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Abstract— Future Advanced Driver Assistance Systems
(ADAS) require detailed information about occupancy states
in the vehicle’s local environment. In contrast to widespread
occupancy grids, this information should be represented in a
compact, scalable and easy-to-interpret data structure. In this
paper, we show how occupancy probabilities can efficiently be
represented in our 2D Interval Map framework. The basic idea
of this approach is to discretize the vehicle’s environment only in
longitudinal direction and to avoid quantization errors in lateral
direction by storing continuous values. In order to correctly
deal with dynamic obstacles in ADAS scenarios, the map also
interacts with a model based object tracking.

The comparison of our experimental results to a ground
truth illustrates the differences of grid and interval based envi-
ronment representations. A tested collision avoidance function
yields similar results for both representations, while computa-
tion times and memory requirements are substantially improved
by the application of the 2D Interval Map.

I. INTRODUCTION

A. Motivation

The perception of the own vehicle’s environment is one of
the key challenges in the development of future Advanced
Driver Assistance Systems (ADAS). This task includes the
processing of uncertain sensor measurements in a generic
environment representation so that it can be used by dif-
ferent driver assistance functions. In general, we categorize
environment representations into map based approaches and
model based object representations [1]. The latter make
assumptions about common object properties, for example
the shape and motion of dynamic obstacles. In contrast, map
based representations assign location-specific information to
dense space elements and provide a proximity relationship
between these elements.

One crucial information that has to be represented for al-
most every highly automated vehicle is the knowledge about
free spaces and obstacles in the system’s local environment.
Especially for mobile robots, this problem has been examined
extensively over the last years, for example by using well-
known occupancy grids [2].

In our work we focus on the development of ADAS for
mostly longitudinal traffic in complex scenarios on highways,
e.g. traffic jams. Compared to typical mobile robot envi-
ronments, map based representations for automotive systems
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have to deal with a highly dynamic environment and have to
consider a larger area around the own vehicle. Furthermore,
the limited memory and computing capabilities of automo-
tive electronic control units demand representations that are
easy to interpret and very efficient concerning memory and
computation requirements. For this purpose, today’s common
grid maps have to be further simplified in order to achieve
a compact representation of environment information while
still providing sufficient accuracy. The 2D Interval Map
as a new generic map based environment representation
and its application for convoy track detection have already
been described in [3]. The contribution of this paper is
twofold: First, we show how occupancy information can be
represented in the 2D Interval Map data structure. Second,
the interaction of the resulting occupancy map with a model
based object tracking is introduced, which allows handling
the highly dynamic environment in ADAS scenarios and
generates a consistent environment representation.

B. Related Work

Map based environment representations are typically
known from 2D occupancy grid maps in the field of robotics
[2]. Besides 2D approaches, there exist numerous approaches
to extend the concept of grid maps by a third dimension, for
example voxel maps [1] or multi volume occupancy grids
[4]. Moreover, grid maps can also represent different types
of information, for example gray values of video images [5].

In general, grid based methods are confronted with com-
paratively high memory consumptions and computational
effort. Moreover, they are not scalable and provide data in
the same high accuracy in the whole map area, which is not
necessary for most driver assistance functions. One possibil-
ity of scalable environment representations is given by tree
based methods, for example [6], which are on the downside
faced with rather high computational effort. Besides that,
there are several feature and graph based approaches, for
example [7], which have shortcomings due to restricting
model assumptions about the environment. Another category
of publications deals with the further processing of the
information represented in occupancy grids, e.g. a compact
representation of free spaces [8] or the compression of grid
map data [9]. In contrast, this paper aims at already sim-
plifying the data structure that is used for the accumulation
process.

On the other hand, several works address typical chal-
lenges of grid maps in the automotive application area, for
example the fusion of several different sensors [10] or the
handling of dynamic objects. [11] and [12] use the results
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of a model based object tracking to represent separated
map layers for static and dynamic obstacles. Our concept of
combining the results of map and object based environment
representation by correctly describing dynamic objects in an
occupancy map has also been presented [1], [13].

C. Structure of the paper

The rest of this paper is structured as follows: Section II
gives an overview over our system architecture, section III
introduces the general 2D Interval Map framework. The ap-
plication of the 2D Interval Map for representing occupancy
information is shown in chapter IV, the enhancements that
are necessary to consider the motion of dynamic obstacles
are presented in section V. Section VI analyzes experimental
results, while section VII finally concludes the paper.

II. SYSTEM ARCHITECTURE

Figure 1 illustrates the two main philosophies of our
system architecture.

First, we consider our perception system as a combination
of experts with different capabilities. Figure 1 shows a
combination of three experts: The 2D Interval Map as a
map based environment representation, the object module
as a model based object representation and the ego motion
module, which is responsible for ego motion estimation. All
participating subsystems closely interact in case they need in-
formation that is better provided by any other subsystem. The
interaction of the 2D Interval Map and object tracking will
be presented in section V. The combination of all available
subsystems provides a consistent environment representation.

Second, our architecture is based on a separation of
environment representations from driver assistance functions.
As shown for the 2D Interval Map, sensor models are
used to transfer measurements including uncertainties into
the representation. Afterwards, multiple extractors can be
deployed to extract information which is relevant for certain
ADAS functions. This decoupling simplifies the development
process of assistance systems.

Fig. 1. Perception system architecture

III. 2D INTERVAL MAP

In contrast to grid based maps, the 2D Interval Map dis-
cretizes the space around the own vehicle only in longitudinal

vehicle direction, whereas the lateral component of any infor-
mation is stored as a continuous value, as already introduced
in [3]. The main reason for this approach is an analysis

   I0           I1         I2           I3           I4         I5          I6

M(t)

Point Cells Interval Cells

Fig. 2. 2D Interval Map data structure

showing that typical ADAS functions for longitudinal traffic
demand a higher accuracy in lateral than in longitudinal
direction. Another advantage lies in the fact that the map
is always aligned in the same direction as the own vehicle’s
current heading, which makes the stored information easy-to-
interpret. Fig. 2 illustrates an interval map M (t) at timestamp
t. In each map, the vehicle’s environment is partitioned into
a static number of equally spaced intervals I:

M (t) =
[
I
(t)
0 , . . . , I(t)n

]T
(1)

In this structure, each interval can store several generic infor-
mation containers of different types. As also shown in Fig.
2, we subdivide these containers into punctual information,
called point cells (PC) and information with dimension,
called interval cells (IC):

I(t) =
[
PC

(t)
0 , . . . , PC

(t)
k , IC

(t)
0 , . . . , IC

(t)
l , . . .

]
(2)

Both PC and IC data containers can include arbitrary
information, yet they have to store at least one respectively
two lateral positions:

PC(t) =
[
y(t), . . .

]
(3)

IC(t) =
[
y
(t)
start, y

(t)
end, . . .

]
(4)

If the content of point or interval cells is filtered by recursive
estimation mechanisms, the attributes can be extended by
corresponding covariance values.

As mentioned above, the 2D Interval Map is always
aligned in the same direction as the own vehicle. Therefore,
stored information has to be compensated to enable accumu-
lation mechanisms in the presence of own vehicle motion.
We already showed in [3] that the longitudinal and lateral
motion components can be compensated exactly, whereas ro-
tations have to be approximated. The detailed compensation
implementation used in the 2D Interval Occupancy Map will
be shown in section IV-A.

IV. 2D INTERVAL OCCUPANCY MAP

Similar to occupancy grids, the main task of the 2D
Interval Occupancy Map is to describe occupied, free and un-
known areas around the own vehicle. As all these information
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have a dimension, they can be represented with interval cells
in the 2D Interval Map framework. These interval cells can
be modeled in different ways, which significantly impacts
the further implementation of the map.

First, the cells of an interval can be either managed
in a single list or in separated lists for each occupancy
type, as for example used for the three dimensional multi
volumes presented in [4]. One obvious drawback of keeping
several lists is the occurrence of conflicting information and
blank areas, which are not described by any stored cell.
Furthermore, even if two neighboring cells of different types
border on each other, the redundant lateral position of the
border has to be stored twice. Therefore, our implementation
is based on a dense list of interval cells, which only contains
the lateral end position y

(t)
end of a cell.

Second, the stored free and occupied cells have to model
a reliability and hence enable an accumulation process. Re-
garding this issue, interval cells storing a common posterior
occupancy probability offer the advantage that cells can
change their state over time. Furthermore, well-known state
estimation mechanisms can be adapted straightforwardly.
Besides calculating the posterior occupancy probability of
a cell P

(
O|z(1:t)

)
given all measurements z(1:t) until time

t, we also estimate the cells’ borders y
(t)
end by using a one-

dimensional Kalman-Filter. In this way, a border between
two cells can be reused for slightly different occupancy
measurements and is able to represent a smooth transition
between occupancy states. The resulting estimation variance
σ2 (yend)

(t) can be interpreted as a measure of smoothness,
as also illustrated in figure 3.

x

y

Variances

P(o|z1-t) =0.5 =0.5<0.5 >0.5>0.5

Fig. 3. Interval cell modeling

On this basis, the occupancy interval cells contain the
following attributes:

IC(t) =
[
y
(t)
end, σ

2 (yend)
(t)

, x(t),

P
(
o|z(1:t)

)
, n(t)

age, ID
(t)
object

]
(5)

where n
(t)
age denotes the age of a cell and ID

(t)
object the ID

of an associated dynamic object. The usage of the lateral
position x(t) will be presented in the next section. As only
the lateral ends of all cells are incorporated, the start of the
first cell in each interval has to be stored separately.

The different steps that are necessary to update the 2D
Interval Occupancy Map with new sensor measurements are
illustrated in figure 4 and will be explained in detail in
the following sections. At the beginning, all intervals of

the map are initialized with a single cell containing the a
priori occupancy probability and an initial border variance.
The presented approach can be combined with several sensor
technologies, however, we focus on the processing of laser
scanner measurements in this paper.

Ego
Compensation Prediction

Association
&

Update
Merge

Measurement

Feature
Extraction

Map

Fig. 4. 2D Occupancy Interval Map update cycle

A. Compensation of own vehicle motion

The first step in processing any local map based environ-
ment representation is to compensate the stored information
by the own vehicle’s motion between two map updates.
This motion can be subdivided into three components. The
longitudinal motion of the own vehicle can be accomplished
by shifting the complete data structure and accumulating a
sub-interval value. This processing has been described in
detail in [3]. The lateral shift between two map updates
is directly compensated by adjusting the interval cells’ y-
attributes. In order to provide a consistent data structure, a
fixed width of the map can be defined. If the shifted cells
exceed this width, they will be cropped, blank areas are filled
with cells containing the a priori probability.

For compensating rotations of the own vehicle between
two updates, all interval cells include a single approximated
x-center value. By using this value, an absolute lever for
each interval cell can be calculated. Afterwards, this lever
is rotated in order to calculate the longitudinal and lateral
difference resulting from the rotation. While the lateral
component is again compensated directly, the longitudinal
component is used to correct the cell’s x-center. If this value
exceeds the longitudinal borders, the cell has to be transfered
to the neighboring interval.

B. Prediction of interval cell states

The estimation of the cells’ borders by a Kalman filter
requires a dedicated prediction step before the actual update
takes place. For these borders we use a simplistic one-
dimensional process and observation model without further
input:

y
(t)
end = y

(t−1)
end + w(t−1) (6)

z
(t)
end = y

(t)
end + v(t) (7)

where both process noise w(t) ∼ N
(
0, σ2

u

)
and observation

noise v(t+1) ∼ N
(
0, σ2

z

)
are Gaussian and zero-mean. z(t)end

denotes the measurement of the border at timestamp t.
In this case, the prediction step simplifies to:

σ̄2 (yend)
(t)

= σ2 (yend)
(t−1)

+ σ2
u (8)
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C. Feature Extraction
In order to update the cells’ borders and occupancy prob-

abilities, information about free and occupied areas has to be
extracted from the laser range measurements. As illustrated
in figure 5, we use the following rules to generate new cells
from the laser measurements within an interval:

• Occupied cells are built from laser beam reflections.
The dimensions of the occupied interval cells are cal-
culated by considering the divergence of the laser beam
and the longitudinal uncertainty of the measurement.
Overlapping cells are merged to enable a consistent data
structure.

• Free cells are built from the areas the laser beams
passed. They are limited by unknown and occupied
measurements. Again, the divergence of all involved
beams has to be considered.

• The remaining areas are filled with cells containing the
a priori probability in order to provide a dense data
structure.

All extracted cells contain an occupancy probability given the
current measurement. This probability P (o|zt) corresponds
to the inverse sensor model, which is used in well-known
occupancy grid update algorithms [2]. In our implementation,
this probability is approximated for each generated cell, de-
pending on the number and arrangement of the laser beams as
well as the overall distance of the laser range measurements.
Besides that, the characteristics of the laser measurements
at the transitions of occupancy states could be used to
approximate the variance σ2

z of a border measurement.

zt

P(o|zt)

P(o|z1:t-1)

P(o|z1:t)

Fig. 5. Feature extraction and update of interval cells. Darker colors indi-
cate low occupancy probabilities, bright colors high occupancy probabilities

D. Association and Update
Having extracted cells from the laser range measurements,

the map interval structure can be updated. Therefore, both
introduced state estimation mechanisms have to be consid-
ered: On the one hand, the inverse sensor model probabilities

1: procedure ASSOCANDUPDATE(Map,Measurement)
2: ICMap ← GetF irstCell (Map)
3: for all ICMeas in Measurement do
4: if BorderIsAssociable (Map, ICMeas) then
5: ICAssoc ← AssociatedCell
6: UpdateBorder(ICAssoc, ICMeas)
7: else
8: ICAssoc ← CreateCell(Map, ICMeas)
9: end if

10: while ICMap <= ICAssoc do
11: UpdateCell(ICMap, ICMeas)
12: ICMap ← GetNextCell(ICMap)
13: end while
14: end for
15: end procedure

Fig. 6. Cell association and update algorithm

have to be assigned to the existing cells. On the other hand,
existing and detected borders have to be associated and
updated. If a newly detected border cannot be associated
to an existing one, a new cell has to be established. The
complete association and update algorithm of the cell data
structure is summarized in the pseudo code in figure 6 and
also visualized in figure 5.

The association of existing and measured borders in the
BorderIsAssociable()-routine is based on their lateral dis-
tance and the similarity of the bordering occupancy proba-
bilities. The following UpdateBorder()-method performs a
standard Kalman Filter update step, including computing the
Kalman Gain:

K(t) =
σ̄2 (yend)

(t)

σ̄2 (yend)
(t)

+ σ2
z

(9)

ŷ
(t)
end = ŷ

(t−1)
end +K(t) ·

(
z
(t)
end − ŷ

(t−1)
end

)
(10)

σ2 (yend)
(t)

=
(
1−K(t)

)
· σ̄2 (yend)

(t) (11)

As already stated, an approximated value for σ2
z from the

previous step can be used to quantify the smoothness of the
detected transition and to improve the estimated position and
variance.

The update of a cell’s posterior occupancy probability in
UpdateCell() is calculated by using Bayes’ rule:

P
(
o|z(1:t)

)
=

P
(
z(t)|o

)
· P

(
o|z(1:t−1)

)
P
(
z(t)|z(1:t−1)

) (12)

=
P
(
o|z(t)

)
· P

(
z(t)

)
· P

(
o|z(1:t−1)

)
P (o) · P

(
z(t)|z(1:t−1)

) (13)

This equation is usually simplified by using the well-known
log-odds formulation [2]. In doing so, logarithmized proba-
bility ratios are stored in the map and the posterior probabil-
ities have to be recovered if needed. In our implementation,
a subsequent merge algorithm takes place, which is based on
comparing the occupancy probability values of neighboring
cells. Our tests showed that the computational effort of
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recovering the probability posteriors during the merge step is
higher than the benefit of using log-odds formulation for the
probability update. For this reason, we reformulate equation
13 under the assumption P (o) = 0.5 as follows:

P (o|z(1:t)) = P (o|z(t))P (o|z(1:t−1))
/(

(1− P (o|z(t))) · (1− P (o|z(1:t−1)))

+P (o|z(t) · P (o|z(1:t−1))
)

(14)

E. Merge Step

The computational effort of processing the previously
presented steps strongly depends of the number of stored
interval cells. To reduce the overall number, neighboring
cells with similar probability posteriors can be combined in a
subsequent merge step. In order to enable the creation of new
cells with conflicting information, also the age n

(t)
age of the

investigated cells has to be considered. Both parameters, the
minimum age and the maximum probability difference can
be used to conveniently regulate the memory requirements
of the resulting data structure.

V. INTERACTION WITH OBJECT TRACKING

For an application in ADAS, a map based environment
representation of free and occupied areas has to be able
to correctly deal with dynamic objects. In section II, we
introduced the model based object module, which is able to
provide information about dynamic objects in the vehicle’s
environment. The results of both modules can be combined
according to the concept that has already been described in
[1], [13]. The basic principles of this strategy can straightfor-
wardly be adapted to the 2D Interval Occupancy Map. The
different steps of the interaction are shown in figure 7 and
explained in the corresponding following sections.

2D Interval Map Object Tracking

Measurement

Prediction

Dynamic
Classification

Assocation

Update

Object
Generation

Classified 
Measurement

Object
List

Fig. 7. Interaction between 2D Interval Map and object module

A. Prediction of dynamic cells

By using the introduced attribute ID
(t)
object, an interval cell

can be associated with a dynamic object. In order to represent
a moving object at the correct position in the occupancy
map, these groups of dynamic cells have to be predicted

before the map is updated. Therefore, an absolute lateral
and longitudinal velocity of each dynamic cell is computed,
depending on the velocities, accelerations and the yaw rate of
the associated object. Based on this information the lateral
and longitudinal shift of the cell is calculated and added
to the cell’s attributes. Similar to the ego compensation
mechanism, cells are transfered to the neighboring interval,
if the x(t)-attribute exceeds the longitudinal border.

In our implementation, this task is incorporated in the
prediction step introduced in the previous chapter. After the
complete prediction step, the 2D Interval Map M̄ (t) repre-
sents the expected environment at the current measurement
time stamp.

B. Dynamic classification of laser measurements

The idea of classifying the dynamic state of laser range
measurements by comparing new measurements with previ-
ously accumulated maps has been presented several times
[11], [1], [14]. This approach can straightforwardly be
adapted to the 2D Interval Occupancy Map. Taking the longi-
tudinal uncertainty and the lateral divergence of a single laser
measurement into account, a rectangle can be constructed
and compared to the predicted map M̄ (t). All measurements
that hit a dynamic cell will be marked as dynamic, all
other measurements will be classified according to the map’s
occupancy values. In case the measurement overlaps several
cells with different probabilities, the maximum value will be
processed. If the resulting probability goes below a threshold
tfree, the measurement will be classified as dynamic, if it
exceeds another threshold toccupied, it will be categorized as
static. In all other cases, the measurement will be classified
as unknown.

In our system architecture this classification is performed
by the map module in order to improve the successive object
generation of the object module.

C. Dynamic Object association of map update

After the classification step, the object module estimates
a new set of objects with corresponding dynamic states. In
the map, this information is used to associate laser range
measurements to dynamic objects in the feature extraction
step. This association is based on a straightforward compar-
ison of measurement and estimated object rectangle. If an
extracted measurement is assigned to an object, a unique ID
of the object will be stored in the cell’s attribute ID

(t)
object

and will also be set in the selected interval cells during the
association and update step. Please note that interval cells
with conflicting object associations will not be merged in
any processing step.

VI. EXPERIMENTAL RESULTS

A. Accuracy

We evaluated the 2D Interval Occupancy Map by com-
paring the obtained results to our occupancy grid implemen-
tation and an additional ground truth. Our grid map imple-
mentation is based on a local, ego centered data structure.
In order to provide a preview area of at least 70m at any
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time, the length and width of the grid was set to 140m, at
a cell size of 20cm. Due to its constant alignment, a 2D
Interval Map of 70m length is already able to provide a
preview area of the required size at any time. Therefore, we
use a 2D Interval Map of 70m length and 30m width in
the following scenarios. The size of the intervals was set to
1m, which turned out to be sufficient for the longitudinal
accuracy in our tests.

All presented results were obtained by using an automotive
laser scanner and a low cost inertial measurement unit (IMU)
for the vehicle motion estimation. In order to obtain a ground
truth of the obstacle’s position in the vehicle’s environment,
we use a reference system, which is composed of a highly
accurate IMU and DGPS.

Figure 8 shows the results from a static test scenario for a
collision avoidance function. In this testbed, we measured the
exact positions of the surrounding vehicles, pylons and guard
rails by using the described reference system. These ground
truth positions are depicted by the red lines and boxes in both
representations in figure 8. The visualization of the resulting
border estimation variances in the 2D Interval Map has been
omitted for clarity. The comparison of grid and interval based

Occupancy probability

Free Unkown Occupied

Fig. 8. Interval and grid based representation of collision avoidance
scenario. Red lines and boxes indicate ground truth.

environment representation in this scenario illustrates the
advantages and disadvantages of both approaches. On the one
hand, longitudinal distances are, of course, better represented
in the grid map. On the other hand, the lateral positions in the
2D Interval Map are not subject to discretization errors and

therefore in some cases closer to the ground truth. Overall,
the 2D Interval Map represents the environment in sufficient
precision for typical state-of-the-art ADAS functions.

To confirm this fact, we also compared the results of a
precrash ADAS function using different environment rep-
resentations. In order to operate the collision avoidance
system presented in [15], the relevant information of both
environment representations has to be extracted, according
to our concept introduced in section II. Based on this
extracted information, the function analyzes different evasion
trajectories, as depicted in figure 9 and calculates a potential
crash distance. The distance values resulting from interval

Fig. 9. Possible collision avoidance trajectories based on the 2D Interval
Map and grid map

and grid based environment representation are compared in
figure 10. A value of 0 indicates, that any crash can be
avoided. Besides small deviations, the estimated distances
and hence the behavior of the function are similar for both
maps.
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Fig. 10. Estimated crash distances based on the 2D Interval Map and grid
map

B. Computational and Memory Requirements

For analyzing the computational effort and memory re-
quirements of the 2D Interval Occupancy Map, we also
analyzed an additional urban respectively highway scenario
of approximately 1 minute duration. In all test data sets,
we compared the effort for updating the map and extracting
the collision avoidance information as explained above in
both representations. The resulting mean computation times
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and their standard deviations in milliseconds are presented in
table I. The results were obtained by using a standard laptop
with Intel Core i7 m640 CPU. Regarding the average time for

Scenario Collision
avoidance

Urban Highway

Mean Std Mean Std Mean Std
2DIM Update 1.1 0.2 1.3 0.3 1.6 0.3
2DIM Update
+ Extraction

1.6 0.3 1.8 0.3 2.1 0.3

GM Update 5.1 0.8 5.8 1.0 5.5 0.9
GM Update
+ Extraction

7.7 1.2 8.3 1.4 8.1 1.2

TABLE I
MEAN COMPUTATION TIMES AND STANDARD DEVIATIONS IN

MILLISECONDS OF THE 2D INTERVAL MAP AND THE GRID MAP IN

DIFFERENT SCENARIOS

the complete update of the map, a substantial improvement
of about 70% can be observed in all scenarios. The complete
processing time for calculating the input parameters of the
precrash function is even more reduced, as the extraction
process also simplifies significantly.

Table II shows a comparison of the memory consumption
of both representations. In this comparison, we only con-
sidered the storage of the map data structure, which means
the interval cells respectively the grid cells. In contrast to
the grid map’s static size of 2.94MByte, the 2D Interval
Map has a scenario dependent memory demand, which is in
average about 95% smaller.

Scenario Collision
avoidance

Urban Highway

2DIM Min 9.3 kB 13.0 kB 38.0 kB
Max 82.4 kB 108.7 kB 108.9 kB
Avg 45.6 kB 62.5 kB 79.3 kB

GM 2.9 MB 2.9 MB 2.9 MB

TABLE II
MEMORY CONSUMPTION OF THE 2D INTERVAL MAP AND THE GRID

MAP

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions
In this paper, we presented a new way to describe

occupancy information for ADAS functions. We showed,
how posterior occupancy probabilities can be represented
in interval cells of our 2D Interval Map framework. In the
second part, we combined the 2D Interval Occupancy Map
with a model based object tracking in order to correctly deal
with dynamic objects in the vehicle’s environment.

The presented experimental results show the great poten-
tial of the 2D Interval Map to represent occupancy informa-
tion at low computation times and memory requirements. A
tested collision avoidance function showed similar results for
grid and interval based environment representation.

B. Future Work
A major task in future work is to further analyze the

resulting occupancy information of the 2D Interval Map.
The goal is to systematically compare the obtained results
of an interval and grid based environment representation to
a ground truth. Moreover, the impacts of discretization errors
on ADAS functions in certain scenarios have to be studied.

Considering the memory requirements of the 2D Interval
Occupancy Map, it would be interesting to define an upper
memory limit. In this case, the merge step has to implement
a policy which guarantees that the total number of existing
cells does not exeed a predefined limit.
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