
Modelling Human Gameplay at Pool and

Countering it with an Anthropomorphi
 Robot

Konrad Leibrandt

1,2
, Tamara Lorenz

2,3
, Thomas Nierho�

2
, and Sandra Hir
he

2

1
Hamlyn Centre for Roboti
 Surgery,

Imperial College London, London SW7 2AZ, United Kingdom,

k.leibrandt12�imperial.a
.uk

2
Institute for Information-Oriented Control (ITR),

Te
hnis
he Universität Mün
hen, 80333 Muni
h, Germany,

{t.lorenz,tn,hir
he}�tum.de

3
General and Experimental Psy
hology,

Ludwig-Maximilians University, 80802 Muni
h, Germany

Abstra
t. Intera
tion between roboti
 systems and humans be
omes

in
reasingly important in industry, the private and the publi
 se
tor. A

robot whi
h plays pool against a human opponent involves 
hallenges

most human robot intera
tion s
enarios have in 
ommon: planning in

a hybrid state spa
e, numerous un
ertainties and a human 
ounterpart

with a di�erent visual per
eption system. In most situations it is im-

portant that the robot predi
ts human de
isions to rea
t appropriately.

In the following, an approa
h to model and 
ounter the behavior of hu-

man pool players is des
ribed. The resulting model allows to predi
t

the stroke a human 
hooses to perform as well as the out
ome of that

stroke. This model is 
ombined with a probabilisti
 sear
h algorithm

and implemented to an anthropomorphi
 robot. By means of this ap-

proa
h the robot is able to defeat a player with better manipulation

skills. Furthermore it is outlined how this approa
h 
an be applied to

other non-deterministi
 games or to tasks in a 
ontinuous state spa
e.

1 Introdu
tion

Robots have been utilized for many years in manufa
turing to handle repetitive

tasks fast and pre
isely. Besides in industry, roboti
 systems are emerging in the

private and publi
 se
tor requiring human robot intera
tion (HRI). On a high

level in HRI one is not only 
on
erted of noti
eable human a
tions but also of

underlying intentions [1℄ in the 
ontext of 
ollaborative [2℄, 
ompetitive [3℄ as

well as severe tasks [4℄. Regarding HRI these areas have the following 
hallenges

in 
ommon: (I) a 
ontinuous state spa
e, (II) the ne
essity of being aware of the

human. Con
erning these two 
hallenges 
ompetitive games represent attra
tive

test s
enarios be
ause people en
ounter them in their daily life and furthermore

they represent a 
ontrollable environment as well as a �xed set of rules. Requir-

ing motor performan
e and planning 
apabilities the game of pool is 
hosen as

representative game. Pool has a hybrid state spa
e: the 
on�ned spa
e of the



table presents a 
ontinuous state spa
e whereas the turn-based 
hara
ter of the

game represents a dis
rete one. In 
omputational pool Monte-Carlo sampling ap-

proa
hes prove to be robust, [5, 6℄. In 
ontrast, an optimisation approa
h enables

spe
ta
ular strokes, ball 
lusters are broken or multiple balls are sunk with one

stroke [7, 8℄. A fuzzy-logi
 planner together with a roboti
 system is 
onsidered

in [9℄. However, the behavior of the human and his level of expertise has thus far

not been taken into a

ount. Existing approa
hes use mathemati
al models to

determine the di�
ulty of game situations and 
al
ulate the best stroke without

analyzing the human. But 
onsidering the human 
an improve predi
tion and

planning of the roboti
 system for two reasons: First, a lateral visual perspe
tive

limits the human per
eption whi
h in�uen
es his behavior in 
ontrast to the

bird's eye 
amera perspe
tive of the robot. Se
ond, the 
on
eption and evalua-

tion of the game situation of humans is di�erent to mathemati
al models.

In this paper a new approa
h is presented that enables the robot to assess the

di�
ulty of game situations from a human perspe
tive. The play of the robot

improves by predi
ting the future a
tions of its human opponent. In order to do

so, the robot needs to be aware of its opponent and requires a model of human

pool-playing behavior. Di�erent to all approa
hes introdu
ed above, this paper


on
entrates on understanding and modeling human gameplay. It presents the

steps to develop su
h a model, whose 
ore is: (I) the subje
tive di�
ulty rep-

resenting how di�
ult humans per
eive a game situation and (II) the obje
tive

di�
ulty whi
h is de�ned as the probability of sinking a ball.

The remainder of this paper is organized as follows: Se
. 2 des
ribes the ex-

perimental setup and the important methods and parameters. In Se
. 3 four

experiments are presented with the goal of identifying and 
orrelating subje
tive

and obje
tive di�
ulty. Finally, in Se
. 4 the results are dis
ussed in 
ontext of

their appli
ation and their transferability to other HRI tasks.

2 Setup, Methods and Parameters

Stroke Parameters in Pool Pool strokes 
an be des
ribed by �ve parame-

ters: displa
ements a,b; slope γ; dire
tion ϑ and stroke impulse p (see Fig. 1).

For simpli
ity a, b=0 and γ=π
2 are 
hosen. The dire
tion of the 
ue ball sinking

an obje
t ball 
entrally in the po
ket is 
alled ϑ0 in the following. A detailed

des
ription of pool physi
s 
an be found in [10, 11℄ and is not in
lude here.

Methods to Measure the Stroke Di�
ulty To gauge the 
omponent quan-

tifying the stroke di�
ulty, respe
tive methods from literature are 
onsidered.

In 
ontrast to the presented method, the following approa
hes fo
us on a math-

emati
al optimal stroke and do not in
lude human preferen
es. In method (I),

a lookup table (LUT) is used to link multiple paradigm game situations with

su

ess rates, see [5℄. Method II is des
ribed by three 
hara
teristi
 parameters:

d1/ d2: the distan
es the 
ue ball/ obje
t has to travel and Θ: the 
utting angle

between d1 and d2, see Fig. 2a. These three parameters are 
ombined in

κLit
−1 = κc =

cosΘ

d1 d2
, (1)



to 
al
ulate a stroke di�
ulty measurement [8℄. Method III is based on the al-

lowed angular deviation (AAD) whi
h is the maximal angle deviation from ϑ0

for a su

essful stroke [12℄. Following this, the 
umulated allowed angular devi-

ation (∆CAAD) is de�ned as the sum of left and right AAD, see Fig. 2b. Sin
e

method I and III have a similar approa
h of using the required pre
ision as a

di�
ulty measure, method III is not dependent on a simulator or the introdu
-

tion of noise. Thus method II and III are 
hosen to ben
hmark the new human

di�
ulty quanti�
ation model (DQM) introdu
ed in this paper, see Se
. 3.2.
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Pool Setup: Visual System, Pool Table, Robot For the three experiments

performed in a real world environment, a pool table with standard 8-ball di-

mensions (2.24m×1.12m) was used. A proje
tor, lo
ated approximately 2.5m

above the table, is used to proje
t game situations on the table. Parallel to the

proje
tor there is a 
amera, with a resolution of 1280×960 pixel.The image pro-


essing algorithm: (I) lo
ates the pool balls on the table and (II) determines

their 
olor, both with a rate of 30Hz. How ball 
olor and position is extra
ted

from the video is des
ribed in [12℄. The anthropomorphi
 robot 
onsists of an

omni-dire
tional platform and two seven DOF manipulators with two spe
ial

end-e�e
tors to perform strokes properly, see [10℄.

Probabilisti
 Sear
h Algorithm To 
al
ulate the stroke parameters for the

robot the probabilisti
 sear
h algorithm des
ribed in [10℄ is applied with the fol-

lowing adjustments: (I) optimization is extended to both the ϑ- and p-parameter;

(II) a new variable ta
ti
 is introdu
ed whi
h depends on the game situation:

if the robot leads, ta
ti
 is set to "o�ensive", while if the robot is behind it is

set to "defensive"; (III) a 
lustering step is introdu
ed after the simulation in

order to redu
e the sear
h spa
e. For a detailed des
ription and espe
ially for a

des
ription of the evaluation pro
ess, see [10℄.

3 Human Di�
ulty Quanti�
ation Model (HDQM)

In the following, four experiments are des
ribed whi
h: (I) identify the important

parameters humans in
lude into their de
ision pro
ess; (II) identify the de
isive-



ness of the important parameters and determine an equation for the human

per
eived di�
ulty (subje
tive di�
ulty); (III) examination of the 
orrelation

between the subje
tive di�
ulty and the probability for humans to sink a ball

(obje
tive di�
ulty) and (IV) 
omparison of the 
ompetitiveness of the robot

using (a) the HDQM integrated into a probabilisti
 sear
h algorithm and (b)

performing the easiest stroke a

ording to the ∆CAAD-method.

3.1 Exp. 1: Fa
tors In�uen
ing Subje
tive Di�
ulty

A

ording to experts, [13℄: Θ, d1, d2 are the three parameters to determine the

di�
ulty of a game situation, see Fig. 2a. Sin
e this assumption is not veri�ed

by experiments yet, an experiment on a real world pool table is performed.

Parti
ipants In total 25 people (15 male, age: 21-31 years, M = 25) parti
i-

pated in the experiment.

Setup and Pro
edure For the experiment 24 s
enarios are designed. For ea
h

s
enario two playable obje
t balls are pla
ed on the pool table. Cir
les are pro-

je
ted on the 
loth to position the balls pre
isely and to 
reate 
omparable game

situations for all parti
ipants. The 
amera is used to prove 
orre
t positioning. In

the �rst 18 s
enarios one of the parameters: Θ, d1, d2 and ∆CAAD are kept 
on-

stant for both obje
t balls. In the remaining six s
enarios one of the two obje
t

balls is easier to play a

ording to its ∆CAAD-value but simultaneously either

more di�
ult to rea
h or partially blo
ked by an obsta
le ball. For ea
h s
enario

parti
ipants are asked to freely state the easier ball to sink (descision δexp) and
the reasons of their de
isions. Every parti
ipant judges ea
h s
enario on
e. For

data analysis all answers are re
orded and equal de
ision fa
tors were a

umu-

lated. Note that sometimes more than one reason is mentioned for 
hoosing one

s
enario whi
h indi
ates that the reasons might be inter
onne
ted.

Results and Dis
ussion Results of the �rst 18 s
enarios show that the reason

for de
iding whi
h is the easier ball to sink is most often a small 
utting angle

Θ (264 times). Also important for the de
ision appear to be the distan
es d1
(31 times) and d2 (75 times). Other fa
tors are mentioned fewer times and not


onsistent over parti
ipants and are therefore not 
onsidered for further analysis.

Thus, in line with the literature (see [13℄), the three parameters Θ, d2 and d1
are -in this order- most 
ru
ial. Regarding the remaining six s
enarios in 70%

of the 
ases the ball with the higher ∆CAAD is 
hosen when the obje
t ball is

di�
ult to rea
h, while when there is an obsta
le ball, in 60% of 
ases the easier

ball is 
hosen. Therefore it 
an be assumed that the ∆CAAD has a higher impa
t

on players' de
isions than the disturban
e by a obsta
le. For that reason, both

disturban
e fa
tors will not be 
onsidered in the following any more.

3.2 Exp. 2: De
isiveness of Parameters

In a se
ond experiment the de
isiveness of ea
h of the 
ru
ial parameters is de-

termined to �nd an algebrai
 des
ription.

Parti
ipants In total 23 people (13 male, age: 18-51 years, M = 25) parti
i-

pated in this experiment.



Setup and Pro
edure For the experiment, twelve images of pool s
enarios,

depi
ting one 
ue ball and one obje
t ball are 
reated. The s
enarios are 
hosen

de�ning six κLit-levels. For ea
h level two parameter 
ombinations are sele
ted:

(I) low Θ and high distan
e (d1, d2) values, (II) high Θ and low distan
e (d1, d2)
values. To 
ompare every image with every other, six sets of six images are shown

to ea
h parti
ipant, whereas the images per set are varied systemati
ally. To get

an overall ranking the six set-ranking are broken down to multiple pairwise 
om-

parisons and then subsequently 
ombined to one overall ranking.

Results and Dis
ussion For statisti
al analysis a Friedmann ANOVA is per-

formed whi
h reveals a signi�
ant main e�e
t between ranks, χs
F (11) = 206.31,

p < 0.001. Additionally, the rankings are used to 
al
ulate a 25% trimmed mean,

ρ̄25% (interquartile mean), representing an average rank for ea
h s
enario. These

ρ̄25% are sorted a

ording to their value resulting in an overall ranking Rexp. In

summary, an order of di�
ulty (Rexp) and an average rank (ρ̄25%) are obtained to

as
ertain an equation des
ribing the subje
tive di�
ulty in the following se
tion,

see Fig. 3.

3.3 Equation of Human Subje
tive Di�
ulty

The results of Exp. 1 and Exp. 2 are used in a double stage optimization pro
ess

to determine an equation for human subje
tive di�
ulty. Results are: (I) the

de
ision (δexp(m), m = 1 . . . 18) a

ording to Exp. 1, (II) the overall ranking

(Rexp(n), n = 1 . . . 12) and (III) the average ranking (ρ̄25%(n), n = 1 . . . 12)
both taken from Exp. 2. To �nd the most appropriate algebrai
 des
ription,

three template fun
tions are used. The template fun
tions are:

κI = a1d
c1(d1)
1 + a2d

c2(d2)
2 + a3 cos (Θ)

c3(Θ)
, (2)

κII = κLit + a1d
c1(d1)
1 + a2d

c2(d2)
2 + a3 cos (Θ)

c3(Θ)
, (3)

κIII =
d
c1(d1)
1 d

c2(d2)
2

cos (Θ)
c3(Θ)

. (4)

Equation (2) is linear and (3), (4) are derived from (1), introdu
ed in [8℄. The

exponents c1, c2 and c3 (c = {c1, c2, c3}) are 
hosen as polynomials of degree one.

The fa
tors a1, a2 and a3 (a = {a1, a2, a3}) are 
hosen as 
oe�
ients. These tem-

plate fun
tions are then �tted to the experimental data using two 
ost-fun
tions

and the Nelder-Mead algorithm. The underlying approa
h of the 
ost-fun
tions

is the least-square-method. Applying the di�
ulty equations (2-4) to the s
e-

nario parameters (Θ, d1, d2) from Exp. 1 and Exp. 2, the rankings Req(a, c),
κ̂eq(a, c) and de
isions δeq(a, c) are obtained. The two 
ost fun
tions

ΓI =

12
∑

n=1

[Req(n, a, c)− Rexp(n)]
2 +

18
∑

m=1

[δdiff(m, a, c)]2, (5)

where δdiff(m, a, c) =

{

2, if δeq(m, a, c) 6= δexp(m)
0, else



and ΓII =

12
∑

n=1

[ρ̂25%(n)− κ̂eq(n, a, c)]
2, (6)


ompare the three experimental results with the rankings and the de
ision using

one of the di�
ulty equations (2-4). The summation is done over all s
enarios in

Exp. 1: 18 and Exp. 2: 12. In order to 
ompare the average ranking (ρ̄25%) with
the equation value (κeq), it is ne
essary to normalize the values (using L1

-norm)

whi
h result in ρ̂25% and κ̂eq in (6). The optimization task

min

a,c
(ΓI), (7)

minimizes the value of (5) and ensures that (2-4) best mat
h the rankings and

de
isions of the parti
ipants. However, equation (5) 
ompares the numeri
al

values of Req and Rexp as well as the de
isions δeq and δexp. Sin
e rankings and

de
isions in (5) are dis
rete, parameter intervals for optimal solutions using (7)

are found. Hen
e a se
ond optimization step

min

a,c
(ΓII), (8)

using 
ost fun
tion (6) is performed mat
hing 
ontinuous numeri
al values of the

rankings (ρ̂25%, κ̂eq). In (8), only those a- and c-intervals are 
onsidered whi
h

are obtained from (7). The result of (8) are an optimal �tted equation κI, κII

or κIII (2-a4). Preliminary optimization results show: c1, c2 
an be 
hosen as


onstants and c3 has to be linear. Final results, show that κIII (4) leads to the

best approximation, due to its lowest ΓI (5)- and ΓII-value (6), see Table 1t.

Table 1. Best parameters of κ-fun
tions obtained from double stage optimization

EQ. a1 a2 a3 c1 c2 c3 ΓI ΓII

κI (2) -0.5 1.3 -4.9 -1.08 4.64 0.2+2.2Θ 24 6E-2

κII (3) 0.8 -1.4 -4.9 1.94 -0.75 2.8+1.9Θ 12 8E-2

κIII (4) � � � 0.33 0.38 4.1-2.7Θ 8 2E-3

The subje
tive di�
ulty is therefore de�ned as

κExp =
cos(Θ)4.1−2.7Θ

d0.331 d0.382

,Θ ∈ [0, 90 ◦] . (9)

In line with the impressions from Exp. 1, in (9) the 
utting angle of a pool situ-

ation is more de
isive than the two travel distan
es, due to the larger exponent.

Note regarding (9): Sin
e the exponent of the cos-term is: (I) smaller than the

exponent of d2-term for Θ > 79 ◦
and (II) negative for Θ > 87 ◦

, (9) is valid for

Θ ∈ [0 ◦, 79 ◦]. In Fig. 3, the subje
tive di�
ulty κExp is 
ompared with the av-

erage ranking of Exp. 2 and with the DQM κLit (1) and ∆CAAD (Fig. 2b), whi
h

are used in 
omputational and roboti
 pool. In all s
enarios, ex
ept number 8,

the di�
ulty per
eption of parti
ipants is des
ribed best by κExp (9), see Fig. 3.

Sin
e it is not guaranteed that a player is able to 
orre
tly assess the di�
ulty

of a stroke, a method representing the obje
tive di�
ulty is ne
essary.



3.4 Exp. 3: Human Obje
tive Di�
ulty

The obje
tive di�
ulty of strokes is examined by an experiment in whi
h pool

players of similar experien
e played real pool games against ea
h other.

Parti
ipants Two experien
ed parti
ipants (P1 and P2) who play a few times

a week and two amateur parti
ipants (P3 and P4) who play a few times a year

took part in the experiment.

Setup and Pro
edure The parti
ipants are asked to play multiple 8-ball games

against ea
h other, to avoid bank-shots and ki
k-shots and to hit the 
ue ball


entrally. Ea
h parti
ipant performs 210-270 strokes. The setup des
ribed in

Se
. 2 is used to determine the traje
tories of all balls and strokes.

Data Analysis For ea
h performed stroke the parameters Θ, d1, d2 are de-

termined and ∆CAAD, κExp (9), κLit (1) are 
al
ulated. The resulting di�
ulty

values (∆CAAD, κExp, κLit) of ea
h player are divided into eleven intervals 
hosen

to represent approximately a 
onstant amount of values. A stroke su

ess rate

(obje
tive di�
ulty) for ea
h interval is 
al
ulated and 
orrelation between the

three DQM and the obje
tive di�
ulty is obtained.

Results and Dis
ussion The resulting 
orrelation 
oe�
ients, depi
ted in Ta-

ble 2, show the degree of linearity between the obje
tive di�
ulty and ea
h

DQM, see also Fig. 4. The 
orrelation 
oe�
ients between obje
tive di�
ulty

and ∆CAAD or κLit are lower in 
omparison to the 
oe�
ients between obje
tive

di�
ulty and κExp.
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Regarding κExp (9) a high 
orrelation 
oe�
ient and a nearly monotoni
 be-

havior makes it possible to approximate the 
orrelation with a linear relationship

as depi
ted in Fig. 4. However it is ne
essary to determine an approximation for

every human opponent due to di�erent skill levels. Nevertheless these results

show that it is possible to transform the subje
tive di�
ulty into an obje
tive

di�
ulty using a linear approximation. Additionally the obje
tive di�
ulty 
an

be 
onsidered as sinking probability and hen
e 
an be used in an probabilisti


best shot sear
h algorithm.

3.5 Human De
isions, Abilities to Plan Ahead

To predi
t the stroke a human will perform, the subje
tive and obje
tive di�
ulty

of a given situation are not su�
ient. In addition, a method to a
knowledge the



planning 
apabilities is required. Humans make their 
hoi
e a

ording to the

di�
ulty of a stroke, but espe
ially experien
ed players plan ahead and 
onsider

future game situations. To 
ounter human gameplay, predi
ting the opponent's

next stroke or at least narrowing the 
hoi
es to few strokes is advantageous. The

goal is therefore to in
rease the rate of 
orre
t predi
tion (CPR) and to examine

the di�eren
e in planning between experts and novi
es. Thus, all possible strokes

in a given game situation are simulated and the di�
ulty value of the 
urrent

stroke κExp,0 (9) is 
ombined with the di�
ulty value of the easiest stroke of

the simulated game situation κExp,1, using a dis
ounted �nite-horizon return

fun
tion [14℄. To 
ombine these values,

κtotal
n =

n
∑

i=0

δi κExp,i , (10)

is used where, δ represents the importan
e of future situations. It is assumed

that (I) the 
urrent game situation is most important for a pool player and that

(II) an easy game situation is preferred. Hen
e: δ ∈ [0, 1]. The n-parameter in

(10) represents the amount of simulations into the future and is set to n = 1.
κtotal
n (10) 
al
ulated for ea
h 
urrently possible stroke is used to determine

the human's most probable next stroke. After playing, the performed stroke

is 
ompared with the predi
ted stroke to obtain the rate of 
orre
t predi
tion

(CPR). CPR is also evaluated based on the two other presented DQMs (∆CAAD

and κLit) as shown in Table 3. Here, only the de
isions of amateur player three

Table 2. Correlation 
oe�
ients between

obje
tive di�
ulty and three DQMs

Player Strokes

Correlation Coe�
ient

∆CAAD κLit κExp

One 216 0.37 0.21 0.79

Two 182 0.52 0.42 0.75

Three 164 0.47 0.59 0.85

Four 152 0.33 0.29 0.77

Table 3.Rates of 
orre
t predi
tions using

di�erent DQM (max|mean value of CPR)

Player

Rate of Corre
t Predi
tion (%)
∆CAAD κLit κExp

One 71.6|70.8 69.6|69.0 74.9|73.1
Two 74.1|70.6 70.3|68.6 74.3|70.7
Three 70.6|70.1 68.0|66.5 69.7|68.0
Four 67.2|66.4 69.0|67.7 71.7|69.3

are better des
ribed by the ∆CAAD method. It shows that the new developed

equation κExp (9) predi
ts the human de
ision better than ∆CAAD and κLit

(1), while κLit has in general the lowest CPR. Fig. 5 shows that simulations


an in
rease the CPR. The CPR of the experien
ed player has its maximum at

δ ≈ 0.5, whi
h means the player 
onsiders the a
tual situation twi
e as important

as the future situation. In 
omparison, results of the amateur player show a �at,


onvex CPR fun
tion, thus 
onsidering future strokes result in a loss of a

ura
y

of the predi
tion. These results 
oin
ide with the amateurs' statement, only to


onsider the 
urrent game situation. Summarizing, amateurs - in 
ontrast to

experts - do not plan ahead.
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3.6 Exp. 4: Robot Applying Human Pool Model

In Exp. 4 a robot has to play thirteen 8-ball pool games against a human (Fig. 6),

to gauge the 
ompetitiveness of the HDQM integrated into the above des
ribed

probabilisti
 sear
h algorithm, [10℄. The setup is as des
ribed in Se
. 2. Two

strategies for 
hoosing the roboti
 stroke are evaluated: (I) human adapted sear
h

algorithm strategy (HAS) using the previously des
ribed HDQM and probabilis-

ti
 sear
h algorithm and (II) easiest shot strategy (ES) a

ording to the ∆CAAD.

The robot plays seven games using the ES strategy and six games using the HAS

strategy.

Parti
ipant One player (male, age: 24), manipulation skills: σp : 0.01Ns, σϑ :
0.007 rad. The parti
ipant is not spe
i�
ally instru
ted.

Robot Behavior For the experiment the same robot as des
ribed in Se
. 2 is

used (σp : 0.03Ns, σϑ : 0.012 rad), whi
h has a restri
ted workspa
e. In situations
in whi
h the 
ue ball is unplayable for the robot, it is moved towards or away

from the 
ushion. The HDQM is used within the sear
h algorithm whenever

it is the human's turn. Furthermore the simulator and the evaluation fun
tion


onsider the pool skills of the human opponent (δ = 0.5) su
h as the pre
ision of

performing a stroke. The algorithm has a sear
h depth of two, meaning it plans

two strokes ahead.

Evaluation Sin
e the number of games is limited the evaluation is based on the

strokes' su

ess rate. Using the same robot with both strategies the su

ess rates

represents how good the respe
tive strategy prepares future strokes.

Results and Dis
ussion In games using the HAS strategy, the robot sinks

51% of 67 strokes. In 
omparison using the ES strategy the robot sinks 28% of

89 strokes. The evaluation shows that the robot plays signi�
antly (two-sample

t-test, p=0.0037) better when using the HAS. In addition, the robot adapting to

the introdu
ed human pool model while using a probabilisti
 sear
h algorithm


an beat a player of better-than-beginner level.

4 General Dis
ussion and Con
lusion

This work presents a human pool player model whi
h determines the subje
tive

and obje
tive di�
ulty of game s
enarios from a human perspe
tive. Although

Smith [15℄ states that it is not possible to 
onsider the opponent's move, the pre-

sented approa
h is 
apable of narrowing the amount of resulting situations after



a human stroke. Integrated in a probabilisti
 sear
h algorithm it enables a robot

to predi
t human 
hoi
es of pool strokes and to approximate their out
ome. Al-

though the 
ontribution of the HDQM in the HAS is not examined expli
itly it is

shown that the 
omplete algorithm improves pool playing abilities of a robot by

improving its own stroke preparation and by 
reating more di�
ult situations for

the opponent. Furthermore, model and algorithm, are not developed for spe
i�


pool rules and 
an therefore easily be transformed to play other pool variants.

Varying the parameters in the presented HDQM would 
hange the game behav-

ior and 
ompetitiveness of the robot and hen
e allow the building of a training

environment. The method of determining between subje
tive and obje
tive dif-

�
ulty 
an be applied to other non-deterministi
 games (e.g. 
arrom, bowls) in

whi
h the human behavior should be 
onsidered. Furthermore, the approa
h is

transferable to non game related areas. For instan
e the di�
ulty of rea
hing

obje
ts (e.g. a 
up) in a given situation might be assessable by using geometri


parameters su
h as distan
es and orientations (e.g. handle orientation) and thus

a robot 
ould predi
t and prevent di�
ult to rea
h obje
ts.
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