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Abstract

Multi-carrier wireless schemes and systems such as
Orthogonal Frequency Division Multiplexing (OFDM),
cognitive radios, and femtocells play an important
role for efficient power and spectrum utilization. In
uplink transmissions of these systems, independent and
autonomous mobile users may act selfishly in order
to get a higher share of available resources, which is
encountered by a pricing mechanism that penalizes the
interference they create. Specifically, the mobile users
strategically decide on their power levels to minimize
their cost which is the difference between their utilities
based on Shannon capacity and payments. The base
station acts as a mechanism designer to ensure that
certain global objectives are satisfied when allocat-
ing resources. In this paper, we consider two such
objectives: one is sum of user utility maximization
and the other one is operator revenue maximization
based on the prices charged to users, which coin-
cidentally acts as the coupling factor between user
and designer optimization problems. We analyze first
the single carrier case as a starting point, which we
immediately extend to multi carriers. We next formulate
the operator revenue maximization problem using the
same framework. Numerical simulations illustrate the
mechanism developed and show the convergence of
power and price levels of the users.

1. Introduction

Many wireless systems and schemes such as Or-
thogonal Frequency Division Multiplexing (OFDM),
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cognitive radios [12], and femtocells have spectrum
allocated over multiple orthogonal carriers. In this
paper, we consider uplink resource allocation of multi-
carrrier systems with strategic users having a scalar-
parameterized logarithmic utility function. The users
decide independently on their power levels without
revealing their utility functions, so as to maximize their
individual utilities. The utility parameters may indicate
the priority of the application, residual queue size etc.
Concurrently, the base station has a social goal such as
social welfare (sum of user utility) maximization which
may not be achieved due to this strategic behavior of
users. This is because at the Nash Equilibrium (NE)
point of this noncooperative power control game there
is misalignment of social objective and individual user
objectives and this is known as Price of Anarchy.
To counter this scenario, the base station acts as a
mechanism designer and uses pricing schemes [9]
to incentivise the users. We study distributed pricing
algorithms in which the users decide on their power
levels depending on their utility functions and the
prices which are set by the designer.

The general setting considered here can be applied
to cognitive radios, OFDM systems and femtocell sys-
tems with appropriate modifications such as additional
constraints on interference or weighing the user utility
functions. Cognitive radios having ability to sense their
environment and high computational capacity can act
strategically as independent decision makers [12]. The
primary base station can act as the designer and employ
pricing mechanisms to align power selection decision
so as to achieve its global objective. Femtocell systems
can be modeled as a Stackelberg game where a macro
base station (MBS) act as the leader and multiple femto
base stations (FBSs) as the followers [3].

An Iterative Water Filling (IWF) algorithm is pro-
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posed in [20] to maximise the sum rate in the presence
of individual power constraints in a Gaussian Multiple
Access Channel (GMAC). But this algorithm will
converge to a non-pareto-optimal Nash equilibrium and
inefficient sum rate when the independent and strategic
users take their power levels in a distributed fashion.
Pricing of transmit power for Pareto improvement
of the inefficient Nash equilibrium in noncooperative
power control game was introduced in [15]. The pric-
ing function was linear in transmit power and the utility
of users have the unit bits/Joule. A distributed pricing
mechanism for interference coupled systems in which
each user announces a price is proposed in [10]. The
price signal from each user reflects the interference
compensation price paid by the other users. In [17],
a pricing based game for spectrum allocation with
individual power constraint and multiple carriers is
analyzed and a Price based Iterative Water Filling is
proposed. The social optimization problem is taken
as the weighted sum of Shannon capacities which are
the utilities of individual users. To enable the users to
achieve better Nash equilibria a price based iterative
distributed water-filling algorithm is proposed in [17].
In [7], a modified Vicrey-Clarke-Groves (VCG) mech-
anism is obtained for allocation of a divisible resource
in which the pricing function is modified for achieving
social welfare and some other desirable properties.
The price anticipating users have scalar parameterized
logarithmic utility function and the designer centrally
allocate the resource knowing the shape of the utility
functions. The work in this paper is an extension of
the work in [2] for a scalar parameterized logarithmic
user utility functions which is unknown to the designer
and individual user power constraint. We first motivate
our problem for obtaining the pricing mechanisms for
single carrier systems with individual user power con-
straints. Then, the extension to multi carrier systems is
done first only with individual user power constraints
and then with additional global power constraint.

In addition to pricing user transmit powers for
obtaining social goals, the designer may like to max-
imise the revenue obtained from these prices. We next
introduce pricing mechanisms for designer revenue
maximization which may lead to non optimal social
welfare. Myerson [13] introduced optimal auctions in
which the designer knowing the distribution of private
values of players maximizes the expected revenue. In
[8], for a wide-band wireless network that employs
CDMA as the spectrum access mechanism, the revenue
maximization problem is formulated as a Stackelberg
game. The optimal prices are obtained for the Nash
equilibrium points. For revenue maximization in a
similar setting, suboptimal constant distributed pricing

scheme is proposed in [14]. In [1], for a general delay
network, a two-stage dynamic pricing-congestion game
in which the service provider sets a price anticipating
demand of users and users chose their flow vectors
given the prices, is analyzed. An optimal revenue max-
imizing pricing is proposed for networks with several
competing oligopolistic and the extent of inefficiency
loss is lower bounded. In [16], a lower bound for the
ratio between the revenue from flat entre fee pricing
rule and maximum revenue possible is provided, which
they refer to as the Price of Simplicity (PoS). A price
discrimination scheme is also studied and Price of
Simplicity is obtained for it. In this paper, we come
up with revenue maximizing pricing mechanisms for
interference coupled multi-carrier wireless systems by
manipulating the Nash equilibrium with optimal prices.

We propose mechanisms for multicarrrier systems,
where the designer without knowing users utility func-
tions achieve two different designer objectives through
appropriate pricing. The pricing mechanisms obtained
here can be implemented through a distributed iterative
algorithm rather than existing heuristic suboptimal or
centralized algorithms. We investigate mechanisms in
which the user utility functions are modeled as scalar
parameterized logarithmic functions. The users do not
report their utility functions and just decide on their
own power level. The users are not considered to be
price anticipating here because in a distributed network
there is an information asymmetry between the users
and the designer. The users do not know the action
and utility function of other users or the nature of
pricing function. Hence, they cannot anticipate the
exact impact of their action on the pricing function.
Therefore, they just adopt a best response strategy by
taking the price given by the designer.

Contributions of this paper are:

1) Distributed pricing mechanisms for uplink power
and spectrum allocation of multi carrier systems
which maximize net user utilities, with designer
not knowing the utility functions of users.

2) Combination of both individual and total power
constraints in the constraint set.

3) Distributed pricing mechanism for designer rev-
enue maximization in multi carrier systems.

The rest of the paper is organized as follows. The next
section presents the underlying system model which
is used throughout the paper. Subsequently, Section 3
analyses pricing mechanisms for single carrier systems
with individual power constraints. The results are ex-
tended to multi carrier systems in Section 4. Section 5
investigates mechanisms for designer revenue maxi-
mization. Numerical simulations and their results are
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shown in Section 6. The paper concludes with remarks
of Section 7.

2. System Model

Let us consider an uplink multiple access system
with spectrum divided into N orthogonal carriers
shared among K users. We assume the base station
acts as a designer D who manages the resource sharing
among the users. In this scenario, let us define a K-
player strategic non-cooperative game, G, where each
player i ∈ A has a respective decision variable xi
such that

x = [x1, . . . , xK ] ∈ X ⊂ RK×N ,

where X is the decision space of all users. Let

x−i = [x1, . . . , xi−1, xi+1, . . . xK ] ∈ X−i ⊂ RK−1×N ,

be the profile of decision variable of users other
than ith player and X−i is the respective decision
space. This paper assumes vector decision variables
and a compact and convex decision space. Due to the
inherent coupling between the users, the decisions of
users directly affect each other’s performance as well
as the aggregate allocation of limited resources.

Each user decides on the power level over the N
carriers. Therefore,

xi = [x
(1)
i , . . . , x

(N)
i ],

where x
(n)
i = h

(n)
i p

(n)
i denote the received power

level over carrier n as a product of uplink transmission
power p(n)i and channel loss 0 < h

(n)
i < 1 of player

i. If linear interference is assumed, then the signal-
to-interference ratio (SIR) of the received signal on
channel n is

γ
(n)
i =

x
(n)
i∑

j 6=i x
(n)
j + σ

, (1)

where σ represents the background noise. Let us de-
note the interference at receiver for user i over channel
n as I(n)i =

∑
j 6=i x

(n)
j + σ.

The preferences of the users are captured by utility
functions and for multi-carrier wireless systems it is
given by∑

n

Ui(γ
(n)
i (x)) : X → R, ∀i ∈ A,

which are usually chosen to be continuous and dif-
ferentiable for analytical tractability. We assume that
Ui(.) is any concave non-decreasing function.

In this paper we model the user utilities as logarith-

mic in SINR parameterized by a scalar value, i.e.,

Ui(γi(x)) = αi
∑
n

log(γ
(n)
i (x)).

where αi is an application-dependent parameter private
to the users. We also consider a modified version of
logarithmic utility,

Ui(γi(x)) = αi
∑
n

log(1 + γ
(n)
i (x)).

which corresponds to the Shannon capacity achieved
by each user i over channel n, given by

Ri =
∑
n

log(1 + γ
(n)
i (x)).

Therefore, the utility of each user in the second case
can be also interpreted as scalar parameterized Shan-
non capacity.

The designer D devises a pricing mechanism M,
which can be represented by the mapping M : X →
RK×N , implemented by introducing incentives in the
form of prices to the users. The latter can be formu-
lated by adding it as a cost term such that the player
i has the cost function

Ji(x) = ci(x)−
∑
n

Ui(γ
(n)
i (x)). (2)

The designer imposes prices P (n)
i (x) per unit power

over channel n for user i to align the strategic users
with the global objective. The total payment by user i
is then

∑
n x

(n)
i Pni (x) and the individual cost of users

will be

Ji(x) =
∑
n

(x
(n)
i Pni (x)− Ui(γ

(n)
i (x))). (3)

The user objective is to solve the following indi-
vidual optimization problem in the strategic game

min
xi

Ji(x), (4)

under the given constraints of the strategic game, and
prices imposed by the designer.

The Nash equilibrium (NE) is a widely-accepted
and useful solution concept in strategic games, where
no player has an incentive to deviate from it while
others play according to their NE strategies. The NE
x∗ of the game G is formally defined as

x∗i := argmin
xi

Ji(xi, x
∗
−i), ∀i ∈ A,

where x∗−i = [x∗1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
N ]. The NE is

at the same time the intersection point of players’ best
responses obtained by solving user problems individ-
ually.

Similar to player preferences, the designer objec-
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tive, e.g. maximization of aggregate user utilities or
social welfare, can be formulated using a smooth
objective function V for the designer:

V (x, Ui(γi(x)), ci(x)) : X → R,

where ci(x) are user-specific pricing terms and
player utilities, respectively. Hence, the global op-
timization problem of the designer is simply
maxx V (x, Ui(x), ci(x)), which it solves indirectly by
setting prices. In some cases, the objective function V
characterizes the desirability of an outcome x from the
designers perspective. In other cases when the designer
objective is to satisfy certain minimum performance
constraints such as users achieving certain quality-of-
service levels, the objective can be characterized by a
region (a subset of the game domain X ). The main
problem the designer has is that he has no information
about the utility function of the users except that it
belongs to a class of concave nondecreasing (in this
case logarithmic) functions.

Definition 1. Efficient mechanisms: Efficient mecha-
nisms maximize designer objective, i.e. they solve the
problem maxx V (x, Ui(x), ci(x)).

3. Single Carrier Systems

We start with single carrier wireless systems, with
individual user power constraints. The designer objec-
tive is to achieve social welfare and design of pricing
mechanisms for this purpose is considered here.

3.1. Pricing Mechanism with Single Carrier
and Individual Power Constraint:

Let us consider a single carrier, N = 1. Then, the
received power level of ith user xi = hipi and the
signal-to-interference ratio (SIR) of the received signal
is

γi =
xi
Ii
, (5)

where Ii =
∑
j 6=i xj +σ. With the pricing mechanism

in place, each player i’s cost is given by

Ji(x) = Pixi − Ui(γi(x)), (6)

which is strictly convex in xi.
Thus, the user optimization problem with individual

power constraints will be to find the power level which
minimizes his individual cost, i.e.,

min
xi

Ji(x).

Consequently, the general condition for player best

response obtained from first order derivative is

Pi −
dUi
dxi

= 0, ∀ i ∈ A. (7)

For the case of Ui = αi log(γi(x)), the user best
response becomes

xi =
αi
Pi
. (8)

In the case of Shannon capacity, i.e., Ui =
αi log(1 + γi(x)),

αi∑
j xj + σ

= Pi (9)

and
xi = max{αi

Pi
− Ii, 0} (10)

It can be observed that using this utility function will
result in a soft user admission control scheme.

The equation (7) can be also written in terms of
individual SINR as,

dUi
dγi

=
Pi

dUi/dxi
, ∀ i ∈ A. (11)

Using equation (5), we obtain

dUi
dγi

= PiIi, ∀ i ∈ A. (12)

In this section, the global objective of the designer
aims to maximize sum of utilities of users while trying
to limit the user power levels to Pmax. The designer
D solves the constrained optimization problem

max
x

V (x)⇔ max
x

∑
i

Ui(γi(x))

such that
xi
hi
≤ Pmax ∀i.

Thus, the Lagrangian function of designer optimization
problem can be written as:

L =
∑
i

Ui(γi(x))−
∑
i

λi(
xi
hi
− Pmax).

The resulting KKT conditions are

dUi
dxi

+
∑
j 6=i

dUj
dxi
− λi
hi

= 0, ∀i (13)

λi(
xi
hi
− Pmax) = 0, ∀i

The equation (13) can be rewritten as,

dUi
dxi

+
∑
j 6=i

dUj
dγj

dγj
dxi
− λi
hi

= 0, ∀i (14)

For aligning both the user problems and the global
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objective of the base station the above equation can
be rewritten by substituting from the user equations in
(7),

Pi −
∑
j 6=i

dUj
dγj

xj
I2j
− λi
hi

= 0, ∀i (15)

By knowing the structure of user cost function and
by substituting from equation (11) the designer can
obtain the prices by solving

Pi −
∑
j 6=i

Pjxj
Ij
− λi
hi

= 0, ∀i (16)

So the designer decides on the prices to the users,
based on which users take action on their power levels,
such that both the user problems and designer problem
are solved concurrently and in a distributed manner. In
[18], the designer dictates on the allocation of the users
along with the prices according to VCG mechanism to
obtain a socially optimal Nash equilibrium point. Here,
in this paper the prices align the received power levels
(x) to solve both the user problems and the designer
problem.

Using equation (5),

Pi =
∑
j 6=i

γjPj +
λi
hi
∀i. (17)

We can see that unlike Kelly mechanism [11] for
separable utilities, the prices are not the Lagrange
multipliers. The optimal prices for interference coupled
systems are solution of a of linear program which
has system parameters and Lagrange multipliers as
coefficients. Note that the γ’s are the receiver SINR
can be measured at the base station. Using this side
information, (17) can be written in matrix form as,

A · P = B · L, (18)

where

A :=


1 −γ2 · · · −γN
−γ1 1 · · · −γN

...
. . .

...
−γ1 −γ2 · · · 1

 , (19)

B :=



1

h1
0 · · · 0

0
1

h2
· · · 0

...
. . .

...

0 0 · · · 1

hN


, (20)

and L = [λ1, . . . , λN ]T .
The designer assumes general concave function of

SINR as utilities for users and therefore global ob-

jective may not be always convex in the vector x.
When the global optimization problem is not convex,
the above solution may lead to a local optimum. But in
the case of Ui = αi log(γi(x)) using Geometric Pro-
gramming (GP) [6] or using the transformation given
in [4] the global objective can be convexified. When
users have utility function Ui = αi log(1+ γi(x)), the
global objective cannot be convexified using standard
techniques like Geometric Programming (GP) [6]. A
heuristic iterative method using Sigmoidal Program-
ming (SP) was proposed in [6], to bring the solution
in this case to near optimum.

3.2. Iterative Distributed Algorithm

We propose a Gradient update iterative distributed
algorithm similar to the one in [5] to implement the
pricing mechanism obtained above. A simple greedy
best response will result in fluctuations of power levels
and thus the users adopt a gradient best response for
convergence purposes. From the alignment of user and
designer problem we come up with an iterative method
which uses the dual variables Lagrange multipliers λi’s
to converge to the optimal prices and power levels. The
iterative pricing mechanism Ma for the logarithmic
utility case is defined as

P (k + 1) = (A)−1B · L(k), (21)

pi(k + 1) = pi(k)−
κi
hi

∂Ji
∂xi

−1
(xi) ∀i ∈ A, (22)

λi(k + 1) = λi(k) + κD
(
pi(k + 1)− Pmax

)
, (23)

In the iterative process a search is carried out in λ space
to converge the power levels to an optimal point.

4. Multi-Carrier Systems

We consider a multi-carrier system, where the trans-
mit power is allocated across multiple orthogonal chan-
nels as in OFDM. Each user receives a different price
for power consumption over different channels and the
prices influence the user best responses (IWF solution)
[19]. In this section we extend the results obtained
earlier for single carrier systems to multiple carrier
systems.

4.1. Pricing Mechanism with Multiple Carri-
ers and Individual Power Constraint:

For multi-carrier systems the user optimization prob-
lem from equation (3) will be,

max
xi

∑
n

(Ui(γ
(n)
i (x))− x(n)i P

(n)
i ).
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The user best response obtained from first order deriva-
tive is

dUi(γ
(n)
i (x))

dx
(n)
i

− P (n)
i = 0, ∀ i ∈ A, n. (24)

and similar to equation (12),

dUi

dγ
(n)
i

= P
(n)
i I

(n)
i , ∀ i ∈ A, n. (25)

For the case of

Ui(x) = αi
∑
n

log(γ
(n)
i ), ∀ i ∈ A,

x
(n)
i =

αi

P
(n)
i

∀ i ∈ A, n. (26)

When the utility of each user is taken as,

Ui(x) = αi
∑
n

log(1 + γ
(n)
i ), ∀ i ∈ A,

x
(n)
i = max{ αi

P
(n)
i

− I(n)i , 0} ∀ i ∈ A, n. (27)

The power allocation in the second case will result
in an admission control over each channel and a
waterfilling solution which will be now modified by
the individual prices over the different channels.

The global objective of designer in multi-carrier
systems with individual user power constraint is to
solve the optimization,

max
x

∑
i

∑
n

(Ui(γ
(n)
i (x))

subject to ∑
n

x
(n)
i

h
(n)
i

≤ Pmax.∀i, n

So the Lagrangian function of designer can be written
as:

L = Ui(x)+
∑
j 6=i

Uj(x)−
∑
i

λi(
∑
n

x
(n)
i

h
(n)
i

−Pmax),∀i, n

where λi’s are Lagrangian multipliers. The Karush-
Kuhn-Tucker (K.K.T) conditions are given by:

dUi(γ
(n)
i (x))

dx
(n)
i

+
∑
j 6=i

dUj(γ
(n)
j (x))

dx
(n)
i

− λi

h
(n)
i

= 0,∀ i, n,

(28)

λi(
∑
n

x
(n)
i

h
(n)
i

− Pmax) = 0,∀i, n

∑
n

x
(n)
i

h
(n)
i

≤ Pmax∀i, n.

The equation (29) can be rewritten as,

dUi

dx
(n)
i

+
∑
j 6=i

dUj

dγ
(n)
j

dγ
(n)
j

dx
(n)
i

− λi

h
(n)
i

= 0, ∀i, n. (29)

Aligning both the user problems and the global objec-
tive of the base station by substituting from the user
equations in (24), the above equation becomes

P
(n)
i −

∑
j 6=i

dU
(n)
j

dγ
(n)
j

x
(n)
j

(I
(n)
j )2

− λi

h
(n)
i

= 0, ∀i, n. (30)

By knowing the structure of user cost function and
using (25) the designer can obtain the prices by solving

P
(n)
i −

∑
j 6=i

P
(n)
j x

(n)
j

I
(n)
j

− λi

h
(n)
i

= 0, ∀i, n (31)

P
(n)
i =

∑
j 6=i

γnj P
n
j +

λi

h
(n)
i

, ∀i, n. (32)

The above system of equations can be written in
matrix form as,

A(n) · P (n) = B(n) · L, ∀n, (33)

where A(n) and B(n) are defined accordingly.

4.1.1. Iterative Distributed Algorithm for Multi-
Carrier Systems. We now define pricing mechanism
Mb, for which the prices and bids from user for
each carrier can be obtained using iterative methods
as following.

P (n)(k + 1) = (A(n))−1B(n) · L(k),∀n (34)

p
(n)
i (k + 1) = p

(n)
i (k)− κi

h
(n)
i

∂Ji

∂x
(n)
i

−1
(x

(n)
i ) ∀i ∈ A,

(35)
λi(k + 1) = λi(k) + κD

(∑
n

p
(n)
i (k + 1)− Pmax

)
,

(36)
Since the designer optimization problem can be con-
vexified and thus admits a unique solution, we can find
unique λ’s which align it to the user convex optimiza-
tion problems. Hence, there exist corresponding prices,
obtained from the matrix transformation given in (33),
which will determine the optimal power levels.

The users do not have any incentive to select their
power levels based on values other than their true α’s
because the pricing mechanism solves their individual
optimization problems using correct values of α’s
indirectly through observing their actions. Since they
cannot exactly quantify the impact of their action on
the prices set by the designer, they will always take
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the prices and employ best response based on that.
The algorithm which also shows the information flow
for the iterative method is given below in Algorithm
1.

Algorithm 1: Iterative Pricing Mechanism Mb

Input: Designer (base station): Maximum power
levels Pmax and the designer objective

Input: Players (users): Utilities
Ui = αi

∑
n log(1 + γ

(n)
i ),∀i

Result: Optimum power levels p∗ and SIRs γ∗

1 Initial power levels p(0) and prices Pi(0) ;
2 repeat
3 begin Designer:
4 Observe player power levels p ;
5 Compute the matrices A(n) and B(n)

Update λ’s according to (36) ;
6 foreach Channel n do
7 Update prices P (n) according to (34).
8 end
9 Send each user i respective channel prices

P
(n)
i .

10 end
11 begin Players:
12 foreach Player i do
13 foreach Channel n do
14 Estimate marginal utility

∂Ui(x)/∂x
(n)
i ;

15 Compute power level p(n)i from
(35) ;

16 end
17 end
18 end
19 until end of iteration;

4.2. Pricing Mechanism with Multiple Car-
riers and Individual and Total Power Con-
straints:

Due to interference considerations in the cell, the
total power transmitted by the users is to be kept below
a threshhold. Now we modify the global optimization
problem of designer in the previous section with total
power constraint on top of individual user power
constraint. So the global optimization problem in this
case is,

max
x

∑
i

Ui(x)

subject to ∑
n

x
(n)
i

h
(n)
i

≤ Pmax ∀ i

and ∑
i

∑
n

x
(n)
i

h
(n)
i

≤ Ptotal,

where Ptotal is the total power limit. So the Lagrangian
function of designer can be written as:

L = V (x)−
∑
i

λi(
∑
n

x
(n)
i

h
(n)
i

− Pmax)

−λ(
∑
i

∑
n

x
(n)
i

h
(n)
i

− Ptotal),

where λi’s and λ are Lagrangian multipliers. The KKT
conditions are given by:

dUi

dx
(n)
i

+
∑
j 6=i

dUj(x)

dx
(n)
i

− λi

h
(n)
i

− λ

h
(n)
i

= 0,∀ n,

λi(
∑
n

x
(n)
i

h
(n)
i

− Pmax) = 0,∀i,

λ(
∑
i

∑
n

x
(n)
i

h
(n)
i

− Ptotal) = 0.

By using equation(24) to align the solution of both
problems, we have:

P
(n)
i = −

∑
j 6=i

dUj(x)

dxni
+

λi

h
(n)
i

+
λ

h
(n)
i

∀i, n (37)

Using (27),

P
(n)
i =

∑
j 6=i

xnj P
n
j

(
∑
k 6=j x

n
k + σ)

+
λi

h
(n)
i

+
λ

h
(n)
i

, ∀i, n,

(38)

P
(n)
i =

∑
j 6=i

γnj (P
n
j ) +

λi

h
(n)
i

+
λ

h
(n)
i

, ∀i, n. (39)

It can be written in matrix form as,

A(n) · P (n) = B(n) · Lt, ∀n,

where A(n) and B(n) are defined accordingly and
Lt = [λ1, . . . , λN , λ]

T . The prices and bids from user
for each carrier can be obtained using iterative pricing
mechanism Mc as following.

P (n)(k + 1) = (A)(n)
−1
B(n) · L(k),∀n (40)

p
(n)
i (k + 1) = p

(n)
i (k)− κi

h
(n)
i

∂Ji

∂x
(n)
i

−1
(x

(n)
i ) ∀ i ∈ A,

(41)
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λi(k+1) = λi(k)+κD
(∑

n

p
(n)
i (k+1)−Pmax

)
, ∀ i ∈ A

(42)
and

λ(k+ 1) = λ(k) + κD
(∑

i

∑
n

p
(n)
i (k+ 1)− Ptotal

)
.

(43)
The iterative algorithm Mc can be implemented

similar to as demonstrated above in Algorithm 1.

5. Pricing Mechanism for Designer Rev-
enue Maximization

In many practical scenarios the designer will be
interested more in maximizing her revenue than sum of
utilities of users. In this section, the global objective
of the designer aims to maximize her total revenue
as a monopolistic entity, while trying to limit the user
power levels to Pmax. The total revenue of the designer
will be,

V (x) =
∑
j

∑
n

P
(n)
j (x)x

(n)
j .

The designer D solves the constrained optimization
problem

max
x

V (x) such that
∑
n

x
(n)
i

h
(n)
i

≤ Pmax ∀i, n.

and ∑
j

∑
n

x
(n)
j

h
(n)
j

≤ Ptotal.

By substituting equation (24), we obtain

V (x) =
∑
j

∑
n

dUj

dx
(n)
j

x
(n)
j ,

and this objective function is not guaranteed to be con-
vex. To find a local maximum we form the Lagrange
function given by

L = V (x)−
∑
j

µj(
∑
n

x
(n)
j

h
(n)
j

− Pmax) (44)

+µ
∑
j

∑
n

x
(n)
j

h
(n)
j

− Ptotal, (45)

where µi’s and µ are Lagrange multipliers. The result-
ing KKT conditions for optimality are

P
(n)
i +

∑
j

x
(n)
j

d2U
(n)
j

dx
(n)
i dx

(n)
j

− µi − µ = 0, ∀ i, n.

µi(
∑
n

x
(n)
i

h
(n)
i

− Pmax) = 0, ∀i

µ(
∑
j

∑
n

x
(n)
j

h
(n)
j

− Ptotal) = 0

Let us analyze this problem for the wireless channel
example,

Ui(x) = αi
∑
n

log(1 + γ
(n)
i ).

Substituting from equation (27), the above equation
becomes

P
(n)
i −

∑
j

x
(n)
j αj

(
∑
k x

(n)
k + σ)2

− µi

h
(n)
i

− µ

h
(n)
i

= 0, ∀i, n.

By aligning the problems we can rewrite it as,

P
(n)
i −

∑
j

x
(n)
j P

(n)
j

(
∑
k x

(n)
k + σ)

− µi

h
(n)
i

− µ

h
(n)
i

= 0, ∀i, n

(46)

Let us denote F
(n)
j =

x
(n)
j

(
∑

k x
(n)
k +σ)

, and note that

F
(n)
j =

γ
(n)
i

1+γ
(n)
i

is already available as side information.
Then, the above equation can be again rewritten as

P
(n)
i −

∑
j

F
(n)
j P

(n)
j =

µi

h
(n)
i

+
µ

h
(n)
i

, ∀i, n. (47)

As in previous cases we obtain a matrix form as,

C(n) · P (n) = D(n) ·K,

where

C(n) :=


1 + F

(n)
1 −F (n)

2 · · · −F (n)
N

−F (n)
1 1 + F

(n)
2 · · · −F (n)

N
...

. . .
...

−F (n)
1 −F (n)

2 · · · 1 + F
(n)
N

 ,

(48)
and

D(n) :=


1

h
(n)
1

0 · · · 0 1

h
(n)
1

0 1

h
(n)
2

· · · 0 1

h
(n)
2

...
. . .

...
0 0 · · · 1

h
(n)
N

1

h
(n)
N

 , (49)

and K = [µ1, . . . , µN , µ]
T .

An iterative method which uses Lagrangian, µi’s and
µ can give the prices and powers. For this we define
now an iterative pricing mechanism Md as similar to
Mc in previous section.

P (n)(k + 1) = (C(n))−1D(n) ·K(k), (50)
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p
(n)
i (k+1) = pi(k)−

κi

h
(n)
i

∂Ji

∂x
(n)
i

−1
(x

(n)
i ) ∀i ∈ A, n,

µi(k+1) = µi(k)+κD
(∑

n

p
(n)
i (k+1)−Pmax

)
, ∀i ∈ A,

(51)
and

µ(k+ 1) = µ(k) + κD
(∑

i

∑
n

p
(n)
i (k+ 1)− Ptotal

)
.

6. Simulations

In this section, numerical simulation results are
presented for the case, Ui(x) = αi

∑
n log(1 + γ

(n)
i ),

to establish the efficiency and convergence of the
proposed mechanisms. First, the iterative pricing mech-
anism for single carrier systems is illustrated numeri-
cally. We simulate this scenario with 10 users and the
following arbitrarily chosen utility parameters

α = [0.23 , 1.33 , 0.73 , 0.28 , 1.13 , 1.65 ,
1.35 , 2.00 , 1.92 , 0.12].

The users update their power levels according to (22) at
each time step k ≥ 1 with a step size of κ = 0.02. The
designer, on the other hand, updates the Lagrangian
multipliers λ’s and price vector P based on (23) and
(21), where Pmax = 1 and κD = 0.02. The back-
ground noise parameter is σ = 0.5. The convergence
of the mechanism Ma is depicted in Figures 1 and 2.
It is observed that some of users with higher value of
utility parameters get the full power and other users are
not allocated with any power, resulting in an admission
control scheme as expected.
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Figure 1. The evolution of user power levels x in
pricing mechanismMa for a single carrier.
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Figure 2. The evolution of Lagrange multiplier λ in
pricing mechanismMa for a single carrier.

Next, the convergence of the iterative pricing mech-
anism with additional total power constraint is illus-
trated numerically in Figures 3 and 4. The total power
constraint Ptotal = 2. We observed solution boundary
which can be seen as a virtual admission control.
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Figure 3. The evolution of user power levels x in
pricing mechanism with total power constraint.

The power levels for multi carrier system with num-
ber of carriers M = 5 and number of users N = 10
are plotted in Figure 5. The other parameters are same
as above. For demonstration purpose the curves are
shown for 3 users.

Finally, for the revenue maximizing mechanism,
the convergence of power levels and lambda levels
are plotted in Figures 6 and 7. A boundary solution
behavior is observed as similar to efficiency maximiz-
ing mechanisms, but with different number of users
touching the power constraint.
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Figure 4. The evolution of Lagrange multiplier λ in
pricing mechanism with total power constraint.
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Figure 5. The evolution of user power levels x in
pricing mechanism for multiple carriers.
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Figure 6. The evolution of user power levels x in
pricing mechanismMd for revenue maximization.
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Figure 7. The evolution of Lagrange multiplier λ in
pricing mechanismMd for revenue maximization.

7. Conclusions

In this paper, an uplink power control game of
multi-carrier wireless systems with strategic users is
analyzed. The users have scalar-parameterized log-
arithmic utility functions that are unknown to the
designer (base station). Distributed and iterative pricing
mechanisms for uplink power and spectrum allocation
are proposed for two different designer objectives:
social welfare and revenue maximization. First, pricing
mechanisms which maximize social welfare for single
carrier systems with users having individual power
constraints are analyzed. We observed that the prices
are a linear transformation of the Lagrange multipli-
ers, and align user optimization problems with the
designer problem. The iterative algorithm is observed
to converge to unique optimal power and price levels
in numerical simulations. Simulation results depicting
the convergence of power levels show that some of
users with higher value of utility parameter get the
full power and others are allocated with no power
resulting in an admission control. Next, the results
are generalized to a case where users power levels
are spread over multiple carriers. Then, on top of
individual power constraints, total power constraint is
added to the constraint set. Finally, iterative pricing
mechanism for designer revenue maximization is also
analyzed for multi carrier systems.

The future directions include generalizing these re-
sults to the case where users have general concave
utility functions and analyzing the convergence of
gradient update iterative algorithms.
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