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ABSTRACT
This paper studies the effects of and countermeasures against ad-

versarial behavior in network resource allocation mechanisms such

as pricing and auctions. It models the heterogeneous behavior of

users, which ranges from altruistic to selfish and even to malicious,

using game theory. The paper adopts a mechanism design approach

to quantify the effect of adversarial behavior and modify the mecha-

nisms to respond. First, the Price of Malice of the existing network

mechanisms to adversarial behavior, which ranges from extreme

selfishness to destructive maliciousness, is analyzed. Then, two

methods are discussed to counter such adversarial behavior: one is

a differentiated pricing to punish the malicious users and another

is a detection method based on the expected utility functions of the

“regular” users on the network. Finally, the results obtained are

illustrated with multiple examples and numerical simulations.

Keywords: Adversarial behavior, mechanism design, game the-

ory, detection and counter measures, interference management,

rate control.

1. INTRODUCTION
The behavior of different users (players) on networks may range

from altruistic on the one end to malicious (adversarial) on the other

end of a wide spectrum (see Figure1). While altruistic users aim to

improve the overall network performance, a selfish player strategise

to maximize her throughput by getting the proportional share of re-

sources. A malicious user, however, tries to get a disproportionate

share of network resource, and in addition may disrupt the whole

network. Well-known examples of this adversarial behavior in net-

works include jamming in wireless networks and denial-of-service

(DoS) attacks [1]- [2].

In this paper, we model the coexistence of altruistic, selfish and ma-

licious players using a noncooperative game theoretic formulation

and adopt a mechanism design approach. Here, we assume that

malicious users mainly stay within the rules of of the system but

exhibit adversarial behavior. We model them by assigning differ-

ent utility functions than selfish players, such as own selfish utility

minus the sum of utility of other users in the system or a convex

one in contrast to the usually concave utility functions of selfish

users. Thus, we map their destructive behavior such as jamming

other players and launching Denial-of-Service(DoS) attacks to ra-

tional incentives.

To analyze the effects of adversarial behavior, we quantify the ro-

bustness of some known network mechanisms with respect to the

adversarial behavior of (some of) their participants. A modified

version the metric called Price of Malice [3]- [4] is defined suit-

able for games in network resource allocation and applied to two

different network problems dealt here. In the cases analyzed, the

malicious players are assumed to take the maximum resource share

possible without detection and that way try to disrupt others.

To counter the adversarial behavior, we design mechanisms in which

the prices are varied differentially to punish the malicious play-

ers after detecting them using any threshold detection technique

based on the bids of users. Clearly, when the malicious users does

not abide by the rules and vandalize the system, harder responses

such as blocking the malicious users after detection are required.

We employ a differentiated pricing scheme in which both aggres-

sively selfish and malicious players with disproportional usage of

resources are made to pay higher prices than regular selfish play-

ers. The effectiveness of this method is quantified using a specific

trade-off metric defined. In addition, we discuss an approach for

detecting malicious players using the fact that their utility func-

tions do not belong to the same class of utility functions expected

for selfish players. After detection the mechanism designer or other

good players can ban or punish these malicious players.

Figure 1: Different behavior of users in networks

We consider two different types of network problems in this paper,

which differ in coupling of users, i.e. how their actions affect each

other, and resource sharing methods. The first one is rate (conges-

tion) control with additive resource sharing, e.g. sharing of band-

width at a link with fixed capacity. The second one is interference

management, e.g. uplink power control in CDMA wireless net-

works with interference coupling. While allocating these divisible

resources to selfish users, a loss in social welfare is caused at the re-

sulting Nash equilibrium due to the selfish nature often referred as
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Price of Anarchy. Mechanisms such as auctions and pricing mech-

anisms are proposed to shift the Nash equilibrium point to efficient

point. In these mechanisms and underlying games, the selfish na-

ture of rational users were modeled with concave utility functions.

But in practical situations, there are altruistic users who care for

the welfare of all the users and adversarial users who may deviate

from equilibrium point even if it causes loss to them or will show

extreme selfishness, i.e. they behave ’irrationally’ if modeled using

this class of utility functions. We retain the rationality assumption

by associating them with different utility functions. In the pres-

ence of the these altruistic and adversarial agents, the mechanisms

employed will have Nash equilibrium different from the efficient

point and this deviation is captured in the metric Price of Malice.

In this paper, Price of Malice is quantified for some specific net-

work mechanisms and these mechanisms are modified to punish

the adversarial users to make them come back to regular selfish be-

havior, which brings the system to the efficient Nash equilibrium

point.

1.1 Related works
In networked systems with selfish users, a loss in overall social wel-

fare was identified and referred as Price of Anarchy [5, 6]. In the

presence of malicious users this concept was extended and Price of

Byzantine Anarchy and Price of Malice was first introduced in [3].

They obtained bounds on these metrics which are parameterized

by the number of malicious users for a virus inoculation game for

social networks. A modified definition was proposed in [4] for con-

gestion games based on the delay experienced at Nash equilibrium

point with and without the presence of a malicious player. Both of

these works have observed a Windfall of Malice, where malicious

behavior actually improves the social welfare of non-oblivious self-

ish users due to the better cooperation resulting because of the ’fear

factor’ or effects similar to Braess’s paradox [4]. In [7] a more gen-

eral definition of Price of Malice is given with weaker assumptions

than above mentioned works in the presence of Byzantine play-

ers and using a no-regret analysis. A game theoretic model for

the strategic interaction of legitimate and malicious players is in-

troduced in [8], where the authors have derived a bound on the

damage caused by the malicious players. In [9], partial altruism

of some of the users is analyzed and a bound on Price of Anarchy

was obtained as a function of the altruism parameter. To get around

with Price of Anarchy, pricing for price taking users [10–12] and

auctions for price anticipating users [13,14] are employed. In [15],

the effect of spiteful behavior of some of the users is analyzed in the

context of first and second price auctions and the revenue obtained

is compared. In this paper, we quantify the Price of Malice of the

mechanisms proposed for network resource allocation and modify

the rules of these mechanisms to counter the malicious behavior.

To counter the adversarial behavior, Micali & Valiant in [16], have

developed a modified Vickrey-Clarke-Groves(VCG) mechanism,

taking into account collusive, irrational, and adversarial behavior

for combinatorial auctions. In the proposed mechanism, the price

charged to an agent is increased from VCG price by a scaled factor

of the maximum social welfare of other agents. In spirit of this, we

also modify the pricing in the proportional fair allocation mecha-

nisms to punish the malicious users and incentivise them to come

to regular selfish behavior.

The main contributions of this paper include:

1. Quantifying the Price of Malice in various network mecha-

nisms with adversarial users.

2. Design of differentiated pricing scheme to punish adversarial

users and definition of a trade-off parameter.

3. Detection of malicious users by comparing their (observed)

utility function to those of regular (selfish) users.

The rest of the paper is organized as follows. The next section

presents the underlying mechanism design model. Subsequently,

Section 3 quantifies the Price of Malice of the network mechanisms

with respect to the adversarial behavior. In Section 4, a differenti-

ated pricing scheme to counter the adversarial behavior is intro-

duced and a method to detect malicious agents is presented. Nu-

merical simulations and their results are shown in Section 5. The

paper concludes with remarks of Section 6.

2. MECHANISMDESIGNANDGAMEMODEL

WITH HETEROGENEOUS USERS
At the center of the mechanism design model is the designerD who

influences N users, denoted by the set A, and participating in a

strategic (noncooperative) game. These players are autonomous

and rational decision makers, who share and compete for limited

resources of the network under the given constraints of the envi-

ronment. Let us define an N -player strategic game, G, where each
player i ∈ A has a respective decision variable xi such that

x = [x1, . . . , xN ] ∈ X ⊂ R
N ,

where X is the decision space of all players. Let

x−i = [x1, . . . , xi−1, xi+1, . . . xN ] ∈ X−i ⊂ R
N−1,

be the profile of decision variable of players other than ith player

and X−i is the respective decision space. As a starting point, this

paper assumes scalar decision variables and a compact and con-

vex decision space. The decision variables may represent, in net-

work resource allocation problems, player flow rate, power level or

Signal to Interference Ratio (SINR). Due to the inherent coupling

between the players, the decisions of players directly affect each

other’s performance as well as the aggregate allocation of limited

resources.

The preferences of the players are captured by utility functions

Ui(x) : X → R, ∀i ∈ A,

which are chosen to be continuous and differentiable for analytical

tractability. In this paper, the selfishness nature of users are cap-

tured by continuous and differentiable concave utility functions.

We consider here a mechanism design having heterogeneous users

in the induced game, in which one subset of users have ’abnormal’

utility function compared to the class of regular selfish users. The

utility function of the class of malicious users can be very different

depending on their nature and goals. The disrupting nature of ma-

licious users where they want to create loss to other users even at

the cost of their benefit and the altruistic nature of some users who

want to care for the social welfare can be captured with a modified

utility function. One such modified utility function can be obtained

by a convex combination of user utilities

Um
i = (1− θi)Ui + θi

∑

j

Uj , (1)

where θi is the parameter between -1 and 1 which captures the

range of behavior of a user given in Figure 1. This utility func-

tion can be modified by taking the average of the utilities of all the
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users in the second term [9]. The table below lists the values of θ
and corresponding user behavior.

θ Behavior

0 < θ < 1 altruistic

θ = 0 selfish

−1 < θ < 0 malicious

Let us define the set of selfish users be S ⊂ A. Also, the set of

malicious and altruistic users, i.e. users with θi 6= 0 is defined as B
and B = A\S. When the set B has only malicious users, the utility

function of malicious users can be modified as

Um
i = Ui + θi

∑

j∈S

Uj , ∀i ∈ B. (2)

The extreme selfishness or greedy nature of malicious users can

be also captured with a convex utility function. In this case they

will take the maximum possible share of the resource constrained

above by either physical limits or a level that leads to immediate

detection.

The designerD devises amechanismM , which can be represented

by the mapping M : X → R
N , implemented by introducing in-

centives in the form of rules and prices to players. The latter can

be formulated by adding it as a cost term such that the player i has
the quasi-linear cost function

Ji(x) = ci(x)− Ui(x). (3)

where ci(x) is the price payed by ith user to the mechanism.

We differentiate between two kinds of mechanisms, auctions and

pricing, which differ in the assumption on nature of the users and

the interaction rules. In auction mechanisms, the designer D im-

poses on a player i ∈ A a user-specific

• resource allocation rule, Qi(x),

• resource pricing, ci(x),

based on their bids x. The price anticipating users decide on their

bid, minimizing their individual cost.

In pricing mechanisms, the price taking users decide on their al-

location as best response to the user specific price Pi induced by

the designer and there is no explicit allocation rule dictated by the

designer. In this case, the cost function is

Ji(x) = Pixi − Ui(Q(x)).

Similar to player preferences, the designer objective, e.g. maxi-

mization of aggregate user utilities or social welfare, can be formu-

lated using a smooth objective function V for the designer:

V (x, Ui(x), ci(x)) : X → R,

where ci(x) and Ui(x), i = 1, . . . , N are user-specific pricing

terms and player utilities, respectively. Hence, the global optimiza-

tion problem of the designer is simply maxx V (x, Ui(x), ci(x)),
which it solves indirectly by setting rules and prices. The different

properties of mechanisms analyzed in this paper are attached in the

appendix.

In this paper, for tractability purposes, we model user i’s utility

function as logarithmic, parameterized by her private value αi. In

this case, the aim of the designer in the auction setting will be to

make the users report their true private value, i.e, xi = αi and carry

out an efficient allocation based on that.

The players share and compete for limited resources in the given

environment under its information and communication constraints.

We focus on two basic types of resource sharing and coupling,

which are often encountered in a variety of problems in network-

ing:

1. Additive resource sharing: the players share a finite resource

C such that

N
∑

i=1

xi = C.

This type of coupling is encountered in bandwidth sharing

and rate control in networks.

2. Interference coupling (linear interference): the resource allo-

cated to player i, γi, is inversely proportional to interference

generated others such that

γi(x) =
hixi

∑

j 6=i hjxj + σ
,

where hi ∀i and σ denote some system parameters. Inter-

ference coupling occurs in wireless networks where γ repre-

sents signal-to-interference ratio.

We assume that the malicious users have information about the util-

ity function of other selfish users but the regular selfish users do

not have the information about the existence of malicious users and

their identities. We consider the case where the selfish users cannot

collaborate, detect and punish malicious users themselves since it

will require a lot of common information and communication for

coordination. Therefore, we use a designer who anticipates and

detects malicious behavior of any user and modifies the pricing ap-

propriately to counter the malicious behavior. In the next sections,

the effect of malicious users to system social welfare is quantified

and some counter measures are proposed.

3. PRICE OF MALICE IN MECHANISMS
In this section, we quantify the robustness of mechanisms described

in the above setting, against malicious players. For this purpose, we

first redefine the metric Price of Malice (PoM(M)) of mechanism

M suitable for mechanisms in resource sharing setting. A similar

metric called Price of Byzantine Anarchy is used in [3] to quantify

the social welfare loss at Nash equilibrium point in the presence

of malicious users compared to the optimal point, but in a virus

inoculation game scenario. For congestion games with malicious

flow concentrated on one malicious player Price of Malice was re-

defined, based on the delay experienced at Nash equilibrium point

with and without the malicious player in [4].

DEFINITION 1. The metric Price of Malice of a mechanismM
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is defined as:

PoM(M) :=

∑

j∈S Uj(Qj(x))−
∑

j∈S Uj(Q
′
j(x))

∑

j∈S Uj(Qj(x))
,

whereQ is the allocation at the Nash equilibrium when none of the

users are malicious andQ′ is the allocation at the Nash equilibrium

in the presence of malicious users.

Now, we estimate the value of Price of Malice parameter for two

networks which differ in user coupling and resource sharing as de-

scribed in the previous section.

3.1 Price of Malice in Auction Mechanisms
We present auction mechanisms [17] for two network coupling

schemes, rate control in wired networks and power allocation in

interference coupled wireless networks, and quantify the Price of

Malice for both cases. The adversarial behavior considered in this

section is that the malicious players take maximum possible share

of the resources and hence try to disrupt others by denying them

their fair share of resources.

Additive Sharing (Rate Control in Networks)
We consider the rate sharing problem with users having separa-

ble utility in networks and quantify the effect of the adversarial

behavior on it. Let users with utilities Ui(Qi) = αi logQi(x)

share a fixed bandwidth C such that
∑N

i=1 Qi(x) = C, where

xi ∈ (0, xmax). The vector x in this case denotes player flow rates

and Q the capacity allocated to them [19, 20]. Consider the utility

function given in (2) and the cost of ith user is given by,

Jm
i = ci − Ui − θi

∑

j∈S

Uj .

The designer solves the constrained optimization problem

max
Q

V (Q) ⇔ max
Q

∑

i

Ui(Qi) such that
∑

i

Qi = C, (4)

in order to find a globally optimal allocation Q that satisfies this

efficiency criterion. The associated Lagrangian function is then

L(Q) =
∑

i

Ui(Qi) + λ

(

C −
∑

i

Qi

)

,

where λ > 0 is a scalar Lagrange multiplier. Under the convexity

assumptions made, this leads to

∂L

∂Qi

⇒ U ′
i(Qi) = λ, ∀i ∈ A, (5)

and the efficiency constraint

∂L

∂λ
⇒
∑

i

Qi = C. (6)

and Qi = 0 for users with U ′
i(Qi) < λ.

Let the designer employ the total payment to ith user as the one

obtained in [14] assuming all the users are just selfish in an effi-

cient auction mechanismMa with proportional allocation which is

defined based on the bid of player i,

Qi :=
xi

∑

j xj + ω
C. (7)

The total payment of ith user is

ci = log(1 +
xi

∑

j 6=i xj

)
∑

j 6=i

xj ,

as given by [14].

Using this payment function the best response of user having the

modified utility function becomes

∂Jm
i

∂xi

= 0 =⇒ xi =
αi

∑

j 6=i xj

∑

j 6=i xj + θi
∑

j∈S

αj

xj

.

We can observe that malicious users having −1 ≤ θ < 0, will
report xi > αi and altruistic users having 0 < θ ≤ 1, will report
xi < αi.

The allocation for the regular selfish users, i.e., users with θi = 0
in the presence of altruistic or malicious users can be written as

Q′
i =

αiC

∑

j∈S αj +
∑

k∈B

αk

∑

j 6=k xj
∑

j 6=k xj + θk(N − |B|)

. (8)

Let

ri =
Qi

Q′
i

=

∑

j∈S αj +
∑

k∈B

αk

∑

j 6=k xj
∑

j 6=k xj + θk(N − |B|)
∑

j∈S αj +
∑

k∈B αk

. (9)

For this additive resource sharing case, the Price ofMaliciousPoM(Ma)
is

PoM(Ma) =

∑

j∈S αj log(rj)
∑

j∈S αj log(
αjC∑
i αi

)
.

For the case where users are symmetric αi = α, ∀i, and only one

user is malicious or all the malicious user coordinate to form one

entity, this simplifies to

PoM(Ma) =
log(

N−1+ α
α+θk

N
)

log(C
N
)

.

From the above equations, the Price of Malice of the mechanism

can be obtained knowing system parameters and user preferences

and can be bounded above and below depending on the range and

distribution of these values for the specific setting. Note that for

the system with altruistic users and selfish users PoM will be neg-

ative, which can be clearly observed from the equation for symmet-

ric case above, which means that the altruistic users are improving

social welfare of other selfish users by taking lesser share of re-

source. In the case of malicious users, as θ decreases from 0 to

−1, we can see that the PoM(Ma) increases. We can also observe

that when both malicious and altruistic users are present along with

selfish ones, their effect on PoM depends on the number and de-

gree of value of θ. If they are of same number and degree,i.e., if

|θi| = |θj | for i 6= j, then their effect on PoM cancel each other.

The variation of values of PoM(Ma) for different values of θ is

given in the simulation section.

Interference Coupled Systems (CDMA Power

Control)
Consider an auction mechanism in the context of a wireless net-

work and uplink power control setting ( [18, 21]) where due to the
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interference coupling the resource sharing is inherently competi-

tive. Let the user utilities be defined as Ui(x) = αi log γi(Q(x))

and the individual power levels, Q, satisfy
∑N

i=1 Qi ≤ C, where

the signal-to-interference ratio (SINR) received by the base station

is

γi =
Qi(x)

∑

j 6=i Qj(x) + σ
,

and xi ∈ (0, xmax).

An auction-based mechanism,Mb, can be defined based on the bid

of player i, with the resource allocation rule

Qi :=
xi

∑

j xj

C, (10)

which is proportional allocation as first analyzed in [14]. We can

see that using this proportional allocation, full utilization of re-

source is attained, i.e.
∑

i Qi = C. Now we decouple the user

utilities by rewriting γi as

γi(Qi) =
Qi(x)

C −Qi(x) + σ
, (11)

using the full utilization property. For the allocation given in (10),

the SINR is

γi(x) =
xi

∑

j xj(C + σ)− xi

. (12)

In [18], it is observed that in systems with sufficiently high SINR

assumption Ui(x) = αi log γi(Qi(x)) is concave in Qi, where

γi(Qi) is given by (11).A pricing mechanism given in [14] will

make the selfish users to report xi = αi.

In the presence of malicious and altruistic users the SINR obtained

by the regular users will be,

γ′
i(x) =

αi

(αs +
∑

k∈B

αk

∑

j 6=k xj
∑

j 6=k xj + θk(N − |B|)
)(C + σ)− αi

(13)

where αs =
∑

j∈S αj .

Then, we obtain PoM(Mb) as

PoM(Mb) =

∑

j∈S αj log(
γj

γ′

j
)

∑

j∈S αj log(
αjC∑

k αk(C+σ)−αj
)
.

In the symmetric case and only one user is malicious, the PoM

becomes

PoM(Mb) =
log(

(N−1+ α
α+θk

)(C+σ)−1)

N(C+σ)−1
)

log( C
N(C+σ)−1

)
.

A similar behavior of PoM(Mb) as in the case of additive shar-

ing can be observed for different values of θ. The variation of

PoM(Mb) for different values of θ is given in the simulation sec-

tion for a specific set of parameters.

3.2 Price of Malice in Pricing Mechanisms
A counterpart of the Price of Malice metric in Definition 1 for pric-

ing mechanisms [10], which differ from auctions by their lack of an

explicit resource allocation scheme, can be obtained by replacing

Q(x) and Q′(x) with the action vector without malicious users x
and with malicious users x′, respectively.

In the case of additive resource sharing, the users with utilities

Ui(xi) = αi log xi share the fixed resource
∑N

i=1 xi = C, and

xi ∈ (0, xmax). Consider an efficient mechanism Mc, which can

be implemented in an iterative way. The efficient allocation is

xi =
αi

λ
,

where λ is the Lagrange multiplier. In the case of all selfish users

λ =
∑

i αi/C and it will be set as price to the users.

Let each malicious user take a share xm which can be xmax, the

maximum share they can use without detection, according to their

utility function, in order to disrupt others. Let λ′ be the Lagrange

multiplier in this case which will be a different point than λ =
∑

i αi/C. The remaining resource (C −
∑

B xm) will be shared
among good users, under the efficient mechanismMc. In the addi-

tive sharing case PoM(Mc) is,

PoM(Mc) =

∑

j∈S αj log(
Cλ′

∑
i αi

)
∑

j∈S αj log(
αjC∑
i αi

)
.

For symmetric case, where αi = α ∀i, it becomes

PoM(Mc) =
log(Cλ′

Nα
)

log(C
N
)
.

The counterpart of auction in the interference-coupled case for pric-

ing can be obtained in a similar way and the mechanism can be de-

noted asMd. The variation of values ofPoM(Mc) andPoM(Md)
for different number of users is given and compared with each other

in the simulation section.

4. RESPONSEMECHANISMSTOMALICIOUS

USERS
The robustness analyses in the previous sections only measure the

effect of selfish and malicious users but does not provide a way to

encounter them. In this section, we consider two possible response

schemes to adversarial behavior: one based on softer punishment

scheme using differentiated pricing and the other relying on detec-

tion of malicious users observing their utility function. The latter

has to be supported by a separate punishment mechanism which

should follow the detection phase.

4.1 Differentiated Pricing
We consider a softer response scheme than blocking towards mali-

cious users after explicit detection based on any well known (thresh-

old) detection scheme. The response mechanism is implemented

by the designer by deploying a differentiated pricing. First, we de-

fine a trade-off metric T (M) for quantifying the effectiveness of a

pricing-based response to a mechanism M . This metric provides

a way to measure the trade-off between the damage due to mali-

cious users and how much effort (price) it costs them to create this

damage.

DEFINITION 2. Ametric for quantifying effectiveness of a pricing-

based response mechanism against a set of malicious usersB ⊂ A
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is defined as:

T (M) ≥

∑

j∈S Uj(Q
′
j(x))−

∑

j∈S Uj(Qj(x))
∑

k∈B ck(x)
,

and the lower bound is achieved in the best case scenario of perfect

differentiation in terms of pricing.

Nowwe utilize this metric to evaluate the properties of the differen-

tiated pricing scheme on example networks. A necessary assump-

tion we make in this subsection is that malicious users stay within

the system and do not have any means to evade the pricing mech-

anisms imposed by the designer. This assumption is relaxed in the

next subsection.

Auctions for Additive Sharing
We derive now a differentiated payment function to counter the ma-

licious behavior of users. It is assumed here that the designer knows

the value of θ of malicious user. In practical problems, this is not

realistic and the designer needs to make the decision on payment

function entirely based on user bids. Therefore, we assume that af-

ter detecting the malicious user using a threshold detection scheme

based on the bids, the designer punishes the malicious users with a

price function assuming θ = −1, i.e, extreme maliciousness. Al-

ternatively, once can couple this parameter with the confidence of

the detection scheme used, i.e. low θ values for high probability

of malicious behavior and vice versa. The best response of the ith

user who tries to minimize her cost in terms of the signal or bid to

be sent is obtained by computing

∂Ji

∂xi

=
∂ci
∂xi

−
∂Ui

∂Qi

∑

j 6=i xj

(
∑

k xk)2
+ θi

∑

j 6=i

αj

xj

∑

k xk

= 0. (14)

This condition is necessary and sufficient for optimality. Then,

∂Ui(Qi)

∂Qi

=
(
∑

k xk)
2

∑

j 6=i xj

(
∂ci
∂xi

+ θi
∑

j 6=i

αj

xj

∑

k xk

).

Let us denote t =
∑

j xj , then xi =
tQi

C
and

∑

j 6=i

xj = t− xi = t(1−
Qi

C
).

Doing the substitutions,

∂Ui(Qi)

∂Qi

=
t

1−
Qi

C

(
∂ci(Qi, t)

∂xi

+ θi
∑

j 6=i

1

t
)

:= f(Qi, t). (15)

When we compare (15) and (5), we can see that f(Qi, t) is equal to
the Lagrange multiplier λ. Since f(Qi, t) is a function ofQi, there

will be unequal marginal valuations at equilibrium. For efficient

allocation we need to obtain a price function which will induce a

f(Qi, t) which will give identical marginal valuations at equilib-

rium [14]. For this we make f(Qi, t) independent ofQi and derive

corresponding price function. Let f(Qi, t) = g(t) where g(t) is
the generator function and

∂ci
∂xi

=

∑

j 6=i xjg(t)

(
∑

k xk)2
− θi

1
∑

k xk

∑

j 6=i

αj

xj

.

By integrating over xi, we obtain

ci(x) =

∫ xi

0

g(s+
∑

j 6=i xj)

(s+
∑

j 6=i xj)2
ds
∑

j 6=i

xj

− θi

∫ xi

0

ds

s+
∑

k 6=j xk

∑

j 6=i

αj

xj

. (16)

For g(t) = t, we obtain

ci(x) = log(1 +
xi

∑

j 6=i xj

)
∑

j 6=i

xj

− θi log(1 +
xi

∑

j 6=i xj

)
∑

j 6=i

αj

xj

. (17)

Let us assume that the users except ith user are merely selfish due

to the payment function of the mechanism they report xi = αi.

If the designer punishes the users who are detected as malicious

with a payment in which θi = −1, then the final pricing function

becomes

ci(x) = log(1 +
xi

∑

j 6=i xj

)(
∑

j 6=i

xj + (N − 1)). (18)

Now we can define a mechanism Mm which is defined by the al-

location rule (7) and pricing rule given by (18). Note that in this

differentiated pricing scheme, the malicious users who will try to

bid something higher than its private value will have to pay an ad-

ditional amount proportional to their bid. The tradeoff-parameter

of mechanism Mm is given by,

T (Mm) ≥

∑

j∈S αj log(rj)
∑

i∈B
log(1 +

xi
∑

j 6=i xj

)(
∑

j 6=i xj + (N − 1))
.

Such a differentiated pricing scheme is widely used today in vari-

ous settings, such as network access. For example, if some users

of an Internet Service Provider (ISP) are creating burden to the

network by using much higher amount of resources above a pre-

determined cap, they are priced differentially higher compared to

other users. This reality is captured in our model since the higher

usage above a threshold is punished even if it is not coming from

the disproportionate use due to malicious nature.

In a similar way, a differentiated pricing mechanism can be also

derived for interference coupled CDMA systems.

Pricing Mechanism for Additive Sharing
Let us consider the counterpart of pricing mechanism in additive

sharing given in the previous section and study the effect of the

differentiated pricing in that case. As one possibility we model

the utility function of a malicious player as Ui(xi) = eβixi , which

reflects aggressive behavior in terms of resource demand. Note that

this is still private information unknown to the designer. As a result,

A malicious user takes a share of xm ∈ (x + ǫ, xmax), where x
is the mean and ǫ is some integer multiple of standard deviation of

the demand vector x.

In order to counter the malicious behavior, the designer deploys

differentiated pricing as part of a new mechanism Me, which is a
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modified version ofMc. It is characterized by the pricing function

P d
i =

{

f(κi(xi − (x+ ǫ))) for xi ≥ b

Pi for xi ≤ b
,

where b is determined by a statistical method, for example b =
x+ kσx, where x is the mean and σx is standard deviation and Pi

is the pricing function in the original mechanism. The function f(.)
is selected suitably depending on the utility functions of selfish and

malicious users. If it is assumed that selfish users have continu-

ous and differentiable concave utility function and malicious users

have convex utility functions, then f(.) can be a continuous and

differentiable convex function. For the logarithmic utility function

assumed here for selfish users, we take f(.) as exponential func-
tion. The value of b can be obtained alternatively from a clustering

method or another Maximum-likelihood algorithm. Note that, the

designer punishes the malicious players by employing a price func-

tion which increases exponentially with the share of resource taken

by them, i.e. if they deviate too much from the mean behavior and

create a significant burden on the system.

For the case of exponential pricing function, T (Me) is obtained as,

T (Me) ≥

∑

j∈S αj log(
Cλ′

∑
i αi

)
∑

i∈B eκi(xi−(x+ǫ))
.

In the symmetric and only one malicious user case, it becomes

T (Me) ≥
log(Cλ′

Nα
)

eκi(xi−(x+ǫ))
.

PricingMechanism for Interference Coupled Sys-

tems
Consider the case of pricing in interference coupled systems given

in Section 3. To counter the malicious behavior, the designer in-

troduces a new mechanism Mf which employs the differentiated

pricing given by

P d
i =

{

f(κi(γi(xi, x−i)− γi(x+ ǫ, x−i))) for xi ≥ b

Pi for xi ≤ b
,

In the case of logarithmic utility, Pi = λ +
∑

j 6=i

αj

Ij
, where λ

is the Lagrange multiplier of the associated optimization problem

and Ii :=
∑

j 6=i xj + σ is the interference affecting player i [11,

12]. For the mechanism Mf , the trade-off metric T (Mf ) can be

obtained in similar way as for additive sharing case. The variation

of values of T (Me) and T (Mf ) for different number of users is

given and compared with each other in the simulation section.

4.2 Malicious User Detection based on Utility

Functions
It is not realistic in some scenarios to assume that the malicious

users follow the rules of the mechanism. Therefore, it will not be

possible to handle them by modifying the rules of the mechanism

as done in the differentiated pricing case. In this section, we discuss

one detection technique which can be used in addition to the classi-

cal techniques developed so far. All of the mechanisms discussed in

this paper provide a way for the designer to infer the utility function

of the users through the observations. The aggressive or malicious

user behavior can be captured using utility functions that funda-

mentally differ from those of regular users. Let us assume that the

designer expects that utility functions of the regular users belong to

a certain class such as the class of concave functions. Then, if cer-

tain users are observed to take a bigger share of resources than the

one indicated by the expected class of utility, they can be detected

as malicious.

Let us consider the setting given in Section 3 and assume that utility

of a malicious player is Ui(xi) = eβiQi , for some parameter βi.

The designer can estimate the value of utility parameter αi of each

player i from the share of resource taken Qi. Let Q
∗
i be the inter-

section of utility function of malicious player and the logarithmic

utility function expected from her if she was just a regular selfish

player. Then, we obtain

eβiQ
∗

i = αi logQ
∗
i ,

and

αi =
eβiQ

∗

i

logQ∗
i

.

Clearly, the value of αi obtained for a malicious user will be much

higher than those of regular users. In other words, this utility pa-

rameter does not fit to any possible logarithmic curve. This is taken

as an indication of adversarial behavior. Notice that, this detection

scheme is more widely applicable than differentiated pricing since

it does not require the malicious users abide by the pricing scheme.

After detection, the malicious users can be blocked or punished

with an additional method.

5. SIMULATIONS
In this section, computer simulation results are presented to show

the different parameters of the proposed mechanisms. First, the

Price of Malice PoM(Ma) and PoM(Mb) of pricing mechanism

for additive sharingMa and interference couplingMb, respectively,

using the setup in Section 3 by varying the value of θ from −1 to

0. The number of users N = 50 out of which 10 users are taken to

be malicious with same θ value. The other system parameters are

C = 30 and σ = 1. The simulations are done by generating the

player preferences α’s according to a uniform distribution on the

support set [0, 10] and plotted in Figure 2. It can be observed that

value of PoM(Ma) and PoM(Mb) decreases as θ varies from -1

to 0 as expected.
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Figure 2: Price of Malice PoM(M) of the pricing mechanism

for additive coupling Ma and interference coupling Mb for

varying values of θ.
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We next compute the Price of Malice PoM(Mc) and PoM(Md)
for the auction mechanism for additive sharingMc and interference

coupling Md, respectively, using the setup in Example 3 by vary-

ing the number of users from 8 to 15. The simulations are done by

generating the player preferences α’s according to a uniform dis-

tribution on the support set [0, 2] and repeated 100 times. Then,

the mean and standard deviation of the obtained R(M) values are
plotted in Figure 3. The number of malicious users is fixed at 3,

C = 5, σ = 0.5 and xmax = 1. The malicious users take an

allocation xmax and remaining share is allocated using respective

iterative algorithms among good users. The quantities PoM(Mc)
and PoM(Md) are plotted in Figure 3. It can be observed that, for
a fixed number of malicious users, as number of users increases the

mechanisms become more robust, as expected. Next, the trade-off
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Figure 3: Price of Malice PoM(M) of the auction mechanisms

for additive couplingMc and interference couplingMd in Ex-

ample 3 for varying number of users.

parameter T (M) is plotted for auction mechanism Mm for addi-

tive sharing for different values of θ in Figure 4. The users having

x > x+ 2 σx are priced differentially as described in Section 4.
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Figure 4: Trade off parameter T (M) of auction mechanism

Mm for additive sharing for varying values of θ.

Finally, the trade-off parameter T (M) is plotted for pricing mech-

anisms Me and Mf in Figure 5. An iterative algorithm as given

in [12] is used to obtain allocation and prices. The other parame-

ters remain the same as those used to generate the Figure 3. It can

be seen from Figure 5 that mechanismMf performs better thanMe

in this case, possibly due to the coupling involved.
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Figure 5: Trade off parameter T (M) of pricing mechanisms

for additive couplingMe and interference couplingMf in Ex-

amples 3 and 4 respectively with varying number of users.

6. CONCLUSION
We have studied adversarial behavior in network resource alloca-

tion schemes including pricing and auctions by adopting a mech-

anism design approach to measure and counter it. First, we have

analyzed the robustness of the existing network mechanisms to ad-

versarial behavior, which ranges from extreme selfishness to de-

structive maliciousness, using a quantitative metric Price of Malice.

Next, we have presented two methods to counter such adversarial

behavior: one is a differentiated pricing to punish the aggressive

players and another is a detection method based on the expected

utility functions of the “regular” users on the network. Finally, the

results obtained have been illustrated with multiple examples and

numerical simulations.

Future research directions include obtaining bounds on the param-

eters dealt in this paper and a study of collusion and related trade-

offs, as well as behavioral detection schemes. It is also an interest-

ing direction to analyze the effect of altruism or partial altruism of

some of the users in this context, as in the work [9].
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9. APPENDIX
Definitions:

The properties of mechanisms considered in this paper can be for-

mally defined as follows.

DEFINITION 1. Efficiency: Efficient mechanisms maximize de-

signer objective, i.e. they solve the problemmaxx V (x, Ui(x), ci(x)).

DEFINITION 2. Nash Equilibrium: The strategy profile x∗ =
[x∗

1, . . . , x
∗
N ] is in Nash Equilibrium if the cost of each player is

minimized at the equilibrium given the best strategies of other play-

ers.

Ji(x
∗
i , x

∗
−i) ≤ Ji(xi, x

∗
−i), ∀i ∈ A, xi ∈ Xi

DEFINITION 3. Dominant Strategy Equilibrium: The strategy

profile x̃ = [x̃1, . . . , x̃N ] is in Dominant Strategy Equilibrium if

the cost of each player is minimized at the equilibrium irrespective

of the strategies of other players.

Ji(x̃i, x−i) ≤ Ji(xi, x−i), ∀i ∈ A, xi ∈ Xi, x−i ∈ X−i

DEFINITION 4. Strategy-proofness or Incentive Compatibil-

ity: If the players do not gain anything by reporting a value other

than their true value, i.e.

Ji(xi, x−i) ≤ J̃i(x̃i, x−i), ∀i ∈ A, x̃i ∈ Xi, x−i ∈ X−i

where x is the original value vector, and x̃i is the “misrepresented”

value or action, then the mechanism is strategy-proof.
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