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Abstract—Filter bank based multicarrier (FBMC) systems
present an alternative solution to cyclic prefix based orthogonal
frequency division multiplexing (CP-OFDM) in wireless environ-
ments with multipath propagation. In this contribution, we pro-
pose a novel method of per-subcarrier maximum likelihood (ML)
narrowband channel estimation as an extension of the scheme
recently developed by the same authors. The main difference is
that our new estimation method assumes that only the training
sequence transmitted in the observed subcarrier is known and
unknown data symbols are transmitted in the two immediately
adjacent subcarriers. The method is based on the expectation
maximization (EM) algorithm and allows iteratively to converge
to the ML solution. The main advantage of the method is the
increase in the spectral efficiency, since less subcarriers need to
be filled with training symbols. Our simulation results show that
if enough training and number of iterations are employed, a
similar performance to the original ML algorithm, where the 3
subcarriers are filled with training, can be achieved.

I. INTRODUCTION

In this contribution we consider FBMC systems in wireless
environments with multipath propagation. In contrast to CP-
OFDM, where a rectangular pulse shaping is used, here a finite
impulse response (FIR) prototype filter with a longer impulse
response than the symbol period, i.e. the filter length is bigger
than the total number of subcarriers M . The prototype filter is
modulated by complex exponentials. As a consequence, we can
achieve more spectrally concentrated subcarriers that overlap
only with their neighbors. Moreover, the FBMC system has
no inclusion of the CP and as consequence more spectral
efficiency is achieved at the cost of higher complexity in the
equalization of frequency selective channels.

In order to achieve subcarrier orthogonality, i.e. inter-
symbol interference (ISI) and inter-channel interference (ICI)-
free received symbols the real and imaginary parts of the
input symbols in each subcarrier must be staggered by T/2,
resulting in the so called Offset-QAM (OQAM) modulation.
Furthermore, the prototype filter can be designed according to
different goals, like, for example, its spectral properties or its
impulse response properties. In this work we restrict to the use
of a finite length approximation of the root raised cosine (RRC)
filter with unity roll-off, that can be calculated in closed form.
This choice of the prototype will indeed introduce some ISI
and ICI, but, first, if the filter is long enough the interference
is negligible compared to other impairments, like noise and
channel response, and secondly, we employ a linear equalizer
to compensate for the propagation channel in each subcarrier
that also compensates the prototype imperfection.
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Figure 1. FBMC System Overview.

In [1]–[3], the authors have presented methods to analyti-
cally design per-subcarrier fractionally spaced equalizers that
combat ISI and ICI inserted by the multipath channel. They
have assumed perfect channel impulse response knowledge at
the receiver side. In [4] and [5], the authors have presented
methods for the estimation of the narrowband multipath chan-
nel viewed in each subcarrier. In that works the authors assume
that, to estimate the narrowband channel in each subcarrier, not
only the trainings sequence in the subcarrier into consideration
is known, but also the adjacent overlapping subcarriers have
known training sequences transmitted through them. In this
contribution, we will extend the results for the ML channel
estimator of [5] by considering that only the input sequence
in the observed subcarrier is known and the data transmitted
in the adjacent subcarrier is treated as interference. To find
the ML channel estimation, we employ the iterative method of
Expectation Maximization (EM).

II. FBMC SYSTEM AND SUBCARRIER MODEL

A high level model of the FBMC system is shown in Fig.
1. This filter bank configuration is known as transmultiplex
in the signal processing literature [6]. A synthesis filter bank
(SFB) performs a frequency division multiplexing of the QAM
data symbols dk[m] on parallel subcarriers in a rate of 1/T at
the transmitter. An analysis filter bank (AFB) at the receiver
separates the data on each subcarrier. We assume a static
frequency selective channel and AWGN between SFB and
AFB. Usually some of the M subcarriers are left empty to
limit the transmit signal spectrum.

Here we regard exponentially modulated SFB and AFB.
This means that only one prototype low-pass filter has to be
designed and the other sub-filters are obtained by modulating
it as follows [7]

hk[l] = hP[l] exp
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Figure 2. O-QAM staggering for odd indexed subcarrier
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Figure 3. Subcarrier output model

where hP[l] is the impulse response of the prototype filter with
length LP. The prototype is chosen as an approximation of a
Nyquist filter with roll-off factor one and as a consequence
only the spectrum of contiguous subcarriers overlap and non-
contiguous subcarriers are separated by a high stop-band atten-
uation. For example, an FIR RRC with length LP = KM + 1
can be used, where K is the overlapping factor that determines
how many symbols superpose each other in time. K should be
kept as small as possible to limit the complexity and to reduce
the time-domain spreading of the symbols, in particular in case
time-variant propagation channels are considered.

Because the prototype filter is longer than the number of
subcarriers (LP > M ), to maintain the orthogonality between
all of them and for all time instants, the complex QAM input
symbols dk[m] need to have their real and complex parts
staggered by T/2 resulting in the so-called OQAM modulation
[8]. The OQAM staggering for even indexed subcarriers is
illustrated in Fig. 2. For odd indexed subcarriers the delay
of T/2 is located at the lower branch with purely imaginary
numbers. The OQAM de-staggering is performed at the re-
ceiver by the application of flow-graph reversal [9] in Fig. 2,
substitution of up-samplers by down-samplers and exchange
of blocks �{·} and j�{·}.

The signals of all subcarriers are up-sampled by M/2 after
the OQAM staggering, filtered and added. A broadband signal
is then generated and digital-to-analog (DA) converted into two
IQ baseband signals that will be analog processed (filtered, up-
converted to IF and RF, amplified, etc.) and transmitted. At the
receiver side the RF signal is amplified, brought to baseband,
filtered and then analog-to-digital (AD) converted. The digital
received signal is then filtered by the analysis filters and down-
sampled by M/2 to generate the OQAM staggered subcarrier
signals.

The fact we have assumed only contiguous subcarriers
overlap in the frequency domain, allows us to construct a
model for the output of one subcarrier as shown in Fig. 3. The
inputs xk[n] are OQAM symbols and the received subcarrier
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Figure 4. Subcarrier model for FBMC system

signals yk[n] still have to be equalized and de-staggered
before further processing of the resulting QAM symbols. As
a consequence, in this subcarrier model the input and output
sampling rates are 2/T . We have assumed here a multipath
channel but with perfect time and frequency synchronization.
In other words, no time or frequency shifts (Carrier frequency
offset or Doppler shift or spread) are present. A more realistic
model should involve this and other issues that are out of the
scope of this contribution.

III. PER-SUBCARRIER ML CHANNEL ESTIMATION

We assume that a per-subcarrier linear or DFE equalizer is
employed and as a consequence a per-subcarrier estimator is
sufficient for the equalizers design. In this section, we further
assume that training sequences are not only employed in the
subcarriers of interest, but also in their contiguous subcarriers.
But later we will assume that only the observed subcarrier
contains training.

To perform the per-subcarrier channel estimation, we will
model the multipath channel viewed at each subcarrier as
a narrowband channel with a short impulse response and
represent it in a lower sampling rate, namely the double of
the QAM symbol rate 2/T .

Like in [4], [5], we also assume here that the subcarrier
model depicted in Fig. 3 can be transformed in the model of
Fig. 4. According to this model the received signal at subcarrier
k can be arranged in an observation vector of length Lo and
is given by

yk[n]=(Xk[n]Hk,k +Xk−1[n]Hk,k−1

+X′k+1[n]Hk,k+1)ck + Γkη[l], (1)

where Xk[n],Xk−1[n],Xk+1[n] ∈ �
Lo×Lg are Hankel ma-

trices obtained from the training sequences of length Lt =
Lg + Lo − 1, Hk,k,Hk,k−1,Hk,k+1 ∈ �

Lg×Lc are Toeplitz
matrices containing the resulting filters impulse responses,

Lg = Lh+Lc−1, Lhk =
⌈
2(LP−1)
M/2

⌉
, and ck ∈ �

Lc contains the

channel impulse response. Γk ∈ �
Lo×(LP+�

M

2
Lo�) is obtained

by taking each M
2 -th row of the convolution matrix composed

by the analysis filter impulse response hk[l]. This is the reason

why the vector η[l] ∈ �(LP+�
M

2
Lo�), which contains white

Gaussian noise (WGN) samples with zero mean and variance
σ2
η, is defined in the high sampling rate M/T .

If we call Sk[n] = Xk[n]Hk,k and Uk[n] =
Xk−1[n]Hk,k−1 + X′k+1[n]Hk,k+1 and drop the time and
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subcarrier index for notation simplification we get

y=(S+U)c + ν. (2)

We can see that in the linear model of (2) the noise is
zero mean Gaussian distributed with covariance matrix Rνν =
σ2
ηΓΓ

H and the observation y given c is Gaussian distributed.
The maximum likelihood (ML) estimate of c in this case is
given by

ĉML = argmax
c

p(y|c) = argmin
c

J(c) (3)

where

J(c) = (y−(S+U)c)HR−1
νν (y−(S+U)c). (4)

If Rνν is independent of c and ((S + U)HR−1
νν (S + U)) is

invertible, as we will assume here, we just need to apply the
derivative and make it equal to zero

∂J(c)

∂cH
=(S+U)HR−1

νν (S+U)c−(S+U)HR−1
νν y = 0, (5)

Then the ML estimate of the narrowband multipath channel
in each subcarrier is given by

ĉ=((S+U)HR−1
νν (S+U))−1(S+U)HR−1

νν y. (6)

We have shown in [4], [5] that the estimator in (6) works fine
provided enough training is employed in the three consecutive
subcarriers. We should note that the channel length is a
design parameter of the estimator. It can be different for each
subcarrier depending on how frequency selective the channel is
for the corresponding portion of the spectrum in the subcarrier.

IV. EXPECTATION MAXIMIZATION ML CHANNEL

ESTIMATION

The entries of S in (2) are a result of the convolution
between the training in subcarrier k and the resulting subcarrier
filter. Although the resulting filter has a purely real impulse
response if the prototype has a purely real impulse response,
the resulting convolution with the O-QAM staggered training
sequence results in a complex signal. Consequently all entries
of S are complex valued. In contrast, the entries of U are al-
ternating purely real and purely imaginary, because in addition
to the O-QAM data signals in subcarriers k−1 and k+1 also
the impulse response between the two adjacent subcarriers has
alternating real and imaginary coefficients. As a consequence,
the interference term u has improper statics [10] and if one is
supposed to estimate it, a Widely Linear (WL) processing can
be employed.

Now, we can rewrite the observation vector in (2) on each
subcarrier as

y = Sc+Cu+ ν = Sc+C′OHuxu + ν, (7)

where now the vector u ∈ �Lg , or equivalently xu, in each
subcarrier is assumed as unknown, C = C′O and C′ is a
convolution matrix containing the channel impulse response
c. We also use the definition

O =

{
diag[1, j , 1, ...], for k even

diag[j , 1, j , ...], for k odd.
(8)

Note that in this case Hu ∈ �
Lg×2Lt is a purely real matrix

related to the matrices Hk,k−1 and Hk,k+1 in 1.

Although the exact values of u are unknown, we assume
here that its statistics are known. We define the interference
covariance matrix as

Ruu =
σ2
d

2
HuH

H
u , (9)

where we have assumed xu to be i.i.d. and Gaussian distributed
with zero mean and variance σ2

d/2. This is usually a good
approximation although we know that xu is composed by
symbols taken from a finite dictionary.

For the linear model of (7) the ML estimator has no closed
solution and an efficient way to reach its performance is to
employ the iterative expectation maximization (EM) algorithm
[11].

The EM algorithm works here as follows. Before the first
iteration, a rough channel estimation is obtained that ignores
the interference and only considers the training sequence in
the observed subcarrier. This estimation is given by

ĉ0 = (SHR−1
νν S)

−1SHR−1
νν y. (10)

Then, the iterative process starts. For each iteration i the
algorithm is divided into two steps: the E-step and the M-step.

In the E-step an approximation of the ML function (here
its derivative) is obtained by taking the expected value of it
conditioned to the channel estimated in the iteration before and
the observed sequence as follows

Eu|y,ci

[
∂J(ci)

∂cH
i

]
=
(
SHR−1

νν (S+E[U])+ E[U]HR−1
νν S

+E[UHR−1
ννU]

)
ci−(S+E[U])HR−1

νν y.
(11)

As one can see the result is a function of E[u] and
E[UHR−1

ννU]. E[u] = ûi can be viewed as an instantaneous
estimate of the interference term u in the i-th iteration.

To express the last expectation in (11) also in terms of the
estimate ûi, we have first to write the matrix U as a function
of vector u:

U =

Lc∑
j=1

DjOue
T
j , (12)

where Dj = [0j−1ILt
0Lo−Lt−j ] is a matrix that selects rows

of u and ej is a vector with one in the j-th row and the rest
of its elements are zero.

Then we plug (12) in the expected value

E
[
UHR−1

ννU
]
=E

⎡
⎣Lc∑
l=1

elu
TOHDT

lR
−1
νν

Lc∑
j=1

DjOue
T
j

⎤
⎦

=

Lc∑
l=1

el

Lc∑
j=1

E
[
uTOHDT

lR
−1
ννDjOu

]
eT
j

=

Lc∑
l=1

el

Lc∑
j=1

tr
(
OHDT

lR
−1
ννDjOE

[
uuT

])
eT
j .

(13)
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We can further say that

E
[
uuT

]
= Rεε,i + E[u]E[u]T = Rεε,i + ûiû

T
i , (14)

where Rεε,i is the covariance matrix of the estimation error of
u in the i-th iteration. Consequently, we can write

E
[
UHR−1

ννU
]
=

Lc∑
l=1

el

Lc∑
j=1

tr
(
OHDT

lR
−1
ννDjORεε,i

)
eT
j

+ E[U]HR−1
νν E[U],

=Ψi + E[U]HR−1
νν E[U], (15)

where [Ψi]j,l=tr(OHDT
jR

−1
ννDlORεε,i). We finally get

Eu|y,ci

[
∂J(ci)

∂cH
i

]
=
(
(S+Ûi)

HR−1
νν (S+Ûi)+Ψi

)
ci

− (S+Ûi)
HR−1

νν y. (16)

Given that an estimation of the channel and the training
sequence are known, we can subtract this signal from the
observation signal. Then we can process the resulting vector
with a minimum mean squared error (MMSE) estimator. As
we mentioned before, the interference vector is composed by
purely real and purely imaginary terms, and for that a WL
MMSE estimation [10] can be employed and it is given by

E[ui] = ûi = 2�{WH(y−Sĉi)}, (17)

where after some calculation one obtains

W = (Ryy −P
T
yyR

−T
yy P

H
yy)

−1(RH
uy −P

T
yyR

−T
yy P

H
uy), (18)

and we can show that the covariance matrices are defined by

Ryy = ĈiRuuĈ
H
i +Rνν , and Ruy = RuuĈ

H
i , (19)

and the pseudo-covariance matrices by

Pyy = ĈiRuuĈ
T
i , and Puy = RuuĈ

T
i . (20)

where Ĉi = Ĉ′iO and Ĉ′i is a convolution matrix containing
the estimated channel impulse response ĉi. Moreover, the error
covariance matrix of the WL MMSE estimation is

Rεε,i=Ruu − 2�{WRH
uy}. (21)

Finally, the M-step is performed, where J(ci) is minimized
resulting in the new channel estimate

ĉi+1 =((S+Ûi)
HR−1

νν (S+Ûi)+Ψi)
−1(S+Ûi)

HR−1
νν y.

(22)

The estimation of u and c are then repeated NEM times
until convergence is achieved.

V. NUMERICAL RESULTS

To evaluate the performance of the narrowband ML per-
subcarrier channel estimation employing the EM algorithm,
we have performed some numerical simulations. As broad-
band multipath channel model, we have chosen static ITU
vehicular A at a bandwidth of 10 MHz and sampling rate
M/T = 15.36 MHz. The FBMC system was employed with
M = 256 subcarriers from which 210 were occupied with
training and symbols. The resulting subcarrier spacing is 60
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Figure 5. NMSE as a function of Eb/N0 for different estimators parameters

kHz. We have assumed a preamble based channel estimation,
where the number of observations Lo determines the length of
the training. For the prototype an RRC filter with K = 4
(LP = 1025) and unitary roll-off was chosen. With this
configuration and scenario a length of Lck = 5 for the
narrowband multipath channels and Le = 5 for the equalizers
have shown to be sufficient for all subcarriers. We have chosen
16-QAM constellation for FBMC and 32-QAM for CP-OFDM.
Moreover, the CP length was Lcp = 64. With this combination
of constellation size and CP length, both systems achieve
the same data throughput. For the training sequences QPSK
symbols were employed.

We have performed Monte-Carlo simulations with 200
channel realizations for different Eb/N0 and transmitted 100
symbols on each subcarrier after the random selected training
symbols.

In Fig. 5, the normalized MSE (NMSE) of the narrowband
channel estimation as a function of Eb/N0 is depicted for
different observation lengths Lo and for different number of
iterations NEM. Also the results for the ML narrowband chan-
nel estimation with known training on the adjacent subcarriers
are shown as references. We can observe a considerable loss
in Eb/N0 that increases with the decrease of the noise power.

For the same simulations as in Fig. 5, we show in Fig. 6
the BER as a function of Eb/N0. Here we have also included
the results for perfect channel state information (PCSI). We
can observe here that for the BER the gap between the two
estimation methods is not so high as in the NMSE case. We
can also note that for sufficient number of observations and
iterations, quiet good estimates of the narrowband channels
can be achieved.

Although the convergence of the EM algorithm is not
always guaranteed in general we observe from the numerical
results that the proposed algorithm provides practcally always
a stable solution after a certain number of iterations.
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VI. CONCLUSIONS

We have presented a novel method of per-subcarrier nar-
rowband frequency selective channel estimation. It is based
on the Expectation Maximization algorithm to iteratively ap-
proach the performance of the maximum likelihood estimator.
Furthermore, the method assumes that only training symbols
contained in the subcarrier of interest are known. This can be
very useful in situations where training is sparsely distributed
along the subcarriers. In this case an interpolation is necessary
to be employed in order to obtain the channels in the data-only
filled subcarriers.

Our simulations have shown that the performance in terms
of BER can really approach to the performance of the less
spectrally efficient estimator from our previous contributions,
provided that enough training or observations and iterations
are employed.

While an increase in the length of the training reduces
the spectral efficiency, the number of iterations only increases
the computational complexity. After a critical number of
observations, and consequently training length, is reached, only
the number of iterations will influence the BER performance
regardles of the SNR.
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