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Abstract Retro-projected face displays have recently
appeared as an alternative to mechanical robot faces,
and stand apart by virtue of their flexibility: they are
able to present a variety of faces varying in both re-
alism and individual appearance. Here we examine
the role of both 3D mask structure and texture im-
age quality on the perception of gender in one such
platform, the Mask-bot. In our experiments, we use
three specific gender face screens as the 3D output –
female, male and average masks – and display vari-
ous face images that are gradually morphed between
female and male on these screens. Additionally, we
present three cases of morphed images: high quality
texture, low quality texture, and averaged face tex-
ture from low quality data. Experiments were carried
out over several days. 15 subjects rated the gender of
each face projected on the female mask screen, and
10 subjects rated the gender of faces on the male
and average screens. We found that even though the
3D mask screens have strong gender specific face fea-
tures, gender identification is strongly determined by
high-quality texture images. However, in the absence
of strong texture cues or the presence of ambigu-
ous information, the influence of the output structure
may become more important. These results allow us
to ascertain the ability to faithfully represent faces
on these new platforms, and highlight the most im-
portant aspects – in this case texture – for correct
perception.
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1 Introduction

Faces are an essential element in human communica-
tion, and as such are a critical component in devel-
oping robots who are interactive and socially aware.
Our sensitivity to faces is supported by studies that
show even newborns can detect faces almost instantly
(29; 8). Robot face options recently include platforms
in the form of retro-projected systems (12; 6; 24; 20),
which can project computer graphics animation on a
non-flat screen. This approach is becoming increas-
ingly popular because it can provide a richer 3D ex-
perience than 3D faces shown on 2D screens.

The curved display approaches use abstract (car-
toonish) face models: simple eyes, eyebrows, a nose
and a mouth are projected onto a sphere, (12), or
FACS (9)-based simple face models (6; 7) are pro-
jected onto an abstract version of a face mask. The
Furhat system (24) uses a 3D printed face screen of
a facial animation character instead of a real face. It
also has one of the best auditory-visual speech con-
versation systems to date. The Mask-bot system (20)
is a retro-projected platform that can project realis-
tic talking head animation, and can easily replace its
face model starting from a single camera shot (22) or
a scanned 3D face.

The hybrid approach used by Bazo et al. (1) is
able to display different facial features – eyes and
mouth, for example – on a display embedded as part
of a contoured robotic face shell, augmenting the flex-
ibility of computer graphics with a 3D physical struc-
ture. This solution facilitates changing the face in
subsequent design cycles, and is a good solution for
designing “robotic-looking” as opposed to “realistic-
looking” humanoid robot faces. However, the overall
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shape of the robot head will be limited by the shape
of the 2D computer display.

These platforms exist alongside more traditional
mechanical options, which also encompass special-
ized material such as FrubberTMby Hanson to create
flexible skin solutions (11). In a similar vein, Ishig-
uro (14) also builds realistic heads comprised of a
mechanical structure covered with flexible skin that
can realistically reproduce various complicated facial
expressions and motions. Ishiguro is perhaps best
known for creating a convincing replica of himself.
In (15) Jaeckel and colleagues present their realistic
robot head approach complete with a flexible outer
skin where expressions are driven by learning from
performance-based animation.

The upper body robot ROMAN is equipped with
an expressive mechanical head covered by a silicon
skin (2). Interestingly, ROMAN has been used to
interact with a user by playing the Tangram game
(13). However, its jaw motion and head motion are
only weakly coupled with its speech, which may lower
speech intelligibility (30; 25), and may possibly leave
people with an unnatural impression reminiscent of
the Uncanny Valley effect (23; 28). This effect might
also arise from the mismatch between the head and
torso, as the head has skin, but the torso is left uncov-
ered, combining visible mechanical structures with a
more natural head.

From the viewpoint of building an expressive head,
both realistic and more abstract mechanical humanoid
robot heads require much effort, as shown by K �edzierski
et al. with their emotive head EMYS(16). Further-
more, as explained by Cheng et al.(5), improving the
expressiveness of realistic robotic heads also requires
careful observation of human face motion and appli-
cation of the analysis results to the mechanical head.

These advances in robotic heads are impressive,
but suffer from an important disadvantage in com-
parison to retro-projected approaches. Because their
appearance is fixed, redesign is costly. Researchers
must rebuild not only the mechanically sophisticated
structures, but also replace the flexible skin, which
requires extra care around lip and eye corners.

In contrast, the retro-projected systems stand out
for their flexibility: they are able to present a variety
of faces varying in both realism and individual ap-
pearance, which means the face can easily change to
fit the application or the user preference. Addition-
ally, unlike most mechanical robot faces, they are able
to express nuanced, subtle gestures. They can also
easily and iteratively improve the underlying software
display algorithms as better methods are uncovered.

Lastly, the systems are generally lighter and less
complicated than their mechanical counterparts, be-
ing built primarily from a small projector, optics and
a 3D face screen. It is this 3D output device that im-
proves the 3D presence of the platforms when com-
pared to the more common 2D flat screens. (Ver-

sion 1, or the original Mask-bot version, for exam-
ple, weighed 1.4 kg, but the recent system is 0.4 kg,
largely due to a smaller projector and lenses. See
Sec. 2 for more details.)

However, these systems do share the same disad-
vantages of projectors: they are impractical in strong
illumination conditions, including daylight. Also, the
presence of a projector reduces the illusion of a life-
like head, although some heads use a small projec-
tor that can be encapsulated and thus hidden from
view (26; 27). One last limitation is the possible per-
ceptual mismatch caused when the face is animated,
but the mask is stationary. Because of these aspects,
retro-projected heads need to be evaluated for gen-
eral aspects such as likability to gain a better under-
standing of how they are perceived by people during
interactions.

Despite these limitations, retro-projected systems
provide flexible platforms for a myriad of applications
involving face-to-face encounters, including commu-
nication studies, video conference interfaces, and var-
ious human-robot applications.

In this paper we present our work to ascertain
the ability of retro-projected platforms to faithfully
portray faces. Our motivation is to understand and
evaluate the components needed to maximize the ef-
fectiveness of these platforms for human interaction.
We can then use this knowledge to focus on aspects
that best influence the faithful perceptibility of the
projected faces, as well as work to mitigate any un-
desirable, unintended effects.

Specifically, we present a study that explores the
influence of both 3D screen structure and texture
in a gender identification task using realistic faces
displayed on the retro-projected face screen system
Mask-bot, shown in Fig. 2. We describe our expanded
work to explore gender identification not only on a
female face screen (21), but on a male and an aver-
age display as well. We explain our method for creat-
ing a neutral, or average, 3D mask to test along with
our male and female masks (or screens), and describe
how we create a number of 3D face stimuli by morph-
ing between pairs of male and female faces, resulting
in faces from 100% female to 100% male. Stimuli is
presented to subjects on all 3 screens. Additionally
we test three types of texture images: high quality,
low quality, and averaged low quality texture. We ask
subjects to rate the gender of each face. Our main
goal is to ascertain if and how the 3D mask shape and
the texture image quality influence the perception of
gender in realistic faces projected on Mask-bot.

Fig. 1 shows a few samples that helped motivate
this work. In this figure we see that the Mask-bot
system can project a variety of calibrated face models
– male or female – on a given screen. In the first row,
faces of both genders are projected onto a screen with
a female shape. A male face (middle column) is still
identifiably male, even when projected onto a female
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Fig. 1 The Mask-bot platform equipped with different mask screens. The female mask (top row (21)), male mask (middle)
and average mask (bottom) are shown without a projected face, and then with different faces: from left to right, without
rear projection, Caucasian female (high quality texture), Caucasian male (high quality texture), Asian female (low quality
texture), and average face (low quality texture).

screen. Similarly, female faces projected onto a male
screen (shown in the second row, second and fourth
columns) maintain a female impression.

How, then, is gender perceived on these retro-
projected platforms, and what factors are critical in
determining this identification? We know from ear-
lier studies on gender perception that an observer
uses a number of cues to classify gender, including
facial features, skin textures and 3D face structure.
In Bruce et al. the authors show the importance of
nose and chin protuberance in 3/4 views (3), while
in (4) it is the the eye and brow region that pro-
vide key visual cues in front views. These perception
experiments used conventional media such as pho-
tographs, television, or computer screens to present
stimuli. With the retro-projected systems, a physical
3D presence functions as the output device, necessi-
tating a closer look not only at gender perception,
but also, in a broader sense, at how to effectively use

these platforms as social tools in human-machine in-
teraction (19).

Overall, our gender identification results on Mask-
bot show that the shape of the output screens do not
overtly bias gender perception, and that texture pro-
vides stronger cues than the 3D face surface struc-
ture, especially in the case of high-quality texture
stimuli. However, in the absence of strong texture
cues or in the presence of ambiguous information, the
influence of the output structure may become more
important.

Our results tell us to direct our efforts and at-
tention to the more influential components of the
system. In this case we show that attention to the
rendering task, especially the quality of the texture
maps, will maximize effectiveness. In the future we
will explore additional tasks where 3D face mask shape
may become more important, such as in identification
of a specific individual.
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Fig. 2 Mask-bot, an example of a retro-projected face: the design diagram (left); the original system with a pan-tilt unit
(PTU) (center); and the desktop version without a PTU (right).

2 Experiment setup

2.1 Mask-bot display and texture image

Our retro-projected system, Mask-bot, is a life-size,
3D face display system built especially for interactive
social applications. It communicates via speech and
face and head motion, and can change its appearance
to support both abstract and realistic faces. In these
experiments we use Mask-bot’s realistic face capabil-
ities. (20; 19) (Fig. 2). The first version of Mask-bot
is shown in the center of Fig. 2. This version uses
a heavier (0.61 kg) and bulkier LED projector com-
pared to various pocket projectors, but it can project
brighter images (200 ANSI lumens as compared to 70
lumens). The total weight without the pan-tilt unit
and cable is 1.44 kg. This includes a projector, a fish-
eye lens, a macro lens, a 3D mask and a supporting
frame. The desktop version of Mask-bot shown on
the right in the same figure weighs 1.29 kg, and uses
acrylic plates instead of an aluminum frame.

Mask-bot 2i (26; 27), a newer version with a slightly
different design, is lighter, weighing about 0.4 kg, as
it incorporates a smaller but darker projector (70
ANSI lumens) and smaller lenses used with a mirror.
This lighter model could be very useful for face-to-
face communication studies when a newer, brighter
projector is available in a smaller size.

The current Mask-bot system uses 3D face mod-
els that are carefully calibrated to compensate for
distortion from the fisheye lens and the 3D screen
shape. When displaying new faces, we can reduce
the preprocessing time by replacing only the texture
of a calibrated 3D face model. However, in so do-
ing we sacrifice some of the accuracy of the result-
ing face model. Specifically, facial features resulting
from texture changes may not exactly match the 3D
face model structure. We know, though, that there
is always some error between the projected face and

the mask unless the mask is an exact match for the
3D face being projected. However, we discovered that
for most observers these errors are so subtle as to be
barely noticeable unless they are carefully pointed
out.

Finally, we do not use Mask-bot’s ability to dis-
play auditory-visual speech since this face motion
may contribute to perceptual mismatch when used
with different face models. Thus we present only still
faces in the experiments.

2.2 Face images from 3D face data

We use two 3D face databases to obtain source faces
for creating our stimuli. As described below, one database
contains data with higher spatial resolution but lower
texture resolution, and the other has higher texture
resolution relative to the other database. These dif-
ferent data sets allow us to test the effects of high
versus low quality texture resolution in our gender
identification experiments.

The ATR database (lower texture resolution) con-
tains 3D face data collected at the Advanced Telecom-
munications Research Institute International in Ky-
oto, Japan. It contains approximately 500 adult sub-
jects, and each subject has either 9 or 25 scanned pos-
tures. The capture technology is a Cyberware 4020
and 3030 RGB/PS color digitizer 1, which stores the
data in Cyberware ECHO format. See (17) for de-
tails. Both the range data and the associated texture
image were scanned with a resolution of 480x450 in
most cases, with the effective face area containing
roughly 260x220 pixels. This resolution is sufficient
for capturing detailed 3D shape information, but in-
sufficient for good surface texture. (In Cylindrical co-
ordinates, this translates to a resolution of 0.70 mm

1 Cyberware, Inc., www.cyberware.com
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in the polar axis direction, and 0.75 degrees in the
angular direction.) Data from 200 subjects were pre-
processed for use in subsequent analyses. A key step
in this procedure was face feature annotation. From
these data we selected 40 faces for stimuli generation,
with 10 faces from each of the following subgroups:
Caucasian male, Caucasian female, Asian male and
Asian female.

The MARCS 3D face database (higher texture
resolution) was collected at MARCS Auditory Lab-
oratories, University of Western Sydney, Australia.
A 3dMDface system 2 was used to collect head and
torso data from approximately 200 subjects, from ba-
bies to adults. Most adults had between 25 to 50 pos-
tures scanned. The higher number of postures is made
possible by the improved speed of this newer technol-
ogy. Each of the two camera heads used in scanning
yielded data with 1200x1600 pixel texture image res-
olution. The final data containing both the 3D struc-
ture and the combined texture images yield a face
area of roughly 500x400 effective (non-background)
pixels. The texture quality is very high, and the re-
constructed 3D surface can adequately capture de-
tails of the face structures, allowing for 3D face ge-
ometry analysis. However, the spatial resolution is
usually not as dense as that of Cyberware data.

The problem of using data from databases with
different formats was solved by re-sampling and con-
verting the TSB format (MARCS data) to the Cy-
berware ECHO format, resulting in compatible data
with a final resolution of 960x900. The same set of
facial features were annotated in all data. This step
was important, as it allowed us to use the same pro-
cessing method on all data. From this high texture
resolution data we selected 5 adult faces for stim-
uli, specifically: 2 Caucasian male faces, 2 Caucasian
females and 1 Asian male. (Because each face from
the MARCS database requires significant preprocess-
ing, fewer high quality faces were used in the current
study. The preprocessing for the ATR face data was
completed prior to this study.)

Fig. 3 shows sample data of the same subject from
each database, with ATR data on the left (higher
3D spatial resolution, lower texture resolution), and
MARCS data on the right (lower 3D spatial reso-
lution, higher texture resolution). Comparing images
across the top row shows that texture quality is much
better in the MARCS database, while the bottom row
shows that the number of 3D surface polygons and
points is much higher in the ATR database. Note that
the left-bottom image shows only 1/4 of the origi-
nal 3D points used to visualize the model’s polygons,
whereas the right-bottom image shows all original 3D
points and polygons.

To obtain a face image for Mask-bot, we apply
the following steps. For each face we:

2 3dMD, www.3dMD.com

Fig. 3 Sample 3D face data from the ATR 3D face
database (left) and the MARCS 3D face database (right):
the texture mapped images (top) and the polygonal images
(bottom) show the differences in texture quality and 3D
resolution. In the polygonal image from the ATR database
(left, bottom), only 1/4 of the actual 3D points are shown.

1. convert face data to a common mesh structure by
adapting it to a generic mesh model (18)

2. render the adapted face model in the generic mesh
coordinates and create an image (800x640 pixels)

3. synthesize morphed texture images between two
rendered face images using alpha blending

4. redefine the morphed texture image as an image
applied to a pre-calibrated average face (made
from 40 faces from the ATR face database)

5. display the new images on Mask-bot.

Figure 4 shows an overview of this procedure for
preparing morphed texture of different quality for
display on Mask-bot. Since we use still images as
stimuli for this experiment (no movement nor speech),
we modify the normal operation of the Mask-bot sys-
tem as follows. We replace the last step of the pipeline,
where control normally falls to the animation pipeline
of the Mask-bot system, with either an image browser
or DMDX, a standard psychological experiment pre-
sentation tool used for detailed response measure-
ments (10). (We replaced the image browser with the
DMDX control tool as soon as it was ready. Thus,
the first 5 subjects viewed stimuli using the image
browser, and all 20 later subjects used the DMDX
interface. Viewing conditions were identical for the
two response conditions.)
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Fig. 4 Overview of the Mask-bot display with morphed
face image texture from different texture groups used as
input.

2.3 Stimuli Synthesis

Using selected faces from the two databases, the fol-
lowing three groups of 3D face data are prepared:
– A high-quality texture face group
– A low-quality texture face group
– An averaged face group using low-quality texture

For the high quality group, we select single faces
from each gender to use in synthesizing the morphed
images: each female face is paired with each male
face, and morphs are created with ratios of 0.00, 0.25,
0.50, 0.75 and 1.0 where 0.0 is 100% female, and 1.0
is 100% male. In this manner we created 30 (3 male
x 2 female x 5 morphs) high quality stimuli.

We built the low quality group in the same man-
ner, but with 20 female and 20 male faces for a total
of 2000 stimuli (20x20x5). In both the female and
male case, half of the faces are Caucasian and half
are Asian.

The low quality averaged stimuli is created from 6
averaged face groups using the 40 faces from the low
quality group above. The 3 female groups are: Asian
female faces created by averaging 10 faces; Caucasian
female faces created by averaging 10 faces; and all
female faces (20 faces). The male groups are created
in the same manner, i.e., Caucasian, Asian, and both
from 10, 10 and 20 faces respectively. Thus, a total
of 45 averaged stimuli are created (3x3x5).

Presenting all of the above stimuli (30, 2000, and
45 images) requires too much time for subjects, so
we reduced the 2000 low quality image set to a rea-
sonable amount by randomly selecting a smaller set

of stimuli, ensuring that the same number of im-
ages from each morph percentile were represented.
We thus used 185 images for the female mask exper-
iment, and 65 for the male and average mask exper-
iments in the low quality group. (We decreased the
number from 185 to 65 in response to user feedback
after running the first experiment, the female mask
experiment.) Thus subjects rated a total of 260 im-
ages for the female mask experiment, and 140 images
for the male and average mask experiments. More de-
tails are found in Sec. 2.5.

These images (260 and 140) were randomly sepa-
rated into multiple blocks consisting of 10 faces each
(26 blocks and 14 blocks). Also, 10 faces were ran-
domly chosen as a practice block from the same total
image pool. Practice answers were excluded from the
subsequent analysis.

2.4 Mask types

The transparent 3D female and male masks were sup-
plied by the same vendor. Both masks have strong
visible gender characteristics (Fig.1, left column). To
observe any differences between these strong gender
geometrical cues and a more gender-neutral face, we
built an average face mask using face data from the
ATR 3D face database as described below.

2.4.1 Average Face Mask

To build an average 3D mask, we first selected 124
faces from the ATR database. These consisted of 31
faces from each of the following groups: Caucasian
males, Caucasian females, Asian males, and Asian
females, with an age range of 18 to 50 years old and
a mean age of 29.4 years. Selection was based on two
criteria: (1) the presence of neutral facial expression
data without large amounts of noise; and (2) the basic
facial features were already annotated.

Using facial features of the eyes and nose, we
aligned all 124 neutral faces in the same head ori-
entation, and then re-sampled them to the same res-
olution in cylindrical coordinates, resulting in a longi-
tude and height equal to 960 x 900, with an effective
face area of approximately 460 x 460. We then aver-
aged these data to obtain the mean face, and cut it
to fit the 3D printing volume by selecting the best
window to print the entire face. In the last step we
converted the selected data to volumetric data with
a support structure acceptable to the 3D printer.

We used a RapMan 3.2 3D Printer 3, which uses
Fused Deposition Modeling (FDM) technology, be-
cause this printer is affordable and able to print large
volumes. The average face model was printed with
0.5 mm resolution, and a thickness of approximately

3 Bits from Bytes Ltd., www.bitsfrombytes.com
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Fig. 5 From left to right: rendered image of average 3D face data with texture; average 3D face data without texture;
3D printed results from a Fused Deposition Modeling (FDM) printer after filling gaps with lacquer-based modeling putty
followed by surface smoothing with sandpaper; and a vacuum formed mask with rear-projection paint made from the 3D
printed results.

3 mm, using PLA (polylactic acid) plastic in 8 to
12 hours. (ABS (acrylonitrile butadiene styrene) may
also be used.) The printed 3D face includes extra sup-
port structures and visible lines between each layer
that are created when the printer deposits melted
plastic material as thin tubes. These create a ditch
between each layer resulting in the lines. To coun-
teract this undesirable effect, we roughly filled the
ditches with lacquer-based modeling putty, and then
smoothed the surface with fine sandpaper. Using a
home-made vacuum former, we then made a mask
using the 3D printed face as a mold. We used a trans-
parent PETG (polyethylene terephthalate glycol) plas-
tic sheet with a 1.0 mm thickness to apply vacuum
forming. By following this same procedure, we can
produce any face mask, with source data derived from
3D scanning devices, to any 3D face estimated from
photographs using the 3D face database (17). Figure
5 shows the step-by-step production stages for mak-
ing the average mask.

2.5 Experiments

We conducted experiments over two stages: first, we
held female mask experiments as a preliminary test
using 260 images with N = 15 subjects (age 23 to 53,
average age = 30.0, gender = 12 males, 3 females) as
we reported in (21). We then prepared and carried
out the male and average face mask experiments us-
ing 140 images for each mask with N = 10 subjects
(age 25 to 53, average age = 36.9, gender = 8 males,
2 females). In the second stage experiments, we pro-
vided two Mask-bot systems to evaluate two masks
sequentially: the male mask with the pan-tilt unit
base, and the average mask with a desktop version of
the platform.

In each mask experiment subjects were asked to
evaluate the gender of faces on a Likert scale from 0 to
4 (0=female, 1=may be female, 2=middle/ambiguous,
3=may be male, 4=male). We decided to use this

Fig. 6 Experiment setup: the Mask-bot display is located
in front of a seated subject at a similar height to the sub-
ject’s face.

scale rather than a binary male or female decision be-
cause it provides more information on the subjects’
impressions of the faces, allowing us to better as-
certain if subjects can identify synthesized morphed
faces correctly.

As reported in (21) the Mask-bot display was lo-
cated in front of a subject seated at a small desk at a
height roughly matching the position of the subject’s
face and at a distance of about 1 m. Fig. 6 shows
the setup for the experiment using the female mask.
The desktop version (Fig. 2, right) was located at a
similar position.

The first 5 subjects were asked to tick responses
on evaluation sheets. For all other subjects, the in-
tegration of DMDX was ready, and input responses
proceeded via a keyboard with graphical icons. The
scale of 0 to 4 is mapped to keyboard 1 to 5 as shown
in Fig. 7.

After 1 block of practice, a total of 26 blocks of 10
faces were presented for the female mask experiment,
and the revised 14 blocks were presented in the same
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Fig. 7 Icons used to guide user input, top, and on a la-
beled keyboard, bottom.

manner for the male and average mask experiments.
For each block of stimuli, the procedure is:
1. 2.5 seconds of text fixation (to focus subjects at

the middle of the region where the face appears)
2. the presentation of face images for a block of 10

faces (with no blank interval):
DMDX: a maximum of 2.5 seconds is allowed
to type a response; (a new face appears when a
subject presses a key or after 2.5 seconds)
Evaluation sheets: a new face appears every 2.5
seconds

3. an interval:
DMDX: a message asks the subject to press the
SPACE key to start the next block
Evaluation sheets: a fixed 7.5 second break is
automatically generated; no projected image is
shown at this time.

3 Results

Fig. 8 shows mean gender identification results with
standard deviations from all subjects where the rows
are: (a) high-quality texture stimuli, (b) low quality
texture stimuli and (c) averaged texture stimuli ob-
tained from low quality texture. From left to right
the columns show results from: the female mask, the
average mask and the male mask. The solid blue line
shown in each graph functions as a guide to an ideal
response.

In each mask case, that is, going across each row,
if the responses are similar, the 3D mask structure
has little effect on the overall impression of gender.
Going down a column shows us the effect of texture
quality and texture face averaging on the impression
of gender. In broad strokes, we can see that gen-
der identification responses show different responses
when texture quality changes, but for the most part
are similar within a texture group regardless of mask.
A closer look follows.

(a) High-Quality Texture
For all morph ratios except 0.0 (100% female) the
results follow a pattern similar to the ideal re-
sponse case, but with a slight offset toward male-
ness. This tendency is present for all three masks

conditions. This tells us that subjects can iden-
tify gender correctly almost always, regardless of
3D mask shape, and that the subjects can also
correctly identify the in-between faces generated
by morphing. Also, these results provide evidence
that texture cues can override the 3D mask shape
cues in the high-quality texture case.
However, questions remain concerning the slightly
sub-par performance for female face categoriza-
tion. (For the 100% female case, responses indi-
cate an average of slightly female.) What is note-
worthy is that this sub-par performance is similar
for the female case in all 3 texture conditions.
Thus, it is indicative of female cues perhaps miss-
ing from the type of stimuli used, or of some other
influence. We discuss this further in Sec. 3.1.

(b) Low-Quality Texture
For the female mask, the response is almost lin-
ear with respect to the morph ratio, excluding
the 100% female case. However, the slope is less
steep than the ideal response. That is, as male-
ness increases, we see an increase, although less
than ideal, in male identification.
For the neutral mask, answers hover slightly above
neutral to roughly 75% male. In all mask cases
the 100% male case is under-identified, and has a
larger standard deviation than in the high qual-
ity texture case. Also, the male mask does not
improve the identification of male gender, as we
see similar results for the male stimuli on both
the female and male mask. Overall, performance
is worse for both the female and male stimuli than
in the high quality texture case. However, a pat-
tern emerges where answers lie closer to neutral,
as if the missing details from the low quality tex-
ture force a more ambiguous response.
Female gender, which is hard to identify in the
high quality case, is even harder to identify in
the low quality texture images, with averaged re-
sponses near neutral for the 100% and 75% fe-
male morphs. These results indicate that more
relevant gender texture cues are better preserved
in the high quality images, and that the mask has
at most only a minor (if any) influence on gen-
der identification in the presence of low quality
texture cues.

(c) Averaged Face Texture
For faces using averaged face texture, the responses
show a suppressed response that hovers more to-
ward neutral, although the general trend of the
data still follows the ideal pattern for the female
mask and average mask displays. (That is, we see
a slight increase from female to male response as
the morphed images become increasingly male.)
Female faces are slightly below 2 (the neutral case),
and male faces slightly above 2, with the 50% case
falling almost exactly on neutral. This suppressed
pattern once again points toward missing gender
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Fig. 8 Gender identification results (averaged values with standard deviation) for (a) high-quality texture, (b) low-quality
texture and (c) average face texture obtained from low quality texture faces. Solid lines indicate the ideal response (closer
to this line means gender is identified correctly). The left column corresponds to data for the female mask (results from
previous work (21)), the middle column for the average mask, and right column for the male mask.
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cues compared to the high quality texture. Also,
the male face mask may have a subtle influence on
the perception of female faces in this case, as the
male mask pushes the average response to 100%
female more toward neutral. Note, however, that
female categorization using average face morphs
shows a slight improvement over the low-quality
individual case.

3.1 Discussion

From Fig. 8, we can see that there are some similar-
ities between masks. To evaluate how similar these
average values are, we applied a t-test between each
pair of masks (Female - Average, Average - Male,
Male - Female) for each morph level and texture qual-
ity condition. Prior to applying a t-test, we checked
variances of the two samples with an f-test to ver-
ify whether they can be assumed equal or not. We
then applied a t-test for unequal sample sizes either
assuming equal variances or unequal variances based
on these f-test results.

Table 1 shows the t-test results (p values) for all
cases. Bold p values in this table indicate that p is
smaller than 0.05, which rejects the null hypothesis
that the mean values of target pairs are the same:
i.e. for these bold values, average results are different
between the two masks.

For the High-Quality texture case, where sub-
jects’ responses are closest to the ideal response for
morphed images (Fig. 8), most cases are p > 0.05
except for two: the morph ratio of 0.0 (100% female
face texture), between the female mask and the aver-
age mask, and the male mask and the average mask.
This infers that the identification of the 100% female
case is better on the average mask than on either of
the gendered masks, even though other morph ratio
results did not differ across mask shapes. Addition-
ally, there is no significant difference for the female
and male masks in the 100% female case. However,
considering that we have a recurring problem in iden-
tifying the female stimuli, we need more information
about what is happening before drawing conclusions.

For the Low-Quality texture case, the average mask
shows differences compared to others for morph ra-
tios of 0.25 and 0.50, but this time the average re-
sponses shift towards a higher score, meaning more
strongly male. Thus, there is no clear indication that
any mask is helping in a consistent way. Rather, the
ambiguity of the texture stimuli may lead to variation
across user response.

For average texture, the male mask shows differ-
ences for morph ratios of 0.0 and 1.0 when compared
to the other two masks. If we look at the graphs
we see, not surprisingly, that the responses for both
the extreme cases (100% female and 100% male) are
pushed towards neutral on the male mask. What is

surprising is that this neutral effect seems stronger
on the male mask for these cases, meaning that even
average male faces are identified as less male on the
male mask.

Overall, even though there are some differences
of mean values between masks for certain conditions,
these differences do not appear to be a major influ-
ence on accuracy of user response, as they lack con-
sistency in how the responses vary. Also, many of the
observed differences in t-test results from Table 1 oc-
cur in the slightly more challenging 100% female case.
In fact, the female case represents the only notewor-
thy differences in the high quality case.

Table 2 provides additional support for the find-
ing that texture is more important than shape in as-
sessing gender on Mask-bot. With only a few excep-
tions, we see that differences exist in responses to the
texture cases in almost all instances, with a few no-
table exceptions. We see an instance on the female
mask where response to the 100% female case is not
significantly different between the high quality tex-
ture case and the averaged texture case. However the
averaged texture may soften male cues, resulting in
a more accurate response, similar to the high quality
case. In the case of the male mask, the performance of
the high quality versus the averaged texture case for
100% female is just over the 0.05 threshold for sim-
ilarity, with the average response being only slightly
more accurate in the high-quality case.

We see some similarities between high quality tex-
ture results and the other two cases for the 50%
morph ratio which, being an equal blend of a female
and a male face, should be hard to classify. Such am-
biguity could be interpreted as neutral, male or fe-
male, so we expect mixed results in this case.

Surprisingly, there is no clear evidence that 3D
mask shape affects gender identification on the Mask-
bot system, although there is some support that it
makes a minor contribution in the absence of strong
gender cues. This can be seen mostly in the case of the
male mask with the low-quality and averaged texture
images, where female faces are perceived as slightly
more male when shown on the male face mask. How-
ever, results also show that the male faces are seen as
less male on the male mask in the averaged texture
case: in other words, the mask shape may have an in-
fluence in some cases, but it is not clear if this helps or
hinders perceptual accuracy when low quality texture
stimuli are used. (Averaged texture faces are also low
quality since they originate from low quality data.)
Perhaps, once again, ambiguous data merely illicit a
more neutral response from the subjects regardless of
mask shape.

Most evidence does, however, support a clear case
for high quality texture providing stronger cues for
accurate gender identification than mask shape and
than low quality texture images.
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Table 1 The t-test results (p value) for High-Quality texture (top), Low-Quality texture (middle) and Averaged texture
(bottom). Bold numbers indicate p < 0.05, which signifies that average values (means) are different between these pairs.

(100% Female) Morph Ratio (100% Male)
0.00 0.25 0.50 0.75 1.00

High-Quality

Female - Average 0.032448 0.125205 0.563585 0.606578 0.841520
Average - Male 0.014018 0.226627 0.895770 0.073803 0.236750
Male - Female 0.563804 0.805472 0.660885 0.126770 0.194469

Low-Quality

Female - Average 0.190677 0.000036 0.000113 0.626637 0.739952
Average - Male 0.121755 0.002957 0.000639 0.539433 0.127809
Male - Female 0.000634 0.495887 0.679874 0.157250 0.096401

Averaged Texture

Female - Average 0.856199 0.140013 0.114427 0.680492 0.917971
Average - Male 0.006331 0.239392 0.152363 0.323898 0.007894

Male - Female 0.013436 0.010435 0.744749 0.180296 0.009197

Table 2 The t-test results (p value) between different texture qualities for the Female mask (top), the Average mask
(middle) and the Male mask (bottom). Bold numbers indicate p < 0.05, which signifies that average values (means) are
different between these pairs.

(100% Female) Morph Ratio (100% Male)
0.00 0.25 0.50 0.75 1.00

Female Mask

Hi-Q - Low-Q 0.000000 0.000108 0.133610 0.000000 0.000000

Hi-Q - AVG. 0.771965 0.982473 0.017291 0.000000 0.000000

Low-Q - AVG. 0.000012 0.000367 0.000002 0.002680 0.000060

Average Mask

Hi-Q - Low-Q 0.000000 0.000000 0.000515 0.000021 0.000000

Hi-Q - AVG. 0.004430 0.002722 0.818839 0.000000 0.000000

Low-Q - AVG. 0.000004 0.000002 0.000000 0.004905 0.000062

Male Mask

Hi-Q - Low-Q 0.000000 0.000401 0.162636 0.011293 0.000000

Hi-Q - AVG. 0.057488 0.007046 0.104646 0.000000 0.000000

Low-Q - AVG. 0.000006 0.314531 0.000030 0.000252 0.000000

The underperformance of female gender identifi-
cation across the board is seen in all mask conditions,
albeit with subtle differences noted above. This tells
us there may be a global factor at work that makes
it more difficult for subjects to clearly identify faces
as female. Possible explanations are the presence of
strong male texture cues and the absence of strong
societal female cues. For example, strong male fea-
tures (sideburns, beard or moustache shadows) per-
sist in the face texture despite asking male subjects
to shave prior to scanning. This is coupled with the
absence of what may be strong societal female cues:
all subjects were instructed to forego makeup, and so
women’s faces may look less feminine than in usual
social circumstances. Hair is also not visible in the
stimuli. (Here we discuss the societal norms of Eu-
rope, where the studies were carried out.) These is-
sues may account for the poorer performance in cat-
egorizing female gender seen in case (a), and more
strongly in case (b). When low quality or ambiguous
stimuli are presented, these social cues may become
increasingly important as gender markers.

Another question is whether this slight male bias
is specific to the 3D retro-projected platform, or is
more general to the stimuli. This could be tested by
running the gender experiment using the same im-
ages, but displayed on a traditional 2D computer
screen. If we obtain similar results, we know that
the stimuli itself is causing the slight male bias in
the gender response to female faces, rather than the
platform. We hypothesize that the bias is most likely
in the stimuli, as the texture cues are shown to be
dominant.

Besides this global effect, we see that there are
differences between the higher quality texture image
case (a) and the other two cases. Missing texture
details most likely account for poorer performance
in case (b) as compared with case (a) (high qual-
ity texture images). Low quality images contain less
information, and the nature of the information that
persists is not sufficient to clearly identify gender, re-
sulting in a mixed response.

Case (c) presents more ambiguous information
in the form of averaged face images, but performs
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slightly better than individual low quality faces for
the female case. In averaging face texture, a slight
blurring occurs, which accounts for smoother-looking
skin. This smooth skin is perhaps associated with a
stronger female presence, accounting for the better
performance in the female case. Additionally, strong
male texture cues may be softened by the averag-
ing process. However, across the female-to-male spec-
trum of faces, the responses are suppressed, moving
more toward neutral when compared with case (a).

In conclusion, texture images and texture qual-
ity are stronger cues in gender identification than 3D
mask shape. But there is minor support for possible
3D shape influence when important cues are miss-
ing, although influence should not be confused with
accuracy.

4 Conclusions

In testing a retro-projected platform for its ability
to faithfully represent a variety of realistic faces, we
show that texture is more important than 3D screen
shape in gender identification, and that high qual-
ity texture images outperform low quality. However,
there may be applications which require us to pay
careful attention to the 3D structure used with a par-
ticular face, such as in individual identification and
personalized models, where more than just the gen-
der needs to be faithfully represented.

However, the current results imply that retro-projected
systems can faithfully display a variety of faces with
minimal need to vary the 3D face mask. This result
is important for efficiency, for it allows us to exploit
the flexibility in these systems with less effort, time
and cost, as less 3D face screens need to be produced.
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