
Perception and Reasoning for Scene
Understanding in Human-Robot Interaction

Scenarios

Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll† ?

Authors Affiliation: †Technische Universität München, Fakultät für Informatik.
‡Cyber-Physical Systems, fortiss - An-Institut der Technischen Universität München

Email: †{somani,caica,knoll}@in.tum.de, ‡{dean}@fortiss.org

Abstract. In this paper, a combination of perception modules and rea-
soning engines is used for scene understanding in typical Human-Robot
Interaction(HRI) scenarios. The major contribution of this work lies in
a 3D object detection, recognition and pose estimation module, which
can be trained using CAD models and works for noisy data, partial
views and in cluttered scenes. This perception module is combined with
first-order logic reasoning to provide a semantic description of scenes,
which is used for process planning. This abstraction of the scene is an
important concept in the design of intelligent robotic systems which can
adapt to unstructured and rapidly changing environments since it pro-
vides a separation of the process planning problem from its execution
and scenario-specific parameters. This work is aimed at HRI applications
in industrial settings and has been evaluated in several experiments and
demonstration scenarios for autonomous process plan execution, human-
robot interaction and co-operation.

1 Introduction

Industrial robotics is currently witnessing a phase where a lot of effort is di-
rected towards applications of standard industrial robots in smaller industries
with short production lines, where the environment is rather unstructured and
rapidly changing. Scene understanding is an important component in the devel-
opment of intelligent industrial robotics solutions. It provides information about
the working environment which is used by reasoning modules and intelligent
control algorithms to create an adaptive system. The separation of the problem
space from the execution space (which contains scenario-specific parameters),
is an important concept in these systems. A mapping between these spaces is
provided by the perception and reasoning modules. On one hand, they provide
an abstraction of the world which is used to learn tasks by demonstration and
on the other hand, they provide scenario specific information which is used by
the low-level execution and control modules for plan execution.

? The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n 287787.

2 Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll†

The perception problem in the industrial robotics context involves detecting
and recognizing various objects and actors in the scene. The objects in the
scene consist of workpieces relevant to the task and obstacles in the robot’s
path. The actors involved are humans, and the robot itself. One of the major
contributions of this work is an object detection, recognition and pose estimation
module, which uses 3D point cloud data obtained from low-cost depth sensors
like the Kinect. The reasoning module used in this work is based on knowrob [1]
and performs spatial and temporal reasoning about objects in the scene. An
extension of this reasoning engine and creation of an Ontology specific to the
industrial robotics domain are also contributions from this work.

Object detection, recognition and pose estimation using 3D point clouds is
a well researched topic. The popular approaches for this task can be broadly
classified as: local color keypoint [2], [3], local shape keypoint [4], global descrip-
tors [5], geometric [6], primitive shape graph [7], [8]. Each of these approaches
have their own advantages and disadvantages. For example, color based methods
would not work on texture-free objects. Shape based methods can not distinguish
between objects having identical shape but different texture. Global descriptors
such as VFH [5] require a tedious training phase where all required object views
need to be generated using a pan-tilt unit. Besides, its performance decreases in
case of occlusions and partial views. The advantage of these methods, however,
lies in their computational speed. Some other methods such as [7], [9] provide
robustness to occlusions, partial views and noisy data. However, these methods
are rather slow and not suitable for real-time applications in large scenes. In this
paper, an extension to the ORR [9] method (PSORR) has been proposed, where
the effort has been directed towards a solution which enhances its robustness to
noisy sensor data and also increases its speed. Another object recognition and
pose estimation algorithm has been proposed, which is complementary to the
PSORR method with respect to the target object geometries.

To distinguish objects having identical geometry but different color, the point
cloud is segmented using color information and then used for object detection.
There are several popular approaches for Point cloud segmentation such as Con-
ditional Euclidean Clustering [10], Region Growing [11], and graph-cuts based
segmentation methods [12]. In this paper, a combination of multi-label graph-
cuts based optimization [12] and Conditional Euclidean Clustering [10] is used
for color-based segmentation of point clouds.

2 Object Recognition and Pose Estimation

2.1 Shape Based Object Recognition from CAD models

There are two complementary approaches presented here. One is an exten-
sion of the ORR method [9] called Primitive Shape Object Recognition Ransac
(PSORR), and the other is based on Primitive Shape Graph (PSG) matching.
The results obtained are qualitatively similar for both approaches. The PSORR
method is more suitable for handling arbitrary object geometries and objects
having few primitive shapes while the PSG method is more suitable for large

Title Suppressed Due to Excessive Length 3

Fig. 1. Pipeline for Shape based perception.

models which decompose into a large number of stable primitive shapes. The
pipeline for this module is shown in Fig. 1.

2.1.1 Primitive Shape Decomposition

Fig. 2. Pipeline for Primitive Shape Decomposition.

The pipeline for this step is shown in Fig. 2. This step is very important for
the algorithm because the hypothesis generation and pose estimation step are
based on this decomposition. The hypothesis verification step, which is a major
bottleneck in most algorithms such as ORR, can also be significantly simplified
and sped-up using this decomposition.

Fig. 3. Primitive Shape Decomposition example : (a) original Point Cloud (b)
result of Primitive Shape Decomposition (c) Primitive Shape Graph representa-
tion.

4 Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll†

The point cloud P is represented as a set of primitive shapes si containing
points pi ⊆ P such that ∪pi ⊆ P . The primitive shapes si could be planes,
cylinders, etc. An example of such a decomposition is shown in Fig. 3, where the
original scene cloud is shown in Fig. 3 (a) and its decomposition into primitive
shapes is shown in Fig. 3 (b).

Primitive Shape Hypothesis

Hypothesis for primitive shapes are generated by randomly sampling points
in the point cloud. Once the hypotheses have been generated, each point in the
cloud is checked to determine whether it satisfies the hypotheses. The method
used for generating a hypothesis and determining its inliers depends on the type
of primitive shape.

– Planes: A plane hypothesis can be generated using a single point (X0) with
its normal direction (n̂). To test if a point X lies on the plane (X −X0) .n̂ =
0, the distance of the point from the plane | (X −X0) .n̂| is used.

– Cylinders: A cylinder hypothesis can be generated using 2 points (X0, X1)
with their normal directions (n̂0, n̂1). The principal axis of the cylinder is
selected as the minimum distance line between the normal directions n̂0 and
n̂1. The radius r is the distance of either point to this line. To test if a point
X lies on the cylinder, the distance of the point from the cylinder’s axis is
used.

Primitive Shape Assignment

The hypotheses associated with each point in the cloud can be considered as
labels for point. There may be multiple labels associated with each point and
the labeling may be spatially incoherent. To resolve such issues and generate a
smooth labeling, a multi-label optimization using graph-cuts is performed. In this
setting, the nodes in the graph comprise all possible assignment of labels to the
points. The data term indicating the likelihood of a label assignment to a point
is inversely proportional to the distance of the point from the primitive shape.
The smoothness term penalizes neighboring points having different labels and
the penalty is inversely proportional to the distance between the neighboring
vertices. Label swap energies are used for neighboring primitive shapes in a
way that only neighboring primitive shapes labels can be swapped. This convex
energy functional is then solved using the α - expansion, β -swap algorithms [12]
which give the label assignment for each point in the cloud, such that the total
energy is minimized.

Merging Primitive Shapes

Each primitive shape has a fitness score associated with it which indicates
how well the primitive matches the point clouds. It is based on the minimum

Title Suppressed Due to Excessive Length 5

descriptor length(MDL) approach [13]. The fitness score of a primitive shape is
defined as :

fitness score =
inliers

total points
+K ∗ descriptor length (1)

where, the first fraction represents the inlier ratio, i.e., the ratio of points which
satisfy the primitive shape (inliers) to the total number of points in the input
cloud (total points), descriptor length represents the complexity of the prim-
itive shape (e.g. the number of values required to represent the shape). The
constant K determines the relative weighting of the two factors. Higher values
of K will support under-segmentation resulting in bigger, less accurate primi-
tives, while low values will hamper robustness against over-segmentation, causing
fewer merges and resulting in fragmented, over-fitted primitives.

The merging strategy is based on a greedy approach where pairs of primitive
shapes are selected and merged if the combined primitive shape has a better
fitness score than the individual primitive shapes. This continues till there are
no more primitive shapes which can be merged.

2.1.2 Primitive Shape Graph(PSG) Representation

The primitive shapes detected in the previous step are now used to create
a graphical representation of the point cloud. In this graph G = (V,E), each
primitive shape is a node v ∈ V and neighboring primitive shapes are connected
by an edge e ∈ E. An example of such a graph is shown in Fig. 3 (c).

2.1.3 Hypothesis Generation

PSORR method

An oriented point pair (u, v) contains two points along with their normal
directions: u = (pu, nu) and v = (pv, nv). A feature vector f(u, v) is computed
from this point pair, as shown in Eq. 2.

f(u, v) = (‖pu − pv‖, 6 (nu, nv) , 6 (nu, pv − pu) , 6 (nv, pu − pv))
T
, (2)

The central idea in the ORR method is to obtain such oriented point pairs
from both the scene and model point clouds and match them using their feature
vectors. For efficient matching of oriented point pairs, a Hash Table is generated
containing the feature vectors from the model point cloud. The keys for this table
are the three angles in Eq. 2. Each Hash Cell contains a list of models (Mi ∈M)
and the associated feature vectors. Given an oriented point pair in the scene
cloud, this Hash Table is used to find matching point pairs in the model cloud.
Each feature vector f has an associate homogeneous transformation matrix F
associated with it, see Eq. 3.

Fuv =

(puv×nuv

‖puv×nuv‖
puv

‖puv‖
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

)
, (3)

6 Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll†

where puv = pv − pu and nuv = nu + nv. Hence, for each match fwx in the
hash table corresponding to fuv in the scene, a transformation estimate can
be obtained: see Eq. 4. This transformation estimate (Ti) forms a hypothesis
hi = {Ti,Mi} ∈ H for the model (Mi) in the scene.

T = FwxF
−1
uv (4)

The raw point clouds are generally noisy, especially the normal directions.
The original ORR method is sensitive to noise in the normal directions and
hence, randomly selecting points to generate the feature vectors requires more
hypothesis until a good oriented point pair is found. In the PSORR method,
every node representing a plane in the scene PSG is considered as an oriented
point (u) with the centroid of the plane as the point (pu) and the normal di-
rection as the orientation (nu). The normal directions for these oriented points
are very stable because they are computed considering hundreds of points lying
on the plane. Therefore, we can use these centroids instead of the whole cloud
to compute and match features, which leads to a significantly less number of
hypotheses.

The centroid for the scene cloud primitives might not match the model cen-
troids in case of partial views. Hence, for the model cloud, the point pairs are
generated by randomly sampling points from every pair of distinct primitive
shape clouds.

PSG Matching for hypothesis generation
In cases where the PSG is rather large and the individual primitive shapes are

Fig. 4. PSG matching: (a) Matching of cliques 3 intersecting planes generates a
full hypothesis. Each vertex assignment is a node, (b) Vertex assignments arising
from the same clique are considered neighbors in the graph.

small, the speedups obtained by the PSORR method are not significant due to
the additional cost of primitive shape decomposition. In this case, another ap-
proach is used where the scene PSG is matched with model PSG’s and used to
recognize the object and estimate its pose. Given both model and scene PSG’s,
the problem of object recognition becomes equivalent to constrained sub-graph
matching, which is an NP-complete problem. However, the nature of the con-
straints on these graphs provide good heuristic solutions.

Title Suppressed Due to Excessive Length 7

Some special cliques in this graph are minimal representations for object pose
estimation, e.g. a clique of 3 intersecting planes, or a plane intersecting with a
cylinder. A feature vector is computed for each of these cliques which can be used
for matching. For a clique of 3 planes, the angles between the pairs of planes
constitutes the feature vector. For a plane and cylinder intersection clique, the
cylinder radius along with the angle between the plane normal and the cylinder
axis direction constitutes the feature vector.

The clique matches between the scene and model point clouds generates full
hypotheses hi ∈ H, i.e., it gives the model (Mi) as well as the pose (Ti). Each
of these hypotheses gives a set of partial matches for the scene and model graph
vertices. Since they are full hypotheses, a fitness score can be computed for each
of them which indicates the accuracy of the hypothesis.

The graph matching problem is identical to a vertex labeling problem. For
each vertex Vs in the scene graph Gs, a match with a vertex Vm in the model
graph Gm can be considered as a label. Hence, this problem can be posed as a
multi-label optimization problem, where the scene graph nodes are the nodes
and the model graph nodes are the labels.

This multi-label optimization problem is formulated as a Quadratic Pseudo-
Boolean Optimization (QPBO) [14], [15] problem. In this setting, each vertex
consists of a node and its possible label, see Fig.4(a). Thus, the maximum number
of nodes in this graph can be |Vs| × |Vm|. Since the node matches are obtained
in pairs or cliques, the co-occurring node labels are considered as neighbors in
this graph, see Fig. 4(b). The weights for these vertices are obtained from the
fitness scores of the hypotheses. By solving this optimization problem, we get
the optimal match between the model and scene graphs. This acts like a filtering
step which ensures that conflicting hypotheses are removed.

2.1.4 Efficient Hypothesis Verification

Fig. 5. MVBB intersection volume calculation for Efficient Hypothesis Verifica-
tion.

Hypothesis verification consists of transforming the model point cloud according
to the transformation estimate and calculating how much of it matches with the
scene point cloud. Since we use a primitive shape decomposition of the scene

8 Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll†

and model clouds, the hypothesis verification step can be simplified. The idea is
to utilize this primitive shape decomposition and use it to speed up the point
cloud matching step.

Since the model and scene clouds are decomposed into primitive shapes and
represented as PSG’s, matching these point clouds is equivalent to matching
all the primitive shapes in their PSG’s. A Minimum Volume Bounding Box
(MVBB) [16] is computed for each of these primitive shapes. Matching these
primitive shapes can then be approximated by finding the intersection of their
MVBB’s. The i-th MVBB comprises 8 vertices vi1,..,8, which are connected by

12 edges li1,..,12 and forms 6 faces f i1,..,6. To find the intersecting volume between

MVBB’s i and j, the points pi at which the lines which form the edges of MVBB i
intersect the faces of MVBB j are computed. Similarly, pj are computed. Vertices
vi of the first MVBB which lie inside the MVBB j and vertices vj of the second
which lie inside the MVBB i are also computed. The intersection volume is then
the volume of the convex hull formed by the set of points

(
pi ∪ pj ∪ vi ∪ vj

)
.

Fig. 5 shows an example of this algorithm, where the volume marked light blue
is the intersection volume of the two MVBB’s.

The fitness score for this match is the ratio of the total intersection volume
to the sum volumes of the primitive shapes in the model point cloud. This score
is an approximation of the actual match but the speed-ups achieved by this
approximation are more significant compared to the error due to approximation.

Fig. 6. Example of object recognition and pose estimation using PSORR algo-
rithm: (a) scene cloud containing partial view of object (b) scene cloud containing
sparse full view of object.

Fig. 6 shows examples of results obtained using the PSORR algorithm. Fig.
6 (a) shows the case when a partial view of the object is present in the scene.
Fig. 6 (b) shows the case where a very low resolution full view of the object is
present in the scene. In both cases, the algorithm is able to recognize the object
and estimate the pose accurately.

The PSG matching algorithm was tested for full object views at similar
cloud resolutions. Fig. 7 shows the results obtained for this experiment. The
objects chosen for this experiment were larger than the ones used for the PSORR

Title Suppressed Due to Excessive Length 9

Fig. 7. Results for PSG matching algorithm using full views of object at similar
resolutions.

algorithm and their primitive shape decomposition results in a PSG with greater
number of nodes (> 20).

2.2 Combining shape and color information

Fig. 8. Example of object recognition using a combination color and shape in-
formation: (a) Color Based segmentation (b) Detected Object Clusters (c) Final
result of Object Recognition using shape and color information.

A combination of multi-label graph-cuts based optimization [12] and Con-
ditional Euclidean Clustering [10] is used for color-based segmentation of point
clouds. Fig. 8 shows an example of object recognition using a combination of
color and shape information, where the point cloud is first segmented using
color information. Each of these segmented objects is then recognized using the
PSORR method described in Sect. 2.1.3. Fig. 8 (a) shows the color based seg-
mentation, Fig. 8 (b) shows the clustered objects and Fig. 8 (c) shows the final
recognized objects along with their poses.

3 Reasoning Module

The reasoning module is responsible for representaion of the scene at a seman-
tic level based on an Ontology. Using the semantic representation, this module

10 Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll†

can perform first-order-logic reasoning to draw inferences about the scene and
its state. This module consists of: a Knowledge Database (KDB) which is an
unbounded Ontology that describes the restricted domain of our applications
scenarios, a Knowledge Representation (KR) which contains the semantic map
of the entities present in the scene, a reasoning engine which can execute first-
order-logic queries on the KR.

3.1 Knowledge Database(KDB)

Place

Grasp

Task
Activity

Process

Thing

Object

Actor

is
-a

is-a

is-a

is
-a

is-a
is-a

is-a

has-a

has-a

h
as

-a

has-a

h
a
s
-a

Fig. 9. Knowledge Database

This component is the taxonomy used to describe all entities at a seman-
tic level in the restricted universe of this domain. This is obtained by defining
classes in an ontology knowledge base. These ontology classes represent static
objects, humans, tools, tasks and plans. Each of these classes contains data prop-
erties(DP) which store information associated to the instances of the class, e.g.
position, dimensions, shape, appearance, etc. The relationships between the dif-
ferent classes and instances of the classes are represented as object properties in
the ontology class. We use the OWL (Web Ontology Language) format in order
to be compatible with Knowrob [1], a knowledge processing framework, which
we extend and use as the reasoning module. An example of the Ontology Classes
which are used for the Pick And Place plan in Sec. 4 is shown in Fig. 9.

3.2 Knowledge Representation

The Knowledge Representation is a data container that stores instances of the
KDB with data and object properties, and forms the semantic representation
of the world state. It includes instances of objects, actors, tasks and plans. As
evident from the name, this component acts as a representation of the knowl-
edge about the world which the system possesses. An example of the Ontol-
ogy Instances which exist in the Knowledge Representation while executing the
Pick And Place Plan in Sec. 4 is shown in Fig 10.

Title Suppressed Due to Excessive Length 11

i_Process

i_Grasp

i_Place

Transformer

Chassis

Robot

has_a

has_a

has_a
has_a

has
_a

has_a

...DP_1 DP_n

..
.

DP_1

DP_n

..
.

Pose

DP_n

..
.

DP_1

DP_n

..
.

Pose

DP_n

Grasp

Place

Task
Activity

Process

Thing

Object

Actor

is-a

is-a

is-a

is-a

is-a is-a

is-a

has-a

has-a

ha
s-

a

has-a

h
a
s
-a

...DP_1 DP_n

is instance of

is instance of

is instance of

is instance of

is instance of

is instance of

Fig. 10. Knowledge Representation

3.3 Reasoning

The reasoning module receives the system state at a numeric level from the
perception modules, converts it to a semantic form and incorporates it into the
Knowledge Representation. It creates individuals of the ontology from the KDB
and stores them in the Knowledge Representation. The data properties of these
individuals are set using the numeric level information obtained from the WSG
module. This module contains computables1 which perform spatial, temporal
and object reasoning to infer the object properties for the individuals of the
ontology. In other words, this module infers the semantic relationships between
individuals. This module is based on the knowrob reasoning engine and the
computables are written in first order logic using PROLOG.

4 Human-Robot Interaction Applications

A mixed reality interface is created using scene perception and reasoning mod-
ules, targeted towards human-robot interaction applications. This interface can
be used for teaching process plans at a semantic level (see Fig. 12 (a,b,c)), and
execute them in different scenarios without requiring any modifications (see Fig.
12 (d,e,f)). This interface can also be used for executing process plans with both
human and robot tasks, see Fig. 12 (g,h,i). Fig. 11 shows an example with the
different phases of this interface, where it can be noted that the generated pro-
cess plan contains semantic names of the objects and not the numeric level data
in the form of poses taught to the robot.

4.1 Teaching Process Plans

An articulated Human Tracker provides estimates of the hand positions which
are used to control the projected GUI, see Fig. 12 (a). This module enables the
user to physically interact with the robot, grab it and move it to the correct

1 Computables are used to obtain on-demand semantic relations between individuals
instead of incorporating every possible knowledge in the ontology

12 Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll†

Fig. 11. Overview of Intuitive Interface for Human-Robot Collaboration.

position for grasping and placing objects, see Fig. 12 (b-c). The perception mod-
ule (Sect. 2.2) detects the objects present in the scene and the reasoning engine
(Sect. 3) associates objects with the taught poses to automatically generate a
semantic script of this process plan in STRIPS [17] format, see Fig. 11.

4.2 Automatic Plan Execution

The user can place the objects to be assembled anywhere in the working area
to begin the plan execution. The system first checks if all pre-conditions for the
task are satisfied and informs the user in case something is missing, see Fig.
12 (d). The human can physically interact with the robot during the execution
and move it by grabbing its end-effector, see Fig. 12 (e). The user can also
add obstacles in the path of the robot, which are detected using the perception
module and avoided during plan execution, see Fig. 12 (f). All these interactions
and changes in the scenario don’t require modifications in the process plan script
because object positions and obstacles are scenario-specific entities and, like the
physical interaction, are handled at the low-level execution. This is the main
advantage of decoupling the Problem Space from the Execution Space. The
process plan is generated using only information from the Problem Space. The
execution specific parameters are provided by the perception module at runtime.

4.3 Assembly task with Human-Robot Co-operation

In this demonstration, we highlight another important advantage achieved using
a semantic description of the process plans - possibility of symbiotic human-
robot collaboration, which is one the primary goals in our target applications.
Once the robot is taught the Pick And Place process plan, it can be instructed
to perform this plan on different objects. This extension is not as straightforward
in conventional industrial robot programming languages, which require explicit
object positions and trajectories for creating robot programs. In this example,
the process in mind is the assembly of a power converter box. This process

Title Suppressed Due to Excessive Length 13

Fig. 12. a,b,c) Teaching Application. d,e,f) Execution and Plan generation of
taught Task. g,h,i) HRC in an assembly process.

consists of a number of steps, involving several actors and objects which are
identified by the perception/reasoning module, Fig. 12 (g), some of which are
complex high precision assembly tasks suitable for the human, while some involve
lifting heavy objects which are more suitable for the robot. In the situation where
precision assembly is required for a heavy object, a co-operative task is performed
where the robot grasps the object and the human guides it by physically grasping
the robot end-effector and moving it to the desired place position, Fig. 12 (i). The
Low-Level Execution Engine switches between motion modalities and control
schemes according the current conditions (external perturbations) of the scene,
Fig. 12 (h). Thus, in this experiment, we demonstrate the use of this interface for
human tasks, robot tasks and co-operative tasks which require both actors. This
experiment also highlights that it is relatively easy to understand, edit or even
create such a plan from scratch since it is at a semantic level and is abstracted
from scenario or execution specific details.

A video illustrating results for the algorithms presented in this paper and its
use in the applications mentioned above can be found at :
http://youtu.be/UBy2ceB8ssA.

5 Conclusion and Future Work

The main contribution of this work has been the development of a shape based
object detection and recognition module which can handle sensor noise, occlu-
sions and partial views. This module can be trained from CAD models or scanned
3D objects. In the current implementation, planes and cylinders were used for

http://youtu.be/UBy2ceB8ssA

14 Nikhil Somani†, Emmanuel Dean-León‡, Caixia Cai† and Alois Knoll†

primitive shape decomposition of point clouds. This could be easily extended
for other shape primitives such as torus, spheres or other conics. The primitive
shape merging phase supports primitives in general as long as a fitness score
and model complexity can be defined. The reasoning framework presented in
this work can also be extended to include more computables and perform more
complicated reasoning about the scene.

References

1. Tenorth, M., Beetz, M.: Knowrob 2014; knowledge processing for autonomous
personal robots. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. (Oct.) 4261–4266

2. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application
to action recognition. In: Proceedings of the 15th international conference on
Multimedia. MULTIMEDIA ’07, New York, NY, USA, ACM (2007) 357–360

3. Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the harris operator for
interest point detection on 3d meshes. Vis. Comput. 27 (2011) 963–976

4. Zhong, Y.: Intrinsic shape signatures: A shape descriptor for 3d object recognition.
In: Computer Vision Workshops (ICCV Workshops), 2009 IEEE. (2009) 689–696

5. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using
the viewpoint feature histogram. In: Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ. (2010) 2155–2162

6. Hu, G.: 3-d object matching in the hough space. In: Systems, Man and Cybernetics,
1995. Intelligent Systems for the 21st Century. Volume 3. (1995) 2718–2723 vol.3

7. Schnabel, R., Wessel, R., Wahl, R., Klein, R.: Shape recognition in 3d point-
clouds. In Skala, V., ed.: The 16-th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision’2008, UNION Agency-
Science Press (2008)

8. Schnabel, R., Wahl, R., Klein, R.: Efficient ransac for point-cloud shape detection.
Computer Graphics Forum 26 (2007) 214–226

9. Papazov, C., Haddadin, S., Parusel, S., Krieger, K., Burschka, D.: Rigid 3D ge-
ometry matching for grasping of known objects in cluttered scenes. International
Journal of Robotic Research 31 (2012) 538–553

10. Hastie, T., Tibshirani, R., Friedman, J.: 14.3.12 Hierarchical clustering The Ele-
ments of Statistical Learning. 2nd ed. edn. New York: Springer, ISBN 0-387-84857-
6 (2009)

11. Gonzalez, R.C., Woods, R.: Digital Image Processing. 2nd edn. Prentice Hall, New
Jersey (2002)

12. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy mini-
mization with label costs. Int. J. Comput. Vision 96 (2012) 1–27

13. Leonardis, A., Gupta, A., Bajcsy, R.: Segmentation of range images as the search
for geometric parametric models. Int. J. Comput. Vision 14 (1995) 253–277

14. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123
(2002) 155–225

15. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary
mrfs via extended roof duality. In: Computer Vision and Pattern Recognition,
2007. CVPR ’07. IEEE Conference on. (2007) 1–8

16. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. J. Algorithms 38 (2001) 91–
109

Title Suppressed Due to Excessive Length 15

17. Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem
proving to problem solving. Technical Report 43R, AI Center, SRI International,
333 Ravenswood Ave, Menlo Park, CA 94025 (1971) SRI Project 8259.

