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Abstract

For several communication models, the dispersive part of a communication channel is described
by a bilinear map B between the possible sets of input signals and channel parameters. The
received channel output has then to be identified from the image set B(X,Y ) of the input signal
set X and the channel state (parameter) set Y . The main result in this dissertation characterize
the compressibility of the image set with respect to an ambient dimension n. It can be shown
for time-discrete signals, that a restricted norm multiplicativity property (RNMP) of B on the
set of all s resp. f sparse signals Σn

s × Σn
f with bounds α,β > 0, independent of n, is suf-

ficient to establish the restricted isometry property (RIP) with exponentially high probability
from m = O((s + f) logn) random sub-Gaussian measurements. In practical use, this means,
that whenever the channel parameter y ∈ Y is f−sparse and fixed, any s−sparse data signal
x ∈ X can be stably reconstructed from O((2s + f) logn) measurements. Thus, the number
of degrees of freedom of each output grows only additively instead of multiplicatively with the
input dimensions s and f . This is a substantial improvement in the output compressibility and
suggests a substantially reduced rate in compressed sampling algorithms. The best known ex-
ample of a bilinear map is the discrete convolution. If the input signals (sequences) having finite
support length, the RNMP with bounds dependent only on the support lengths will be estab-
lished. This result has several implications for blind system and signal detection, noncoherent
communication of sporadic and short–message type user data and strategies for its compressive
reception. Moreover, relating the RNMP to the phase retrieval problem, it can be shown that a
stable reconstruction up to a global sign from 4n − 1 symmetrized magnitude Fourier measure-
ments of all signals in Cn is possible. For complex-valued signals where the first coefficient
is real, a stability result holds also for 4n − 3 symmetrized magnitude Fourier measurements.
Here the symmetrization is a non-linear operation and generates a linear-phase filter having a
real-valued spectrum. Hence, the stability result implies injectivity of the measurements up to a
global sign.

In the last part of this work, we study semi-discrete convolutions and design a spectrally ef-
ficient time-limited pulse, which allows an overlapping pulse position modulation scheme for
ultra-wideband communication. For this we investigate an orthogonalization method, which
was developed in 1950 by Per-Olov Löwdin [Löw50; Löw70]. Our objective is to obtain a set
of n orthogonal (Löwdin) pulses, which remain time-limited and spectrally efficient for UWB
systems, from a set of n equidistant translates of a time-limited optimal spectral designed UWB
pulse. We derive an approximate Löwdin orthogonalization (ALO) by using circulant approx-
imations for the Gram matrix to obtain a practical filter implementation, which can be seen as
a convolution with a finite sequence and a compact function. We show that the centered ALO
and Löwdin pulses converge pointwise to the same Nyquist pulse as n tends to infinity. The
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set of translates of the Nyquist pulse forms an orthonormal basis for the shift-invariant space
generated by the initial spectral optimal pulse. The ALO transformation provides a closed-form
approximation of the Löwdin transform, which can be implemented in an analog fashion with-
out the need of analog to digital conversions. Furthermore, we investigate the interplay between
the optimization and the orthogonalization procedure by using methods from the theory of shift-
invariant spaces. Finally, a connection between the results in this thesis and wavelet and frame
theory is developed.
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Notation
K Field of complex C or real numbers R.
a, b, c, . . . , z Field elements, integers or functions.
α,β, . . . , ϵ Positive real numbers.
e, ı Euler and Imaginary number.
s, f Natural numbers, exclusively used for the support length of sequences.
a,b,c, . . . Vectors a = (a0, . . . , an−1)T or sequences a = (. . . , a−n, . . . , an . . . ) over K.
A,B,C, . . . Matrices over K.
1n Identity matrix in Kn×n.
Sn Right shift matrix in Kn×n.
Γn Time-reversal matrix in Kn×n, see (1.59).
Fn Fourier matrix in Cn×n.
Φ Subgaussian random matrix.
aT ,AT Transpose of vector or matrix.
a∗,A∗ Adjoint of a vector or matrix or involution in an algebra.
A,B,C, . . . Linear maps.
S Frame Operator.
Z Zak Transform.
L Laplace Transform.
H , . . . ,Z Linear spaces over K.
H Hilbert space.
V ,S Shift-invariant spaces.
A,B,C,S Non-linear maps.
S Symmetrization map on Kn, see (2.133).
B Bilinear map (multiplication) in the Hilbert space H .
Bn,Bs,f Bilinear map on Kn × Kn respectively on Ks × Kf , see (1.20).
A,B Algebras.
N (A) Nullset of the map A.
[n] First n integers: {0,1, . . . , n − 1}.
⌊a⌋, ⌈a⌉,⊕,⊖ Floor, ceil and additon modulo operation, see Definition 8.
[a, b] All integers c ∈ Z or numbers c ∈ R with a ≤ c ≤ b.
A,B, . . . , P Arbitrary set of integers.
P,Q Generalized arithmetic progressions, see (2.67).
T,U,V, . . . , Z Arbitrary sets.
P,Q,R Nets for compact sets.
Nϵ(X) ϵ−Covering number of the convex precompact set X .
x⊗ y Kronecker product between x ∈ Ks and y ∈ Kf : (x⊗ y)is+j = xiyj .
K Hilbert Tensor space with ℓ2-norm and inner product.

x



Notation

K1 Set of Kronecker products (rank−1 tensors) K1 ∶= {x⊗ y ∣ x ∈ Ks,y ∈ Kf}.
M Linear space of s × f matrices with Frobenius norm ∥A∥F ∶=

√
tr(AA∗).

M1 Set of rank−1 matrices in Ks×f .
⊙, ⊙ Point product respectively generalized point product, see (1.38).
⊛,⍟ Circular convolution respectively correlation Kn × Kn → Kn (1.51) and (1.52).
∗,⋆ Discrete and continuous convolution respectively correlation, see Definition 5.
supp(x) Support of the sequence respectively vector x, see (1.2).
Σn
k Set of vectors in Kn with support cardinality not larger than k, see (1.5).

ℓ2k Set of the infinite sequences with support cardinality less or equal k.
⟨x,y⟩ Inner Product of x and y given by ⟨x,y⟩ ∶= ∑i xiȳi, see (1.4).
∥x∥ Euclidean norm, norm of the vector x ∈ Kn given by ∥x∥ ∶=

√
⟨x,x⟩.

ℓ2, ℓ2[n] Hilbert space of the square summable sequences (vectors) on Z respectively [n].
L2, L2

T Hilbert space of the square integrable functions x ∶ R→ K respectively x ∶ T → K.
∥⋅∥∞ Maximum norm for vectors, sequences or matrices.
∥⋅∥p p-norm for vectors or sequences with 1 ≤ p <∞.
∥A∥F , ∥A∥∞ Frobenius norm respectively Supremums (Maximum) norm of the matrix A.
∣a∣ , ∣A∣ Absolute value of a ∈ C, cardinality of A ⊂ Z and measure for A ⊂ R.
Xa,b Shell in X with inner radius a and outer radius b.
X1 =X0,1 Unit ball in X , i.e., all elements x ∈X with ∥x∥ ≤ 1.
δij Kronecker symbol, defined as 1 for all i = j ∈ Z and 0 else.
ei Euclidean unit-vector in Kn with jth component δij .
χI Characteristic function, χI(i) = 1 if i ∈ I and 0 elsewhere.
N (0, σ2) Normal (Gaussian) distribution with mean 0 and variance σ2

R(a),I(a) Real and Imaginary part of a ∈ C.
1n The vector 1 = 1n = (1,1, . . . ,1)T ∈ Kn.
log Logarithmus to the basis 10.
ln Natural Logarithmus to the basis e.
ϕ Freiman homomorphism, see (2.63).
σ(A) Doubling constant of the set A ⊂ Z.
ω, ν Frequency variable.
det(A) Determinant of the square matrix A.
co(X), span(X) Convex hull of the set X respectively linear span.
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1 Introduction

Signals with support restrictions are fundamental ingredients in many signal processing sce-
narios as for example in image reconstruction, signal communication, signal reconstruction,
sampling and many more. In fact, since any man-made operation is limited in time and space it
is only possible to obtain deterministic knowledge about a signal on a finite scale, where finite is
meant on a continuous or discrete time domain. Nowadays, a lot is known about linear systems
with sparse (compressible) or compact (band-limited) signals. The best known examples are
linear time invariant systems (LTI), represented by a convolution with another fixed signal, i.e.,
the channel. But in many communication scenarios, the channel is unknown or varying, and one
is faced with an infinite union of LTI systems, which do not admit anymore a linear structure.
The task is then to find universal sampling and coding strategies, which allow a reconstruction
and encoding for any unknown but fixed channel state. Generalizing the convolution to an arbi-
trary multiplication (bilinear mapping), we end up by identifying multiplications of signal sets.
The aim here, is to design universal linear measurements, allowing a stable reconstruction of the
output signals with the smallest amount of measurements. To achieve this, support restrictions
of the signals are necessary. Here, the main focus relies on an efficient signal recovery in sparse
convolution systems by using methods from Compressed Sensing and Geometrical Functional
Analysis. To guarantee recovery (deconvolution) for sparse signals, one has to provide stabil-
ity or at least injectivity. Due to the bilinear nature of the convolution, injectivity and stability
can only hold in a weaker sense, which we will express by the restricted norm multiplicativity
property (RNMP).

Communication over a channel, e.g., a wireless network or an optical fibre, is usually realized by
time-continuous signals with a compact or compressible support in the time domain. Modelling
real-world analog systems (time-continuous models) requires heavy functional analysis, which
in many applications is not mathematically tractable any more. Hence, in the last decades much
effort was done to express the actions of analog signal models by efficient digital models. In
the last part of this work we will consider linear continuous-time invariant signal models. An
approximation of compactly supported time-continuous signals then leads to sparse sequences
and the continuous convolution transform to a discrete convolution. Finally, to obtain finite di-
mensions, the discrete convolution is further approximated by the circular convolution, resulting
in aliasing due to the boundary effects. This enables a pulse position modulation scheme for
an almost orthogonal signaling which at the same time efficiently utilizes the power in a given
frequency band.
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Chapter 1. Introduction

Outline

This dissertation is composed of two main parts: The Löwdin orthogonalization of a sequence
of compactly supported pulses given by semi-discrete convolutions in [WJ12a] allowing an effi-
cient orthogonal PPM transmission and the invertibility of convolved sparse pulses in [WJ13a]
allowing a recovery of the discrete convolution at sub-Nyquist sampling rates [WJ12b].

The first chapter will introduce the concept of bilinear maps (multiplications) and derive gen-
eral properties of bilinear maps. Then, an investigation on point products is carried out in more
detail in Section 1.3 and the convolution respectively correlation is investigated further in Sec-
tion 1.3.1.

To understand compressive sampling on sparse multiplications we will first investigate its repre-
sentation and provide conditions for unicity of multiplications in finite dimensions in Chapter 2.
In Section 2.2 we will show the RNMP for discrete convolutions with support restrictions, i.e.,
the cardinality of the support is bounded. This RNMP is then be used to derive a new result
for a stable reconstruction of complex-valued n−dimensional signals, with real first coefficient,
from 4n − 3 symmetrized magnitude Fourier measurements in Section 2.3. This relates the
autocorrelation to the results derived in the previous Section 2.2.

In Chapter 3 the RNMP property, defined in Section 1.2.5, will be used to obtain low-
dimensional stable embedding results in Section 3.1 for sparse multiplications. This gives in-
sight into possible sub-Nyquist sampling on images of bilinear maps. Our framework can then
be applied to a compressive signal recovery in Chapter 3.

In the last Chapter 4 an orthogonalization scheme for compactly supported time-continuous
signals enabling a spectrally efficient signaling for Ultra-wideband systems will be developed.
Here again, support restrictions will be used in a stable and efficient way.
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1.1. Signals with Restricted Support

1.1 Signals with Restricted Support

In this work, the focus will be on signals with finite energy (energy signals), i.e., elements of
Hilbert spaces H = (H , ⟨⋅, ⋅⟩

H
, ∥⋅∥

H
) over the field1 K, where the norm (square-root of the

energy) of x ∈H is induced by the scalar product ⟨⋅, ⋅⟩
H

as

∥x∥ = ∥x∥
H
∶=
√
⟨x,x⟩

H
, (1.1)

where the subscript H in the norm will be omitted for Hilbert spaces. A second key property
of a signal is given by its support which is defined for continuous functions x on T ⊂ R or for a
sequence on T ⊂ Z by

supp(x) ∶= { t ∈ T ∣ x(t) /= 0}. (1.2)

Here the bar (⋅) denotes for sets the closure and for numbers the complex conjugate. If x is not
a continuous function, but a measurable function, the definition can be extended to the essential
support by introducing a measure on R, see e.g. [LL01, p.13]. In this work only the Lebesgue
measure and the point-measure (Haar measure) will be considered. Therefore, define for all
Lebesgue measurable functions on T , i.e., time-continuous signals denoted by normal letters,
the scalar product as

⟨x, y⟩L2(T ) ∶= ∫
t∈T

x(t)y(t)dt. (1.3)

The set of equivalence classes of time-continuous signals on T with finite energy is denoted by
H = L2(T ). If the signal is defined on I ⊂ Z, then the point-measure defines a scalar product
for sequences in (1.3), i.e., for time-discrete signals, denoted by bold letters with coefficients
(x)k =x(k)=xk, as

⟨x,y⟩ℓ2I ∶=∑
k∈I
x(k)y(k). (1.4)

The space of square-summable sequences on I is the Hilbert space H = ℓ2I . For I = Z we write
H = ℓ2 and for I = [n] ∶= {0,1, . . . , n − 1} we write H = ℓ2[n], which is an n−dimensional
Hilbert space over K. Similar, for T = R we write L2 = L2

R and for compact ∣T ∣ <∞ we refer by
L2
T ∶= L2(T ) to the signals with support contained in T having finite energy2. Furthermore, the

set of vectors in Kn with support cardinality less or equal k ≤ n is given by

Σn
k ∶= {x ∈ Kn ∣ ∣ supp(x)∣ ≤ k} (1.5)

and is called the set of k−sparse signals in Kn. As a generalization we will denote by

ℓ2k ∶= {x ∈ ℓ
2 ∣ ∣ supp(x)∣ ≤ k} = {x ∈ ℓ2I ∣ I ⊂ Z, ∣I ∣ ≤ k} (1.6)

1We will formulate all results for real and complex-valued signals K ∈ {R,C} as long as possible. Only if necessary
we will restrict ourselves to real-valued signals.

2Although, in most literature the p-norm index is used in the lower position, we will always refer by the lower index
to support restrictions, which are dominant in this thesis.
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Chapter 1. Introduction

the set of sequences with support cardinality not larger than k ∈ N. Finally let us introduce the
general p−norm for 1 ≤ p <∞ as

∥x∥p = (∫
R
∣x(t)∣pdt)

1/p
, ∥x∥p = (∑

k∈Z
∣xk∣p)

1/p

(1.7)

and the supremum norm

∥x∥∞ = ess sup
t∈R
∣x(t)∣ , ∥x∥∞ = sup

k∈Z
∣xk∣, (1.8)

where ess sup is the essential supremum up to sets of measure zero. The closure of the set of all
sequences x respectively measurable functions x having finite norms in (1.7) resp. (1.8) defines
the complete normed space (Banach space) ℓp respectively Lp. Moreover, for matrices X we
define the ∞−norm by using the multi-index k ∈ Z2 in the supremum. Whenever it is clear
from the context, the index in the norm and the scalar product will be omitted, see e.g. [You80;
Chr03].

For any subset X of a normed space X and for any subset I ⊂ R the elements x ∈ X with
support in I are denoted by

XI ∶= {x ∈X ∣ supp(x) ⊂ I} (1.9)

and for any positive numbers a ≤ b the shell with inner-radius a and outer-radius b is written
as

Xa,b ∶= {x ∈X ∣ a ≤ ∥x∥
X
≤ b} . (1.10)

Hence, for a = b = 1 we obtain the sphere X1,1 and for a = 0 the ball Xb with radius b in X .

1.2 Multiplication of Signals

Multiplication of signals in the engineering community is usually understood as a point-wise
multiplication in the Fourier domain by using the well known PARSEVAL relation, see e.g.
[OSB99]. In this work, a more general concept of multiplication will be introduced, given by bi-
linear maps. As a special bilinear map, the point-product in various bases will be investigated.

1.2.1 Bilinear maps

Let X ,Y and Z be arbitrary linear spaces (signal spaces) and consider a map

B∶X ×Y → Z . (1.11)

The mathematically most tractable non-linear “operation” between the signal space X and Y
is given by a bilinear map, see e.g. [Gre67]:

4



1.2. Multiplication of Signals

Definition 1 (Bilinear map). Let X ,Y andZ be linear spaces. Then a map B∶X × Y → Z
is called a bilinear map if for every fixed x ∈X and y ∈ Y the maps

B(x, ⋅)∶Y → Z

B(⋅, y)∶X → Z
(1.12)

are linear. For s, f, n ∈ N we denote a bilinear map B ∶ Ks × Kf → Kn by Bs,fn and if s = f = n
we write Bn.

Hence, for each fixed element (state) x respectively y the maps in (1.12) define a linear system.
Therefore, bilinear maps can be used to describe a linear system with infinitely many states. Let
us emphasize at this point that bilinear maps can map different linear spaces X /= Y into another
linear space Z , where the image Z = B(X ,Y ) is not necessarily a linear subset of Z . Exactly
this non linear mapping of linear structures can increase the complexity of the output signal set
Z dramatically. Therefore, the challenge taken on this thesis is to characterize the complexity
of the image and to find conditions for B,X ,Y to obtain a low-dimensional embedding of the
image.

By the definition of bilinear maps it is clear that the null set N (B) contains at least (0,Y ) ∪
(X ,0). Hence, the linear maps in (1.12) are only invertible if at least x /= 0 respectively y /= 0.
Before we start to characterize invertibility in this section, we will study the geometric and
algebraic structure of bilinear maps in more detail.

1.2.2 Geometric Structure

A direct consequence of (1.12) is the homogeneity and positive (absolute) homogeneity:

λB(x, y) = B(λx, y) = B(x,λy) for λ ∈ K (1.13)

λB(x, y) = B(λx, y) = B(x,λy) for λ ≥ 0. (1.14)

These properties define a linear cone respectively (positive) cone, see e.g. [Lue69].

Definition 2 (Cone). Let X be a linear space. A set X ⊂X is a linear cone, if for every x ∈X
it holds:

λx ∈X for all λ ∈ K (1.15)

and a cone, if it holds:

λx ∈X for all λ ≥ 0. (1.16)

Remark. Obviously, every linear cone is a cone, but not every cone is a linear cone. More-
over, our definition of a cone includes positive cones, negative cones, double cones and convex
cones.
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Chapter 1. Introduction

Since cones are not necessarily convex or linear, we have to define their convex hull and linear
hull, see for example [Web94].

Definition 3 (Convex set). Let X be a linear space. A set X ⊂X is convex, if and only if for
all x, y ∈X it holds

∀λ ∈ (0,1)∶λx + (1 − λ)y ∈X. (1.17)

Moreover, we define for any arbitrary subset X ⊂ Rn the convex hull by

co(X) ∶= {λx1 + (1 − λ)x2 ∣ x1, x2 ∈X,λ ∈ (0,1)} . (1.18)

The convex set X is k−dimensional, if the linear hull (span) of X

span(X) ∶= {
n

∑
i=0
λixi ∣ n ∈ N, xi ∈X,λi ∈ K} (1.19)

has dimension k.

Hence, we have with (1.13) the following important property for bilinear maps.

Lemma 1 (Linear Cone Invariance). Let B be a bilinear map and X ⊂ X or Y ⊂ Y linear
cones, then the image B(X,Y ) is again a linear cone in Z .

Remark. Note that even if X,Y are convex, then B(X,Y ) is not necessarily convex.

1.2.3 Algebraic Structure: Multiplication and Banach Algebra

In the special case where X = Y = Z are finite dimensional, every bilinear map

B = BX,X ∶X ×X →X (1.20)

defines a (product, binary operation) multiplication in X and hence an algebra B = (X ,B). If
X is a normed space, for example a finite dimensional Banach space, with norm ∥⋅∥

X
and there

exists β > 0, such that

∥B(x,y)∥
X
≤ β ∥x∥

X
∥y∥

X
for x,y ∈X , (1.21)

then B is isomorphic to a normed algebra, see for example [BD73; Pal94]. This is also valid for
infinite dimensional normed spaces. Hence we can define:

Definition 4 (Normed Algebra). Let X be a normed space with Norm ∥⋅∥
X

, then B = (X ,B)
is a normed algebra, if for the bilinear map B

∥B(x,y)∥
X
≤ ∥x∥

X
∥y∥

X
for x,y ∈X (1.22)

holds. Then ∥⋅∥
X

is called an algebra-norm and the bilinear map B is called a product or
multiplication in X .
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1.2. Multiplication of Signals

Indeed if the bilinear map fulfills (1.21), then it is also a continuous (bounded) map, see for
example [BD73, Prop.4], and we can always rescale the norm ∥⋅∥ to a ∥⋅∥0, such that (1.22)
holds [Kan08, Prop.1.1.1]. The property (1.22) is known as sub-multiplicativity of the norm, see
for example [Pal94; Kan08]. Since H = ℓ2[n] is with the 2−norm ∥⋅∥ a normed space and since
every bilinear map on a finite dimensional normed space X is bounded (continuous), we have
a normed algebra. For infinite dimensional normed spaces, the most prominent multiplication
is the convolution and the correlation (sesquilinear map for K = C), see for example [OSB99].
Here we write for sequences xk ∶= x(k).

Definition 5 (Convolution and Correlation). For p ≥ 1 the convolution for time-discrete signals
x ∈ ℓp,y ∈ ℓ1 and time-continuous signals x ∈ Lp, y ∈ L1 is defined by

(x ∗ y)(k) =∑
l∈Z
xlyk−l for all k ∈ Z, (1.23)

(x ∗ y)(t′) = ∫
R
x(t)y(t′ − t)dt for a.e. t′ ∈ R. (1.24)

The correlation is defined as

(x ⋆ y)(k) =∑
l∈Z
xlyk+l for all k ∈ Z, (1.25)

(x ⋆ y)(t′) = ∫
R
x(t)y(t′ + t)dt for a.e. t′ ∈ R. (1.26)

Indeed, the convolutions are well defined, since we have in the discrete case (discrete local
compact group, see for example [Rud62, Thm.1.1.6] and [Gar07, Thm.9.4.1] for 1 ≤ p ≤∞

∥x ∗ y∥p ≤ ∥x∥p ∥y∥1 for all x ∈ ℓp,y ∈ ℓ1 (1.27)

and in the time-continuous case it follows from the Minkowski integral inequalities, see for
example [SW71, Thm.1.3.]

∥x ∗ y∥p ≤ ∥x∥p ∥y∥1 for all x ∈ Lp, y ∈ L1. (1.28)

The same holds for the correlation, since ℓp and Lp are closed against complex conjugation and
time-reversal. The above convolution inequalities on local compact abelian groups, here R or
Z, are known as special cases from the well known YOUNG inequalities [You1912,You1913]
for 1 < q, p = r < ∞. Hence, for infinite dimensional spaces we have only for p = 1 a normed
convolution algebra (Banach algebra), see for example [LL01],[Rud62, Thm.1.1.7], which is in
strong contrast to finite dimensions, see next Section 1.3.1.

1.2.4 Inverse Elements

One of the main tasks in signal processing is the reconstruction of a signal from its measurement
(observation). For LTI systems (convolution systems) with X = Y = Z this is known as

7



Chapter 1. Introduction

deconvolution, i.e., by knowing the channel state y and observing the output z = x ∗ y, one has
to determine the corresponding transmitted signal x, such that

B(x, y) = z. (1.29)

In communication theory this is also known as equalization.

In terms of algebra a unique deconvolution corresponds to bijectivity of the left multiplication
Lx ∶= B(x, ⋅) and right multiplication Ry ∶= B(⋅, y) as defined in (1.12). If bijectivity of Lx and
Ry holds for every x, y ∈X , then B is called a divison algebra, see for example [Pal04]. Note
that in commutative algebras bijectivity of Lx for every x ∈ X implies bijectivity of Ry for
every y ∈ Y and vice versa. For finite-dimensional algebras with K = R it is known, that if B is
a division algebra, it has dimension either 1,2,4 or 8, i.e. is isomorphic to one of the following
algebras: R,C,H (Quaternions) or O (Octonions). Moreover, if the algebra is normed (Banach),
then the norm is multiplicative if

∥B(x,y)∥
X
= ∥x∥

X
∥y∥

X
for x,y ∈X (1.30)

and B is called an absolute-valued algebra, which is also a division algebra, see e.g. [Pal04].
This fundamental result from abstract algebra, shows that for dimension n > 8, deconvolution
can not be possible for every channel y! Hence, for a unique deconvolution (by knowledge
of one input), one either needs further constraints to determine the transmitted signal x or one
needs to classify (topological) sets X,Y ⊂ X , for which Lx respectively Ry are bijective (in-
vertible).

We will consider in the first part of this thesis, Chapter 2 and Chapter 3, the circular convolution
B = ⊛ on Kn or more generally the Fourier analysis on finite groups, which is isomorphic to a
finite-dimensional commutative unital Banach algebra on ℓ2[n] as shown in Lemma 3. For infinite
dimensional convolution algebras, i.e., infinite groups, things become more difficult [SS03].

1.2.5 Restricted Norm Multiplicativity

We will now formalize this idea and introduce a property for the triple (B,X,Y ) such that Lx

is invertible on Y for every x ∈ X and Ry is invertible on X for every y ∈ Y , as long as Y
respectively X are linear spaces.

Definition 6 (RNMP on X × Y ). Let be X ,Y ,Z normed spaces, X,Y be cones in X re-
spectively Y and α,β > 0. Then a bilinear map B∶X × Y → Z has the restricted norm
multiplicativity property (RNMP) on X × Y with bounds 0 < α ≤ β <∞ if

α ∥x∥
X
∥y∥

Y
≤ ∥B(x, y)∥

Z
≤ β ∥x∥

X
∥y∥

Y
for all x ∈X,y ∈ Y (1.31)

holds.
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1.2. Multiplication of Signals

Remark. If α = β = 1, then the norm is called multiplicative and we locally have an absolute-
valued property as in an absolute-valued algebra. Since this, as mentioned earlier, is not the case
in general on the whole space, but rather on restricted subsets X,Y , the authors called this in
[WJ12b] the restricted norm multiplicativity property (RNMP) of B on X × Y . The definition
by cones is in fact no restriction, since for any sets X,Y we can extend the RNMP due to the
bilinearity of B to cones, by defining X ′ ∶= {λX ∣ λ > 0} without changing the bounds α,β.
The RNMP refers in a certain form to the complement of the set of topological divisor of zeros
as used in algebra, see for example [BD73, Def.12, §2], with the distinction that the Cartesian
product X × Y is not required to have any linear or convex structure.

The following questions pop up immediately:

1. Which multiplications B have the RNMP on some linear subspaces X,Y ⊂X ?

2. How can we find the “largest” RNMP cones X and Y for fixed B?

3. If B has the RNMP on X,Y ⊂X , does this imply B(X,Y ) = B(span(X), span(Y ))?

The last can infact generally be answered in the negative. Even if we select the largest possible
RNMP pair (X,Y ), there could exist pairs (x,y) /∈ X × Y with B(x,y) ∈ B(X ,Y ) but not
in Z = B(X,Y ). In other words, the pre-image set O ⊂ X × Y does not have to be a Cartesian
product of two sets. On the other hand, we can project O on the Cartesian product PXO ×PYO
by defining the projection operators PX ∶ X × Y → X respectively PY . Since the Cartesian
product is not a normed space we define O1,1 ∶= {o ∈ O ∣ ∥PXo∥ = 1 = ∥PY o∥}. Therefore,
we can define a general RNMP as in [WJ12b], which maximizes the possible range of cones
X,Y .

Definition 7 (General RNMP on X × Y ). Let be X ,Y ,Z normed spaces, X,Y cones in X
respecitvely Y and α,β > 0. Then a bilinear map B∶X × Y → Z has the general RNMP on
X × Y with bounds 0 < α ≤ β <∞ if

0 < α ∶= sup
O⊂X×Y

B(O)=B(X,Y )∖{0}

inf
(x,y)∈O1,1

∥B(x, y)∥
Z

(1.32)

and

β ∶= sup
(x×y)∈X1,1×Y 1,1

∥B(x, y)∥
Z

(1.33)

holds.

Essentially, the implicit definition by such a set O would remove the redundancy in representing
B(X,Y ), i.e., it would remove unnecessary direction pairs inX×Y . But the exact determination
of the set O is maybe impossible and would depend on B as well as on the cones X and Y .

In finite dimensions the bilinear map is always bounded, i.e., a bound β < ∞ exists. However,
if the bilinear map is bounded, the infimum in (1.32) is attained for some (x̂, ŷ) due to the
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Chapter 1. Introduction

compactness of X1,1 ×Y 1,1. Then, whenever X,Y are convex (uncountably many elements) an
element on the nullset can be arbitrarily closely approximated by a sequence {(xn,yn)} ⊂X×Y
and a bound α > 0 would never exist. Let us investigate therefore an example for cones X,Y
with finitely many directions, in order to illustrate and justify this general definition.

Example. Assume X = {λx ∣ λ ∈ K,x ∈ {x1,x2}} ⊂ R2 and Y = {λy ∣ λ ∈ K,y ∈ {y1,y2}} ⊂
R2. Hence X,Y are linear cones in R2 with exactly two directions. Let us define the bilinear
map B ∶ R2 × R2 → R4 by

B(x,y) =
⎛
⎜⎜⎜
⎝

x0 0 x1 0
0 x0 0 x1
x2 0 x0 0
0 x1 0 x0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

y0
0
y1
0

⎞
⎟⎟⎟
⎠
∈ R4. (1.34)

Clearly, B is left linear, since x comprise a matrix (linear map) and right linear, since we have
for fixed x, x̃,y ∈ R2

B(x + x̃,y) =
⎛
⎜⎜⎜
⎝

x0 + x̃0 0 x1 + x̃1 0
0 x0 + x̃0 0 x1 + x̃1

x1 + x̃1 0 x0 + x̃0 0
0 x1 + x̃1 0 x0 + x̃0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

y0
0
y1
0

⎞
⎟⎟⎟
⎠

(1.35)

=
⎛
⎜⎜⎜
⎝

x0 0 x1 0
0 x0 0 x1
x1 0 x0 0
0 x1 0 x0

⎞
⎟⎟⎟
⎠
y +
⎛
⎜⎜⎜
⎝

x̃0 0 x̃1 0
0 x̃0 0 x̃1
x̃1 0 x̃0 0
0 x̃1 0 x̃0

⎞
⎟⎟⎟
⎠
y = B(x,y) + B(x̃,y). (1.36)

Let x1 = (1,1)T ,x2 = (−2,1)T ,y1 = (0.5,−0.5)T ,y2 = (2,1)T , then we get the following
image points

B(x1,y1)=0,z1=B(x1,y2) =
⎛
⎜⎜⎜
⎝

3
0
3
0

⎞
⎟⎟⎟
⎠
,z2=B(x2,y1) =

⎛
⎜⎜⎜
⎝

−3
2
0
3
2
0

⎞
⎟⎟⎟
⎠
,z3 = B(x2,y2) =

⎛
⎜⎜⎜
⎝

−3
0
0
0

⎞
⎟⎟⎟
⎠
, (1.37)

where z1,z2,z3 are three different directions (distinct elements in the Grassmanian G1,4), see
Fig. 1.1. Hence, we need to represent three directions by X and Y , but they cannot be written
as a Cartesian product of smaller cones in X and Y .

As mentioned before, the non-Cartesian set O ⊂ X × Y can be always projected to OX and
OY . Hence OX ,OY are the minimal cones to represent the image, i.e. B(OX ,OY ) = B(X,Y ).
For our example we have O = {(x1,y2), (x2,y1), (x2,y2)}, see Fig. 1.1. We will use this
construction later in the proof of Lemma 5.

Moreover, such a set O in general lacks linear or convex properties. For practical use it is often
easier to derive the RNMP for convex cones or linear subspaces X,Y .
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1.3. Finite Point Products

Figure 1.1: Example for the RNMP on a non-Cartesian product.

Therefore, the main task in this thesis is to find a fixed multiplication and hence algebra, the
largest possible family of invertible linear systems. Unfortunately, since invertibility of linear
maps is usually defined on linear sets, non-linear restrictions seem to be pathological. On the
other hand, from a geometric point of view, the RNMP on convex cones can be used to obtain
sharp covering results for non-linear images, as derived in Chapter 3.

1.3 Finite Point Products

We will start with the simplest non-trivial multiplication, the point product in finite dimension:

⊙∶Kn × Kn → Kn

(x,y)↦ x⊙ y = (x1y1, . . . , xnyn)T
(1.38)

which defines a commutative multiplication in Kn. Moreover, the vector 1 = 1n ∶= (1,1, . . . ,1)T
is the unit element in B⊙n = (Kn, ∥⋅∥ ,⊙), defining a commutative normed algebra with unit.
Changing to different bases {uk}n−1k=0 and {wk}n−1k=0 we loose commutativity for the unitary basis
transformations U∗ = (u0 . . .un−1) and W∗ = (w0 . . .wn−1) with

x ∼⊙ y =Ux⊙Wy, (1.39)

since Ux /= Wx for some x ∈ Kn. On the other hand, for U = W commutativity is pre-
served. Hence, we define the (normalized) generalized commutative point product by unitary
(n × n)−matrices U and V as

x ⊙ y ∶= 1√
n ∥U∥∞

V(Ux⊙Uy), (1.40)

with the maximum3 norm ∥U∥∞ ∶= maxi,j ∣uij ∣. Commutativity holds by Ux ⊙Uy = Uy ⊙
Ux (commutativity of the point product). Before we prove general ℓ2−norm inequalities, we

3The supremum can be substituted on finite sets by the maximum.
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introduce the counterpart of the identity matrix, the (discrete) Fourier matrix F ∶= Fn ∈ Cn×n

with elements (F)lk = 1√
n
e−2πı

lk
n for l, k ∈ [n].

Lemma 2 (RNMP for Sparse Point Products). Let s, f, n be natural numbers with s ≤ f ≤ n,
and ⊙ as in (1.40) for some unitary matrices U and V, then

1

n ∥U∥∞
∥x∥ ∥x∥ ≤ ∥x ⊙ x∥ for all x ∈ Σs, (1.41)

√
s

n
∥x∥ ∥y∥ ≥ ∥x ⊙ y∥ for all x ∈ Σs,y ∈ Σf . (1.42)

Remark. The lower bounds are sharp for some y = x ∈ Σs and U = F respectively U = 1n. The
upper bound is attained for U = F and U = 1n with some supp (x) = I, supp (y) = J only in
the special cases with ∣I ∣ = 1, ∣J ∣ ≤ n and ∣I ∣ ≤ n, ∣J ∣ = n.

Proof. Using (1.40) and unitarity of V we get for the ℓ2-norm ∥⋅∥ of the product

∥x ⊙ y∥2 = 1

n ∥U∥2∞
∥Ux⊙Uy∥2 = 1

n ∥U∥2∞

n−1
∑
i=0
∣(Ux)i∣2∣(Uy)i∣2. (1.43)

Using the HÖLDER inequality, see for example [Web94, Cor. 5.2.6], with p = 1 and q = ∞ we
get ∣(Ux)i∣2 = ∣⟨x,ui⟩∣2 ≤ ∥x∥21 ∥ui∥2∞ for each i ∈ [n]. This yields the upper bound

∥x ⊙ y∥2 ≤
∥x∥21

n ∥U∥2∞
∑
i

∥ui∥2∞ ∣(Uy)i∣2 (1.44)

≤ 1

n
∥x∥21 ∥y∥

2 . (1.45)

The upper bound (1.45) follows from the sparsity of x by

∥x ⊙ y∥2 ≤ s
n
∥x∥2 ∥y∥2 , (1.46)

where equality is obtained for U = F if x ∈ Σ1 and supp(y) = [n] or if ∣ supp(x)∣ = f . To
see this, we first note, that (1.44) becomes an equality for U = F. The last inequality is sharp
only for those x which are constant on their support of length s. Now, the first inequality (1.44),
involves U and x and yields equalities only if x ∈ Σ1. The other case, follows directly from

∥Fx⊙Fy∥2 =∑
i

∣(Fx)i∣2∣(Fy)i∣2 = ∣(Fx)0∣2, (1.47)

since for yi = 1/
√
n for all i ∈ [n] we have (Fy)i = δi0. Then with xi ≥ 0 for i ∈ I we get

RRRRRRRRRRRR

1√
n
∑
i∈[n]

xie
2πı i⋅0

n

RRRRRRRRRRRR

2

= 1

n
∣∑
i∈I
xi∣

2

= 1

n
(∑

i

∣xi∣)
2

= 1

n
∥x∥21 ∥y∥

2 ≤ s
n
∥x∥2 ∥y∥2 , (1.48)
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1.3. Finite Point Products

where in the last step equality holds if only if xi = 1/
√
s for i ∈ I . This shows, that the upper

bound is not sharp if ∣ supp(x)∣ = s, ∣ supp(y)∣ = f with 1 < s, f < n!

The lower bound for x = y follows from the CAUCHY-SCHWARTZ inequality, see for example
[Web94], since and ∥1∥2 = n by

∥x ⊙ x∥2 = 1

n ∥U∥2∞

n−1
∑
i=0
∣(Ux)i∣4 =

1

n2 ∥U∥2∞
∥1∥2 ∥∣Ux∣2∥2 (1.49)

≥ 1

n2 ∥U∥2∞
∣ ⟨1, ∣Ux∣2⟩ ∣2 = 1

n2 ∥U∥2∞
∥Ux∥4 = 1

n2 ∥U∥2∞
∥x∥4 (1.50)

for every x ∈ Kn. The last equality follows by the unitary property of U. If x is a Euclidean unit
vector, i.e., for some i ∈ [n] we set x = ei and U = 1n, then we get equality since ∥x ⊙ x∥ = 1.
Setting x = 1/

√
n yields equality for U = F with ∥x ⊙ x∥ = 1/

√
n.

Remark. Note that a lower bound strictly larger than zero for arbitrary x /= y ∈ Kn only exists if
Ux and Uy are disjoint. If the support sets intersects in exactly one index, then there exist for
each ϵ > 0 normalized vectors with ⟨x,y⟩ = ϵ, resulting in α = ϵ.

Hence, for k = n we have with (Kn, ∥⋅∥ , ⊙ ) a commutative normed algebra with unit.

Corrolary 1. The generalised commutative point product in (1.40) defines a commutative
normed algebra (ℓ2[n], ⊙ ).

1.3.1 Circular Convolution and Correlation

In this work we will focus on circular (cyclic) convolution type systems, see for example
[OSB99], [Chu08].

Definition 8 (Circular Convolution and Correlation). The circluar convolution⊛ and the circular
correlation ⍟ on Kn are given for x,y ∈ Kn component-wise by

(x⊛ y)l =
n−1
∑
k=0

xkyl⊖k for l ∈ [n], (1.51)

(x⍟ y)l =
n−1
∑
k=0

xkyl⊕k for l ∈ [n], (1.52)

with the modulo−n addition ⊕ given for l, k ∈ Z by

l ⊕ k ∶= l + k mod n = (l + k) − ⌊ l + k
n
⌋n, (1.53)

with inverse operation l ⊖ k ∶= l ⊕ (−k) and floor operation ⌊a⌋ ∶=maxn∈Z{n ≤ a}.
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Let us define the circulant matrix Y ∶= circ(y), see for example [Dav79, (3.1.1)], generated by
y and powers of the right shift-matrix S (permutation matrix) as

Y =
⎛
⎜⎜⎜
⎝

y0 y1 ⋯ yn−1
yn−1 y0 ⋯ yn−2
⋮ ⋱ ⋮
y1 y2 ⋯ y0

⎞
⎟⎟⎟
⎠
=∑

i

yiS
i with S ∶=

⎛
⎜⎜⎜
⎝

0 1 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1
1 0 ⋯ 0

⎞
⎟⎟⎟
⎠

and S0 = 1n. (1.54)

Then we can write the convolution (1.51) in matrix form as

x⊛ y =YTx, (1.55)

where YT is the transpose of Y given by

YT =
⎛
⎜⎜⎜
⎝

y0 yn−1 ⋯ y1
y1 y0 ⋯ y2
⋮ ⋱ ⋮

yn−1 yn−2 ⋯ y0

⎞
⎟⎟⎟
⎠
=∑

i

yiS
−i. (1.56)

Note that S−1 = ST is the left shift-matrix. We will need the following properties of the Fourier
matrix, see for example [Dav79, p.33].

Proposition 1 (Fourier matrix).

F∗ = F , FT = F , (F∗)T = F∗ (symmetry) (1.57)

FF∗ = F∗F = 1n ∶=
⎛
⎜⎜⎜
⎝

1 0 . . . 0
0 1 . . . 0
⋮ ⋱ ⋮
0 0 . . . 1

⎞
⎟⎟⎟
⎠

(unitary) (1.58)

F2 = (F∗)2 = Γ ∶=
⎛
⎜⎜⎜
⎝

1 0 . . . 0
0 0 . . . 1
⋮ ⋰ ⋮
0 1 . . . 0

⎞
⎟⎟⎟
⎠

(time-reversal) (1.59)

(F∗)4 = F4 = Γ2 = 1n (involution). (1.60)

One of the remarkable properties of circulant matrices, is its diagonalization by the Fourier
matrix, i.e., all circulant matrix share the same set of eigenvectors, see for example [Dav79,
Thm. 3.2.2], given by

Y =
√
nF∗diag(F∗y)F (1.61)

In fact, (1.61) serves as a definition for circulant matrices, see for example [Dav79, Thm. 3.2.3].
For any λ ∈ Cn it holds for the diagonal matrix diag(λ)

Γdiag(λ)Γ = Γ
⎛
⎜⎜⎜
⎝

λ0 0 ⋯ 0
0 0 . . . λ1
⋮ ⋰ ⋮
0 λn−1 ⋯ 0

⎞
⎟⎟⎟
⎠
= diag(Γλ) (1.62)
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1.3. Finite Point Products

and we get for the transpose of Y:

YT = (
√
nF∗diag(F∗y)F)T =

√
nFT diag(F∗y)F∗T (1.63)

(1.57)→ =
√
nFdiag(F∗y)F∗ (1.64)

(1.60)→ =
√
nFΓΓdiag(F∗y)ΓΓF∗ (1.65)

(1.62)→ =
√
nFΓdiag(ΓF∗y)ΓF∗ (1.66)

(1.57), (1.59)→ =
√
nF∗diag(Fy)F. (1.67)

Hence, YT is also a circulant matrix generated by Γy, with the eigenvalues λ =
√
nFy. We can

hence write the circular convolution as a point product:

x⊛ y ∶=YTx =
√
nF∗diag(Fy)Fx =

√
nF∗(Fy ⊙Fx) =

√
nF∗(Fx⊙Fy) = y ⊛ x (1.68)

which establishes the commutativity. Note that this is not present for the circular correlation (the
right shift with complex conjugated y), since

x⍟ y ∶=Xy =
√
nF∗diag(FΓx)Fy =

√
nF∗(FΓx⊙Fy) = Γx⊛ y. (1.69)

The difference between convolution and correlation is therefore reflected by commutativity re-
spectively non-commutativity of the associated algebra.

Lemma 3. The normalized circular convolution ⊛ and correlation ⍟

⊛(x,y) = F∗(Fx⊙Fy) (1.70)

⍟(x,y) = F∗(F∗x⊙Fy). (1.71)

with involution (vector)

∗ ∶ Kn → Kn

x↦ x∗ = Γx
(1.72)

define a finite dimensional convolution algebra B
⊛
n = (ℓ2n,⊛,∗ ) over K ∈ {C,R}, which is a

(i) commutative,

(ii) unital, i.e., there exists a unique unit e0 ∶= (1,0, . . . ,0)T with ∥e0∥ = 1,

(iii) associative and a

(iv) normed ∗−algebra.

The correlation algebra B
⍟
n = (ℓ2n,⍟,∗ ) is non-commutative and has no unit element for K = R

and K = C.
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Chapter 1. Introduction

Proof. Obviously ∥F∥∞ = ∥F∗∥∞ = maxl,k ∣e−2πı
lk
n /
√
n∣ = 1/

√
n. By Corollary 1 we obtain a

commutative Banach algebra for the product in (1.70), which proves (i). Since F∗F = 1n and
Fe0 = n−1/21 we have e0⊛y = F∗Fy = y and by commutativity y⊛e0 = y, which shows (ii).
Associativity (iii) follows from the point product and unitary property of F. Indeed, (1.72)
defines an involution, see for example [Grö01], since

(x∗)∗ = ΓΓx = ΓΓx = 1nx = x. (1.73)

Moreover, we get

(x⊛y)∗ = ΓF∗(Fx⊙Fy) (1.74)

= ΓF(Fx⊙Fy) (1.75)

= F∗(FΓx⊙FΓy) (1.76)

= F∗(Fx∗⊙Fy∗) = y∗⊛x∗. (1.77)

Note, that λ∗ = λ and hence making the normed algebra B
⊛
n to a normed ∗−algebra (iv), see

for example [Pal94].

Remark. The point product ⊙ does not have a normalized unit in ℓ2[n], since the unit 1 is unique
and has norm ∥1∥ =

√
n. Moreover, it is not possible to scale the point product to obtain a unital

normed algebra, since it destroys the normed algebra property (1.22). Instead, one has to scale
the norm.

1.4 Semi-Discrete Convolution

In the last chapter, we will deal with infinite dimensional Hilbert spaces. As already mentioned,
convolution does not yield Banach algebras in the ℓ2 or L2-norm for infinite dimensions. One
way to control the energy of the output signal is to convolve compactly supported signals p ∈ L2

T

with sequences c ∈ ℓ2, see [Boo87].

Definition 9 (Semi-discrete Convolution). Let be q ≥ 2 and T ⊂ R a compact subset, then we
define the semi-discrete convolution on ℓq ×L2

T by

(p ∗′ c)(t) =
∞
∑

k=−∞
ckp(t − k) for t ∈ R. (1.78)

We will show in Chapter 4, that indeed under some more restrictions on p, the semi-discrete
convolution generates time-continuous signals in L2, see [AU94]. Here, we have to deal with
convergence problems, since infinite point products or general products on infinite groups need
not converge in the same space.
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2 Sparse and Restricted Multiplications

In this chapter we will consider signals x ∈ ℓ2 with support length not larger than n. Hence we
can identify the signals with finite dimensional vectors in Kn and refer by Bn = (Kn, ∥⋅∥ ,Bn) to
an n−dimensional normed algebra over K.
Applying further sparsity constraints to the input signals we end up with a sparse multiplication
in n dimensions.

Definition 10 (Sparse Multiplication). Let s ≤ f ≤ n be integers and Bn a multiplication in Kn,
then we call

Bn(Σn
s ,Σ

n
f ) = ⋃

I,J⊂[n]
∣I ∣≤s,∣J ∣≤f

Bn(Kn
I ,K

n
J) with Kn

I = span
i∈I
{ei} , Kn

J = span
j∈J
{ej} (2.1)

the (s, f)−sparse multiplication set generated by Bn, i.e., the set of multiplications of all s sparse
and f sparse vectors in the Euclidean basis.

Remark. To obtain sparse multiplication in another basis, we can simply apply unitary transfor-
mations to Σn

s and Σn
f and obtain a new multiplication B′n, see (1.40).

2.1 Representation and Stable Embedding

For describing an arbitrary signal set Z a representation is needed, which is given by a map A
and a set U , called the pre-image of Z underA. A stable representation is given by an invertible
mapping (one-to-one), which preserves the distance inU up to a controllable distortion factor. To
define such properties a metric d on U and a metric ρ on Z is needed, see for example [AMR02].
The pair (U,d) then is called a metric space. Note, that this is not necessarily a linear space! In
Banach geometry, the property of preserving distance is know as quasi-isometry, near-isometry
or simply (1 + δ)−isometry (or δ−embedding), see for example [Mat02]. In signal processing
one is faced with the problem of a robust or stable reconstruction of the signals, where stability
refers to an embedding (sampling) which is stable against Gaussian noise. Therefore, the metric
of choice is the Euclidean metric

dE(x,y) = ∥x − y∥ (2.2)

given by the ℓ2−norm. Whenever distance, measuring in our case in the ℓ2−norm, is almost
preserved by the mapping we call the map A a stable embedding. See also [BCW10] for linear
embeddings and [IM04] for δ−embedding in metric spaces.
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Chapter 2. Sparse and Restricted Multiplications

Definition 11 (Stable embedding). Let U ⊂ Kn, δ ∈ (0,1) and A∶Kn → Km a map. Then A is a
δ−stable embedding of U in Km, if and only if

(1 − δ) ∥u1 − u2∥ ≤ ∥A(u1 − u2)∥ ≤ (1 + δ) ∥u1 − u2∥ for u1,u2 ∈ U. (2.3)

Remark. Note, that neither U norA need to have linear structures, i.e. there could exist u1,u2 ∈
U with u1 − u2 /∈ U and A(u1 − u2) /= A(u1) −A(u2).

In principle, there are two possibilities to represent Z in a linear fashion: either we linearize
X × Y by the direct sum and use a non-linear map for representing the image Z or lifting
X × Y to the s × f matrices, then Z is the image of all rank−1 matrices under a linear map,
see Fig. 2.2. In both cases, we need a norm and hence a vector space. Note that all norms on
finite dimensional spaces are equivalent (up to multiplication constants), hence it actually does
not matter which norm we choose.

2.1.1 Lipschitz Embedding

The linear space with the smallest dimension generated by Ks and Kf is the direct sum

Ks ⊕ Kf ∶= {λ(x1

y1
) + µ(x2

y2
) = (λx1 + µx2

λy1 + µy2
) ∣ x1,x2 ∈ Ks,y1,y2 ∈ Kf , λ, µ ∈ K} . (2.4)

The map in (2.4) is a one-to-one mapping between Ks×Kf and Ks⊕Kf . We can define a Hilbert
space by the usual scalar product with the induced euclidean metric as

dE(u1,u2) =
√
∣ ⟨u1 − u2,u1 − u2⟩ ∣ = ∥u1 − u2∥ for u1,u2 ∈ Ks ⊕ Kf , (2.5)

which also defines a product topology, see for example [Wer02, p.35]. Hence, if we define the
map

ψ∶Ks ⊕ Kf → Kn

u↦ ψ(u) ∶= Bs,fn ((u0, . . . , us−1)T , (us, . . . , us+f−1)T ),
(2.6)

we can represent Z by an s+ f dimensional parameter space Ks+f ∶= Ks ⊕Kf ! But to guarantee
preservation of the distance by ψ in Z, one needs a stable embedding (2.3), i.e.

1

α
∥u1 − u2∥ ≤ ∥ψ(u1) − ψ(u2)∥ ≤ α ∥u1 − u2∥ for u1,u2 ∈ Ks+f , (2.7)

for some α > 0. The map ψ is then called an α−bi-Lipschitz map, see e.g.
[Rob09],[HK99],[ALN08],[Ver11]. In fact, it is easy to show, that ψ defined by the bilinear
map in (2.6) is never a stable embedding, since for non-zero u1 = (x,0f)T ,u2 = (0s,y)T one
always gets

∥u1 − u2∥ = ∥x∥2 + ∥y∥2 > ∥Bs,fn (x,0f) − Bs,fn (0s,y)∥ = ∥0 − 0∥ = 0. (2.8)

This is inherited due to the non-trivial “nullset” of Bs,fn , which contains (0s,Kf)∪(Ks,0f), i.e.,
ψ is not injective. Note, that ψ does not define a linear map. Hence one has to exclude at least
the nullspace, to obtain injectivity of ψ.
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2.1. Representation and Stable Embedding

2.1.2 Injectivity, Unicity and Bilinear Maps

Figure 2.1: No injectivity for bilinear maps.

Although ⊕ and vec are one-to-one and hence invertible, the invertibility of the chain in Fig. 2.2
will be annihilated by the missing injectivity of the bilinear maps, preventing a stable embedding,
since it holds for (x,y) ∈ Ks × Kf and any t /∈ {0,1}

Bs,fn (x,y) =
t

t
Bs,fn (x,y) = Bs,fn (tx,y/t), (2.9)

but (x,y) /= (tx,y/t). In other words, for any image point z there exists an uncountable set of
representation points given by the map

γ(t) = (tx,y/t) for t ∈ R ∖ 0. (2.10)

This in fact, defines two paths on a hyperbola for any t0 > 0

γ+(t) = γ(t) for t ∈ [t0,1/t0]
γ−(t) = γ(t) for t ∈ [−1/t0,−t0],

(2.11)

see Fig. 2.1. Obviously, for every (x,y) pair, there exists two representation pairs, having the
smallest distance to the origin, measured in the ℓ2−norm of K⊕K. This minimum is attained for
t̂ =
√
∥y∥ / ∥x∥ by

γ(t̂) =
⎛
⎜
⎝

¿
ÁÁÀ∥y∥
∥x∥

x,

¿
ÁÁÀ∥x∥
∥y∥

y
⎞
⎟
⎠

(2.12)

lying on the green axial line in Fig. 2.1 with distance to the origin

∥γ(t̂)∥ =
√
∥y∥ ∥x∥ + ∥y∥ ∥x∥ =

√
2 ∥y∥ ∥x∥. (2.13)

Hence, any pair on the green line, is unique up to a global sign. The length of z can then be
scaled by some a > 0 which defines another hyperbola. So the whole linear cone span(z) is
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Chapter 2. Sparse and Restricted Multiplications

represented by span(x)⊕ span(y). If we expand this to K = C, the green line becomes a plane
in a 4−dimensional space (C ≃ R2), where the representation points are on a sphere with radius√
2 ∥y∥ ∥x∥ represented by the global phase eiω.

This brings us to the following definition:

Definition 12 (Unicity). Let be U,V linear spaces. We call a map A ∶ U → V unique up to a
global phase eıω with ω ∈ [0,2π) if

∀u1,u2 ∈ U ∶A(u1) = A(u2)⇔ u1 = eıωu2 (2.14)

holds. We also denote this as the unicity property of A.

Remark. The definition is borrowed from [CSV12, p.3].

To obtain uniqueness for a bilinear map, we have to restrict one input to the sphere. Hence x,y
defines z up to a phase

A∶X1,1 × Y → Kn

(x,y)↦ A(x,y) ∶= B(x,y).
(2.15)

But obviously, A is not anymore a bilinear map, since it does not fulfill property (1.12).

2.1.3 Linear Embedding (Lifting Technique)

The natural way to get rid of the unicity problem is the tensor calculus, see for example [Gre67].
Here, we can lift a bilinear map ⊗, called the tensor map, into an s ⋅ f dimensional linear space
Ksf ∶= Ks ⊗ Kf , called the tensor space of Ks and Kf . Defining the usual scalar product in
Ksf , the tensor space becomes a Hilbert space. The tensor calculus ensures the existence of a
unique matrix B in the canonical basis1, which represents Z in a linear fashion as the image
of all simple tensors K1 = ⊗(Ks,Kf) ⊂ Ks ⊗ Kf . Moreover, K1 is isomorphic to all rank−1
matrices

M1 ∶= {xy∗ ∣ x ∈ Ks,y ∈ Kf} ⊂ Ks×f (2.16)

by the isomorphism2

vec(xy∗) = (x1y1, . . . , x1yf , x2y1, . . . , x2yf , . . . , xsy1, . . . , xsyf)T =∶ x⊗ ȳ. (2.17)

Hence, the hyperbola in (2.11) is mapped to the tensor u = x ⊗ y. The span is exactly a one-
dimensional subspace in Ksf and corresponds to span(x) ⊕ span(y) in the previous section.
Moreover, we can identify span(x⊗ y) by an element in the projective space KPsf−1, which is

1Canonical refers here to the Euclidean basis E = {e0, . . . ,en−1}, but any other fixed basis would also do.
2This is again a bilinear map and ⊗ ○ vec−1 defines just another tensor product.
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2.1. Representation and Stable Embedding
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(b) Lifting to tensor space.

Figure 2.2: Direct sum and tensor space linearization of Bs,fn

equivalent to the Grassmanian manifold G(1, sf), the set of all one dimensional subspaces in
Ksf , see for example [Lee13]. Then the matrix B transforms to the linear map B = Bn∶Ks×f →
Kn, see Fig. 2.2b. This linearization via tensor calculus was recently used in low-rank matrix
recovery and is known as “lifting” [RFP10; CSV12].

Unfortunately, K1 and M1 are not linear spaces, but the span K = Ksf and M = Ks×f , which
are by definition the smallest linear spaces containing K1 respectively M1. Note, by defining
the equivalence relation u ∼ ũ ⇔ u = tu for some t ∈ K the set K1/ ∼ is the Grassmanian
G(1, sf). Defining the Frobenius norm (Schatten−2 norm) for s × f matrices by

∥U∥F ∶=
⎛
⎝

min{s,f}−1
∑
k=0

σk(U)2
⎞
⎠

1/2

for U ∈ Ks×f , (2.18)

where σk(U) denotes the k−largest singular value of U, see e.g. [HJ90, p.421]. One can easily
show that the Frobenius and the Euclidean norm define a cross norm on Ks×Kf , since it holds

∥xy∗∥F = ∥x∥ ∥y∥ = ∥x⊗ y∥ . (2.19)

Moreover, the map vec in (2.17) is isometric, see for example [Gre67], and hence Ksf is iso-
morph to Ks×f . In terms of low-rank matrix recovery, Bm represents linear (random) mea-
surements of low-rank matrices U ∈ Ks×f for some m ≤ n and the question arises, whenever
from Bm(U) ∈ Km a reconstruction of U is possible. A stable embedding of M1 in Km would
guarantee a unique reconstruction of all matrices in M1, i.e., we have to show the existence of
α,β > 0 s.t.

α ∥U1 −U2∥F ≤ ∥Bm(U1 −U2)∥ ≤ β ∥U1 −U2∥F for U1,U2 ∈M1. (2.20)

In [RFP10, Def.3.1] this is called the (asymmetric) restricted isometry property (RIP) of B for
rank−2 matrices3. Hence, the RIP of Bm on M2 guarantees a stable embedding of M1 in Km.

If we express the middle term by our bilinear map, we get for U1 = x1y
∗
1 ,U2 = x2y

∗
2 ∈M1

∥B(x1,y1) − B(x2,y2)∥ = ∥B(x1y
∗
1) −B(x1y

∗
2)∥ = ∥B(x1y

∗
1 − x2y

∗
2)∥ , (2.21)

3In [RFP10] the map B is denoted with A.
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Chapter 2. Sparse and Restricted Multiplications

but B(x1,y1) − B(x2,y2) /= B(x1 − x2,y1 − y2). This is also seen in the cross norm

∥x1 − x2∥ ∥y1 − y2∥ = ∥(x1 − x2)(y1 − y2)∗∥ /= ∥x1y
∗
1 − x2y

∗
2∥ . (2.22)

Hence, our bilinear embedding has two problems:

1. For any linearization method, we do not get rid of the injectivity problem, i.e., neither
ψ ∶ Ks+f → Kn nor ⊗ ∶ Ks × Kf →K1 is injective.

2. The RNMP on X × Y cannot control differences.

Hence we cannot use the RNMP for a stable embedding without further restrictions, since dif-
ference in Ks and Kf does not correspond to difference in Z or K 1. In the next section we will
investigate these properties of bilinear maps in more detail and show a stable embedding result
for quadratic maps.

2.1.4 RNMP and Stability

In this section we will use a more abstract definition of stability and injectivity in terms of
unicity. Let us first define the symmetry property for arbitrary maps.

Definition 13. Let X and Y be arbitrary sets. Then the map

C∶X ×X → Y , (x,y)↦ C(x,y) (2.23)

is called symmetric if it holds

C(x,y) = C(y,x) for x,y ∈X. (2.24)

Moreover, C is called a symmetric homomorphisms, if for each x respectively y the maps C(x, ⋅)
and C(⋅,y) are homomorphism between the groups (X,+) and (Y,+).

Let us call the map A(x) ∶= C(x,x) from X to Y defined by a symmetric homomorphism C a
quadratic map. It then holds the relation:

A(x1) −A(x2) = C(x1,x1) − C(x2,x2) + C(x1,x2) − C(x1,x2) (2.25)

Homomorphism→ = C(x1,x1 + x2) − C(x2 + x1,x2) (2.26)

Symmetry→ = C(x1 − x2,x1 + x2). (2.27)

If X and Y are subsets of normed linear spaces X respectively Y , then the RNMP for C on
X ×X corresponds to a stability property of A up to global sign. This is a weakened notion of
stability as defined in Definition 11.
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2.1. Representation and Stable Embedding

Definition 14 (Stability up to global sign). Let X ,Y be normed spaces, X some arbitrary
subset in X and C a symmetric homomorphism. Then the map

A∶X → Y , x↦ A(x) = C(x,x) (2.28)

is called stable on X up to global sign if there exist a constant c > 0 such that it holds

∥A(x1) −A(x2)∥ ≥ c ∥x1 − x2∥ ∥x1 + x2∥ for x1,x2 ∈X. (2.29)

Remark. ELDAR and MENDELSON [EM12] called this stability ofA (up to a global sign) for the
real case. Moreover, stability implies injectivity of A on X , which is a much weaker property
than stability. Note that their definition refers to a quadratic map without further restriction,
which only makes sense for K = R.
However, a generalization to the complex case was done recently by EHLER, FORNASIER and
SIGL for finite dimensions in [EFS13], but with the ℓ2−norm substituted by the Hilbert Schmidt
(Frobenius) norm:

n−1
∑
i=0
∣∣ ⟨ai,x1⟩ ∣2 − ∣ ⟨ai,x2⟩ ∣2∣ ≥ c ∥x1x

∗
1 − x2x

∗
2∥F . (2.30)

Hence it cannot be distinguished between units of modulus.

We will discuss our general approach in Section 2.3 and give an explicit application to the Phase
Retrieval problem. Indeed, by demanding the symmetry condition and the explicit definition in
(2.28), we can obtain stability up to a global sign even in the complex case.
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Chapter 2. Sparse and Restricted Multiplications

2.2 RNMP for the Discrete Convolution

In this section, we will prove a fundamental norm inequality for the discrete convolution, the
RNMP of the discrete convolution on all signals with finite support. This result will enable
the concrete application of our compressed embedding results in the next chapter. Moreover,
there seem to be countless applications from this inequality as well as a strong relation to known
problems in different fields of mathematics.

The following theorem is a generalization of a result in [WJ13a], in the sense of the extension to
complex vectors, which actually in the proof only is an extension from the SZEGÖ factorization
to the FEJER-RIESZ factorization. Moreover, we already have embedded the finite dimensional
signals in ℓ2 and instead formulated the result for the discrete convolution of signals with finite
support4.

Theorem 2. Let s,f be natural numbers with s ≤ f . Then there exist a constant αñ(s,f)> 0 with

ñ(s, f) = (s + f)108(s+f)3 log3(s+f), such that for all x ∈ ℓ2s and y ∈ ℓ2f it holds:

αñ(s,f) ∥x∥ ∥y∥ ≤ ∥x ∗ y∥ ≤
√
s ∥x∥ ∥y∥ . (2.31)

Moreover, α2
ñ is the smallest eigenvalue of all ñ × ñ Toeplitz matrices with symbol given by a

normalized non-negative trigonometric polynomial of order ñ− 1, which is a strictly decreasing
sequence in ñ. For s = 1 we get equality with α1 = 1.

Remark. We can relate the discrete convolution to the circular convolution by taking the smallest
n/2 ∈ N such that supp(x), supp(y) ⊂ [−n/2−1, n/2−1]. Shifting x,y to ℓ2[n] does not change
the norm, i.e., we can identify the signals with vectors x,y ∈ Kn. Appending now n − 1 zeros
to x and y yields equality between the discrete convolution and the circular convolution. Note
that the number of zeros is sharp, since for s = f = 2, n′ = 2n − 2 and every n ≥ 4 it follows that
∥x′ ⊛ y′∥ = 0 for x′,y′ ∈ (Kn,0n−2) when the non-zero components are x′0 = x′n−1 = y′0 =

√
1/2

and y′n−1 = −y′0 and therefore α = 0. Hence, we have for our sparse zero-padded circular
convolution ∥x′ ⊛ y′∥ℓ2[ñ] = ∥x ∗ y∥.

Proof: The upper-bound in (2.31) follows for any x′ ∈ (Σn
s ,0n−1) and y′ ∈ (Σn

f ,0n−1) by
Lemma 2, setting ⊙ =

√
n⊛.

Before we prove the lower bound (2.31) under sparsity constrains we reformulate the general op-
timization problem of the lower bound (1.31) for the circular convolution in Kn. By the absolute
homogeneity of the norm and the convolution we get a bi-quadratic optimization problem

(Pbq) α2
opt ∶= min

x,y∈(Kn)1,1
∥x⊛ y∥2 . (2.32)

4Actually, the estimate of the dimension ñ of the constant αñ in [WJ12b], was quite to optimistic. Nevertheless,
the authors conjecture anO(s ⋅ f) scaling of ñ, but the algorithm in [WJ12b] was wrong and has to be fare more
extended. The following proof uses tools from additive combinatorics by embedding the original problem.
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2.2. RNMP for the Discrete Convolution

The objective function of this optimization problem is given by (1.68) as:

b(x,y) ∶= ∥x⊛ y∥2 = ∥YTx∥2 = ⟨YTx,YTx⟩ = ⟨x, (YT )∗YTx⟩ . (2.33)

Obviously, the matrix By = (YT )∗YT is positive semidefinite (Hermitian) and the problem
(Pbq) reduces for fixed y to a quadratic problem

(Pq) min
x∈Kn,∥x∥=1

b(x,y) = min
x∈Kn,∥x∥=1

⟨x,Byx⟩ = λ(By), (2.34)

which defines the smallest eigenvalue of By. It is known for the real case, K = R, that the
problem is NP hard to solve, even by restricting to s respectively f dimensional subspaces XI

and YJ , see [LNQY09, (1.1)] and [WJ13a]. Nevertheless, the n × n Hermitian matrix By has a
rich structure

By = (YT )∗(Y)T = nFdiag(Fy)F∗F∗diag(Fy)F (2.35)

= nF∗diag(Fy)diag(Fy)F (2.36)

=
√
nF∗diag(F∗(

√
nF∣Fy∣2))F. (2.37)

Hence, this is a Hermitian circulant matrix generated by the (circular) time-reverse circular
auto-correlation of y

Γ(y ⍟ y) =
√
nΓF∗(Fy ⊙FΓy) =

√
nF∣Fy∣2 (2.38)

having eigenvalues [Dav79, Thm. 3.2.2]

λk = n∣Fy∣2 = nF(y ⍟ y) for k ∈ [n]. (2.39)

Since Γ(y ⍟ y) generates By we have that y ⍟ y generates BT
y and the elements, ith row i′th

column, are therefore given by the samples (1.52)

(By)ii′ = (BT
y)i′i =∑

j

yjyj⊕(i′⊖i) =∶ bi′⊖i(y) , i, i′ ∈ [n]. (2.40)

Note that a circulant matrix is also a Toeplitz matrix [Dav79, p.70]. Hence By is an Hermitian
circulant Toeplitz matrix.

Unfortunately, the circular auto-correlation in (2.40) can generate a matrix having zero eigen-
values, at least for even dimensions n, see remark below of the Theorem 2. Hence, we have to
demand further constraints. We will show later, that a sufficient condition to lower bound the
smallest eigenvalue away from zero is given by the (aperiodic) linear auto-correlation (change
modulo addition to normal addition).

To get rid of the boundary effects in the circular auto-correlation we have to embed Kn in Kn′

with n′ ∶= 2n − 1 by adding n − 1 zeros 0n−1 to each vector. This increases in the first place the
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dimension to an 2n−1×2n−1 Hermitian Toeplitz matrix B′y′ for y′ = (y,0n−1)T , given by

B′y′ ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b0 b1 ⋯ bn−1 bn ⋯ b2n−2
b1 b0 ⋯ bn−2 bn−1 ⋯ b2n−3
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
bn−1 bn−2 ⋯ b0 b1 ⋯ bn−1

bn bn−1 ⋯ b1 b0 ⋯ bn−1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
b2n−2 b2n−3 ⋯ bn bn−1 ⋯ b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= (
By′ Ey′

E∗y′ Bn−1
y′
) . (2.41)

But in the second place, the dimension boils down to n, since x′ = (x,0n−1)T cuts out the n×n
principal submatrix By′ , which is still a Hermitian Toeplitz matrix (not anymore circulant), i.e.,
we get

(P ′q) min
x′∈(Kn,0n−1),∥x′∥=1

b(x′,y′) = min
x∈Kn,∥x∥=1

⟨x,By′x⟩ = λ(By′). (2.42)

Then we obtain for the first row respectively complex conjugated column in By′

b−k(y′) = bk(y′) =
n′−1
∑
j=0

y′jy
′
j⊕k =

n−1
∑
j=0

yjy′j+k =
n−1−k
∑
j=0

yjyj+k =∶ bak(y) , k ∈ [0, n − 1] (2.43)

and By′ =∶ Ba
y is given by samples of the linear auto-correlation (2.43) of y ∈ Kn.

The second constraint of the theorem is given by the sparsity of x and y. Let us define the set of
all subsets in [n] with length s by

[n]s ∶= {A ⊂ [n] ∣ ∣A∣ = s} . (2.44)

Then, for any x ∈ Σn
s ,y ∈ Σn

f there exist I ∈ [n]s, J ∈ [n]f , such that supp(x) ⊂ I, supp(y) ⊂
J . Applying this to our quadratic optimization problem (P ′q), we see that x cuts out from Ba

y

an s × s Hermitian Toeplitz matrix Ba,I
y with coefficients k ∈ I ⊖ i0 = I − i0 = {k0, . . . , ks−1} =∶

K ∈ [n]s given by

bakθ(y) =
n−1−∣kθ ∣
∑
j=0

yjyj+kθ =∶ b
a,I
θ (y) , θ ∈ [s]. (2.45)

Since Ba
y is Hermitian so is Ba,I

y , hence ba,Iθ = ba,I−θ . Surely, for y ∈ Σn
f the sum in (2.45) has

at most f summands, but since we have to consider all support sets J we have to sum over all
terms. Assume now there is exists for sufficiently large n an universal ñ = ñ(s, f) ≤ n, such
that for each I ∈ [n]s and y ∈ Σn

f with support in J ∈ [n]s there exist a vector ỹ ∈ Σñ
f with

supp(ỹ) ⊂ J̃ ∈ [ñ]f and a set K̃ ∶= {k̃θ}s−1θ=0 ∈ [ñ]s satisfying

ba,ñ
k̃θ
(ỹ) ∶=

ñ−1−∣k̃θ ∣
∑
j=0

ỹj ỹj+k̃θ =
n−1−∣kθ ∣
∑
j=0

yjyj+kθ = b
a
kθ
(y) , θ ∈ [s]. (2.46)
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2.2. RNMP for the Discrete Convolution

Note that k̃θ /= kθ. In fact, (2.46) implies for a fixed y ∈ Σf with ∥y∥ = 1 and I ∈ [n]s the
existence of an s × s principal submatrix Ba,I

y in the ñ × ñ Hermitian Toeplitz matrix

Ba,ñ
ỹ =

⎛
⎜⎜
⎝

ba,ñ0 (ỹ) . . . ba,ññ−1(ỹ)
⋮ ⋱ ⋮

ba,ññ−1(ỹ) . . . ba,ñ0 (ỹ)

⎞
⎟⎟
⎠

, ba,ñk (ỹ) ∶=
ñ−1−k
∑
j=0

ỹj ỹj+k for k ∈ [ñ] (2.47)

with positive symbol given for ω ∈ [0,2π) and ∥ỹ∥ = 1 by

ba,ñ(ỹ, ω) =
ñ−1
∑

k=1−ñ
ba,ñk (ỹ)e

ıkω = 1 +
ñ−1
∑
k=1
(ak cos(kω) + ck sin(kω))

with ak ∶= 2R(ba,ñk (ỹ)) and ck ∶= −2I(ba,ñk (ỹ)),
(2.48)

see for example [BG05]. We call (2.48) a normalized trigonometric polynomial of order ñ − 1
since a0 = ∥ỹ∥2 = 1.

Then by CAUCHY’S Interlacing Theorem, see for example [BG05, Prop.9.19], the smallest
eigenvalue of any Ba,I

y is bounded from below by the smallest eigenvalue of Ba,ñ
ỹ , i.e.,

αs,f,n ≥ min
I∈[n]s

min
y∈Σn

f

∥y∥=1

λ(Ba,I
y ) ≥ min

x̃,ỹ∈Kñ

∥x̃∥=∥ỹ∥=1

⟨x̃,Ba,ñ
ỹ x̃⟩ = min

ỹ∈Kñ

∥ỹ∥=1

λ(Ba,ñ
ỹ ) =∶ αñ, (2.49)

where the argument on the right hand side is independent of I and J . By the well-known FEJER-
RIESZ Factorization, see for example [Dim04, Thm.3], we know that the symbol of Ba,ñ

ỹ in
(2.48) is a non-negative trigonometric polynomial5 of order ñ − 1 for every normalized ỹ ∈ Kñ

since ba,ñk (ỹ) is given by (2.46), i.e., 0 ≤ minω b
a,ñ(ỹ, ω). By [BG05, (10.2)] we then have

λ(Ba,ñ
ỹ ) > 0. Hence Ba,ñ

ỹ is invertible and the determinant det(Ba,ñ
ỹ ) /= 0. Using

1

λ(Ba,ñ
ỹ )
= ∥Ba,ñ

ỹ ∥2 (2.50)

in [BG05, p.59], we can estimate the smallest eigenvalue (singular value) with [BG05, Thm. 4.2]
by the determinant as

λ(Ba,ñ
ỹ ) ≥ ∣det(B

a,ñ
ỹ )∣

1
√
ñ(∑k ∣b

a,ñ
k (ỹ)∣2)(ñ−1)/2

, (2.51)

where the ℓ2−norm of the sequence ba,ñk (ỹ) can be upper bounded for ñ > 1 by the CAUCHY-
SCHWARTZ inequality to

∑
k

∣ba,ñk (ỹ)∣
2 ≤ 1 + 2

ñ−1
∑
k=1
∣
ñ−1
∑
j=0

ỹj ỹj+k∣2 ≤ 1 + 2
ñ−1
∑
k=1
∥ỹ∥4 = 1 + 2(ñ − 1) < 2ñ, (2.52)

5Note, there exist ỹ ∈ Kñ with ∥ỹ∥ = 1 and ba,ñ(ỹ, ω) = 0 for some ω ∈ [0,2π). Thats the reason why things are
more complicated here. Moreover, we want to find a universal lower bound over all ỹ, which is equivalent to a
universal lower bound over all non-negative trigonometric polynomials of order ñ − 1. By the best knowledge of
the authors, there exist no analytic lower bound for αñ.
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which is independent of ỹ ∈ (Kñ)1,1. Since the determinant is a continuous function in ỹ over
a compact set, the minimum is attained and is denoted by 0 < dñ ∶= minỹ ∣det(Ba,ñ

ỹ )∣. Note,
that dñ is a decreasing sequence, since we extend the minimum to a larger set by increasing ñ.
Hence we get

min
ỹ
(∣det(Ba,ñ

ỹ )∣
1√

ñ(2ñ)(ñ−1)/2
) =

√
2

(2ñ)ñ/2
dñ. (2.53)

This is a valid lower bound by (2.51) for the smallest eigenvalue of all possible Ba,ñ
ỹ . Hence we

have shown

αopt ≥ min
ỹ∈Σ̃f

∥ỹ∥=1

min
x̃∈Σ̃s
∥x̃∥=1

b(x̃, ỹ) >
√
2(2ñ)−

ñ
2 dñ > 0. (2.54)

We will now show, how ñ can be chosen for 2 ≤ s ≤ sf ≤ n. If s = 1, then K = I − i0 = {0} =
{k0} and Ba,I

y = 1n for all I ∈ [n]1 and y ∈ Σf . Hence the smallest (and single) eigenvalue is 1
for every Ba,1

ỹ , i.e., α1 = 1. Hence, we will demand s ≥ 2.
The embedding of Ks respectively Kf in Kn with support I ∈ [n]s resp. J ∈ [n]f is given by

xi ∶=
s−1
∑
θ=0

δi,iθ x̂θ and yi ∶=
f−1
∑
γ=0

δi,jγ ŷγ , i ∈ [n], (2.55)

ỹj̃ ∶=
f−1
∑
γ=0

δj̃,j̃γ ŷγ , j̃ ∈ [ñ]. (2.56)

According to (2.46) we have to show that for each x ∈ Σn
s ,y ∈ Σn

f there exists sets K̃ =
{k̃θ}θ∈[s], J̃ = {j̃γ}γ∈[f] ⊂ [ñ] and a vector ỹ ∈ Kñ given in (2.56), such that it holds:

ñ−1−∣k̃θ ∣
∑
j̃=0

ỹj̃ ỹj̃+k̃θ −
n−1−∣kθ ∣
∑
j=0

yjyj+kθ = 0 , θ ∈ [s]. (2.57)

Since the first index in K is 0, we will define [n]0s ∶= (0,{A ⊂ [n]∖0 ∣ ∣A∣ = s − 1}).

Equation (2.57) is equivalent, by using the embedding in (2.55) and (2.56), to

∑
γ,γ′

⎡⎢⎢⎢⎢⎣

n−1−k̃θ
∑
j̃=0

δj̃,j̃γδj̃+k̃θ,j̃γ′
−

n−1−kθ
∑
j=0

δj,jγδj+kθ,jγ′

⎤⎥⎥⎥⎥⎦
ŷγ ŷγ′

= ∑
γ,γ′
(δj̃γ+k̃θ,j̃γ′ − δjγ+kθ,jγ′) ŷγ ŷγ′ = 0

for all ŷ ∈ Rf . (2.58)

Hence we have to show for every (K,J) ∈ [n]0s × [n]f the existence of (K̃, J̃) ∈ [ñ]0s × [ñ]0f ,
such that it holds for all θ ∈ [s], γ, γ′ ∈ [f]

Dθγγ′(K̃, J̃) ∶= δj̃γ+k̃θ,j̃γ′ = δjγ+kθ,jγ′ =∶ Dθγγ′(K,J), (2.59)
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2.2. RNMP for the Discrete Convolution

where D is a tensor6 in [s] × [f] × [f].

Approach via Additive Combinatorics

The tensor D in (2.59) is given by addition of natural numbers. The numbers in J,K ⊂ [n]
could be arbitrarily large, since n → ∞. Hence we can assume J,K ⊂ N or even J,K ⊂ Z.
The problem of finding sets J̃ , K̃ in [ñ] satisfying (2.59) can be formulated in additive number
theory by setting

A ∶= J ∪K , ∣A∣ ≤ s + f. (2.60)

Then the addition

j + k = j′ + 0 for j, j′ ∈ J, k ∈K (2.61)

can be realized by numbers in A setting a1 = j, a2 = k, a′1 = j′, a′2 = 0. Note that 0 ∈ K and
hence in A. If such numbers in A satisfy the equality in (2.61), then we want to map these
numbers one-to-one to numbers in [ñ] obeying the same addition. Such a map ϕ is precisely
known as a Freiman Isomorphism ϕ of order 2 between A and Ã = ϕ(A) ⊂ Z, i.e., ϕ ∶ A → Ã is
bijective and satisfies

a1 + a2 = a′1 + a′2⇔ ϕ(a1) + ϕ(a2) = ϕ(a′1) + ϕ(a′2) , a1, a2, a
′
1, a
′
2 ∈ A. (2.62)

Let us stress a very important fact here, a Freiman homomorphism, i.e., a map ϕ ∶ A→ Z

a1 + a2 = a′1 + a′2 ⇒ ϕ(a1) + ϕ(a2) = ϕ(a′1) + ϕ(a′2) , a1, a2, a
′
1, a
′
2 ∈ A. (2.63)

is not a group homomorphism, it is a weaker definition! So ϕ(0) is not necessarily 0. However,
since the translation map on Z is a Freiman homomorphism and the composition of two Freiman
homomorphisms is again a Freiman homomorphism [TV06, Sec. 5.3], we can always assume,
that our Freiman homomorphism (isomorphism) is normalized, i.e., ϕ(0) = 0. This is necessary
to show (2.59), since we then have

j + k = j′ j, k, j′⇔ ϕ(j) + ϕ(k) = ϕ(j′) ∈ A. (2.64)

Hence, if ϕ is a Freiman isomorphism (of order 2) we get J̃ = ϕ(J), K̃ = ϕ(K) satisfying7

(2.59).

In additive number theory a lot is known about sets with small doubling constants8

σ = σ(A) ∶= ∣A +A∣
∣A∣

. (2.65)

6In fact the tensor D(K,J) on the right in (2.59) defines an equivalence relation in [n]0s × [n]f , i.e. (K,J) ∼D
(K′, J ′) ⇔ D(K,J) = D(K ′, J ′). The task is to show, that for each equivalence relation [(K,J)]D there
exists an element (K̃, J̃) ∈ [(K,J)]D such that (K̃, J̃) ∈ [ñ]0s × [ñ]0f ⊂ [n]0s × [n]f .

7Note, that J̃ and K̃ are not necessarily ordered, which is for (2.59) not relevant. Going back to the Toeplitz-Matrix,
we can in (2.46) order the coefficients, i.e., ordering K̃ and find the submatrix BI

y in (2.47).
8The Minkowski sum is given as A +A = 2A = {a1 + a2 ∣ a1, a2 ∈ A}.
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0

●
○ ● ● ● ● ●
J
● ● ●
○ ● ○ ● ○ ●
K

��
● ● ●
○ ● ○ ● ○ ●
J + K

(a) ∣J +K ∣ = ∣J ∣∣K ∣ = 3.

0

● ●
○ ○ ● ● ● ●
J
● ● ●
○ ● ○ ● ○ ●
K

��
● ● ● ● ● ●
○ ○ ○ ○ ○ ○
J + K

(b) ∣J +K ∣ = ∣J ∣∣K ∣ = 6.

0

● ● ●
● ○ ○ ● ○ ●
A
● ● ●

● ○ ○ ● ○ ●
A

��
● ● ● ● ● ●

● ● ○ ○ ○ ○ ○ ● ○
A + A

(c) ∣A +A∣ = ∣A∣+1
2
∣A∣ = 6.

Figure 2.3: Set addition and convolution, supp(χJ ∗ χK) = J +K.

Unfortunately, J,K and hence A are arbitrary, i.e., we can only assume [TV06, Lem.2.1]

σ ≤ s + f + 1
2

. (2.66)

On the other hand consider a normalized d−dimensional (generalized arithmetic) progression

P ∶= {⟨b,v⟩ =
d

∑
i=1
bivi ∣ bi ∈ [0, ni], i = 1, . . . , d} , (2.67)

where v ∈ Zd is the basis vector and n ∈ Zd defines the edges of the boxB = [0, n1]×⋅ ⋅ ⋅×[0, nd]
in Zd, then the cardinality is ∣P ∣ ≤ Vol(B) = l(P ) ∶= Πd

i=1(ni + 1). If ∣P ∣ = Vol(B), i.e.
cardinality equals the volume of B or equivalent ⟨⋅,v⟩ is injective on B, then P is called proper.
Hence, a proper progression has a very small doubling constant given by σ ≤ 2d, since

B +B = [0, n1] × ⋅ ⋅ ⋅ × [0, nd] + [0, n1] × ⋅ ⋅ ⋅ × [0, nd] = [0,2n1] × ⋅ ⋅ ⋅ × [0,2nd] = 2B, (2.68)

yielding ∣2P ∣ ≤ Vol(2B) = Πi(2ni + 1) ≤ 2dVol(B) = 2d∣P ∣. If P is 2−proper, i.e., P + P
is proper, then ⟨⋅,v⟩ is an Freiman isomorphism between B and P . Moreover, ⟨⋅,v⟩ is an
homomorphism on Zd.

If A has the largest possible doubling constant, then it is a Sidon set, see [TV06, Def. 4.27]. For
these sets, it is known, that they are Freiman isomorphic to each other [TV06, p. 5.3.9], hence
also to the geometric series ϕ(A) = V = {1,2,4,8, . . . ,2d−1}, which span a proper geometric
progression

G = {
d

∑
i=1
bi2

i−1 ∣ bi ∈ [0,1]} (2.69)

with d = ∣A∣, see also Fig. 2.3. Hence ϕ(A) = V ⊂ G ⊂ [0,2∣A∣ − 1], i.e. for Sidon sets we have
ñ = 2s+f . In fact, there is the following conjecture by KONYAGIN and LEV in [KL00]
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B

ϕP = ⟨⋅,vP ⟩
����
��
��

⊂ B̃ ⊂ Zd

ϕP̃ = ⟨⋅,vP̃ ⟩
""F

FF
FF

FF
F

P

GG������
⊃ A

ϕ
// Ã ⊂ P̃ ⊂ Z

bbFFFFFFFF

Figure 2.4: Freiman diagram.

Conjecture 1. Let A ⊂ Z. Then there exists a Freiman isomorphism to a subset in [0,2∣A∣−2].

However, in general we will have to proceed as follows (deriving a larger number ñ in the
conjecture)

(i) For all A ⊂ Z with ∣A∣ ≤ s + f it holds for the doubling constant σ ≤ α = (s + f + 1)/2.

(ii) By using Theorem 4, a sharp and explicit version of the CHANG-FREIMAN theorem, the
set A is contained in a 2−proper progression P with dimension d ≤ ⌈2α⌉ and cardinality
∣P ∣ = ∏d

i=1(ni + 1), depending only on s and f . Then A + A ⊂ 2P ∶= P + P , where 2P
is still a proper progression. Hence ϕP is a bijective Freiman homomorphism from 2B to
2P , see remark for Proposition 7, and by Lemma 4 a Freiman isomorphism from B to P
(respectively ϕ−1P from P to B).

(iii) Since the box B ⊂ Zd for P has edges ni ≥ 1 and by properness Vol(B) = ∣P ∣, the largest
possible edge n is given by (n + 1)2d−1 = ∣P ∣ assuming all other d − 1 edges to be 1, i.e.
n+1 = 21−d∣P ∣. Then we will show with Proposition 7 thatB ⊂ B̃ = [0, n]d is Freiman iso-
morphic to the proper geometric progression P̃ = {∑ bi(2n + 1)i−1 ∣ b ∈ [0, n]d} where
the largest element is less than (2(n + 1))d−1.

(iv) Hence there exists a Freiman isomorphism ϕ = ϕP̃ ○ϕ
−1
P , since the restrictions are Freiman

isomorphic [TV06, p. 221], between A and ϕ(A) ⊂ [0, (2−(d−2)∣P ∣)d−1] where ∣P ∣ and d
are bounded by Theorem 4 with (i) by the worst-case α = (s + f + 1)/2 of A.

Chang’s Result with Explicit Constant

The main ingredient for our proof is a recently established result of CHANG [Cha02], which
gives an upper bound on the cardinality of a proper progression P containing the (unstructured)
finite set A ⊂ Z. We will consider an upper bound for the doubling constant σ of A, which is
greater than 5/2. This is reasonable, since we get for the worst doubling constants (s+f +1)/2 ≥
5/2, since s, f ≥ 2.
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Theorem 3 (Chang). Let A ⊂ Z be a finite set with doubling constant σ. Let us set α =
max{σ,2.5}. Then there exists a d−dimensional proper progression P containing A with

d ≤ ⌈α − 1⌉ (2.70)

log
∣P ∣
∣A∣
< cα2(logα)3, (2.71)

where c = 26c̄ and c̄ = 106.

A refined version of GREEN and TAO [GT06] gives

Theorem 4. Let A ⊂ Z be a finite set and define α as before. Then there exists a 2−proper
progression P containing A with

d ≤ ⌈2α⌉ (2.72)

∣P ∣ ≤ 2α10cα
2(logα)3 . (2.73)

Chang’s Theorem follows from a sharp version of the Freiman Theorem.

Theorem 5 (Freiman). Let A ⊂ Z be a finite set with doubling constant σ and set α as before.
Then A is contained in a d−dimensional progression, where

d < c̄α2(logα)2 (2.74)

log
l(P )
∣A∣
< c̄α2(logα)2. (2.75)

Here, the constant c̄ as defined in Theorem 3 is in fact given by a deep result of RUDIN [Rud60]
for dissociated sets, which could be explicitly given by GREEN in [Gre04]. Here, a dissociated
set is a synonym for a Sidon set, see for example [TV06].

Proposition 6. Let be n ∈ N, ak complex numbers, Λ ⊂ Zn a dissociated set and p > 2, then

⎛
⎝
1

n
∑

x∈[n]
∣∑
k∈Λ

ake
2πıkx/n∣p

⎞
⎠

1/p

≤ 12√p(∑
k∈Λ
∣ak∣2)

1/2

. (2.76)

Proof of Freiman’s Theorem. We will repeat the steps in Chang’s proof to derive the explicit
constant c in (2.73) and (2.71). Here we will refer to equations and assertions in [Cha02] by [⋅].
The first constant comes into play in [Proposition 2.1], on the dimension of a proper progression
in 2A − 2A. The Proof of [Proposition 2.1] is given in [Section 3]. Here, the [Lemma 3.1]
established an upper bound of the cardinality of the dissociated set Λ, given by Proposition 6

∣Λ∣ < 12ρ−2 log(1/δ) (2.77)
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for 1
100 > δ > 0. To see this, we substitute in [(3.9)] by (2.76), since

∥g∥p = (
1

n
∑
x

∣∑
k

ake
2πıxk/n∣p)

1/p

≤ 12√p (2.78)

and the sequence ak defined in [(3.5)] is bounded by

∑
k∈Λ
∣ak∣2 ≤

∑k∈Λ ∣f̂(k)∣2

∑l∈Λ ∣f̂(l)∣2
= 1. (2.79)

The Proof of [Proposition 2.1] continues on page 415. To apply [Lemma 3.2] we choose ρ−2 =
101α satisfying

100α < ρ−2 < 1000α (2.80)

and set ϵ = 1/10. Since ∣R∣ = δN in [Lemma 3.2] we can by a Theorem 8.9 in [Nat96] (see
[(3.1)] and [(3.2)] in [Cha02]) lower bound the constant δ by

δ > 1

320α16
. (2.81)

Now, the hypothesis in [Lemma 3.2] is satisfied and we get for the bound in (2.77)

d = ∣Λ∣ < 12 ⋅ 101α log(320α16) < 1212 ⋅ 16α log(3α/2) (2.82)

< 1212 ⋅ 16α log(α3/2) < 3 ⋅ 104α logα, (2.83)

which is the dimension d of the progression P contained in 2A − 2A. Using the ϵ and formula
[(1.19)] in [Cha02] we get

∣P ∣ > ∣A∣
8(10d2)d

. (2.84)

With this we can bound t in [(2.17)], which is the iteration to construct the proper progression
which contains A by

10t ≤ 8α4(10d2)d⇔ t ≤ log(8α4(10d2)d) < 5 log(α) + d log(10d2) (2.85)

< 5 logα + 2d log(10d/3) (2.86)

< 5 logα + 2(3 ⋅ 104)α logα ⋅ log(105α logα) (2.87)

< 5α logα + (6 ⋅ 104)α(logα)(logα13α2) (2.88)

< 5α logα + (90 ⋅ 104)α(logα)(logα) (2.89)

< 91 ⋅ 104α(logα)2. (2.90)

Then substituting (2.83) and (2.90) in [(2.22)] we get

d̄ < d + 10αt < 3 ⋅ 104α logα + 91 ⋅ 104α2(logα)2 < 106α2(logα)2. (2.91)
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Setting c̄ ∶= 106 we get from [(2.23)] for the length

l(P̄ ) ≤ 3d̄α4∣A∣ < 3d̄+4α∣A∣ < 10c̄α
2(logα)2 ∣A∣ (2.92)

and hence the result

d̄ < c̄α2(logα)2 , log
l(P̄ )
∣A∣
< c̄α2(logα)2. (2.93)

Now, we are ready to prove Chang’s Theorem, using methods developed in [Rus91; Bil99].

Proof of Chang’s Theorem. The idea is to start with the (not proper) progression P̄ derived in
the Freiman Theorem. Then we go via Freiman Isomorphism to progressions with smaller di-
mension but larger cardinality. This uses the proof of [Theorem 1.2] in [Bil99]. First, Bilu uses
symmetrized sets, i.e., the progression

P̄ (q1, . . . , qd̄;n1, . . . , nd̄) (2.94)

has to be symmetrized by the box B1 = Πi[−ni + 1, ni − 1] and we get for the volume

ϕ(B1 ∩Zd̄) ⊃ A , Vol(B1) ≤ 2d̄l(P̄ ). (2.95)

Then the Freiman Theorem 5 gives

log
Vol(B1)
∣A∣

≤ log 2d̄ + log l(P̄ )
∣A∣
< d̄ + d̄ = 2d̄ (2.96)

Going to a smaller box B2 with dimension m2 ≤ m1 ≤ d̄ we get by following Chang until
[(4.12)] with T = 2 in [(4.11)]

log
Vol(B2)
∣A∣

≤ log(4d̄)d̄ + log Vol(B1)
∣A∣

≤ d̄ log(4d̄) + 2d̄ ≤ d̄ log(4c̄α4) + 2d̄ (2.97)

≤ d̄ logα14α4 + 2d̄ = 18d̄ logα + 2d̄ logα3 = 24d̄ logα. (2.98)

Note, since α ≥ 2.5 we have α3 > 10 and hence log(α3) > 1. In the next step, we taking
m′ ≤ α − 1 and get by Chang

Vol(B′) ≤m2!(
m2

2
)
m2

Vol(B2) (2.99)

yielding log
Vol(B′)
∣A∣ ≤ 24d̄ logα. Now we want pass to a parallelepiped. Setting T = 2α(⌈α⌉!)2,

which gets

m′′ ≤m′ ≤ ⌈α − 1⌉ (2.100)

Vol(B′′) ≤ (2m′T )m
′−m′′Vol(B′) (2.101)
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with [(4.22)] and the rough estimate ⌈α⌉! ≤ α2α+2 for any α > 0

log
Vol(B′′)
∣A∣

≤ log(2m′2α(⌈α⌉!)2)m
′−m′′ + 24d̄ logα (2.102)

≤ α log(4α2⌈α⌉!2) + 24d̄ logα (2.103)

≤ 2α log(2α⌈α⌉!) + 24d̄ logα (2.104)

≤ 2α log(α2α2α+2) + 24d̄ logα ≤ 2α log(α4α) + 24d̄ logα (2.105)

≤ 8 ⋅ 9α2(logα)3 + 24d̄ logα ≤ 25d̄ logα. (2.106)

In the final step we pass to the parallelepiped and get by [(4.23)]

∣P ∣ ≤ ⌈α⌉!(3
2
(⌈α⌉!)2)

α

Vol(B′′) (2.107)

and hence

log
∣P ∣
∣A∣
≤ log(⌈α⌉! ⋅ (α4α+5)α) + log Vol(B′′)

∣A∣
(2.108)

≤ log(α2α+2α6α2

) + 25d̄ logα ≤ log(α6α2+2α2

) + 25d̄ logα (2.109)

≤ 26c̄α2(logα)3 = cα2(logα)3 (2.110)

with

c = 266c̄ = 266 ⋅ 106. (2.111)

Remark. Before we proceed, let us stress the fact, that the bounds of Chang are optimal in the
scaling of α. But since we are always focused on the worst case, the bound, which could be
derived by using RUSZA and BILU (see [Cha02] in [(4.1)]), may be still better. Nevertheless,
the bound by Chang will be sufficient for our purpose.

Now, using the result of Tao and Green in Theorem 4 we get for the progression P

∣P ∣ ≤ 2α10cα
2(logα)32α , d ≤ ⌈2α⌉, (2.112)

containing A, such that the sumset Q ∶= P + P is still a proper progression. Next we need:

Lemma 4. Let A,B ⊂ Z containing 0 and ϕ ∶ A + A → B be an bijective Freiman homomor-
phism, then ϕ ∶ A→ ϕ(A) ⊂ B is an Freiman isomorphism.

Proof. Since 0 ∈ A we have

A ⊂ A +A , ϕ(A) ⊂ B. (2.113)
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Now we show, that ϕ acts like a group homomorphism between A and B. For any a1, a2 ∈ A we
set a′1 ∶= a1 + a2, a′2 = 0 ∈ A +A and get by the Freiman homomorphism property (2.63)

a1 + a2 = a′1 + a′2 ⇒ ϕ(a1) + ϕ(a2) = ϕ(a′1) + ϕ(a′2) = ϕ(a1 + a2) + ϕ(0) = ϕ(a1 + a2)
⇒ ϕ(a1) + ϕ(a2) = ϕ(a1 + a2). (2.114)

Now, since ϕ is bijective we have ϕ−1 ∶ B → A +A and with (2.114) it holds for any a1, a2 ∈ A

ϕ−1(ϕ(a1) + ϕ(a2)) = ϕ−1(ϕ(a1 + a2)) = a1 + a2 = ϕ−1(ϕ(a1)) + ϕ−1(ϕ(a2)) (2.115)

and hence ϕ−1 ∶ ϕ(A)→ A acts also like a homomorphism and we get for b1, b2, b′1, b
′
2 ∈ ϕ(A)

b1 + b2 = b′1 + b′2 ⇒ ϕ−1(b1 + b2) = ϕ−1(b′1 + b′2) (2.116)

(2.115)→⇒ ϕ−1(b1) + ϕ−1(b2) = ϕ−1(b′1) + ϕ−1(b′2), (2.117)

which is the definition of a Freiman homomorphism.

Next, we need to prove an exercise in [TV06, p.221]

Proposition 7. Let n, d ∈ N and define m = 2n + 1,v = (m0,m1, . . . ,md−1),B = [0, n]d, then

⟨⋅,v⟩ ∶ B → P = ⟨B,v⟩ ⊂ Z (2.118)

is a Freiman isomorphism of order 2 between B and P .

Proof. Since we know, that ϕ = ⟨⋅,v⟩ is an group homomorphism [TV06, p.114] between the
ambient group Zd and Z, we get for any b1,b2,b

′
1,b

′
2 ∈ 2B

b1 + b2 = b′1 + b′2 ⇒ ⟨b1 + b2,v⟩ = ⟨b′1 + b′2,v⟩ (2.119)

group homomorphism→⇔ ⟨b1,v⟩ + ⟨b2,v⟩ = ⟨b′1,v⟩ + ⟨b′2,v⟩ , (2.120)

which shows that ⟨⋅,v⟩ is a surjective Freiman homomorphism (2.62) from 2B to ⟨2B,v⟩.
Hence, if we can show injectivity on 2B = [0,2n]d we have bijectivity. Since we have for
each b ∈ 2B

⟨b,v⟩ =
d

∑
i=1
bivi =

d

∑
i=1
bim

i−1, (2.121)

we only need to show that each b ∈ 2B creates a different number, i.e., we have to show that for
all i ∈ [1, d] it holds

∀bi ∈ [0,2n]∶ bimi−1 <mi, (2.122)

which is true, since this is equivalent to

∀bi ∈ [0,2n]∶ bi <mi−(i−1) = 2n + 1. (2.123)

By Lemma 4 we have therefore a Freiman isomorphism between B and P = ϕ(B).
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2.2. RNMP for the Discrete Convolution

Remark. In fact, this holds for any 2−proper progression, since this equivalent with injectivity
for ⟨⋅,v⟩ from 2B to 2P .

Considering the last tow steps (ii) and (iii) we get with (2.112) for

ñ ≤ (2 ⋅ 2−(d−1)∣P ∣)d−1 ≤ (2−(d−2)∣P ∣)d−1 ≤ (10cα
2(logα)3)2α−1 = (10cα

2(logα)3)s+f (2.124)

(2.125)

inserting α = (s + f + 1)/2 ≤ s + f we get with c ≤ 108 by (2.111) finally our estimate

ñ(s, f) ≤ 10c(s+f)
3 log3(s+f) (2.126)

∎
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2.2.1 Algorithmic implementation

The problem in (2.34) can be approximated by discretization of y in D = {0,
√
1/d, . . . ,

√
d/d}

with d ∈ N. Hence Dñ is a ñ-dimensional uniform grid of the cube. For each fixed yd ∈Dñ with
∥yd∥ = 1 we get Byd

and obtain the approximate solution

αd
ñ = min

yd∈Dñ,∥yd∥=1
λ(Byd

), (2.127)

which is an (1 − 1/d)-approximation solution to αñ, see [LNQY09], i.e.,

αñ ≥ αlow,d
ñ ∶= αd

ñ −
ñ

d
. (2.128)

The price, is the size of the cube grid: the number of possible grid points yd are of the order
∣D∣ñ = (d + 1)ñ < ññ and hence sub-exponential. We could establish in Fig. 2.5 with MATLAB

global lower bounds, drawn as dotted green lines, for αñ. For ñ > 6 the computational time was
too large to establish a global lower bound.

1 2 3 4 5 6

10
−3

10
−2

10
−1

10
0

Figure 2.5: Approximation results of the lower bound αñ.
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2.3. Circular Convolution and Phase Retrieval

2.3 Circular Convolution and Phase Retrieval

The part in this section was published in [WJ13b].

Recovering a signal from intensity (magnitude) measurements is known as the phase retrieval
problem. This problem has a long history beginning in the 70’s by GERCHBERG and SAXTON

[GS72] and later by FIENUP [Fie78], who gave explicit reconstruction algorithms for the phase
from magnitude Fourier measurements. Since the magnitude of a linear measurement can not
distinguish between numbers of unit modulus, stability and injectivity for such measurements
can only hold up to a global phase respectively sign, i.e., up to a factor eiω respectively ±1. One
of the challenging tasks in phase retrieval is to determine the necessary and sufficient number of
the magnitude of linear measurements for stability or injectivity. For example, CANDES et.al.
[CSV12] have shown stable reconstruction of any n−dimensional complex-valued signal from
the magnitude of O(n logn) linear Gaussian-random measurements. A more principal result
from BALAN et al. in [BCE06] shows that a generic frame exists with injectivity at 4n − 2
measurements. Moreover, they could give a fast reconstruction algorithm in [BBCE07]. In a
recent result [BCMN13], BANDEIRA et al. conjecture that 4n − 4 measurements are necessary
for injectivity. However, a practical construction and implementation of these measurements
seem to be rather hard, but serve as a theoretical bound.

More recently, non-linear or interference–based approaches are considered to provide unique
phase reconstruction. For example, WANG [Wan13] presented a method where interference
with a known signal y ∈ Cn helps to recover a signal x ∈ Cn up to a global sign from only
3n Fourier measurements ∣F(x + ωy)∣2 where ω ∈ C is a root of unity. For real k–sparse
signals, ELDAR and MENDELSON [EM12] established a stable recovery from O(k log(en/k))
sub-Gaussian random measurements. A very recent result [EFS13] from EHLER, FORNASIER

and SIGL extended this to the complex case, allowing also a stable recovery with exponentially
high probability by providing an explicit reconstruction algorithm. LU and VETTERLI also use
sparsity for spectral factorization of real valued impulse responses [LV11]. Moreover, they give
a reconstruction algorithm from the autocorrelation. A recent result by WANG and XU [WX13]
states injectivity for k−sparse complex-valued signals from 4k − 2 generic measurements as
long as k < n. Unfortunately, so far there doesn’t exists a constructive or deterministic frame
providing a recovery or even stable recovery.

Here, we will show a concrete measurement procedure allowing stable recovery of any vector
x ∈ Cn with x0 ∈ R up to global sign from magnitudes of 4n− 3 linear measurements. The mea-
surements can be implemented as linear mappings on, for example, (Re(x), Im(x)) or (x, x̄).
We want to stress the fact, that our measurements are not complex–linear, since we perform a
non-linear symmetrization on the signal to obtain a symmetric auto-convolution, allowing mag-
nitude measurements from 4n − 3 linear Fourier measurements. However, this will have impli-
cations on certain (compressive) signal processing tasks since such type of measurements occur
prior to I/Q–down conversion into a complex baseband model. To prove stability for magnitude
Fourier measurements, we will use our result in [WJ12b] for the (s, f)−sparse zero-padded cir-
cular convolution. In view of sparsity, zero padding can also be seen as a particular structured
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sparse signal subclass in C4n−3.

Before we show a stability property for magnitude Fourier measurements, we will formulate the
RNMP for the sparse zero-padded circular convolution Theorem 2 in finite dimensions.

Corrolary 2. Let s, f, n ∈ N with s ≤ f ≤ n. Then there exists a constant αn′(s,f,n) > 0 with
n′(s, f, n) ∶=min{ñ(s, f), n}, such that for all x ∈ Σn

s ,y ∈ Σn
f zero padded by n− 1 zeros 0n−1

it holds

αn′(s,f,n) ∥x∥ ∥y∥ ≤ ∥(x,0n−1)T ⊛ (y,0n−1)T ∥ ≤
√
s ∥x∥ ∥y∥ . (2.129)

Proof. The proof is essentially the same as for Theorem 2 by setting x̃ = (x,0n−1) ∈ K2n−1.
Since the dimension n is fixed in the corollary, we can set the constant n′(s, f) in Theorem 2 to

n′(s, f, n) ∶=min{ñ(s, f), n}. (2.130)

Remark. As already mentioned in the proof of Theorem 2, the zero padding is necessary to
obtain a lower bound strictly greater than zero.

However, we conjecture, that a bound α is also present for the circular convolution on prime
dimensions. See the principal result of the DONOHO-STARK inequality in Appendix A.1.

Moreover, setting n′ = 2n−1 and using the definition (1.55) for the circular convolution it holds
for any x,y ∈ Kn′

x⊛ y =YTx =
n′

∑
i=0
xiS

−i
n′y =

n′⊕1
∑

i=0⊕1
xi⊖1S

−(i⊖1)
n′ y =

2n−2
∑
i=0
(Sn′x)iS−in′Sn′y (2.131)

= Sn′x⊛ Sn′y. (2.132)

We can repeat this arbitrarily often and hence whenever the zeros are contained in a cyclic block
of length n − 1 the inequality (2.129) holds.

2.3.1 Recovery from Symmetrized Magnitude Fourier Measurements

We will ignore sparsity and assume s = f = n in Corollary 2, i.e., n′(s, f, n) = n, which
yields the RNMP for the zero padded circular convolution in Kn. In fact, the zero padding yields
equivalence between circular and discrete convolution. But before we do so, we will symmetrize
the signal x ∈ Kn with the symmetrization map S○ as

S○∶Kn → K2n−1 , x↦ S○(x) ∶= ( x
x○−
) , (2.133)
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where the time reversal operation is given by x− ∶= SΓx = (xn−1, xn−2, . . . , x1, x0)T and the
time-reversal without the first coefficient Γ○x = x○− ∶= (xn−1, xn−2, . . . , x1)T . See definition
(1.59) and (1.54). Let us stress the fact, that only for K = R the symmetrization map is linear. To
be more precise, S○ is a homomorphism between (Kn,+) and (K2n−1,+) but not a homomor-
phism between (Cn, ⋅) and (C2n−1, ⋅). However, if we demand x0 = x0 (denoted by Kn

0 ), then
we get the following symmetry (involution invariance),

S○(x)∗ = Γ2n−1(
x

x○−
) = Γ2n−1 (

x
x○−
) = ( x

x○−
) = S○(x) for x ∈ Kn

0 . (2.134)

Here, the (algebra) involution is defined as x∗ = Γx. Hence, we obtain equality between the
circular convolution and correlation for symmetrized vectors in K2n−1, i.e.,

C(x,y) ∶= S○(x)⊛ S○(y) = S○(x)⍟ S○(y)∗ = S○(x)⍟ S○(y) for x,y ∈ Kn
0 . (2.135)

Note, that the condition (2.134) is also necessary for obtaining equality between circular corre-
lation and convolution, even if x = y in (2.135). Moreover, C is a symmetric homomorphism on
(Kn

0 ,+), i.e., C(x,y) = C(y,x). Let us define the map

A○∶Kn
0 → K2n−1 , x↦ A○(x) ∶= C(x,x) for x ∈ Kn

0 , (2.136)

which we call the symmetrized circular auto-convolution of x. Let us assume xn−1 /= 0, then
the impulse response h ∶= (h0, . . . , h2n−2)T = Sn−1

2n−1S○(x) = (xn−1, . . . , x1, x0, x1, . . . , xn−1)T ,
defines a linear-phase filter H(z) = ∑2n−2

k=0 hkz
−k for z ∈ C since h0 = h2n−2 /= 0 and

hk = h2n−2−k for k ∈ [2n − 1]. (2.137)

The impulse response or filter is then called Hermitian or conjugate symmetric of order 2n − 2,
see for example [Vai93, Cha.2]. Hence, with (2.132) we have9 for x ∈ Kn

0

A○(x) = S○(x)⊛ S○(x) = Sn−1
2n−1S○(x)⊛ Sn−1

2n−1S○(x) = h⊛ h (2.138)

which is the circular auto-convolution of a linear-phase filter. For any such map it holds due to
(2.27) the relation:

A○(x1) −A○(x2) = C(x1 − x2,x1 + x2) (2.139)

and with (2.135)

A○(x1) −A○(x2) = S○(x1 − x2)⊛ S○(x1 + x2) for x1,x2 ∈ Kn
0 . (2.140)

To apply Corollary 2 we define the zero-padded symmetrization:

S○z ∶ Kn → K4n−3 , x↦ S○z(x) ∶= S○ (
x

0n−1
) , (2.141)

9 Note, that Sn−1
2n−1 centers the impulse response such that it becomes a causal FIR filter.
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then S○z(x) ∈ K4n−3
0 for every x ∈ Kn. Moreover we have

Sn−1
ñ S○z(x) = Sn−1

ñ S○ ( x
0n−1
) = Sn−1

ñ

⎛
⎜
⎝

x
02n−2
x○−

⎞
⎟
⎠
=
⎛
⎜
⎝

x○−
x

02n−2

⎞
⎟
⎠
= ( h

02n−2
) . (2.142)

By (2.132) we have therefore

Sn−1
ñ S○z(x)⊛ Sn−1

ñ S○z(x) = S○z(x)⊛ S○z(x) =∶ A○z(x). (2.143)

Theorem 8. Let n ∈ N, then ñ = 4n − 3 absolute-square Fourier measurements of zero padded
symmetrized vectors in Cñ, given by (2.141), are stable up to a global sign for x ∈ Cn

0 , i.e. for
all x1,x2 ∈ Cn

0 it holds

∥∣FñS○z(x1)∣2 − ∣FñS○z(x2)∣2∥
2 ≥ c2ñ(∥x1−x2∥2+∥x○1−x○2∥

2)(∥x1+x2∥2+∥x○1+x○2∥
2) (2.144)

with cñ = αñ/
√
ñ > 0.

Remark. To see the stability up to a global sign, we can lower bound the RHS in (2.144) and
get

∥∣FñS○z(x1)∣2 − ∣FñS○z(x2)∣2∥ ≥ cn ∥x1 − x2∥ ∥x1 + x2∥ . (2.145)

Proof. We will first show, that the inverse Fourier transformation of the auto-correlation is in-
deed a magnitude Fourier measurement by using (2.134) and the definition (1.68):

F∗(x⊛ x) = F∗(x⍟ x) =
√
nΓ(FΓx⊙Fx) =

√
nΓΓ(Fx⊙ΓFx) =

√
n∣Fx∣2. (2.146)

Hence we get for the Fourier transform of the symmetrized auto-convolution (2.136)

F∗2n−1A○(x) = F∗2n−1(S○(x)⊛ S○(x)) =
√
2n − 1∣F2n−1S○(x)∣2 for x ∈ Cn

0 . (2.147)

Similar, we obtain for the zero padded version (2.143)

F∗4n−3A○z(x) =
√
4n − 3∣F4n−3S○z(x)∣2 for x ∈ Cn

0 . (2.148)

Putting everything together, we get with (2.135),(2.141), (2.143) and Corollary 2 by setting
ñ = 4n − 3

∥∣FñS○z(x1)∣2−∣FñS○z(x2)∣2∥
2= 1
ñ
∥F∗ñ(A○z(x1) −A○z(x2))∥2 (2.149)

F∗ñ is unitary→ = 1
ñ
∥A○z(x1) −A○z(x2)∥2 (2.150)

(2.140)→ = 1
ñ
∥S○z(x1 − x2)⊛S○z(x1 + x2)∥2

(2.143)→ = 1
ñ
∥Sn−1

ñ S○z(x1 − x2)⊛Sn−1
ñ S○z(x1 + x2)∥

2
(2.151)

Si
ñ is unitary, Corollary 2→ ≥

α2
ñ

ñ
∥Sn−1

ñ S○z(x1 − x2)⊛Sn−1
ñ S○z(x1 + x2)∥

2
(2.152)

=
α2
ñ

ñ
(∥x1−x2∥2+∥x○1−x○2∥

2)(∥x1+x2∥2+∥x○1+x○2∥
2) (2.153)
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If we consider K = R, then (2.144) is equivalent with a stable embedding of T = Rn in R4n−3

by A = ∣FñS○z(⋅)∣2, see also [EM12] where ELDAR and MENDELSON used the ℓ1−norm on the
left side. Now, since S○ is not a linear map in Cn we can indeed distinguish the complex phase
by the Fourier measurements. Hence, a suitable symmetrization design provides injectivity for
magnitude Fourier measurements.

To get rid of the odd definition Cn
0 one can symmetrize x ∈ Cn by

Sz(x) ∶=
⎛
⎜⎜⎜
⎝

0n
x
x−
0n−1

⎞
⎟⎟⎟
⎠
∈ C4n−1 (2.154)

satisfying Γ4n−1Sz(x) = Sz(x) ∈ C4n−1. The price are two additional dimensions for embed-
ding all x ∈ Cn stably. Hence we have:

Corrolary 3. Let n ∈ N, then ñ = 4n − 1 absolute-square Fourier measurements of zero padded
and symmetrized vectors given by (2.154) are stable up to a global sign for x ∈ Cn, i.e. for all
x1,x2 ∈ Cn it holds

∥∣FñSz(x1)∣2 − ∣FñSz(x2)∣2∥ ≥ 2c̃n ∥x1 − x2∥ ∥x1 + x2∥ (2.155)

with c̃n = αñ/
√
ñ > 0.

Proof. The same steps as in the proof of Theorem 8.

An extension to sparse signals as in [WJ12a] is difficult to apply, since randomly chosen Fourier
samples do not provide a measure concentration.

2.3.2 Phase Retrieval in the Real Case

If we restrict Theorem 8 to real-valued vectors, the symmetrization map S○ in (2.133) becomes
linear. Hence, we have a stable reconstruction up to a global sign from the magnitude of 4n − 3
linear measurements, given by

A = F4n−3

⎛
⎜⎜⎜
⎝

1n×n
0n−1×n
0n−1×n
Γ○n−1×n

⎞
⎟⎟⎟
⎠
, (2.156)

where Γ○ denotes the matrix Γ without the first row.
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Interest in phase retrieval increased in the recent years due to applications in X-ray diffrac-
tion. Moreover, the understanding of sparse signal restriction by probabilistic methods, allow-
ing compressed sensing techniques, has pushed the phase retrieval problem further to sparse
signals [CSV12],[BM13], [RCLV13],[OYDS12],[SBE13]. We will develop in the next chapter
a general approach for a stable reconstruction of bilinear images with compressed sensing meth-
ods. Although, our machinery relies heavily on the RNMP, which is difficult to show on linear
spaces, we will give in the next chapter a principle result of possible sampling rates for a stable
reconstruction.
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3 Compressive Sampling on Sparse
Multiplications

Compressed Sensing raised in the last decade to a powerful tool in signal processing by merging
probabilistic methods and Fourier analysis. For an excellent survey to this field the reader is
referred to [FR11],[EK12] and [DDEK12].

In a recent work [HB11], HEDGE and BARANIUK considered (s, f)-sparse circular convolu-
tions in Rn and formulated a restricted isometry property (RIP) for the set of all differences in
the union of the image of all (s, f)-sparse circular convolutions. It turns out that their proof
approach leads to difficult mathematical problems, which according to the authors’ knowledge
are still unsolved. Since the proof in [BDDW08, Lemma 5.1] relies on a linear structure, which
may not be present for the image of bilinear maps, more strict conditions on B and the input sets
X and Y are needed to control the norm of the output set. However, we will show in Lemma 5,
that the RNMP of B on X × Y is a sufficient condition to obtain the RIP on the image set from
O((s + f) logn) random measurements. Furthermore, the authors conjecture that the RNMP
and convexity is also a necessary condition for establishing the RIP from measurement with
additive scaling in the sparsity, instead of multiplicative. This result implies an universal sta-
ble compressive sampling on the image set from any unknown but fixed sparse channel state in
Corollary 4. Nevertheless, if the channel state itself vary in time, such a universal compressive
measurement does not imply a stable reconstruction of x and y, since the image set is then not
a linear set.

Moreover, our developed framework is expendable to all bilinear operations having the RNMP
on convex cones in an arbitrary basis. This enables compressed sensing on “sparse” output sets,
which can not be written as a finite union of subspaces, and leads to generalized structured
sparsity models [BW09; DE11].

3.1 RIP for Multiplications on Subspaces

Our main result provides a generalized compressed sensing framework by a stable random em-
bedding of certain (s, f)-sparse signal models which can not be formulated as a k-sparse signal
model Σk. Moreover, our model can be related to matrix recovery of s× f rank−1 matrices if B
is norm multiplicative (α = β) on X × Y . Since differences of rank−1 matrices are not rank−1
but rank−2, embedding require additional structure. In the first step for a successful embedding

45



Chapter 3. Compressive Sampling on Sparse Multiplications

result, we will proof the restricted isometry property (RIP) for random linear maps if (B,X,Y )
obeys the RNMP.

Lemma 5 (RIP on Bilinear Image). Let be s, f, n,m ∈ N with s ≤ f ≤ m ≤ n, δ ∈ (0,1) and
X,Y ⊂ Rn are s respectively f dimensional convex cones. If the bilinear map B∶Rn × Rn → Rn

has the global RNMP on X × Y with bounds α and β, then a realization of a sub-Gaussian
matrix Φ∶Rn → Rm with [Φ]ij ∼ N (0,1/m) fulfills for every z ∈ B(X,Y )

(1 − δ) ∥z∥ ≤ ∥Φz∥ ≤ (1 + δ) ∥z∥ (3.1)

with probability
≥ 1 − 2Nδ/d(X1)Nδ/d(X1)e−c0(δ)m (3.2)

and constants

d = d(α,β) ∶=
⎧⎪⎪⎨⎪⎪⎩

7β
α(2 +

√
α) , α /= β

12 , α = β
(3.3)

c0(δ) ∶= (3δ2 − δ3)/48 (3.4)

ϵ ∶= δ/d. (3.5)

Remark. Here Nϵ(X1) ∶= N(X1,Xϵ) ∶= min{n ∣ ∃{pi}ni=1∶X1 ⊂ ⋃i(Xϵ + pi)} denotes the
covering number of X1 by the covering sets {Xϵ + pi}. The determination of the covering
numbers is a Banach geometrical problem and well studied for various precompact subsets of
Banach-spaces, see for example [Pis89], [Ver11]. In fact, it is even not necessary to define a
norm or even a metric on X and Y to use the covering arguments. Note, precompactness of a
set is already given by the existence of a finite number of covering sets.

Proof. The main part follows a technique in [BDDW08], where BARANIUK et al. considered a
linear subspace Z of Rn with a δ/4-net R for Z1,1. By the measure concentration of Gaussian
matrices Φ one gets for every r ∈R and any δ ∈ (0,1) the inequality1:

∣ ∥Φr∥ − ∥r∥ ∣ ≤ δ
2
∥r∥ (3.6)

with probability
> 1 − 2e−c0(δ)m. (3.7)

Both, the constant δ and the dimension k of Z determine the covering numberNδ(Z1) = (3/δ)k,
which is the cardinality of the netR and scale the exponential term in (3.7). Since Z = B(X,Y )
is in general not a linear space one would have to embed Z in a linear subspace, but this would
imply by the tensor calculus in the worst case a space of dimension sf . Hence we need to find a
“better“ covering of Z1,1. Such a covering can be achieved in an additive way if we can cover

1Obviously, this holds for every r ∈ RN and the inequality (3.6) is equivalent to ∣∥Φr∥2 − ∥r∥2∣ ≤ δ/2 ∥r∥2, see
[BDDW08].
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3.1. RIP for Multiplications on Subspaces

Figure 3.1: Net construction in the shells for covering the sphere in Z.

Z1,1 by the Cartesian product of covers in X and Y , which is guaranteed by the RNMP on
X × Y , see Fig. 3.1. The norm multiplicativity of the global RNMP allows to arrange the nets
in a multiplicative way and hence yields the additive behaviour of the dimensions. The proof
is divided in an algebraic part, which uses Banach geometric tools and in an probabilistic part,
where the measure concentration of the random linear map Φ is applied.

The Algebraic part in [BDDW08] can be used again on X and Y as well to get an upper
bound on the cardinality ofR, but now in terms of the covering numbers Nϵ(X1) and Nϵ(Y 1).
For this we need to control the norm of z by elements in X × Y which is possible if B has
the global RNMP, since the representation set O ⊂ X × Y does not contain ”bad” pairs for
Z ∶= B(X,Y ). It is in fact not necessary to give an explicit parametrization of O, merely the
existence of suitable representation pairs will suffice.

This means, the sphere Z1,1 of the image can be represented by B(O1) = ⋃(x,y)∈O1
B(x,y)

with O1 ∶= {(x,y) ∈ O ∣ ∥B(x,y)∥ = 1} ⊂X × Y and by Definition 6 it holds

α ∥x∥ ∥y∥ ≤ 1 ≤ β ∥x∥ ∥y∥ for (x,y) ∈ O1. (3.8)

Let us rescale the vectors in the pair (x,y) ∈ O1 by setting

x̃ ∶= x

∥x∥
, ỹ ∶= ∥x∥y. (3.9)

Since X and Y are linear cones, we get by bilinearity:

B(x̃, ỹ) = z = B(x,y) (3.10)

and from positive homogeneity of ∥⋅∥ we have with (3.8):

α ∥ỹ∥ ≤ 1 ≤ β ∥ỹ∥ ⇒ 1

β
≤ ∥ỹ∥ ≤ 1

α
. (3.11)

Since 0 < α ≤ 1 ≤ β we can also choose a representation set Õ1, contained in the symmetrized
set of convex shells Xa,b ×Y a,b with common inner and outer radii a ∶= β−

1
2 ≤ 1 ≤ α−

1
2 =∶ b, i.e.

Õ1 ⊂ Õ1,X × Õ1,Y ⊂Xa,b × Y a,b, (3.12)
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Chapter 3. Compressive Sampling on Sparse Multiplications

where Õ1,X and Õ1,Y are the projections of Õ1 to X respectively Y and represent axial lines in
the shells, see Fig. 3.1. Note, that Õ1 can not be written as a Cartesian product, if some pairs are
not allowed.

The algebraic part of the proof continues as follows: Any realization of Φ is a linear map on a
finite–dimensional normed space Rn and hence bounded, i.e., we can define

1 + ρ ∶= sup
z∈Z

∥Φz∥
∥z∥

= sup
z∈Z1,1

∥Φz∥ , (3.13)

where 1 + ρ ≥ 0 denotes the smallest upper bound (operator norm of Φ restricted to Z). If we
can show that ρ ≤ δ we have shown the upper bound in (3.1). Note, that the supremum is not
necessarily attained, since Z1,1 is not necessarily compact (closed). In fact, this will not be a
problem, since we can find a sequence zn which can be arbitrarily close to 1 + ρ.

What we really need, is the freedom in the representation of Z1,1. Let P ⊂Xa,b andQ ⊂ Y a,b be
ϵ-nets for Xa,b resp. Y a,b with ϵ ∈ (0,1) and define R ∶= {r = B(p,q) ∣ (p,q) ∈ P ×Q} ⊂ Z.
It follows that2 ∣R∣ ≤ Nϵ/b(X1)Nϵ/b(Y 1) sets B(Xϵ(p), Y ϵ(q)) ⊂ Z with Xϵ(p) ∶= Xϵ + p
and Y ϵ(q) ∶= Y ϵ + q cover the image Z1,1 by (3.12), since every (x,y) ∈ Õ1 is contained in a
Cartesian product Xϵ(p) × Y ϵ(q) for some net point (p,q) ∈ P ×Q. Note that this covering
sets for Z1,1 are not necessarily convex!

Since we want to control the norm of z − r we will partition the difference by a sum of three
elements in Z

B(x,y) − B(p,q) = B(x,y) − B(p,y) + B(p,y) − B(p,q) (3.14)

= B(x − p,y) + B(p,y − q) (3.15)

= B(x − p,y − q) + B(x − p,q) + B(p,y − q), (3.16)

which gives for the norm by using the ϵ−net property and continuity (upper bound β) of B

∥z − r∥ ≤ ∥B(x − p,y − q)∥ + ∥B(x − p,q)∥ + ∥B(p,y − q)∥ (3.17)

≤ β(∥x − p∥ ∥y − q∥ + ∥x − p∥ ∥q∥ + ∥p∥ ∥y − q∥) (3.18)

≤ β(ϵ2 + ϵ ∥q∥ + ϵ ∥p∥) (3.19)

since for any z we can find (p,q) ∈ P ×Q with distance less than ϵ to x respectively y. Note,
the RNMP is only valid on Z and we need therefore the convexity of X and Y to guarantee that
x − p ∈ X and y − q ∈ Y ! To bound the distance furhter, we need a bound for the net points q
and p which are given by the RNMP lower bound as b = α−1/2 <∞. Moreover, this controls at
the same time the norm of r itself by using the lower triangle inequality

∣1 − ∥r∥ ∣ = ∣ ∥z∥ − ∥r∥ ∣ ≤ ∥z − r∥ ≤ β(ϵ2 + 2bϵ) ≤ β(2b + 1)ϵ ∶= cϵ. (3.20)

2Note, that for the covering number it holds N(Xb,Xϵ) = N(X1,Xϵ/b) = Nϵ/b(X1). Moreover Xa,b ⊂Xb.
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3.1. RIP for Multiplications on Subspaces

Hence, the set R is a cϵ−cover3 for Z1,1 with the sets B(Xϵ(p), Y ϵ(q)). Applying Φ on both
sides and using the lower triangle inequality we get

∣ ∥Φz∥ − ∥Φr∥ ∣ ≤ ∥ΦB(x − p,y − q) +ΦB(x − p,q) +ΦB(p,y − q)∥ . (3.21)

Using the upper triangle inequality and the bound4 1 + ρ in (3.13) and (3.19) we get similar:

∣ ∥Φz∥ − ∥Φr∥ ∣ ≤ (1 + ρ)( ∥B(p,y − q)∥ + ∥B(x − p,q)∥ + ∥B(x − p,y − q)∥ ) (3.22)

≤ (1 + ρ)cϵ. (3.23)

The Probabilistic part comes into play by the measure concentration (3.6) of Φ, applied to
every net point r ∈R. Hence we get as upper bound for ∥Φz∥ with (3.6)

∥Φz∥ ≤ (1 + ρ)cϵ + ∥Φr∥ ≤ (1 + ρ)cϵ + (1 + δ/2) ∥r∥ , (3.24)

which holds for all z ∈ Z1,1 and hence for all r ∈ R with probability ≥ 1 − 2∣R∣e−c0(δ)m. Since
∥r∥ /= 1 only if α /= β we define

c̃ =
⎧⎪⎪⎨⎪⎪⎩

c , α /= β
0 , α = β

. (3.25)

and get

∥Φz∥ ≤ (1 + ρ)cϵ + (1 + δ/2)(c̃ϵ + 1) = 1 + ρcϵ + cϵ + (1 + δ/2)c̃ϵ + δ/2. (3.26)

By definition of the supremum in (3.13), there exist a sequence {zk} ⊂ Z1,1, s.t., for each η > 0
there exist l ∈ N with

1 + ρ − η ≤ ∥Φzl∥ (3.27)

and hence we get with (3.26)

ρ − ρcϵ ≤ cϵ + (1 + δ/2)c̃ϵ + δ/2 + η ⇔ ρ ≤ 2cϵ + (2 + δ)c̃ϵ + 2η + δ
2(1 − cϵ)

. (3.28)

Now we can set η arbitrarily small, for example η = η′c̃ϵ/2 with some η′ > 0, then we have

ρ ≤ 2cϵ + (2 + δ + η′)c̃ϵ + δ
2(1 − cϵ)

. (3.29)

Since δ < 1 we can actually set η′ = 1 − δ > 0. Hence it follows

ρ ≤ 2cϵ + 3c̃ϵ + δ
2(1 − cϵ)

. (3.30)

3Strictly speaking, the cover is not a net, since in general r /∈ Z1,1 and the cover sets are not convex nor symmetric.
4It is also here necessary, that x − p ∈ X since only then the image is in Z, otherwise we could not apply the

universal bound defined in (3.13). Also extending Z to a larger set would result in a circle argument.
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Let us proceed by case distinction. If α = β then c̃ = 0 and c = 3. Defining ϵ = δ
12 ≤ 1 with

δ ∈ (0,1) we get

ρ ≤ 6ϵ + δ
2(1 − 3ϵ)

≤ δ. (3.31)

If we have α /= β then c̃ = c = c(α,β). Defining ϵ = δ
7c ≤ 1 with δ ∈ (0,1) we get

ρ ≤
5cϵ
2 +

δ
2

1 − cϵ
≤

5δ+7δ
14

1 − δ
7

δ<1
≤

12
14δ
6
7

= δ (3.32)

with probability

> 1 − 2Nδ/d(X)Nδ/d(Y )e−c0(δ)m ,

where d ∶= d(α,β) =
⎧⎪⎪⎨⎪⎪⎩

7β(2/
√
α + 1) , α /= β

12 , α = β
. (3.33)

The lower bound 1 − δ follows from this with

∥Φz∥ ≥ ∥Φr∥ − (1 + ρ)cϵ. (3.34)

By considering all z ∈ Z1,1 we get by inserting (3.32) with same probability as in (3.33)

∥Φz∥ ≥ (1 − δ
2
)(1 − c̃ δ

d
) − (1 + δ)cδ

d
. (3.35)

If α = β then c̃ = 0, c = 3 and d = 12. This gives

∥Φz∥ ≥ 1 − δ/2 − δ/2 = 1 − δ. (3.36)

If α /= β then c̃ = c, d = 7c and we get

∥Φz∥ ≥ 1 − δ/2 − cδ
d
+ cδ

2

2d
− cδ
d
− cδ

2

d
= 1 − δ

2
− 2cδ

d
− cδ

2

2d
(3.37)

= 1 − δ
2
− 4δ + δ2

14
≥ 1 − δ

2
− δ
2
= 1 − δ (3.38)
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3.2 RIP for Sparse Multiplications

Now we can derive a similar RIP result as in [BDDW08] for all (s, f)−sparse multiplications
in Rn. Note, this alone does not imply a stable embedding of the image set, but to any sparse
image generated by the associated linear maps Lx and Ry, see Corollary 4.

Theorem 9 (RIP on Sparse Multiplications). Let be s, f, n ∈ N with s, f ≪ n and Bn a multi-
plication in Rn statisfying the RNMP on Σn

s × Σn
f with bounds α,β > 0 and independent of n.

Then for any δ ∈ (0,1), there exist a constant c > 0, s.t. for m = O((s + f) log(n/s)) every
realization of a sub-Gaussian matrix Φ ∶ Rn → Rm with (Φ)ij ∼ N (0,1/m) fulfills for every
x ∈ Σn

s the following δ−stability

(1 − δ) ∥z∥ ≤ ∥Φz∥ ≤ (1 + δ) ∥z∥ for z ∈ Bn(Σn
s ⊛Σn

f ) (3.39)

with probability
≥ 1 − 2e−cm. (3.40)

Proof. Let X and Y be two linear spaces with dimensions s resp. f in Lemma 5, then
Nδ/d(X1) ≤ (3d/δ)s and Nδ/d(Y 1) ≤ (3d/δ)f , s.t. we get a failure probability for the RIP
not larger than

2(3d/δ)s+fe−c0(δ)m. (3.41)

If the RNMP holds on Σn
s ×Σn

f with bounds α,β, then we have (ns)(
n
f
) different s, f dimensional

subspaces X,Y . Since (ns) ≤ (en/s)
s, we get for k = s + f

2(en/s)s(en/s)f(3δ/d)s+fe−c0(δ)m = 2(en/s)k(3d/δ)ke−c0(δ)m (3.42)

= 2e−c0(δ)m+k(ln(n/s)+1+ln(3d/δ)). (3.43)

Let now c1 > 0 such that k ≤ c1m/ ln(n/s), then

≤ 2e−c0(δ)m+c1m(1+
1+ln(3d/δ)
ln(n/s) ). (3.44)

To get an exponential decay of the failure probability in m we need to show the existence of a
positive constant c2 > 0 such that

2e−c0(δ)m+c1m(1+(2+ln(3d/δ)/ ln(n/s)) = 2e
−

=∶c
³ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹· ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(c0(δ)−c1(1+ 1+ln(3d/δ)

ln(n/k) ))m = 2e−cm. (3.45)

Since we have for all s, f ∈ N for the lower bound α ≤ 1 we get with

d(s, f) = 7β
α
(2 +
√
α) < 21β

α
(3.46)
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the following estimation

c0(δ) − c1(1 +
1 + ln(3d/δ)
ln(n/s)

) ≥ c0(δ) − c1 (1 +
1 + ln(63β/α) − ln δ

ln(n/s)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶c2(s,f,n)

= c. (3.47)

Here, the ratio β(s, f)/α(s, f) goes to infinity for f → ∞. But for fixed s, f this ratio is finite
and hence for n large enough c2(s, f, n) is positive for any δ ∈ (0,1). Then it is easy to decrease
c1 until it gets compensated by c0(δ).

Note, for subgaussian matrices we have c0(δ) = (3δ2 − δ3)/48 by (3.4). Therefore, if we set
c1 = δ2/(48c2)we get a positive c. Hence, fromm = O((s+f) log(n/s)) random measurements
we obtain the RIP with exponential high probability if s≪ n.

This enables immediatley the following important universal compressed sensing result for LTI
systems, described by zero-padded circular convolutions.

Corrolary 4 (Compressibility of sparse LTI systems). Let be s, f, n ∈ N with s, f ≪ n and
0n−1 the zero vector in Rn−1. Then for any δ ∈ (0,1), there exists a constant c > 0, s.t. for
m = O((s + 2f) logn) every realization of a sub-Gaussian matrix Φ ∶ Rn → Rm with (Φ)ij ∼
N (0,1/m) fulfills for every x ∈ Σn

s the following δ−stability

(1 − δ) ∥z1 − z2∥ ≤ ∥Φ(z1 − z2)∥ ≤ (1 + δ) ∥z1 − z2∥ for z1,z2 ∈ (
x

0n−1
)⊛ ( Σ

n
f

0n−1
) (3.48)

with probability ≥ 1 − 2e−cm.

Proof. Note, w.l.o.g. we can assume s ≤ f by commutativity of the convolution. Let x ∈ (Σn
s ,0)

an arbitrary channel parameter (generating the circular matrix X and hence the channel). Then
we know that

z = z1 − z2 = x⊛ y1 − x⊛ y2 = x⊛ y ∈ (Σn
s ,0)⊛ (Σn

2f ,0), (3.49)

since y = y1 − y2 ∈ (Σn
2f ,0). Hence, by using Corollary 2, assuming n is sufficiently large, and

Theorem 9 we have for any realization Φ ∈ Rm×n of a sub-Gaussian random matrix

(1 − δ) ∥z1 − z2∥ ≤ ∥Φz∥ = ∥Φ(z1 − z2)∥ = ∥Φ(x⊛ y)∥ ≤ (1 + δ) ∥z1 − z2∥ (3.50)

with probability larger than 1 − 2e−cm for some constant c > 0 and any m = O((s + 2f) logn).
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3.3 From RIP on Bilinear Images to Stable Compressed
Sensing

Unfortunately, the RIP on Z does not imply a RIP on Z −Z, since Z is not a linear set, contrary
to the standard compressed sensing result, where it holds Σn

k −Σ
n
k = Σ

n
2k. Hence, it is still open,

how the RNMP can guarantee a RIP on the difference set Z −Z or in general, taking the image
of all sparse vectors Σn

s ×Σn
f , how can, on the set

∆ = B(Σn
s ,Σ

n
f ) − B(Σ

n
s ,Σ

n
f ) (3.51)

a RIP for random projections onto m dimension be established? Only if for some random Φ the
RIP holds on ∆, we have a stable random embedding by Φ of B(Σn

s ,Σ
n
f ).

Nevertheless, as seen in the previous Chapter 2, for the symmetrized circular convolution a stable
phase retrieval could be established. If the ambient dimension is larger than n ≥ ñ(s, f) as de-
rived in the Theorem 2, then an n independence of the stable embedding is obtained. Moreover,
if we could establish a random measurement on the magnitude Fourier measurements, such that
the measure concentration or the RIP is fulfilled, a stable reconstruction from m random mea-
surements of the image Z could be in principal established.
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4 Orthogonalization of Convolutions with
Compact Support

In this chapter we will investigate semi-discrete convolution systems and develop a transforma-
tion, acting as a finite sequence on a time-limited continuous pulse. The transformation shapes
the output signal in frequency and add a shift orthogonality property to the pulse. The result
of this chapter was published in [WJ12a]. By abuse of notation we will here denote by capital
letters A,B,C, . . . numbers and constants.

In communication theory one is interested to obtain a reliable high data rate transmission. Usu-
ally, the data rate depends by the famous Shannon formula on the bandwidth. But extending the
bandwidth could yield disturbance of existing systems, e.g. GPS and UMTS. Hence the Federal
Communications Commission (FCC) released [FCC02] a very low power spectral density (PSD)
mask for ultra-wideband (UWB) systems. To ensure that sufficiently high SNR is maintained in
the frequency band F = [0,14]GHz, as required by the FCC, the pulses have to be designed for
a high efficient frequency utilisation. This utilisation can be expressed by the pulses normalized
effective signal power (NESP) [LYG03]. Several pulse shaping methods for pulse amplitude
and pulse position modulation (PAM and PPM) were developed in the last decade based on a
FIR prefiltering of a fixed basic pulse. A SNR optimization under the FCC mask constraints then
reduces to a FIR filter optimization [Tia+06; WBV99; LYG03; WTDG06]. Since the SNR is lim-
ited, the amount of signals can be increased to achieve higher data rates or to enable multi-user
capabilities. For coherent and synchronized transmission over memoryless AWGN channels,
an increased number N of mutually orthogonal UWB signals inside the same time slot, known
as N -ary orthogonal signal design, improves the BER performance over Eb/N0 and hence the
achievable rate of the system [SHL94, Ch.4].

Combining spectral shaping and orthogonalization is an inherently difficult problem being nei-
ther linear nor convex. Therefore most methods approach this problem sequentially, e.g. com-
bining spectral optimization with a GRAM-SCHMIDT construction [And05; WTDG06; Pro01].
This usually results in an unacceptable loss in the NESP value of the pulses [WTDG04; DK07].
Moreover these orthogonal pulses are different in shape and therefore not useful for PPM. Fur-
thermore, a big challenge in UWB impulse radio (UWB-IR) implementation are high rate sam-
pling operations. Therefore, an analog transmission scheme is desirable [PCWD03; RM07;
DK07] to avoid high sampling rates in AD/DA conversion [PCWD03].

Usually, PPM is referred to an orthogonal (non-overlapping) pulse modulation scheme. To
achieve higher data rates in PPM, pulse overlapping was already investigated in optical com-
munication [BDK84] and called OPPM. An application to UWB was studied for the binary case
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with a Gaussian monocycle [ZMSF01]. To the authors’ knowledge, no orthogonal overlapping
PPM (OOPPM) signaling has been considered based on strictly time-limited pulses. In this
chapter we propose a new analog pulse shape design for UWB-IR to enable an almost OOPPM
signaling, which approximates the OOPPM scheme up to a desired accuracy.

In our approach, we first design a time-limited spectral optimized pulse p and perform afterwards
a Löwdin orthogonalization of the set of 2M+1 integer translates {p(⋅−k)}Mk=−M . This orthogo-
nalization method provides an implementable and stable approximation p○,M to a Nyquist pulse
p○. Using the Fourier transformation for p given by p̂(ν) = ∫R p(t)e

−i2πtνdt for every ν ∈ R, the
Nyquist1 pulse p○ can be expressed in the frequency-domain

p̂○(ν) = p̂(ν)
√
∑k ∣p̂(ν − k)∣

2
(4.1)

for ν almost everywhere, which is known as the orthogonalization trick [Dau90]. Usually in
digital signal processing, see Fig. 4.1, the time-continuous signal (pulse) is sampled by an ana-
log to digital (AD) operation to obtain a time-discrete signal in C2M+1. Then a discretization of
the orthogonalization in (4.1) yields a finite digital transformation DM to construct a discrete
signal in the Fourier domain which has again to be transformed by a DA operation to obtain
finally an approximation of the Nyquist pulse [JS02].
Instead of using such an AD/DA conversion to operate in a discrete domain, we use the demo-
cratic LÖWDIN orthogonalization BM , found by Per-Olov Löwdin in [Löw50; Löw70], where
all 2M + 1 linear independent pulse translates are involved simultaneously by a linear combi-
nation to generate a set of time-limited mutual orthogonal pulses. Hence the Löwdin orthog-
onalization is order independent. The Löwdin pulses constitute then an orthonormal basis for
the span V M(p) of the initial basis {p(⋅ − k)}Mk=−M . Moreover, as we will show in our main
Theorem 12, the Löwdin orthogonalizationBM is a stable approximation method to the Nyquist
construction in (4.1) and operates completely in the analog domain. Note, that a discretization
of (4.1) generates neither shift-orthogonal pulses nor a set of mutual orthogonal pulses. The
important property of the Löwdin method is its minimal summed energy distortion to the ini-
tial basis. It turns out that all orthogonal pulses maintain the spectral efficiency ”quite well”.

As M tends to infinity the Löwdin orthogonalization B = B∞ applied to the initial pulse p
delivers the Nyquist pulse p○, which allows a real-time OOPPM system with only one single
matched filter at the receiver. Since the Löwdin transform BM is hard to compute and to control
we introduce an approximate Löwdin orthogonalization (ALO) B̃M and investigate its stability
and convergence properties. It turns out that for fixed M the transformations BM and B̃M are
both implementable by a FIR filter bank like the spectral optimization. We call BMp and B̃Mp
approximate Nyquist pulses, since we observed that even for finite M our analog approximation
yields time–limited pulses with almost shift–orthogonal character since the sample values of the
autocorrelation are below a measurable magnitude for the correlator. Hence such a construction
of approximate Nyquist pulses seems to be promising for an OOPPM system.

The structure of this chapter is as follows: In Section 4.1 we introduce the signal model and
motivate our spectrally efficient N -ary orthogonal overlapping PPM design for UWB systems.

1This also called a square-root Nyquist pulse in the literature.
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Analog

Digital 

Time:

Fourier:

Figure 4.1: Analog and discrete approximation methods in time and frequency domains

Section 4.2 presents the state of the art in FCC optimal pulse shaping for UWB-IR based on PPM
or PAM transmission by FIR prefiltering of Gaussian monocycles which is a necessary prereq-
uisite for our design. To develop our approximation and convergence results in Section 4.3 we
introduce the theory of shift–invariant spaces in Section 4.3.1 and in Section 4.3.2 the Löwdin
orthogonalization for a set of N translates to provide a N -ary orthogonal overlapping transmis-
sion. Our main result is given in Section 4.3.3, where we consider the stability of the Löwdin
orthogonalization BM (for M increasing to infinity) and develop for this a simplified approxi-
mation method B̃M , called ALO. In Section 4.4 we study certain properties of our filter design
and investigate the combination of both approaches. Furthermore, in Section 4.4.1 we develop a
connection between our result and the canonical tight frame construction. Finally in Section 4.5,
we demonstrate that the ALO and Löwdin transforms yields for sufficiently large filter orders
compactly supported approximate Nyquist pulses, which can be used for OOPPM having high
spectral efficiency in the FCC region. Moreover, the Löwdin pulses provides also a spectrally
efficient 2M + 1-ary orthogonal pulse shape modulation (PSM) [GK08].

4.1 Signal Model

To control signal power in time or frequency locally we need bounded pulses in L∞ ∶=
{p ∶ R→ C ∣ ∥p∥∞ <∞} with

∥p∥∞ ∶= ess sup
t∈R

{∣p(t)∣} , (4.2)

where the essential supremum is defined as the smallest upper bound for ∣p(t)∣ except on a set
of measure zero. If the pulse is continuous than this implies boundedness everywhere. UWB-IR
technology uses ultra short pulses, i.e. strictly time-limited pulses with support contained in
a finite interval X ⊂ R. We call such L2-functions compactly supported in X and denote its
closed span by the subspace L2(X). The coding of an information sequence {dn} = {dn}n∈Z
is realized by pulse modulation techniques [Pro01; Mid96] of a fixed normalized basic pulse
p ∈ L2([0, Tp]) with duration Tp.
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Chapter 4. Orthogonalization of Convolutions with Compact Support

A relevant issue in the UWB-IR framework and in our work is the spectral shape of the pulse. In
this section we will therefore summarize the derivation of spectral densities for common UWB
modulation schemes such as PAM [Tia+06], PPM [Sch93; LYG03; WS98; Win99; RMS98] and
combinations of both [NM03] to justify our spectral shaping in the next section. Antipodal
PAM and N -ary PPM are linear modulation schemes which map each data symbol dn to a
pulse (symbol) sdn(t) with the same power spectrum E ∣p̂(ν)∣2. If we fix the energy E of the
transmitted symbols and the pulse repetition time (symbol duration) Ts, we will show now for
certain discrete random processes (e.g. i.i.d. processes [WJT10a]) that the power spectrum
density (PSD) of the transmitted signals is given by

Su(ν) =
E ∣p̂(ν)∣2

Ts
. (4.3)

Hence an optimization of the pulse power spectrum to the FCC mask SFCC(ν) over the band F
in Section 4.2 increases the transmit power. To be more precise, PPM produces discrete spectral
lines, induced by the periodic pulse repetition, the use of uniformly distributed pseudo-random
time hopping (TH) codes cn ∈ [0,Nc] was suggested to reduce this effect and to enable multi-
user capabilities [Sch93; Win99; WS98; Win02; WZK08]:

u(t) =
∞
∑

n=−∞

√
Ep(t − nTf − cnTc − d⌊n/Nf ⌋T ). (4.4)

In [Win02] this is called framed TH by a random sequence, since the coding is repeated in
each frame Nf times with a clock rate of 1/Tf . Hence NfTf = Ts is the symbol duration for
transmitting one out ofN symbol waveforms representing the encoded information symbol dn ∈
{0, . . . ,N − 1}. To prevent ISI and collision with other users, the maximal PPM shift T and TH
shift Tc have to fulfill NT ≤ Tc and NcTc ≤ Tf . To ensure mutual orthogonality of all symbols
one requires T > Tp. The PSD for independent discrete i.i.d. processes {cn},{dn} follows from
the Wiener-Khintchine Theorem [Win02; VRE05] to [LYG03, (5)], [NM03; NM06].

Su(ν) =
E ∣p̂(ν)∣2

Tf

⎡⎢⎢⎢⎢⎣
1−∣Gβ(ν)∣

2 +
∣Gβ(ν)∣

2

Tf
∑
k

δ (ν− k
Tf
)
⎤⎥⎥⎥⎥⎦

(4.5)

with ∣Gβ(ν)∣ =
1

NcN
∣sin(πνTcNc)

sin(πνTc)
∣ ∣sin(πνTN)

sin(πνT )
∣ and δ is the Dirac distribution. (4.6)

However, a more effective and simple reduction method without the use of frame repetition
(Nf = 1) or random TH (Nc = 1) has been proposed in [NM03; NM06]. Here antipodal PAM
with an ∈ {−1,1} is combined with N -ary PPM modulation, for NT ≤ Ts

u(t) =
√
E∑

n

anp(t − nTs − dnT ). (4.7)

The PSD for such i.i.d. processes is well known [Mid96, Sec.4.3]:

Su(ν) =
E ∣p̂(ν)∣2

Ts

⎛
⎝
E[a2] − ∣E[a]E[e−ı2πνdT ]∣2 +

∣E[a]E[e−ı2πνdT ]∣2

Ts
∑
n

δ (ν − n

Ts
)
⎞
⎠
, (4.8)

58



4.1. Signal Model

since we have Gβ(ν) = E[a]E[ei2πνdT ] in (4.6). For an i.i.d. process {an} with expectation
E[a] = 0 and variance E[a2] = 1 the PSD reduces to (4.3). Hence the effective radiation power is
essentially determined by the pulse shape times the energy E per symbol duration Ts and should
be bounded pointwise on F below the FCC mask SFCC

Su(ν) = E
∣p̂(ν)∣2

Ts
≤ SFCC(ν) for all ν ∈ F. (4.9)

The optimal receiver for N -ary orthogonal PPM in a memoryless AWGN channel with noise
power density N0 is the coherent correlation receiver. The bit rate Rb and average symbol error
probability Ps is given as [SHL94, p. 4.1.4]

Rb =
logN

Ts
and Ps(E) ≤ (N − 1) erfc

⎛
⎝

√
E
N0

⎞
⎠
, (4.10)

where erfc is the complementary error function. Hence, a performance gain for fixed Ts is
achieved by increasing N and/or E .

Increasing N Usually non–overlapping pulses are necessary in PPM to guarantee orthogo-
nality of the set {p(⋅ − nT )} ∶= {p(⋅ − nT )}n∈Z of pulse translates, i.e. T > Tp. For fixed Tp
this limits the number of pulses N in [0, Ts] and hence the data rate. In this chapter we will
design an orthogonal overlapping PPM (OOPPM) system by keeping all overlapping translates
mutually orthogonal. But such Nyquist pulses are in general not time–limited, i.e. not compactly
supported. In fact, we will show that for a particular class of compactly supported pulses a non-
overlapping of the shifts is necessary to obtain strict shift-orthogonality. However, we derive
overlapping compactly supported pulses approximating the Nyquist pulse in (4.1) and charac-
terize the convergence. These approximated Nyquist pulses allow a realizable N -ary OPPM
implementation based on FIR filtering of time–limited analog pulses.

Increasing E The maximization of E with respect to the FCC mask was already studied in
[LYG03; Tia+06] where a FIR prefiltering is used to shape the pulse such that its radiated power
spectrum efficiently exploits and strictly respect the FCC mask. Note that the FCC regulation in
(4.9) is a local constraint and does not force a strict band-limited design, however fast frequency
decay outside the interval F is desirable for a hardware realization.

Our combined approach now relies on the construction of two prefiltering operations to shape
a fixed initial pulse. The first filter shapes the pulse to optimally exploit the FCC mask and the
second filter generates an approximated Nyquist pulse. The filter operations can be described as
semi–discrete convolutions of pulses p∈L2 with sequences c ∈ ℓ2

p ∗′T c ∶= ∑
k∈Z

ckp(⋅ − kT ), (4.11)

with clock rate 1/T . If we restrict ourselves to FIR filters of order n, we consider only sequences
cn ∈ ℓ2n ≅ Cn.
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Chapter 4. Orthogonalization of Convolutions with Compact Support

4.2 FCC Optimization of a Single Pulse

The first prefilter operation generates an optimized FCC pulse p. To generate a time-limited
real-valued pulse we consider a real-valued initial input pulse q ∈ L2([−Tq/2, Tq/2]) and a real-
valued (causal) FIR filter gL ∈ RL. A common UWB pulse is the truncated Gaussian monocycle
q [LYG03; Tia+06; BEZJ07], see also Section 4.5. The prefilter operation is then:

p(t) = (q ∗′T0
gL)(t) =

L−1
∑
k=0

gLk q(t − kT0) (4.12)

which results in a maximal duration Tp = (L − 1)T0 + Tq of p.

To maximize the PSD according to (4.9) we have to shape the initial pulse by the filter gL to
exploit efficiently the FCC mask SFCC in the passband Fp ⊂F , i.e. to maximize the ratio of the
pulse power in Fp and the maximal power allowed by the FCC

η(p) ∶= ∫
Fp

∣p̂(ν)∣2dν/∫
Fp

SFCC(ν)dν. (4.13)

This is known as the direct maximization of the NESP value η(p), see [WTDG06]. Here we
already included the constants E and Ts in the basic pulse p. If we fix the initial pulse q, the
clock rate 1/T0 and the filter order L, we get the following optimization problem

max
gL∈RL

η̃ (q ∗′T0
gL)

s.t. ∀ν ∈ F ∶ ∣ĝL(ν)∣2 ⋅ ∣q̂(ν)∣2 ≤ SFCC(ν),
(4.14)

where ĝL denotes the 1/T0 periodic Fourier series of gL, which is defined for an arbitrary
sequence c ∈ ℓ2 as

ĉ(ν) =
∞
∑

n=−∞
cne
−2πiνnT0 . (4.15)

Since gL ∈ ℓ2(L) the sum in (4.15) becomes finite for ĝL. Liu and Wan [LW08] studied the
non-convex optimization problem (4.14) with non-linear constraints numerically with fmincon,
a MATLAB program. The disadvantage of this approach lies in the trap of a local optimum,
which can only be overcome by an intelligent choice of the start parameters.

Alternatively (4.14) can be reformulated in a convex form by using the Fourier series of the
autocorrelation rgL,n ∶= ∑k g

L
k g

L
k−n of the filter gL [DLS02]. Since rgL,n = rgL,−n (real-valued

symmetric sequence) we can write for ν in the frequency band [− 1
2T0

, 1
2T0
]

r̂gL(ν) ∶=
L−1
∑
n=0

rgL,nϕn(ν) = ∣ĝL(ν)∣2 . (4.16)
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4.2. FCC Optimization of a Single Pulse

By using the basis ϕ ∶= {1,2 cos(2πνT0),2 cos(2πν2T0), . . .} one gest ∣p̂(ν)∣2 = r̂gL(ν) ⋅
∣q̂(ν)∣2. Due to the symmetry of ϕn and SFCC we can restrict the constraints in (4.14) to F =
[0, 1

2T0
] and obtain the following semi–infinite linear problem:

max
r∈RL

L−1
∑
n=0

rgL,ncn such that 0 ≤ r̂gL(ν) ≤M(ν) for all ν ∈[0, 1

2T0
] (4.17)

with M(ν) ∶= SFCC(ν)
∣q̂(ν)∣2

and cn ∶= ∫
Fp

∣q̂(ν)∣2 ϕn(ν)dν. (4.18)

Since the FCC mask is piecewise constant, we separate M(ν) into five sections Mi(ν)
[BEJJ06] and get the inequalities

∀i = 1, . . . ,5 ∶ r̂gL(ν) ≤Mi(ν) for ν ∈ [αi, βi] (4.19)

with β1 = 1.61, β2 = 1.99, β3 = 3.1, β4 = 10.6, β5 = 14 and α1 = α2 = α3 = α4 = 0, α5 = β4 in
GHz, see Fig. 4.2.
The necessary lower bound for r reads

r̂gL(ν) ≥ 0 for ν ∈ [0, 1

2T0
] = [0,14]GHz. (4.20)

To formulate the constraints in (4.18) for r as a positive bounded cone in RL we approxi-
mateMi(ν) by trigonometric polynomials2 ΓL

i (ν) ∶= ∑n γ
L
i,nϕn(ν) of order L in the L2-norm

[BEJJ06]. The semi-infinite linear constraints in (4.19) describe a compact convex set [DLS02,
(40),(41)]. To see this, let us introduce the following lower bound cones for θ ∈ [0, 1

2T0
]

KL
low(θ) = {r ∈ RL∣

L−1
∑
k=0

rgL,nϕn(ν) ≥ 0, ν ∈ [θ,
1

2T0
]} . (4.21)

For θ = 0 the positive coneKL
0 =KL

low(0) defines the lower bound in (4.20) if we set T0 = 1
28GHz .

To formulate the non-constant upper bounds, one can use the approximation functions ΓL
i (ν)

[BEJJ06] given in the same basis ϕ as ∣ĝL(ν)∣2. For each i ∈ {1, . . . ,5} the bounds in (4.19) are
then equivalent to

L

∑
n=1
(γLi,n − rgL,n)ϕn(ν) ≥ 0 for ν ∈ [αi, βi]. (4.22)

For the upper bounds, we just have to set ρLi,n ∶= γLi,n − rgL,n for each i = 1, . . . ,5 and n ≥ 1,
which leads to the upper bound cones

KL
up(θi) = {r ∈ RL∣

L−1
∑
n=0

ρLi,nϕn(ν) ≥ 0, ν ∈ [θi,
1

2T0
]}, (4.23)

K̄L
up(θi) = {r ∈ RL∣

L−1
∑
n=0

ρLi,nϕn(ν) ≥ 0, ν ∈ [0, θi] }. (4.24)

2 Since the FCC mask divided by the Gaussian power spectrum is monotone increasing from 0 to 10.6GHz we can
let ΓL

1 , . . . ,Γ
L
4 overlap.
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The five upper bound cones KL
i are then

∀i = 1, . . . ,4 ∶ KL
i ∶= K̄L

up(βi) and KL
5 ∶=KL

up(α5). (4.25)

Since the autocorrelation has to fulfill all these constraints, it has to be an element of the inter-
section. After this approximation3 we get from (4.14) the problem

max
r∈⋂i K

L
i

L−1
∑
n=0

rgL,ncn. (4.26)

This is now a convex optimization problem of a linear functional over a convex set. By the
positive real lemma [DLS02], these cone constraints can be equivalently described by semi-
positive-definite matrix equalities, s.t. the problem (4.26) is numerically solvable with the MAT-
LAB toolbox SeDuMi [WBV99; Stu99]. The filter is obtained by a spectral factorization of rgL .
Obviously gL is not uniquely determined.

0 2 4 6 8 10 12 14

x 10
9

−70

−60

−50

−40

−30

−20

−10

0

10

PSD Basic pu lse q

FCC mask

Figure 4.2: Fourier-approximations ΓL
i ofM for L = 25.

Note that this optimization problem can also be seen as the maximization of a local L2-norm,
given as the NESP value, under the constraints of local L∞-norms.

4.3 Orthogonalization of Pulse Translates

In [Tia+06; DK07] a sequential pulse optimization was introduced, which produces mutually
orthogonal pulses p○m = q ∗′T0

gL
m, i.e. (p○m, p○n) = δnm. Here each pulse p○m is generated by a

3 The ΓL
i are approximations to the FCC mask with a certain error. Also, T0 is now fixed via the frequency range F .

If one wants to reduce T0, one has to reformulate the cones, hence γL
i and extend the frequency band constraints.

Increasing T0 above 1/28GHz is not possible, if one wants to respect the whole mask.
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different FIR filter gL
m ∈ RL, which depends on the previously generated pulses p○1, . . . , p

○
m−1

and produces pulses in L2([−Tq/2, (L − 1)T0 + Tq/2]). This approach is similar to the Gram-
Schmidt construction in that it is order-dependent, since the first pulse p○1 can be optimally
designed to the FCC mask without an orthogonalization constraint. We will now present a new
order–independent method to generate from a fixed initial pulse p a set of orthogonal pulses
{p○m}. Therefore we introduce a new time–shift T > 0, namely the PPM shift in (4.4), to
generate a set of N = 2M + 1 translates {p(⋅ −mT )}Mm=−M , i.e. M shifts in each time direction.
The orthogonal pulses are then obtained by linear combinations of the translates of the initial
pulse p. For a stable embedding of the finite construction we restrict the initial pulses to the set
L2
Tp
∶= L2([−Tp/2, Tp/2]) of centered pulses with finite duration Tp. To study the convergence

we need to introduce the concept of regular shift–invariant spaces.

4.3.1 Shift–Invariant Spaces and Riesz-Bases

To simplify notation we scale the time axis so that T = 1. Let us now consider the set S0(p) ∶=
span{p(⋅ − n)} of all finite linear combinations of {p(⋅ − n)}, which is certainly a subset of L2.
The L2-closure of S0(p) is a shift–invariant closed subspace S (p) ∶= S0(p) ⊂ L2, i.e. for
each f ∈ S (p) also {f(⋅ − n)} ⊂ S (p). Since S (p) is generated by a single function p we
call it a principal shift–invariant (PSI) space and p the generator for S (p). In fact, S (p) is
the smallest PSI closed subspace of L2 generated by p. Of course not every closed PSI space
is of this form [BDR94]. In this chapter we are interested in spaces which are closed under
semi-discrete convolutions (4.11) with ℓ2 sequences, i.e. the space

V (p) ∶= {p ∗′ c ∣ c ∈ ℓ2} (4.27)

endowed with the L2- norm. Note that V (p) is in general not a subspace or even a closed
subspace of L2 [BDR94; AS02]. But to guarantee stability of our filter design V (p) has to be
closed, i.e. has to be a Hilbert subspace. More precisely, the translates of p have to form a Riesz
basis.

Definition 15. Let H be a Hilbert space. {en} ⊂H is a Riesz basis for span{en} if and only
if there are constants 0 < A ≤ B <∞, s.t.

A ∥c∥2ℓ2 ≤ ∥∑
n

cnen∥
2

H

≤ B ∥c∥2ℓ2 for all c ∈ ℓ2. (4.28)

In this case span{en} becomes a Hilbert-subspace of H . For SI spaces in L2 =H we get the
following result.

Proposition 10 (Prop.1 in [AU94]). Let p ∈ L2(R). Then V (p) is a closed shift–invariant
subspace of L2 if and only if

A ∥c∥2ℓ2 ≤ ∥p ∗
′ c∥2

L2 ≤ B ∥c∥
2
ℓ2 for all c ∈ ℓ2 (4.29)

holds for fixed constants 0 < A ≤ B <∞. Moreover, {p(⋅ − n)} is a Riesz-basis for V (p).
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If the generator p fulfills (4.29), then V (p) = S (p) by [Jia97] and we call p a stable generator
and V (p) a regular PSI space [BDR94]. An orthonormal generator (Nyquist pulse) p○ for V (p)
is a generator with (p○(⋅ − n), p○(⋅ −m)) = δmn for all n,m ∈ Z [And05, Def. 2.2-2]. Benedetto
and Li [BL98] showed that the stability and orthogonality of a generator p ∈ L2 can be described
by the absolute [0,1]-integrable periodic function Φp ∈ L1([0,1]) of p defined for ν almost
everywhere (a.e.) as

Φp(ν) ∶=∑
k

∣p̂(ν + k)∣2 . (4.30)

They could show the following characterization [Chr03; BL98].

Theorem 11 (Th. 7.2.3 in [Chr03]). A function p ∈ L2 is a stable generator for V (p) if and
only if there exists 0 < A ≤ B <∞ such that

A ≤Φp(ν) ≤ B for ν a.e. (4.31)

and is an orthonormal generator for V (p) if and only if

Φp(ν) = 1 for ν a.e.. (4.32)

Proof. For a proof see Th. 7.2.3. (ii) and (iii) in [Chr03]. In our special case we have B = 1.
Note, that the Riesz sequence and orthonormal sequence are bases for their closed span, meaning
that in our case S (p) = V (p).

Due to this characterization in frequency there is a simple “orthogonalization trick” for a
stable generator given in (4.1), which was found by Meyer, Mallat, Daubechies and others
[Mey86],[Chr03, Prop. 7.3.9]. Unfortunately, this does not provide an a priori construction in
the time domain and does not lead to a support control of the orthonormal generator in time, as
necessary for UWB-IR.

Contrary to an approximation in the frequency-domain we approach an approximation in time-
domain via the Löwdin transformation. We will show that in the limit the Löwdin transfor-
mation for shift–sequences is in fact given in frequency by the orthogonalization trick (4.1).
By using finite section methods we establish an approximation method in terms of the discrete
Fourier transform (DFT) to allow an easy computation. Furthermore, we show that the Löwdin
construction for stable generators is unique and optimal in the L2-distance among all orthonor-
mal generators and corresponds to the canonical construction of so called tight frames (given
later).
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4.3.2 Löwdin Orthogonalization for Finite Dimensions

Since the Löwdin transformation is originally defined for a finite set of linearly independent
elements in a Hilbert space H , we will use the finite section method to derive a stable ap-
proximation to the infinite case. For this we consider for any M ∈ N the symmetric or-
thogonal projection PM from ℓ2 to ℓ2M = {c ∈ ℓ2∣ suppc ⊂ [M,M]} defined for c ∈ ℓ2 by
PMc ∶= cM = (0, . . . ,0, c−M , . . . , cM ,0, . . . ,0). Then the finite section GM of the infinite
dimensional Gram matrix G of p ∈ L2, given by

(G)nm ∶= ⟨p(⋅ −m), p(⋅ − n)⟩ for n,m ∈ Z, (4.33)

can be defined as GM ∶= PMGPM , see [Grö01, Prop. 5.1.5]. If p satisfies (4.28) and if we
restrict the semi-discrete convolution p ∗′ c to ℓ2M , we obtain a 2M + 1 dimensional Hilbert
subspace V M(p) of V (p) = H . Then the unique linear operation BM , which generates from
{p(⋅ −m)}Mm=−M an orthonormal basis (ONB) {p○,Mm }Mm=−M for V M(p) and simultaneously
minimizes

M

∑
m=−M

∥BMp(⋅ −m) − p(⋅ −m)∥2
L2 (4.34)

is given by the (symmetric) Löwdin transformation [Löw50; Löw70; Lan36; Jun07] and can be
represented in matrix form as

p○,Mm ∶= BMp(⋅ −m) =
M

∑
n=−M

(G−
1
2

M )mnp(⋅ − n) for all m ∈ [−M,M], (4.35)

where we call each p○,Mm a Löwdin orthogonal (LO) pulse or Löwdin pulse. Here G
− 1

2
M denotes

the (canonical) inverse square-root (restricted to ℓ2M ) of GM . Note that G
− 1

2
M is not equal to

PMG−
1
2PM . Since the sum in (4.35) is finite, the definition of the Löwdin pulses is also point-

wise well-defined. In the next section, we will see that this is a priori not true for the infinite
case. If we identify the corresponding m’th row of the inverse square-root of GM with vectors

hM
m = ((G

− 1
2

M )m−M , . . . , (G
− 1

2
M )m+M) we can describe (4.35) by a FIR filter bank as

p○,Mm = p ∗′ hM
m , m ∈ [−M,M]. (4.36)

Unfortunately, none of these Löwdin pulses is a shift-orthogonal pulse, which would be nec-
essary for an OOPPM transmission. In the next section we will thus show that the Löwdin
orthogonalization converges for M to infinity to an IIR filter b given as the centered row of
G−

1
2 . This IIR filter generates then a shift-orthogonal pulse, namely the Nyquist pulse defined

in (4.1). Hence the Löwdin orthogonalization (4.35) provides an approximation to our OOPPM
design. In the following we will investigate its stability, i.e. its convergence property.
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4.3.3 Stability and Approximation

In this section we investigate the limit of the Löwdin orthogonalization in (4.35) for translates
(time-shifts) of the optimized pulse p with time duration Tp < ∞ where we further assume that
p is a bounded stable generator. If we set K ∶= ⌊Tp⌋ then certainly p ∈ L2

K . In this case the
auto–correlation of p

rp(t) ∶= (p ∗ p−)(t) = ∫
R
p(τ)p(τ − t)dτ, (4.37)

with the time reversal p−(t) ∶= p(−t) is a compactly supported bounded function on [−K,K].
Due to the Poisson summation formula we can represent Φp almost everywhere by the Fourier
series (4.15) (T0 = 1) of the samples {rp(n)}

Φp(ν) =
∞
∑

n=−∞
rp(n)e−2πinν =

K

∑
n=−K

(G)n0e−2πinν , (4.38)

which is the symbol of the Toeplitz matrix G, since we have from (4.33) and (4.37) that rp(n −
m) = (G)nm. Moreover the symbol is continuous since the sum is finite due to the compactness
of rp.

On the other hand the initial pulse p is a Wiener function4 [Grö01, Def. 6.1.1] so that Φp defines
a continuous function and condition (4.31) holds pointwise [AST01, Prop.1]. Since both sides
in (4.38) are identical a.e. they are identical everywhere by continuity (see also [Grö01, p.105]).
Thus, the spectrum of G is continuous, strictly positive and bounded by the Riesz bounds. Hence
the inverse square-roots of G and GM exists s.t. for any M ∈ N (by Cauchy’s interlace theorem,
[BG05, Th. 9.19])

A1M ≤GM ≤ B1M and
1

B
1M ≤G−1M ≤

1

A
1M , (4.39)

where 1M denotes the identity on ℓ2M . Now we can approximate the Gram matrix by STRANG’s
circulant preconditioner [Str86], s.t. the diagonalization is given by a discrete Fourier transform
(DFT) [Dav79]. To get a continuous formulation of the approximated Löwdin pulses we use the
ZAK transform [Jan88], given for a continuous function f as

(Zf)(t, ν) ∶= ∑
n∈Z

f(t − n)e2πinν for t, ν ∈ R. (4.40)

Our main result, already presented in [WJT10a; WJT10b] but now with full proof, is the follow-
ing theorem.

Theorem 12. Let K ∈ N and p ∈ L2
K be a continuous stable generator for V (p). Then we

can approximate the limit set of the Löwdin pulses {p○m} by a sequence of finite function sets

4 Wiener functions are locally bounded in L∞ and globally in ℓ1.
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{p̃○,Mm }Mm=−M , which are approximate Löwdin orthogonal (ALO). The functions p̃○,Mm are given
pointwise for M ≥K and m ∈ {−M, . . . ,M} by the Zak transform as

p̃○,Mm (t) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2M+1

2M

∑
l=0

e
−2πiml
2M+1 (Zp)(t, l

2M+1 )√
(Zrp)(0, l

2M+1 )
∣t∣≤M−K

2

0 else
, (4.41)

such that for each m ∈ Z

p̃○m(t) = lim
M→∞

p̃○,Mm (t) (4.42)

converges pointwise on compact sets. The limit in (4.42) can be stated as

ˆ̃p○(ν) = p̂(ν) ⋅ (Φp(ν))−
1
2 (4.43)

for ν ∈ R in the frequency-domain. Hence the Löwdin generator p̃○ ∶= p̃○0 is an orthonormal
generator for V (p).

Proof. The proof consists of two parts. In the first part we derive an straightforward finite
construction in the time domain to obtain time-limited pulses (4.41) being approximations to the
Löwdin pulses. Using Strang’s circulant preconditioner the ALO pulses can be easily derived in
terms of DFTs. In the second part we will then show that this finite construction is indeed a stable
approximation to the Nyquist pulse. Here we need pointwise convergence, i.e. convergence in
ℓ∞ (the set of bounded sequences). Finally, to establish the shift-orthogonality we use properties
of the Zak transform.

Since the inverse square-root of a N ×N Toeplitz matrix is hard to compute, we approximate
for any M ≥ K the Gram matrix GM by using Strang’s circulant preconditioner G̃M [Str86;
CJ07]. Moreover, the Gram matrix is hermitian and banded such that we can define the elements
of the first row by [Gra06, (4.19)] as

(G̃M)0n ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rp(n) n ∈ [0,K]
rp(N − n) n ∈ [N −K,N − 1]
0 else

. (4.44)

Here we abbreviate N ∶= 2M + 1. The crucial property of Strang’s preconditioner G̃M is the
fact that the eigenvalues λl(G̃M) are sample values of the symbol Φp in (4.30). This special
property is in general not valid for other circulant preconditioners [CJ07]. To see this, we derive
the eigenvalues by [Gra06, Theorem 7] as

λ̃
M
l ∶= λl(G̃M) =

K

∑
n=0

rp(n)e−2πin
l
N +

N−1
∑

n=N−K
rp(N − n)e−2πin

l
N for l ∈ [0,2M] (4.45)

67



Chapter 4. Orthogonalization of Convolutions with Compact Support

by inserting the first row of G̃M given in (4.44). If we set in the second sum n′ = n −N we get
from (4.38)

λ̃
M
l =

K

∑
n=−K

rp(n)e−2πil
n
N = Φp (

l

2M + 1
) . (4.46)

Since p is compactly supported the symbol Φp is continuous and the second equality in (4.46)
holds pointwise. Moreover, the Riesz bounds (4.31) of p guarantee that G̃M is strictly positive
and invertible for any M . Now we are able to define the ALO pulses in matrix notation by
setting5 in pM(t) ∶= {p(t−n)}Mn=−M = (p(t+M), . . . , p(t−M))T for any t ∈ R

p̃○,M(t) ∶= G̃−
1
2

M pM(t) = FMD̃
− 1

2
M F∗MpM(t), (4.47)

since the circulant matrix G̃M = FMD̃MF∗M can be written by the unitary N ×N DFT matrix
FM , with

[FM ]nm ∶=
1√
N
e−2πi

nm
N with n,m∈{0, . . . ,2M} (4.48)

and the diagonal matrix D̃M of the eigenvalues of G̃M . Let us start in (4.47) from the right by
applying the IDFT matrix F∗M , then we get for any kth component with k ∈ {0, . . . ,2M}

[F∗MpM(t)]k =
1√
N

⎛
⎝

M

∑
n=0

e2πi⋅
n
N
k ⋅ p(t +M − n) +

2M

∑
n=M+1

e2πi⋅
n
N
k ⋅ p(t +M − n)

⎞
⎠

(4.49)

j=n+M
↓= 1√

N

M

∑
j=−M

e2πi⋅
j+M
N

k ⋅ p(t − j). (4.50)

Next we multiply with the components [D̃−
1
2

M ]kl = δkl/
√
λ̃
M
l of the inverse square-root of the

diagonal matrix D̃M

[D̃−
1
2

M F∗MpM(t)]
l
= 1√

N
∑
j,k

⎛
⎜
⎝

δkl√
λ̃
M
l

e2πi
j+M
N

k ⋅ p(t − j)
⎞
⎟
⎠
= 1√

N

⎛
⎜
⎝

M

∑
j=−M

e2πi
j+M
N

l ⋅ p(t − j)
√
λ̃
M
l

⎞
⎟
⎠
.

(4.51)

In the last step we evaluate the DFT at m ∈ {0, . . . ,2M}

p̃○,Mm−M(t) = [p̃
○,M(t)]m =

1

N

2M

∑
l=0

⎛
⎜
⎝
e−2πim⋅

l
N

√
λ̃
M
l

M

∑
j=−M

p(t − j)e2πil
j+M
N

⎞
⎟
⎠

(4.52)

= 1

N

2M

∑
l=0
e−2πil

m−M
N
∑M

j=M p(t − j)e2πil⋅
j
N

√
(Zrp)(0, l

N )
. (4.53)

5By slight abuse of our notation we understand in this section any matrix as an N ×N matrix and pM(t), p̃○,M(t)
as N -dim. vectors for any t ∈ R.
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where we used the Zak transform (4.40) of rp to express the eigenvalues λ̃
M
l . In the next step

we extend the DFT sum of the numerator in (4.53) to an infinite sum. This is possible since
p(⋅ − k) always has the same support length K for each k ∈ Z. Thus, for all ∣t∣ > M − K

2 the
non-zero sample values are shifted in the kern of PM ; hence pM(t) = 0. On the other hand
for ∣t∣ ≤ M − K

2 any shift ∣j∣ > M results in p(t − j) = 0. If we also set for each M the index
k ∶=m −M in (4.53) then the continuous ALO pulses can be written as

p̃○,Mk (t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
N ∑l e

−2πil k
N

(Zp)(t, l
N
)

√
(Zrp)(0, l

N
)
∣t∣ ≤M−K

2

0 else
. (4.54)

This defines for each k the operation B̃M
k by p̃○,Mk = B̃M

k p. For each t ∈ R the term (Zp)(t,ν)√
(Zr̃)(0,ν)

is

a continuous function in ν since the Zak transforms are finite sums of continuous functions and
the nominator vanishes nowhere. This is guaranteed by the positivity and continuity of Φp due
to (4.39). Hence the ALO pulses are continuous as well.

The second part of the proof shows the convergence of our finite construction to a Nyquist pulse.
Therefore we use the finite section method for the Gram matrix. Gray showed [Gra06, Lemma
7] that

∥G̃M −GM∥w → 0 (4.55)

as M →∞ in the weak norm ∥A∥2w ∶= 1/N ∑j λ
2
j(A) implying weak convergence of the opera-

tors. Since G̃M is strictly positive for each M ∈ N we get by [GGC08]

∥G̃−
1
2

M −G
− 1

2
M ∥

w
→ 0. (4.56)

Unfortunately this does not provides a strong convergence, which is necessary to state conver-
gence in ℓ2

G̃
− 1

2
M PMc→G−

1
2 c for any c ∈ ℓ2. (4.57)

However, from [SJB03] finite strong convergence can be ensured, i.e. convergence of (4.57) for
all c ∈ ℓ2M ′ for each M ′ ∈ N. But for any t ∈ R there exists an M ′ sufficiently large, due to the
compact support property of p, such that c = p(t) ∶= {p(t − n)} ∈ ℓ2M ′ .This is in fact sufficient,
since it implies pointwise convergence in ℓ∞M ′ of (4.57), i.e. component-wise convergence for
each t ∈ R. Let us take for each t ∈ R the number M ′ ∈ N such that max{∣t∣ ,K} ≤M ′. Then we
can define the limit of the kth component as

p̃○k(t) ∶= lim
M→∞

p̃○,Mk (t). (4.58)

If we define ∆ν = 1
2M+1 and νl = l∆ν we can write for (4.58) by inserting (4.54)

lim
M→∞

p̃○,Mk (t) = lim
M→∞

2M

∑
l=0

e−2πikνl(Zp)(t, νl)√
(Zrp)(0, νl)

∆ν. (4.59)

69



Chapter 4. Orthogonalization of Convolutions with Compact Support

Using the quasi-periodicity [Jan88, (2.18),(2.19)] of the Zak transform for k ∈ Z we have for
any t, ν ∈ R

(Zp(⋅ − k))(t, ν) = (Zp)(t − k, ν) = e−2πiνk(Zp)(t, ν). (4.60)

We can express the partial sum on the right hand side of (4.59) in the limit as a Riemann integral

p̃○k(t) ∶= lim
M→∞

p̃○,Mk (t) = ∫
1

0

(Zp(⋅ − k))(t, ν)√
(Zrp)(0, ν)

dν. (4.61)

This shows that B̃M
k p converge pointwise for M →∞ to B̃kp = B̃0p(⋅ −k) = p̃○k for each k. The

sequence {p̃○k} is then generated by shifts of p̃○ ∶= p̃○0 since the shift operation commutes with
B̃ ∶= B̃0. This in turn commutes with the Zak transformation, i.e. we have

(B̃p)(t−k) = ∫
(Zp)(t−k, ν)√
(Zrp)(0, ν)

dν = ∫
(Zp(⋅−k))(t, ν)√
(Zrp)(0, ν)

dν (4.62)

= (B̃p(⋅−k))(t). (4.63)

From (4.61) it is now easy to show that p̃○ is an orthonormal generator. We write the left hand
side of (4.61) in the Zak domain, by applying the Zak transformation6 to p̃○

(Zp̃○)(t, ν) = (Zp)(t, ν)√
(Zrp)(0, ν)

. (4.64)

If we multiple (4.64) by the exponential and integrate over the time we yield for every ν ∈ R

∫
1

0
e−2πiνt(Zp̃○)(t, ν)dt = ∫

1

0

e−2πiνt ⋅ (Zp)(t, ν)√
Zrp(0, ν)

dt. (4.65)

Since Φp = (Zrp)(0, ⋅) is time-independent we get the “orthogonalization trick” (4.1) by using
in (4.65) the inversion formula [Jan88, (2.30)] of the Zak transform

ˆ̃p○(ν) =p̂(ν) ⋅ (Φp(ν))−
1
2 = p̂○(ν). (4.66)

Again, this is also defined pointwise since the right hand side is continuous in ν. It can now be
easily verified that p̃○ fulfills the Nyquist condition (4.32), which shows that p̃○ is an orthonormal
generator for V (p).

Remark. Note, that relation (4.60) induces a time-shift. To apply this to the ALO pulses in
(4.54) the time domain has to be restricted further. Hence the ALO pulses do not have global

6A similar result is also known in the context of Gabor frames, see also [Grö01, p. 8.3].
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shift character for finite M ∈ N, but locally, i.e. p̃○,Mk shifted back to the center matches p̃○,M for
t ∈ [−M + K

2 + ∣k∣ ,M −
K
2 − ∣k∣]:

p̃○,Mk (t + k) = 1

N
∑
l

e−2πi
l
N
k∑M

n=−M p(t + k − n)e2πi
l
N
n

√
λ̃
M
l

(4.67)

= 1

N
∑
l

∑M
n=−M p(t + k − n)e2πi

l
N
(n−k)

√
λ̃
M
l

(4.68)

= 1

N
∑
l

∑M−k
n′=−M−k p(t − n′)e2πi

l
N
n′

√
λ̃
M
l

. (4.69)

Since p(t +M + ∣k∣) = 0 and p(t −M − ∣k∣) = 0 for ∣k∣ < M and ∣t∣ ≤ M − K
2 − ∣k∣, we end up

with

p̃○,Mk (t + k) = 1

N
∑
l

∑M
n=−M p(t − n)e2πi

l
N
n

√
λ̃
M
l

= p̃○,M(t). (4.70)

For all ∣k∣ <M the ALO pulses have the same shape in the window ∣t∣ ≤M − K
2 − ∣k∣ if we shift

them back to the origin.

Moreover, the ALO pulses are all continuous on the real line, since they are a finite sum of
continuous functions by definition (4.47). Hence each ALO pulse goes continuously to zero
at the support boundaries. So far it is not clear whenever p̃○ is continuous or not. Neverthe-
less its spectrum ˆ̃p○ is continuous and so we can state p̃○ = p○ almost everywhere. Hence the
orthogonalization trick defines the Nyquist pulse p○ only in an L2 sense.

4.4 Discussion of the Results

In this section we will discuss now the properties of our OOPPM design for UWB, i.e. the opti-
mization and orthogonalization, which can be completely described by an IIR filtering process.
First we will relate the Löwdin orthogonalization to the canonical tight frame construction. Af-
terwards we will show in Section 4.4.2 that the Löwdin transform yields the orthogonal generator
with the minimal L2-difference to the initial optimized pulse. This is the same optimality prop-
erty as for canonical tight frames [JS02]. But such an energy optimality does not guarantee FCC
compliance. So we will discuss in Section 4.4.3 the influence of a perfect orthogonalization to
the FCC optimization. Finally, we will discuss the implementation of a perfect orthogonalization
by FIR filtering.
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4.4.1 Relation Between Tight Frames and ONBs

Any Riesz basis {pk} for a Hilbert space H is also a exact frame for H with the frame operator
S defined by

S ∶H →H , f ↦ Sf =∑
k

⟨f, pk⟩H pk, (4.71)

where the frame bounds are given by the Riesz bounds 0<A ≤ B<∞ of {pk} [Chr03, Th. 5.4.1,
6.1.1], i.e.

A ∥f∥2
H
≤ ⟨Sf, f⟩

H
≤ B ∥f∥2

H
for any f ∈H . (4.72)

Here ⟨⋅, ⋅⟩
H

denotes the inner product in H and ∥⋅∥H the induced norm. Since S is bounded
and invertible, i.e. the inverse operator exists and is bounded [Chr03], we can write each f ∈H
as

f = SS−1f =∑
k

⟨S−1f, pk⟩H pk. (4.73)

In this case the Löwdin orthonormalization corresponds to the canonical tight frame construc-
tion.

Lemma 6. Let the sequence {pk} be a Riesz basis for the Hilbert space H ∶= span{pk} and G
its Gram matrix. Then the canonical tight frame {p○k} is given for each k ∈ Z by:

p○k ∶= S
− 1

2 pk =∑
l

(G−
1
2 )kl pl (4.74)

in an L2-sense.7

Proof. Let a, b ∈ R with a + b = −1. Then Sa and Sb, defined by the spectral theorem, are also
positive and self-adjoint on H . Moreover for each f we have the following unique represen-
tation f = ∑k ckpk with c ∈ l2(Z) due to the Riesz basis property. For f = pl in (4.73) we
get

pl =∑
k

⟨S−1pl, pk⟩H =∑
k

⟨Sapl, S
bpk⟩H pk (4.75)

since Sapl, S
bpk ∈ H there exist unique sequences cl,dk s.t. Sapl = ∑α clαpα, S

bpk =
∑β dkβpβ . Hence we get

pl =∑
k

⎛
⎝∑α

clαpα,∑
β

dkβpβ
⎞
⎠
pk (4.76)

=∑
k

∑
α,β

clαd̄kβ⟨pα, pβ⟩H pk (4.77)

=∑
k

∑
α,β

(C)lα(G)αβ(D∗)βkpk =∑
k

(CGD∗)lkpk (4.78)

7 This statement was already given without further explanation by Y. Meyer in [Mey86] equation (3.3). Note that
Y. Meyer used condition (3.1) and (3.2) in [Mey86] which are equivalent to the Riesz basis condition.
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where clα and dβk are the coefficients of the biinfinite matrices C resp. D. Since for each l ∈ Z
we have ∑k δlkpk = pl and {(CGD∗)lk},{δlk} ∈ ℓ2, we get 0 = ∑k((CGD∗)lk − δlk)pk for
each l ∈ Z. So by [Chr03, Th.6.1.1(vii)] we can conclude that (CGD∗)lk = δlk for all l, k ∈ Z
and get

CGD∗ = 1⇔ G =C−1(D∗)−1⇔ G−1 =D∗C. (4.79)

Obviously D and C are not an unique decomposition of S−1, since a and b are not. If a = b = −1
2 ,

we have D∗ =C∗ and hence G−
1
2 =C =D. This establishes (4.74) in an L2-sense.

If we now set pn ∶= p(⋅ − n) ∈ L2 the Riesz-basis is generated by shifts of a stable generator and
H = V (p) becomes a principal shift-invariant (PSI) space, which is a separable Hilbert sub-
space of L2 as discussed in Section 4.3.1. The canonical tight frame construction then generates
a shift-orthonormal basis, i.e. an orthonormal generator. The reason is that shift-invariant frames
and Riesz bases are the same in regular shift-invariant spaces [CCK01, Th.2.4]. So any frame
becomes a Riesz basis (exact frame) and any tight frame an ONB (exact tight frame). Hence for
regular PSI spaces there exists no redundancy for frames. This generalize the Löwdin transform
for generating a Nyquist pulse to any stable generator p.

From Meyer [Mey86] we know that (4.74) can be written in frequency domain as the orthogo-
nalization trick. Therefore the limit of the Löwdin transformation B̃ = B∶V (p)→ V (p)

f ↦ Bf = ∫
1

0

(Zf)(⋅, ν)√
Zrp)(0, ν)

dν (4.80)

equals the inverse square-root of the frame operator in (4.74).

4.4.2 Optimality of the Löwdin Orthogonalization

Janssen and Strohmer have shown in [JS02] that the canonical tight-frame construction of Ga-
bor frames for L2 is via Ron-Shen duality equivalent to an ONB construction on the adjoint
time-frequency lattice. Furthermore they have shown that among all tight Gabor frames, the
canonical construction yields this particular generator with minimal L2-distance to the original
one. However, for SI spaces this optimality of the Löwdin orthogonalization has to be proved
otherwise. To prove this we use the structure of regular PSI spaces.

Theorem 13. The unique orthonormal generator with the minimalL2 distance to the normalized
stable generator p ∈ L2 for V (p) is given by the Löwdin generator p○.

Proof. Let us first note that V (p) is a regular SI space since p is a stable generator. This has
as consequence that frames are Riesz bases for V (p) [RS94, Th. 2.2.7 (e)]. So any element
f ∈ V (p) = p ∗′ c is uniquely determined by an ℓ2 sequence c. By the Riesz–Fischer Theorem
this sequence c defines by its Fourier series a unique L2([0,1])-function τ = ĉ. Hence, the
Fourier transform of any f ∈ V (p) is represented uniquely by τ as f̂ = τ p̂, see also [BDR94,
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Th.2.10(d)]. On the other hand f is an orthonormal generator if and only if Φf = 1 a.e.. By using
the periodicity of τ we get

Φf =∑
k

∣p̂(⋅ − k)∣2 ∣τ(⋅ − k)∣2 (4.81)

= ∣τ ∣2∑
k

∣p̂(⋅ − k)∣2 = ∣τ ∣2 ⋅Φp = 1. (4.82)

Thus, we have ∣τ ∣ = 1/
√
Φp almost everywhere. Let us set τ̃ ∶= 1/

√
Φp a.e. and a complex

periodic phase function ϕ ∶= eiα(⋅) ∶ R → {z ∈ C ∣ ∣z∣ = 1} with α ∶ R → [0,2π] 1-periodic and
measurable. Then any function τ ∈ L2([0,1]) which satisfy (4.82) a.e. is given by τ = τ̃ ⋅ϕ a.e..
The L2-distance is then given by

∥p − f∥2L2 = ∥p̂ − f̂∥
2

L2 = ∥p̂ − τ p̂∥
2
L2 = ∥p∥2L2 + ∥τ p̂∥2L2 − ∫

R
τ ∣p̂∣2 − ∫

R
τ ∣p̂∣2 (4.83)

= 2 − ∫
R
(τ + τ) ∣p̂∣2 = 2 − 2∫

R
cos(α) ∣p̂∣2Φp

− 1
2 (4.84)

≥ 2 − 2∫
R
∣p̂∣2Φp

− 1
2 = 2 (1 − ⟨p, p○⟩

H
) . (4.85)

Since ∣p̂∣2 is positive and Φp is bounded and strictly positive a.e. the distance is minimized if
and only if α(ν) = 0 a.e. in R, i.e. if we have equality in (4.85). Hence ϕ = 1 a.e. and so
τ̃ = τ a.e., which corresponds hence to the unique orthonormal Löwdin generator f = p○ with
an L2-distance to p given in (4.85).

Remark. Note, that in fact the phase function ϕ has no influence on the power spectrum

∣p̂○ϕ∣
2 = ∣ϕτ̃ p̂∣2 = ∣τ̃ p̂∣2 = ∣p̂○∣2 . (4.86)

Nevertheless, We have to rescale the orthonormal generator p○ to respect the FCC mask, see
Section 4.5. For this the maximal difference of the power spectrum8 of the (normalized) optimal
designed pulse and the orthonormalized pulse is of interest, i.e.

∥∣p̂∣2 − ∣p̂○∣2∥
L∞
= ess sup

ν∈R
{∣

Φp(ν) − 1
Φp(ν)

∣ ⋅ ∣p̂(ν)∣2} ≤ ∥
Φp − 1
Φp

∥
L∞
⋅ ∥p̂∥2L∞ . (4.87)

This shows again that this L∞ distortion is also determined by the spectral properties of the
optimal designed pulse p and its Riesz bounds. Unfortunately it is very hard to control the
optimization and orthogonalization filter simultaneously as will be shown in the next section.

8In fact the L∞-distance of the FCC mask SFCC and ∣p̂○∣2 in F is relevant, assumed ∣p̂○∣2 is bounded by SFCC.
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4.4.3 Interdependence of Orthogonalization and Optimization

The causal FIR optimization process in (4.12) of a fixed initial pulse q of odd order L with clock
rate 1/T0 can be also written in the time-symmetric form as a real semi-discrete convolution

p = q ∗′T0
gL for gL ∈ ℓ2

L̃
(R) (4.88)

with L̃ ∶= (L−1)/2. In this section we investigate the interdependence of the IIR filter h and the
FIR filter gL, i.e. the interdependence of the orthogonalization filtering in Section 4.3.2 and the
FCC optimization filtering in Section 4.2 for arbitrary clock rates. So far we have first optimized
spectrally and afterwards performed the orthonormalization. In this order for a chosen q, the
orthogonalization filter h depends on gL, hence we write h = hg. Moreover the clock rates of
the filters differ, hence we stick the time-shifts as index in the semi-discrete convolutions. For
the T -shift-orthogonal pulse we get then

pT,○ = (q ∗′T0
gL) ∗′T hg. (4.89)

Let us set T = ∆T0 and Tq = NqT0 for Nq ∈ N,∆ > 0. Since the filter clock rate of ĝL is fixed
to 1/T0 to ensure full FCC–range control, the variation is expressed in ∆. To get rid of T0 we
scale the time t to t′ = t/T0 such that the time–shift of gL is T ′0 = 1. Then (4.89) becomes

p∆,○ = (q ∗′ gL) ∗′∆ hg = p ∗′∆ hg. (4.90)

We observe the following effects

1. If 1
∆ ∈ N then p∆,○ = q∆,○.

2. If ∆ ∈ N then the distortion of ĥg is limited periodically to the interval [− 1
2∆ ,

1
2∆].

To explain point 1), let us first orthogonalize q by hq and ask for the filter g̃∆,gL which preserves
the ∆-orthogonalization in the presence of gL. Hence we aim at

p∆,○ = p ∗′∆ hg = q∆,○ ∗′ g̃∆,gL . (4.91)

But from (4.43) we know how hg acts in the frequency-domain:

∣p̂∆,○(ν)∣2 = ∣p̂(ν)∣2

1
∆ ∑k ∣p̂(ν− k

∆)∣
2
= ∣q̂∆,○(ν) ⋅ ˆ̃g∆,gL(ν)∣

2
. (4.92)

With ∣p̂(ν)∣2= ∣ĝL(ν) ⋅ q̂(ν)∣2 we get by periodicity of ∣ĝL∣2for 1
∆ ∈N

∣p̂∆,○(ν)∣2 = ∣ĝL(ν)∣2 ⋅ ∣q̂(ν)∣2

1
∆ ∑k ∣ĝL(ν − k

∆)∣2 ⋅ ∣q̂(ν −
k
∆)∣

2
= ∣ĝL(ν)∣2 ⋅ ∣q̂(ν)∣2

1
∆ ∣ĝL(ν)∣2 ⋅∑k ∣q̂(ν − k

∆)2∣
(4.93)

= ∣q̂(ν)∣2

1
∆ ∑k ∣q̂(ν − k

∆)∣
2
= ∣q̂∆,○(ν)∣2 , (4.94)
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s.t. g̃∆,gL(k) = δk0, which shows point 1). Hence, the price of orthogonalization is the loss of
a frequency control, since the frequency property is now completely given by the basic pulse q
and ∆. In Fig. 4.10 the effect is plotted for ∆ ∈ [1,2] and L = 25. For small ∆ the distortion
is increase by the orthogonalization. This also shows that a perfect orthogonalization and opti-
mization with the same clock rates is not possible.
In point 2) a perfect orthogonalization does not completely undo the optimization, since T = ∆
is greater than the optimization shift T0 = 1. For ∆ = 2 we can describe the filter by using the
addition theorem in ∣ĝL(ν + 1/2)∣2 = r̂gL(ν + 1/2) = 2rgL,0 − r̂gL(ν) by

∑
k

∣p̂(ν − k
2
)∣

2

= r̂gL(ν)
⎡⎢⎢⎢⎢⎣
∑
k

∣q̂ (ν + 2k

2
)∣

2

+
2rgL,0 − r̂gL(ν)

r̂gL(ν) ∑
k

∣q̂ (ν + 2k + 1
2
)∣

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Φ′q(ν)

⎤⎥⎥⎥⎥⎦

= r̂gL(ν)[Φq(ν) − 2
r̂gL(ν) − rgL,0

r̂gL(ν)
Φ′q(ν)] (4.95)

which results in the filter power spectrum (4.92)

∣ˆ̃g2,gL(ν)∣
2 = (1 − 2

r̂gL(ν) − rgL,0

r̂gL(ν)
⋅
Φ′q(ν)
Φq(ν)

)
−1

. (4.96)

But since we fixed ∆ = 2 and q we can calculate Φq,Φ
′
q and q̂∆,○. This provides a separation of

the filter power spectrum r̂gL(ν) = ∣ĝL(ν)∣2 and the orthogonalization. Unfortunately, this does
not yield linear constraints for r.
Finally, note that the time-shifts and hence the filter clock rates, have to be chosen such that an
overlap of the basic pulse occurs. Otherwise a frequency shaping is not possible.

Summarizing, the discussion above shows that joint optimization and orthogonalization is a
complicated problem and only in specific situations a closed-form solution seems to be possi-
ble.

4.4.4 Compactly Supported Orthogonal Generators

For PPM transmission a time-limited shift-orthogonal pulse is necessary to guarantee an ISI
free modulation in a finite time. Such a PPM pulse is a compactly supported orthogonal (CSO)
generator. In PPM this is simply realized by avoiding the overlap of translates.

To apply our OOPPM design it is hence necessary to guarantee a compact support of the Löwdin
generator p○ given in Theorem 12. In this section we will therefore investigate the support
properties of orthogonal generators. In our previous paper [WJT10b] we could show numerically
an approximately shift-orthogonal behaviour. The existence of a CSO generator (with overlap)
was already shown by Daubechies in [Dau90]. Unfortunately, she could not derive a closed-form
for such an CSO generator. Moreover, to obtain a realizable construction of a CSO generator
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this construction has to be performed in a finite time. So our Löwdin construction should be
obtained by a FIR filter.

PSI spaces of compactly supported (CS) generators, were characterized in detail by de Boor et
al. in [BDR94] and called local PSI spaces. If the generator is also stable, as in Theorem 12,
then there exists a sequence c ∈ ℓ2 such that p ∗′ c is an CSO generator. Moreover, any CSO
generator is of this form. To investigate compactness, de Boor et.al. introduced the concept of
linear independent shifts for CS generators. The linear independence property of a CS generator
p is equivalent by [BDR94, Res. 2.24] to

{(Lp)(z − n)}n∈Z /= 0 for all z ∈ C (4.97)

where (Lp) denotes the Laplace transform of p. This means (Lp) do not have periodic zero
points. Note that this definition of independence is stronger than finitely independence, see
definition in [BDR94]. If we additionally demand linear independence of p in our Theorem 12,
then this CS generator is unique up to shifts and scalar multiplies. Furthermore, a negative result
is shown in [BDR94], which excludes the existence of a CSO generator if p itself is not already
orthogonal. But if p is already orthogonal, then p is unique up to shifts and scalar multiplies and
then the Löwdin construction becomes a scaled identity (normalizing of p). The statement is the
following:

Theorem 14 (Th. 2.29 in [BDR94]). Let p ∈ L2 be a linear independent generator for S (p)
which is not orthogonal, then there does not exists a compactly supported orthogonal generator
p○ for S (p), i.e. there exists no filter h ∈ ℓ2 such that p○ = p ∗′ h.

If p is a linear independent generator which is not orthogonal, then the Löwdin generator p○ is
not compactly supported. We extend this together with the existence and uniqueness of a linear
independent generator for a local PSI space S (p):

Corrolary 5. Let p ∈ L2 be compactly supported. If there exists a compactly supported orthog-
onal generator p○ for S (p), then it is unique.

Proof. Any CSO generator p○ ∈ L2 is a linear independent generator by [BDR94, Prop. 2.25(c)].
Since the linear independent generator is unique by [BDR94, Th. 2.28(b)], the CSO generator is
as well.

Remark. In any case there exists an orthogonal generator for a local PSI space. For a stable CS
generator p our Theorem 12 gives an explicit construction and approximation for an orthogonal
generator by an IIR filtering of p. If the Löwdin generator is not CS, it is the unique orthogonal
generator with the minimal L2-distance to the original stable CS generator by Theorem 13. So
far it is not clear whether there exists a IIR filter c ∈ ℓ2 which generates a CSO generator from
a stable CS generator or not. What we can say is that if the inverse square-root of the Gram
matrix is banded, then the rows corresponds to FIR filters which produce CSO generators, since
the semi-discrete convolution reduces to a finite linear combination of CS generators. So this is
a sufficient condition for the Löwdin generator to be CSO, but not a necessary one.
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Figure 4.3: Optimal Receiver for N -ary orthogonal modulation with scaled Löwdin pulses si ∶=
α∗pT,○,Mi−M .

4.5 Application of the Design

Here we give some exemplary applications of our filter designs developed in Section 4.2 and
Section 4.3 for UWB-IR.

FIR filter realized by a distributed transversal filter The FIR filter is completely real-
ized in an analog fashion. It consists of time-delay lines and multiplication of the input with the
filter constants. Note also that these filter values are real-valued. An application to UWB was
already considered in [ZZMW09].

Transmitter and receiver designs Our channel model is an AWGN channel, i.e. the
received signal r(t) is the transmitted UWB signal u(t) given in (4.7) plus white Gaussian
noise. For simplicity of the discussion we omitted the time-hopping sequence in (4.4). We
propose now three N − ary waveform modulations for our pulse design. All modulations are
linear and performed in the baseband. Hence the signals (pulses) are all real-valued.

(a) A pulse shape modulation (PSM) with the Löwdin pulses {pT,○,Mm }Mm=−M , which corre-
sponds to a N -ary orthogonal waveform modulation. The receiver is realized with N corre-
lators using the Löwdin pulses as templates. The absolute value is taken from the correla-
tors output lm due to the random amplitude flip by an in (4.7). For the optimal receiver see
Fig. 4.3.
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Choose largest

Figure 4.4: Matched filter receiver for an OPPM scheme with centered ALO or LO pulse.

(b) The centered ALO and LO pulse p̃T,○,M resp. pT,○,M for an OPPM design are in fact a
non-orthogonal modulation scheme with a matched filter at the receiver, see Fig. 4.4.

(c) The limiting OOPPM design with the Löwdin pulse p○ is not practically feasible, since we
have to implement an IIR filter. Hence we only refer to this setup for the theoretical limit.

Scaling with respect to the FCC mask The operations BM and B̃M generate pulses
which are normalized in energy but do not respect anymore the FCC mask. So we have to find
for the mth pulse its maximal scaling factor αm > 0 s.t.

∣αm ⋅ p̂○,Mm (ν)∣2 ≤ SFCC(ν) (4.98)

is still valid for any ν ∈ F . This problem is solved by

α∗m =

XXXXXXXXXXXXXXX

∣p̂○,Mm ∣
2

SFCC

XXXXXXXXXXXXXXX

− 1
2

L∞([0,F ])

= ∥
√
SFCC

p̂○,Mm

∥
L∞([0,F ])

. (4.99)

For the scaled Löwdin pulses we can easily obtain the following upper bound for the NESP
value (4.13)

η(α∗mp○,Mm ) =
∫F ∣α

∗
mp̂
○,M
m ∣

2

∫F SFCC
≤
∥p̂○,Mm ∥

2

L2

EFp

⋅ ∥
√
SFCC

p̂○,Mm

∥
2

L∞([0,F ]
(4.100)

= 1

EFp

⋅ ∥
√
SFCC

p̂○,Mm

∥
2

L∞([0,F ]
= 1

EFp

⋅

XXXXXXXXXXXXXXX

SFCC

∣p̂○,Mm ∣
2

XXXXXXXXXXXXXXXL∞([0,F ]

(4.101)

where we denoted with EFp = ∫Fp
SFCC the allowed energy of the FCC mask in the passband Fp.

Thus, the maximization of the symbol energy under the FCC mask is the maximization of α∗m
in (4.99), i.e. a maximization of the L∞-norm in the frequency domain.

4.5.1 Performance of the Proposed Designs

For a given transmission design, consisting of a modulation scheme and a receiver, the average
bit error probability Pe over Eb/N0 is usually considered as the performance criterion. We con-
sider real-valued signals in the baseband with finite symbol duration Ts. The optimal receiver for
a non-orthogonal N -ary waveform transmission is the correlation receiver with M correlators,
see Fig. 4.3 with maximum likelihood decision.
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N -ary orthogonal PSM for scheme (a) above The average (symbol) error probability
for N -ary orthogonal pulses with equal energy E can be upper bounded by [Tre68]

Pe ≤ (N − 1) erfc
⎛
⎝

√
E
N0

⎞
⎠

(4.102)

Note, that this error probability is the same as for an orthogonal PPM modulation (4.10). To
obtain equal energy symbols and FCC compliance we have to scale each Löwdin pulse with√
E = α∗ =minm{α∗m}.

N -ary overlapping PPM for scheme (b) above Here we can substitute the N correla-
tions by one matched filter h = pT,○,M resp. h̃ = p̃T,○,M and obtain the statistics ∣lm∣ by sampling
the output. The average error probability per symbol Pe given exactly in [Tre68, Prob. 4.2.11] for
equal energy signals and can be computed numerically. The energy is given by

√
E = α∗ = α∗0

and
√
Ẽ = α̃∗0 calculated in (4.99) for pT,○,M resp. p̃T,○,M . Upper bounds obtained in [Jac67]

can be used for the ALO resp. LO average error probability

Pe ≤
1

2

N

∑
j=2

erfc
⎛
⎝

√
E

2N0
(1 − ρ1j)

⎞
⎠

and P̃e ≤
1

2

N

∑
j=2

erfc
⎛
⎜
⎝

¿
ÁÁÀ Ẽ

2N0
(1 − ρ̃1j)

⎞
⎟
⎠

(4.103)

with ρ1j = ErpT,○,M (jT ) and ρ̃1j = ẼrpT,○,M (jT ), since the symbols are given by sj =√
EpT,○,M(⋅ − jT ) resp. s̃j =

√
Ẽ p̃T,○,M(⋅ − jT ) for j = 1, . . . ,N . The error probabilities

depend on the pulse energy and on the decay of the sampled auto-correlation defined in (4.37).

4.5.2 Simulation Results

The most common basic pulse for an UWB-IR transmission is the Gaussian monocycle:
q(t) ≃ t ⋅ exp (−t2/σ2) where σ is chosen such that the maximum of ∣q̂(f)∣2 is reached at
the center frequency fc = 6.85GHz of the passband [WJT10a]. Since we need compact support
and continuity for our construction, we mask q with a unit triangle window Λ instead of a simple
truncation. Also any other continuous window function which goes continuously to zero (e.g.
the Hann window) can be used, as long as the lower Riesz boundA > 0 can be ensured, see Theo-
rem 12. We have used an algorithm in [WJT10a] to computeA andB numerically. Note that for
any continuous compactly supported function we have a finite upper Riesz bound B, see [JM91,
Th.2.1]. The width (window length) is chosen to Tq = TΛ = NqT0 ≈ 0.21428ns, such that at least
99.99% of the energy of q is contained in the window [−Tq/2, Tq/2], see Fig. 4.5. We express
all time instants as integer multiples of T0. Also, in Fig. 4.5 we plot the optimal pulse obtained
by a FIR filter of order L = 25 which results in a time-duration Tp = 30T0 = 5Tq of p. In our
simulation we choose Tq ∶= 6T0 = NqT0 and L = 25 as the filter order of the FCC-optimization.
Hence, the optimized pulses have a total time duration of Tp = (L−1)T0+Tq = 30T0 = NpT0.
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Figure 4.5: Optimal pulse p for L=25 and basic pulse q = p for L=1 in time-domain in generic
units (GU).

The Riesz condition (4.31) has been already verified in [WJT10a] for this particular setup. The-
orem 12 uses the normalization T ′ = 1. Translating between different support lengths T ′p = K
is done by setting t ∶= t′Tp/K. Now the support of p(t′) is [−K/2,K/2] with fixed T ′ = 1.
To obtain good shift-orthogonality, we have to choose M > K. This we control with an integer
multiple m = 2, i.e. M = mK = 2K. The support length Ts of all the LO (ALO) pulses is then
given as

Tp̃T,○,M = (N − 1)T + Tp = (2mK)Tp/K +NpT0

= TpT,○,M = (2m + 1)NpT0 = 150T0.
(4.104)

Now the time slot [−TpT,○,M /2, TpT,○,M /2] exactly contains N mutually orthogonal pulses
{pT,○,Mm }, i.e. N orthogonal symbols with symbol duration Ts = TpT,○,M having all the same
energy and respecting strictly the FCC mask. This is a N -ary orthogonal signal design, which
requires high complexity at receiver and transmitter, since we need a filter bank of N different
filters.
Our proposal goes one step further. If we only consider one filter, which generates at the out-
put the centered Löwdin orthogonal pulse pT,○,M , we can use this as a approximated Nyquist
pulse with a PPM shift of T = Tp/K to enable N -ary OPPM transmission by obtaining almost
orthogonality.

Advantages of the proposed design are: a low-complexity at transmitter and receiver, a com-
bining of gL and h into a single filter operating with clock rate 1/T0 and q as input if
T = Tp/(T0K) ∈ N , a signal processing ”On the fly” and finally a much higher bit rate com-
pared to a binary-PPM. The only precondition for all this, is a perfect synchronisation between
transmitter and receiver. In fact, we have to sample equidistantly at rate of 1/T . The output of
the matched filter h(−t) = pT,○,M(t) is given by

y(t) = ∫
∞

−∞
r(τ)pT,○,M(τ − t)dτ (4.105)
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Figure 4.6: ALO and LO pulses for Gaussian monocycle in time, L = 1 and M = 2K.

and recovers the mth symbol. The statistic lm = y(mT ) is the correlation of the re-
ceived signal with the symbol sm, see Fig. 4.4. Note that the shifts have support in the
window [−1.5TpT,○,M ,1.5TpT,○,M ], but are almost orthogonal outside the symbol window
[−TpT,○,M /2, TpT,○,M /2] due to the compactness and approximate shift-orthogonal character of
the Löwdin pulse pT,○,M .

In Fig. 4.6 the centered orthogonal pulses for T = 5T0 = 5Tq/6 match almost everywhere the
original masked Gaussian monocycle, since the translates are almost non-overlapping, hence
they are already almost orthogonal. For T = T0 = Tq/6 the overlap results in a distortion of
the centered orthogonal pulses, where the ALO pulses have high energy concentration at the
boundary (circulant extension of the Gram Matrix).

In Fig. 4.7 the pulse shapes in time for the centered Löwdin orthogonal pulses are plotted. The
ALO pulses are matching the LO pulses for T > 2T0 almost perfectly such that we did not plot
them, since the resolution of the plot is to small to see any mismatch. Only for the critical shift
T = T0 a visible distortion is obtained at the boundary. In the next Fig. 4.8 we plotted therefore
the ALO and LO pulse for T = 1.5T0 to show that the ALO pulses indeed converge very fast to
the LO pulse if T >> T0. The reason is that for small time shifts of p the Riesz bounds and so

the clustering behaviour of GM and G
− 1

2
M decreases. Hence the approximation quality of G

− 1
2

M

with G̃
− 1

2
M decreases, which results in a shape difference.

To study the shift-orthogonal character of the ALO and LO pulses for various T , we have plotted
the auto-correlations in Fig. 4.9. As can be seen, the samples rpT,○,M (mT ) = ρ1m ≈ δm0, i.e.
they vanish at almost each sample point except in the origin. The NESP performance for various
values of T is shown in Fig. 4.10. Approaching T = T0 cancels the FIR prefilter optimization
of gL, i.e. the spectrum becomes flat. Finally, in Fig. 4.11 the gain of our orthogonalization
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strategy can be seen. In both cases, the N -ary OOPPM design transmit at a bit rate of

Rb(K) =
log(N)
Ts

= log(4K + 1)
150T0

. (4.106)

Fig. 4.11 shows the NESP value over the bit rate for fixed L = 25 and m = 2. Hence, decreasing
T = Tp/K results in more overlap and increases the amount N of symbols in Ts but slightly
decreases η, see Fig. 4.10.

Summarizing, a triplication of the bit rate from 0.18Gbit/s to 0.6Gbit/s is possible without loos-
ing much spectral efficiency. Let us note the fact that the bit data rate is an uncoded rate.
Obviously, the unshaped Gaussian monocycle then yields the highest data rate, since (4.106)
behaves logarithmically in the number of symbols, as seen in Fig. 4.11. But this has practically
zero SNR when respecting the FCC regulation. On the other hand, a longer symbol duration,
allows in (4.3) a higher energy E and hence a lower error rate in (4.10).

Hence, the increased symbol duration used for FCC optimal filtering of the masked Gaussian
monocycle q can be more than compensated by the proposed OOPPM technique.

84



4.5. Application of the Design

0 2 4 6 8 10 12 14

x 10
9

−60

−50

−40

−30

−20

−10

0

frequency in Hz

m
a
x
im
a
l
n
o
rm

a
liz
e
d
P
S
D
in
d
B

A LO :K=2, M=4, T=15T0

ALO :K=6, M=12,

ALO :K=10, M=20, T=3T0

ALO :K=12, M=24, T=2.5T0

ALO :K=20, M=40, T=1.5T0

ALO :K=30, M=60, T=T0

LO : K=30, M=60,

op tim a l FCC pu lse p

FCC mask

LO : K=12,N=49, T=2.5T0

, K=6, N=25, T=T0basic q°

T=5T0

T=T0

Figure 4.10: PSD of pulses for L = 25, T = Tp/K.

0 0.2 0 .4 0 .6 0 .8 1 1.2 1 .4 1 .6 1 .8
0

0.1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

R
b

in G b it/s

A LO pu lse

LO pu lse

G aussian M onocycle q

�

Binary-PPM with GM q

Figure 4.11: Orthogonalization results for L = 25 in Ts = 150T0 over various T resulting in
various bit rates Rb.

85



5 Conclusion

Support properties of signals becoming more and more relevant in modern signal processing.
It could be show in this dissertation how support restrictions of time-discrete signals can be
used to significantly reduce the sampling rate of convolution outputs in a stable way. These
stable embeddings offers a way for many applications: for example in phase retrieval, linear
time invariant systems and to even more general systems, which can be formulated as bilinear
mappings. A general condition for such bilinear systems could be formalized, the restricted
norm multiplicativity (RNMP), which guarantees the RIP with exponential probability on the
image of these bilinear maps from measurements scaling only additive in the dimension of the
input signals. The RNMP could be established for the discrete convolution with sparse signals
and allows a low-dimensional stable embedding, which therefore enables lower sample rates.
Moreover, the result could possibly enabling a compressed phase retrieval, which will be more
investigated by the author in the near future.

For time-continuous signals a compact support can also be used to shift-orthogonalize in a sta-
ble and efficient way time-limited pulses, which can be applied in UWB systems. Here, we
have proposed a new pulse design method for UWB-IR which provides high spectral efficiency
under FCC constraints and allowing an N -ary OPPM transmission with finite transmission and
receiving time by keeping almost orthogonality. In fact, the correlation parameters can be keep
below the noise level by using small time-shifts T < Tp. As a result, this provides much higher
data rates as compared to BPSK or BPPM. Furthermore, our pulse design provides a N-ary or-
thogonal PPM transmission by getting a lower bit error rate at the price of a higher complexity.
Simultaneous orthogonalization and spectral frequency shaping is a challenging and hard prob-
lem. For certain shifts, being integer multiples of T0, a numerical solver might be helpfully
to directly solve the combined problem as discusses in Section 4.4.3. It should be highlighted
the broad application of the OOPPM design, not only being limited to UWB systems but rather
applicable to any communication system demanding a local frequency constraint.
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A Appendix A

A.1 Discrete Uncertainty Principle

Here, we use results on the discrete uncertainty principle of DONOHO-STARK [DS89] and a
refined version of TAO [Tao05] and CHEBOTARËV [SL96] to motivate our result for groups
of prime order without an extra zero padding. Donoho and Stark could show in [DS89] the
following discrete uncertainty principle for any x ∈ Rn

∥x∥0 ∥Fx∥0 ≥ n (A.1)

∥x∥0 + ∥Fx∥0 ≥ 2
√
n (A.2)

Since diag(Fx)Fy = Fx⊙Fy, where ⊙ denotes the pointwise product, we can see by definition
(1.68), that

∥x⊛ y∥ =
√
n ∥Fx⊙Fy∥ . (A.3)

Hence, we get the following implication

(x /= 0 /= y, ∥Fx∥0 + ∥Fy∥0 > n)⇒ (Fx⊙Fy /= 0)
⇔ (0 /= x⊛ y)
⇔ (0 /= ∥x⊛ y∥)

(A.4)

By the discrete uncertainty principle (A.1) and with ∥x∥0 ≤ s, ∥y∥0 ≤ f in Theorem 2 we get

∥Fx∥0 + ∥Fy∥0 ≥
n

s
+ n
f
= ns + f

sf

!
> n. (A.5)

This is only possible if s + f > sf , which holds if and only if s = 1 or f = 1. But this is trivial.
So Donoho-Stark can not provide the existence of a > 0 in Theorem 2 for all cases. In fact, if n
is prime, the TAO inequality [Tao05]

∥x∥0 + ∥Fx∥0 ≥ n + 1⇔ ∥Fx∥0 ≥ n + 1 − s (A.6)

yields with the assumption n ≥ s + f − 1

∥Fx∥0+∥Fy∥0 ≥ 2n+2−s−f ≥ n+1 >n. (A.7)

Hence, whenever 1 ≤ s + f − 1 ≤ n and n is prime, we have for all x ∈ Σn
s ,y ∈ Σn

f that
x ⊛ y /= 0⇔ x /= 0 /= y. Due to the upper bound in (2.31), which was shown in Lemma 2, the
map ∥x⊛ y∥ is continuous and hence the infimum a is attained and is strictly larger than zero.
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