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1 Introduction

Neutron stars are born when massive stars die. This thesis is about the first ten
seconds in the life of newborn neutron stars and the signals we can hope to receive
from them in the form of neutrinos.

During the regular star’s life before, it has burnt more and more of its initial
hydrogen to helium, carbon, neon, oxygen and silicon until it finally has to re-
sort to produce iron group elements. These elements constitute the maximum of
the nuclear binding energy per baryon and no further energy can be released by
combining them into even heavier nuclei.

That iron group “ash” of the nuclear burning accumulates in a dense core of
about a solar mass of matter compressed into a sphere of roughly 1000km in radius
and is mostly supported against its own gravity by electron degeneracy pressure.
However, there is only so much mass this pressure is able to support. There exists
a limit, the famous Chandrasekhar mass, above which gravity starts to dominate
and the inner iron core abruptly starts to collapse within fractions of a second.
This is initiated by an increasing rate of electron captures as the central density
rises, robbing the core of degeneracy pressure, as well as photo dissociation of heavy
nuclei which consumes thermal energy.

As the matter is compressed to higher and higher densities, copious amounts of
electron neutrinos are generated as more and more electrons are captured by heavy
nuclei and protons to form neutron rich nuclei and neutrons. At some point, for
densities exceeding 1011−12 g/cm3, however, the matter becomes opaque even for
neutrinos with their minuscule interaction cross sections and thus this energy sink
is closed. The collapse then proceeds adiabatically, carrying the neutrinos with it.

Finally, as the densities approach those found in atomic nuclei, also the short-
ranged, repulsive nuclear forces become relevant. This additional pressure contri-
bution results in an abrupt stiffening of the equation of state, abruptly halting
the collapse. Simultaneously, the remaining heavy nuclei are decomposed into in-
dividual nucleons in very close proximity and a burst of electron neutrinos with
tremendous power is emitted – signalling that in this moment a (proto) neutron
star was born.

Inertia results in a slight overcompression above the new equilibrium config-
uration and for a brief moment the compact object in the centre even expands
outwards. Meanwhile matter from the outside is still radially falling into the centre
with supersonic velocities – a shock wave forms. As the infalling matter passes this
front, it gets decelerated and compressed, and is fully decomposed into neutrons,
protons, and α-particles. Then, in a comparably slow, subsonic flow it settles onto
the proto neutron star. Meanwhile, the tremendous amounts of neutrinos trapped
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in the dense interior of the proto neutron star slowly diffuse out and radiate from
its surface. On their way out, they can deposit some of their energy in the thick
accretion layer above. It is this effect, the delayed neutrino heating mechanism,
that is thought to be responsible to finally explode the outer hull of the star.

It becomes evident that core-collapse supernovae are a wonderful physics play-
ground. Every one of the four known forces is a vitally important ingredient that
has to be considered in this scenario. The electromagnetic forces determine the
behaviour of the ionized plasma of the star. Hours to days later, these will also
be responsible for the optically visible signal in the astronomers’ telescopes, when
the explosion reaches the surface of the star. Gravity is both the merciless driver
of the collapse and the energy source for the vast amount of energy radiated by
neutrinos, as the huge binding energy in the formation of the compact remnant
gets released. The weak force governs the creation and interaction of the neutrinos
with the matter and each other. And finally, the strong force enters in the form
of the nuclear physics that describes the equation of state of matter in the proto
neutron star, which has densities comparable and exceeding those of individual
atomic nuclei.

This basic picture of the gravitational core-collapse was refined over almost a
century. Already shortly after the discovery of the neutron by Chadwick (1932), it
was suggested by Baade and Zwicky (1934) that supernovae are connected to the
formation of a neutron star out of the remains of a dying ordinary star. Decades
later, observations by Hewish et al. (1968) could indeed identify a pulsating radio
source – a “pulsar” – in the Crab nebula, that had previously been identified as
the site of the supernova of the year 1054.

Colgate and White (1966) highlighted the important role of neutrinos in the core-
collapse scenario and were the first to propose that energy deposition by neutrinos
is the driver behind the explosion. Calculations by Wilson (1982) showed that
this scenario might work, albeit not in a prompt fashion. The neutrino irradiation
took some couple of hundred milliseconds of continued accretion onto the proto
neutron star until the conditions for a run-away ejection of the outer hull were
found. However, for that mechanism to work it was necessary to assume a very
efficient energy transport by so-called neutron-finger convection within the proto
neutron star in order to boost the neutrino luminosities sufficiently.

Then, in 1987 a star in the Large Magellanic Cloud, in our direct galactic neigh-
bourhood, exploded in a spectacular supernova. Not only was this a unique oppor-
tunity for optical astronomers, but the largest neutrino detectors operating at the
time could even detect a number of events corresponding to the expected intense
neutrino burst from the supernova. The Kamiokande-II experiment in Japan de-
tected eleven, the Irvine–Michigan–Brookhaven detector in the US eight, and the
Baksan Neutrino Observatory in Russia detected five neutrino events, all within a
burst lasting less than 13 seconds1.

1 The Mont Blanc liquid scintillator experiment also detected a burst of five neutrino events
about five hours earlier, which would be puzzling for the standard core-collapse picture, that
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This firmly established a connection between neutrinos and core-collapse events.
It is expected that a supernova within our galaxy would be registered as tens of
thousands of events in current neutrino detectors. Detailed simulations of core-
collapse supernovae with up-to-date microphysics, however, show that the standard
scenario described here is not guaranteed to succeed, even that it consistently fails
to work for the majority of cases if spherical symmetry is imposed (except for the
very low-mass end of progenitors that end up with very thin outer hulls and which
collapse already when their core consist of oxygen, neon, and magnesium, so called
“ONeMg”-core stars).

In his famous review paper, Bethe (1990) noted that there are regions of convec-
tive instability not only in the proto neutron star, but also in the outer accretion
layer, which would result in large aspheric perturbations. It is thought that the
multidimensional flows in the accretion layer are indeed crucial for boosting the
efficiency of this mechanism: by allowing matter to stay longer in the region be-
tween the shock wave and the proto neutron star where it experiences a net energy
gain by neutrino interactions. The convection within the neutron star in contrast
was not found to occur in the particularly efficient form of the neutron-fingers, and
the gain from the weaker forms actually found in simulations was not enough to
account for the explosion on its own. Efforts are currently under way to tackle the
full problem for the first time with truly three dimensional simulations including
an accurate neutrino treatment and some successes were already found in similarly
sophisticated axially-symmetric (“2D”) simulations in the past.

Tremendous work has been invested to include all of the many ingredients
necessary to simulate core-collapse supernovae. In some areas, such as the behaviour
of matter in the high density regime and the associated neutrino interactions, we
are forced to resort to experimentally poorly constrained models (see e.g. Lattimer,
2006; Lattimer and Prakash, 2007; Steiner et al., 2013), which are given to us from
nuclear theorists e.g. in the form of equation of state tables.

The neutrinos can both be completely trapped in the centre of the remnant, or
freely streaming after passing the accretion layer – therefore methods of radiative
transfer using the Boltzmann equation have to be used to model their propagation.
This is similar to the methods used to describe the propagation of light in optically
dense media.

Unfortunately, all these complications make this problem computationally rather
demanding, and while the first few attempts to model a few cases also in 3D are
ongoing, there is no hope that this will become a routine, desktop calculation in
the foreseeable future. Also, while the explosion is certainly a fascinating subject
in itself, there is a subsequent phenomenon that is equally interesting and which is
more the focus of this thesis: the cooling of the hot, newly formed proto neutron
star.

Over a timespan of some ten seconds, this hot object of a few solar masses
contained within some tens of kilometres radiates away its excess heat and lepton

is generally thought to be unconnected to SN1987A (Arnett et al., 1989)
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number in the form of neutrinos. This irradiation from the centre is so energetic
and persistent that it is able to lift matter from the neutron star’s surface and
accelerate it in what is called the neutrino driven wind. This gas further contributes
to the matter the previous explosion has ejected into the interstellar medium. Both
the emitted neutrino signal and the chemical composition of this wind material is
affected by the properties of the neutron star and the high density physics necessary
to describe it. Depending on the composition and hydrodynamical outflow condi-
tions, this wind is thought to be a potential site for the r-process nucleosynthesis
of heavy elements.

It is not feasible to simulate this long cooling phase for even a few models
in a manageable period of time in multidimensional simulations. Therefore, in
this thesis we have to restrain us to spherically symmetric simulations. However,
from theory, multidimensional simulations of the early stage as well as spherically
symmetric simulations of the whole cooling phase, it is now firmly established that
there exists a convectively unstable region within the proto neutron star’s core.
While this region might not be the crucial ingredient for driving the explosion,
it will certainly influence the efficiency of energy transport and thus the cooling
behaviour to a large extent. The way out of this dilemma is a trick from stellar
evolution, where additional energy and lepton fluxes are introduced to mimic the
mixing of matter by convection, a scheme that is called mixing-length theory. Such
a scheme was implemented for this thesis into the supernova simulation code of
the Garching group.

Organization of the Thesis

In Chapter 2 we give a short overview about the numerical scheme used and
the physical equations necessary for the simulation and introduce the mixing
length scheme that was added for the proto neutron star cooling simulations. The
remainder of this thesis is organized into three main and one small additional
chapter. Chapters 3 to 5 are the main part of this thesis, and each starts with a
small introduction into the topic at hand.

In Chapter 3, we evolve a number of progenitors through their gravitational
collapse and subsequent accretion phase, looking at the resulting neutrino signal
with and without the new mixing length scheme and for different high density
equation of state models.

Chapter 4 is similar in principle, but continues the accretion phase for a longer
time and looks at the neutrino signal for a few selected, very compact progeni-
tor stars up to the point where their proto neutron stars cross the threshold of
instability for black hole formation and collapse.

Then finally in Chapter 5, a few of the proto neutrons stars from Chapter 3
are artificially exploded in order to study the signal of exposed proto neutron
stars as would be found after an actual explosion. We will look at the influence of
convection and details of the neutrino nucleon interaction on that signal and the
composition of the neutrino driven wind.
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Lastly, we will shortly describe the result of a small side project that was done
in collaboration with Alexander Bartl and Achim Schwenk from the Technical
University of Darmstadt in Chapter 6. It concerns the quenching of the axial
coupling constant of neutron star matter that enters our neutrino-nucleon cross
section and the influence this might have on the neutrino signal.

Is it possible to learn something about neutrino particle physics by studying
these events, such as absolute masses, or at least the relative hierarchy of the
masses? Can black hole forming core-collapse events be detected in future megaton
detectors? Can we learn something about the high density physics governing the
neutron star from the neutrino emission of such a cooling remnant? Is r-process
nucleosynthesis viable in the neutrino driven wind? We hope that with this thesis
we can make at least a small contribution in the quest to answer some of these
questions.
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2 Numerical Implementation

Overview

The simulations were performed with the Vertex1 supernova code of the Garching
group.

Its hydrodynamical module is a conservative, time-explicit implementation of the
piecewise parabolic method of Colella and Woodward (1984), third order accurate
in space and second order in time, based the famous Prometheus code (Fryxell
et al. 1989, and partially also Fryxell et al. 2000, which describes the Flash code,
whose hydrodynamics module is based on Prometheus). A number of changes
necessary to do supernova physics were implemented by Keil (1997) and Kifonidis
et al. (2003).

The neutrino radiative transfer is done with a Boltzmann solver scheme, where
an iteration of solutions to moment-equations and a simplified Boltzmann equation
is used to find a solution for the full transfer problem. The scheme is not only
energy-dependent but also allows for energy-exchanging reactions of neutrinos
(“energy-bin-coupling”). It is described extensively in Rampp and Janka (2002),
with later additions in Buras et al. (2006b) and Müller (2009).

The implicit neutrino transfer is coupled to the hydrodynamics module via
lepton-number-, energy-, and momentum source-terms in an operator split way.
While the code is Newtonian in principle, the influence of the effectively deeper
potential well in GR is modelled via a post-Newtonian, Tolman-Oppenheimer-
Volkoff (TOV) like potential (Marek et al., 2006). Also, important gravitational
red-shift and time-dilation effects are taken into-account in the neutrino transfer
module, which itself is solving the relativistic equations of transfer accurate to
O(v/c).

The individual neutrino reactions used in this study and references for the spe-
cific implementation and formulation can be found in Table 2.1. Of particular
importance are the neutrino-nucleon opacities, where nucleon correlations at high
densities (here modelled according to Burrows and Sawyer 1998, 1999) can signifi-
cantly reduce the opacity compared to the classical treatment of Bruenn (1985),
Mezzacappa and Bruenn (1993b).

Next to this standard setup of the Garching group, we also make use of a mixing-
length approach to model the multi-dimensional effects of convection within the
proto neutron star in the otherwise spherically symmetric simulations. Similar to
usual approaches in stellar evolution, convection is modelled as additional energy

1Variable Eddington factor Radiative Transfer for Supernova EXplosions
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(and lepton-number, composition) fluxes which would arise due to multidimensional
convective motions that cannot be modelled in spherically symmetric simulations.

2.1 Hydrodynamical equations

The fundamental equations for the hydrodynamical part of the code are the com-
pressible Euler equations for fluids in spherical symmetry. Basic quantities of these
are the baryon density ρ, the matter’s radial velocity v, its internal energy density
e (and total specific energy density ε = e+ 1

2v
2), and pressure p.

With these, the Euler equations for non-relativistic hydrodynamics in spherical
symmetry, i.e. the continuity, energy and momentum equation, are in that order,

∂

∂t
ρ+

1

r2

∂

∂r

(
r2ρv

)
= 0, (2.1a)

∂

∂t
(ρε) +

1

r2

∂

∂r

(
r2(ρε+ p)v

)
= −ρv ∂

∂r
Φ +QE + vQM, (2.1b)

∂

∂t
(ρv) +

1

r2

∂

∂r

(
r2ρv2

)
+

∂

∂r
p = −ρ ∂

∂r
Φ +QM, (2.1c)

where QM and QE respectively are the source terms for momentum and energy, for
example due to neutrino interactions. Lastly, Φ is the gravitational potential, for
the Newtonian case it is the solution of Poisson’s equation, in spherical symmetry
it is

1

r2

∂

∂r

(
r2∂Φ

∂r

)
= 4πGρ. (2.2)

As mentioned before, in Vertex the Newtonian potential is actually replaced
with an effective potential modelled after the TOV equation for a spherical matter
distribution in general relativity, see Marek et al. (2006) for details on how this
is done. This allows to use the (comparatively) simple Newtonian hydrodynamics
code but still account for the main effects of the stronger GR potential well. As
we will see in Chapter 4, this is a remarkably good approximation and even valid
for configurations near the black hole formation threshold. Of course, only the
gravitational well is modelled with this method, the dynamics are still Newtonian.

Next to that, additional conservation equations have to be solved to track the
evolution of the chemical composition of the matter. For the chemical species i
one defines its number fraction Yi as the ratio of this species’ number density ni
over the total baryon number density,

Yi =
ni
nB

. (2.3)

A special case is the net electron fraction Ye: Electron-positron pairs can be
thermally created, and so the conserved quantity there is the difference in the
number of these two species,

Ye =
ne− − ne+

nB
. (2.4)
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In the absence of neutrinos, this is identical to the fraction of (electron flavor)
lepton number over baryon number, YL. With neutrinos, the net electron neutrino
number density also contributes,

YL = Ye + Yν = Ye +
nνe − nν̄e

nB
=
nL
nB

, (2.5)

however, the evolution of the neutrinos is done in the radiative transfer section.
For all other Yi, an additional continuity equation,

∂

∂t
(ρYi) +

∂

∂i
(ρYivi) = QNi , (2.6)

has to be solved, with possible source terms QNi . These arise either due to nuclear
reactions, transforming one nuclear species into another, or as the result of the
neutrino transfer calculations. There, weak reactions can change both the fraction
of electrons and transform protons into neutrons and vice-versa by β-reactions.

2.2 Equation of State

The matter pressure p in the Euler equations has to provided as a function of
the thermodynamic state to integrate the system. In the most general case, it is
a function of the local internal energy density e, the matter density ρ and the
composition Yi. For the neutrino transfer part, next to that we also need the
chemical potentials of electrons, neutrons, and protons.

For densities sufficiently below nuclear density, the matter can be fully described
as a mixture of ideal gases of nuclei, possibly degenerate and/or relativistic electrons
and positrons, and photons, plus Coulomb lattice effects. The equation of state
(EoS) in this regime is implemented as a set of subroutines to calculate the necessary
quantities as needed (Janka, 1999).

In the hot and dense environment of a stellar core, nuclear reactions take place
and have to be modelled. For supernova simulations an approximate description
of nuclear reactions is usually sufficient, indeed for all simulations in this the-
sis the most important reactions are set to happen instantaneously at threshold
temperatures (see. Rampp and Janka, 2002, Appendix B).

At sufficiently high temperatures, the reactions will come into nuclear statistical
equilibrium (NSE) and the number densities will be purely a function of the
local temperature, density and electron fraction. For the timescales involved in
our simulations, we can assume that above a threshold temperature of TNSE =
0.5 MeV/kB ≈ 5.8 · 109 K the composition is given by the equilibrium distribution.

For densities approaching and exceeding the density of nuclei, the necessary
physics to describe the resulting matter gets much more demanding – in this
regime we have to resort to tabulated nuclear physics results. These tables have to
be combined with the low-density equation of state, for this we define a threshold
density ρHD above which the high-density prescription is used, set to values from
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ρ

T

NSE

LD

HD

ρHD

TNSE

↑ 12C → 24Mg

↑ 16O, . . . → 28Si

↑ 28Si → 56Ni

Figure 2.1: The (ρ, T ) partition used for the various equation of state regimes necessary
for the simulations. In the HD region the tabulated proto neutron star equations of
state are used, and depending on the temperature the low density regime is split into a
region where the composition is calculated from nuclear statistical equilibrium, or where
an approximate burning treatment is employed.

about 107g/cm3 during the gravitational collapse to 1011g/cm3 in the subsequent
evolution of the formed proto neutron star. Confer to Figure 2.1 for a visualization
of the equation of state and nuclear burning setup.

As one nuclear physics model, we use the table by Shen et al. (1998a,b) – the
“Shen” EoS – in the updated form of “EOS1” of Shen et al. (2011). It is based on a
relativistic mean field model to model neutron star matter as a mixture of neutrons,
protons, alpha particles, and a single representative heavy nucleus (with varying
properties). As a second model, we take the tables of Lattimer and Swesty (1991
and Lattimer et al., 1985), there in two variants as “LS180” and “LS220”. They too
describe the high density matter as a mixture of n, p, α, and a heavy representative
nucleus but are based on a compressible liquid drop model. Their model comes in
three different versions for the nuclear compressibility parameter K, a measure of
the “stiffness” of symmetric nuclear matter. It is the density dependence of the
per baryon free energy fB (see Lattimer and Swesty, 1991), evaluated at nuclear
saturation density ns = 0.155fm−3,

K =
1

9
n2
s

∂2fB
∂n2

∣∣∣∣
n=ns,Ye=

1
2
,T→0

. (2.7)

Of these three we use the K = 180 MeV and 220 MeV versions , the former as
it was used extensively in the literature, but for most of the simulations in this
thesis we make use of the latter. This is mostly motivated due to the recent solid
measurements of ∼ 2M� neutron stars (Demorest et al., 2010; Antoniadis et al.,
2013) that are incompatible with the resulting maximum neutron star attainable
with the LS180. For reference, the corresponding value of K for the Shen EoS is
even higher, 281 MeV.

For the proto neutron star cooling, another quantity is also of relevance, the
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so-called symmetry energy, defined as

J =
1

8

∂2fB
∂Y 2

e

∣∣∣∣
n=ns,Ye=

1
2
,T→0

. (2.8)

It is 28.61 MeV for the LS180 and LS220, and 36.89 MeV for the Shen EoS.

2.3 Neutrino radiative transfer

Next to the stellar gas, copious amounts of neutrinos will be created in a supernova.
Their transport through the medium and their interaction with it (and themselves!)
is complicated by the fact, that their interaction cross sections have a strong energy
dependence.

They are completely “trapped” in the inside of the dense proto neutron star
core and behave essentially like another fluid component, only able to escape by
very slow diffusion processes. Far out, in less dense matter, they can stream freely
and are completely decoupled from the ordinary matter. All regimes in between
these two extreme cases have to be modelled for the supernova case.

The method to accomplish this is the theory of radiative transfer, the same
method used to model photons escaping ordinary stars. On the one hand, neu-
trino transfer is considerably simpler than photon transfer, as there are no line
structures arising from complicated atomic transition levels. On the other hand,
the interaction cross sections – especially in the high density regime – can turn
out to be quite complicated, and computationally expensive. Also, there are six
different flavors of neutrinos, all of which are abundantly created and have to be
modelled each. Next to that, for the neutrino densities involved, neutrino-neutrino
pair interactions start to play an important role.

In Vertex, the six different neutrino flavors are modelled by only three groups,
two for the electron and anti-electron neutrinos and an additional group for a
mean, representative neutrino species “νx” modelling all four neutrinos of the
heavy lepton generations (νµ, ν̄µ, ντ , ν̄τ ).

The reason why one can do this, is that a star consist only of the stable matter
of the first generation, and therefore all heavy lepton neutrinos will interact only
via neutral currents with the medium, and in exactly the same way (the energies
involved are much to small to generate appreciable amounts of µ-leptons). Strictly
speaking, this is not entirely true, an effect called weak magnetism causes a slight
difference in the cross sections between neutrinos and anti-neutrinos, due to a CP
violating interference between the weak magnetic moment and the axial vector
current of nucleons (Horowitz, 2002). This is implemented for electron neutrinos
and anti-neutrinos, but only the averaged effect is applied to the νx. In a comparison
of Vertex and the AGILE-BOLTZTRAN code of the Oak Ridge-Basel group
(Liebendörfer et al., 2005), that did go through the effort to split up the heavy
lepton neutrinos and anti-neutrinos, this simplification was not found to have a
big impact.
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Figure 2.2: The doubly spherical coordinate system, for the space vector ~r and the neu-
trino momentum ~p at each point in space. In spherical symmetry only the radius r, the
neutrino energy ε = |~p|c, and the cylindrically symmetric neutrino distribution along
the angle ϑ at each point remain.

However, in very long cooling simulations such as are done in Chapter 5, the
slight difference in the diffusion time for νµ and ν̄µ might lead to the build-up of a
fraction of muons from the thermal tails of their distribution functions inside the
cooling proto neutron star, which we neglect in all our simulations.

The two electron flavor neutrinos, however, definitively have an additional, strong
reaction channel via charged currents on either neutrons or protons, and therefore
have to be modelled separately.

The governing equation for radiative transfer is the Boltzmann Equation, that
models the evolution of the seven dimensional particle distribution function f(~x, ~p, t),
with which the number of particles dN in a given region of space and momentum
is given by dN = f(~x, ~p)d3x d3p.

For stars, a natural representation of space are spherical coordinates (r,Θ,Φ), in
momentum space the neutrinos are equally represented by their energy ε, and two
angles (ϑ, ϕ), indicating the angle relative to the local radial direction, confer to Fig-
ure 2.2. In spherical symmetry, the seven dimensional problem in (r,Θ,Φ, ε, ϑ, ϕ, t)
reduces to a four dimensional problem in (r, ε, ϑ, t). Two spatial dimensions disap-
pear, along with the ϕ of the momentum dimensions. However, even in spherical
symmetry there remains an angular neutrino distribution in ϑ at each radial point,
the spatial spherical symmetry mandates only that this angular distribution is
then cylindrically symmetric around the radial direction. Thus even seemingly one-
dimensional, spherically symmetric simulations have to evolve three dimensional
fields in order to solve the radiative transfer equations.

Traditionally, the quantity used for radiative transfer is the so called specific
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intensity I which is related to the particle distribution function by

I =
ε3

h3c2
f. (2.9)

The code uses the neutrino quantities in the comoving-coordinates of the fluid
at each zone, and solves the transfer equation to O(β), where β is the local fluid
velocity divided by the speed of light. Setting µ = cosϑ, the transfer equation for
one particular neutrino species to O(β) is (Rampp and Janka, 2002)
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c

∂β

∂t

)
I = C[I]. (2.10)

All the interesting physics and all of the complications in solving this equation
are hidden in the so-called “collision integral” C[I]. It is the source term for the
specific intensity, prescribing how the neutrinos are created, redistributed, and
annihilated in phase-space. Not only does this contain complicated, and computa-
tionally expensive terms due to neutrino and high-density physics, but contains in
itself integrals of the current and other neutrino species’ specific intensity over the
neutrino energy space. This makes (2.10) a non-linear integro-partial-differential
equation.

The solution strategy of our code is to take succesive moments
∫

dµµn over the
neutrino angle-cosine, which creates a system of moment equations with the µ
dimension integrated out. If we define the moments of I as

{J,H,K,L, . . . }(r, t, ε) =
1

2

∫ +1

−1
µ{0,1,2,3,... }I(r, t, ε, µ)dµ, (2.11)

the first two moment equations of (2.10) are
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Here, the quantities C(n) are the corresponding moments over the collision integral,

C(n) =
1

2

∫ +1

−1
µn(η − χI)dµ. (2.14)

The first few moments can directly by identified with physical properties of the
neutrino radiation field. J is proportional to the energy distribution of the neutrino
energy density and H to the energy distribution of the neutrino energy flux – that
is, the energy distribution of all effectively out-streaming neutrinos. Most often
this is encountered in the form of the neutrino luminosity, which unfortunately
is also denoted by L, the radiated neutrino energy flux through the sphere with
radius r enclosing the coordinate centre,

L(r, t) = 4πr2

∫ ∞
0

dεH(r, t, ε). (2.15)

In honour of Hans Bethe and for his contribution to supernova research it has
become customary in the last few years to define the energy of

1051erg = 1 B, (2.16)

one “Bethe”, a typical energy scale appearing in supernova processes, and lumi-
nosities are thus also usually given in terms of B/s.

Next to the energy moments, one sometimes also encounters the corresponding
neutrino number distributions, defined as

{J ,H,K,L, . . . }(r, t, ε) =
1

2

∫ +1

−1
µ{0,1,2,3,... }ε−1I(r, t, ε, µ)dµ. (2.17)

Again, the first few have direct physical meaning, J is proportional to the neutrino
number density, H to the neutrino number flux. The analogous quantity to the
luminosity is the neutrino number flux,

Ṅ = 4πr2

∫ ∞
0

d εH(r, t, ε). (2.18)

There exist simple Lorentz transformation rules in order to evaluate these quanti-
ties also in other frames of reference than comoving with the local fluid velocity, for
example a resting observer’s frame. These and a detailed derivation for arbitrary
moments are given in Appendix A.
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Table 2.1: Included neutrino interactions, the numerical implementation is described in
detail in Rampp and Janka (2002), Buras et al. (2003a) and Buras et al. (2006b). The
symbol ν represents any neutrino or anti-neutrino, A represents heavy nuclei, N stands
for any nucleon, that is both neutrons or protons.

Reaction References

ν e± 
 ν e± Mezzacappa and Bruenn (1993a), Cernohorsky (1994)
ν A 
 ν A Horowitz (1997), Bruenn and Mezzacappa (1997)
ν N 
 ν N Bruenn (1985), Mezzacappa and Bruenn (1993b), Bur-

rows and Sawyer (1998), Horowitz (2002), Carter and
Prakash (2002), Reddy et al. (1999)

νe n 
 e− p –”–, Burrows and Sawyer (1999)
ν̄e p 
 e+ n –”–, Burrows and Sawyer (1999)
νeA

′ 
 e−A Bruenn (1985), Mezzacappa and Bruenn (1993b), Lan-
ganke et al. (2003)

ν ν̄ 
 e− e+ Bruenn (1985), Pons et al. (1998)
νν̄ NN 
 NN Hannestad and Raffelt (1998)

νA 
 νA∗ Langanke et al. (2008)
νµ,τ ν̄µ,τ 
 νeν̄e Buras et al. (2003a)
↪ ↩νµ,τ ↪ ↩νe 
 ↪ ↩νµ,τ ↪ ↩νe Buras et al. (2003a)

One can include more and more of these moment equations, however, the resulting
system will never be closed, as the equations will inevitably include higher and
higher moments of I. The way out is to truncate the system – here after the first
two equations – and introduce a closure relation between the next moments and
the first two, J and H, usually by defining the Eddington factors,

fK =
K

J
, (2.19)

fL =
L

J
. (2.20)

If these would be known, the system of the two moment equations above could be
closed. To achieve this, the Eddington factors are in turn determined by solving a
simplified Boltzmann equation, where the collision term is evaluated with moments
of the initial, given neutrino intensity I. This is then iterated, the Eddington factors
are fed into the system of moment equations and the resulting moments are used for
the collision term in the Boltzmann equation, until a converging solution is found.
All in all, the whole procedure is then equivalent to solving the full Boltzmann
problem.

The individual neutrino interaction processes implemented in the code for the
collision terms can be found in Table 2.1. After a transport step, the back-reaction
to the hydrodynamics module is achieved via the aforementioned source terms,
they can be calculated out of the collision moments of the various neutrino species
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i as

QE = −4π

∫ ∞
0

dε
∑
i

C(0)
νi (ε), (2.21)

QM = −4π

c

∫ ∞
0

dε
∑
i

C(1)
νi (ε), (2.22)

QN = −4πmB

∫ ∞
0

dε ε−1
(
C(0)
νe (ε)− C(0)

ν̄e (ε)
)
. (2.23)

Here, mB is the baryon mass used in defining our matter density ρ.
A very detailed description and the explicit discretization of the numerical scheme

can be found in Rampp and Janka (2002). Our numerical grid encompasses 21
fixed, roughly logarithmically spaced bins from 0.4 to 380 MeV in neutrino energy
space. The spatial and angular dimension is periodically refined to account for the
changing stratification, with typically O(300− 800) angular and radial zones for
the neutrino transport and O(800 − 1200) radial zones for the hydrodynamical
quantities.

The solution of the neutrino transfer part is quite computationally expensive, to
allow for a sufficiently large time-step and in order to tame the stiff source terms
in the neutrino opacities, it is done with an implicit scheme. The neutrino transfer
part and the hydrodynamics module are coupled together only via the source terms
and are evaluated in an operator split way: an implicit neutrino transfer time step
is computed and then a number of hydro steps are done, applying the calculated
source terms in their equations.

It is advantageous to do several, comparably cheap hydrodynamical steps for each
transport step, as the time stepping of our explicit scheme is strongly limited by
the Courant-Friedrichs-Lewy condition, which constrains the length of an explicit
time step to at most the duration the fastest waves of the underlying equations
need to traverse a grid cell. In our case these are sound waves and in the proto
neutron star the speed of sound can easily get O(c/2).

2.4 Mixing length convection treatment

Spherically symmetric models have the fundamental drawback that they cannot
accurately represent the inherently multidimensional effect of convection. The
origin of convection is the potential instability when a small displacement of a fluid
element out of its neighbourhood into another thermodynamic configuration results
in an amplification of this displacement. This can happen if its own thermodynamic
state does not fully equilibrate with the new surroundings on the timescale of the
movement.

In the context of supernova simulations, an enhanced neutrino luminosity as
a result of convection in the proto neutron star as a means for enabling a ro-
bust explosion mechanism was first suggested by Wilson and Mayle (1988). They
suggested that in the proto neutron star’s core a convective mechanism similar
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to what happens in Earth’s oceans could take place. There, hot and salty water
stratified above a layer of colder, less salty water experiences an instability due to
the different timescales of salt diffusion and heat-exchange. If an element of the
hot layer is displaced into the cold layer, it turns out that it will loose its excess
heat faster than its salt concentration, and the now cooled water will continue to
sink due to its increased density compared to the less salty cold water around it.

In the proto neutron star, the roles of salt concentration was to be the neutron
fraction, and it was thought that neutrino reactions off all flavors would more
quickly bring the material into temperature equilibrium than into composition
equilibrium, which would only be mediated by the difference in neutrino electron
and anti-electron density.

However, further analysis (Bruenn and Dineva, 1996; Bruenn et al., 2004) re-
vealed that these conditions were not fulfilled, in fact the composition is changed
faster than energy. However, other forms of instability in the proto neutron star are
present and were also seen in actual multidimensional simulations (Herant et al.,
1994; Fryer and Warren, 2002; Buras et al., 2003b) - just not in the very efficient
form of the neutron fingers envisioned by Wilson and Mayle (1988), whose work
nevertheless demonstrated what effect an efficient convective mixing inside the
proto neutron star can have on the neutrino signal and energy release.

In the following motivation we closely follow Wilson and Mayle (1988). Three
different regimes have to be compared, the conditions in the lower layer (pressure,
p0, entropy s0, and electron fraction Ye0), in the layer above this, (p1, s1, Ye1), and
the conditions that are the result of a fluid element movement, (pm, sm, Yem), see
Figure 2.3. In general, convection occurs if the movement results in a change in den-
sity ∆ρ = ρ(pm, sm, Yem)− ρ(p0, s0, Ye0) over the travelled length ∆r which is less
than that given by the corresponding density gradient present in the stratification
of the surrounding material, that is if

∆ρ

∆r
<

dρ

dr
, (2.24)

or Cconvection :=
dρ

dr
− ∆ρ

∆r
> 0. (2.25)

Then, the new density of the blob is lower than its surrounding material, it will rise
even further - the stratification was unstable against a small movement of the blob.
In spherical symmetry, however, this can never happen, as different fluid elements
can never pass each other. Therefore, 1D simulations very often form hydrodynamic
configurations that would be unstable to multidimensional perturbations.

Depending on the ratios of the timescales of the microscopic, thermodynamic
processes and the macroscopic movement involved, there are different kinds of
convection scenarios.

The classical situation where a fluid element moves adiabatically but adapts
to the surrounding pressure and composition is called Schwarzschild convection.
There, the timescale for energy exchange is large compared to the timescales of
pressure (mediated by soundwaves) and composition equilibration (mediated by
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ρ(p0, s0, Ye0)

ρ(pm, sm, Yem) ρ(p1, s1, Ye1)

∆r

Figure 2.3: A schematic picture of the three regimes important for convective processes,
the two layers below (0) and above (1) and the conditions in the blob after some
movement (m) over the typical length of a fluctuation ∆r. The values in (m) will
potentially only partially adjust themselves to the values outside over the timescale
of the movement. If the blobs new density ρ(pm, sm, Yem) is smaller than the outside
density ρ(p1, s1, Ye1), the blob will continue to rise and start a convective motion.

diffusion, nuclear reactions or, in our case, neutrinos), thus pm → p1 and Yem → Ye1,
while sm = s0 stays unchanged. The resulting change in density for the element is
then

∆ρ = ρ(pm, s0, Yem)− ρ(p0, s0, Ye0) (2.26)

'
(
∂ρ

∂p

)
s,Ye

(p1 − p0) +

(
∂ρ

∂Ye

)
p,s

(Ye1 − Ye0), (2.27)

and therefore

∆ρ

∆r
'
(
∂ρ

∂p

)
s,Ye

dp

dr
+

(
∂ρ

∂Ye

)
p,s

dYe
dr

(2.28)

=
dρ

dr
−
(
∂ρ

∂s

)
p,Ye

ds

dr
. (2.29)

If we substitute this in the instability criterion of Eq. (2.24) we end up with the
condition for Schwarzschild convection as

Cschwarzschild =

(
∂ρ

∂s

)
p,Ye

ds

dr
> 0. (2.30)

This can be simplified further, as density is for almost all equations of state de-
creasing with increasing temperature and as(

∂ρ

∂s

)
p,Ye

=
T

cp

(
∂ρ

∂T

)
p,Ye

< 0, (2.31)
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with cp > 0 the heat capacity at constant pressure, one has

ds

dr
< 0 (2.32)

as the criterion for instability against Schwarzschild-type convection.
Other types of convection scenarios include the aforementioned salt-finger insta-

bility, with (pm, Tm, Yem)→ (p1, T1, Ye0), resulting in

Cfinger =

(
∂ρ

∂Ye

)
p,T

dYe
dr

> 0, (2.33)

and Ledoux-convection where the blob moves both adiabatically and without
changing its composition, that is (pm, sm, Yem)→ (p1, s0, Ye0). There, the condition
for instability consequently involves two thermodynamic derivatives, namely

Cledoux =

(
∂ρ

∂s

)
p,Ye

ds

dr
+

(
∂ρ

∂Ye

)
p,s

dYe
dr

> 0. (2.34)

Here, the situation is not as simple as in the Schwarzschild convection, as the second
thermodynamic derivative in Eq. (2.34) can assume both positive and negative
values (see Roberts et al. 2012b for a discussion on how this is related to the
symmetry energy of nuclear matter). It will thus be sensitive to the high density
equation of state model used.

For practical purposes, we can rewrite Eq. (2.34) into a form where only total
derivatives of the quantities that are directly used in the code are necessary (see
Appendix B for a detailed derivation),

Cledoux =
dρ

dr
− 1

c2
s

dp

dr
. (2.35)

A direct, physical measure for the growth rate of a convective instability (for
the linearised equations) is given by the so-called Brunt–Väisälä frequency ωBV.

ωBV = sign(C)

√
−g
ρ
|C| (2.36)

where g < 0 is the local gravitational acceleration, g = −∂Φ/∂r. With this def-
inition, ωBV is positive for convectively unstable stratifications and denotes a
linearised growth rate (if negative, it would correspond to a oscillation frequency
for material that was forced out of the stable stratification).

2.4.1 Mixing length scheme

A widely used technique in stellar evolution is to model the multidimensional effects
of convection in computationally tractable 1D simulations by adding artificial
energy and composition fluxes. These are constructed in such a way as to drive
the convectively unstable gradients into stable ones.
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For this, it is assumed that the convective blobs travel for some characteristic
length scale, the eponymous “mixing-length” – the free parameter of the model.
After that, they dissolve and deposit the material from below in their new sur-
roundings. Furthermore, this process is to happen instantaneously and is modelled
by a purely local modification of energy and composition fluxes. It is usually as-
sumed that the characteristic length scale is related to the pressure scale height,
we therefore set it to

∆r = α · p

dp/dr
, (2.37)

where we set α = O(1) as the free parameter of the model. After travelling ∆r
upwards, the difference in density of the surrounding medium to the fluid density
is precisely

∆ρ = ∆r · Cconvection, (2.38)

where Cconvection is the appropriate kind of convection of the previous section for
which the conditions are fulfilled. In our case we will assume Ledoux convection
to take place.

Energy conservation implies that the fluid element will attain a velocity vmix

due to the released potential energy,

1

2
ρv2

mix = g∆ρ∆r. (2.39)

where g is the local gravitational acceleration, and thus

vmix =

√
2g

∆ρ

ρ
∆r. (2.40)

With this, we are now able to derive the necessary fluxes for the scheme. Over
∆r, a fluid element will transport a lepton number of dYe/dr ·∆r, as we assumed
in the Ledoux case that the lepton number would not be changed for the moving
fluid element on its way. This results in an electron fraction flux of

Fmix
e = ρvmix∆r · dYe

dr
, (2.41)

and similar fluxes are also applied for each of the other chemical species. For the
energy flux, there is also a contribution from p dV work that is released when the
dense blob is uncompressed on its way up - next to the internal energy ε that
is directly transported with the flowing matter. The appropriate thermodynamic
potential is thus the specific enthalpy, h = ε + p/ρ. In Ledoux convection we
assumed adiabatic expansion, from the total difference dh/dr ·∆r from the given
background stratification we therefore have to subtract the change in h due to
adiabatic expansion,

∆had =

(
∂h

∂p

)
s,Ye

dp

dr
·∆r. (2.42)
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This gives for the total energy flux due to the convective mixing

Fmix
energy = ρvmix∆r ·

(
dh

dr
− ∆had

∆r

)
. (2.43)

Using dh = T ds + 1/ρdp and the explicit form for h this can be expressed in
gradients of the internal energy ε, which is the quantity directly available in the
code, to

Fmix
energy = ρvmix∆r ·

(
dε

dr
+ p

d(1/ρ)

dr

)
. (2.44)

Numerical experiments revealed that the results are very insensitive to the precise
value of the free parameter α, no discernible differences where visible between α = 1
or 10.

There was one implicit simplification throughout this section, namely that the
convective motions only transport net electron number density and not the -
strongly coupled - net electron neutrino number density. This is obviously a simpli-
fication, as moving matter in the dense proto neutron star will carry the trapped
neutrinos along. However, in practice the difference turns out to be minimal (B.
Müller, personal communication) and the treatment with Ylep ≈ Ye is computa-
tionally much simpler to implement, the necessary changes then only affect the
hydrodynamical part of the program. Next to that, additional considerations would
be necessary to account for the very fact that the neutrinos are not everywhere
trapped to the same degree, and even decouple completely at some point.

This necessitates that regions of convective instability and the region of decou-
pling of the various neutrinos – the so called “neutrinospheres” – do not overlap.
Fortunately, as we will find in the forthcoming chapters, this is found in actual
simulations.
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3 Collapse and Accretion

At the end of the nuclear fusion ladder, a star that was formed with an initial mass
of & 8M� produces iron group elements in its central region. This final “ash” of
fusion reactions accumulates there. Above a critical mass limit, the Chandrasekhar-
Mass, electron degeneracy pressure – the dominant pressure contribution at the high
densities in a star’s core – is no longer able to support the iron core’s own increasing
gravitational pull and a dynamical collapse sets in. Additionally, dissociation of
heavy nuclei into α-particles and nucleons and electron captures on nuclei rob the
core of even more thermal and degeneracy pressure support by consuming energy
in the dissociation and converting electrons into electron neutrinos that quickly
escape the star.

Meanwhile, the gravitational binding energy of the iron core is mostly released as
neutrinos, which can initially escape the star’s core unhindered. As the densities get
higher (& 1011g/cm3), though, the material becomes opaque even for the weakly
interacting neutrinos. They get effectively trapped in the material, and with this
energy sink gone the subsequent collapse proceeds adiabatically.

As the core proceeds to higher and higher densities, it gets a second chance
to avoid the imminent and irreversible fate of a black hole, when the material is
compressed to densities that approach those found inside an atomic nucleus. At
these conditions, the heavy nuclei are so near each other that they begin to feel
themselves also via the strong force. The heavy nuclei then dissolve into individual
nucleons in very close proximity, a (proto) neutron star (PNS) is born. Now the
increasingly repulsive nuclear forces provide – for the moment – enough additional
pressure support to abruptly stop the collapse. Inertia compresses the core even
somewhat above the new equilibrium density, for a short, intense moment it expands
again and launches a shock-wave against the still in-falling hull of the star. At
first, it was thought that this was the actual mechanism to explode the rest of the
star. However, in detailed simulations it is found that the energy contained in the
outward moving part of this initial, prompt shock was quickly consumed by the
dissociation of the infalling heavy nuclei into individual nucleons. After a short
peak in the contained kinetic energy of ∼ 1049 erg, all the material attains negative
velocities again, after less than a millisecond. The outward moving shock-wave
turns into an accretion shock. Its radial position will still move outwards to a
maximum of some ∼ 100km, as the advected material behind it needs some time
to cool and release its thermal energy.

All the while, the rest of the star still accretes onto the newborn proto neutron
star and releases its binding energy in an intense source of neutrinos. Next to that,
the trapped neutrinos from within the proto neutron star’s core slowly diffuse out
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of the optically-thick centre on a comparably long diffusion time-scale.
It is thought that this vast amount of energetic neutrinos can then deposit just

enough energy in the dense material behind the shock-wave to heat the material
there enough to stop the infall, accelerate it outwards and unbind the outer remains
of the star. Hours later, this revived shock wave will then reach the edge of the
remaining star and only then will it become visible also optically as an astronomical
supernova. Just a small percentage of the energy the neutrinos carry with them
(O(1052−53) erg) have to be deposited in the material behind the accretion shock
for this to work.

The problem with this scenario, the delayed neutrino heating mechanism, is
that it robustly fails to work in the most detailed supernova simulations if done in
spherical symmetry, except for the very low-mass end of stars.

It is thought that multidimensional flows of the material behind the shock and
above the proto neutron star play a crucial role to enhance the amount of energy
the neutrinos can deposit there. Indeed, in axially symmetric (“2D”) simulations,
some successful explosions could be found (e.g. in Marek and Janka, 2009), and
current efforts are under way to investigate the behaviour in fully three-dimensional
simulations that also include a sufficiently detailed neutrino radiative transfer
scheme.

In this chapter and this thesis in general, the focus will however not be to
investigate the conditions and intricacies of the explosion mechanism. Instead, in
this section we want to investigate the neutrino signal emanating during the pre-
explosion phase, where material is accreeting onto a newly-born proto neutron star.
Spherical symmetry will certainly be a good approximation for the first 100ms after
core-bounce, then convective overturn in the layer between the shock and the proto
neutron stars surface will start to develop. This would break spherical symmetry
and lead to an asymmetric accretion onto the proto neutron star. Still, up to the
time of an eventual explosion, material is still accreted through the shock with the
same rate as in spherically symmetric simulations, the material from the outside
has a supersonic infall velocity and thus cannot react to the changed conditions
behind the shock.

Therefore, spherical symmetry might still be a reasonable approximation during
the period between 100ms and the onset of the conditions beneficial for an explosion.
When an explosion stars to set in, however, it will of course loose its justification
completely. The typical explosion time for the delayed neutrino mechanism is
quite uncertain, the diminishing neutrino luminosities make it however increasingly
unlikely that it is much later than 0.5s after core bounce. This was also the time
frame for the length of the simulations in this chapter, taken as an upper limit –
it is probably safe to say that the effects of an explosion will become important
before this point.

For some stars, however, the delayed neutrino mechanism might just not do it,
in that case the accretion phase will go on until the proto neutron star will become
massive enough to form a black hole. This scenario is explored in Chapter 4.

Multidimensional effect also play a role within the proto neutron stars core,
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as has been outlined in Section 2.4, and will be treated accordingly. After Mayle
and Wilson (1988) and Wilson and Mayle (1988, 1993) invoked strong convective
mixing within the proto neutron star in order to trigger successful explosions in
1D via “neutron fingers” (cf. Section 2.4), a number of studies have been done to
investigate the effect of convection in more detail.

Analytical considerations by Bruenn and Dineva (1996) and in more detail in a
preprint by Bruenn et al. (2004) found unfavourable conditions for neutron fingers,
but instead instability against Ledoux and doubly-diffusive type convection.

Müller and Janka (1994) and later Janka and Müller (1996) and Keil et al. (1996)
performed 2D simulations of the outer layers of a proto neutron star in a core
collapse environment, with a prescribed neutrino luminosity at the inner boundary
and a parametrized, prescription for the neutrino transfer. Within that setup, they
found that a convective region develops below and near the neutrinospheres, which
led to an enhancement, up to factors of 2, of the neutrino luminosity and faster
deleptonization time scales compared to 1D simulations. With these conditions,
they saw enhanced neutrino mean energies and luminosities and smaller proto
neutron stars.

However, Buras et al. (2006b) found in their 2D simulations with a sophisticated
neutrino transport and simulating the whole proto neutron star, that the convective
zone within the proto neutron star was well below the neutrinospheres, and that
the effect of convection was – conversely – a somewhat thermally enlarged proto
neutron star, with a correspondingly reduced mean energy. The larger radiating
surface due the larger neutron star could not compensate this effect, the neutrino
luminosities were found to be smaller than in corresponding spherically symmetric
simulations. Only later, the enhanced energy transport via convection within the
deeper layers of the proto neutron stars led to an enhancement of the heavy lepton
neutrino luminosities, who are created further in at higher densities than the
electron flavor species.

The accretion signal of spherically symmetric simulations (without any convec-
tion treatment) was most recently analysed by O’Connor and Ott (2013), who
used a comparably approximative neutrino transfer scheme in order to study the
pre-explosion accretion neutrino signal for a very wide range of progenitor models.

They claimed that one might infer some constraints on the high density equation
of state out of the neutrino signal. Partly, a motivation for the study in this chapter
was to check whether these still hold when applying the much more sophisticated
and detailed neutrino treatment outlined in Section 2.3. The early signal of the
first few 100ms of the accretion phase is interesting also, as it could possibly allow
one to determine the neutrino mass hierarchy, confer to Serpico et al. (2012), in
which a number of the models produced for this chapter with the LS180 equation
of state were used. The effect exploited there depends on the universal behaviour
of the first few 50-100ms, which had to be checked for other high density equation
of states and progenitors. Next to that, the aim was also to prepare a number of
suitably evolved initial models for the proto neutron star cooling models used in
Chapter 5.
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3.1 Models

The presupernova progenitors are a selection of 10 models from the Woosley et al.
(2002) series over a main sequence mass range of 11.2 to 40 solar masses, with the
addition of model s15s7b2 from Woosley and Weaver (1995) which is well studied
in the literature.

For the high-density equation of state of nuclear matter, we use the tables of
Lattimer and Swesty (1991 and Lattimer et al., 1985) in the K = 220 MeV version
as well as the one from Shen et al. (1998a,b). As a test, we also show some models
with the K = 180MeV version, which was used extensively in previous studies.

Next to that, for most of these models we also did runs where the mixing-
length scheme was applied in the proto neutron star as an approximation to the
convection that would take place there in multi-D simulations. Models without
the mixing-length scheme are labelled “eos-progenitor”, with a “c” appended for
those with the scheme active. The scheme introduces artificial energy and lepton
fluxes within the proto neutron star (and to a very small extent also above it up
to the shock radius) to mimic the multi dimensional effect of convective overturn
in the unstable stratification that resulting from neutrino cooling, see Section 2.4.
Although a mixing length description is not directly applicable to the dynamic
accretion flow above the proto neutron star’s surface, the scheme was still also
applied there as it had little influence on the stratification outside of the proto
neutron star itself and we could thus avoid choosing an arbitrary point up to which
the convective fluxes were to be applied.

For the most and least massive progenitor (s11.2 and s40.0), we also ran a
number of additional simulations. In one set we took the tabulated progenitor’s
pressure instead of its temperature as initial variable to setup our models (s11.2pre,
s40.0pre). Next to that we made additional runs with a changed setup of the high-
density / low-density equation of state partition and electron capture treatment
(s11.2ec), explored in Section 3.2.1.

Due to problem with our neutrino opacities, for a selected number of progenitors
we also did simulations with a different, improved treatment of the effect of the
nucleon potentials on the neutrino opacities, see Section 3.4.6.

We evolved all models to a time 0.5s after the moment of core-bounce, defined
as the moment the matter right behind the accretion shock first reaches an entropy
of 3kB per baryon.

3.2 Collapse

The baryonic mass enclosed by the shock formation radius at core bounce is only
weakly dependent on the initial profile, it is more so a function of the high density
equation of state and their composition and their influence on the deleptonization
during collapse, (see also Marek, 2007, for more details). In Figure 3.1 this effect
is shown for our model set, for an even larger set of progenitors using the LS180
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Figure 3.1: Enclosed mass by the radius of shock formation at the moment of core-bounce,
which is predominantly a function of the high density EoS only.

Table 3.1: A selection of quantities at the moment of core-bounce, the compactness
parameter ζ2.5, the radius (rsh) and enclosed mass (Msh) of the shock at the moment
of core-bounce, and the collapse duration tcol. Note that the mixing-length treatment
is not applied until a proto neutron star is formed, the collapse of the mixing-length
models is therefore identical to the models shown here. Models “pre” use the progenitor
pressure as input variable.

Model
LS220 Shen

ζ2.5 rsh Msh tcol rsh Msh tcol

[1] [km] [M�] [s] [km] [M�] [s]
s11.2 0.01 11.43 0.444 0.170 12.04 0.494 0.137
s11.2ec –”– 11.24 0.451 0.126 12.05 0.493 0.127
s11.2pre –”– 11.43 0.444 0.169 12.10 0.488 0.166

s12.0 0.02 11.36 0.441 0.187 12.06 0.496 0.144
s15.0 0.15 11.19 0.443 0.304 12.02 0.498 0.211
s15s7b2 0.09 11.34 0.439 0.221 12.08 0.493 0.168
s17.6 0.17 11.18 0.442 0.285 12.04 0.499 0.199
s17.8 0.21 11.24 0.435 0.279 12.03 0.498 0.190
s20.0 0.13 11.20 0.442 0.257 12.06 0.498 0.188
s20.6 0.28 11.15 0.439 0.413 12.05 0.500 0.255
s25.0 0.32 11.17 0.441 0.455 12.06 0.499 0.276
s27.0 0.23 11.18 0.443 0.345 12.03 0.499 0.227

s40.0 0.26 11.15 0.441 0.409 12.09 0.502 0.254
s40.0pre –”– 11.18 0.447 0.317 12.13 0.497 0.309

and Shen high density EoS see also Figures 6 and 7 of Janka et al. (2012) we could
contribute while working on this chapter.

A list of all models and their configuration at core-bounce can be found in
Table 3.1, where we show the radius of the shock, its enclosed mass, and the
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compactness parameter of the progenitor following the definition of O’Connor and
Ott (2013),

ζM =
M

r(Menc = M)
/

1M�
1000km

. (3.1)

Even though the collapse physics is understood very well, small differences in the
setup can lead to a very different collapse duration. As can be seen in the table, the
choice of a different high density equation of state has a big impact on the collapse
duration, although they should give identical behaviour for the low-densities that
are involved - the central density approaches high densities only in a very short
phase at the end of collapse.

One can only infer that one or both of the high density equations of state
reproduce the low-density limit only poorly, despite the fact that that the physics
there is completely known. (Recall that in our simulations we also use a dedicated
low-density equation of state for a Boltzmann gas plus radiation, typically for
densities lower than ∼ 107 − 108 g/cm3 during collapse)

Another factor is the choice of input variables to use from the progenitor models
by Woosley et al. (2002) in order to start our own simulations. Typically we use
density, temperature, and composition as tabulated in their models. Due to differ-
ences with the equation of state that has been used for their modelling, this is
unfortunately not identical to other choices such as density, pressure, and composi-
tion, which would better reproduce the hydrodynamical state of the stratification.
To determine the influence of these inconsistencies, we also ran models where we
set the temperature in such a way as to reproduce the initial pressure profile
and ran calculations for the two extreme progenitors s11.2 and s40.0 of our set.
The collapse duration of models ls220-s11.2 and ls220-s11.2-pre is almost identi-
cal, whereas model ls220-s40.0-pre has a more than 20% faster collapse than its
counterpart where the temperature was used as initial variable.

These discrepancies are of course very unsatisfactory and leave us with the
decision of which variables to reproduce better, it would be desirable to have a
closer match of the high density models to the low density limit and avoid this
mishap.

All models employing the Shen equation of state consistently show a much
shorter collapse time than their corresponding LS220 models. As the collapse
time is dominated by low density behaviour, this surprising effect must be due to
different low-density limits of the two high density EoS. With (ρ, p,Xi) as input
values, the collapse time-scale is much more similar to the LS220 case.

It seems to be desirable to use our low-density equation of state - which is
in rather good agreement with the tabulated thermodynamic quantities of the
progenitor data given to us - up to much larger densities than in our previous
simulations.
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3.2.1 Influence of electron capture details

The collapse is initiated by increasingly rapid electron captures on nuclei and
protons. Unfortunately, due to the way our electron-capture rates on nuclei were
implemented in the past (only in the high density, NSE region) we used the high
density EoS tables during the gravitational collapse down to densities of ∼ 107 −
108 g/cm3, and the time till collapse was in that way influenced by the their rather
poor low-density limits.

The reason behind this was, that we only model the composition of the star as
a set of α-Nuclei, the corresponding daughter nuclei needed for electron captures
are therefore not available. In NSE, electron captures could be computed with
the present composition and the resulting change in Ye was used the update the
fraction of all nuclei according to the new equilibrium composition.

To judge the influence of the low density physics on the collapse time, we also
did two test simulations, ls220-s11.2ec and shen-s11.2ec, where the high density
equation of state was used during collapse also only for densities above 1011g/cm3.
Again, pressure was used as input quantity instead of temperature. To augment
our low density EoS for NSE conditions, an additional 23-species NSE composition
table was used in the extended low density regime for temperatures above 0.5MeV
– the same setup we usually use post-bounce in our simulations.

The region enclosed by T = 0.5MeV is slightly different than the regime of
ρ & 107 − 108g/cm3, where the high density equation of state was used previously,
see also the discussion in Marek (2007). Therefore, we simply calculated the rate of
electron captures everywhere in the model, with the rates according to Langanke
et al. (2003). Their electron capture prescription is calculated as a mean rate for
a large ensemble of nuclei (also assumed to be in NSE) and is thus not directly
applicable to individual nuclei anyway.

Outside the NSE regime, we therefore ignore any change in composition but track
only the change in Ye, resulting in a slight charge violation. As the relevant input
quantities for the electron capture rates are only (ρ, T, Ye) and not the detailed
composition, the electron capture rates are therefore not affected by that. Also,
most matter taking part in the collapse is in fact in NSE already or quickly heated
up sufficiently enough, we find that the charge conservation violation is never more
than a ∼ 1% deviation of the nuclear charge number to electron number. The
violation vanishes completely as soon as the matter enters the dedicated NSE
region, where the composition is again adjusted consistently to the advected Ye.

With this improved setup the collapse time scale is now only very weakly depen-
dent on the high density equation of state, looking into the models in detail we
find that the remaining difference is in fact a result of the very last milliseconds
of collapse where the densities in the core start to rise significantly into the high
density regime.

Compared to the standard treatment the collapse is shorter than it was before,
with ∼ 126ms compared to the ∼ 170ms of the models ls220-s11.2pre and shen-
s11.2pre.
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This all might seem pedantic, but it must be emphasized that any change in
the collapse duration is reflected in a change of the time evolution of the mass
accretion rate after core-bounce. As the neutrino signal is a composite of a core
and accretion part, the first of which if mostly fixed relative to the moment of
core-bounce, the relative shift of a different collapse time will influence the resulting
neutrino signal due to the different accretion rate. This might be especially relevant
for multidimensional simulations, where the relative time evolution of the mass
accretion rate, influenced e.g. by the infall of a shell of the onion structure of the
progenitor through the accretion shock, might make the difference between an
exploding and non exploding model.

3.3 Proto Neutron Star Convection

A spherically symmetric composition and density stratification is stable against
small perturbations if the Ledoux criterion,

Cled =

(
∂ρ

∂s

)
Y,p

ds

dr
+

(
∂ρ

∂Y

)
s,p

dY

dr
=

dρ

dr
− 1

c2
s

dp

dr
< 0 (3.2)

is met, where cs is the speed of sound in the medium. If not, fluid elements from
the bottom of the unstable region will rise up and elements from the top will sink
down. In a mixing-length description, this multidimensional effect is modelled via
additional energy and composition/lepton number fluxes that drive the profile into
a configuration with Cled . 0, for details of our scheme, see Section 2.4.

3.3.1 Comparison with a Multidimensional Model

In order to evaluate the soundness of such an admittedly rather simple treatment
of multi dimensional convection, we compare the resulting neutrino luminosities
and the shock-radius with results from an axissymmetric (“2D”) simulation, kindly
provided to us by Florian Hanke, cf. Figure 3.2.

As it is difficult to locate the convectively unstable regions in a simulation where
we employ the mixing length scheme - the scheme by construction drives any
unstable regions to a stable configuration - we take one of our simulations without
the mixing length scheme for the comparison in the upper panel of Figure 3.2, on
the lower panels, also the simulations with the mixing length scheme are shown.

Two distinct unstable regions can be discerned. Shortly after bounce the proton
neutron star experiences a short-lived “prompt” convection, and only later the
negative entropy gradient due to neutrino cooling in the outer layers of the proto
neutron star results in what usually is called the proto neutron star convection.

The precise extent of the unstable region is dependent on the high density
equation of state, in the Shen models it develops a bit earlier (∼ 50 ms after
bounce) than in the LS220 models (∼ 70 ms).

It can be seen that the proto neutron star convection in the 2D model – marked
in that plot by genuine lateral motions – is not too far off of the region where the
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pure 1D model displays convective instability. The 2D model naturally also shows
heavy lateral activity above the proto neutron star - it eventually even explodes -
which of course cannot be modelled with our ansatz, which is meant only to give
a more accurate description of the proto neutron star convection itself, not the
flow in the accretion layer above it. There, mixing length is certainly not a good
prescription any more, as that theory is based on a quasi-hydrostatic background
configuration, an assumption that is not valid in the fast accretion flow in the
post-shock region. Even tough, we still apply the mixing length scheme throughout
the whole post-shock region, this is done mostly for simplicity of implementation
than for physical influence, as it hardly affects the stratification of the heating layer
in our simulations. That way we do not have to choose an arbitrary boundary up
to which to apply the mixing length scheme to encompass all of the proto neutron
star convection.

The proto neutron star’s radius (defined as the density contour of 1011g/cm3)
is larger in the multidimensional simulation, as energy is transported outwards
to lower densities by the convective motions, where it can act as additional pres-
sure support. With the mixing length ansatz we find neutron star radii that are
much more similar to the 2D simulation. Directly connected to this is the better
match of the heavy lepton neutrino luminosity of the convective run compared
to the multidimensional case, as the main source of those neutrinos is the proto
neutron star itself. The electron flavor luminosities are more strongly produced
also by the accretion flow, which quickly gets non-spherical in multidimensional
simulations - therefore the mixing length scheme can only improve the part of the
luminosity originating from the core, as can be seen by the poorer match to the
multidimensional values.

In Figure 3.3, we show profiles of temperature, entropy and electron fraction for a
standard 1D model, a 1D model with the mixing length scheme and angle-averaged
profiles of the 2D models, for two different snapshots in time. We use the matter
density as a radial coordinate in this figure, as firstly the proto neutron stars in the
three simulations have a different radius and secondly density and temperature are
the most relevant quantities for the neutrino opacities. One can see both that the
pure 1D model exhibits very different gradients than the multidimensional model
and that the simulation with the mixing length scheme is able to approximate the
true gradients.

In Figure 3.4, profiles of the neutrino luminosity and number flux are shown for
one particular moment in time. It is visible how the scheme increases the electron
neutrino luminosity behind the unstable region, corresponding to the increased
lepton number transport from the mixing length fluxes, as we saw from the left panel
of Figure 3.3. At the same time, this reduces the anti-electron neutrino production:
Due to the increased electron degeneracy the positron fraction necessary for charged
current reactions is quenched and the increased electron neutrino density results
in final-state blocking for νeν̄e creation in neutral current reactions.

At lower densities, stronger deviation from the mixing-length and truly multidi-
mensional model appear, due to the strong lateral motions in the accretion layer.
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However, the primary aim of our mixing length scheme is to better reproduce
the proto neutron star convection for the cooling simulations we will attempt in
Chapter 5. There, the accretion layer has been blown away by the explosion and
lateral motions are indeed only found within the proto neutron star convection
zone.

3.3.2 Comparison with Standard 1D models

For the two extreme cases in our set of progenitors, we look at the differential
effect of the convection treatment in a bit more detail, now by comparing with the
respective spherical symmetric simulations without the mixing length scheme.

Proto Neutron Star and Shock Radii

In the upper panels of Figure 3.5, it is visible that the convection treatment reduces
the size of the neutron star (and consequently the shock radius) right after bounce,
whereas 100 to 200ms later it actually increases its radius, as mentioned in the
previous section. Janka et al. (2012) give an analytical expression for the shock
radius as a function of mass accretion rate Ṁ , neutron star radius rpns, and the
electron flavor neutrino luminosity Lν and mean square neutrino energy

〈
ε2
ν

〉
as

rsh ∝
(
Lν
〈
ε2
ν

〉)4/9
r

16/9
pns

Ṁ2/3M
1/3
pns

, (3.3)

which is in nice agreement with the observed radii of our hydrodynamical models,
for the late, quasi-static phase. With this, we can see that the difference in shock
radius between normal and convective models is predominantly due to the different
proto neutron star’s radii, with only minor corrections due to the counter-acting
effects of the higher luminosities and lower mean energies. (The mass accretion
rate and proto neutron star mass are of course identical between models with the
same progenitor, at least up to deviations within at most an advection time-scale
of the post-shock layer)

Effect on Neutrino Signal

In the lower panels of Figure 3.5 the effect of the convection treatment on the
neutrino signal is shown. The electron neutrino luminosity seems largely unaffected,
generally increased to a very low extent. The anti-electron neutrino luminosity is
somewhat suppressed compared to the non-mixing simulations at early times when
the mass accretion rate is still higher. Later it is more similar and even slightly
above the unmixed case again. The largest effect is visible in the heavy lepton
flavors, the luminosity is noticeably enhanced due to the convection treatment -
as all neutrinospheres are well outside the convective region, this is a result of
the larger photosphere due to the larger proton neutron stars of the convective
models and not immediately related to the energy transport by the convection
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Figure 3.2: On the upper panel one can see mass shells of a 1D (grey) and 2D model
(black) of an 11.2 solar mass star. The blue solid line is the mean value of the shock
radius of the 2D simulations, the region between the minimal and maximal shock region
is filled in blue, the blue dashed line is the shock radius of the 1D model. The cyan
line marks the neutron star radius, solid for 2D, dashed for the 1D model. Contoured in
yellow, red, and orange are regions of the 2D model with lateral velocities larger than
1000, 2000, and 3000 km/s, respectively, as an indicator for the regions of convective
activity. The area enclosed by the solid green line is the region where the 1D models
shows convectively unstable gradients and where the mixing length scheme would be
active. The lower left and lower right panel show the luminosity and (angle averaged)
mean energy of the 2D model (solid), the 1D model with (dashed), and the model
without (dotted) the mixing length scheme.
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itself. Their mean energies (Eq. 3.4) in contrast are almost unchanged and only
slightly reduced at late times in the convective models whereas they are clearly
enhanced for both the electron neutrino species. Despite initially higher mean
energies at the edge of the convection region where thermal energy from the hotter
region below is transported upwards, the neutrinos still end up with lower mean
energies when they decouple. As they are still in thermal equilibrium with the
matter outside of the convective region, their mean energies are then determined
by the temperature of matter further out at lower densities. There, the larger proto
neutron star radii in the convective models result in slightly colder matter from the
accretion flow - resulting in lower mean energy neutrinos – albeit of course with a
higher luminosity. This effect has already been observed by Buras et al. (2006a)
in truly multidimensional (2D) simulations. Recall also Figure 3.3 for the changed
hydrodynamical profiles due to the convective fluxes for the ls220-s11.2 case.

3.3.3 Full Model Set

In Figure 3.6, we show the radius of the shock and the proto neutron star, as well
as the mass accretion rate of the infalling matter from the progenitor for all our
models with convection treatment. The evolution of the shock radius varies with
the progenitor owing to different mass accretion rates due to a different density
stratification in the infalling layers. A number of models show a typical up- and
down-rising of the shock which can be identified with the passing of a layer of the
onion-shell burning structure from the progenitor, an accompanied drop in the
mass accretion rate can be observed in the lowermost panel of Figure 3.6 resulting
in the shock expansion and contraction, cf. Eq. (3.3).

The neutron star radii show a much smaller variation, as the collapsing iron
core of which it was formed initially always has a similar mass on the order of the
Chandrasekhar mass Mch, and the radius of a neutron star is only very weakly
dependent on the mass around Mch. At the end of the simulations, all models using
the LS220 have a neutron star radius of 25− 27km, whereas the stiffer Shen EoS
result in radii of ∼ 31km, in Tables 3.2 and 3.3 the last values at 500ms after core
bounce of the proto neutron star configuration and neutrino signal are given for
all models.

3.4 Neutrino Signal

For an overview of the resulting neutrino signal from all models consult Figure 3.7,
where we show luminosities and mean energies. We define the mean energies as
total neutrino energy density J over number density J , or in terms of the neutrino
intensity I as 〈

ε1
〉

=

∫
J dε∫
J dε =

∫∞
0 dε

∫ 1
−1 dµ I(ε, µ)∫∞

0 dε
∫ 1
−1 dµ ε

−1I(ε, µ)
. (3.4)
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Figure 3.5: Comparison of models s11.2 and s40.0 with and without the mixing length
scheme active. The upper panels show the dynamical evolution of the proto neutron
star and shock radius, the lower panels show the resulting neutrino signal evaluated at
500km and transformed to a resting observer’s frame, including the (small) effect of
gravitational redshift.
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Figure 3.6: Shock radius, proto neutron star radius, and the mass accretion rate evaluated
at 500km, from top to bottom. Note the correspondence of the expansion of the shock
radius with a drop in the mass accretion rate

3.4.1 Luminosity Minimum before Neutronization Burst

A curious feature seen in most simulations of sufficient sophistication is a short-
lived local maximum of the electron neutrino luminosity before the actual moment
of core bounce and the prominent high energy deleptonization burst. It is actually
rather difficult to discern in plots showing the whole time evolution, as it last
only a couple of milliseconds. In a suitable closeup in Figure 3.8 it can be seen
that this pre-bounce maximum is originating from a semi-transparent region of
∼ 1011g/cm3 in density at ∼ 100km. This emission is then quenched during the
final phase of the stellar collapse, when the increasingly negative velocity results in
1) a considerable redshift and 2) makes it at the same time more difficult for the
semi-trapped neutrinos to diffuse outwards against the matter flow. This might
explain why this feature is very different or absent in simulations omitting velocity-
dependent terms (e.g. the results of O’Connor and Ott, 2013). After bounce when
the velocities have stalled one can observe the usual shock breakout burst.

3.4.2 Core and Accretion Luminosity

The two energy sources for neutrinos are the contraction of the proto neutron star
and the energy that is released by the accretion flow on its way down into the
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Figure 3.7: Neutrino quantities for all models, the set with the LS220 EoS on the left, the
Shen EoS set on the right. Convective models are shown in the upper, the non-convective
in the lower panels. Note the very generic signal of the ν̄e and νx mean energies in the
first 100ms, which is also visible in the luminosities - except for an overall scale factor
per progenitor.
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Table 3.2: Proto neutron star radii and masses, and the neutrino signal, mean energies,
pinching parameters and number flux, at the end of the simulations, 0.5s after core
bounce. Note that the number flux of the heavy lepton neutrinos is a representative
flux for one of the four subtypes.

Model LS220

rpns Mpns 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Ṅνe Ṅν̄e Ṅνx

[km] [M�] [MeV] [1] [1057/s]

s11.2 24.8 1.357 13.0 15.3 14.3 0.98 0.95 0.99 0.71 0.63 0.44
s11.2c 27.2 1.356 12.6 15.0 14.6 0.97 0.94 0.98 0.81 0.71 0.53

s12.0 24.5 1.480 15.2 17.3 15.4 0.95 0.93 0.98 1.05 0.94 0.51

s15.0 23.8 1.768 16.8 18.7 16.8 0.99 0.98 1.05 1.40 1.28 0.65
s15.0c 26.3 1.768 15.8 17.8 16.6 0.95 0.93 0.98 1.50 1.34 0.77

s15s7b2 24.4 1.525 15.4 17.4 15.6 0.96 0.94 0.99 1.09 0.97 0.53
s15s7b2c 27.0 1.524 14.4 16.6 15.5 0.96 0.93 0.98 1.18 1.02 0.63

s17.6 24.6 1.640 15.5 17.5 15.7 0.96 0.94 0.99 1.14 1.04 0.58
s17.6c 27.1 1.640 14.6 16.8 15.7 0.96 0.94 0.98 1.24 1.11 0.69

s17.8 24.3 1.703 17.2 19.2 17.6 0.98 0.97 1.06 1.67 1.49 0.68

s20.0 24.7 1.561 15.1 17.1 15.4 1.02 0.99 1.05 1.13 1.03 0.59

s20.6 24.0 1.907 17.2 19.1 17.3 0.99 0.98 1.05 1.56 1.45 0.73
s20.6c 26.3 1.906 16.2 18.2 17.1 0.94 0.92 0.98 1.65 1.52 0.87

s25.0 23.0 2.032 17.6 19.4 17.8 0.99 0.98 1.05 1.58 1.50 0.77
s25.0c 25.3 2.032 16.7 18.6 17.6 0.94 0.93 0.98 1.68 1.58 0.92

s27.0 24.5 1.753 16.0 17.9 16.1 0.96 0.94 0.99 1.24 1.16 0.63
s27.0c 27.0 1.752 15.0 17.1 16.1 0.96 0.93 0.98 1.35 1.21 0.76

s40.0 24.1 1.904 16.4 18.3 16.6 0.95 0.93 0.98 1.35 1.28 0.70
s40.0c 26.3 1.903 15.6 17.7 16.7 0.95 0.93 0.98 1.47 1.37 0.84

potential well. While the contraction and cooling of the proto neutron star is a slow
process that happens on a timescale of a few seconds and is governed by high density
matter and neutrino physics, the accretion flow shows a short-timescale, progenitor
structure dependent variation and is due to emission at the proto neutron star’s
surface at comparably low density. For analytical considerations it might be nice
to have an idea about the distribution of the neutrino luminosity between these
two energy sources.

Matter that is accreted onto the proto neutron star will deposit energy with a
rate that is roughly proportional to

Eacc =
GMpnsṀ

Rpns
. (3.5)

The total radiated luminosity is the sum of the luminosity emitted by the cooling
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Table 3.3: Same as Table 3.2 for the Shen models.

Model Shen

rpns Mpns 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Ṅνe Ṅν̄e Ṅνx

[km] [M�] [MeV] [1] [1057/s]

s11.2 28.7 1.354 12.0 14.4 13.4 0.97 0.94 0.98 0.75 0.62 0.44
s11.2c 30.3 1.354 11.7 14.2 13.6 0.97 0.94 0.98 0.82 0.68 0.50

s12.0 28.8 1.475 13.5 15.6 14.1 0.97 0.94 0.99 1.02 0.87 0.50
s12.0c 30.6 1.474 13.2 15.5 14.3 0.96 0.93 0.98 1.13 0.94 0.57

s15.0 29.0 1.744 15.4 17.3 15.3 0.95 0.93 0.99 1.55 1.36 0.65
s15.0c 30.9 1.744 14.6 16.8 15.3 0.95 0.93 0.98 1.60 1.34 0.73

s15s7b2 28.6 1.517 13.9 16.0 14.2 0.96 0.94 0.99 1.09 0.93 0.52
s15s7b2c 30.7 1.516 13.4 15.6 14.4 0.96 0.94 0.98 1.18 0.99 0.60

s17.6 29.0 1.628 13.9 16.0 14.3 0.97 0.94 0.99 1.14 1.00 0.56
s17.6c 31.1 1.628 13.5 15.7 14.6 0.97 0.94 0.98 1.24 1.06 0.66

s17.8 29.2 1.719 15.6 17.6 15.7 0.95 0.93 0.99 1.67 1.44 0.66
s17.8c 31.1 1.719 15.0 17.1 15.5 0.94 0.92 0.98 1.73 1.45 0.74

s20.0 28.7 1.552 13.8 15.9 14.2 0.96 0.94 0.99 1.07 0.92 0.53

s20.6 29.0 1.882 15.3 17.2 15.3 0.95 0.93 0.99 1.52 1.36 0.69
s20.6c 31.2 1.881 14.6 16.7 15.4 0.95 0.93 0.98 1.62 1.42 0.81

s25.0 28.3 2.004 15.6 17.4 15.5 0.95 0.94 0.99 1.52 1.40 0.72
s25.0c 30.7 2.003 14.8 17.0 15.6 0.96 0.93 0.98 1.66 1.44 0.86

s27.0 28.9 1.735 14.4 16.4 14.5 0.96 0.94 0.99 1.22 1.09 0.60
s27.0c 31.2 1.735 13.7 15.9 14.8 0.96 0.94 0.98 1.34 1.15 0.72

s40.0 28.4 1.882 14.9 16.8 15.0 0.96 0.94 0.99 1.33 1.21 0.66
s40.0c 31.0 1.882 14.1 16.2 15.1 0.96 0.94 0.98 1.46 1.28 0.79

proton neutron star’s core and the part due to accretion,

Ltot = Lcore + Lacc. (3.6)

We now assume that the luminosity due to heavy lepton neutrinos is a good
measure for the “core”-luminosity of all species, as these can escape the proto
neutron star more easily than their electron flavor counterparts and are not as
abundantly produced in the accreting post-shock layer. We thus make the following
ansatz for the total luminosity,

Ltot ≈ Lαζ = (4 + 2α)Lνx + ζ
GMpnsṀ

Rpns
, (3.7)

where the coefficient α indicates the amount of luminosity of electron (or anti-
electron) neutrino emission from the core relative to those of the muon- and tau-
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Figure 3.8: The upper panel shows the electron neutrino luminosity evaluated at 500km
and transformed to the frame of a resting observer at infinity, for model ls220-s11.2. In
the lower panel is a space-time diagram of the luminosity evolution a few milliseconds
around the moment of core bounce. Colour coded is the local electron neutrino luminosity
value. The lines give the shock radius, the neutrino sphere, certain enclosed mass values
and iso-density contours, as indicated in the legend. The black dashed lines are world
lines with r = ct + t0, to illustrate the formation of the luminosity time evolution at
500km visible in the upper panel.

neutrinos, and ζ a conversion efficiency for the fraction of released gravitational
energy that is converted into neutrino radiation.

Due to the different compactness of the resulting proto neutron star due to the
different high-density equations of state, the parameters might be systematically
different for models with different EoS. Therefore we do a simple least-squares fit
for all models using the same EoS, using all data points for times later than 150ms
post-bounce when the dynamical phase is roughly over and the systems is in a
quasi-hydrostatic equilibrium as is usually assumed in theoretical models. We find
that we can reproduce the total luminosity to a very good degree with our ansatz.
Even when we look at the relative residual of only the electron flavor luminosity,

χ = 1− Le fit

Le sim
= 1− 2αLνx + ζEacc

Lνe + Lν̄e

, (3.8)

we see a reasonably good agreement, see Figure 3.9 for a plot of this quantity for
all models. We find that these values reproduce the electron flavor luminosities
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Figure 3.9: The relative residual χ from Equation (3.8), for all models.

always to better than 10% for the LS220 (and Shen) case:

α = 1.23 (1.29),

ζ = 0.49 (0.49).
(3.9)

3.4.3 Mean Neutrino Energies

It is interesting to look at the rather generic signal of the mean energies of ν̄e and νx
in the first hundred milliseconds after core bounce; in Serpico et al. (2012) this was
exploited to show that one could potentially determine the neutrino mass hierarchy
due to a different neutrino flavor mixing effect on the rise-time of the neutrino
signal on earth, provided this signal could be robustly predicted by simulations.
In this work, a set of our models with only the LS180 equation of state and no
mixing length scheme was used. We find here that the ν̄e and νx signal during the
first 100ms seems to be rather insensitive to these factors and would thus serve as
such a generic template. (Of course, there are now numerous planned and ongoing
experiments on earth that will most probably measure the neutrino mass hierarchy
before a galactic supernova might occur).

As already stated in Serpico et al. (2012), a generic feature of all models is that
the luminosities of the heavy-lepton neutrinos reach their maximum value faster
than the anti-electron neutrinos, as the νν or e+e− pair-production processes that
could emit ν̄e are fermi-blocked due to the copious amounts of νe and electrons
present during the first ∼ 10ms after core bounce. Only later when a sufficient
amount of lepton number has been carried away and the temperature of the post-
shock matter rises can these processes kick in, resulting in a delayed maximum.
The maximal value is then higher than the maximum of the heavy lepton neutrinos,
due their additional production by charged current reactions.
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Neutrino energy hierarchy

It is known (Keil et al., 2003; Buras et al., 2006b; Marek and Janka, 2009; Marek
et al., 2009) that the classical hierarchy of the mean neutrino energies, 〈ενe〉 <
〈εν̄e〉 < 〈ενx〉, can be inverted at late times to 〈ενe〉 < 〈ενx〉 . 〈εν̄e〉, in simulations
with a sufficiently sophisticated set of neutrino opacities. The effect was attributed
to the fact that the inclusion of neutrino-pair production and annihilation as well
as neutrino nucleon (down-) scattering acts as filter for high energy heavy-lepton
neutrinos (see also Raffelt, 2001), resulting in a reduction of their mean energy on
their way out of the proto neutron star. Next to that, while the bulk of the heavy
lepton neutrinos is coming from deeper inside the proton neutron star and mostly
pass through the cooling layer without many interactions, anti-electron neutrinos
due to their stronger coupling via the additional charged-current reaction channel
are more abundantly produced there, which can overall result in an inversion of
the classical ordering.

Our simulations also show this behaviour. In some extreme cases, we even find
a doubly-inverted hierarchy with 〈ενx〉 < 〈ενe〉 < 〈εν̄e〉. This is a result of the long
accretion phase simulated here, while the bulk of the heavy lepton neutrino flux
is unaffected by the accretion layer, the electron flavor neutrinos are abundantly
produced there. As the proto neutron star contracts the accreting matter falls
deeper into its potential well and gets more compressed, thus hotter, which is
visible in the increasing mean electron neutrino energies over time. While this
might be unrealistic for exploding models, black-hole forming progenitors will
show such a long accretion phase.

See Figure 3.10 for plots of the mean energies, luminosities, and profiles of
the energy- and number-density of the neutrino flux and the mean energies of
the neutrinos in comparison with the matter temperature, for one selected case
(s15s7b2). We define the mean energy of the flux similar to Eq (3.4) as the ratio of
neutrino energy flux H over neutrino number flux H, again in terms of the neutrino
intensity as

〈ε〉flux =
H

H =

∫∞
0 dε

∫ 1
−1 dµµ I(ε, µ)∫∞

0 dε
∫ 1
−1 dµµ ε

−1I(ε, µ)
. (3.10)

(By looking at this quantity instead of 〈ε〉, the purely geometrical influence of the
spherical radiating surface is eliminated)

One can see that in a region from ∼ 20 − 30km, the heavy lepton neutrino
number flux saturates at comparatively low radii, while the energy carried by these
neutrinos in total as well as their mean energy diminishes, as these neutrinos are
down-scattered on nucleons and/or electrons on their way out of the proto neutron
star. This is the region of the “filter-effect” described by Raffelt (2001). Compare
also the very similar Figure 11 in that work, in which heavy lepton neutrino
spectrum formation on hydrostatic backgrounds is analysed in great detail.

The electron flavor fluxes, on the other hand, saturate only much farther out
and are still greatly enhanced where the heavy lepton flavor neutrinos are already
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Figure 3.10: The upper panels show the luminosity and mean energies as a function of
time, extracted at a radius of 500km. The lower panels show profiles of the neutrino
flux number- and energy-density at the times indicated by the dashed lines in the
upper panels, where the filter-effect on the heavy-lepton neutrinos and the thermal
enhancement of the electron flavor neutrinos can be observed. Model ls220-s15s7b2
on the left panels is simulated with the full opacity set of Table 2.1, while model
ls220-s15s7b2r on the right was done with the isoenergetic neutrino-nucleon scattering
according to Bruenn (1985) and without νν pair-processes. In both cases 〈ενx〉 < 〈εν̄e〉
is found at sufficiently late times.
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Figure 3.11: A plot analogous to Figure 8 of O’Connor and Ott (2013), showing the
instantaneous mean anti-electron neutrino energy as a function of the cumulative emitted
anti-electron neutrino energy so far for three different times. The left panel shows models
without, the right panel models with the mixing length scheme active. Contrary to
O’Connor and Ott (2013), no clear separation between the used EoS can be discerned.

decoupled from the medium, aided also by the temperature inversion typically
found in the profiles. There, the hot compressed matter from the accretion flow
provides an additional thermal source for electron flavor neutrinos and only there
do the mean energies of the anti-electron neutrinos exceed those of the heavy lepton
neutrinos again.

Both effects, the downscattering of the heavy lepton neutrinos and the thermal
enhancement of the (anti) electron neutrinos, are relevant for the inversion of the
mean energies.

In a similar study of the pre-explosion neutrino signal, O’Connor and Ott (2013),
who take into account only isoenergetic scattering processes in their transport code,
still get the classical hierarchy of 〈ενe〉 < 〈εν̄e〉 < 〈ενx〉. Also, they see a remarkably
clear imprint of the high density EoS in the neutrino signal (presented in their
Figure 8), when they look at the instantaneous mean anti-electron neutrino energy
〈εν̄e〉 as a function of the cumulative emitted energy by anti-electron neutrinos in
total, defined as

Etot
ν̄e (t) =

∫ t

−∞
Lν̄e(t

′) dt′. (3.11)

We looked into this as well, however, we are unable to confirm the clear separation
they see. In Figure 3.11 the reader can look at these quantities using our model
set. Next to that, oscillation effects would mix the spectrum of different flavors on
their way to a detector on earth.
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3.4.4 Comparison to a reduced set of opacities

As can be seen from Table 2.1, we include neutrino pair processes and nucleon
opacities including correlation effects as well as the corresponding neutrino energy
exchange by nucleon recoil according to the prescription of Burrows and Sawyer
(1999) in our simulations (but see also Section 3.4.6 for remaining deficiencies in
the nucleon opacities).

To emphasise the importance of these ingredients, we also ran a couple of simu-
lations with a reduced set of opacities where we omitted these reactions, that is
we did not include any neutrino pair processes and used the rates from Bruenn
(1985) for isoenergetic neutrino nucleon scattering, results for s15s7b2 and LS220
as high density EoS can be found in the right panels of Figure 3.10

In these simulations, the mean energies of the electron and anti-electron neutrinos
are lower than in the full simulations, whereas the heavy lepton neutrino mean
energies are enhanced, and the differences are more pronounced in the early phases
of the simulations. The luminosities of the heavy lepton neutrinos are inversely
affected, the higher mean energies in the reduced simulations come with lower
luminosities. This is consistent with previous results of Buras et al. (2006b). The
lack of non-isoenergetic scattering processes on nucleons makes cooling of νx less
efficient compared to the full simulations, and the high energy neutrinos then
have a harder time diffusing out of the proto neutron star due to the increased
reaction cross sections. Next to that, less heavy lepton neutrinos are produced in
the first place due the omission of νν pair processes (see also Keil et al., 2003).
This is also visible in the very late phases, in the full simulations the heavy lepton
neutrino mean energy continues to rise, as a portion of their flux is due to the pair
production by hot electron flavor neutrinos. In the reduced case, the heavy lepton
neutrinos are more strongly decoupled from the electron flavor and thereby the
rising medium temperature in the accretion layer.

The electron and anti-electron neutrino luminosities are not compensated in this
way, both the mean energies as well as the luminosities of both the electron type
neutrino species are lower than seen in the full simulations.

Interestingly, even for this simpler set of neutrino opacities we still find the
classical hierarchy of mean energies inverted, albeit at later times than in the
simulations with the full opacity set. It is true that the “filter-effect” on the
heavy-lepton neutrinos is much less visible in the reduced simulations, as the
main energy exchange process via non–isoenergetic nucleon scattering is switched
off (see Figure 3.10). However, over time the electron flavor neutrinos follow the
temperature of the increasingly hotter accretion layer, while the heavy lepton
neutrino mean energy ceases to rise, resulting still in an inversion at sufficiently
late times.
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Figure 3.12: Neutrino quantities for models using LS180 (black) and LS220 (red). The
different high density behaviour has only little impact on simulations with neutron stars
that are far from the stability limit. Only extreme cases with more massive neutron
stars are affected by the different high density descriptions.

3.4.5 Influence of Constraints on the Equation of State

The recent solid measurements of ∼ 2.0 M� neutron stars by Demorest et al.
(2010) and Antoniadis et al. (2013) lead to powerful constraints on the (cold) high-
density equation of state, ruling out a number of models with low compressibility
parameters such as the LS180, which was heavily used in previous work in the
literature.

One should be cautious to draw too much conclusions for this as to the validity
of equations of state for supernova simulations, since the compact remnant there
is very different from a cold neutron star. While a particular equation of state
might fail to reproduce the constraints of the cold configuration it could still be
a good model for the temperatures involved in supernova simulations – especially
for proto neutron stars that are far away from the maximum mass.

To illustrate this, we also simulated a number of models with moderate proto
neutron star mass using the LS220 high density EoS also with the previously widely
used LS180. As one can see in Figure 3.12, the differences for all models in the
luminosities and mean energies are rather small, especially for models with lower
neutron star masses.
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3.4.6 Missing physics in neutrino opacities

It was noted by Mart́ınez-Pinedo et al. (2012) and Roberts (2012); Roberts et al.
(2012a)1 that the formulation of the neutrino nucleon interaction according to
Bruenn (1985) and Burrows and Sawyer (1999) was missing the effect of the nucleon
background potential in the dense medium on the reaction kinematics, effectively
changing the Q-value of any nucleonic beta reaction in an EoS–dependent way.

This is due to the fact that the energy-momentum equation for (nonrelativstic)
nucleons is changed from the free relation in a vacuum,

Efree
i (pi) =

p2
i

2mi
+mic

2, i = n, p, (3.12)

to the mean-field approximated relation at high densities,

Emf
i (pi) =

p2
i

2m∗i
+mic

2 + Ui, i = n, p, (3.13)

with m∗i the effective nucleon masses and Ui the single-particle interaction poten-
tials of either protons or neutrons, both dependent on the local thermodynamic
state. It was precisely the terms Un and Up that were neglected in the method and
our implementation of the nucleonic opacities according to Burrows and Sawyer
(1999), even though their formalism explicitly claimed to include this effect.

All simulations discussed so far suffer from this defect, however, for four selected
progenitors covering the range of our model set, s11.2, s25.0, s27.0, s40.0, and for
both high density equations of state, we could run our simulations again with new
neutrino rate prescriptions which do take these effects into account. As it turns out
- at least during the accretion phase and for the two EoS that were employed in
this study - an effect on the emitted neutrino signal in the unmixed simulations is
present, but not overwhelmingly large, as was expected by Mart́ınez-Pinedo et al.
(2012). For the mixing-length simulations, the effect is minimal, the larger neutron
stars there shift the neutrinospheres to lower densities and higher temperatures,
where the corrections due to the nucleon potentials is comparably smaller.

See Figure 3.13 for mean energies and luminosities of models with and without
the corrected opacities.

One has to expect from the results of Mart́ınez-Pinedo et al. (2012) (and we
actually confirm that in Section 5.4), that there will be a much larger correction
also in our simulations of the post-explosion phase, where matter accretion largely
ceases and the neutrino signal from deeper within the core starts to dominate.
Also, multidimensional simulations, where accretion can happen in narrow down-
flows and some portion of the proto neutron star can be exposed even during the
accretion phase, might also be at partially influenced by these corrections.

1 Mart́ınez-Pinedo et al. (2012) published their preprint earlier on the arXiv, while Roberts
(2012) submitted earlier to the journal.
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Figure 3.13: Comparison of the neutrino signal of the s11.2 and s40.0 models with (“o”,
and if additionally also with convection as “co”) and without the correction due to the
neglected nucleon potential effects.
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3.5 Neutrino Spectra

With Eq. (3.4) in mind, we define the normalized neutrino energy spectrum as

f(ε) =

∫ 1
−1 dµ I(ε, µ)∫∞

0 dε
∫ 1
−1 dµ I(ε, µ)

, (3.14)

such that the mean energy is recovered as

〈ε〉 =

∫ ∞
0

dε εf(ε). (3.15)

A purely thermal, black-body spectrum is with this definition given by

fT (ε) =
2

3ζ3T 3
· ε2

1 + exp(ε/T )
, (3.16)

where here and in the following ζn are values of the Riemann-Zeta function. Follow-
ing Keil et al. (2003), we characterize the spectra by energy moments, compatible
to their definition and calculated in analogy to Eq. (3.15) as

〈εn〉 =

∫ ∞
0

dε εnf(ε). (3.17)

In the literature one often encounters “rms”-mean energies, unfortunately with
conflicting definitions, Liebendörfer et al. (2005) for example define it (in our
notation) as

〈ε〉rms =
√
〈ε2〉, (3.18)

while Keil et al. (2003) use

〈ε〉rms,Keil =

√
〈ε3〉
〈ε〉 . (3.19)

It has become common to look at the first two moments to characterize the
spectrum, or to derive parameters of model spectra in such a way as to reproduce the
first two moments of the simulated spectra. Commonly used models are degenerate
Fermi-Dirac spectra, with the two parameters η, T as

fη,T (ε) =
1

−2Li3(−eη)T 3
· ε2

1 + exp (ε/T − η)
, (3.20)

where the function Lin(z) in the normalization factor is the polylogarithm, or
general Fermi-Integral, cf. Abramowitz and Stegun, 1970, p. 1005. (Note that the
parameter η of the emanating spectrum should not be directly identified with any
physical degeneracy of the neutrinos at their “source”, as the resulting spectra are
shaped by processes out of thermal equilibrium)
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By integration of Eq (3.20), one finds for the energy moments

〈ε〉η,T = 3
Li4(−eη)
Li3(−eη) T, (3.21)

〈
ε2
〉
η,T

= 12
Li5(−eη)
Li3(−eη) T

2, (3.22)

〈εn〉η,T =
(n+ 2)!

2

Lin+3(−eη)
Li3(−eη) Tn. (3.23)

Note that for η → 0 the polylogarithm is given in terms of Dirichlet η-function or
Riemann ζ-function values by

Lis(−1) = −η(s) =
(
21−s − 1

)
ζ(s). (3.24)

Unfortunately, as already noted by Raffelt (2001), equations (3.21) and (3.22)
cannot be solved for all possible pairs of energy moments 〈ε〉,

〈
ε2
〉
, but only when

16

15
<

〈
ε2
〉

〈ε〉2
<

4

3
(3.25)

holds. Another model spectrum was suggested by Keil et al. (2003), normalized it
is

fα,ε̄(ε) =
(1 + α)1+α

ε̄Γ(1 + α)
·
(ε
ε̄

)α
exp(−(α+ 1) ε/ε̄), (3.26)

with the two parameters α, ε̄. The energy moments of that spectrum are

〈ε〉α,ε̄ = ε̄ (3.27)

〈εn〉α,ε̄ = ε̄n · Γ(1 + α+ n)

Γ(1 + α)(1 + α)n
. (3.28)

It has the advantage that it is analytically simple and can represent arbitrary ratios
of the first two energy moments.

A more direct quantity derived explicitly from the energy moments was intro-
duced by Raffelt (2001), the “pinching-parameter” p. It is defined as

p =

(〈
ε2
〉
T

〈ε〉2T

)−1

·
〈
ε2
〉

〈ε〉2
=

49π8

486, 000 ζ3ζ5
·
〈
ε2
〉

〈ε〉2

=:
1

a
·
〈
ε2
〉

〈ε〉2
' 1

1.30291
·
〈
ε2
〉

〈ε〉2
, (3.29)

where p = 1 is obtained when the first two energy moments are thermal, p < 1
denotes a “pinched” spectrum – meaning it has a suppressed high energy tail
compared to a thermal spectrum, and vice versa for p > 1.
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The shape determining parameters η and α can directly be expressed only as a
function of p, by

p(η) =
4

3a

Li3(−µ)Li5(−µ)

Li4(−µ)2
and

3

4
a < p <

15

16
a, (3.30)

p(α) =
1

a

2 + α

1 + α
. (3.31)

We will thus always only provide p, the reader interested in either η or α can invert
these equations, trivially so for Eq. (3.31) and for Eq. (3.30) either numerically or
for values near p = 1 via expansions, e.g. given in Keil et al. (2003).

Numerical problems with the propagation of the neutrino energy distribution
along the radial grid result in some diffusive losses of the energy peak to neighbour-
ing energy bins, therefore a naive evaluation of the pinching parameter or the rms
mean energy at a fixed radius of, say, 500km as it is usually done comes up with
an anti-pinched, unphysical spectrum. (Note that this is not a problem connected
to the frame transformations needed to get the values for an observer frame at
rest, as the pinching parameter is an invariant Lorentz scalar that can safely be
evaluated in the comoving quantities directly provided in our simulation data) A
visualization of this artificial spectral distortion can be found in Figure 3.14.

The numerical diffusivity seems mostly to be dependent on the velocity gradient
at the shock front, where the doppler terms result in a strong redistribution along
the (fixed) energy grid, as the neutrinos coming out of the interior appear strongly
blue-shifted in the frame of the infalling matter and are thus distributed into higher
energy bins, then redistributed as the in-fall velocities decrease with increasing
radius.

Still, all equations are formulated in an energy and particle number conservative
way and thus while the shape of the spectrum might get somewhat distorted as
the radiation field is propagated along the grid, its mean and total energy is not
affected by this phenomenon.

We therefore evaluated the pinching parameter at a radius just below the shock
front, and recovered the true 〈ε〉rms via Eq. (3.29) from that p and the mean energy
at 500km2.

In Figure 3.15 we present the resulting 〈ε〉rms and p for all convective models,
and for s11.2 and s40.0 in comparison with both a convective run and a simulation
with the opacity corrections as described in Section 3.4.6.

As expected, all neutrino species start with a strongly pinched spectrum, that is
with a suppressed high energy tail compared to a corresponding thermal spectrum,
due to the energy dependence of the neutrino cross sections: high energy neutrinos
are more likely to be absorbed, or will loose some of their energy in proportionally
more scattering reactions on nucleons in the atmosphere above the proto neutron
star.

2In principle, this is slightly inconsistent as there is a delay time of O(ms), which is however
much smaller than the timescale for changes in the spectrum or the mean energies
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Figure 3.14: Profiles of the pinching parameters (upper panel) and the matter veloc-
ity (lower panel) 0.3 seconds after core bounce for model ls220-s11.2. Physically, a
drastic change in the shape of the spectrum is not expected or realistic for the dilute
(∼ 108 g/cm3) matter around the shock front at ∼ 80 km, the jump in the pinching
parameters for all neutrino flavors is a numerical artefact.

Finally, we present the time-averaged neutrino parameters of all models in Ta-
bles 3.4 and 3.5, where the different quantities Q were weighted by the number of
emitted neutrinos as

〈Q〉t =

∫
t dtṄνQ(t)∫
t dtṄν

, (3.32)

which might be of interest for judging the total amount and characteristics of
the neutrino output of accretion dominated core-collapse events into the diffuse
supernova neutrino background.

Typically, half a second of accretion emits ∼ 1.0− 1.5 · 1057 electron neutrinos,
∼ 0.5− 1.0 · 1057 anti-electron neutrinos, and ∼ 1.5− 2.5 · 1057 heavy lepton (anti-)
neutrinos.

Electron neutrinos have lowest mean energies of ∼ 10 − 12 MeV, while both
anti-electron and heavy-lepton neutrinos present with very similar mean energies
of ∼ 13− 16 MeV.

Note that the heavy-lepton neutrinos have a harder spectrum with p > 1 when
using the reduced opacity set, due the aforementioned lack of energy-exchange
reactions that could bring the high energy tail down.
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Figure 3.15: The rms-mean energies defined by Eq. (3.18) and the pinching parameter
for all convective models (upper panels) and for selected models in comparison to models
without the convection scheme, using either standard or corrected opacities.
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Table 3.4: Time averaged mean neutrino energies and total number of emitted neutrinos
from before collapse up to the simulated 0.5s after bounce, for the LS220 models. Note
that Nνx and Eνx are for only one of the four heavy lepton neutrino kinds, i.e. the total
emitted energy is Eνe + Eν̄e + 4Eνx .

Model 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1] [1057] [B]

s11.2r 10.6 13.1 14.6 0.93 0.92 1.02 0.89 0.47 0.28 15.1 9.8 6.4
s11.2 10.6 13.6 13.7 0.93 0.93 0.97 0.93 0.51 0.35 15.7 11.0 7.8
s11.2c 10.5 13.4 13.8 0.93 0.93 0.97 0.96 0.50 0.38 16.2 10.7 8.4
s11.2o 10.8 13.8 13.8 0.93 0.93 0.97 0.89 0.48 0.34 15.4 10.7 7.5
s11.2co 10.6 13.5 13.8 0.93 0.93 0.97 0.95 0.49 0.37 16.0 10.6 8.3

s12.0 11.5 14.6 14.3 0.93 0.93 0.97 1.12 0.65 0.39 20.6 15.3 9.0

s15.0 12.4 15.7 15.3 0.93 0.93 0.97 1.49 0.92 0.51 29.5 23.1 12.6
s15.0c 12.2 15.4 15.3 0.93 0.92 0.97 1.51 0.90 0.53 29.6 22.2 13.1

s15s7b2r 11.3 14.0 15.1 0.93 0.92 1.02 1.13 0.66 0.32 20.5 14.7 7.7
s15s7b2 11.6 14.7 14.5 0.93 0.93 0.97 1.14 0.67 0.41 21.1 15.7 9.5
s15s7b2c 11.3 14.3 14.5 0.93 0.93 0.97 1.18 0.66 0.44 21.4 15.3 10.2

s17.6 11.5 14.6 14.6 0.93 0.93 0.97 1.26 0.75 0.46 23.2 17.5 10.8
s17.6c 11.3 14.4 14.6 0.93 0.93 0.97 1.30 0.73 0.49 23.6 16.9 11.6

s17.8 12.4 15.7 15.3 0.93 0.93 0.98 1.41 0.86 0.48 28.1 21.8 11.7

s20.0 11.3 14.4 14.4 0.93 0.93 0.97 1.17 0.68 0.43 21.1 15.7 9.9

s20.6 12.3 15.6 15.4 0.93 0.93 0.97 1.60 0.99 0.58 31.5 24.7 14.2
s20.6c 12.2 15.4 15.4 0.93 0.92 0.97 1.63 0.97 0.61 31.8 23.9 15.0

s25.0r 12.6 15.4 16.4 0.93 0.92 1.01 1.79 1.13 0.48 36.1 27.8 12.5
s25.0 13.0 16.3 16.2 0.93 0.93 0.97 1.74 1.10 0.63 36.3 28.8 16.2
s25.0c 12.7 16.0 16.0 0.93 0.92 0.97 1.80 1.10 0.66 36.7 28.0 16.9
s25.0o 13.0 16.4 16.1 0.93 0.93 0.98 1.73 1.10 0.61 36.1 28.8 15.8
s25.0co 12.8 16.1 16.0 0.93 0.92 0.97 1.78 1.08 0.65 36.4 27.9 16.7

s27.0 11.7 14.9 14.8 0.93 0.93 0.97 1.39 0.84 0.51 26.1 20.0 12.1
s27.0c 11.6 14.7 14.9 0.93 0.93 0.97 1.43 0.82 0.54 26.5 19.4 13.0
s27.0o 11.9 15.1 14.9 0.93 0.93 0.97 1.35 0.81 0.49 25.8 19.7 11.7
s27.0co 11.6 14.8 14.9 0.93 0.92 0.97 1.41 0.81 0.54 26.4 19.2 12.8

s40.0r 12.0 14.8 15.9 0.93 0.92 1.01 1.58 0.96 0.44 30.3 22.7 11.1
s40.0 12.2 15.4 15.3 0.93 0.93 0.97 1.58 0.98 0.57 30.9 24.1 14.1
s40.0c 12.1 15.3 15.4 0.93 0.92 0.97 1.61 0.96 0.61 31.3 23.4 15.0
s40.0o 12.4 15.7 15.5 0.93 0.92 0.97 1.54 0.95 0.55 30.7 24.0 13.7
s40.0co 12.2 15.4 15.4 0.93 0.92 0.97 1.60 0.95 0.60 31.2 23.3 14.8
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Table 3.5: Same as Table 3.4 for the Shen EoS.

Model 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1] [1057] [B]

s11.2 10.3 13.1 13.2 0.93 0.93 0.97 0.93 0.50 0.35 15.3 10.4 7.3
s11.2c 10.3 13.0 13.3 0.93 0.93 0.97 0.96 0.49 0.37 15.7 10.2 7.8
s11.2o 10.5 13.3 13.3 0.93 0.93 0.97 0.89 0.48 0.33 14.9 10.1 7.0
s11.2co 10.3 13.2 13.3 0.93 0.92 0.97 0.93 0.48 0.36 15.4 10.1 7.7

s12.0 11.0 14.0 13.7 0.93 0.93 0.97 1.11 0.63 0.38 19.6 14.2 8.3
s12.0c 10.9 13.8 13.7 0.93 0.92 0.97 1.13 0.62 0.40 19.8 13.7 8.8

s15.0 11.8 14.9 14.5 0.93 0.92 0.97 1.47 0.90 0.48 27.9 21.5 11.2
s15.0c 11.7 14.7 14.5 0.93 0.92 0.97 1.49 0.88 0.50 28.0 20.7 11.6

s15s7b2 11.2 14.1 13.9 0.93 0.93 0.97 1.13 0.66 0.39 20.3 14.8 8.8
s15s7b2c 11.0 13.9 13.8 0.93 0.92 0.97 1.17 0.65 0.42 20.6 14.4 9.3

s17.6 11.1 14.0 13.9 0.93 0.93 0.97 1.26 0.73 0.45 22.4 16.5 9.9
s17.6c 11.0 13.9 14.0 0.93 0.93 0.97 1.29 0.72 0.47 22.7 15.9 10.5

s17.8 11.8 14.9 14.4 0.93 0.92 0.97 1.44 0.87 0.47 27.2 20.8 10.9
s17.8c 11.7 14.7 14.3 0.93 0.92 0.97 1.46 0.85 0.49 27.2 19.9 11.3

s20.0 11.0 13.9 13.9 0.93 0.93 0.97 1.15 0.65 0.41 20.3 14.6 9.1

s20.6 11.8 14.8 14.6 0.93 0.92 0.97 1.59 0.98 0.55 30.0 23.2 12.8
s20.6c 11.7 14.7 14.6 0.93 0.92 0.97 1.62 0.95 0.57 30.3 22.3 13.4

s25.0 12.3 15.4 15.1 0.93 0.92 0.97 1.77 1.11 0.60 34.9 27.5 14.5
s25.0c 12.2 15.2 15.0 0.93 0.92 0.97 1.80 1.08 0.62 35.1 26.4 15.0
s25.0o 12.5 15.6 15.2 0.93 0.92 0.97 1.74 1.10 0.58 34.8 27.5 14.2
s25.0co 12.2 15.3 15.1 0.93 0.92 0.97 1.78 1.08 0.61 34.9 26.4 14.8

s27.0 11.3 14.3 14.2 0.93 0.93 0.97 1.38 0.82 0.49 25.0 18.8 11.1
s27.0c 11.2 14.1 14.2 0.93 0.93 0.97 1.42 0.81 0.52 25.4 18.2 11.7
s27.0o 11.5 14.5 14.3 0.93 0.93 0.97 1.35 0.80 0.47 24.8 18.7 10.8
s27.0co 11.3 14.3 14.2 0.94 0.92 0.97 1.40 0.80 0.51 25.3 18.2 11.6

s40.0 11.9 15.0 14.8 0.93 0.92 0.97 1.57 0.96 0.54 30.0 23.0 12.8
s40.0c 11.7 14.7 14.6 0.93 0.92 0.97 1.61 0.95 0.57 30.2 22.3 13.4
s40.0o 12.0 15.1 14.8 0.93 0.92 0.97 1.55 0.95 0.53 29.8 23.0 12.5
s40.0co 11.7 14.8 14.7 0.93 0.92 0.97 1.60 0.94 0.57 30.1 22.2 13.3
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3.6 Summary

We simulated the gravitational collapse, neutron star formation and subsequent
accretion phase for a large number of progenitors and three different high density
equations of state with a detailed neutrino transport and hydrodynamics code in
spherical symmetry.

For the first time, this was augmented also with a mixing-length prescription
applied within the proto neutron star in order to mimic the genuinely multi-
dimensional effect of convection. We found that the resulting neutrino signal with
this scheme active was in much better agreement to true, computationally much
more costly multidimensional simulations.

The most important consequence of the convection is a somewhat enlarged proto
neutron star, which to zeroth order is reflected in larger neutrino luminosities and
lower mean energies.

We could confirm a rather generic neutrino signal of the first 100ms of the
accretion phase – for which the assumption of spherical symmetry is not bad – over
the progenitors and equation of state models used. This was a requirement for the
work of Serpico et al. (2012) which concerns itself with the possibility of detecting
the neutrino mass hierarchy and in which also some of the models with the LS180
equation of state also presented in this chapter were used.

All models where simulated for 500ms of accretion. However, during this time the
accretion layer will become unstable to nonspherical perturbations, and we know
from true multidimensional models that this can result in quite large, global modes
of non-radial motion. Next to that, if the conditions are right, these could help to
develop an explosion, which is never found in spherically symmetric simulations
(except for the very lowest mass progenitors).

However, we could still make good use the model set simulated. For one, to judge
again the influence of certain opacity improvements implemented in our code, e.g.
the inclusion of nucleon-recoil and nucleon correlations at high densities. Without
these, a similar study of the pre-explosion accretion signal by O’Connor and Ott
(2013) could infer a very clear imprint of the high-density equation of state from
their simulated neutrino signal. With our comparatively more advanced neutrino
opacities this clear signal, sadly, disappears.

Next to that, we could test the impact of the recently discovered (Roberts, 2012;
Mart́ınez-Pinedo et al., 2012) omission of the nucleon-interaction potentials in the
nucleon opacities of Burrows and Sawyer (1999). We could reassure with our own
code what was already claimed, that these effects are not important during the
early, hot phase of accretion (and thus possibly also not for explosion scenarios).

Finally, the models produced here will serve as the starting point for the artifi-
cially exploded model set used in Chapter 5.
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4 Black hole formation

A massive star has to die - one way or another - when the electron degeneracy
pressure in its iron core is no longer able to withstand gravity. Its core then
collapses under its own weight, and forms a proto neutron star.

One way to die for the star is then to explode in a spectacular supernova. For
this, the intense neutrino irradiation from core and accretion must be able to heat
up the matter above strongly enough to expel it. Then, the continuing infall of
matter is stopped, its remaining hull is ejected and what is left behind is a neutron
star.

However, it has become clear that this process is by no means overly robust:
spherically symmetric simulations consistently fail to explode, except for the very
low mass end of progenitors. It is thought that multi-dimensional effects that
enhance this neutrino mechanism are a crucial ingredient to the explosion of
the majority of massive progenitors, but for a certain fraction with unfavourable
conditions – whatever they might be – this mechanism will simply fail and will not
produce an explosion.

In such a case, stellar matter will continue to stream onto the proto neutron star.
Its mass will continue to grow accordingly until a second threshold of instability is
crossed, when it reaches the Tolmann-Oppenheimer-Volkoff-Mass, where thermal
and neutron-degeneracy pressure give way to gravity. In such cases, the star will
die by becoming a black hole. As the equation of state of neutron star matter is
only poorly known, so is the precise value of this threshold mass. A lower bound
could be established by the observation of stable 2M� neutron stars by Demorest
et al. (2010) and Antoniadis et al. (2013).

Recent estimates for core collapse that result in a direct black hole formation
range from 10−23% (Woosley et al., 2002; Ugliano et al., 2012). Optically, such an
event might not be visible at all other than by the fact that the light of a single star
suddenly disappeared (unless rotation and/or strong magnetic fields are present
to create an accretion disc around the black hole).

The neutrinos in these cases could then be the only signature of such an event.
With no explosion, accretion will continue for a long time and thereby heat the
proto neutron star to very high temperatures. This will result in neutrinos with
particularly high energies. Not only is this favourable for a direct terrestrial detec-
tion of individual events due the increased interaction cross-sections (∝ ε2), but
these neutrinos might also be the main source (of energy) for the diffuse supernova
neutrino background (Beacom, 2010; Nakazato et al., 2008).

In the literature, first studies involving the black hole collapse of a neutron star
were already done in early works of Wilson (1971), and occurred almost regularly
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for the soft high density equations of state used then.
Later, Baumgarte et al. (1996a,b) looked at the delayed collapse of a neutron star

that was formed above the threshold mass but was initially stabilized by thermal
pressure support. Due to neutrino emission, this object subsequently becomes
unstable and collapses, ending the neutrino emission abruptly. In full GR, they
used artificially reduced neutrino opacities (Baumgarte et al., 1996b) in order
to trigger the collapse already 20ms post-bounce and then scaled the resulting
neutrino emission accordingly, or used a rather coarse numerical grid (Baumgarte
et al., 1996a), in order to save computer time. They used a high density equation
of state that forms a Kaon condensate at high densities, resulting in a maximum
neutron star mass of about 1.5M�, which is not compatible with experimental and
astrophysical constraints anymore. With their singularity avoiding formulation
they were able to follow the neutrino signal even after the formation of an event
horizon and could observe the very rapid, O(ms), decay of the neutrino emission.
In a way the study in this chapter is complementary to their approach: where they
used a very detailed and accurate description of GR and only a very simplistic
model for the effects of neutrinos, we focus more on a detailed prescription of
neutrino transport and only model GR in very phenomenological way.

Beacom et al. (2001) used these fast cutoff time scales to infer constraints on
the absolute neutrino masses from future observations of such a delayed collapse
event. The idea there is that the very rapid decay of the luminosities of all neutrino
flavors at the same time over this short timescale allows a direct measurement of
the relative propagation time delay due to the nonzero neutrino masses. For this
to work, accurate prediction on the neutrino luminosities and mean energies at
the time of collapse are necessary.

Liebendörfer et al. (2004), and more recently, Fischer et al. (2007, 2009) looked
at the neutrino signal of black-hole formation for a number of 40 and 50 solar mass
progenitors with a detailed three-flavor Boltzmann neutrino transport treatment
and in full GR.

Sumiyoshi et al. (2007, 2008) simulated the black hole collapse of a 40 solar mass
progenitor, also using a Boltzmann neutrino transport. All these studies use the
nucleon opacities according to the isoenergetic formalism of Bruenn (1985), that is
ignoring recoil, weak-magnetism, and nucleon correlation effects at high densities.
They agree in that they find increasingly hard spectra towards the moment of black
hole collapse, especially for the heavy lepton flavor neutrinos. Due to their lower
coupling to electron-generation matter, they are emitted from higher densities and
thus reflect the growing temperature from the more and more compressed core.

One motivation for this study was to check whether these very hard spectra are
still found when the effect of neutrino energy changing nucleon-recoil is taken into
account. While it is true that the “neutrinospheres” of the heavy lepton flavors
are indeed much farther inside the proto neutron star, they still can scatter on
their way out through the more dilute matter. Neglecting nucleon recoil will thus
overestimate the high energy tail of the resulting spectra, especially considering
that the more energetic neutrinos are also more likely to undergo an interaction
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with the medium of the proto neutron star’s accretion atmosphere. Keil et al.
(2003) have found in very detailed Monte-Carlo simulations, in which they could
selectively switch off different neutrino interaction processes and assumptions, that
nucleon recoil is the most important process in the scattering atmosphere for the
heavy lepton neutrinos.

Yang and Lunardini (2011) emphasize, that megaton detectors could potentially
detect black hole forming neutron star collapses out to distances as far as 2-3
megaparsec, a distance that contains enough galaxies for a detection rate of up to
one event per decade, depending on the precise values for the expected neutrino
signal.

Most recently, O’Connor and Ott (2011) simulated a large number of progenitors,
however, with a focus more on determining the fraction and progenitor dependence
of black-hole formation cases in the different sets of progenitors, than on a detailed
neutrino signal. They also used full GR simulations, but only a comparably simple
treatment of neutrinos, via a parametrized deleptonization during collapse and a
leakage scheme with heating-terms for the neutrino back-reaction on the medium
post bounce. They introduced the now widely used ζ-parameter as a measure for
compactness and suggested threshold values to determine which progenitor is more
likely to form a black hole. With a calibrated, parametrized neutrino transport,
Ugliano et al. (2012) also studied the progenitor-remnant connection and found
that it is difficult to predict with a single parameter whether a given progenitor
will form a black hole or a successful explosion with a neutron star.

Compared to Fischer et al. (2009) (and their previous publications, Liebendörfer
et al., 2004; Fischer et al., 2007) and Sumiyoshi et al. (2007, 2008), the only of the
mentioned works with a similarly accurate neutrino transport, our code models
GR only approximately, but has more realistic neutrino opacities implemented. At
first glance, accurate GR treatment should be the prime necessity for anything
involving black-holes. In our setup, we model the effect of GR with a post-newtonian,
TOV-like potential (Marek et al., 2006) in an otherwise classical hydrodynamical
simulation. However, we argue that for the scenario in question this is not a bad
approximation: as the accretion on the proto neutron star is up until its very last
few milliseconds a comparatively slow, quasi-hydrostatic process, the dynamics are
not greatly affected by the approximation of using Newtonian mechanics, while
the black-hole singularity is also present in our TOV-like potential.

To assure this, we perform an explicit comparison calculation with an (as most
as we can) identical setup of a model of Fischer et al. (2009), result are presented
in Section 4.3.

As another improvement over the existing models in the literature, we also model
the genuinely multi-dimensional effect of proto neutron star convection via the
mixing-length treatment, and explore the resulting changes of the neutrino signal.
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4.1 Simulated Models

The pre-supernova progenitors are the two very compact s25.0 and s40.0 from the
set in Woosley et al. (2002) and model s40s7b2 from Woosley and Weaver (1995).
The last progenitor was also used by Fischer et al. (2009) and all three are included
in O’Connor and Ott (2011).

4.1.1 Equation of state of high density matter

Of particular importance for simulations near the threshold of instability is the
choice of the high-density equation of state (EoS), for which astrophysics is depen-
dent on theoretical models given to us from nuclear physics.

For most of our models we have chosen the EoS of Lattimer and Swesty (1991 and
Lattimer et al., 1985), using the version with a nuclear incompressibility parameter
of K = 220 MeV (“LS220”). To compare with Fischer et al. (2009) we also produced
a model with the K = 180 MeV version (“LS180”), which has since fallen somewhat
into disgrace with the measurements of a stable ∼ 2 M� neutron star, for which
at least the K = 220 MeV version has to be used, a value that is also more in
agreement with measurement from nuclear physics (see e.g. references in Steiner
et al., 2013).

We would like to emphasize again that for typical supernova simulations with less
massive neutron stars the choice between LS180 and LS220 is not overly important,
as they are very similar for hot proto neutron star configurations away from the
maximum mass instability threshold. See also the comparison in Section 3.4.5.

4.1.2 Neutrino opacities

Each progenitor was simulated both with the full set of neutrino opacities as given
in Table 2.1 and with a reduced set of reactions, where pure neutrino-neutrino
pair reactions as described in Buras et al. (2003a) were omitted and the nucleon
opacities were treated using the formulation of Bruenn (1985); Mezzacappa and
Bruenn (1993b), that is they neglected nucleon correlations at high densities and the
neutrino energy exchange via nuclear recoil. Runs with the reduced set of opacities
have an “r” appended. All models suffer from the defect described in Section 3.4.6,
the omission of the effect of the nucleon potentials in the neutrino-nucleon opacities
at high densities. This should not be overly important here, the effect of the nucleon
potentials is most important for the diffusive neutrino contribution from the proto
neutron star, and thus visible only on the long timescales associated with its cooling.
It should not be relevant for the comparatively short simulations discussed here.
Next to that, black hole forming scenarios necessarily have a strong accretion and
an accompanied neutrino luminosity from there, which originates from much lower
densities. There, the effect of the nucleon potentials is negligible. Additionally, the
higher temperatures encountered in the strongly compressed black hole forming
proto neutron stars also quenches the impact of the nucleon potentials, see also
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Table 4.1: A selection of quantities at the moment of core-bounce, the compactness
parameter ζ2.5, the radius (rsh) and enclosed baryon mass (Msh) of the shock at the
moment of core-bounce, and the collapse duration tcol.

Model
ls180 ls220

ζ2.5 rsh Msh tcol rsh Msh tcol

[1] [km] [M�] [s] [km] [M�] [s]
s25.0 0.33 11.17 0.441 0.455
s25.0r –”– 11.19 0.441 0.456

s40.0 0.26 11.15 0.441 0.409
s40.0r –”– 11.19 0.442 0.407

s40s7b2 0.59 11.19 0.429 0.378 11.14 0.434 0.409
s40s7b2r –”– 11.21 0.430 0.379 11.20 0.437 0.410
s40s7b2rνν –”– 11.08 0.487 0.367

the later Section 5.4.

4.1.3 Convection Approximation

For all progenitors, an additional simulation using the full set of neutrino opacities
and also with the mixing-length scheme active was done, indicated by an appended
“c”. For details of the implementation, see Section 2.4.1.

In total, 12 simulations were performed, 9 with the LS220 and 3 with LS180
equation of state.

4.2 Theoretical considerations

A direct collapse without first forming a neutron star is prevented by the strong
nuclear forces, and as we have seen in Section 3.2, the initial mass of the proto
neutron stars is predominantly a function of the high density equation of state and
not of the progenitor initial mass or compactness. In Table 4.1 we give an overview
of the proto neutron star radii and masses at the moment of core-bounce.

Thus, subsequent mass growth by accretion after a proto neutron star was formed
in the centre will ultimately be responsible for the black hole formation.

Contrary to the physics determining the related Chandrasekhar mass for the
instability of electron-degenerate matter, the conditions for the collapse of neutron
star matter are only poorly constrained, ranging from ∼ 2− 3 solar masses.

The Tolman-Oppenheimer-Volkoff (TOV) equation,

dp(r)

dr
= −G

r2

(
ρe(r) +

p(r)

c2

)(
M +

4πp(r)r3

c2

)(
1− 2GM(r)

c2r

)−1

, (4.1)

describes static, spherically symmetric solutions of the Einstein field equations
for a given equation of state, relating pressure p to the total mass-energy density
ρe = ρ+ e/c2, with ρ the matter density, e the internal energy. Here, M(r) is the
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gravitational mass felt at the coordinate radius r, which has to be solved alongside
Eq. (4.1), and is formally defined by

M(r′) =

∫ r′

0
dr 4πρe(r)r

2. (4.2)

Even though this looks remarkably like the classical, Newtonian definition of the
enclosed mass, the integration is not over the proper volume element, the amount
of mass-energy contained in the configuration, i.e. the total amount needed to
assemble the configuration from unbound matter at infinity, is given by

M∞(r′) =

∫ r′

o
dr

4πρe(r)r
2√

1− 2GM(r)/c2

r

. (4.3)

This results from the fact that the proper distance s of the Schwarzschild metric
that is necessary for calculating the physical volume element is related by

ds =
1√

1− 2GM(r)/c2

r

dr, (4.4)

to the coordinate radius r. Note that the area A of a sphere with r = const is still

A = 4πr2, (4.5)

in the curved space of the Schwarzschild metric, and it is this quantity and the
associated radius r that a number of neutron star measurements are sensitive to
(e.g. X-Ray thermal emission on a photosphere identified with the neutron star’s
surface). It is therefore common to take the coordinate radius r as “the” radius,
e.g. when showing mass-radius relations.

A third definition of mass one commonly encounters is the so-called baryonic
mass, proportional to the number of baryons contained within a given radius r′,

Mbar(r
′) =

∫ r′

0

4πnB(r)mBr
2√

1− 2GM(r)/c2

r

dr, (4.6)

with nB the local baryon number density, and mB a fixed, fiducial baryon mass. It
is not so much a real “mass” but really only a measure for the number of baryons
contained. It is very often used, though, as in GR only the baryon number is a
conserved quantity, contrary to mass and energy, which also are actively decreased
by the emitted neutrinos in a cooling proto neutron star. With dr < ds and
nBmB < ρe, one has

M < Mbar < M∞. (4.7)

As it turns out, no hydrostatic solutions with a total mass exceeding a certain
critical mass can be found, instead, configurations with more mass can only be
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Figure 4.1: Mass-radius and mass-central density relations are shown in the upper panels,
the last stable masses are marked with a dot. The lower panels gives the β-equilibrium
Ye values from the three different equations of state, for cold and three selected hot
configurations (Colours distinguishing the three EoS in the upper panels as given by
the lower panels).

expressed by solutions with a black-hole singularity in the centre. In Figure 4.1,
one can see this for the LS180 and LS220 equations of state, as well as for the
Shen equation of state which was used in the previous chapter. There, we plot the
key quantities total mass and radius for families of TOV solutions by varying the
initially chosen central density up to the value for which a maximum mass is found.
Next to the usually depicted curves for a completely cold configuration valid for old
neutron stars, we also show the relations for a hot structure, in which we assume
the medium to have a constant specific entropy throughout, in this case for 1, 2
and extreme 4 kB per baryon. The remaining state variable, the electron fraction
Ye, was derived by assuming that the star is in neutrino-less β-equilibrium, i.e. Ye
was inverted for a given density ρ and entropy s such that the electron neutrino
chemical potential µν(ρ, s, Ye) vanishes. The resulting β-equilibrium Ye value can
be found in the lower panels of Figure 4.1.

It is not immediately clear – although often stated – that additional thermal
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Figure 4.2: The influence on thermal energy on the maximum stable masses, as a function
of the value of an assumed flat entropy profile for the whole neutron star. As can be
seen, for the two LS EoS, a hot neutron star can support a somewhat smaller maximum
baryon number (mid panel) compared to a completely cold configuration, minima are
indicated with a dot. The effective gravitational mass (left panel) and total mass-energy
contained in the neutron star (right panel) increase monotonically with the entropy.

Table 4.2: Numerical values for the maximum stable neutron star masses, corresponding
to Figures 4.1 and 4.2

EoS Mgrav Mbar M∞
LS180 s=0 1.837 2.113 2.421

s=2.8 1.899 2.075 2.452
s=4.0 2.034 2.120 2.531

LS220 s=0 2.046 2.390 2.741
s=3.8 2.135 2.265 2.749
s=4.0 2.156 2.267 2.755

Shen s=0 2.223 2.566 2.876
s=4.0 2.601 2.749 3.244

pressure support inevitably increases the maximum baryonic mass. There are two
competing effects, on the one hand additional thermal pressure should support
more mass, on the other hand, the thermal energy is itself an additional source of
mass-energy in the Einstein equations. Keil and Janka (1995) already noted that
these effects overall resulted in a very small increase of the maximum stable mass
for their particular EoS.

It is not possible for us to resolve whether this is realistic or an artefact of
deficiencies in the high density equation of state models.

And indeed, as can be seen in Figure 4.2, additional thermal energy does not
always increase the maximum baryonic mass. For the two Lattimer&Swesty EoS,
the maximum baryonic mass can be reduced by 0.038 and 0.125 solar masses, for
LS180 and LS220, respectively. Only for even higher entropies do the maximum
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baryonic masses increase again, while in the Shen EoS, the maximum baryonic mass
increases monotonically with entropy. In Table 4.2 we also give the corresponding
numerical values.

4.3 Comparison to a full GR simulation in the literature

Model s40s7b2 using the LS180 EoS was also simulated by Fischer et al. (2009).
In their Figure 2, they present neutrino luminosities and rms-mean energies. We
therefore produced three models, one with our full opacity set and one with the
reduced rates according to section 4.1.2 and finally, as Fischer et al. (2009) also
discuss neutrino pair-reactions (νν � νν, Buras et al., 2003a), for a third model
we also ran a simulation with our reduced opacity set but with νν-pair reactions
include (model “ls180-s40s7b2rνν”). Unfortunately, it is not immediately clear
from the description in Fischer et al. (2009) whether they make use of neutrino
pairs rates for the s40s7b2 progenitor, nor if they include weak-magnetism, which
they also discuss in a section in their paper.

In Figure 4.3, we show the accretion of mass-shells, the shock and proto neutron
star formation, and the evolution of the matter temperature up until the final black
hole collapse for model ls180-s40s7b2, as a representative case. The continuous
heating of the proto neutron star’s mantle around an enclosed mass shell of ∼ 1 M�
due to compression by the ongoing accretion, is visible, as well as the final, very
fast collapse of the whole proto neutron star at the end.

To compare our neutrino signal with Fischer et al. (2009), recall from Eq. (3.4)
that we define as the normal mean energy 〈ε〉 the neutrino energy density J over
neutrino number density J ,

〈ε〉 =

∫
J dε∫
J dε =

∫ 1
−1 dµ

∫∞
0 dε I(ε, µ)∫ 1

−1 dµ
∫∞

0 dε ε−1I(ε, µ)
, (4.8)

where I(ε, µ) is the neutrino radiation intensity. As in the previous chapter, we
follow Janka and Hillebrandt (1989) and write this for arbitrary moments and in
terms of the neutrino particle distribution function f(ε, µ) (using I ∝ ε3f) as

〈εn〉 =

∫ 1
−1 dµ

∫∞
0 dε ε2+nf(ε, µ)∫ 1

−1 dµ
∫∞

0 dε ε2f(ε, µ)
. (4.9)

The rms-mean energy as used by the Basel group (explicitly defined in e.g. Liebendörfer
et al., 2005) is in this notation then

〈ε〉rms =
√
〈ε2〉 (4.10)

and presumably this definition was also used in Fischer et al. (2009). Note that
e.g. Keil et al. (2003) use another definition of the rms-mean energy, in their
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Figure 4.3: A mass shell plot of the black hole collapse of model ls180-s40s7b2. Colour
coded is the matter temperature, the blue line is the radius of the accretion shock, the
red line is the neutron star’s surface (defined as ρ = 1011g/cm3). The final collapse at
the end of the simulations happens within a few milliseconds only.

Equation 10 they define it as

〈ε〉rms Keil =

√
〈ε3〉
〈ε〉 . (4.11)

As can be seen by comparing Figure 2 of Fischer et al. (2009) to our Figure 4.4,
the ↪ ↩νe mean energies of model s40s7b2rνν fit quite well, we are therefore confident
that our definition is compatible with the one used in Fischer et al. (2009).

After a bit less than half a second accretion, the proto neutron star formed
out of the progenitor s40s7b2 becomes unstable again and forms a black hole, the
simulation effectively has to be stopped when the central density reached the end
of the equation of state table (∼ 1016 g/cm3).

While the νe and ν̄e rms mean energies of our model ls180-s40s7b2r are very
similar to the results of Fischer et al. (2009), our νx energies are a bit lower.
Their electron flavor luminosities seem to be some 10 − 20% higher than in our
simulations for the most part, but the difference reduces somewhat during the late
phase. The heavy-lepton neutrino luminosity is comparable to our values for most
of the simulation except for the late-phase were it is also some 10− 15% larger.
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Figure 4.4: Neutrino signal and proto neutron star accretion data for a comparison run
with the progenitor s40s7b2 of Woosley and Weaver (1995) and the LS180 EoS, analogous
to a model in Fischer et al. (2009).

However, their heavy-lepton rms mean energies are significantly higher than we
find. The source of this difference remains elusive. It could very well be connected to
the numerical problem regarding numerical diffusion and the distortion of the shape
of the spectrum, described in Section 3.5, although there, the rms mean energies
were artificially enhanced at larger radii, making the discrepancy even worse. Other
than that, it would necessitate a higher temperature in the region of decoupling for
the heavy-lepton neutrinos, possibly due to a proto neutron star that is a bit more
compact. A comparison of our profiles at a very compact configuration, shortly
before the collapse sets in, with a solution of the TOV equation using the current
mass-density and matter pressure found in our simulations as input, however, yields
a very good agreement.

Purely hydrodynamically, though, the agreement with Fischer et al. (2009) is very
satisfactory. It seems to be a nice testament to our approximative GR treatment
via an effective potential, that the collapse sets in at a very similar time as with
the full GR code of Fischer et al. (2009), 443ms after bounce for model ls180-
s40s7b2rνν. Curiously, our full model, ls180-s40s7b2, is in even better agreement
with the collapse duration, its 435ms is precisely the time Fischer et al. (2009) find
for the collapse.

As will become clear in the following sections, differences in the neutrino trans-
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port and the influence of thermal energy and pressure support in the unstable
proto neutron star can easily be the reason for the remaining discrepancies. Also,
the details and duration of the gravitational collapse of the progenitor star could
have a small influence there, see also to the discussion in Section 3.2.1, about the
influence of the electron capture modelling on the collapse duration. O’Connor and
Ott (2011) find a somewhat larger collapse time for the same progenitor, which
they attribute to their neutrino transport approximation.

In Steiner et al. (2013), the same black hole collapse is calculated again, for a
variety of high density equations of state in fact, and with the same code as used in
Fischer et al. (2009). There, the authors explicitly write that they include neutrino-
pair reactions, and the evolution of this model is clearly different compared to
Fischer et al. (2009), with a much shorter timespan till the black hole collapse sets
in.

Looking at our own models with the LS180 in comparison, we see that for
this particular progenitor with its very large mass accretion rate, the inclusion of
neutrino-neutrino-pair processes indeed makes quite a difference, as can be seen
in the left hand side of Figure 4.4.

4.4 Neutrino signal of the LS220 models

We now turn our focus to the simulations with the LS220 high density equation
of state and compare them, first regarding their neutrino transfer treatment.

The three different progenitors have quite a different density profile at the begin
or, equivalently, a different mass accretion rate over the course of the simulation.
The most compact s40s7b2 collapses in about half a second, the s25.0 has to accrete
matter for 1.2-1.3 seconds, and the least compact s40.0 takes up to over 2 seconds
until a sufficient amount of matter is collected. With the LS220 as the high density
equation of state, the critical baryonic mass is about 2.25-2.3 solar masses, which
indeed is significantly lower than the cold maximum mass of 2.39. In the LS180
runs, collapse sets in already at ∼2.18 solar masses, but contrary to the LS220
case, this value is even slightly higher than the cold maximum mass of 2.113, see
Tables 4.2 and 4.3.

An overview of the resulting neutrino signal of all models can be found in
Figure 4.5.

4.4.1 Influence due to Neutrino Opacities

Let us recall that models with the reduced opacity set treat neutrino-nucleon
scattering as iso-energetic and neglect the possibility of neutrino-neutrino pair
interactions. Additionally, in the full opacity set, the neutrino-nucleon cross sections
are modified due to correlations of nucleons in the dense medium, which results
in reduced opacities there (see e.g. Burrows and Sawyer, 1998; Reddy et al., 1998,
1999).
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Figure 4.5: Neutrino quantities for all models. Note the different time scales, and the
different equation of state for the models in the lower right panel, the comparison case
for Fischer et al. (2009).
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In general, runs with the full opacity set show decreased electron and anti-
electron neutrino luminosities, especially at late times, while the heavy lepton
neutrino luminosity is enhanced compared to models with the reduced opacity
treatment, especially for the fast collapsing s40s7b2.

The situation is more complex when looking at the mean energies. In the long
duration cases of s25.0 and s40.0, the electron flavor mean energies are very close,
if a bit larger at times, to the values found in the reduced opacity simulations. The
electron anti neutrino mean energies increase a bit more, while the heavy lepton
flavor mean energies are decidedly higher.

For the very fast collapsing case of the s40s7b2, both the electron flavor neutrino
mean energies are somewhat enhanced in the full simulations, while the heavy
lepton neutrinos are emitted with similar, and especially close to the end of the
simulation with visibly lower mean energies.

There seems to be a qualitative difference between the slow and fast collapsing
cases. Fischer et al. (2009) already remarked that progenitors with low or high
mass accretion rate, or correspondingly slow or fast black hole collapse, have a
different electron flavor neutrino emission, which they call to be either accretion
or diffusion dominated. Including pair reactions can transfer this difference also to
the heavy lepton neutrinos.

Looking at the neutrino production in more detail for the case of ls220-s40s7b2
in the upper panels of Figure 4.6, we find that in the full simulation heavy-lepton
neutrino flux is additionally produced in a region of density around 1011g/cm3, and
not only mostly from denser regions as is the case in the reduced model. Neutrino
pair production processes are responsible for this, due to the very intense accretion
luminosity from the large mass accretion rate, a sizeable number of νeν̄e pairs can
be annihilated into νxν̄x, redistributing the energy from the electron into the heavy
lepton neutrino sector.

In the long-duration cases with much lower accretion rates, for example s25.0
visible in the lower panels of the same Figure, however, this difference is not present.
There, in both the reduced opacity and full opacity simulations, the bulk of the
heavy-lepton flavor emission is purely from a region with very high density around
1013g/cm3.

The interplay between additional production of all flavors due to the inclusion of
Bremsstrahlung and the redistribution of energy in neutrino pair reactions and the
dependency of these two factors on the accretion rate seems to be the underlying
reason for the differences.

Another general feature of all models with the full opacity treatment is a faster
time till the black hole collapse sets in, accompanied by smaller, thus more compact,
neutron stars in the full models.

4.4.2 Convection

Next to models with a reduced opacity set discussed in the previous section, for all
models with the full opacity set we also ran a simulation where the mixing length
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Ṅ
[1

0
5
7
/s

]νe
ν̄e
νx

0

50

100

L
ν

[B
/
s]

10710810910101011101210131014

ρ [g/cm3]

0
5

10
15
20
25

〈ε
〉,
T

[M
eV

]

T

ls220-s40s7b2r

0.0

0.5

1.0

1.5

2.0

Ṅ
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Figure 4.6: Comparison of the profiles for two simulations with s40s7b2 progenitor in
the upper and with the s25.0 in the lower panels. Both models on the left panels are
simulated with the full opacity set of Table 2.1, while the models on the the right were
done with the reduced opacities. Shown are profiles of the neutrino flux mean energies
〈ε〉flux, luminosities Lν , number flux Ṅ and the matter temperature T at a time of
0.5 seconds after bounce. Neutrinos stream out of the core at high densities on the
left to lower densities on the right hand side of the plots. Only in model ls220-s40s7b2
are heavy-lepton neutrinos also vividly produced at low densities around 1011g/cm3.
Shaded in grey is the accretion shock discontinuity, a region with a very small spatial
extent and a strong velocity gradient. The jump in the neutrino quantities there and
the gradual rise behind it is an artefact of problems with the O(β) transformation into
an observer frame, and not physical.
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Figure 4.7: A colour plot of the Brunt-Väisälä frequency for model ls220-s40s7b2 without
(upper panel) and model ls220-s40s27b2c with (lower panel) the mixing length scheme
active. The lines mark mass shells of certain enclosed mass differences, density contours
and the shock radius, as described in the legend.

scheme in the proto neutron star was active to mimic the effects of multidimensional
convection.

In Figure 4.7, the outcome of the mixing length scheme can be seen. There,
the evolution of the Brunt–Väisälä frequency ωBV – a measure for the growth
rate of convection, see Section 2.4 – is depicted for both a model with the mixing
length convection scheme active and the corresponding model without. Areas with
a convectively unstable stratification, with positive ωBV, in the proto neutron star
are nicely brought into a stable configuration when the additional fluxes of the
mixing-length scheme are applied.

As can be seen in Figure 4.5, the effect of convection is most visible for the heavy
lepton flavor neutrino signal. Their luminosity is enhanced in the long duration
cases s25.0 and s40.0, whereas it is slightly reduced for the fast collapsing s40s7b2.
A number of different effects are at play here: the convective models come with
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larger neutron stars, pushing the heavy lepton neutrinospheres outwards to slightly
lower temperatures, which reduces the mean energies of the emitted neutrinos and
consequently the luminosity. On the other hand, the larger radiating surface results
in an enhancement of the luminosity, as does the energy transport by the convection
itself. See also the discussion in the previous chapter in Section 3.3.2.

For all convective models, the time till black-hole collapse is increased, even
though the neutrinos always carry away more energy in total than in the non-
convective cases. Here, the sometimes destabilizing effect of thermal energy dis-
cussed before is directly reflected.

4.4.3 Neutrino signal at the moment of black hole collapse

A distinct feature in many simulations of Fischer et al. (2009) are very high heavy-
lepton (rms-)mean energies at the very end of the simulation, with 30-35 MeV.
Sumiyoshi et al. (2007) even find rms-mean energies exceeding 45 MeV.

Estimates for the values of mean energies and luminosities at the moment the
black hole is formed and the neutrino signal vanishes could be used to measure or
constrain the absolute neutrino masses (Beacom et al., 2001). The drastic values
obtained in the literature are most likely an artefact of the iso-energetic neutrino-
nucleon treatment.

Assuming a non-degenerate (η → 0) Fermi-Dirac spectrum, the rms mean energy
is related to the temperature at a (hypothetical) sphere of decoupling by

T =

√
ζ3

15ζ5
〈ε〉rms ≈

1

3.597
〈ε〉rms, (4.12)

(see Eq. 3.22). Therefore, for 45 MeV rms mean energies a temperature of ∼
12.5 MeV at the heavy lepton neutrinosphere would be necessary. This is not
an unreasonable temperature to be found around the region of decoupling for
the heavy lepton neutrinos (ρ ∼ 1013g/cm3, as can be seen from the profiles in
Figure 4.6).

However, these high energy neutrinos still have to pass the accretion layer. With-
out the possibility of energy-exchange, they will of course eventually be emitted
with precisely this very high energy, however, physically nucleon-recoil will deplete
the high energy part of the spectrum. This ingredient is especially relevant in a
black hole forming scenario, where the high mass accretion rate feeds a compara-
tively thick scattering atmosphere around the radiating proto neutron star.

In Table 4.3, we present the neutrino mean energies and pinching parameters,
extracted as described in Section 3.5, at the very end of the simulation when
the black hole collapse is in progress. In the reduced opacity calculations, the
isoenergetic treatment is directly visible in the anti-pinched (p > 1, i.e. high
energy tail enhanced) spectral shape of the heavy lepton neutrinos. In the full
simulations and even when only accounting for neutrino-neutrino pair reactions
(model ls180-s40s7b2rνν), the spectra become much softer (i.e. p smaller). The
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Table 4.3: Proto neutron star configuration and neutrino signal, mean energies, pinching
parameter and number fluxes, right before the moment of black hole collapse. Radius and
baryonic mass of the proto neutron star are defined to be the threshold ρ = 1011g/cm3,
and are from 5ms before the actual collapse. Note that Nνx is a representative number
flux for one of the four heavy lepton neutrino species.

Model LS180

rpns Mpns tBH 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Ṅνe Ṅν̄e Ṅνx

[km] [M�] [s] [MeV] [1] [1057/s]

s40s7b2r 22.3 2.184 0.452 18.5 19.5 26.0 0.92 0.91 1.01 3.50 3.08 1.49
s40s7b2rνν 20.8 2.164 0.444 19.0 19.9 25.7 0.93 0.92 1.03 2.83 2.41 1.77
s40s7b2 21.1 2.163 0.435 19.0 20.8 24.8 0.93 0.94 1.00 2.89 2.55 1.92

Model LS220

rpns Mpns tBH 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Ṅνe Ṅν̄e Ṅνx

[km] [M�] [s] [MeV] [1] [1057/s]

s25.0r 16.4 2.280 1.297 20.3 21.1 20.3 0.97 0.96 1.16 1.64 1.57 0.49
s25.0 15.8 2.256 1.225 20.2 22.0 21.5 0.98 0.99 1.07 1.45 1.38 0.76
s25.0c 16.3 2.271 1.277 20.0 21.7 21.4 0.98 0.98 1.06 1.48 1.43 0.83

s40.0r 15.0 2.260 1.993 20.6 21.4 19.4 0.98 0.97 1.21 1.37 1.30 0.37
s40.0 14.4 2.242 1.930 20.7 22.3 20.9 1.00 1.01 1.11 1.17 1.11 0.57
s40.0c 14.8 2.279 2.106 20.4 22.1 21.0 1.00 1.00 1.09 1.23 1.19 0.65

s40s7b2r 20.5 2.312 0.558 18.8 19.8 26.9 0.92 0.91 1.02 3.31 2.94 1.53
s40s7b2 19.7 2.300 0.550 19.2 21.0 25.3 0.93 0.94 1.00 2.77 2.49 1.98
s40s7b2c 20.3 2.320 0.568 19.1 20.9 24.8 0.94 0.94 1.00 2.78 2.55 1.93

rms-mean energies can easily be reconstructed from p and 〈ε〉 by means of Eq (3.29)
as

〈ε〉rms =
√
ap〈ε〉 ≈ 1.141

√
p〈ε〉. (4.13)

We never obtain values of 〈ενx〉rms above 29 MeV for models with the full opacity
set.

4.4.4 Time-Integrated Emission

For the output of black hole forming core-collapse events into the diffuse supernova
neutrino background, only the time-integrated emission of the neutrino signal is
relevant.

Analogous to Section 3.5, we thus present time-averaged neutrino properties, as
well as the time-integrated energy and neutrino numbers in Table 4.4.

Comparing the entries for progenitors s25.0 and s40.0 with the corresponding
rows in Table 3.4, as they were also simulated for the first 0.5s after core-bounce in
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Table 4.4: Time integrated spectral parameters for the black hole simulations, mean
energies 〈ε〉, pinching parameter p, total number N and total energy E of the emitted
neutrino type. The pinching parameter was inferred according to the procedure described
in Section 3.5, and then time-averaged. Note that Nνx and Eνx are for only one of the
four heavy lepton neutrino kinds, i.e. the total emitted energy is Eνe + Eν̄e + 4Eνx .

Model LS180

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1] [1057] [B]

s40s7b2r 13.4 16.1 18.7 0.92 0.91 1.01 2.10 1.40 0.56 45.3 35.9 16.7
s40s7b2rνν 13.9 16.6 19.0 0.93 0.92 1.01 1.87 1.20 0.64 41.7 31.8 19.3
s40s7b2 13.8 17.1 18.3 0.93 0.92 0.98 1.91 1.23 0.71 42.2 33.7 20.9

Model LS220

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1] [1057] [B]

s25.0r 15.3 17.9 17.1 0.95 0.94 1.07 3.07 2.33 0.85 75.1 66.8 23.4
s25.0 15.3 18.5 17.7 0.95 0.96 1.02 2.84 2.13 1.17 69.6 63.2 33.1
s25.0c 15.0 18.2 17.6 0.95 0.95 1.01 3.02 2.24 1.32 72.8 65.5 37.2

s40.0r 15.9 18.3 16.7 0.96 0.96 1.10 3.52 2.78 1.02 89.6 81.7 27.2
s40.0 15.8 18.8 17.4 0.97 0.97 1.04 3.38 2.65 1.44 85.2 79.6 40.2
s40.0c 15.7 18.7 17.6 0.97 0.97 1.03 3.73 2.88 1.71 93.8 86.2 48.3

s40s7b2r 14.1 16.7 19.7 0.92 0.91 1.01 2.50 1.73 0.69 56.4 46.2 21.8
s40s7b2 14.4 17.7 19.2 0.93 0.93 0.98 2.28 1.54 0.91 52.5 43.6 27.9
s40s7b2c 14.4 17.6 18.8 0.93 0.93 0.98 2.37 1.59 0.93 54.4 44.9 28.1

Chapter 3 for the LS220 EoS, one can nicely see that the very high mean energies
are a result of the late phase due to the increasingly hotter and more compact
proto neutron star.

Yang and Lunardini (2011) use the results of Sumiyoshi et al. (2007) (as they are
presented in Figure 5 of Nakazato et al., 2008, note also the corresponding erratum
in Nakazato et al., 2009) for estimating the detection rate of black hole forming
core-collapse event in megaton neutrino detectors. The corresponding model W40S
of Sumiyoshi et al. (2007) uses the s40s7b2 with the Shen equation of state and
a correspondingly longer collapse duration of about 1.35s, it should therefore be
best compared with our long-duration cases and not directly with our model using
the same progenitor.

The model used by Yang and Lunardini (2011) was selected as it is the most
optimistic case with regard to both the cumulative emitted and mean neutrino
energies. For that model, Nakazato et al. (2008) gave a total neutrino energy
output exceeding 500 B and a mean neutrino energy of 23.6 MeV (with a definition
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compatible with Eq 3.4). None of our various cases can come close to these values.
Note that the Shen equation of state used by Sumiyoshi et al. (2007) will result
in larger, less compact neutron stars, which would only tend to further reduce the
mean energies compared to a simulation with the LS220 or LS180.

Model W40L presented in Nakazato et al. (2008) with the same progenitor but
with the LS180 EoS results in a total emitted neutrino energy of more than 200 B,
with a mean neutrino energy of 20.2 MeV. This model can directly be compared
with this work. Using the values in Table 4.4 for the corresponding case ls180-
s40s7b2r (which would best fit their neutrino treatment), we find a total energy of
∼ 150 B and a mean neutrino energy (of all emitted neutrinos) of 16.1 MeV. The
values from our best simulation, ls180-s40s7b2 using the full opacity set, result in
∼ 160 B total energy, 16.6 MeV per neutrino.

Sadly, in light of our less favourable results it looks as if the previously deduced
potential detection rate in Yang and Lunardini (2011), of already only about one
event per decade, is unrealistically large.

4.5 Summary

We followed the long accretion phase and subsequent black hole collapse of three
very compact progenitors which are likely candidates for these kind of events.

It could be demonstrated that our pseudo-Newtonian code with an approximate
inclusion of the main effects of general-relativity via a TOV-like gravitational
potential can reproduce fully relativistic simulations from the literature quite well.

As an improvement over existing spherically symmetric simulations of the neu-
trino signal associated with a black-hole collapse, we could demonstrate the im-
pact of differently advanced neutrino opacities, especially the influence of non-iso-
energetic neutrino nucleon interactions. With our full set of neutrino opacities, we
can not reproduce the very large mean energies found in previous studies in the
literature, which e.g. were used to estimate the likelyhood of detection such an
event with neutrino detectors.

Additionally, we also used the convection method discussed in the previous
chapter, which has minor, but still measurable influence on the neutrino signal.
Convective models presented with somewhat more thermal, a bit less “pinched”
spectra, a somewhat larger total emitted neutrino energy and number, and took a
slightly longer time until the proto neutron star collapses to a black hole.

Black hole forming core-collapse events still produce neutrinos with very high
mean energies and will thus be an important contribution to the diffuse “super-
nova” neutrino background. The neutrino emission of the three different progeni-
tors simulated here could serve as templates to determine this contribution more
quantitatively.
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5 Proto neutron star cooling

From observations we know that at least in a certain fraction of cases a supernova
occurs after a proto neutron star was formed. Somehow, the delayed neutrino
heating mechanism succeeded in depositing enough energy in the material above
the proto neutron star to launch an explosion.

This will quench the accretion flow and push out the material, stripping the proto
neutron star of its thick, surrounding atmosphere. Subsequently, the accretion part
of the neutrino emission will cease, leaving the “core” part from the cooling proto
neutron star’s surface itself.

Over the next few tens of seconds, the neutrinos will carry away all the energy
and excess lepton number of the compact central object. Without the pressure
of the accretion layer, the neutrinos even manage to deposit enough energy in
absorption and scattering reactions to unbind material from the proto neutron
star’s surface and expel it outwards, in what is called the “neutrino driven wind”.

The composition of this wind of expelled material is interesting regarding nucle-
osynthesis, and is regarded as a potential site for the r-process, see e.g. Woosley
et al. (1994) and references therein. For this to happen, a neutron rich outflow
is necessary. And indeed, the material at the proto neutron star’s surface is ob-
viously initially very neutron rich – but from energetic considerations, it can be
shown that its final composition is purely determined by the electron and electron
anti-neutrino emission: in order to unbind the material, the gravitational potential
energy difference has to be absorbed by a nucleon via neutrinos. For the neutron
star itself this is precisely its binding energy, and is about 10% of its energy (roughly
the difference between Mbar and Mgrav discussed in Section 4.2). Thus to unbind
a nucleon with mass of 1GeV, an energy of O(100 MeV) has to be absorbed by
each nucleon. With mean neutrino energies of O(10 MeV) this would then require
O(10) isospin changing absorptions, leaving no trace of the initial character of the
nucleon.

Therefore, it could just as well be all protons that get lifted initially from the
proto neutron star’s surface. An accurate prediction of the electron neutrino signal
is thus key for determining the nucleosynthetic outcome.

Next to that, also the bulk of neutrino energy and number is radiated away
in these tens of seconds of proto neutron star cooling. For a nearby, galactic,
supernova this tail of the neutrino signal will be observed in current terrestrial
neutrino detectors with O(103) events. Such a measurement would allow to look
directly at the newly formed proto neutron star, uniquely probing the high density
matter and neutrino physics at work there. Indirectly, every successful core-collapse
supernova also contributes to the so-called diffuse supernova neutrino background
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flux, the sum over all distant supernova neutrino bursts happening in the visible
universe, see e.g. Beacom (2010) for a review. Even though it becomes less and less
likely to detect the more and more diluted burst of ever more distant supernovae,
their increasing number with the growing distance adds up in a total flux that just
might be detectable even with current detectors. The currently best limit on this
flux is due to the non-detection by the Super-Kamiokande collaboration (Malek
et al., 2003).

Historically, proto neutron star cooling has been studied for a long time. With
a grey diffusion neutrino scheme, Burrows et al. (1981) and Burrows and Lattimer
(1986) already noted that the “cooling”-phase is initially dominated by a heating,
as the trapped neutrinos of the mantle diffuse not only outwards but also in the
relatively cold, low-entropy centre. They followed the proto neutron star cooling
for tens of seconds, and already remarked that convection in the proto neutron
star will have important effects on the neutrino signal. Another type of convection
in the form of so-called neutron-fingers – now no longer thought to exist – was
discussed by Wilson and Mayle (1988) as means for a robust neutrino explosion
mechanism.

A number of authors ran simulations of proto neutron star cooling with a grey
diffusion neutrino transport scheme. Keil and Janka (1995) investigated the effect
of a delayed hadronic phase transition in the proto neutron star at a few times
nuclear density, in connection with the time-distribution of the SN 1987A neutrino
signal and a potential black hole collapse of the proto neutron star after a few
seconds.1 Subsequently the influence of particular high density phases such as Kaon-
condensates, hyperons, or quarks on the proto neutron star cooling neutrino signal
were investigated (e.g. Pons et al., 2001). Keil et al. (1995) used proto neutron
star cooling simulations to infer constraints on the neutrino nucleon opacities
from the SN 1987A neutrino measurements. In a very prudent work, Pons et al.
(1999) took care to calculate the neutrino opacities consistently with the underlying
high density equations of state used in their models. They found that the decay
constant of the neutrino luminosity at late times is then sensitive to these high
density physics models.

All of these studies were done in spherical symmetry (1D), as most of the axially
symmetric (2D) simulations focused more on the multidimensional effects on the
accretion layer and its potentially helpful effect for an explosion. Thus, many either
ignored the neutrino transport or cut-out a large potion of the proto neutron star’s
core due to computational costs (e.g. Burrows and Fryxell, 1992, 1993; Janka and
Müller, 1996). A notable exception is the work by Keil et al. (1996), which includes
the whole proto neutron star and made use of a ray-by-ray neutrino diffusion
scheme. They were able to simulate up to two seconds of the proto neutron star’s
evolution and could directly observe the convection in the unstable stratification
in the core, which they found to persist over the whole simulated time span.

With a much more accurate Boltzmann neutrino transport, Fischer et al. (2010)

1No compact remnant at the site of SN1987A has been found so far
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simulated the self-consistent explosion of an Oxygen-Neon-Magnesium core star –
a special progenitor which ends its life with a very thin envelope and that thereby
consistently explodes even in spherically symmetric simulations – as well as more
massive progenitors that were exploded with artificially enhanced neutrino opacities.
They followed the subsequent cooling over many seconds and raised first doubts
about the viability for the neutrino driven wind as a candidate site for the r-process,
as they found a proton rich wind composition.

In Hüdepohl et al. (2010), we followed up on that, simulating the same low
mass progenitor. A proton rich outflow was also found, and the importance of the
neutrino opacity was investigated. Compared to the results of Fischer et al. (2010),
our comparatively more sophisticated neutrino interactions (roughly coinciding
with what was called “reduced” and “full” opacities in the previous two chapters)
resulted in very different neutrino energies and faster cooling time scales.

Roberts et al. (2012b) used a grey neutrino diffusion scheme similar to Pons
et al. (1999) on slowly-varying, hydrostatic proto neutron stars, with the addition
of a mixing length convection treatment very similar to the one introduced in
Section 2.4. They found a direct, potentially observable influence of the high
density nuclear properties on the neutrino signal, namely the parameter J (see
Eq. 2.8), the density derivative of the nuclear symmetry energy. Due to their setup,
however, they could not make detailed predictions about neutrino spectra or the
resulting neutrino driven wind.

Meanwhile, another topic relevant for the proto neutron star cooling appeared:
as noted by Mart́ınez-Pinedo et al. (2012) and Roberts (2012), and highlighted
again in Roberts et al. (2012a), the nucleon background potentials were neglected
in the rates of Bruenn (1985) and Burrows and Sawyer (1999). In their results, the
effect on the cooling signal was large, in Mart́ınez-Pinedo et al. (2012) even to the
extent that slightly neutron rich outflows were found.

We therefore included the necessary corrections into our nucleon opacities and
looked into this as well.

5.1 Models

We use four selected progenitors of the models that were advanced to 0.5s after
core-bounce from the set discussed in Chapter 3. That way we start with somewhat
realistic proto neutron star profiles resulting from an extended accretion phase
prior to a potential explosion.

For each of the four progenitors we simulate four individual model runs, both
with and without the mixing length convection scheme and additionally with and
without the inclusion of the nucleon potential effects that were previously ignored
in our neutrino nucleon opacities (see the discussion in Section 3.4.6).

This allows a comparison not only with previous results in the literature but
also enables to judge the importance of these two ingredients.

Next to that, all simulations are done with both the Shen as well as the LS220
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high density equation of state, giving a total set of 32 simulations. An overview
of the model set and the configuration of the proto neutron star at the end of the
simulations and the total emitted neutrino energies can be found in Tables 5.1
and 5.2. The total emitted neutrino energy provided there is also given as a fraction
of the available gravitational binding energy, derived from a cold TOV solution
with the relevant EoS and given baryon mass at the end of the simulation. Next to
that, also the net total radiated (electron) lepton number in the table is compared
to the theoretical expectation from the difference in lepton number enclosed by the
final proto neutron star’s mass at the start of the simulation minus the expected
lepton number contained in the TOV solution.

These fractions serve as a measure of the completeness of the individual simula-
tion, due to computing time constraints, not every simulation could be advanced
to equally cold and deleptonized states (so far). They are also a nice consistency
check of the total energy and lepton number conservation of our code over this
very long timespan (numerically divided into O(105 − 106) time-steps), the most
advanced simulations indeed approach, and never exceed, the expected binding
energy and lepton number to within a few percent.

5.2 Initiating the Explosion

As self-consistent spherically symmetric models do not explode except for a few
exceptional cases on the very low-mass end of progenitors, the explosion has to be
initiated in some artificial way.

This can be achieved by artificially enhancing the neutrino opacities, as has been
done e.g. in Fischer et al. (2009). The drawback is that the resulting neutrino signal
is invariably tainted to some degree by that procedure. This is especially relevant
when discussing the neutrino driven wind phase following the explosion, where the
details of the neutrino signal sensitively influence the outflow composition.

We thus refrain from playing with the opacities and take an approach that is
more drastic further out but less artificial for the proto neutron star itself: We
artificially reduce the material density in the infall-region by a large factor (10-40),
thus “ripping-off” the bulk of the hull of the progenitor. When the region with the
reduced density passes the accretion shock, the resulting drop in ram-pressure leads
to a shock-expansion, a corresponding increase in the advection time, resulting in
more neutrino-heating, and thus invariably to a run-away explosion.

While this might seem like a rather brutal approach, for the proto neutron star
this is actually precisely what would happen in an actual explosion scenario, which
would equally quench the mass accretion rate.

Genuinely multi-dimensional effects, such as localized down-flows that can still
happen even after an explosion is already under way, can of course not be modelled
with this simple approach.

Effectively, starting from a radius of 500km we reduce the density by a factor
that increases linearly with radius over a large region, typically 2000km, after which
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Table 5.1: Proto neutron star configuration at the end of the Shen simulations, and
the total emitted neutrino energy Eν , in brackets also as a fraction of the available
gravitational binding energy for an ideal TOV solution with that baryon mass. Lastly,
the total radiated net Lepton number NL, also given as a fraction of the theoretical
expectation from a TOV solution.

Model rpns Mpns tend Eν NL

[km] [M�] [s] [B] [1] [1056] [1]

s11.2 14.9 1.365 10.7 164 (0.97) 5.99 (0.98)
s11.2c 14.9 1.365 10.3 163 (0.97) 6.00 (0.98)
s11.2o 14.9 1.365 13.8 162 (0.96) 5.91 (0.97)
s11.2co 15.0 1.365 10.1 162 (0.96) 5.85 (0.96)

s25.0 15.0 2.031 16.5 372 (0.99) 8.37 (0.97)
s25.0c 15.3 2.031 10.7 371 (0.99) 8.48 (0.98)
s25.0o 15.3 2.031 13.8 353 (0.94) 7.72 (0.90)
s25.0co 17.6 2.031 3.6 279 (0.74) 7.96 (0.93)

s27.0 15.1 1.758 13.3 276 (0.98) 7.50 (0.98)
s27.0c 15.0 1.758 11.8 277 (0.99) 7.52 (0.98)
s27.0o 16.3 1.758 6.0 223 (0.80) 6.45 (0.84)
s27.0co 17.4 1.758 3.5 213 (0.76) 7.02 (0.92)

s40.0 15.1 1.908 14.3 324 (0.98) 7.99 (0.97)
s40.0c 17.0 1.904 4.3 273 (0.83) 7.94 (0.97)
s40.0o 15.2 1.906 15.4 318 (0.96) 7.60 (0.93)
s40.0co 17.2 1.905 4.0 256 (0.78) 7.57 (0.92)

the reduction factor stays constant, see Figure 5.1 for an example. It then takes
the material about 10-20ms to fall from 500km through the accretion shock, about
250ms for the outer 2500km. That way, over time an ever larger reduction in the
mass accretion rate is felt by the shock, until the conditions for run-away are met,
it is pushed outward and the neutrino driven explosion is launched.

5.3 Influence of the Convection

As discussed already by Roberts et al. (2012b), the term with the Ye derivative in
the Ledoux-criterion, which we recall from Eq. (2.34) as

Cledoux =

(
∂ρ

∂s

)
p,Ye

ds

dr
+

(
∂ρ

∂Ye

)
p,s

dYe
dr

> 0, (5.1)
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Table 5.2: Same as Table 5.1 for the LS220 models.

Model rpns Mpns tend Eν NL

[km] [M�] [s] [B] [1] [1056] [1]

s11.2 13.4 1.362 10.2 186 (0.97) 6.33 (0.98)
s11.2c 13.4 1.361 7.6 187 (0.97) 6.33 (0.98)
s11.2o 13.8 1.367 8.1 169 (0.87) 5.76 (0.89)
s11.2co 15.1 1.366 3.5 159 (0.82) 6.15 (0.95)

s25.0 13.8 2.061 5.5 334 (0.75) 7.39 (0.79)
s25.0c 14.7 2.060 4.8 382 (0.86) 9.34 (1.00)
s25.0o 16.9 2.061 1.7 213 (0.48) 6.24 (0.67)
s25.0co 16.3 2.060 2.4 272 (0.61) 7.69 (0.82)

s27.0 13.9 1.776 7.9 286 (0.87) 7.43 (0.90)
s27.0c 13.5 1.762 8.4 317 (0.98) 8.00 (0.97)
s27.0o 13.8 1.775 9.0 271 (0.83) 6.75 (0.81)
s27.0co 15.4 1.774 3.9 261 (0.79) 7.86 (0.95)

s40.0 13.8 1.926 8.0 329 (0.85) 7.71 (0.87)
s40.0c 15.4 1.926 3.8 309 (0.79) 8.56 (0.96)
s40.0o 15.6 1.928 2.5 214 (0.55) 6.06 (0.68)
s40.0co 15.7 1.927 3.5 288 (0.74) 8.20 (0.92)
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Figure 5.1: The scaled density profile to initiate the explosion, black is the original profile,
red after scaling. Shown is model shen-s11.2, at 0.5s post-bounce when the explosion is
launched.
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Figure 5.2: Evolution of the Brunt–Väisälä frequency for all four different models with
the s11.2 progenitor. The top panels are simulations without, the lower panels with the
mixing length scheme active. The orange line is the energy-averaged νx-sphere.

is sensitive to the high density equation of state. Specifically – and not surprisingly
– to the behaviour of the symmetry energy J, a measure of the additional energy
penalty due to any neutron/proton asymmetry, (see e.g. Lattimer and Swesty,
1991).

From Figure 5.2, showing the evolution of the Brunt–Väisälä frequency for four
different models using the s11.2 progenitor, we can see that for the Shen equation
of state, the convection happens in a much smaller mass-region than for the LS220,
and persists for a shorter time.

This is in agreement with the analysis of Roberts et al. (2012b), who note that
equations of state with a higher density derivative of the symmetry energy exhibit
smaller convective regions. From Steiner et al. (2013) we get the relevant nuclear
parameter L, defined as

L = 3ns

(
∂J

∂nB

)
nB=ns,Ye=

1
2
,T=0

, (5.2)
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Figure 5.3: Mean neutrino energies of the s11.2 models with the LS220 (left) and Shen
(right) EoS, with- and without convection.

for our two equations of state: LLS220 = 73.82 MeV and LShen = 110.79 MeV.

Finally, also visible in Figure 5.2 is the effect of the mixing length scheme in
the lower panels, which efficiently drives regions with positive ωBV into (marginal)
stability. The additional convective fluxes enhance the energy transport and vis-
ibly reduce the time necessary for the temperature maximum to reach the core.
Subsequently, the whole configuration becomes stable again and can cool down.

The peculiar ripples and line-structures, especially visible in the Shen models,
are not physical, but due to the gridding of the equation of state tables (where
the Shen table is much more coarse). As a number of (higher) derivatives of the
equation of state quantities are needed for the evaluation of the Ledoux critertion,
the finite resolution of the tables is reflected in these oscillations in ωBV. The
resulting lines precisely trace the contours of the density grid values of the two
tables.

In Figures 5.5 and 5.6 the detailed hydrodynamical evolution of all four progen-
itors with both EoS and with and without the mixing length scheme is presented,
namely profiles of the material density, temperature, electron fraction, entropy, and
the electron neutrino optical depth as well as the net electron-neutrino fraction.
Note how the negative entropy gradients are levelled, with a corresponding change
in the electron fraction profiles, in order to drive Cled to zero. Further down, in
Figure 5.14 and 5.15, the time evolution of the central values of these quantities
are also shown.

With convection, the proto neutron stars are initially larger and hotter in the
outer layers when compared with non-convective models, during the time of ac-
celerated core-heating. In Figure 5.4, a visualization of the changed temperature
evolution is presented, it can be seen that the convective models also increase the
temperatures in the neutron star’s mantle. After the convective zone has reached
the centre and vanishes, the enhanced energy loss from the more energetic previous
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Figure 5.4: Colour coded is the temperature evolution of the four proto neutron stars
with the s11.2 progenitor, as a function of the enclosed baryon mass. In the upper
panels without, in the lower panels with the mixing length scheme active, for both the
LS220 (left) and Shen (right) EoS. The blue line is the energy-averaged heavy-lepton
neutrinosphere.

emission then results in neutron stars that are smaller and colder earlier than their
non-convective counterparts. This is directly reflected in the neutrino luminosities
due to the change in radiating surface and material temperature. Initially, convec-
tive models have higher luminosities, supplementing the increased energy transport
outwards with a more efficient neutrino energy loss. Later, when the convection
ends the luminosities drop noticeably, especially pronounced in the LS220 case.
Roberts et al. (2012b) suggest that a measurement of this drop in the luminosities
could be used to infer constraints on the derivative of the nuclear symmetry en-
ergy mentioned earlier. With our energy-dependent Boltzmann neutrino transfer,
we can also make accurate predictions on the mean energies. As can be seen in
Figure 5.3, they are also sensitive to this break.

Note that the convective region is always well inside the neutrino spheres, see

87



Figure 5.4, convection does not transport material directly to exposed, neutrino
transparent regions. Its influence on the emitted neutrino signal is thus always
only via the secondary effects of enhanced energy and lepton transport from the
inside and changed proto neutron star radius and surface temperatures.

This also validates our simple mixing length ansatz here, as the more general
case of convection in a semi-transparent region would certainly need a much more
considerate approximation.

5.4 Nucleon opacities

As already mentioned in Chapter 3, our neutrino nucleon opacities were previously
missing a term regarding the nucleon background potentials in the dense medium
(Roberts et al., 2012a; Mart́ınez-Pinedo et al., 2012), see Section 3.4.6.

It has been shown there that for the results in the previous Chapters 3 and 4, this
omission was not critical. However, this is no longer true for the time scales and
conditions we encounter in the proto neutron star’s cooling. There, accretion ceases
and the neutrino emission is now solely from the diffusion out of the dense core,
where these effects are important. Also, the diffusion time scales of the neutrinos
is directly affected by any change in the opacities – and the corrections arising
from Mart́ınez-Pinedo et al. (2012) are different for νe and ν̄e.

This is especially important in regards to the neutrino driven wind ejecta, whose
composition is sensitively dependent on the neutrino mean energies and luminosi-
ties, and it was hoped that the corrections could revive the possibility for at least
a weak r-process in the supernova neutrino driven wind phase.

Thus we implemented these corrections into our simulation code, and ran all
simulations again – also the convective model set – with these corrections included.
As in the previous chapters, these are marked with a trailing “o” in their model
name. The “best physics” case is the model set “co”, where both the convective
effects are modelled and these corrections are included.

Sadly, tests and subsequent iterations necessary to validate the corrected opacity
implementation delayed the start of the simulations somewhat, therefore they are
all not as far progressed as their uncorrected counterparts (a complete cooling
simulation typically takes three to four months, not including the first 0.5s of
accretion discussed in Chapter 3).

The corrections noted by Mart́ınez-Pinedo et al. (2012) effectively shift the Q-
value of the neutrino nucleon opacity compared to our previous treatment the
difference in neutron/proton background interaction potential, Un −Up. Mart́ınez-
Pinedo et al. (2012) thus note that the neutrino and electron energies for the
β-processes

νe + n→ e− + p, (5.3)

ν̄e + p→ e+ + n (5.4)
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Figure 5.5: Profiles illustrating the proto neutron star cooling for the Shen models with
the standard opacities, with and without the mixing length convection scheme active.
Shown are the material density ρ, temperature T , electron fraction Ye, electron neutrino
optical depth τνe , material entropy s, and net electron fraction Yνe .
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Figure 5.6: Analogous panels as in Figure 5.5 for the LS220 models.
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satisfy the relations

ενe = Ee− −∆− (Un − Up), (5.5)

εν̄e = Ee+ + ∆ + (Un − Up), (5.6)

where ∆ = (mn −mp)c
2 ≈ 1.29 MeV is the neutron proton rest-mass difference,

and Un − Up is positive for neutron star conditions.
The effect of this is that the opacity for electron neutrino absorption on neutrons

is enhanced for all energies, while the opacity for anti-electron neutron absorption
on protons is reduced for low and enhanced for higher energies, for details we refer
the reader to the explicit relations given in Mart́ınez-Pinedo et al. (2012).

Another important correction to the neutrino nucleon opacities which Mart́ınez-
Pinedo et al. (2012) do not include, however, are nucleon-correlations at high
densities, which we use according to the prescription given by Burrows and Sawyer
(1998). As we have found in Hüdepohl et al. (2010), the effect of this on the mean
energies is quite large.

Lastly, a correction for nucleon-recoil and weak-magnetism on the rates of Bruenn
(1985) was included by Mart́ınez-Pinedo et al. (2012) for neutrino-nucleon scatter-
ing. Strangely, weak-magnetism does not seem to be applied also to the charged-
current neutrino absorption reactions, as the authors specifically only mention a
correction of the neutral-current scattering processes, even though it has a po-
tentially large influence on the resulting wind electron fraction (Horowitz and Li,
1999).

Mart́ınez-Pinedo et al. (2012) then test their new opacities in a proto neutron
star cooling simulation of an artificially exploded 15 solar mass progenitor (s15.0)
by enhancing the neutrino opacities in the gain region, as has been done in Fischer
et al. (2010). Overall, Mart́ınez-Pinedo et al. (2012) see a slight reduction of
all neutrino luminosities, decreased electron neutrino and slightly increased anti-
electron neutrino mean energies, with the heavy lepton neutrino mean energy
almost unchanged. With this, they find that this increased difference in luminosities
and mean energies for the electron and anti-electron neutrinos is large enough to
bring the ejected material even to slightly neutron-rich (Ye & 0.45) conditions
early in the neutrino driven wind phase. However, the omission of weak-magnetism
in the charged current neutrino absorption reactions typically underestimates
the electron fraction by 20% (Horowitz and Li, 1999), which again could turn
the electron fraction from slightly neutron rich to slightly proton rich. See also
subsequent Section 5.8, where the neutrino driven wind is discussed.

From Table 3.3 we see that the s15.0 should yield a neutron star with about
1.7 solar masses, considering that the onset of their explosion is with 400ms quite
close the 500ms simulated in Chapter 3 and that the mass accretion rate is low
at these late times. The best match to compare would thus be our model shen-
s27.0o (although we find only little difference in the relative impact of the nucleon
potentials over the four different progenitors with the Shen EoS).

When we look at our simulations with the opacity correction – the resulting
mean energies and luminosities in comparison to the old treatment are presented
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Figure 5.7: Mean neutrino energies and luminosities of the s27.0 models with the Shen
(upper panels) and LS220 (lower panels) EoS, with- (right) and without (left) convection,
each comparing two simulations with and without the opacity corrections.

in Figure 5.7 – we find that the inclusion of the nucleon opacities also leads to a
reduction of all neutrino luminosities as seen by Mart́ınez-Pinedo et al. (2012).

The electron neutrino mean energy is also reduced, the anti-electron neutrino
energy, however, is also slightly reduced, and not increased as in Mart́ınez-Pinedo
et al. (2012). Next to that, also the heavy lepton neutrino mean energy is visibly
reduced, even more so than the anti-electron neutrino energies.

Roberts et al. (2012a) present only neutrino mean energies and the resulting
electron fraction evolution, and find the same general trend of reduced electron,
increased anti-electron neutrino mean energies – although with their high density
equation of state models used this results in a much longer time duration of Ye < 0.5.
In their slides to the MICRA 2013 Workshop (Roberts, 2012c, slide 16-17), however,
the authors acknowledge a bug in their simulation code, and present results very
similar to ours when this defect is removed: anti-electron and heavy lepton neutrino
mean energies that are at some times slightly decreased or increased, but mostly
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unchanged, and visibly decreased electron neutrino mean energies, when compared
to a simulation without the nucleon potentials included.

Note that when we include also the mixing length convection, the differences
with respect to a convective simulation using the old treatment are smaller than
when comparing two non-convective models. The mean energies still shift visibly,
but not as much as in the non-convective case, see Figure 5.7.

This is expected, Roberts et al. (2012a) already note in their conclusions that
to zeroth order, the nucleon potential difference ∆U increases the νe absorption
by about exp(∆U/T ) and correspondingly reduces the ν̄e absorption by a factor
of exp(−∆U/T ). Thus, a larger temperature in the outer layers as found in the
convective simulations (see Figure 5.4 for the shifted temperature distribution) will
reduce the influence of the nucleon potentials, which – at least for the equation
of state models used here – seem predominantly a function of density and less
dependent on the temperature themselves.

5.5 Time dependent Neutrino Signal and Deleptonization

In Figure 5.8 the time evolution of the total neutrino energy, that is

Ėtot = Lνe + Lν̄e + 4Lνx , (5.7)

as well as the net lepton number flux,

ṄL =
Lνe
ενe
− Lν̄e
ε̄νe

, (5.8)

are shown for the simulations with s27.0 progenitor. In the convective LS220 model,
deleptonization is essentially complete after a bit more than 4 seconds, and it looks
as if this is not very much changed by also including the opacity corrections.

To quantify this, let us define a fractional deleptonization and cooling time, τLn
and τEn as the time necessary to radiate away a certain amount of energy or lepton
number, due to the exponential decay best expressed by powers of e as∫ τEn

0
Ėtot dt =

(
1− 1

en

)
ETOV, (5.9)∫ τLn

0
ṄL dt =

(
1− 1

en

)
NL,TOV. (5.10)

To some extent these are influenced by the artificially selected time of explosion,
but only to that order of magnitude (0.5s). Also, comparing successive time-spans
gives a measure of the speed of deleptonization and cooling independent of the
initial setup. Numerical values can be taken from Table 5.3, wherever the progress
of the individual simulation allowed to evaluate Eq. (5.9) and (5.10).

In Figure 5.9 for the Shen and Figure 5.10 for the LS220 cases, we show the
neutrino signal of the cooling of all 32 models.
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Table 5.3: The fractional deleptonization and cooling times as defined in Eq. (5.10) and
Eq. (5.9). Values left blank could not be evaluated as some simulations are not yet
sufficiently progressed in time.

Model LS220 Shen

τE1 τE2 τE3 τL2 τL3 τL4 τE1 τE2 τE3 τL2 τL3 τL4

[s] [s] [s] [s]

s11.2 2.2 5.5 8.6 3.6 6.6 1.9 4.5 7.2 2.0 4.0 7.8
s11.2c 1.8 3.6 5.7 1.8 2.8 1.6 4.0 6.7 1.2 2.7 5.7
s11.2o 2.9 7.9 6.9 2.3 6.4 10.7 4.7 10.4
s11.2co 1.9 2.1 1.8 5.1 9.0 1.7 8.8

s25.0 3.2 2.7 7.1 10.9
s25.0c 2.4 2.6 3.6 4.2 2.2 5.2 8.1 0.9 2.9 4.7
s25.0o 3.3 9.4 10.4
s25.0co 2.3 1.2

s27.0 2.9 7.7 6.4 2.4 6.0 9.3
s27.0c 2.1 4.3 6.5 2.3 3.3 1.9 4.6 7.4 1.1 2.9 6.7
s27.0o 3.6 3.0
s27.0co 2.3 2.5 2.1 1.5

s40.0 3.1 7.9 2.6 6.7 10.4 3.6 8.2
s40.0c 2.3 2.5 3.5 2.1 1.1 3.1
s40.0o 3.2 8.9 13.9 9.1
s40.0co 2.5 2.7 2.2 1.4

The dips in the luminosity and mean energies in the convective simulations –
connected to the vanishing convective zone – are nicely visible, especially for the
LS220 models with their stronger convection.

Let us continue a consideration that had been suggested in Hüdepohl et al. (2010)
and investigate if one could infer the proto neutron star’s radius from the time
dependent neutrino signal, which together with the integrated neutrino energy and
lepton number could allow to constrain the high density equation of state model. As
the spectra get very thermal during the cooling phase, let as assume that the total
luminosity of a particular neutrino species is given by a Stefan-Boltzmann-Law,

LSB
ν (t) = 4πR2

∞(t) · 7

8
σT 4

ν (5.11)

with σ = 2π5k4
B/15c2h3 the usual Stefan-Boltzmann constant. The factor 7/8 arises

from the fact that one has to integrate over a Fermi-Dirac distribution, here also
assumed to have zero chemical potential, instead of the Bose-Einstein distribution
for photons. With the same assumption of a thermal, η → 0 spectrum, the neutrino
temperature is related to the mean energy by

Tν =
〈εν〉

3.597kB
, (5.12)

94



0 2 4 6 8

t [s]

1051

1052

1053
Ė
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Figure 5.8: Total energy (left) and net lepton number fluxes (right) for models with the
s27.0 progenitor.

as we recall from Eq. (3.22). Lastly, R∞ is the effectively visible radius for a distant
observer, due the curved spacetime this is related to the coordinate radius R of
the proto neutron star by

R∞ =

√
1− 2GMgrav

Rc2
R. (5.13)

However, as our code neglects the volume and curvature effects introduced by
general relativity, we will identify R∞ with the coordinate radius as found in our
simulation, and not apply Eq. (5.13). With this, we define an O(1) “greyness”
factor measuring the deviation from a black body emission similar to Hüdepohl
et al. (2010) as the ratio of our simulated neutrino luminosities to Eq. (5.11) by

ϕ =
Lν
LSB
ν

. (5.14)

In this definition, ϕ = 1 would indicate a luminosity exactly corresponding to
a thermal emission with the given mean energy and zero chemical potential. It
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Figure 5.9: Neutrino quantities for all Shen models. Shown are the neutrino luminosities
and mean energies, extracted at 500km and transformed into a resting observer’s frame,
also correcting for the (small) gravitational redshift. Note that Lνx is representative for
one individual of the heavy lepton neutrinos, and not the sum over all four.

96



10-2

10-1

100

101

L
ν
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν
e
〉[

M
eV

]

10-2

10-1

100

101

L
ν̄
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν̄
e
〉[

M
eV

]

2 4 6 8

t [s]

10-2

10-1

100

101

L
ν
x

[B
/s

]

2 4 6 8

t [s]

4
6
8
10
12
14

〈ε
ν
x
〉[

M
eV

]

s11.2
s11.2c
s11.2o
s11.2co

LS220

10-2

10-1

100

101

L
ν
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν
e
〉[

M
eV

]

10-2

10-1

100

101

L
ν̄
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν̄
e
〉[

M
eV

]

2 4 6

t [s]

10-2

10-1

100

101

L
ν
x

[B
/s

]

2 4 6

t [s]

4
6
8
10
12
14

〈ε
ν
x
〉[

M
eV

]

s25.0
s25.0c
s25.0o
s25.0co

LS220

10-2

10-1

100

101

L
ν
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν
e
〉[

M
eV

]

10-2

10-1

100

101

L
ν̄
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν̄
e
〉[

M
eV

]

2 4 6 8

t [s]

10-2

10-1

100

101

L
ν
x

[B
/s

]

2 4 6 8

t [s]

4
6
8
10
12
14

〈ε
ν
x
〉[

M
eV

]

s27.0
s27.0c
s27.0o
s27.0co

LS220

10-2

10-1

100

101

L
ν
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν
e
〉[

M
eV

]

10-2

10-1

100

101

L
ν̄
e

[B
/s

]

4
6
8
10
12
14

〈ε
ν̄
e
〉[

M
eV

]

2 4 6

t [s]

10-2

10-1

100

101

L
ν
x

[B
/s

]

2 4 6

t [s]

4
6
8
10
12
14

〈ε
ν
x
〉[

M
eV

]

s40.0
s40.0c
s40.0o
s40.0co

LS220

Figure 5.10: Neutrino quantities for all LS220 models, the same remarks for Figure 5.9
apply. Note the different time ranges.
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Figure 5.11: The greyness factor ϕ from Eq. (5.14), for the all models with the mixing
length convection scheme active, in the upper panels with the corrected opacities, in
the lower panels without.

is expected that collective flavor oscillations will dramatically mix the individual
neutrino spectra during the cooling phase (Dasgupta et al., 2009) (while these seem
to be suppressed during the accretion phase, see Sarikas et al., 2012a,b). Therefore
we do not evaluate Eq. (5.14) for each individual flavor but for a mean signal
over all six neutrino species. In Figure 5.11 we present the resulting values for
all our models with convection, where of course the models including the opacity
correction represent our “best-physics” cases. The models without those corrections
might still serve as a measure of the uncertainty connected to any remaining large
corrections of the neutrino opacities (or equivalently, equation of state influence).

There is a roughly 10% spread between the different proto neutron stars and
also a considerable time variation of this quantity. Proto neutron star radii could
thus potentially only be reconstructed to about 20% accuracy (assuming perfect
knowledge of the neutrino signal).
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5.6 Integrated neutrino emission

In Table 5.4, the time-integrated spectral parameters for all 32 cooling simulations
can be found. Note that the first 500ms of accretion and the collapse phase are
deliberately not included in order to only present the signal of a cooling proto
neutron star, see Tables 3.4 and 3.5 for the earlier values. Contrary to popular
belief, the usual hierarchy of

〈ε〉νe < 〈ε〉ν̄e < 〈ε〉νx (5.15)

is also almost never found for the time-integrated signal, instead the anti-electron
and heavy lepton neutrinos have always very similar mean neutrino energies, with
the hierarchy changed to

〈ε〉νe < 〈ε〉νx . 〈ε〉ν̄e . (5.16)

This has also been found by earlier parameter-studies of the spectrum formation
(Keil et al., 2003), detailed 2D explosion simulations (Buras et al., 2006b; Marek
and Janka, 2009; Marek et al., 2009) or our earlier cooling simulations of an self-
consistently exploding ONeMg-core star (Hüdepohl et al., 2010), and is a robust
feature emerging from the inclusion of non-thermal, energy-exchanging neutrino-
nucleon scatterings for the heavy-lepton neutrinos, what has been called the “filter-
effect” in Raffelt (2001).

That effect is most prominent during the accretion phase, when the neutron star
has a thick scattering atmosphere. Later, though, the neutrinospheres recede further
inwards, and allow this effect to become prominent again. Thus, immediately after
the explosion has been launched, one typically finds 〈ε〉νx > 〈ε〉ν̄e for some time
until the growing scattering layer above the νx-sphere drives the mean energies
down again, 〈ε〉νx < 〈ε〉ν̄e .

Consequently, also the assumption of equipartition of the total emitted neutrino
energy over the six different species is only accurate to about 20%.

5.7 Hydrodynamical evolution

Even though the explosion has been launched artificially, it still exhibits the typical
features of a rapidly expanding shock, the appearance of a neutrino driven wind
and subsequently the formation of a “reverse-shock”. There, the thin material from
the wind is accelerated by the neutrinos and hits the previously ejected material
from the explosion.

See Figures 5.12 and 5.13 for the evolution of the radius of shock, reverse shock,
and proto neutron star as well as the mass loss rate.

The neutron star radius continually shrinks, slowly approaching its equilibrium
value. As noted earlier, models with convection have initially larger, later smaller
neutron stars, due to the different temperature stratification. In contrast, the
neutron star radii show almost no sensitivity to the neutrino opacity correction.
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Table 5.4: Time integrated spectral parameters for the cooling simulations, mean energies
〈ε〉, pinching parameter p, total number N and total energy E for each neutrino type.
The pinching parameter was inferred according to the procedure described in Section 3.5.
Note that Nνx and Eνx are for only one of the four heavy lepton neutrino kinds, i.e. the
total emitted energy is Eνe + Eν̄e + 4Eνx .

Model LS220

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1] [1057] [B]

s11.2 9.9 11.8 11.7 0.97 0.99 1.00 1.28 1.06 1.18 20.2 20.2 22.0
s11.2c 10.4 12.6 12.6 0.96 0.98 1.00 1.17 1.00 1.08 19.4 20.2 21.8
s11.2o 9.6 12.2 11.6 0.98 0.99 1.00 1.07 0.90 1.06 16.4 17.5 19.7
s11.2co 10.7 13.8 13.4 0.97 0.97 1.00 0.87 0.71 0.80 14.8 15.7 17.2

s25.0 11.9 14.4 14.1 0.98 0.99 1.01 1.58 1.48 1.54 30.0 34.2 34.8
s25.0c 12.3 15.2 15.2 0.98 0.98 1.00 1.86 1.64 1.78 36.8 39.8 43.3
s25.0o 12.9 15.9 15.0 0.99 0.98 1.01 0.62 0.63 0.58 12.8 16.0 13.9
s25.0co 12.6 15.8 15.6 0.98 0.97 1.00 1.01 0.94 0.96 20.4 23.7 24.0

s27.0 11.0 13.3 12.9 0.97 0.99 1.01 1.67 1.48 1.58 29.4 31.5 32.7
s27.0c 11.1 13.5 13.5 0.97 0.99 1.00 1.82 1.63 1.76 32.2 35.0 38.1
s27.0o 10.3 13.1 12.4 0.98 0.99 1.01 1.52 1.38 1.58 25.0 28.9 31.2
s27.0co 11.6 14.8 14.5 0.98 0.97 1.00 1.30 1.11 1.22 24.0 26.4 28.4

s40.0 11.2 13.5 13.2 0.98 0.99 1.01 1.82 1.66 1.76 32.5 35.9 37.3
s40.0c 12.1 15.0 15.1 0.98 0.98 1.00 1.49 1.29 1.39 28.9 31.1 33.6
s40.0o 11.9 15.0 14.3 0.98 0.97 1.00 0.79 0.77 0.77 15.1 18.6 17.6
s40.0co 11.9 15.2 14.9 0.98 0.97 1.00 1.32 1.16 1.26 25.2 28.2 30.2

Model Shen

〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1] [1057] [B]

s11.2 9.4 11.2 10.9 0.96 0.99 1.00 1.17 1.00 1.05 17.6 18.0 18.3
s11.2c 9.5 11.4 11.1 0.96 0.98 1.00 1.11 0.98 1.00 16.9 17.8 17.8
s11.2o 8.6 11.1 10.3 0.97 0.99 1.00 1.12 0.94 1.17 15.4 16.7 19.2
s11.2co 8.9 11.4 10.8 0.97 0.98 1.00 1.04 0.91 1.07 14.9 16.7 18.5

s25.0 9.9 11.7 11.3 0.97 0.99 1.01 2.45 2.27 2.34 38.8 42.6 42.5
s25.0c 10.4 12.5 12.2 0.97 0.99 1.00 2.25 2.12 2.16 37.4 42.3 42.3
s25.0o 9.4 12.0 11.2 0.98 0.99 1.01 2.07 1.94 2.30 31.2 37.4 41.4
s25.0co 10.9 14.0 13.5 0.98 0.97 1.00 1.30 1.21 1.26 22.7 27.1 27.2

s27.0 9.8 11.6 11.2 0.97 0.99 1.00 1.89 1.70 1.76 29.5 31.6 31.5
s27.0c 10.0 11.9 11.7 0.97 0.99 1.00 1.80 1.66 1.68 28.7 31.7 31.5
s27.0o 9.9 12.7 11.9 0.98 0.98 1.00 1.22 1.12 1.24 19.2 22.7 23.6
s27.0co 10.5 13.6 13.0 0.97 0.97 1.00 1.07 0.97 1.01 18.0 21.0 21.2

s40.0 9.9 11.7 11.3 0.97 0.99 1.00 2.18 1.99 2.05 34.4 37.2 37.2
s40.0c 10.9 13.4 13.3 0.97 0.98 1.00 1.45 1.32 1.33 25.3 28.4 28.4
s40.0o 9.1 11.7 10.9 0.98 0.99 1.00 1.97 1.80 2.18 28.7 33.8 38.1
s40.0co 10.6 13.7 13.2 0.98 0.97 1.00 1.26 1.17 1.23 21.4 25.5 26.0
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The larger radii and the correspondingly increased neutrino luminosity result
also in an initially higher mass loss rate for the convective models, which then later
also drop below the values of the standard cases. A slight influence of the opacity
correction can also be seen, the lowered neutrino luminosities result in slightly
decreased mass loss rates.

At the very end of the simulations, the reverse shock can even disappear again,
for sufficiently progressed models, when the neutrino signal decays away and the
wind velocities decrease.

The various models are much more diverse when looking at the – of course
unobservable – centre of the cooling proto neutron star. These are presented in
the panels of Figure 5.14 and 5.15, where we show central densities, temperatures,
electron fraction, electron neutrino optical depth, entropy and the net electron
neutrino per baryon fraction.

The increased electron neutrino cross sections with the opacity corrections is
directly visible in the much higher central optical depths. Also visible is the greatly
accelerated deleptonization in the centre when the mixing length scheme is applied,
as soon as the convective cell hits the centre the net electron and electron neutrino
fraction is very quickly brought down. Not only that, but the overall time to
decrease Ye and Yνe is also much shorter.

Interestingly, the central densities are not always monotonically rising, the high
temperatures during core-heating can even lead to a temporary expansion of
material in the centre. This is especially prominent in the convective models.

Again it is also visible that not all models have entered the cooling phase yet,
but are still in the initial phase of core-heating.

5.8 Neutrino driven wind

The material ejected by the neutrino driven wind will contribute to the nucleosyn-
thetic yield of the supernova, at least if the explosion was successful to unbind the
outer hull.

The parameters of interest are the mass loss rate Ṁ , the material’s electron
fraction Ye, and the entropy per baryon s, setting the neutron to seed nuclei ratio.
The composition in the wind is mostly protons, neutrons, and α-particles. As the
temperature drops, also heavy nuclei can form out of the α-particles, generating
possible seeds for an r-process neutron flow.

Qian and Woosley (1996) give a simple analytical estimate using the neutrino
luminosities and mean energies for the equilibrium Ye value resulting from the
neutrino irradiation of nucleons, which is – as mentioned in the introduction to
this chapter – purely determined by the neutrinos. Later this was amended by
an additional term accounting for the effect of the previously neglected neutrino
opacity correction due to weak-magnetism by Horowitz and Li (1999). With a
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Figure 5.12: Evolution of the shock radii, both from the “explosion” as well as the
transient reverse shock, (upper), the proto neutron star radius (mid) and mass loss rate
(lower sub panels), for the Shen models.
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Figure 5.13: Analogous panels as in Figure 5.12 for the LS220 models. Note the different
time ranges.
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Figure 5.14: Time evolution of the central values of the material density ρ, temperature
T , electron fraction Ye, electron neutrino optical depth τνe , material entropy s, and net
electron neutrino per baryon fraction Yνe , for the Shen models.
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Figure 5.15: Analogous panels as in Figure 5.14 for the LS220 models.
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Figure 5.16: The electron fraction as found in the simulation shen-s27.0, and two recon-
structions from the simulation’s neutrino signal via Eq. (5.18), where the factor C was
set to unity to not include the effect of weak magnetism (as given by Qian and Woosley,
1996), as well as the full Eq. 5.18 (Horowitz and Li, 1999)

custom spectrally weighted measure for the neutrino mean energies,

ε̂ =

〈
ε2
〉

〈ε〉 , (5.17)

in our notation, the equilibrium Ye value found is then found to be

Ye ≈
(

1 +
Lν̄e ε̂ν̄e
Lνe ε̂νe

Q(ε̂νe , ε̂ν̄e)C(ε̂νe , ε̂ν̄e)

)−1

. (5.18)

Here, the factors Q and C are due to the reactions’ energy thresholds (“Q”-value)
and due to the charge-conjugate (“C”) violating weak magnetism, respectively,
and are given by

Q(ε̂νe , ε̂ν̄e) =
1− 2 ∆

ε̂ν̄e
+ 1.2 ∆

ε̂2ν̄e

1 + 2 ∆
ε̂νe

+ 1.2 ∆
ε̂2νe

, (5.19)

C(ε̂νe , ε̂ν̄e) =
1− 8.66 ε̂ν̄e

mBc2

1 + 1.22 ε̂νe
mBc2

. (5.20)

We do not need these relations, as in our code the final composition is determined
self-consistently when the material is ejected. However, for one it is used very much
in diffusion codes which cannot accurately handle the low-density, free-streaming
environment of the wind, e.g. in Roberts et al. (2012b). Secondly, it allows to
selectively look at the influence of the weak-magnetism by setting C to 1 as a
test. Not included in this simple picture is the so-called alpha-effect, first discussed
by Fuller and Meyer (1995), which tends to drive Ye more to 0.5 if included.
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What happens there is that the free neutrons and protons tend to combine into
α-particles, leaving only the remainder of the initial fractions, which is then either
mostly neutrons if the initial abundances where neutron rich or protons otherwise.
The α-particles have much lower neutrino cross sections than free nucleons and
stay stable in the outflow, fixing that part of the ejecta to a composition with
Ye = Z/A = 1/2. Thus, the neutrinos can invariably only change some of the
left-over nucleons into their corresponding counterpart, only driving the electron
fraction even closer to 0.5.

In our code, this effect is partially included, due to our EoS setup with a low
density NSE composition table used for temperatures above 0.5 MeV/kB. With
this, the α-particle (and in principle also heavy nuclei) fraction is adjusted for the
given Ye value determined by the neutrinos on the current nucleon composition.

For the most accurate determination of Ye, however, a full nuclear reaction
network would have to be used in a post-processing step with the given outflow
trajectories and neutrino signal, to also account for out-of-equilibrium burning
reactions that cannot be modelled with our instantaneous NSE table composition.

As discussed in Section 5.4, the opacity correction is supposed to make a great
influence on the resulting Ye, in as much as Mart́ınez-Pinedo et al. (2012) even find
slightly neutron rich material with Ye ∼ 0.45 in the very early ejecta. However, it
looks as if they neglect weak magnetism on their charged current neutrino nucleon
opacities. In Figure 5.16 we present our self-consistently simulated Ye, as well as a
reconstruction via Eq. (5.18) with the full C-term and with C = 1.

As can be seen, the analytic approximation by Eq. (5.18) is in rather good
agreement, especially in the early phase of interest here. If used with C = 1, which
should emulate the effect of neglecting weak magnetism also in a self-consistent
simulation, however, the material attains precisely the Ye & 0.45 as were found in
Mart́ınez-Pinedo et al. (2012).

We present the resulting self-consistent quantities relevant for the wind from our
simulations in Figures 5.17 and 5.18. We find that all ejected material is always
proton rich.

One has to be cautions, as these results do not yet rule out any possibility of an r-
process in the supernova neutrino driven wind context. With the nucleon potentials
included, the resulting electron fraction is to a much larger extent than in previous
models also a function of the high density equation of state. For the two models we
looked at in this study, the prospect to get an r-process scenario there does not seem
good. But other high density equation of state models, possibly including more
state-of-the art nuclear physics prescriptions, might yield a somewhat different
picture. The relevant nuclear physics quantities, the symmetry energy J and its
density derivative L, are still only very poorly constrained and could possibly allow
a more drastic change of the neutrino spectra than the two models we looked at.

Still troubling are the comparatively low entropies, which only rise high values
later when Ye becomes increasingly large.

Another observation is that models with convection exhibit larger Ye values than
their counterparts. There, the initially enhanced deleptonization are results in the
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emission of much more electron neutrinos, the electron neutrino are increased
much more than the anti-electron neutrino luminosities, while the respective mean
energies are both increased by a very similar factor.

Another thing to consider is that collective neutrino flavor oscillations are ex-
pected to appear during the wind phase, which will alter the spectra of the different
neutrino species in very complex ways, see e.g Duan et al. (2010) for a recent re-
view. For a very detailed prediction of the resulting electron fraction it might be
necessary to take these into account.

5.9 Summary

We artificially exploded four progenitors of the set simulated in Chapter 3, with two
different high density equations of state, with and without a mixing-length scheme
to approximate the multidimensional convection within the proto neutron star’s
core, and with and without a correction to our opacities regarding the nucleon
potentials (see Section 3.4.6).

Some of these 32 models could be simulated to over 10s of neutrino mediated
proto neutron star cooling, at which point they radiated away over 97% of their
theoretical binding energy and lepton number.

We looked at the influence of the different high density equations of state, espe-
cially regarding the convection. In agreement with Roberts et al. (2012b), we could
observe a visible imprint of the end of convection in the neutrino luminosities. This
is directly a function of the poorly constrained nuclear physics parameter L, the
density behaviour of the nuclear symmetry energy. We could augment their result
with detailed predictions of also the neutrino mean energies, which they can only
infer very approximately with their neutrino diffusion code.

The impact of the omission of the neutrino nucleon potentials in our opacities
was expectedly found to be quite large, although the increased proto neutron star
temperatures in the early phase were able to reduce that somewhat. As predicted by
Roberts et al. (2012b); Mart́ınez-Pinedo et al. (2012), due to the asymmetric nature
of the correction to electron and anti-electron neutrinos, the new opacities resulted
in a lowered electron fraction in the neutrino driven wind ejecta. Nevertheless, with
the two high density equations of states we used we could never attain favourable
conditions (i.e. Ye < 0.5) for r-process nucleosynthesis. This is in contradiction to
results found by Mart́ınez-Pinedo et al. (2012), which also used the Shen equation
of state and a probably similar proto neutron star. We thus believe it was their
omission of weak-magnetism in the charged current neutrino-nucleon opacities that
was responsible for their lower electron fractions.

Still, the electron fraction and the corresponding neutrino signal is with these
corrections included also now a stronger function of the high density equation
of state than previously found. Thus, the r-process in the neutrino driven wind
could still be a viable scenario, given that high density nuclear physics can deliver
favourable equations of state.
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Figure 5.17: The key quantities for r-process conditions, from top to bottom sub-panel:
The material entropy s (evaluated at 500km), the expansion time scale τexp, the electron

fraction Ye, and the mass loss rate Ṁ (both also from 500km). The ripples in the
expansion time scale are due to transient waves propagating from the proto neutron
star, which are for example excited by grid refinements.
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Figure 5.18: Analogous panels as in Figure 5.17 for the LS220 models, see the remarks
there and note the different time ranges.
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6 The Quenching of the Axial Coupling
Constant in Neutron-star Matter

Lastly, we will present a small side project that was done in collaboration with
Alexander Bartl and Achim Schwenk from the Technical University of Darmstadt,
where we implemented a new method to treat the quenching of the axial coupling
of neutron-star matter into our supernova code. To first order, the cross section
for free neutrino-nucleon interactions with an initial neutrino energy of ε is

dσ

dΩ
=
G2
F ε

2

4π2

(
c2
v(1 + cosϑ) + c2

a(3− cosϑ)
)
, (6.1)

where the cv and ca respectively are the vector and axial coupling constants for
the specific process. Values for cv and ca can be found in Table 6.1. As can be
seen, the cross section is dominated by the axial component. It turns out that
the nucleons axial coupling constant is a function of the baryon density. It gets
reduced, “quenched” as the density gets higher. Let us define the quenching factor
as

q =
g∗A
gA
, (6.2)

to relate the necessary high density axial coupling constant g∗A to the vacuum value
of gA ≈ 1.26.

Previously, we used a prescription according to Carter and Prakash (2002), who
calculated the quenching factor to leading order and for symmetric, cold matter.
They provided the supernovae community with a very simple analytic fit formula
for the quenching factor as

q(ρ) = 1− nB

4.15(n0 + nB)
, (6.3)

where nB = ρ/mB is the current baryon density and n0 = 0.15fm−3 is the equilib-
rium density of symmetric nuclear matter.

Menéndez et al. (2011) noted that second order corrections give a large additional
contribution to the gA quenching when they applied chiral effective field theory to
Gamow-Teller transitions and neutrino less double beta decay processes. Building
upon this, Alexander Bartl in his Diploma thesis extended the work of Menéndez
et al. (2011) to account for finite temperature effects and asymmetric matter
conditions as are found in proto neutron star matter.

He provided his result to us in the form of tables of the quenching factor as
a function of density, electron fraction (i.e. neutron/proton asymmetry) of the
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Table 6.1: Constants for neutrino cross sections, ga ≈ 1.26 is the nucleon axial coupling
constant in a vacuum, θW is the weak mixing or Weinberg angle, with sin2 θW ≈ 0.231.

Process cv ca

ν + p→ ν + p 1/2− 2 sin2 θW ga/2
ν + n→ ν + n −1/2 −ga/2
νe + n→ e− + p 1 ga
ν̄e + n→ e+ + n 1 ga

0 5 10 15 20 25 30

r [km]

0.0

0.2

0.4

0.6

0.8

1.0

q
[1

]

qc – weak
qnn
qnp
qc – strong
qnn
qnp

C&P
off

Figure 6.1: Values for the different models of the gA quenching factor q, evaluated for
profiles of the simulations at 250ms after core-bounce. For the two new cases (“weak”,
“strong”) of the new treatment, there is also an additional isospin dependence resulting
in different values for q depending on the type of reaction, nn and np for neutral current
reactions on neutrons/protons and c for isospin changing reactions via charged currents.

matter, and material temperature, for two representative cases (“weak”, “strong”)
of the parameter space of his model. As a slight technical complication for the
simulations, the new quenching factors are now isospin dependent, and different
for neutral current and charged current reactions. From Figure 6.1 we can see that
the resulting new quenching factors are indeed quite different from the prescription
of Eq. 6.3 and one could thus hope to see a direct imprint of this in the neutrino
signal. Remarkable is also that even the weak case results in a stronger quenching
than our previous treatment according to Carter and Prakash (2002).

However, the complex non-linear nature of the supernova (and also of supernova
simulations) makes it difficult for any single O(1) change of a parameter to result in
a change of an observable in the same magnitude. So we ran a number of simulations
in order to predict the change in the neutrino signal due to the different treatments
of the quenching factor.
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Table 6.2: Proto neutron star configuration at the end of the quenching simulations, as
well as the total radiated Energy and Lepton numbers, also expressed in brackets as a
fraction of the expected total value from ideal TOV solutions, see Chapter 5.

Model rpns Mpns tend Eν NL
[km] [M�] [s] [B] [1] [1056] [1]

s15.0off 13.8 1.795 9.274 296 (0.88) 7.53 (0.90)
s15.0C&P 13.8 1.794 9.237 304 (0.91) 7.69 (0.92)
s15.0weak 14.2 1.794 5.721 276 (0.82) 7.18 (0.86)
s15.0strong 14.3 1.794 4.923 266 (0.79) 7.02 (0.84)

6.1 Results

In the same manner as was done in Chapter 3, we simulate the gravitational
collapse and accretion phase for the first 500ms after core-bounce. The resulting
neutrino signal and proto neutron star configuration can be found in the left panels
of Figure 6.2.

Afterwards, continuing as was described in Chapter 5, an artificial explosion
was launched by reducing the density of the infalling material, continuing the
simulation into the proto neutron star cooling phase. Correspondingly, results can
be found in the right panels of the same Figure.

Sadly, we can not say with good confidence that there is a discernible difference
between any of the four simulations. We only see a very small difference in the
resulting neutrino emission on a percent level.

Only when looking at the – of course unobservable – central values within
the proto neutron star can one see some differences developing. There, the high
densities necessary for the gA quenching to appear are given and the different
methods make themselves visible. One can speculate from this that measurable
differences on the outside would present via a subtly different deleptonization and
cooling time scale, and possibly also have an influence in the very late phase when
the neutrinospheres penetrate higher and higher densities.

In Table 6.2 we show the progress of the simulations in form of the values of the
proto neutron star and integrated neutrino emission at and up to the currently very
last calculated time step. Additionally, in Table 6.3 we present the characteristics
of the time integrated neutrino emission, here evaluated only up to 4.7 seconds,
the minimum time attained by all of the simulations.

The expected hierarchy can be seen, models without quenching have a minimally
lower energy and number flux, then comes our previous method according to Carter
and Prakash (2002), followed by the weak and strong cases of the new treatment.
Still, the differences of the new method to our previously used scheme by Carter
and Prakash (2002) are only on the level of a few percent.
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Figure 6.2: The upper panels show the neutrino signal, in the upper left panel for the
accretion phase, the first 500ms, and in the upper right panel for the subsequent proto
neutron star cooling evolution. The lower panels show the hydrodynamical evolution,
again in the lower left panel for the first 500ms and in the lower right panel for the
cooling phase.
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Figure 6.3: Central hydrodynamical values, material density ρ, temperature T , electron
fraction Ye, electron neutrino optical depth τνe , entropy per baryon s and net electron
neutrino per baryon fraction Yνe .

Table 6.3: Time integrated spectral parameters for the gA quenching simulations, up
to the common first 4.7 seconds of evolution. Listed are mean energies 〈ε〉, pinching
parameter p, total number N and total energy E for each neutrino type. The pinching
parameter was inferred according to the procedure described in Section 3.5. Note that
Nνx and Eνx are for only one of the four heavy lepton neutrino kinds, i.e. the total
emitted energy is Eνe + Eν̄e + 4Eνx .

Model 〈ε〉νe 〈ε〉ν̄e 〈ε〉νx pνe pν̄e pνx Nνe Nν̄e Nνx Eνe Eν̄e Eνx

[MeV] [1] [1057] [B]

s15.0off 12.0 14.8 14.1 0.95 0.96 1.00 2.69 2.02 1.63 51.8 47.8 36.8
s15.0C&P 12.0 14.8 14.2 0.95 0.96 1.00 2.74 2.06 1.69 52.8 48.7 38.3
s15.0weak 12.0 14.8 14.2 0.95 0.96 1.00 2.77 2.08 1.72 53.5 49.5 39.1
s15.0strong 12.0 14.9 14.3 0.95 0.96 0.99 2.79 2.10 1.73 53.9 49.9 39.7
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6.2 Summary

The elaborate gA quenching treatment turned out to be unimportant, especially
for the early phase relevant for the supernovae explosion, and for proto neutron
star calculations at least up to the point we were able to simulate. Differences
might appear in the late phase of the cooling signal.

On the bright side, these results prove that our setup and numerical scheme
are stable and not influenced in a chaotic way by small changes in (at least these)
input parameters.

This is especially striking due to the fact that the radial grid of our Eulerian
code had to be adapted to the contracting proto neutron star more than ten times
for each simulation. This was done independently each time and with grids adapted
to the current profiles found at the moment the refinement became necessary. The
lack of a big difference in the simulation outcomes is therefore very reassuring that
these numerical issues do not seem to make any impact on the resulting neutrino
signal.
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7 Conclusion

In this thesis we studied the neutrino signal of core-collapse events and their newly
formed proto neutron stars with detailed radiation-hydrodynamical simulations.
In the first part, as a study of the pre-explosion neutrino signal, a large num-
ber of progenitor models for three different high density equations of state were
evolved through gravitational collapse, the formation of a proto neutron star and
a subsequent phase of half a second of accretion.

We could confirm that the neutrino signal of the first 100ms has a very generic
shape. A possible observation of that phase with existing or future neutrino detec-
tors could thus help in determining the neutrino mass hierarchy, as was already
laid out in the work by Serpico et al. (2012) in which a number of models simulated
for this thesis were used.

In contrast to claims made by O’Connor and Ott (2013), we do not find a very
clear signature of the high density equation of state in the neutrino signal, which
seems to disappear when sufficiently sophisticated neutrino opacities are taken into
account. These include neutrino nucleon interactions allowing for energy exchange
reactions by nucleon-recoil and neutrino-neutrino pair interactions.

For the first time, also the genuinely multidimensional effect of convection within
the proto neutron star’s core could also be approximated in spherically symmetric
simulations with a detailed neutrino transport, by borrowing a scheme from stellar
evolution. This so-called mixing length theory introduces artificial energy and
composition fluxes that attempt to mimic the efficient mixing of matter by the
multidimensional flows that would develop in reality. While truly multidimensional
simulations with sufficiently advanced neutrino physics are indeed possible and used
nowadays, they are computationally very costly, require large supercomputers and
are therefore only able to simulate the early phase in a tolerable time span.1 Sadly,
simulating the tens of seconds of proto neutron star cooling in full dimensionality
is inconceivable, today.

One therefore has to resort to an approximative modelling of the important
and genuinely multidimensional effect of convection. We could confirm that our
scheme results in a neutrino signal that is in much better agreement with true
multidimensional simulations of the early phase. During this early, accretion domi-
nated phase, its influence is to zeroth order a larger neutron star, correspondingly

1 Even the spherically symmetric simulations done for this thesis require an appreciable amount
of computation. We estimate that a single cooling simulation for about 10s requires O(1015)
double-precision floating point operations. Even though parallelism was exploited as much as
feasible in an individual calculation step, one cannot parallelise over the time domain itself.
This results in run times of several months at least.
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enlarged neutrino luminosities and somewhat lowered mean neutrino energies.
An omission in the neutrino opacities formulated by Burrows and Sawyer (1999)

that is used by our simulation code was recently addressed by Mart́ınez-Pinedo
et al. (2012). There, the energy shift arising from the difference in neutron and
proton background interaction potential in the high density regime within the proto
neutron star was neglected for the neutrino nucleon cross sections. As expected
already by Mart́ınez-Pinedo et al. (2012), we found that this omission is not crucial
during the accretion phase.

In the subsequent chapter, we continued this accretion phase for an even longer
time, in order to follow core-collapse events that fail to produce a viable explosion up
to the point where the neutron star must form a black hole. We could demonstrate
that our simulations are in rather good agreement with published models in full
general relativity – even though we only make use of a pseudo-Newtonian code
that models the most important general relativistic effects by a modified, TOV-like
gravitational potential (Marek et al., 2006).

Previously published results with a comparably accurate neutrino transfer scheme
(e.g. Fischer et al., 2009; Sumiyoshi et al., 2008) found very high (rms-) mean
neutrino energies, especially close to the moment of black hole formation. These
studies, however, did not take energy exchanging nucleon-recoil into account for
the neutrino-nucleon cross sections, neglected the reduction of the neutrino-cross
sections by nucleon correlations at high densities, and only in some cases were
neutrino-neutrino pair interactions included.

When we do take these effects into account, we find much lower neutrino energies,
which sadly make the prospect of detecting such a black hole formation event (Yang
and Lunardini, 2011) much more unlikely.

If an event could be detected, however, our predictions for the neutrino signal at
the very end of the simulations might be helpful for the idea put forth by Beacom
et al. (2001): they suggested to use the expected fast cut-off in the neutrino signal
due to the formation of an event horizon to constrain the absolute neutrino masses
by time-of-flight measurements. Our prediction of the neutrino signal at the moment
of cut-off might be valuable there.

As a genuine improvement over existing work in the literature, we also included
the mixing length scheme in these models and investigated the influence the con-
vection within the proto neutron stars core on the black hole formation neutrino
signal.

In the final of the main chapters, we artificially exploded a set of models in order
to study the proto neutron star cooling phase that will occur after a potential
explosion and followed that phase in some cases for more than 10s and until
they had lost more than 97% of their energy and lepton number. It was already
known that convection in proto neutron star cooling is of great importance, but as
we said, truly multidimensional models are computationally out of reach for the
foreseeable future. With our mixing length scheme we were able to simulate this
phase hydrodynamically, including our very elaborate neutrino transfer treatment.
Previous studies such as most recently done by Roberts et al. (2012b) used a

118



diffusion code and could thus not accurately predict the detailed spectral shape
of the resulting neutrino signal. We could confirm their prediction that the end
of convection after several seconds is marked by a change in neutrino luminosities
and could augment this with detailed spectral data that also exhibit a signature
of that phenomenon.

For the cooling phase, the influence of the omission of the nucleon potentials
is significant, in contrast to the previous topics. The corrected opacities lead to
somewhat lowered luminosities and thus a correspondingly longer cooling time
scale, and affect electron and anti-electron neutrinos very differently, due to their
asymmetric reaction with either neutrons or protons. Not only that, the inclusion
of these potentials opens up a new window into the very unconstrained high
density physics, as the resulting neutrino signal is now to a much larger extent
than previously thought also a function of the equation of state of neutron star
matter.

In Mart́ınez-Pinedo et al. (2012) it was even found that the corrected neutrino
spectra and luminosities where changed by a large enough amount to eject even
slightly neutron rich matter with Ye & 0.45 in the very early phase. This would
open up the potential again for r-process nucleosynthesis of heavy elements in the
neutrino driven wind of cooling proto neutron stars.

However, in none of our simulation can we find Ye < 0.5, even though we also
look at similar proto neutron stars and the same high density equation of state.
We believe that most probably the omission in the work of Mart́ınez-Pinedo et al.
(2012) of weak magnetism in charged current neutrino-nucleon absorption reactions
is responsible for this (to a smaller degree it could also be relevant that our neutron
stars might have a bit higher temperatures in the mantle after the slightly longer
accretion phase).

Moreover, the inclusion of convection with its increased deleptonization and
energy loss also results in a boost of the electron neutrino emission, bringing Ye
somewhat up additionally. For r-process nucleosynthesis, though, a neutron rich
outflow with Ye < 0.5 is a necessary ingredient.

Nevertheless, with the mentioned increased influence of high density physics also
on the neutrino signal, neutron rich outflows might still be found for other neutron
star equations of state. This recent development is quite exciting in that it might
open up new ways to get at the properties of hot, high density neutron star matter.
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A Lorentz Transformations

The equations and output quantities of the simulation code Vertex are formulated
in the locally co-moving frame of the fluid. Thus, transformation rules for the
relevant quantities, cell-integrated values of moments of the radiation field, are
necessary. The calculations are straightforward and for reference purposes only.

A.1 Energy Integrated Moments

A certain frequency integrated moment is defined in some reference frame as an
energy (ε̃) and angle (µ̃) integral over the particle distribution function in this
frame, f̃(ε̃, µ̃),

M̃ij =

∫ ∞
0

dε̃

∫ 1

−1
dµ̃ ε̃iµ̃j f̃(ε̃, µ̃). (A.1)

The Lorentz transformation for (ε̃, µ̃) to the corresponding variables in another
frame (ε, µ), with relative velocity β, Lorentz factor γ = (1− β2)−1/2, are

ε̃ = γε(1 + βµ), (A.2)

µ̃ =
µ+ β

1 + βµ
. (A.3)

and the distribution function is a Lorentz invariant quantity, that is the two
distributions are related simply by

f̃(ε̃, µ̃) = f(ε, µ). (A.4)

Let us now rewrite Eq. (A.1) in the transformed variables and see if we can express
it in terms of moments in the other frame. Insertion yields

M̃ij =

∫ ∞
0

dε

∫ 1

−1
dµ

∣∣∣∣det
∂(ε̃, µ̃)

∂(ε, µ)

∣∣∣∣(γε(1 + βµ))i
(
µ+ β

1 + βµ

)j
f(ε, µ). (A.5)

The necessary Jacobian determinant is given by

det
∂(ε̃, µ̃)

∂(ε, µ)
=

1

γ(1 + βµ)
, (A.6)

resulting in

M̃ij = γi−1

∫ ∞
0

dε

∫ 1

−1
dµ

(
1 + βµ

)i−j−1(
1 +

β

µ

)j
εiµj f(ε, µ), (A.7)
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which can be expressed as a sum of moments by expanding the integration kernel,

kij(µ, β) =

(
1 + βµ

)i−j−1(
1 +

β

µ

)j
. (A.8)

Setting βµ = x and β/µ = y and with

(1 + x)N (1 + y)M =
∞∑
n,m

(
N

n

)(
M

m

)
xnym, (A.9)

where for |x| < 1, the expression holds also for negative (real even) N,M if the
generalized binomial coefficient(

N

n

)
:=

N(N − 1) . . . (N − n+ 1)

n!
(A.10)

is used, it follows that

kij(µ, β) =
∑
n=0

∑
m=0

(
i− j − 1

n

)(
j

m

)
βn+mµn−m. (A.11)

Note that for i− j − 1 = 0 the n-sum collapses to

kj+1, j(µ, β) =
∑
m=0

(
j

m

)
βmµ−m, (A.12)

and the m-sum likewise for j = 0 to

ki,0(µ, β) =
∑
n=0

(
i− 1

n

)
βnµn, (A.13)

Note that Eq. (A.11)-(A.13) are finite sums except when i − j − 1 < 0 or j < 0.
Integration yields the transformation rules for a general moment M̃ij expressed in
moments of another frame,

M̃ij = γi−1

∫ ∞
0

dε

∫ 1

−1
dµ kij(µ, β)εiµj f(ε, µ)

= γi−1
∑
n=0

∑
m=0

(
i− j − 1

n

)(
j

m

)
βn+mMi, j+n−m. (A.14)

again, collapsing for i− j − 1 = 0 to

M̃j+1, j(µ, β) = γj
∑
m=0

(
j

m

)
βmMi, j−m, (A.15)

and for j = 0 to

Mi,0(µ, β) = γi−1
∑
n=0

(
i− 1

n

)
βnMi, j+n. (A.16)
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In O(β) this simplifies considerably, as γi−1βn+m ' βn+m+O(βn+m+2) only terms
with n+m ≤ 1 survive,

M̃ij = Mij + jβMi, j−1 + (i− j − 1)βMi, j+1 +O(β2). (A.17)

Using,

J = M03, J = M02, (A.18)

H = M13, H = M12, (A.19)

K = M23, K = M22, (A.20)

we recover the explicit transformation of these first few commonly used moments
as

J̃ = γ2(J + 2βH + β2K) ' J + 2βH, (A.21)

H̃ = γ2((1 + β2)H + β(J +K)) ' H + β(J +K), (A.22)

K̃ = γ2(K + 2βH + β2J) ' K + 2βH, (A.23)

J̃ = γ(J + βH) ' J + βH, (A.24)

H̃ = γ(H+ βJ ) ' H+ βJ , (A.25)

where the approximate expressions are correct to O(β). Only the case for K̃ is a
bit more troublesome due to the fact that it has the rational function

k22(µ, β)µ2 =
(µ+ β)2

1 + βµ
(A.26)

as a kernel, and therefore its series representation for the exact transformation
does not terminate, instead it is

K̃ = γ
∞∑
n=0

2∑
m=0

(−1)n
(

2

m

)
βn+mM2+n−m,2

' K + β(2H−M32)

(A.27)

A.2 Energy Binned Quantities

The situation is considerably more complex if we want to transform the energy
dependent (spectral) quantities, in our finite volume code these are represented as
integrals over a particular range of neutrino energy,

B̃tij =

∫ ε̃t+1

ε̃t

dε̃

∫ 1

−1
dµ̃ ε̃iµ̃j f̃(ε̃, µ̃). (A.28)

From these, the frequency integrated moments are then recovered by summation,
as

M̃ij =
∑
t

Btij . (A.29)
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µ̃ = 1µ̃ = −1

µ̃ = 0

ϑ̃ = arccos(µ̃)

ε̃

ε̃t ε̃t+1εt(µ̃ = −1)εt+1(µ̃ = −1)

Figure A.1: The boosted shape of an energy bin, shown in polar coordinates with
cos(ϑ̃) = µ̃, the forward direction is right. The grey area is what the current frame takes
as the integration domain for B̃tij , while the red shape is the integration domain used
in Btij ’s frame, travelling with β = 0.2 relative to the other.

Now, the Lorentz transformation also changes the domain of integration, expressing
the bin Btij in the boosted variables results in

B̃tij = γj−1

∫ 1

−1
dµ

∫ γ(1+βµ)εt+1

γ(1+βµ)εt

dεKij(µ, β)f(ε, µ). (A.30)

where the shape of the regular domain of integration in B̃’s frame appears distorted
in the other frame, confer to Figure A.1 for a visualization. Let us define a shape
function

χt(µ, β, ε) =

{
1 if γ(1 + βµ)εt < ε < γ(1 + βµ)εt+1,

0 else.
(A.31)

such that

B̃tij = γi−1

∫ 1

−1
dµ

∫ ∞
0

dεχt(µ, β, ε)Kij(µ, β)f(ε, µ). (A.32)

and use it to split-up the integral in the same domains Du = [−1, 1] × [εu, εu+1]
we use for the bins in our frame of reference,

B̃tij = γi−1
∑
u

∫
Du

dµdε χt(µ, β, ε)Kij(µ, β)f(ε, µ) (A.33)

It will be futile to try to expand the discontinuous χt in the kernel in a power series.
However, f(ε, µ) is assumed to be and kij actually is a smooth function on Du\∂Du.
A power series approximation is thus justified. Taking {Hu

p (ε, µ) : p ∈ N} as a
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suitable set of orthogonal polynomials on each of the domains Du, there should be
coefficients fuijp such that for (ε, µ) ∈ Du,

Kij(µ, β)f(ε, µ) =
∑
p=0

fuijpH
u
p (ε, µ) (A.34)

and where we can get at these coefficients by projection,

fuijp =

∫∫
Du

dεdµKij(µ, β)f(ε, µ)Hu
p (ε, µ). (A.35)

Using the explicit polynomial form of the Hu
p itself,

Hu
p (ε, µ) =

∑
q,r

hupqrε
qµr, (A.36)

we can recover an explicit series for the coefficients after inserting our own moment
expansion from which we started. It follows immediately that

fuijp =
∑

n,m,q,r

(
i− j − 1

n

)(
j

m

)
βn+mhupqrB̃t,q,r+n−m. (A.37)

Inserting this into Eq. (A.33),

B̃tij = γi−1
∑
u,p

fuijp

∫∫
Du

dεdµχt(µ, β, ε)H
u
p (ε, µ) (A.38)

Therefore, given the overlap integral of χt over Hu
n ,

χutp(β) =

∫∫
Du

dεdµχt(1, β, ε)H
u
p (ε, µ) (A.39)

we finally end up with

B̃tij = γi−1
∑

u,p,n,m,q,r

(
i− j − 1

n

)(
j

m

)
χutp(β)hupqrβ

n+mB̃t,q,r+n−m. (A.40)

In practice, one avoids transformations of spectral quantities wherever possible
due to this complexity, and we will not try to put this formal result into an explicit
one.
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B Thermodynamic derivatives for the
Ledoux criterion

Stability against small radial perturbations of a hydrostatic configuration is given
when Ledoux’s criterion is met,

Cled =

(
∂ρ

∂s

)
Ye,p

ds

dr
+

(
∂ρ

∂Ye

)
s,p

dYe
dr
≥ 0. (B.1)

For this, we need the thermodynamic derivatives (∂ρ/∂s)Ye,p and (∂ρ/∂Ye)s,p. Su-
pernova equation of state tables (or routines) are usually provided as functions of
ρ, T , and Ye. We need to convert these derivatives into derivatives of ρ, T , and Ye.

B.1 First derivative

Luckily, one of the constraints of the derivative, dYe = 0, is expressed in the natural
variables already, therefore throughout this section dYe = 0 is implicitly assumed
(e.g. when taking total derivatives). It is convenient to look at the inverse of the first
derivative, (∂s/∂ρ)Y,p. Regardless of the choice of variables (ρ, Ye, p) or (ρ, T, Ye),
ds must be the same, therefore it must be that

ds =

(
∂s

∂ρ

)
Ye,p

dρ =

(
∂s

∂ρ

)
T,Ye

dρ+

(
∂s

∂T

)
ρ,Ye

dT (B.2)

using dYe = 0. Taking d/dρ we end up with(
∂s

∂ρ

)
Ye,p

=

(
∂s

∂ρ

)
T,Ye

+

(
∂s

∂T

)
ρ,Ye

(
∂T

∂ρ

)
Ye,p

(B.3)

Still missing is (∂T/∂ρ)Ye,p, which however is already in the natural variables we
want and therefore easily obtainable when looking at

dp = 0 =

(
∂p

∂ρ

)
T,Ye

dρ+

(
∂p

∂T

)
ρ,Ye

dT (B.4)

0 =

(
∂p

∂ρ

)
T,Ye

+

(
∂p

∂T

)
ρ,Ye

(
∂T

∂ρ

)
Ye,p

(B.5)

So we find (
∂s

∂ρ

)
Ye,p

=

(
∂s

∂ρ

)
T,Ye

−
(
∂s

∂T

)
ρ,Ye

(
∂p
∂ρ

)
T,Ye(

∂p
∂T

)
ρ,Ye

(B.6)
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B.2 Second derivative

The second derivative is more painful, as neither s nor p are natural variables of
the equation of state, while still ds = 0 and dp = 0 has to be obeyed simultaneously.
Thus

ds =

(
∂s

∂ρ

)
T,Ye

dρ+

(
∂s

∂T

)
ρ,Ye

dT +

(
∂s

∂Ye

)
ρ,Ye

dYe = 0, (B.7)

dp =

(
∂p

∂ρ

)
T,Ye

dρ+

(
∂p

∂T

)
ρ,Ye

dT +

(
∂p

∂Ye

)
ρ,Ye

dYe = 0, (B.8)

Solving equations (B.7) and (B.8) for dT gives

1(
∂s
∂T

)((∂s
∂ρ

)(
∂ρ

∂Ye

)
s,p

+

(
∂s

∂Ye

))
=

1(
∂p
∂T

)((∂p
∂ρ

)(
∂ρ

∂Ye

)
s,p

+

(
∂p

∂Ye

)) (B.9)

where the constraints on the partial derivatives in the natural variables have
been omitted for brevity (i.e. (∂s/∂T ) ≡ (∂s/∂T )ρ,Ye). We just have to solve for
(∂ρ/∂Ye)s,p, resulting in

(
∂ρ

∂Ye

)
s,p

=

(∂p/∂Ye)
(∂p/∂T ) −

(∂s/∂Ye)
(∂s/∂T )

(∂s/∂ρ)
(∂s/∂T ) −

(∂p/∂ρ)
(∂p/∂T )

(B.10)

B.3 Using the speed of sound / adiabatic index

The Ledoux criterion can also be expressed in simple radial gradients of the primi-
tive variables and the local speed of sound by

Cled =
dρ

dr
− 1

c2
s

dp

dr
, (B.11)

with the speed of sound as

cs =

√
Γ
p

ρ
, (B.12)

and there, the adiabatic index

Γ =

(
∂ log p

∂ log ρ

)
s,Ye

=
ρ

p

(
∂p

∂ρ

)
s,Ye

. (B.13)

This is very convenient, as the derivatives in the primitive variables ρ and p can
be directly evaluated in our code and cs is already tabulated in all EoS we use.
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A derivation of Eq. (B.11) follows. Using (B.12) and (B.13) the right hand side
becomes

dρ

dr
−
(
∂ρ

∂p

)
s,Ye

dp

dr
(B.14)

The radial gradient of p can be rewritten as

dp

dr
=

(
∂p

∂s

)
ρ,Ye

ds

dr
+

(
∂p

∂ρ

)
s,Ye

dρ

dr
+

(
∂p

∂Ye

)
s,ρ

dYe
dr

. (B.15)

Inserting into (B.14) yields

−
(
∂ρ

∂p

)
s,Ye

(
∂p

∂s

)
ρ,Ye

ds

dr
−
(
∂ρ

∂p

)
s,Ye

(
∂p

∂Ye

)
s,ρ

dYe
dr

. (B.16)

Using the triple product rule,(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1, (B.17)

we recover the right hand side of Eq. (B.1),(
∂ρ

∂s

)
Y,p

ds

dr
+

(
∂ρ

∂Y

)
s,p

dY

dr
(B.18)
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Sarikas, S., Raffelt, G. G., Hüdepohl, L., Janka, H.-T. (2012a). Suppression of
self-induced flavor conversion in the supernova accretion phase. Phys. Rev. Lett.,
volume 108, p. 061101. doi:10.1103/PhysRevLett.108.061101.

Sarikas, S., Tamborra, I., Raffelt, G., Hüdepohl, L., Janka, H.-T. (2012b). Super-
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