1)...dW (tn) := n!Jn(f)

and for a constant f , I0(f) := f .

Theorem A.1 (Wiener Chaos Expension).
Let F ∈ L2(FT ). Then there exists a unique sequence (fn)n of symmetric
functions fn ∈ L2([0, T ]) such that (with convergence in L2(P ))

F =

∞∑
n=0

In(fn).

Definition A.2 (Malliavin Derivative).
Let F ∈ L2(FT ) with Wiener chaos expension as in Theorem A.1. Then

1. F ∈ D1,2 if

||F ||2D1,2
:=

∞∑
n=1

nn!||f ||2L2([0,T ]n) <∞.

If this is the case, we call F Malliavin differentiable.

2. For F ∈ D1,2 we define the Malliavin Derivative of F , DtF as

DtF =

∞∑
n=0

nIn−1(fn(·, t)), t ∈ [0, T ],

where In−1 integrates w.r.t. the first n− 1 arguments of f .
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Remark A.1 (Partial Malliavin Derivatives).
If W is a d-dimensional Brownian motion W = (W1, ...,Wd)

tr, generating the
filtration (Ft)t∈[0,T ], then D1,tF ,..., Dd,tF denote the partial Malliavin deriva-
tives, i.e. Di,tF is the Malliavin derivative of F w.r.t. Wi, where the Wj, j 6= i
are treated like constants.

Theorem A.2 (Product Rule).
Let F1, F2 ∈ D1,2 each with a Wiener chaos expension with only finitely many
terms. Then also F1F2 ∈ D1,2 with

Dt(F1F2) = F1DtF2 + F2DtF1.

Theorem A.3 (Chain Rule).
Let F ∈ D1,2, g ∈ C1(R) with bounded derivative. Then g(F ) ∈ D1,2 with

Dtg(F ) = g′(F )DtF.

The next theorem includes a very important representation formula, namely
the Clark-Ocone formula under change of measure. First of all let u be
an (Ft)t∈[0,T ]-adapted stochastic process satisfying the Novikov condition

E[exp(
1

2

∫ T

0

u2(s)ds)] <∞,

and define an equivalent measure Q by

dQ

dP
|Ft = Z(t),

where

Z(t) = exp(−
∫ T

0

u(s)dW (s)− 1

2

∫ T

0

u2(s)ds).

Then, by Girsanov’s Theorem,

Ŵ (t) :=

∫ t

0

u(s)ds+W (t)

is an (Ft)t∈[0,T ]-Brownian motion under Q. Now the following representation
holds:

Theorem A.4 (Clark-Ocone Formula under Change of Measure).
Let F ∈ D1,2 with existing mean under Q and

EQ[

∫ T

0

|DtF |2dt] <∞.

Furthermore let Z(T )F ∈ D1,2, u(s) ∈ D1,2 for λ-a.e. s and

EQ[|F |
∫ T

0

(

∫ T

0

Dtu(s)dW (s) +

∫ T

0

u(s)Dtu(s)ds)2dt] <∞.
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Then

F = EQ[F ] +

∫ T

0

EQ[DtF − F
∫ T

t

Dtu(s)dŴ (s)|Ft]dŴ (t). (50)

Remark A.2 (Original Clark-Ocone Formula).
Let Q = P and all assumptions fulfilled. Then we have the usual Clark-Ocone
formula:

F = E[F ] +

∫ T

0

E[DtF |Ft]dW (t).

From now on we set Ω := C0([0, T ]) (the space of continuous functions ω
with ω(0) = 0). Equipped with the supremum norm ||ω||∞ := supt∈[0,T ] |ω(t)|,
this becomes a Banach space. Let F be the Borel σ-algebra generated by the
|| · ||∞-open sets. It is possible to define a probability measure P on (Ω,F) so
that W given by W (·)(ω) = ω(·) is a Brownian motion. The resulting probabil-
ity space (Ω,F , P ) is called Wiener space.

Moreover, we define the so called Cameron-Martin space by H1 :=
{h ∈ C0([0, T ]), h′ exists and h′ ∈ L2([0, T ])}, equipped with the scalar product

〈g, h〉H1 :=
∫ T

0
g′(t)h′(t)dt. Note that

γ ∈ H1 ⇔ ∃g ∈ L2([0, T |) : γ(·) =

∫ ·
0

g(t)dt

For a r.v. F : Ω → R we will now define a directional derivative for directions
in the Cameron-Martin space.

Definition A.3 (Directional Derivative).
Let F : Ω → R and γ ∈ H1 (in particular, γ deterministic). Then, the direc-
tional derivative of F in L2(P ) in direction γ ∈ H1 is defined as

DγF (ω) = lim
ε→0

F (ω + εγ)− F (ω)

ε
, (51)

provided this limit exists in L2(P ).

Now we define the Fréchet derivative as a stochastic gradient.

Definition A.4 (Fréchet Derivative).
Let F : Ω→ R have a directional derivative in all directions γ ∈ H1,

γ(·) =

∫ ·
0

g(t)dt, g ∈ L2([0, T ]),

and suppose that there exists a function ψ : R→ L2(P × λ) such that the scalar
product 〈ψ(·, ω), g〉L2([0,T ]) :=

∫
R ψ(t, ω)g(t)dt converges in L2(P ) and

DγF (ω) = 〈ψ(·, ω), g〉L2([0,T ]) =

∫
R
ψ(t, ω)g(t)dt, (52)

then we write F ∈ D1,2, call F Fréchet differentiable in L2(P ) and write

DtF (ω) = ψ(t, ω), t ∈ R. (53)

This can be seen as a gradient w.r.t. g, since now

DγF (ω) = 〈DF (ω), g〉L2([0,T ]).
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Remark A.3. Pay attention to the fact that in this definition we really mean
all γ ∈ H1 and not just P -a.a. (this would not make sense at all, because
H1 ⊂ Ω is a P -null-set).

Remark A.4 (Relation between Malliavin and Fréchet Derivative).
If F ∈ D1,2 ∩ D1,2, then we call F Malliavin and Fréchet differentiable. In this
case, both derivatives coincide:

DF = DF. (54)

A.2 BSDE Theory

Let g : Ω × [0, T ] × R × Rd → R. Write g(t, y, z) := g(·, t, y, z). The following
assumptions are as in [11]:

(A1) (g(t, y, z))t≤0 for any (y, z) ∈ R× Rd continuous progressively measurable

with E[
∫ T

0
|g(s, y, z)|2ds] <∞.

(A2) g is Lipschitz in (y, z) uniformly in (ω, t).

(A3) g(t, y, 0) = 0 a.s. for all (t, y) ∈ [0, T ]× R.

Definition A.5 (BSDE).
A BSDE with terminal condition X and driver g is an equation{

dY (t) = g(t, Y (t), Z(t))dt+ Z(t)dW (t); t ∈ [0, T ]

Y (T ) = X,
(55)

or alternatively

Y (t) = X −
∫ T

t

g(t, Y (t), Z(t))dt−
∫ T

t

Z(t)dW (t); t ∈ [0, T ] (56)

where X is FT -measurable and Z predictable process s.t. stochastic integral is
well-defined. The tuple (Y,Z) is called solution of the BSDE (56).

The following theorem was first stated by Pardoux and Peng (1990) [12]:

Theorem A.5 (Existence and Uniqueness of Adapted Solutions).
Let T > 0, X ∈ L2(FT ) and the driver g fulfill (A1) and (A2). Then (56) has
a unique solution (Y, Z) s.t. Y is adapted and

E

[
sup
t∈[0,T ]

|Y (t)|2 +

∫ T

0

|Z(t)|2dt

]
<∞.

The following property justifies the argumentation and conclusion in the
section about the dynamic case:

Property A.1 (Relation between Dynamic Risk Measures and BSDEs).
Assume g fulfills (A1)-(A3). It can be shown (see, for example [11]) that the
Y -part of the solution of a BSDE with driver g fulfills all the properties of a
valuation, i.e. ρ := −Y defines a dynamic risk measure.
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Next we introduce a numerical scheme for the solution of a BSDE (or more
precisely: a forward-backwards SDE) of the following type:

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t)

dY (t) = f(t,X(t), Y (t), Z(t))dt+ Z(t)dW (t)

X(0) = x

Y (T ) = ξ.

The forward part does not lead to problems, it can easily be solved numeri-
cally by a Euler or Milstein scheme. But since we are looking for an adapted
solution (Y,Z) of the backward part, we cannot simply apply an Euler or Mil-
stein scheme backwards there. The following algorithm is proposed in Bender,
Denk (2007) [10] and it is basically a Picard iteration scheme, i.e. the idea is
the same as in ODE theory to define:

dY (n)(t) = f(t,X(t), Y (n−1)(t), Z(n−1)(t))dt+ Z(n)(t)dW (t)

Y (n)(T ) = ξ,

and increase n. Then, by rearranging the terms and using the Clark-Ocone
formula, we get

Y (n)(t) = E

[
ξ −

∫ T

t

f(s,X(s), Y (n−1)(s), Z(n−1)(s))ds

∣∣∣∣∣Ft
]
,

which projects at any time point t the future evolution (from the integrals from
t to T ) onto L2(Ft) and thus gives us really an adapted solution. Forthermore
we have that∫ T

t

Z(n)(t)dW (t) = ξ − Y (n)(t)−
∫ T

t

f(t,X(t), Y (n−1)(t), Z(n−1)(t))dt.

Therefore heuristically, for d = 1 (but can be generalized canonically) we get by
use of Ito’s isometry

Z(n)(ti)∆ti+1

= E

∫ ti+1

ti

Z(n)(ti)dW (s) (W (ti+1)−W (ti))︸ ︷︷ ︸
=:∆Wi+1

∣∣∣∣∣∣∣Fti


≈ E
[∫ ti+1

ti

Z(n)(s)dW (s)∆Wi+1

∣∣∣∣Fti]

= E


ξ − Y (n)(ti)︸ ︷︷ ︸

Fti -msble

−
∫ ti+1

ti

f(s,X(s), Y (n−1)(s), Z(n−1)(s))ds

∆Wi+1

∣∣∣∣∣∣∣Fti


= E

[(
ξ −

∫ ti+1

ti

f(s,X(s), Y (n−1)(s), Z(n−1)(s))ds

)
∆Wi+1

∣∣∣∣Fti]
For a fixed partition π = {t0, ..., tN : 0 = t0 ≤ ... ≤ tN = T} and discretizations
X(π) and ξ(π) of the forward process and the terminal condition this yields the
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approximation

Y (n,π)(ti) = E

ξ(π) −
N−1∑
j=i

f(tj , X
(π)(tj), Y

(n−1,π)(tj), Z
(n−1,π)(tj))∆tj+1

∣∣∣∣∣∣Fti


Z(n,π)
m (ti)

= E

∆Wm
i+1

∆ti+1

ξ(π) −
N−1∑
j=i

f(tj , X
(π)(tj), Y

(n−1,π)(tj), Z
(n−1,π)(tj))∆tj+1

∣∣∣∣∣∣Fti
 ,

where m = 1, ..., d, ∆ti+1 = ti+1 − ti and ∆Wm
i+1 = Wm(ti+1) − Wm(ti),

∆Wm
N+1 := 0. Since we have to calculate (conditional) expectations, the idea

is now to use regression for approximating these expectations. First we replace
projection on L2(Fti) (which is done by the conditional expectation) by projec-
tion on a finite-dimensional subspace of L2(Fti). Therefore we need a basis of a
subspace of L2(Fti) to project on this subspace via least squares Monte-Carlo
regression. Since in our case it is natural to choose the process X to be the finan-
cial position whose risk we want to evaluate, i.e. in our case ξ := X(T ) := X ,
we will define our projection basis {ηi1, ..., ηiK} by some functions of X(π)(ti):

ηik := ek(X(π)(ti))

For example e1, ..., eK could be the first K monomials (xk)k=0,...,K−1 or some
indicator functions. Of course the goodness of the approximation depends on
the choice of these functions.

Finally we have to estimate the projections on the span of {ηi1, ..., ηiK} (which
are actually the conditional expectations from above but now no longer condi-
tioned on Fti but on {ηi1, ..., ηiK}). This is done using regression techniques. To
do so, for every path of (X,W ) we calculate L independent copies and use these
for regression.

The resulting algortithm is:

Algorithm A.1 (Numerical Solution Scheme for BSDEs; Bender, Denk (2007)).

1. Choose a time-grid π = {t0, ..., tN : 0 = t0 ≤ ... ≤ tN = T}. Simulate on π
the processes X(π), Wm, m = 1, ..., d and the terminal condition ξ(π) and

L independent copies (X
(π)
λ )λ=1,...,L, (Wm,λ)λ=1,...,L and (ξ

(π)
λ )λ=1,...,L of

X(π) and Wm and ξ(π). Calculate ηik and ηik,λ for any i ∈ {0, ..., N} and

any k ∈ {1, ...,K}. Denote by (∆W1
i , ...,∆Wd

i , x
(π),X(π)(ti), eik) the column

vectors of these copies (i.e. eik = (ηik,1, ..., η
i
k,L)T ).

2. Define for i = 0, ..., N : ALi := 1√
L

(ηik,λ)λ=1,...,L;k=1,...,K with pseudo-

inverse (ALi )+.

3. Set nmax, define a breaking criterion and set for i = 0, ..., N and k =
1, ...,K:

α
(0,π,L)
i,k = 0

α̃
(0,π,L)
m,i,k = 0, m = 1, ..., d.
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4. For n = 1 to nmax or breaking criterion fulfilled

• (Ŷ
(n−1,π)
λ (ti))λ=1,...,L :=

∑K
k=1 α

(n−1,π,L)
i,k eik.

• For m = 1, ..., d: (Ẑ
(n−1,π)
m,λ (ti))λ=1,...,L :=

∑K
k=1 α̃

(n−1,π,L)
m,i,k eik.

• For j ≥ i: f(tj) := (f(tj , X
(π)(tj), Ŷ

(n−1,π)
λ (tj), (Ẑ

(n−1,π)
m,λ (ti))

d
m=1))Lλ=1.

• α(n,π,L)
i,k = 1√

L
(ALi )+(x(π) −

∑N−1
j=i f(tj)∆tj+1).

• α̃(n,π,L)
m,i,k = 1√

L
(ALi )+(

∆Wm
i+1

∆ti+1
· (x(π) −

∑N−1
j=i f(tj)∆tj+1)), where ”·”

means componentwise multiplication.

• Ŷ (n,π)(ti) =
∑K
k=1 α

(n−1,π,L)
i,k ηik

• Ẑ(n,π)
m (ti) =

∑K
k=1 α̃

(n−1,π,L)
m,i,k ηik

5. Return the processes (Ŷ (n,π), (Ẑ
(n,π)
m )m=1,...,d).

For a strict derivation of the algorithm, see Bender, Denk (2007) [10].

A.3 Locally Risk Minimizing Hedging

This section follows the paper of Schweizer (2001) [8]. All random variables
are defined in a filtrated probability space (Ω,FT , (Ft)t∈[0,T ], P ). Consider a
financial market consisting of a riskless bank account S0 and a (possibly multi-
dimensional) risky asset S1 which is supposed to be a semi-martingale. Without
loss of generality we consider a discounted framework, i.e. S0 ≡ 1 (otherwise
devide every asset by S0). Let H be an FT -measurable random variable repre-
senting some claim. In a complete market, we would now have an F0-measurable
starting value V (0) and a predictable self-financing strategy ϕ = (ϕ0, ϕ1), such
that V given by

V (ϕ, t) = V (ϕ, 0) +

∫ t

0

ϕ1(s)dS1(s),

is a replicating strategy, i.e. V (ϕ, T ) = H. Here, ϕ is completely determined
by ϕ1, since ϕ0(t) = V (ϕ, t)− ϕ1(t)S1(t) (in the discounted setting).

However in the incomplete case, there are claimsH, so that such a replicating
strategy does not exist. We either have to relax the self-financing condition or
the replication condition. The former leads to so called ”locally risk minimizing
hedging”, the latter to the so called ”mean-variance hedging”. We will use
the locally risk minimizing hedging approach, i.e. we insist on the replication
property V (ϕ, T ) = H, but ϕ does no longer need to be self-financing. Instead,
there will be an adapted process C, the so called cost process, s.t.

V (ϕ, t) =

∫ t

0

ϕ1(s)dS1(s) + C(ϕ, t). (57)

Note that in case of a complete market, C would be constant and equal to
V (ϕ, 0). The idea is now to minimize at any time-point t ∈ [0, T ] the second
moment of the remaining cost up to maturity:

min
ϕ
E[(C(ϕ, T )− C(ϕ, t))2|Ft]. (58)
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This explains the name ”risk minimizing hedging”, although second moments
are no risk measures. Since we later want to evaluate the risk due to this cost
process, the name might be misleading, since the risk measured by the partic-
ular risk measure we use is not necessarily minimized (that would also be an
interesting approach, but we do not pursue this ansatz here). However, if S1 is
not a martingale under P , then in general there exists no risk-minimizing strat-
egy ϕ∗, so we have to weaken the concept. We start with some basic definitions.

Define P := {Q ∼ P : S1 local martingale under Q} and assume P 6= ∅
(which means that S1 is a semimartingale under P ). In an incomplete market,
we have |P| > 1. Furthermore, for simplicity assume, that S1 is 1-dimensional
(but everything can be generalized canonically to the multi-dimensional case).

Definition A.6 (Structure Condition).
Assume that S1 ∈ S2

loc(P ), i.e. S1 can be decomposed as

S1 = S1(0) +M +A, (59)

where M is a square integrable local P -martingale with M(0) = 0 and A a pre-
dictable process of finite variation, A(0) = 0. Suppose that it exists a predictable

process λ̂, s.t.

A(s) =

∫ s

0

λ̂(t)d〈M,M〉t, s ∈ [0, T ], (60)

such that the mean-variance tradeoff process

K̂(s) :=

∫ s

0

λ̂2(t)d〈M,M〉t, (61)

is finite P -a.s. Then we say that S1 fulfills the structure condition (SC).

Remark A.5. The structure condition is automatically satisfied if S1 is con-
tinuous.

Definition A.7 (L2-Strategy).
A strategy ϕ, where

∫
ϕ1dS1 ∈ S2 such that V is right-continuous and V (ϕ, t) ∈

L2(P ) for all t ∈ [0, T ] is called L2-strategy.

Definition A.8 (Mean-Self-Financing Strategy).
A strategy ϕ is mean-self-financing, if its cost process C(ϕ, ·) is a P -martingale.

The idea is now to define a strategy ϕ to be locally risk minimizing, if for
small enough pertubations of the strategy, asymptotically the risk does not
decrease, which matches with the concept of a local minimum of a function.
The true definition is a little bit more complicated, see [8]. Unfortunately the
assumption of a locally risk minimizing strategy is still too strong to calculate
such a strategy explicitely. However it can be shown that under some weak
conditions on S1, a replicating L2-strategy ϕ is locally risk minimizing if and
only if ϕ is mean self-financing and C(ϕ) is strongly orthogonal to M . This
motivates the following definition:

Definition A.9 (Pseudo-Locally Risk-Minimizing Strategy).
A replicating L2-strategy ϕ is called pseudo-locally risk-minimizing or pseudo-
optimal, if ϕ is mean self-financing and C(ϕ) is strongly orthogonal to M .
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This leads straight forward to the following theorem.

Theorem A.6 (Pseudo-Optimality and Föllmer-Schweizer Decomposition).
Let H ∈ L2(FT , P ) be a contingent claim. Then H admits a pseudo-locally
risk-minimizing strategy ϕ∗ if and only if H can be represented as

H = H0 +

∫ T

0

ξH(t)dS1(t) + LH(T ), (62)

where H0 ∈ L2(F0, P ), ξH is such that
∫
ξHdS1 ∈ S2 and LH is a square-

integrable martingale starting at 0 which is strongly orthogonal to M . The
strategy ϕ∗ is then determined by

ϕ∗1 = ξH (63)

C(ϕ∗, ·) = H0 + LH . (64)

Remark A.6. Equation (62) is called ”Föllmer-Schweizer decomposition” of
H. One sufficient condition for existence is that the process K̂ is bounded uni-
formly in (ω, t).

The question is now how to calculate this decomposition. Therefore, define

a new measure P̂ by dP̂
dP = Ẑ(T ) where Ẑ is given by

dẐ(t) = −Ẑ(t)λ̂(t)dM(t) (65)

Ẑ(0) = 1, (66)

i.e.

Ẑ(t) = exp(−
∫ t

0

λ̂(u)dM(u)− 1

2
〈
∫
λ̂dM〉t)

= exp(−
∫ t

0

λ̂(u)dM(u)− 1

2
K̂(t)),

(67)

and suppose that Ẑ is strictly positive. This new measure P̂ has four im-
portant properties:

1. By Girsanov’s Theorem, S1 is a local martingale under P̂ , i.e. P̂ ∈ P.

2.
∫
ξdS1 is a local P̂ -martingale.

3. For every local martingale L which is strongly orthogonal to M (the P -
local-martingale part of S1), L remains a local martingale under P̂ .

4. For a pseudo-optimal strategy ϕ∗ for H, V (ϕ∗, ·) is a local martingale
under P̂ .

Due to the third property, we call P̂ the minimal equivalent local mar-
tingale measure for S1. Now after transforming into a martingale setting
and supposing that S1 is continuous, one can use the usual Kunita-Watanabe
decomposition to get the following theorem:
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Theorem A.7. Under the conditions from above, it holds

V (ϕ∗, t) = V H,P̂ (t) := EP̂ [H|Ft], (68)

with the Kunita-Watanabe decomposition

V H,P̂ (t) = V H,P̂ (0) +

∫ t

0

ξH,P̂ (u)dS1(u) + LH,P̂ (u), (69)

which is also the Föllmer-Schweizer decomposition of V (ϕ∗, t) under
P . Then,

ϕ∗1 = ξH,P̂ (70)

ϕ∗0 = V (ϕ∗, ·)− ξH,P̂S1. (71)
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Figure 4: left: Histogram for BSDE solution at time 0 for the Hedging cost,
right: Histogram for the difference between the BSDE solution and the corre-
sponding forward solution at time T . The plot on the bottom shows an example
of bad fitting, maybe because the maximal number of time steps was chosen too
small.
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solution (green), corresponding to the left hand side
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Figure 7: left side: BSDE-solutions (blue) and Expectation solutions (green) for
the Call, right side: BSDE-solutions (blue) and Expectation solutions (green)
for the Straddle (corresponding to the left hand side)
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C Notation

◦ Composition of functions.
∼ Distributed according to
a.s. Almost surely.
-msble measurable.
r.v. Random variable.
s.t. Such that.
w.l.o.g. Without loss of generality.
w.r.t. With respect to.
d
= Equality in distribution.
1A Indicator function
C0([0, T ]) Space of continuous functions f on [0, T ],

f(0) = 0.
H1 Cameron-Martin space.
L1

+(F) Space of nonnegative F-measurable r.v.s.
Pac2,P The space probability measures Q << P

with dQ
dP ∈ L

2(P ).
Pr Arbitrary probability measure.
W (·) Brownian Motion.
N (µ, σ2) Normal distribution with mean µ and

variance σ2.
Φ Normal distribution function.
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