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Abstract. Interaction between robotic systems and humans becomes
increasingly important in industry, the private and the public sector. A
robot which plays pool against a human opponent involves challenges
most human robot interaction scenarios have in common: planning in
a hybrid state space, numerous uncertainties and a human counterpart
with a different visual perception system. In most situations it is im-
portant that the robot predicts human decisions to react appropriately.
In the following, an approach to model and counter the behavior of hu-
man pool players is described. The resulting model allows to predict
the stroke a human chooses to perform as well as the outcome of that
stroke. This model is combined with a probabilistic search algorithm
and implemented to an anthropomorphic robot. By means of this ap-
proach the robot is able to defeat a player with better manipulation
skills. Furthermore it is outlined how this approach can be applied to
other non-deterministic games or to tasks in a continuous state space.

1 Introduction

Robots have been utilized for many years in manufacturing to handle repetitive
tasks fast and precisely. Besides in industry, robotic systems are emerging in the
private and public sector requiring human robot interaction (HRI). On a high
level in HRI one is not only concerted of noticeable human actions but also of
underlying intentions [1] in the context of collaborative [2], competitive [3] as
well as severe tasks [4]. Regarding HRI these areas have the following challenges
in common: (I) a continuous state space, (II) the necessity of being aware of the
human. Concerning these two challenges competitive games represent attractive
test scenarios because people encounter them in their daily life and furthermore
they represent a controllable environment as well as a fixed set of rules. Requir-
ing motor performance and planning capabilities the game of pool is chosen as
representative game. Pool has a hybrid state space: the confined space of the



table presents a continuous state space whereas the turn-based character of the
game represents a discrete one. In computational pool Monte-Carlo sampling ap-
proaches prove to be robust, [5, 6]. In contrast, an optimisation approach enables
spectacular strokes, ball clusters are broken or multiple balls are sunk with one
stroke [7,8]. A fuzzy-logic planner together with a robotic system is considered
in [9]. However, the behavior of the human and his level of expertise has thus far
not been taken into account. Existing approaches use mathematical models to
determine the difficulty of game situations and calculate the best stroke without
analyzing the human. But considering the human can improve prediction and
planning of the robotic system for two reasons: First, a lateral visual perspective
limits the human perception which influences his behavior in contrast to the
bird’s eye camera perspective of the robot. Second, the conception and evalua-
tion of the game situation of humans is different to mathematical models.

In this paper a new approach is presented that enables the robot to assess the
difficulty of game situations from a human perspective. The play of the robot
improves by predicting the future actions of its human opponent. In order to do
so, the robot needs to be aware of its opponent and requires a model of human
pool-playing behavior. Different to all approaches introduced above, this paper
concentrates on understanding and modeling human gameplay. It presents the
steps to develop such a model, whose core is: (I) the subjective difficulty rep-
resenting how difficult humans perceive a game situation and (II) the objective
difficulty which is defined as the probability of sinking a ball.

The remainder of this paper is organized as follows: Sec. 2 describes the ex-
perimental setup and the important methods and parameters. In Sec. 3 four
experiments are presented with the goal of identifying and correlating subjective
and objective difficulty. Finally, in Sec. 4 the results are discussed in context of
their application and their transferability to other HRI tasks.

2 Setup, Methods and Parameters

Stroke Parameters in Pool Pool strokes can be described by five parame-
ters: displacements a,b; slope «; direction ¥ and stroke impulse p (see Fig. 1).
For simplicity a, b=0 and v=7 are chosen. The direction of the cue ball sinking
an object ball centrally in the pocket is called ¥y in the following. A detailed
description of pool physics can be found in [10,11] and is not include here.
Methods to Measure the Stroke Difficulty To gauge the component quan-
tifying the stroke difficulty, respective methods from literature are considered.
In contrast to the presented method, the following approaches focus on a math-
ematical optimal stroke and do not include human preferences. In method (I),
a lookup table (LUT) is used to link multiple paradigm game situations with
success rates, see [5]. Method II is described by three characteristic parameters:
di/ da: the distances the cue ball/ object has to travel and ©: the cutting angle
between d; and dg, see Fig. 2a. These three parameters are combined in

1 cos ©
RLit ~ = Re = 77—
di dy

(1)



to calculate a stroke difficulty measurement [8]. Method III is based on the al-
lowed angular deviation (AAD) which is the maximal angle deviation from ¥
for a successful stroke [12]. Following this, the cumulated allowed angular devi-
ation (Acaap) is defined as the sum of left and right AAD, see Fig. 2b. Since
method I and III have a similar approach of using the required precision as a
difficulty measure, method III is not dependent on a simulator or the introduc-
tion of noise. Thus method II and III are chosen to benchmark the new human
difficulty quantification model (DQM) introduced in this paper, see Sec. 3.2.

Fig. 1. CC: cue ball center; a, b: displacements of ~ Fig. 2. Parametric description of
the contact point between cue ball and cue tip  difficulty methods. a) Geometric
to the cue ball center; v: slope between cue stick  parameters. b) Cumulated AAD
and pool table normal; 9: direction of the cue  (Acaap).

ball; p: impulse magnitude of the stroke

Pool Setup: Visual System, Pool Table, Robot For the three experiments
performed in a real world environment, a pool table with standard 8-ball di-
mensions (2.24mx1.12m) was used. A projector, located approximately 2.5 m
above the table, is used to project game situations on the table. Parallel to the
projector there is a camera, with a resolution of 1280x960 pixel. The image pro-
cessing algorithm: (I) locates the pool balls on the table and (II) determines
their color, both with a rate of 30 Hz. How ball color and position is extracted
from the video is described in [12]. The anthropomorphic robot consists of an
omni-directional platform and two seven DOF manipulators with two special
end-effectors to perform strokes properly, see [10].

Probabilistic Search Algorithm To calculate the stroke parameters for the
robot the probabilistic search algorithm described in [10] is applied with the fol-
lowing adjustments: (I) optimization is extended to both the J- and p-parameter;
(IT) a new variable tactic is introduced which depends on the game situation:
if the robot leads, tactic is set to "offensive", while if the robot is behind it is
set to "defensive"; (III) a clustering step is introduced after the simulation in
order to reduce the search space. For a detailed description and especially for a
description of the evaluation process, see [10].

3 Human Difficulty Quantification Model (HDQM)

In the following, four experiments are described which: (I) identify the important
parameters humans include into their decision process; (II) identify the decisive-



ness of the important parameters and determine an equation for the human
perceived difficulty (subjective difficulty); (II1) examination of the correlation
between the subjective difficulty and the probability for humans to sink a ball
(objective difficulty) and (IV) comparison of the competitiveness of the robot
using (a) the HDQM integrated into a probabilistic search algorithm and (b)
performing the easiest stroke according to the Acaap-method.

3.1 Exp. 1: Factors Influencing Subjective Difficulty

According to experts, [13]: ©, di, do are the three parameters to determine the
difficulty of a game situation, see Fig. 2a. Since this assumption is not verified
by experiments yet, an experiment on a real world pool table is performed.
Participants In total 25 people (15 male, age: 21-31 years, M = 25) partici-
pated in the experiment.

Setup and Procedure For the experiment 24 scenarios are designed. For each
scenario two playable object balls are placed on the pool table. Circles are pro-
jected on the cloth to position the balls precisely and to create comparable game
situations for all participants. The camera is used to prove correct positioning. In
the first 18 scenarios one of the parameters: ©, d;, do and Acaap are kept con-
stant for both object balls. In the remaining six scenarios one of the two object
balls is easier to play according to its Acaap-value but simultaneously either
more difficult to reach or partially blocked by an obstacle ball. For each scenario
participants are asked to freely state the easier ball to sink (descision dexp) and
the reasons of their decisions. Every participant judges each scenario once. For
data analysis all answers are recorded and equal decision factors were accumu-
lated. Note that sometimes more than one reason is mentioned for choosing one
scenario which indicates that the reasons might be interconnected.

Results and Discussion Results of the first 18 scenarios show that the reason
for deciding which is the easier ball to sink is most often a small cutting angle
© (264 times). Also important for the decision appear to be the distances dy
(31 times) and dy (75 times). Other factors are mentioned fewer times and not
consistent over participants and are therefore not considered for further analysis.
Thus, in line with the literature (see [13]), the three parameters ©, ds and d;
are -in this order- most crucial. Regarding the remaining six scenarios in 70%
of the cases the ball with the higher Acaap is chosen when the object ball is
difficult to reach, while when there is an obstacle ball, in 60% of cases the easier
ball is chosen. Therefore it can be assumed that the Acaap has a higher impact
on players’ decisions than the disturbance by a obstacle. For that reason, both
disturbance factors will not be considered in the following any more.

3.2 Exp. 2: Decisiveness of Parameters

In a second experiment the decisiveness of each of the crucial parameters is de-
termined to find an algebraic description.

Participants In total 23 people (13 male, age: 18-51 years, M = 25) partici-
pated in this experiment.



Setup and Procedure For the experiment, twelve images of pool scenarios,
depicting one cue ball and one object ball are created. The scenarios are chosen
defining six kpii-levels. For each level two parameter combinations are selected:
(I) low © and high distance (d;, d2) values, (IT) high © and low distance (d;, d2)
values. To compare every image with every other, six sets of six images are shown
to each participant, whereas the images per set are varied systematically. To get
an overall ranking the six set-ranking are broken down to multiple pairwise com-
parisons and then subsequently combined to one overall ranking.

Results and Discussion For statistical analysis a Friedmann ANOVA is per-
formed which reveals a significant main effect between ranks, x%(11) = 206.31,
p < 0.001. Additionally, the rankings are used to calculate a 25% trimmed mean,
Pasy (interquartile mean), representing an average rank for each scenario. These
pasy are sorted according to their value resulting in an overall ranking Rexp. In
summary, an order of difficulty (Rexp) and an average rank (pas9,) are obtained to
ascertain an equation describing the subjective difficulty in the following section,
see Fig. 3.

3.3 Equation of Human Subjective Difficulty

The results of Exp. 1 and Exp. 2 are used in a double stage optimization process
to determine an equation for human subjective difficulty. Results are: (I) the
decision (Jexp(m), m = 1...18) according to Exp. 1, (II) the overall ranking
(Rexp(n), n = 1...12) and (III) the average ranking (pas%(n), n = 1...12)
both taken from Exp. 2. To find the most appropriate algebraic description,
three template functions are used. The template functions are:

Kp = aldil(dl) + agd?(dz) + a3 cos (9)03(9) , (2)
KT = KLit + aldil(dl) + agd?(dz) + a3 cos (9)03(9) ) (3)
dcl (d1) dcz(dz)
L @)
cos ()7

Equation (2) is linear and (3), (4) are derived from (1), introduced in [8]. The
exponents c1, ¢2 and ¢s (¢ = {c1, ¢2, c3}) are chosen as polynomials of degree one.
The factors a1, as and a3 (a = {a1, as, as}) are chosen as coefficients. These tem-
plate functions are then fitted to the experimental data using two cost-functions
and the Nelder-Mead algorithm. The underlying approach of the cost-functions
is the least-square-method. Applying the difficulty equations (2-4) to the sce-
nario parameters (O, di, d2) from Exp. 1 and Exp. 2, the rankings Req(a, ¢),
Req(a,c) and decisions deq(a, ¢) are obtained. The two cost functions

12 18
Tt =Y [Req(n,a,¢) = Rexp(n)]* + Y [Basse(m, a, )], (5)
n=1 m=1
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where daig(m,a,c) = {0 else
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and Ty = 3" [fossn (n) — Feqln. 0, 0%, (6)
n=1
compare the three experimental results with the rankings and the decision using
one of the difficulty equations (2-4). The summation is done over all scenarios in
Exp. 1: 18 and Exp. 2: 12. In order to compare the average ranking (pa59) with
the equation value (keq), it is necessary to normalize the values (using L'-norm)
which result in 75, and Aeq in (6). The optimization task
min(Ty), (7)
a,c
minimizes the value of (5) and ensures that (2-4) best match the rankings and
decisions of the participants. However, equation (5) compares the numerical
values of Req and Rexp as well as the decisions deq and dexp. Since rankings and
decisions in (5) are discrete, parameter intervals for optimal solutions using (7)
are found. Hence a second optimization step

Ilgilfgrl(FII), (8)

using cost function (6) is performed matching continuous numerical values of the
rankings (Pgso, Feq). In (8), only those a- and c-intervals are considered which
are obtained from (7). The result of (8) are an optimal fitted equation ki, ki1
or ki1 (2-a4). Preliminary optimization results show: ¢1, ¢o can be chosen as
constants and c3 has to be linear. Final results, show that i1 (4) leads to the
best approximation, due to its lowest I't (5)- and I'-value (6), see Table 1t.

Table 1. Best parameters of x-functions obtained from double stage optimization

EQ ail az as C1 C2 C3 FI FII
k1 (2) |-0.5| 1.3 |-49|-1.08| 4.64 | 0.2+2.260 | 24 | 6:-2
rrr (3) | 0.8 | -1.4|-4.9 | 1.94 | -0.75 | 2.8+1.960 | 12 | 8s-2
kir (4) | - - - 1033|038 | 412760 | 8 | 2e3

The subjective difficulty is therefore defined as

41-276

KExp = %,@ €[0,90°). (9)
1 2

In line with the impressions from Exp. 1, in (9) the cutting angle of a pool situ-
ation is more decisive than the two travel distances, due to the larger exponent.
Note regarding (9): Since the exponent of the cos-term is: (I) smaller than the
exponent of da-term for © > 79° and (II) negative for © > 87°, (9) is valid for
O € [0°, 79°]. In Fig. 3, the subjective difficulty Krxp is compared with the av-
erage ranking of Exp. 2 and with the DQM kr;; (1) and Acaap (Fig. 2b), which
are used in computational and robotic pool. In all scenarios, except number 8,
the difficulty perception of participants is described best by kgxp (9), see Fig. 3.
Since it is not guaranteed that a player is able to correctly assess the difficulty
of a stroke, a method representing the objective difficulty is necessary.



3.4 Exp. 3: Human Objective Difficulty

The objective difficulty of strokes is examined by an experiment in which pool
players of similar experience played real pool games against each other.
Participants Two experienced participants (P1 and P2) who play a few times
a week and two amateur participants (P3 and P4) who play a few times a year
took part in the experiment.

Setup and Procedure The participants are asked to play multiple 8-ball games
against each other, to avoid bank-shots and kick-shots and to hit the cue ball
centrally. Each participant performs 210-270 strokes. The setup described in
Sec. 2 is used to determine the trajectories of all balls and strokes.

Data Analysis For each performed stroke the parameters ©, d;, ds are de-
termined and Acaap, Kexp (9), Krit (1) are calculated. The resulting difficulty
values (AcaAD, KExp, KLit) Of each player are divided into eleven intervals chosen
to represent approximately a constant amount of values. A stroke success rate
(objective difficulty) for each interval is calculated and correlation between the
three DQM and the objective difficulty is obtained.

Results and Discussion The resulting correlation coefficients, depicted in Ta-
ble 2, show the degree of linearity between the objective difficulty and each
DQM, see also Fig. 4. The correlation coefficients between objective difficulty
and Acaap or kit are lower in comparison to the coefficients between objective
difficulty and Kgxp.
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Fig. 3. Comparison of scenario difficulties Fig. 4. Player P1: Correlation between ob-
according to experiment and DQM. jective stroke difficulty, and DQM.

Regarding rexp (9) a high correlation coefficient and a nearly monotonic be-
havior makes it possible to approximate the correlation with a linear relationship
as depicted in Fig. 4. However it is necessary to determine an approximation for
every human opponent due to different skill levels. Nevertheless these results
show that it is possible to transform the subjective difficulty into an objective
difficulty using a linear approximation. Additionally the objective difficulty can
be considered as sinking probability and hence can be used in an probabilistic
best shot search algorithm.

3.5 Human Decisions, Abilities to Plan Ahead

To predict the stroke a human will perform, the subjective and objective difficulty
of a given situation are not sufficient. In addition, a method to acknowledge the



planning capabilities is required. Humans make their choice according to the
difficulty of a stroke, but especially experienced players plan ahead and consider
future game situations. To counter human gameplay, predicting the opponent’s
next stroke or at least narrowing the choices to few strokes is advantageous. The
goal is therefore to increase the rate of correct prediction (CPg) and to examine
the difference in planning between experts and novices. Thus, all possible strokes
in a given game situation are simulated and the difficulty value of the current
stroke Kpxp,o (9) is combined with the difficulty value of the easiest stroke of
the simulated game situation kgxp,1, using a discounted finite-horizon return
function [14]. To combine these values,

n
total __ )
Ry - § 0 RExp,i » (10)
i=0

is used where, 0 represents the importance of future situations. It is assumed
that (I) the current game situation is most important for a pool player and that
(IT) an easy game situation is preferred. Hence: 6 € [0, 1]. The n-parameter in
(10) represents the amount of simulations into the future and is set to n = 1.
rktetal (10) calculated for each currently possible stroke is used to determine
the human’s most probable next stroke. After playing, the performed stroke
is compared with the predicted stroke to obtain the rate of correct prediction
(CPgr). CPg is also evaluated based on the two other presented DQMs (Acaap
and kr;t) as shown in Table 3. Here, only the decisions of amateur player three

Table 2. Correlation coefficients between Table 3. Rates of correct predictions using

objective difficulty and three DQMs different DQM (max|mean value of CPRr)
Player|Strokes Correlation Coefficient Player Rate of Correct Prediction (%)
ACAAD|KLit| KExp Acaap KLit KExp
One | 216 0.37 (0.21| 0.79 One |71.6]70.8 |69.6]69.0| 74.9|73.1
Two | 182 0.52 10.42| 0.75 Two |74.1]70.6 |70.3|68.6| 74.3|70.7
Three| 164 0.47 10.59| 0.85 Three | 70.6|70.1 |68.0/66.5| 69.7|68.0
Four | 152 0.33 [0.29 0.77 Four | 67.2/66.4 {69.0|67.7| 71.7|69.3

are better described by the Acaap method. It shows that the new developed
equation Kgxp (9) predicts the human decision better than Acaap and ki
(1), while kri; has in general the lowest CPg. Fig. 5 shows that simulations
can increase the CPgr. The CPg of the experienced player has its maximum at
0 =~ 0.5, which means the player considers the actual situation twice as important
as the future situation. In comparison, results of the amateur player show a flat,
convex CPg function, thus considering future strokes result in a loss of accuracy
of the prediction. These results coincide with the amateurs’ statement, only to
consider the current game situation. Summarizing, amateurs - in contrast to
experts - do not plan ahead.



76f —e—Experienced Player
g\j 74: —=—Amateur Player
-
E 72r
= L
& 707
[} L
681

0 0.2 .04 0.6 0.8 1.0
Discount Factor &

Fig. 5. CPr using method kgxp. A maxi- Fig.6. Game situation between human
mum rate of 75% shows, actions of human Pool player and anthropomorphic robot.
player cannot be exactly predicted.

3.6 Exp. 4: Robot Applying Human Pool Model

In Exp. 4 a robot has to play thirteen 8-ball pool games against a human (Fig. 6),
to gauge the competitiveness of the HDQM integrated into the above described
probabilistic search algorithm, [10]. The setup is as described in Sec. 2. Two
strategies for choosing the robotic stroke are evaluated: (I) human adapted search
algorithm strategy (HAS) using the previously described HDQM and probabilis-
tic search algorithm and (II) easiest shot strategy (ES) according to the Acaap-
The robot plays seven games using the ES strategy and six games using the HAS
strategy.

Participant One player (male, age: 24), manipulation skills: o, : 0.01 Ns, oy :
0.007rad. The participant is not specifically instructed.

Robot Behavior For the experiment the same robot as described in Sec. 2 is
used (o, : 0.03Ns, oy : 0.012rad), which has a restricted workspace. In situations
in which the cue ball is unplayable for the robot, it is moved towards or away
from the cushion. The HDQM is used within the search algorithm whenever
it is the human’s turn. Furthermore the simulator and the evaluation function
consider the pool skills of the human opponent (§ = 0.5) such as the precision of
performing a stroke. The algorithm has a search depth of two, meaning it plans
two strokes ahead.

Evaluation Since the number of games is limited the evaluation is based on the
strokes’ success rate. Using the same robot with both strategies the success rates
represents how good the respective strategy prepares future strokes.

Results and Discussion In games using the HAS strategy, the robot sinks
51% of 67 strokes. In comparison using the ES strategy the robot sinks 28% of
89 strokes. The evaluation shows that the robot plays significantly (two-sample
t-test, p=0.0037) better when using the HAS. In addition, the robot adapting to
the introduced human pool model while using a probabilistic search algorithm
can beat a player of better-than-beginner level.

4 General Discussion and Conclusion

This work presents a human pool player model which determines the subjective
and objective difficulty of game scenarios from a human perspective. Although
Smith [15] states that it is not possible to consider the opponent’s move, the pre-
sented approach is capable of narrowing the amount of resulting situations after



a human stroke. Integrated in a probabilistic search algorithm it enables a robot
to predict human choices of pool strokes and to approximate their outcome. Al-
though the contribution of the HDQM in the HAS is not examined explicitly it is
shown that the complete algorithm improves pool playing abilities of a robot by
improving its own stroke preparation and by creating more difficult situations for
the opponent. Furthermore, model and algorithm, are not developed for specific
pool rules and can therefore easily be transformed to play other pool variants.
Varying the parameters in the presented HDQM would change the game behav-
ior and competitiveness of the robot and hence allow the building of a training
environment. The method of determining between subjective and objective dif-
ficulty can be applied to other non-deterministic games (e.g. carrom, bowls) in
which the human behavior should be considered. Furthermore, the approach is
transferable to non game related areas. For instance the difficulty of reaching
objects (e.g. a cup) in a given situation might be assessable by using geometric
parameters such as distances and orientations (e.g. handle orientation) and thus
a robot could predict and prevent difficult to reach objects.
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