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ABSTRACT

This paper provides a quantitative notion of the sparsity for infinite
dimensional atomic spaces, which play an important role in many
signal processing applications. This notion of sparsity is defined
as the ratio of the number of redundant samples (not necessary to
recover any signal in the atomic space) to the number of all available
samples of a particular canonical sampling system. It is shown that
the so defined sparsity can be expressed in terms of the support of the
spectral density of the sequence which generates the atomic space.

Index Terms— Atomic spaces, redundancy, sampling, sparsity,
stationary sequences

1. INTRODUCTION

In many practical signal processing applications signals are assumed
to belong to so called shift-invariant spaces [1] V = span{φn(t) =
φ(t−na) : n ∈ Z}. The sequence φn(t) = φ(t−na) = (Rn

aφ)(t)
which spans V is generated by φ ∈ L2(R) and by the translation
operator Ra : φ(t) 7→ φ(t−a) inL2(R). An obvious generalization
of this signal model is obtained by replacing L2(R) with an arbitrary
separable Hilbert space H and by replacing the translation operator
Ra with an arbitrary unitary operator U in H. Then the subspace
Aφ ⊂ H of the form

Aφ = span{φn = Unφ : n ∈ Z} (1)

is called an atomic space [2]. In most applications of such a signal
model, it is assumed that the sequence φ = {φn}n∈Z forms a Riesz
basis for Aφ. Then every x ∈ Aφ has the form

x =
∑
n∈Z anφn (2)

where a = {an}n∈Z ∈ `2 is a coefficient sequence uniquely deter-
mined by x. However, if φ is only a frame forAφ then the sequence
a of the representation (2) of x ∈ Aφ is no longer unique. This non-
uniqueness of the coefficients introduces some redundancy in the
representation of signals in Aφ, which may be used, e.g., to obtain
an increased robustness against errors in the observation of x ∈ Aφ.
Therefore, the assumption that {φn}n∈Z forms a frame (but not a
Riesz basis) for Aφ is often more appropriated.

Moreover, in the framework of generalized sampling, the sam-
pling of a signal x ∈ Aφ can be written as evaluations of inner
products 〈x, sn〉 of x with a set s = {sn = Uns}n∈Z of sampling
functions in H, which is assumed to has the same structure as the
sequence φ which spans the signal space Aφ. If Aφ is assumed to
be spanned by a Riesz basis sequence, then it is well known how
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any signal x ∈ Aφ can be reconstructed from its samples 〈x, sn〉,
and which conditions the sequence s has to satisfy, such that such a
signal recovery is possible [2, 3].

In this paper, we assume that Aφ is spanned by an over com-
plete frame sequence and we derive conditions on s such that signal
recovery is possible. Moreover, since φ is overcomplete, the re-
dundancy in the signal representation (2) can be used to reconstruct
signals in Aφ from only a subset {〈x, sn〉}n∈I of all available sig-
nal samples. Section 3 will quantify the amount of redundancy (or
sparsity) r(Aφ) contained in a signal space Aφ of the form (1). Af-
terwards, it is shown that the sparsity r(Aφ) of Aφ indeed quan-
tifies the necessary number of signal samples to reconstruct every
x ∈ Aφ. Section 4 will illustrate a corresponding recovery scheme.

Another motivation for this work comes from recent results on
the limitations of classical sampling schemes [4, 5]. By considering
more general sampling functionals and by exploiting the possible re-
dundancy of the underlying signal space, it may be possible to over-
come the convergence problems reported in these works, especially
under additional quantization errors.

2. SAMPLING IN ATOMIC SPACES

Basic Notations We set T := [0, 2π), and for 1 ≤ p ≤ ∞
we write Lp(T ) for the usual Lebesgue space on T . In particu-
lar, L2(T ) stands for the Hilbert space of square integrable function
on the interval T with the inner product

〈x, y〉 = 1
2π

∫ 2π

0
x(θ) y(θ) dθ

If Z is a subset of T , then L2(Z) will stand for the closed subspace
of L2(T ) of all those function which vanish outside of Z:

L2(Z) = {f ∈ L2(T ) : f(θ) = 0 a.e. θ /∈ Z} ,

and PZ stands for the orthogonal projection from L2(T ) onto
L2(Z). Every f ∈ L2(T ) can be written as a Fourier series as

f(θ) =
∑
n∈Z an einθ with an = 1

2π

∫ 2π

0
f(θ) e−inθ dθ

and with the sequence a = {an}n∈Z ∈ `2 of Fourier coefficients.
The (left) shift operator S : L2(T )→ L2(T ) is defined as

S :
∑
n∈Z an einθ 7→

∑
n∈Z an+1 einθ

or equivalently by (Sf)(θ) = f(θ) e−iθ . For any positive integer Q
the decimation operator DQ : L2(T )→ L2(T ) is defined as

DQ :
∑
n∈Z an einθ 7→

∑
n∈Z aQn einθ

or equivalently as (DQf)(θ) = 1
Q

∑Q−1
n=0 f ([θ + n 2π]/Q).

We will frequently need the notions of stationary sequences, frames,
and Riesz bases in Hilbert spaces. Because of the limited space, we
only refer to corresponding literature on these topics, e.g. [6, 7, 8].
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Atomic Signal Spaces Let H be an arbitrary separable Hilbert
space. We consider signals in atomic subspaces A of H [2]. These
subspaces are characterized by a unitary operator U on H and by a
generating function φ ∈ H. If we set φn := Unφ, n ∈ Z then
the atomic subspace Aφ is defined as the closed linear span of the
sequence φ := {φn}n∈Z, i.e. by (1). It is always assumed that φ is
a frame sequence, i.e. a frame for Aφ. Thus every signal x ∈ Aφ
has the form (2) with a coefficient sequence a = {an}n∈Z ∈ `2.

By its construction, φ = {φn}n∈Z forms a stationary sequence
inH [8], and since it is assumed to be a frame sequence, its autocor-
relation function rφ has the following spectral representation

rφ(n−m) := 〈φn, φm〉 = 1
2π

∫ 2π

0
ei(n−m)θΦφ(θ) dθ .

Therein, Φφ ∈ L1(T ) is called the spectral density ofφ. With every
spectral density, we associate two disjoint subsets of T :

Zφ := {θ ∈ T : Φφ(θ) = 0 a.e.}
Mφ := {θ ∈ T : Φφ(θ) > 0 a.e.} .

The Lebesgue measure of both sets, will be denoted by λ(Zφ) and
λ(Mφ), respectively. The next lemma characterizes conditions on
Φφ such that φ forms a frame or Riesz basis for Aφ.
Lemma 1: Let φ = {φn}n∈Z be a stationary sequence in H with
spectral density Φφ. Then φ forms a frame for Aφ = span{φn :
n ∈ Z} with frame bounds 0 < A ≤ B <∞ if and only

A ≤ Φφ(θ) ≤ B a.e. θ ∈Mφ ,

and φ is a Riesz basis for Aφ if and only if additional λ(Zφ) = 0.

Remark: A proof can be found in [8], and an extension to multi-
dimensional stationary sequences in [3]. Moreover, for the particular
case where φ is generated by the translation operator U = Ta on
H = L2(R), the above result is very well known (see, e.g., [7, 9]).

With every frame sequence φ = {φn}n∈Z one associates the syn-
thesis operator Tφ : `2 → H given by

Tφ : {an}n∈Z 7→
∑
n∈Z anφn .

We will need the following known characterization of the null space
N (Tφ) of the synthesis operator Tφ.
Lemma 2: Let φ = {φn}n∈Z be a stationary frame sequence in a
Hilbert spaceH with spectral density Φφ and with synthesis opera-
tor Tφ, then

N (Tφ) =
{
a ∈ `2 : A(θ) =

∑
n∈Z aneinθ ∈ L2(Zφ)

}
.

We finally refer to [8] where several examples of stationary se-
quences on different Hilbert spaces are given and which are of some
importance in applications. There it is also shown that it is often
possible to determine explicitly the corresponding spectral density
Φφ in terms of the generator φ ∈ H.

Generalized Sampling The sampling of a signal x ∈ H is often
described by an evaluation of inner products cn = 〈x, sn〉 with a
set of sampling functions {sn}n∈Z in H [10], and where {cn}n∈Z
are said to be the (generalized) samples of x. Here we consider U-
invariant sampling schemes [8] in which the sequence of sampling
functions s = {sn}n∈Z has the same structure as the sequence φ
which spans our signal space Aφ, i.e. we assume that sn = Uns,
for all n ∈ Z, with some generator s ∈ H and with the same unitary
operator U as in the definition (1) of Aφ. Similar as for φ, the se-
quence s is a stationary sequence with spectral density Φs ∈ L1(T )

and with two associated subsets Zs andMs of T . Moreover, since
both sequences φ and s are generated by the same unitary operator
U, they are stationary correlated [6, 8] such that the corresponding
cross-correlation function rφ,s has the spectral representation

rφ,s(n−m) := 〈φn, sm〉 = 1
2π

∫ 2π

0
ei(n−m)θΦφ,s(θ) dθ (3)

with Φφ,s ∈ L1(T ). Similar as above, we denote by Mφ,s and
Zφ,s the subsets of T where Φφ,s is non-zero and equal to zero,
respectively. It is not hard to see thatMφ,s =Mφ ∩Ms [11].

3. THE SPARSITY OF ATOMIC SPACES

Every x ∈ Aφ can be written as x = Tφa for some coefficient
sequence a ∈ `2. However, if φ is an overcomplete frame for Aφ
then there also exist other coefficient sequences ã ∈ `2 which yield
the same x ∈ Aφ, i.e. for which x = Tφa = Tφã. One particular
choice for such a sequence is ãn = 〈x, φ̃n〉where {φ̃n}n∈Z is the so
called canonical dual frame of φ (see, e.g., [7]). This sequence ã is
uniquely determined by x ∈ Aφ and we call it the canonical coeffi-
cient sequence of x ∈ Aφ. The next lemma (which basically follows
from Lemma 2) characterizes the Fourier series of the canonical co-
efficient sequence of x = Tφa in terms of the Fourier series of the
sequence a.
Lemma 3: Let a ∈ `2 and x = Tφa ∈ Aφ. Then the Fourier
series of the canonical coefficient sequence ã ∈ `2 of x is given by

Ã(θ) =
∑
n∈Z

ãn einθ = (PMφA)(θ) =

{
A(θ) : θ ∈Mφ

0 : θ ∈ Zφ .

Assume now that x = Tφa is an arbitrary signal in Aφ and assume
that its generalized samples {cn = 〈x, sn〉}n∈Z are given. Under
which conditions on s = {sn}n∈Z will it be possible to reconstruct
x from {cn}n∈Z? The answer is given by the following theorem.
Theorem 4: Let Aφ be an atomic space of the form (1), spanned
by a stationary frame sequence φ = {φn}n∈Z with spectral density
Φφ, and let s = {sn}n∈Z be a stationary sequence of sampling
functions. Then every x ∈ Aφ can be reconstructed from its samples
{〈x, sn〉}n∈Z by means of a bounded linear operator, if and only if

1) Mφ ⊂Ms and

2) Φφ,s(θ) 6= 0 for almost all θ ∈Mφ .

Remark: This theorem is a straight forward extension of the corre-
sponding result under the assumption that φ is a Riesz basis forAφ.
Therefore, and because of the limited space, a proof is omitted. To
recover x from its samples, we note that because x ∈ Aφ is com-
pletely determined by its canonical coefficients ã, it is sufficient to
determine ã from {cn}n∈Z. This can be achieved by a linear filter
ãn =

∑
k∈Z γk cn−k whose transfer function is given by

Γ(θ) =
∑

k∈Z
γk eikθ =

{
1/Φφ,s(θ) : θ ∈Mφ

0 : θ ∈ Zφ .

Theorem 4 shows that if the sequence s of sampling functions
satisfies certain conditions, then every x ∈ Aφ can be reconstructed
from all (uniform) samples {〈x, sn〉}n∈Z. However, it might be
possible that actually less samples are necessary for signal recov-
ery. This seems to be reasonable because to recover x ∈ Aφ, it is
sufficient to determine its canonical coefficient sequence ã. Intu-
itively, this should become easier as the supportMφ of Ã becomes
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smaller. In particular, we are going to show that it is possible to re-
cover x ∈ Aφ from a subset of all generalized samples and that the
”size” of this subset is determined by the size ofMφ. To this end,
we define first the sparsity of an atomic space of the form (1).
Definition: Let φ = {φn}n∈Z be a stationary frame sequence, let
Aφ = span{φn : n ∈ Z} be the corresponding atomic space, and
let s = {sn}n∈Z be a sequence of sampling functions which satisfies
the conditions of Theorem 4. If for any x ∈ Aφ the sequence of
generalized samples is denoted by c = {cn = 〈x, sn〉}n∈Z then we
say that Aφ has an (Q,N)-sparsity pattern, if there exist N sub-
sequences of c of the form

{cQn+q}n∈Z with q ∈ J ⊂ {0, 1, . . . , Q− 1} and |J | = N

such that x can be reconstructed from these signal samples only.
Let PA denote the set off all (Q,N) tuples such that Aφ has a
(Q,N)-sparsity pattern. Then the sparsity of Aφ is defined as

r(Aφ) := sup
{
Q−N
Q

: (Q,N) ∈ PA
}
.

By this definition, the sparsity of Aφ is a positive number between
zero and one. It is the ratio of redundant samples contained in all
available samples. Thus r(Aφ) = 0 if and only if φ is a Riesz
basis for Aφ, i.e. if there are no redundant samples. On the other
hand, values of r(Aφ) close to 1 indicate a high ratio of redundant
samples. For example, r(Aφ) = 0.9 means that 9 out of 10 samples
are redundant, or equivalently that only 1 out of 10 signal samples
are necessary to recover every x ∈ Aφ.

We are going to show that the sparsity of Aφ is determined by
the spectral density of the generating sequence φ.
Theorem 5: Let φ = {φn}n∈Z be a stationary frame sequence in
H with spectral density Φφ and letAφ = span{φn : n ∈ Z}. Then
the sparsity of Aφ is given by

r(Aφ) =
λ(Zφ)

2π
= 1− λ(Mφ)

2π
.

Sketch of proof: Let x ∈ Aφ be arbitrary. Then x is uniquely de-
termined by its canonical coefficient sequence, denoted by a. To
reconstruct x, we have to determine a from the samples c = {cn =
〈x, sn〉 : n ∈ Z}. Using (3), these samples can be written as

cn =
〈∑
k∈Z

akφk, sn
〉

=
∑
k∈Z

ak
1

2π

∫ 2π

0

ei(k−n)θΦφ,s(θ) dθ

=
1

2π

∫ 2π

0

A(θ) Φφ,s(θ) e−inθ dθ . (4)

Let Q ∈ N be arbitrary but fixed (the exact value of Q is determined
later). We define Q subsequences of the sequences a and c, respec-
tively, as follows

c(r) :=
{
c(r)n := cnQ+r

}
n∈Z

, r = 0, 1, . . . , Q− 1

a(q) :=
{
a(q)n := anQ+q

}
n∈Z

, q = 0, 1, . . . , Q− 1 .
(5)

The Fourier series of the subsequence c(r) is given by

C(r)(θ) =
∑
n∈Z cnQ+r einθ = (DQSrC)(θ)

in terms of the Fourier series C of c, and a similar relation holds for
the subsequences of a. Finally, we stack the Fourier series of the

subsequences (5) into vectors of length Q as

C(θ) :=

 C(0)(θ)
...

C(Q−1)(θ)

 and A(θ) :=

 A(0)(θ)
...

A(Q−1)(θ)

 .

Now a straight forward calculation1, starting with (4), will show that

C(θ) = (LΨA)(θ) = Ψ(θ)A(θ) , θ ∈ [0, 2π) , (6)

where Ψ(θ) is a self-adjoint matrix of size Q × Q whose entry in
the r-th row and q-th column is given by

[Ψ(θ)]r,q = (DQSr−qΦφ,s)(θ) .

Using the definition of the decimation and shift operator DQ and S,
respectively, the matrix Ψ and the vectorA can be written as

Ψ(θ) =
∑Q−1

k=0
Φφ,s

(
θ
Q

+ k 2π
Q

)
vk(θ) vk(θ)∗ and (7)

A(θ) =
∑Q−1

k=0
A
(
θ
Q

+ k 2π
Q

)
vk(θ) (8)

where vk(θ), k = 0, . . . , Q − 1 are length Q vectors. Its entries in
the r-th row are given by

[vk(θ)]r,1 = 1√
Q

exp
[
− i(r − 1) ( θ

Q
+ k 2π

Q
)
]
. (9)

For every θ ∈ [0, 2π), {vk(θ)}Q−1
k=0 is an orthonormal basis for CQ.

Now (7) shows that Ψ(θ) is the sum of Q rank 1 matrices
vk(θ) vk(θ)∗, and the coefficient of the k-th term in this sum is
determined by the value of Φφ,s in the interval [k 2π

Q
, (k + 1) 2π

Q
).

Since the sampling system s satisfies the first condition of Theo-
rem 4 and becauseMφ,s =Mφ∩Ms, it follows that Φφ,s(θ) = 0
for all θ ∈ Zφ. Consequently, if λ(Zφ) > 0, then there ex-
ist indices k ∈ {0, 1, . . . , Q − 1} and θ ∈ [0, 2π) for which
Φφ,s ([θ + k2π]/Q) = 0. Then Ψ(θ) has a rank smaller than Q for
some (or all) θ ∈ [0, 2π). Nevertheless, since a is assumed to be the
canonical coefficient sequence of x ∈ Aφ, it follows from Lemma 3
that A(θ) = 0 for all θ where Φφ,s(θ) = 0. Consequently, (7)
and (8) show that A(θ) ∈ N (Ψ(θ))⊥ for all θ ∈ T such that
the Fourier series A(θ) of the canonical coefficient sequence can
always be recovered from C(θ) by A(θ) = Ψ(θ)†C(θ) where
Ψ(θ)† denotes the Moore–Penrose pseudoinverse of Ψ(θ).

In particular, if Q is sufficiently large then there exist several in-
tervals of the form [k 2π

Q
, (k+1) 2π

Q
) on which Φφ,s(θ) andA(θ) are

identical to zero. Assume that this holds for R out of all Q intervals.
Then the matrix Ψ(θ) will have a rank of at most N := Q − R for
all θ ∈ [0, 2π), and its range is spanned by N orthogonal vectors
vk(θ). An upper bound on R is apparently given by

R = Q−N ≤ λ(Zφ)

2π/Q
. (10)

Since Ψ(θ) has a rank of at most N , we may delete R rows of Ψ(θ)

without reducing the rank of Ψ(θ). This yields the matrix Ψ̃(θ) of
size N ×Q of the form

Ψ̃(θ) =
∑

k∈I
Φφ,s

(
θ
Q

+ k 2π
Q

)
ṽk(θ) vk(θ)∗ (11)

where I ⊂ {0, 1, 2, . . . , Q − 1} with |I| = N , and ṽk(θ) is a
length N vector which is obtained by deleting R rows of vk(θ).

1which may be found in the proof of Theorem 3 of [3]
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Of course, in general it will depend on the set I which rows of the
vectors {vk}k∈I can be deleted such that Ψ̃(θ) still has rank N .
However, there always exists at least one set of R columns which
can be deleted such that Ψ̃ still has rank N . Equation (6) shows
that the deletion of rows of Ψ(θ) corresponds to leaving out the
corresponding substreams of signal samples. Thus, overall we have

C̃(θ) = Ψ̃(θ)A(θ) , θ ∈ [0, 2π) ,

wherein C̃(θ) contains the Fourier series of N out of Q substreams
c(r) of (4). Moreover, (11) shows that still A(θ) ∈ N (Ψ̃(θ))⊥

such that it is possible to reconstructA(θ) from C̃(θ) by

A(θ) = Ψ̃(θ)† C̃(θ) . (12)

From A(θ) the canonical coefficient sequence a of x ∈ Aφ can be
determined and thus x can be reconstructed from only N out of Q
substreams of samples. In other words, we have shown thatAφ has a
(Q,N) sparsity pattern, and it follows from (10) that the sparsity of
Aφ is upper bounded by r(Aφ) ≤ λ(Zφ)/2π. To finish the proof,
it remains to show that the number R, as defined above, becomes as
close as desired to value on the right hand side of (10), by choosing
Q sufficiently large. However, this seems to be straight forward by
the above construction, such that the details are omitted here.

4. SIGNAL RECOVERY

The proof of Theorem 5 shows how a sparse signal x ∈ Aφ can be
reconstructed from only N ≥ [1− r(Aφ)]Q out of Q substreams
of the uniform signal samples cn = 〈x, sn〉, n ∈ Z. In the Fourier
domain, signal recovery is given by (12), and we need to determine
the pseudoinverse Ψ̃(θ)† of (11). The matrix Ψ̃(θ) was obtained
from Ψ(θ) by deletingR rows in such a way that both matrices have
the same maximum rank N . In view of (11) this is equivalent to
require that the set {ṽk(θ)}k∈I forms a Riesz basis for CN for all
θ ∈ T . Let the set {w̃k(θ)}k∈I of vectors in CN be the correspond-
ing dual Riesz basis. Then it is easy to see that

Ψ̃(θ)† =
∑
k∈I Φφ,s

(
θ
Q

+ k 2π
Q

)†
vk(θ) w̃k(θ)∗ , (13)

where Φ(θ)† = 1/Φ(θ) for all θ where Φ(θ) 6= 0 and Φ(θ)† = 0
for all θ where Φ(θ) = 0. To determine {w̃k(θ)}k∈I , notice that the
vectors vk(θ) given in (9) can be written as vk(θ) = D(θ) fk, where
D(θ) is a unitary Q × Q diagonal matrix with entries [D(θ)]r,r =
exp(−i[r−1]θ/Q), and fk is the (k+1)th column of the usual DFT
matrix of size Q×Q, i.e.

[fk]r,1 = 1√
Q

exp(−i 2π
Q
k[r − 1]) , r = 1, 2, . . . , Q .

Now we collect the vectors {vk(θ)}k∈I in aQ×N matrix VI(θ) :=
[vk1(θ), . . . ,vkN (θ)] = D(θ) FI , where FI is the Q × N ma-
trix with columns {fk}k∈I . Moreover, if one deletes R = Q − N
columns of VI , one obtains the N × N matrix ṼI(θ) = D̃(θ) F̃I
whose columns are {ṽk(θ)}k∈I . Moreover, D̃(θ) is an N ×N uni-
tary diagonal matrix, and F̃I is a constant N × N matrix obtained
from FI by deleting R rows. Therewith, the vectors {w̃k(θ)∗}k∈I
of the dual Riesz basis of {ṽk(θ)}k∈I are obtained as the rows of
the inverse of ṼI(θ) which is given by

W̃I(θ) := ṼI(θ)
−1 = F̃−1

I D̃(θ)∗ .

-

-

-

c(0)

c(1)

c(N−1)

τ1

τ2

...

τN

-

-

-

F̃−1
I

-

-

-

[Λ(θ)†]1,1

[Λ(θ)†]2,2

...

[Λ(θ)†]N,N

-

-

-

FI

-

-

-

τ−1
1

τ−1
2

...

τ−1
Q

-

-

-

a(0)

a(1)

a(Q−1)

Fig. 1. Reconstruction of all Q substreams of signal coefficients
from N ≤ Q substreams of generalized signal samples.

Using the so obtained w̃k(θ)∗ in (13), one obtains finally

Ψ̃(θ)† = D(θ) FI Λ(θ)† F̃−1
I D̃(θ)∗ ,

where Λ(θ)† is an N ×N diagonal matrix whose entries are given
by the coefficients Φφ,s ([θ + k2π]/Q)† with k ∈ I in (13).

Overall, signal recovery in the time domain may be illustrated
as in Fig. 1. On the left, we have N substreams of signal samples
as an input. The blocks with τ ’s symbolize multiplications with the
corresponding exponential functions on the diagonal of the matrices
D̃(θ)∗ and D(θ) in the Fourier domain. This corresponds to de-
laying the signal samples in the time domain. The two large blocks
stand for symbol-wise multiplications with the matrices F̃−1

I and
FI , respectively, whereas the blocks in the middle are linear filters
whose transfer functions are given by the entries of the diagonal ma-
trix Λ(θ)†.

5. RELATION TO PRIOR WORK AND EXTENSIONS

The problem of signal recovery from sparse samples where consid-
ered in a vast number of publications for a variety of different set-
tings, e.g.: (a) finite dimensional spaces [12], (b) multiband signals
[13, 14, 15], (c) general shift-invariant space [16, 17], (d) unions of
subspaces [18], or (e) general Hilbert spaces [19]. The present paper
generalizes in particular results concerning sampling and reconstruc-
tion of multiband signals and of signals in shift-invariant spaces. The
setting considered in these papers is obtained by assuming that the
unitary operator U, which generates the spanning sequence φ of the
signal space Aφ, is the translation operator. Apart from the fact
that our setting is much more general, it provides also an alternative
and different derivation for the multiband setting. Sampling in shift-
invariant spaces with frame generators was considered in [20], but
without characterizing the amount of sparsity in these spaces.

The present paper may also be considered as a contribution to
the recent interest in defining an appropriate notion of redundancy
for frames, see, e.g., [21, 22, 23]. Although the notion of redundancy
in these papers, means something slightly different than sparsity, as
in the present paper, the sparsity r(Aφ), as defined here, also gives
of quantitative notion of the overcompletness of the sequence φ.

In this paper, it was assumed that the supportMφ of the spectral
density Φφ of the spanning sequence {φn}n∈Z is known. Only with
this knowledge, we are able to determine the necessary subsequences
of signal samples, to reconstruct every x ∈ A. However, ifMφ is
not known but only its size λ(Mφ), then one may apply methods
from compressed sensing [15], to first recover the support of Φφ and
then to recover x ∈ A from the signal samples.
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[8] T. Michaeli, V. Pohl, and Y. C. Eldar, “U-Invariant Sampling:
Extrapolation and Causal Interpolation from Generalized Sam-
ples,” IEEE Trans. Signal Process., vol. 59, no. 5, pp. 2085–
2100, May 2011.

[9] J. Benedetto and S. Li, “The Theory of Multiresolution Anal-
ysis Frames and Applications to Filter Banks,” Appl. Comp.
Harm. Anal., vol. 5, no. 4, pp. 389–427, 1998.

[10] M. Unser, “Sampling – 50 Years After Shannon,” Proc. IEEE,
vol. 88, no. 4, pp. 569–587, Apr. 2000.

[11] V. Pohl, “On Causal Estimation from Bandlimited Stochastic
Sequences,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 5436–
5443, Aug. 2011.

[12] D. L. Donoho and X. Huo, “Uncertainty Principle and Ideal
Atomic Decomposition,” IEEE Trans. Inf. Theory, vol. 47,
no. 7, pp. 2845–2862, 2001.

[13] L. Bezuglaya and V. Katsnelson, “The Sampling Theorem for
Functions with Limited Multi-Band Spectrum I,” Z. Anal. An-
wendungen, vol. 12, pp. 511–534, 1993.

[14] R. Venkataramani and Y. Bresler, “Perfect Reconstruction For-
mulas and Bounds on Aliasing Error in Sub-Nyquist Nonuni-
form Sampling of Multiband Signals,” IEEE Trans. Inf. The-
ory, vol. 46, no. 6, pp. 2173–2183, Sep. 2000.

[15] M. Mishali and Y. C. Eldar, “Blind Multiband Signal Recon-
struction: Compressed Sensing for Analog Signals,” IEEE
Trans. Signal Process., vol. 57, no. 3, pp. 993–1009, Mar.
2009.

[16] Y. C. Eldar, “Compressed Sensing of Analog Signals in Shift-
Invariant Spaces,” IEEE Trans. Signal Process., vol. 57, no. 8,
pp. 2986–2997, Aug. 2009.

[17] A. G. Garcı́a, M. A. Hernández-Medina, and G. Pérez-Villalón,
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