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Abstract—We consider an energy harvesting node which trans-
mits data using the energy it harvests from the environment. In
the simple scenario of point-to-point communication, the perfor-
mance of the node in terms of throughput is greatly influenced
by the transmission strategy it employs and its knowledge about

the energy arriving process. We assume in this work that the
transmitting node does not have non-causal information about
the energy to be harvested in future, but only has available the
statistics of the energy arriving process which is stationary. The
practical considerations that the energy storage capacity of the
node is limited and there is additional energy consumption within
the circuitry of the node are taken into account by our system
model. Viewing the system as a finite-state Markov decision
process, we optimize the transmission policy the node employs as
a function of the energy storage state after an energy arrival, by
using the policy-iteration algorithm. The asymptotic performance
of the system in terms of average throughput is studied within
the established theoretical and algorithmic framework, under the
several transmission strategies we propose. Simulation results
indicate the advantage of each strategy with respect to a certain
range of values that the system parameters may take.

I. INTRODUCTION

As a promising alternative to traditional communication

devices powered by batteries or fixed utilities, energy har-

vesting nodes are able to recharge their energy storage with

the energy they harvest from the ambience, and therefore

serve as an attractive solution for green communications and

admit longer lifetime of the system or network they are

employed in. Depending on the external energy source, the

energy arrival process at the node exhibits different properties

[1][2]. In general, the energy that the node is able to har-

vest has a random nature and can not be reliably predicted.

For point-to-point communications with an energy harvesting

transmitter, the performance limit of the system measured in

short-term throughput is evaluated in [3][4], where perfect

energy arrival information during the time slot of interest

has been assumed available. The optimal control theory has

been applied in [4][5] for finding the optimal transmit power

allocation in time. In the more practical scenario that the

transmitter only has statistical information about the energy

arrivals, different methodologies are required for analysing

the control and the subsequent behaviour of the system. In

[6], transmission strategies that achieve the channel capacity

with an energy harvesting transmitter and random amounts of

energy arrivals are discussed, where infinite energy storage

capacity is assumed. The dynamic programming technique is

applied in [7] for maximizing the expected throughput on a

finite time interval, where quantization is performed in time

for the value-iteration method. In the more recent work [8],

the optimal transmit power as a function of stored energy

to maximize long-term average throughput is determined by

solving a first order non-linear ordinary differential equation.

With the assumption of compound Poisson energy arrivals

where the exact probability distributions are known to the

transmitter, the focus and novelty of our work here include the

formulation and solution of a long-term average throughput

maximization problem, where the system is treated as a

finite-state Markov decision process and the policy-iteration

algorithm is applied for optimizing transmission policies.

The optimization framework is not restricted to the specific

energy arrival distributions or proposed transmission strategies.

Moreover, a generalized circuit power model is incorporated,

the impact of which is studied from the perspectives of theory,

algorithm, and also the system performance.

The rest of the paper is organized as follows: in Section II

we introduce the system model from the aspects of data

transmission, energy consumption and energy harvesting. The

maximization of average throughput per stage is formulated by

an optimization in Section III. We first consider the scenario

with no circuit power consumption in Section IV, where we

start with tackling the single-stage problem and then explain

the mechanism and implementation of the policy-iteration

algorithm. We turn to the more general case with non-zero

circuit power in Section V, where the emphasis is put on

the necessary modifications that should be made to existing

conclusions and algorithms. Simulation results are shown at

the end of Section IV and V corresponding to the two test

scenarios, and finally we summarize the paper in Section VI.

II. SYSTEM MODEL

The scenario that an energy harvesting node transmits data

over a single, invariant link for a boundless time period using

the energy it collects in the meanwhile is considered. We adopt

a continuous-time model and assume that the transmit power

of the node, denoted with ptx(t), can be adapted continuously.
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A. Data Transmission Model

Let f (ptx(t)) be the instantaneous data rate as dependent

on the transmit power, where the function f is assumed to

be nonnegative, strictly concave as well as monotonically

increasing. The dependency given by f is time-invariant since

we assume that the channel stays constant. The throughput

of the system over a certain time interval is defined as the

integral of f on it. For numerical studies and simulations we

employ the rate function f(ptx) = log(1 + ptx), which is

in analogy to the Shannon capacity formula with normalized

bandwidth and channel-to-noise power ratio. Yet the analysis

and the algorithms we propose in this work can be applied with

all functions f that satisfy the aforementioned conditions.

B. Energy Consumption Model

Besides the radiated power ptx, there is additional power

consumption within the circuit of the transmitter incurred

by the D/A converter, the mixer, the filters and the power

amplifier, etc. For the typical communication range in a

wireless sensor network where energy harvesting nodes are

of particular interest, the transmit power required to achieve

sufficiently good receive signal-to-noise ratio (SNR) is on

the same order of magnitude as the analog/digital processing

power of the transmitting node [9]. Therefore, it is neces-

sary and also important to include circuit power into the

energy consumption model of the system. Let pc(t) be the

power consumption of the transmitter circuitry at time t.
We formulate pc as a function of the transmit power, i.e.,

pc(t) = gc(ptx(t)), and obtain the total power dissipation

formula as p(t) = g(ptx(t)) = ptx(t) + pc(t). The function

gc is assumed nondecreasing on [ 0,+∞), continuous and

continuously differentiable on (0,+∞). Note that a single

discontinuous point of gc(ptx) at ptx = 0 is allowed due to

the different modes that the transmitter could be operating on.

When the transmitter is not sending any signal, it can be turned

into sleep mode for which the circuit power consumption

is low enough to be neglected, i.e., we assume gc(0) = 0.
Otherwise, the transmitter is considered in active mode and its

circuit consumes ineligible energy, which means gc(ptx) > 0
for ptx > 0. Furthermore, as the convexity of gc plays a crucial
role in preserving the convex structure of the throughput

maximization problem [4], we assume here that gc is convex
on (0,+∞). This condition is indeed met by more practical

system models, e.g., the MQAM model presented in [9].

On investigating the optimal transmission policy of the

energy harvesting node, we start with the simple case that

g(ptx) = ptx, i.e., circuit power is completely neglected, and

then extend the study to non-zero circuit power. Since the

power dissipation of the power amplifier is usually assumed to

be linearly dependent on transmit power, and power consump-

tion of other components of the transmitter can be assumed

constant [9], we employ the following linear power consump-

tion model for numerical analysis as well as simulations

g(ptx) =

{

(1 + b) · ptx + c, ptx > 0,
0, ptx = 0,

(1)

where b and c are both nonnegative constants. Without loss of

generality, let the system begin operation at the time instance

t0 = 0. The total energy consumption of the node by time t,
represented by the non-decreasing function W (t), is given as

W (t) =

∫ t

0

g (ptx(τ)) dτ.

Naturally, there is the initial condition W (0) = 0, and W (t)
is subject to causality constraint which is explained next.

C. Energy Harvesting Model

An energy harvesting node gathers energy from the environ-

ment and stores them in its storage medium. We consider here

that the harvested energy becomes available to the transmitter

in the form of energy packets, i.e., the energy arrives at discrete

time instances with various amounts. Let Un and tn denote the

size of the nth packet and the time instance at which it arrives,
respectively. The interval between two consecutive energy

arrivals is called a stage, and the inter-arrival time tn − tn−1

gives the duration of the nth stage. Let the function N(t)
indicate the number of arrivals until time t. The cumulative

harvested energy by t, denoted with U(t), can be written as

U(t) = A0 +

N(t)
∑

n=1

Un, ∀t ≥ 0,

where A0 stands for the amount of energy in storage at t0.
The values of Un, n = 1, 2, . . . are determined by the

ambience of the node and the energy harvesting technology

it is using. Due to the limited capacity of the energy storage,

the actual amount of energy input at the beginning of each

stage might be smaller than what the environment has to

offer. In other words, the energy input to the system at the

nth energy arrival, denoted with An, is upper bounded by

Un. Let Emax be the maximum amount of energy that the

node can store and assume it a finite constant. The state of

energy storage at time t, represented by the function Z(t), is
assumed perfectly known by the node ∀t. The sequence of

energy inputs, the cumulative energy input function A(t), and
the relation between energy storage Z(t), energy input A(t)
and energy consumption W (t), are respectively given by

An = min (Un, Emax − Z(tn)) , n = 1, 2, . . . ,

A(t) = A0 +

N(t)
∑

n=1

An, ∀t ≥ 0,

Z(t) = A(t)−W (t), ∀t ≥ 0.

Note that Z and A are influenced by the transmit power ptx
the node chooses to use as well as the storage capacity Emax.

The causality restriction requiresW (t) ≤ A(t) to hold ∀t ≥ 0.
In practice, when and how much energy can be harvested

is generally random and not exactly predictable at the trans-

mitting node. We assume here that the energy harvesting node

has perfect causal information about the energy arrivals as

well as their statistics, and this statistical information does

not change over time. To be more specific, the energy arrivals
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follow a stationary Poisson process with known intensity λ0,

i.e., the inter-arrival times, denoted with λn, are exponentially

distributed with 1
λ0

as their mean value. The quantities of

energy arrivals Un, n = 1, 2, . . . are i.i.d. random variables

taking positive values, and the availability of the probability

density function is assumed. The random process indicated by

U(t) is compound Poisson under these conditions.

III. AVERAGE THROUGHPUT MAXIMIZATION

The maximization of throughput on a given finite time slot

[ 0, T ] for an energy harvesting transmitter has been investi-

gated in [3][4], where non-causal energy arrival information

during [ 0, T ] is assumed available. When the system is to op-

erate for a long time or there is no specific termination time, it

is appropriate to maximize the average throughput instead, for

the total throughput is not well defined or approaches infinity

as time evolves. To this end, the energy harvesting node aims

at maximizing the average throughput per stage by properly

adapting its transmit power based on the knowledge of energy

arrival statistics, which is formulated as the optimization

max
ptx∈P

lim
N→∞

1

N

N
∑

n=1

∫ tn

tn−1

f (ptx(t)) dt

s.t. W (t) =

∫ t

0

g (ptx(τ)) dτ ≤ A(t), ∀t ≥ 0, (2)

W (0) = 0,

where P is the set of finite, nonnegative, piecewise continuous

functions defined for t ≥ 0. As the number of stages N goes

to infinity, the termination time tN converges to its expected

value N
λ0
. From this observation and by replacing tN with T ,

we see that the optimization objective in (2) is equivalent to

1

λ0
· lim
T→∞

1

T

∫ T

0

f (ptx(t)) dt,

which is the average throughput scaled by the mean inter-

arrival time. As we will analyse and solve the optimization

within the theoretical framework of Markov decision pro-

cesses, it is convenient to employ the formulation (2). Let

the objective function of (2) be denoted with ρ(ptx).

IV. TRANSMISSION STRATEGIES WITHOUT CIRCUIT

POWER CONSIDERATION

The energy harvesting node is influenced by the energy

arrival events in a discrete manner. We therefore consider a

transmission policy, as the decision on how much resources

to take for the current stage which is made at the beginning of

each stage, and a transmission strategy, as how these resources

are to be allocated on the single stage. Transmission policies

are optimized with the policy-iteration algorithm as a function

of storage state, whereas transmission strategies are proposed

based the analysis on the single-stage throughput maximiza-

tion problem, and are assumed unchanged during operation.

For the content of this section we assume g(ptx) = ptx.

A. Single-stage Solution

Consider a single-stage of duration λ with initial energy

state A0. As the arrivals of energy follow a Poisson process, λ
is an exponentially distributed random variable. The expected

throughput I(ptx) on the stage can be calculated as

I(ptx) = E

[

∫ λ

0

f (ptx) dt

]

=

∫ +∞

0

e−λ0tf (ptx) dt.

The maximization of the expected throughput can then be

written in the standard form of a control problem as

max
ptx∈P

∫ +∞

0

e−λ0tf (ptx) dt

s.t. Ẇ = g(ptx), (3)

W (0) = 0, W (t) ≤ A0, ∀t > 0,

where we have omitted the t-argument in the time-dependent

functions, and Ẇ stands for the derivative of W with respect

to t. Note that the objective depends explicitly on t and it

converges as e−λ0t serves as a discounting factor for the data

rate. Let the optimal control to (3) be denoted with p∗tx. The
Hamiltonian of the problem is given by

H(t, ptx, µ) = −e−λ0tf (ptx) + µg (ptx) .

Since H does not explicitly depend on W , the co-state

equation suggests that µ̇∗ = 0, i.e., µ∗ is constant. According

to Pontryagin Maximum Principle (PMP) [10][11], we have

Hptx(t, p
∗
tx, µ

∗) = −e−λ0tfptx (p
∗
tx) + µ∗gptx (p

∗
tx) = 0, (4)

where a function with a variable as its subscript refers to the

partial derivative of the function with respect to this variable.

Plugging f (ptx) = log(1 + ptx) and g (ptx) = ptx into (4)

and considering the non-negativity of ptx, we arrive at

p∗tx(t) = max

(

e−λ0t

µ∗
− 1, 0

)

, t ≥ 0. (5)

It is clear from (5) that µ∗ ∈ (0, 1) and that the optimal

transmit power p∗tx decays exponentially in time. Starting with
µ = 1, the search for µ∗ can be performed with decreasing µ
over the iterations until the total energy consumption reaches

A0. We term this transmission strategy as SS-DEC strategy.

As a simpler alternative to the optimal transmit power given

by (5), we also consider a constant power strategy where the

transmit power ξ is used for the whole stage. The expected

throughput I(ξ) achieved under this strategy is calculated as

I(ξ) = E

[

f(ξ)min

(

λ,
A0

g(ξ)

)]

=
f(ξ)

λ0

(

1− e−
λ0A0
g(ξ)

)

,

(6)

which can be maximized by searching for the optimal con-

stant transmit power ξ∗, which does not have a close-form

expression though. This strategy is termed as SS-CON.

We compare the two transmit strategies with the simulation

results shown in Figure 1. For each initial energy state A0

and for each mean inter-arrival time 1/λ0, µ∗ and ξ∗ are

computed offline for the SS-DEC and the SS-CON strategies,

4234



0 20 40 60 80 100
4

6

8

10

12

14

16

18

20

22

Know λ
SS-CON
SS-DEC

A0

I

(a) λ0 = 0.1

0 10 20 30 40 50
0

5

10

15

20

25

30

Know λ
SS-CON
SS-DEC

1/λ0
I

(b) A0 = 100

Figure 1. Throughput achieved on a single-stage

respectively. The values are used for 2× 104 simulations and
we plot the average achieved throughput in both figures. The

optimal throughput with λ known in advance is depicted for

reference. It can be seen that the gap between SS-CON and

the optimal SS-DEC strategy is not significant. Also notice

in Figure 1(b) that, although the available energy is the same,

with the stage lasting longer, larger throughput can be achieved

due to the better energy efficiency endowed by time.

B. Policy-Iteration Algorithm

We are aiming at the problem of maximizing the average

throughput per stage (2) which involves an infinite number of

stages on which the stationary system operates. With such a

scenario and optimization goal, the policy-iteration technique

is more favourable than the common dynamic programming

technique based on value-iteration [12][13]. Moreover, it is

convenient to consider the system as a finite-state Markov

decision process in the context of applying the policy-iteration

method for infinite horizon problems. To this end, we assume

that the energy harvesting node can only change its trans-

mission policy at the beginning of each stage. The decision

made for stage n is based on the energy state Z(tn−1)
of the storage. Let the sequence of state variables of the

system, namely, the initial energy level and the amount of

stored energy right after each energy arrival, be denoted with

Zn, n = 0, 1, . . .. The continuous state space [ 0, Emax ] is
discretized with granularity δ to a discrete set of M states,

which means the true values of Zn are approximated by

si = (i − 1)δ, i = 1, . . . ,M with M − 1 =

⌊

Emax

δ

⌋

.

Under a good transmission strategy, the energy harvesting

node tries to reduce, at least to some extent, the chance that

energy miss events defined by An < Un happen, which

are resulted from insufficient storage capacity. This can be

accomplished by employing a reasonably large transmit power.

Since ptx is not bounded from above as assumed in this work,

the underlying Markov process of a good transmitter has only

one recurrent chain and is completely ergodic. This means, the

initial state of the system, i.e, Z0 = A0, does not influence

the average throughput that can be achieved with the strategy.

The policy-iteration algorithm consists of the Value-

Determination Operation and the Policy-Improvement Routine

in each of its iteration cycles [14]. In the value-determination

phase, the system is operated under a given policy so that for

each state of the system, the throughput to be expected on

the current stage can be computed. In addition, the transition

probability of the system from the current state to any possible

next state can be specified. Let i be the state index of the

system at the current stage and j be the state index for the

next stage. A set of M linear equations can be established as

ρ+ vi = qi +
M
∑

j=1

Pijvj , i = 1, . . . ,M, (7)

where Pij stands for the transition probability from state i
to state j, and qi stands for the expected throughput to be

achieved on the current stage with state i. It is obvious from (7)

that shifting the unknowns v1, . . . , vM by the same constant

amount does not change the equations since
∑M

j=1 Pij = 1.
Therefore, we can set the unknown vM to 0 which results in

exactly M unknowns to be solved by the equation system,

namely, ρ, v1, v2, . . . , vM−1. The resulting v1, v2, . . . , vM−1

are called the relative values of the given policy and serve as

inputs to the policy-improvement routine that follows.

The policy-improvement routine, as contrary to the value-

determination operation which yields relative values based

on a given policy, produces new policies as a function of

input relative values. Mathematically, it solves the following

optimizations with respect to all feasible policies in each state

max
ptx

qi (ptx) +

M
∑

j=1

Pij (ptx) vj , i = 1, . . . ,M. (8)

The optimal policy for each state is then recorded and used for

computing new relative values. The computation of transition

probabilities can be rather tedious depending on the distribu-

tion of the quantity of each energy arrival, and might turn out

more demanding than solving (7) and (8). The policy-iteration

algorithm can be started with the policy-improvement routine

with all relative values initialized to 0. For each iteration cycle,
the obtained average throughput per stage is improved. We

find via numerical experiments that the algorithm converges

already with very few iterations, usually less than 5. Details
on the algorithm as well as the proof for the monotonically

increasing property of ρ over iterations can be found in [14].

What is obtained in the end with the policy-iteration al-

gorithm is a look-up table with M entries. With each entry

which corresponds to one system state, the transmission policy

that the node should take in that state is specified. The

remaining task now is to figure out the general strategy the

energy harvesting node employs, which determines how the

system operates in between two states. Based on our study on

the single-stage problem in the previous section, we propose

3 transmission strategies, the constant (ONE) strategy, the

stage-wise constant (SW-CON) strategy and the stage-wise

decreasing (SW-DEC) strategy. With strategy ONE, a constant

transmit power is always used regardless of which state the

system is in. With the SW-CON strategy, the transmitter

employs constant transmit power on each stage, whereas with

the SW-DEC strategy, the transmitter uses decreasing transmit

power indicated by (5). In the last case, the key to the

transmission policy which we optimize iteratively is in fact
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the constant µ∗. It should be noted that the policy-iteration

algorithm provides the optimal transmission policy with re-

spect to the given transmission strategy, but not necessarily

the global optimal solution to (2). We choose ONE and SW-

CON for their simplicity and SW-DEC for its optimality for

the single-stage expected throughput maximization problem.

C. Simulation Results

Simulations are performed to verify the implementation of

the policy-iteration algorithm, and more importantly, to enable

comparisons between the proposed transmission strategies.

Fixed simulation parameters are listed in Table I, and for each

optimized policy with the varying system parameters, average

results for N operation stages are shown in Figure 2.

Table I
SIMULATION PARAMETERS

Emax λ0 N δ
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4 0.25
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Figure 2. Average throughput per stage achieved with different strategies

In Figure 2(a) and 2(b), the amount of energy in each arrival

is identically u0. The SW-CON and SW-DEC strategies are

compared with their single-stage counterparts SS-CON and

SS-DEC in Figure 2(a), for which the policies at each stage

are not optimized with the policy-iteration algorithm but are

only optimal for the current stage. With u0 approaching Emax,

the myopic policies perform as good as the corresponding

optimized policies, whereas for small u0 their performance is

relatively worse. The performance gap between the optimized

policy and the myopic policy for the DEC strategy is in

general quite small. Note that in terms of memory and online

computational requirements, the optimized policy and the

myopic policy are equivalent. For the SW-CON and SW-

DEC strategies, the maximal average throughput found with

the policy-iteration algorithm coincides very well with the

simulation results, and therefore we do not need to distinguish

them on figures. This applies to all simulation results we show

in the paper. We compare the performance of SW-CON, SW-

DEC and ONE strategies in Figure 2(b), where the optimal

average throughput with non-causal energy arrival information

is plotted as a reference. The behaviour of strategy ONE is

found to be similar to SW-CON. It is interesting to note the

crossing point of the curves representing the SW-CON and

SW-DEC strategies: for u0 ≤ 40 approximately, SW-CON

performs better while for u0 > 40, SW-DEC yields more

throughput. Such a result can be expected as with larger energy

arrivals, using decreasing power effectively reduces the chance

of energy miss, which might yet sacrifice energy efficiency too

much when the energy arrivals are with a low quantity.

Energy arrivals with uniformly distributed quantities on the

interval [u1, u2 ] are assumed for the simulations shown in

Figure 2(c) and 2(d), where the mean values are u0 = 30
and u0 = 50 respectively. The performance of the system

deteriorates as the energy arrivals become more diverse, and

the gaps between different strategies can be clearly observed.

V. TRANSMISSION STRATEGIES WITH CIRCUIT POWER

CONSIDERATION

The effect of circuit power to the transmission strategies

and algorithms we propose as well as to system performance

is discussed in this section. We have shown in [4] that, when gc
is convex and continuous on [ 0,+∞), the same algorithm to

find the optimal transmission strategy without circuit power

can be applied, and we only need to recover p∗tx from the

obtained optimal total power dissipation p∗ with the inverse

function g−1. When gc is discontinuous at ptx = 0, the so-

called energy-efficient transmit power, denoted with ptx0 and

defined by the solution to the equation

(fptxg − fgptx)(ptx) = 0,

plays a critical role in the optimal transmission strategy in that

p∗tx ≥ ptx0
has to be satisfied ∀t. We mainly focus on the latter

case here for the special treatment it requires.

A. Single-stage and Infinite-horizon Solutions

Our derivation of the solution to the single-stage problem

(3) still holds until the relation (4) obtained with the PMP. Due

to the discontinuity of gc at the zero point, we confine the end-
point of the control problem to t1 with ptx > 0 for t ≤ t1 and
ptx = 0 for t > t1, such that an equivalent control problem

with free termination time and a continuous state equation is

attained. The transversality condition at end-point t1 requires

H(t1, p
∗
tx(t1), µ

∗) = −e−λ0t1f(p∗tx(t1)) + µ∗g(p∗tx(t1)) = 0.

Evaluating (4) at t1 and plugging the result above, we have

−f (p∗tx(t1)) gptx (p
∗
tx(t1)) + fptx (p

∗
tx(t1)) g (p

∗
tx(t1)) = 0,

which means the optimal transmit power at the end-point t1
equals the energy-efficient transmit power ptx0

. When f =
log(1 + ptx) and g is given by the linear model (1), we have

p∗tx(t) =

{

e−λ0t

(1+b)µ∗
− 1, e−λ0t

(1+b)µ∗
− 1 ≥ ptx0

,

0, otherwise.
(9)

Similar to the case without circuit power, a search for µ∗

is performed which terminates when the energy consumption
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until end-point t1 equals A0. The SS-CON strategy can also be

considered, where the optimal solution ξ∗ to (6) can be shown
to satisfy ξ∗ > ptx0

for general concave rate functions f and

convex circuit power functions g. In the infinite horizon sce-

nario, the policy-iteration algorithm works with transmission

strategies suggested by solutions to the single-stage problem,

which does not change in principle as previously.

B. Simulation Results

We use the same set of parameters as given in Table I and

the linear circuit power model (1) for simulations. The optimal

and suboptimal solutions to the single-stage problem are first

studied in Figure 3, where we vary the initial energy state A0

as well as the circuit power parameters b and c. The near-

optimal performance of strategy SS-CON can be observed.

0 20 40 60 80 100
2

4

6

8

10

12

14

Know λ

SS-CON

SS-DEC

A0

I

(a) b = 1, c = 1

0 1 2 3 4 5
8

10

12

14

16

18

20

22

24

Know λ

Know λ

SS-CON

SS-CON

SS-DEC

SS-DEC

b = 0

b = 1

c

I

(b) A0 = 100

Figure 3. Throughput achieved on a single-stage

For the average throughput maximization over an infinite

number of stages, we assume all energy arrivals are of the

same quantity u0. From Figure 4 we immediately observe the

deterioration of system performance due to the non-zero circuit

power. A shift of the crossing point of strategies SW-CON and

SW-DEC to the right can be found on the first two figures

where circuit power parameters are increased. The conclusion

that strategy SW-CON is more favourable in the low-energy

regime while SW-DEC is preferred in the high-energy regime

is further emphasized with the last two figures. Notice that in

a less dynamic system with constant energy arrivals, strategy

ONE performs almost as good as SW-CON, and the myopic

strategies also come close to their optimized counterparts for

which reason they are not shown on the figures.

VI. CONCLUSIONS

We investigate in this paper transmission strategies that

an energy harvesting node with only causal and statistical

energy arrival information should employ in order to maximize

the average throughput. The system is modelled as a finite-

state Markov decision process for which we apply the policy-

iteration algorithm to find the optimal transmission policies.

The theoretical framework and the algorithm we use are not

restricted to one specific energy arrival distribution or one

particular circuit power model. Stage-wise constant transmit

power, Stage-wise decreasing transmit power and constant

transmit power are the three strategies we propose for the

energy harvesting transmitter. Depending on the amount and

diversity of energy arrivals and the energy storage capacity
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Figure 4. Average throughput per stage achieved with different strategies

of the system, one strategy might outperform or be beaten

by another strategy, which are demonstrated with simulation

results, yet the common advantage of the three strategies is

their low computational requirement both offline and online.
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