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Lehrstuhl für Echtzeitsysteme und Robotik

Towards an Integrated Framework for
Reliability-Aware Embedded System Design on

Multiprocessor System-on-Chips

Jia Huang
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Abstract

Today’s integrated circuits are becoming more susceptible to faults due to effects

caused by aggressive technology scaling. However, to meet the ever-increasing reli-

ability requirements of safety-related applications, the system has to function cor-

rectly even in the presence of faults. This leads to the challenging problem of

fault-tolerant system design. Here, the goal is to meet the required level of reliabil-

ity with minimum overhead, while guaranteeing the system’s timing, resource and

other constraints.

This thesis presents an integrated framework tackling the problem above. The

framework features modeling, analysis, optimization and code generation tools to

support a complete reliability-aware design flow. Its modeling approach allows for

abstract description of the application and the underlying execution platform. Us-

ing the models as input, the reliability analysis and multi-criteria optimization tech-

niques enable automated exploration of design alternatives. Fault Tolerant Mech-

anisms (FTMs), including spatial/temporal redundancy, fault detection and voting

are actively embedded into the design to meet the reliability goal. We extend the

existing approaches by dropping inappropriate assumptions in the fault model and

supporting a larger set of FTMs. Finally, our framework supports automatic gen-

eration of source code and platform configuration files from the abstract model,

thereby accelerates the development process. Compared with existing work, our

DSE techniques and the integrated tool framework advance the research results on

reliability-aware design further into practice. The analysis and optimization tech-

niques are evaluated with extensive experiments and the overall framework is applied

on real-world case studies and demonstrators.
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Zusammenfassung

Integrierten Schaltungen werden heutzutage aufgrund des fortwährenden Schrump-

fens der Strukturgrößen immer anfälliger für Fehler. Um die ständig steigenden

Anforderungen an die Zuverlässigkeit von sicherheitskritischen Anwendungen zu

erfüllen, muss ein System jedoch auch Im Fehlerfall weiterhin funktionieren. Dies be-

gründet die herausfordernde Aufgabenstellung des fehlertoleranten Systemdesigns.

Hierbei ist es das Ziel, die erforderliche Zuverlässigkeit mit minimalem Overhead zu

erreichen, und gleichzeitig die weiteren Randbedingungen an das System wie etwa

Echtzeitanforderungen, die beschränkte Verfügbarkeit von Ressourcen sowie andere

nicht-funktionale Anforderungen zu gewährleisteten.

Diese Dissertation stellt einen integrierten Ansatz zur Lösung des oben skizzier-

ten Problems vor. Dieser besteht aus Werkzeugen zur Modellierung, Analyse, Op-

timierung und Codegenerierung, um so einen durchgängigen Entwicklungsprozess

zu ermöglichen, der den Aspekt der Zuverlässigkeit berücksichtigt. Der Modellie-

rungsansatz ermöglicht eine abstrakte Beschreibung der Anwendung sowie der zu-

grundeliegenden Ausführungsplattform. Dieses Systemmodell dient als Ausgangs-

punkt für unsere Zuverlässigkeitsanalyse und den multi-kriteriellen Optimierungs-

ansatz, der eine automatische Exploration des Entwurfsraums ermöglicht. Hier-

zu wurden Fehlertoleranzmechanismen (z.B. räumliche bzw. zeitliche Redundanz,

Fehlererkennung und Voter) in den Entwicklungsprozess integriert, um die Zu-

verlässigkeitsanforderungen zu erfüllen. Die vorliegende Arbeit erweitert dabei be-

stehende Ansätze durch ein realistischeres Fehlermodell und die Unterstützu einer

größeren Anzahl von Fehlertoleranzmechanismen. Unser Ansatz unterstützt außer-

dem die automatische Generierung von Quellcode un Plattformkonfigurationsda-

teien aus dem abstrakten Systemmodell, was zu einer Beschleunigung des Ent-

wicklungsprozesses führt. Unsere Techniken zu Entwurfsraumexploration und die

Umsetzung des vorgeschlagenen Ansatzes in einer Werkzeugkette tragen somit zur

praktischen Anwendbarkeit der Methoden zum Entwurf zuverlässiger Systeme bei.



Die Analysen und Optimierungstechniken wurden einerseits mit umfangreichen Ex-

perimenten ausgewertet. Und andererseits wurde die Anwendbarkeit des Ansatzes

anhand von Fallstudien und Demonstratoren untersucht.
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Chapter 1

Introduction

Embedded systems are special-purpose computers responsible for dedicated functions in a large

technical system. One important category of embedded systems is safety-critical real-time sys-

tems, which implement critical control applications in aerospace, automobile, industrial control,

health care and other domains. A failure of such systems may cause catastrophic loss of property

or human life. Hence, one of the most important design goals for safety-critical applications is

to guarantee sufficient reliability of the system. Unfortunately, even if the system is designed

correctly, the underlying hardware may subject to faults, leading to deviation of the system be-

havior from the specification. The hardware faults are incurred by certain physical effects such

as wear-out and energetic particle strike that are infeasible to be avoided completely. Hence,

to reach the desired level of reliability, the designer must guarantee, to a level of satisfaction,

that the system functions correctly even in the presence of faults. Fault-Tolerant Mechanisms

(FTMs) [1] are developed to achieve this goal.

As technology scales, the situation becomes even more challenging. On the one hand,

modern integrated circuits are more susceptible to faults. As discussed in [2, 3], the probability

of faults are expected to increase significantly for each technology generation in deep-submicron

era, due to decreased feature size, higher power density and other effects caused by aggressive

advances in technology scaling. On the other hand, reliability is becoming a first-order design

criteria and a key marketing factor in today’s safety-related applications, resulting in constantly

higher reliability requirements [4, 5]. In this case, it is increasingly important to apply fault-

tolerant techniques in the design of such systems.

We consider fault-tolerant embedded system design using commonly accepted FTMs, such

as fault detection, active replication and voting. These FTMs can be applied stand-alone or

1



1. INTRODUCTION

combined to meet the design objectives. In general, the design problem comprises several

challenging tasks. First of all, the designer needs to analyze the reliability gain after applying

certain FTMs and check if the reliability requirements are met. Second, since FTMs typically

involve redundancy and come at a price, it is critical to find the optimal design alternative from

the possibly huge design space. Finally, fault-tolerant techniques may negatively influence other

system properties, e.g., timing, energy consumption and cost. It is also important to guarantee

all other design requirements in the presence of FTMs.

This thesis deals with the aforementioned problem by presenting an integrated framework

that supports a complete fault-tolerant system design flow. It features modeling, analysis,

optimization and platform configuration tools to enable automatic synthesis of reliable de-

signs adhering to user-specified requirements. We focus on supporting modern Multiprocessor

System-on-Chip (MPSoC) platforms due to their increasing importance in the embedded do-

main [6, 7]. In this introductory chapter, we first review relevant background and explain

motivation of our work. Afterwards, a short overview of the framework is given.

1.1 Reliability-Aware Embedded System Design

Reliability-aware system design deals with the problem of utilizing appropriate techniques to

manage the hardware faults, so that their harm to the system is reduced to an acceptable level.

The hardware faults can be categorized as permanent (hard errors), transient (soft errors), or

intermittent faults [8]. Permanent faults cause non-recoverable device defects once they manifest

and therefore reduce the system’s lifetime. In contrast, transient faults do not fundamentally

damage the device but may corrupt the application execution. They typically arise due to

cosmic particle strikes on the circuit. Intermittent faults represent malfunctions of the device

that appear and disappear repeatedly.

Spatial redundancy (also known as hardware redundancy) is a traditional technique used

to handle both transient and permanent faults. A Triple-Modular-Redundant (TMR) system

replicates the critical components three times and votes the results to produce an output.

Hardware replication has less timing overhead since the replicas can typically run in parallel.

However, extra hardware comes with high design and production cost. An alternative to handle

permanent faults is task migration, i.e. to re-map the tasks running on a faulty processor to

other working ones as soon as a defect is detected. Naturally, task migration is only possible

if adequate hardware resources are still available after the failure. The re-mapping schemes
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need to be designed carefully to guarantee the application requirements and to minimize the

migration cost [9, 10]. If the remaining resources are not sufficient to execute all applications,

graceful degradation may be applied. The idea is to stop some less important tasks to free

resources for more critical tasks [11].

Temporal redundancy (or software redundancy) is more cost-efficient to handle transient

faults [12]. One possible approach is to schedule critical tasks multiple times and perform

voting of the results [13]. Another common technique is to insert checkpoints into the software

and rollback the execution from a safe state if faults are detected [14, 15]. For real-time

applications, software redundancy must be used with utmost care, since the overhead in time

may lead to deadline violations. The schedulability issue in the context of software redundancy

has therefore become a very important topic [16, 17, 18].

If multiple copies of a component are available, the outputs can be collected and voted to

produce a more reliable output for the successor tasks. A common voting strategy is majority

voting. Since faults are considered as rare events, the majority among the set of inputs received

by the voter is considered to be correct. In this way, a voting system with N inputs can tolerate

up to
⌊
N
2

⌋
component failures.

Fault detection can also help to improve the system reliability, since, up on detecting a

fault, the task can take appropriate actions to stop error propagation. Consider again the

voting system as an example and assume each of its input components features a perfect fault

detector that captures all possible faults. The failed component can simply perform a safe

shut-down to stop sending the incorrect output to the voter. In this way, the voter will only

receive correct results and the overall system is correct as long as at least one of the replicas

executes correctly. In general, if combined with active redundancy, fault detection enables the

system to recover from faults which could otherwise only be detected, and to detect faults that

would have been undetectable.

In many utilization scenarios, the optimal implementation under multiple design constraints

can only be achieved with simultaneous application of several fault-tolerance techniques. For

example, the authors in [12] show how schedulable and cost-efficient solutions can be achieved

by combining spatial and temporal redundancy. Also, the safety standards sometimes have

special requirements or recommendations of the fault-tolerance techniques applied. For exam-

ple, [19] requires a device certifiable to Safety Integrity Level (SIL) 4 [20] to implement at least

hardware fault tolerance of one. This means, pure software techniques even with a large amount
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of redundancy are not sufficient to achieve the desired level of reliability for SIL4. As the coun-

terpart, a pure hardware-based solution might be prohibitively expensive. Therefore, one of

the major challenge of reliability-aware design is to find the optimal combination

and configuration of FTMs.

1.2 Tackling Reliability in Multiprocessor Systems

MPSoC is a modern architecture that integrates multiple (heterogeneous) Processing Elements

(PEs) into a single chip. The PEs make use of fast on-chip interconnects for efficient com-

munication. In contrast to traditional uni-core processors, it provides massive computational

power by exploiting parallelism instead of driving a higher clock frequency. This translates to

significant advantage in scalability and power consumption, especially because the clock scaling

in current processors is already hitting the power wall [21]. For this reason, MPSoC is believed

to be one of the major solutions to cope with the increasing complexity of future embedded

systems [6, 7]. It is predicted that MPSoCs will be deployed in 45% of industrial applications

by 2015 [22].

Another major advantage of MPSoC is the capability of co-hosting multiple applications.

Many of the today’s embedded systems involve a large number of interacting components and

are facing problems with complexity management. For example, a modern car today is usually

equipped with more than 100 processors to execute applications [23] such as engine control,

driver assistant and entertainment. The current distributed systems based implementation is

facing problems in cost and scalability. Hence, an envisioned trend is to integrate multiple

functions of the system into a centralized computer. MPSoC is an ideal candidate for this

purpose since it provides both high performance and high flexibility to execute a wide range of

applications.

Due to the increasing relevance in the target application domains, we focus on supporting

MPSoC platforms in our approach. While offering adequate hardware resources to implement

advanced FTMs, MPSoCs also raise several new challenges. For our reliability-aware design

scenario, two key challenges are especially important: 1) the huge design space and 2) the high

complexity in system development.

Compared with uni-processor systems, the MPSoC architecture has significantly greater

complexity and features a much larger number of configuration parameters, e.g., mapping of
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tasks to processors, synchronization mechanisms between cores and configuration of the on-

chip communication media. This translates to a large number of design alternatives and a huge

design space. Configuring these parameters are not only inevitable for realizing the application

functionality but also important for the non-functional performance of the system, including the

timing and reliability properties that we are focusing on. The process of tuning these parameters

involves evaluation/selection of various design alternatives and is commonly known as Design

Space Exploration (DSE). In the reliability-aware design scenario, the DSE must consider the

configuration of FTMs as part of the problem and examine its influence on the system, not

only the reliability itself but also all other system properties. For example, redundancy-based

FTMs increase the reliability of the system but may introduce timing overhead that influences

the schedulability. In principle, the FTM configuration must be considered jointly with the

classical multiprocessor mapping/scheduling problem. Thus, to tackle the first key challenge,

a Reliability-aware Design Space Exploration (DSE) approach is needed.

The second key challenge concerns mainly the high complexity for software development.

Besides the application coding, MPSoC based system development involves several extra tasks,

such as Multiprocessor programming (parallelization), inter-core communication, synchroniza-

tion and platform configuration, which are non-trivial for the developers. EDA tools that

automate these complex tasks are highly desirable to support the system develop-

ment [7].

1.3 Motivation and Contribution

Over the past decades, fault-tolerant embedded system design has drawn a lot of attention in

the research community. In particular, reliability issues in the context of multiprocessor systems

are extensively studied (see Chapter 3 for a literature review). Despite the significant progress

in the field, we still observe a gap between theory and practice:

1. Most of the current work focuses only on reliability-aware DSE, aiming at calculating the

mapping/scheduling of applications under reliability constraints. However, DSE is only

one part of the overall problem. The designer needs approaches that cover a complete

design flow, in sense other challenging tasks such as software implementation and plat-

form configuration are also supported. To be more precise, the current approaches

lack a “front-end” tool that enables easy specification of the DSE problem,
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and a “back-end” tool, that transforms the DSE results into a real-world

implementation on the target platform.

2. In the stand-alone DSE problem, the current approaches also have some limitations.

The major problem is the simplifying assumptions in the fault and system models. For

example, a lot of work considers either transient fault [24] or permanent fault [25] only.

Also, only a certain class of FTMs is considered and the concurrent usage of multiple

FTMs is not well studied. Moreover, fault detection is often assumed to be perfect, i.e.,

the system always detects the fault if any [12, 26, 27]. Although studying simplified

versions of the entire problem constitutes an important step, these simplifications limit

the practical use of the approaches. The DSE techniques must be improved to

incorporate a realistic system model [28](see Table 3.1 for a detailed comparison of

existing approaches).

Motivated by the above observation, we propose in this thesis a new approach for fault-tolerant

system design on MPSoCs. The proposed Model-Driven Development (MDD) framework sup-

ports a complete reliability-aware design flow and covers design challenges ranging from high-

level system specification down to low-level implementation, thereby addressing the first concern

mentioned above. For the second issue, we extend the current DSE theory by removing unrealis-

tic assumptions and supporting advanced fault-tolerant mechanisms. With these contributions,

we bring the research results in the field of reliability-aware design further into practice. In the

following, the main contributions of our approach are discussed in more detail:

• We develop a binary tree based approach for probabilistic analysis of system reliability in

the presence of multiple FTMs, including spatial/temporal redundancy, voting and fault

detection. The analysis is generic enough to be adapted to support advanced techniques

such as shared recovery slack [12].

• We propose a multi-criteria optimization approach based on Multi-Objective Evolutionary

Algorithm (MOEA) for automated exploration of design alternatives. Reliability, end-to-

end deadline, energy and other application-specific extra-functional constraints are sup-

ported by the DSE. Configuration of fault-tolerant mechanisms, mapping and scheduling

of tasks, and configuration of the on-chip communication are considered jointly in the

DSE.
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• We present extended analysis and optimization techniques to combine fault detection and

active redundancy to improve the overall system reliability. We propose, to the best of

our knowledge, the first approach to remove the common but impractical assumption on

perfection fault detection and to consider selection of fault detectors as part of the design

process.

• We provide tool support for automatic generation of source code and platform config-

uration files in order to facilitate implementation of the design on the target MPSoC

platform. In particular, we develop an approach for scheduling and configuration of a

modern Time-Triggered Network-on-Chip (TTNoC) architecture.

• We are among the first to provide an MDD tool framework that supports a complete

reliability-aware design flow, covering design challenges from abstract system model-

ing/analysis/exploration to concrete code implementation and platform configuration.

1.4 Overview

Using our approach, the design flow is separated into three major phases, namely modeling,

DSE and code/configuration synthesis. Figure 1.1 shows an overview of the flow.

Modeling. In the first phase, the designer describes the system in an abstract model. We

provide an MDD environment, in which the system specification is performed by instantiating

objects from the meta-model library and annotating their relations. We follow the commonly

accepted Y-chart paradigm [29] and explicitly separate the application and platform speci-

fication. The deployment of the application is described by mapping certain model elements

(e.g., tasks) to according objects in the platform model (e.g., processors). Our modeling frame-

work supports annotation of extra-functional properties on the modeling elements, such as the

Worst-Case Execution Time (WCET) of the tasks and reliability of the hardware components.

The information is required in the subsequent analysis and optimization tasks. The modeling

approach serves as a user-friendly front-end tool of the reliability-aware design framework.

Design Space Exploration. The goal of the design space exploration phase is to find

an optimal deployment of the application to the platform, considering all objectives and con-

straints configured by the designer. The DSE process is implemented as a generic optimization-

evaluation loop, in which problem-specific optimization and analysis tools can be integrated.

In the current implementation, we use the Multi-Objective Evolutionary Algorithm (MOEA)

as the optimization engine. The optimizer traverses the design space and proposes candidate
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Figure 1.1: Overview of the Design Flow

solutions. The evaluator is responsible for computing the system properties, such as end-to-

end latency and reliability, using according analysis tools. The evaluation results guide further

optimization steps. The results of DSE are a set of recommended implementations stored also

as models. In these models, the design parameters determined by DSE are automatically ap-

plied, e.g., the mapping of the application to the platform model is added and the redundant

components are instantiated. The updated model is used as input for the next phase.

Code generation and platform configuration. In the final phase, the designer may

select one of the implementations found by DSE and trigger automatic generation of imple-

mentation artifacts, including application source code and the platform configuration files. The

source code covers both platform-independent functional code and platform-specific structural

code. It is generated based on the input model and design parameters determined by the DSE.

The source code directly compiles to the application image. The implementation of platform

configurator is highly problem specific. For example, one of our main target platform is the

ACROSS architecture [30], in which the communication is through a Time-Triggered Network-

on-Chip (TTNoC). In this case, we consider TTNoC scheduling as one of the major tasks in

platform configuration. The code generation and platform configuration approach constitutes
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the back-end of our framework, which transforms an abstract design into a real-world imple-

mentation.

The main advantages of the proposed design flow, compared to the traditional development

process for reliable systems, are accelerated development process due to high degree of automa-

tion and guaranteed consistency between development phases due to universal use of models.

Fig. 1 compares the traditional approach (left) and our framework (right).

In the traditional approach, the designer extracts a scheduling model from the system speci-

fication in order to apply the reliability-aware analysis/scheduling algorithms. These algorithms

may operate on different models (e.g., periodic task sets, task graphs, etc) and the designer

has to guarantee the consistency. In parallel, the source code of the application is developed

manually, including both functional and structural code. Finally, the scheduling results and the

source code are combined to yield an executable image and to configure the execution platform.

As the counterpart, the design involves only a single manual task using the proposed frame-

work, namely (tool-supported) system modeling. Thereafter, the system models serve as the

central integration point for subsequent tasks such as analysis, DSE and the generation of im-

plementation artifacts. Consistency is guaranteed by the fact that models are formal, type-safe

description of the system. Moreover, a central representation enables easy integration of nec-

essary tools to automate a large part of the design flow, resulting in significant speedup in the

development process.

1.5 Organization

The remainder of the thesis is organized as follows:

• Chapter 2 presents the background and system models. It starts with an introduction

of the modeling approach, which is the basis of the proposed framework. Afterwards, the

fault models, assumptions and the fault tolerant mechanisms considered in our approach

are discussed. Finally, it presents the supported scheduling models.

• Chapter 3 provides a literature review and a qualitative comparison of related ap-

proaches.

• Chapter 4 focuses on reliability-aware DSE. It presents our tree-based reliability analysis

and MOEA-based optimization techniques in detail, followed by simulation results.
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Figure 1.2: Comparison of traditional and MDD Flow

• Chapter 5 presents an important extension to the DSE framework introduced in Chapter

4, which removes the unrealistic assumption on perfect fault detection. Updated reliability

analysis and optimization techniques are discussed.

• Chapter 6 discusses the code generation and platform configuration back-end. We

present the implementation details of our template-based code generation engine. After-

wards, we use the configuration of TTNoC as an example to show how platform-specific

configuration tools can be integrated to the framework.

• Chapter 7 presents a real-world case study in automotive domain and a demonstrator

in industrial automation domain. Here, we focus on demonstrating the usability of our

framework in industrial design scenarios.

• Chapter 8 concludes this thesis and provides an outlook to future work.
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Chapter 2

Preliminaries

This chapter presents the background and system models used in this thesis. We start with an

introduction of the underlying modeling framework that the proposed reliability-aware design

approach is based on. Afterwards, we present the system models, including the fault hypothesis

assumed by the analysis algorithms, the fault tolerance techniques considered in DSE and the

scheduling models supported by our approach.

2.1 Modeling Approach

We realize our reliability-aware design approach as an MDD tool-chain by extending a generic

modeling framework with analysis, optimization and other reliability-related techniques. The

modeling approach provides us the basic meta-models, which define types and concepts to

describe the structural and logical composition of the system. The elements in the meta-models

can be instantiated to build concrete systems, called models. In an MDD environment,

models are used as a common representation through individual design phases.

Figure 2.1 depicts an example MDD scenario. Here, the meta-model corresponds to the

basic elements of the system, including component, port and channel. The model describes an

embedded application consisting of these elements. We show a simple controller application

with three components in this example. The model can be used as input to various design

operations. For instance, the reliability-aware design approach may take the model as input

and insert a redundant controller to enhance the reliability. The output of the operation is again

a model. In this sense, a design operation can be seen as a model-to-model transformation.

The MDD framework typically provides utilities to access information contained in model and

to manipulate the model. The design operations can then be integrated smoothly.
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Figure 2.1: Example Model-driven Design Scenario

In our approach, we select the capability modeling framework proposed in [31] as the

main modeling tool. It follows the Y-chart paradigm and separates the application and platform

models. The overall model of the system, including both application and platform aspects, is

called a design model. Deployment of the application model to the platform model is per-

formed using the concept of capability binding(see Section 2.1.3). As the basis of the model-

ing framework, the component meta-model provides generic types, such as Component, Port and

Channel, to describe the topological structure of the system. The system’s Components com-

municate exclusively through Ports connected via Channels. The component meta-model can

be refined to provide more concrete types for specific purposes, e.g. application and platform

modeling, as presented in the following sections.

2.1.1 Application Model

The capability modeling framework supports several Models-of-Computation (MoCs) for appli-

cation modeling. In our approach, we focus on the Kahn Process Network (KPN) model [32].

A KPN application consists of a set of concurrent processes representing computational kernels.
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Figure 2.2: An Example of KPN Model

The processes exchange data tokens via point-to-point First-In First-Out (FIFO) channels. The

channels have theoretically infinite buffer size. Execution of a process consists of three steps as

shown in Figure 2.2:

• Read: read tokens from all input ports and store the data into a local buffer. The read

function blocks the execution of the process until a valid token is available (blocking read).

• Fire: process the input data and store the result to a local buffer. By default, the

KPN model covers only the structural information of the application (i.e., no behavior

specification). It is up to the tool vendor to provide means to specify the behavior of

each process. In the capability modeling framework, this can be done by associating the

according model element with either a fine-grained model or an annotated C source file

(see Section 6.1.2 for details).

• Write: transfer the results from the local buffer to output ports. The write operation is

non-blocking.

The meta-model for KPN is refined from the basic component meta-model. It offers the

following types:

• KPNComponent: models a process in KPN. It may contain KPNPorts as children for com-

munication with other components.

• KPNPort: models an abstract communication port. It owns an attribute direction, which

can be set to input or output. The data token to be transported through the port is

viewed as a black box by the modeling framework. It is up to the application code to

interpret the token. The token size is specified by the user so that adequate bandwidth

can be allocated.
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• KPNFiFoChannel: models a FiFo channel. It owns attributes to specify the source and des-

tination ports as references to KPNPorts. It also has an attribute to specify the maximum

FiFo size. Although the KPN model theoretically assumes infinite buffer, the real-world

implementation must have limited buffer and handle buffer overflow.

2.1.2 Platform Model

The platform meta-model contains another set of refined types from the generic component

meta-model to describe the target hardware platform. However, unlike application modeling,

where generic MoCs can be used to describe many applications, platform modeling involves very

specific components, e.g., a certain type of processor or a specific bus system. For this reason,

the platform meta-model provides still generic types, e.g. Processor, Memory and Link. The

platform designer can further refine the meta-model in order to describe the target platform

in greater detail. As an example, we introduce derived types for the NoisII processor and

time-triggered network on chip to describe the ACROSS architecture [30].

2.1.3 Mapping Application to the Platform

With the application and platform models, the designer can proceed with describing the de-

ployment of the application onto the platform. To do this, we use the concept of capability

binding [31] in the capability modeling framework. Here, the system is viewed from a shared-

resource perspective. A component in the system may provide resources to other components

by assigning itself as a CapabilityResource. As the counterpart, another component may

consume the resource by generating CapabilityRequests to the resource owner. The request

is processed by the arbitrator of the resource owner. If adequate resources are available, a

portion of the resources will be assigned to serve the request (or the request is allocated to

the resource). During capability binding, it is particularly important to classify the type of

resources in order to guarantee that the allocation of requests to resources is constrained to

matching types. The modeling framework provides the following basic resource categories:

• Processing: typically provided by processor cores to serve processing requests from soft-

ware components, e.g. KPNComponents;

• CommunicationEndpoint: typically provided by platform ports to serve the endpoint

requests from software ports, e.g. KPNPorts;
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Figure 2.3: An Example Scenario of Mapping Application Model to Platform Model

• CommunicationTransport: typically provided by the communication media to serve re-

quests from software channels, e.g. KPNFiFoChannels.

Figure 2.3 depicts a deployment scenario, where the application model consists of three tasks

and the platform model comprises two processors communicating via a bus. The sensor task is

allocated to processor1 by binding its Processing request to the resource offered by processor1.

Similarly, the output port of the sensor task is mapped to the hardware port by binding the

CommunicationEndpoint request to the according resource. Finally, the software channel is

implemented using the bus as transport media. For the sake of simplicity, in the rest of this

thesis, mapping the application to the platform model means allocation of all necessary requests,

unless mentioned otherwise.

2.1.4 DSE Configuration Model

The reliability-aware design space exploration process needs be configured according to the

design scenario, e.g., to specify the optimization objectives and application-specific constraints.

To ease this step, we extend the modeling framework to provide a new set of meta-models

tailored for DSE configuration. The following configuration parameters are covered:
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• Scheduling model: select the execution paradigm of the application. Currently, we support

several time-triggered execution models as introduced in Section 2.5.

• Optimizer: configure the optimization algorithm used to search the design space. Cur-

rently, we use the MOEA as the main optimization engine. The MOEA-specific parame-

ters, such as the number of iterations and size of population are configured here.

• Design objectives and constraints: depending on the design problem, the user may con-

figure the design objectives/constraints by instantiating according objects, such as relia-

bility objective, energy objective and deadline constraint. The objectives/constraints are

equipped with respective analysis algorithms/tools. Customization of a specific objec-

tive/constraint can also be done in this step. For example, in the reliability objective, the

user may select if the system requires fail-safe or fail-operational mode.

2.1.5 Implementation

The implementation of the proposed approach starts from reusing the capability modeling

framework mentioned previously. The modeling framework consists of both modeling concepts

as well as an implementation on the basis of the Eclipse Modeling Framework (EMF) [33]. EMF

is a generic framework for building MDD tools. It allows for specification of the meta-models as

well-structured data models (called the Ecore models), from which a Java implementation of the

target MDD tooling can be automatically generated. The generated code covers many useful

aspects, e.g., model serialization, model manipulation, model editor, etc. The tool developer

then implements the application-specific functionality on top of that. For the capability mod-

eling framework, the generic application/platform models are implemented as ECore packages

and maintained as Eclipse plugins. The meta-models and models are stored in XML Meta-

data Interchange (XMI) format. We extend the capability modeling framework with additional

meta-models that covers reliability-related aspects.

The reliability analysis, optimization algorithms and platform configuration tools are imple-

mented in Java code and integrated to the modeling framework. The code generation engine is

developed using the Xpand language provided by EMF. Xpand is specialized in specification of

code templates that contain both hard-coded static contents of the output files and dynamic

contents with references to objects of the input model (see Chapter 6 for details of code gen-

erator implementation). The Xpand and Java code may interface with each other, i.e., it is

possible to invoke Xpand routines from Java or vice versa.
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2.2 Fault Model

Following the classic terminology, a fault is a physical defect, imperfection, or flaw that occurs

within some hardware or software component [34]. A fault may be dormant or activated.

The former does not affect execution of the component whereas the later incurs an error 1.

The error, as the manifestation of a fault, may subsequently cause a failure. A failure is an

observable event that the system deviates from the specified behavior. Fault-tolerance is the

technique to reduce the probability of failure despite the presence of faults. It can be applied at

architectural level to reduce the probability of fault-to-error transition [35], or it can be applied

on application-level to reduce the error-to-failure transition. Our work focuses on the latter

case.

We consider software tasks as the basic components. The DSE framework takes the error

rates of tasks as input and aims at optimizing the system reliability (i.e., the system-level failure

rate). The task-level error rates are obtained from an analytical fault model, which describes

the relation between faults and its manifest in tasks. Fault models are typically proposed by

reliability engineers after detailed analysis and modeling of the physical failure mechanisms [36].

The system designer may select the appropriate one for the target application domain. Our DSE

approach does not have restriction on the selected fault model, as long as the task error rates

can be obtained. This section discusses the fault models that we select for our experiments,

concerning both transient and permanent faults.

Transient faults may cause errors in a program. It can either be that the program execution

is corrupted (program hanging, segmentation error, etc) or that the program executes smoothly

but delivers an incorrect output. In both cases, the task is considered as faulty. Nevertheless,

since transient faults do not fundamentally damage the device, we assume that only the single

task during which the faults occur is corrupted. The successor tasks can still be executed

normally after a recovery process. Moreover, we focus on errors of the application program and

consider the kernel software (e.g., OS scheduler, watchdog) to be fault-free 2.

For transient faults, we adopt the classical Poisson fault model, since it is well established

and used in many related literature [37, 27, 24, 26]. This fault model assumes transient faults to

be independent events following a Poisson distribution with a constant failure rate. Under this

1Dormant faults are not considered in our approach, since they are neither noticeable nor harmful. In other

words, we focus on activated faults only. In this case, a fault is equivalent to an error from the designer’s

viewpoint.
2This is because we cannot apply fault-tolerant techniques such as active redundancy on the kernel software.

17



2. PRELIMINARIES

assumption, the following equations compute the probability that a task is executed correctly

and the converse probability that the task experiences transient faults:

P (task ti executes correctly on processor p) = e−λpwi (2.1)

P (task ti experiences transient faults) = 1− e−λpwi (2.2)

where λp is the failure rate of the processor p and wi is the Worst-Case Execution Time (WCET)

of task ti. The reliability requirement concerning transient fault is given by the maximally

allowable failure probability of the system.

Note that by assuming the Poisson fault model, our approach does not consider Common-

Mode Failures (CMF). In reality, CMFs could cause correlation between faults, which violates

the independence assumption made in the fault model. However, our approach is not in-

tended to handle CMFs, since, as observed in [38], active redundancy is not a solution to

CMF [39]. Instead, CMFs have to be mitigated by dedicated techniques, such as design diver-

sity, architectural-level fault-containment and spatial/temporal separation [40, 41]. In general,

taking CMFs into reliability analysis is relatively straightforward, e.g., using techniques men-

tioned in [39]. The real problem is how to estimate the probability of CMFs, which can be

extremely difficult [39]. For this reason, a lot of research effort has been devoted to CMF

avoidance. Here, we assume CMF avoidance techniques are systematically applied, allowing us

to use the Poisson model to model transient faults.

Concerning permanent faults, we focus on defects of processing elements in the MPSoC

platform and assume each individual core to fail independently. This assumption requires core-

level fault containment in the underlying platform. Although fault containment is challenging to

implement, it is a prerequisite to enable using MPSoCs for safety-related applications 1. Hence,

recent work [9, 42, 43] mostly make the same assumption. Also, research efforts are spent on

temporal/spatial separation techniques to implement the desired fault containment property,

e.g., the ACROSS architecture [30, 44]. In this context, the entire system is “alive” as long as

the remaining working cores can still provide sufficient resources to execute the applications.

The component-level reliability is typically given as reliability functions and the design goal is

to optimize system Mean Time To Failure (MTTF) (c.f. [25]).

1Another possibility is to consider the entire MPSoC as a fault containment unit and apply active redundancy

in distributed chips. However, this option comes at a much higher hardware cost. Moreover, it does not well

exploit the benefit of the MPSoC platform, e.g., fast on-chip synchronization and communication between

different redundant components.
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In reliability analysis, permanent and transient faults are typically considered separately,

since their physical failure mechanisms and impact on the system are significantly different.

In our approach, we target on considering both types of faults in a unified manner, since this

improves the system performance as shown in [45]. One obvious possibility here is to integrate

the existing analysis from [25] and consider lifetime reliability as one extra optimization goal.

However, additional optimization objectives reduce the optimization efficiency considerably. To

overcome this problem, we assume that the reliability requirements concerning permanent faults

are given as constraints. For example, the requirement could be that the system must tolerate

one permanent fault of any of the processors. We develop an encoding technique to guarantee

these constraints during the optimization process (see Section 4.3).

2.3 Fault Tolerance Mechanisms

We consider active redundancy as one major FTM to enhance the system reliability. Active

redundancy replicates software tasks into multiple copies (replicas). The replicas can be ex-

ecuted on the same component (temporal redundancy) or distributed to several components

(spatial redundancy). Figure 2.4 depicts an example, in which the task t1 is replicated 3 times.

In Figure 2.4a, the three copies are executed sequentially on processor1 to implement temporal

redundancy. As the counterpart, spatial redundancy is illustrates in Figure 2.4b. Compared

with 2.4a, spatial redundancy allows for parallel execution of multiple copies and therefore re-

duces the timing overhead. Nevertheless, extra hardware resources are needed. Temporal and

spatial redundancy may also be combined to obtain compromised solutions (Figure 2.4c).

The availability of replicated software tasks allows for implementation of subsequent voters

where inputs from all replicas of a task, including both temporal and spatial copies, are evaluated

to produce a reliable output. By comparing the redundant results, the voter may detect or

correct faults. In this thesis, we consider a majority voter, which generates an output if and

only if more than half of the inputs have equal value. In this case, the voter can correct the

faults, if only less than half of the replicas are faulty. If no majority is found from the voting

inputs, the voter reports an error. This means a fault is detected but not corrected. In rare

cases, more than half of the replicas can fail and send equal but incorrect result to the voter.

Since the voter just selects the majority, the fault escapes. We assume that the voter features

a timer to detect missing inputs, i.e., if one task instance encounters a fault and fails to send
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Figure 2.4: Example of Temporal and Spatial Redundancy

its result to the voter, the available data gathered from other working instances will be used

for voting.

Another fault-tolerant mechanism that we consider is fault detectors embedded into tasks.

This could be done in hardware, software or using a combination [46]. Software-implemented

fault detection typically involves transforming the original program into an instrumented ver-

sion that adds the capability to detect transient faults occurring at runtime of the program [47].

Check rules are executed at the tasks’ completion to decide if faults have occurred. The arith-

metic codes [47] and critical variable technique [48] are examples of this class of detectors.

Hardware techniques typically introduce some monitoring functionality. For instance, the fin-

gerprinting mechanism [49] can be used to check if the program is executed as expected.

Fault detectors implemented at individual tasks contribute to improving the system reliabil-

ity, since, upon detecting a fault, the task can take appropriate actions such as safe shut-down

to stop error propagation. Combining active redundancy and fault detection 1 is also beneficial

in some circumstances. This can be illustrated using a simple example shown in Figure 2.5.

1As mentioned before, voting also has the capability of detecting faults. For the sake of simplicity, “fault

detector” in the rest of this thesis stands for embedded fault detectors implemented at individual software tasks

and not the voter, unless mentioned otherwise.
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Figure 2.5: Example of Combined Active Redundancy and Fault Detection

In this example, the schedule from 2.4c encounters two faults on task instance t1,1 and t1,3

respectively. The table in 2.5b summarizes the qualitative result of voting based on the fault

detection capability of individual task instances. In the first case, the fault escapes the fault

detection on both t1,1 and t1,3, resulting in a failure of voting since incorrect results dominate.

In the second scenario, the faults on t1,3 are caught by the embedded fault detector. In this

case, the faulty task t1,3 can indicate the voter to ignore its incorrect result (or just fail silent

without sending the output). The voter will consider results from t1,1 and t1,2 for voting. Since

there are one correct result and one incorrect result, the voter detects the fault. While the third

scenario is similar to the second one, the last scenario in the table shows a case that both faults

on t1,1 and t1,3 are detected. In this case, the only correct output from t1,2 will be recognized

by the voter and the faults are corrected. As it can be seen, the 2-out-of-3 voting system in the

example may detect or even correct two faults, which is not possible without using embedded

fault detection.

In the presence of fault detectors, reliability analysis becomes more complicated, since the

fault detection coverage also becomes a factor that influences the system reliability. To simplify

the problem, most existing approaches that consider embedded fault detection assume that all

faults can be detected using such fault detectors [12, 50, 51, 52, 26]. In other words, the fault

detection is considered as perfect and all task instances can have a fail-silent behavior. Under
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this assumption, only correct outputs will be sent to the successor tasks and voting becomes

trivial. This assumption reduces the problem complexity significantly but raises some practical

concerns (see Chapter 5 for details). In this thesis, we start with the same assumption and

present our tree-based reliability analysis approach in Chapter 4. However, this assumption is

relaxed and the residual error of fault detection is taken into account in the extended techniques

presented in Chapter 5. Concerning error-recovery, we assume that the system will roll-back

to a safe state and execute the next scheduled task after a failure. The timing overhead of

recovery is considered as a constant annotated by the user [12].

2.4 System Models

The analysis and optimization algorithms take a design model as input and generate an internal

mathematical representation of the system. In this way, the algorithm can be implemented in

a generic way without dependency on the modeling language.

We consider the application A to be the entire software system running on the hardware

platform. The application may consist of multiple independent sub-applications (also called

jobs) sharing the platform, each of which is modeled as a directed acyclic Task Graph (TG).

Each job has its own timing and reliability requirements. The TGs are extracted from the

application model constructed using our modeling front-end. For a job J = (T,E), the vertices

T = {t0, t1, ..., tm} represent a set of tasks to be executed and the edges E = {e0, e1, ..., el}

capture data dependencies between tasks. The tasks are characterized by their WCETs prelimi-

narily estimated using specific analysis tools (e.g., [53, 54]). Communication between tasks is via

encapsulated data tokens, as assumed in the KPN models of computation. The vertices gen-

erate Processing requests and the edges generate CommunicationTransport requests. These

requests are to be mapped to the according resources in the platform model.

As timing predictability is highly desirable for safety-related applications, we focus on het-

erogeneous multiprocessor architectures with predictable time-triggered communication, such as

the ACROSS [30] architecture. We view the execution platform as an undirected graph. Nodes

in the graph represent Processing Elements (PEs) that offer Processing resources. Edges

of the graph represent physical link between PEs and may provide CommunicationTransport

resources. The bandwidth of the communication media can be allocated into encapsulated

messages to transfer data tokens from the application tasks. The schedule of messages M

is described as a set of message slots {m0,m1, ...,mk}. Each message slot is a four-tuple
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m = (b, f, tsrc, ttgt), where b is the start time of the message, f is the finish time, tsrc is the

source task of the message and ttgt is the sink.

In this work, we focus on tolerating faults occurred in the tasks and assume the commu-

nication to be fault-free. The main reason for making this assumption is that the FTMs we

consider (redundancy, scheduling techniques, etc) are tailored for protecting tasks. Reliability

of communication is typically guaranteed with other dedicated techniques such as Error Cor-

rection Code (ECC). Moreover, many architectures targeting safety-critical systems implement

guarding systems that prevents interference between cores and the communication system. For

example, the Trusted Interface SubSystem (TISS) in the ACROSS architecture provides inter-

ference protection in both time and value domains [30]. This enables us to consider reliability

of tasks and communication separately.

2.5 Scheduling Models

We synthesize time-triggered fault-tolerant schedules for the target time-triggered MPSoC ar-

chitectures. Two major scheduling models are supported, namely hierarchical combination of

Time-Triggered and Static Priority scheduling (TT-SP) and Time-Triggered scheduling with

Flexible Slack (TT-FS ). The TT-FS scheme is first proposed in [12] and TT-SP is introduced

in [45].

TT-SP. In the TT-SP scheme, the available processing resources are globally arbitrated

in time and budgets are statically allocated to tasks. In each time slot, a set of tasks are

allocated and ordered using static priorities. At runtime, the pending task that has the highest

priority acquires the slot for execution. A task is pending if and only if 1) all the required data

is available; 2) the execution is necessary, i.e., the task has not been executed successfully in

previous slots 1. Figure 2.6a shows an example of TT-SP schedule. The slot S1 is allocated

with two tasks and t1 has higher priority. In this case, the re-execution of t1 will take place in

S1 whenever necessary, e.g., as shown in Figure 2.6c where the first instance of t1 fails. Task t2

may execute in S1 only if the high-priority task t1 finishes before the start of S1 (Figure 2.6b).

A TT-SP schedule can be described as a set of non-overlapping slots S = {s0, s1, ..., sn}, each

being a four-tuple s = (b, f, p, T ), where b is the start time of the slot, f is the finish time, p

is the processor on which the slot is allocated and T is a list of tasks with decreasing priority

1Note that TT-SP and TT-FS both incorporate the perfect fault detection assumption. In this case, if a

task is executed without faults, we are sure that a correct output is already available and it is not necessary to

execute other copies of the same task.

23



2. PRELIMINARIES

t1 t1>t2 t2>t3 t3a)

scheduling points

0s 1s 2s

t1 t2

t1 t1 t2 t3

t3 t3b)

c)

4s 5s 6s

3s

7s
t1 t2 t3 t1,t2,t3e)

t1 t2 t3t1f)

t1 t2 t3t2g)

t1 t2 t3 t3h)

4s 5s 6s 7s

Figure 2.6: Example of TT-SP and TT-FS

assigned to s. The size of a time slot is determined by the longest worst-case execution time

(WCET) of all tasks assigned to it. An important feature of TT-SP is that the start/end time

of each slot is fixed and does not have dependency on the occurred faults.

TT-FS. In the TT-FS scheme, two types of time slots are scheduled, namely normal slots

and slack slots. The latter are intended to be used for re-execution of tasks misbehaving due to

transient faults. Slack slots are often shared by multiple tasks. Figure 2.6e shows an example,

in which the slack slot S7 is shared by t1, t2 and t3. The slack slots only reserve time for re-

execution but do not have a fixed start time. Instead, they will be utilized whenever necessary.

In Figure 2.6f, the first instance of t1 encounters a fault and S7 is used immediately to re-

execute the same task. The normal slots S5 and S6 are postponed in this case. Figure 2.6g

and 2.6h are another two scenarios, in which S7 is used to re-execute t2 and t3, respectively.

Naturally, the size of the slack slots must be no smaller than the WCET of any tasks assigned

to it. To describe a TT-FS schedule, the four-tuple s = (b, f, p, T ) needs to be extended with

an additional binary attribute to denote if the slot is a slack slot or not.

The analysis and optimization techniques presented in this work support both TT-SP and

TT-FS. For the sake of simplicity, we focus mainly on the TT-SP scheme for the rest of this

thesis. Nevertheless, we present the details on how to utilize the same techniques for TT-FS.

It is up to the designer to choose one of the scheduling schemes.

24



2.5 Scheduling Models

Implementation. To implement a TT-SP schedule, the complete schedule table is stored

statically at all components. At each scheduling point, the pending task with highest priority

is issued for execution. Once a replica of a task is finished successfully, the other replicas of the

same task are removed from subsequence time slots for the current iteration to avoid duplicated

executions. Another situation that must be avoided is that some task in previous slot becomes

“hanging” due to fault and blocks the execution of subsequence tasks. A hardware watchdog

can be used for this purpose. The implementation of a TT-FS is a bit more complicated,

since the schedule has to be adapted at runtime depending on the faults occurred. In general,

once a fault occurs, the scheduler has to make emergency response and try to achieve a correct

execution by using the slack slots. Detailed explanation of the implementation with an example

is presented in [55].

Scheduling Model with Imperfect Fault Detection and Voting. The DSE approach

supporting TT-SP and TT-FS is presented in Chapter 4. Both of the scheduling models rely

on the assumption that all faults are detected at completion of the task. To be more precise,

the scheduler has to know concrete results of previous slots (whether faults have occurred)

to determine the task to be executed in the subsequent slots. Although these two scheduling

models are of great academic interest, the perfect fault detection assumption causes several

practical issues [28, 56]. As we target on bringing the research results into practice, we propose

extended techniques in Chapter 5 to remove this assumption. In this case, the scheduling model

has to be adapted accordingly.

The updated scheduling model is called Time Triggered Schedule with imperfect Fault De-

tection and Voting, in short TT-FDV. In this model, we disable sharing of time slots between

multiple tasks, i.e., each slot is assigned to only a single task. The reason is two-folds. On

the one hand, the performance of slot sharing decreases with imperfect fault detection, since,

if a fault escapes the fault detection, the scheduler will incorrectly assume that the task has

been successfully finished and continue with other tasks without re-executing the faulty task.

On the other hand, from the introduction in Section 2.3, we see that the voter needs to gather

inputs from all replicas of a task in order to have the best performance. Hence, the voter must

be inserted after completion of all replicas. The slot sharing causes non-determinism in the ex-

ecution sequence of tasks and complicates the insertion of voter and the subsequent reliability

analysis. Due to the reasons above, the TT-FDV model does not involve slot sharing. TT-FDV

is introduced in more detail in Section 5.1.
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Chapter 3

Related Work

This Chapter provides a literature review in the field of reliability-aware system design as well

as model driven development. We compare our approach with existing work to further motivate

this thesis.

3.1 Reliability-Aware Embedded System Design

Reliability-aware design consists of several challenging tasks. First of all, reliability modeling

is a fundamental step, which aims at understanding the physical failure mechanisms and provide

reliability models (also called fault models) that can be used to predict the reliability of the com-

ponent prior to its implementation. These models are the foundation of subsequent reliability

analysis, which deals with a system of components and evaluates the system-level reliability.

Here, a major challenge is to take into account the influence of fault-tolerant mechanisms and

the interaction between components. Finally, guided by the analysis results, reliability-aware

design aims at building systems that are optimized for reliability. An overview of this area can

be found in [57, 58].

Reliability Modeling. As mentioned above, reliability modeling is based on the physical

fault processes. For permanent faults, several processes are observed by the researchers, such

as electromigration (EM) and time dependent dielectric breakdown (TDDB). Based on a large

set of experiments, the researchers develop empirical models to estimate the reliability in terms

of common metrics, such as MTTF. For example, EM and TDDB are usually modeled using

lognormal and Weibull distributions, respectively [59, 60]. Reliability modeling can be per-

formed in a hierarchical manner, i.e., we obtain models for the basic components and compose

them to yield models for larger components or systems. The authors in [61, 62] propose a
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component-level reliability model that takes temperature estimates into account. Afterwards,

they extend this model to cover multiprocessor platforms where back-up elements are available.

The work [36] proposes a framework that integrates device, component and system level models.

Unlike permanent faults, which are mostly related to wear-out and the manufacturing pro-

cess, transient faults mostly occur due to environmental conditions [63], e.g., energetic particles,

noise and electromagnetic interference. Hence, they are usually modeled using random process.

One classic model is from Shatz and Wang [37], which assumes that the occurrence of transient

faults follows a Poisson law with a constant error rate. The reliability model is also extended

to cover the effects of voltage scaling on reliability [64, 51].

Reliability Analysis. One classical approach for reliability analysis is Reliability Block

Diagram (RBD) [65]. A RBD is a Directed Acyclic Graph (DAG), where each node represents

an element of the system and each edge models a causality relationship between two nodes.

RBD can be used to compute the reliability of the entire diagram based on known reliability

of the nodes. Replicated components can also be handled. RBD assumes that the system is

operational as long as at least one replica of each component is non-faulty. One main drawback

of RBD is that the computational complexity is exponential in the size of the diagram. The

authors in [66] propose a minimal cut set method to efficiently approximate the reliability

computation. Our tree-based analysis presented in Section 4.1 is similar to RBD but is much

more generic. It supports advanced scheduling techniques such as shared recovery slack and

handles a larger set of FTMs.

Fault Tree Analysis (FTA) [67] and Failure Mode and Effect Analysis (FMEA) [68] are two

techniques commonly used in industry. FTA is a top-down approach that uses boolean logic to

model how undesired state of the system could be caused by low-level events. In contrast, FMEA

is a bottom-up method that systematically analyzes how hypothesized component failures may

affect the system. In many application domains, such as aerospace, the common practice is to

perform both FTA and FMEA.

As mentioned above, reliability analysis must take the influence of fault-tolerant mechanisms

into account. Hence, researchers also propose dedicated analysis techniques for a specific set

of FTMs, e.g., in [69, 24, 50]. These analysis methods are tightly coupled with the respective

design approach. We will discuss them in the following sections when the associated design

approaches are reviewed.
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3.1.1 Fault-tolerant system design focusing on permanent faults

When focusing on permanent faults, the system reliability is often referred to as lifetime re-

liability. The common measure is Mean Time To Failure (MTTF). Popular mechanisms to

increase the MTTF of the system include hardware hardening, hardware redundancy and task

migration [58].

The work [42] presents a lifetime-aware task mapping approach on chip multiprocessors.

The authors focus on wear-out related permanent faults and take into account temperature-

dependent failure mechanisms. The Ant Colony Optimization (ACO) algorithm is used to

search for the optimal task mapping schemes. The authors in [43] consider a similar problem.

In particular, the aging effect of components in a multiprocessor system is taken into account.

Feldmann et al [70] presents an approach that focuses on analyzing the feasibility of the system

under permanent faults. They define a new metric k-bindability, which specifies the property

that a feasible binding of the application to the platform exists even if any k components fail.

Quantified boolean formulas are used to calculate the k-bindability of a system. Glaß et al [25]

extend the approach in [70] and consider redundant binding of a task to multiple resources for

the sake of reliability improvements. The system behavior in the presence of redundancy is

described using the so-called structure function and represented as Binary Decision Diagrams

(BDDs). A path in the BDD towards true represents a combination of faults that is tolerable

with the current system setup. They present techniques to evaluate the system-level reliability

based on component-level reliability models. The analysis is integrated into an MOEA based

optimization framework to calculate the best task bindings [69]. The same authors further

consider the automatic insertion of voting components in [71]. In another approach proposed

by Pinello et al [72], spatial redundancy is utilized to handle permanent faults in distributed

systems. A heuristic algorithm is provided to explore solutions that mask certain faults based

on the user-specified fault hypothesis.

In [73] the authors utilize online fault detection and task migration to maximize the expected

MTTF. On detecting certain faults, the system is restarted and the tasks are re-allocated to

the remaining non-faulty components according to a pre-computed plan. The task migration

cost is not considered, instead, the focus is on increasing the MTTF as much as possible. The

work [74, 9] addresses a similar problem but considers the migration cost. In particular, Lee et

al [9] focus on static task re-mappings under throughput constraints for streaming applications.

They also adopt a semi-static approach that loads a pre-determined migration plan upon failure

of certain processor. The work [75] proposes to extend the MTTF by active allocation of
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slack in the system. For example, some processors can be intentionally replaced by high-

performance ones, so that tasks from failed processors have higher possibility to be migrated.

When task migration is used, an important issue is to guarantee the application requirements

after the recovery while minimizing the migration cost. Yang et al [10] propose an approach for

generating schedules with predictable response to faults. They partition the initial schedule into

several bands, which are designed in a way that the capability of re-mapping tasks is embedded.

The work is extended in [76] to minimize the latency of applications.

Our approach considers permanent faults but handles it differently from all approaches

mentioned above. The major reason is that we aim at supporting both transient and permanent

faults. In general, transient faults are more complex to handle from the design perspective,

mainly because 1) they are probabilistic events that may appear multiple times and 2) they

can be mitigated using a larger number of FTMs. The FTMs that tolerate permanent faults,

e.g., hardware replication, typically tolerate transient faults as well, but not vice versa. For

this reason, our DSE approach is designed primarily for transient faults. We use an analysis-

optimization based approach to search for the best design. The support of permanent faults is

built on top of that. Here, we consider permanent fault tolerance as hard design constraints

instead of an extra optimization objective, in order to improve the efficiency of the overall

approach (see Section 4.4).

3.1.2 Fault-tolerant system design considering transient faults

Transient faults have also drawn a lot of attention in the research community. The problem

is often considered jointly with real-time scheduling, since scheduling techniques can be used

to embed temporal redundancy, which is an efficient mean to handle transient faults. Hence,

many researchers consider the problem as “fault-tolerant scheduling” and base their work on

advanced scheduling algorithms [24, 77]. From another angle, the problem can also be seen as

an optimization problem that features some degrees of freedom (e.g., configuration of FTMs,

mapping and scheduling of tasks) and has some constraints (e.g., reliability goal, deadline,

scheduling length). Therefore, many other approaches try to solve it using design space explo-

ration. The scheduling-based approaches typically provide efficient heuristic algorithms that

are tailored for a specific setup. In particular, they are restricted to the selected fault model,

fault-tolerant techniques and design objectives. In contrast, the DSE approach is more generic

and may handle multiple (in some approaches also configurable) FTMs and user-specified de-
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sign constraints. We have followed the DSE approach in this thesis since it aligns better to the

overall objective of our model-based fault-tolerant development framework.

The work [13] presents an approach using scheduling techniques. Here, replicated tasks are

selectively inserted using the otherwise wasted resources to enhance the system reliability in a

best-effort manner. The authors in [78] present an approach for static scheduling with fixed

fault-tolerant mechanism assignment. To be more specific, each task is replicated twice so that a

single processor failure can be handled. Girault et al [24] consider fault-tolerant scheduling with

active task replications and present a bicriteria heuristic algorithm. Besides task scheduling,

the algorithm also determines the number of replications needed to achieve certain reliability

goal. Only spatial redundancy is considered and the replicas of a task are always scheduled on

different cores.

A series of work from Izosimov et al tackles the problem using an optimization approach.

In [12], they combine spatial and temporal redundancy and propose novel techniques to share

the re-execution slack among multiple tasks. For optimization, the single-objective tabu-search

algorithm [79] is adopted to minimize the scheduling length. In [14] Pop et al study the problem

using check-pointing and roll-back techniques. The authors in [52] utilize a hybrid scheduling

approach to handle mixed hard and soft real-time tasks. The aforementioned work [12, 14, 52]

is based on a simplified fault model. Instead of modeling faults as probabilistic events, they

assume that the system may experience at most N faults and these faults may occur in any

component of the system. Under this assumption, the authors focus on automatic derivation of

the optimal task mapping, scheduling and FTM configuration (e.g., the amount of replication

and placement of check points). The simplified fault model has the limitation that the distinct

failure probabilities of the underlying hardware components are not taken into account. In the

follow-up work [50], a more accurate probabilistic analysis is presented. Nevertheless, this anal-

ysis considers only temporal redundancy. Our DSE approach considers a similar problem as the

work mentioned above [12, 14, 52, 26]. We propose a generic probabilistic reliability analysis

to compute the system reliability in presence of both spatial/temporal redundancy and shared

re-execution slacks. In addition, our evolutionary algorithm based optimization approach sup-

ports multiple optimization objectives, e.g., reliability, schedule length and resource utilization.

Another major advantage of our approach is that permanent faults can be taken into account

efficiently using the proposed virtual mapping technique (see Section 4.4).

One of the early approach COFTA [80] considers automatic synthesis of reliable systems

using software assertion and duplicate-with-compare techniques. FTMs are embedded to the
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application’s task graph using heuristic algorithms before the scheduling phase. The authors

aim at tolerating a single fault in the system, either transient for permanent. Kandasamy

et al [81] present an approach for transient fault tolerance using temporal redundancy. They

propose the concept of transparent recovery, which ensures that recovery process does not affect

other operations of the system. Heuristic algorithms are developed to compute fault-tolerant

schedules under a fault model that assumes a single fault per processing unit. The authors in [55]

adopt a similar system model and focus on the tradeoff between performance and transparency.

Jhumka et al [82] propose a Genetic Algorithm (GA) based approach for DSE under reliability,

performance and cost constraints. They use a simple fault model and assume that the failure

probability of a task is equal to the failure probability of the processor it is running on. Spatial

replication is utilized to improve the system reliability. Stralen and Pimentel present a DSE

based approach for fault-tolerant deployment of applications on MPSoCs [83]. The FTMs are

described as patterns that are applied to the application model. Only spatial redundancy (DMR

and TMR) patterns are considered so far.

A recent work that is close to our approach is from Bolchini et al [84, 85, 86]. They also

propose a generic DSE framework that supports a configurable set of FTMs, such as active

redundancy, fault detection and voting. Moreover, they also synthesize time-triggered fault-

tolerant schedules using GA. One major difference between their work and ours is the fault

model. They adopt a similar fault model as Izosimov et al [12] and aim at handling a maximum

number of concurrent faults. The reliability of the execution platform is modeled using a simple

qualitative tag, e.g., if the processor supports fault detection or fault tolerance. Such a simplified

fault model ignores a lot of quantitative reliability information, e.g., the intrinsic failure rate

of the processors and the coverage of the fault detection utility. Only coarse evaluation of

the system reliability can be provided in this case. In contrast, our probabilistic reliability

analysis takes all these factors into account and provides precise quantitative results to guide

the optimization process.

Other work also studies the tradeoff between reliability and other design objectives, such

as energy [26] and cost [18]. The work [87] considers reliability-energy joint optimization.

They focus on optimizing the mapping of applications to reduce the number of soft errors.

No FTMs are considered. In [88], the authors present a Constraint Logical Programming

(CLP) based approach for scheduling and voltage scaling of fault-tolerance systems. Zhu et al

show that voltage scaling has direct and adverse effects on system reliability [64]. They study

static scheduling approaches for energy minimization under reliability constraints [26]. The
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core idea is, instead of using all available slack time for energy management, a portion of the

slack is especially reserved to schedule task re-executions, such that the reliability loss can be

recuperated. In [51] the same authors also consider a shared recovery slack technique similar

to the one proposed [12].

An important limitation of the work mentioned above [12, 14, 52, 64, 26, 88] is the as-

sumption on perfect fault detection. To reduce the problem complexity, the authors assume

that all transient faults can be detected when a task is completed and the timing overhead

of fault detection is contained in the WCETs of tasks. However, fault detectors, especially

those have high detection coverage, may come with high resource and timing overheads [47].

These resources could potentially be used for other purposes, e.g., to implement more replicas.

Seen from another angle, the overhead in fault detection may limit the resource available for

active redundancy, resulting in sub-optimal system reliability. Hence, it is important to con-

sider optimization of fault detector implementation in the design flow. The previous work [28]

discusses in particular the selection of error detectors. Experimental results verify that certain

configuration using imperfect fault detectors combined with active redundancy can outperform

the approaches that utilize only perfect fault detectors. For this reason, we consider supporting

imperfect fault detection as an important goal of the DSE approach (see Section 5).

In [46, 89], the authors consider another important tradeoff, namely the tradeoff between

hardware-implemented and software-implemented fault detection. They propose to selectively

implement fault detectors in an FPGA fabric tightly coupled with the processor, so that the

fault detector can run in parallel with the original program and the timing overhead of fault

detection can be reduced. Given limited FPGA resource, it is critical to decide which fault

detector goes to hardware. Optimization techniques are proposed for this purpose. FPGA-

accelerated fault detection is currently not considered in our work. To take this issue into

account, the problems considered in [46] and [28] have to be combined. Here, the design goal

is to decide both which fault detector to implement and where to implement. We consider this

combined problem as part of the future work.

3.1.3 Qualitative Comparison of Related Work

Table 3.1 provides a qualitative comparison of representative related work. The first part of

the table (columns 2 and 3) summarizes the fault model utilized by the individual approaches.

Some early work in the field [13, 81] considers a single-fault model. This is a reasonable

simplification since faults typically occur with very low probability. These initial approaches
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have been extended with a fault model that covers multiple faults [12, 50, 86]. Still, probabilistic

events are the most precise way to describe the physical properties of faults. The major challenge

of using a probabilistic fault model is the complexity of corresponding reliability analyses. For

approaches based on a fault model that covers a certain number of faults, no detailed reliability

analysis is needed, since the design objective is merely to add sufficient FTMs to tolerate

all assumed faults. In contrast, a probabilistic approach needs quantitative evaluation of the

system reliability after applying the FTMs. Recent approaches contribute appropriate reliability

analysis techniques, but supports only very limited FTMs [24, 50]. For this reason, we aim at

providing a generic reliability analysis in this paper. Also, our framework is the only one that

supports both transient and permanent faults1.

The second part of the table lists the supported FTMs in the individual approaches. As

it can be seen, a major limitation of current approaches is that only a small set of FTMs

is supported, making it infeasible to evaluate the tradeoff between various FTMs to find the

system-wide optimal solution. Only the recent work presented in [86] and our approach try

to support a configurable set of FTMs. The configurability enables the user to select candidate

FTMs for the specific application domain and is therefore essential for the practical applicability

of the approach. In both [86] and our approach, the configurability is achieved by encoding

FTMs as some kind of model transformation. In [86], the FTMs are applied as application

task graph transformation before the classical mapping/scheduling phase. In our approach,

they are inserted in the encoding phase of the evolutionary algorithm (see Section 4.3). The

transformation-based implementation guarantees the extensibility to new FTMs. Nevertheless,

as discussed before, [86] is still significantly different from our approach due to the use of a

simplified qualitative fault model.

3.2 Model-Driven Software Development

As mentioned before, our reliability-aware design flow is based on a Model-Driven Development

(MDD) approach. This section reviews related work in this area and provides a qualitative

comparison.

MARTE [90] (Modeling and Analysis of Real-Time and Embedded Systems) is a UML

profile tailored for embedded systems. It provides means to model software and hardware com-

ponents as well as mapping of the software to the platform. MARTE puts special emphasis

1The COFTA approach [80] considers both transient and permanent faults. However, the fault model

assumes a single fault, i.e., it is either a transient or a permanent fault.
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3. RELATED WORK

on supporting analysis of system properties. As analysis domains typically have different ter-

minology, it defines generic concepts as foundation to integrate refined modeling and analysis

tools. Although MARTE has the potential for integration of DSE and code generation tools to

support reliability-aware design, no such tools are shipped as default packages. SysML (Sys-

tems Modeling Language) is another general purpose modeling language based on UML. It

removes many of UML’s software-centric constructs to reduce the language size and adds more

support to non-software components. Nevertheless, the platform modeling support is very ba-

sic. AADL [91] is a similar approach that covers application and platform aspects. However,

it only provides coarse-grained models. The application components are described using data,

subprogram, thread, thread group and process. The execution platform includes processor,

memory, bus and device. In comparison with our approach, MARTE, SysML and AADL focus

on providing a generic MDD framework instead of a concrete design flow. In this sense, they

are more comparable with the capability model framework, which is the underlying modeling

concept of our approach (cf [31]). In principle, our DSE and code generation tools could also

be integrated to other modeling environments. We select the capability modeling framework

because it provides a self-contained fine-grained application/platform description that fits our

purpose.

Ptolemy II [92] is a modeling framework focusing on component-based heterogeneous sys-

tems. It uses directors to regulate execution and communication of software components. This

allows for construction of systems using different MoCs. Ptolemy focuses on behavioral mod-

eling and does not consider mapping of software components to a concrete platform. The

Metropolis [93] framework supports detailed application and platform modeling. It considers

analysis and synthesis of the design (e.g., architecture configuration parameters) as one of its

main design activity. Nevertheless, it only provides syntactic and semantic mechanisms for the

user to plug in tools to perform the required design task. In its successor Metropolis II [94],

automatic DSE is identified as one of the major goals.

DOL is an MDD approach close to our work [95]. It focuses on streaming applications

on multiprocessor systems. A complete design flow is supported, including modeling, DSE

and code generation. Although the DSE implementation is also generic and multi-criterion,

reliability is not considered as one of the key non-functional properties.

Table 3.2 gives a qualitative comparison of relate work in the area of MDD. The first column

summarizes if the modeling language provides a fine-grained description of the system. A fine-

grained model typically contains more detailed information and enables more comprehensive
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3.2 Model-Driven Software Development

Approach platform and appli- application to code

cation modeling platform mapping generation

MARTE fine-grained manual ×
SysML coarse-grained manual ×
AADL coarse-grained manual ×

Ptolemy II fine-grained ×
√

Metropolis fine-grained manual
√

Metropolis II fine-grained automatic DSE
√

DOL coarse-grained automatic DSE
√

Proposed fine-grained automatic DSE
√

Table 3.2: Qualitative Comparison of Related Work in the Area of MDD

analysis and code generation in the later phases. The next column considers the deployment

process, i.e., if the application to platform mapping is performed manually or with tool sup-

port. As mentioned in [94] automatic mapping is a highly desirable feature for an MDD tool

framework, especially because modern platforms are becoming more complex. Finally, the last

column illustrates if (complete or partial) executable code can be generated from the model.

The approach proposed in this thesis implements all three important features mentioned above

and is already shipped with necessary tools to support a reliability-aware MDD design flow.
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Chapter 4

Reliability Aware Design Space

Exploration

This chapter presents details of our reliability-aware design space exploration approach. We

start with the tree-based analysis algorithm for evaluation of the system reliability in the pres-

ence of FTMs. Afterwards, we show how the analysis is integrated into a multi-objective

optimization process to guide the search in design space. The focus here is the encoding tech-

nique that transforms the DSE problem into an optimization instance. Finally, experimental

results are presented.

4.1 Reliability Analysis

In the proposed framework, the reliability analysis focuses on computing the system-level re-

liability of a given design under impact of transient faults. Permanent faults are taken into

account using an encoding technique in the optimization process (see Section 4.4). Computing

the system reliability is a very difficult problem, especially in the presence of fault-tolerant

mechanisms such as active redundancy. Recent work [77] especially analyzes the complexity of

reliability analysis. The authors distinguish two types of schedules, namely strict schedules and

general schedules. The strict schedules obey a rule that if a task t has a data dependency on

task t′, all replicas of t′ must be completed before any replicas of t start. With this restriction,

the execution results (success or faulty) of predecessor tasks will have no influence on the start

time of successor tasks. In this way, the tasks can be considered independently in reliability
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4. RELIABILITY AWARE DESIGN SPACE EXPLORATION

analysis and a closed form formula can be derived [24]:

Pr(S, J) =
∏
t∈J

(1− (1− Pr(t))num(t)) (4.1)

where Pr(S, J) is the reliability of job J achieved by schedule S, Pr(t) is the reliability of task

t and num(t) is the number of replicas that task t features. As for the general schedules, the

authors prove that the problem is at least as hard as NP-Complete problems [77].

The reliability analysis for TT-SP and TT-FS schedules is even more difficult than the

ordinary general schedules. First of all, a larger set of FTMs are utilized. In the current work

[24, 77], the replicas of a task are always mapped to different processors to implement spatial

redundancy. For TT-SP and TT-FS, concurrent spatial and temporal redundancy has to be

considered. Second, shared time slots must be supported. In [24, 77], each slot is used for

exactly one task. At the beginning of each slot, the scheduler automatically knows which task

is to be executed. For TT-SP and TT-FS schedules, slots can be shared by multiple tasks.

The actual utilization of slots depends on the execution history of previous slots. Figure 4.1

depicts an example, in which the utilization of slack slots S2 and S3 depends on the execution

results (success or faulty) of previous slots S0 and S1. In particular, the execution results on

one processor might also influence the execute sequence on other processors. In the same figure,

if the instance t1 succeeds in slot S1 on processor p2, the message will transfer the correct result

to processor p1 so that the slot S2 can be left for t2 (4.1c). Otherwise, the slot S2 has to be used

for re-executing t1 (4.1b). The analysis algorithm must also maintain the execution history to

select the correct task for the next slot. New analysis techniques are needed to conquer the extra

complexity. In principle, to obtain the system-level reliability for TT-SP and TT-FS schedules,

we need to carefully investigate which combinations of faults are tolerable by a certain schedule

and which combinations are not. In the next sections, we propose a binary tree based approach.

We describe a combination of faults occurring in a system by a fault scenario:

Definition 1 (Fault Scenario). A fault scenario is a vector x = {x0, x1, ..., xn}, which contains

for each scheduling slot si
1 a variable xi ∈ {1, 0,NA}. It encodes the execution result of si:

xi is 1 if the slot executes some task successfully and 0 if the execution fails; xi is NA if the

slot si is not used, i.e., each task in si.T
2 is either not ready or finished earlier and no task is

actually executed in si.

For the given job J , a fault scenario x is tolerable by a schedule S if J is still executed

correctly in presence of faults specified in x. The entire set of fault scenarios that are tolerable

1Recall that, for TT-FS schedules, a scheduling slot is 4-tuples as introduced in Section 2.5.
2The notation s.X denotes the element X in the tuple s in the entire paper.
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Figure 4.1: Example Execution Scenarios for TT-SP

by schedule S is called the working set of J , denoted as W (S, J). The overall probability that

J is correct can be obtained by summarizing the occurrence probability of all fault scenarios in

the working set:

Pr(S, J) =
∑

x∈W (S,J)

Pr(x) (4.2)

Before presenting the calculation of the working set, we first introduce some intermediate

notations. Let S(tj) represent the set of slots to which task tj is assigned, i.e., S(tj) = {s ∈

S|tj ∈ s.T}. The boolean request variable ri,j evaluates to true if the task tj requests to

execute in slot si and false otherwise. The boolean utilization variable ui,j is true if the slot si

is actually used to execute task tj and false otherwise. For the case of static priority scheduling,

ui,j computes to:

ui,j = ri,j ∧
( ∧

tl∈si.T∧
priority(tl)>priority(tj)

¬ri,l
)

(4.3)

that is, si is utilized by task tj only if tj has the highest priority among all tasks requesting the

slot. An execution request is sent only if the following conditions are fulfilled:

ri,j = isReady ∧ notPrev ∧ notOther (4.4)

The first term isReady requires the task tj to be ready, i.e., all predecessor tasks have been

finished successfully. The other two terms check the necessity of executing tj . The term notPrev

is computed as:

notPrev =
∧

sk∈S(tj)∧sk.p=si.p

∧sk.f≤si.b

¬(uk,j ∧ xk = 1) (4.5)
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Figure 4.2: An Example of Binary Tree Analysis

It is true if tj has not been successfully finished on the same processor. The term notOther

checks if the task has been executed successfully on other processors and a message is scheduled

to convey the result to the local processor:

notOther =
∧

sk∈S(tj)∧sk.p 6=si.p

∧sk.f≤si.b

¬((uk,j ∧ xk = 1) ∧

(∃m ∈M : m.tsrc = tj ∧m.f ≤ si.b ∧m.b ≥ sk.f))

The values of variables ri,j and ui,j can be calculated in an iterative manner. Starting from

the earliest scheduling slot, we iteratively consider each s ∈ S. For a specific slot, we compute

the variables from the task with highest priority to the task with lowest priority.

As mentioned before, we assume perfect fault detector at this point. Hence, a task is

successful if at least one instance of it is executed without faults:

success(tj ,x) =
∨

sk∈S(tj)

(uk,j ∧ xk = 1)

For a given schedule, we can construct a function ϕJ : {0, 1}|x| → {0, 1}, which takes a fault

scenario x and returns 1 if the job J is still correct under impact of x and 0 otherwise. Since

the entire job is correct only if all of its tasks are correct, the function is given as:

ϕJ(x) =
∧
tj∈T

success(tj ,x) (4.6)

With the help of function ϕ, the working set W (S, J) = {x|ϕJ(x) = 1} can be obtained

by a Binary Tree Analysis (BTA). The procedure is demonstrated using an example shown
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in Figure 4.2. We consider the scheduling slots according to the order of occurrence, i.e., the

slots with earlier starting time are selected first (e.g., from S0 to S5 in Figure 4.2). Slots with

equal start time can be considered in arbitrary order. The ith level in the tree is associated

with the ith slot and the edges leaving a node in the ith level represent the execution result

of that slot. Left branches (solid lines in Figure 4.2) represent the case that the slot executes

some task correctly. Right branches (dashed lines in Figure 4.2) represent a slot with failed

execution. Note that a slot might be unused when all tasks in s.T are either not ready or

finished earlier. In this case we skip this level and spawn children in the next level (see node n1

in Figure 4.2). By constructing the tree in this way, each node will have a unique path to the

start node representing a unique fault scenario. A node at depth m represents a fault scenario

in which the first m variables are determined and the rest are considered to be NA. The total

depth D of the tree equals to the number of scheduling slots: D = |x| = |S|.

Algorithm 1 analysis(n): binary tree analysis with starting node n.

//compute request and utilization variable using 4.3 and 4.4

computeRUVariables(n);

l ← createLeftBranch(n)

if checkLeftBranch()=successful then

addToWorkingSet(l)

else

analysis(l)

end if

r ← createRightBranch(n)

if checkRightBranch()6= faulty then

analysis(r)

end if

Algorithm 2 BinaryTreeAnalysis(S): top-level routine of BTA for schedule S

setScheduleToBeAnalyzed(S);

n0 ← createStartNode();

analysis(n0);

Each node in the tree is associated with its own request/ utilization variables. For a specific

node n, we compute those variables using (4.3) to (4.4) based on the values of request/utilization

variables associated with the nodes on the path from n to the start node. This procedure

actually computes which task is going to be executed in a slot based on the execution history

of previous slots.
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With the request/utilization variables, a fault scenario x can be evaluated using (4.6), and

the corresponding node is assigned to one of the states: unknown, faulty or successful. A node

is faulty iff, given the current faults specified in x, there exists no possibility to execute the job

successfully in the remaining slots. A node is successful iff the entire job is already finished

using the successful slots specified in x, i.e., the remaining slots are not needed. The faulty and

successful nodes will not spawn further branches. If a node is neither identified as faulty nor

successful, the analysis continues with its children. The tree analysis is complete if all nodes at

the maximum depth D have been visited or no more unknown node exists. In the end, the set

of successful nodes constitute the working set. The analysis process above can be implemented

recursively as outlined in Algorithms 1.

The occurrence probability of a successful node x can be computed as:

Pr(x) =
∏

xi∈x∧xi=1

Pr(si) ·
∏

xi∈x∧xi=0

(1− Pr(si)) (4.7)

where Pr(si) is the success probability of the task executed in slot si. The task-level error

probability Pr(si) are computed using fault model, e.g., the Poisson model described in Section

2.4. With the task-level reliability and the working set, we can obtain the system reliability

using equation (4.2).

4.1.1 Complexity and Approximation

The complexity of processing a node during BTA is linear with respect to the number of tasks

assigned to the corresponding slot (variables r and u need to be computed for each task).

However, this number is typically very small and does not grow significantly when the system

becomes more complex. We therefore assume the complexity of visiting a node to be constant.

In this case, the complexity of the entire analysis is determined by the number of nodes visited.

The worst case scenario occurs when all the nodes in depth smaller than |S| are in the unknown

state. The complexity is in O(2|S|+1) in this case.

As the analysis has a worst case exponential complexity, it is important to find approxima-

tions that improve the scalability. An observation from equation (4.7) is that the fault scenarios

that specify more faulty slots have much lower occurrence probability, because the failure rate

of a task is typically very low. Moreover, a fault scenario that specifies more faults is more

likely to be a faulty node. Hence, an approximation of the system reliability would be to visit

only nodes with at most d faulty slots and to assume all nodes specifying more than d faults to

be non-tolerable. Since the reliability is obtained using (4.2), ignoring possibly tolerable nodes
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is a safe underestimation of system reliability (see proof below). From the tree point of view,

this corresponds to eliminating all nodes with more than d right branches on their paths to the

root node.

With the above estimation, the total amount of visited nodes can be computed as follows.

We divide the tree into two parts. For the first d levels of the tree, all nodes should be visited,

i.e. in total 2d+1 − 1 nodes. For the rest, recall that the set of nodes in level l is a complete

enumeration of all possible assignments of the first l variables in a fault scenario. Hence, the

number of assignments with maximum d zeros is
d∑
x=0

(
l
x

)
. The total amount of nodes is then:

T (|S|) = 2d+1 − 1 +

|S|∑
l=d

d∑
x=0

(
l

x

)
(4.8)

By applying a simple upper bound for the sum of binomial coefficients
d∑
x=0

(
l
x

)
≤ (l + 1)d, the

complexity of the algorithm computes to:

O(T (|S|)) = O(

|S|∑
l=d

d∑
x=0

(
l

x

)
) ⊆ O(

|S|∑
l=d

(l + 1)d) (4.9)

The expression above can be further overestimated as:

O(T (|S|)) ⊆ O(|S| · (|S|+ 1)d) = O(|S|d+1
) (4.10)

As it can be seen, the complexity of BTA is reduced to be polynomial in |S| by bounding the

maximum number of faults by a constant d. Note that what we analyze here is the worst-case

complexity of BTA. During our experiments, we observe that the portion of terminating nodes

(mostly faulty nodes) increases significantly with higher d and the actual number of visited

nodes is much smaller. As an example of runtime, the average execution time of BTA on the

mpeg2 application (|S| ≈ 35, measured on a 3GHz CPU) is 754ms for d = 3 and 3405ms for

d = 5. Thus the runtime of BTA is acceptable for an offline optimization process.

Correctness Proof of the Approximation in BTA. We prove the correctness of the

approximation in BTA by showing that the approximation is pessimistic underestimation of

system reliability. The design decisions made based on the BTA result are therefore safe.

Lemma 1. Eliminating nodes during binary tree analysis is a safe underestimation of system

reliability.

Proof. The system reliability is computed by accumulating the occurrence probability of all

nodes in the working set (see equation 4.2). By eliminating a node during BTA, we consider
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the node as faulty without checking, even if it is possibly successful. The occurrence probability

of this node will not be added to the system reliability. In this case, the computed system

reliability will be less or equal than the true value. Hence, the BTA result is pessimistic and

safe.

Theorem 1. Visiting only nodes with at most N (N > 0) faulty slots during BTA is a safe

approximation of system reliability.

Proof. We prove it by induction. Start node. The fault scenario represented by a node is

determined by the path from the node itself to the start node. Since the start node has an

empty path, it represents a dummy fault scenario that is not considered during BTA. Nodes

in the first level. For a node in level l, there is exactly l branches along the path to the start

node. Since l ≤ N , the two nodes in the first level are never eliminated by approximation. If

they represent tolerable fault scenarios, the according probabilities will be accumulated.

Induction. Assume the BTA is visiting a node A in level L. The number of faults specified

by scenario A (denoted by faults(A)) must be less than or equal to N , otherwise it is already

eliminated. The two child nodes of A is expanded only if A is an unknown node, i.e., this

branch terminates if A is identified as a successful or a faulty node (c.f. Algorithm 1). The

branch to the left child B specifies a successful execution of the slot associated with the current

level. Hence, faults(B) = faults(A) ≤ N and B will not be eliminated. No approximation is

made at this point. The branch to right child C specifies a new fault occurring at the current

level and faults(C) = faults(A) + 1. If faults(C) ≤ N , the BTA continues normally with

C and no approximation is performed. If faults(C) > N , node C is directly considered as

faulty and the BTA terminates at this branch even though the children of C could possibly be

successful. Nevertheless, eliminating possible successful node is a safe underestimation of the

system reliability according to lemma 1. Hence, for either of the children of the current node

A, the approximation, if it takes place, is safe.

4.2 Static Priority Slack Sharing for Multiple Jobs

Many multiprocessor systems are designed for co-hosting multiple functionalities concurrently.

In particular, there is an increasing trend towards implementing jobs with mixed criticality

on a single shared computing platform [96]. It is likely that jobs with different criticality

have highly distinct reliability requirements. For highly critical tasks, a significant amount of

temporal redundancy is needed to meet their reliability requirements. However, the probability

that the software slack is actually used is typically very low. In this case, implementing each

job in a step-wise manner without a global view may result in sub-optimal system design (see

example below). To cope with this problem, we propose a Static Priority Slack Sharing (SPSS)

scheme. The idea is to introduce global re-execution slots and enable sharing of those slots

among multiple jobs using a job-level static priority approach based on the criticality.
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Figure 4.3: Example of Static Priority Slack Sharing

Figure 4.3 shows an example schedule of two jobs using the SPSS technique. A high-

criticality job J1 and a low-criticality job J2 are allocated on two processors. Four global slack

slots are scheduled, in which J1 is assigned a higher priority. In this case, assigning J2 in the

slack slots has no influence on the execution of J1. Assume the failure rate of each task is

10−5 and the period is 360ms, we find that the reliability requirement of J1 is met. For the

low priority task J2, a re-execution slot is granted only if J1 finishes successfully without using

that slot. Due to the fact that the task failure rate is low, such a setup already fulfills the

requirement of J2. Thus, two processors are sufficient to execute both jobs. Without using

SPSS, a third processor would be necessary for J2, since the remaining resources on N1 and N2

are not enough.

The BTA is able to analyze a global schedule with multiple jobs and compute the reliability

of each job. A minor adaptation is that a node is now considered as unknown unless the concrete

results (either successful or faulty) of all jobs are available. As discussed in section 4.1.1, the

complexity grows rapidly with the total number of scheduling slots. To cope with this problem,

we present an extended algorithm that computes the reliability of each job iteratively, a sketch

of which is shown in Algorithm 3.

In the extended algorithm, we iterate over each job with decreasing priority. For a specific

job J , we perform the BTA and obtain the set of successful nodes (working set). For each node

ñ ∈W (S, J), there is an availability scenario g̃ associated. It denotes which shared re-execution

slots are used and which are not. Let SG denote the set of shared re-execution slots in schedule

S, g̃ is a subset of SG that computes to:

g̃ = {si ∈ SG|x̃.xi = NA} (4.11)

47



4. RELIABILITY AWARE DESIGN SPACE EXPLORATION

Where x̃.xi refers to the value of variable xi in fault scenario x̃ associated with node ñ. An

example is given in Figure 4.2. The availability is {S4, S5} for the successful node c1, {S5}

for node c2 and {S4} for node c3. Note that multiple successful nodes may result in the same

availability scenario. Hence, the occurrence probability of a specific availability scenario g is:

Pr(g) =
∑

ñ∈W (S,J)∧g̃=g

Pr(x̃) (4.12)

For the analysis of next job J ′, we iterate over each availability scenario (line 4 in Algorithm

3). For a specific availability scenario g, the remaining slack slots are combined with the slots

dedicated for J ′ to obtain the total schedule Ŝ (line 5 in Algorithm 3). The Ŝ is then used for

the BTA of J ′ (line 6). In a certain availability scenario g, the occurrence probability of a fault

scenario is

Pr(x, g) = Pr(g)Pr(x|Ŝ) (4.13)

Where Pr(x|Ŝ) is the occurrence probability of x using the schedule Ŝ associated with g. The

probabilities of tolerable fault scenarios found with each availability scenario are summarized

using equation (4.2) to obtain the system reliability. The BTA of J ′ computes again the

availability scenario for further jobs (line 7 and 9 in Algorithm 3).

Algorithm 3 IterativeTreeAnalysis(): iterative tree analysis for multiple tasks. ASold: the

set of availability scenarios from previous job. ASnew: the set of availability scenarios for next

job. S(J): the set of slots dedicated for job J . The function combine computes the overall

occurrence probabilities of availability scenarios using (4.12).

1: ASold ← initAvailability();

2: ASnew ← initAvailability();

3: for all J ∈ A with decreasing priority do

4: for all a ∈ ASold do

5: Ŝ = S(J) ∪ a
6: avail ← BinaryTreeAnalysis(Ŝ)

7: combine(ASnew,avail)

8: end for

9: ASold ← ASnew

10: end for

Complexity. Let |A| be the number of jobs and S(J) be the set of scheduling slots dedicated

to job J , the total number of slots of schedule S can be represented as |S| =
∑
J∈A
|S(J)|+ |SG|.

Consider the case that we assume maximum d faults in each job, the maximum number of

faults in the entire system is |A| d and complexity of the analysis is in O(|S||A|d+1
) according to

48



4.3 Optimization Procedure

equation 4.10. Using the iterative approach, the worst-case complexity of BTA for a single job

J is in O((|S(J)|+ |SG|)d+1). The BTA needs to be done for each availability scenario. Assume

J is the xth job that we consider, then the previous jobs may encounter up to (x− 1)d faults.

Those faults may consume shared slack slots and thus result in different availability scenarios.

In the worst case, each combination of faults has a different availability scenario, so the total

number of BTAs to be performed is
(x−1)d∑
i=0

(|SG|
i

)
≤ (|SG|+ 1)(x−1)d. It can be easily seen that

the complexity is significantly reduced. For further complexity reduction, we can apply the

same idea as in section 4.1.1 on availability scenarios by considering the availability scenarios

with occurrence probabilities lower than a threshold value as faulty. This is obviously also a

safe underestimation of reliability.

4.3 Optimization Procedure

Guided by analysis results, we considered how to find the optimal task schedule. We adopt the

Multi-Objective Evolutionary Algorithm (MOEA) as the optimization engine. To use MOEA,

the candidate solutions must be encoded into a special data structure called chromosome. The

set of chromosome maintained by the optimizer is called the population. In each iteration, the

optimizer selects a subset of solutions from the population and uses them to produce offspring

(new solutions). This procedure is done by applying crossover and/or mutation operators. The

new solutions are evaluated by fitness functions and high quality solutions will replace low

quality ones in the population. This process repeats until a candidate with sufficient quality is

found or a maximum number of iterations is reached. Figure 4.4 shows an overview of MOEA.

To describe TT-SP or TT-FS schedules, the information about each slot is needed, including

the start/finish time and the set of tasks allocated. A direct encoding of such schedules generates

very large chromosome, resulting in a huge search space and low optimization efficiency. To

cope with this problem, we utilize a two-step encoding process inspired from [97]. The main

idea is, instead of encoding the complete schedule, we only put partial information, namely

the mapping and FTM configuration, into the chromosome. A scheduler is used to rebuild

the schedule from the chromosome, which is then used for fitness evaluation, e.g., reliability

analysis. For the rest of this section, we present the encoding technique for TT-SP schedules.

The section 4.3.2 discusses necessary changes to support TT-FS schedules.

Using this approach, the chromosome contains one gene per task. Each gene is a pair

g = (i, L), where i is the integer index of the task and L is a list of integer values denoting
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the set of PEs task i is mapped to. An example is shown in Figure 4.5. Multiple mappings

of the same task onto the same PE are interpreted as temporal redundancy (task 2 and 3 in

Figure 4.5); multiple mappings of the same task onto different PEs are interpreted as spatial

redundancy (task 1 in Figure 4.5).

4.3.1 Schedule Reconstruction

Reconstruction of the schedule from the chromosome is the same problem as scheduling the

tasks with known mapping and FTM configuration. The reconstructed schedule is sent to the

BTA to evaluate the reliability for current solution. The selection of scheduler is a user decision

and has no influence on the correctness of analysis. For example, the user may implement

a scheduler that only generates strict schedules or another one that also generates general

schedules. The BTA is generic and supports both types.

The scheduling procedure that we propose consists of three main steps. First, for each

mapping entry of a task t, we instantiate a scheduling slot with length equal to the execution

time of t. The set of slots is scheduled using a list scheduler. The priority is computed based

on two criteria: 1) a task belonging to a job with earlier deadline has higher priority (job-

level EDF); 2) for tasks in the same job, the one that has a longer critical path to the sink

is assigned a higher priority. Using such an approach, data dependencies are automatically

regarded. Second, bus scheduling is performed for each message (Figure 4.5b). In this paper,

we adopt the transparent recovery approach [81], which requires that a fault occurring on one

PE is masked to other PEs. This approach has several advantages such as fault-containment
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and improved traceability. According to transparent recovery, the message should be scheduled

after possible re-executions so that faults occurring at the sender are not visible to the receiver,

e.g., if the task t2 in Figure 4.5 sends a message to other tasks, the message should be placed at

time T2. Tasks may be postponed due to dependency on messages. In the last step, we perform

slack sharing (Figure 4.5c) using a greedy approach. A slot is shared with all tasks that 1) may

become ready before the start time of this slot; 2) has an execution time no greater than the

slot size.

An advantage of the two-step encoding is that many application specific constraints can be

easily translated into rules on the chromosome. The MOEA can be customized to generate

only chromosome that fulfill these rules. For example, safety-critical applications often have

separation constraints, such as task t1 and t2 must be strictly isolated in space. We could

guarantee this constraint by making sure that the mapping entries of the two tasks are mutually

exclusive.

4.3.2 Encoding of TT-FS Schedules

The encoding scheme needs slight modifications to handle TT-FS schedules. We use the integer

0 to denote slack slots and integers larger than 0 to denote regular slots. Figure 4.6 shows an

example. Two tasks t1 and t2 are allocated on processor 1 and one slack slot is scheduled. To

reconstruct the schedule from chromosome, the same list scheduler described in section 4.3.1
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can be used to generate an initial schedule. The slack slots are placed right after the regular

slots of the same task, e.g., S3 is located directly after S2. We introduce a greedy slack sharing

approach that works as follows. First, the schedule is divided into several segments. The

segments are separated by one or several consecutive slack slots. Then each slack slot is allowed

to be shared by all tasks in the segment just before itself. As an example, the regular slot S1

and S2 in Figure 4.6 belong to the segment separated by slack slots S0 and S3. Hence S3 is

shared by task t1 and t2. The size of slack slots is set to the largest execution time of all tasks

sharing the slot.

For the TT-FS Schedules, special care is needed in the message placement step. This is

because normal slots might be delayed due to out-of-order execution of slack slots. To achieve

transparent recovery, the faults occurred on one processor must be masked to other processors

even if the task is delayed. This can be explained using an example. Assume t2 in Figure 4.6b

is going to send some message to other processors and we want to mask a single fault that

occurs on processor 1. Figure 4.6c shows the execution scenario that t2 encounters a fault.

Based on the idea of transparent recovery, the message m originated from t2 should be placed

no sooner than the second instance of t2. However, the message should be scheduled at an even

later time (m′ in the figure), since the worst-case scenario happens when t1 encounters a fault

as shown in Figure 4.6d. In other words, if the message is placed at m, a single fault on t1

cannot be tolerated and the system reliability decreases. Thus, our scheduler always analyzes

the worst-case scenario and places the messages accordingly.

4.3.3 Crossover and Mutation

In order to improve the performance of the MOEA, we implement some crossover and muta-

tion operators that add problem-specific knowledge to the optimizer [98]. We present those
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Figure 4.7: Task Implementation Crossover Example

operators in the following:

Task Implementation Crossover : This operator randomly selects a set of tasks and swaps

the entire implementation of these tasks across two chromosome, including the amount of

spatial/temporal redundancy and mapping. The rest of the chromosome remains unchanged.

Figure 4.7a shows an example in which task 2 is selected for crossover.

Task Mapping Crossover : This operator performs crossover on the implementation of a

specific task. Given two chromosome, the mapping entries for the selected task are randomly

swapped. Figure 4.7b shows an example in which 3 mapping entries are swapped.

Increment Redundancy : This mutation operator inserts a new mapping entry for a randomly

selected task. Insertion of the new mapping x to task t might result in: 1) a temporal replica, if

the chromosome already contains a mapping of t to x, or 2) a spatial replica, if t has not been

mapped to x.

Decrement Redundancy : The counterpart of Increment Redundancy, removes one mapping

entry from a random task. At least one mapping entry must remain for each task.

Re-Mapping : This mutation operator randomly changes the mapping entries. The result

might be: 1) re-mapping of the tasks to other PEs or 2) transformation of a temporal replica

to a spatial replica or vice versa.

4.4 Tolerating Permanent Faults using Virtual Mapping

Safety-related systems must tolerate both permanent and transient faults. In most existing

work, they are considered separately using dedicated techniques. However, it is particularly

important to consider both types of faults in a unified manner, in order to achieve the most

efficient and reliable design. We explain this point using the following example. Consider the

system in Figure 4.8 consisting of two jobs J1 and J2 to be executed on two processors p1 and p2.
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Figure 4.8: Motivating Example for Considering Transient and Permanent Faults Together

It has the requirement to tolerate a single defect on any of the two processors. A straightforward

design considering only the permanent faults could be done using pure hardware redundancy

as shown in Figure 4.8b. However, such a setup has very limited capability of tolerating

transient faults. Assume transient fault probability is 1 × 10−5 for each task and the period

of both jobs are 360ms, the failure rate per hour of both J1 and J2 can be easily computed

as 4 × 10−6. Using the same amount of resources, the software re-execution technique can

achieve much better tolerance to transient faults. In Figure 4.8c, two re-execution slots (or

slack slots) are scheduled on each processor, which can be used to re-execute any previous task

that is misbehaving due to transient faults. Using the analysis presented later in section 4.1,

the failure probability of both applications is computed to 4× 10−11. However, the schedule in

Figure 4.8c is not capable of tolerating permanent faults on p1, since the slack slots S21 and S22

are not large enough to accommodate A and B. Actually, when we schedule the re-execution

slots to tolerate transient faults, we can keep the requirement on permanent faults in mind and

intentionally increase the sizes of slot S21 and S22 to fit task A and B (Figure 4.8d). In this

way, permanent defects can also be handled since migration of task A and B is now possible.

The schedule 4.8d therefore has the same tolerance to permanent faults as schedule 4.8b and

achieves much higher tolerance to transient faults.

The analysis and optimization approach presented so far focuses only on transient faults.
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In this section, we present an extension to add the consideration of permanent faults. Recall

that, to tolerate a permanent defect of some processor p, we need to guarantee that each task

mapped to p either has another running instance (spatial replication) or can be migrated to a

slack slot on other processors. Thus, a straitforward way is to ensure that each task has at least

one replica by adding constraints on the chromosome. However, spatial redundancy comes with

high hardware cost and is less efficient to tolerate transient faults.

A more cost-efficient alternative to handle permanent faults is task migration. To design

such a system, one of the most important goals is to minimize the overhead of migration.

The ideal case is that the system recovers from faults with only minor re-configuration. Since

attaining the optimal task migration decision is a highly complex task, recent work [9] proposes

to compute the task re-mappings statically offline and store them in tables. The pre-computed

configurations are applied at runtime if a permanent fault is detected. We adopt a similar

approach and synthesize static schedules that can be adapted with minor changes to handle

failure of processors. For static time-triggered scheduling that we are focusing on, the migration

cost is highly influenced by the data dependencies. Consider the example depicted in Figure

4.10, where the task X is to be migrated to one of the possible locations S1 to S3. The tasks

A and B are communicating with X via messages. If X is re-mapped to S1, which is earlier

than the original message M1, the predecessor task A and the message M1 need to be shifted

forward due to data dependency. In consequence, other tasks communicating with A need

further adaptation and overall migration cost could be much higher. A similar situation occurs

if X is migrated to S3, which is later than message M2. In this case the successor tasks need

to be shifted backwards. Instead, if X is moved to S2, the rest of the schedule does not need

to change and the migration can be performed with low overhead. An indication from this

example is that, while building schedules to tolerate transient faults, we should take permanent

faults into consideration and try to make such low-overhead migrations feasible. For the given

example, we could try to schedule a slack slot between t1 and t2.

We propose a virtual mapping technique for this purpose. The general idea is to trace

potential locations for task migrations already at the time when the schedule is constructed

from the chromosome. A virtual mapping of task t to p is represented in our encoding scheme

using a negative integer −p, which implies that p is the target of migration of task t. For

example, the chromosome shown in Figure 4.9a specifies two entries 1 and −2 for task A, which

means A is executed on processor p1 during normal execution and it is to be migrated to p2 if

p1 fails. When constructing the schedule, we instantiate a slot also for a virtual mapping, with
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the size of slot being the execution time of A (slot V A in Figure 4.9b). This slot is the location

where A will be migrated to. Note that the virtual mapping slots are also scheduled using the

same heuristic presented in Section 4.3 so that data dependencies are also regarded. This is

essential to achieve a low-overhead task migration as shown in Figure 4.10. Nevertheless, during

normal execution, this slot is not left empty but used as a slack slot for other tasks mapped onto

the same processor. For example, in Figure 4.9c, the slot V A is actually used for task C. This

technique reclaims the time reserved for task migration and uses it to improve the transient

fault tolerance in normal execution. The efficiency of resource utilization is therefore improved.

Note that virtual mapping slots may be combined with other slack slots scheduled on the same

processor to reduce the length of the schedule. For example the slot V C is combined with B1

and slot V D is combined with B2. The combination is only possible if two rules are obeyed:

1) the normal slack slot is no smaller than the virtual mapping slot; 2) no data dependency

is violated. These two rules guarantee that the task migration is still valid after combination.

Afterwards, the corresponding slack slots are marked as new migration targets (Figure 4.9c).

Note that we assume a use scenario that task migration is only considered as an emergency

response for permanent faults. The goal is to guarantees continuous service of the system,

possibly with degraded quality due to lack of resources, before a maintenance (e.g., replace the

failed hardware) can be carried out. In this case, we do not consider the reliability concerning

transient faults after the migration.

There are two main advantages of using virtual mapping. The first is easy implementation,

since the optimization process remains unchanged and no further objective is necessary. Tol-

erance of permanent faults is achieved by adding simple constraints to the chromosome. For

example, if it is required to tolerate a defect of processor p, we just need to add the constraint

that tasks that are mapped only to p must have a virtual mapping. The second advantage

is low migration overhead. Using the proposed approach, the locations for task migration are

statically computed and the required resources are allocated. To carry out the task migration,

the scheduling slots do not need to change. Only a simple update of the priority table of virtual

mapping slots needs to be done, e.g., task A can already be mapped to V A set to lowest priority

to allow other tasks to acquire the slot during normal execution. When migration is needed,

we just set A to the highest priority in the slot. Since the binary of task A is already loaded to

the target processor, timely recovery can be achieved.
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4.5 Simulation Results

We implement the analysis and optimization algorithms in JAVA using the opt4j library [99].

We assume that the target platform consists of two types of PEs, namely a RISC processor

and a DSP. The failure probability of each task on a certain PE is randomly generated between

1 × 10−5 and 1 × 10−7 (the failure probabilities are in the typical value range for soft error

rates [3]). We restrict each task to have at most 2 spatial replicas and 2 temporal replicas. For

the metric of reliability, we use the System Failure Probability (SFP) per hour in logarithmic

scale in the experiments, i.e., the lower the value, the higher the reliability is. We use two sets

of Task Graphs (TGs) as the benchmark. The first is a set of random TGs with 5 to 15 nodes

generated synthetically using TGFF1. The execution time of each task on the RISC/DSP is

generated randomly between 100 and 1000. The second is an mpeg2 decoder example from [95]

that consists of 13 tasks.

The goal of the first set of experiments is to evaluate the accuracy and runtime of the

reliability analysis. Several instances of the BTA with different approximation factors are

evaluated. We use the approximation technique introduced in section 4.1.1, which bounds the

maximum number of faults (MF ) considered in BTA. Figure 4.11 presents the results averaged

over 100 test runs, each round with a random TG and a random schedule. As it can be seen,

the execution time increases rapidly with larger MF. The run time of BTA with MF = 5 is

around 16x higher than the case with MF = 3. For the accuracy, all analysis with MF larger

than 1 bounds the average relative error to less than 10%. The BTA with MF = 3 achieves a

very good tradeoff between runtime (around 3 seconds) and accuracy (99.3%) and is considered

as a good option in practice. Actually, the BTA should be used in most cases with relatively

small MF . Since the occurrence probabilities of transient faults are typically very low (e.g., at

the magnitude of 10−5 [100]), fault scenarios with a large number of faults happen very rarely.

The scheduler should focus on covering all the fault scenarios with high probabilities instead

of tolerating rare cases. For example, if a single-fault scenario with probability 10−5 is not

tolerable, it becomes the system bottleneck. Even if all other fault scenarios can be tolerated,

the maximum achievable reliability is limited to 1− 10−5.

Note that using a lower MF value results in more pessimistic estimation of system reliability,

since a larger number of nodes are automatically considered as non-tolerable (see Section 4.1).

The solution found using a coarse analysis is safe due to pessimism. However, it may happen

1TGFF http://ziyang.eecs.umich.edu/~dickrp/tgff/
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Figure 4.11: Evaluation of BTA with Approximation

that no feasible solution is found even if some exists. The approximation factor should be

selected in a way that the accuracy of analysis is sufficient to reach the same accuracy of

applications’ reliability goal. The accuracy of the analysis can be roughly estimated as follows.

Assume the transient fault probability of tasks are at the magnitude of 10−5, the occurrence

probabilities of single-fault scenarios are at the magnitude of 10−5 and the probability of 2-fault

scenarios are at the magnitude of 10−10. If we consider MF = 2, the analysis will drop all fault

scenario with more than 2 faults, and the reliability is determined by the portion of tolerable

single-fault and 2-fault scenarios. Since the BTA accumulates the occurrence probabilities of

tolerable scenarios to obtain the system-level reliability, the accuracy of analysis is also at

10−10. Hence, if the reliability goal is at a higher accuracy, e.g., 10−11, a high MF should be

considered. Also, using different approximation factors in the design process might be helpful.

E.g., the coarse analysis can be used to obtain some fast results and more accurate analysis can

be used for final decision making and verification.

4.5.1 Architecture Exploration Case Study

A challenging task in embedded system design is architecture exploration. The designer has to

address problems such as what is the amount and the type of PEs needed to meet all application

requirements. To illustrate how this can be supported by our approach, we consider the mpeg2

application and run the DSE engine with several platform configurations consisting of 2 to 6 PEs.

The execution time of tasks is specified according to [95]. The deadline of the application is set

to two times the critical path of the TG to allow some slack for reliability improvement. Only
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Figure 4.12: Pareto Optimal Solutions under Different Platform Configurations

transient faults are considered for the moment. The MOEA is configured with two objectives.

The first one is timing overhead. It is defined as:

penalty(S) =

{
−1 iff l ≤ d
l − d otherwise

(4.14)

where l is the finish time of the job in schedule S and d is the deadline. The idea is that,

if the deadline is met, we set the penalty to a constant −1 and if not, we set the penalty to

the difference between the finish time and the deadline. In this way the optimizer will prefer

solutions that meet the timing constraints and optimize other objectives. The second objective

is reliability using the SFP as a metric. Figure 4.12 shows the Pareto optimal solutions found

by the optimization. It can be seen that the Pareto fronts obtained with more PEs dominate

those obtained with less PEs in most cases, i.e., with more hardware resources, the application

can be finished with shorter time and higher reliability. This is due to the increased opportunity

for spatial redundancy.

For each platform, we are interested in the solution that achieves maximum reliability while

meeting the deadline. These solutions are marked with 1 to 3 in Figure 4.12. As it can be seen,

the 2RISC+2DSP platform is the minimal one to achieve SFP of 10−6 and the 3RISC+3DSP

platform is necessary to achieve SFP of 10−9. An important observation from Figure 4.12 is

that, for the 2RISC + 1DSP platform, several solutions with SFP around 10−6 are very close

to meeting the deadline. The same is observed for the platform 3RISC+ 2DSP , where several

solutions are close to achieving SFP of 10−9. This implies that, these two platforms might

already be sufficient to reach respectively 10−6 and 10−9 if they can be made a bit faster. We
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Figure 4.13: Achievable Reliability Comparison

therefore test two additional platforms with 1 RISC + 2 DSP and 2 RISC + 3 DSP (the

DSP is faster for the mpeg2 application). Figure 4.13 shows the best solution under deadline

constraint for each platform. Clearly, the new platforms with 1 RISC + 2 DSP and 2 RISC +

3 DSP are the most cost-efficient solutions to achieve SFP of 10−6 and 10−9, respectively.

4.5.2 Comparison of TT-SP and TT-FS

Qualitative Comparison. The TT-SP and TT-FS schemes can be compared in several aspects:

• Resource efficiency. Both TT-SP and TT-FS allow sharing of time slots by multiple tasks

and are therefore more efficient than traditional techniques with dedicated redundancy for

each task, e.g., [24]. For example, the schedule in Figure 2.6a and 2.6e are able to tolerate

a single fault of any of the tasks t1, t2, t3. Without using the slot-sharing technique, we

would have to replicate all three tasks once, in order to achieve the same level of fault-

tolerance. However, much more resources are needed in this case. If we compare TT-SP

and TT-FS, the later achieves generally higher resource efficiency. This is because only

the slack slots are shared and must have their sizes set to the largest WCET of all tasks

assigned to them. Again in same example, the schedule in Figure 2.6a has the length

|t1|+max(|t1|+ |t2|) +max(|t2|+ |t3|) + |t3|, whereas the schedule in Figure 2.6e has the

length |t2|+ |t2|+ |t3|+max(|t1|+ |t2|+ |t3|). It can be easily verified that the length of

2.6e is no larger than that of 2.6a. Nevertheless, the TT-SP scheme can also outperform

TT-FS in certain circumstances (see the discussion of Figure 4.15).
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• Predictability. The TT-SP scheme exhibits higher predictability in sense the start time

of all slots are fixed and known. In Figure 2.6, the scheduling points, where the runtime

scheduler has to be called, are marked. As it can be seen, the scheduling points of TT-SP

are fixed in time without dependency on the faults occurred. In contrast, the scheduling

points vary for different fault scenarios for TT-FS schedules.

• Scheduler Complexity and Overhead. The implementation of a TT-SP scheduler is

straightforward. At each scheduling point, we just pick the pending task that has the

highest priority for execution. The implementation is more complicated for TT-FS. De-

pending on the faults that occurred previously, the schedule has to be adapted at runtime

and the new scheduling points need to be determined. In Figure 2.6f for example, the

slot S5 and S6 have to be delayed due to the re-execution of t1 using S7. In this case, the

complexity in scheduler implementation is higher, resulting in generally higher scheduling

overhead.

Experimental Comparison. To evaluate the performance of TT-SP and TT-FS, we extend

the optimizer with an additional optimization objective, namely resource consumption. We

vary the reliability goal of the mpeg2 application from SFP 10−5 up to SFP 10−9 and check the

minimum amount of resources to achieve the desired reliability level. The timing constraints

remain the same. The 2RISC + 2DSP platform is considered as the target architecture. For

the fitness of timing and reliability, the same technique as in equation 4.14 is applied, i.e.,

the penalty is set to −1 if the timing/reliability requirements are fulfilled and a positive value

otherwise. The resource utilization is the total processor time a schedule occupies. Clearly, all

objectives need to be minimized.

Three approaches are compared, namely the TT-SP scheme, the TT-FS scheme and the

traditional approach without slack sharing (NoSharing). NoSharing is a similar approach as the

existing work [24]. However, the results are obtained using our optimization framework with

three objectives instead of the bicriteria heuristic proposed in [24]. Figure 4.14 compares the

minimum resources needed to meet both timing and reliability requirements. Clearly, TT-SP

and TT-FS out-perform NoSharing significantly by allowing temporal redundancy to be shared

by multiple tasks. As the reliability requirement becomes higher, more redundancy needs to

be added and the benefit of slack sharing also increases. When the SFP goal is 10−8, 25.7%

more resources are comsumed by NoSharing. Moreover, NoSharing fails to provide any feasible
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Figure 4.14: Comparing TT-SP and TT-FS using mpeg2
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Figure 4.15: An Example for Comparing TT-SP and TT-FS

solution 1 when the SFP goal is set to 10−9. What is a bit unexpected is that TT-SP exhibits

better performance than TT-FS for the mpeg2 application. After a detailed analysis of the

schedules, we find out that this is because the tasks of mpeg2 have a large variation on failure

probabilities. This implies that more replicas should be scheduled for tasks with high failure

rates. However, the slack slots in TT-FS implicitly treat all tasks in the same way. We explain

this issue using a simple example depicted in Figure 4.15.

Consider that three tasks t1 to t3 are allocated on processor 1 and task t2 has a higher

failure rate. TT-FS allocates one shared slack slot for all three tasks and an extra replica for

t2 (Figure 4.15a). In this way, the schedule tolerates any single fault on t1 to t3 and also two

consecutive faults on t2. Since t2 has the largest execution time, the size of the slack slot is set

to |t2|. The overall length of schedule is then |t1|+3∗ |t2|+ |t3|. Figure 4.15b shows the optimal

TT-SP schedule that utilizes the same amount of resources. Three replicas are allocated for t2

1When the approach fails to find a solution, the corresponding point is missing in the figure.
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Figure 4.16: Comparing TT-SP and TT-FS using Random TG

and then shared with t1 and t3. Thanks to the sharing of three slots, the schedule in Figure

4.15b tolerates a larger set of fault scenarios (actually, it tolerates two faults on any of the

tasks) and therefore achieves higher system-level reliability. In other word, the TT-SP schedule

shows better performance in this scenario.

We did the same experiment on a randomly generated Task Graph (TG), whose tasks have

small variation on failure rates. Figure 4.16 summarizes the results. As it can be seen, the

TT-FS approach consumes less resources to reach the same reliability level. For this example,

the resource saving archived by slack sharing is larger than the case of mpeg2, e.g., 75.7% for

SFP 10−8. This is because the deadline of the TG is relatively loose and the possibility to use

re-execution slots is higher.

4.5.3 The Case with Permanent Faults

In the next step, the consideration of permanent faults is added and two approaches are com-

pared:

• The step-wise approach in which permanent faults are handled first using spatial repli-

cations and then, on top of that, transient faults are handled using temporal and spatial

redundancy.

• The proposed unified approach, in which permanent faults and transient faults are con-

sidered together using the virtual mapping technique.

As a reference, we also compare them with a case in which only requirements on transient

fault tolerance are added (No-PF). We are interested in how much overhead is needed to fulfill
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Figure 4.17: Performance Comparison of Step-wise and Unified Approaches

the additional requirements on permanent faults. We again use three optimization objectives,

namely schedule length, reliability and resource utilization. We assume that it is required

to tolerate a single defect on any of the processors. Figure 4.17 compares the solution that

meets both timing and reliability requirements with minimum resources tested on 10 random

TGs. The resource consumption is normalized with respect to the reference (No-PF). For

the step-wise approach, 47% more resources are needed on average to handle the permanent

faults. The unified approach reduces the resource overhead to 33%, i.e., 14% resource saving

is achieved. Figure 4.18 gives a closer view of the Pareto optimal results for one example TG.

As it can be seen, the solutions found using the unified approach dominate those found by the

step-wise approach. One observation is that, some jobs such as TG3, need more resources to

tolerate permanent faults than other jobs. The reason is, these jobs exhibit limited parallelism

and the optimizer tends to schedule a large part of the job onto the same processor, so that

transient faults can be handled efficiently using temporal redundancy. In this case, a large

part of the job needs to be replicated/migrated if a defect occurs. As the opposite case, the

mpeg2 application is easy parallelizable and has a relatively tight deadline, which guides the

optimizer to a distributed implementation even if permanent faults are not considered. In this

case, the additional resources needed are marginal (2% using the unified approach), since only

some minor modifications are needed to guarantee feasibility of task migrations.

4.5.4 Comparing Slack Sharing Schemes

We proceed with experiments with multiple jobs running concurrently. The focus of this set of

experiments is on evaluation of the slack sharing schemes. We compare three configurations:
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Figure 4.18: Example of Pareto Optimal Results
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Figure 4.19: Comparison of Slack Sharing Schemes

in the first one, no slack sharing is enabled (NSS), i.e. each task has its dedicated replicas and

slack slots; in the second one, intra-job slack sharing is used (INTRA), i.e. job-level global

slack slots are scheduled and shared amongst all tasks belonging to the same job; and in the

third configuration, the proposed SPSS scheme is used (INTER), i.e. global slack slots are

shared by all jobs using a static priority based approach. We generate 10 random applications

with 2 to 3 jobs running concurrently. Figure 4.19 compares the solution that fulfills deadline

and reliability requirements of all jobs with minimum resource consumption. The resource

consumption is normalized with respect to the NSS approach. As it can be seen, significant

resource saving can be achieved using slack sharing. On average, INTRA and INTER save

12% and 20% resources, respectively.
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Chapter 5

Fault Tolerant System Design

using Imperfect Fault Detectors

The reliability analysis techniques presented so far are based on a common assumption that

all transient faults are detected by embedded fault detectors. However, fault detection is often

imperfect in reality. Certain faults may escape the detector and propagate to subsequent

tasks. Hence, the perfect fault detection assumption may cause several practical concerns. In

this thesis, we put special emphasis on developing an approach that supports imperfect fault

detection.

This chapter starts with introducing extended system models to consider imperfect fault

detection. Afterwards, we motivate our approach using an example. Section 5.4 and 5.5 describe

the core analysis and optimization techniques. Finally, experimental results are discussed.

5.1 System Models

Taking imperfect fault detection into account, the execution of a task may result in three

scenarios:

1. it executes successfully, denoted as SUC;

2. a transient fault occurs and is detected, denoted as Detected Unrecoverable Fault (DUF );

3. a transient fault occurs and is not detected, denoted as Silent Data Corruption (SDC).

We characterize the performance of a fault detector using a pair d = {c, o}, where c is the

fault detection coverage in percentage and o is the timing overhead. The overhead is defined in
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percentage with respect to the stand-alone WCET of the task. Let the stand-alone WCET of

the task ti on processor pj without any fault detection be denoted using wi,j . An instance of

ti that implements the fault detector indexed k has the WCET wi,j(1 + ok). We assume that a

library of implementable fault detectors are available at design time for each task (denoted as

Di for task ti).

For a specific instance ti,l in the set of replicas R(ti), the processor that ti,l is mapped to is

denoted by node(ti,l) and the ID of the fault detector it implements is denoted by det(ti,l). The

execution time and fault detection coverage of this instance are therefore wli = wi,node(ti,l)(1 +

odet(ti,l)) and cdet(ti,l), respectively. According to the Poisson fault model, the following formulas

could be used to compute the probabilities that an instance is executed successfully (denoted

by PSUC) or it experiences detectable/undetectable faults (denoted by PDUF /PSDC):

PSUC(ti,l) = e
−λnode(ti,l)

wl
i

PDUF (ti,l) = (1− e−λnode(ti,l)
wl

i)cdet(ti,l)

PSDC(ti,l) = (1− e−λnode(ti,l)
wl

i)(1− cdet(ti,l))

We again use the concept of fault scenario to describe the qualitative execution results of

the replicas (i.e. if they deliver a correct output or not). Naturally, an element in the fault

scenario has now three possible values.

Definition 2 (Updated Definition of Fault Scenario). A fault scenario is a vector x = {x1, ..., xN},
which contains a variable xl ∈ {1, 0,−1} for each instance of a task ti, where xl is 1 if ti,l pro-

duces a correct output (i.e., SUC); xl is 0 if ti,l encounters a fault that is detected (i.e. DUF )

and xl is −1 if ti,l encounters a fault that is not detected (i.e., SDC).

We assume that a majority voter is implemented if redundancy is available. The voter

collects results from all instances and produces a single output for the successor tasks. Each

task instance tries to implement the fail-silent behavior, i.e., as long as the embedded fault

detector reports a fault, this specific task instance will not produce any output. In this way,

the voter considers only outputs from other instances and generates an output iff a dominating

value (or a majority) is found. The overall execution of a task, considering all its instances,

could again result in the 3 scenarios:

1. SUC: the voter successfully corrects all faults (if any). The faults that are corrected are

called Detected and Tolerable Faults (DTF );

2. DUF : the voter fails to find a dominating result and thus produces no output;
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Figure 5.1: Example Fault Scenario

3. SDC: multiple faults occur and the incorrect outputs mask the correct one.

Both DUF and SDC are unwanted behavior that negatively influences the system reliability

(see Section 5.2).

Figure 5.1 depicts an example of the voting scenario. If the fault scenario is x = {1, 1,−1},

the incorrect output of t1,3 is masked and the overall result is SUC. In the scenario x = {1, 0, 0},

both t1,2 and t1,3 produce no result, and the only output from t1,1 will be taken. Hence, the

overall result is also SUC. In the scenario x = {1, 0,−1}, a correct and an incorrect output

are sent to the voter. However, the voter cannot identify the correct input since no majority

is found. In this case, it generates no output and the overall result is DUF . In the last case

x = {−1, 1,−1}, two incorrect outputs are sent to the voter. Note that the fault scenarios

model only the qualitative result (0,1, or −1), but the voting is performed based on the real

value of the tasks’ outputs. Hence, if two outputs are incorrect, two cases might happen: 1)

the two incorrect outputs are equal and mask the single correct one, resulting in an SDC; 2)

the two incorrect outputs are unequal and the voter does not see a dominating value, resulting

in a DUF . To stay on the safe side, we have to assume the first case (SDC), because the

probabilities of the two cases are very difficult to be quantified, even if possible1.

5.2 Motivation

As discussed in Section 4.1, analyzing the system reliability in the presence of fault-tolerant

mechanisms is a highly complex problem. To cope with the complexity, many state-of-the-art

1The probabilities are highly influenced by the application characteristic, the output data type, common

caused errors, etc.
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studies make simplifying assumptions on the fault models and modes. Perfect fail-silent behavior

is one assumption that is often used in literature. It is assumed that all faults are detected within

a certain time interval and the fault-detection overhead is contained in the tasks’ Worst-Case

Execution Times (WCETs), e.g., in fault-tolerant task scheduling [81, 12, 14, 24, 52, 98, 45],

in reliability-aware energy management [88, 51, 26] and in error-aware system design [101, 46].

With this assumption, each task will produce either a correct output or no output at all.

Although fail-silence is a highly desirable property, it is difficult to implement in practice. The

prerequisite is the existence of a perfect fault detector that achieves 100% coverage under the

given fault hypothesis.

The simplifying assumption of perfect fault detection is problematic. On the one hand, a

perfect detector might not exist or is difficult to implement, making the algorithms developed

under this assumption less useful in practice. On the other hand, even if implementable, perfect

detectors typically come with high resource and timing overheads. In recent work [102, 47] it

has been shown that the time needed for high-coverage fault detection may become much

longer than the execution time of the task itself (e.g. the timing overhead could be 400% using

techniques proposed in [102]). Hence, approaches under this assumption are very pessimistic,

as the most expensive fault detector is selected for every task.

This problem can be viewed from a slightly different angle: choosing to implement the

perfect fault detector is not only an assumption but also an important design decision.

While making this assumption, all design alternatives with partial fault detectors are ignored

without any justification. For example, when active redundancy is concerned, no analysis is

performed to find out if it is more efficient to spend the available resources on applying better

fault detection or a higher number of replications. Actually, our experimental results show

that the answer is highly application and architecture dependent. This issue can be further

explained using an example.

Consider a simple task running on a single processor system. We reuse the result of [47] and

assume that the rate of undetectable faults decreases exponentially with linear fault detection

effort. It is further assumed that the perfect fault detection (100% coverage) incurs 300% timing

overhead (typical value in [47]). Figure 5.2a depicts the schedule using the perfect detector.

By spending all resources on fault detection, SDCs are completely eliminated. Figure 5.2b is

another possible schedule, in which the task is replicated twice and the remaining time (200%

task execution time in this case) is used to implement two partial fault detectors (each 90%

coverage using the 100% detection effort). Figures 5.2c and 5.2d show two similar schedules
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Partial detector Partial detector

a)

Partial detector Partial detector Partial detector

b)

c) Partial detector Partial detector Partial detectorc)

400% task execution time

d) No detection No detection No detection No detection

Figure 5.2: Example Scenario

with higher number of replications. When multiple replicas of the same task are available, the

results from different instances can be compared to detect or even mask the faults. Figure 5.3

compares the probability of DUF and SDC for each schedule. For schedule a, although SDCs

are avoided completely, the DUF probability is very high, since any transient fault occurring

on the single task instance results in a DUF . With imperfect fault detectors (schedule b to d),

SDC will not totally disappear but the probability of DUF can be significantly reduced. If

both types of faults are considered together, the overall failure probability (DUF + SDC) of

schedule c is almost six orders of magnitude lower than that of schedule a.

The selection of the best schedule depends on the reliability goal of the application. Many

systems have specific requirements concerning DUF and/or SDC. For example, the IBM Power

4 processor-based systems target 10-25 years Mean Time Between Failures (MTBF) for DUF

and 1000 years MTBF for SDC [103]. The schedule using perfect fault detectors may not

meet the requirements of all applications. Moreover, the criticality of a certain type of faults

is application-specific. For systems that require fail-operational behavior, DUF s and SDCs

could be equally bad and schedule c is clearly a much better design choice. For other systems,

SDCs might be more critical and schedule a or d are more preferable.

From the analysis above, it can be seen that the selection of appropriate fault detectors is

critical. The decision has to be made jointly with other design parameters, e.g., task mapping

and utilization of redundancy. However, the existing work assuming perfect fault detection

prohibits the exploration of design alternatives using partial fault detectors. To tackle this

problem, we need 1) a way to evaluate the system quality regarding both DUF and SDC; and
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Figure 5.3: Reliability of the Example Schedules

2) an optimization approach for reliability-aware DSE with selection of fault detectors as design

parameters. The following sections in this chapter present our approach to tackle these issues.

5.3 Experimental Analysis on the Impact of Imperfect

Fault Detection on System Reliability

To understand the impact of imperfect fault detection on the system reliability, we carried out a

set of experiments considering two scenarios. In the first one, we fix the amount of redundancy

and analyze the influence of detection coverage on the system-level reliability. In the second one,

we do it vice-versa, i.e., varying the number of replications with fixed fault detector. In general,

we observe that the selection of fault detector and the utilization of redundancy show a tradeoff.

In particular, when the system features only limited amount of resources or the application has

tight timing constraints, inappropriate selection of fault detector might disallow certain options

for redundancy due to the timing overhead.

Figure 5.4 to 5.6 summarizes the results of the first simulation. We increase the fault

detection coverage from 1% to 100% with a step width of 1% while fixing the number of

replications. Figure 5.4 shows the case that a single instance is scheduled. As expected, the

probability of SDC decreases linearly with the detection coverage, since all detected faults are

converted to DUFs. In Figure 5.5, two replicas are scheduled. The probabilities of both SDC

and DUF decrease with higher coverage. The reason is that, if used together, the effects of

redundancy and that of fault detection become correlated. As an example, assume the first

instance generates a correct output whereas the second one encounters a fault. If the fault is
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Figure 5.5: Effect of Fault Detection with Fixed Replication: replication = 2
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Figure 5.6: Effect of Fault Detection with Fixed Replication: replication = 3

undetected, the second one will produce a faulty output. Since the voter cannot distinguish

the correct result from the two inputs, the system results in a DUF . As the counterpart, if

the fault is detected, the faulty instance can fail-silent and the only (and correct) output from

the first instance is taken, resulting in a SUC scenario. Hence, besides converting SDCs to

DUFs, fault detection can also convert DUFs to DTFs if voting is available. For this reason,

probabilities of both DUF and SDC decease.

If three replicas are utilized (Figure 5.6), the DUF probability first increases and then

decreases with higher coverage, whereas the probability of SDC decreases constantly. The

reason is that, the effect of SDC-to-DUF dominates when the coverage is still low (upper part

of the Figure 5.6), and the effect of DUF -to-DTF dominates when the coverage is relatively

high. An observation from this set of simulations is that, higher fault detection coverage reduces

the amount of SDCs but not necessarily reduces the amount of DUF s.

In the second simulation, we increase the number of replications while fixing the detector

implementation. Similar as the motivating example, we again use the result of [47] and assume

that the rate of undetectable faults decreases exponentially with linear fault detection effort.

Several fault detectors with timing overhead ranging from 0% to 300% (corresponds to detection

coverage from 0% to 100%) are tested. Figure 5.7 summarizes the results1. As can be seen,

when the detection coverage is low, the probability curve shows a zigzag behavior with increasing

1The figure excludes the case of 0% and 300% by intension, because some of the probabilities are 0 and hard

to be visualized in logarithmic scale.
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Figure 5.7: Effect of Replication with Fixed Fault Detection Coverage

number of replications (e.g., curve a). This is because the task instances themselves have only

poor fault detection and the system relies mainly on the voter to discover the faults. On the one

hand, the voter detects a fault when the number of correct and incorrect results breaks even.

Hence, when we increment the number of replicas from an odd number and make it even (e.g.,

from 1 to 2), the fault detection capability of the voter is enhanced, resulting in a reduction of

undetected faults (SDC probability drops). On the other hand, the voter recovers a fault when

correct results dominate. Hence, when a new instance is added to an even number of replicas,

the amount of recoverable faults increases (DUF probability drops).

As the counterpart, if the task instances have already good fault detectors (e.g., in the case of

curve d), the system reliability will be improved more smoothly by inserting extra redundancy,

i.e., both DUFs and SDCs can be eliminated at the same time. In other words, the effect of

active redundancy could be amplified by good fault detection.

These experimental results reveal the correlation between fault detector implementation

and active redundancy configuration. Due to such correlation, the configuration of both fault-

tolerant mechanisms must be considered jointly. In our approach, we extend the optimization

technique presented in Section 4.3 and consider fault detector implementation as an additional

design freedom during DSE.
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5.4 Reliability Analysis

Using the voting setup introduced in Section 2.3, the schedule generated by our algorithm falls

into the category of strict schedules [24, 77]. Strict schedules obey the rule that if a task t has a

data dependency on task t′, all replicas of t′ should be completed before any replica of t starts.

With this restriction, all tasks use exclusively the voter output and the tasks of a TG can be

considered independently in the reliability analysis.

For a task ti, a fault scenario x is tolerable if the voter can produce a correct output in the

presence of the faults specified in x. This condition can be computed by the following binary

function tolerable(), which evaluates to true if the correct outputs are able to dominate.

tolerable(x) = ((
∑

ti,l∈R(ti)

xl) > 0) (5.1)

Where R(ti) denotes the set of replicas of task ti and xl ∈ {1, 0,−1} is the execution result of

task ti,l. Similarly, the fault scenario x is silent if the voter cannot distinguish a dominating

result and x is faulty if the incorrect results are majority.

silent(x) = ((
∑

ti,l∈R(ti)

xl) = 0) (5.2)

faulty(x) = ((
∑

ti,l∈R(ti)

xl) < 0) (5.3)

The probability that a task is executed successfully can be computed by summarizing the

occurrence probability of all tolerable fault scenarios:

PSUC(ti) = (
∑

∀x:tolerable(x)=true

P (ti, x)) (5.4)

where Pr(ti, x) is the probability that the fault scenario x happens. As x specifies the qualitative

execution result (SUC/DUF/SDC) of each instance of task ti, the probability Pr(ti, x) can

be computed as a product of occurrence probability of each task instance:

P (ti, x) =∏
ti,l∈R(ti)

∧xl=1

PSUC(ti,l)
∏

ti,l∈R(ti)

∧xl=0

PDUF (ti,l)
∏

ti,l∈R(ti)

∧xl=−1

PSDC(ti,l)

The instance-level probabilities PSUC(ti,l), PDUF (ti,l) and PSDC(ti,l) are computed from the

fault model introduced in Section 5.1. In a similar way as in equation 5.4, the probability that
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a task results in a fail-silence (PDUF (ti)) or it produces a faulty output (PSDC(ti)) can be

computed:

PDUF (ti) = (
∑

∀x:silent(x)=true

P (ti, x)) (5.5)

PSDC(ti) = (
∑

∀x:faulty(x)=true

P (ti, x)) (5.6)

The complete set of tolerable (or silent or faulty) scenarios can be obtained by systematically

enumerating all fault scenarios. Since each task instance has three possible results (1,0, or −1),

the overall number of combinations is 3N , where N is the number of replicas. Although this

enumeration has exponential complexity, it is still acceptable in practice since the number of

replicas for a task is typically very small, e.g., more than 3 replicas for a task is rarely used

in practice. The above step is performed for all tasks in the application so that the task-level

probabilities PSUC(t), PDUF (t) and PSDC(t) are obtained. Then, we proceed with analyzing the

reliability of the entire application. Naturally, an application consisting of tasks T is successful

(i.e. SUC) only if all of its tasks are successful:

PSUC(T) = (
∏
ti∈T

PSUC(ti)) (5.7)

The application is silent (i.e. DUF ) if at least one of its tasks is silent, because if any task

fails to produce an output, the successor tasks cannot proceed due to data dependency and the

entire application has to start over. This probability is denoted by PDUF (T). The application

is faulty (i.e. SDC, the corresponding probability is denoted by PSDC(T)), if none of its tasks

is silent and at least one of its tasks is faulty. Assume t0 is the first task in T, the application

is faulty if t0 is faulty and the remaining tasks are non-silent (denoted by PDUF (T\t0)), or t0

is successful and the remaining tasks are faulty.

PSDC(T) = PSDC(t0)PDUF (T\t0) + PSUC(t0)PSDC(T\t0)

Since PDUF (T\t0) is the sum of PSUC(T\t0) and PSDC(T\t0), the above formula can be rewrit-

ten as:

PSDC(T) = PSDC(t0)(PSUC(T\t0) + PSDC(T\t0)) + PSUC(t0)PSDC(T\t0)

= PSDC(t0)PSUC(T\t0) + (PSDC(t0) + PSUC(t0))PSDC(T\t0) (5.8)

In the above formulas PSDC(t0) and PSDC(t0) are computed using equation 5.4 and PSUC(T\t0)

is computed using equation 5.7. The only unknown term is PSDC(T\t0). However, calculating
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PSDC(T\t0) is a reduced problem since it is the SDC probability of the application without

considering the first task t0. Hence, the calculation can be implemented using recursion. The

complexity is linear with the number of tasks. The DUF probability can then be computed by:

PDUF (T) = 1− PSUC(T)− PSDC(T) (5.9)

5.5 Optimization Procedure

After having the reliability analysis, the next step is to develop an optimization approach

to search for high-quality designs. We identify two major scenarios that the designers may

encounter. In the first one, the system is intended to execute a single application, so the design

goal is to maximize the reliability while meeting the deadline. We show that this problem can

be transformed into a deadline assignment problem that can be solved using Integer Linear

Programming (ILP). Section 5.5.1 details the transformation and ILP formulation. In the

second scenario, multiple applications may be executed on the same platform. We add an

additional optimization objective that the resource consumption is to be minimized so that

more space can be reserved for future applications. A Multi-Objective Evolutionary Algorithm

(MOEA) based optimization approach is presented for this problem.

5.5.1 ILP Based Optimization for Single-Objective Case

This section presents an ILP based solution to handle the design scenario of maximizing the

reliability of a single application. A real-time application typically has an end-to-end deadline

that represents the time budget B for the entire application. The total budget can be distributed

to individual tasks so that each task ti has a local deadline bi. The maximum reliability that

can be archived by a task is constrained by the available local time budget. To describe this

relationship, we define a Reliability Function (RF) Ui(b), which is a monotonic function that

models the achievable reliability of task ti with given time budget b. Figure 5.8 depicts an

example RF. The metric for reliability is Failure In Time (FIT). To capture both DUFs and

SDCs, we define Ui(b) as a weighted sum of the FIT of both fault classes, i.e.:

Ui(bi) = αFITDUF (bi) + βFITSDC(bi) (5.10)

The weighting factors represent the criticality of the type of fault for the application. The

RF for a task ti can be obtained as follows. The possible time budget bi assigned to ti is

lower-bounded by its execution time and upper-bounded by the available system slack time,
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Figure 5.8: Example of Reliability Function

i.e., bi ∈ [Ci, Ci + B −
∑
∀j
Cj ]. We sample this range with a fixed step width. For each sample

value b, we investigate all design alternatives that fit into b, i.e., we try different numbers

of replications and all implementable fault detectors1. For each design, the DUF and SDC

probabilities are analyzed using equation 5.1-5.3 and the reliability is evaluated by equation

5.10. We assign the value of the U(b) to be highest achievable reliability under the budget

constraint.

With the reliability function for all tasks, we can now proceed with calculation of the system

reliability. The system-level SDC probability can be computed using equation 5.8. Since the

success probabilities PSUC(T\t0) and PSUC(t0) are typically very close to 1, we approximate

equation 5.8 as follows:

PSDC(T) < PSDC(t0) + PSDC(T\t0) < ...

=
∑
i

PSDC(ti)

As can be seen, the system-level SDC probability can be overestimated by summarizing

the SDC probabilities of all tasks. It can easily be verified that the system FIT can also be

computed in an additive manner from the tasks’ FITs. Similar approximation exists for the

DUF probability. Let ~b be a vector that contains the timing budget for each task. The system

1This procedure is durable since the number of alternatives is very limited. On the one hand, the number

of replications for a single task is typically very small. On the other hand, since fault coverage increases

monotonically with detection effort, we can simply choose the best detector that fits into the budget. When the

complexity is still too high, methods like Monte Carlo simulation can be used to approximate the RF.
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reliability can be approximated as Usys(~b) =
∑
ti∈T

Ui(bi). The optimization problem becomes a

deadline assignment problem stated as follows:

Minimize :Usys(~b) =
∑
ti∈T

Ui(bi),

Subject to :
∑
bi∈~b

bi ≤ B
(5.11)

By restricting the local time budget of each task to be a set of discrete values (as what is done

to sample the RF), the above problem can be transformed into an integer linear programming

problem and solved using standard solvers. Assume that M samples in the RF are considered

for each local deadline value, i.e. bi ∈ {bi,1, ..., bi,M}. We define a set of binary variables to

describe the assignment of bi:

xi,m =

{
1 iff bi is assigned to the mth sample bi,m
0 otherwise

Obviously, bi can only be assigned to exactly one sampling value:∑
m∈[1,M ]

xi,m = 1, ∀ti ∈ T.

The actual value of bi can then be denoted as:

bi =
∑

m∈[1,M ]

xi,mbi,m.

The actual reliability of the task i is:

ui =
∑

m∈[1,M ]

xi,mUi(bi,m).

The ILP problem can be stated as:

Minimize :
∑
ti∈T

ui,

Subject to :
∑
ti∈T

bi ≤ B
(5.12)

The ILP formulation consists of M |T| binary variables (the x variables) and 2 |T| integer vari-

ables (for the b and u variables).

5.5.2 Multi-Objective Optimization

The multi-objective optimization problem is again solved using MOEA. To take imperfect fault

detection into account, the coding techniques presented in Section 4.3 is extended. For each
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Figure 5.9: Example of Encoding Scheme

task instance, an additional attribute is added to indicate which fault detector is selected for

it. The updated encoding maintains a gene (i,M) for each task, where i is the integer index of

the task and M is a list of mapping entries, each representing a replica of task i. The mapping

entry is a pair (p, d), where p is the processor that the task instance is executed on and d is the

index of the fault detector it implements. Figure 5.9 illustrates an example, in which task 1 and

3 are replicated 2 times and task 2 is replicated 3 times. The lower part of the figure depicts the

corresponding schedule that the chromosome represents. Since we target on generating strict

schedules [24, 77], the reconstruction of the schedule from the chromosome can be done using

a simple greedy heuristic. We consider all tasks in the TG in topological order. For each task,

the replicas specified in the chromosome are instantiated and scheduled greedily at the earliest

possible time. Output messages are scheduled at the end of execution. If the current task has

data dependency on previous tasks, a voter is inserted. The failure rate of the voter is added

to the failure rate of the current task.

We consider three optimization objectives. The first two are the reliability objectives, one

for DUF and one for SDC. The metric is Failure In Time (FIT). One unit FIT specifies one

failure in a billion hours. The conversion from failure probabilities computed in section 5.4 to

FIT is as follows:

FIT = 109 ∗ 3600 ∗ (
1

p
) ∗ Pr (5.13)

where p is period of the application in second and Pr is the failure probability of the applica-

tion, i.e. PDUF (T) or PSDC(T). In the third objective, we intend to encode the design goal
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Figure 5.10: The Resource Consumption Objective

of minimizing resource consumption while meeting the deadline. The resource consumption

(denoted by C) is defined as the overall processor time that a schedule occupies. Let B be

the deadline of the application and N be the number of processors available in the execution

platform. The available time budget within the deadline is Ĉ = NB. For a given schedule S,

we use C− to denote the fraction of resource consumption within the deadline and C+ for the

part above the deadline. Figure 5.10 depicts an example. The objective function is defined as

follows:

penalty =

{
C iff C+ = 0

Ĉ + C+ otherwise
(5.14)

By constructing the objective function as above, each schedule that violates the deadline (C+ >

0) has a higher penalty value than any schedule that meets the deadline. For two schedules

that meet the deadline, the one that has less resource consumption will be preferred. Clearly,

all three objectives are to be minimized.

5.6 Experiments

The analysis and optimization algorithms are implemented in JAVA and integrated to the

modeling framework. We use a similar experiment setup as in Chapter 4. The target platform

consists of two types of Processing Elements (PEs), namely a RISC processor and a DSP. The

failure probability of each task on a certain PE is randomly generated between 1 × 10−5 and

1 × 10−7 . Random fault detectors are generated based on the exponential model in [47], i.e.,

the undetectable faults reduce exponentially with linear fault detection effort.

The proposed approach is applied on an mpeg2 decoder example [95]. We compare the

performance of two approaches: 1) the proposed approach that explores the optimal utilization
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Figure 5.11: 2D Projection of Optimization Results

of fault detectors (ExploreDetector); 2) existing approaches that utilize the perfect fault de-

tector1 for all tasks (PerfectDetector). We use the MOEA optimizer to compute the Pareto

optimal solutions considering the three objectives introduced in section 5.5.2. Figure 5.11 shows

the results on a platform that consists of 2 RISCs and 2 DSP s. The dots in the figure show

the solutions projected into a 2D plane, with the vertical axis being the FIT of SDC and the

horizontal axis being the FIT of DUF . The Pareto front considering only the two reliability

objectives is marked using a solid line. The triangle symbols in Figure 5.11 show the results of

the PerfectDetector approach.

It can be seen that the solutions found by ExploreDetector is of much higher quality than

those found by PerfectDetector. The difference in terms of FIT is up to several orders of

magnitude. For the PerfectDetector approach, the FIT of SDC can still be kept relatively

low due to good detection coverage but the FIT of DUF is the major issue (always beyond 105

in this experiment). Another advantage of the ExploreDetector approach is that it provides

a much wider spectrum of solutions, from the one that achieves very low FIT of DUF (C in

Figure 5.11) to the one that achieves very low FIT of SDC (F in Figure 5.11). This allows

the designer to carefully evaluate the tradeoff between the two classes of faults and select the

implementation that fits the application requirements.

1For better visualization in the logarithmic scale, the results we presents are using the detector with 99.9%

coverage. If the perfect fault detector is used, the probability of SDC can be reduced to 0, but the probability

of DUF remains almost the same.
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solution DUF FIT SDC FIT avg. avg. resource

(log.) (log.) rep. cov.(%) (time unit)

A 5.06 -0.23 3.25 99.9 114.0

B 3.24 -0.93 3.67 63.0 74.2

C -3.25 7.15 3.50 84.4 55.9

D -2.49 2.93 3.83 74.9 65.5

E -1.04 2.30 3.92 83.0 150.6

F 0 -3.62 3.92 89.3 189.5

Table 5.1: Comparing Representative Implementation Alternatives

We mark some representative implementation alternatives in Figure 5.11. A is the best

solution in terms of reliability found by the PerfectDetector approach; B is a solution found

by ExploreDetector which is close to and dominates A; C to F belong to the Pareto optimal

solutions found by ExploreDetector. Table 5.1 compares these implementations in several as-

pects, e.g., the average number of replications for each task, the average fault detection coverage

over all task instances and the resource consumption. It can be seen that implementation A

has the lowest number of replications, since a lot of resources are already consumed by fault

detection. The solution B has higher quality than A concerning all three objectives. Using

fault detectors with average coverage of 63%, it achieves much higher reliability than A and

saves 35% resources. The implementation F achieves higher reliability than A as well. By

spending 65% more resources, it reduces the FIT of DUF by 5 orders of magnitude and the

FIT of SDC by more than 3 orders of magnitude. It is also worth noticing that, since most

of the solutions found by PerfectDetector implement 2 replicas, the curve formed by those

solutions has similar shape as the curve in Figure 5.5.

The optimization results from MOEA can also be viewed from different angles. In Figure

5.12, the results are projected to in a 2D plane considering the FIT of DUF and resource

consumption. Similarly, Figure 5.13 focuses on the FIT of SDC and resource consumption.

Clearly, for both cases, the solutions found by ExploreDetector have better quality than those

found by PerfectDetector. Concerning SDC, the performance of PerfectDetector is relatively

close to that of ExploreDetector. Nevertheless, the performance gap is significant for DUF .

In this sense, the main drawback of the PerfectDetector approach is that the design objective

is biased. It fails to take application-specific reliability requirements into account. Instead,

the focus is always on reducing the SDCs. For many applications (e.g., those requires fail-

operational behavior), this is certainly suboptimal.
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Figure 5.12: 2D Projection of Optimization Results: FIT of DUF vs Resource Consumption
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Figure 5.13: 2D Projection of Optimization Results: FIT of SDC vs Resource Consumption
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Application 200 500 1000 1500

(num. tasks) round round round round

mpeg2(13 tasks) 29.0 76.4 120.8 198.3

TG1(50 tasks) 78.3 179.0 395.1 583.0

TG2 (100 tasks) 195.9 442.2 777.0 1692.0

Table 5.2: Execution Time of Optimization Approach

We measure the execution time (in seconds) of our approach on a Windows machine with

3GHz CPU. The MOEA is configured to run for 200, 500, 1000 and 1500 rounds. Table 5.2

presents the results. For a small TG (e.g., mpeg2), the analysis and optimization procedure

takes only a few minutes to execute for 1500 iterations. As expected, the execution time grows

linearly with the number of iterations. It is also worth mentioning that the execution time

also increases roughly linearly with the size of TG. This is because the reliability analysis, as

most computational intensive operation, has linear complexity in the number of tasks. For a

syntactic TG1 with 100 tasks, the 1000-iteration EA takes about 13 minutes. In general, the

runtime is acceptable for an off-line design space exploration procedure.

The propose approach can be used to perform reliability-aware architecture space explo-

ration. To do this, we just need to apply the optimization approach on the candidate platforms.

In Figure 5.14, we compare the maximum achievable reliability using three platforms consisting

of 2 to 4 processors. Clearly, the solutions found using a larger architecture dominate those

obtained using a smaller architecture, due to the extra resources to implement more replications

and/or better detectors. From these results, the designer may choose the best platform that

meets the application requirement. For example, if the reliability goal is point A in Figure 5.14,

the 2RISC + 1DSP platform is the cheapest one adhering to the requirement.

5.7 Summary

This Chapter presents our novel techniques to support imperfect fault detection in reliability

analysis and optimization. It removes the unrealistic assumption and constitutes an essential

step to enable practical use of the proposed design flow. Together with the previous chapter, we

have presented our reliability-aware DSE approach. The DSE process takes an abstract model

of the application and platform and computes the recommended design parameters, including

mapping, scheduling and FTM configurations. The next step in the design flow is to bring

1generated using TGFF http://ziyang.eecs.umich.edu/~dickrp/tgff/
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Figure 5.14: Comparing Results of three Architectures

the abstract design in to reality. The code/configuration generation backend is developed to

facilitate this step.
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Chapter 6

Automatic Code Generation and

Platform Configuration

After the DSE phase introduced in previous two chapters, the final step in the design flow is

to realize the abstract design in the target platform. Several challenging tasks are involved in

this step, in particular the multi-processor implementation of the application software and the

configuration of the platform. Using the design model as input, the back-end of our frame-

work facilitates the implementation phase by automatic generation of implementation artifacts,

including application source code and platform configuration files. This chapter discusses the

design of the back-end in detail.

6.1 Template Based Code Generation

Code generation is a model-to-text transformation that derives part or all of the source code of

the system from an abstract model. As a common module in model-driven engineering, code

generation has several advantages:

• Productivity. Code generation abstracts away the implementation details. The design

can be performed using a much more human-elaborated modeling language, from which

software is produced instantly. It reduces the burden of programing complex architectures

such as MPSoCs. The overall design process is therefore accelerated.

• Software Quality. Manuel implementation of the application software is error-prone, espe-

cially when the domain experts lack detailed knowledge of the hardware platform. Instead,

the code generator is developed by platform experts and the generated code is thoroughly
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Figure 6.1: Code Generation Flow

verified during the development. Moreover, the code generator is typically used in many

design projects and is therefore well tested in field. The potential implementation errors

are expected to be reduced significantly.

• Retargetability. The abstract model is a generic representation that can be used to

generate code for multiple platforms. An appropriately designed code generator will

automatically adapt the generated code according to platform specification, allowing a

central design to be retargeted easily.

6.1.1 Code Generation Strategy

In our framework, a template-based approach is adopted to generate text files from the models.

The code templates specify a skeleton of the output files. It may contain both hard-coded

static contents that are used directly, and dynamic contents. The latter contains references to

elements in the input model, which are expanded during the code generation process. Figure

6.1 illustrates the code generation scenario. Besides the design model created by the user,

the design parameters determined during the DSE are also considered, including the mapping

of software tasks to cores, the scheduling parameters of tasks and messages, etc. In certain

locations, also user-supplied C code can be integrated to the generated code. This allows for

easy integration of legacy code to our framework. The user-supplied source files are directly

associated to corresponding model elements using dedicated annotation objects. Here, the parts
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1 «REM» entry point of code generation for a KPN component «ENDREM»

2 «DEFINE entryPoint FOR pn::PnComponent»

3 «REM» specify the output file «ENDREM»

4 «FILE "pn.c"»

5 //pn component's init function 

6 int pn_«this.name»_init (void) {

7 «REM» call subroutine to generate init function «ENDREM»

8 «EXPAND generateInitFunction FOR this»

9 } 

//pn component's read function 10 //pn component's read function 

11 int pn_«this.name»_read(void) {

12 «REM» call subroutine to generate read function «ENDREM»

13 «EXPAND generateReadFunction FOR this»

15 } 

16 ……

17  «ENDFILE»

18 «ENDDEFINE»

Figure 6.2: Example Code Template

to be extracted by the code generator is marked up using dedicated C comments (see Section

6.1.2).

The code templates are developed using the Xpand language provided by EMF. It is a

template engine tailored for text file generation from EMF models. In Xpand, we can import

meta-model packages developed using Ecore and reference the corresponding model elements

in the statements. A snippet of Xpand code is shown in Figure 6.2. The code template for a

specific class in the meta-model starts with a DEFINE statement. In the example, we develop a

code template for KPNComponent. During code generation process, the template is executed for

a concrete object of matching type. The input object can be referred to using the this pointer.

This allows us to traverse the input model to obtain the information required. For example,

in line 6, we access the name attribute of the KPN object by this.name. In Xpand language,

statements in double brackets “�” and “�” specify commands to the code generator. Other

text outside the double brackets is considered as static text going directly to the output file.

The "REM"/"ENDREM" commands are used to add comments and "FILE"/"ENDFILE" are used to

specify the output path. In the example, we generate a C source file pn.c for the KPNComponent

object. Xpand supports subroutines in template specification. A subroutine is invoked using

the EXPAND command as shown in line 8 of Figure 6.2.
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One useful feature of Xpand is the extension point to Java. Static Java subroutines can be

directly called in the code template. This allows us to delegate complex functions that are oth-

erwise difficult to implement in Xpand to external Java code or tools. In our implementation,

we develop a library of auxiliary functions for model analysis and transformation to support the

code template development. Another example use case is the integration of TTNoC configura-

tion tool introduced in Section 6.2. The configuration involves a complex scheduling problem

solved using formal methods. It is implemented as a separate tool and integrated to the code

generation process via Java extension point.

Algorithm 4 codeGeneration(M): code generation for input model M .

//compute the set of deployment units

C ← getAllDeploymentUnits(M)

for all c ∈ C do

//compute the set of KPN components mapped to the deployment unit

A← getMappedKPNComponents(c)

for all a ∈ A do

generateKPNImplementation(a, c)

end for

generateMainFunction(c)

generateBuildSystem(c)

end for

The overall code generation procedure is illustrated in Algorithm 4. First, we analyze the

input model, in particular the mapping of the application to the platform, to compute the

set of deployment units required for the design. The deployment unit could be a firmware

image for a bare-metal core or an OS executable. Then, for each deployment unit, we traverse

again the input model to obtain the set of software components (in our case KPNComponent

objects) mapped to it. Next, we generate the implementation for each software component

under consideration of the type of the deployment unit. This part of code generation depends on

the MoC used in the application model, the details of which is presented in the following sections

(6.1.2). Here, usually at least one source file is created for each individual software component.

Additionally, a main file is generated for the deployment unit to implement technical aspects

such as initialization, finalization and communication.

One important aspect that we consider in the code generator implementation is retargetabil-

ity. As the modeling approach offers a flexible environment that allows modeling of a variety of

platforms, the code generator must be easily configurable to support each individual platform.
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To achieve this goal, we strictly separate platform-independent code and platform-dependent

code in the code templates. The platform-dependent code is specified using dedicated code tem-

plates that are tightly coupled with the platform modeling objects. For example, for each type

of communication port (e.g., local memory buffer, partition-to-partition, core-to-core), specific

templates are associated to specify the syntax for reading/writing/initializing the port. Using

this mechanism, the code generator is implicitly configured by the platform model. Since the

platform-specific code templates share a common interface and Xpand supports polymorphism,

the appropriate templates are transparently invoked by the code generator.

During the code generation process, also the build system required to compile the application

images is automatically generated. Here, we synthesize CMake [104] scripts, which can be used

to create cross-platform build environments, e.g., Visual Studio projects and Eclipse CDT

projects. The generation of CMake files is also based on the Xpand language. We provide

extension point in the generated build system to allow the user to insert additional rules, e.g.

extra include and library path.

Besides the source code and build system, the code generator also synthesize platform

configurations to support execution of the application. The platform configuration data can

either be in plain text or XML format. For the generation of plain text files, the same (template-

based) approach as the source code generation can be adopted. For XML files, EMF is used to

transform the underlying schema to a corresponding meta-model. The configuration generation

is then implemented as a model-to-model transformation. This solution is more efficient and

reliable due to type-safety of model transformation and the tool support from EMF.

One advantage of our code generation back-end is guaranteed consistency between the appli-

cation software and the platform configuration. This is particularly important for MPSoC based

systems that have resources shared by multiple entities. There, the application can be executed

correctly only if sufficient resources are allocated. Compared with manual approaches, the high

degree of automation of our code generator guarantees the overall consistency and speeds up

the development process. The details of platform configuration is presented in Section 6.2.

6.1.2 Code Generation for KPN

As introduced in Section 2.1, Kahn Process Network (KPN) is used as the primary MoC for

application modeling. This section discusses code generation for KPN in detail. During the dis-

cussion, we will distinguish platform-independent (functional) and platform-specific (structural)
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code. A simple producer-consumer application serves as the running example. The producer

generates a random integer which is printed to the console by the consumer.

KPN is a coarse-grained model that focuses on modeling the structure of the application

and the interaction between components. Each KPN component represents a computational

task that communicates with other tasks exclusively via messages. Our code generator creates

one C source and header file for each KPN component. It contains the following subroutines:

• pn init(): initialization of the KPN component. It is used to initialize objects used in

the subsequent execution phase before entering the main loop. For example, the random

number generator of the producer component is initialized and the communication ports

and channels are opened.

• pn read(): this function executes a blocking read on all input ports of the KPN compo-

nent and stores the data into local buffers.

• pn fire(): computation kernel represented by the KPN component. It processes the

input tokens and stores the results to local output buffer.

• pn write(): this function transfers the results from local output buffer to the output

ports.

• pn done(): finalization of the KPN component.

The main function of the deployment unit serves as driver code to invoke the above func-

tions. The implementation of the main function depends on the execution model. In a time-

triggered system, the main function sequentially invokes pn read(), pn fire(), pn write()

and pn done() functions in the time slot allocated to the KPN component. In an event-

triggered system, each KPN component is implemented in a separate thread. The blocking

read guarantees that the execution adheres to the KPN semantics.

In the above functions, pn read and pn write are pure structural code, whereas the pn init

and pn fire contain functional code of the component. In the following sections, we discuss

how both parts are generated.

6.1.2.1 Functional Code Generation

The KPN model is a coarse-grained model that views tasks as black-box components. It does

not cover the functional aspect of the application. Thus, we need to enrich the model with a
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behavioral specification to enable full code generation. Our framework provides two different

alternatives:

• The modeling framework provides a set of fine-grained meta-models with pre-defined

semantics. If also the corresponding code templates are provided, functional code can

be directly generated. For example, the IEC61131 [105] meta-model included in our

framework can be used to create behavioral specification in terms of data-flow and state-

flow models. The fine-grained models are then associated to a specific component in the

structural KPN model to describe its behavior.

• If the enhanced analyzability provided by a formal application model is not required, or

if legacy code needs to be integrated, the behavior of a KPN component can be described

using annotated C files. This is done by marking relevant parts in the source code using

pre-defined C comments introduced below.

Annotating C source code. The designer may annotate a regular C source file with the

following annotations to insert part of the code to the generated software.

• /* PN USER CODE INIT START */

The code in between is inserted to the pn init() function of the generated code

/* PN USER CODE INIT END */

• /* PN USER CODE FIRE START */

The code in between is inserted to the pn fire() function of the generated code

/* PN USER CODE FIRE END */

• /* PN USER CODE INCLUDE START */

The code in between is inserted to the include section of the generated code

/* PN USER CODE INCLUDE END */

Figure 6.3 depicts an example of integrating user-supplied C code. In pn init() function

of the producer, we use annotations to insert the code that initializes the random generator.

Another code piece is added to the pn fire() function to generate the integer and write it to the

port “out”. The designer may also include multiple code sections, as shown in the pn fire()

function of the consumer component.

Interface between user code and generated code. From the user code viewpoint, the interface

to the generated code is the local buffer allocated to the ports. A set of auxiliary functions
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Producer Consumer

void produce_init () {

/* PN_USER_CODE_INIT_START */

srand (100);

/* PN_USER_CODE_INIT_END */

}

int produce(void) {

/* PN_USER_CODE_FIRE_START */

int num;

num = rand() % 100;

void consume(int value) {

/* PN_USER_CODE_FIRE_START */

int in;

read_port_token(“in", &in);

/* PN_USER_CODE_FIRE_END */

in = value;

/* PN_USER_CODE_FIRE_START */

User code 

annotation

User code 

annotation

out in

num = rand() % 100;

write_port_token("out", &num);

printf("producer produces : %d!\n", num);

/* PN_USER_CODE_FIRE_END */

return num;

}

/* PN_USER_CODE_FIRE_START */

printf("consumer consumes : %d!\n", in);

/* PN_USER_CODE_FIRE_END */

}

Figure 6.3: An Example for Including User Code for Code Generation

is generated to access these buffers, e.g., read port token and write port token functions

used in Figure 6.3. The implementation of these functions is based information contained in

the model, e.g., the data type and token size of the port. In this way, only a port name and

a pointer need to be specified by the user. The auxiliary functions contribute to decouple the

functional code from the actual buffer implementation.

6.1.2.2 Structural Code Generation

The structural code is platform-dependent glue code that links the functional code to constitute

the complete software system. It is typically automatically derived from the design model.

We illustrate the generation of structural code using inter-component communication as an

example. The same producer-consumer example is used. Figure 6.4 depicts the mapping of the

application to the platform model.

As it can be seen, the ProcessingRequests of the producer and consumer tasks are mapped

to Core1 and Core2, respectively. The EndpointRequests generated from the communication

ports are mapped to the BusPort objects. They inherit the CommunicationEndpoint class and

are equipped with platform-specific code templates that specify the communication syntax.

Finally, the TransportRequest is hosted by the Bus object. The platform objects implement a

set of pre-defined API to expose the associated platform-specific code templates to the generic

code generator. In this particular example, the CommunicationEndpoint class provides the

following Java methods:

96



6.1 Template Based Code Generation

Producer Consumer

Application model

Platform model
processing 

resource

endpoint 

transport

resource

endpoint 

processing 

resource

processing 

request

endpoint

request

transport

request

endpoint

request processing 

request

Core1

BusPort

Core2

BusPort

Bus

endpoint 

resource
endpoint 

resource

Figure 6.4: An Example Scenario for Structural Code Generation

• generate init(): generates source code to initialize the port based on the platform-specific

code template associated to the parent object.

• generate read(): similar as above, generates code for reading a port.

• generate write(): similar as above, generates code for writing a port.

• generate done(): similar as above, generates code for finalizing a port.

Using the aforementioned extension mechanism provided by Xpand, these methods can be

directly used in the code templates. As an example, Figure 6.5 shows a snippet of the code

template for KPNComponent. In the pn read() function, we iterate over all input ports of the

KPNcomponent and generate code to read each port to the local buffer. The getPortMapping

function (also implemented using Java extension) traces the mapping of an application port

to obtain the platform object that offers the communication resource (here the BusPort). Af-

terwards, it triggers the generate read() method of the platform object. At this point, the

code generator delegates to the platform-specific code template. Next, the generate fire()

method offered by the consumer object is invoked to produce functional code for the task us-

ing approaches introduced previously. Finally, the pn write() function iterates overall output

ports of the component and implements the port writing.

From the above discussion, we see that the code generation for KPNComponent is guided by

the mapping of the Processing and CommunicationEndpoint requests. The separation between

platform-independent and platform-specific code templates is the key to achieve retargetability
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«REM» code template for KPN component «ENDREM»

//read the input port

void pn_read() {

«FOREACH this.inputPorts AS port» 

«getPortMapping(this,port.name).generateRead()»

«ENDFOREACH» 

}

//trigger the task

void pn_fire() {void pn_fire() {

«this.generateFire()»

}

//write to output port

void pn_write() {

«FOREACH this.outputPorts AS port» 

«getPortMapping(this, port.name).generateWrite()»

«ENDFOREACH» 

}

Figure 6.5: An Example for Structural Code Generation Procedure

of the code generator. In the example, based on the mapping of application ports to platform

ports, the communication code is automatically adapted. One thing we have not discussed so

far is the CommunicationTransport requests from the application channels that are mapped

to the Bus object. This is because it is handled transparently by the framework. The transport

request is typically used by the arbitrator of the resource object during platform configuration.

In this particular example, the Bus arbitrator obtains the bandwidth demand of the channel

through this relation and uses it in scheduling.

Implementation. Association of platform-specific code templates to the modeling objects is

implemented using the EOperation framework provided by EMF. It provide mechanisms to add

pre-defined methods to classes in the meta-model. Both the signature and body of the methods

can be specified. Using EOperation, we define an API as the interface between code generator

and the model. We define the interface methods in the base classes of the modeling framework

and provide a default implementation. For example, the base class CommunicationEndpoint

contains a default implementation of port access using the standard POSIX C API. Derived

classes that require a platform-specific implementation, e.g. BusPort, can overload the interface

functions to indicate their own communication syntax. Polymorphism of Java guarantees that

the overloaded methods are correctly selected by the code generator. Such an implementation

contributes to extensibility of the code generation framework. New target platform can be

supported straightforwardly by implementing the pre-defined API in the according meta-model.
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6.2 Platform Configuration

In MPSoC based systems, successful execution of the application requires matching config-

uration of the hardware platform. The configuration can be performed at runtime (dynamic

configuration) or at design time (static configuration). For our target application domain, static

configuration is preferred for the sake of predictability. Hence, the DSE framework presented in

previous chapters focuses on static optimization of the configuration parameters. The back-end

of our approach transforms the design parameters into concrete platform configuration files.

Besides others, the most import aspect of platform configuration is the arbitration of shared

resources, including processor time, communication media, memory and I/O. The modeling

framework provides a generic interface to integrate configuration tools. For each platform

object that offers CapabilityResources, an arbitrator object can be specified. The arbitrator

gathers requests from the application model and uses a pre-defined API to schedule and allocate

resources to serve the requests. By implementing the interface API, platform configurators can

be integrated to the CapabilityResource classes.

The implementation of platform configurator is highly specific to the target architecture.

As an example, we present in this section the design of a configurator for the Time-Triggered

Network-on-Chip (TTNoC). The TTNoC provides predictable inter-core communication and

is the core of the ACROSS MPSoC. We start with presenting the scheduling algorithm for

TTNoC, followed by simulation results. Afterwards, we discuss how the TTNoC configurator

is integrated to the overall reliability-aware design approach.

6.2.1 Configuring a Time-Triggered Network-on-Chip

Time-Triggered (TT) communication is a natural and efficient way to provide reliable and

predictable communication for safety-critical embedded systems. In TT networks, the com-

munication entities are synchronized with each other. Traffic is injected strictly adhering to

the predefined schedule and resource collision is avoided by design. Examples of time-triggered

protocols include Flexray (the static segment) in the automotive industry, SAFEBus and TTP

in the avionics domain, and TTEthernet being an extension of the classical Ethernet [106].

The traditional time-triggered protocols usually operate on bus-like systems. The shared

communication media is organized in time slots and all messages are separated in the time

domain. However, bus-based systems cannot meet the communication requirements of modern

Multiprocessor System-on-Chip (MPSoC) platforms [107] due to the bandwidth limitation.
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Figure 6.6: A TTNoC Scheduling Scenario Example

Researchers therefore investigated the integration of time-triggered communication in Networks-

on-Chip (NoC) and proposed the TTNoC architecture [108]. TTNoC is based on a network of

on-chip switches. Although the network is globally arbitrated in time, a major advantage of

TTNoC is the possibility to separate messages in the space domain, i.e. messages can share

the same time-slot as long as their routes are non-overlapping. An example is depicted in

Figure 6.6.

The configuration TTNoC is a two-fold problem: message scheduling in the time domain

and routing in the space domain. Our configuration approach is based on Satisfiability Modulo

Theories (SMT) solving. An SMT solver accepts problems formulated in first-order logic and

checks the feasibility of a solution with respect to the background theories. We first present

a specification to formulate the complete problem as an SMT instance (Section 6.2.1.4). This

approach always computes a feasible solution if one exists. Since the solving time may become

unacceptable as the problem size grows, we develop an incremental algorithm to improve the

scalability (Section 6.2.1.5).

6.2.1.1 Related Work

The scheduling problem specific to TTNoC has not been studied in existing literature. However,

our work is closely related to the scheduling approaches on other time-triggered architectures.

In [109] the authors present an approach for the scheduling of static segment of Flexray using

Integer Linear Programming (ILP). Lukasiewycz et al propose a transformation of the Flexray

scheduling into a bin-packing problem and solve it subsequently using ILP [110]. To increase

the effective bandwidth, the concept of switched Flexray is proposed [111]. The corresponding

scheduling problem is studied in [112, 113]. Their solutions are based on the branch-and-price

algorithm [112] and graph-based heuristics [113]. The scheduling problem for time-triggered
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multi-hop networks is consider in [114]. The author adopts a similar approach as ours, namely

a pure SMT formulation followed by an incremental method to enhance the scalability. One

major different between [114] and our work is that the routes of all messages are known in [114]

and the author focuses only in the time domain.

6.2.1.2 Problem Definition and Transformation

The TTNoC architecture consists of a set of fragment switches (also called nodes). A switch

offers four identical ports as depicted in Figure 6.7. Each port-to-port connection consists of one

link per direction (full-duplex). A port can connect to another switch or a Processing Element

(PE) via the Trusted Interface Sub-System (TISS). The unified interface of switches and TISSs

allows the designer to implement different topologies with low effort. A set of routes may co-

exist as long as no two routes use the same link, e.g., in Figure 6.7, the messages m0, m1 and

m2 can co-exist whereas m3 collides with m1. The switches are not aware of the communication

schedule and just forward the message from the input port to the output port according to the

routing information contained in the message header. The latency of forwarding is constant.

The payload of a message is decomposed into a set of fixed-size flits, which is the basic

transmission unit in TTNoC. A flit is handled by a switch in one system clock cycle. The

TTNoC is globally arbitrated using TDMA. The granularity of the TDMA slots is called a

macro tick. A macro tick is a multiple of the system clock cycle, i.e. multiple flits can be sent

in one slot. The duration of a macro tick is restricted to be a negative power of a physical

second by design [108], e.g., 1
2 or 1

4 second. The time slots are allocated statically to each

communication entity and the information is stored in each TISS. The TISS abstracts the

details of communication away from the application side. The TISSs are synchronized in macro

tick, i.e. all communication activities are aligned to the TDMA slots. In the remainder of the

paper, macro tick is used as the basic unit of time.

We focus on periodic messages as they are typical in the target application domain. A

message is described as a four-tuple (s, t, p, l), where s is the message source, t is the message

sink, p is the period and l is length of the message. According to the timing specification of

TTNoC, the period must be a positive power of two of macro ticks (p ∈ {2n|n > 0}), i.e. the

messages are harmonic. The length l is the number of TDMA slots needed to transmit the

message. To guarantee collision freedom, all flits should reach their destination before the end

of the allocated time interval. Let payload be the message payload in terms of flits, x be the

number of hops in the route, d be the delay per hop and T be the number of flits per macro tick,
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the total number of TDMA slots needed by a message can be computed as l =
⌈
payload+xd

T

⌉
. As

can be seen, the message length depends on the routing. This dependency causes a correlation

between the time and space domain in the scheduling problem and it increases the complexity

significantly. To cope with this problem, we introduce a restriction on routing. Let the distance

(in hops) between source and the target TISS of a message m be Dm. We restrict the routing

algorithm to explore routes with a maximum of Dm+α hops, where α ≥ 0 specifies the flexibility

of the routing. By doing so, l can be over-estimated by l =
⌈
payload+(D+α)d

T

⌉
.

The TTNoC scheduling problem can be stated as follows. Given an architecture with a set

of nodes N and links B, a set of communicating PEs C and a set of messages M , determine: 1)

the PE-to-switch allocation π, i.e. the PE c joins the network via a port of the switch π(c), 2)

the timing offset (or phase) f of each message, 3) the path P for each message, such that each

two messages are separated either in the time or in the space domain. A message with period

p and phase f occupies the time intervals [np+ f, np+ f + l] with n ∈ N0. The path P must

be a continuous route from the source TISS s to target TISS t. Since the message periods are

always positive powers of two, the hyper-period of any set of messages is the longest period of

all messages. We denote the hyper-period using pmax. Without loss of generality, it is sufficient

to schedule only the first hyper-period.

6.2.1.3 Problem Transformation

The problem of allocating messages into time intervals can be transformed into a 2D bin-packing

problem. Here we adopt the transformation proposed in [110] and adapt it to our needs. A

brief outline is given in the following.

Assume the shortest period of all messages in M is pmin. The periods of all messages can

be represented as positive powers of two times pmin, i.e. for message m, pm = rmpmin, where

rm ∈ {2n|0 ≤ n ≤ pmax/pmin} is the repetition factor. The time line of a hyper-period can be

divided into segments of size pmin and viewed in a 2D fashion as shown in Figure 6.8a. Each

message will appear in every r segments, e.g., m1 appears in every segment and m3 appears in

every 4 segments. To transform message scheduling to bin-packing, each message is converted

into a rectangle element. The size of the element can be computed by:

• hm = lm : the height of element is the length of message.

• wm = pmax/pm : the width of element is the number of appearances in a hyper-period.

Obviously, the widths of elements are always powers of two. The size of the bin is:
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Figure 6.7: The TTNoC Architecture

• H = pmin : the height of the bin is pmin in macro ticks.

• W = pmax/pmin : the width of the bin is the number of segments of size pmin in one

hyper-period.

Figure 6.8b depicts an example. Bin-packing is about placing the elements in appropriate

locations inside the bin, such that no two elements intersect. The placement of an element

is defined by offsets xm ∈ [0,W ) and ym ∈ [0, H) in horizontal and vertical directions. Note

that the horizontal offset xm must be a multiple of the width, i.e. xm ∈ {nwm|n ∈ N0}. The

placement of elements in the bin-packing problem has a one-to-one mapping to the allocation

of messages in time intervals. The phase of a message m can be calculated from the position of

the rectangle element as:

fm = bmpmin + ym (6.1)

bm = t(
xm
wm

,
W

wm
) (6.2)

where t is the transformation function defined as:

t(x, y) =

 0 x=0
t(x2 ,

y
2 ) x is even

t(x−12 , y2 ) + y
2 x is odd

with x ∈ N0, y ∈ {2n|n ∈ N0}, 0 ≤ x < y

Here bm denotes the segment in which message m appears. The vertical position ym denotes the

offset within the segment, e.g., the offset of m3 can be computed by fm3 = t( 2
2 ,

4
1 )pmin+hm1 =
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Figure 6.8: Message Scheduling to Bin Packing Transformation

pmin + lm1
. Using the transformation above, a feasible message schedule exists if and only if a

feasible bin-packing scheme exists [110]. Since the bins are of the height pmin, only messages

shorter than pmin can fit inside. Thus, if a message is longer than pmin, it has to be broken

into several pieces. Figure 6.9 illustrates an example, in which m4 occupies three time segments

of size pmin. Those pieces can be scheduled individually. Additional constraints are needed to

make sure all pieces follow the same route and are continuous in time (see Section 6.2.1.4).

The bin-packing problem transformed from TTNoC scheduling is not a standard one. The

major difference is that the intersection of objects is allowed, as long as the collision can be

resolved in the space domain (e.g., m0 and m1 in Figure 6.8 can be assigned to non-overlapping

routes and share the same time slot). New approach is needed the address this issue.

6.2.1.4 SMT Specification

This section describes the formulation of the TTNoC scheduling problem as an SMT specifica-

tion. We first introduce the used variables and then proceed with the constraints that apply

on the variables.

Variables. To describe the PE-to-switch allocation, we enumerate all available ports that

a PE can attach to and place a virtual component on each port. The PEs are then mapped to
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Figure 6.9: Segmentation of Long Messages

the virtual components. We use node(v) to denote the switch that offers the port for virtual

component v. A set of binary variables is defined:

• ac,v ∈ {0, 1} is 1 iff the PE c is mapped to virtual component v.

For each message m, two sets of binary variables are used to denote the route:

• qm,n ∈ {0, 1} is 1 iff switching node n is on the path of message m and 0 otherwise.

• km,i,j ∈ {0, 1} is 1 iff link (i, j) is on the path of message m and 0 otherwise.

The following variables specify the location of the message in the bin:

• xm ∈ {nwm|n ∈ N0, n <
W
wm
} is the horizontal offset of m.

• ym ∈ {y ∈ N0, y < H} is the vertical offset of m.

Path Constraints. We introduce a set of constraints to make sure that the variables q and

k denote a continuous, acyclic path from the source to the destination. If a node is on such

a path, exactly one of its input links and exactly one of its output links should be used (see

Figure 6.7 for example). Hence, the general path constraints are:

∀n ∈ N : qm,n → (one in ∧ one out) where

one in = (
∑

i∈in(n)

km,i,n) = 1

one out = (
∑

j∈out(n)

km,n,j) = 1
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Here out(n) is the set of switches reachable from the output links of n, and in(n) is the set of

switches that the input links of n originate from. To guarantee that the path starts and ends

at the correct nodes, the following constraints need to be enforced:

• The switch that attaches the message source sm and the one that attaches the message

target tm must be in the path of the message.

asm,v = 1→ qm,node(v) = 1

atm,v = 1→ qm,node(v) = 1

• Also, the link that connects the source/target of a message to the network has to be used:

asm,v = 1→ km,v,node(v) = 1

atm,v = 1→ km,node(v),v = 1

If a link is on the path, the nodes on the two ends must also be on the path:

∀(i, j) ∈ B : km,i,j = 1→ qm,i = 1 ∧ qm,j = 1

Dummy loops that go from node i to j and immediately back should be avoided:

∀(i, j) ∈ B : km,i,j = 1→ km,j,i = 0

The overall route length should be below the upper bound:

∀v1, v2 : (asm,v1 = 1) ∧ (atm,v2 = 1)→
∑

(i,j)∈B

km,i,j

≤ distance(node(v1), node(v2)) + flexibility

Non-Overlapping constraints. If two messages intersect in the bin-packing, non-overlapping

routes must be assigned to them. This constraint is denoted as following:

∀m1 ∈M,m2 ∈M,m1 6= m2 :

overlap(m1,m2)→
∧

(i,j)∈B

¬(km1,i,j = 1 ∧ km2,i,j = 1)

where the overlap occurs if and only if:

overlap(m1,m2) =

(xm1 < xm2 + wm2) ∧ (xm2 < xm1 + wm1)

∧ (ym1
< ym2

+ hm2
) ∧ (ym2

< ym1
+ hm1

)
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Problem Specific Constraints. The SMT formulation can also incorporate problem specific

constraints. For example, in the current specification of TTNoC, the TISS can only transmit or

receive one message at a time. This means two messages with the same source or target must

be separated in time. This constraint can be written as:

∀m1 ∈M,m2 ∈M,m1 6= m2 :

sm1 = sm2 ∨ tm1 = tm2 → ¬overlap(m1,m2)

As discussed in section 6.2.1.3, a long message may need to be broken into several pieces to fit

into the bin. Those pieces must share the same path and be continuous in time. Let m′ and

m′′ be two successive pieces of a message, then the following constraints must be enforced:

• the piece m′′ appears one segment later than m′ : t( xm′
wm′

, W
wm′

) + 1 = t( xm′′
wm′′

, W
wm′′

),

• the offset within segment is 0 if it is not the first piece: ym′′ = 0,

• the same links are used: ∀(i, j) ∈ B : km′,i,j = km′′,i,j .

6.2.1.5 Heuristic Approach

In most cases, message scheduling is only one part of the design process and needs to be carried

out multiple times. However, as the problem size increases, the long execution time of a purely

SMT based approach might become a hurdle for the designer. To cope with this problem, we

propose an incremental heuristic to improve the scalability. The algorithm proceeds in three

steps as detailed in the next section: 1) PE-to-switch allocation, 2) classical strip packing, 3)

level packing. The general idea of the heuristic is to reuse the existing bin-packing algorithms

to place the objects (step 2) and rely on the SMT solver to handle the non-standard constraints,

i.e. overlapping of objects (step 3).

1) PE-to-switch allocation. The goal of this step is to find a PE-to-switch allocation scheme

π that minimizes the communication cost estimated by the distance between source and target

nodes:

Minimize : cost =
∑
m∈M

lm
pm
∗ distance(π(sm), π(tm))

For that we adopt an Evolutionary Algorithm (EA) based optimization approach. The algo-

rithm takes an architecture graph GA and a communication graph GC (Figure 6.10) as input.

The architecture graph is a full-meshed graph, whose vertices correspond to virtual components
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Figure 6.10: PE-to-Switch Allocation Optimization

Figure 6.11: Example of Strip Packing and Level Packing

in the TTNoC and edges specify the distance between virtual components in hops. The com-

munication graph is also a full-meshed graph. Its vertices represent PEs and its edges describe

the communication requirements between any two PEs. The communication requirements are

computed by:

R(C1, C2) =
∑

m∈M∧((sm=C1∧tm=C2)∨(sm=C2∧tm=C1))

lm
pm

A PE-to-switch allocation maps each vertex of GC to one vertex of GA. This mapping can be

encoded as a list of integers as depicted in Figure 6.10. Standard operators such as two-point

crossover can be adopted during the EA-based optimization process.

2) Strip Packing. This step packs the objects into an imaginary strip with infinite height as
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illustrated by Figure 6.11a. This problem has been extensively studied in the past (cf. [115]).

Because of the good performance and simplicity in implementation, we adopt the First Fit

Decreasing Height Decreasing Width (FFDHDW) algorithm in this work. In principle, any

other existing algorithms could be used as well. The FFDHDW algorithm belongs to the

category of level algorithm. These algorithms enforce the restriction that the objects are placed

with the lower edge on certain horizontal levels [115]. The height of a level is determined by the

height of the tallest object in that level. Using FFDHDW, the objects are pre-ordered in non-

increasing height, and when height equals, non-increasing width. The objects are iteratively

placed onto the lowest level with sufficient space and a new level is created on top of the current

level if it does not fit any existing level. Recall that the objects transformed from the TTNoC

messages are restricted to be placed into horizontal locations that are multiples of their width.

3) Level Packing. In this step, the levels are considered as one-dimensional objects with size

equal to the height of the level and packed into bins (Figure 6.11b). As previously discussed,

messages can overlap in time as long as a spatial separation is guaranteed. Thus, we try

to overlay different levels to reduce the overall height of the strip. An outline of the level

packing algorithm is presented in Algorithm 5. After strip packing, we iteratively place levels

in decreasing height into the bin. The vector locations contains the possible vertical locations

to place the level. We try to place the level in the lowest possible location (line 4). If it is

successful, the position and routing of the messages contained in this level will be computed

and fixed later on. The top of the current level is considered as a possible location for future

levels (line 5). This procedure is demonstrated in Figure 6.12. If a level fails at all locations,

the messages are added to the failedMessage set and we move on with the next level (line 10).

The feasibility of placing a level at a certain location is checked by the SMT solver. Since

packing and routing of existing messages in the bin are fixed, the corresponding SMT variables

are replaced by constants in the constraints to simplify the formulation. The constraints to

check if level l can be placed in location x is:

∀m ∈ l,m′ ∈ existingMessages(x) :

overlap(m,m′)→
∧

(i,j)∈B

(km′,i,j = 1→ km,i,j = 0)

The SMT solver can be granted the freedom to change the horizontal location of messages

inside levels. In many cases, only certain combination of messages causes an unroutable case.

It will be much more efficient to resolve these conflicts by moving the messages in the horizontal

direction than by placing levels at different locations. For example, if messages m5 and m1 in
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Algorithm 5 IncrementalMessagePacking(): iterative level based bin-packing with inter-

section of objects allowed. The function place uses SMT solver to check the feasibility. M : the

set of messages.

1: locations = {0};
2: for all l ∈ levels with decreasing height do

3: for all a ∈ locations in increasing order do

4: if place(l,a)=success then

5: locations = locations ∪ {a+ height(l)}
6: break;

7: end if

8: end for

9: if l fails at all locations then

10: addToFailedMessages(l)

11: end if

12: end for

13: for all m ∈ failedMessages do

14: place(m)

15: end for

Figure 6.12: Example of Level Packing
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Figure 6.13: Execution Time Comparison: 3x3 NoC

Figure 6.11 cannot be routed together (e.g., they are from the same sending TISS), the area

{m1,m4,m5} becomes unroutable and level 2 cannot be placed at location 0. However, this

can be resolved by moving m5 to the right, e.g., to the same location as m3. After placing all

levels, an additional fixing step can be introduced, which tries to allocate the failed messages

(line 15 to 17 in Algorithm 5). We iteratively consider all messages and give the SMT solver

the full freedom to change the location in both horizontal and vertical axis, i.e. messages are

not restricted to any levels. Since only the variables associated with a single message need to

be computed, such a problem is expected to be solved in a short time. Our experimental results

verify this assumption.

6.2.1.6 Experiments

The SMT formulation and incremental heuristic are implemented in JAVA using the Z3 SMT

solver [116]. The program is running on a Windows machine with 3GHz CPU and 4GB memory.

We tested the scheduling algorithms on three architectures, namely a 3x3 TTNoC with 9

switching nodes, a 5x5 architecture with 25 nodes and a 7x7 architecture with 49 nodes. Three

algorithms are compared:

• Pure SMT formulation (SMT ).

• Incremental heuristic without fixing failed messages (H-NoFix ).

• Incremental heuristic with the fixing step (H-WithFix ).
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Figure 6.14: Execution Time Comparison: 5x5 NoC

Figure 6.15: Execution Time Comparison: 7x7 NoC

Figure 6.16: Error Rate of Heuristic Algorithms: 3x3 NoC
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Figure 6.17: Error Rate of Heuristic Algorithms: 5x5 NoC

Figure 6.18: Error Rate of Heuristic Algorithms: 7x7 NoC
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We generate messages with periods between 32µs and 32ms and random length. For each

architecture, a random set of 5 to 50 messages is generated and allocated. We execute 15 such

test cases and compute the average results. In each round, the execution is terminated if the

runtime exceeds 1.5 hour. Figure 6.13 to 6.15 compares the runtime of the three algorithms. The

error bars depict the best and worst results obtained. As can be seen, the heuristic algorithm

scales far better than the pure SMT solution. In case of 40 messages, a speedup of 58x and

30x is achieved by H-NoFix for the 3x3 and 5x5 TTNoC, respectively. The pure SMT solution

exceeds the 1.5 hour budget as the number of messages approaches 45 for the 5x5 architecture

and 35 for the 7x7 architecture. The execution time of H-WithFix is very close to the H-NoFix

algorithm. The extra time spent on fixing increases with the total number of messages. This is

due to the fact that more messages fail as the problem becomes more difficult.

To evaluate the performance of the heuristic, we consider the percentage of messages failed

to be allocated using the algorithm. Figure 6.16 to 6.18 presents the results. It can be seen that

the failure rate generally decreases as the architecture size becomes larger. For the case of 50

messages, failure rates of 33%, 14% and 9% respectively are observed by H-NoFix. A very likely

explanation is that mapping the same amount of messages to a larger architecture is generally

a simpler problem due to more routing options. The H-WithFix algorithm further improves

the performance. Again for the 50 message case, the failure rate is reduced to round 5% after

the incremental fixing step. In Table 6.1, we compare the number of successful/failed/expired

test runs for some representative setups. A test case is considered as successful if all messages

are allocated and failed if at least one message cannot be allocated. For relatively simple test

cases (e.g., tests with less than 25 messages), the success rate of the heuristic (H-WithFix )

is comparable with that of SMT. For larger tests (e.g., those with 50 messages), the success

rate of heuristic is relatively low. Nevertheless, only a small portion of messages (less than

%5) cannot be allocated. The designer may manually map the remaining messages or explore

a larger architecture. As the counterpart, the SMT approach fails to provide a result due to

expiration of time budget.

6.2.2 Integration of TTNoC Configurator

The platform configuration tools are typically integrated as part of the back-end of the our

framework and runs in parallel with the code generator. Following the waterfall design flow,

they takes the model resulted from the DSE phase as input and synthesize configuration files.

In other words, they have read-only access to the model. The TTNoC scheduler is different
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SMT Heuristic

arch num. #succ. #fail. #exp. #succ. #fail. #exp. #failed

mess. case case case case case case mess.(%)

3x3 25 13 2 0 13 2 0 0.8

5x5 25 15 0 0 14 1 0 0.3

7x7 25 15 0 0 12 3 0 1.2

3x3 50 13 2 0 1 14 0 4.9

5x5 50 0 1 14 3 12 0 4.7

7x7 50 0 1 14 2 13 0 4.6

Table 6.1: Comparing the Number of Successful/Failed/Expired Tests

from a regular configuration tool, because it determines part of the design parameters, namely

the scheduling/routing of messages. These parameters play an important role in the timing

property of the application. For this reason, the TTNoC scheduler is not only integrated as a

configuration back-end but also as part of the DSE. On the one hand, the redundancy scheme

determines the amount of messages needs to be scheduled. On the other hand, the results of

TTNoC scheduling are needed to evaluate the timing requirements such as end-to-end latency.

As presented in Section 4.3, our DSE framework involves a scheduler that generates time-

triggered schedules for combined tasks and messages based on the partial design provided by

the optimizer. To avoid misunderstanding, this scheduler is referred to as task scheduler in the

rest of this section, although it considers communication as well. The task scheduler has to

interact with TTNoC scheduler to achieve a complete design. The interaction depends on the

scheduling model. In our approach, we consider two possible scenarios described as follows.

Asynchronous task and message scheduling. In this scheduling model, the processors

and network do not operate on a common time base. Although they both may execution in a

time-triggered manner, the phase of tasks and messages are not aligned by design. Scheduling

of tasks and messages are typically performed independently using dedicate tools. Having

the individual task and message schedule, analysis tools such as MPA and SYMTA/S can be

adopted to evaluate the timing properties of the entire system, such as end-to-end latency and

jitter. These tools typically provide the best-case and worst-case results of the system.

Synchronous task and message scheduling. This scheduling model requires the pro-

cessors to synchronize with the network. Task and messages are scheduled jointly. Data de-

pendency between tasks and messages is respected. The phase of tasks and messages can be
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arranged carefully to optimize the timing property of the system, e.g., minimizing the end-to-

end latency and jitter.

Asynchronous scheduling has the advantage of simplified implementation, since no complex

synchronization layer between processors and the network is required. Moreover, it might be

preferred by the industry due to organizational issues. Take automotive industry from example,

the bus system such as Flexray is shared by many functions in the vehicle and serves as an

integration point. The individual functions, such as Adaptive Cruise Controller or Driver As-

sistant, are developed independently by different suppliers. Asynchronous scheduling allows the

suppliers to design their systems in a relatively stand-alone scenario, reducing the management

overhead. The OEMs can integrate the functions by collecting the requirements of subsystems

and performing scheduling of the shared resources.

As the counterpart, synchronous scheduling has its advantage mainly in performance. First

of all, by optimizing the timing behavior of the system, the performance of the applications

can be improved. For example, the work [117, 118] shows how control performance in automo-

tive applications can be optimized by scheduling techniques. Second, synchronous scheduling

achieves higher bus utilization. This is essential for extensibility and robustness of the system,

since more space can be reserved for future applications. Last but not least, this model can

guarantee timing predictability which is of utmost importance for safety-related systems. For

these reasons, although synchronous scheduling requires higher implementation effort, it is be-

lieved to be one viable solution in future systems. The recent Flexray 3.0 standard adds the

support for synchronous scheduling.

The TTNoC configuration can be integrated to support both scheduling models. In asyn-

chronous scheduling, the TTNoC configuration can be used as it is. The message specification

(period, length, source and target core, etc) is extracted from the design model and submitted

to the TTNoC configurator. On the one hand, the results of TTNoC scheduling can be directly

used to configure the network. On the other hand, the results are combined with the task sched-

ule to build an analysis model to evaluate the timing and other extra-functional properties of

the system.

In synchronous scheduling mode, the TTNoC configurator is integrated into the task sched-

uler to enable joint message and task scheduling. More precisely, it is used to check if it is

valid to schedule a message at a certain point. Unlike bus-based systems, where messages must

be simply separated in time, TTNoC allows messages to be scheduled into the same time slot

as long as a non-overlapping path can be allocated for them. We show this process using an
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Figure 6.19: Feasibility Check Using TTNoC Configurator

example depicted in Figure 6.19. Assume the scheduler has just scheduled task a and is now

considering message m1. The intended location of m1 is at t0, right after the source task. At

this point, other messages might have already been scheduled on the TTNoC, e.g., m2 and m3

in the figure. The TTNoC configurator is needed to check if m1 can be scheduled at t0. Since

m1 overlaps with existing messages in time, a non-conflicting route must exist.

The SMT formulation introduced in Section 6.2.1.4 can be used to solve this feasibility

problem. Only messages that overlap with m1 in time need to be considered. The offsets and

routes for existing messages are considered as constant in the formulation. The only variables

are the q and k variables needed to describe the route of m1. Since the problem size and the

number of variables are very small, such an SMT instance can be solved in an acceptable time,

making it feasible to be integrated into the task scheduler. If such a route does not exist, m1

has to be shifted to other time slots. In this particular case, the scheduler will subsequently

consider t1 and t2, since one of the conflicting message finishes at this time instant. If m1 fails

to be scheduled to any time slot due to lack of resources, the task scheduler returns an error

and the corresponding candidate solution will be dropped by the MOEA-based optimizer.

6.3 Summary

The code generation and platform configuration back-end is an essential part of our framework.

By automatic transformation of an abstract design to a concrete implementation, it significantly

increases the practical usability of the tool, overcoming a weak point of most existing work in

reliability-aware design. We provide an extensible code generator that combines platform-

specific and platform-independent code templates to produce executable application software
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directly from the models. To illustrate platform configuration, we consider the TTNoC schedul-

ing problem, which is one of the most important issues in the configuration of the ACROSS

platform. It demonstrates how platform-specific configuration tools can be integrated to the

framework.

118



Chapter 7

Case Study

The components of the proposed framework, including the DSE approach and TTNoC config-

urator, are validated using experiments presented in individual chapters. In this chapter, we

proceed with case studies that demonstrate the complete design flow. While the unit tests focus

on evaluating the performance of individual components, the case studies aims at demonstrating

the practical usability of our framework. We cover all three design phases, namely modeling,

DSE and code generation.

7.1 The Adaptive Cruise Control Case Study

For the first case study, we consider an Adaptive Cruise Control (ACC) application in the

automotive domain. Its task graph consists of 10 tasks communicating via 16 channels (Figure

7.1). The goal of ACC is to maintain the cruise speed while keeping safe distance from objects

ahead. We execute this application using test cases automatically generated from the AutoFocus

tool 1, where simulated sensor values are stored as data arrays. The WCET of each task is

annotated to the model using the mechanism introduced in 2.1.

The target architecture is the ACROSS MPSoC [30] running in an Altera Stratix IV

FPGA [119]. The MPSoC implements in total 8 NoisII soft-cores from Altera, 3 out of which

are for general purpose application tasks. The application processors run the PikeOS operat-

ing system from Sysgo [120]. Communication between processors is realized using a TTNoC

architecture with 2x2 configuration. A dedicated processor (called the I/O core) is used as the

gateway to off-chip resources, including I/O pins, sensors, actuators and network interfaces.

The application cores can access these peripherals via pre-defined messages to the I/O core.

1http://af3.fortiss.org/
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Figure 7.1: Task Graph of ACC

7.1.1 Application and Platform Modeling

The ACC application is modeled using the generic KPN meta-model provided by the framework.

The software tasks are modeled as KPNComponents and channels as KPNChannels. Figure 7.2

is a snapshot of the application model (only part of the channels are shown for clarity). Each

of the KPNComponents contains a processing request to be mapped to a compatible resource

(modeled as a PNProcessingRequest object). The mapping of these requests is determined in

the DSE phase and it indicates the core where task is executed. The input/output ports of the

KPNComponents are explicitly modeled. The PNPort class superclasses CapabilityRequest and

CommunicationEndpoint to represent the request to platform ports. Similarly, the KPNChannel

class inherits the CommunicationTransport and represents the request to the transport media.

Depending on where the source/target of the channel is located, the transport request can be

mapped to a local memory channel, an inter-partition channel or an inter-core channel via the

TTNoC.

Besides describing the structure of the application, we also annotate extra-functional infor-

mation in the model. This is done by instantiating according annotation objects and add them

as children of certain model elements. For example, the following annotations are added to the

sensor task (the first model element in Figure 7.2):

• The WCET of the task is specified using a TimeSpecificationDelay object.

• The period of the task is specified using a TimeSpecificationPeriodicity object. Ac-

cording to the semantics of KPN, only the periods of the source tasks need to be annotated.

The execution sequence of other tasks is determined by the availability of input tokens

(recall that the KPN components implement a blocking read on input ports).
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Figure 7.2: The Appliation Model for ACC

• The behavior of the sensor task is described using user-supplied C code. The path to the

source file is specified using a UserCodeAnnotation object.

In contrast to the application model that can be described using a generic MoC, the ex-

ecution platform consists of several ACROSS-specific components that are not covered by

the generic platform meta-model. Thus, the modeling framework is instantiated towards an

ACORSS tool-chain. Here, a set of refined meta-models is developed to describe the ACROSS-

specific components in more detail. They are stored as a separate Eclipse plugin to maintain

the modularity of the tool implementation.

Figure 7.3 depicts the platform model for the ARCOSS architecture. The top-level object

is an MPSoC, which consists of 8 processors connected via a TTNoC. As it can be seen, dedicated

objects offered by the ACROSS meta-models are used to distinguish the functionality of proces-

sors, e.g., the ApplicationComponent and IOComponent. The Link objects specify the physical

connection between platform components, which is used later in the TTNoC scheduling step

for routing calculation. Annotations can also be added to the platform model elements. For

example, a ReliabilityAnnotation object is used to specify the intrinsic failure probability λ

of the application processor CORE1, which is needed by the Poisson fault model introduced in

Section 2.2. In addition, CORE1 owns a PikeOS object that describes the configuration of the

operating system. Here, the partitions offered by the OS, inter-partition communication ports

and channels and other configuration parameters are covered. This object can be automatically

translated into a compatible XML file to configure the PikeOS.
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Figure 7.3: The Platform Model for ACROSS Architecture

7.1.2 Design Space Exploration

After construction of the design model, we use design space exploration to determine the map-

ping of the requests in the application model to the resources in the platform model. The DSE

is guided by the design objectives and constraints specified by the user. Here, we consider the

following design problem:

• Design objective: the reliability of the application is to be maximized. The application

requires fail-operational behavior (in this case, a fault scenario that is only detectable but

not correctable is considered as a failure). We use FIT as the metric of reliability, so the

fitness value is to be minimized.

• Design objective: the energy consumption of the application is to be minimized. The

energy consumption is computed using a simple energy model based on the CPU time

occupied by the application.

• End-to-end deadline constraint: the maximum latency between the sensor and sink task

must be smaller than the specified value.
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Figure 7.4: The DSE Configuration Model for ACC Case Study

• IO constraints: the sensor, driver and sink tasks must be mapped to the I/O core, which

is the gateway to off-chip peripherals. The sensor task gathers information from the speed

and distance sensor, the driver task collects the driver input and the sink task delivers the

output to the actuator. Due to unique availability of physical devices, these tasks cannot

be replicated.

The above DSE problem is specified using a configuration model, which resides in parallel

with the application/platform models (see Section 2.1.4). The FixedDeploymentConstraint

objects marked with 1) are used to force the mapping of sensor/sink tasks to the I/O core.

The next three objects in the model describes the design objectives (marked with 2 in the

figure). They may contain attributes to customize of a certain design objective. For example,

the reliability objective object contains an attribute to specify if the system requires fail-safe

or fail-operation behavior. The object marked with 3) is the configuration of the optimization

engine. In this example, the MOEA optimizer is used with a population of 100 and a iteration

of 500. Finally, the object 4) specifies the scheduling model, which summarizes the scheduling

policy and assumptions used in the DSE. The user may select one of the supported scheduling

models introduced in Section 2.5. The TT-FDV model is used in this particular case study.

The execution time of the DSE process is around 120 seconds on a Windows machine with a

3GHz CPU (single-thread). The results of the DSE are a set of recommended design parameters.

Since the two optimization objectives are conflicting with each other (higher reliability requires

more redundancy which consumes more energy), the result is not a single solution but a set

of design alternatives (Pareto optimal solutions). The DSE tool provides a GUI to visualize

the results in the solution space (see Figure 7.5). What is currently shown in the figure is the
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Figure 7.5: DSE Result of the ACC Case Study

tradeoff between the reliability and energy. Here, the solutions found by DSE are projected

into a 2D plane, with the x-axis being the fitness value of the reliability objective and y-axis

being the energy consumption. The user may select any other two objectives from the list and

visualize their tradeoff in the similar way.

The designer can pick a solution in the figure to look into the implementation details. Since

we are considering a time-triggered system in the example, the design is represented as a Gantt

chart, which depicts the mapping and scheduling for the tasks and messages. A screen shot is

shown in 7.6. Here, time slots in dark blue are allocated for application tasks and the time slots

in light red are for voting components. As it can be seen, the tasks are selectively replicated

and distributed to the three application cores. In particular, a Triple-Modulo-Redundancy

(TMR) scheme is implemented for the DistanceControlEco task using temporal replication,

whereas a TMR is implemented for the AccelerationControl task using spatial replication. Since

DistanceControlEco provides input to the AccelerationControl, a voter is inserted at each replica

of AccelerationControl. Also, the results of replicated AccelerationControl tasks are voted at

the sink task.

Based on the tradeoff analysis of the DSE results, the designer selects the final implemen-

tation. An updated model can be automatically generated using the Generate Model but-
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Figure 7.6: DSE Result of the ACC Case Study

ton from the GUI. The design parameters are automatically applied in the updated model.

The Processing requests from software tasks, CommunicationEndpointrequests from the KPN

ports and CommunicationTransport requests from the KPN channels are mapped to according

resources in the platform model. In addition, the FTMs are explicitly instantiated, including

the replicated tasks, voting components as well as the additional ports/channels required to

send the results to the voter. The updated model is ready for the code generation and platform

configuration phase.

7.1.3 Code Generation and Execution

We use the design alternative shown in Figure 7.6 as an example to demonstrate the code

generation process. Table 7.1 summarizes the mapping of tasks. In our modeling approach,

the task mapping is specified by allocating the ProcessingRequests owned by the tasks to the

ProcessingResources in the platform model. In this particular case, the according resource is

a PikeOSPartition and a fraction of the resource is allocated as a PikeOSThread to serve the

request. In addition, the communication requests (both endpoint and transport) are allocated

based on the mapping of source/target tasks. If the two communicating entities are mapped

to the same PikeOSPartition, communication is implemented via local memory. Similarly,

inter-partition communication is realized using PikeOS channels and inter-core communication

is realized using TTNoC messages (see Table 7.2).
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core tasks

CORE1 accelerationControl (replica1)

speedPlausibility, distancecontrolEco (replica1)

CORE2 distancecontrolEco (replica2), distancecontrolEco (replica3),

distancecontrolSport, speedControl, accelerationControl (replica2)

CORE3 distancePlausibility, distanceControlOff, accelerationControl (replica3)

IO sensor, driver, sink

Table 7.1: Task Mapping in the Example Design

capability request in application model capability resource in platform model

processing request PikeOs thread

communication endpoint (intra-partition) local memory port

communication endpoint (inter-partition, inter-core) PikeOS queuing/sampling port

communication transport (intra-partition) memory block

communication transport (inter-partition) PikeOS queuing/sampling channel

communication transport (intra-core) TTNoC message

Table 7.2: Mapping of Capability Requests to Resources

Using techniques presented in Section 6, C source code can be directly generated from the

design model. Here, an image is created for each application core 1. The operating system

abstracts away the underlying communication mechanism (here the TTNoC communication)

and provides a user-space communication API. In this example, we select the POSIX personality

of PikeOS, which provides the standard file access API (open, read, write, etc).

Besides the application source code, the code generator also produces the following platform

configuration files:

• PikeOS Configuration. PikeOS is a predictable OS that requires design time static con-

figuration. In particular, PikeOS ports and channels needed for communication across

the partition boundary (inter-partition and inter-core) must be statically allocated. For

each application core, the PikeOS configuration is stored in a custom XML file called

Virtual Machine Initialization Table (VMIT). In our implementation, we transform the

PikeOS XML schema into an ECore meta-model using utilities from EMF and imple-

ment the PikeOS configuration as a transformation from our design model to the target

configuration model.

1In this example, all tasks mapped to an application core are implemented in a single PikeOS partition.

Hence, only one image needs to be compiled. If a processor contains multiple PikeOS partitions, a separate

image is created for each partition.
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• TTNoC Configuration. Based on the task mapping, we gather all inter-core communi-

cation requests and submit them to the TTNoC scheduler described in Section 6.2. The

scheduler computes the route and phase of messages. Afterwards, a low-level utility pro-

vided by the TTNoC vendor is used to synthesize binary data that can be loaded to the

on-chip TTNoC configuration memory.

With the source code and the configuration files described above, the application is successfully

executed on the target FPGA platform. As mentioned in Section 6.1, one of the major objectives

of our code generator is retargetability. To retarget the ACC application to a different platform,

the following steps need to be carried out: 1) replace the platform model accordingly; 2) map

the application model to the new platform model, either using DSE or manually; 3) execute code

generation. As the platform-specific code templates are directly associated with the platform

model, the generated code is automatically adapted. For example, the ACC application has

also been successfully deployed to a single-core NiosII platform running PikeOS as well as the

local Windows host.

7.2 The Industrial Control Demonstrator

The proposed framework has also been used in the design of an industrial control demonstrator,

which is built based on the Modular Production System (MPS) from Festo Didactic [121]. As

an example of safety-critical automation applications, we select an MPS station that performs

a sorting task. Figure 7.7 shows the mechanical setup of the sorting station. It receives work

pieces (WP) from the previous station and sorts them according to the color and material. We

use three kinds of work pieces: 1) non-black, metallic WPs to be sorted to the first slide; 2)

black, non-metallic WPs to be sorted to the second slide; 3)non-black, non-metallic WPs to be

sorted to the last slide. The MPS stations are originally controlled by standard Programmable

Logic Controllers (PLCs). We replace the PLCs by an ACROSS MPSoC. To realize the desired

functionality, the station is equipped with the following sensors and actuators:

• Sensor1: detects the availability of a new WP;

• Sensor2: detects if the work piece is black or not;

• Sensor3: detects if the work piece is metallic or not;

• Sensor4: a light barrier that detects if the storage slide is already full;
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Figure 7.7: Mechanical Setup of Industrial Control Demonstrator

• Actuator1: a stopper that blocks the work piece. It is used to hold the WP until the

station is ready for sorting, e.g., the color/material is already determined and the station

is not occupied by the previous WP;

• Actuator2: a mechanical switch. When it is extended, the work piece will be sorted into

the first storage slide;

• Actuator3: another switch to sort the work piece the second storage slide. If both switches

are not extended, the work piece is sorted to the last slide by default;

• Actuator4: motor that drives the conveyor belt.

We again use KPN as a coarse-grained model to describe the application structure. The

sorting application is modeled using 4 tasks as shown in Figure 7.8. The sensor task gathers

the current value of all sensors and packs the data into a package with pre-defined format. The

plausibility check task, as its name suggests, checks the validity of the input data. If an invalid

state is detected, the system executes a safe-shutdown. The list of invalid vectors is specified

by the user. For example, an invalid state could be that the sensor detects a black-metallic

work piece, since no such WP is actually used. The controller implements the core application

logic and computes the output value to the actuators. Finally, the sink task apply the control

output to the actuators.
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Figure 7.8: Application Model of Sorting Application

While the behavior of sensor, actuator and plausibility check tasks are specified using user-

supplied C code, the controller logic is modeled using the industrial control Domain-Specific

Languages (DSLs). This includes the State Flow Chart (SFC) and Function Block Diagram

(FBD) languages specified in IEC61131 standard [105]. EasyLab [122] is adopted as a domain

specific modeling tool to provide a graphical interface to create SFC and FBD models. The

Easylab models can be directly imported as a fine-grained model to describe the behavior

of KPNComponents (here the controller task). As mentioned in Section 6.1.2.1, our modeling

framework supports functional code generation from the fine-grained models.

Figure 7.9 shows the SFC model of the sorting station. An SFC is similar to a state

machine that captures the control flow of the application. It can be seen that the sorting task

is performed in the following steps:

• State S1: initialization.

• State S2: start the conveyor belt.

• State S3: examine the color and material of the work piece

• State S4-S6: based on the type of WP, open switch1, switch2 or neither.

• State S7: open the blocker and let the conveyor belt run until the WP is sorted.

• State S8: reset to prepare for the next WP.

The deployment of the application is under a set of constraints. First of all, the system

requires fail-safe behavior and the reliability is to be maximized. Second, the sensor and sink

tasks must be executed on the I/O processor due to constraints of the ACROSS platform.

To increase the system reliability, we implement a temporal TMR scheme for the sensor task,

i.e., we read the sensor three times and vote the results. In contrast, the sink task cannot be

replicated. Third, the sensor to actuator delay must be less than 10ms (end to end deadline

constraint). Finally, the resource utilization (only the processor time is considered) is to be
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Figure 7.9: Application Logic of Sorting Task

minimized. The configuration and execution of the DSE process is similar as the ACC example.

For this simple application, the DSE engine suggests only two design alternatives. The first one

is a regular implementation without FTMs (the resource utilization is minimized in this case.).

The second implementation is a DMR scheme in which the plausibility check and controller

tasks are duplicated and distributed to two application processors (Figure 7.10) 1. We select

the DMR implementation and generate the application software. The platform configuration

is also similar as in the ACC case study. The major challenge is the configuration of on-chip

communication schedule and PikeOS.

Figure 7.11 illustrates the final setup of the demonstrator. The ACROSS MPSoC is again

implemented in an FPGA broad from Altera. A HSMC extension board provides the phys-

ical interface to the FPGA board hosting the MPSoC. In this particular demonstrator, the

MPS station runs the standard Profibus [123] protocol in the industrial automation domain to

communicate sensor/actuator values. We use an Anybus [124] card to implement the Profibus

interface for the control system.

1Since the system requires fail-safe, the DMR scheme has the same reliability as TMR but consumes less

resource. Hence DMR dominates TMR in this particular case.
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Figure 7.11: Deployment of Industrial Control Demonstrator
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7.3 Discussion of Usability

Due to the high problem complexity, reliability-aware system design is a problem that is very

difficult to solve, even if possible, without sufficient tool support. Hence, as one of the uniqueness

of our approach, we provide not only the key algorithms but also an implementation as a tool-

chain. We use the above case studies to evaluate the usability of approach. This section

summarizes the aspects that is currently supported and also outlines the next steps for the tool

implementation. The three-step development processing presented in Section 1.4 is reused.

Model the system. In the modeling phase, the Eclipse-based MDD environment provides

the designer a central IDE (Integrated Development Environment). In principle, the generic

meta-models can be used to model any application or platform as components, ports and

channels. Nevertheless, to make the models more usable, the generic meta-models have to be

refined to contain more details. For example, in the case studied presented above, we developed

both refined application and platform meta-models, in order to describe the sorting station

controller using industrial control DSLs and the ACROSS platform.

Currently, industrial control is the only domain where DSLs are supported. The applications

from other domains, like the ACC from automotive domain, have to be described with the

generic KPN meta-model. I will be a great advantage to add the support for other DSLs or

standard models, e.g., Matlab Simulink [125] models. Another highly desired feature of the

MDD tool-chain is a graphical modeling interface in addition to the tree-based editor from

EMF.

DSE. In the DSE phase, we provide a generic multi-objective optimization framework. The

following optimization goals are supported and can be freely combined by the user: 1) (possible

multiple) end-to-end deadline; 2) reliability, considering DUF, SDC or combined; 3) resource

consumption; 4) application specific constraints, e.g., a task must or must not be mapped

to a certain core. For each optimization goal, the according analysis algorithm is equipped,

which takes the design model as input and evaluates the fitness value. We are interested to

extend the DSE framework to support other Non-Functional Properties (NFPs), such as energy

consumption.

Another aspect to improve the usability of the tool-chain is to integrate third-party tools.

Currently, certain analysis data still has to be obtained manually using third-party tools and

annotated into the models, for example the WCET of tasks (using [54]) and the fault-detector
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protected version of the components (using [126]). Integrating these tools will make the devel-

opment process smoother.

Realize the system. To bring the virtual system (models) to a real-world implementa-

tion, we support C source code generation, build system generation and automatic platform

configuration (e.g., PikeOS operating system and ACROSS architecture). What is currently

not covered is the aspect of testing. After obtaining the source code, the user has to bring up

the target system and manually develop and execute test cases. Automatic generation of test

cases and regression test would be a very useful feature to implement in the next step.

With the above discussion, we believe that our approach is able to cover the key challenges

of the reliability-aware design scenario. Nevertheless, many additional features would be desired

to make it professional.
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Chapter 8

Conclusion and Outlook

8.1 Main Results

This thesis tackles the problem of reliability-aware real-time embedded system design. We

provide both algorithms and a tool implementation to address the major challenges in the

design flow. To build systems with high reliability, we actively embed fault-tolerant mechanisms

into the system while considering timing, resource and other non-functional constraints. In the

development of our approach, we identify two major limitations in the current work, which

constitute a gap between theory and practice in the area of fault-tolerant systems. On the

one hand, the current approaches involve some unrealistic assumptions in the analysis. On

the other hand, they lack sufficient tool support for system modeling and implementation.

We present novel techniques to bridge this gap and thereby bring the research results further

into practice. The framework proposed in this thesis is among the first to provide a complete

model-driven reliability-aware design flow, covering design challenges from high-level system

modeling/analysis/exploration down to low-level code implementation. The main results of

this work are summarized as follows:

• We present a generic reliability-aware DSE approach supporting realistic fault models

and a large set of FTMs. The tree-based probabilistic analysis computes system-level

reliability in the present of active redundancy, voting, fault detection and other advanced

FTMs. We use a hierarchical encoding scheme to transform the DSE problem into an

instance of MOEA. The optimization process generates time-triggered schedules under

reliability, timing, resource and other user-specified constraints. We especially focus on
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removing the inappropriate assumption on perfect fault detection, which is a major issue

that limits the practical usability of current approaches.

• We present a reliability-aware tool framework using a model-driven approach. At the

front-end, the modeling tool provides a user-friendly interface to specify the design prob-

lems. At the back-end, automatic generation of implementation artifacts accelerates the

design process. Moreover, the formally defined models serve as a central consistent rep-

resentation of the system for easy tool integration. In this context, we combine our DSE,

code generation and platform configuration techniques to tackle the challenges in fault

tolerant system design. The implementation of the proposed approach in terms of a tool-

supported design flow significantly improves the practical value, which is demonstrated

using a real-world case study as well as a demonstrator. From another angle, our work

can also be used as a backbone to integrate other existing approaches in the field. This

aligns with the general objective of the underlying capability modeling framework, which

aims at providing a tool framework that can be instantiated for different design scenarios.

8.2 Outlook

During the implementation of the approach, we keep extensibility as a first-order design crite-

rion. On the one hand, we develop generic analysis and optimization algorithms that can be

adapted to different fault and system models. On the other hand, components of the frame-

work, such as meta-model packages, analysis/optimization tools and platform-specific tools are

maintained in separate Eclipse plugins to keep the modularity. This allows us the use the MDD

framework as the foundation for future research. Our work could be extended in several aspects.

• Further fault tolerant mechanisms. Although we aims at supporting a configurable

set of FTMs, several techniques are currently not covered. One important FTM we plan

to support is Check-Point and Roll-Back (CP-RB). So far, we consider fault detection and

recovery only at task-level, i.e., the entire task is re-executed if it is faulty. Using CP-RB,

we could deal with tasks in a more fine-grained manner. Check points can be embedded

in the middle of a task and the recovery process can start from the most recent check

point instead of the beginning of the task. The overall efficiency of the system could be

improved in this case. As fault-tolerant system design is a very active research area, we

would also be interested to consider new FTMs proposed by researchers.
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• Mix-criticality. Mixed criticality systems are becoming increasingly important in many

safety-related domains [96]. There, multiple functions with different importance and cer-

tification assurance levels are integrated using a shared computing platform. The mixed-

criticality integration imposes new challenges in reliability-aware design, e.g., how to build

cost-efficient system to meet the distinct reliability requirements of each application and

how to guarantee sufficient separation between critical and non-critical applications to

enable low-overhead certification [127]. We consider these new problems as an important

research direction.

• Fault-tolerance at other layers. So far, our approach focuses on fault-tolerance at

task-level. In some scenarios, it is also beneficial to implement FTMs at other layers

of the design. For example, we could implement spatial redundancy at cluster-level by

replicating the entire MPSoC platform and voting the results of the entire application.

From the system point of view, cross-layer analysis and optimization are needed to find

the optimal design alternative.

• Other Non-Functional Properties. Besides reliability and timing, safety-related ap-

plications may also involve other NFPs. One important one we see is energy consumption.

Here, the major challenge is to combine energy management techniques such as Dynamic

Voltage and Frequency Scaling (DVFS) with fault-tolerant techniques and evaluate the

tradeoff between multiple NFPs. To support a new NFP, according analysis tools must

be integrated and the optimization approach must be extended to take the new design

freedom into account. For example, to support energy optimization, energy model and

estimation techniques are needed and the DVFS-related configuration parameters must be

covered. The joint energy-reliability optimization problem is considered as an important

contribution.
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