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1 Introduction

1.1 Preliminary Statements

The present work concludes the theory of Schirmacher et al., which explains the fa-

mous “Boson-peak anomaly” of the vibrational density of states of glasses, as an effect

related to an elastic medium with weakly fluctuating elastic constants. Although this

theory was in quite good agreement with the experimental data, some criticism has

been raised, which basically concerned about the high-frequency corrections onto

the low frequency approximation of the calculation. The present work answers this

question by showing, that these contributions do not alter the previous results, but offer

a new possibility to determine the disorder parameter of the theory, directly from the

experiment. Therefore a new possibility of proofing the theory is provided, because the

disorder parameter, which can now be extracted from the high-frequency density of

states, should match the one which is fitted to explain the low frequency properties of

the density of vibrational states.

In order to establish the theory, we will provide a short review on what has been done

within the last 25 years on the subject, and what has remained unclear. Within the sec-

ond part we reformulate the theory in the Keldysh formalism, which is the common state

of the art method in field theories of disordered solids. Previous approaches always

used the old fashioned and questionable replica method instead. Then we investigate

the high-frequency density of states within the instanton method, which for theories of

disordered electrons always yielded strong localized states. For this we briefly summa-

rize what should be known about the basic structure of the Keldysh path integral, and

elaborate the instanton picture for a disordered longitudinal polarized sound wave.
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1 Introduction

Then we show, how the same instanton correction would look like in the Bosonized the-

ory, following the genuine work of McKane and Stone, which was formulated within the

old replica formalism.

After the nature of the high-frequency correction is phenomenological well under-

stood, they are easily generalized onto the vector model (longitudinal and transverse)

sound-waves. In the end we will perform numerical calculations to study the nature

of the “localization-physics”, e. g. if sound waves really become strongly localized

(exponential enveloping function), or remain long-range in nature. Although it is an in-

teresting question, these details of the sound-wave function, describing a wave which

becomes decelerated through disorder induced non-linear effects, do not alter the

frequency-dependence of the density of states, whose generic frequency depen-

dence seems now very well understood.

1.2 Previous approaches onto the density of vibrational

states in glasses

Until today there is no commonly accepted definition of the glassy state Biroli [50, 10,

11, 17, 42]. From the structural standpoint one can distinguish between network glasses,

which are covalently bonded and those, which have more spherically symmetric bond-

ing forces like liquid rare gases (hold together with forces which are well described by

a Lennard-Jones Potential) or liquid metals [91, 22].

Glasses are formed by cooling a liquid in a way that the low-temperature ground state,

which is always a crystal, is avoided. This can be achieved by sufficiently rapid cooling

or by choosing a chemical composition, which strongly suppresses crystalline nucle-

ation.

Macroscopically liquids as well as glasses are homogeneous and isotropic on a macro-

scopic scale. On the atomic scale the nearest-neighbor statistics, which can be ex-

tracted by neutron or X-ray diffraction shows short-range order, which is revealed by

characteristic oscillations of the structure factors, which describe the diffraction rings.
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1 Introduction

Crystals, due to their lattice symmetry show the well-known Bragg peaks in the diffrac-

tion pictures.

A breakthrough in the theoretical understanding of the liquid-glass transformation was

the mode-coupling theory of Bengtzelius et al., reviewed in [29, 28]. In this theory, based

on the Mori-Zwanzig projection technique, the correlation function of fluctuating forces

in the generalized Langevin equation equation was assumed to factorize into pairs

of density propagators. This leads to a feedback, which describes the structural ar-

rest. As precursor of this dynamical transition scaling scenarions were predicted, which

lead anomalously slow relaxation. These predictions were verified in many experiments.

However, the mode-coupling theory predicts a sharp discontinuous glass transition Tc,

which is not observed. Instead, below Tc the diffusive and viscous motion becomes

activated, indicating the forming of an energetically ragged configuration landscape.

[17]. This leads to spatially inhomogenous relaxation processes (dynamical heterogene-

ity [10, 11]. From the quoted reviews it becomes clear, that the important glass transi-

tion regime between Tc and the glass-blower temperature Tg (at which he can no more

change the shape of the glass) is until today not understood.

It is, however, clear, that the glassy state is distinguished from the liquid state by a fi-

nite shear stiffness. The shear modulus of glasses is somewhat smaller than that of the

corresponding crystals but of the same order of magnitude.

Within the glassy state there is a strong separation of time scales between the relax-

ational processes, which still exist (with very long relaxation times), and oscillatory mo-

tions, which we quite generally name vibrations. Like any solid material glasses support

sound waves with wavelengts ranging from the extension of the sample to the nanome-

ter regime. In the latter regime, however, which corresponds to the frequency range

near ν = ω/2π around 1 THz, the wave picture obviously breaks down. One observes in

this regime an enhancement of the vibrational density of states over Debye’s g(ω) ∝ ω2

law, which is based on the wave picture. This anomaly is historically called “boson

peak”, because it was first observed in Raman scattering, the intensity of which is pro-

portional to a Bose function. This comes from the fluctuation-dissipation theorem. Be-

cause the temperature dependence of the intensity was only given by the Bose factor
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1 Introduction

this meant that the observed anomaly must be a harmonic phenomenon.

The detailed origin of the boson-peak anomaly, which can be detected not only in Ra-

man [71], but also in inelastic neutron [13] and X-ray scattering [72], has been a subject

of very intense discussion in the scientific community, studying the high-frequency vibra-

tional dynamics with the mentioned experimental methods but also by simulations [42].

Attempts to relate the boson peak to a localization transition [3, 23, 31] failed because

it was shown later by simulations [24] and by field-theoretic calculations [37], based on

the nonlinear sigma model, that the localization transition in glasses takes place at fre-

quencies near the upper band edge, i.e. near the Debye frequency, much higher than

the boson-peak frequency.

A successful explanation of the vibrational excitations of glasses around the boson-

frequency emerges from the work of Schirmacher and coworkers.

In 1989, Schirmacher and Wagener [69] model of point masses distributed randomly in

three-dimensional space, interacting trough random force constants, which depend

on the distance between the points and acquire therefore their randomness. They

solved this model with the help of an effective-medium approximation. This was an

early version of later theoretical work with spatially varying force constants and elastic

constants.

Several years later Schirmacher, Diezmann and Ganter [64] obtained quantitative re-

sults on the density of states, studying just the same approach within the coherent po-

tential approximation, which can be understood as a generalized non-crossing ap-

proximation. They obtained a disorder-induced boson peak both from the mean-field

calculation and a numerical diagonalization of the same random Hamiltonian. This

proved that the CPA is not a bad approximation. The eigenvalue statistics obtained by

the diagonalization showed again, that the boson peak and the localization transition

are quite separate.

If one writes down the diagrammatic series for the Green’s function via expansion of

the resolvent, averages this over a general external distribution of force constants via

a cumulant expansion, and retains only a set of so called rainbow diagrams, after re-

summation one obtains the CPA self consistency equation for the Green’s function. A
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1 Introduction

general review has been provided by Yonezawa [89]. The non-crossing approxima-

tion basically collects all diagrams which propagate within the same direction as the

Green’s function (retarded or advanced). However the missing diagrams which mix re-

tarded and advanced channels, contain the localization phenomenon, either classical

localization, or for electrons a special kind of quantum interference known as the weak

localization effect. The Green’s function calculated by SDG in CPA approximation also

showed up the Boson peak anomaly, and was a tremendous success in explaining the

high-frequency vibrational spectra of glasses.

However to model a glass via the underlying lattice is unphysical, and was criticized fre-

quently. Therefore a continuum field theoretic approach has been adopted by Schir-

macher, Maurer and Poehlmann [65], to get rid of the underlying unphysical lattice.

One just writes down the path-integral representation of the sound-wave Green’s func-

tion and averages it, over some externally distribution capable of describing the glass,

by means of the replica trick. For technical reasons a Gaussian distribution has been

proposed, which refers to a very well defined average of the squared sound-velocity

〈c2〉, and the disorder is introduced by a fluctuating band of velocity-squares γ = 〈δc2δc2〉

around this mean-value. Within this continuum theory the CPA boils down, to what is

known in the literature as the Self Consistent Born Approximation, which also does not

take into account time-reversed scattering, and hence localization. However this is suf-

ficient, as one is only interested in low frequency properties where no localization takes

place, as low frequency and hence long wavelength sound waves will tunnel through

any kind of barrier.

As the disorder parameter sets up the landscape of possible potentials, it also is the

parameter which divides low frequencies, e. g. propagating sound waves, from high

frequencies, e. g. trapped within the fluctuating sound wave landscape. The con-

tinuum approach also exhibited the enhancement on the vibrational density of states

with respect to the Debye value, which can be understood in such an approach as

marking the transition from nearly unperturbed, to random matrix eigenstates, which

both are on the low frequency side.

In addition, they also discussed the effect of a potentially possible anharmonic interac-
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1 Introduction

tion introducing an additional Mode-Grüneisen parameter dependent non-linear term

into the theory.

This theory was generalized onto the vector theory using Lame’s formulation of elas-

ticity theory in 2006. The advantage of using this approach is, that Lame’s approach

is formulated with respect to the constants measuring the energy of infinitesimal shear

and bulk deformations. In a glass, the shear-modulus µ is much smaller then the bulk-

deformation λ, and hence this is the quantity which should have become random [63].

In 2008 this approach has been investigated in presence of elasto-optical couplings,

which gave just a tremendous agreement with the spectra one obtains in the Raman-

scattering experiments [71]. Until now this is the most successful theory of explaining the

static structure factor at the THz-scale of glasses, beside the mode-coupling-approach.

However, something has been missing, as explained by Tomaras in 2010 [80].

Deriving Lame’s elasticity theory from first principles, it allows for the inclusion of anhar-

monic terms which reside not on an additional parameter.

As explained by Landau in the old days, these terms do not contribute to the sound-

propagation at any frequency scale, because their phase space is suppressed due to

simultaneous energy and momentum conservation, as well as a linear dispersion at the

vertex. However, Tomaras showed, that the spectral function in presence of disorder

is lacking of momentum conservation and hence these terms have to be taken seri-

ously. Recalculating the Brillouin line-width according to the anharmonic scattering in

presence of disorder, yields to the same frequency dependence which for a crystalline

solid has been calculated by Akhiezer [2] long time ago using the Boltzmann equation,

but with an Mode-Grüneisen parameter.

In contrast, the disorder-dependent theory allows for a finite scattering time, due to an-

harmonic terms without any additional parameters, and the prefactor of the Brillouin

line-width is just the temperature times the variance of the shear modulus. To summa-

rize, the frequency dependent sound-damping line-width in glasses, is at low frequen-

cies around several GHz proportional to ω2, due to disorder enhanced unconventional

anharmonic scattering, and undergoes a crossover to a ω4 behavior, which is the usual

Rayleigh law, as depicted in Figure 1.1 .
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1 Introduction

At very large frequencies around 1Thz the sound damping line width exhibits a strong

shoulder. As this line width also enters in the calculation of the density of states, it is

this shoulder which is responsible for the enhancement of the density of states, the so

called Boson-peak anomaly.

Beside the tremendous success of Schirmachers theories, to explain the vibrational

properties of glasses in terms of weakly fluctuation harmonic force constants, some-

thing has been missing within all those investigations, and left some uncertainties onto

the results already obtained. Clearly until the present work it is not known how these

results are affected by localization corrections. There is some experimental evidence,

that these corrections matter and are useful, as we explain within the next section.

1.3 Motivation of going beyond the non-crossing

approximation

As already presented in the last section, the vibrational properties of glasses differ

strongly from those of regular solids.

This low-frequency enhancement of the density of states with respect to the Debye

ω2-law, the so called “Boson-Peak” yielded to an enormous number of experimental

investigations, simulations as well as theoretical efforts [34, 73, 88, 74, 78, 16, 61, 79, 57,

30, 49, 48, 51, 32, 93, 33, 56, 41, 25, 45, 46, 40] and has been discussed vividly since today.

Most theoretical works are simulations of the vibrational spectrum of disordered mate-

rials. Beside our own work, already reviewed in the last chapter, there is only a small

number of field-theoretical approaches on to the vibrational properties of disordered

systems, namely John et al. [36, 38, 35], Burin et al. [14, 58] and Gurarie and Altland [32].

The first two approaches are mainly due to localization and not refer to the spectrum

of propagating waves in disordered solids.
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Abbildung 1.1: Inclusion of anharmonic terms allowed by elasticity theory without ad-
ditional parameter yields Akhiezer-like sound damping in glasses. With
the parameters of SiO2, crossover between dominant anharmonic and
dominant disorder induced scattering, should take place at ωC ≈ 0.2ωB.
This is far away from the frequency range where Akhiezers original the-
ory applies. ωB is the Boson peak frequency, the frequency at which the
enhancement effect of the density of states due to disorder appears.
Figure 1.2 shows the related density of states.
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Abbildung 1.2: Evaluation of the density of states normalized to the Debye frequency
in case of fluctuating shear modulus, within the SCBA approximation. ∆
is the variance of the statistical distributed shear modulus of the other-
wise harmonic sound wave theory, normalized onto some value ∆c. A
correlation length ξ of non-local fluctuations has been chosen. The the-
ory is compared with the measurement of Baldi et al. on viscous Silica.
The theory describes the position and height of the enhancement ef-
fect quite well. Low frequency deviations are likely to be identified with
anharmonic behavior, see e.g. [68]. At high frequencies the experi-
mental data drop to zero faster than the theory, which is likely to be an
exponential drop off. This is related to the fact, that the SCBA neglects
the localization contributions to the density of states, which yields to this
exponential tail at high frequencies. We will work out a theory of this
Lifshitz tail within the present work.
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1 Introduction

The work of Gurarie and Altland is about wave-propagation in random media, and

is discussed from a very general point of view. They criticize our field theoretic ap-

proaches, because it does not include the so called weak localization correction. In

the quantum mechanical problem of electron-propagation in a random potential, this

refers to a divergent 〈φφ〉 phase correlation due to coherent back scattering.

For quantum mechanics there is an other localization mechanism, the so called strong

localization which refers to a short range density 〈φ̄φ〉. This localization happens due

to statistical variations of the potential capable of trapping the quantum mechanical

particle. For electrons, both mechanism lead to localization at large energies.

Within our recent works, we do not believe that the Boson-peak anomaly is related to

any localization mechanism. The reason is, that the Boson-peak is related to a static

renormalization of the sound velocity through the self-consistent Born approximation,

while all localization corrections vanish in the low frequency limit.

However it is known, that strong localization yields to the appearance of exponential

tails of the density of states, in disordered metals and semi-conductors [75]. Such tails

are called "Urbach tails" [81] or "Lifshitz tails" [47, 77, 26], and are mainly encountered

within the gap of the electronic energy-spectrum of disordered semi-conductors[89].

Recent experiments showed exponential tails, to be present at the upper band-edge of

the vibrational spectrum of glasses, both with in-elastic Neutron scattering and inelastic

Nucleon-Mößbauer scattering [16, 84, 61].

Within the present work we elaborate a field theoretic explanation of this exponential

tail of the density of states.

It turns out that the exponential tail of the density of vibrational states stems from the

“localization” of sound waves in fluctuations of the random sound velocity,

which is the same physics which yields to strong localization of the electronic density

modes 〈φ̄φ〉. We will discuss localization both, from the elementary one-particle theory,

as well as within the Bosonized framework known as the non-linear sigma model [44, 7].

As already mentioned the work of the previous two decades explained the Boson-peak

anomaly in terms of sound waves with spatially dependent fluctuating sound veloci-

ties, or elasticity constants [69, 66, 64, 71]. These models have been solved with the
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1 Introduction

Figure 1.3: Left: reduced density of states g(E = ~ω)/E2 of Dibutylphtalat, obtained from inelastic
Neutron-scattering (full symbols) and with nuclear inelastic scattering at Mösbauer-57Fe-
isotopes within the same material (open symbols) [16]. The different decayrates are not
yet full understood.
Right: reduced density of states of Myoglobin (mb), Poly-Butadien (pb) and Ortho-Terphenyl
(otp), obtained from inelastic Neutronscattering [16] reduced density of states g(E = ~ω)/E2

of (a) amorphouos Fe0.25Sc0.75, (b) amorphouos Fe0.67Sc0.33, (c) amorphouos Fe0.14Al0.86,
obtained from inelastic Neutronscattering [61]
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1 Introduction

Figure 1.4: reduced density of states g(E = ~ω)/E2 of amorphous FeSi2, obtained from inelastic nucleon
scattering [84]

help of ad-hoc molecular field dynamics (effective-medium-approximation, coherent-

potential-approximation) as well as with field theoretic methods (self consistent Born-

Approximation).

The last theory is a saddle-point approximation of the effective field theory, which

comes from the statistical average of the functional integral representation of the vac-

uum Green’s function. With the help of these mean-field solution, it was possible to

explain a vast number of quantitative agreements with the experimental measured

vibrational spectra. With the help of this mean field theory it was also possible to ex-

plain the Raman spectra [71] as well as thermal properties, likewise the specific heat or

thermal conductivity of a glass [63]. The important aspect of this theory was the expla-

nation of the Boson-peak anomaly which marks the transition from nearly unperturbed

propagating waves to random matrix eigenstates. For random matrix eigenstates the

wave-number k has no importance.

Within a generalization of this approach onto large frequencies we will explain the large

frequency exponential tails of the above experiments in analogy with the electronic
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calculation [75].

As we explained above, these tails are just well known in disordered metals and semi-

conductors, but have just been recently discovered at the upper band edge of the

vibrational spectra of glasses [16, 84, 61]. Within the present work we will show that

the same theory just happens to have large frequency localization corrections, yield-

ing to the so called Lifshitz tails in glasses. This correction stems from the localization

of sound-waves within fluctuations of the sound-velocity, capable of decelerating the

phonons. The decay-rate of the exponential tail is just the disorder parameter describ-

ing the mean-square deviation from the averaged squared sound velocity.

A consistent explanation of the upper edge of the vibrational spectrum is of extreme

importance for the comparison with experimental data, as the discussion has so far

concentrated around the low frequency Boson-peak anomaly. The effect of the local-

ization transition which happens at the upper frequency edge was so far unknown.

1.4 The Anderson transition

Just to clarify from which point we enter the discussion of localization in phononic sys-

tems, it helps to do some brief review on the present day calculations of weakly disor-

dered electrons without interactions.

In order to explain the vibrational spectra of glasses at low frequencies, Schirmacher et

al. always worked within close correspondence to these calculations.

Indeed we will also do so within the present work. The instanton approximation, which

we will discuss for the sound-wave problem within the Keldysh framework, has been car-

ried out for electrons within the replica theory by Cardy [15]. We will apply this method

onto the phononic problem, however using the Keldysh technique which is slightly differ-

ent. Then we show how the same correction can be rediscovered within the Bosonized

version of the theory, using the Keldysh language. This refers to the method developed

by McKane and Stone for the Anderson-transition within the replica language.

The transition described by Anderson 1958 appeared initially as the quantum version

of the percolation transition in a classical Lorentz model: The electrons get trapped
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within the potential hills. At higher energies Mott then showed that there appears a

mobility edge [53, 54] which separates localized from delocalized states. Mott and

Twose proved furthermore that in one dimension only localized states can exist [55].

1979 the paper of Abrahams, Anderson, Licciardello and Thouless [1] appeared, in

which they showed that in addition to the percolative aspect a quantum interference

effect is important: The destructive interference of closed scattering paths, traversed

in different directions leads to strict localization also in two dimensions. The percolative

aspect is characterized only by the density fluctuations, for the interference effect the

phase fluctuations (Cooperons) are responsible. The one-parameter scaling theory of

Abrahams et al. [1] is equivalent to the scaling theory of Wegner [85, 86]. He noticed

from the symmetry properties of the localization problem an analogy to the nonlinear

sigma model of planar magnets or nematic liquids.

1978 Götze published a mode-coupling theory for the Anderson transition in the Mori-

Zwanzig formalism, which contained only the density and not the phase fluctuations.

[27]. After the appearance of the paper of Abrahams et al. [1] Vollhardt and Wölfle

[82, 83]. published a field-theoretically derived mode-coupling theory, which included

the interference effect, and, correspondingly predicted localization in one- and two-

dimensional systems and a transition in three dimensions. It contains the scaling sce-

nario of Abrahams et al.. A generalization of the Mori-Zwanzig mode-coupling theory

for the Anderson transition by Götze and co-workers [6], which included the interfer-

ence effect, appeared afterwards.

The theory of Vollhardt and Wölfle appears as very reliable in describing the Anderson

transition. It can be transcribed to give a self-consistent theory for the ac conduc-

tivity, in which the unrenormalized conductivity obtained from a one-particle theory

appears as input. Further simplified, a mathematical analogy to the determination of

a localized state within a potential [18]. Using this theory, combined with the coherent-

potential approximation, very accurate phase diagrams - as compared to simulations

- for the electronic [19, 19, 92, 76] and phononic [12, 70] localization problem could be

calculated.

In two articles, which appeared independently, McKane and Stone [52] and Schäfer
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1 Introduction

and Wegner [62] showed that Wegner’s generalized nonlinear sigma model could be

derived step by step from the functional integral representation of the Green’s func-

tion. In order to average over the quenched disorder the replica method was used

[20], which is one of the three methods to perform such an average. The second is

the super-symmetry method [21], the third is the use of the Keldysh-Schwinger contour

[39]. After the averaging a non-local φ4-type field theory appears with a nonlinear

kinetic term and a mass term, the coupling parameter is given by the variance of

the random potential. The action of this theory can be expressed in terms of matrix

fields by a Bosonization procedure (Hubbard-Stratonovich transformation [7]) or by the

ghost-field method of Fadeev and Popov [8]. If the variance is small with respect to

the Fermi energy, the matrix field can be determined by a saddle-point approximation

(self-consistent Born approximation). This is followed by a gradient expansion of the ac-

tion around the saddle point to quadratic order, retaining only mass-less fluctuations,

which correspond to the angle fluctuations in the normal sigma model. The generalized

nonlinear sigma model is established to constrain the matrix fields to leave the disorder-

induced mass term invariant. One distinguishes — as in the Wigner-Dyson classifications

of random matrices — between the orthogonal, the unitary and the symplectic sym-

metry class. In addition to these symmetries additional classes of topological symmetry

exist, which characterize systems with stable defects, for example a boundary between

a metal and a superconductor [4].

By means of the perturbative renormalization group on one-loop order the phenomeno-

logical one-parameter scaling theory of Abrahams et al. is derived. The transition in-

volves a fixed point of order ε = d − 2, showing that the conductivity vanishes under

renormalization group flow in two dimensions.
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2 Localization within the

Keldysh-framework

2.1 Brief summary of the Keldysh formalism

Many excellent reviews about the Keldysh method exist in the literature. For condensed

matter path integrals one should read the Kameneev review [39], an older approach

using time-ordered field operator expansion for quantum transport has been provided

by Rammer and Smith [60], and if one is interested on the use of the method in high-

energy physics i highly recommend the lecture of Berges [9]. We also mention the

Doi-Peliti lecture of Cardy, which is a similar field theory for classical diffusion reaction

systems.

In the following we work out the Keldysh formalism within the semi-classical represen-

tation, because the above literature focuses on the Keldysh approach to interacting

particles within the secondly quantized Heisenberg-picture, which is not used within

the present work.

In quantum statistical mechanics one is usually interested in calculating time-dependent

observables from

o(t) = Tr
[
ôe−iĤtρ̂eiĤt

]
(2.1)

, where the density matrix carries information about the initial state of the system. In

an equilibrium system it commutes with the Hamiltonian Ĥ and no dynamics appear.

23



2 Localization within the Keldysh-framework

This is the usual Schrödinger picture, and not the Heisenberg picture, which includes

adiabatic switching off the interaction.

In the path-integral approach onto the Keldysh formalism one introduces coherent

states which are inserted left and right to the density matrix (labeled by ±), together

with the usual time-slicing procedure.

o(t) =

ˆ
D[φ+, φ−]〈φ|o|φ+(t = δn)〉...|φ+(δ)〉〈φ+(δ)|e−iĤδ|φ+(0)〉

×〈φ+(0)|ρ̂|φ−(0)〉〈φ−(0)|eiĤδ|φ−(δ)〉...〈φ−(t = nδ)|φ〉 (2.2)

Note that the quantity 〈φ+|e−iHt|φ+〉 is just the usual vacuum propagator which is differ-

ent from the path integral average

ˆ
D[φ+, φ−]φ+(t)φ(t′)+e

iS (2.3)

due to the fact, that the forward and the backward fields φ+, φ− are connected through

the density-matrix factor 〈φ+(0)|ρ̂|φ−(0)〉 and the evaluation of the trace at non-measurable

time points.

The evaluation of the trace yields the factor

ˆ
dφ〈φ|φ+(T )〉〈φ−(T )|φ〉 = δ(φ+(T )− φ−(T )) (2.4)

which constrains the path integral to those configurations where φ+ equals φ− at the

boundary.

From the mathematical point of view one would ask why these two infinitesimal factors

cannot simply be ignored. This is well known: one does not change a function (in the

present example the Lagrange function which is integrated with respect to time) which

makes sense only after integration, when changing it at a countable set of points. It is

interesting, because it tells you something about the limits of the time-slicing procedure.
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2 Localization within the Keldysh-framework

Obviously the continuum limit for time-degrees of freedom is not unique, it depends on

the initial state. If it is unique, it is representing a physical system, whose properties are

independent of the initial state, which certainly would be the vacuum.

However, on the other hand it just reminds you to evaluate the path integral by finding

the regularization you are interested in.

For initial density matrices which can be expressed in terms of an exponential of field

operators, you are just left with a replicated vacuum theory in presence of external

sources. For example if you are interested in a Gaussian theory with a thermal initial

state the action would look like

S = i

ˆ T

0

dt

(
φ+(t) φ−(t)

) G−1(t) 0

0 −G−1(t)


 φ+(t)

φ−(t)

 (2.5)

−βφ+(0)φ−(0)− iδ(φ+(T )− φ−(T )) (2.6)

For an infinite time contour, this can at least be evaluated formally by means of Gaus-

sian functional integration

〈φ±φ±〉 =

ˆ
dδi

 G−1(t, t′) β
2
δt0δt′0

−β
2
δt0δt′0 −G−1(t, t′)


−1

e

iδ

(
1 1

)
G−1(t, t′) β

2
δt0δt′0

−β
2
δt0δt′0 −G−1(t, t′)


−1

1

1

δ+lnZ

(2.7)

Berges et al. [9] used to work within this ± representation. The difficulty within this repre-

sentation is the evaluation of the partition function lnZ which should not contribute to

the dynamics.

Keldysh was the first to discover that because of the structure of the integration contour
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2 Localization within the Keldysh-framework

S = Sdyn + Sin (2.8)

Sdyn = S[φ+]− S[φ−] (2.9)

Sin = f(φ+(0), φ−(0)) (2.10)

a rotation in symmetric and anti-symmetric fields

φcl =
φ+ + φ−√

2
(2.11)

φq =
φ+ − φ−√

2
(2.12)

greatly simplifies the structure of the theory. The reason is as follows. As 〈eiS〉 = 1 per

definition, the averaged dynamical part of the action has to vanish 〈Sdyn〉 = 0. The

classical component is up to additive constants directly related to the observable. If

the dynamical action contains a purely classical term, and the related observable

is non-zero, also the dynamical action would be non-zero 〈Sdyn〉 6= 0 . The rotation

(2.11,2.12) just removes such contributions from the dynamical action. Therefore the

dynamical part of the action can not contain a pure classical configuration. Note that

this is not true for the part of the action associated with the initial condition.

Here

〈eSin〉 = Trρ =

ˆ
dφcldφqδ(φq)ρ(φcl + φq, φcl − φq) = 1 (2.13)

but in general the density matrix cannot be suggested to be an unnormalized expo-

nential.

Therefore ρ(φcl + φq, φcl − φq) depends on the classical field and the integral cancels a

normalization factor.

The normalization (2.13) allows for the expansion of the initial condition:
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2 Localization within the Keldysh-framework

ˆ
dφcl(0)ρ(φcl(0), φq(0))|φq=0 = 1 (2.14)

Tr
[
φ̂nρ̂
]

=

ˆ
dφclφ

n
clρ(φcl(0), φq(0))|φq=0 = 〈φn〉 (2.15)

According to the linked cluster theorem [87]

ln

ˆ
dφcle

iφqφclρ(φcl, φcl) = i〈φ〉φq −
1

2
(〈φ2〉 − 〈φ〉2)φq

2 + ... (2.16)

.

However, this does not fix any initial correlation involving a power of the quantum com-

ponent.

For this one has to look one step back onto the early time evolution

ρ(δ, δ) =

ˆ
dφ+(0)dφ−(0)|φ+(δ)〉〈φ+(δ)|e−iHδ|φ+(0)〉 (2.17)

×〈φ+(0)|ρ|φ−(0)〉〈φ−(0)|eiHδ|φ−(δ)〉〈φ−(0)|

=

ˆ
dφcl(0)dφq(0)eiφcl(δ)G

−1
r (δ,0)φq(0)+iφcl(0)G−1

r (δ,0)φq(δ) (2.18)

×ρ(φcl(0), φq(0))ei(φcl(0))G−1
a (0,δ)(φq(δ))+iφcl(δ)G

−1
a (0,δ)φq(0)

.

Trough this work φ is related to a classical variable, likewise position or displacement.

Beside the labeling, the classical part of the density matrix contains already the full

quantum mechanical information. Obviously the configuration 〈φcl〉 = φ, 〈φq〉 = 0 is a

possible classical result of a measurement. Quantum mechanics drops in at non-trivial

two-point functions 〈φ2
cl〉 6= φ2.

Therefore one can use the parametrization (2.16) and set the Keldysh-component to

zero in the beginning.

Then one can evaluate the integral over the initial classical component via cumulant

expansion
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2 Localization within the Keldysh-framework

ρ(δ, δ) =

= δ(φcl(δ)G
−1
r (δ, 0) +G−1

a φcl(δ))

ˆ
dφcl(0)eiφcl(0)G−1

r (δ,0)φq(δ)ρ(φcl(0), φq(0) = 0)eiφcl(0)G−1
a (0,δ)φq(δ)

= δ(φcl(δ)G
−1
r (δ, 0) +G−1

a φcl(δ))e
i〈φ〉G−1

r (δ,0)φq(δ)− 1
2
φq(δ)G

−1
r (δ,0)(〈φ2〉−〈φ〉2)G−1

a (0,δ)φq(δ)+... (2.19)

Hence, if one characterizes an initial density matrix via correlations of a classical vari-

able, the evolution carried out within an infinitesimal time step requires the classical

field to satisfy the classical equation of motion, while the non trivial quantum correla-

tions translate into various initial correlations of the quantum component.

The classical phase-space factor δ(φcl(δ)G−1
r (δ, 0)+G−1

a φcl(δ)) may be dropped, because

one may insert the solution (Gr(δ, 0) +Ga(0, δ))φ(0) yielding an infinite normalization con-

stant only at the first time step, which cannot generate dynamics. This has to happen.

For a pure classical configuration φcl, φq = 0 , the dynamical action would be zero. The

integral over eiSdyn[φcl,0] hence is a integral over unity and will diverge. As always working

with path integrals, one has to single out those zero modes. In the continuum limit the

sum Gr(t, t) +Ga(t, t) cancels, leaving just an initial δ(0).

So for any non-classical, e.g. statistical initial condition, the Keldysh matrix is tri-diagonal,

S = i

ˆ (
φcl φq

) 0 G−1
r

G−1
a G−1

k (φq)


 φcl

φq

 (2.20)

which can now be easily evaluated, by inversion of the tridiagonal matrix.

This is the common way of regulating the Keldysh path integral. However it does not

follow immediately.

For the case of writing down an operator expansion of the density-matrix likewise in the

previous example the initial condition already contains both, classical and quantum

fields.

Applying the rotation (2.112.12) in quadratic (Bosonic) theory, one finds the dynamical
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2 Localization within the Keldysh-framework

action to be

S = i

ˆ T

0

dt

(
φcl φq

) G−1
K G−1

G−1 −G−1
K


 φcl

φq

 (2.21)

with G−1
K (t, t′) =

iβ

2
δ(t)δ(t′). The linear constraint, which we don’t write into the action

from now, can be enforced by evaluating the path integral over such configuration

where the quantum component vanishes at the boundary φq(T ) = 0. Also the higher

moments of φq have to vanish. Therefore this term can be guessed to belong to the

dynamical part of the action.

Integrating out the initial classical field yields a tridiagonal matrix, where the off-diagonal

components and the quantum-quantum component of the action, got an infinitesimal

regularization.

Now the Green’s function can be easily inverted by means of inversion of the tridiago-

nal matrix with out further normalization factors

〈φcl/qφcl/q〉 =

 G ◦GK ◦G G

G 0

 (2.22)

To summarize, one can ignore about the classical-classical part of the initial density

matrix, because it is a pure normalization which does not contribute to dynamics.

The best way to get rid of it is to perform an infinitesimal evolution step.

Then again the quadratic system is described by a tridiagonal matrix

S = i

ˆ ∞
−∞

dt

(
φcl φq

) 0 G−1 + iε

G−1 − iε G−1
K


 φcl

φq

 (2.23)

which is readily inverted. We inserted convergence factors which do not alter the value

of the integral as φqφcliε− iεφclφq = 0.

The reason is, that G−1 has zero values and can in general not be inverted. Without the

ε term, one would have to exclude those zeros from the integral, and integrate over the

29



2 Localization within the Keldysh-framework

fluctuations, which would also be a possibility.

The ε term allows for direct inversion, where (G−1±iε)−1 = Gr/a is the usual retarded/advanced

Green’s function, according to the usual response formalism. Through the construction

of fixing the initial Keldysh component via infinitesimal evolution of correlations of the

classical expectation value, this convergence factor also appears within the Keldysh

component.

For Gaussian initial correlations, G−1
K(t, t′) = −

´ ´
G−1

r(t, t1)〈φk(t1)φk(t2)〉−1G−1
a(t2, t

′).

This is, because we at least now, that the full action is tri-diagonal, and hence inversion

of the G−1 matrix yields 〈φk(t)φk(t′)〉 = −Gr ◦G−1
K ◦Ga.

In addition we extended the time-integration from −∞ to ∞: first after the evaluation

of the observable, time-evolution can be trivially extended to∞ by means of

Tr[ôe−iĤT ρ̂eiĤT ] = Tr[eiH(t−T )e−iH(t−T )ôe−iĤT ρ̂eiĤT ] (2.24)

, yielding a new constraint at t =∞.

However, as we already knew, that this deformation only contributes a factor of 1 we

could also keep the old constraint.

Second, the additional unity from −∞ to 0 can be inserted by means of

ρ(φ+(0), φ−(0)) = 〈φ+(0)|ρ̂|φ−(0)〉 = 〈φ+(0)|e−iHδeiHδρ̂e−iHδeiHδ|φ−(0)〉 (2.25)

= 〈φ+(0)|e−iHδ|φ+(−δ)〉〈φ+(−δ)|eiHδρ̂e−iHδ|φ−(−δ)〉〈φ−(−δ)|eiHδ|φ−(0)〉 (2.26)

= 〈φ+(0)|e−iHδ|φ+(−δ)〉〈φ+(0)|e−iHδeiHδρ̂e−iHδeiHδ|φ−(0)〉〈φ−(−δ)|eiHδ|φ−(0)〉 (2.27)

= 〈φ+(0)|ρ̂|φ−(0)〉〈φ+(0)|e−iHδ|φ+(−δ)〉〈φ−(−δ)|eiHδ|φ−(0)〉 (2.28)

.

It is then also known, that if GK satisfies GK = GR ◦ G−1
K ◦ GA it can be parametrized

as GK = GR ◦ F − F ◦ GA, where the Wigner-transformed of F would be called the

Wigner distribution function, which satisfies the equation of motion [−G−1

r , F ] = 0. An
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2 Localization within the Keldysh-framework

elementary example is provided within Appendix II.

Hence, one does not need to care much about the parametrization of the initial state.

Of course one can use (2.2) in general with an arbitrary complicated state, and use

Doi-Peliti-like schemes to derive exact equations of motions for the specific state. How-

ever, from the symmetry of the Keldysh action one at least knows how to include ini-

tial n-particle correlation functions directly into the dynamical part of the action, and

therefore can get rid of the partition function Z, which for example was a difficulty in

theory of disordered solids, where this quantity was disorder dependent.

The big advantage for the dynamical approach is hence, to replace the regularization

(2.19) with one which allows for an easier evaluation (2.23) of the integral.

For theories of disordered solids there is also a second advantage. The perturbation ex-

pansion of the propagator on a single branch φ+φ+ would need a special normalization-

factor, the so called vacuum diagrams, which include the quantity which is disorder

dependent.

In a vacuum or finite temperature approach one had therefore to average the loga-

rithm of the partition function which needs to be expanded by means of the replica

trick. This always yielded problems with the analytic continuation of some replica in-

dices, in order the evaluate some diagrams.

In contrast the Keldysh partition function always evaluates to unity in absence of sources,

and in the perturbation series vacuum diagrams cancel each other, because it is an

expansion with respect to the difference of the action on the forward and backward

branch Sdyn = S[φ+]− S[φ−].

Also interacting theories can be treated efficiently with the Keldysh method.

First of all the dynamical term for the two-particle interaction would be

V = n+n+ − n−n− = nclnq + nqncl (2.29)

ncl = φclφcl + φqφq (2.30)

nq = 2φqφcl (2.31)
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2 Localization within the Keldysh-framework

The term to describe an initial 2 particle distribution would hence be

ˆ ˆ
nq(x, t)S

−1(x, t, y, t′)nq(y, t
′) =

ˆ ˆ
φcl(x, t)φq(x, t)S

−1(x, t, y, t′)φcl(y, t)φq(y, t) (2.32)

, because it is the only one which can not be generated from a Hamiltonian quantum

evolution and does also not affect the normalization of the path integral.

We will later see, that averaging a quadratic theory will yield to a term of similar struc-

ture, however with an additional factor i. It is hence fair to say, that time evolution

within disordered potential is at least technical similar with time evolution in presence

of non-trivial two particle initial correlations.

Like in vacuum or finite temperature field theory, one may show that the 1-particle

propagator satisfies Dyson’s equation

(
0 G−1

r − Σr

G−1
a − Σa −ΣK

)(
GK Ga

Gr 0
) = δ(t− t′)

 1 0

0 1

 (2.33)

where the Self-energy Σ is believed to share the spectral structure of the 1-particle

Green’s function, and calculated from the usual truncation rules.

After Wigner-transformation and additional Gradient expansion this happens to be the

Boltzmann-equation.

Also the Bethe-Salpeter equation for the 2 particle Green’s function can be generalized

(
0 D−1 − Πr

D−1 − Πa −ΠK

)(
SK S

S 0
) = δ(t− t′)

 1 0

0 1

 (2.34)

where D is the free irreducible density propagator, and π the self-energy part of the

irreducible 4-point function with respect to the free propagator D.

Equations of this type follow from an expansion of the action in terms of the density

modes. Frequently equations of this type are examined to discuss many-body localiza-
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2 Localization within the Keldysh-framework

tion.

However for the previous approach, the two-point function is of greater importance,

as for vibrational excitations in glasses, the experimental observable which is frequently

investigated is the dynamical structure factor S(x,x′, t, t′) = 〈ρcl(xt)ρcl(x′t′)〉. For sound-

waves, the density is (up to a constant) just the divergence of the displacement-field

ρ = ∇ ◦ ~u+ ρ0, and hence it is sufficient to study the dynamics of the two-point function.

2.2 Sound wave action

Throughout this work we are interested in the dynamics of the displacement field u(x, t)

describing the deformation of an elastic continuum at position x and time t. We want

to rework the theory of localization, e. g. the instanton formalism of Cardy, and the

usual non-linear sigma model for this kind of waves.

For sake of simplicity we will start out with a single kind of sound-waves, e. g. longitu-

dinal phonons ∇× û(x) = 0. If û(x) is a real valued displacement operator, the energy

operator of the sound waves would be

Ĥ =
1

2

ˆ
ddx

(
c2∇ ◦ û(x)∇ ◦ û(x) + π̂(x) ◦ π̂(x)

)
(2.35)

, where Π̂(x) would be the canonical momentum operator π̂ = (πx, πy, πz). (The density

of the elastic medium has been set to 1).

The time-slicing procedure would be insertion of eigen-states of û(x) right to the evolu-

tion operator, and eigenstates of Π̂(x) left to the evolution operator.

The fundamental axiom of quantum mechanics states 〈π(x)|u(x)〉 = eiΠ(x)◦u(x), where we

also set ~ = 1.

So
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2 Localization within the Keldysh-framework

〈Π|e−iĤδ|u〉 = exp

[
i

ˆ
ddxΠ ◦ u− i

2

ˆ
ddx

(
c2∇ ◦ u(x)2 + |π(x)|2

)
δ

]
(2.36)

.

After time-slicing and continuum limit one gets the action

S =

ˆ
dtddx

[
Π ◦ ∂tu−

c2∇ ◦ u(x, t)2 + |π(x, t)|2

2

]
(2.37)

on each branch.

In the Keldysh description the momentum-field can readily be integrated out leaving

an action in terms of the real valued displacement field

S =
1

2

ˆ
dtddxu(x, t) ◦ (−∂2

t + c2∆)u(x, t) (2.38)

on each branch.

Initial correlations of the momentum-field can be ignored, because it is a pure regular-

ization. Keeping those terms rigorously would just translate into a modified initial corre-

lation of the displacement field. This is the great advantage of the Keldysh-description

for dynamical purpose. Initial correlations (regularization) can be replaced (ignored)

with some which make the evaluation of the path integral more feasible.

We elaborate this regularization further for the case of a thermal initial state in the one-

dimensional example

ρ̂ =
e−βĤ

Z
=

exp
[
−β

2

´
dx (∂xû(x)2 + π̂(x)2)

]
Z

(2.39)

This may be included by adding a Matsubara branch at t = 0, integrating the action

within imaginary time direction. Then the Keldysh-component would have been set au-
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tomatically to G−1
K =

1

2
coth

(
β~ω

2

)
, which is the outcome of the Matsubara summation,

as performed in [87].

However, we can also try to include this directly onto the the Keldysh contour

ρ(u+(0), u−(0)) =

ˆ
dπ+(0)〈u+(0)|π+(0)〉〈π+(0)|

exp
[
−β

2

´
ddx (∂xû(x)2 + π̂(x)2)

]
Z

|u−(0)〉

(2.40)

=

ˆ
dπ+(0)

exp
[
−iδ∂tu+(0)π+(0)− β

2
(∂xu−∂xu− + π+π+)

]
Z

(2.41)

=

exp

[
− δ

2

2β
∂tu+∂tu+ − β

2
∂xu−∂xu− + const.

]
Z

(2.42)

.

The temperature factor is related with the small time-step. Hence one sets β = δβ′

yielding

exp

[
−δ

2
(β′−1∂tu+∂tu+ + β′∂xu−∂xu−) + const.

]
Z

(2.43)

.

Clearly (2.43) is a linear evolution factor. With this one can calculate the limit

limδ→0〈ucl(δ)ucl(0)〉, which determines the initial Keldysh component through tridiagonal

inversion.

Setting δ = β, would immediately restore the Boltzmann factor with the initial classical

sound wave energy.

Again, the initial normalization can be killed integrating out the classical displacement

fields and the full momentum field (the β′-factor is included into the derivatives for the

moment)
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ˆ
ducl(0)

exp

[
−δ

2

{(
(∂tucl) + (∂xucl)

2)+
(
(∂tuq)

2 + (∂xuq)
)}
− δ (∂tucl∂tuq − ∂xucl∂xuq)

]
Z ′

(2.44)

=

ˆ
ducl(0)

exp

−δ
2

(
ucl uq

) ∂lt∂
r
t + ∂lx∂

r
x −∂lt∂rt + ∂lx∂

r
x

−∂lt∂rt + ∂lx∂
r
x

(
∂lt∂

r
t + ∂lx∂

r
x

)

 ucl

uq




Z ′
(2.45)

= exp

[
δ

2

ˆ
ddxuq

(−∂lt∂rt + ∂lx∂
r
x)

2 −
(
∂lt∂

r
t + ∂lx∂

r
x

)2(
∂lt∂

r
t + ∂lx∂

r
x

) uq

]
(2.46)

= exp

[
δ

2

ˆ
ddkdωdω′uq(ω, k)

(−ωω′ + k2)2 − (ωω′ + k2)
2

(ωω′ + k2)
uq(ω

′, k)

]
(2.47)

= exp

[
−δ

2

ˆ
ddkdωdω′uq(ω, k)

ωω′k2

(ωω′ + k2)
uq(ω

′, k)

]
(2.48)

One has to think about the allowed frequencies.

For the non-interacting sound wave system, the Keldysh partition function is a product

of wave number dependent exponentials. The initial factor is Gaussian distributed with

the quantum field, initially the quantum component has zero expectation value.

Hence for the classical frequency ω(k) = ck the action is zero, and no quantum evolu-

tion is carried out, uq = 0 automatically.

For non-classical frequencies uq(t/~) = 0, due to the evaluation of the trace at the

boundary, hence ωn(k) = ck(1 +
nπ

δ
).

Hence quantum mechanics drops out in the limit of large times or large temperatures.

Evaluating the the Keldysh partition function yields

∑
nm

〈ucl(ωn, k)ucl(ωm, k〉 =
β

2

∑
nm

1

ω2
n − k2 + iε

ωnωmk
2

(ωnωm + k2)

1

ω2
m − k2 − iε

(2.49)

=
1

2

∑
n

βk2

(ω2
n + β2k2)

=
1

2
δ2k coth(βk) (2.50)

In order to have a finite classical correlation function, the small δ factor has to be iden-

tified with the regularization factor ε of the dynamical Green’s function
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Sdyn = S[u+]− S[u−] (2.51)

=
1

2

ˆ ∞
−∞

dtddx

(
ucl uq

) 0 −∂2
t + c2∆ + iε

−∂2
t + c2∆− iε ε2

´
dωω coth(

β~ω
2

)eiωt


 ucl

uq

 (2.52)

and hence

〈ucl(ω, k)ucl(ω, k)〉 =
1

2

ε2k coth(
β~ω

2
)

(ω − ck)2 + ε2
=


ω

2
coth(

β~ω
2

) ω = ck

0 ω 6= ck

(2.53)

.

Note that the appearance of the frequency-factor in front of the hyperbolic cotangent

is due to the use of the semi-classical expansion. In the secondly quantized picture, this

factor is canceled by the normalization of phonon creation and annihilation operators

a+ ∝ 1√
ω

, and hence the normalization of the phonon coherent states.

In general this is a very difficult method to determine the initial thermal state.

Within the Keldysh prescription this can be omitted, by introducing an generic e. g.

anharmonic interaction and calculate the self-energy correction to linear order for ar-

bitrary states.

Then the equilibrium density matrix is determined from the requirement that these cor-

rections have to vanish, which for Bosons yields to the Bose-factor with undetermined β

factor.

In any case, an arbitrary state can be introduced using the tridiagonal inversion proce-

dure.

2.3 Keldysh action

For scalar sound waves the dynamical action is hence given by
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2 Localization within the Keldysh-framework

Sdyn = S[u+]− S[u−] (2.54)

=
1

2

ˆ
dtdt′ddx

(
ucl uq

)
◦

 0 −∂2
t − c2←−∇∇ ◦ −iε

−∂2
t − c2←−∇∇ ◦+iε G−1

k


 ucl

uq

 (2.55)

where the Keldysh component G−1
K accounts for the initial 2-point function.

←−
∇ is the left

acting gradient operator u ◦
←−
∇ = ∇ ◦ u.

If one wants to add for example an initial energy-correlation function, which is a special

kind of 4-point function, one would have to add the term

ˆ ˆ
uiq(x, t)u

j
cl(x, t)Φ

lm
ij (x, t;yt′)ulq(yt

′)umcl (yt
′) (2.56)

, because it is the only one which allows for a conservation of the Keldysh partition

function (equals 1), but cannot be generated by a 4-point part of the Hamiltonian.

The same term would be generated, by attaching the elastic medium to some kind of

external heat bath [90]. Here Φ would be called the spectral function of the heat bath.

Now to the disorder.

It is very well established, that the vibrational degrees of freedom of a glass, can be

phenomenological described by a set of randomly distributed systems with spatial de-

pendent force constants.

It needs not necessarily be Gaussian, however modeling a glass, it should be spatially

independent on average.

So we introduce an arbitrary statistical weight P [c2(x)] with

∑
P [c2(x)]c2(x) = c2 (2.57)

, and arbitrary higher correlation functions. If its Gaussian then only the second irre-

ducible correlation function
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2 Localization within the Keldysh-framework

∑
P [c2(x)]

(
c2(x)− c2

) (
c2(y)− c2

)
= K(x,y) (2.58)

is different from zero.

Therefore, one has to calculate observable quantities from (2.55), with arbitrary c2(x),

and average them over all configurations. This limit is believed to be exchangeable,

average the diagrammatic series for a certain observable first, and then try to re sum.

In the Keldysh-prescription this can be done immediately.

In vacuum or thermal field theory the path integral always contains a possible infinite

phase factor eiϕ which is included in the normalization of the partition function, depend-

ing on the Hamiltonian and hence the statistical fluctuating quantity, which needs to

be taken into account.

In Keldysh theory, this factor will be always canceled by the same on the backward

branch e−iϕ , and no disorder dependent normalization occurs.

Therefore the statistical average over the Keldysh partition function can be done im-

mediately via cumulant expansion [59, 87]

∑
P [c2(x)]eic

2(x)(∇◦ucl∇◦uq) (2.59)

= eic
2
´
ucl∆uq− 1

2

´ ´
K−1

(2)
(x,y)(∇◦ucl∇◦uq)(∇◦ucl∇◦uq)+ 1

3

´ ´ ´
K−1

(3)
(x,y,z)(∇◦ucl∇◦uq)(∇◦ucl∇◦uq)(∇◦ucl∇◦uq)+...

where K−1
n is the inverse n-sound velocity correlation function.

Therefore a theory of disordered phonons is a free theory, subjected to the disorder

induced interaction

Sdis[ucl, uq] =
∞∑
n=2

K−1
(n)

n∏
i=1

ˆ
ddxidti(∇xi ◦ ucl(xi, ti)∇xi ◦ uq(xi, ti)) (2.60)

. For weakly correlated disorder, this series can always be truncated at n = 2, which
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2 Localization within the Keldysh-framework

however has the problem of allowing for imaginary sound velocities, which is believed

to be unphysical. Recent investigations showed, that there is no difference between a

Gaussian and a truncated Gaussian distribution, as long as the fluctuation of the sound

velocity is not to large [43].

To second order the theory is structural similar with the theory of phonons which couple

to a heath bad, the dissipative quantum tunneling problem [90]. However, due to the

extra factor of i the real and imaginary part of the spectral function would have been

interchanged, and there is no time correlation.

2.4 Instanton approach onto localization

Up to Gaussian order in the disorder term the path integral one has to solve is

ˆ
D[uq, ucl]e

iS (2.61)

iS =
i

2

ˆ
dtdt′ddx

(
ucl uq

)
◦

 0 −∂2
t + c2∆ + iε

−∂2
t + c2∆− iε G−1

k


 ucl

uq


−γ

2

ˆ
dtdt′ddx (∇ ◦ uq∇ ◦ ucl)t,x (∇ ◦ uq∇ ◦ ucl)t′,x (2.62)

where we introduced the so called disorder parameter

K(x− y) =
γ

2
δ(x− y) (2.63)

, describing the range of the local fluctuations of the squared sound velocity.

A saddle-point approximation of an ordinary integral over an exponential assumes that

the exponential can be written into the form

eiNf(x) (2.64)
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2 Localization within the Keldysh-framework

with N a large number. Then the exponential factor is strong oscillating and the integral

is dominated by the stationary-points of f(x), while corrections can be shown to be of

the order 1/N . However this is not true for the expression (2.62). The disorder part is of

the form

e−
γ
2
f(x) (2.65)

, a factor which is dominated by the minima of f(x) as long as γ is a large number.

In order to identify some expansion parameter think of the following. Scattering within

a static potential cannot change the energy/frequency of a sound wave. The same

holds for the weighted average over individual static potentials. Hence locally ∂xu ∝ ω

holds. The disorder part of the action hence scales according to

e−
ω4−d

2γ
(∂ũ)4

(2.66)

, where γ has moved to the denominator due to the scaling transformation u = γ−
1
2 ũ.

Hence in 3 dimension a simple saddle-point works for frequencies large with respect to

the disorder parameter.

Clearly if ω falls below the disorder-parameter no simple saddle-point applies. This would

be a strong coupling theory.

On the other hand if the frequency of the sound wave is large, it is scattered between

large fluctuations of the sound velocities, there will be regions of large fluctuations of

sound velocities substantially lower then the statistical average.

For such configurations the exponential would be like

e
−ω4+iω2

2γ (2.67)

, which tells you a simple saddle-point will in general work for frequencies large with

respect to the disorder parameter.
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2 Localization within the Keldysh-framework

Minimizing the action with respect to the fields uq, ucl at finite time-contour yields

i
(
−∂2

t + c2∆
)
ucl = γ∇

[(ˆ T

0

dt′∇ ◦ uq(t′)∇ ◦ ucl(t′)
)
∇ ◦ ucl(t)

]
(2.68)

i
(
−∂2

t + c2∆
)
uq = γ∇

[(ˆ T

0

dt′∇ ◦ uq(t′)∇ ◦ ucl(t′)
)
∇ ◦ uq(t)

]
(2.69)

.

First of all, if one seeks for a solution with uq = 0, the above equations just reduce to the

ordinary classical wave equation

(
−∂2

t + c2∆
)
ucl = 0 (2.70)

.

This is no accident as another global prefactor is
1

~
which we set to 1, hence the high

frequency expansion also incorporates a semi-classical expansion, which for a non-

interacting set of harmonic oscillators is known to be exact.

Note that for configurations of zero quantum component, the evolution on the forward

branch equals the evolution on the backward branch u+(xt) = u−(yt).

For observable quantities this equation must always be satisfied as

u+(t) = Tr [ûρ̂(t)] = Tr [ρ̂(t)û] = u−(t) (2.71)

〈u〉 =
1

2
(u+ + u−) =

1√
2
ucl (2.72)

0 =
1

2
(u+ − u−) =

1√
2
uq (2.73)

.

So the classical field always corresponds to observables (up to additive vacuum con-

stants). For an observable quantity, the expectation value of the quantum-component

has to vanish.

So what does a non-zero uq mean? First of all, one has to remember that the saddle-
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2 Localization within the Keldysh-framework

point solution is different from the exact expectation value of the field. If uq is different

from zero it is guaranteed that the exact expectation value 〈uq〉 = uq + O(1/ω) will be

reset to zero by the higher corrections.

To explore the meaning of the quantum component one has to remember about the

time slicing procedure. Here u+(t) is always one time-step ahead of u−(t). So within

time slicing the correct equation would be

u+(t− δ) = Tr [ûρ̂(t)] = Tr [ρ̂(t)û] = u−(t) (2.74)

which reduces to (2.71) in the continuum limit.

Therefore it is clear that the anti-symmetric combination u+(t) − u−(t) should be inter-

preted as u+(t+δ)−u−(t) whose expectation value is proportional to the time derivative

of the displacement field times an infinite small regularization factor, which can be can-

celed f.e. by Gaussian functional integration.

Hence non-zero quantum components within a saddle-point approximation contribute

to correlation functions, which in the present theory comes from a finite action, and

only have to vanish at the single instant at boundary uq(T ) = 0.

One can read of a possible saddle-point solution setting ucl = u = iuq/Θ(t) (quantum

component has been chosen in order to satisfy a causal evolution equation) yielding a

single equation for the real valued displacement field:

(
−∂2

t + (c2 − 3γ

ˆ t

−∞
dt′(∇ ◦ u(x, t′))2)∆

)
u(x, t) = 0 (2.75)

This is a classical theory of localization. If there is a region where a finite imaginary strain

condensates, this yields to a region whose sound velocity is substantially lower than the

average of the material.

The most interesting thing is the factor of 3 in front of the disorder parameter in equation

(2.75). On the level of the action the the force constant is
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2 Localization within the Keldysh-framework

c2(x) = (c2 − γ(∇ ◦ u)2) (2.76)

, which differs from the sound-velocity by the additional additive term 2γ(∇ ◦ u)2∆u.

This term describes the amplitude shift of a phonon moving in the spatial varying force-

constant landscape.

According to classical wave mechanics, wave propagation from the region with low-

ered sound velocity, into the region with the average higher sound velocity will be sup-

pressed, yielding a positive ratio ∆(u)i ∝ (u)ni .

Equation (2.75) is believed [15] to be safely replaced with the frequency diagonal

(
ω2 +

(
c2 − 3γ∇ ◦ u(ω, x)∇ ◦ u(ω, x)

)
∆
)
u(ω, x) = 0 (2.77)

yielding

∆u(ω, x) = − ω2

(c2 − 3γ∇ ◦ u(ω, x)∇ ◦ u(ω, x))
u(ω, x) (2.78)

Localization happens if
∆(u)i
(u)i

> 0, which is equivalent with (c2 − 3γ∇ ◦ u(ω, x)∇ ◦ u(ω, x)) <

0. The corresponding force-constants are (c2 − γ∇ ◦ u(ω, x)∇ ◦ u(ω, x)), which can be

positive anyway.

In words: Localization happens if the local variation of the force-constant falls below

the critical value
2

3
c2, where c2 would be the average force constant in absence of the

non-linear memory-effect.

In the latter we show, that equation (2.75) necessarily yields to such local critical be-

havior.

A phenomenological solution of the real-time integro differential equation (2.75) can

be developed as follows: Consider a classical solution to the wave-equation uq = 0
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2 Localization within the Keldysh-framework

which is located at position x0 at t = 0

ucl = u cos(ωt− kx) (2.79)

. As it is a classical solution it has the average sound velocity of the material c =
ω

|k|
. At

short times below the first period t � 2π

ω
the integral in equations (2.682.69) can safely

be neglected, because it does only produce time-oscillating corrections which should

not contribute to a long time steady state, likewise localized standing waves.

Hence knowing a classical displacement at the position x0 at t = 0 to zeroth order in

the disorder parameter γ

u
(1)
cl = u cos(ωt− k ◦ x) (2.80)

iu(2)
q = u cos(ωt− k ◦ x) (2.81)

solves the instanton equation with non-zero quantum component, but only for positions

reachable without disorder corrections from the integral hence for ω|x− x0| < 2πc.

Now insert this into the equation (2.75) and integrate over the first period.

Within the second period
2π

ω
< t <

4π

ω
the sound wave satisfies a wave equation with

lowered sound velocity

(
−∂2

t + (c2 − 3

2
γk2〈|u(1)|2〉0<t<2π/ω)∆

)
u(2) = 3γ

[(ˆ
∇ ◦ u(2)∇ ◦ u(2)

)
∆u

]
(2.82)

.

Again this can be solved by neglecting the integral first, yielding (2.82) with again low-

ered sound velocity, within the third period.

In order to have frequency conservation throughout the different time periods, the ever

lowered sound velocity has to be compensated by a ever shortened wavelength.

This can be iterated so forth, until the sound velocity reaches the critical value zero, and
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2 Localization within the Keldysh-framework

also the wavelength has gone to zero; wave propagation has stopped.

One can start of symmetrically with an wave from the opposite site which will stop at

the same point. The function which has been produced this way can be guessed to

have an Gaussian envelope.

Figure 6.1 just shows an possible outcome of this procedure.

Note that the effective wave number of this function is not k but 〈k〉 =
1

N

∑
n k

(n), where

n is the index of periods. In terms of the plane-wave propagator the peak will hence be

shifted towards larger wave numbers. This approximation of the memory kernel can be

thought to become exact in the limit of large frequencies, because the time-difference

between u(n) and u(n+1) becomes infinitely close. Also for large frequencies the integral

becomes,

lim
T→0

1

T

ˆ T→0

0

dtf(t) ∼ lim
T→0

f(t) (2.83)

can safely be replaced with its integrand, yielding just equation (2.77).

Note that the other possible instanton solution u′q = −uq, yields to a raised sound velocity,

hence a raised wavelength, which is not capable of localizing sound waves.

Finally some normalization condition has to be chosen, in order to obtain a unique

solution to (2.75).

As stated above, any propagating wave-like solution has to property of continuously

decreasing the sound velocity within a fixed arrow of propagation. At the critical point

xc

(c2 − 3γ∇ ◦ u(ω, xc)
2) = 0 (2.84)

, the Laplacian of the wave-function changes its sign, ∆u(ω, xc ± δ) ≶ u. Hence for a

continuous second derivative, the Laplacian at the critical point must vanish:

∆u(ω, xc) = 0. Reinsertion in eq. ( 2.75) yields u(xc) = 0, which tells you that the critical

sound-velocity has to be reached at a node point. Depending on the sign of ∇ ◦ u,
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xc divides the wave-like oscillating region ∆u(ω, |x| > |xc|) = −|c2(u)|u, from the critical

region ∆u(ω, |x| > |xc|) = |c2(u)|u where no further oscillations appear. In the critical re-

gion, the sound velocity decreases monotonously until the force constant reaches the

critical value 0. A further cut-off has to be included in order to render force constants

positive. If the theory is represented in terms of plane waves, this means a cut-off wave-

number c2 − γk2
max|u(kmax)|2 = 0. Such cut-offs have to be provided by the higher order

terms in the cumulant expansion of the probability distribution of the force constants.

It is now fair to say, that within this argumentation it is phenomenological understood,

that equation (2.75) is capable of localizing sound-waves.

Of course solving a non-linear integro-partial differential equation like (2.75) exactly is

quite difficult. We will perform some numerics on this equation in section 3.

At least the frequency diagonal approximation is easily solved by means of the Runge-

Kutta algorithm, also performed also within section 3.
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Figure 2.1: A typical state which would be obtained, by iterated forward integration of
the instanton equation (2.75)
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We discuss the one-dimensional example. Introducing v = ∂xu yields the system

∂xv = − ω2

c2 − 3γv2
u

∂xu = v

. As depicted in FIgure 2.2, integrating this system numerically with initial velocity v = 0

and small amplitude yields to a function of exponential envelope.

This is because the right hand side of

2γv2∂2
xu = ω2u+ (c2 − γv2)∂2

xu

is positive as long as the sound velocity is decreasing. (For v = 0 locally and local wave-

like solution the right-hand side is γω2

c2
u, yielding a monotonously decreasing enveloping

function. )

2.5 Green’s function

From the structure of the quadratic theory (2.55) it is clear that the retarded Green’s

function of the displacement field, which is the inverse of −∂2
t + c2(x)∆ + iε is just the

quantum classical correlation function

Gij
r (xt, yt′) = 〈uiqu

j
cl〉 =

ˆ
D[ucl, uq]u

i
cl(xt)u

j
q(yt

′)eiS (2.85)

.

As always in mean-field theory one expands the action up to quadratic order
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Figure 2.2: Runge-Kutta solution to (2.77) with v(0)=0,u(0)=0.3
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S = S0 + S2 + S3 + S4 (2.86)

with

iS0 =
1

2

ˆ ˆ (
uT uT

) 0 G−1 + γ
←−
∇(∇ ◦ u∇ ◦ u)∇◦

G−1 + γ
←−
∇(∇ ◦ u∇ ◦ u)∇◦ γ

←−
∇(∇ ◦ u∇ ◦ u)∇◦


 u

u


(2.87)

iS2 =
1

2

ˆ ˆ
(δuqδucl)

 0 G−1 + γ
←−
∇(∇ ◦ u∇ ◦ u)∇◦

G−1 + γ
←−
∇(∇ ◦ u∇ ◦ u)∇◦ (G−1)K


 δucl

δuq


(2.88)

+
γ

2

ˆ ˆ (
δucl
←−
∇(∇ ◦ u∇ ◦ u)∇ ◦ δucl − δuq

←−
∇(∇ ◦ u∇ ◦ u)∇ ◦ δuq

)
(2.89)

iS3 = −γ
ˆ ˆ

(∇ ◦ δuq∇ ◦ u− i∇ ◦ u∇ ◦ δucl)∇ ◦ δuq∇ ◦ δucl (2.90)

iS4 = −γ
2

ˆ ˆ
∇ ◦ δuq∇ ◦ δucl∇ ◦ δuq∇ ◦ δucl (2.91)

The term (2.89) arises due to the normalization logic of the Keldysh integral an can be

set to zero (compare with (2.21)). If it is kept rigorously, by inversion of the full 2x2 matrix,

it is found to cancel reducible contributions of the quantum component to second

order on the level of expectation values.

One should not worry about the finite action S0 appearing, because it might not be

trace conserving. Of course the average of the remaining part of the action with re-

spect to the shifted field must restore the Trace-conservation:
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〈S0 + S2 + S3 + S4〉 = 0 (2.92)

Now for the evaluation of the Green’s function to quadratic order in the fluctuations.

One should remember that the fluctuating fields have the constraints

〈δucl(x, T )〉 = 0 (2.93)

〈δuq(x, T )〉 = 0 (2.94)

which need to be taken into account evaluating the path integral

Gij
r (xT,00) = 〈uicl(xT )ujq(00)〉 (2.95)

=

ˆ
D[ucl, uq]e

iS[u]ei
~δuG−1(uu) ~δu (2.96)

Obviously for times at the boundary T the quantum component has to vanish.

Hence it can be expanded within a Fourier series u(xt) =
∑

n u
n
q (x)

√
1

T
sin(nπ

T
t).

Then the same expansion holds for δuq and δucl.

So in frequency space (2.85) becomes a product of discrete frequencies

Gij
r (xT ) =

ˆ
D[ucl, uq]

∏
n

uicl(xT )ujq(00)
[
eiS[un]ei

´
ddxδucln (x)(ω2

n+(c2+γun(x)∆un(x)))δuqn(x)
]

(2.97)

The Fourier-transformation of

ˆ
dteiΩtsin(ωt)Θ(T − t) =

i

2

ˆ T

0

dt(ei(Ω+ω)t − e−i(Ω−ω)t) = ieiΩT
(

Ωi sin(ωT )− ω(cos(ωT )) + 2ω

Ω2 − ω2

)

yields a separation into the quantum (short time oscillating functions) and a classical
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(independent of time at large times) part. Obviously, continuation of the discrete fre-

quency ωn to continuous ω is equivalent with the long time limit, which is also the classi-

cal limit.

Obviously within the frequency diagonal instanton approximation, the integral becomes

a product over the frequency dependent factor

1 =
∏
ωn

1 =
∏
ωn

ˆ
D[ucl(ωn), uq(ωn)]eiS[ui(ωn)] (2.98)

and the Fourier mode of the classical Green’s function is given by

Gij
r (ωx) =

ˆ
D[ucl(ωn), uq(ωn)]uicl(xω)ujq(0ω)eiS[ui(ω)] (2.99)

.

In a light scattering experiment, the strain ∇◦u is coupled to some external source field

E(t) = E0e
iωt, which adds the term

´
∇ ◦ uq(ω, x)E0 onto the action.

Then the linear strain response to such a perturbation is given by

Im [∆Gr(ω,x)] (2.100)

. Therefore it is clear that ImGr(ω,x) is the local density of vibrational states.

First, the finite instanton action S0[u(ω)] contributes an exponential pre-factor e−|S0(ω)| to

the local density of states. This may be estimated as follows. Using the equation of

motion (2.75)

iS[γ = 0, iuq = u, ucl = 0] =

ˆ
u ◦ (−∂2

t + c2∆)u = −γ
ˆ ˆ

∇ ◦ u∇ ◦ u∇ ◦ u∇ ◦ u (2.101)

one can get rid of the traveling wave term, yielding
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iS0(ω) = iS[γ, iuq = u, ucl = u] =

ˆ
u ◦ (ω2 + c2∆)u +

γ

2

ˆ
∇ ◦ u∇ ◦ u∇ ◦ u∇ ◦ u (2.102)

= −γ
2

ˆ
ddx (∇ ◦ u(ω,x))4 (2.103)

. Again we applied the frequency diagonal decoupling of the disorder term.

If instantons are happen to be “traveling” waves within the region of localization (but

with a sound velocity modulating its self to zero via a nonlinear effect), a wave-like

ansatz

u(ω,x) = u(ωx) (2.104)

will be sufficient. Additionally the disorder parameter and frequency can be scaled out

of the instanton equation via u(ωx) =
1
√
γω

ũ(ωx).

Again within the frequency diagonal decoupling, the disorder term the integral be-

comes

S0(ω) = − c
4

2γ

ωd

cdρ0

ˆ
ρ2(k̃)<1

ddk̃ρ2(k̃)ρ2(−k̃) ∼ − c
4

2γ

ωd

cdρ0

A (2.105)

. Here we used the wave-number representation of the integral, because it is the most

natural way of introducing a cutoff for large deformations yielding negative sound ve-

locities. In addition we restored the density of the elastic medium. By this we established

a field theoretic derivation on the Lifshitz argument [47].

Next to the response function.

The Green’s function is tri-diagonal and can readily be inverted
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〈δui(ω,x)δuj(ω,x)〉 = e
−
c4

2γ

ωd

cdρ0

A

 0 Gij
r (ω,x)

(Gij
r (ω,x))

∗ ´
y
Gil
r ◦ (G−1

k )lm ◦ (Gmj
r )+

 (2.106)

Gij
r (ω,x) = δij(ω

2 + iε+ (c2 − 3γρ(x)2)∆))−1 (2.107)

.

Note that this is an advantage in comparison to the replica calculation [15], where one

has to think about possible 0 states of the replica matrix.

The dynamical structure factor happens to be

S(ω,x,y) = ∇x ◦ ∇yGK(ω,x,y) (2.108)

which contains, the hyperbolic cotangent of the free Bose system.

This is the weak point of the “normalization-free” paradigm of the Keldysh formalism. If

you consider the state of the system in presence of disorder to be a thermal one, the

initial correlation of the thermal state has to be calculated within a field theory, whose

normalization will become disorder dependent.

On the other hand, as ∇ ◦ ∇Gr,a is just the linear response function for an external po-

tential which couples to the density perturbation. Therefore 〈ucl(δ)ucl(0)〉, can also be

determined from the experiment.

It is accepted through the literature, that localized and extended states can not ex-

ist at a common frequency, otherwise the localized states can become extended. If

you want so, the order parameter of the classical localization transition is the quantum

component uq(ω) which has to vanish at the critical frequency uq(ωc) = 0. So the density

of states can be guessed to be composed of 2 parts:

g(ω2) = gvib(ω
2)Θ(ω2

c − ω2) + gloc(ω
2)Θ(ω2 − ω2

c ) (2.109)
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.

Note that gvib(ω2) within this approximation is just the density of states of the free system.

As these states contribute to transport properties like the thermal conductivity gvib(ω
2)

has to be normalized to satisfy, f. e. the Dulong-Petit law. The same normalization factor

should be given to gloc, due to the correspondence gvib = gloc|u=0.

Then, if localization happens for frequencies lower than the Debye energy, on which

both density of states have been normalized, something has to happen with the prop-

agating part in order to render the transport properties unchanged.

One possibility is the existence of an additional scattering mechanism, which shifts the

states of the free system towards higher energies. Clearly corrections achieving this,

have been calculated extensively through SCBA and CPA methods, which will produce

an anomalous excess in
g

(corr)
vib (ω2)

gvib(ω2)
. Hence, the Boson peak frequency is a preliminar of

the exact localization threshold ω2
c .

2.6 Corrections

Of course the perturbation theory of the model is of φ4-type. As the propagator of the

theory has the instanton factor e
−
c4ω3

2γc3ρ0

A

in three dimensions, all diagrams in the “deep

localized regime” 1� c4ω3

2γc3ρ0

A are exponentially suppressed.

The fourth order term is well known. The retarded advanced self-energy in Born approx-

imation will be

Σ(Born)
r,a (ω, q) = −iγq2

∑
k

Ga,r(k, ω)(k − q)2 (2.110)

and the propagator G(r,a) will be replaced with the full propagator

55



2 Localization within the Keldysh-framework

Gr,a = e−S0(ω)(ω2 + (1− 3γρ2(ω,x))∆ + Σr,a(ω, x))−1 (2.111)

ρ(ω,x) = ∇ ◦ u(ω,x) (2.112)

. We reduce perturbation theory to an elementary stage, by modeling the sound-

velocity landscape by a Gaussian distribution c2 = 1− e−
(ωx)2

2σ2 , which replaces the prop-

agator (2.111), with

Gr,a =
e−S0(ω)

ω2 ± iε− c2(1− 3 ωd

cdρ0
)k2 + Σr,a(ω, k)

(2.113)

.

In case of low frequencies 3 ωd

cdρ0
� 1 we recover the familiar self consistent born approx-

imation.

This neglects about the so called crossed diagrams

Σ
(cross)
r/a = iγ2∆(∆Gr ◦∆Ga ◦∆Gr) (2.114)

≈ iγq2Σ(Born)
r,a (ω)

ˆ
ddk| k2

(ω2 ± iε− c2(1− 3 ωd

cdρ0
)k2)
|2 (2.115)

, which for quantum mechanical waves scattered in a random potential yields to the

weak localization effect. Due to the absence of the k - powers which come from the

correlation of the elastic energy, the electronic crossed self-energy is infrared divergent

below two dimensions Σ(cross) ∝ 1

E
. One has to treat these IR-divergences by means of

the perturbative renormalization group, which yields a Thouless like scaling scenario [1],

proving that for quantum mechanics all states are localized below d = 2.

In contrast, the corresponding diagrams of the elastic mediums are finite within the

infrared sector, and possible UV-divergences are safely regulated by introducing a lat-

tice, which for phonons is just given by the mean spacing of individual particles.
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Then on the low frequency/ plain wave side the self-energy evaluates to

Σ(cross) ∝ γ2ω2d (2.116)

, which assists the instanton in a frequency dependent modulation of the sound wave.

However the instanton contribution is independent of γ, hence the irreducible self-

energy part is negligible with respect to the instanton in case of weak disorder. Also

this frequency dependence can not affect the Boson peak, which comes from a static

renormalization of the sound velocity through the SCBA. In contrast no static renormal-

ization appears from (2.116).

On the other hand at large frequencies beyond the localization threshold the Green’s

function is safely given by

Gr ∼
cd−2ρ0e

−
c4ω3

2γc3ρ0

A

3ωdk2

yielding

Σ(cross) ∝ γ2 c
dρ0

ωd
e
−

3c4ω3

2γc3ρ0

A

which vanishes at large frequencies.

Additionally the Keldysh self-energy

ΣK = γ∇2〈uclucl〉∇2 = ∇S∇ (2.117)

is just related to the dynamical structure factor and can be used to construct the Boltz-

mann equation.
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The third order term is in charge of contributing deviations to the instanton function.

〈δuq〉 = i〈δucl〉 = 2γGrGa +O(γ2) (2.118)

So in general mean-field theory is well established in case of large frequencies, while

small frequency deviations can be calculated for small γ. As the instanton factor van-

ishes
c4ω3

2γc3ρ0

A � 1, the propagator will be of sound wave type and destroy short range

order.

2.7 Non-linear Sigma Model

The Keldysh-action

iS =
i

2

ˆ
ddxdt

[
uq ◦ (−∂2

t + c∆ + iε)ucl + ucl ◦ (−∂2
t + c∆− iε)uq

]
(2.119)

−γ
2

ˆ
dt

ˆ
dt′ddx∇ ◦ uq(t)∇ ◦ ucl(t)∇ ◦ ucl(t′)∇ ◦ uq(t′)

is naturally of the same structure as the one studied by Stone and McKane [52] in their

ground breaking non-linear Sigma model approach to localization in electronic sys-

tems.

This is because electrons start to move diffusively in presence of weak disorder, and

the quantity which describes the localization transition is a short range density-density

response function

φ2φ2 ∝ GrGa (2.120)

. Hence McKane and Stone started their discussion from a path-integral representation

with two degrees of freedom, referring to the retarded and advanced channel, but
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used the replica expansion for both channels, instead of referring to the special kind of

Keldysh contour.

The reason is, that they worked with an action for the sum of the retarded and ad-

vanced Green’s function, while the Keldysh-action operates with the difference, and

hence is normalization free. Therefore also their disorder term is a quadratic average of

the replicated combination φ2
+ +φ2

−, while the complete Keldysh action is build up from

φ2
+ − φ2

− without additional replicas.

In φ4 theory GrGa is the quantity which contributes directly to the instanton, describing

localization as we found in equation (2.118).

As usually the theory is reformulated in terms of the strain correlation by means of the

Fadeev-Popov identity

SF = iTr [Λαβ(Qβα −∇ ◦ uβ(t′)∇ ◦ uα(t))] (2.121)

with the Keldysh matrices

Λ =

 0 Λa

Λr Λk

 , Q =

 Qk Qr

Qa 0

 , (2.122)

yielding the action

S =
1

2
Tr ln

[
i(G−1

0 −
←−
∇Λ∇◦)

]
− γ

2
tr[Qrδx−yQr +Qaδx−yQa] + iTr[ΛQ] (2.123)

The small tr just refers to the space-time integration, the large Tr refers to the additional

matrix-trace. Multiplication of space-time operators automatically means convolution.

One can use projectors in order to write the mass term in form of the usual square,
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PlQ =

 p11 p12

p21 p22


 Qk Qr

Qa 0

 =

 pl11Qk + pl12Qa pl11Qr

pl21Qk + p22Qa p21Qr

 (2.124)

QPr =

 Qk Qr

Qa 0


 pr11 pr12

pr21 pr22

 =

 Qkp
r
11 +Qrp

r
21 Qkp

r
12 +Qrp

r
22

Qap
r
11 Qap

r
12

 (2.125)

The mapping

QL =

 Qa 0

Qk Qr

 =

 0 1

1 0


 Qk Qr

Qa 0

 (2.126)

QR

 Qr Qk

0 Qa

 =

 Qk Qr

Qa 0


 0 1

1 0

 (2.127)

achieves matrices with the structure of the Fermionic Green’s function/self-energy, which

could be of great help, if one likes to compare this expansion with the Keldysh Sigma

model for the disordered electrons.

The mass term of the theory can be written into the matrix form by means of

γ

2
tr[QrQr +QaQa] =

γ

2
Tr[Q2

L] =
γ

2
Tr[Q2

R] (2.128)

.

Variation with respect to Q and Λ yields exact equations of motion for density and self-

energy
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〈Q〉 = i〈
←−
∇ 1

G−1
0 −

←−
∇Λ∇

∇〉 (2.129)

〈Λr,a〉 = −2iγδ(x− y)〈Qr,a〉 (2.130)

〈Λk〉 = 0 (2.131)

.

Note that these equations of motion do not fix the Keldysh component of the self-

energy field and also not the Keldysh component of the Greens function.

The identification of the self-energy operator in Dyson’s equation with the average of

the Λ ghost field, is equivalent with replacing the average over the resolvent in eq.

(2.129), with the resolvent of the average. This is again the self-consistent Born approxi-

mation.

Λr = γ

ˆ ∞
−∞

dk
k4

−ω2 + iε+ c2k2(1− Λr(ω))
≈ γ

ω2

c2(1− Λr(ω))
(2.132)

Λ2
r(ω) = γω2(1− Λr) (2.133)

The approximation (2.133) gives the self energy within the form of Wigner’s semi-circle,

which refers to random matrix eigenstates. The density of states in self-consistent Born

approximation has been subject to intensive investigations [80, 67] and will not be dis-

cussed within this work.

The exact equation (2.130) states that Λ is a linear field in the disorder parameter, while

for small γ, Q is a field of order 1. Therefore, deviations from this saddle-point render the

action as a power series in γ
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Tr ln(iG−1
0 − i

←−
∇Λ∇− i

←−
∇δΛ∇) = Tr ln(1 +

1

G−1
0 − i

←−
∇Λ∇

←−
∇δΛ∇) = iTr

[
Q̄δΛ

]
− 1

2
Tr
[ ¯(QδΛ)2

]
+ ...

(2.134)

S ≈ S0 −
1

2
Tr
[ ¯(QδΛ)2

]
− γ

2
Tr[δQ2

L] +
i

2
Tr[δΛδQ] + γTr [〈QL〉QL] (2.135)

= S
′

0 −
1

2
Tr(Q̄δΛ)2 − γ

2
Tr[δQ2

L] +
i

2
Tr[δΛδQ] (2.136)

as an expansion with respect to the Λ field is an expansion with respect to γ.

The source term in equation (2.136) can be integrated away as follows. The second

order within the self-energy field has to be brought into the quadratic form:

Tr
[
(Q̄δΛ)2

]
= Tr

[
δΛQ̄Q̄δΛ

]
+ Tr

[
[δΛ, Q̄]Q̄δΛ

]
. (2.137)

The last term has to vanish, as it is the product of the trace full Q̄δΛ and the trace-less

commutator, hence the second term should vanish, we evaluate this:

Tr
[(
δΛQ̄− Q̄δΛ

)
Q̄δΛ

]
= Tr

[
δΛQ̄Q̄δΛ

]
− Tr

[
Q̄δΛQ̄δΛ

]
= (2.138)

Tr
[
(Q̄δΛ)(δΛQ̄)

]
− Tr

[
(Q̄δΛ)(Q̄δΛ)

]
(2.139)

Evaluation of the trace in detail yields

Tr
[(
δΛQ̄− Q̄δΛ

)
Q̄δΛ

]
= tr

{
(Q̄rδΛa − δΛrQ̄a)Q̄rδΛa + (Q̄aδΛr − δΛaQ̄r)Q̄aδΛr

}
(2.140)

+tr(−δΛaQ̄k + δΛkQ̄a)(Q̄kδΛr + Q̄rδΛk) (2.141)

= tr
{

(Q̄rδΛa)
2 − (Q̄aδΛr)

2 − δΛr(Q̄aQ̄r + Q̄rQ̄a + Q̄kQ̄k)δΛa

}
(2.142)

+tr
{
δΛkQ̄aQ̄rδΛk − δΛaQ̄kQ̄rδΛk + δΛkQ̄aQ̄kδΛr

}
(2.143)

.
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All terms until the last two in equation (2.143) are vanishing, because a trace over the

product of retarded and advanced terms has to vanish by definition as Θ(t)Θ(−t) = 0.

The last two terms vanish due to time reversal symmetry.

Then the Λ field can be integrated out yielding the action in terms of the Q field:

Sdet = −1

2
Tr
[
δQ(Q̄Q̄)−1δQ

]
(2.144)

= −1

2
Tr


 0 1

1 0

 δQL(Q̄Q̄)−1

 0 1

1 0

 δQL

 (2.145)

Snlσm = −1

2
Tr
[
σxδQL(Q̄Q̄)−1σxδQL + γδQ2

L

]
(2.146)

Although the theory is quadratic to this level, it cannot simply be integrated out further,

because the expansion of the Tr ln term requires fluctuations of the Q field to be small.

The mass term is Gaussian
γ

2
Tr[δQ2

L] and roughly constrains the fields to |δQ| < 1

γ
.

However there are fluctuations sufficiently larger within the integral, which would require

higher terms of the Trace-log. Therefore, it is reasonable that for “small” γ, e. g. all fields

are a power-series of γ, the effective action is sufficient.

This is what goes wrong in a strong coupling theory. According to Dyson equation,

re summation of the perturbation series in φ4 theories always yields to functions of the

form
1

g(x) + γf(x)
, which for “large” γ can be of the order

1

γ
, canceling the prefactor

in (2.136) at every single power. However, note that within the sound-wave problem, Q

and hence δQ is a strain-correlation function, which will be small for long wavelength,

e. g. the hydrodynamic limit. Therefore, if one studies the spectrum which consists of

long wavelength extended states, e. g. low frequency, the quadratic approximation

can be guessed as being sufficient regardless of the strength of the parameter γ.

Investigating the exact form of the Q field smallness of γ means exactly γΛ(ω)� 1.

As limω→0 ω
2Λ′′(ω) ∝ ωn the quadratic approximation is exact in the low frequency limit.
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This is interesting for scaling arguments. If one manages to derive an exact scaling

relation, f.e. from the exact equation (2.129), a solution to the quadratic theory can be

expected to be exact for low frequencies, high frequency properties could be safely

be calculated from the scaling approach.

We continue to follow the “Gold-stone” approach to localization within the Keldysh-

language.

If the saddle-point is an accepted solution to the field theory, one frequently studies

“low energy“ excitations from this solutions, which are those who render the full mass

term invariant. In the present theory they can be parametrized according to

δQL = eW

 Q̄r Q̄k

0 Q̄a

 e−W −

 Q̄r Q̄k

0 Q̄a

 (2.147)

, which is slightly different from the electronic problem.

If one wants to evaluate the partition function one has to single out configurations

which commute with the mean-field value of Q̄

W =

 w11 w12

w21 w22

 (2.148)

0 6= −

 wc11 wc12

wc21 wc22


 Q̄r Q̄k

0 Q̄a

+

 Q̄r Q̄k

0 Q̄a


 wc11 wc12

wc21 wc22

 (2.149)

0 6=

 [Qr, w
c
11] + Q̄kw

c
21 Q̄rw

c
12 − wc12Q̄a + Q̄kw

c
22 − wc11Q̄k

Q̄aw
c
21 − wc21Q̄r [Q̄a, w

c
22]− wc21Q̄k

 (2.150)

. This would be a linear constraint, which can be included by means of an additional

Lagrange-parameter.

However in order to leave the mass term invariant W must also commute with the pro-

jector matrix
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 w11 w12

w21 w22


 0 1

1 0

−
 0 1

1 0


 w11 w12

w21 w22

 =

 w12 − w21 w11 − w22

w22 − w11 w21 − w12

 (2.151)

Hence w12 = w21, w11 = w22.

. Now W equals

W =

 v w

w v

 (2.152)

and the constraint reads

0 6=

 [Qr, v] +Qkw Q̄rw − wQ̄a + [Q̄k, v]

Q̄aw − wQ̄r [Q̄a, v]− wQ̄k

 (2.153)

.

As at least the fluctuations have been chosen to commute with the projector matrix

the ordinary sigma expression

S = −1

2
Tr [σxδQLDδQL] (2.154)

D = (Q̄Q̄)−1σx + σx ∗ γδ(x− y)∗ (2.155)

=

 0 dra = G−1
r G−1

a

dra 0

+ σx ∗ γδ(x− y)∗ (2.156)

holds.

Then to fourth order
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δQ = (1 +W +
W 2

2!
+
W 3

3!
+
W 4

4!
)Q̄(1−W +

W 2

2!
− W 3

3!
+
W 4

4!
)− Q̄ = (2.157)

(1 +W +
W 2

2!
+
W 3

3!
+
W 4

4!
)Q̄+ Q̄(−W +

W 2

2!
− W 3

3!
+
W 4

4!
)− Q̄

+(W +
W 2

2!
+
W 3

3!
+
W 4

4!
)Q̄(−W +

W 2

2!
− W 3

3!
+
W 4

4!
) (2.158)

= [W +
W 3

3!
, Q̄] + {W

2

2!
+
W 4

4!
, Q̄}

+WQ(−W +
W 2

2!
− W 3

3!
) +

W 2

2!
Q(−W +

W 2

2!
)− W 3

3!
QW + ... (2.159)

= [W +
W 3

3!
, Q̄] + {W

2

2!
+
W 4

4!
, Q̄}

−WQW +
WQW 2

2!
− WQW 3

3!
− W 2

2!
QW +

W 2

2!
Q
W 2

2!
− W 3

3!
QW (2.160)

= W (1) +W (2) +W (3) +W (4) (2.161)

Another exact equation of motion is just 〈Q〉 = 〈∇ ◦ u∇ ◦ u〉.

Hence to lowest order the average of the commutator δQ = 〈σx[W, Q̄]〉 is the fluctuation

of the strain field from the mean-field value

〈δQ〉 = 〈

 Q̄aw − wQ̄r [Q̄a, v]− wQ̄k

[Qr, v] +Qkw Q̄rw − wQ̄a + [Q̄k, v]

〉 (2.162)

. Requiring the quantum quantum component to vanish yields the equation of motion

[Q̄k, 〈v〉] + Q̄r〈w〉 − 〈w〉Q̄a = 0 (2.163)

.

From (2.162) in case of vacuum physics Q̄k = 0 we can read of a possible instanton

solution.

In Chapter 5 a possible instanton configuration had the property

〈φclφcl〉 = −〈φqφq〉 = 〈φqφcl〉. Such a configuration is obtained in case of vacuum-physics
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by

0 6= 〈Q̄aw − wQ̄r〉 = 〈[Q̄a, v]〉 = 〈[Q̄r, v]〉

, which is, as we will see, a possible solution to the field theory.

With

W (1) = [W, Q̄] =

 [Qr, v] +Qkw Q̄rw − wQ̄a + [Q̄k, v]

Q̄aw − wQ̄r [Q̄a, v]− wQ̄k

 (2.164)

W (2) =
1

2
{W 2, Q̄} −WQ̄W =

1

2

(
W 2Q+QW 2

)
− 1

2
WQ̄W − 1

2
WQ̄W (2.165)

=
1

2
{W, [W,Q]} =

1

2
{W,W (1)} =

1

2


 w v

v w


 w

(1)
11 w

(1)
12

w
(1)
21 w

(1)
22

+

 w
(1)
11 w

(1)
12

w
(1)
21 w

(1)
22


 w v

v w




(2.166)

=

 {w,w(1)
11 }+ vw

(1)
21 + w

(1)
12 v vw

(1)
22 + w

(1)
11 v + {w,w(1)

12 }

w
(1)
22 v + vw

(1)
11 + {w,w(1)

21 } {w,w
(1)
22 }+ vw

(1)
12 + w

(1)
21 v

 (2.167)

w
(2)
11 = {w, [Qr, v] +Qkw}+ v(Q̄aw − wQ̄r) + (Q̄rw − wQ̄a + [Q̄k, v])v (2.168)

w
(2)
12 = v([Q̄a, v]− wQ̄k) + ([Qr, v] +Qkw)w + {w, Q̄rw − wQ̄a + [Q̄k, v]} (2.169)

w
(2)
21 = ([Q̄a, v]− wQ̄k)v + v([Qr, v] +Qkw) + {w, Q̄aw − wQ̄r} (2.170)

w
(2)
22 = {w, [Q̄a, v]− wQ̄k}+ v(Q̄rw − wQ̄a + [Q̄k, v]) + (Q̄aw − wQ̄r)v (2.171)

W (3) =
1

6
[W 3, Q̄] +

1

2
W [Q̄,W ]W (2.172)

W (4) =
1

24
{W 4, Q̄} − 1

6
W{Q̄,W 2}W +

1

4
W 2Q̄W 2 (2.173)

,

and

δQ̄ = W (1) +W (2) +W (3) +W (4) (2.174)
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follows the sigma model action to fourth order

−2Snlσm = Tr
[
W (1)DW (1) +W (2)DW (2) + {W (1), D}(W (2) +W (3))

]
(2.175)

.

The action has two basic terms

Tr [LDR] = Tr

σxL
 dra 0

0 dra

R + γLδR

 (2.176)

= tr

(∑
ijk

(1− δij)LjkdraRki + γ
∑
ij

LijδRji

)
(2.177)

= tr

[
L22draR21 + L21draR11 + L12draR22 + L11draR12 + γ

∑
ij

LijδRji

]
(2.178)

and

Tr [{L,D}R] = Tr

σxL
 dra 0

0 dra

R + L

 dra 0

0 dra

σxR + γ (LδR +RδL)

 (2.179)

=

(∑
ijk

(1− δij)LjkdraRki +
∑
ijk

Lijdra(1− δjk)Rki + 2γ
∑
ij

LijδRji

)
(2.180)

= tr [L22draR21 + L21draR11 + L12draR22 + L11draR12] (2.181)

+tr [L12draR11 + L11draR21 + L22draR12 + L21draR22] (2.182)

+2γtr [L11R11 + L12R21 + L21R12 + L22R22] (2.183)

The kinetic quadratic part of the action reads
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Tr
[
W (1)DW (1) − 2γW (1)W (1)

]
= tr

[
w

(1)
22 draw

(1)
21 + w

(1)
21 draw

(1)
11 + w

(1)
12 draw

(1)
22 + w

(1)
11 draw

(1)
12

]
(2.184)

= Tr

σx
 0 0

w
(1)
21 w

(1)
22


 dra 0

0 dra


 w

(1)
11 0

w
(1)
21 0

+ σx

 w
(1)
11 w

(1)
12

0 0


 dra 0

0 dra


 0 w

(1)
12

0 w
(1)
22




(2.185)

= Tr

σx
 w

(1)
11 w

(1)
12

w
(1)
21 w

(1)
22


 dra 0

0 dra


 w

(1)
11 w

(1)
12

w
(1)
21 w

(1)
22


 (2.186)

.

Hence to quadratic order the action is given by

S
(2)
nlσm = −1

2
Tr
[
σxW

(1)draW
(1) +W (1)2γδxW

(1)
]

(2.187)

with dra = ∆−4(−∂2
t + c2∆)2. This has no singularities, because a fluctuation of the strain

field satisfies δQ ∝ ∆, hence v, w ∝ ∆.

Next we rewrite this in terms of the v, w - fields.

The instanton calculated within the single particle picture did not depend on the initial

state. Hence we simplify by setting Q̄k = 0, and determine the Keldysh component from

the initial condition, after the calculation of the response function.

Then using Q̄2
r/a = Q̄r/a expansion in terms of the w and v fields yields

−2S
(2)
nlσm[w,w] = −γQ̄′awδxw + γ

[
Q̄a({wQ̄rw, δx}+ w{Q̄r, δx})w − 2(Q̄aδQ̄a)

′ww
]

(2.188)

−2S
(2)
nlσm[v, v] = −γ2Q̄′avδxv + γ

[
Q̄rv{Q̄r, δx})v + Q̄av{Q̄a, δx})v − 2(Q̄aδxQ̄a)

′vv
]

(2.189)
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−2S
(2)
nlσm[w, v] = −w(Q̄aQ̄

−1
a + Q̄aQ̄

−1
r )v + 2Q̄′rw(Q̄−1

a + Q̄−1
r )v − (Q̄aQ̄r + Q̄rQ̄a)wdrav (2.190)

−2S
(2)
nlσm[v, w] = −v(Q̄rQ̄

−1
a + Q̄aQ̄

−1
r )w + 2Q̄′rv(Q̄−1

a + Q̄−1
r )w − (Q̄aQ̄r + Q̄rQ̄a)vdraw (2.191)

.

The interaction coefficients can be further simplified:

Q̄r + Q̄a = 2δ̄c∆δ(x− y)δ(t− t′) (2.192)

Q̄rQ̄
−1
a + Q̄aQ̄

−1
r = Q̄r(Q̄

−1
a − iΛa + iΛr) + Q̄a(Q̄

−1
r − iΛr + iΛa) (2.193)

= δ + δ − Q̄riΛa − Q̄aiΛr (2.194)

= δ + δ − 2γ(Q̄rQ̄a + Q̄aQ̄r) (2.195)

Q̄rQ̄a + Q̄aQ̄r = −(Q̄r − Q̄a)
2 + (Q̄r + Q̄a) (2.196)

= 4Q̄′′r − 2δ̄c∆δ(x− y)δ(t− t′) (2.197)

Hence to second order in the v, w fields the non-linear sigma model action

S
(2)
nlσm = S(2)

p + S
(2)
d (2.198)

consists of the two parts

S(2)
p = −2Q̄′a

[
w(Q̄−1

a + Q̄−1
r )v +

γ

2
(wδxw + vδxv)

]
+ local dos terms (2.199)

S
(2)
d = −(−4Q̄′′r + 2Q̄′r)wdrav − 2(2δ + γQ̄rQ̄a)vw (2.200)

.

Sp is just the one-particle sound wave propagator in presence of disorder, studied within

the last section. In the electronic problem this part would be called the Cooperon
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propagator.

The remaining terms describe diffusive motion in presence of disorder, as the quantity

dra ∝ ∆(∂2
t − ∆2) has a diffusion pole at non-zero wave numbers. In the electronic

problem this is called the Diffusion propagator. This type of excitations from the SCBA

saddle-point describes diffusive heat transport. However, this is just the “re normalized”

free diffusion process, which in case of electrons would be the quantum diffusion. The

last part is the disorder induced diffusion part. A gradient expansion of Q̄rQ̄a gives to

second order a diffusion term whose Diffusion coefficient is proportional to γ.

Equation (2.199) can be identified with the reformulation of the instanton action of

section 5 by means of Q̄′aw = 1, Q̄′av = v = ∇ ◦ u∇ ◦ u yielding

Sp = −
ˆ

u ◦ (−∂2
t + c2∆)u +

γ

2

ˆ ˆ ˆ
ddx(∇ ◦ u∇ ◦ u)tx(∇ ◦ u∇ ◦ u)t′x (2.201)

This is the main result of the present section. The instanton factor also appears in the

Bosonized model. This dresses the SCBA Green’s function at high frequencies according

to

〈∇ ◦ u∇ ◦ u〉 = eSpQ̄ ∝ e−|S0(ω)|Q̄ (2.202)

.

2.8 Outlook, Weak localization Ward-identity,

Mode-coupling, Symmetry

Weak localization is the phenomenon where the (Heat-)Diffusion coefficient of eq.

(2.200) is suppressed due to the higher order terms in (2.146). In the literature this is

captured by a fourth order expansion of the non-linear sigma model action, selecting

only certain terms via symmetry considerations, and apply a further gradient approx-

71



2 Localization within the Keldysh-framework

imation. For time-reasons we cannot perform this calculation within the present work,

although it would be very interesting. We have already calculated the action up to

fourth-order in terms of the v and w fields, which is given within the appendix. The de-

tailed calculation is left for future work. A faster possibility which avoids the discussion of

the vast number of terms is, to use the quadratic mass-less diffusion term in (2.200) and

replicate the terms of the effective action in the work of McKane and Stone.

Another starting point for further investigations is the Ward-identity of the present model.

The single particle representation

iS =
i

2

ˆ
ddxdt

[
uq ◦ (−∂2

t + c2∆ + iε)ucl + ucl ◦ (−∂2
t + c2∆− iε)uq

]
−γ

2

ˆ
dt

ˆ
dt′ddx∇ ◦ uq(t)∇ ◦ ucl(t)∇ ◦ ucl(t′)∇ ◦ uq(t′)

(2.203)

yields the exact equation of motion

i(−∂2
t + c∆)〈ucluTq 〉 − γ

ˆ
dt〈∇ (∇ ◦ ucl(t)∇ ◦ ucl(t′)∇ ◦ uq(t′))uTq (t)〉 = 0 (2.204)

. The Ward-identity allows to re-express this into a closed equation for the two point

function.

For the vacuum case, the action (2.203) is invariant with respect to exchange of the

classical and quantum fields.

In contrast with the euclidean action the Keldysh action is build up from the difference

φ2
+ − φ2

−, and hence is invariant with respect to the SL(2) transformation

 φ̃+

φ̃−

 =

 coshφ − sinhφ

− sinhφ coshφ


 φ+

φ−


. This is much better than the euclidean replica model, as for the disordered Keldysh ac-
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tion this is an exact symmetry, while the ordinary o(2) symmetry of the euclidean model

was already broken by the regularization, and hence of the level of the euclidean ac-

tion.

Within Keldysh rotation this just translates into a phase transformation φcl → eφφcl, φq →

e−φφq

(1 + φ(t))φcl(t)(1− φ(t′))φq(t
′) = φclφq + φφφclφq − φqφcl)

and hence

〈εφclφq + ijclφq − ijqφcl〉 = 0

〈∇ ◦ ucl∇ ◦ uq〉 − 〈∇ ◦ uq∇ ◦ ucl〉 = iε

ˆ
〈∇ ◦ ucl(t)∇ ◦ ucl(t′)∇ ◦ uq(t′)∇ ◦ uq(t)〉 (2.205)

Integrating (2.204) with respect to the spatial variable, and using the Ward-identity

(2.205) within the equation of motion yields an exact equation for the density of vi-

brational states, which clearly should be examined in future.

Secondly, another interesting working perspective is, to derive exact equations of mo-

tion for the two-point function, using the SL(2) symmetry of the vacuum theory. Compar-

ing with the literature, e.g. Berges et al. [9], one finds that those effective equation of

motion are structurally identical with those of Vollhardt et al. within the Mode-coupling

approach onto localization. This has to be done within the future, in order to get rid of

the complicated sigma model structure of the problem, and perform rigorous calcula-

tions of the density of states of glasses.

2.9 Localization for vectorial Models

The vector theory has previously been studied extensively.

We briefly quote the generalization of the instanton calculation onto the vectorial
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model.

The energy operator of linear elastic media is given by

Ĥ =
1

2

ˆ
ddx (λûiiûii + µûijûji) (2.206)

, with λ the bulk and µ the shear modulus, and uij =
1

2
(∂iuj + ∂jui) the linear strain tensor.

If ~u is decomposed into a longitudinal (∇×~ul = 0) and a transverse polarized (∇◦~ut = 0)

component this reads

Ĥ = −1

2

ˆ
ddx

(
c2
l ~̂ul ◦∆~̂ul + c2

t ~̂ut ◦∆~̂ut

)
(2.207)

with c2
l = λ + 2µ and c2

t = µ the longitudinal and transverse sound velocity. Modeling

a glass averaging (2.206) is more reasonable then (2.207). The reason is, that the bulk

modulus is much larger then the shear modulus in usual glasses, and hence the shear

modulus is the quantity which is likely to fluctuate [63].

Averaging (2.206) over a Gaussian distribution within the Keldysh prescription hence

yields

iS =
i

2
Tr

σx
 0

(
−~uq∂2

t ~u
cl − λuqiiuclii − µu

q
iju

cl
ji

)
(
−~uq∂2

t ~u
cl − λuqiiuclii − µu

q
iju

cl
ji

)
~uqG

−1~uq




−γ
2

ˆ ˆ
uqij(t)u

cl
ji(t)u

q
lm(t′)uclml(t

′) (2.208)

. The equation of motion with instanton ansatz iuq = ucl = u yields

−∂2
t ui + λ∂iuii + (µ− 3γ

ˆ t

0

dt′ulm(t′)uml(t
′))∂juji = 0 (2.209)

. If there is a localized solution to (2.209) this translates into a monotonously lowered

74



2 Localization within the Keldysh-framework

sound velocity, which drops to zero at the center of localization.

Decoupling into longitudinal and transverse sound waves, yielding

−∂2
t ul + c2

l (1−
6γ

c2
l

ˆ t

0

dt′(∇ ◦ ul)2∆ul = 0 (2.210)

−∂2
t ut + c2

t (1−
3γ

c2
t

ˆ t

0

dt′|∇ × ut|2)∆ut = 0 (2.211)

, where in agreement with the previous theory we ignore terms which couple longi-

tudinal and transverse modes via the disorder term. This could be done rigorously by

constraining the disorder-average onto configurations which respect this separation, e.

g. by means of additional Lagrange parameters. Within this further “approximation”

(technical convenience) the Keldysh partition function is just a product of longitudinal

and transverse degrees of freedom, and the density of states reads

g(ω) = e
− ωd

ρ0µ̄
dγ
Al
gl(ω) + 2e

− ωd

ρ0µ̄
dγ
At
gt(ω) (2.212)

At =

ˆ
ddx|ũt ◦ ∆̃ũt|2 (2.213)

Al = 4At (2.214)

.

Within the Bosonized version the Sigma model reads

S =
1

2
ln(i(G−1

0 )αβij + i∂ijΛ
αβ
ijlm∂lm) + iΛαβ

ijlmQ
βα
mlji −

1

2
Qαβ
ijlmQ

βα
mlji (2.215)

.

Analogously with the scalar model this yields to

gl(ω) = Tr

[
1

ω2 + iε+ (c2
l − Σ(ω)− 6γ|ul∆ul|)∆

]′′
(2.216)
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gt(ω) = Tr

[
1

ω2 + iε+ (c2
t − 2Σ(ω)− 3γ|ut∆ut|)∆

]′′
(2.217)

and the SCBA-equation generalizes to

Σ(ω) =
γ

2
Tr

 e
− ωd

ρ0µ̄
dγ
Al

∆

ω2 + iε+ (c2
l − Σ(ω)− γ6|ul∆ul|)∆

+
e
− ωd

ρ0µ̄
dγ
At

∆

ω2 + iε− (c2
t − 2Σ(ω)− γ3|ut∆ut|)∆


(2.218)

.

.
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3 Results and discussion

We will solve the instanton equations for the longitudinal and transverse modes numer-

ically. For simplification we use the frequency diagonal approximation and seek for

solutions which only depend on the spatial modulus r = |x|.

3.1 One-dimensional longitudinal model

We also sketched the solution method in section 2. The one-dimensional instanton

equation is given by

(
ω2 + (c2 − 3γ∂xu∂xu)∂2

x

)
u(ω, x) = 0 (3.1)

. For numerical evaluation, we introduce the scaling ansatz u ≡
√

1

γc2ω2
ũ(ωx) yielding

the dimensionless equation

(
1 + (1− 3∂yũ∂yũ)∂2

y

)
ũ(y) = 0 (3.2)

, which is equivalent with the system of equations

∂yv(y) = − ũ(y)

(1− 3v(y)v(y))
(3.3)

∂yũ = v (3.4)
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Figure 3.1: Solution to the one-dimensional instanton equation with v(xc) =

√
1

3
, u(xc) = 0

, which is easily evaluated by means of the third order Runge-Kutta algorithm.

A unique solution is obtained by the initial conditions v(xc) =

√
1

3
, u(xc) = 0. xc is the point

of zero sound velocity, which divides the oscillatory form strictly monotonous behavior

of the instanton. The instanton factor A evaluates numerically to 0.1574.

3.2 Density of states for the vectorial model

We solve

ω2ul +
c2
l

r2
(1− 6γ

c2
l r

2
(∂r(rul))

2)∂r(r
2∂rul) = 0 (3.5)

ω2ut +
c2
t

r2
(1− 3γ

c2
t r

2
(∂r(rut))

2)∂r(r
2∂rut) = 0 (3.6)

, where the ansatz has been ul ≡ ul(ω, r)er,ut ≡ ut(ω, r)eφ/θ. Introducing the reduced

units vt/l ≡
√

γ
c2l ω

2∂r(rvt/l(ωr)), x = rω, ul/t = c2
l/tul/t yields
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ul +
1

x2
(1− 6

(ul
x

+ vl

)2

)∂x(x
2vl) = 0 (3.7)

ut +
1

x2
(1− 3

(ut
x

+ vt

)2

)∂x(x
2vt(x)) = 0 (3.8)

and hence

∂xvl = − ul

(1− 6
(ul
x

+ vl

)2

)
− 1

x
vl (3.9)

∂xvt = − ut

(1− 3
(ut
x

+ vt

)2

)
− 1

x
vt (3.10)

. Forward integration of equation (3.9) with the boundary conditions u(1)=0.2, v(1)=0

again yields to oscillating behavior which drops of faster then the volume measure
´
dxx2 as depicted in figure 3.2 . Integration with respect to arbitrary boundary condi-

tions always produces localized states, due to the motion in a self-induced non-linear

environment of lowered force constants.

A unique solution is obtained from the self-consistent requirement that at the critical

point xc where sound-velocity zero is reached, also the amplitude has to turn to zero,

hence ul/t(xc) = 0, vl/t(xc) =

√
1

6
/

√
1

3
.

The instanton factor evaluates to Al = 2, 2297.

3.3 Comparison with experiments

We compare the theory with the measurement of Baldi et al. [5] on vitreous silica. Using

the disorder parameter of the previous SCBA-calculation which is close to the critical

region γ = 0.99γc, γc = 0.1764, the tail fits most of the data points in the frequency-

region beyond the Boson peak. At large frequencies, the experimental data drops of

faster than the Lifshitz tail of the present theory. This feature is beyond the scope of the

present phenomenological discussion. Clearly, the experimental data shows a transi-
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ditions u(1) = 0, v(1) =

√
1

6

tion to a slower decrease beyond 3.2 THz. Most of the other density of states, shown

within the introduction show up such a transition to a slower or faster drop-off regime at

high frequencies. This is a detail which can-not be deduced from a Lifshitz exponent

which is a polynomial of the frequency and hence can not be explained in the present

framework. However the interesting feature is, that an exponential drop-off far beyond

the Boson-peak is related to a disorder parameter close to criticality. The Boson-peak

its-self only exists at disorder parameters which do not deviate from the critical by a

factor of 0.1. It may be hence understood as a preliminar of the localization transition:

at such large critical values of the disorder parameter the density of states is dominated

by “strong” disorder-induced scattering, in which the SCBA collects all processes which

are analytic in the disorder parameter and the instanton collects scattering processes

of order
1

γ
.
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Figure 3.5: Comparison of the Lifshitz-exponential with dimensionless disorder parame-
ter γ = 0.99γc, γc = 0.1764 with the measurement of Baldi et al. [5]. The red
line shows a previous SCBA-calculation.

3.4 Summary and conclusion

Within the present work, we established a consistent phenomenological theory of the

frequency dependent density of vibrational states of glassy systems in terms of “weakly”

fluctuating force constants.

The low-frequency region is dominated by propagating wave-like modes, which can

be altered by additional anharmonic scattering effects, which already explained fur-

ther low-frequency deviations from the usual Debye density of states. At intermedi-

ate frequencies, a transition to random-matrix eigenstates occurs which is followed by

strongly localized modes. The Boson-peak and hence the random-matrix regime can

be understood as preliminar of the strongly localized high frequency modes.

Although this phenomenological theory is in quite nice agreement with the experimen-

tal data, we found that it would be worth to formulate it on a more rigorous level in

future. We hope that the present work can be helpful within this direction. The main

issue for future investigations is now, that both the Boson-peak and the localized modes
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are somehow related to isolated points within the material where the force-constants

drop to zero. The theory of this drop-off is a theory of non-Gaussian distributed force

constants, and is relevant in order to investigate the nature of the high-frequency eigen-

states in the deep localized regime. We also found that at the Gaussian level, fluctu-

ations within the present mean-field formalism yields to a vast number of terms which

makes further argumentation very complicated.

In the future investigations this mean-field picture should really be withdrawn, and re-

discovered within a larger machinery. Clearly the Keldysh method has very much po-

tential in order to achieve this goal. The non-equilibrium formalism allows to re-express

this theory not only on the level of Gaussian fluctuations, but as a coupled system of

equations of motions where the information of the local sound-velocity is encoded in

non-equilibrium response functions of the elastic media. These equations of motion

can be expanded in a symmetry-expansion, due to the fact that the whole theory has

to satisfy the fluctuation-dissipation relation and hence the SL(2) symmetry as outlined

in section 2.8. The result will be something like a mode-coupling approach onto the

phonon-propagation in case of frozen non-trivial elastic constants, where one should

be able to reduce this theory somehow to the simple one- and two-particle mean-

field theories, which have been very successful in explaining vibriational excitations in

disordered media within the last two decades.
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Appendix

A.I Gaussian integrals

The usual Gaussian integral for a single variable is believed to generalize to operators

with real-valued eigenvalues

ˆ
Df(x)e−

´
dxf(x)D̂f(x)+

´
dxj(x)f(x) = ejD

−1j
∏
λ

√
(
π

λ
)N

. The normalization factorN comes from the rotation to the eigen-functions of D̂, which

for an ordinary Fourier-expansion becomes independent of the eigenvalues. Frequently

the functional determinant√
det(A)

−1
is rewritten into e−

1
2

Tr lnA.
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This also holds if the integration variable is deformed onto the imaginary axis

ˆ
Df(x)e−i

´
dxf(x)D̂f(x)+

´
dxj(x)f(x) = e−ijD

−1j
∏
λ

√
(
π

iλ
)N

.

A.II Free bosonic Particles

Introducing the rotation yields

Sfp = i

ˆ T

0

dt

(
xcl(t) xq(t)

) 0 −∂2
t

−∂2
t 0


 xcl(t)

xq(t)

− axcl(0)xcl(0)− axq(0)xq(0)

with ln ρ(x+
0 , x

−
0 ) = ln [φ(xcl(0) + xq(0))φ∗(xcl(0)− xq(0))] = −axcl(0)2 − axq(0)2 for Gaussian

initial states. The constraint to this integral is xcl(T ) = y, xq(T ) = 0

Sfp = lim
δ→0

i

ˆ T

δ

dt

(
xcl(t) xq(t)

) 0 −∂2
t

−∂2
t 0


 xcl(t)

xq(t)


+
i

δ2
(xq(δ)− xq(0))(xcl(δ)− xcl(0))− axcl(0)xcl(0)− axq(0)xq(0)− lnZ

= lim
δ→0

ˆ T

δ

dt

(
xcl(t) xq(t)

) 0 −∂2
t

−∂2
t 0


 xcl(t)

xq(t)


+(xq(δ)− xq(0))xcl(δ)− xcl(0)(xq(δ)− xq(0))− axcl(0)xcl(0)− axq(0)xq(0)− lnZ

=

ˆ T

0

dt

(
xcl(t) xq(t)

) 0 −∂2
t

−∂2
t 0


 xcl(t)

xq(t)

+ lim
δ→0

i

δ
∂txq(0)

(
xcl(0) +

1

aδ
∂txq(0)

)
− axq(0)xq(0)

=

ˆ T

0

dt

(
xcl(t) xq(t)

) 0 −∂2
t

−∂2
t 0


 xcl(t)

xq(t)

− axq(0)xq(0)
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, where we got an other constraint ∂txq(t)|t=0 = 0. Note that

a−1 = 〈xcl(0)xcl(0)〉 = G−1
r Gr〈xcl(0)xcl(0)〉GaG

−1
a = G−1

r 〈xcl(t)xcl(t′)〉G−1
a = GK

hence one could write within the Keldysh-logic

Sfp =

ˆ T

0

dt

(
xcl(t) xq(t)

) 0 −∂2
t

−∂2
t 〈xcl(t)xcl(t)〉−1


 xcl(t)

xq(t)


One can try to evaluate this integral again via semi-classical expansion. Varying with

respect to the quantum component setting it to zero afterwards yields the classical

equation of motion

∂2
t xcl(t) = 0

with solution xcl(t) = x + vt. The fluctuations can again be expanded within a Fourier-

series requiring the fluctuations δxcl, δxq to vanish at the boundary yielding

Sfp = i
∑
n

(
xncl xnq

) 0
(nπ
T

)2

(
nπ
T

)2
G−1
K


 xncl

xnq


yielding

∞∏
n=1

e

Tr ln


GK

(
T

nπ

)2

(
T

nπ

)2

0

 ˆ
dx0

qdx
0
cle
−xqGxq

. The zero mode has to be singled out because it can not be evaluated by use of the
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Gaussian formula.

.

A.III Sigma-model terms

First of all to the W (2)DW (2). In vacuum we obtain the matrix elements

Tr[W (2)DW (2)] =

O(w4, v4)

γ[Q̄a, v]
(
δ[Q̄a, v]v2 + δv[Q̄r, v]v + vδv[Q̄a, v] + v[Q̄r, v]δv

)
+γ{w, Q̄aw − wQ̄r}{{w, Q̄rw − wQ̄a}, δ}

O(wv3)

(
dra[Q̄a, v]v + drav[Q̄r, v] + v[Q̄a, v]dra

) (
{w, [Q̄a, v]}+ v(Q̄rw − wQ̄a) + (Q̄aw − wQ̄r)v

)
+
(
drav[Q̄a, v] + v[Q̄r, v]dra + [Q̄a, v]vdra

) (
{w, [Q̄r, v]}+ v(Q̄aw − wQ̄r) + (Q̄rw − wQ̄a)v

)
+γ[Q̄a, v]v{[Q̄r, v]w, δ}+ γv[Qr, v]{δ, [Q̄r, v]w}

O(w3v)

(
dra{w, Q̄aw − wQ̄r}+ {w, Q̄rw − wQ̄a}dra

) (
{w, [Q̄a, v]}+ v(Q̄rw − wQ̄a) + (Q̄aw − wQ̄r)v

)
+
(
dra{w, Q̄rw − wQ̄a}+ {w, Q̄aw − wQ̄r}dra

) (
{w, [Q̄r, v]}+ v(Q̄aw − wQ̄r) + (Q̄rw − wQ̄a)v

)
+γ[Qr, v]wδ{w, Q̄aw − wQ̄r}+ γ

(
{w, Q̄aw − wQ̄r}

)
δ[Qr, v]w
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O(w2v2)

+[Q̄r, v]wdra
(
{w, [Q̄a, v]}+ v(Q̄rw − wQ̄a) + (Q̄aw − wQ̄r)v

)
+[Q̄r, v]w

(
{w, [Q̄r, v]}+ v(Q̄aw − wQ̄r) + (Q̄rw − wQ̄a)v

)
dra

+γ
(
{w, [Q̄r, v]}+ v(Q̄aw − wQ̄r) + (Q̄rw − wQ̄a)v

)
δ
(
{w, [Q̄r, v]}+ v(Q̄aw − wQ̄r) + (Q̄rw − wQ̄a)v

)
+γ
(
{w, [Q̄a, v]}+ v(Q̄rw − wQ̄a) + (Q̄aw − wQ̄r)v

)
δ
(
{w, [Q̄a, v]}+ v(Q̄rw − wQ̄a) + (Q̄aw − wQ̄r)v

)
γ
(
v[Q̄r, v] + [Q̄a, v]v

)
δ{w, Q̄rw − wQ̄a}+ γv[Q̄a, v]δ{w, Q̄aw − wQ̄r}

+γ{w, Q̄rw − wQ̄a}δ
(
[Q̄a, v]v + v[Qr, v]

)
+ γ

(
{w, Q̄aw − wQ̄r}

)
δv[Q̄a, v]

Tr
[
W (1)DW (2)

]
O(vw2)

[2Q̄′r, w]dra
(
{w, [2Q̄′r, v]}+ {[2Q̄′r, w], v}

)
+[2Q̄′r, v]dra{w, [2Q̄′r, w]}+ 2γ[Q̄r, v]w

(
Q̄aw − wQ̄r

)
δ

O(wv2)

[2Q̄′r, v]dra
(
[Q̄r, v]w

)
(3.11)

+2γ[Q̄r, v]
(
δ{w, [Q̄r, v]}+ δv(Q̄aw − wQ̄r) + δ(Q̄rw − wQ̄a)v +

(
Q̄rw − wQ̄a

)
δv
)

(3.12)

+2γ[Q̄a, v]
(
δ{w, [Q̄a, v]}+ δv(Q̄rw − wQ̄a) + δ(Q̄aw − wQ̄r)v + v

(
Q̄rw − wQ̄a

)
δ +

(
Q̄aw − wQ̄r

)
δv
)

(3.13)

O(v3)

[2Q̄′r, v]dra
(
[Q̄a, v]v + v[Q̄r, v]

)
+ [2Q̄′r, v]drav[Q̄a, v]
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O(w3)

2γ
(
Q̄aw − wQ̄r

)
δ{w, Q̄rw − wQ̄a}+ 2γ

(
Q̄rw − wQ̄a

)
δ{w, Q̄aw − wQ̄r}

The fourth order term is given by 6Tr
[
{W (1), D}W (3)

]
=

O(v2w2)

2γ[Qr, v]δ
(
w[Q̄a, v]w − [Q̄r, v]w2 + [v, (Q̄rw − wQ̄a)w] + w(Q̄aw − wQ̄r)v − (Q̄rw − wQ̄a)vw

)
(3.14)

2γ
(
Q̄rw − wQ̄a

)
δ
(
[v, (Q̄aw − wQ̄r)v] + w[Q̄r, v]v + v[Q̄a, v]w − [Q̄a, v](wv + vw)

)
(3.15)

2γ
(
Q̄aw − wQ̄r

)
δ
(
[v, (Q̄rw − wQ̄a)v] + w[Q̄a, v]v − [Q̄r, v]vw + [v, [Qr, v]w]

)
(3.16)

2γ[Q̄a, v]δ
(
w[Q̄r, v]w − [Q̄a, v]w2 + w(Q̄rw − wQ̄a)v − (Q̄aw − wQ̄r)vw + [v, (Q̄aw − wQ̄r)w]

)
(3.17)

O(v4)

2γ
(
[Q̄r, v]δ[v, [Q̄r, v]v] + [Q̄a, v]δ[v, [Q̄a, v]v]

)

O(w4)

2γ
(
Q̄rw − wQ̄a

)
δ
(
2wQ̄rw

2 − {w2, Q̄a}w
)

+ 2γ
(
Q̄aw − wQ̄r

)
δ
(
2wQ̄aw

2 − {w2, Q̄r}w
)

O(wv3)
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[2Q̄′r, v]dra
(
[v, [2Q̄′r, w]v] + w[2Q̄′r, v]v + v[2Q̄′r, v]w − [2Q̄′r, v]{w, v}

)
+[2Q̄′r, w]dra[v, [2Q̄

′
r, v]v]

O(vw3)

[2Q̄′r, w]dra
(
[w, [2Q̄′r, v]]w + [v, ([2Q̄′r, w]w] + [w, [2Q̄′r, w]v]

)
+ [2Q̄′r, v]dra[w, [2Q̄

′
r, w]]w
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A.IV Introduction to the attached publications

In the appendix of the present thesis five publications [1, 2, 3, 4, 5] have been attached,

which have been published after the completion of the author’s diploma thesis. The

recent publication High-frequency vibrational density of states of a disordered solid [5]

comprises a shortened version of the contents of the present thesis. In the other pa-

pers [1, 2, 3, 4] the replica quantum field theory for vibrational excitations in disordered

solids, based on weakly fluctuating elastic consants, which has been worked out in the

author’s diploma thesis, is applied to the case of correlated disorder and the combined

presence of anharmonic and quenched-disordered interactions. These publications

are intimately related to the subject-matter of the present work. They set the basis for

understanding the anomalous vibrational spectrum at much lower frequencies than the

Debye frequency, whereas the present work focusses on the disorder-induced band tail

near or above the Debye frequency (Lifshitz tail). The saddle-point approximation used

for the inverstigation of the lower-frequency regime relies on the smallness of the vari-

ance of the elasticity fluctuations, compared to the frequency at hand, whereas the

investigation of the Lifshitz tail relies on the smallness of the inverse of the mentioned

parameter. So these theories complement each other. In the following we briefly sketch

the contents of the publications on the lower-frequency vibrationy properties.

A.IV.1 The role of correlations for the vibrational anomalies near the boson

peak

The theory of the vibrational anomalies of glasses near the boson peak has been for-

mulated by Schirmacher, 2006 [6]. As the present thesis this description is based on the

assumption that in a disordered solid the elastic constants exhibit spatial fluctuations,

which are caused by the quenched structural disorder. In Schirmacher’s theory it is as-

sumed that the shear moduli have Gaussian fluctuations, which are uncorrelated. This

theory gives a qualitative and in certain cases even a quantitative explanation of the vi-

brational anomalies [6, 7, 8], near the boson peak, (i.e. not near the upper band edge,

but approximately at 1/10 of the Debye frequency) which are

• the enhancement of the density of states near 1/10 of the Debye frequency (bo-



son peak, BP);

• a cross-over from a Rayleigh-like ω4 behavior to a ω2 behavior of the sound atten-

uation coefficient near the BP frequency;

• a dip in the differential sound velocity near the BP frequency.

The question was now arising, which role elastic fluctuations with correlated disorder

would play for the vibrational anomalies. In order to investigate this question numeri-

cally Baldi and Viliani [1, 3] simulated a two-dimensional system with spatially fluctuat-

ing harmonic interactions. The fluctuations were tailored in such a way that they had

a correlation length which was chosen to have several different values. The theory of

Schirmacher was now generalized for correlated disorder [1, 3], so that we were now

able to discuss the numerical findings in the light of our theory. As to be expected the

inverse correlation length acts as a cutoff in q space for the disorder fluctuations. Now

this cutoff replaces the Debye ultraviolet cutoff, which had to be introduced into Schir-

macher’s theory. The self-consistent saddle-point equations for the self energy of the

correlated theory exhibit a length scaling with the inverse correlation length. Such a

scaling is, indeed, observed in the sound attenuation data of the simulated disordered

two-dimensional system. It is very satisfactory that the scaled data of our self-consistent

theory just lay on top of the simulated ones.

A.IV.2 Anharmonic elasticity theory

Within the author’s Diploma thesis [9] the low-frequency sound attenuation of disor-

dered solids had been discussed assuming generic anharmonicities introducing mode-

Grüneisen parameters. However in our later inverstigations [2, 4] we realized that the

nonlinear terms of the standard Lamé elasticity theory, which do not contribute to the

anharmonic coupling in crystals, give rise to an appreciable anharmonic coupling in

disordered solids in the presence of spatial fluctuations of the elastic constants. This ef-

fect is due to the absence of local momentum conservation in the disordered medium.

The fact that the variance of the elasticity fluctuations are responsible both for the boson

peak and the anharmonic sound attenuation reduces the set of adjustable parameters



in the theory. The combined anharmonic and disorder theory gives for the sound damp-

ing a so-called Akhiezer law Γ(ω) ∝ ω2T , where T is the temperature. Such a frequency

and temperature dependence is observed in a number of disordered solids in the GHz

range, i.e below the boson peak. This anharmonic law masks the Rayleigh ω4 contri-

bution, which should be present at very low temperatures, at which the anharmonic

contribution is suppressed.

A very interesting aspect, which arose from the work on anharmonic interactions is the

fact that anharmonicity plays a crucial role for the case of marginal stability [10, 11]. It

turns out that small regions with very small positive or negative elastic constants exist in

glasses and constitute patches of marginal stability. In these regions the anharmonic

interaction as identified in the work developed in [2, 4] leads to a frequency-fractal de-

pendence of the sound attenuation and density of states according to a ω3/2 law. Such

a frequency dependence just below the boson peak can be identified experimentally

in metallic glasses, in network glasses and computer simulations [10, 11].
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ipt. di Fisica, Universitá di Roma, Italy; CRS SOFT-INFM-CNR c/o Universitá di Roma, Italy

We investigate a d-dimensional model (d = 2,3) for sound waves in a disordered environment, in
which the local fluctuations of the elastic modulus are spatially correlated with a certain correlation
length. The model is solved analytically by means of a field-theoretical effective-medium theory
(self-consistent Born approximation) and numerically on a square lattice. As in the uncorrelated
case the theory predicts an enhancement of the density of states over Debye’s ωd−1 law (“boson
peak”) as a result of disorder. This anomay becomes reinforced for increasing correlation length
ξ. The theory predicts that ξ times the width of the Brillouin line should be a universal function
of ξ times the wavenumber. Such a scaling is found in the 2d simulation data, so that they can
be represented in a universal plot. In the low-wavenumber regime, where the lattice structure is
irrelevant there is excellent agreement between the simulation at small disorder. At larger disorder
the continuum theory deviates from the lattice simulation data. It is argued that this is due to an
instability of the model with stronger disorder.

PACS numbers: 65.60

I. INTRODUCTION

The influence of quenched disorder on the dynamic
properties of solids is enormous and is subject to
widespread experimental and theoretical investigations
[1]. The disorder leads to strong modifications of phys-
ical properties of the solid. On the other hand, the ab-
sence of lattice order in the solids and the correspond-
ing breakdown of the Bloch theorem leads to appreciable
difficulties for the theoretical interpretation of the dis-
order-induced phenomena. Here mean-field theories and
particularly effective-medium theories have been of much
help [2], as they very often lead, at least, to a qualitative
understanding of the influence of the disorder. In par-
ticular the coherent-potential approximation [3] (CPA)
and its small-disorder version, the self-consistent Born
approximation (SCBA) [4], have proved to be useful for
interpreting the electronic and other spectral properties
of disordered solids. In many cases physically different
situations can be mapped onto each other. So one can
convert an electronical problem to a vibrational one by
replacing the energy E by −ω2, where ω is the frequency
parameter. If E is replaced by iω̃, one studies the math-
ematical analogous diffusion problem [2, 5, 6], where ω̃
denotes the time Fourier parameter of the diffusion dy-
namics.

In the case of vibrational properties the disorder-in-

duced excess in the density of states (DOS) over Debye’s
ωd−1 law (d is the dimensionality) (“boson peak”) has
been successfully explained for a lattice model by com-
paring a simulation of a disordered lattice system with
the predictions of the lattice CPA [7]. The comparison
showed once more that the CPA is a reliable theory of
disorder. In this study it was shown that the boson peak
anomaly marks the crossover from plane-wave like vibra-
tional states to disorder-dominated states with increasing
frequency ω. Near the crossover the effective sound ve-
locity v becomes complex and frequency dependent. This
corresponds to a dc-ac crossover in the analogous diffu-
sion problem [6].

A similar but lattice-independent approach is the gen-
eralised elasticity theory in which the disorder is assumed
to lead to spatial fluctuations of the elastic constants
[8]. This model was solved by functional-integral tech-
niques in which the SCBA plays the role of a saddle-point
in a non-linear sigma-model treatment. This theory al-
lowed for a generalization to include transverse degrees
of freedom and to formulate a thermal transport theory
[9]. Within this theory it was shown that the so-called
plateau in the temperature dependence of the thermal
conductivity [10] is caused by the boson-peak anomaly
[9]. Furthermore, it has turned out [11] that the sound at-
tenuation parameter (which is proportional to the imag-
inary part of v(ω)) is related to the excess in the DOS in
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the boson peak regime.

It should be noted that the model of spatially fluctuat-
ing elastic constants, treated in CPA and SCBA is by no
means the only approach for explaining the boson-peak
anomaly. In fact, an enormous number of possible ex-
planations have been published in the literature, which
can roughly grouped into three classes: i) defect models,
ii) models associated with the glass transition and iii)
models with spatially fluctuating elastic constants.

i): Defects with a heavy mass can produce resonant
quasi-local resonant states within the DOS [12–14] and
be thus the reason for the boson peak and the reduction
of the thermal conductivity. Similarly defects with very
small elastic constants, near which anharmonic interac-
tions are important (soft potentials), can produce quasi-
local states, which, if hybridized with acoustic excitations
may produce a boson peak [15, 16] and a plateau in the
thermal conductivity [17, 18] Inhomongeneities may also
be the source of local vibrational excitations that con-
tribute to the excess DOS [19]. Specifically in network
glasses bond-angle distortions may also contribute to the
boson-peak anomaly [20, 21]. In a recent study [8] the
predictions of a defect model has been compared with
those of a fluctuating elastic constant model. ii): In
theories of the glass transition [22–26] the boson peak
arises as a benchmark of the frozen glassy state. iii)
In models with quenched disorder of elastic constants
[5, 6, 8, 9, 11, 27–31] the boson peak marks the lower
frequency bound of a band of irregular delocalized states
with random mutual hybridization. These states are nei-
ther propagating nor localized [7]. The models have been
solved with the help of numerical simulations as well as
effective-medium theories.

A drawback of these models is that they are based on
the model assumption of uncorrelated disorder, i.e. spa-
tial fluctuations of the physical quantities are assumed
to be uncorrelated. This assumption is only justified if
the spatial correlation length is smaller or of the order
of the natural length which appears in the system un-
der consideration. In the present problem, namely vibra-
tions in disordered solids, there are two important length
scales. One is just the interatomic distance a, the other is
the sound velocity, divided by the boson-peak frequency,
which is in experimental data of the order of several inter-
atomic distances. The wavenumber corresponding to this
length scale is the maximum wavenumber wich can serve
as a label for wave-like vibrational states. In any case it
is a more sound procedure to start with a theory with
correlated disorder and make the approximation of short
correlations (if appropriate) only in the end. Such theo-
ries are available [32–34]. The aim of the present contri-
bution is twofold: First we summarise the main features
of the long-range-order SCBA. Secondly we present re-
sults of a two-dimensional simulation and compare them
with those of the analytic theory.

II. MODEL AND SELF-CONSISTENT BORN
APPROXIMATION (SCBA)

We start with the equation of motion for scalar wave-
like excitations u(r, t) in a d-dimensional disordered
medium

∂2

∂t2
u(r, t) = ∇ · v2(r) · ∇u(r, t) (1)

Here v(r) is a sound velocity (and v2(r) an elastic con-
stant), which is supposed to exhibit random spatial fluc-
tuations v2(r) = v2

0 + ∆(r) with v2
0 = 〈v2〉 and

〈∆(r + r0)∆(r0)〉 = C(r) = 〈∆2〉e−r/ξ

⇔ C(k) = 〈∆2〉C0 [k2 + ξ−2]−
d+1

2 (2)

with C0 = 2π(3d−5)/ξ. In an effective-medium approx-
imation the disordered system is mapped onto a homo-
geneous system, in which the influence of the disorder
enters via a self-energy function Σ(k, z) with z = ω + iε.
The dynamic susceptibility is given by

χ(k, z) =
k2

−z2 + k2(v2
0 − Σ(k, z))

(3)

In SCBA the self-energy function obeys the self-
consistent equation [4, 32–34]

Σ(q, z) =
1

2

∫

|k|<kD

(

dk

2π

)d

C(q − k)χ(k, z) (4)

with the Debye wavenumber kD = [2dπd−2]1/2/a.
In the present study we are mainly interested in the

low-frequency and -wavenumber properties, so we replace
the self-energy by its q → 0 limit Σ(z) and obtain the
SCBA equation

Σ(z) =
γ

2
v4
0

ϕd

∫

|k|<kD

(

dk

2π

)d
k2C(k)/〈∆2〉

−z2 + k2 (v2
0 − Σ(z))

(5)

with the normalization constant ϕd =
R

|k|<kD

(dk/2π)dC(k)/〈∆2〉 and the “disorder parameter”

γ = 〈∆2〉ϕd/v4
0 .

The DOS is given by

g(ω) =
2ω

π
Im

{

∫
(

dk

2π

)d
1

−z2 + k2(v2
0 − Σ(z))

}

(6)

In Fig. 1 we have plotted the “reduced DOS” g(ω)/ω2

for d = 3 and for three values of γ and two values of
ξ. First we notice that, as in the uncorrelated case [7–
9] there exists a critical amount of disorder γc = 0.5,
beyond which the system becomes unstable. The “boson
peak” becomes more pronounced and situated at lower
frequencies as this value is approached. The interesting
new feature in the correlated case is that the boson peak
is re-inforced by the correlation and again shifted towards
lower frequencies.
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FIG. 1: Reduced DOS g(ω)/ω2 for ξ = 1/kD (dashed lines)
and ξ = 5/kD (full lines) and for three disorder parameters
(from left to right) γ = 0.49, 0.47 and 0.45.

III. DYNAMIC STRUCTURE FACTOR AND
DENSITY OF STATES

We now divide the self-energy function into a real and
imaginary part Σ(z)=Σ′(ω≈ 0)+iΣ′′(ω) and define the
renormalised sound velocity as v2 = v2

0−Σ′. The dynam-
ical structure factor S(k, ω), which can be measured by
inelastic neutron or X-ray scattering, and which is the
Fourier transform of the dynamic density-density correla-
tion function, is then given by the fluctuation-dissipation
theorem [35] as

S(k, ω) =
kBT

πω
Im {χ(k, z)}

≈
kBT

2πv2

k2Σ′′(ω)/2ω

[(kv − ω)2 + (k2Σ′′(ω)/2ω)2]
(7)

The Brillouin resonance is given by ω = kv and the line
width (FWHM, sound attenuation parameter) is given
by

Γ(k) =
k

v
Σ′′(ω = v k) (8)

It can easily be shown that Σ′′ ∝ ωd for ω → 0 so that
Γ ∝ qd+1 for q → 0 (Rayleigh law).

We now introduce the dimensionless variables
Σ̃=Σ/v2

0 , C̃0 = C0ξ = 2π(3d − 5), z̃=zξ/v0= ω̃+iε̃

and k̃=kξ. We then obtain

Σ̃(z̃) =
γ

2
C̃0

ϕd

∫

|k̃|<ξkD

(

dk̃

2π

)d
k̃2 [1 + k̃2]−(d+1)/2

−z̃2 + k̃2(1 − Σ̃(z̃))
(9)

In this expression the correlation length ξ enters only via
the upper k̃ cutoff. For the limit ξ � a we therefore
obtain the scaling relation

Γ̃ = Γξ/v0 = f(γ, k̃) (10)
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FIG. 2: Scaled Brillouin linewidth Γξ/v0 against scaled
wavenumber qξ for ξ = 1/kD (dashed lines) [36], ξ = 5/kD

(full lines), ξ=10/kD and 15/kD (dotted lines). The disorder
parameters γ are the same as in Fig. 1.

In Fig. 2 we have plotted Γ̃ against k̃ for d = 3, for the
three γ values of Fig. 1 and for ξ = 1/kD, 5/kD, 10/kD,
and 15/kD. We see that the scaling is obeyed except for
ξ = 1/kD [36] as expected. As in the uncorrelated case
[11], the boson peak (see Fig. 1) marks the crossover

from the Rayleigh regime Γ̃ ∝ k̃4 to a behaviour Γ̃ ∝ k̃s

with s ≈ 2.

IV. SIMULATION

We now discretize (1) in d = 2 on a square lattice,
which then takes the form of an equation of motion for
unit masses connected by springs with spring constants
Kij = 1

2a2 (v2(ri) + v2(rj)):

d2

dt2
u(ri, t) =

∑

` n.N.

Ki`[u(r`, t) − u(ri, t)] (11)

In the simulation [37] the force constants Kij are ex-
tracted from a random distribution with mean K0 and
variance σ2. The correlation is established following the
Fourier filtering method (FFM) [38]. The network of
random springs is created starting from a random set
of (2N)2 numbers uniformly distributed around zero ob-
tained from a pseudo random number generator. The
FFM method is then used to generate a 2N × 2N
two-dimensional lattice of “pair” random numbers {ηij}
which obey a spatial correlation

〈η00ηij〉 ∝ e−
a

2
(i+j)/ξ (12)

The random spring constants with mean K0 and variance
σ2 are extracted from the pair numbers ηij . The lattice
spacing of masses-and-springs system is twice of that of
the random-number lattice. Using this statistics the dy-
namic structure factor S(k, ω) of the model has been de-
termined by the method of moments [39–41]. In Figs. 3a
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FIG. 3: Symbols: Linewidths Γ of the simulated Brillouin spectra, multiplied with the correlation length ξ and divided by the
sound velocity v. ◦ : ξ = 2.79a, ∆ : ξ = 5.42a, ∇ : ξ = 10.56a, + : ξ = 20.55a, x : ξ = 40.0a, Straight line: theory. The results
of the left picture correspond to a disorder parameter γ = 0.04 that of the right picture to γ = 0.111.

and 3b the scaled widths of the Brillouin peak of sam-
ples with different correlation lengths have been plotted
against the scaled wavenumber k̃. It is clearly seen that
the simulated data follow the predicted scaling law. For
the case with the lesser disorder (γ = (σ/K0)

2 = 0.04)
there is very good agreement with the theory ( (9) with
no cutoff in the integral) in the small wavenumber limit,
where the lattice and continuum models should agree. In
the high-wavenumber regime, of course, the lattice char-
acter of the simulated system becomes distinct.

Let us turn to the discussion of the data of Fig. 3b with
the increased disorder γ = 0.111. The continuum theory
in this case predicts the Rayleigh law Γ̃ ∝ k̃3 (continuous
line). We checked the stability of the system by investi-
gating the simulated density of levels g(ω2) = g(ω)/2ω
and found that this quantity exhibits nonzero values for
ω2 < 0, which means that the system is unstable. For
this case it is known that the imaginary part of the self
energy Σ′′ is constant and passes continuously from pos-
itive to negative values of ω2 in this case. Consequently
the line width Γ(ω) ∝ kΣ′′ shows a linear increase for
small omega. Such a behavior is obviously an artefact
of constructing a harmonic model with too much dis-
order, which leads to a small fraction of negative elastic
constants. In a realistic physical system such “would-be”

negative elastic constants are removed by the anharmonic
interaction which causes relaxation of the system towards
a stable situation. This has been nicely demonstratedby
a model calculation of Gurevich et al [16].

V. CONCLUSION

We have investigated the vibrational properties of
disordered systems with correlated disorder both analyt-
ically by the self-consistent Born approximation as well
as by a simulation applying the method of moments and
the Fourier-filtering method. The sound attenuation con-
stant Γ(k) (width of the Brillouin line) is found to scale
with the correlation length ξ in such a way that ξΓ is a
universal function of ξk. The enhancement of the density
of states (boson peak) is found to be re-inforced by the
correlations.
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Using anharmonic elasticity theory in the presence of spatially fluctuating elastic constants we derive a
self-consistent theory for sound attenuation in disordered solids. In the low-frequency regime �below the boson
peak frequency� we obtain a sound attenuation law proportional to T�2, where T is the temperature and � is
the frequency. Together with the usual Rayleigh scattering mechanism this yields a crossover of the Brillouin
linewidth from a �2 to a �4 regime. The cross-over frequency is fully determined by the boson peak frequency
and the temperature. For network glasses like SiO2 at room temperature this crossover is predicted to be
situated one order of magnitude below the boson peak frequency.
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I. INTRODUCTION

The role of the phonon-phonon interaction in crystalline
solids is very well understood. It accounts for a finite thermal
conductivity, thermal expansion, as well as transverse ultra-
sound attenuation.1,2 Landau and Rumer3 realized that, due
to energy and momentum conservation, a decay of the low-
frequency density waves �longitudinal phonons� would be
phase-space suppressed. In their theory only transverse
phonons acquire a lifetime �T��−1 at GHz frequencies.
Akhiezer4 solved the corresponding Boltzmann equation
which results in a �T�1 /�2T behavior at substantially lower
frequencies.5

The hydrodynamic modes are at the focus of interest in
glass physics, because their physical properties appear to be
independent of the specific underlying nonequilibrium static
structure. Recent experiments showed the presence of an
Akhiezer-like sound attenuation regime in the longitudinal
channel,6,7 however these authors claim different values of
the cross-over frequency from the Akhiezer-like to the Ray-
leigh law. The authors refer to the old and frequently cited
theory of Akhiezer.4 However neither his approach nor that
of Rumer/Landau3 do apply, as they are only valid for the
low-frequency transverse modes of crystalline solids. Fabian
and Allen8 performed simulations on a disordered lattice in
the kinetic regime, they established the validity of an
Akhiezer-like law for the longitudinal modes as well. In our
analytical approach, it turns out that this observation is only
possible in presence of disorder. In addition, our calculation
is not limited to the kinetic regime. A treatment of anhar-
monic damping in disordered solids has been formulated
some time ago,9 but the focus was on weak and strong local-
ization, so the applicability range is at very high frequencies
above the boson peak.

We present an extension of the “fluctuating elastic con-
stants” model,11–14 to account for anharmonic sound damp-
ing of disordered solids at “low” frequencies �i.e., in the
GHz-THz regime�. This is achieved, using the fact, that the
disorder-averaged spectral function ���q ,��—which de-
scribes the vibrational spectrum of the disordered material—
does not reflect momentum conservation anymore and exhib-
its a characteristic rapid increase in the THz frequency
regime.11–14 This phenomenon is frequently called “boson
peak” �BP�. The interaction of the irregular states near the
BP produces, as we shall show an Akhiezer-like T�2 law for
the anharmonic sound attenuation. The prefactor is inti-
mately related to the disorder-induced elasticity fluctuations,
which produce the BP.

This paper is organized as follows: first we briefly review
the theory for the spectrum of a harmonic disordered solid
based on disorder-modified elasticity theory.11–14 Then we
introduce anharmonic interactions. Using standard quantum
field-theoretical techniques we derive self-consistent mode-
coupling equations, obtained from a saddle-point treatment
of the disorder-averaged replica field theory,10,15,16 which de-
termine the phonon spectrum. For low enough temperatures
and frequencies the nonself-consistent mode-decay approxi-
mation is sufficient, which results in the Akhiezer-like �
�T�2 law.

II. ANHARMONIC ELASTICITY THEORY
WITH DISORDER

We start by reviewing the elasticity theory for a disor-
dered solid. The starting point is Lamé’s elasticity theory,17

but with spatially fluctuating elastic constants. The dynamics
of the displacement field u�x , t� is determined by the
Lagrange density

PHYSICAL REVIEW B 81, 104206 �2010�
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L =
�

2
u̇�x,t�2 −

1

2
��x���

i

uii�x,t��2
− 	�x��

ij

uij�x,t�2,

�1�

in which uij = ��iuj +� jui� /2 is the usual strain tensor. Here �
and 	 are Lamé’s elastic constants and � is the mass density.
As in our previous work we assume that the disorder affects
the elastic properties only via 	:

	�x� = 	0 + 
	�x� 	0 = �	�x�� ,

��x� = �0 = ���x�� , �2�

i.e., the spatial fluctuations of � are neglected. The fluctua-
tions 
	�x� are characterized by a correlation function
�
	�x�
	�x���=K	��x−x���; Higher moments of 
	�x� are
discarded. The correlation function is given in terms of the
variance of the shear modulus �2 and the correlation length �
�Ref. 18�

K	��x − x��� = �2 exp�−
�x − x��

�
� , �3�

and has the Fourier transform

K	�k� =	 d3x̃e−ikx̃K	�x̃� =
8�3�2


1 + �k��2�2 . �4�

The quantities �2 and � are the two phenomenological pa-
rameters, which characterize our model. As noted in,11–14

there exists a critical amount of disorder �c
2, depending only

on the ratio of the squared sound velocities �vL /vT�2, beyond
which the system becomes unstable. This criticality arises,
because a too large variance �2 allows for negative values of
the shear modulus 	�x�, which is unphysical.

Performing standard field theoretical methods10,16 the fol-
lowing set of self-consistent equations for the disorder-
averaged longitudinal �i=L� and transverse �i=T� dynamical
susceptibilities has been derived:11–14

�i�q,z� =
q2

− z2 + q2
vi,0
2 − �i,dis�z��

, �5�

where z=�+ i� and �→+0. Because only fluctuations of 	
have been considered, we have �L,dis=2�T,dis. �T,dis�z� is
given by

�T,dis�z� =
1

V
�
k

K	�k�
�2 
�L�k,z� + �T�k,z�� . �6�

These mean-field equations arise from a saddle point within
an effective replica field theory. The self-energy is evaluated
in the long wavelength limit �T,dis�z�=�T,dis�q→0,z�, in
agreement with similar approximation schemes, e.g., the co-
herent potential approximation or dynamical mean field
theory �DMFT�.19 The dynamical structure factor then fol-
lows from the fluctuation-dissipation theorem

S�q,�� =
1



1

1 − e�� Im��L�q,z� . �7�

with �=� /kBT. The real part of the self energies �i,dis renor-
malizes the sound velocities vi

2=vi,0
2 −�i,dis� ��� and their

imaginary parts give the �harmonic� sound attenuation. In
particular, the Brillouin linewidth of S�q ,�� is given by Ref.
12,

��k� =
�k

vL
2 �L,dis� �� = �k� �k = vLk . �8�

In the case of a short correlation length the function K	�k� is
constant in the relevant wave-number range and one recovers
the uncorrelated version of the self-consistent Born approxi-
mation �SCBA�,11,12 which has been shown to explain the
excess density of states �DOS� 
boson peak �BP�� and the dip
in the temperature dependence of the thermal conductivity as
a consequence of strong disorder-induced scattering. The
Brillouin linewidth has been shown to vary as �2 in the BP
regime and to be related to the excess DOS.12 In the case of
a finite correlation length � the ratio between DOS and De-
bye DOS is not limited to a factor 2 �see Ref. 12� but in-
creases indefinitely with �.13,14 Within this description �un-
correlated and correlated� the BP marks the crossover of the
vibrational spectrum from a weakly scattered plane-wave re-
gime to a disorder-dominated regime, where k does no more
label the modes.

We turn now to the consideration of anharmonic elasticity.
In the general theory of elasticity17,20 the strain tensor con-
tains nonlinear terms. Inserting the full nonlinear strain ten-
sor into the elastic Lagrangian yields an additional anhar-
monic interaction

Lan = �0��
i

uii��
ij

vijvij + 	�x��
ij�

uijvi�v�j , �9�

where vij =
1
2 �� jui−�iuj� is the rotation tensor.

Further anharmonic terms would be due to anharmonic
potential contributions yielding mode-Grüneisen-type cou-
plings �cf., e.g. Refs. 17 and 21�. In a system without spatial
fluctuations of elastic constants translational invariance leads
to a phase-space suppression of the anharmonic damping
channel via Eq. �9� due to momentum conservation and a
linear sound dispersion.3,22 In the older treatments of anhar-
monic sound damping,3,4 therefore, the mode-Grüneisen
terms were taken as dominant anharmonic coupling which
couple one transverse with two longitudinal phonons. As mo-
mentum conservation does not apply in the present situation,
a finite phonon lifetime ��	�x� can already be calculated
for a given configuration �	�x� from the interaction �9�. The
configurationally averaged lifetime ����	�x� would be non-
zero in general. However it is more useful to work out the
effect of the anharmonic interaction in terms of the effective
fields �i ,�i, as they are important entities describing
harmonic vibrations in glasses.

Using the standard replica field theory of disordered
solids15,16 we are able to show that the interaction �9� induces
a third-order term in the effective theory for the fields repre-
senting the dynamic susceptibilities. A replica diagonal,
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translation, and rotational invariant saddle point has been
chosen, which yields the following self-consistent equations
for the full self energies:

�L��n� = �L,dis�z = i�n� + 2�T,T,an��n� , �10�

�T��n� =
�L��n�

2
+ �L,T,an��n� , �11�

�ij,an��n� =
kBT

6V2�3 �
k,q,m

�i�k,i�n−m�K	�k − q�� j�q,i�m� .

�12�

Such equations have been shown21 to be mathematically
equivalent to mode-coupling equations.23,24

Indeed, these saddle-point equations resemble the struc-
ture of a calculation of the self-energy to first order in the
anharmonic and disorder-induced interaction. The corre-
sponding diagrams are shown in Fig. 1. The saddle-point
equations contain self-energy dressed propagators instead of
free ones.

III. MODE-DECAY APPROXIMATION AND RESULTS

In the following, we exploit this analogy for justifying the
most obvious approximation to Eqs. �10�–�12�, the mode-
decay approximation. Our interest is the anharmonic effect
on the dynamical structure factor and hence we are investi-
gating the anharmonic effect on the longitudinal self-energy.
We treat the anharmonic interaction as small perturbation
and split the self-energy into harmonic and anharmonic parts
�L=�dis+�an. The propagators �i are approximated by the
solution of the linearized equations, which are just the har-
monic SCBA Eqs. �5� and �6�.

�an is then represented by the last self-energy diagram of
the longitudinal channel in Fig. 1, in which the full trans-
verse susceptibilities are replaced by the disorder-dressed
ones.

We now represent k sums by

�
k

=
V

�2�3	
�k��kD

d3k ,

and Matsubara sums by25

�
�m

A�i�m� =
�

2
	

−�

�

d� coth
��

2
Im�A�z = � + i�� .

The anharmonic contribution to the Brillouin linewidth is
then given by:

�an�k� =
�k

vL
2 �an� �� = �k� �k = vLk ,

�an� ��� =
�

6�2�7�3	
kD

d3qd3k	
0

�

d�̄ coth���̄

2
�

� �T��k,�̄�K�q − k�
�T��q,�̄ + �� − �T��q,�̄ − ��� .

�13�

The behavior of the susceptibility can be estimated from the
inset of Fig. 2, it resembles the shape of the momentum
independent self-energy, only the position of Brillouin peak
is momentum dependent. We replace the correlation function
K	�k� by its maximal value 8�3�2. This approximation is
robust, as it reflects the anharmonic expression we would
have obtained in an uncorrelated framework. In addition we
apply the classical �high temperature� limit in which we can
replace the hyperbolic cotangent by its inverse argument.
Then the self-energy is given by

�̃an� ��̃� = g��2,�,kBT�I��2,�,�̃� , �14�

g��2,�,kBT� =
�2kBT

3�34�3v̄T
4 , �15�

I��2,�,�̃� = 	
0

� 	
0

�kD

dk̃k̃2	
0

�kD

dq̃q̃2d�̃̄

�̃̄

� �̃T��q̃, �̃̄�
�̃T��k̃, �̃̄ + �̃� − �̃T��k̃, �̃̄ − �̃�� ,

�16�

with g the interaction parameter in units of a squared sound

=

=

+ +

+

1
2

1
2

_

_

FIG. 1. �Color online� Diagrammatic representation of the an-
harmonic mean-field equations: blue=L, red=T; full lines are sus-
ceptibilities, dashed lines represent the correlation function; wind-
ing lines are the full self energies.
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velocity and a dimensionless integral I.26 For small external
frequencies, the integral kernel scales such as

�T��k,�̄ + �� − �T��k,�̄ − �� = ���̄�T��k,�̄� , �17�

the Brillouin linewidth satisfies an Akhiezer-like sound at-
tenuation law

�an� ��� � �T ⇒ �an�k� � �k
2T . �18�

The validity of this �2 behavior has been tested by evaluat-
ing the full integral �16� instead of using Eq. �17�. The result
is shown in Fig. 3.

The self-energy behaves linearly in the whole frequency
range, and not just at the lower band-edge �→0, as one
would naively expect. This happens because the main con-
tribution to the integral I, for frequencies below the BP,
comes from the band of irregular delocalized high-frequency
modes; these states contribute a wide ���� regime, situated
above the BP, to the disordered spectral density �see the inset
of Fig. 2�, for which the approximation �16� becomes exact.

Further, we estimate the amount of the attenuation in-
duced by anharmonicity as compared with the disorder-
induced one. The ratio R���=�an��� /�dis���� I��̃� / �̃,
which becomes frequency-independent beyond the BP, deter-
mines the crossover frequency. This ratio is fixed by the
parameters �2 and �, which set up the BP position, and the
temperature. For example SiO2 requires �2=0.99�c

2

=0.401�2vT
4 and �=2 /kD. The ratio of the squared sound ve-

locities is �vL /vT�2=2.52 and the Debye cutoff 1.6
�1010 /m.12 At room temperature kBTkD

3 /�vT
2 =0.6 and the

ratio I��̃� / �̃�50 is evaluated numerically for these param-
eters. We obtain �an� ��̃��0.005�̃, i.e., T0=7.3·105 K. Fig-
ure 3 shows the full Brillouin linewidth due to disorder and
anharmonicity. The anharmonic corrections already lead to
deviations from the disordered contribution slightly below
the shoulder of the BP, the highest frequency, where the
Akhiezer-like behavior is present in SiO2 is therefore pre-

dicted to be one order of magnitude below the BP, i.e., in the
100 GHz regime. In general, for observing the Rayleigh law
one needs to go to low enough temperature, which shifts the
crossover toward lower frequencies.

IV. DISCUSSION AND CONCLUSIONS

Let us now discuss the possible role of potential-induced
anharmonicity. There is no problem to introduce interactions
involving longitudinal and transverse mode-Grüneisen pa-
rameters gL,T into the theory. In the longitudinal case one just
has to replace �2 by �1+gL

2��2 in the saddle point Eqs.
�10�–�12�. This will shift the crossover from Akhiezer-like to
Rayleigh scattering upwards and reduce the “Rayleigh win-
dow” between the Akhiezer-Rayleigh crossover and the BP.
Within our continuum description it is not possible to judge
the importance of the mode-Grüneisen parameters gL,T, be-
cause they are effective constants which have to be calcu-
lated from a certain microscopic theory, taking into account
the material-specific details of the interaction. It has been
pointed out by Fabian et al.,8 that the Grüneisen parameters
which they have extracted from their simulations are unusu-
ally strong, compared to the bare crystalline couplings. How-
ever, a suitable choice of the parameters for the Weber-
Stillinger potential27 used in their simulations28 should
account for the nonlinear part of the strain tensor as well.
Hence, their strong Grüneisen parameters �i, should not be
confused with our nonlinear couplings gL,T, which may as a
first guess be identified with their rather weak crystalline
counterparts,1,2 as long as one deals with weak disorder.
However it cannot be excluded, that strong disorder or im-
purities drive these constants toward a strong-coupling re-
gime within a renormalization-group approach. Therefore,
for a particular material it has to be determined by experi-
ment, whether our “minimal” description is sufficient, or one
has to deal with mode-Grüneisen parameters. In any case our
estimate of the Akhiezer-Rayleigh crossover serves as a
lower bound.

The measurements on vitreous SiO2, performed by Mas-
ciovecchio et al.,6 exhibits the Akhiezer-Rayleigh crossover
around 100 GHz, which fits our estimates quite well. In con-
tradiction Devos et al.7 claim the crossover to take place near
400 GHz. However they performed their measurements on
amorphous thin films of SiO2, prepared by chemical vapor
deposition. Such materials—in comparison to glasses
quenched from the liquid state—are known to have a wealth
of additional defects such as voids and dangling bonds. It is
at the heart of impurity physics that defects give rise to ad-
ditional effective interactions, i.e., anharmonicities. This can
lead to enhanced mode-Grüneisen parameters gL,T, which
then have to be taken into account.

In several experiments dealing with vibrational spectra
near and below the glass transition29,30 one observes an in-
crease of the DOS in the BP regime. Within the mode-decay
approximation one can account for the trends but not numeri-
cally reproduce such spectra.31 We believe that one has to
solve the full mode-coupling Eqs. �10�–�12� in order to be
able to do so.

In conclusion, we developed a consistent perturbative
treatment of the anharmonic contribution to the Brillouin
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linewidth in disordered solids. Our treatment solely in terms
of elasticity parameters, which enter into the mean values
and correlation functions, suggests a correlation between the
boson peak position and the Akhiezer-Rayleigh crossover at
temperatures scaled with the Debye temperature. Further de-
velopments in experimental techniques are required to ex-
plore this extremely interesting frequency window in the up-
per GHz regime.
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7 IPCF-CNR, Sezione di Roma, c/o Sapienza Universita’ di Roma, Italy

Received April 3, 2010, in final form April 14, 2010

We study via self-consistent Born approximation a model for sound waves in a disordered environment, in
which the local fluctuations of the shear modulus G are spatially correlated with a certain correlation length
ξ. The theory predicts an enhancement of the density of states over Debye’s ω2 law (boson peak) whose
intensity increases for increasing correlation length, and whose frequency position is shifted downwards as
1/ξ. Moreover, the predicted disorder-induced sound attenuation coefficient Γ(k) obeys a universal scaling
law ξΓ(k) = f(kξ) for a given variance of G. Finally, the inclusion of the lowest-order contribution to the
anharmonic sound damping into the theory allows us to reconcile apparently contradictory recent experimental
data in amorphous SiO2.

Key words: sound attenuation, vibrational properties of disordered solids, boson peak, anharmonic
interactions

PACS: 63.50.-x, 43.20.+g, 65.60.+a

The vibrational properties of disordered solids at THz frequencies are subject of an enormous
attention both from the experimental and from the theoretical side [1], due to the related anomalies
observed in the specific heat and thermal conductivity of glasses [2]. The origin of an excess of the
vibrational density of states (DOS) over the Debye prediction (“boson peak”) at THz frequencies
and its relation to the rather anomalous sound attenuation in the same frequency regime is in focus
of a lively debate [3–5]. In particular, the origin of the dispersion and attenuation of sound-like
excitation in the THz frequency range has been a matter of controversy quite recently [6, 7]. In spite
of this debate, nowadays many authors agree that the boson peak and the frequency dependence
of the sound attenuation are the related phenomena dictated by the structural disorder, rather
than by anharmonic interactions, and occur at frequencies at which the wavevector k looses its
significance for labeling the transverse vibrational states (Ioffe-Regel regime) [8].

The way the disorder controls the thermophysical properties, however, is still not fully un-
derstood, and the experimental phenomenology is not completely reproduced by the current
fluctuating-elastic-constant (FE) approaches [6, 9, 10], which are based on zero-range correlati-
ons.

The FE approach has been recently applied to low-frequency Raman scattering and for the
first time accounted for the experimentally observed frequency dependence, which is different from
incoherent neutron scattering [11]. In this study and in a recent comparison of a scalar FE model
with a simulation of a simple model having correlated disorder [12] it was realized that the finite
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correlation length ξ of the elasticity fluctuations plays an important role discussing the vibrati-
onal anomalies. A similar conclusion was drawn from molecular-dynamics simulations of quenched
Lennard-Jones Argon and SiO2 [13]. In the latter study it emerged that these correlations exist
over an extended number of inter-atomic distances. This verifies a conjecture of Elliott [14] quite
a time ago.

In the present paper we use the full vector FE approach [10] to study the effect of a finite
correlation length and the presence of anharmonic interactions. We find that the BP becomes
strongly enhanced with increasing correlation length, a result which emphasizes the importance
of this latter property in real systems. We further demonstrate that ξ times the disorder-induced
sound attenuation constant is a universal function of ξk (where k is the wavenumber).

We consider an elastic continuum, in which the shear modulus G fluctuates in space around
its mean value G0 (the bulk modulus Ko is supposed to be constant): G(r) = G0 + ∆G(r), we
also assume that the correlation function of ∆G(r), C(r) = 〈∆G(r + r0)∆G(r0)〉 and its Fourier
transform are of the forms

C(r) = 〈∆G2〉e−r/ξ,

C(k) =
〈

∆G2
〉

(8π/ξ)
[

k2 + ξ−2
]−2

. (1)

The corresponding mean-field equation for the low-wavenumber self energy Σ(ω) = Σ(q = 0, ω) (self-
consistent Born approximation, SCBA) takes the form [11, 12, 15, 16]

Σ(ω) =
γ

2ϕ3 〈∆G2〉

∫

|k|<kD

(

dk

2π

)3
C(k)

[

χL(k, ω) + χT (k, ω)
]

with

χL(k, ω) = k2
[

− ω2 + k2(v2
L,0 − 2Σ(ω))

]−1
, (2)

χT (k, ω) = k2
[

− ω2 + k2(v2
T,0 − Σ(ω))

]−1
. (3)

Here γ = 〈∆G2〉ϕ3/v4
0 . is the “disorder parameter”, vL,0, vT,0, are the (unrenormalized) sound

velocities, and ϕ3 =
∫

|k|<kD

(dk/2π)3C(k) is a normalization constant. kD is the usual Debye-cutoff,

typical values have been elaborated in [6].
The DOS, given by

g(ω) =
2ω

3π

∫

|k|<kD

(

dk

2π

)3 1

k2
Im {χL(k, ω) + 2χT (k, ω)} (4)

is reported in figure 1. Here we have plotted the “reduced DOS” g(ω)/gD(ω) (where gD is Debye’s
DOS) for three values of γ and five values of ξ. First we notice that, similarly to the uncorrelated
case (ξ → 0) [6, 9, 10] there exists a critical amount of disorder γc, beyond which the system becomes
unstable. The “boson peak” becomes more pronounced and is located at lower frequencies as this
value is approached. However, at variance with the experimental data, the maximum amplitude
of the boson peak predicted from the ξ = 0 case is a factor larger than the Debye expectation.
The interesting feature appearing in the correlated case (ξ > 0) is that the boson peak amplitude
increases and its position shifts towards lower frequencies with increasing ξ. In figure 1 – where we
have taken the frequencies scaled by vT /ξ in order to show that the boson peak frequencies scales
as 1/ξ – one can see that the boson peak amplitude can reach the value as high as ten with still
reasonable ξ value.

The sound attenuation constant (i.e., the width of the Brillouin line in χ′′
L(k, ω)) is given in

terms of the imaginary part of the self-energy Σ′′(ω) as [6]

Γ(k) = 2
k

vL
Σ′′(ω = k/vL), (5)
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Figure 1. Reduced DOS g(ω)/gD(ω) against scaled frequency ωξ/vT,0 for ξ = 1/kD (full lines)
ξ = 5/kD (dashed lines), ξ = 10/kD (dotted lines), ξ = 15/kD (dash-dotted lines), for three
disorder parameters (from left to right) γ − γc = 0.0001 (black), 0.001 (blue) and 0.01 (red).
Inset: Scaled Brillouin linewidth Γξ/v0 against scaled wavenumber qξ for the same parameters
and with the same line and color codes.

where vL = [v2
L,0 − 2Σ′(ω = 0)]1/2 is the renormalized longitudinal sound velocity. In particular,

the relation between Γ and the excess DOS derived for ξ = 0 (see equation (5) in [6]) – and this
has been found to be in agreement with the experimental data [6] – remains the same also for
ξ > 0. If one now introduces the dimensionless variables Σ̃ = Σ/v2

T,0, ω̃ = ωξ/vT,0 and k̃ = kξ and
inserts these into the SCBA equation (2) one realizes that the correlation length only appears via
the upper cutoff k̃D = kDξ. This means that for large enough ξ (in which case the cutoff does not
play any role) Σ̃ and Γ̃ does not depend on ξ. This implies, in turn, that Γ̃ = Γξ/vT,0 is - for a

fixed disorder parameter γ – a universal function of k. Σ̃ (and, in fact Σ as well) is – within our
approach – a universal function of ξω/vL or ξk.

In the inset of figure 1 we have plotted Γ̃ against k̃ for d = 3, for the three γ values of figure 1
and for ξ = 1/kD, 5/kD, 10/kD, and 15/kD. We see that the scaling is obeyed except for ξ = 1/kD

as expected. The crossover from the Rayleigh regime Γ̃ ∝ k̃4 to a behavior Γ̃ ∝ k̃s with s ≈ 2,
occurring at the low frequency edge of the boson peak [6, 10], is now understood to be a universal
feature independent of the magnitude of the correlation length (see figure 1).

In real amorphous solids, the relation Γ(k) ∝ k2 holds – at frequencies around the boson peak
frequency – for almost all glasses. This is in agreement with the present theory, which predicts
Γ(k) ∝ k2 in the boson peak for all values of γ and ξ. On the contrary, a clear-cut Rayleigh
scattering law (Γ(k) ∝ k4) is seldomly observed. Generally, at much lower frequencies, one finds a
sound attenuation proportional to k2, which increases with temperature and is therefore attributed
to anharmonic effects. Some evidence of a possible transition between k2 and k4 behavior has been
found for vitreous silica [17].

In order to account for this contribution we consider a cubic anharmonic interaction of the
form [19]

Van = λ0

∑

ij

uiivijvij + G(x)





∑

ij`

uijvi`v`j + g1

∑

i

u3
ii



 (6)

with the linearized strain- uij = 1

2
(∂jui + ∂iuj) and rotation vij = 1

2
(∂jui − ∂iuj) tensor and

g1 a phenomenological mode-Grüneisen-like parameter. Using a replica field formalism at finite
temperature T , a set of mode-coupling-like self consistency equations for the full dynamical sus-
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ceptibilities has been derived [20]. This treatment involving an Akhiezer-like ’mode-coupling’ pa-
rameter g(〈∆G2〉, ξ, kBT ) = (1 + g2

1)〈∆G2〉kBT/3ξ3π4ρ3v̄4
T . In a perturbative regime, the relevant

anharmonic contribution to the attenuation of density fluctuations can be reduced to

Σ′′
an,i(0, ω̃) = g

∫ ∞

0

∫ ξkD

0
dk̃k̃2

∫ ξkD

0
dq̃q̃2 d˜̄ω

˜̄ω
χ̃′′

T (q̃, ˜̄ω+)
[

χ̃′′
T (k̃, ˜̄ω + ω̃) − χ̃′′

T (k̃, ˜̄ω − ω̃)
]

, (7)

where the full susceptibilities are replaced with their harmonic disorder-modified counterparts (2).
The specific form of the correlation function enters the anharmonic sound attenuation function
only indirectly through the harmonic susceptibilities. The latter ones, are only weakly effected by
a change from exponential to Gaussian correlations. At room temperature, the integral (7) scales
like Tω for ω � ωB. This is already suggested by the specific form of the integral kernel, and has
been confirmed numerically [20].

Figure 2. Brillouin linewidth, divided by frequency Σ̃′′
·α including disorder and anharmonicity

for ξ = 2/kD, γ/γc = 0.99 , α = (vL/vT )2 = 2.52 for different temperatures T/T0=0 (full,black),
0.001 (long dashes, red), 0.005 (short dashes, green), 0.01 (dash-dots, blue). T0 is defined by
Σ̃′′

an(ω̃) = (T/T0)ω̃ in the linear region.

Figure 2 shows the full Brillouin linewidth due to disorder and anharmonicity with the known
parameters of SiO2 [6] γ = 0.99, ∆G2

c = 0.401, ρ2v4
T , ξ = 2/kD, (vL/vT )2 = 2.52,kD = 1.6×1010/m,

T = 300 K, g1 ≈ 0. The anharmonic corrections already lead to deviations from the disordered
contribution slightly below the shoulder of the BP, the highest frequency, where the Akhiezer-like
behavior is present in SiO2, is therefore predicted to be one order of magnitude below the BP, i.e.,
in the 100 GHz regime.

This compares qualitatively with some recent inelastic UV light scattering data of vitreous
SiO2 by Masciovecchio et al. [17]. They observed the crossover from a ω2 to a very steep increase
– compatible with a ω4 law – around 100 GHz.

More recently Devos et al. [18] reported on the results of the measurements of sound absorption
on thin films of SiO2 produced by chemical vapor deposition (CVD). These Γ(k) data are found
to be different from the data of [17]. The authors of [18], implicitly assuming that the structure
of the materials investigated in the two sets of experiments are the same, claim that the data sets
reported in [17] must be in error.

As it is well known, the structure of disordered solids crucially depends on the preparation
method [21]. A glass, which is quenched from the melt, is known to have a much more relaxed
structure than an amorphous material evaporated onto a cold substrate from the gaseous phase.
Therefore, we believe that both the anharmonic coupling strength as well as the correlation length
of differently prepared materials can differ considerably. This may be the reason that the Akhiezer-
Rayleigh-crossover might occur at different frequencies in differently prepared materials.
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In conclusion, we have combined a model in which the shear modulus exhibits spatially corre-
lated fluctuations with an anharmonic interaction. By this we are able to discuss these phenomena
in terms of the structure of the materials and to solve an apparent contradiction recently reported
in the literature. More importantly, we have at hand a theory capable of quantitatively reproducing
most of the phenomena related to the high frequency vibrations in glasses, such as the existence
of a boson peak and the puzzling k dependent behavior of the sound attenuation.
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Послаблення звуку та ангармонiчне загасання у твердих
тiлах зi скорельованим безладом

В. Шiрмахер1,2, К. Томарас3, Б. Шмiд2, Дж. Бальдi4, Дж. Вiлiанi5 , Дж. Руокко6,7,
T. Скопiньйо6,7

1 Вiддiлення фiзики E13, Технiчний унiверситет Мюнхена, Ґархiнґ, Нiмеччина
2 Факультет фiзики, Унiверситет Майнца, Майнц, Нiмеччина
3 Центр теоретичної фiзики Арнольда Зоммерфельда, Мюнхенський унiверситет iм.

Людвiґа-Максимiлiана, Мюнхен, Нiмеччина
4 ЄЦСР, Ґренобль, Францiя
5 Факультет фiзики, Унiверситет Тренто, Тренто, Iталiя
6 Факультет фiзики, Римський унiверситет, Рим, Iталiя
7 Центр SOFT-INFM-CNR, Italy

За допомогою самоузгодженого наближення Борна ми дослiджуємо модель для звукових хвиль у
невпорядкованому оточеннi, де локальнi флуктуацiї модуля зсуву G є просторово скорельованi з
певною кореляцiйною довжиною ξ. Теорiя передбачає зростання густини станiв понад законом Де-
бая ω2 (бозонний пiк), чия iнтенсивнiсть зростає iз збiльшенням кореляцiйної довжини та частота
зсувається в область низьких частот як 1/ξ. Крiм того, передбачено, що коефiцiєнт викликаного
безладом послаблення звуку Γ(k) задовiльняє унiверсальному закону скейлiнґу ξΓ(k) = f(kξ) для
заданої варiацiї G. Врештi, врахування внеску найнижчого порядку до ангармонiчного загасання зву-
ку в теорiї дозволяє нам узгодити наявнi суперечливi недавнi експериментальнi данi для аморфного
SiO2.

Ключовi слова: послаблення звуку, вiбрацiйнi властивостi невпрорядкованих твердих тiл,
бозонний пiк, ангармонiчнi взаємодiї
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A saddle-point treatment of interacting phonons in a disordered environment is developed. In contrast to
crystalline solids, anharmonic attenuation of density fluctuations becomes important in the hydrodynamic
regime, due to a broken momentum conservation. The variance of the shear modulus Δ2 turns out to be the
strength of the disorder enhanced phonon–phonon interaction. In the low-frequency regime (below the
boson peak frequency) we obtain an Akhiezer-like sound attenuation law Γ ∝ Τω2. Together with the usual
Rayleigh scattering mechanism this yields a crossover of the Brillouin linewidth from a ω2 to a ω4 regime.
The crossover frequency ωc is fully determined by the boson peak frequency and the temperature. For
network glasses like SiO2 at room temperature this crossover is predicted to be situated one order of
magnitude below the boson peak frequency.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Theories for sound-wave propagation in inhomogeneous media
(e.g. a spatially fluctuating sound velocity) have served as a common
tool for explaining the anomalous vibrational properties of disordered
solids for at least two decades [1–12]. However, less is known about
the role of the anharmonic interaction in such models. In a previous
phenomenological approach, involving only the longitudinal modes, a
Mode-Grüneisen like 3 phonon interaction has already been incorpo-
rated [13]. During the recent years, the detailed vector theory [5],
based on Lame's elasticity theory with spatially fluctuating elastic
moduli, has gained importance, because it establishes the connection
with Raman scattering data [8]. From first principles of elasticity
theory, this vectormodel allows for the inclusion of a phonon–phonon
interaction, which depends only on the constants that characterize the
harmonic medium, and requires no additional parameters. In the
present paper we present the derivation of the generalized anharmo-
nic saddle-point equations within the replica formalism [14–16]. We
evaluate the anharmonic corrections on the Brillouin linewidthwithin
a perturbative regime. At room temperature the theory predicts
anharmonic sound attenuation at the THz scale. This is in agreement
with previous simulations [17,18], which report on strong effective
Grüneisen parameters, compared with their rather weak crystalline
counterparts; in the present treatment the relevant expansion
parameter of the anharmonic vertex is just the fluctuation of the
shear modulus Δ2 which typically is of the order ≈0.1ρ2υT4, whereas

the Grüneisen parameters of crystalline solids are much smaller and
lead to anharmonic sound attenuation at and below several GHz [19]
(υL / T is the longitudinal/transverse sound velocity). Recent experi-
ments [20,21] showed already the existence of anharmonic sound
attenuation at the THz scale in SiO2, e.g. the Brillouin linewidth
exhibits an additionalω2 regime below the disorder-induced Rayleigh
ω4 law, but disagree about the precise value of the crossover frequency
separating both regimes. In addition it was widely believed that these
anharmonic effects coincided with those of the corresponding
crystalline phase, and several authors consulted an old kinetic
description of anharmonic solids [22]. However, this kinetic theory
only applies to transverse phonons, due to energy and momentum
conservation, as we explain in the second section. In contrast, the
anharmonic sound attenuation emerging from the present calculation
relies crucially on the presence of disorder. The Brillouin linewidth
satisfies an Akhiezer-like law, with a prefactor related to the disorder-
dressed spectral function. This is more reasonable, because the
vibrational degrees of freedom of a glass are assumed to be at thermal
equilibrium throughout the whole literature, whereas the kinetic
description only applies to non-equilibrium phonon distributions.

2. Theory of anharmonic sound attenuation in glasses

2.1. Anharmonic elasticity

The usual textbook derivation [23,24] of elasticity theory starts
with the non-linearized strain tensor,

uij x; tð Þ = 1
2

∂iuj x; tð Þ + ∂jui x; tð Þ + 1
2
∑
k
∂iuk x; tð Þ∂juk x; tð Þ

� �
ð1Þ
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which measures the deformation of a differential volume element.
The elastic free energy functional F el to quadratic order

F el = ∑ λ
2
u2
ii + μ xð Þuijuij

� �
ð2Þ

is built up from the translation and rotational invariant contractions of
the strain tensor. If the displacement of the individual atoms from
their equilibrium position is small e.g. ∇·u≪1, the non-linear part of
Eq. (1) can be neglected. Even then, the residual third order
contributions of Eq. (2) and possible third order contractions with
independent elastic moduli (Grüneisen-like parameters) have to be
taken into account, for explaining other physical properties of solids,
likewise a finite thermal conductivity or thermal expansion [25]. As
we explain in the next paragraph, the anharmonicities included in
Eq. (2) cannot lead to thermalization of the density modes in the
crystalline phase.

2.2. Absence of sound attenuation in the hydrodynamic regime

In case of a spatially independent shear modulus μ xð Þ = μ0 the
wave number k is a good quantum number. According to the
continuity equation, longitudinal phonons are density fluctuations
ρ x; tð Þ = ρ0∇·u x; tð Þ. The absorption of a density wave through an
energy and momentum conserving three phonon collision obeys the
conservation laws

ωL + ω 1ð Þ
i = ω 2ð Þ

i ð3Þ

kL + k 1ð Þ
i = k 2ð Þ

i : ð4Þ

Applying the triangular inequality to Eq. (4) and inserting Eq. (3)
leads to Eq. (6)

kLj j≥ k 2ð Þ
i

��� ���− k 1ð Þ
i

��� ��� ð5Þ

1
υL

≥ 1
υi
; ð6Þ

which states that density fluctuations can only be absorbed by
longitudinal phonons. (In a solid υL≥υT!) In that case Eq. (3) equals

kLj j + k 1ð Þ
L

��� ��� = k 2ð Þ
L

��� ���; ð7Þ

only collisions with parallel aligned momenta occur. To calculate an
extensive decay probability via Fermi's golden rule, the number of
possible final states has to be of the order of total degrees of freedom
(the number of degrees of freedom is bounded through the Debye

cutoff kD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6π2N = V3

q
). Anharmonic attenuation of density fluctua-

tions would therefore not be observable in the thermodynamic limit
(V→∞with finite density), in a translationally invariant system. This
series of arguments has been already used by Landau and Rumer in
1936 [26]. In their theory transverse phonons acquire a lifetime due to
collisions with thermalized phonons. In 1939 Akhiezer developed the
corresponding kinetic theory [22], which takes into account scattering
at phonons in a non-equilibrium state. In crystalline solids the
Akhiezer regime is reported at frequencies below 1 GHz [19]. Both
theories only apply to transverse phonons, and cannot account for
high-frequency deviations observed in Brillouin light scattering
experiments, which are probing the longitudinal modes.

2.3. Replica field theory

The imaginary time quantum dynamics [27] of the present model
emerge from the Euclidean action Eq. (8), in which uij =

1
2

∂iuj xð Þ +�

∂jui xð ÞÞ is the linearized strain and υij =
1
2

∂iuj xð Þ−∂jui xð Þ� �
the

linearized rotation tensor.

S uij x; τð Þ
h i

= ∫β

0
d4x

ρ
2
uii∂

2
τuii +

λ
2
u2
ii + μ xð Þuijuij + λuiiυijυij + μ xð Þuijυilυlj

� �
;

ð8Þ

Eq. (8) contains an interaction between longitudinal and trans-
verse phonons, for which the perturbation theory can be developed
from the elementary vertex shown in Fig. 1.

The probability to absorb or emit a longitudinal phonon vanishes in
a translationally invariantmodel, as the creation of a virtual transverse
phonon pair satisfies Eq. (4). However this is not true for a spatially
dependent shear modulus, averaging the inverse lifetime Γ μ xð Þ½ � over
a certain distribution of μ xð Þ yields a finite Brillouin linewidth Γ, as we
are averaging strictly positive numbers. Therefore Γ should in general
depend only on the local fluctuations 〈δμ xð Þδμ xð Þ〉, rather than the
average 〈μ xð Þ〉 = μ0, as Γ [μ0]=0. We assume a Gaussian distribution
of the shear modulus 〈δμ xð Þδμ x′

� �
〉 = Kμ x−x′

� �
, and carry out the

disorder average applying the replica trick [7,8]. The spatial fluctua-
tions of λ are neglected. This yields the euclidean action in replica
space:

S ua
ij x; τð Þ

h i
= ∫β

0
d4x∑

a

ρ
2
ua
ii∂

2
τu

a
ii +

λ
2

ua
ii

� �2 + λua
iiυ

a
ijυ

a
ij + μ0u

a
ijυ

a
ilυ

a
lj

� �

+ ∑
ab

∫β

0

d4xd4x′
2ℏ ðua

iju
a
ij x; τð ÞKμ x−x′ð Þub

lmu
b
lm x; τ′ð Þ

+ ua
ij x; τð Þυa

ilυ
a
ljKμ x−x′ð Þub

hkυ
b
hmυ

b
mk x′; τ′ð ÞÞ

+ ∑
ab

∫β

0
d4x∫β

0

d4x′
ℏ

ua
ij x; τð Þua

ijKμ x−x′ð Þub
hkυ

b
hmυ

b
mk x′; τ′ð Þ

� 	

ð9Þ

We now derive an effective action with the help of the pair modes

ua
ij xð Þub

hk x′ð Þ = ℏQab
ijhk x; x′ð Þ ð10Þ

υa
ij xð Þυb

hk x′ð Þ = ℏ Q̃ab
ijhk x; x′ð Þ ð11Þ

and their conjugate Lagrange multipliers Λ via the Fadeev–Popov
transformation [28]:

S ua
ij x; τð Þ;Q ; Q̃

h i
= ∫β

0
d4x

ρ
2
ua
ii∂

2
τu

a
ii +

λ
2

ua
ii

� �2 + λua
ii Q̃

aa
ijij x; xð Þ + μ0u

a
ij Q̃

aa
illj x; xð Þ

� �

+
ℏ2

2
∫β

0
d4x′d4xðKμ x−x′ð Þ

ℏ
Qab

ijlm x; x′ð Þ2

+ Qab
ijhk x; x′ð Þ Q̃ ab

ilmk x; x′ð ÞKμ x−x′ð Þ Q̃ab
ljhm x; x′ð ÞÞ

+ ℏ2∫β

0
d4x′d4xQaa

ijkh x; xð ÞKμ x−x′ð Þ Q̃bb
hmmk x′; x′ð Þub

hk x′; τ′ð Þ + SF1 + SF2

ð12Þ

Fig. 1. 3-phonon vertex, the Fourier modes ui(k,ωn) are defined through Eq. (21).
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SF1 = ∑
ijhkab

i∫d4x d
4x′
ℏ

Λab
ijhk x; x′ð Þ ℏQab

ijhk−ua
ij xð Þub

hk x′ð Þ
� 	

ð13Þ

SF2 = ∑
ijhkab

i∫d4x d
4x′
ℏ

Λ̃ab
ijhk x; x′ð Þ ℏ Q̃ab

ijhk−υa
ij xð Þυb

hk x′ð Þ
� 	

ð14Þ

As the disorder average restores translational and rotational
invariance, the mean field approximation has to reflect these symme-
tries. In addition we assume replica diagonal pair modes:

Q̃ab
ijlm x; x′ð Þ = δab δilδjm + δimδjl

� 	
χ2 x−x′ð Þ ð15Þ

Λ̃ab
ijlm x; x′ð Þ = iδab δilδjm + δimδjl

� 	
∑2 x−x′ð Þ ð16Þ

Qab
ijlm x; x′ð Þ = δab δilδjm + δimδjl

� 	
χ1 x−x′ð Þ ð17Þ

Λab
ijlm x; x′ð Þ = iδab δilδjm + δimδjl

� 	
∑1 x−x′ð Þ ð18Þ

This ansatz removes the bare anharmonic interaction terms with
μ0 and Λ from the effective action in agreement with the previous
scalar approach [13], and in addition the last term of Eq. (12).

We kept ℏ explicitly for identifying the quantum contributions:
the phonon dynamics are governed by the effective Lagrange density

Leff = u 1ð Þ
ij xð ÞG−1

0ijlm x−x′ð Þu 1ð Þ
lm x′ð Þ

−u 1ð Þ
ij xð ÞiΛ 1ð Þ

ijlm x−x′ð Þu 1ð Þ
lm x′ð Þ

−υ 1ð Þ
ij xð ÞiΛ̃ ijlm x−x′ð Þυ 1ð Þ

lm x′ð Þ

ð19Þ

in which the Lagrange multipliers Λ ; Λ̃ enter as external fields. As far
as their dynamics are independent of ℏ, we are just left with a classical
continuum field theory, subjected to canonical statistics. This happens
in the case of zero anharmonicity, in which the problem is reduced to
the determination of the classical spectral function [5,8].

Proceeding with the mean field approach, a Matsubara decomposi-
tion of the euclidean action (12) is donewith the following conventions:

ui x;τð Þ = 1ffiffiffiffiffiffiffi
βV

p ∑
n;k

ui ωn;kð Þeiωnτ−ik·x ð20Þ

Q x� x′ð Þ = 1
βV

∑
k
Q kð Þei k;x−x′ð Þ ð21Þ

Here we introduced the four-vector notation k=(k,ωn), (k,x)=
iωnτ− ik·x. The imaginary time displacement field is integrated out
leaving the effective action in terms of the composite fields.

Minimizing this effective action yields the saddle-point equations
satisfied by the composite fields (22–25). Linearizing these equations
leaves just the classical harmonic theory [5,7,8], in which the self
energy satisfies the self consistent Born approximation. Therefore
they establish a reasonable generalization of the harmonic theory.

∑1 q;ωnð Þ = 1
V
∑
k

Kμ k−qð Þ χL k;ωnð Þ + χT k;ωnð Þð Þ + ∑L
an q;ωnð Þ
2

ð22Þ

∑2 q;ωnð Þ = − ℏ
6βV2 ∑

k;p;ωm

ðχ�T p + q;ωn−ωmð Þ

+ χ�L p + q;ωn−ωmð ÞÞKμ p−kð ÞχT k;ωmð Þ

=
1
2
∑L

an q;ωnð Þ + ∑T
an q;ωnð Þ

= − ℏ
6βV

∑
k ð∑1 k + q;ωn�mð Þ−∑L

an k + q;ωn�mð Þ
2 ÞχT k;ωmð Þ

ð23Þ

χL q;ωmð Þ = q2

ρω2
n + q2 λ + 2μ0−2∑1 q;ωnð Þð Þ = q2GL q;ωmð Þ ð24Þ

χT q;ωmð Þ = q2

ρω2
n + q2 μ0−∑1 q;ωnð Þ−∑2 q;ωnð Þð Þ = q2GT q;ωmð Þ

ð25Þ

The quadratic (in χ) terms emerge from the disorder enhanced
anharmonic interaction, all anharmonic terms vanish in the case of
zero disorder Kμ→0.

These saddle-point equations can be represented diagrammati-
cally (Fig. 2). Indeed, they resemble the structure of a calculation of
the self energy to first order in the anharmonic and disorder-induced
interaction. In the following we exploit this analogy for justifying
the most obvious approximation to Eqs. (22–25), the mode-decay
approximation.

2.4. Mode-decay approximation

We choose an exponential correlation function Kμ x−x′
� �� �

=

Δ2 exp − x−x′ð Þj j
ξ

� 	
, withΔ2 the variance of the shear modulus and ξ the

correlation length. The small anharmonic corrections to the lon-
gitudinal phonon propagator are estimated by expanding Eqs.(22–25)
around the solution of the linearized saddle-point equations:

χi = χi + δχi ð26Þ

∑i = ∑i + δ∑i ð27Þ

The lowest order anharmonic correction to the longitudinal
phonon self energy is represented through the last diagram of Fig. 2,
but with the full susceptibilities replaced by the disorder-dressed ones
χi:

δ∑L q→0;ωnð Þ = − ℏ
6βV2 ∑

k;p;ωm

χT p;ωn �ωmð ÞKμ p−kð ÞχT k;ωmð Þ

ð28Þ

Fig. 2. Diagrammatic representation of the anharmonic mean field equations: blue = L,
red = T; full lines are susceptibilities, dashed lines represent the correlation function;
winding lines are the full self energies. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Eq. (28) is recasted by the Matsubara technique [29]:

δ∑L q→0;ωnð Þ = − ℏ
12V2π

∑
k;p

∫∞
−∞dω coth

βω
2

� �

× χT p;ωn−iωþ
� �

Kμ p−kð Þχ
T
″ k; iωþ
� �

ð29Þ

= − ℏ
6V2π

∑
k;p

∫∞
0
dω coth

βω
2

� �
χT″ k; iωþ

� �

× Kμ p−kð Þ χT p;ωn−iωð Þ−χT p;ωn + iωð Þð Þ

ð30Þ

≈−ℏΔ2ξ3

6π4 ∫∞
0
dω∫kD

0
dkk2∫kD

0
dpp2 coth

βω
2

� �

× χT p;ωn−iωð Þ−χT p;ωn + iωð Þð ÞχT″ k; iωþ
� �

ð31Þ

The Fourier transformed density-correlation function is linked to
the dynamical longitudinal susceptibility, via the fluctuation–dissipa-
tion theorem:

〈ρ� k;ωð Þρ k;ωð Þ〉 = 1
π
coth

βω
2

� �
χL″ k;ωn = iωþ

� �

=
1
π
coth

βω
2

� �
χL″ k;ωþ

� �
ð32Þ

The Brillouin linewidth is then just the width of the longitudinal
susceptibility at resonance

Γ kð Þ = k∑L
″ ωkð Þ = υL ωk = υLk: ð33Þ

At room temperature, the anharmonic contribution to the
imaginary part of the self energy reads

δ∑L
″ ωn = iΩþ
� �

=
Δ2kBTξ

3

3π4 ∫
k;p;ωð Þ

k2p2

ω
χT″ k;ωþ

� �

× χT″ p;ωþ + Ω
� �

− χT″ p;ωþ−Ω
� �� �

:

ð34Þ

The transverse susceptibility

χT″ k;ωþ
� �

=
1

ρυ2
T

k2∑″ ωþ
� �

−ω2
þ + υ2

Tk
2� �2 + k4 ∑″ ωþ

� �� 	2 ð35Þ

consists not only of a Brillouin-peak, but resembles the shape of the
self energy in self consistent Born approximation (Fig. 3).

For numerical evaluation we introduce dimensionless quantities,
ω̃ = ωξ

υT
; k̃ = kξ; χ̃″ = χ″ρυ2

T .

δ∑L
″ Ω̃þ
� 	

=
Δ2kBT

3π4ξ3ρ3υ4
T

∫kDξ

0
dk̃k̃

2∫kDξ

0
dp̃p̃2∫∞

0

×
dω̃
ω̃ ðχ̃T

″ðp̃;ω̃þ + Ω̃Þ−χ̃T
″ðp̃; ω̃þ− Ω̃ÞÞχ̃T

″ k̃; ω̃þ
� 	

ð36Þ

The sound-attenuation function exhibits a linear behavior at
frequencies below the boson peak and drops off above (see the inset
of Fig. 4). This happens because the main contribution to the integral
(36), for frequencies below the boson peak, comes from the band of
irregular delocalized high-frequency modes; these states contribute a
wide χ″

T
∝ω regime, situated above the boson peak, to the disordered

spectral density (see Fig. 3), for which the kernel χ̃T
″ p̃; ω̃þ + Ω̃Þ−
�

χ̃T
″ p̃; ω̃þ−Ω̃Þ
�

can be replaced with Ω̃∂ω̃χ̃T
″ p̃; ω̃þÞ
�

.

2.5. Estimation of the crossover frequency in SiO2

We estimate the amount of the attenuation induced by anharmo-
nicity as compared with the disorder-induced one. The ratio
R Ωð Þ = Γan Ωð Þ= Γdis Ωð Þ∝δ∑L Ω̃

� 	
= Ω̃, which becomes frequency-

independent beyond the boson peak, determines the crossover
frequency. This ratio is fixed by the parameters Δ2 and ξ, which set
up the boson peak position, and the temperature. For example SiO2

requires Δ2=0.99Δc
2=0.401ρ2υT4 and ξ=2/kD. The ratio of the

squared sound velocities is (υL /υT)2=2.52 and the Debye cutoff
1.6×1010/m [6]. At room temperature kBTkD

3 /ρυT2=0.6 we obtain
δ∑̃L

″ Ω̃
� 	

≈ 0:0045 Ω̃, i.e. T0=7.3⋅105K. Fig. 4 shows the full Brillouin
linewidth due to disorder and anharmonicity. The anharmonic
corrections already lead to deviations from the disordered contribu-
tion slightly below the shoulder of the boson peak, the highest
frequency, where the Akhiezer-like behavior is present in SiO2 is
therefore predicted to be one order of magnitude below the boson
peak, i.e. in the 100 GHz regime. In general, for observing the
Rayleigh-law one needs to go to low enough temperature, which
shifts the crossover towards lower frequencies.

Let us now discuss the possible role of potential-induced
anharmonicity. There is no problem to introduce interactions
involving longitudinal and transverse Mode-Grüneisen parameters
gL, T into the theory. In the longitudinal case one just has to replace Δ2

by (1+gL
2)Δ2 in the saddle-point Eqs. (22–25). This will shift the

crossover from Akhiezer-like to Rayleigh scattering upwards andFig. 3. The spectral density function χT
″(k,ω+) for various wave numbers.

Fig. 4. Full Brillouin linewidth due to disorder and anharmonicity for (υL /υT)2=2.52,
Δ2=0.99,Δc

2=0.401ρ2υT4,ξ=2/kD and T=300K inset: the anharmonic self energy
integral (35) divided by the anharmonicity parameter g=Δ2kBT / (3π4ξ3ρ3υT4).
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reduce the “Rayleigh window” between the Akhiezer–Rayleigh
crossover and the boson peak. Within our continuum description, it
is not possible to judge the importance of the Mode-Grüneisen
parameters gL, T, because they are effective constants which have to be
calculated from a certain lattice theory, taking into account the
microscopic details of the interaction. It has been pointed out by
Fabian et al. [17], that the Grüneisen parameters which they have
extracted from their simulations are unusually strong, with respect to
the bare crystalline couplings. However, a suitable choice of the
parameters for the Stillinger–Weber potential [30] used in their
simulations [18] should account for the non-linear part of the strain
tensor as well. Hence their strong Grüneisen parameters γi, should not
be confused with our non-linear couplings gL, T, which may as a first
guess be identified with their rather weak crystalline counterparts
[25], as long as one deals with weak disorder. However it cannot
be excluded, that strong disorder or impurities drive these constants
to a strong coupling regime, in a renormalization group approach.
Therefore, it has to be determined by experiment, whether our
“minimal” description is sufficient, or one has to deal with Grüneisen
parameters.

The SiO2 measurement, performed by Masciovecchio et al. [20],
exhibits the Akhiezer–Rayleigh crossover around 100 GHz, which fits
our estimates quite well. In contradiction Devos et al. [21] claim the
crossover to take place at 400 GHz, however they performed their
measurements on vitreous SiO2, which shelters several defects. It is at
the heart of impurity physics, that defects give rise to additional
interactions, e.g. anharmonicities. This can lead to enhanced Mode-
Grüneisen parameters gL, T, which then have to be taken into account.
In several experiments dealing with vibrational spectra near and
below the glass transition [31,32] one observes an increase of the DOS
in the boson peak regime. Within the mode-decay approximation one
can account for the trends but not numerically reproduce such
spectra. We believe that one has to solve the full mode-coupling Eqs.
(22–25) in order to be able to do so.

3. Conclusion

In conclusion we developed a consistent perturbative treatment of
the anharmonic contribution to the Brillouin linewidth in disordered
solids. Our treatment solely in terms of elasticity parameters, which
enter into the mean values and correlation functions suggests a
correlation between the boson peak position and the Akhiezer–
Rayleigh crossover at temperatures scaled with the Debye tempera-
ture. Further developments in experimental techniques are required

to explore this extremely interesting frequency window in the upper
GHz regime.
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Abstract
We investigate the high-frequency behavior of the density of vibrational states in
three-dimensional elasticity theory with spatially fluctuating elastic moduli. At frequencies
well above the mobility edge, instanton solutions yield an exponentially decaying density of
states. The instanton solutions describe excitations, which become localized due to the
disorder-induced fluctuations, which lower the sound velocity in a finite region compared to its
average value. The exponentially decaying density of states (known in electronic systems as
the Lifshitz tail) is governed by the statistics of a fluctuating-elasticity landscape, capable of
trapping the vibrational excitations.

(Some figures may appear in colour only in the online journal)

1. Introduction

The density of states (DOS) of a disordered system is a
quantity which has been vividly discussed [1–4]. Lifshitz
was one of the first authors to calculate the disorder-
induced corrections to the DOS, for electron and phonon
systems [5]. By a phenomenological argument, he explained
the occurrence of an exponential tail of the DOS in the vicinity
of the band-edges, which is related to the localization of
the one-particle states. As the penetrability of an arbitrarily
shaped barrier tends towards zero at large energies [6],
one expects the high-energy eigenstates of a system with a
random fluctuating potential to be localized. The DOS is then
proportional to the probability of the occurrence of wells,
capable of trapping the single-particle states, which for weak
fluctuations (e.g. low impurity concentrations) can always
be approximated by an exponential function. The energy
dependence of the exponent depends crucially on the energy
of localization, from which some substantial corrections from
the set of maximally crossed diagrams in the perturbation
expansion arise, similar to the energy–momentum relation
of a wave in a potential well, if the length scale set by
the disorder parameter is of the order of the localization
length. Such corrections can be treated in a field-theoretical
approach by means of an ε-expansion of the nonlinear σ
model in the vicinity of the localization energy [7, 8], or
by self-consistent mode coupling expansion techniques [9],

which lead to the potential-well analogy [10–13]. These
corrections are important for the electronic problem, because
the Lifshitz tail mostly consists of the ground states of such
wells, for which the irreducible one-particle self-energy is
energy dependent.

For phonons the situation is different, because one deals
with fluctuating elastic constants instead of potentials, and
localized states appear only at the upper band edge [14, 15]
for positive values of ω2 [16, 17], where ω is the vibrational
excitation frequency. There is an extended amount of
literature concerning the cross-over from the Debye type
acoustic wave regime to a regime of diffusive, random-
matrix type vibrational excitations (‘boson peak’ [18–20]),
which has been accurately described within the σ -model
approach by two non-crossing techniques, namely the
self-consistent Born [21–24] and coherent-potential approxi-
mations [15, 25–27]. Instead, here we are interested in
the behavior at large positive frequencies. In the σ -model
approach one finds that the one-particle self-energy on
the localized side becomes frequency independent, and the
system can be assumed to be described by a renormalized
Ginzburg–Landau theory [28, 29]. The states with the highest
values of ω2 within a region of constant elastic modulus,
bounded by a mismatch, carry wavenumbers of the order
of the Debye wavenumber. Hence these states dominate the
Lifshitz tail. If one assumes further the fluctuations of the
elastic constants to be small and the localization length to
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scale with the inverse frequency, ξ ∝ ω−1, as in elementary
wave mechanics [6], the DOS should be proportional to
exp(−aω4−d). Such a behavior of the exponent is suggested
by recent experiments [30, 31], in which a linear exponential
decay of the DOS in the high-frequency region is found.

In the remainder of this paper we will reformulate
the field theoretic approach within the Keldysh formulation
of quantum dynamics, in order to include the instanton
contribution, from which the tail of the DOS can be extracted.

2. Keldysh formulation for weakly disordered
phonons

The quantum dynamics for the displacement field u(x, t)
with spatially dependent elastic moduli will be calculated
from the Keldysh partition function 1 =

∫
Du eiS, where

the action involves the classical (symmetric) and quantum
(antisymmetric) linear combinations of the two replicas acting
left and right on the density matrix describing the initial
state [32]. The reason for naming them classical and quantum
is as follows: if the action is related to the Lagrangian of a
simple non-relativistic one-particle system, the saddle-point
solution of the field theory with uq = u+ − u− = 0, ucl ≡

u+ + u− = u(t) yields Newton’s equation of motion for
the particle’s trajectory u(t). Quantum corrections like the
appearance of a phase or tunneling contributions arise from
the finite expectation values and higher correlations of the
antisymmetric u+ − u− linear combination, which is hence
named the quantum component.

The action may involve arbitrary nonlinear terms,
which in a classic kinetic approximation give rise to
phonon thermalization, at least in three dimensions. For the
vibrational spectra of disordered systems the anharmonic
interactions are only important below the boson peak [33, 34].
For our purpose it is hence enough to approximate the Keldysh
action to quadratic order in the displacement field,

S =
∫

dd+1x
{
−uq∂2

t ucl
+ 2µ(x)uq

iju
cl
ji + λ(x)u

q
iiu

cl
ii

}
+

∫
dd+1x uq(G−1)Kuq (1)

where x = (x, t), uij =
1
2

(
∂iuj + ∂jui

)
is the usual strain-

tensor, and λ and µ are Lamé’s elastic constants, which are
assumed to fluctuate due to the structural disorder of the
material [21–25]. We use units in which the mass density
equals unity. The Keldysh component GK characterizes the
actual state of the system, which can be determined from
knowledge of the retarded and advanced Green’s functions
and a proper initial condition. If one assumes that the
disorder does not alter the thermalization process, the Keldysh
component can safely be replaced by a thermal distribution.
The formulation (1) ignores further initial correlations.

The advantage of Keldysh’s closed time-contour is the
absence of vacuum contributions to the partition function;
hence, one can average it directly over an arbitrary distribution
of elastic constants. This average can be performed formally
by characterizing the probability distribution through its

irreducible correlation functions

K(x1, . . . , xn) ≡
δ

δx1
. . . .

δ

δxn
ln
∫

dµP[µ]e(µ,j), (2)

which leads to an action of the form

Sdis = S− S[〈µ〉, 〈λ〉] =

+

∫
x1x2

Kµ(x1, x2)u
q
ij(x1)u

cl
ji (x1)u

q
lm(x2)u

cl
ml(x2)

+

∫
x1x2

Kλ(x1, x2)u
q
ii(x1)u

cl
ii (x1)u

q
jj(x2)

× ucl
jj (x2)+ · · · . (3)

For the Gaussian theory the structure of the action is the
same as for a dissipative quantum system [35], in which the
spectral function of the heat bath is replaced by two classical
strain fields. Therefore the calculation of instanton solutions
in disordered systems exhibits a strong resemblance to the
calculation of thermal activation of a system attached to a heat
bath [35].

Within this paper we do not want to perform technically
detailed calculations. We rather want to demonstrate the
general procedure of mapping the disordered bosonic
system onto a disordered fermionic one within the Keldysh
prescription. Of course this mapping is only possible between
the pair modes of the bosonic and fermionic systems.

In general, the theory can be represented in terms of these
two-point functions using the Faddeev–Popov transformation

F
[
uαij(x1)u

β

lm(x2)
]
=

∫
Q,3

eiTr
[(
3−uu†)Q]

≡

∫
DQD3F

[
Qαβijlm(x1, x2)

]
× e

i3αβijlm

(
Qβαmlji−uβml(x1)uαji(x2)

)
.

Here Greek indices represent the Keldysh degrees of freedom.
The following mapping achieves the same causality structure
for the composite phonons as for the electrons [35]:

AR ≡ A

(
0 1

1 0

)
, AL ≡

(
0 1

1 0

)
A.

If the matrix A has the causality structure of a bosonic Green’s
function, AR has the c.s. (causality structure) of a fermionic
Green’s function and AL the c.s. of a fermionic self-energy.
The advantage is now that the phonon nonlinear σ -model can
be developed along the electronic counterpart. One can now
write the disorder-induced nonlinear terms as

Sdis =
∑

n
Tr
[
Kµn Qn

R + Kλn (χQR)
n] (4)

in which χ is a characteristic matrix defined according to
χQijlm = δijδlmQijlm.

For the sake of simplicity we will only consider a locally
fluctuating shear modulus, Kλn = 0, Kµ2 = γ−1δ(x − y),
Kµn6=2 = 0.

In the absence of anharmonicities one can immediately
integrate out the composite field 3, which reduces the
Faddeev–Popov procedure to the Hubbard Stratonovich

2
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transformation. This could be the starting point to formulate
the nonlinear σ model approach to phonon localization around
the weakly disordered SCBA saddle-point [21].

However, as also discussed by Cardy [29], in the large
energy regime, where the phonon energy is large compared
to the energy-fluctuations set by the disorder potential,
the semiclassical one-particle approximation of the partition
function becomes valid. It is more convenient to discuss
the Lifshitz tail in terms of the one-particle functions, as
one avoids the complicated renormalization-group method.
One would agree that the simple one-particle saddle-point is
sufficient, as long as one is interested in the deep localization
regime, where knowledge of the mobility edge is lost. In
contrast, the universal properties of vibrations in a glass in
the vicinity of the mobility edge [16, 17], must be developed
from (4) within the usual Keldysh nonlinear σ model.

3. Instanton solutions

In the remainder we will use the simple instanton picture
in order to calculate the exponential dependence of the
vibrational density of states at high energies.

The first step is to express the partition function as an
infinite product of discrete frequencies 1 =

∏
ωZ(ω), where

Z(ω) = eis(ω) and

s(ω) =
∫

ddx
[
ω2
EuqEucl + gkEuqEuq + 2µuq

iju
cl
ji + λuq

iiu
cl
ii

]
+

∫
ddx γ

(
uq

ij(−ω, x)ucl
ji (ω, x)

)2
. (5)

If the frequency is sufficiently large, this field theory
can be solved in the semiclassical saddle-point approximation
by extremizing the action with respect to the classical and
quantum components. In analogy to the theory of dissipative
quantum systems there exist instanton solutions in which the
expectation value of the quantum component 〈ui〉 = ivq

i is
finite and purely imaginary.

From the equation of motion (6) one deduces that these
solutions describe a situation in which condensation of strain,
ivq

ij = −vij = −vcl
ij , leads to a finite region with a sound

velocity substantially lower than the average. The states are
hence trapped in this finite region. There is a second instanton
equation describing the other possibility, where the sound
velocity is raised. We seek an instanton ansatz where the
saddle-point solution satisfies

(ω2
− (λ+ µ[v])∇∇ ◦ −µ[v]1)Ev(ω, x) = 0

µ[v] = µ(1− γ vijvji). (6)

Reinsertion of this equation of motion (6) into (5) yields
a finite action if (ω), and hence an exponential factor of the
partition function e−f (ω), which is calculated via formula (11).

In order to calculate the density of states and the
Green’s function we have to expand (5) with respect to the
fluctuations above this instanton saddle-point uαij = vij + δuαij .
The irreducible retarded Green’s function is by definition
just the correlator of 〈δucl

i δjuq
〉. Obviously, this quantity is

proportional to the factor e−f (ω) which is nothing other than

the exponential Lifshitz tail. The action (5) expanded around
the instanton saddle-point reads

s(ω) = if (ω)+ O
[
δu3

ij, δu
4
ij

]
+

∫
ddxω2δEuqδEucl (7)

+

∫
ddx

(
2µ
(

1− 2
γ

µ

)
δuq

ijvhkvkhδu
cl
ji

+ λδuq
iiδu

cl
ii

)
.

The next step is to use the bosonization-procedure (5)
to express this action in terms of the pair modes QR =

〈δucl
i δu

q
j 〉. Using a further saddle-point approximation in order

to determine QR yields the following set of equations:

〈QR(ω, x)〉 ≡ iγ e−f
(
[1]
[

G−1
0 (ω, x)

− ∇
(
6 + vijvji

)
ω,x ∇

T
]−1
+ EvEvT

)
(8)

6R(ω, x) ∝ e−f γTr∇

×
1

G−1
0 (ω, x)−∇(6+vijvji)ω,x∇T

∇
T (9)

f (ω) =
∫

x

{
ω2
|Ev(ω, x)|2 + 2µvijvji + λv2

ii

}
(10)

in which the field satisfies the exact equation of motion

δ

δvα
s(ω) =

δ

δvα

{
EvT
(

G−1
0 +∇6∇

T
)
Ev+ Sdis[v]

}
= 0.

(11)

These equations have a rather simple interpretation: they
allow for a self-consistent determination of the instanton
solution in the Hartree-approximation and a further non-
crossing approximation of the self-energy of the propagator,
which has a frequency and spatially dependent sound velocity,
due to the finite instanton amplitude. However, we are mostly
interested in a discussion of the exponential factor and leave
the numerical solution of this set of equations for future work.

From (8) it becomes clear that within this approximation
the density of states is just the usual one in the SCBA
approximation, multiplied by the instanton factor e−f (ω). In
order to estimate the power law satisfied by the exponent of
the DOS we look for a spherically symmetric solution with
longitudinal polarization in three dimensions.

The equation for the radial part reads

ω29(r)+ (1− 4γ (∂r9)
2)1r9(r) = 0. (12)

The frequency and the disorder parameter can imme-
diately be scaled out according to φ = 1

ω
√
γ
9(ωr), where

the spatially dependent part 9(y = ωr) satisfies the reduced
equation

9(y)+ (1− 4(∂y9)
2)1y9(y) = 0. (13)

For numerical solution one replaces (13) by the first-order
system

∂r9(r) = φ(r)

∂rφ(r) = 9(1− 4φ(r)2)−1
− 2r−1φ(r)

3
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which may readily be solved by means of a second-order
Runge Kutta algorithm.

The phase can be estimated at large frequencies

f =
∫

ddr φ(r)(ω2
+12

r )φ(r)

=
1
γ
ω−d

∫
ddy9(y)(1+1y)9(y)

=

∫
q<qDω

ddq

(2π)3
9(q)(1+ q2)9(q)

ω→∞ :
1
γ

(
ω

ωD

)4−d ∫ ddq

(2π)3
9(q)9(q)

=
1
γ

(
ω

ωD

)4−d

. (14)

From (13) it is clear that there exists a localized
exponential solution, as long as the state has a single point
where the condensed dimensionless strain exceeds the critical
value ∂y9(y) = 1

2 , which can always be imposed as a
boundary condition. Note that q is not the Fourier component
of the spatial variable r, but of the frequency scaled variable
y = ωr.

In contrast to the electronic calculation, the phase
is dominated by the small-distance behavior of the
wavefunction. As a result we find the same power law of the
exponent as predicted by the Lifshitz-argument.

Figure 1 shows a spherically symmetric transversely
polarized solution Eu(y = ωr) = 9Eeθ to the instanton
equation (5), together with its radial derivative φ(y = ωr) =
∂y9(y). The one-particle states turn out to be localized,
because they drop to zero faster than the spherically
symmetric volume element (which is proportional to r2). The
corresponding localization length would be a number of the
order of several wavelengths. The inset shows the density of
vibrational states normalized to the Debye law, measured by
Baldi et al [36] in vitreous silica. The red curve is a previous
fit with the SCBA theory, which used the disorder parameter
γ = 0.99γc close to the critical value γc = 0.1764. The blue
curve shows the Lifshitz tail with the same disorder parameter.
The amplitude of the exponential has been adjusted so that
the high-frequency density of states agrees with the measured
one. It can be seen that the Lifshitz line fits the experimental
data beyond the boson peak quite well. From a theoretical
standpoint one may state that the boson peak and the strongly
localized one-particle states are related, due to the fact that the
SCBA collects a set of strong scattering processes which are
analytic in γ , and the instanton approximation is obviously
a resummation of scattering processes which are analytic in
1/γ . In this sense the boson peak is the precursor of the
localization transition.

The high-frequency deviation from the experimental data
is not captured by the present phenomenological theory. A
possible reason is that the localization is related to ‘singular’
points within the material, where the elastic constant drops
to zero. To account for this, non-Gaussian effects have to be
considered in order to prevent a negative elastic constant.

This corresponds to the fact that the SCBA cannot
account quantitatively for the magnitude of the boson

Figure 1. Numerical solution to the instanton equation (5); for
details see the text. Inset: the density of states, divided by the Debye
density of states, against the frequency ν = ω/2π . Symbols:
spectral data measured in vitreous silica [36]; red line: previous
calculation in the self-consistent Born approximation (SCBA) using
the disorder parameter γ = 0.99γc with γc = 0.1764 [23]; red line:
Lifshitz tail calculated according to the present theory with the same
γ value. For details see the text.

peak [36]. It has been shown recently, using the coherent-
potential approximation (CPA), that indeed non-Gaussian
distributions of elastic constants are able to account for the
strong boson peak enhancement of the density of states in
oxide glasses [27].

Let us make a general statement on the nature of
the vibrational excitations in disordered materials. Below
the boson peak these excitations are Debye waves due to
the fact that for scales large compared to an interatomic
distance the material is homogeneous and isotropic. For
smaller length scales, i.e. higher frequencies, the boson
peak indicates the breakdown of the wave concept [24].
The vibrational excitations are no longer described by
the translational and rotational symmetry. Instead they can
be characterized as random-matrix states, which obey the
Gaussian-orthogonal-ensemble spectral statistics [15]. At
even higher frequencies the localization transition occurs,
which is a transition within the random-matrix scenario.
This step-wise transition from wave physics first to diffusive
motion and then to localization is well known for electrons in
a random potential [37, 38].

4. Summary and conclusion

In this work we formulated the theory of weakly fluctuating
elastic constants of a glass within the Keldysh-formalism,
in order to propose an expression for the high-frequency
behavior of the density of states of a glass. In three
dimensions, where this approach is valid, it yields an
exponentially decaying density of states. This exponential
decay is expected by basic Lifshitz-like considerations, and
has also been observed in recent experiments [30, 31]. If
one measures this exponential decay in an experiment, it is
therefore straightforward to extract the disorder parameter γ ,
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which can be compared with the values extracted from
experiments and simulations for the description of the boson
peak [21–25].
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J. Phys.: Condens. Matter 24 405401
[18] Elliott S R 1984 The Physics of Amorphous Materials

(New York: Longman)

[19] Horbach J, Kob W and Binder K 2001 Eur. Phys. J. B 19 531
[20] Nakayama T 2002 Rep. Prog. Phys. 65 1195
[21] Schirmacher W 2006 Europhys. Lett. 73 892
[22] Schirmacher W, Ruocco G and Scopigno T 2007 Phys. Rev.

Lett. 98 25501
[23] Schirmacher W, Schmid B, Tomaras C, Viliani G, Baldi G,

Ruocco G and Scopigno T 2008 Phys. Status Solidi c 5 862
[24] Marruzzo A, Schirmacher W, Fratalocchi A and Ruocco G

2013 Nature Sci. Rep. 3 1407
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