
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

Analysis of Serial Chain Manipulator Structures
with Respect to Efficient Actuation in Context of

Abstractly Represented Tasks

Susanne M. E. Petsch

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Daniel Cremers

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Darius Burschka

2. Ao. Univ.-Prof. Dr. Markus Vincze, Technische Universität

Wien/ Österreich

Die Dissertation wurde am 24. Oktober 2013 bei der Technischen Universität München ein-

gereicht und durch die Fakultät für Informatik am 13. Mai 2014 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:petsch@in.tum.de

Abstract

Robots get deployed in more and more application areas. The range of possible
tasks is large, reaching from kitchen scenarios to medical applications. However, the
suitability of a robot for a task has been hardly analyzed in general. If, e.g., several
robots are available, which one can perform a desired task best? What happens if one
or several of the robot’s joints fail? Can the robot compensate lost capabilities due
to joint failure? Several criteria can be considered to answer these questions. The
criteria include, e.g., perceptual capabilities, mobility or manipulation capabilities.
This thesis focuses on the analysis of manipulator structures. Such an analysis
provides essential information about the robot’s manipulation capabilities. An inter-
and intra-robot analysis is provided. Possible joint failures and the potential of path
optimization are considered.

The presented analysis of manipulator structures focuses on efficient actuation. Slow
and smooth joint motions are desirable as well as an equal distribution of the work-
load on all joints. The context of the analysis is formed by abstractly represented
tasks. Hence, the robot’s capabilities are analyzed for a general task description.
Therefore, an abstract task representation needs to be provided as well. Such an
abstract representation allows to choose the final path for a task execution in a less
constrained manner. The robot is not limited to a pre-defined path. The resultant
freedom can be utilized to optimize paths with respect to efficient control. This, in
turn, enables an analysis of the potential of path optimization in the case of joint
failures. The representation of the tasks is object-centric, since the objects are in the
focus of the task. The analysis itself has a robot-centric perspective, since the capa-
bilities of the robot are analyzed. In order to show and discuss approaches based on
different perspectives in general, a survey of research in robotic manipulation with
respect to bio-mimicry, bio-inspiration and technical approaches is provided.

Experiments are performed on the overall analysis and its underlying single com-
ponents. The results show the task-specific suitability of the analyzed robots. The
capabilities of the robots are depicted with respect to the desired tasks. The impor-
tant joints of the robots are identified. Moreover, the potential of path optimization
is presented.

iv

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr.-Ing. Burschka who gave
me the opportunity to do my Ph.D. in his group. I want to thank him for his
guidance, support and advice. The instructive scientific discussions that I had with
him provided useful ideas and impulses to my work.

My work was funded by the GRASP project and the German Aerospace Center
(DLR). They made the development of this thesis possible. Many thanks go to
everybody who enabled this funding.

I want to thank everyone, who helped me with words and deeds during the concep-
tualization, development and completion of my thesis.

I am especially grateful to my colleagues and “cooks” in Hochbrück, namely, Chavo,
Elmar, Juan-Carlos and Olli (sorted alphabetically), who let me profit from their
experiences. I want to thank them for the constructive scientific discussions and
great lunch times with them. Many thanks go to all the nice and open-minded
people who I met at conferences the last years. The conversations and discussions
with them were adjuvant and encouraging. I wish to thank them for the great times.

My special thanks goes to my father for his extensive personal support that helped
me especially in tough times of my Ph.D. pursuit.

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 7

1.2.1 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators
and Human-Like Robotic Hands . 7

1.2.2 Estimation and Representation of Manipulation - Relevant Object Prop-
erties and Actions from Human Observation 8

1.2.3 Representation of Object Relations in the Environment for Dexterous
Manipulations . 11

1.2.4 Path Optimization for Abstractly Represented Tasks with Respect to
Efficient Actuation . 13

1.2.5 Structure Analysis of Manipulators . 13

1.2.6 Analysis of Master-Slave Systems . 14

1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry, Bio-
inspiration and Technical Approaches . 16

1.3.1 Physical structure of robotic hands . 18

1.3.2 Grasping and manipulation . 19

1.3.3 Usage of sensors in grasping and manipulation 19

1.3.4 Psychological aspects in human-robot interaction 21

1.3.5 Relation of Bio-Mimicry and -Inspiration to Technical Approaches Using
the Example of the Design of Airplanes 22

1.3.5.1 Early attempts . 22

1.3.5.2 The first flights . 23

1.3.5.3 Technology Acceptance . 24

1.3.6 Discussion of the Current State of the Art 24

1.4 Overview of the Contributions . 28

vii

CONTENTS

1.5 Outline . 30

2 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators
and Human-Like Robotic Hands 31

2.1 Description of the used variables and parameters 33

2.2 Inverse kinematics for a single point . 34

2.3 Adaptive tunneling . 35

2.4 Virtual shut grasp . 36

3 Manipulation-Relevant Knowledge Representation 39

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,

Actions and Functionalities . 39

3.1.1 Estimation and Representation of Manipulation - Relevant Object Prop-

erties and Actions from Human Observation 42

3.1.1.1 Focus of Attention . 44

3.1.1.2 Determination of the Object Candidates 44

3.1.1.3 Selection of an Object as Region of Interest 45

3.1.1.4 Object Tracking and Determination of the Object’s Type 47

3.1.1.5 Representation of Object Knowledge 50

3.1.2 Representation of Manipulation-Relevant Object Properties and Func-

tionalities . 51

3.1.2.1 Manipulation-Relevant Object Properties 52

3.1.2.2 Functionality Map of the Environment 52

3.1.2.3 Knowledge Extraction . 54

3.2 Representation of Object Relations in the Environment for Dexterous Manipu-

lations . 59

3.2.1 Contact State Definition . 61

3.2.2 Object Role Definition . 63

3.2.3 Composition and Usage of the Contact State Knowledge 63

4 Path Optimization for Abstractly Represented Tasks with Respect to Effi-
cient Actuation 65

4.1 Path Configuration . 67

4.2 Path Optimization . 68

4.2.1 Elasticity of the Path . 69

4.2.2 The Elastic Power Path . 69

4.2.3 Optimization of the Path . 70

viii

CONTENTS

5 Structure Analysis of Manipulators 73

5.1 Maneuverability Volume . 76

5.2 Spinning Pencil . 78

5.3 Maneuverability Analysis under Joint-Failures . 81

5.4 Analysis of Multiple Location Areas . 81

5.5 Structure Analysis under Path Optimization . 81

6 Analysis of Master-Slave Systems 83

6.1 Structure Analysis: Autonomous vs. Non-autonomous Systems 84

6.2 Master-Slave Systems: Workspace Mapping . 85

6.3 Structure Analysis: Limits and Potentials . 86

7 Experiments 89

7.1 Validation Scenarios . 89

7.1.1 Experiments on an External Tracking System 91

7.1.1.1 Object Container . 91

7.1.1.2 Functionality Map . 94

7.1.2 Experiments on a Vision System . 98

7.1.2.1 Clustering of Object Candidates on a Table 101

7.1.2.2 Candidate Selection . 101

7.1.2.3 Parsing of Human Action . 102

7.1.2.4 Representation of Manipulation-Relevant Object Knowledge and
Functionality in the Environment 106

7.2 Contact State-Based Representation of the Environment for Dexterous Manipu-
lations . 110

7.2.1 Scenario I: Cut . 111

7.2.2 Scenario II: Knot-tying . 113

7.2.3 Scenario III: Suturing . 117

7.3 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and
Human-Like Robotic Hands . 121

7.3.1 Implementation . 121

7.3.2 Results . 123

7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient
Actuation . 128

7.4.1 Path Configuration . 128

7.4.2 Path Optimization . 134

7.4.2.1 Experimental Setup and Implementation 134

7.4.2.2 Results . 136

7.5 Structure Analysis of Manipulators . 141

7.5.1 Experimental Setup and Implementation 141

ix

CONTENTS

7.5.2 Results: Maneuverability Analysis . 142
7.5.3 Results: Maneuverability Analysis under Path Optimization 148

7.6 Analysis of Master-Slave Systems . 155

8 Conclusion and Future Work 167

8.1 Conclusion and Discussion . 167
8.1.1 Summary and Conclusion . 167
8.1.2 Discussion of the Concepts . 170

8.2 Future Work . 171
8.2.1 Extension of Single Components . 171
8.2.2 Further Extensions and Applications of the Entire Analysis of Manipulators171

A Further Information about the Vision Data 175

B Parameter Descriptions 185

B.1 Denavit Hartenberg Convention . 185
B.2 Z-Y-X Euler angles . 186
B.3 General Parameters . 187

Mathematical Notation 189

List of Abbreviations 191

Author’s Publications 193

References 195

x

List of Figures

1.1 Maneuverability analysis for abstractly represented tasks 2

1.2 Maneuverability analysis for abstractly represented tasks - Overview 4

1.3 Maneuverability analysis for abstractly represented tasks - Components 5

1.4 Paths with different properties for a manipulation between two areas 20

2.1 Inverse kinematics in a manipulation scenario . 32

2.2 Adaptive tunneling . 36

2.3 Human-like robotic hand and virtual shut grasp 37

3.1 Knowledge extraction from human observation 40

3.2 Creation of an abstract map of possible manipulation actions and goals 41

3.3 Atlas and Working Memory . 45

3.4 Plane subtraction . 46

3.5 Contact detection and object tracking . 49

3.6 Object Container and Functionality Map . 51

3.7 Functionality Maps for two exemplary objects . 53

3.8 Contact state based representation of object relations 61

4.1 Path optimization: Different path configurations 66

4.2 Paths with different properties for a manipulation between two areas 67

4.3 Visualization of the Objective Function in the acceleration profile 71

4.4 Path optimization spheres . 72

5.1 Analysis of manipulator structures under joint failure 74

5.2 Analysis of manipulator structures under joint failure and path optimization . . 76

5.3 Parallelepiped: Part of the Maneuverability Volume 78

5.4 Spinning Pencil . 79

6.1 Exemplary scene with a master-slave system. 86

7.1 Illustration of the validation scenarios . 90

xi

LIST OF FIGURES

7.2 Knowledge extraction: Trajectories of movements - tracking data 91

7.3 Knowledge extraction: Result of the Location Areas - tracking data 95

7.4 Knowledge extraction: Result of the Functionality Map - tracking data 97

7.5 Knowledge extraction: Trajectories of movements - vision data 100

7.6 Knowledge extraction: Object Candidates - vision data 101

7.7 Knowledge extraction: Development of the object’s orientation along trajectories

- vision data . 105

7.8 Knowledge extraction: Functionality Map: object 1 - vision data 108

7.9 Knowledge extraction: Functionality Map: object 2 - vision data 108

7.10 Knowledge extraction: Grasp types - vision data 109

7.11 Contact state-based representation: Principle, schematic diagram of the Miro-

Surge system from DLR. 111

7.12 Contact state-based representation: Exemplary non-working execution order in

the knot-tying scenario. 115

7.13 Contact state-based representation: Exemplary working execution order in the

knot-tying scenario. 115

7.14 Contact state-based representation: Original and shifted path in the knot-tying

scenario. 116

7.15 Contact state-based representation: Path of the suturing scenario. 119

7.16 Illustration of the used data with the robots’ base positions 121

7.17 Estimation of inverse kinematics: Exemplary virtual shut grasp, data set II . . . 124

7.18 Estimation of inverse kinematics: Exemplary manipulator configurations 125

7.19 Estimation of inverse kinematics: Statistical results of the adaptive tunneling . . 125

7.20 Estimation of inverse kinematics: Exemplary joint speeds along the trajectories 126

7.21 Estimation of inverse kinematics: Consecutive configurations of the manipulator

along a trajectory . 126

7.22 Path configuration: Possible positions of the robot’s base in relation to the

Location Areas . 129

7.23 Path configuration: Ratio of each basic motion shape 130

7.24 Path configuration: Illustration of the preferable basic motion shapes and com-

pression/ elongation factors among all scenarios 131

7.25 Path configuration: Ratio of height of the robot’s base 132

7.26 Path configuration: Exemplary preferred positions of the robot’s base in relation

to the Location Areas . 133

7.27 Path optimization: Result of the Objective Function, data set I 136

7.28 Path optimization: Result of the Objective Function, data set II 137

7.29 Path optimization: Acceleration values per joint and per acceleration time step,

data set I, first part . 137

xii

LIST OF FIGURES

7.30 Path optimization: Acceleration values per joint and per acceleration time step,
data set I, second part . 138

7.31 Path optimization: Acceleration values per joint and per acceleration time step,
data set II, first part . 138

7.32 Path optimization: Acceleration values per joint and per acceleration time step,
data set II, second part . 139

7.33 Path optimization: Remaining residual . 139

7.34 Path optimization: Exemplary original path in comparison to the new points . . 140

7.35 Maneuverability Analysis: Complete manipulator vs. manipulator with one
broken joint, data set I . 143

7.36 Maneuverability Analysis: Complete manipulator vs. manipulator with one
broken joint, data set II . 144

7.37 Maneuverability Analysis: Manipulator capability with two broken joints 144

7.38 Maneuverability Analysis: Average result of the Maneuverability Analysis with
respect to the number of broken joints . 145

7.39 Simplified Maneuverability Volume and Spinning Pencil 146

7.40 Simplified Maneuverability Volume and Spinning Pencil with broken joint 1 . . . 146

7.41 Simplified Maneuverability Volume and Spinning Pencil with broken joint 4, 5
and 6 . 146

7.42 Simplified Maneuverability Volume and Spinning Pencil 147

7.43 Simplified Maneuverability Volume and Spinning Pencil with broken joint 3 . . . 147

7.44 Maneuverability Analysis with path optimization: Complete manipulator vs.
manipulator with one broken joint . 149

7.45 Maneuverability Analysis with path optimization: Complete manipulator vs.
manipulator with one broken joint - EPP-values without paths of pushed objects 150

7.46 Maneuverability Analysis with path optimization: Comparison of the EPP-
values before and after optimization . 151

7.47 Maneuverability Analysis with path optimization: Comparison of the EPP-
values before and after optimization without paths of pushed objects 152

7.48 Maneuverability Analysis with path optimization: Manipulator capability with
two broken joints, test robot . 153

7.49 Maneuverability Analysis with path optimization: Manipulator capability im-
provements with two broken joints, test robot . 153

7.50 Maneuverability Analysis with path optimization: Manipulator capability with
two broken joints, PUMA . 154

7.51 Maneuverability Analysis with path optimization: Manipulator capability im-
provement with two broken joints, PUMA . 154

7.52 Master-slave system: EPP human, different arm lengths 156

7.53 Master-slave system: EPP human, different heights 158

xiii

LIST OF FIGURES

7.54 Master-slave system: Change of the elbow height in the knot tying scenario . . . 159
7.55 Master-slave system: Console and arm configurations for the knot tying scenario 160
7.56 Master-slave system: Console and arm configurations for the knot tying scenario,

shifted path . 161
7.57 Master-slave system: Console and arm configurations for the suturing scenario,

arm length of respectively 250 mm . 162
7.58 Master-slave system: Console and arm configurations for the suturing scenario,

arm length of respectively 300 mm . 163
7.59 Master-slave system: Speed profile of the human’s motion, suturing scenario,

arm length of respectively 250 mm . 164
7.60 Master-slave system: Speed profile of the human’s motion, suturing scenario,

arm length of respectively 300 mm . 165

8.1 Maneuverability analysis for abstractly represented tasks - Components 168

A.1 Knowledge extraction, object candidates: Different positions - vision data 175
A.2 Knowledge extraction, object candidates: Smaller objects candidates in the im-

age - vision data . 176
A.3 Knowledge extraction: Blob detection hand - vision data 177
A.4 Knowledge extraction: Development of the angles for both horizontal axes -

vision data . 178
A.5 Functionality Map: ideal solution - vision data 179
A.6 Functionality Map: object 1 - vision data . 180
A.7 Functionality Map: object 2 - vision data . 181
A.8 Functionality Map: object 3 - vision data . 182
A.9 Functionality Map: object 4 - vision data . 183

xiv

List of Tables

7.1 Knowledge extraction: Sequence properties - tracking data 92
7.2 Knowledge extraction: Statistical result of the classifications - tracking data . . . 93
7.3 Knowledge extraction: Result for the Object Container - tracking data 94
7.4 Knowledge extraction: Sequence properties - vision data 99
7.5 Knowledge extraction: Sequence labeling - vision data 99
7.6 Parsing of human action in average - entire system 103
7.7 Knowledge extraction: Remaining angles after manipulation - vision data 104
7.8 Knowledge extraction: Statistical result of the classifications - vision data 106
7.9 Knowledge extraction: Result for the Object Container - vision data 107
7.10 Contact state-based representation: Results for scenario I (cut) 112
7.11 Contact state-based representation: Results for scenario II (knot-tying) 116
7.12 Contact state-based representation: Results for scenario III (suturing) 120
7.13 Estimation of inverse kinematics: Parameters of the serial chain robot 122
7.14 Estimation of inverse kinematics: Parameters of the human-like robotic hand . . 122

B.1 General Parameters . 187
B.2 Explanation of the mathematical notation. 189
B.3 List of abbreviations . 191

xv

xvi

Chapter 1

Introduction

Robots which are supposed to support a human worker need sophisticated manipulation capabil-
ities and abilities. This requires not only appropriate physical capabilities from the hardware,
but also advanced knowledge about the manipulation. The requirements on the robot can,
therefore, be very demanding. The question arises, whether a certain robot is able to perform
a desired task which could, e.g., require specific manipulation capabilities. If several robots are
available, it might be interesting to know which robot is the most appropriate one for the task.
Such an analysis of the task-specific suitability of robots has hardly been presented yet.
Several criteria can be relevant for the choice of a robot. These criteria include, e.g., cogni-
tion, physical capabilities, special requirements set by the task, interaction and psychological
aspects. The robot might need to be able to observe and to interact with the environment.
This includes, e.g., the detection and the manipulation of objects. Moreover, tasks can require
specific properties from the system. For example, hygienic aspects play an important role in
the field of medical robotics. Hence, it has to be possible to disinfect the involved hardware
properly. If humans are involved in the task, a safe interaction has to be enabled between the
human and the robot. Psychological aspects in the interaction can be important to allow a
comfortable interaction for the human. This, in turn, should be considered, since it can be a
future criteria to deploy a certain robotic system.

1.1 Motivation

This thesis focuses on the analysis of serial chain manipulator structures. Such a serial chain
manipulator can be a part of a larger robotic system (e.g., a humanoid robot, a manipulator
attached to a mobile base). The serial chain manipulator is of special interest, since it plays
a very important role in the performance of manipulations. The required manipulation capa-
bilities to perform such a task are analyzed here. They are the basis to allow manipulations
at all. We do neither aim to analyze single arbitrary points in the robot’s workspace nor do
we analyze the entire workspace of the robot. We focus on the areas relevant for the desired

1

1. INTRODUCTION

Figure 1.1: Maneuverability analysis for abstractly represented tasks. The Figure

illustrates both main parts of the maneuverability analysis for abstractly represented tasks: The

abstract task representation and the maneuverability analysis. Left: The system builds up an

abstract representation of a task demonstrated by the human [2]. Rather than storing the tra-

jectories of the observed demonstrations, the system extracts the characteristic properties of the

manipulation. Right: Two exemplary manipulators (yellow and cyan manipulators on the gray

base) perform a task. Their performance can be affected through joint failures and the choice

of the path. The red crosses on the manipulators symbolize joint failures. The curves between

the yellow start, resp., end position illustrate different paths for a manipulation. The desired

maneuverability analysis has to be applicable to any arbitrary serial chain manipulator. It has to

consider possible joint failures and the potential of path optimization.

task. Just these areas are analyzed with respect to the required capabilities. The aim is not
only an analysis whether a desired area is reachable for the robot. This is just a necessary
pre-condition for a further analysis. The capabilities of the robot at these areas are of interest
here. A further important aspect is the resilience in the case of joint failures. If one or several
of the joints fail, the remaining capabilities still need to be analyzable. Of course, the desired
task plays also an important role, since we are interested in a task-specific analysis. Hence, an
appropriate representation of tasks is required as well.
Fig. 1.1 illustrates both main parts of this thesis: The task representation and the maneuver-
ability analysis. An overview of the relevant aspects of both main parts is given in Fig. 1.2.
The required components are shown in Fig. 1.3.

The required task knowledge has to cover a wide range of possible tasks, reaching from
transportation tasks to very dexterous manipulations. The system should, e.g., know how an
object can be picked up and transported. If a specific manipulation has to be performed in
a task, much more detailed knowledge about the manipulation is additionally necessary. A

2

1.1 Motivation

daily-life task like knot-tying seems to be easy and, hence, not extraordinary to many humans.

In fact, it is a complex task, which requires detailed information how the threads have to be

handled. Moreover, many tasks cannot only be performed on one fixed path. Variations of the

path can also be used to perform a desired task. This can already be observed during humans’

demonstrations. A human hardly uses the same path for his/her actions, if it is not really

necessary to keep a certain path. For example, if a human carries a cup from the kitchen into

the office several times, the path will, most likely, change every time. A human is probably not

even able to use exactly the same path a second time. On the one hand, this means, that the

robot can use a set of paths to perform a task. On the other hand, the robot needs to deal with

a variety of possible actions during human observation. It has to store the information in such

an abstract manner, that the characteristic properties of the actions reflect the actual idea of

the manipulation. A simple record of observed trajectories is neither sufficient nor appropriate

for this purpose.

The storage of knowledge at an abstract level allows to describe the actual idea of the

manipulation. The system needs, then, to be able to make use of the entire scope of this

knowledge representation. As described, a set of possible paths fulfilling the properties of the

desired manipulation is available to the robot. Obstacle avoidance can be considered as well as

path optimization. In the context of manipulation analysis, the potential of path optimization

is of special interest. Path optimization can be utilized to compensate joint failures. Hence,

an appropriate method is required. Furthermore, the abstract task representation enables the

adaption of the path to the current situation in the environment, since the path is not fixed to

certain x,y,z-coordinates in space.

The analysis itself focuses on the capabilities of the manipulators with respect to efficient

actuation. Smooth and slow motions are, hence, desirable for every joint of the manipulator.

Moreover, the workload should be distributed equally among the joints. A side effect is the

reduced stain on the hardware. In the context of path optimization, we need, consequently, an

optimization with respect to efficient actuation.

It is important to point out, that the analysis has to be independent of the manipulator’s

structure. It should be applicable to any robot without further modifications. Hence, the repre-

sentation of the knowledge needs to be entirely independent of the robot. It should be possible

to use the representation on any robot. A transfer of the knowledge to another robot is easily

possible, then. The analysis can, hence, be performed on different robots which have the same

knowledge about the task. The focus of the knowledge is on the objects which are manipulated.

Therefore, an object-centric representation is developed. In the case of the path optimization,

we need a robot-centric perspective. The path has, of course, to be optimized with respect to

the robot to achieve efficient actuation. However, the optimization should be applicable to any

manipulator without demanding modifications of the basic optimization.

The just described requirements enable an application on any manipulator, independently of its

number of Degrees-of-Freedom (DoF). Hence, an analysis of a manipulator with one or multiple

3

1. INTRODUCTION

Figure 1.2: Maneuverability analysis for abstractly represented tasks - Overview.

The Figure gives an overview of the relevant aspects in both main parts illustrated in Fig. 1.1. In

the context of the abstract task representation, we discuss the knowledge acquisition, the type of

knowledge and the granularity of the knowledge. As motivated in this Section, the Maneuverability

Analysis is built in a manner, such that the robot’s capabilities are analyzed with respect to efficient

actuation. It is an inter- and intra-robot comparison, which considers possible joint failures. The

potential of path optimization is analyzed, moreover. A further application area (master-slave

systems) is indicated.

broken joint(s) is possible as well. This allows an inter- and intra-robot comparison of capa-

bilities. The proposed analysis in combination with the provided abstract task representation

cannot only be used to determine, whether a robot is able to reach a certain point. It is also

possible to analyze whether and at which effort a desired task can be performed. Furthermore,

the consequences of possible joint failures can be examined to answer, e.g., the following ques-

tions: Is the robot still able to perform the required tasks? Which capabilities of the robot get

limited and which ones are lost?

We focus on the analysis of the manipulator structure. The motion capabilities of the

structure are analyzed. Consequently, we do not consider the mass, mass-distribution or other

physical properties of the robot, since such topics are out of the scope of this work.

As described, we analyze serial chain manipulators, since they are usually used for manipu-

lation tasks. The tasks are performed non-remotely by the robot itself. One could also consider

a master-slave system. There, the slave-system is operated remotely from a master-system,

which is, in turn, controlled by a human user. Therefore, the application of a human-centric

4

1.1 Motivation

Figure 1.3: Maneuverability analysis for abstractly represented tasks - Components.

The Figure shows the components for both main parts and the additionally required components.

The “estimation and representation of manipulation-relevant object properties, actions and func-

tionalities” includes a-priori knowledge as well as knowledge extracted from human observation.

It contains general manipulation-relevant information. The “object relations in the environment

for dexterous manipulations” allow to represent detailed knowledge for dexterous manipulations.

It can be acquired through human observation or through instructions from an interface (e.g.,

graphical). The maneuverability analysis is built in such a manner, that an “inter- and intra-

robot comparison with respect to efficient actuation” is possible. The “resilience in case of joint

failures” is considered in the analysis as well. The “path optimization with respect to efficient

actuation” is developed separately before it is applied to the maneuverability analysis. A further

application area are master-slave systems, which require a change of perspective from the object-/

robot-centric one to a human-centered one. Moreover, such different perspectives are discussed

in the context of robotic manipulation. Additionally, a exhaustive global estimation of inverse

kinematics of arbitrary serial chain manipulators has to be developed to enable an appropriate

maneuverability analysis.

perspective is expedient in this area, as we will explain in detail later on. Experiments on the

analysis of master-slave systems can indicate a further application area of the proposed meth-

ods. We provide basic experiments on the analysis of such remote-controlled, non-autonomous

5

1. INTRODUCTION

master-slave systems.
The relevant aspects of both main parts of this thesis (task representation and maneuver-

ability analysis) are shown in Fig. 1.2. The required components are shown in Fig. 1.3. Besides
the already described components, it depicts additionally required components.
The first one is an overview of the current state of the art in robotic grasping and dexterous
manipulation. The approaches in this field can be categorized with respect to bio-mimetic,
bio-inspired and technical approaches. Of course, there are arguments for the one or the other
perspective. The overview forms an appropriate base for the discussion of the advances of the
different perspectives.
The second additional component depicted in Fig. 1.3 is a technical requirement: An appropri-
ate estimation of the inverse kinematics of arbitrary serial chain manipulators. We motivated
already, that the analysis has to be independent of the manipulator’s structure. Hence, an esti-
mation of the inverse kinematics has to be provided, which can be applied to any manipulator
independently of its structure.

6

1.2 Related Work

1.2 Related Work

In this Section, the related work is presented. It is subdivided into the associated fields of in-
verse kinematics of arbitrary serial chain manipulators, representations of manipulation-relevant
knowledge and dexterous manipulations, path optimization, manipulator structure analyses and
analyses of master-slave systems.

1.2.1 Estimation of Inverse Kinematics of Arbitrary Serial Chain Ma-

nipulators and Human-Like Robotic Hands

In order to perform a structure analysis on any arbitrary robot, we need an appropriate es-
timation of inverse kinematics. In contrast to existing work, we aim to estimate the inverse
kinematics of an arbitrary serial chain manipulator (position and orientation). The solution has
to be general, so that it can be applied to any serial chain manipulator even under the presence
of redundancy. Moreover, the estimation has to be able to work without any pre-knowledge
about (possibly) advantageous of known (start-)configurations. We also provide an estimation
for a human-like robotic hand to complete the experiments: The object needs to be grasped
(at pre-defined points), before it can be manipulated (see also Chapter 2).

The field of inverse kinematics has been studied for a long time. Many applications and
problems depend on inverse kinematics, e.g., [8]. A general introduction to the problem of
inverse kinematics can be found in [9]. Solutions for special manipulators have already been
presented there as, for example, Pieper’s solution [10]. Moreover, solutions for special redundant
manipulators have been introduced as, for example, in [11]. Others made use of the null-space,
which accompanies a redundant manipulator, e.g., [12]. Combinations of different methods have
been developed (analytic, numerical methods; including optimization), e.g., in [13] or [14]. The
Jacobian (including its inverse, resp., pseudo inverse) was also often used as, e.g., in [15]. In
general, optimization methods have already been applied on the problem of inverse kinematics
(e.g., [16]). The determination of the inverse kinematics of parallel chain manipulators has been
presented as well (e.g., [17]). Inverse kinematics and path planning were integrated in [18] to
move a manipulator arm from an initial configuration.

The concept of the virtual finger was originally used in the context of mapping a human
grasp to a grasp for a robotic hand [19]. We adapt the original idea to our approach for the
estimation of inverse kinematics. We just use a thumb and one virtual finger. In our case, the
virtual finger is a combination of the real fingers without the thumb.

As already motivated, we aim to estimate the inverse kinematics of an arbitrary serial chain
manipulator and an arbitrary human-like hand (resp., position and orientation). The solution
has to be general, so that it can be applied to any serial chain manipulator, resp., robotic hand
even under the presence of redundancy. At first, we want to estimate whether a solution exists.
If one or more solutions exit, we want to determine them. Otherwise, we are interested in a
solution close to the goal. We do not assume any pre-knowledge about (possibly) advantageous

7

1. INTRODUCTION

of known (start-)configurations. Nevertheless, local minima may not cause any problem. In
contrast to local approaches (e.g., null-space), it has to be possible to find several optima, even
if they are significantly separated. Although local optimizer can possibly find a solution of
inverse kinematics, we need to apply a global optimization method to achieve the previously
described aims. Additionally, the computation time should stay within a reasonable boundary.

It is important to distinguish our approach from other fields like path planning. We do not
aim to, e.g., find a path between two points or analyze the entire workspace of the robot. We
are interested in the discrete analysis of inverse kinematics for one or more given points.

1.2.2 Estimation and Representation of Manipulation - Relevant Ob-

ject Properties and Actions from Human Observation

As we motivated at the beginning, we are interested in an abstract representation of manipulation-
relevant object properties and actions. Rather than storing observed x,y,z-trajectories, we want
to extract the characteristic properties of an observed manipulation. We use an object-centric
perspective. It allows not only a knowledge transfer to any robot, but, also the reusage of
knowledge in similar situations (see also Section 3.1).

In general, the estimation and representation of knowledge is related to three fields of re-
search: Artificial Intelligence in the context of knowledge representation, Computer Vision for
the observation of humans, and Robotics, in which the knowledge is applied.

In the field of Artificial Intelligence, different representations of knowledge exist. In [20],
the environment of the robot was categorized according to the properties of task environments.
The categorization can be applied as follows.
The environment is partially observable to the robot, since not all relevant aspects of manip-
ulation properties can be observed all the time, e.g., because of occlusions or noise. The envi-
ronment appears stochastic to the robot, since the environment is partially observable and the
model of the world is non-complete. The robot can detect known and, therefore, deterministic
observations. Moreover, the robot has to be able to handle unknown (stochastic) observations.
In a real world problem, the robot should, in fact, not just handle such observations. It should
make use of it to improve its model of the environment.
Furthermore, the robot’s environment is dynamic, since, e.g., a human can change it. The
changes in the environment happen continuously, leading to a continuous-state and continuous-
time problem. Due to the dynamic environment, a static model is not enough to deal with
such changes. Therefore, the permanently non-complete model has to be extended, using the
learning capabilities of the system.
A lot of actions in the environment depend on other actions. Hence, the robot acts in a en-
vironment of sequential events. The system can make use of this property, e.g., during the
observation of procedures of human actions. The dependencies of manipulation sequences on
each other are not examined in the representation.
The multi-agent environment of the robot is used for the acquisition of new knowledge through

8

1.2 Related Work

the observation of an other agent.

To sum up, the robot has to handle new information and unknown circumstances, (contingency

problem, [20]). The aim is to provide a representation, which allows (1) to detect new infor-

mation efficiently and (2) to represent the knowledge in manner, such that the detected new

information can be utilized.

The knowledge, which the robot attains, can be seen as constraints, which the robot has to

consider for its own manipulation afterward.

In the field of workflow acquisition and analysis, Hidden Markov Models (HMMs) [21] have

been applied often. Padoy et al. [22] proposed Workflow-HMMs for workflow monitoring based

on 3D motion features. The analysis of a workflow sequence, which is split into segments, is also

of interest here, but the focus is on the analysis of the manipulation properties of the object

itself and its functionality in the environment. Reiley and Hager [23] used HMMs for surgical

skill evaluation of robotic minimally invasive surgery. Discrete HMMs were built at task level

and at the level of surgical gestures. The analysis of the different skill levels was based on the

check of the efficiency of the procedure planning. We also analyze gestemes, but in the context

of motion characteristics in object manipulation. Webel et al. [24] used HMMs for the workflow

acquisition of assembly skills, but they classified properties related to the human hand and not

the object itself. Another observer-centric approach was presented in [25], in which HMMs were

used for action representation and recognition of action primitives.

Object detection as well as object tracking are important elements for the acquisition of

knowledge. They are related to the field of Computer Vision. Even though, they are not the

focus of here, they have to meet certain criteria. The object detection and recognition has to

be done in a manner, such that the object is classified according to the manipulation-relevant

properties of the object. In contrast, a pattern or color based recognition does not consider

these properties. Hence, the object recognition approach in [26] is considered here. The tracking

algorithm has to be able to observe the object during a human demonstration. Therefore, it

has to be real-time capable. We use the algorithm presented in [27].

Extensive work exists in the field of imitation learning. In [28], HMMs were used for imi-

tation learning of arm movements in manipulation tasks for humanoid robots. There, the aim

was a human-like reproduction of the motions. Moreover, further non-object-centric approaches

have been presented. They include, e.g., the imitation/ learning of motor skills or the imita-

tion of movements with Dynamic Movement Primitives (DMP), which encoded directly the

trajectories themselves [29], [30]. Approaches related to Reinforcement Learning [31] were also

applied in imitation learning. They utilized the observations of humans as reward [32], [33].

Calinon et. al used imitation learning, in order to learn control strategies [34], [35]. HMMs and

Gaussian Mixture Regression (GMR) were deployed for the imitation of human motions [35].

In [34], they considered the object’s relative position, but they were reproducing a certain task

using a dimensionality reduction method (Principal Component Analysis) and mixture models

for the generalization of variations in the given task. An object-centric model was presented

9

1. INTRODUCTION

in [36]. It integrated variations along the object’s trajectory (by using the corresponding mean

and variance of multiple demonstrations).

In contrast to the described work in the field of imitation learning, we do neither aim to imitate

the humans demonstrations nor do we aim to encode the trajectories as, e.g., DMP or the model

in [36]. We want to provide a more general representation of object properties and their func-

tionality in the environment, in order to get a further understanding of the knowledge about

different tasks and environments. The objects themselves are in the focus. Hence, we provide

an object-centric approach. This aim goes beyond imitation learning. We want to generalize

the observation to cope with variations in repetitive human actions.

The intention in imitation tasks was addressed by Jansen and Belpaeme [37]. They trained

their agent in a grid with blocks in a computer simulation. In contrast, our work deals with more

complex, real-world environments. Furthermore, our system needs much less training instances

than the one presented in [37]. A real-world example of capturing the user’s intention about

sequential task constraints was presented in [38], [39]. Their system reasoned about the existence

of sequential dependencies of operations. Moreover, the system was refined incrementally in [39].

Here, we want to attain a further understanding of the object’s functionality itself. This offers

possible operations to the robot later on. The knowledge can be refined incrementally.

In order to achieve a further understanding of the object’s functionality, the object’s motion

has to be analyzed. Basic motion properties of an object were analyzed for a child’s play in [40].

The proposed system goes further, since the motion properties related to the possible states of

the object and its function in an environment are of interest. The work in [41] is closer to the

proposed object-centric approach, even though, it was in the context of imitation learning. It

took into account the effect on the object (position, orientation). The object properties and

its state are also of interest here. However, the acquired knowledge is a significant difference

between the approach in [41] and ours. We are interested in the manipulation properties

directly related to the object and, furthermore, the objects functionality in the environment.

Function from motion was analyzed in [42] for “primitive motions”, which were translations

or rotations relative to the main axes of primitive objects. Our approach goes further to

more and more general manipulation-relevant object properties. Additionally, we focus on

functionality in context of the environment. In [43], functional roles of objects like “pour out”

have been introduced explicitly. These roles do not refer to the object’s properties, which are

directly observable during manipulation. Moreover, it is important to distinguish our analysis

of the object’s functionality observed from human demonstrations from reasoning about shape

descriptions for object functions [44].

It should be to pointed out, that the reconstruction or the analysis of the environment,

like [45], is not of interest. We focus on the objects and their functionalities in the environ-

ment. In [45], the relative/ absolute position of objects to each other has been used for the

consideration of the environment in manipulation properties. A perceptual space (for the color

and shape object properties) and a situation space (for the displacement of the objects in the

10

1.2 Related Work

scene) were introduced in [46]. In contrast, the object properties in our representation are
beyond the pure visual appearance of the object, since we are interested in the manipulation-
relevant object properties. Furthermore, the Functionality Map does not deal with the object’s
relative position to each other. It aims to understand the objects and their functionalities in
the environment.
Moreover, an analysis or a semantic labeling of the entire scene is not our aim. In [47], the
semantic labeling of spatial entities was done for the entire scene. We reduce the analysis to
the object of interest. This is also a difference to [48], which dealt with spatial and visual
appearance based on navigation and mapping.

Other related areas are planning and navigation. For example, [49] provided a representation
for constraint manipulation planning of programming by demonstrations of certain tasks. In
contrast, the representation in this Section is more general. It does not aim to acquire or to
represent knowledge for a specific task or to plan a certain task.

In the context of robot navigation, surprise-based learning has been applied [50], [51]. There,
basic visual features (color matching) were used for a prediction model based on rules (logic)
in a static environment. Our approach works on more general object properties, which are
relevant for manipulation.

1.2.3 Representation of Object Relations in the Environment for Dex-

terous Manipulations

We also develop a representation for dexterous manipulations. Such manipulations require
a much more detailed knowledge in comparison to the already described representation of
manipulation-relevant object knowledge (related work in Section 1.2.2). Usually, a manipulation
aims to achieve a desired goal state in the environment. We use a contact-state perspective to
represent such states (see also Section 3.2).

The changing contact state (sometimes also contact ”mode“) between an object and a
robotic hand has been analyzed multiple times. For example, in [52], [53] [54] and [55], a ran-
domized manipulation planner was presented for a multi-fingered hand and switching contact
modes. The contact state between a robot and an object (passive, hybrid and active closure)
was discussed in [56]. A contact space dynamic model and active joint space model were devel-
oped in [57]. A manipulation of an object using the entire body was discussed in [58]. Whole
body contact manipulation methods were presented in [59], [60]. For example, the method
in [60] allowed, e.g., the physically demanding task of transferring a patient from a bed to a
wheelchair.
Moreover, approaches regarding a contact between an object and its environment have been pro-
posed. For example, the kinematics analysis of such a manipulation was presented in [61]. A con-
tact state transition graph for graspless manipulation was proposed in [62]. Srinivasa et al. [63]
considered the contact between the robot and the object as well as the contact between the
object and the environment in control synthesis for dynamic contact manipulation.

11

1. INTRODUCTION

In contrast to existing work, we do not focus on the contact between a robot and its en-

vironment, respectively, objects. Our perspective has the aim to describe the environment by

the contacts within the environment. In contrast to assembling tasks, we present a general

representation for dexterous manipulation in the environment. Just the current and the de-

sired contact state descriptions are known here. This distinguishes our work also from [64].

There, sequential constraints of tasks were learned through a Programming by Demonstration

approach. The process of the manipulation itself was in the foreground there. Our starting

point is the aim state of the manipulation. Moreover, we focus on a representation for very

dexterous manipulations.

Possible applications of our approach include dexterous manipulations in medical applica-

tions. A good overview of surgical and interventional robotics can be found in [65], [66], [67],

[68] and [69]. The broad range of the area becomes, e.g., clear in special issues like in [70].

An abstract representation of surgical tasks was, e.g., suggested in [71] based on [2] (for [2],

see also Section 1.2.2). It is important to distinguish our work from the aim of surgical skill

teaching in general. Reiley and Hager [23] used HMMs for surgical skill evaluation of robotic

minimally invasive surgery. Discrete HMMs were built at task level and at the level of surgi-

cal gestures. The analysis of different skill levels was based on an efficiency check of procedure

planning. Padoy et al. [22] proposed Workflow-HMMs for monitoring the workflow based on 3D

motion features. They used a hierarchical HMM with phase-probability variables, in order to

model the dependencies between distinct phases at the top level and to model the dependencies

within individual phases. A statistical modeling and recognition method for surgical workflow

was presented in [72]. In [73], a Human Machine Collaborative (HMC) system was proposed to

perform portions of surgical tasks autonomously and other parts manually. HMMs were used to

learn subtasks, which were performed autonomously later on. Konietschke et al. [74] presented

a multi-modal training platform for minimally invasive robotic surgery. The presented training

included skills on workspace constraints of the console as well as on workspace constraints of

the executing manipulator.

Our representation is independent from the deployed robotic system. The authors in [75]

validated robotic surgery training assessment across different training platforms. We do not

focus on a certain execution of a task with a certain robot, but on the abstract description

of a dexterous manipulation task itself. Our aim is an abstract representation of dexterous

manipulations in general. Medical procedures are one area of possible applications. It is im-

portant to point out, that this description is not considered to be used directly for automated

surgical operations. It is an abstract representation of required capabilities for a dexterous

manipulation.

12

1.2 Related Work

1.2.4 Path Optimization for Abstractly Represented Tasks with Re-

spect to Efficient Actuation

As motivated in Section 1.1, a path optimization with respect to efficient actuation is required

in the context of abstractly represented tasks, since we want to analyze the potential of path

optimization in the case of joint failures. The optimization has to be able to utilize the freedom

in path planning which accompanies with the abstract task representation. It is important to

point out, that we do not aim to search a path (e.g., [76], [77]). We want to optimize a path of

an abstractly represented task with respect to efficient actuation.

Path optimization has been done with respect to different criteria. For example, points on

the path were optimized to increase the distance to obstacles in [78]. Kinematics singularities

were considered in [79]. Smith et al. proposed an optimal path planning for surveillance

with temporal-logic constraints [80]. Other authors included dynamics in the optimization

process. In [81], the authors dealt with the complicated dynamics of large space manipulators.

Rieswijk et al. incorporated actuator and jerk constraints in [82].

If we want to optimize the path with respect to efficient actuation, a solution with the

minimal distance between the start and end points in 3D space could be an intuitive solution.

As we will show in our experiments [3] (see Section 7.4.1), the shortest path is not necessarily

the most efficient one with respect to efficient actuation. Hence, we propose an exhaustive path

optimization with the Elastic Power Path concept.

The name of our concept “Elastic Power Path” might cause an association with the “Elastic

Strip Framework” [83], especially in the context of path planning. Both concepts have the

elasticity of the path in common. However, the aims are different. We want to use the elasticity

of the path to improve the efficiency in actuation. In [84], [85], a minimization of energy (the

instantaneous kinetic energy of the robot) was processed among others. A special Jacobian

was used there. In contrast, our optimization is independent of any Jacobian J . Moreover, δx

and δθ are unknown (e.g., in δx = J(θ)δθ). Furthermore, we use a global optimization method

to overcome local minima. The aim of our path optimization is efficient actuation under the

consideration of the abstract characteristic properties of a desired manipulation.

1.2.5 Structure Analysis of Manipulators

This thesis aims to provide a general, task-specific analysis of manipulator structures with

respect to efficient actuation. Such an analysis has not been presented yet. In the field of

manipulator structure analysis, the Jacobian Matrix is often incorporated. For example, the

manipulability measure in [86] was based on the determinant of the Jacobian Matrices. Kim

and Khosla [87] investigated further in the Jacobian as dexterity measure of a manipulator.

They introduced a measure of isotropy which can be used to develop a manipulator close to

an isotropic configuration for a given position in 3D space. Reachability and joint limits were

considered for the kinematic design of serial link manipulators in [88].

13

1. INTRODUCTION

Asada [89] proposed a dynamic analysis of a manipulator’s workspace based on a graphical
representation of inertia ellipsoids. Lee [90] compared manipulability ellipsoids and manipula-
bility polytopes. The Dynamic Capability Equations in [91] described the acceleration and force
capabilities of a robot at a particular configuration under the consideration of the limitations
of the manipulator’s motor torques. The translational and rotational quantities were mapped
into representations of actuator torques with same units.

Dimensionality reduction techniques were presented for different robotic applications as,
e.g., in grasping. In [92], a dimensionality reduction was applied on hand-independent dexterous
robotics grasping. The spatial and temporal context of human grasping actions was studied
in [93].

In contrast to the described approaches, we aim to analyze any arbitrary manipulator with
respect to the change of the efficiency of its actuation under possible joint failures in the context
of an abstractly represented task. We are interested in (1) the inter- and intra-robot analysis of
the efficiency of the robot’s motion, (2) the variety of directions in which the end-effector can
be moved efficiently and (3) the capability to change the orientation of the end-effector without
a change in position. The manipulator can have an arbitrary number of joints. Therefore, it
could be highly redundant, too. It is important to notice, that we do not aspire to model torque
bounds or something similar. The analysis of parallel manipulators (e.g., [94]) is not our aim,
we focus on serial link manipulators.

1.2.6 Analysis of Master-Slave Systems

As we mentioned already at the beginning, we want to apply the proposed analysis of ma-
nipulator structures in a further application area: Master-slave systems. A general overview
of teleoperation systems can be found in [95]. Yokokohji and Yoshikawa [96] discussed the
analysis and design of master-slave teleoperation systems with respect to stability and trans-
parency in general. They focused on an “ideal response” in the context of large time delay
in teleoperation (e.g., [97]). Stability and transparency were desirable there, even under time
delay. Transparency is the correspondence between the positions of the master and the slave
system [96], [98]. Yokokohji and Yoshikawa [99] analyzed also the maneuverability and stability
of micro-teleoperation systems. Lawrence [100] dealt with stability and transparency in bilat-
eral teleoperation under significant communication delays. A local force feedback to the human
user has, e.g., been applied in [101].

The authors in [102] made use of a redundant slave manipulator to guide the user away
from singularities in a teleoperated application. The performance of a redundant slave robot
in teleoperation was analyzed in [103]. An overview of the state of the art in telemanipulation
for remote minimally invasive surgery as well as requirements for an ideal telemanipulator were
given in [104]. A detailed background of robot-assisted minimally invasive surgery systems can
be found in [105]. The human, resp., the convenient usage of the system for the human user is
the most important aspect in our analysis. Hannaford [106] pointed already out the importance

14

1.2 Related Work

of the consideration of the human operator in the analysis of teleoperation systems. His work
focused on stability and performance tradeoffs in the context of time delay.

The related work in the area of surgical and interventional robotics including surgical skill
teaching has already been presented in Section 1.2.3. The following paragraph is just shown for
completeness within this Section. A good overview of surgical and interventional robotics can
be found in [65], [66], [67], [68] and [69]. The broad range of the area becomes, e.g., clear in
special issues like in [70]. An abstract representation of surgical tasks was, e.g., suggested in [71]
based on [2] (for [2], see also Section 1.2.2). It is important to distinguish our work from the aim
of surgical skill teaching in general. A review of methods for the objective evaluation of surgical
skills can be found in [107]. Reiley and Hager [23] used HMMs for surgical skill evaluation of
robotic minimally invasive surgery. Discrete HMMs were built at task level and at the level
of surgical gestures. The analysis of different skill levels was based on an efficiency check of
procedure planning. Padoy et al. [22] proposed Workflow-HMMs for monitoring the workflow
based on 3D motion features. They used a hierarchical HMM with phase-probability variables,
in order to model the dependencies between distinct phases an the top level and to model
the dependencies within individual phases. A statistical modeling and recognition method for
surgical workflow was presented in [72]. In [73], a Human Machine Collaborative system was
proposed to perform portions of surgical tasks autonomously and other parts manually. HMMs
were used to learn subtasks, which were performed autonomously later on. Konietschke et
al. [74] presented a multi-modal training platform for minimally invasive robotic surgery. The
presented training included skills on workspace constraints of the console as well as on workspace
constraints of the executing manipulator. The authors in [75] validated robotic surgery training
assessment across different training platforms.

In contrast to existing work, we do not aim to optimize the performance of the human for
one existing system. We provide a framework for the analysis of the human’s performance on
arbitrary systems with respect to convenient usage. Hence, we do not analyze the trajectory
performed by a human, but the human’s motions with respect to the work the human has to
perform. Medical procedures are one area of possible applications. Moreover, we do not work
in the area of autonomous surgery as, e.g., [108]. The authors in [108] discussed the formal
verification of properties of autonomous surgery devices as well as the formal verification of a
simple puncturing action plan.

Nisky et al. [109] presented a framework for the analysis of surgeon arm posture variability.
Their work has a similar direction as ours. However, they analyzed surgeon arm posture
variability in relation to the performance with respect to stabilization and variability in hand
trajectory change as well as the end-point error. Our work focuses on the overall work which
is performed by the human.

15

1. INTRODUCTION

1.3 Research in Dexterous Robotic Manipulation with Re-

spect to Bio-mimicry, Bio-inspiration and Technical

Approaches

The aim of this thesis is the analysis of serial chain manipulator structures with respect to
efficient actuation in the context of abstractly represented tasks. The underlying perspective
is mainly object-centric, resp., robot-centric, depending on the respective component of the
analysis. This is a significant difference to anthropocentric approaches. Many approaches in
robotic grasping and dexterous manipulation are inspired by the human’s comprehensive ability
to grasp and manipulate objects with his/ her hand. Of course, there are arguments for the one
or the other perspective. Hence, we want to discuss the advances of bio-mimetic, bio-inspired
and technical approaches. First, we provide an overview of the current state of the art in robotic
grasping and dexterous manipulation with respect to the different perspectives. It forms an
appropriate base for the discussion. In order to keep the overview at a reasonable size, we put
our focus mainly on the most recent developments in the last years.
We choose the topic “robotic grasping and dexterous manipulations” for the discussion, since
this thesis is associated with this field. Moreover, grasping and manipulation capabilities are an
important and demanding field in robotics. They enable an interaction with the environment as
well as cooperation with humans. Such interactions require the consideration of many different
aspects, e.g., regarding physical capabilities and psychological influence. The information about
the environment is also important in the context of interactions. Many questions arise: Which
(possibly unknown) objects are in the scene and how are they related? How to grasp and handle
the object? How does the human act? Is the environment changing?
The available information about the environment can be incomplete, ambiguous and complex.
However, humans have sophisticated grasping and dexterous abilities. The acquisition of similar
abilities is an important step to deploy robots in daily-life of humans.

The just mentioned human’s comprehensive ability to grasp and manipulate objects with
his/ her hands inspired many approaches in robotic grasping and dexterous manipulation. Such
inspirations affect not only the hand’s physical structure, but also its capabilities. At the same
time, there are approaches and physical structures which are purely or partly based on technical
requirements. These approaches have a different perspective than bio-mimetic and bio-inspired
approaches. The technical approaches use the desired final functionality as starting point to
develop possible solutions.
The chosen perspective of the approach can also depend on the question, whether really a
grasping, resp., manipulation task is present. If a movement of the hand is desired for another
purpose like the performance of a gesture in human-robot communication, one could argue,
that a human-inspired type of approach could lead to a significant advantage. Our focus is
here on grasping and manipulation themselves. This can, of course, include an implicit type of
communication through a cooperation between the robot and a human. Hence, we give a brief

16

1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry,
Bio-inspiration and Technical Approaches

overview of psychological aspects in human-robot interaction and include it in our discussion.

If one considers haptic interfaces, which are used to control a robot remotely (e.g., [110]),

the requirements differ from the ones on robots for non-remote grasping and manipulation

actions. We do not cover haptic interfaces here, we focus on non-remote grasping and dexterous

manipulation tasks in our overview and discussion.

We distinguish two different types of approaches. The first type consists of bio-mimicry

and bio-inspired approaches, which directly copy ideas or structures from nature or which are

inspired by nature. Approaches which are build on technical requirements form the second

type. We give an overview of the current state of the art in robotic grasping and dexterous

manipulation with respect to both described types.

Moreover, we want to compare research in dexterous robotic manipulation with another

technical field which faced a similar situation regarding the types of approaches. We are inter-

ested in the developments and the experiences in the other field. At least some research results

of the other technical field have to be in successful daily use today. The approaches can, then,

be assigned to one or more types. We choose the design of airplanes for comparison. The design

of airplanes fulfills the above requirements, since there were different approaches in the history

of aviation, which can be assigned to one (or more) of the described types (further details in

Section 1.3.5).

Overviews and surveys about robotic manipulation have already been presented. For exam-

ple, Okamura et al. [111] gave an overview of dexterous manipulation. They described already,

that two different types of approaches can be observed: While some researchers focused on an

anthropomorphic approach, others pointed out a fundamental difference between human and

robotic hands. Similarly, Bicchi summarized the state of the art in the field of robot hands and

depicted a basic distinction between human-like hands and “minimalistic hands”, e.g., in terms

of the least number of actuators [112].

In contrast to existing work, we give a current overview of grasping and dexterous manipulation.

Moreover, we want to compare the development in the area of grasping and dexterous manipu-

lation with the development in another technical field. In [113], the state of robotics today was

generally compared with the state of computers in the 1970s. In contrast to computers, grasp-

ing and dexterous manipulation require the consideration of advanced physical “interactions”

with the environment. Hence, we want to compare grasping and dexterous manipulation with

a technical field, which also needs to deal with such an interaction and which is meanwhile part

of our daily-life: Flying. We focus on a comparison with respect to bio-mimicry, bio-inspiration

and purely technical approaches.

First, we give an overview of the current state of the art in robotic grasping and dexterous

manipulation with respect to bio-mimicry/ bio-inspiration and technical approaches. In order to

keep the overview at a reasonable size, we put our focus mainly on the most recent developments

in the last years. The overview includes the following subfields: physical structures of robotic

hands, grasping and manipulation approaches, usage of sensors and analyses of psychological

17

1. INTRODUCTION

aspects in human-robot interaction. Afterward, we introduce another field of engineering to

illustrate why bio-mimicry and bio-inspiration are not necessarily the best way to design tech-

nical systems: The design of airplanes. Hence, the history of aviation is briefly described. The

current state of the art in robotic grasping and manipulation is discussed thereafter.

1.3.1 Physical structure of robotic hands

The physical design of robotic hands can already be assorted in human-like hands and technical

hands. In some cases, both types of approaches, bio-inspiration and technical requirements, are

included in the construction. We, then, assort the hands according to its main appearance and

refer to the bio-inspired part, respectively, technical part.

First, we give an overview of human-like hands, before the technical hands are described.

The hands of the widely known ASIMO [114] have respectively 2 DoF [115] to grasp objects.

Schunk developed in cooperation with DLR and HIT the SAH anthropomorphic hand [113].

The hand has four fingers with sensors to determine force and position values. The Michelangelo

hand of Otto Bock [116] aimed to recreate as many hand functions as possible in a prosthe-

sis. The DLR hand arm system [117] was designed to reach its human archetype regarding

robustness, dynamic performance and dexterity. However, they did not simply copy the human

hand, but they based the design on abstract, fundamental functionalities of the human hand.

A special focus on the functional analysis of the thumb was presented in [118]. In contrast to

a pure mechanical copy of the thumb, guidelines for a design regarding the functionality of the

thumb were presented. The authors in [119] built an anthropomimetic musculoskeletal upper

torso, which mimics the mechanical structures of the human body. It includes a hand with one

artificial muscle to close and open the hand.

The physical structure of other robotic hands has been based on technical requirements.

Dollar and Howe [120] presented a simple and robust grasping system. It consists of a four-

fingered hand. Respectively two fingers were arranged parallel to each other. The resulting

two pairs of fingers were opposed to each other. The entire hand was only driven by a single

actuator. Nevertheless, the system was able to deal with uncertainty which accompanies un-

structured environments. It made use of compliance to achieve adaptability and robustness in

robotic power grasping. Such a design makes precision grasping and in-hand manipulation more

difficult. An in-hand manipulation with an underactuated elastic hand has been demonstrated

in [121]. Underactuated fingers were used in [122] to grasp very thin objects from flat surfaces

by flipping the objects. The corresponding single steps were similar to a human’s action. A

robotic hand which differs significantly from others robotic hands was built at TU Berlin [123],

[124], [125]: The hand was mainly made of rubber and it was actuated by a pneumatic system.

The authors made use of the advantage of compliance to grasp, e.g., bottles or glasses, while

still using simple control.

18

1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry,
Bio-inspiration and Technical Approaches

1.3.2 Grasping and manipulation

Similarly to the physical design of robotic hands, grasping and manipulation approaches can

be categorized in human-like ones and technical ones.

We start with the anthropocentric approaches. A lot of work exists in the field of imita-

tion and learning from human observation. Calinon et al. used imitation learning, in order

to learn control strategies [35]. Approaches related to Reinforcement Learning [31] were also

applied in the context of imitation learning. They utilized the observations of humans as re-

ward [32], [33]. The mapping of human grasps to manipulator grasps is, e.g., addressed by

Kang and Ikeuchi [126]. They made use of the concept of the virtual finger [127]. A metric for

the evaluation of human-to-robot mapping of grasps was based on this concept [128]. Ciocar-

lie et al. [92] utilized results in neuroscience research for hand-independent dexterous robotic

grasping. They reduced the high number of DoF to a lower dimensionality by introducing eigen-

grasps. Eigengrasps are a number of basis vectors, which determine a low dimensional subspace

of the DoF space. Their approach was bio-inspired, but the application was not restricted

to human-like robotic hands. Romero et al. [93] studied how different grasps are performed.

They distinguished between the actual grasping phase and the approach phase of the grasp.

The authors in [129] used a fully data-driven approach to generalize human grasping for a

multi-fingered robotic hand. After learning efficient grasp representations from human demon-

strations, the contact points were wrapped onto new objects. Synchronized reach-and-grasp

movements were optimized before execution.

The just described approaches have an anthropocentric perspective. Object-centric and

robot-centric approaches have been presented as well. For example, the effects on a manipulated

object (position, orientation) were taken into account in [41]. The object properties and its

state were also analyzed there. In [2] (see Section 3.1.2), a clear object-centric perspective

was used. Not only information about the manipulation properties of the object was obtained,

but also the object’s functionality in the environment. A robot-centric perspective has been

applied in [3], [5] (see Chapter 4) for the analysis of the efficiency of the generated motions (see

Fig. 1.4). Ma and Dollar [130] focused on more generalized tasks and object-centric definitions

of dexterity. They discussed arm vs. hand dexterity and provided a classification of in-hand

manipulation without a constraint of anthropomorphism. For a two-armed manipulation task,

the task structure was exploited in [131]. These bimanual operations are an additional challenge

due to the paragraphization and relation of both involved arms.

1.3.3 Usage of sensors in grasping and manipulation

Perception plays an important role in robotic grasping and dexterous manipulation. It enables

the necessary interaction with objects and the environment, since information about the envi-

ronment is provided. If the perception is incomplete, the system needs either pre-knowledge or

an approach which allows to deal with the incomplete information.

19

1. INTRODUCTION

Figure 1.4: Paths with different properties for a manipulation between two areas. A

robot-centric perspective has been applied in [3] (see Section 4.1): Paths with different properties

(e.g., motion shapes) are shown for a manipulation between two areas (yellow). Which path should

be chosen to achieve efficient actuation during the manipulation?

In general, many different types of sensors exist as, e.g., visual, acoustic or pressure sensors.
In the context of robotic grasping and manipulation, not all possibly available sensors are
usually used.

Similarly to human’s eyes, visual sensors can observe a scene during the execution of the
robot’s actions or during demonstrations by a human user. It is important to notice, that the
observation of a human’s action does not necessarily mean, that the action is directly imitated.
Instead, the knowledge can be extracted at a much more abstract level as in [1], [2] (see Sec-
tion 3.1.1). The less pre-defined the environment is, the more required the information from
sensors and the more necessary more autonomous systems get. For example, piles of unknown
objects were grasped in the context of an empty the basket-scenario in [132]. There, the shape
based learning approach needed to deal with incomplete point cloud data. An interaction with
a cluttered environment was presented in [133], where unstructured groups of objects were sin-
gulated through interaction.
The choice of the placement of the visual sensor can be inspired by the place of the human’s eyes
or by the requirements of the desired task. A sensor placed at the upper part of the robot [134],
[135], [136] is clearly inspired by the human’s eyes’ position. This enables an overview of a
larger area. In contrast, a camera can be used to observe a very small area. For example, the
camera on the forearm of the robot Baxter [136] enables a close view of objects. Obviously,

20

1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry,
Bio-inspiration and Technical Approaches

the forearm position of camera was based on technical requirements and not inspired by the
human’s eye’s position.

Haptic feedback is another important way to perceive the environment. This enables inter-
action with objects and humans. For example, the DLR-Hand II [137] has a six-dimensional
finger tip force torque sensor on each finger (strain gauge sensor). Similarly to a human’s skin,
artificial skin was, is and will be developed as, e.g., in [138], [139].

A robotic hand can also contain sensors in the hand, and not only sensors on, respectively,
outside the hand. For example, sensors in the SAH anthropomorphic hand [113] enable the
measurement of forces and torques. Another example is a force-torque sensor, which has been
placed in the wrist of the robot ARMAR-III [140].

Sensors are usually deployed to get more information about the environment and possible
uncertainties. A more implicit way of dealing with uncertainty in unstructured environments
is the usage of compliance as Dollar and Howe [120] showed.

1.3.4 Psychological aspects in human-robot interaction

Of course, psychological aspects can play an important role in human-robot interaction. One
could argue, that a human-like behavior is more predictable and, hence, more acceptable for
a human user. The opposite argument is anxiety which can arise due to a really human-like
robot.

In this paragraph, we do not limit ourselves to robotic hands. General human-robot inter-
actions provide us a much larger range of studies, which is necessary here. The analyzed psy-
chological aspects vary between the studies. For example, anxiety toward robots was measured,
e.g., with respect to human-like robots [141]. Depending on the study, the term “human-like”
is related to different properties of the robot, e.g. its behavior or its appearance. Many stud-
ies in this area suffer from a small number of participants, the lack of several real robots or
non-significant differences in the preference of human-like and non-human-like robot properties.

A (non-representative) group of people was asked to grade properties of (imagined) robots
on a “positive-negative” scale in [142]. A machine-like robot appearance seemed to generate
more positive feelings than a human-like or an animal-like appearance. The robot was seen as
a useful tool, which should, e.g., be easy to use, be save and behave correctly. A robot which
acted too personally seemed too be less liked in public [143]. In [144], expectations of younger
and older adults were examined. The participants had to imagine a domestic robot and to fill
out a questionnaire. The analysis of the questionnaires, which were sent back, showed, that the
imagined robots were seen as helpful, purposeful devices and less as socially-intelligent devices.
Other aspects like the cultural background or human attributes as, e.g., sex and age of the
user, were considered in other studies, as for example in [145], [146]. Breazeal [147] pointed
out the importance to consider the perspective of the human and the robot. She argued,
that benefits from endowing a robot with social skills and capabilities are beyond the interface
value for an interacting person. Kanda et al. [148] showed, that the difference in appearance

21

1. INTRODUCTION

of two divers humanoids did not affect the verbal behaviors, but the non-verbal ones such as

distances. In a further, large study, Kamide et al. [149] identified nine factors for the evaluation

of general impressions of humans regarding humanoids. The factors were extracted based on

eleven existing humanoids.

In the case of gestures in human-robot communication, an imitation of the human gestures

could be useful to enable an intuitive communication for the human with the robot. This

nearby idea does not necessarily seem to be true as [150] showed.

In general, psychological aspects in human-robot interaction are complex, intricate and

depend on many factors. Hence, an overall answer regarding a preferable robot’s appearance

and behavior in general (including different cultures, applications, etc.) does not seem to be

possible, at least not at the moment. Moreover, an ethnical aspect has to be discussed in this

context (see, e.g., [151]).

1.3.5 Relation of Bio-Mimicry and -Inspiration to Technical Approaches

Using the Example of the Design of Airplanes

To better illustrate why mimicry is not necessarily the ideal way for technical systems, let

us compare it to another field of engineering: The design of airplanes. In order to provide a

feasible comparison, we need an overview of the history of aviation with respect to bio-mimicry,

bio-inspiration and technical approaches.

A lot of literature can be found about the history of aviation. We build up this overview

(including all information, conclusions, etc., in this Section 1.3.5) based on [152], [153], [154],

[155], [156], [157], [158] and [159]. Our aim is a general overview of the history of aviation.

Hence, we do not discuss inconsistent information in the references (e.g., dates). We choose the

information, which is given in most of the references.

1.3.5.1 Early attempts

People have been dreaming of flying for a very long time. Today, it is part of the daily-life of

many people. Hence, it seems, that the dream of flying became true. However, if one considers

early ideas of flying, e.g., Icarus in Greek mythology, it becomes clear, that people did not

imagine something like today’s airplanes back then. They thought about a flying mechanism

like a bird with feathers and beating wings.

In contrast to these bio-inspired ideas, approaches based on technical designs had been

suggested. Such designs were, e.g., machines, which should fly, since they can get lighter than

air: Balloons. The disadvantage of these types of aircraft is obvious: The more weight should

be carried, the larger the balloon has to be.

Sir George Cayley observed accurately the flight of birds. Moreover, he performed systematic

experiments as well as mathematical computations. The substantial progress in his work were

wings, which produced an ascending force and not a propelling force any more. To conclude, his

22

1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry,
Bio-inspiration and Technical Approaches

work was based on bio-inspiration and technical requirements. Based on Cayley’s publications,

Samuel Henson worked on airplanes which were actuated by steam-engines. Even though, he

found temporary funding for his company at the beginning, he did not find further funding.

The limitation of actuation to steam-engines was a general problem at this time.

Clément Ader was the first one who claimed, that he has solved the problem of motor-

aviation. His steam-powered Éole made a 50 m-long hopper. Even though, it was a beginning,

it was not a long-term, steered flight.

Most of the developers in motor-aviation did hardly think about the way how the machine

would fly after the take-off. In contrast, representatives of the gliding flight approaches aimed

to achieve further progress through flying experiences. Otto Lilienthal was the most prominent

“birdman”. He built different types of wings, which he wanted to use to fly like a bird. Lilien-

thal’s work was much more scientific and useful than it seemed at first. He concluded from

the precise observation of birds, that a curved wing is advantageous for ascending forces. His

practical work showed him, that fixed wings are much more useful than beating wings. His

machines were able to fly. In general, Lilienthal performed a lot of flights. The machines did

not have any steering system, hence, he had to throw his body into different directions to keep

the balance in the airflow. Lilienthal died during one of experiments. Nevertheless, others were

inspired by his work. Moreover, he had shown the importance of steering systems. Lilienthal’s

work was based on a combination of bio-inspiration and practical experiments.

1.3.5.2 The first flights

The work of the Wright brothers was very systematic from the beginning. They studied existing

work of Cayley, Lilienthaland others. They focused on steering, which appeared to be a hardly

noticed area. In contrast to previous work, they assumed, that flying an airplane is closer to

riding a bicycle than to driving a car. One had to keep the balance during flying, similarly

to cycling. Perhaps, it was helpful for them, that they were running a bicycle shop. Another

important finding was achieved through their observation of floating buzzards. The movements

of the wing tips is essential for the animals to keep the balance. The invention of the sloped

wings began.

At the beginning, the Wright brothers started many testings with a gliding biplane, which

was quite similar to a machine used for successful motor-driven flights later on. The experiments

showed the brothers not only the way towards the improvement of their own work, but also

errors and imprecision in the previous work of others. Moreover, they were confronted with the

problem of curve flying in their experiments. They introduced movable vertical tail fins to be

able to control the machine in curves.

After their success with gliding biplanes, they started to work on motor-driven airplanes.

The motor was built by one of their assistants (Charlie Taylor), since the available motors did

not fulfill their requirements. The result was an outstanding motor at this time. After solving

23

1. INTRODUCTION

problems regarding the propeller shape and some occurring failures, they succeed in the first
steered and controlled flight with an airplane heavier than air on December, 17th 1903.

To conclude, the contributions of the brothers Wright were based on technical approaches
(e.g., comparison to bicycles) as well as bio-inspiration (e.g., floating buzzards). Practical
experiments were a further important milestone towards their success.

1.3.5.3 Technology Acceptance

The acceptance of new technologies is an important aspect. If the technology is not accepted
or just accepted at a low level, its deployment can be limited significantly. Hence, it could be
of benefit to know, what might cause a possible fear regarding a technology. Therefore, we are
interested in the question, where the fear of flying might come from. This fear is still existing,
even though, flying is a part of the daily-life of many people.

If just statistics are taken into account, there does not seem to be a reason to fear flying.
Significantly more people die in car accidents than in regular flights every year. Big accidents
are seldom, but, nevertheless, they seem to have a very important influence on surprisingly
many people, to whom accidents are strictly inseparable from flying. Others argue, that other
reasons can cause such a fear. A fear of heights, a fear of being locked-in and a fear of being
caught without control of the own situation are prominent ones. There are different possibilities
to teach people to handle their fear of flying. For example, appropriate seminars seem to be a
successful method.

1.3.6 Discussion of the Current State of the Art

After the overview of the current state of the art in robotic grasping and dexterous manipulation,
the discussion follows in this Section. Moreover, we compare the current state to the other field
of engineering: aviation. Of course, such a comparison can hardly be done 1-by-1. An abstract
comparison is much more feasible.

The development of airplanes, which were really able to fly, was influenced by several factors.
The observations of animals gave important insights into biological systems and their perfor-
mance. The realization of practical experiments lead to important practical and theoretical
insights. The development of the theoretical background was a further essential step towards
the development of airplanes. To conclude, a mixture of bio-inspired and technical approaches
based on theoretical analyses and practical experiences have lead to the long-term success in
aviation today.

A similar development is observable in robotic grasping and dexterous manipulation, as
Section 1.3.1-1.3.4 shows. The concepts are based on bio-mimicry, bio-inspiration and technical
requirements. Bio-mimicry is, e.g., applied in the construction of prosthesis. The inspiration
from biological systems is used to build up advanced technical systems. The analysis of desired
grasping and manipulation capabilities and abilities results in the requirements of technical
approaches. Approaches which combine both types can be found as well. For example, the

24

1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry,
Bio-inspiration and Technical Approaches

design of the DLR hand arm system [117] was based on fundamental functionalities of the

human hand.

A significant inspiration from the human’s archetype is noticeable in sensing methods in the

context of grasping and manipulation. A large amount of work on vision-based sensors is

human-inspired. The idea of an artificial skin is, obviously, inspired similarly. Of course,

one could argue, that a robot’s working environment is usually human-made. A human-made

environment could provide advantages to human-mimicry approaches. However, this does not

necessarily mean, that a pure human-mimetic approach will lead to the final solution. One

could also argue, that today’s airplanes are not a pure copy of birds, as we discussed already.

Even though, a bird’s environment has not been developed for the bird, the birds are specialists

in flying in their environment. Hence, copying a bird might sound like a promising direction

towards “flying humans”. However, we have seen in the history of aviation, a combination of

both types of approaches has lead to the long-term success in aviation.

Possible similarities between humans and humanoid robots are often analyzed in psycholog-

ical studies as shown in Section 1.3.4. At the same time, results of other studies indicate, that

the robot is perceived as a useful tool. However, psychological studies with robots lack from

a couple of problems. Further studies analyzing, e.g., human-like and machine-like designed

robots with respect to psychological aspects would be necessary. The importance of technology

acceptance can also be seen in aviation. Despite today’s success in aviation, the fear of flying

is still a contemporary issue. This fear seems to be due to many reasons (see Section 1.3.5.3).

Another interesting issue is the question, when a problem is solved. This depends on the

definition of the problem itself and the definition of the state, when the defined problem is solved.

In the history of aviation, Clément Ader was the first one who claimed, that he has solved the

problem of motor-aviation. His steam-powered Éole was able to manage a 50 m-long hopper.

This is, of course, not a long-term, steered flight as we would define a flight today. Nevertheless,

his steam-powered machine lifted off from the ground. Hence, we can see, that the definitions

of problems and corresponding descriptions, when the problems are solved, are important.

Only such definitions allow to make a decision, whether a problem is solved, appropriately.

The question, how “grasping” is defined and when it is solved, was also discussed in [160],

[161]. As the overview in robotic grasping and dexterous manipulation in Section 1.3.1-1.3.4

shows, there are problems which are “solved” in that sense, that successful demonstrations have

been presented. For example, the DLR hand arm system [117] was designed to reach its human

archetype regarding robustness, dynamic performance and dexterity. Robotic power grasping in

unstructured environments was demonstrated in [121]. However, if we define the entire grasping

and manipulation capabilities and abilities (including independence of humans and knowledge

about, e.g., physical and handling properties of unknown objects) in any environment (including

the capability to interact with any human) as benchmark, a successful demonstration is still

missing.

25

1. INTRODUCTION

This leads automatically to the question of missing capabilities and abilities. For example,

different mechanical designs of robotic hands exist, but sensing methods as well as advanced

sensor data processing methods are limited. Such a feedback from the environment can be

useful in many situations, like in human-robot interactions or during a sensitive interaction

with unknown objects. Currently, a lot of work exists in the field of vision-based perception.

Advanced haptic sensing capabilities of the hand and sophisticated sensor information usage

(e.g., artificial sensitive skin on an arm in [138]) could be an example for enhanced sensing

methods. How up-to-date the topic is, can be seen in currently ongoing and future work.

For example, a workshop “Research frontiers in electronic skin technology: Multi-functional

bendable and stretchable electronic skin for robots and beyond” [162] was just recently organized

at ICRA 2013. In future work at DLR [139], this missing “feel of touch” was mentioned. The

limitations in sensing methods could be compared to the limited number of motor types in

aviation at Cayley’s time. The only available motors were steam-engine motors.

A further important, currently very limited component in robotic grasping and manipulation is

a general independence of human teachers. If cumbersome and time-consuming demonstration

processes are necessary for a daily use in the future, users will be annoyed and the deployment

of robots could be limited significantly. In order to achieve a further independence in robotic

grasping and manipulation applications, progress is required with respect to several issues. For

example, knowledge about physical and handling properties of unknown objects is an important

issue. Another example are the often limited or structured environments in the applications.

Applications working in any environment are desirable.

To sum up, the overview shows many successful approaches for a lot of aspects of the over-

all problem. However, there are still missing or incomplete components like limited sensing

capabilities or a further independence of human teachers in unstructured environments. The

entire grasping and manipulation capabilities and abilities (including independence of humans

and knowledge about, e.g., physical and handling properties of unknown objects) in any envi-

ronment (including the capability to interact with any human) have not been achieved yet by

a robotic system.

The discussion the entire Section show, that bio-mimicry, bio-inspiration and technical ap-

proaches made and make important contributions. This might sound nearby. However, the

comparison to another field of engineering shows, that there were similar experiences. More-

over, both types do not necessarily exclude each other as, e.g., the current development in

robotic grasping and dexterous manipulation [163] shows. To conclude, both, research focusing

on a technical perspective and research on anthropomorphic approaches, should be considered

in general.

The components of this thesis contribute to the approaches as follows.

The proposed knowledge extraction and representation is object-centric. Hence, requirements

set by the handled objects are in the focus. Similarly, the representation of dexterous manipula-

tions provides object-centric knowledge in a the contact-state perspective . Both representations

26

1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry,
Bio-inspiration and Technical Approaches

contribute towards autonomous systems which acquire knowledge efficiently and which allow a
reusage of the knowledge in similar situations (Chapter 3).
The path optimization approach and the manipulator structure analysis (Chapters 4 and 5)
focus on the robot itself. They are built up in a manner, such that the robot’s capabilities are
optimized, resp., analyzed with respect to its own control rather than copying the movements
of a human demonstrator. Such a check of the task-specific suitability of a robotic system has
not been presented yet.
A human-centric approach is presented in the additional application of the analysis on master-
slave systems (Chapter 6). There, the convenient system usage for the human is in the focus.

27

1. INTRODUCTION

1.4 Overview of the Contributions

This section sums up the contributions of the thesis. We focus on the contributions in the
approach. Of course, the related work and the experiments are presented for all areas. The
context of our work are grasping and manipulations. Hence, the current state of the art in
grasping and dexterous manipulation with respect to bio-mimicry, bio-inspiration and technical
approaches is additionally summarized and discussed. It shows not only the current state of
the art and open problems, but it illustrates also, that bio-mimicry and bio-inspiration are not
necessarily the best and only way to develop technical systems.

Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and

Human-Like Robotic Hands We provide very general tools for the global estimation of
inverse kinematics

1. at single points for arbitrary serial chain manipulators,

2. along entire paths with consecutive configurations for arbitrary serial chain manipulators,
and

3. of a complex human-like robotic hand.

Manipulation-Relevant Knowledge Representation The abstract task representation
is presented. It allows the desired analysis in the context of abstractly represented tasks. At
first, we provide a representation for manipulation-relevant object properties and actions. The
framework allows

1. to estimate manipulation-relevant properties,

2. to distinguish between background and more important foreground information in the
scene,

3. to represent the characteristics of the manipulation in a separated long-term and short-
term memory,

4. to split the current knowledge into object-related properties and object functionalities in
the environment, and

5. to detect new information efficiently at an abstract level.

A representation of the environment for dexterous manipulations follows. The representation
is chosen in a manner, such that

1. it extends the representation for manipulation-relevant object properties and actions with
respect to a detailed information representation for dexterous manipulations,

28

1.4 Overview of the Contributions

2. it is clearly structured to enable an easy usage,

3. it is reusable even in changing environments, and

4. path alternatives can be build up if feasible.

Path Optimization for Abstractly Represented Tasks with Respect to Efficient

Actuation The concept of the Elastic Power Path is explained in Chapter 4. It allows to
optimize paths

1. with respect to efficient actuation

2. in task-specific contexts

3. independently of the manipulator’s structure.

Analysis of Manipulator Structures with Respect to Efficient Actuation in Task-

Specific Contexts The analysis of manipulator structures with respect to efficient actuation
in task-specific contexts is presented, afterward. We provide an inter- and intra-robot compar-
ison

1. applicable to manipulators of any structure,

2. with respect to efficient actuation,

3. in task-specific contexts,

4. under the consideration of joint failures

5. including the potential of path optimization.

Analysis of Master-Slave Systems with Respect to Efficient Actuation in Task-

Specific Contexts At the end, we provide a basic simulation in the context of the analysis
of arbitrary telemanipulation systems. The previously developed methods are adapted appro-
priately to telemanipulation systems.

29

1. INTRODUCTION

1.5 Outline

The thesis is structured as follows:
The required estimation of inverse kinematics of arbitrary serial chain manipulators is pre-

sented in Chapter 2. The estimation is a technical requirement to allow the structure analysis.
Afterward, the representation of manipulation-relevant knowledge is introduced in Chapter 3.
The estimation and representation of manipulation-relevant object properties and actions are
described in Section 3.1. The representation of dexterous manipulations follows in Section 3.2.
It is based on a contact state description of object relations in the environment. The path op-
timization method is proposed in Chapter 4. The manipulator structure analysis is presented
in Chapter 5. It includes an analysis under path optimization. The analysis of master-slave
systems is described in Chapter 6.

The experiments are presented in Chapter 7. The validation scenarios, the implementation
and the results of all experiments are shown there.

The thesis ends with conclusions and future work. In the attachment, further information
about the used vision data, parameter descriptions, an explanation of the mathematical notation
as well as a list of abbreviations are available.

30

Chapter 2

Estimation of Inverse Kinematics

of Arbitrary Serial Chain

Manipulators and Human-Like

Robotic Hands

The analysis of manipulator structures requires an advanced estimation technique of inverse

kinematics. It has to be applicable to any arbitrary serial chain manipulator without circuitous

modifications. Moreover, a global estimation is required to ensure, that the best solutions can

be found. Hence, we provide a general estimation of the inverse kinematics of serial chain

manipulators.

Usually, a robot is supposed to reach one (or several) certain position(s) with its end-effector.

Then, the robot needs to be moved to an appropriate configuration to place the end-effector in

the desired position. In many situations, it is advantageous to have a system which takes the

desired end-effector position as input and gives one, several or all possible goal configurations

as output. The necessary mapping from the robot’s workspace to its joint space is called

inverse kinematics (see exemplary illustration in Fig. 2.1). The general solution of inverse

kinematics is a known problem for a long time. Sometimes, the inverse kinematics can be

computed explicitly for manipulators with certain structures. A general estimation framework

for the inverse kinematics of an arbitrary serial robot is still missing. It can already be enough

to know, whether a solution exits. In other cases, the knowledge about one, several or all

solutions is desirable.

We focus on the discrete analysis of the configuration-space. Hence, we provide a punctual

analysis. Such an analysis is, e.g., necessary for the evaluation of an arbitrary manipulator

structure. We are interested in the inverse kinematics of an arbitrary serial chain manipulator

31

2. ESTIMATION OF INVERSE KINEMATICS OF ARBITRARY SERIAL
CHAIN MANIPULATORS AND HUMAN-LIKE ROBOTIC HANDS

Figure 2.1: Inverse kinematics in a manipulation scenario [6]. The figure illustrates

the problem of inverse kinematics for a manipulation scenario: The box should be transported.

This means, first, that the object has to be grasped by the robotic hand (brown palm, magenta

fingers). A serial chain manipulator has to put the hand into an appropriate position, such that a

successful grasp is possible. Several configurations of the manipulator could be possible to reach a

point (e.g., blue and red configurations of the robot). Then, the manipulator has to reach several

desired positions along a trajectory for the transportation (not depicted).

at a given point without any incremental methods based on intermediate positions or (partial)
derivatives (e.g., through the application of Jacobians). We do not assume any advantageous
start configurations or something similar. Consequently, we formulate the problem of inverse
kinematics as optimization problem. We look for configurations of the robot which minimize
the distance between the robot’s end-effector and its desired position (3D: position; 6D: pose/
position with orientation). As for other optimization problems, local minima can occur. Of
course, we need to be able to overcome these, since we want to know, whether it is possible to
reach the desired positions. Furthermore, we want to be able to find several different solutions
without getting stuck in local minima. The solutions could be separated through one or several
large maxima. This means, that we need to formulate our problem as a global optimization
problem. Therefore, the entire configuration space is considered for the optimization. Such
a global approach does not exist yet for an arbitrary robot. For example, the widely known
Jacobian method depends on the start configuration of the robot. Hence, it can also suffer
from local minima. The desired global optimizer has to run within a short computation time.
We apply the stochastic approach for global minimization presented in [26], since it meets the
above requirements. The optimization in [26] was developed in another context. Therefore, we
need to develop a cost function in order to (1) check if a solution exists and to (2) find several

32

2.1 Description of the used variables and parameters

solutions if there are more present. Hence, we cannot only minimize the distance between the

desired and the real position of the end-effector in our cost function. If we have found one

solution, we need to be able to find further solutions. Moreover, if no solutions exists, it is

desirable to estimate at least a configuration which moves the end-effector as close as possible

to the desired position.

Furthermore, we want to determine a convenient solution of the inverse kinematics along

an entire path, e.g., for the manipulation of an object. Of course, it is desirable to achieve

consecutive configurations which are close to each other. Therefore, we introduce the concept

of adaptive tunneling. Up to now, we formulated our optimization problem in a manner, such

that we find one or more solutions for a single point. We are looking for these solutions in the

entire search space, e.g., from 0 to 360 degree for each joint. Now, each configuration should

be close to its ancestor. Hence, we limit the search space to a region around the configuration

of the ancestor. A small search space is desirable to achieve consecutive configurations which

are really close to each other. At the same time, a small space reduces the chance to find a

good solution to attain the goal. Therefore, the size of the search space has to be adapted

appropriately to ensure consecutive configurations close to each other, while the desired points

are reached. Our concept of adaptive tunneling provides a framework to achieve this goal.

Of course, it is desirable to estimate also the inverse kinematics of more complex systems,

while keeping the run time very small. However, the more DoF have to be solved by the

optimizer, the longer it will take. An example is a human-like hand with 20 DoF, which should

grasp an object. If the desired positions of the finger tips and the thumb’s tip are known, the

position and the orientation of the hand as well as its 20 DoF have to be determined in such

a manner, that the five tips can reach the goal positions. In order to deal with this complex

problem, we build on the concept of the “virtual finger” [19], which is a combination of real

fingers. An object can be grasped through a shut of the object between a thumb and a virtual

finger. We call such a grasp a virtual shut grasp. The application of the virtual shut grasp

reduces the number of DoF significantly from all DoF of the hand (e.g. 20) to a small number

of DoF in form of a serial chain (7 DoF in our example, which is shown later).

To sum up, we provide very general tools for the global estimation of inverse kinematics (1) at

single points for arbitrary serial chain manipulators, (2) along entire paths with consecutive

configurations for arbitrary serial chain manipulators, and (3) of a complex human-like robotic

hand.

2.1 Description of the used variables and parameters

In general, appropriate joint angles θj have to be determined for all joints j in the joint space

in such a manner, that the robot’s end-effector is able to reach a desired position pd in the

workspace. This is called inverse kinematics. The mapping from the robot’s joint space into

33

2. ESTIMATION OF INVERSE KINEMATICS OF ARBITRARY SERIAL
CHAIN MANIPULATORS AND HUMAN-LIKE ROBOTIC HANDS

the workspace can be described by a function F:

pd = F(Θ) (2.1)

with Θ = (θ1, ..., θD).
We describe a robotic system in the DH-convention suggested by Denavit and Harten-

berg [164] in the form shown in [9]. The orientation o of the robot’s end-effector is described
as Z-Y-X Euler angles [9]. More detailed information is provided in Appendix B.

The robot is supposed to reach a desired point pd. The currently reached, real point is
labeled with pr. The euclidean distance e describes the remaining distance between pd and pr.
A desired position is reached, if e is smaller than a certain tolerance t. A trajectory consists of
N desired points pi including the start point and end point. The configuration ci = (θ1, ...θD)
for all joints j of the robot corresponds to point pi in the trajectory. The euclidean distance
between two configurations is labeled with ec. The total number of joints is D.

2.2 Inverse kinematics for a single point

In order to estimate the inverse kinematics for a single point, we want to minimize the distance
between the real and the desired position. Therefore, we search for the minimum in the following
objective function Ok:

Ok = ‖pr − pd‖+ r (2.2)

with residual r. The residual r is zero for the search of the first solution of Ok. If more solutions
should be found for the same point pd, we need to search for further, different minima of Ok.
Configurations close to already determined configurations should be avoided. Therefore, r is
increased, when a new configuration is close to a previous, already known one. The minimal
distance, that is necessary to declare two configurations as different, is labeled with u. If the
euclidean distance ec of the joint configurations is smaller than the distance u, the residual r is
increased. r is, then, increased for each joint j in the configuration, if its distance ec,j is smaller
than u/D:

r := r + γ · |ec,j − u/D| (2.3)

with γ as a scaling factor. The higher the scaling factor, the higher the penalization of known
configurations.

If we want to determine the 3D position of the end-effector as well as its orientation, we
extend the previous objective function Ok to the following objective function Oo:

Oo = ‖pr − pd‖+ α · ‖or − od‖+ r (2.4)

with od as desired orientation of the end-effector and or as the current orientation of the end-
effector. The factor α is used as scaling, since the terms have different ranges. The settings of
the parameters described in this Chapter are discussed in detail in the experiments (Section 7.3).

34

2.3 Adaptive tunneling

If we want to transport an object, e.g., a cup filled with coffee, we are interested in keeping
the object upright. However, the orientation around the vertical axis of the object is allowed to
change. Then, the objective function Oo needs just to be adapted slightly. Instead of including
the orientations around all axes, we just use the orientations around the horizontal axes of the
object in Oo. All described axes in this paragraph are, of course, in an object-centric point of
view.

It should be pointed out, that the formulation of the objective functions is independent of
the number of DoF of the manipulator. For example, the inverse kinematics of a redundant
manipulator could be estimated as well.

If the result of the first estimation of the objective function is higher than allowed, no
solution is found. In this case, we get automatically the robot configuration closest to the goal,
since we search for the global minimum of the objective function.

2.3 Adaptive tunneling

As already motivated, we want to estimate the inverse kinematics of an arbitrary serial chain
manipulator along a trajectory. Of course, it is desirable to get robot configurations which
are close to each other along the trajectory. This allows to achieve smooth motions. Hence,
we do not need to evaluate the entire search space. We just change the search space S of the
optimizer. At the beginning, we use the entire search space ranging from 0 to 360 degree for
each joint to determine the robot’s configuration at the start point of the trajectory. For each
following point pi with i > 0, the search space is limited to a smaller search space S′j :

S′j = [θj,i−1 − lj ; θj,i−1 + lj] (2.5)

for each joint j. θj,i−1 is the configuration of joint j at the previous point pi−1. The variable lj
limits the search space around the previous configuration for joint j. At first, lj is set to a small
constant lc. If the manipulator is able to reach the desired position, we are done. Otherwise,
the limit lj is adapted:

lj := lj ± δ (2.6)

with

δ = m · |(e− t)/D| and |e| > t (2.7)

The sign in Eq. 2.6 is positive for the upper bound and negative for the lower bound. The
adaption factor δ (Eq. 2.7) depends on the distance e between the desired and the real position.
Hence, if the goal position is far away from the currently reachable positions, the search space
is extended by a large step to overcome the gap to the goal. In the case of an adaption, |e| > t

must hold. Each lj is, then, increased by the (proportionate, scaled) difference between the
current distance e and the tolerance t. The distance e−t is divided by D, since lj limits the joint
space for one joint j. The scaling m determines the step size of the adaption. The smaller m,

35

2. ESTIMATION OF INVERSE KINEMATICS OF ARBITRARY SERIAL
CHAIN MANIPULATORS AND HUMAN-LIKE ROBOTIC HANDS

Figure 2.2: Adaptive tunneling [6]. The figure shows a tunnel in a 2D search space for a 2 DoF

manipulator (overall range: 0◦-360◦ for each joint). The green dots are consecutive configurations.

The red circles show the (possibly adapted) search space around the each configuration. Each

consecutive configuration is searched within the red circle of its ancestor.

the closer the consecutive configurations can be. However, the run time can increase at the

same time, since more iterations can be necessary to reach the desired points. The process of

adaption can be repeated until either a solution is found or if S = S′ without any solution. The

objective functions Ok and Oo themselves (see Section 2.2) are not changed. We just modify

the search space.

This concept is independent of (partial) derivatives. Moreover, it is able to find solutions,

even if the step size between consecutive points is large.

If we concatenate the search spaces along the trajectory, we can illustrate them as a tunnel.

The diameter of the tunnel depends on the size of the search space. The concept of adaptive

tunneling is illustrated in Fig. 2.2. It supports consecutive manipulator configurations close to

each other, while avoiding extensive computation times.

2.4 Virtual shut grasp

A virtual shut grasp is built up as follows. We construct a “virtual finger” [19]. A virtual finger

is a combination of real fingers. In our concept, it is the mean of all real fingers without the

thumb (mean of, resp., base, link length, orientation). We concatenate the real thumb and the

virtual finger to a serial chain (from the tip of the thumb over the hand carpus to the tip of

the virtual finger). An object can be grasped through a shut of the object between a thumb

and a virtual finger. We call such a grasp a virtual shut grasp. Now, we attach the tip of the

thumb to its 3D goal position. Then, we just need to determine the thumb’s orientation and

36

2.4 Virtual shut grasp

Figure 2.3: Human-like robotic hand and virtual shut grasp [6]. Left: Illustration of

the human-like robotic hand with the brown palm of the hand, the dark magenta fingers and the

green joints. Middle: Model of the human-like robotic hand with the red virtual finger and the

blue orientation stick. Right: Illustration of a grasp with the virtual finger and the orientation

stick: The yellow circles are the desired positions of the real fingers. The virtual finger should

reach the light magenta mean of these positions. The blue orientation stick should be kept in the

right orientation: It should be parallel to the black aim stick and point into the same direction.

the small number of DoF in the serial chain, such that the tip of the virtual finger reaches its

desired position (the mean of the goal positions of all fingers).

Additionally, we need to make sure, that the serial chain has the right orientation. It has

to be oriented in a such manner, that the real fingers are able to reach their goal positions

afterward. Hence, we attach an “orientation stick” to the root pv,root of the virtual finger. The

stick is aligned with the joint axis of the root of the virtual finger and points towards the root

pl,root of the finger, which is the last one or defined as the last one. We use the little finger as

the last finger. The orientation stick can be formulated as the vector −−−−−−−−→pv,rootpl,root. This stick

has to be parallel to an “aim stick” and it has to point in the same direction. The desired aim

stick is the vector from the goal position of the virtual finger to a point pg,goal (−−−−−−−−−→pv,goalpg,goal).

To construct the point pg,goal, we imagine a plane pvFP within which the tip of the virtual

finger can move. If a goal position pf,goal of a real finger is on the same side of the plane

pvFP as the goal position of the last finger pl,goal, we introduce a new point p′f,goal = pf,goal.

Otherwise, we mirror pf,goal on pvFP to create p′f,goal. The mean of all p′f,goal and pl,goal is

the desired point pg,goal, which is used for the aim stick. Fig. 2.3 illustrates the principle of the

virtual shut grasp.

The determination of the virtual shut grasp gives us the orientation of the thumb as well as

the position and orientation of the hand carpus. Afterward, just the joints of the real fingers

need to be estimated (independently of each other). It is important to point out, that our

37

2. ESTIMATION OF INVERSE KINEMATICS OF ARBITRARY SERIAL
CHAIN MANIPULATORS AND HUMAN-LIKE ROBOTIC HANDS

approach is independent of the number of fingers and the form of the hand.
A robotic hand can be attached to the end-effector of a robotic serial chain manipulator. If

we want to use a hand and a manipulator for an action, e.g., object transportation, we can go
on as follows. First, we determine the joint parameters as well as the orientation and position of
the hand to grasp the object. Afterward, we just need to deal with the serial chain manipulator.
We treat the hand carpus as the manipulator’s end-effector, which has, first, to position the
hand for the grasp and, second, to keep the object upright during the transportation. Its inverse
kinematics can be estimated as described in Section 2.2 and 2.3.

38

Chapter 3

Manipulation-Relevant

Knowledge Representation

The desired analysis is processed in the context of abstractly represented tasks. Hence, an
appropriate representation is required. We provide such a representation for manipulation-
relevant object properties and actions as well as a representation for dexterous manipulations.
The first representation consists of a-priori knowledge about objects (Atlas) and current knowl-
edge about the scene (Working Memory). There, we distinguish between properties, which are
directly related to the object (Object Container), and typical action areas affiliated with the
environment (Functionality Map). The work is published in [1], [2]. The second representa-
tion uses a contact state based perspective to represent dexterous manipulations. It is based
on object relations in the environment. The approach and the corresponding experiments are
published in [7].

3.1 Estimation and Representation of Manipulation - Rel-

evant Object Properties, Actions and Functionalities

The first representation deals with manipulation-relevant properties, actions and functionalities.
The proposed framework allows a sensor-based estimation of the desired information. It is
extracted from observations of human actions in natural scenes. An important aspect is the
abstraction of observations. The resulting characteristic properties of the observed objects are
stored in a model which allows a reusage or transfer of the knowledge. The representation of
the properties and actions is split into an a-priori knowledge (Atlas) and current knowledge
about the scene (Working Memory). The Atlas contains already inferred properties of the
objects, as well as a-priori knowledge about the object classes and the corresponding handling
properties. The a-priori knowledge contains information, which cannot be observed by a vision-
based system or by the analysis of an object’s trajectory. The handling properties can differ

39

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

for the same object depending on the context. These alternatives are stored in the Atlas.

The general knowledge of the Atlas can be mapped into the current context. The mapped

information is represented in the Working Memory, in order to relate it to the current scene.

The scene itself is classified into relevant objects (foreground) and background geometry which

is only important for collision avoidance. The human operator identifies the relevant objects

through a direct interaction with them (manipulation). Hence, the system does not need to

identify and to learn about all objects in the scene but only about the objects that are used by

the human (Fig. 3.1).

Figure 3.1: Knowledge extraction from human observation [1]. The system observes

human actions and completes the internal knowledge representation for the observed objects.

A very important aspect is, that not only the object itself (e.g., its properties or physical

states) is defining the way, how it is manipulated, but also the location at which the manipula-

tion is performed. Certain actions takes usually place at specific locations, which have certain

properties. For example, washing the dishes is usually done in the sink and not on a flat table

without any water source around. The conclusion is, that we need not only a collection of

object properties, but also a map, which links environment locations to the specific way how

objects are handled at that locations (see Fig. 3.2). It is important to notice, that we are not

interested in the exact registration of the actions to the environment in the sense of navigation,

but in an abstract representation of the functionalities in the environment. We are not using

any semantic information about the environment. Furthermore, the system does not rely on

any linguistic information.

The representation of the knowledge is split into an object-centric representation, reflecting

the physical properties of an object (Object Container), and a Functionality Map representing

possible actions related to the environment. While the Object Container is linked only to the

40

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

Figure 3.2: Creation of an abstract map of possible manipulation actions and goals [2].

The system creates an abstract map of possible manipulation actions (symbolized by dashed/

continuous arrows in different colors) and characteristic areas (symbolized in yellow) in the envi-

ronment.

object, the Functionality Map is anchored to the geometric model of the environment. This

framework allows us to detect changes in the physical state or the function of an object. Hence,

the system is insensitive to variations in the execution of the same actions.

Of course, it is desirable, that the robot is able to learn unsupervised through the observation

of human actions. Unfortunately, humans do not follow exact trajectories, while performing

repetitive manipulation tasks. The system needs to focus on characteristic information, which

is necessary to accomplish a manipulation or to cooperate with a human in a given environment.

Here, we can make use of the abstract representation of manipulation actions. At this abstract

level, the system can compare its expectation as an observer system with a current human

action. A mismatch occurs only in situations, in which the change appears to be a result of

a change at an abstract level. We will call such a mismatch a surprise event in the following.

A surprise event requires the modification of the stored information. Just in the case of a

surprise, really new information is detected. For example, motion constraints can change (e.g.,

a cup carried always upright is now tilted arbitrarily). Another example is an object which

is suddenly placed on an unexpected place (e.g., a cup on the floor). These observations are

usually an indication, that the physical properties of the object (e.g., the level of the liquid in

the object) or their function (not a drinking cup, but a dirty dish) changed. This refers to a

detection of really new information which requires an update of the knowledge.

Predictions about the current state or function of an object are based on the information

41

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

stored in the Object Container or in the Functionality Map. Therefore, mismatches between
these predictions and observations (surprise events) occur just at an abstract level. They signal
the right moment to update the stored information.

It is important to consider, that the robot might face different types of input like, e.g.,
vision data or data recorded with an external tracking system. Here, trajectories of the human
motions are neither used for workflow applications nor for planning of actions. We focus on the
object-centric constraints and the object’s function in the environment. Our system does not
rely on a trajectory in a certain representation, like x,y,z-coordinates, or on a certain colored
pattern of an object. The properties acquired in our system have to be sufficient to represent
a manipulation task appropriately. At the same time, they have to be generic and extractable
from different sources.

To sum up, we provide a framework which allows (1) to estimate manipulation-relevant
properties, (2) to distinguish between background and more important foreground information
in the scene, (3) to represent the characteristics of the manipulation in a separated long-term
and short-term memory, (4) to split the current knowledge into object-related properties and
object functionalities in the environment, and (5) to detect new information efficiently at an
abstract level.

3.1.1 Estimation and Representation of Manipulation - Relevant Ob-

ject Properties and Actions from Human Observation

The estimation and representation of manipulation-relevant object properties and actions from
human observations is presented in this section.

A robot should be able to acquire manipulation-relevant knowledge as independent as possi-
ble. It needs to be able to detect and to extract relevant information. Moreover, it has to process
the information in a such manner, that it can be reused. An important ability is the distinction
of relevant and new knowledge from varying, but similar demonstrations. The robot needs to
deduce the characteristics of the observation, instead of storing the exact x,y,z-trajectory. The
exact trajectory could be used for a pure repetition of the observation. In contrast, the system
should determine the relevant knowledge from varying human demonstrations.

The underlying model has to be general. Hence, we introduce the Atlas and the Working
Memory to store the knowledge. The Atlas contains already inferred properties of the objects,
as well as a-priori knowledge about the object classes and the corresponding handling properties.
The a-priori knowledge contains information, which cannot be observed by a vision-based system
or extracted from an object’s trajectory. The information about the object in the current scene
is stored in the Working Memory, which is the Short-term memory.

It is important to consider, that not only the object itself (e.g., its physical state) is defining
the properties of the manipulation, but also the environment. Different locations in the envi-
ronment are used for different actions, which have certain properties. For example, washing
the dishes is normally done in the sink and not on the flat table without any water source in

42

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

the neighborhood. The conclusion is, that not only a collection of object properties (Object

Container) is needed, but also a map of the environment providing the functionalities in this

environment (Functionality Map, see, e.g., Fig. 3.2). It is important to notice, that the exact

reconstruction of the environment in the sense of navigation is not of interest here, but an

abstract representation of the functionalities in the environment.

An important property of the proposed system is the general and object-centric represen-

tation. The combination of the two involved representations, the Object Container and the

Functionality Map, achieves the following advantages.

The acquired knowledge is not only reusable in the situation in which the observation took

place. A knowledge transfer to similar situations is possible. The similarity consists of two

parts: First, the observed objects have to be similar to the known objects in the Object Con-

tainer. It is important to consider, that the system does not rely on, e.g., a certain colored

pattern of an object. It works on manipulation-relevant properties of the objects. The second

part of the similarity are the characteristic locations, where the manipulation can start or end.

These areas have to be similar to known locations in the Functionality Map. If the current sit-

uation is similar to the known one, the conversant properties can be applied on manipulations.

A further advantage of the proposed system is the efficient detection of new knowledge. New

knowledge is achieved through the observation of unknown actions or unknown objects in the

current environment (surprise detection). In order to detect such actions or objects, the ex-

pected situation and the current situation are compared. A mismatch refers to an unknown

event, which provides new information. Such a surprise detection occurs just for a change of

properties at an abstract level, since the system consists of general and object-centric knowledge.

The number of false positive alerts, caused by varying user demonstrations, can be reduced to

allow an efficient surprise detection.

Moreover, the robot might face different sources of information. One source is, of course, the

observation of humans with, e.g., a vision system, what can be useful in a household. However,

there are also other sources of knowledge, like a data base, which provides knowledge in another

form (e.g., the exact trajectories of actions in a chemical laboratory). The proposed system

does not rely on a trajectory in a certain representation like x,y,z-coordinates. It is built on

properties of the object and its functionalities. The underlying properties have to be powerful

enough to provide information for a manipulation. At the same time, they have to be general

and extractable from different sources.

Additionally, the knowledge extraction has to be possible through the observation of a small

number of user demonstrations. A large amount of demonstrations has several disadvantages,

like time-consumption and annoyed users.

To sum up, the described requirements lead to a further understanding of the actions in the

environment in contrast to a pure repetition of actions.

The aim of this part of the work is the representation of manipulation-relevant knowledge

in a manner, such that the described requirements can be met.

43

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

3.1.1.1 Focus of Attention

A robot’s environment can be very complex. It can, e.g., contain a lot of objects in rooms with

different furniture. Moreover, the robot has to deal with demonstrations of humans in these

complex scenes. Such a complex scene requires to focus the attention on the relevant information

in the scene. Here, manipulated objects are relevant to the robot, since it could observe new

information. Hence, the robot needs to detect and observe the object manipulated by the

human. This mission-relevant object is the foreground. In contrast, the remaining geometric

structure is the background used for obstacle avoidance. The selection of the foreground object

and its monitoring is triggered by the human’s interaction with it. This concept has an analogy

to the Vision Interaction Cues (VICs) approach [165]: For each object, its actions and its

monitoring space around itself are defined by the object. The processing of the human actions

can be speed up this way.

Fig. 3.3 illustrates in the entire concept. It shows the Atlas as well as the Working Memory

with the fore- and background.

3.1.1.2 Determination of the Object Candidates

The mentioned mission-relevant object is placed somewhere in the scene. It has to be deter-

mined. A simple idea to detect the mission-relevant object is the observation of the entire

scene, until a change occurs (e.g., movements of an object or a human). Such an approach is

not efficient. Changes could be detected, which are not of interest (false positives; e.g., changed

lighting conditions). Therefore, we determine the objects, which can be manipulated by a hu-

man (object candidates) in the current scene, first. Then, just these candidates have to be

observed.

We apply a plane-subtraction as described in [166], [167]. It makes use of the homography

between the (u,v,D) coordinates of the disparity image ([u,v] are the image coordinates and D

denotes the disparity at [u,v]) and the corresponding Cartesian coordinates from the 3D scene.

In [166], the plane Pr is represented as

Pr : arx+ bry + crz = dr. (3.1)

According to [167], the equivalent disparity plane with the normal vector n∗r is given by

D(u, v) =

ρ1

ρ2

ρ3

 ·
uv

1

 = n∗r ·

uv
1

 (3.2)

with the disparity D(u,v) at image coordinates (u,v), ρ1 = ar

k , ρ2 = br

k , ρ3 = cr

k , k = dr

B and

the baseline B.

In order to estimate the normal vector n∗r of the plane, an area of low gradients of the same

direction (planar candidate) has to be found. The biggest planar candidate is assumed to be a

44

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

Figure 3.3: Atlas and Working Memory [1]. The figure illustrates the concept of the Atlas

and the Working Memory. The general knowledge of the Atlas is mapped into the current scene

and stored in the Working Memory.

part of the plane. It is used for the estimation of the normal vector n∗r of the plane according

to (6) in [167]: ∑ui ·Di∑
vi ·Di∑
Di

 =

 ∑
u2
i

∑
uivi

∑
ui∑

uivi
∑
v2
i

∑
vi∑

ui
∑
vi

∑
1

 ·n∗r (3.3)

All pixel, which belong to the plane, are deleted in the disparity-map. Consequently, the

objects placed on the plane (e.g., a table) remain in the disparity-map as object candidates.

An example of the plane subtraction is shown in Fig. 3.4.

3.1.1.3 Selection of an Object as Region of Interest

One of the observed object candidates is the mission-relevant object. It is selected by the

human, who grasps it. The grasped object forms, now, the Region of Interest (ROI).

45

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

Figure 3.4: Plane subtraction [1]. Left : Original color image. Middle: Disparity image of the

color image on its left. Right : Remaining object in the disparity image after the plane subtraction.

In order to perceive the human grasp, the contact between the hand and the object has to be

determined. The object candidates have already been found, as described before. The detection

of the hand can be done with different methods. A blob-detector is used here. Hence, the hand

is determined through the detection of a connected region, which has the characteristic color of

the hand. Of course, this method faces the problem, that the color of the hand is not unique.

First, the color of human’s hands can differ significantly. Therefore, a hand and a possible

contact cannot be detected using the color of the hand of one human in general. Moreover,

the object and/ or the environment can contain blobs of the same color and size. This can

lead to false-positive alerts for the contact detection. Similarly, the size of the hand can change

in a 2D color image depending on the orientation of the hand and its distance to the camera.

An advanced hand detection would, hence, require the inclusion of a further characterizing

property of the hand: Its shape. However, such an advanced hand detection is a complex topic

on its own (see, e.g., in [168]). The blob-detector can be implemented easily and it allows a

simple detection of the hand. Hence, the blob-detector can fulfill its purpose. We use a glove

in the manipulations to simplify the detection. The blob-detector is, then, based on significant

colors. If several blobs of sufficient size are detected, the largest one is chosen in our case.

In order to determine a contact between the hand and the object, we need to check for a

sufficient overlap of both. In principle, a pixel-wise comparison could be performed, but, this

method can require extensive computation times. Hence, we introduce an outer bounding box in

form of a rectangle Ro around the object. The outer bounding box is slightly reduced, since we

want to avoid false positive alerts for a contact caused by, e.g., accidental contacts at the borders

of the bounding box. Moreover, the borders of the original bounding box might even be out of

the object. Therefore, the original outer bounding box Ro is reduced by b pixel on each side.

The resulting rectangle Rb is defined through its four corners rc with pixel-coordinates urc , vrc

(top left: r1; top right: r2; bottom left: r3; bottom right: r4). Now, we check for all pixel i of the

hand blob, whether they are within the four corners rc. Hence, a contact candidate (contactc)

is found, if the following equation holds:

contactc : ∃(ui, vi) ∈ hand blob : ur1 <= ui ∧ ui <= ur2 ∧ vr1 <= vi ∧ vi <= vr3 (3.4)

46

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

If a pixel is within the rectangle Rb, we have found a first contact candidate. The object is
selected as ROI, as soon as a sufficient number (nc) of contacts candidates has been seen in a
row. This check for a contact candidate is much faster, than a direct pixel-wise comparison,
since it just checks the borders of the rectangle Rb. If the blob of the hand consists of H pixel,
the proposed method requires O(nc · 4 ·H) checks to find out, whether the hand blob is within
the rectangle Rb. Now, we label the number of pixel of the object with HO. For the pixel-wise
comparison, each pixel of the hand needs to be compared with each pixel of the object, resulting
in O(nc ·HO ·H) comparisons. Normally, we can assume, that HO is significantly larger than
four. Hence, we would need significantly more checks for the pixel-based comparison.
We further discuss the settings of the parameters described in this Chapter in the experiments
(Section 7.1).

3.1.1.4 Object Tracking and Determination of the Object’s Type

After the selection of an object as ROI, the object needs to be observed. First, we focus on the
actions on the object. We are interested in the changes of the object’s position and orientation.
Such changes can provide information about characteristic properties of the observed object.
Consequently, we need to extract the object’s 6D-trajectory (position: po; orientation: oo).

In principle, any tracking system can be used as long as it provides the 6D-trajectory. We
want to focus on two types in this thesis: An external tracking system and a vision system
based on features. The first one requires external markers fixed to the object. These markers
are tracked, then. However, the external markers plus a setup observing them needs to be
integrated in the original scene.
In contrast, the vision system can directly work on features, which are already available in the
scene. Of course, appropriate features need to be found, first, and, afterward, tracked in the
natural scene. Moreover, it is important to consider, that we are interested in the object’s
6D-trajectory. Hence, 3D information is necessary. A 3D tracking can, however, require a
long computation time. A tracking in 2D can speed up the processing. Therefore, we use
the following procedure: At the time of contact, we store one depth image as well as the
corresponding color image. In the color image, we extract 2D-features on the object. For
each feature, we know the underlying 3D information, since the depth image is given. The
object’s 2D-features are tracked in 2D during the manipulation. It is possible to compute the
6D-trajectory of the object based on the recorded trace of the 2D-features and the depth image
at the time of contact. V-GPS is applied for this purpose [169].

As the name V-GPS [169] already indicates, the concept has similarities to the GPS system.
It uses natural landmarks in the environment for localization. GPS uses satellites for the same
purpose. Originally, V-GPS was applied for the estimation of a camera pose based on natural
landmarks. The camera was moved, there. In our context, the camera is fixed, while the
observed object is moved. Therefore, we use V-GPS in the opposite direction: We estimate the
pose of the moved object from a fixed camera system. Visual features on the object are used

47

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

for the pose estimation similarly to the natural landmarks in the original concept.
Eq. 1 in [169] shows the projection of a point cp (given in the camera frame) into the image
plane with coordinates (u, v)T (assuming a perspective projection [170]):

π(cp) =
(
u
v

)
=
f

z

(
x
y

)
(3.5)

Originally, an internal model of the environment was represented by 3D coordinates mpi in [169].
In our case, the object is represented by these points.
The goal of the original concept was the estimation of a transformation matrix cXm in a
manner, such that each image point (ui, vi)T corresponds to a model point mpi (Eq. 2 in [169]):(

ui
vi

)
= π(cXm(mpi)) (3.6)

The transformation matrix cXm describes the transformation between a known point mpi and
its corresponding observed point p∗i . It is defined as

cXm =
[
R̃ t
0T 1

]
(3.7)

with rotation matrix R̃ and translation vector t (Eq. 12 in [169]). The direction towards the
observed point p∗i is known given the image point (ui, vi)T . It can be described by a unit
vector n∗i . However, the distance λi to p∗i is unknown. It can be estimated through the initial
distance D, resp., the distance in the previous frame (within a sequence of images). To sum
up, the observed point p∗i can be described as follows (Eq. 14 in [169]):

p∗i = λi ·n∗i = R̃ ·mpi + t (3.8)

If at least three pairs of non-collinear points mpi and p∗i are known, the rotation matrix R̃
and the translation vector t can be estimated using the following least-squares problem (Eq. 16
in [169]):

mineR,t
nO∑
i=1

‖R̃ ·mpi + t− p∗i ‖2, subject to RTR = I (3.9)

The total number of point pairs is nO. The rotation matrix R̃ and the translation vector t
are estimated online. This allows to use, resp., the distance in the previous frame as an initial
estimation of the distance λi
The labeling of the variables of the equations above (Eq. 3.5-3.9) differ slightly from their
original presentation in [169]. They are adapted to the mathematical notation in the thesis.

In order to be able to apply the above method, the current image-coordinates of the initial
features need to be tracked. The online application of V-GPS provides an advantage in this
context: It allows the application of V-GPS for a re-initialization of lost features [169]. The
rotation matrix R̃ and the translation vector t are estimated for each frame online. They can
be utilized to project a lost feature on its assumed position. The tracking has, then, a much

48

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

better chance to find the appropriate correspondence again. However, the tracking (and the
subsequent V-GPS application with the re-initialization of lost features) needs to be real-time-
capable for this purpose.
Of course, it important to find the corresponding features in a subsequent image. Such correct
correspondences are essential, since wrong ones (e.g., similar looking features) will disturb the
correct computation of the 6D-trajectory. In such a case, the least-squares problem (Eq. 3.9)
is solved based on wrong assumptions (Eq. 3.8 does not hold). Therefore, it is of great interest
to get correct correspondences. If a large number of features is available, it could be of benefit
to loose features which cannot be assigned properly in the subsequent image. Hence, we want
to use a tracking system which searches for subsequent features in a close area around the
previous position of the feature. A search in such an area restricts the possibility to find false
correspondences in the form of similar, but other features. Additionally, the processing is faster,
since it is not necessary to search for the features in the entire image. At the same time, the
features are just allowed to move within the restricted regions around the previous position
of the feature. Hence, the frame rate has to be high enough to ensure, that the subsequent
features are within this region. Otherwise, the region needs to be enlarged. However, such an
increased region reduces, of course, the just described desirable effects.
An exemplary object selection and an exemplary tracking of the features are shown in Fig. 3.5.

Figure 3.5: Contact detection and object tracking [1]. Left : The tracking is initialized after

the contact detection between the hand and the region of interest. The small red boxes are the

valid features. The blue ones are deleted features, which are not on the box. The initialization of

the features is processed within a bounding box around the detected object. Afterward, we check

for each feature, whether it is on the object itself using the pixel-wise determination of the object

(Section 3.1.1.2). The top left corner of the image shows the position of the hand (blob-detection),

when the contact occurs. Right : Example of features during the tracking. The tracked features

are shown in red, the assumed positions of the lost features are, resp., drawn in green.

The tracking stops at the end of the manipulation. Afterward, the type of the object is
determined. The object’s type forms the key to find the corresponding object type in the

49

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

system’s knowledge. It fulfills two purposes. First, known properties stored in the Atlas can
be assigned to the current object. Second, new properties can be integrated in the existing
knowledge.
In order to find out, which type of object is observed, we apply an object registration. The
object is, therefore, recognized based on its shape.
The determination of the object’s type takes place after the manipulation. It is much more
efficient to analyze just the type of the manipulated object, instead of analyzing all objects in
the entire scene before.

3.1.1.5 Representation of Object Knowledge

The recorded trajectory of the manipulated object is used for the determination of the manipu-
lation-relevant object knowledge. The choice of the knowledge which is extracted and the way of
representing it are important for the future abilities of the system. For example, they determine
the efficiency in the detection of new information. The representation of the manipulation-
relevant object knowledge influences the system’s ability to understand the intention of the
human manipulation. Moreover, the ability to re-use knowledge is also determined by the way
of representing the knowledge. Therefore, we present the description and explanation of the
representation in detail in Section 3.1.2.

It should be mentioned here, that the approach presented in this Section 3.1.1.1 built a basis
for the work in [171].

50

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

3.1.2 Representation of Manipulation-Relevant Object Properties and

Functionalities

The representation of the manipulation-relevant object knowledge consists of two main compo-
nents: the Object Container and the Functionality Map. They are described next, followed by
the presentation of the knowledge extraction from a trajectory. It should be pointed out, that
the representation of the manipulation-relevant object knowledge is independent of the method
used for the trajectory acquisition.

Figure 3.6: Object Container and Functionality Map [2]. Top: The Object Container

consists of the object properties. Bottom: The Functionality Map is the abstract representation

of the manipulation-relevant functionalities of the environment. It consists of the Location Areas,

between which actions are performed. The properties of these actions are stored in the connections

between the Location Areas.

An overview of the system is given in Fig. 3.6. It illustrates the Object Container comprising

51

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

the object properties and the Functionality Map containing the manipulation-relevant actions.

3.1.2.1 Manipulation-Relevant Object Properties

The first component, which is specified, is the Object Container. It stores the object properties,

which are directly related to the object itself.

As already motivated, a general knowledge of the object properties is of interest. Hence,

simple records of x,y,z-coordinates along a trajectory shall not be listed, but the abstract

handling properties. We consider the orientation, the maximal allowed acceleration, the mass

and the center of gravity as important in this work. Some of these properties are not observable

with a pure vision-based system or a pure tracking system, which provides a 6 DoF-trajectory.

Therefore, the Atlas, which contains the “experience” (a-priori information), is used to obtain

this information.

The handling properties themselves are constraints, which limit the handling possibilities of

the object. For example, if an object is kept upright all the time, the object-orientation does

put a constraint on the manipulation in this context.

3.1.2.2 Functionality Map of the Environment

The Functionality Map is the second component of the representation. It contains the func-

tionalities of the object related to the environment.

The first element of the Functionality Map are the Location Areas. These areas are the

locations in 3D space, where a manipulation sequence can start or end. Location Areas are

explicitly defined in contrast to single locations. An object is usually placed in a certain area

and not on one certain coordinate in space.

The connections between Location Areas are the second element of the Functionality Map. A

connection exists between two Location Areas, if an action has been performed directly between

both areas without visiting another Location Area meanwhile. It is important to consider, that

a connection is directed. Therefore, a connection from A to B is different from the connection in

its opposite direction from B to A. The connection itself consists of the manipulation properties

of the action performed on this connection. Of course, different manipulation alternatives can

occur. Moreover, the system needs to store the different properties for each object separately.

Two exemplary Functionality Maps can be seen in Fig. 3.7.

The properties, which are stored in the Functionality Map, are the following:

• pushed object vs. lifted object - An object can be manipulated by lifting or by

pushing it. A pushed object needs just to be pushed in the desired direction, whereas

lifting an object requires much more effort (e.g., knowledge about the way of grasping,

the object’s weight).

52

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

Figure 3.7: Functionality Maps for two exemplary objects [2]. The figure illustrates the

three identified Location Areas in the environment as well as the connections between them. The

first Location Area is on the table, the second one on the gray cupboard and the third one on

the green box on the table. The arrows show the connections between the Location Areas. As

it can be seen, different connections can exist, depending on the object. For example, there is a

connection from Location Area 3 to 1 for the the object on the right, whereas the Functionality

Map of the object on the left does not have such a connection.

• arbitrary movement vs. constrained trajectory - The trajectory between two
Location Areas has either an arbitrary shape or it represents a constrained trajectory.
A constrained trajectory connects the Location Areas in a direct manner while avoiding
detours. In contrast, an arbitrary movement does not have such a directed shape. Conse-
quently, the constrained trajectory sets a constraint on the possible trajectories, whereas
an arbitrary movement does not.

• connection relevance - The connection relevance shows the probability of a manipu-
lation-relevant property, based on the number of observed actions.

• velocity constraints during pick-up - Three phases defining an action are used: the
pick-up, the transportation and the placement phase. The maximal speed during the
pick-up phase is stored in the Functionality Map, since it is an indicator of the difficulty
to pick up an object.

• grasp taxonomy - The grasp type is mainly important for the pick-up and placement
phase of the manipulation and is not part of this work. The grasp taxonomy considered
for the system is summarized in [172].

• approach vector - The approach vector is, similarly to the grasp type, mainly important
for the pick-up and placement phase of the manipulation and is not part of this work. The
approach vector is the direction, from which the object is grasped in the object-centric
perspective.

53

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

The Location Areas and their connection properties can be transferred to a similar envi-

ronment, since just the corresponding areas in the similar environment need to be identified.

Then, the known functionalities can be applied. Hence, the existing knowledge can be mapped

to the current environment (Working Memory).

Furthermore, the Location Areas can be used for a segmentation of action sequences in the

workflow. At each Location Area, a new sequence starts. Moreover, the Location Areas can

work as handover areas for objects. An object can be delivered to somebody else, there.

A Functionality Map of one object can formally be seen as a graph. It consists of a pair (V,E)

with a finite set of vertices V and a set of edges E. V contains all Location Areas and E all

connections between the Location Areas. As already described, the connections and, therefore,

the edges are directed. Multiple edges can exist, since different kinds of manipulation properties

can be observed (e.g., pushed vs. lifted object). A manipulation can also lead from an initial

Location Area to itself again. Consequently, the graph contains loops as well. Furthermore, the

graph is non-complete, since not all Location Areas have to be connected. It is possible, that the

graph is disconnected: The system might observe demonstrations for one object between two

different, non-overlapping subsets of Locations Areas. Of course, a strongly connected graph is

desirable for a large range of possible paths in future planning of manipulations. However, a

disconnected graph or weakly connected graph can be built up during observations.

The assignment of the properties to the Object Container or the Functionality Map depends

on the kind of the property. A property, which is related to the functionality in the environment,

is assigned to the Functionality Map. For example, the velocity constraints during the pick-

up is part of the Functionality Map, since it depends on the environment of the object (e.g.,

obstacles). In contrast, a property which is directly related to the object and its state is a part

of the Object Container. The maximal allowed acceleration for an object is an example for

such a property (e.g., no high accelerations for a cup filled with coffee).

3.1.2.3 Knowledge Extraction

The proposed Object Container and Functionality Map need to be filled with information.

Hence, the knowledge extraction is described, next. The scene can be observed with any system

providing a 6 DoF-trajectory of the manipulated objects.

Object Container The properties which shall be extracted for the Object Container are the

maximal acceleration value and the orientation of the object during the manipulation.

Maximal Acceleration The maximal acceleration value is estimated by computing the

change of two consecutive speed values. Similarly, the speed is approximated by the difference

between two consecutive positions per time unit.

54

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

Orientation The orientation is determined from the observed 6 DoF-trajectory. The

object orientation can change around three axes. One axis is the vertical axis of the object.

It is parallel to the normal of the plane and running through the middle of the object at the

initial position. The other two axes are the horizontal axes of the object. They are parallel to

the plane at the initial position of the manipulation. Just the orientation change around both

horizontal axes (i.e., changes of the first two components of the orientation o: o1 and o2) are of

interest for the constraints in the manipulation task. The aim is the distinction of a motion with

rotation from a motion without rotation. Hidden Markov Models (HMMs) [21] are used for the

classification, because of their ability of generalization. They are statistical classifiers, which

use an observation sequence for the estimation of the underlying state-sequence. Moreover, they

take into account knowledge of the past (previous state) in the sequential input. Here, discrete

HMM with λ = (A,B,Π) are chosen. They comprise a transition probability matrix A, an

observation symbol probability distribution matrix B and an initial state distribution Π.

As described, the HMMs receive an observation sequence as input. Hence, we convert the

original sequence of observed changes around both horizontal axes (o1 and o2) into such an

observation sequence. First, a pre-processing takes place. We apply an overlapping window of

400 ms with a 200 ms overlap (according to [173]) on the original sequence. Then, the angles

between the axes of the current coordinate frame and the axes of the initial coordinate frame at

the beginning of the manipulation are measured for each window. It is possible, that different

amounts of angles occur for different objects depending on the object and the way of recording

its trajectory. The relative amount of change is needed for each object. Hence, the angles are

normalized for each object with its maximum angle occurring in all movements of the object.

Now, we have a sequence of the relative changes around both horizontal angles. The application

of the window ensures, that it contains changes at a visible, but still very small size.

After this pre-processing, we want to convert the sequence of the relative changes into the

desired observation sequence to use the HMMs. Hence, we need a codebook, which allows us to

assign each element of the sequence of the relative changes to, resp., one corresponding symbol.

This means, that the very granular number of each element is represented by a symbol. It

reflects a characteristic area of granular numbers. The resulting sequence of symbols forms the

desired observation sequence. In order to build up the desired codebook, we cluster the elements

of the sequence of the relative changes independently of their time of occurrence. Each cluster

refers, then, to one characteristic area of granular numbers. The K-means algorithm [174] is

used, therefore. It aims to create K cluster µk in a manner, such that the distance between

an element and its corresponding cluster is minimized. In our application, an element consists

of a pair (o′1, o′2) which contains the relative change around the horizontal axes after the pre-

processing. We label each element with o′n = (o′1, o
′
2)T and the total number of elements with N .

Moreover, we introduce a binary variable with rnk ∈ {0, 1} which equals 1, if the n-th element

is assigned to cluster k. It is 0, otherwise. The following term (Eq. 9.1 in [175]) is minimized

55

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

in the K-means algorithm:
N∑
n=1

K∑
k=1

rnk‖o′n − µk‖2 (3.10)

The resulting cluster are 2-dimensional. They form the core of the desired rotation information

codebook.

The next step is the buildup of two HMMs, in order to classify the motions as ones which

contain a rotation (λr) or as rotation-free ones (λnoR). For each HMM, the transition and

emission probabilities need to be calculated. We use the maximum likelihood estimation for

this purpose. The estimator receives training sequences otraining. It estimates the parameters

λ = (A,B,Π) of the HMM in a manner, such that the probability to observe the training

sequences given the HMM (p(otraining|λ)) is maximized [175]. The required training sequences

are labeled as motions which contain a rotation or as rotation-free ones.

For the evaluation, the system receives test sequences, which are pre-processed as described

above. The corresponding symbols in each codebook are assigned by the k-nearest-neighbors-

method. The k nearest neighbors of each element (o′1, o′2) are determined. The element gets,

then, assigned to the class to which most of the k nearest neighbors belong (see, e.g., [175]).

To evaluate the classification performance of the trained HMMs, the maximum log likelihood

log P(otest|λi) of a given model λi is computed for each test sequence with observations otest
similarly to [23]:

λ∗r = arg max[log P(otest|λnoR), log P(otest|λr)] . (3.11)

Functionality Map The Functionality Map, which relates the object’s functionality and its

environment, is built next.

Location Areas The possible Location Areas have to be determined, first. Therefore, the

available trajectories are split up in single sequences, which consist of the object movements

between two consecutive stops. The x,y,z-coordinates do not change at such a stop in the

trajectory. The collected 3D-points of the stops are clustered. Similarly to before, the k-nearest-

neighbors-method is used for the clustering. The resulting cluster-centers are the centers of the

Location Areas. If objects of different heights are involved, the values of their heights can differ

at the stop points on the same surface. Then, a projection on the corresponding plane makes

the clustering more convenient.

It is possible, that the system detects two Location Areas, which coincide in fact. However,

they could randomly appear as two. These Location Areas can be fused, since they are close

to each other and have the same connection properties.

56

3.1 Estimation and Representation of Manipulation - Relevant Object Properties,
Actions and Functionalities

Connection Properties The next step is the determination of the connections between
the detected Location Areas as well as the corresponding properties of the connections. This
is done for each object. The properties, used in this work, are the distinction of a pushed vs.
a lifted object, the differentiation of an arbitrary movement vs. a constrained trajectory, the
velocity constraints during the pick-up phase and the connection relevance of a property on a
certain connection. If possible, the grasp type of the manipulation is determined.

Pushed Object vs. Lifted Object: An object is pushed, if it is in contact with its supporting
plane during the entire manipulation. The computed normal vector n∗r (see Section 3.1.1.1) is
used for this purpose. Eqs. 3.1 and 3.2 can be rewritten as

Pr : ρ1k ·x+ ρ2k · y + ρ3k · z = dr. (3.12)

Using the already mentioned k = dr

B , it becomes clear, that the normal vector n∗r can be used
as well:

ρ1 ·x+ ρ2 · y + ρ3 · z =
dr
k

(3.13)

⇔ n∗r ·

xy
z

 = B. (3.14)

The center of an object placed on a table is, of course, above the table plane. Therefore, the
plane is translated by the object’s height hobj in the direction of n∗r :

n∗r ·

xy
z

 = B + hobj = hpush. (3.15)

In order to determine an object as pushed, the trajectory of the manipulated object has to
stay within the translated plane. Hence, if the 3D-positions of a trajectory fulfill Eq. 3.15, the
object is pushed. Otherwise it is lifted.

Arbitrary Movement vs. Constrained Trajectory: A Principle Component Analysis PCA
(with rescaling) is performed for the distinction of an arbitrary movement and a constrained
trajectory. The PCA is done on a 4.8 s window with a 2.4 s overlap. The resulting principal
components are normalized. Now, the arbitrary movement is determined. It has no main
direction of motion. The movement is relatively large in all directions. Therefore, the third
component of the PCA is of especial interest. It shows the direction of the smallest motion.
If this motion has a high amplitude, the entire motion has a relatively high amplitude in
all directions, since even the direction of the smallest motion is high. Consequently, it is an
arbitrary movement. The smallest motion is defined as “high” in two cases. The first case is a
comparison with the main direction of motion (= the first PCA-component): If the magnitude
of the first and the third component are relatively “close” to each other, there is hardly any main
direction of the movement, and the movement is arbitrary. “Close” means, that the component
of the smallest movement is multiplied with a factor (multiplication factor arbitrary-movement),

57

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

which determines, how many times the component of the largest movement is maximally allowed
to be larger than the component of the smallest movement. The second case of a “high” smallest
motion is occurring, when the third component is higher than a threshold (arbitrary-movement-
threshold). The arbitrary-movement-threshold has to be chosen in the magnitude of the third
PCA-component of the arbitrary movements. If all the described criteria are not met, the
direction of the smallest motion is not high, and the movement is a constrained trajectory.

Velocity constraints during the pick-up: The pick-up phase is defined manually with 50 sam-
ples from the initial position. As already described, the speed is computed for two consecutive
samples.

Connection relevance: The connection relevance can be determined easily by dividing the
number of occurrences of a certain property on a connection by the number of all movements
on this connection.

Grasp Type: The grasp type is determined by manual labeling.

The extracted manipulation properties are compared with the already perceived knowledge
in the Functionality Map of the corresponding object. If a new property is observed between
two Location Areas, a new connection is established.

58

3.2 Representation of Object Relations in the Environment for Dexterous
Manipulations

3.2 Representation of Object Relations in the Environ-

ment for Dexterous Manipulations

The just described representation of manipulation properties and actions provides very general

knowledge about manipulations. We want to go a step further as well. In the case of dexterous

manipulations, a more detailed representation is required. Sophisticated manipulation capa-

bilities are an important step towards daily use suitability of robots. We focus on advanced

knowledge about dexterous manipulation. The requirements on the physical capabilities of the

involved robotic hand and arm are separate issue and, therefore, not considered here.

The desired representation of the knowledge has to enable a successful reuse even if the envi-

ronment changes. Hence, it should be possible to build up alternative procedures to achieve a

desired goal of a task. Moreover, the knowledge representation has to be independent of the

robot to allow a usage of the knowledge on different robotic systems. The representation should

be easy to use, since a human should be able to command the robot without programming the

exact path. At the same time, it has to be possible to extract the required knowledge for the

representation from observation. To conclude, a representation at an abstract level is required

rather than, e.g., a record of observations from demonstrations.

The aim of a task is usually a desired goal state of objects in the environment. The goal

requires, then, a modification of the current state of the environment. In general, a state could

be related to a physical state of an object. For example, a cup can be empty or it can be filled

with coffee. Hence, its physical state (weight) is different. Moreover, the handling properties of

an object can differ (e.g., tilting of a cup filled with coffee should be avoided). A representation

of such general properties has been motivated in Section 3.1. As described, we focus here on

more dexterous tasks, which require a much more detailed knowledge about the goal state in

the environment. The representation of such tasks should be flexible enough to describe pre-

defined fixed paths, if desired. At the same time, less limited paths have to be represented

appropriately as well. It should be possible to change those paths, if there are other actors or

objects in the environment, which affect the scope of action of the robot.

Possible applications are daily life manipulations as well as specialized tasks. An example

of such a specialized task are medical applications (robot-assisted minimally invasive surgery).

Knot-tying is an example of a demanding task in this area. This requires very complex ma-

nipulations of the involved threads. Such manipulations do usually not take place in the same

pre-determined environment. The environment can change each time. Hence, the manipula-

tion path has to be adapted. Moreover, it should be possible to transfer knowledge from one

medical robot to another. This could be done by a direct transfer of the knowledge base or by

an observation of a robot demonstrating the tasks.

We use the perspective of contact states as base of the abstract representation here. We

describe the environment and its changes as contact states and contact states changes. Such

a contact state contains not only the information about the existence of a contact, but also

59

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

about the type of contact. Therefore, we introduce appropriate relations between objects.

These can describe the type of contact in more detail, if complex contact like knots are desired.

The abstraction of knowledge in contact states allows flexibility in the task execution through

alternative paths. Moreover, the representation is independent of the robot. Hence, a transfer

from one robot to another is easily possible. A further important aspect is, that the contact

state perspective enables a clearly arranged representation with a wide range of descriptions

from simple to complex contacts.

An illustrative example is shown in Fig. 3.8. If somebody wants to drink water, he could

ask for a cup with water. The goal state of the contact is, hence, water in the cup. Of course,

one could directly fill water from the water conduit into the cup. The usage of a tool like a

can inbetween is another possibility: The can could be filled with water and the water can be

filled from the can into the cup. Both ways (with and without the can) lead to the desired

final contact state. The advantages or disadvantages of the tool usage can depend on further

external factors like efficiency (reduced efficiency due to an additional tool) or further tasks

(re-filling of the cup at another place).

We define a tool as appliance to change the contact states in the environment to the desired

ones. The robot itself is defined as an active object which executes the required manipulations.

All other objects which cannot perform actions themselves are non-active objects. Tools are,

in general, also non-active objects, which are used actively to change the contact states. For

example, if somebody wants to drink water from a cup, we can consider a can as tool to fill

water in the cup.

It is possible to depict very simple manipulations in the contact state perspective. For

example, an object can be transported from one location to another. The aim contact state is,

then, the contact of the object with its final location. Hence, the Functionality Map (Section 3.1)

can be easily used. Moreover, the contact state perspective has advantages concerning the

execution of transportation tasks. For example, box A has to stand on box B on a desired

table T. Currently, both boxes are placed separately on another table. Our perspective of

contact states allows to build up of two alternatives: Box B can be transported to T and placed

there. Afterward, A can be transported and put on B. Alternatively, A can be placed on B,

first, and, then, both boxes can be transported and placed on the table T. The final choice of

the procedure depends on external factors (e.g., heavier load, but just one transportation in

the second procedure).

To conclude, we present a representation of the environment for dexterous manipulations

in a contact state based perspective. The representation is chosen in a manner, such that

(1) it extends existing work with respect to a detailed information representation for dexterous

manipulations, (2) it is clearly structured to enable an easy usage, (3) it is reusable even in

changing environments, and (4) path alternatives can be build up if feasible.

60

3.2 Representation of Object Relations in the Environment for Dexterous
Manipulations

Figure 3.8: Contact state based representation of object relations [7]. The desired

contact state is water in the cup. Hence, one could directly fill water into the cup (top figure). Of

course, one could use a tool, e.g., a can inbetween to achieve the desired contact state (bottom

row). The final choice depends on several factors like efficiency (usage of an additional tool requires

time capacities) or further tasks (e.g., refilling of the cup).

In the following, the contact state and the roles of objects are defined for the representation

of the environment for dexterous manipulations. The composition and usage of the contact

state knowledge are described afterward.

3.2.1 Contact State Definition

We define a contact state as a special function with respect to the involved objects and properties

of the contact:

contact(objects, contact_properties)

61

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

The involved objects are a set of keys referring to information in the system’s knowledge (e.g.,
Atlas). They could be implemented with an index pointing to the corresponding object in the
knowledge.
The contact properties can be described in different ways. This enables a flexible usage under
different requirements. For example, a set of contact points can strictly describe the contact
state. Another, much richer and more complex possibility are relations. Relations have the
advantage, that they can describe the contact properties in a more abstract and less restricted
manner. We define a relation in contact properties by a relation attribute and the involved
objects:

relation: [relation_attribute, objects]

Such relations allow alternative procedures, since the path is described by the properties of the
dexterous manipulation. Motion-restrictions or efficiency requirements can be considered for
the final choice of the path. For example, a search for alternative paths can be processed (e.g.,
due to additional obstacles in the environment). If, e.g., an object A should be placed on object
B, the relation would be defined as follows:

relation: [over, (a,b)]

As we can see, the goal state of the manipulation is defined. Hence, we are not limited to one
path. All paths fulfilling the desired property can be applied.
Of course, much more complex descriptions of the contact can be necessary. We use, then, a
set of properties to define the contact:

contact_properties := {point_set, relation, property_set}

Such a set of properties, which can, in turn, contain a set of properties. This allows to structure
the properties. The property sets can contain sets of points, sets of relations or further variables
defined the type of contact. We could, e.g., consider a cut on an organ in a medical scenario
(see also simulations in Section 7.2.1). A cutting tool (the knife) and the organ are the involved
objects. The cut is described by the cut properties:

contact({knife, organ},

cut_properties)

Such a cut cannot be chosen arbitrarily in an operation (e.g., to excise a tumor). Here, it has
to be performed accurately along a certain path, which is represented by a set of successive
points. Moreover, the cut has a certain depth, which defines how deep the cut has to be.

cut_properties = {cut_points, depth}

The depth of the cut could be the same for all points or it could be specified by a set representing
the respective depth for each point of the cut. One needs to consider that the property “depth”

62

3.2 Representation of Object Relations in the Environment for Dexterous
Manipulations

implies knowledge about the space (depth with respect to a certain direction). Such implicit

knowledge needs to be considered and, hence, included in the implementation.

As the term property ”set“ already indicates, the properties of the contact can be reordered

arbitrarily within the set. In contrast, a relation is strictly defined, since the adjective describes

the relation of the objects to each other. Hence, the order of the involved objects matters in

the relation.

The usage of relations or fixed points depends on the application. There can be tasks, for

which a path of fixed points is necessary as for a precise cut along a line. For other tasks, several

or even many paths can be used to achieve the desired goal state, even if the manipulation is

dexterous. For example, if a knot has to be tied at shoes, the procedure is not limited to one

fixed path. Instead, the complex contact state of the involved threads can be described by

relations (as we will also see later on in the Experiments).

3.2.2 Object Role Definition

The objects involved in the task can be active, like a robot with a gripper (active objects).

Other objects are not active themselves, as, e.g., a cup (non-active objects). Of course, it is

possible to use non-active objects through an active object. We call these non-active objects

tools. The role of the objects can depend on the current task. For example, a can can be used

as a tool to fill a cup with water. If the task is the contact state ”water in the cup“, we are

done. Otherwise, the cup can, in turn, be a tool, e.g., to drink water.

The contact state perspective allows the composition of alternatives in a task. One or more

tools can be included in the task flow, if desired. We have already illustrated such an example

(water drinking, see beginning of Section 3.2 and Fig. 3.8). The final choice of a procedure

depends on external factors as, e.g., the reusage of a tool. Our definition of contact states and

the subsequent definition of the object role enables the build up of alternatives if desired and

appropriate.

3.2.3 Composition and Usage of the Contact State Knowledge

The described contact state based knowledge representation can be composed through different

procedures. One procedure is the contact state definition by humans. It is not necessary

to program the entire robot. Just the above descriptions need to be filled out. A second

procedure is the observation of demonstrations by humans or other robots. The contact states

in the environment have to be observed, then. Hence, we are independent of the demonstrator

(its physical build-up, its capabilities, its knowledge representation, etc.).

In order to achieve possible paths which can fulfill the task in a scenario, we need to evaluate

the contact state description. If the task allows just a path of fixed points, the path is pre-

determined. It can be executed straight forward. If the properties are described by a relation,

the relation has to be evaluated first, before a path can be created. As we described, a contact

63

3. MANIPULATION-RELEVANT KNOWLEDGE REPRESENTATION

property can contain sets of properties. An element of these properties can, in turn, consist of a
set of properties. Therefore, we need to consider several levels of properties. We start with one
of the properties at the lowest level. This means, that these properties are not defined through
another property set.

If the contact properties are defined by a set, the execution order of the elements in the set
is not defined in advance. This could, e.g., be determined by a real experiment or a physical
model, which simulates the execution of the relations in different orders. The results of such a
simulation, respectively, experiment show, which execution orders lead to the desired contact
state. It is possible, that one, several or all possible orders lead to the goal.

The objects themselves can already determine the area of possible paths. One object or
parts of an object (e.g., a thread) can be fixed to a certain position. The task has to be
processed within the reachable region of the (partly) fixed object. The movable object(parts)
can be moved to achieve the desired goal. Moreover, the movable object(parts) allow to provide
alternative paths. If, e.g., a knot has to be tied at a shoe, the possible intersection point of the
threads is limited to the intersection area of both threads. During the knot-tying execution, the
intersection point is flexible within this intersection area. At the end, the threads are tightened
and the position of their intersection is much more restricted to a smaller region.

The proposed contact state based representation is not limited to pre-defined paths. The
objects can be described relative to other, possibly movable objects. Hence, the final path
can be chosen under consideration of temporary constraints (e.g., other organs as obstacles).
Different approaches can be used to build up the final path. We simply take a path which fulfills
the desired properties and constraints, here. In future work, the choice of the final points can,
e.g., be optimized as suggested in Section 4.2. Another possibility is the usage of Dynamic
Movement Primitives (DMPs) [29], [30].

64

Chapter 4

Path Optimization for Abstractly

Represented Tasks with Respect

to Efficient Actuation

In the analysis of manipulator structures, the potential of path optimization is of interest, as we
motivated already. Hence, an appropriate path optimization method with respect to efficient
actuation needs to be developed. We described already, that manipulations are, most of the
times, not restricted to a fixed path (e.g., Section 1.1). Variations are possible. The robotic
system can make use of some of these varieties to simplify the actuation to improve the efficiency
of the generated motion. Nevertheless, the human’s intention behind the manipulation may not
change. But how should the path look like to support efficient actuation? Fig. 4.1 illustrates a
scenario with different path configurations.

First, we provide an analysis tool which uses the abstraction of the human actions to compare
different path types with respect to efficient motion profiles. This work is published in [3].
Afterward, we investigate in an advanced concept for path optimization with respect to efficient
actuation. The optimized path needs to enable the easiest and most efficient actuation. Hence,
each joint of the robot should move slowly and smoothly. Abrupt turnarounds of the acceleration
should be avoided. Furthermore, energy can be saved and the strain on the hardware can be
reduced. The work is published in [5].

We introduce the Elastic Power Path to optimize the path with respect to efficiency in
actuation. In analogy to an elastic band, the Elastic Power Path has a certain elasticity. When
an elastic band is stretched, additional energy is required. In the context of efficiency, we want
to minimize this additional energy. The less stretched the band, the closer desired optimum
is. This depends, of course, on the elasticity of the band. Analogously to an elastic band, the
Elastic Power Path can be stretched and relaxed. Its elasticity depends on the actuation of the
robot along the path. The more efficient the actuation, the closer the Elastic Power Path is

65

4. PATH OPTIMIZATION FOR ABSTRACTLY REPRESENTED TASKS
WITH RESPECT TO EFFICIENT ACTUATION

Figure 4.1: Path optimization: Different path configurations [5]. The Figure shows

different path configurations for a manipulation between two areas (yellow). Which path is the

most efficient one with respect to actuation?

to its optimum. Our aim is an optimal path with respect to efficient actuation. We measure

the required power in the style of a hiker climbing up and down hills. The required power is

increasing, if more hills have to be climbed or if higher hills have to be climbed. The speed

and acceleration profiles play an important role regarding the power. In the context of path

optimization for a manipulator, we focus on the speed and acceleration of the joints. The less

often the direction of the acceleration is reversed and the smaller its magnitude, the less power

is needed.

It is important to point out, that we do not analyze all possible configurations of the robot

in the entire workspace. The concept of the Elastic Power Path allows an efficient optimization

for the desired task: Just promising configurations of the robot are considered during the

optimization. Moreover, the optimization does not depend on a specific manipulator structure.

For example, it is not necessary to find appropriate joints in the manipulator structure for each

(sub-)motion.

We build on the concept of Functionality Maps (Section 3.1) which represent observed

manipulation tasks in an abstract manner. Different properties of manipulation tasks are stored

there, as, e.g., the type of manipulation or characteristic areas, which are start or end points

of manipulations.

66

4.1 Path Configuration

Figure 4.2: Paths with different properties for a manipulation between two areas [5].

The Figure shows paths with different properties (e.g., motion shapes) for a manipulation be-

tween two areas (yellow). Which path should be chosen to achieve efficient actuation during the

manipulation?

The concept of the Elastic Power Path allows to optimize paths (1) with respect to efficient

actuation (2) in task-specific contexts (3) independently of the manipulator’s structure.

The path configuration framework and the path optimization approach are presented next.

Both are grounded on abstractly represented tasks and consider efficient actuation of the ma-

nipulator.

4.1 Path Configuration

As described, we provide an analysis tool which uses the abstraction of the human actions

to compare different path types with respect to efficient motion profiles. We evaluate paths

with respect to the efficiency of actuation for a given robot. Which modifications of the path

influence the robot’s actuation? How can we make use of the freedom in path planning, which

accompanies the abstract representation of tasks?

The paths, which we want to compare, can be distinguished between the following three

categories:

• basic motion shape - Four different basic motion shapes (bs) are considered here: a

line (bs 1), a half circle (bs 2), a wiggly line (bs 3) and a half quadrilateral (bs 4). The

67

4. PATH OPTIMIZATION FOR ABSTRACTLY REPRESENTED TASKS
WITH RESPECT TO EFFICIENT ACTUATION

latter three are positioned upright over basic motion shape 1 along the vertical axis in

the room (see Fig. 4.2).

• compression and elongation - The basic motion shapes 2-4 can be compressed or

elongated by a factor e along the vertical axis in the room.

• bias - The basic motion shapes 2-4 of the path can be biased. The path is, then, turned

around the axis of basic motion shape 1 by an angle β.

The robot’s actuation properties for a certain path can depend on the placement of its base.

Therefore, we process the evaluation for different positions of the base.

Our experiments will show, that the path properties influence the actuation in a not neces-

sarily intuitive manner (see Section 7.4.1). Therefore, it is worth to further analyze the path

properties with respect to efficient actuation. Hence, a path optimization approach is presented

next.

4.2 Path Optimization

We want to optimize a path for a manipulator with respect to efficient actuation. A clear

definition about the used variables and definitions is important. Therefore, we give a short

overview of them.

As in the previous chapter, the robotic system is described in the DH-convention [164] in

the form shown in [9]. The manipulator system consists of D joints. Each joint j contributes

a certain linear velocity vector vj to the overall velocity v of the end-effector:

v =
∑
j

vj (4.1)

All vectors are given in a global coordinate frame, if not labeled otherwise. The linear velocity vj
of a rotational joint j can be computed by

vj = ωj × (pee − pj) (4.2)

with pee as the position of the end-effector, pj as the position of joint j and ωj as the rotational

velocity caused by joint j:

ωj = θ̇j · Ẑj (4.3)

with Ẑj as 3-dimensional unit vector of the z-axis of joint j and θ̇j as magnitude of the angular

rate (see, e.g., [9]). The acceleration is labeled with 4vj , indicating its meaning as difference

between two consecutive speed values.

68

4.2 Path Optimization

4.2.1 Elasticity of the Path

Our basic idea can be illustrated through an elastic band with linear elasticity. The elasticity
can be described through Hooke’s law, similarly to a linear spring:

F = −k ·x (4.4)

with x as the displacement from the equilibrium position, k as the spring constant and F as
the resulting force.

We use the elasticity of the path as illustration of our idea, therefore, we assume that the
displacement is within the elastic range. As motivated at the beginning, we want to optimize
the path with respect to efficient actuation. Hence, the spring constant k depends on the
efficiency of the system’s actuation. The displacement x describes the distance between the
current configuration of the path points and their ideal configuration.

Hook’s law of elasticity can be seen as optimization function, which optimizes the system’s
configuration with respect to energy. In contrast to a real elastic band, the path optimization
function is much more complex. First, the elasticity depends on the efficiency of the actuation.
Many local minima can occur in the optimization function. Second, the ideal configuration
of the path points, resp., the displacement x is unknown. Therefore, the force F cannot be
computed directly. This results in a chicken-and-egg problem: The displacement x is unknown,
consequently, the force F cannot be computed and vice versa.

4.2.2 The Elastic Power Path

Similarly to Hook’s law, we want to optimize the path configuration of a manipulator system
with respect to energy. In our context, the energy is consumed by the manipulator to perform
the desired task. The manipulator spends the energy to move its joints. Hence, joint movements
at smooth and low speed are desirable. This requires, in turn, a smooth acceleration profile.
The acceleration should not only be smooth, but it should also have a low magnitude. Moreover,
zero crossings should be avoided, since a change of the acceleration sign refers to a large energy
loss. The movement in the previous direction has to be decreased or even stopped (braking),
while a movement into the other direction has to be built up. Moreover, braking means, that
energy is necessary to stop the movement in the previous direction, which resulted absurdly
from an earlier investment of energy.

We model the required energy in the style of a hiker climbing up and down hills. Hence, we
compute the power the hiker would need to climb up and down all desired hills. In general, the
power P is computed through

P =
4E
4t

(4.5)

with time step 4t and the difference between the initial and final kinetic Energy 4E as

4 E = Efinal − Einitial =
1
2
m(v +4v)2 − 1

2
mv2. (4.6)

69

4. PATH OPTIMIZATION FOR ABSTRACTLY REPRESENTED TASKS
WITH RESPECT TO EFFICIENT ACTUATION

We are interested in the derivative of the change of the kinetic energy d
dt 4 E, in order to

minimize the change of the kinetic energy 4E:

d
dt 4 E

4t
= m · v · 4 v + 0.5 · (4v)2

4t
. (4.7)

In our case, the velocity v is the linear velocity of the end-effector. The relevant acceleration
is 4vj,i, which is the maximal acceleration contributed by joint j within 4tj,i. 4tj,i is the
required time to climb up and down hill i. The hiker starts and ends his/ her tours at consecutive
zero points in the acceleration profile (pi and pi+1). Each 4vj,i reflects, then, one peak in the
acceleration curve. If the acceleration curve proceeds below zero-level, it is mirrored on the
zero-level to ensure that all peaks are counted equally later. It is important to point out, that
the zero points do not change. Fig. 4.3 illustrates this procedure.

The term
d
dt4Ej,i

4tj,i
can be computed for each hill i in the acceleration profile of joint j.

However, the relevant part of
d
dt4Ej,i

4tj,i
is the fraction in our case, since m is always constant.

Hence, just a change of a variable in the fraction enables a change of the magnitude of the
result. m works just as a scaling factor. Consequently, we want to minimize the following
Objective Function Oj for each joint j along all zero points pi on the path:

Oj =
∑
i

2 · |vj,i| · | 4 vj,i|+ (| 4 vj,i|)2

4tj,i
. (4.8)

We use absolute lengths due to the described mirroring of parts of the acceleration-curve on
the zero-level to create the hills. The absolute lengths of vj,i enable an equal counting of all
peaks. The original fraction has been multiplied with a factor of two for esthetic reasons. The
sum of all 4tj,i is, of course, not changing during the optimization.

The overall Objective Function O is the sum of the Objective Functions Oj for each joint j:

O =
∑
j

Oj =
∑
j

∑
i

2 · |vj,i| · | 4 vj,i|+ (| 4 vj,i|)2

4ti
. (4.9)

4.2.3 Optimization of the Path

Our aim is the optimization of the path in the context of an abstractly represented task. As
already mentioned in the beginning of the Chapter, we want to build on the concept of the
Functionality Maps (see Section 3.1.2). Such a Map contains, e.g., the characteristic places of
manipulations (Location Areas) and information about the type of the manipulation. Here,
we make use of the Location Areas and the distinction between a manipulation of a pushed
object on a table and a manipulation of a lifted object. These characteristic properties have to
be preserved during the optimization. For example, the path of a pushed object should be a
path of a pushed object after the optimization of the path, too. Similarly, the path of the lifted
object should still refer to a path of a lifted object.

70

4.2 Path Optimization

Figure 4.3: Visualization of the Objective Function in the acceleration profile [5].

The figure shows the original acceleration profile in blue. The negative values in the curve are

mirrored at zero-level (dashed blue curve). Each zero point (vertical magenta lines) forms a border

of a 4ti. The black numbers are the original time steps. They refer to the time step x, when the

corresponding point px is reached along the path. It is clearly visible, that the original time steps

do not necessarily form the borders of 4ti in the Objective Function O (Eq. 4.9).

Hence, we limit the possible configuration of the path. Of course, the start and end point

of a path are hardly allowed to change. Moreover, points close to the start, resp., end point

should lead to the start, resp., end point. The closer a point to the start or end point, the less

freedom should be available for the path configuration. Therefore, we introduce a sphere Sx
around each point px of the path. The sphere comprises the area, within which the point px is

allowed to be placed during the optimization. The radius rx of the sphere Sx depends on the

position of px within the path. The further away px from the start and end point, the larger rx.

If the original points px are uniformly distributed along the path, the radius rx can be

computed as follows:

rx =

{
C ·x if x ≤ X

2 ,

C · (X − x+ 1) otherwise.
(4.10)

C is a constant basic distance, X refers to the overall number of points along the path and x is

the index of px. The index x is increasing along the path and it starts with x = 1 at the start

point. Fig. 4.4 illustrates the spheres along a path. The initial points on the half circle are just

chosen to ensure a path for a lifted object. The final points px do not need to stay on a circle,

since they can be placed arbitrarily within each sphere Sx. In the case of a pushed object, we

have to ensure, that each point stays at the original height above the plane on which the object

is pushed. Therefore, the sphere Sx is reduced to a circle at the desired height above the plane.

71

4. PATH OPTIMIZATION FOR ABSTRACTLY REPRESENTED TASKS
WITH RESPECT TO EFFICIENT ACTUATION

Figure 4.4: Path optimization spheres [5]. The original points of the path are depicted on

the left (magenta crosses). The corresponding spheres are visualized on the right in blue. Each

point is just allowed to move within its corresponding sphere.

The settings of the parameters introduced in this Chapter are further discussed in the experi-
ments (Section 7.4).

72

Chapter 5

Structure Analysis of

Manipulators

The aim of this thesis is an analysis of manipulator structures in task-specific contexts. We

want to compare the capabilities of different robots with respect to efficient actuation. The

comparison is processed (1) within a robot in the case of joint failures and (2) between robots

with or without joint failures. It is important to point out, that the analysis can be processed

independently of the structure of the manipulator. The results have to be comparable between

different manipulator structures. Therefore, an abstract representation of the robot’s dynamic

capabilities is necessary. We introduce the Maneuverability Volume and the Spinning Pencil

for this purpose. The Maneuverability Volume shows, how efficiently the end-effector can be

moved to any other position. The Spinning Pencil reflects the robot’s capability to change its

end-effector orientation efficiently. The work partly is published in [4].

Today, robots are able to perform different tasks as, e.g., work in the kitchen. The structure

of the used robots can be very different, reaching from, e.g., a simple three DoF manipulator to

complex systems like humanoid robots. Hence, the robot’s capabilities can vary strongly. Some

of the robots might have extensive capabilities, whereas others have just a limited ones. The

efficiency during the desired motion can be different as well. In an ideal case, the robot moves

smoothly and slowly. The workload should be distributed equally among all joints.

Our aim is the comparison of different manipulator structures with respect to efficient actu-

ation. We want to use one approach which leads to a result that is independent of the structure

of the robot. At the same time, the change of the manipulator’s capabilities should be analyz-

able if one or several of its joints fail. Is the robot still able to reach the desired positions at

all? Which capabilities of the manipulator remain at which quality and which ones are lost?

Hence, we are interested in an abstraction of the robot’s capabilities, which enables an

inter-robot and intra-robot comparison of the efficiency in actuation. The possibly high dimen-

sionality of the manipulator structure has to be reduced to a representation at a manageable

73

5. STRUCTURE ANALYSIS OF MANIPULATORS

Figure 5.1: Analysis of manipulator structures under joint failure [4]. (light blue circle:

robot’s base; magenta straight lines on robots: joint axes symbols): What happens, if, e.g., the

red-marked second joint of the blue manipulator fails? Is the robot still able to move the box as

a task might require? If yes, which effort is necessary? Can the robot still turn the object? How

would the yellow robot be affected under a similar joint failure? Would it keep better capabilities

than the first one?

dimensionality. Fig. 5.1 illustrates an exemplary scene with two manipulators, which are sup-

posed to perform the same task under joint failure.

We introduce the Maneuverability Volume and the Spinning Pencil as abstract representa-

tion of the robot’s capabilities for the inter-robot and intra-robot comparison.

The Maneuverability Volume is a parallelepiped, which represents the robot’s capabilities to

move efficiently into a set of directions. The starting point of our idea is the following: If a joint

is moved by a fixed angular rate, it contributes a certain velocity to the end-effector, which is

represented by a base velocity vector. The base velocity vectors of all joints can be combined to

the desired overall velocity of the end-effector. Of course, it is desirable, that the base velocity

vectors point into significantly different directions to enable an efficient motion into a large set

of directions. Hence, the vectors should span a large volume to cover a large area. Moreover,

the vectors are spanned by the fixed angular rate, which is the same for all joints. Therefore, the

magnitudes of the base velocity vectors allow an easy comparison of the efficiency of different

joints. A joint which contributes a vector of a large magnitude is more efficient than another

joint contributing a vector of a smaller magnitude.

The robot’s capability to change its end-effector position efficiently is represented by the de-

74

scribed Maneuverability Volume. We want to be able to separately analyze the robot’s capa-

bilities to change the end-effector orientation efficiently. In an ideal case, the robot is able to

turn its end-effector without changing its position. Otherwise, a change of orientation requires

also a correction of the position. For example, the robot could need to rotate an object without

changing the position (e.g., a jug needs to be turned to fill coffee into a cup). We can imagine

the axis of the desired rotation as the rotation-axis of a spinning top. If an undesired change

in position accompanies the change in orientation, we need to model it. We take the change in

position of the end-effector as the spinning top’s diameter. A spinning top in form of a spinning

pencil is desirable, since the pencil reflects the advantageous thin shape of the spinning top.

Hence, we represent the robot’s capability to change its end-effector orientation by the Spinning

Pencil.

We are interested in the analysis of the manipulator structure in a task-specific context.

The representation of the task is important to us, since it is the basis on which we work. We

want to use an efficient, abstract representation of a task. Therefore, we develop the concept

of Functionality Maps and Location Areas (Section 3.1) further. We make use of the Location

Areas as representations of positions, where actions typically start or end. In some areas,

only simple tasks are performed. These tasks can even be performed by a robot with limited

capabilities. In contrast, complex manipulations can take place at other areas. Consequently,

the task determines the areas where manipulations are performed and the capabilities which

are required from the robot. For example, a Location Area in a cupboard is used to place an

object mainly from one direction, which is the front. In contrast, complex manipulations can

be performed at a Location Area on a table. The robot needs better capabilities on the table

than at the cupboard. The capabilities which are required by the desired, abstract task need

to be integrated into the analysis.

Moreover, we are interested in the potential of path optimization in the context of structure

analysis under joint failure. We want to make use of the described path optimization approach

(see Section 4.2) for this purpose. Such an optimization can allow to compensate a joint failure

at least partly. Hence, we evaluate the potential of path optimization for different robots under

the failure of one or several joints. Fig. 5.2 illustrates such a situation.

To sum up, we provide an inter- and intra-robot comparison (1) applicable to manipulators

of any structure, (2) with respect to efficient actuation, (3) in task-specific contexts, (4) under

the consideration of joint failures (5) including the potential of path optimization.

In this chapter, we present the analysis of manipulator structures with respect to efficient

actuation. It allows the comparison of robots’ capabilities. Furthermore, the potential of path

optimization is analyzed in this context.

As before, we describe the robotic system in the DH-convention [164] in the form shown

in [9], the orientation of the robot’s end-effector is described as Z-Y-X Euler angles [9], and the

overall number of joints is D.

75

5. STRUCTURE ANALYSIS OF MANIPULATORS

Figure 5.2: Analysis of manipulator structures under joint failure and path opti-

mization (light gray circle: robot’s base; magenta straight lines on robots: joint axes symbols):

Different path configurations are shown for a manipulation between two areas (yellow). Which

path is the most efficient one with respect to actuation? Can an appropriate choice of the path at

least partly compensate a joint’s failure, as, e.g., the failure of the second joint of the cyan robot?

5.1 Maneuverability Volume

At a (reachable) position, the robot can move its end-effector into a larger or a smaller set
of directions depending on the design and the current configuration. The content of the set
depends on the motion of each joint, since each joint j contributes a certain linear velocity
vector vj to the overall velocity v of the end-effector. As in Section 4.2, the overall velocity
of the end-effector v, the linear velocity vector vj contributed by a rotational joint j and the
rotational velocity ωj caused by joint j are defined as follows:

v =
∑
j

vj (5.1)

vj = ωj × (pee − pj) (5.2)

with pee as the position of the end-effector, pj as the position of joint j and ωj as the rotational
velocity caused by joint j:

ωj = θ̇j · Ẑj (5.3)

with Ẑj as 3-dimensional unit vector of the z-axis of joint j and θ̇j as magnitude of the angular
rate (see, e.g., [9]).

If we consider a fixed angular rate θ̇fix for each joint j, the magnitude of the rotational
velocity ωj,fix is the same for all joints, since Ẑj is a unit vector. We call the resulting linear

76

5.1 Maneuverability Volume

velocity base velocity dj of a joint j. It depends on the current configuration:

dj = (θ̇fix · Ẑj)× (pee − pj) (5.4)

or
dj = ωj,fix × (pee − pj) (5.5)

A desired end-effector speed can be combined by the base velocities:

v =
∑
j

vj =
∑
j

(gj ·dj) (5.6)

with a scalar gj . Of course, it depends strongly on the vectors of the base velocity, whether and
at which effort a desired end-effector speed can be achieved. If low joint speeds are desired, the
base velocity vectors should have a large magnitude (resulting in a small effort gj in Eq. 5.6).
Moreover, the vectors dj (and their counterparts, pointing in the opposite direction) should be
perpendicular to each other. A combination of the vectors dj can, then, efficiently reach any
direction in space. At the same time, the robot is further away from a singular configuration.
Such a singularity would be reached, if at least two vectors point into the same direction.
We discuss the settings of the parameters introduced in this Chapter (e.g., θ̇fix) in detail in the
experiments (Section 7.5).

Three base velocity vectors span a volume (parallelepiped), which increases, when the vectors
are rather perpendicular to each other and when the magnitude of the vectors is enlarged. A
parallelepiped can be computed by a triple product V :

V = trip(d1,d2,d3) = (d1 × d2) ·d3 (5.7)

The parallelepiped K of three base velocity vectors is, therefore:

K = trip(d1,d2,d3) (5.8)

An advantageous parallelepiped has a large value K.
Moreover, an evaluation of the maneuverability independently of the length of the base

velocity vectors dj is interesting. It allows to ensure, that the base velocity vectors are per-
pendicular to each other as good as possible. First, a normalization is executed: d̂l = dl

‖dl‖ .
Afterward, just the angles between the vectors are considered in the parallelepiped L:

L = trip(d̂1, d̂2, d̂3) (5.9)

The combination of both parallelepiped K and L gives us the desired measurement of
maneuverability, which we call the Maneuverability Volume mV :

mV = ωk · trip(d1,d2,d3) + ωl · trip(d̂1, d̂2, d̂3) (5.10)

with the weightings ωk and ωl to enable different priorities of the desired properties. An
exemplary parallelepiped K is illustrated in Fig. 5.3.

77

5. STRUCTURE ANALYSIS OF MANIPULATORS

Figure 5.3: Parallelepiped (part K of the Maneuverability Volume) [4]. A robot with

three rotational joints is drawn in magenta (unit: mm). Its joints can turn around the black

dotted zj-axes. Each joint contributes one of the blue base velocity vectors dj , when it moves

with the speed θ̇fix. E.g., the largest vector d1 is contributed by joint 1. The three blue base

velocity vectors dj span the light blue/ light red parallelepiped. The red dot is the robot’s base.

The Maneuverability Volume can be spanned by three vectors. If the robot has more than

three joints, we combine the base velocity vectors dj to three final velocity vectors dj,f . We just

need to check all combinations of the vectors dj to the final dj,f to find the most advantageous

Maneuverability Volume. For example, six base velocity vectors dj should be combined to

three final velocity vectors. One final velocity vector d1,f can consist of one, two, three or four

different vectors dj , so that the remaining two final velocity vectors dj,f consist of at least

one vector dj . Each vector dj can just be assigned to one of the final velocity vectors dj,f .

Consequently, our analysis takes place in the 3D-space, where the manipulations takes actually

place. A projection to another space is not necessary.

In contrast to the traditional approach with the determinant of a Jacobian, we are include

in our Maneuverability Volume (1) an additional emphasis on the desired 90◦ angle between

the base velocity vectors and (2) a new extension to manipulators with more than three DoF.

5.2 Spinning Pencil

The next step is the analysis of a manipulator’s capability to change its end-effector orientation

efficiently. It is desirable, that the orientation can be changed around any axis at the position

of the end-effector, while the position of the end-effector is not changing. For example, a jug

needs to be turned around a certain axis to fill a cup with coffee, while the center of the jug

should stay at its original position. As already described in the at the beginning of the Chapter,

78

5.2 Spinning Pencil

Figure 5.4: Spinning Pencil [4]. Two different 1-DoF manipulators are illustrated. The thin

black line in each blue Spinning Pencil shows the length and the orientation of the pencil. Both

pencils have the same length and point into the same direction. The different magnitudes of the

diameters are due to the fact, that the end-effector on the left conquers a much larger distance to

change its orientation than the end-effector on the right.

we imagine a spinning top, which reflects these properties: The spinning top rotates around a

certain axis. In the case of a manipulator, the end-effector can turn around one (or more) of its

joint axis. Depending on the robot’s configuration, a change of the orientation can automatically

and unpreventably result in an undesired position change. The distance between the position

of the end-effector before and after the rotation is chosen as the diameter of the spinning top.

A small diameter is, of course, desirable. Hence, we introduce the Spinning Pencil, since the

pencil reflects the small diameter. Fig. 5.4 illustrates the principle of the Spinning Pencil.

We want to analyze the robot’s capabilities to change the orientation of its end-effector

efficiently, while keeping the desired position pee. Therefore, we turn joint j by an angle γ. In

an ideal case, the end-effector stays at pee independently of the magnitude of γ. Otherwise, the

end-effector moves to a new position pn,j . The euclidean distance between the old position pee
and the new one pn,j is labeled with ej = ‖pn,j − pee‖. We compute the mean µe and the

variance σe of all ej (all joints j), which should be small in an advantageous Spinning Pencil.

Of course, the robot should be able to change the end-effector’s orientation around any

arbitrary axis running through the original position pee. However, the robot’s capability to

turn depends on the z-axes of its joints. Hence, z-axes which point nearly in the same direction

provide almost the same axis for the change of orientation. The more different the orientation

of the z-axes, the more axes are provided for the orientation change. In the ideal case, the

z-axes are perpendicular to each other. Therefore, we compute the normalized z-axis eeẐj of

79

5. STRUCTURE ANALYSIS OF MANIPULATORS

each joint j in the frame of the end-effector. Afterward, we analyze the angles between the

z-axes eeẐj .

Once again, we want to process the analysis in 3D space, where the manipulations actually

take place. Since the manipulator can be redundant, it might be necessary to analyze more

than three z-axes. Hence, we analyze all possible combinations of z-axes. We compute the

determinant of three normalized axes, since it reflects the angles between the axes: If all

three axes are perpendicular to each other, the determinant reaches its maximum of one. The

smaller the determinant, the less perpendicular the axes are to each other. Therefore, we take

a combination c of three z-axes eeẐj and compute the determinant s1,c:

s1,c = det(eeẐc1,ee Ẑc2,ee Ẑc3) (5.11)

with c1, etc., as labeling of the three chosen z-axes eeẐj . The determinant s1,c is computed

for all n1 =
(
D
3

)
combinations. All determinants s1,c are summed up and normalized with the

overall number of combinations n1:

s1 =
∑
c s1,c
n1

(5.12)

It is possible, that at least some z-axes lie in a plane. In this case, the determinant in

Eq. 5.11 becomes zero. Therefore, we analyze the angle between two z-axes additionally. The

dot product is used for this purpose. Similarly to s1,c, we compute the dot product s2,c for all

combinations of two z-axes:

s2,c =ee Ẑc1 · eeẐc2 (5.13)

The results of s2,c are projected into the range of 0-90◦. The final s2 consists of the sum of

all s2,c, which is normalized with the total number of combinations n2 =
(
D
2

)
:

s2 =
∑
c s2,c
n2

(5.14)

The values of s1 and s2 should be large in an advantageous case. In contrast, the mean µe

and the variance σe should be minimized. Therefore, we combine all parts of the Spinning

Pencil sP as follows:

sP = ω1 · s1 + ω2 · s2 + ω3 ·
1.0

µe + σe
(5.15)

with ωi as weighting of the respective property. All terms of the sP should be large in an

advantageous case. The third term 1.0
µe+σe

is increasing, when the mean µe and the variance σe
are decreasing as desired.

In contrast to traditional approaches with the Jacobian, we consider also (1) rotation axes

lying in a plane and (2) the undesired effect of a position change which can accompany a change

in orientation.

80

5.3 Maneuverability Analysis under Joint-Failures

5.3 Maneuverability Analysis under Joint-Failures

Next, we want to analyze the remaining maneuverability of a manipulator, if one or more of its
joints fail. First, we compute the original maneuverability. We combine the Maneuverability
Volume and the Spinning Pencil in the Maneuverability Analysis MAl at Location Area l:

MAl = ωm ·mV + ωs · sP (5.16)

with a weighting ωm and ωs to enable different preferences of both properties (sum of ωm and
ωs equals 1.0).

After the computation of the original MAl, the Maneuverability Analysis is processed for
the manipulator with the broken joint. The manipulator with the broken joint has simply one
DoF less than the original one. The DH-parameters need just to be changed around the broken
joint: A direct transformation from the joint before the broken joint to the joint after the broken
joint is needed. The joint angle θb of the broken joint jb can be treated as a fixed parameter.
We just need to process the above Maneuverability Analysis for the new manipulator, since it
can be computed for manipulators with any number of joints. Therefore, the procedure can
easily be extended to a manipulator with multiple broken joints.

5.4 Analysis of Multiple Location Areas

Up to now, we described the approach for one Location Area. Most of the times, the robot has
to be able to work at multiple Location Areas. The requirements on the maneuverability depend
on the type of Location Area. Therefore, we introduce a weighting ωl of each Location Area l
depending on the level of the required maneuverability. A high maneuverability requirement
corresponds to a high weighting of the Location Area.

The final objective function MA contains the Maneuverability Analysis MAl of each Loca-
tion Areas l:

MA =
∑
l

ωl ·MAl (5.17)

with the weighting ωl of Location Area l. The higher the final value MA, the better the
maneuverability.

5.5 Structure Analysis under Path Optimization

We introduced already the Maneuverability Analysis under joint failure in the previous Sections.
Now, we are interested in the potential of path optimization in this context. Hence, we apply the
path optimization approach presented in Chapter 4 in the context of a manipulator structure
analysis.

Regarding the exiting path optimization method, we need an extension with respect to
(1) the inclusion of the orientation and (2) the application in the analysis. In the original

81

5. STRUCTURE ANALYSIS OF MANIPULATORS

EPP (Chapter 4), each point along the path consisted just of its position. In our experiments
here, we include the orientation, since we want to contribute the results to the original Ma-
neuverability Analysis (Section 5.3). There, the orientation has been considered. Similarly
to the original analysis in Section 5.3, the object is supposed to be kept upright during the
manipulation (e.g., necessary for a cup filled with coffee). Hence, the new EPP-value contains,
now, also a residual r. It is the summed absolute difference between the desired and the real
orientation (αd, αr) of the end-effector of the manipulator. We include the difference for both
horizontal orientations (angle αa with a={1,2}), since the object can be kept upright, even if
the vertical orientation (the third angle, α3) changes:

r = γEPP ·
A=2∑
a=1

‖αd,a − αr,a‖ (5.18)

The variable γEPP allows a stronger penalization of undesired differences between the desired
and the real orientations.
The residual r is added for each joint d at each point pi in the Objective Function O (Eq. 4.9).
The resulting, new EPP-value indicates, how good the efficiency can be kept, while the object
has an upright orientation. Hence, we can compare the EPP-values (1) regarding improve-
ments in case of joint failures and (2) between different robots. They show the changes, resp.,
differences in efficiency. The smaller the value is, the better the efficiency is.

The optimization is applied on all paths which the robot is supposed to perform. The result
of the overall Objective Function O (Eq. 4.9) is computed for each path. We, then, compute
the mean of all O:

Omean =

∑
pa O
AP

(5.19)

The total number of paths is AP . Each single path is labeled with pa. Additionally, we select
the maximum of all O:

Omax = max
pa

O . (5.20)

The mean Omean gives us a general impression about the manipulator capabilities under
joint failure and path optimization. The maximum Omax refers to the worst case, since very
small values are desirable in the evaluation of the overall Objective Function O (Eq. 4.9). Both
values are used to analyze the potential of path optimization in comparison to the basic Ma-
neuverability Analysis without optimization. The basic Maneuverability Analysis itself is much
more general, since it is less coupled to under-lying, possibly very constrained manipulations.
This is twofold: One the one hand, it is more unaffiliated. On the other hand, a potential path
optimization cannot be considered. Overall, one can use the application of the proposed path
optimization to provide further results in the structure analysis.

82

Chapter 6

Analysis of Master-Slave Systems

In this Chapter, we want to indicate a further application area of the proposed structure
analysis: Telemanipulation systems. In principle, a telemanipulation system consists typically
of a master system and a slave system. A human user controls the slave through the master
system. Hence, the human is moving the master system and the slave system is executing
the movements. Both systems can be separated through a large distance. Such master-slave
systems have a large number of applications, reaching from telemanipulation in, e.g., disaster
operations to medical applications. The choice to deploy a certain master-slave system can
significantly be influenced by the level of convenience in system usage. If one system is more
convenient to use than another one, it has a clear advantage. Hence, an analysis of master-slave
systems can provide useful information to the system designers and the decision-maker.

Different factors determine the level of convenience in system usage. Haptic feedback or ap-
propriate system structures are examples of such factors. We focus on the structures similarly
to the proposed analysis of serial chain manipulators before. The path optimization method is
utilized to measure the “efficiency in actuation” for the human. The efficiency of the manipula-
tion system itself can be seen secondary aim. The aspired analysis with respect to a convenient
usage for the human user is much more interesting, since it can provide an important argument
to deploy a system.

Further aspects are important in the analysis. For example, an appropriate model of the
human’s hand-arm-system is necessary to base the analysis on realistic motions of the human.
Moreover, the human users do usually differ with respect to their anatomy and their behavior.
Such differences have to be considered in the analysis. As it can be seen, both aspects are
extensive topics themselves. We focus on the actual analysis of telemanipulation systems in this
work. Both other components are implemented as simple basic versions to allow an illustration
of the potential of telemanipulation systems analyses.

Of course, the question arises, how the human is usually planning and performing arm
movements. In general, a lot of trajectories seem to be possible. This offers diverse possibilities
to optimize the motion. Such an optimization can take place with respect to different criteria.

83

6. ANALYSIS OF MASTER-SLAVE SYSTEMS

The first one is the optimization with respect to the hand trajectory (especially, minimum-jerk

model by Flash and Hogan [176]). The second criteria is an optimization in the joint space

(especially, minimum torque-change model by Uno et al. [177]). Dean and Brüwer [178] favor a

mixture of both. The resulting joint velocity profiles of their study show a preference of smooth

curves as long as possible. This indicates, that our path optimization method (Chapter 4) can

be applied on the analysis of joint motions for a given path. Further criteria for optimization

are discussed in [179]. Cost functions are also included there. More complex movements are

considered in [180]. Discrete and rhythmic movements of a multi-joint human arm are simulated

there. The underlying optimization takes place in joint space. The proposed optimization here

is also processed in joint-space. The influence of different arm lengths has been analyzed in the

optimization of two-joint arm movements in [181]. The results, there, indicate, that it is worth

to consider the different anatomy of human users.

A drawback of the described work is the limitation to a few number of DoF for the human arm

(often, two or three DoF). In contrast, our approach considers a model human arm with 7 DoF.

An extension to more DoF is easily possible. Moreover, any desired given path can be analyzed

with our proposed method. Hence, we can apply our analysis to complex movements (e.g., in

the medical area).

To conclude, we provide a basic simulation in the context of the analysis of arbitrary tele-

manipulation systems. The previously developed methods need to be adapted appropriately to

telemanipulation systems.

6.1 Structure Analysis: Autonomous vs. Non-autonomous

Systems

In the previous chapters, the analysis of serial chain manipulators was presented. The robots

are considered to act autonomously based on abstractly represented task knowledge. Now, we

are interested in the analysis of master-slave systems. This application differs significantly,

since the systems are controlled by a human user. Hence, important aspects are changing:

1. Task knowledge: The robot does usually not need (abstractly represented) task knowl-

edge. It is directly controlled by a human user. Of course, one could discuss, whether

the robot could profit from a partial knowledge in certain situations. Semi-autonomous

behavior for at least some subsequent steps could be advantageous (e.g., [182]). If one has,

e.g., to deal with a large time delay due to large distances between the master and the

slave (e.g., [97]), a direct and fast “reactive behavior” to environmental influences could

be desirable from the slave. We focus on entirely non-autonomous robots in this chapter,

since this type of application has not been presented yet. Semi-autonomous systems could

be considered later on. A combination of analyses of non-autonomous and autonomous

robots could be applied, then.

84

6.2 Master-Slave Systems: Workspace Mapping

2. Path constraints: The path of the executing slave is, most of the times, entirely fixed,

since the master system commands the exact path directly. In our application, the paths

are entirely fixed, since we focus on non-autonomous systems. Of course, one could argue,

that a modification of the existing system could improve the convenience in the system

usage. However, we are interested in the analysis of the original, unbiased usage of the

system.

3. “Systems” with potentials for optimization: Three “systems” are involved during

the execution of a task with a non-autonomous master-slave system. The first one is the

executing slave. It just executes the commanded path. Hence, the path is fixed and it

cannot be changed for optimization. Possible redundancy can offer the only optimization

potential. The second involved system is the master. It is controlled by the human. Con-

sequently, it does not provide potential for optimization except (rare) redundancy. The

third “system” is the controlling human. The human’s action is affected by (1) possible

task constraints and (2) the workspace boundaries of the involved systems. However, he

or she can choose the path freely within these two types of constraints.

To conclude, the only optimization potential is available on the human’s side. Such an

optimization can improve the convenience of the usage of the system. Of course, a convenient

system usage is desirable for the human. It is an important aspect for the deployment and

the acceptance of the system. Hence, the execution should be optimized with respect to the

human user at first. The optimization regarding the actuation of the console and the executing

robot plays just a secondary role here. In contrast to the previously presented Maneuverability

Analysis, the perspective has changed: The human is in the focus now.

Fig. 6.1 illustrates a telemanipulation scene with three exemplary human arms (including

different arm lengths and positionings of the shoulders).

6.2 Master-Slave Systems: Workspace Mapping

In comparison to the presented Maneuverability Analysis, the analysis of master-slave systems

differs also with respect to the Location Areas. These characteristic areas of manipulations are

determined in the workspace of the slave. The mapping into the master’s workspace cannot be

done straight forward. This is due to the different workspaces and workspace boundaries. The

Location Areas can be projected to different positions in the master’s workspace depending on

the application, the user, the way of executing the desired task and the variations which can

occur in repetitions of the task. Hence, we do not provide an analysis with respect to Location

Areas.

However, the Elastic Power Path does not rely on Location Areas, but on possible paths.

Hence, the concept can be utilized to analyze the efficiency. We simply take the Objective

85

6. ANALYSIS OF MASTER-SLAVE SYSTEMS

Figure 6.1: Exemplary scene with a master-slave system. The figure shows an exemplary

slave system on the left (magenta slave with yellow base). It is executing a manipulation on the

cyan object (symbolized by the dashed black line on the table). The manipulation is controlled by

a human through an exemplary master system on the right (dark cyan master). The master and

the slave system can be separated by a large distance. Three exemplary human’s arms of different

lengths and shoulder positionings (respective spheres) are illustrated.

Function O of the Elastic Power Path (see originally Eq. 4.9) to measure the efficiency along a
path:

O =
∑
j

∑
i

2 · |vj,i| · | 4 vj,i|+ (| 4 vj,i|)2

4ti
. (6.1)

In the analysis of master-slave systems, the human is in the focus as we motivated already.
Hence, the joints j of the human’s hand-arm “system” are relevant for the Objective Function O.
Of course, one has to consider the workspace boundaries during the path execution. It might
be necessary to reset the master system during the execution, since a workspace boundary is
reached. This causes additional work to the human user, which has to be considered in the
analysis. The concept of the Elastic Power Path allows the consideration of additional work,
since the entire path in the workspace of the master can be analyzed using the Objective
Function O. This includes also the path to reset the system. Therefore, the path consists of all
hills i in the acceleration profile of this entire path. The velocities vj,i, resp., accelerations4vj,i
along the entire path are considered. As in Eq. 4.9, 4tj,i is the time required to climb up and
down hill i.

6.3 Structure Analysis: Limits and Potentials

We have already seen, that the optimization potential is mainly available on the human’s
side of the system. A convenient usage of the system is important as we motivated already.
The convenience can be supported by many aspects, like easy handling, advanced feedback
from the executing system or comfortable, efficient usage of the system. We focus on the

86

6.3 Structure Analysis: Limits and Potentials

comfortable, efficient usage for the human. It has similarities to an efficient actuation of a
serial chain manipulator. Smooth and slow motions are preferred by human users analogically
to manipulators (see also beginning of the Chapter). Abrupt turnarounds in the acceleration
are not desirable. If a reset is required during the execution of a task, the resulting additional
movement has to be added as further, less desired work.

One way to optimize the “actuation” of the human user, is, of course, training of the human.
A lot of work exists already in this field as the related work shows. Our focus is the analysis of
the human’s arm and hand motions during task execution. We consider the entire hand-arm-
system of the human. Its motions can, of course, not only be influenced by the master system,
but also from the positioning and the size of the human’s hand and arm (see illustration in
Fig. 6.1).

A possible long-term application is a system analysis before the actual system is built.
Hence, we simulate our experiments. In this work here, we want to indicate the potential of
the Elastic Power Path concept as a framework for the efficiency analysis of a human’s motion
during the work on a master-slave system.

In order to provide a sophisticated analysis tool, an advanced human hand-arm model would
be necessary. However, just basic modules for arm, resp., hand detection exist (e.g., [183], [184],
[185]). The build-up of an advanced model of the human hand-arm system is out of the fo-
cus of this thesis. Currently, there is ongoing work in this area (e.g., human arm model with
redundancy [186], gesture recognition based on depth data [187]). A satisfying model is still
missing. We use the currently available DH parameters for the dynamic model of the human
arm described in [188].

87

6. ANALYSIS OF MASTER-SLAVE SYSTEMS

88

Chapter 7

Experiments

The experiments are presented in this chapter. First, the extraction and representation of the
underlying validation scenarios is shown. The performance of the required advanced estimation
of inverse kinematics is demonstrated afterward. Experiments on the proposed path optimiza-
tion are presented thereafter. The structure analysis follows, then. A further application of the
structure analysis is shown in the last section of this chapter: The application on master-slave
systems.

7.1 Validation Scenarios

First, two data sets are extracted from the observation of real human actions. The human
manipulated objects between characteristic places. The observed sequences (seq.) are processed
to build up an abstract task representation as described in Section 3.1.1. In order to show
the capabilities of the proposed knowledge representation, the system is evaluated on data
perceived with different recording devices. First, the results on data from an external tracking
system (called “tracking data”) are presented (Section 7.1.1, data set I). The tracking data
provides directly the 6 DoF-trajectories of the tracked markers, which are placed on top of
the manipulated objects. Afterward, the system is tested on vision data in Section 7.1.2 (data
set II). An extensive description can be found in [189]. Fig. 7.1 illustrates both data sets.

89

7. EXPERIMENTS

Figure 7.1: Data set I (left) and II (right) [2]. The lines/ curves between the blue Location

Areas (LA) refer to trajectories of lifted objects (red) and trajectories of pushed objects (green).

90

7.1 Validation Scenarios

7.1.1 Experiments on an External Tracking System

The tracking data is recorded with a marker-based IR tracking system1 at 50 Hz. A basic

pre-processing is performed, first. Each movement has to fulfill the requirement of an at least

minimal motion (> 0.005m/s). If the motion is slower than the threshold, it is deleted, since it

does hardly provide any information at all. Moreover, we apply a smoothing of the trajectory

with a 1.4 s moving-average-window against high-frequency noise, which can especially occur

at the beginning of the movement. Afterward, the sequences vary between 4.3 s and 17.72 s,

the average is 7.45 s. Examples of trajectories are shown in Fig. 7.2.

Figure 7.2: Trajectories of movements - tracking data (in mm). [2] The lines refer to

the original movements. The dotted lines are the result after the basic pre-processing with the

requirement of an at least minimal motion and the described smoothing. Left: Milk carton. The

line movements are shown in red (without rotation) and in green (with rotation). The curve

movements are drawn in magenta (without rotation) and in blue (with rotation). Right: Cup.

The trajectories of the arbitrary movements are shown in red (without rotation) and in blue (with

rotation).

The sequences are recorded with four different objects: a milk carton, a spoon, a cup and

a vase. The cup is used in two ways: First, it is grasped at the handle. Then, the cup is

grasped as a whole from the side, leading to five different functional objects for the test. For

each object, there are 18 different actions of one person, shown in Table 7.1.

7.1.1.1 Object Container

In order to fill the Object Container with the relevant information, we need to extract the rel-

evant properties from the observed manipulations. As a first step, we distinguish motions with

rotations and rotations-free ones. Hence, we apply the HMMs as motivated in Section 3.1.2.3.

The HMMs require an observation sequence as input. As described, the original sequence of

1Advanced Realtime Tracking system. Advanced Realtime Tracking GmbH, url: http://www.ar-tracking.de/

91

7. EXPERIMENTS

Table 7.1: Sequence properties - tracking data. Left : Description of the constrained

trajectories and arbitrary movements. Constrained trajectories contain movements of pushed

objects which are not lifted from a plane. The trajectories of the lifted objects can form a line or a

curve. Right : Further description of the four constrained trajectories (seq. 1-4, 5-8, 9-12, 13-16):

The object is first lifted from the initial position on the table to a higher position on a box. Then,

it is moved back. Afterward, it is moved into the corner of the table, which is on the same level

of height like the initial position, and moved back.

Seq.: Movement Rotation Seq.: Start Pos. End Pos.
1-2 constr.: line 1 table-start box
3-4 constr.: pushed 2 box table-start
5-8 constr.: curve 3 table-start corner
9-12 constr.: line x 4 corner table-start
13-16 constr.: curve x
17 arbitrary
18 arbitrary x

observed changes around both horizontal axes is, therefore, converted into the desired observa-

tion sequence. For this purpose, we build up the desired rotation information codebook using

training sequences (Section 3.1.2.3). The pre-processed elements of the training sequences need

to be clustered. Each cluster symbolizes a characteristic range of input-values in the code-

book, afterward. We set the initialization of the cluster, otherwise the results are not always

deterministic, even though they look mostly very similar. The initialization values can chosen

arbitrarily for this purpose. They just need to be in the range of 0.00 and 1.00, since the input

values (normalized deviations of the angles) are in the same range. We simply take values

between 0.00 and 1.00 with a step size of 0.10 and values between 0.00 and 0.10 with step size

of 0.01. Resp., two values form a pair for the initialization of one cluster, since the clustering

is performed in 2D. A change of the initial values (other combinations or/ and other values

within 0.00 and 1.00) lead to very slightly different clusters which look mostly very similar to

other clusters formed with the current initialization.

The rotation information codebook consists of 64 symbols. If we consider the range of the

input-values (0.00 and 1.00) and assume an uniform distribution of the symbols, each symbol

would represent a range of appropriately 0.02. This means, that it would represent 2 percent

of the maximally range of 1 for each object. Hence, even small ranges could be represented.

Each HMM has ten states. A further evaluation of different number of states is not within the

scope of the thesis. The current setting fulfills its purpose. The experiments show good results

as we will see. The knn-assignment of a new value to a cluster is done with k=3. We just tested

an assignment with k=5, which did not change the outcome. Similarly to before, the current

setting fulfills its purpose: The experiments show good results.

92

7.1 Validation Scenarios

Table 7.2: Statistical result of the classifications - tracking data. Statistical result of the

rotation-classification and the classification of the (non-)arbitrary movements.

Property: Accuracy True positive rate True negative rate
Rotation 80.0% 66.7% 93.3%
Arbitrary Movement 94.4% 80.0% 96.3%
Pushed Object 98.9% 100.0% 87.5%

We use the Matlab Statistics Toolbox for the HMM and the clustering with the K-means

algorithm. The knn-classification is done with the Matlab Bioinformatics Toolbox .1

For the rotation classification, a leave-one-out cross validation is made. 42 of 45 of the

motions without rotation are correctly labeled, and 30 of 45 motions with rotation are correctly

classified. Therefore, the system performs definitely better than guessing the classification

(ground truth: 50%), and performs quite well (see statistical measures in Table 7.2).

The statistical measures are computed with the following equations (# = number, tp =

true positives, tn = true negatives, fp = false positives, fn = false negatives):

accuracy =
#tp + #tn

#tp + #fp + #tn + #fn
(7.1)

true positive rate =
#tp

#tp + #fn
(7.2)

true negative rate =
#tn

#tn + #fp
(7.3)

The different statistical measures show the learned capabilities in detail. A basic measure is

the accuracy, which gives the percentage of correctly classified sequences among all sequences.

It does not take into account, that there are different numbers of sequences for each class.

If most of the sequences belong to one ”majority“-class (e.g., fictional example ”majority“:

80%), the system might just guess the ”majority“-class for each classification task. This leads

to a high accuracy (example ”majority“: 80%), even though the system does not learn the

classification. Therefore, further statistical measures are necessary. The described scenario can

be detected with the computation of the true positive rate and the true negative rate (example

”majority“: 100% and 0%), since it shows the rate of correct classifications for each class in a

binary classification task.

The final result of the Object Container can be seen in Table. 7.3. In order to make

the Object Container more convenient, acceleration classes are introduced. The number of

acceleration classes is chosen to be three for illustration. Each class represents an approximately

equal sized part of the achieved acceleration values within 0.003− 0.01.

1Matlab: Statistics Toolbox, Bioinformatics Toolbox.

93

7. EXPERIMENTS

Table 7.3: Result for the Object Container - tracking data. It shows the number of

observations for each acceleration class and the rotation-classification. Legend: R = motion with

rotation, Acc. class = acceleration class: acc. class 1 for x < 0.006 m/s2, acc. class 2 for

0.006 m/s2 <= x < 0.009 m/s2 and acc. class 3 for 0.009 m/s2 <= x.

Acc. class 1 2 3

Object Tracking no R R no R R no R R
Milk 3 3 6 3 3 0
Spoon 3 1 3 4 4 3
Cup-handle 2 4 3 8 1 0
Cup 5 2 8 1 2 0
Vase 10 4 4 0 0 0

7.1.1.2 Functionality Map

The result of the computed Location Areas LA i is shown in Fig. 7.3. We assume in this

experiment, that the correct number of Location Areas (three) is known. Hence, we process

the k-nearest-neighbors-method is processed with k=3 to determine the Location Areas. All

three Location Areas are identified correctly.

If the number of Location Areas is not given, the system needs to be able to distinguish the

clusters itself. The stop-points of the manipulations (start and end position of each sequence)

need to be clustered for this purpose. One could, e.g., introduce a maximal distance between

a stop-point and its cluster-center. If the point is further away from the center, it cannot be

assigned to a Location Area. Therefore, a new cluster needs to be built. Of course, the choice

of the magnitude of the maximal distance has a significant influence on the size and the number

of Location Areas. Hence, the entire map can get affected. Moreover, the magnitude depends

on the application area. In a kitchen scenario, Location Areas can be separated by meters

(e.g., table and cupboard), whereas, the Location Areas in a medical application can lie within

millimeters. This shows, that the detailed evaluation of the correct separation of Location Areas

is a complex topic on its own. We just performed an exemplary run for the iterative separation

in the experiments on the vision system (see Section 7.1.2).

For the classification as arbitrary movement in the Functionality Map, the multiplication

factor arbitrary-movement for the third component and the arbitrary-movement-threshold need

to be determined. They allow the distinction of the arbitrary movement and the constrained

trajectory. As described, the arbitrary movement is relatively large in all directions. Therefore,

the third component of its PCA is of especial interest, since it shows the direction of the smallest

motion. If it is high, an arbitrary movement is detected. It is defined as “high” in two cases. In

the first case, the magnitude of the first and the third component are relatively “close” to each

other. Then, there is hardly any main direction of the movement. The multiplication factor

94

7.1 Validation Scenarios

Figure 7.3: Result of the Location Areas - tracking data. [2] The blue crosses show the

computed stop-points of all sequences (in mm). The black arrows are drawn to visualize the

identified connections between the Location Areas.

arbitrary-movement determines in this case, how many times the component of the largest
movement is maximally allowed to be larger than the component of the smallest movement.
It is chosen in a manner, such that the maximal number of sequences is classified correctly.
Hence, it is 15 in our experiments. In the second case, the third component is higher than the
arbitrary-movement-threshold. It chosen in the magnitude of the third PCA-component of the
arbitrary movements (0.06 in our experiments). Slight modifications (about (±) 5− 10% of the
current values) of the multiplication factor (arbitrary-movement) and the arbitrary-movement-
threshold, resulted just in small decrease in the number of correctly classified sequences (about
5− 10%).

Similarly to Section 7.1.1.1, we use the Matlab for the implementation (PCA: Matlab Statis-
tics Toolbox, knn-classification: Matlab Bioinformatics Toolbox).1

The tracking data does not provide the normal vector of the table plane, which is required
for the proposed distinction pushed vs. lifted object (see Section 3.1.2.3). Therefore, the height
difference to the table is measured along the axis, which is known to be vertical to the table.
The object is defined to be pushed, if its height difference to the table is not changing (±5 mm).

The results of the classification of the (non-)arbitrary movements (at first without the dis-
tinction of a pushed or lifted object) is depicted in Table 7.2. 8 of 10 arbitrary movements
are correctly labeled, and 77 of 80 constrained trajectories are classified correctly. This shows,
that the system performs definitely better than guessing (ground truth: 11%). For the true
positive rate (see Table 7.2), one has to consider, that there are just 10 arbitrary movements
among all 90 sequences, leading to a significant influence of each of the two mislabeled arbitrary
movements. The third PCA-component is not high enough to achieve a correct classification
in both cases. There are some non-arbitrary movements which have third PCA-components at

1Matlab: Statistics Toolbox, Bioinformatics Toolbox.

95

7. EXPERIMENTS

the same magnitude. This holds, similarly for the three misclassified constrained trajectories:
They contain (part of) an arbitrary movement, since the magnitude of the corresponding third
PCA-components is relatively high. The classification of the pushed vs. the lifted object is
successful for all sequences except one spoon-sequence, resulting in 98.9% correctly classified
sequences. The spoon was, apparently, not lifted very high. Hence, it was misclassified as
pushed object.

The results of the Functionality Maps are shown in Fig. 7.4. The best (= completely correct
concerning the kind of movement) results are achieved for the milk and the cup, whereas the
cup-handle result is the worst classification concerning the kind of movement. The misclassified
arbitrary movement (red self-loop LA 2) and the misclassified constrained trajectory (magenta
connection from LA 1 to LA 2) can be seen in Fig. 7.4. The result for the other two objects
show just one misclassification concerning the kind of movement. The results show, that the
system is able to deal with some misclassifications, since it achieves correct high connection
relevances for all objects except the cup-handle.
The velocity constraints during the pick-up vary between 0.01 m/s and 0.24 m/s. All velocity
constraints of the spoon and the vase are relatively low (max. 0.09 m/s). Both objects require
more attention during the pick-up. Due to its shape, the spoon is relatively difficult to pick up.
The vase needs to be picked up carefully, since it is fragile.

96

7.1 Validation Scenarios

Figure 7.4: Result of the Functionality Map - tracking data. [2] The Functionality Maps

for the tracking data are shown. The Location Areas are identified correctly in two corners of

the table and on the green box on the table. The connections are illustrated as arrows with their

corresponding relevance (probability ”P”): Red arrow = constrained trajectory, green arrow =

pushed object, magenta arrow = arbitrary movement.

97

7. EXPERIMENTS

7.1.2 Experiments on a Vision System

After the experiments on tracking data in Section 7.1.1, the experiment on vision data is
evaluated. The implementation is done in C/C++. The vision data is recorded with a Firewire
Marlin FO46C camera at 30 Hz and an image size of 640x480 pixel (width x height). OpenCV,
XVision, extended KLT [27] and V-GPS [169] are used for the desired trajectory acquisition
(see Section 3.1.1 and 7.1.2.3). The algorithms are running on a Linux system. The C++
Implementation of Hidden Markov Model by Dekang Lin 1 is (slightly modified) used for the
implementation of HMMs. The PCA, the K-means algorithm and the knn-classification are
done with OpenCV. The determination of the object type is done by manual labeling. The
registration of rigid known objects considered for the vision system is described in [190]. In
principle, one could consider, e.g., deformed or even unknown objects. Our focus is, however,
the recognition of known objects to use them as keys to identify the corresponding object type
in the system’s knowledge.

The properties of the real human actions are listed in Table 7.4. The actions are performed
between four locations at the corners of a table. The region, in which the manipulations
take place, has a size of approximately 45 x 30 cm (width x depth). All sequences, described
in Table 7.4, are performed with four different objects, leading to an overall number of 40
sequences. The labeling of the sequences can be found in Table 7.5. An exemplary sequence
for each object is shown in Fig. 7.5.

At first, the object has to be identified on which the manipulation is performed. This is
essential, since it enables the observation of the object. Moreover, the quality of the results
influences the achievable performance of the following steps. Hence, it is worth to evaluate the
results of this first step as well as the following tracking in detail.

1Copyright (C) 2003 Dekang Lin, lindek@cs.ualberta.ca, url: http://webdocs.cs.ualberta.ca/ lin-

dek/hmm.htm .

98

7.1 Validation Scenarios

Table 7.4: Sequence properties - vision data. At first, the object is pushed from the bottom

right (br) to the top left corner (tl). Then, it is pushed further to the bottom left corner (bl).

Afterward, the object is raised and moved straight to the initial position at the bottom right corner.

There, an arbitrary movement is performed, leading to the same position again. A constrained

trajectory to the top left corner and back follows. Then, four movements with rotation are done.

They lead from the bottom right corner to the top right corner (tr) and back, to the bottom left

corner and back to the initial position. These ten movements are performed with four objects,

labeled with increasing numbers (see Table 7.5).

Seq.: Movement Rotation Start Pos. End Pos.
1 constr.: push br tl
2 constr.: push tl bl
3 constr.: curve bl br
4 arbitrary br br
5 constr.: curve br tl
6 constr.: curve tl br
7 constr.: curve x br tr
8 constr.: curve x tr br
9 constr.: curve x br bl
10 constr.: curve x bl br

Table 7.5: Sequence labeling - vision data. The ten described movements in Table 7.4 are

performed with four objects, labeled with increasing numbers.

Obj.: Seq. interval
1 1 -10
2 11 -20
3 21 -30
4 31 -40

99

7. EXPERIMENTS

Figure 7.5: Trajectories of movements - vision data. (Top left: [2].) The figure shows

examples of the trajectories, which are recorded with the vision system.

100

7.1 Validation Scenarios

7.1.2.1 Clustering of Object Candidates on a Table

For the identification of the possible object candidates, the plane subtraction procedure de-
scribed in Section 3.1.1.2 is applied. The candidate is correctly identified for all sequences.
Fig. 7.6 shows the candidates for the sequences shown in Fig. 7.5.

Figure 7.6: Object Candidates - vision data. The remaining objects are depicted after the

plane subtraction in the disparity map. The identified objects correspond to the sequences shown

in Fig. 7.5.

The sizes of the object candidates in the image vary within each object. This is due to
several reasons. First, the sequences start at different positions and, therefore, the objects are
placed at different distances from the observing camera system (seq. 2, 6 and 8 for each object;
see exemplary comparison in Fig. A.1). Second, the disparity is not computable for some parts
of the object, due to reflections on the object’s surface (e.g., seq. 14 in Fig. A.2) or due to
ambiguous structures which make the search of correspondences more difficult (e.g., seq. 21 in
Fig A.2). This results also in non-connected parts of the object (e.g., seq. 14 in Fig. A.2) and
in smaller object candidates in general (e.g., seq. 21 in Fig. A.2).

7.1.2.2 Candidate Selection

After the detection of the object candidates, one object is selected as region of interest (see
Section 3.1.1.3). A selection occurs as soon as the hand of the human demonstrator is in contact
with an object candidate.

101

7. EXPERIMENTS

The original outer bounding box Ro around the detected objects is reduced by b=20 pixel
from each side to avoid false positive alerts for a contact caused by, e.g., accidental contacts at
the borders. As described, if a sufficient number nc of contacts candidates has been seen in a
row, the object is selected as region of interest (ROI). We start the experiments with nc = 3.
A contact is detected for all sequences. The hand is correctly identified for all sequences of
object 1 and 2. Too early false positive alarms occur for three sequences of object 3 (seq. 23,
25, 27; see, e.g., Fig. A.3) and four sequences of object 4 (seq. 31, 34, 37, 38). These objects
contain similar colors like the glove, which is just used for the color detection of the hand
(blob-detection). We use the described basic blob-detection method (Section 3.1.1.3) to detect
the human’s hand. Of course, one could even further modify the basic method. However, this
version fulfills its purpose, in principle. Modifications of the involved parameters (e.g., nc) do
not improve the result of 82.5% correctly identified contacts. This holds also for the application
of a further modification of the basic method: In order to detect a hand as such, the hand has
to consist of a minimal number of pixel. Experiments with different numbers did not improve
the original result of 82.5% correctly identified contacts. Here, the false positive alarms result
just in the effect, that the tracking of the object starts, before the object is manipulated.

7.1.2.3 Parsing of Human Action

After the contact detection between the hand and the object, the tracking of the object is
initialized and the manipulation of the object is observed.

OpenCV, XVision, extended KLT [27] and V-GPS [169] are used for the trajectory acqui-
sition. The extended KLT is a tracking algorithm, which fulfills the requirements motivated
in Section 3.1.1.4. It allows the extraction and the tracking of 2D-features on the object. The
number of tracked features influences the quality of the trajectory acquisition. The more fea-
ture are tracked stably during the manipulation, the more information is available to determine
the trajectory. The more information can be included in the computation of the trajectory,
the more precise the result can get. However, the objects can have different sizes and different
colored patterns on the surface. Both properties have a significant influence on the quality of
the tracking. A small object with hardly any patterns will be much more difficult to track than
a large one with a lot of structures on its surface. In the worst case, the object does not provide
any pattern on a smooth, reflecting surface. The tracking applied here would fail in such a case.
However, we focus on daily-life objects which provide enough patterns and can be tracked with
the described method.

As described, the number of tracked features has a significant influence on the quality of the
trajectory acquisition. Therefore, we examine it further. We compare the average number of
(1) the features at the start, (2) the features at the end, (3) the permanently tracked features,
(4) the average number of features during the manipulation and (5) the average size of the
ROI (Table 7.6). It is interesting to see, that the average number of features at the start
is a bit higher for object 1 than for object 2, even though object 1 is the smaller one. It

102

7.1 Validation Scenarios

provides more structure to the feature detector. Object 3 is among the bigger objects and it is

very structured. This leads to a high number of features at initialization. Moreover, it is not

surprising, that a large amount of these features can be tracked during the manipulation, a lot of

them permanently. For object 1, the number of features at the end, the number of permanently

tracked features and the average number of features is small. Especially in comparison to object

2, the result is noticeable, since both object have approximately the same number of features

at the beginning. The position of the detected features influences this result, because object 1

has a relatively large structured surface on top of the object, on which features are found at

the beginning. These features get easily lost, since the object is grasped on top of the object,

and the features disappear.

Of course, the number of tracked features depends on the speed of the observed motion. If the

features move out of the search region of the tracker (Section 3.1.1.4), they cannot be found

any more. Hence, a fast motion requires a high frame rate. Then, the features move just within

the search region in the subsequent image. In our case, the frame rate is not very high (see

first part of Section 7.1.2), since both cameras run all the time (stereo). Hence, the recorded

movements are performed at low speed.

The tracking stops at the end of the manipulation. It is assumed to be reached, when the

features are not moving any more.

Table 7.6: Parsing of human action in average - entire system. The size of the ROI is

compared with the average number of features (start, end, permanently, in average during the

manipulation) for each object.

Obj. : ∅ Size ROI ∅ # features:
start end permanently ∅ seq.

1 14100,0 16,4 7,9 1,7 10,4
2 22841,0 13,7 12,5 6,1 13,3
3 21309,7 31,4 24,7 12,0 25,8
4 27069,2 19,7 12,5 6,0 14,7

At the end of the sequence, the objects are placed in the same horizontal orientation as at

the beginning of the manipulation. Therefore, the remaining angle at the end of each sequence

should be zero for the both horizontal axes. Consequently, the remaining angle can be seen as

an error measurement for the computation of the object orientation during the manipulation.

Five intervals are built for the remaining angles ([0; 5],]5; 10],]10; 15],]15; 20],]20; [). Each

remaining angle is assigned to one of them. The result in Table 7.7 shows, that we achieve a

good performance with 85% of the remaining angles below 10 degree. There are just three real

outliers with 24.54 degrees (seq. 6) and 23.47 resp. 71.02 degrees (both horizontal angles in

seq. 18) as remaining angle. In both sequences, a ”jump“ occurs during the second part of the

103

7. EXPERIMENTS

image sequence, since the recording device switches the storing device. This leads to features,
which are not correctly redetected or reinitialized. Hence, the orientation is not computed
correctly.
However, the remaining angle gives just an impression about the precision in the tracking results.
In our experiments, we are, especially, interested in the analysis of characteristic manipulation
properties. If the orientation is not computed very precisely, it can be possible to extract the
relevant properties, nevertheless. For example, if the object is rotated and a small remaining
angle occurs, the curve of the varying horizontal orientation gets shifted after a while. However,
the characterizing variations of the horizontal orientation can still be visible. Similarly, for an
object which is not rotated, the magnitude of its horizontal orientation should get shifted, but
variations like for a rotation should not occur in the profile of the horizontal orientation. This is
also confirmed by our results. Both sequences with the significant remaining angles (described
above) are classified correctly as motions without, resp, with rotation.

Table 7.7: Remaining angles after manipulation - vision data. After the manipulation,

the object is placed on the table with the same horizontal orientation as at the initial position.

Consequently, the angle, which remains at the end of the manipulation, gives an impression about

the accumulated error in the observation. For each sequence, the absolute value of the remaining

angle is given in degree. Then, these values are assigned to one of five different intervals.

Interval: [0; 5]]5; 10]]10; 15]]15; 20]]20; [
50 18 4 5 3

Fig. 7.7 illustrates the computation of the orientation of the objects. The normal vector is
used for the illustration of the object orientation. The normal vector is rotated and translated
like the object during the manipulation. It can be seen clearly, that object 4 has been rotated
(Fig. 7.7, bottom right), whereas the other objects are kept in the same vertical orientation as
at the initial position.

104

7.1 Validation Scenarios

Figure 7.7: Development of the object’s orientation along trajectories - vision data.

The figure shows the change of the object’s orientation during the manipulation. It is clearly

visible, that object 4 (bottom right) has been rotated, whereas the other three objects are kept in

the same vertical orientation.

105

7. EXPERIMENTS

7.1.2.4 Representation of Manipulation-Relevant Object Knowledge and Func-
tionality in the Environment

After the acquisition of the trajectory of each sequence, the sequences are analyzed to build

up the Object Container and the Functionality Map. Similarly to the tracking data, a basic

pre-processing is performed (a minimal motion > 0.01 /sample, 140 sample moving-average-

window). Furthermore, the first and last 20 samples are cut of in order to deal with the

arbitrary motions at the beginning and at the end of the sequences. The values of the angles

are smoothed along each dimension separately. The initialization and threshold values are set

as in the experiment with the tracking data, except for the arbitrary-movement-threshold (0.005

for the vision data). This could indicate, that the chosen values could be applied in more cases,

maybe in general. However, a very large number of experiments, also in different application

areas would be necessary to generalize these values. The smaller arbitrary-movement-threshold

for the vision data is due to the fact, that the magnitude of the third PCA-component of the

arbitrary movements is much smaller here. Possibly, this is due to the movements at low speed

(see Section 7.1.2.3).

Object Container For the Object Container, the maximal acceleration within each sequence

is computed, as well as the appearance of rotation during the manipulation.

The appearance of rotation, resp., no rotation is correctly identified for 31 of 40 sequences.

Eight sequences are mislabeled as sequences with rotations. All of them show, that one or both

horizontal angles vary during the manipulation. The variations are not as strong as for most of

the sequences with rotation, but it is still visible (see, e.g., Fig. A.4 for object 1). Seq. 17 is the

only sequence, which is mislabeled as sequence without rotation. The variations are relatively

small in comparison to the other sequences with rotation. The statistical measures in Table 7.8

shows the accuracy, the true negative rate and the true positive rate of the classifications.

Table 7.8: Statistical result of the classifications - vision data. Statistical result of the

rotation-classification, the classification of the pushed vs. lifted objects and the classification of

the (non-)arbitrary movements.

Property: Accuracy True positive rate True negative rate
Rotation 77.5% 93.8% 66.7%
Arbitrary Movement 80.6% 100.0% 78.6%
Pushed Object 95.0% 87.5% 96.9%

The entire result of the Object Container is shown in Table 7.9. The acceleration classes

have the same intervals as in Section 7.1.1. The choice of the intervals in Section 7.1.1 seems

to be appropriate for illustration, since none of the classes is empty in both experiments.

106

7.1 Validation Scenarios

Table 7.9: Result for the Object Container - vision data. The table shows the number

of observations for each acceleration class and the rotation-classification. Legend: R = motion

with rotation, Acc. class = acceleration class: acc. class 1 for x < 0.006 m/s2, acc. class 2 for

0.006 m/s2 <= x < 0.009 m/s2 and acc. class 3 for 0.009 m/s2 <= x.

Acc. class 1 2 3
no R R no R R no R R

object 1 1 1 0 1 2 5
object 2 3 0 0 0 4 3
object 3 2 1 1 1 1 4
object 4 0 2 2 2 1 3

Functionality Map Further properties of the sequences need to be analyzed for the buildup
of the Functionality Maps. One important property is the correct assignment of the start
and end position to the corresponding Location Areas. The Location Areas can be seen as
link between the abstract knowledge in the Functionality Map and the current scene in the
real world. The Location Areas themselves are determined successfully. The assignment is
successful for 77 of 80 positions (96.3%). The misclassifications occur for the end positions of
sequence 8, 21 and 33. The z-components (the depth) of the end positions are closer to other
Location Areas for these three sequences.

We also perform an exemplary run for an iterative separation of the Location Areas. It is
based on a maximal distance between a Location Area and a just observed start/ end position.
If the distance between each of the Location Areas and the current start/ end position is
larger than the maximal distance, a new Location Area is created. The critical point is the
determination of an appropriate magnitude of the maximal distance. Here, we just wanted to
illustrate the possibility to apply an iterative separation. For simplification, we have chosen
half of the distance between the start and end position of the first sequence (bottom right and
the top left Location Area). All four Location Areas are detected properly in this case.

After the determination of the Location Areas, we analyze the manipulations observed in-
between. As the statistical measures in Table 7.8 show, the result of the distinction between
a pushed object and a lifted object is remarkable. There is just one sequence mislabeled as
pushed object, and one sequence mislabeled as lifted object.
The classification as arbitrary movement or as movement with a constrained trajectory is per-
formed with a true positive rate of 100.0%. Consequently, no arbitrary movement is mislabeled
as non-arbitrary movement. Six sequences are misclassified as arbitrary movements instead of
movements with constrained trajectory. These movements contain small parts with an arbitrary
shape.

The Functionality Maps of object 1 and 4 have, resp., just one wrong assignment of an
end location. Everything else is correct (see object 1 in Fig. 7.8). The Functionality Map

107

7. EXPERIMENTS

of object 2 suffers mainly from sequences misclassified as arbitrary movements (see Fig. 7.9).

Apparently, these sequences of object 2 contain parts of arbitrary movements. Possibly, parts

of the sequences appear as arbitrary due to the relatively low frame rate in this experiment (see

first part of Section 7.1.2). Intermediate, smooth points might got lost.

Figure 7.8: Functionality Map: object 1 - vision data. [2] The wrong assignment of an end

location is visible at Location Area 2 (incorrect self-loop). Everything else is correct.

Figure 7.9: Functionality Map: object 2 - vision data. [2] The classification for object 2

suffers mainly from sequences misclassified as arbitrary movements (magenta arrows: arbitrary

movements, red arrows: constrained trajectories, green arrows: pushed objects).

Hence, two of the four Functionality Maps achieve very good results (object 1 and 4).

108

7.1 Validation Scenarios

One Functionality Map (object 2) suffers from a couple of misclassifications regarding the
distinction of arbitrary and non-arbitrary movements. The Functionality Map of object 3 has
two misclassified connection properties and one wrong assignment of an end location. However,
one sequence of object 3 can be seen a outlier, since its connection property, as well as the
assignment of its end location, are wrong. Besides the second misclassified connection property,
the map is correct.
Fig. A.6 - A.9 in the Appendix show the entire result of the Functionality Maps for each of the
four objects. An ideal solution of the Functionality Map is depicted in Fig. A.5.

At the end, the kind of grasp is determined manually. The corresponding classes are de-
scribed in [172]. All used grasps are power grasps with an abducted position of the thumb.
Fig. 7.10 illustrates two exemplary grasps.

Figure 7.10: Grasp types - vision data. [2] The power grasp with an abducted position of

the thumb is shown exemplary for object 1 (seq. 7) and object 2 (seq. 14). The grasps of the other

objects look similarly. They are also power grasps with an abducted position of the thumb.

109

7. EXPERIMENTS

7.2 Contact State-Based Representation of the Environ-

ment for Dexterous Manipulations

In this part of the experiments, we want to illustrate the advantageous options of the proposed

contact state-based representation of dexterous manipulations. We build up three scenarios,

which require detailed knowledge about the corresponding manipulation. Two scenarios are in

the context of medical applications. One further scenario can also be applied in the medical

context: knot-tying. We describe the properties of the knot as for a ”normal“ knot, which is

usually used by humans to tie their shoes. Such a scenario illustrates a possible non-medical,

daily-life application.

Our scenarios focus on a top-down approach for the desired tasks. This means, that the

task knowledge is described in the contact states and in relations (e.g., filled in by a human

user). As already mentioned in Section 3.2.3, a bottom-up approach could be applied as well.

We evaluate the system with simulations. Real-world applications would require many ad-

vanced sensing methods to illustrate our approach (e.g., check of the depth of a cut in scenario I,

thread detection at the beginning of scenario II). This is not the focus of this thesis.

The implementation is done in C/C++. We simulate a robotic system which is supposed to

reach desired points along paths. The robotic system is described in the DH-convention sug-

gested by Denavit and Hartenberg [164] in the form shown in [9]. We simulate an arm of the

MiroSurge system from DLR with a gripper, since its DH-parameters are available in [104],

[191], [192]. A schematic diagram is shown in Fig. 7.11. We just consider the DH-parameters

here. Hence, e.g., joint limits are not taken into account. This allows us to illustrate the

principle of our representation, since we can create motions independently of the magnitude of

the motions’ step size. In general, any medical robot could be used in the scenarios, since the

approach is independent of the robot.

Moreover, we do not use uniformly distributed points along the path. The points are chosen

in a manner, such that the shape of the path can be illustrated. The robot’s end-effector has

to pass an entry point to the human body. This entry point has to be considered during the

entire procedure.

The inverse kinematics is estimated through the proposed method in Chapter 2. This way of

estimating the inverse kinematics allows us the estimation of several alternative joint configu-

ration sequences. We are neither limited to pre-defined start configurations of the robot nor to

possible local minima along the path. However, the larger the number of parameters which are

supposed to be estimated, the longer it will take. In order to speed up the computation, we

split up the estimation in two parts in this experiment: First, we estimate the first seven DoF

(outside the body), until we reach the desired point roughly. Then, we estimate the last two

DoF (inside the body). Hence, the search space is reduced. Of course, it is possible, that we

do not achieve the best solution for the inverse kinematics and, subsequently, for joint speeds,

110

7.2 Contact State-Based Representation of the Environment for Dexterous
Manipulations

etc.. However, this procedure is applied in all scenarios in this experiment. The conditions are,

therefore, the same for all runs.

Figure 7.11: Principle, schematic diagram of the MiroSurge system from DLR. The

first seven DoF of the simulated MiroSurge system are illustrated. These DoF are outside the

body. Each circle symbolizes one, resp., two rotational joints. The gray lines coming out of a

circle refer to, resp., one joint axis. The symbols of the translational joints are bracket-shaped.

The ”EE“-box (bottom right) symbolizes the end of the visualized manipulator.

In our simulations, we want to illustrate the potential of the proposed contact state definition

in Section 3.2. If possible (e.g., no path of fixed points), we make use of the defined relation

in contact properties. Both definitions are characterizing the representation. They are shown

below, again:

contact(objects, contact_properties)

relation: [relation_attribute, objects]

We do not implement a real experiment or a physical model to verify, e.g., the execution order of

the single components of the description. We choose one or, if possible, several paths manually

in a manner, such that they fulfill the required properties. This allows us to illustrate, that

different paths can fulfill the requirements of a desired manipulation described by the proposed

representation.

7.2.1 Scenario I: Cut

The first scenario is a simple cut on an organ during an operation. Such a cut is performed

with a knife. In Section 3.2.1, we defined already such a contact as follows:

111

7. EXPERIMENTS

contact({knife, organ},

cut_properties)

The cut properties define, how the cut on the organ is performed. A cut cannot be chosen
arbitrarily in an operation (e.g., to excise a tumor). Here, it has to be performed accurately
along a certain path, which is represented by a set of successive points. Of course, a cut has a
certain depth, which defines how deep the cut has to be.

cut_properties = {cut_points, depth}

The depth of the cut could be the same for all points (single value) or it could be specified by a
set representing the respective depth for each point of the cut (vector). We simply use a single
value in our simulation. Usually, the magnitude of the depth is given by the specific application
(e.g., size of tumor). Moreover, the property ”depth“ implies knowledge about the space: It
has to be defined with respect to the direction of the depth. For simplicity, we use the vertical
orientation in the room as direction of the depth in our simulations. The direction of the depth
is important in this application, since it sets implicitly the orientation of the knife during the
cut.

The path consists of fixed points. Hence, it is not possible to find alternatives. However,
we can optimize the configurations of the robot along this path, e.g., with respect to efficiency
in actuation. Therefore, we evaluate different robot configuration sets in our simulations. In
general, the cut could consist of fixed points arranged in any configuration, as long as the
configuration reflects the cut appropriately. We assume a line of fixed points to illustrate the
principle.

Table 7.10: Results for scenario I (cut). The maximal and the average speed of all joints is

computed for each configuration set. The sets with the smallest maximal speed peak and the one

with the minimal average speed are depicted.

Configuration set: Magnitude of the speed peak: Average speed:
Smallest maximal speed peak: 0.15 rad per time unit 0.05 rad per time unit
Minimal average speed: 0.16 rad per time unit 0.04 rad per time unit

The maximal and the average speed of all joints are computed for each configuration set.
The set which has the smallest maximal speed peak and the set with the minimal average
speed are of special interest, since they have the most desirable properties with respect to
efficient actuation. Table 7.10 shows the average speed and the speed peak for both sets. The
configuration set which has the smallest maximal speed peak along the path has a peak at
about 0.15 rad per time unit and an average speed of 0.05 rad per time unit. The configuration
set with the minimal average speed (0.04 rad per time unit) has a slightly higher maximal speed
peak at 0.16 rad per time unit. Hence, the differences regarding the speed peak and the average
speed are relatively small in this experiment.

112

7.2 Contact State-Based Representation of the Environment for Dexterous
Manipulations

7.2.2 Scenario II: Knot-tying

The second scenario is a knot-tying scenario. The goal of the scenario is a knot, which connects
the involved threads. Consequently, the contact of the knot-tying scenario consists of a set of
threads and certain properties, which define the type of contact (the knot).

contact(thread_set, knot_properties)

Theoretically, more than two threads could be knotted. We focus here on two threads, since it
shows the basic principle.

thread_set = {t_1(fp_1, l_1),

t_2(fp_2, l_2)}

Each thread t i has its respective fix point fp i and a length l i. The properties of the knot
are defined by two sets of properties. The knot has a desired intersection point ip and the knot
should be tightened at this intersection point.

knot_properties = { intersection_point ip,

tightened_knot at ip }

The intersection point is the point of contact. There, the knot is further characterized by the
properties of the type of knot. A knot of a simple, daily-life shoe tying scenario is used here:

intersection_point ip = {

[over_behind, (t_{1, lower}, t_2, fp_1)],

[under, (t_{1, upper}, t_2)],

[under, (t_{1, upper}, t_{1, lower})] }

with

[over_behind, a, b, c)]

as description of putting a over and behind b. The variable c can be seen as perspective to
define ”behind“ an object. In an implementation, one needs to know the gravity vector to
determine the meaning of ”over“. The check of the property ”behind“ could be done in two
steps. First, a has to be further away from c than b. Second, in the perspective of c, a and
b should lie in approximately the same direction. The exact definition of the same direction
depends on the application. In our case, it is defined very generous: The points are configured
in a manner, such that the angle between the vectors ca and cb is smaller than 50◦.
As described in Section 3.2.3 and at the beginning of Section 7.2, a real-world application would
require many advanced sensing methods, which are not in the focus of this thesis. We just want
to mention here, that one could, also, consider a simplification to observe the desired goal
states in a demonstration: One could record the trace of the end-effector of a demonstrating
manipulator. This could simplify the thread detection and tracking under possible occlusions
in this scenario.

113

7. EXPERIMENTS

A knot is tightened through a distance maximization for each thread tip and the intersection
point, respectively, the fixed points.

tightened_knot = {

[maximize distance, (t_{1, tip}, ip)],

[maximize distance, (t_{2, tip}, ip)],

[maximize distance, (t_{1, tip}, fp_1)],

[maximize distance, (t_{2, tip}, fp_2)],

tolerance t_k}

The tolerance t k increases the area around the positions, at which the distance is defined
to be maximized. Of course, it depends on the application, on the available objects and the
environment. An application could require a knot at a certain position along the threads (e.g.,
esthetic reasons for a knot on a shoe). The tolerance t k would be relatively small in such a
case. If, e.g., an obstacle blocks the areas, where the distance is maximized exactly, we need a
sufficient tolerance to ensure, that an intersection point can be created at all. In general, the
larger the magnitude of the tolerance is, the more areas exist to build the intersection point.
However, if its magnitude is chosen too large, the goal, the tightened knot, cannot be ensured
any more. For simplicity, we have chosen a quarter of the magnitude of the distance between
the fix points of the threads. It is relatively generous, since we are not focused on a very specific
position of the knot.
The maximization itself could be implemented as follows: Around the intersection point, resp.,
the fixed points, a sphere is build. Each sphere has a radius at the magnitude of the respectively
maximized distance described above (thread tip - intersection / fixed point). The intersections
of all four spheres form the areas, where the intersection point can be placed. If no intersection
exists, we need to make use of the tolerance: It has to be large enough, such that an area exists,
which includes all four spheres.

As described in Section 3.2.3, the execution order of the elements in the set is not defined in
advance, if the contact properties are defined by a set. The order could, e.g., be determined by
a real experiment or a physical model, which simulates the execution of the relations in different
orders. The results of such a simulation, respectively, experiment show, which execution orders
lead to the desired contact state. It is possible, that one, several or all possible orders lead to
the goal.
In our experiments, we evaluate the contact state description manually. First, the intersection
point is of interest, since it is at the lowest level in the property description. A simulation of
the possible manipulation orders would, e.g., show, that, if the last relation (move the upper
part of t 1 under its lower part) is perform first, there will be no long-term effect, since further
actions of t 1 will destroy the effect. Therefore, it has to be processed later. If the upper part of
t 1 is put under t 2 first, it will be impossible to move the lower part of t 1 over t 2 stably (see
Fig. 7.12 in comparison to Fig. 7.13). Hence, the relations have to be achieved in increasing
order. Consequently, we cannot get alternatives regarding the execution order of the relations.

114

7.2 Contact State-Based Representation of the Environment for Dexterous
Manipulations

Figure 7.12: Exemplary non-working execution order in the knot-tying scenario. The

top of thread t 1 (red) is moved under thread t 2 (black), first. However, it will be impossible

to move the lower part of t 1 over t 2 stably (at least after the tightening with the distance

maximization). The working execution order is depicted in Fig. 7.13.

Figure 7.13: Exemplary working execution order in the knot-tying scenario. If the

lower part of t 1 (red) is moved over t 2 (black), first, the top of thread t 1 can moved under

thread t 2, stably.

We see in the definition of the thread set, that two threads are involved. At least one of
them has to be moved to change the contact states. We assume here for simplicity, that we
use two manipulators. Each manipulator moves just one of the threads. Thread t 1 should be
moved over and under t 2. This means, that a lift of t 1 and t 2 is necessary. t 2 can be lifted
before or during the procedure (last possibility: before t 1 should be moved under t 2). Hence,
these two alternatives are possible. We consider the first one here.

We can sum up, that the execution of the property tightened knot is straight forward,
but not fixed to a pre-defined path.

In our simulation of the scenario, one path is created without further constraints. A second
path is built under the consideration of an obstacle - another organ. This requires a partial
shift of the first (original) path (see also Fig. 7.14). The start positions are the same for both
paths, whereas the intermediate points are shifted away from the organ. The end points are just
slightly moved to achieve an end position, which is similar to the original one, while avoiding
the obstacle. The magnitude of the shift is limited with respect to the task: If the task is not
fulfilled any more, the shift cannot be applied. The tolerance t k determines here also the
freedom within which the path can be changed. It allows to a limited tolerance with respect to
the tightening of the knot. Hence, the path is less restricted and can be shifted.

115

7. EXPERIMENTS

The advantage of our representation is clearly visible here: Only the pick-up points of the

threads are fixed. The final execution of the desired manipulation is not limited to a fixed path.

A possible path can, e.g., be shifted easily to avoid an obstacle.

Figure 7.14: Original and shifted path in the knot-tying scenario [7] (unit: mm). The

original path (blue) cannot be applied, when the colored organ is present, since both are intersect-

ing. In contrast, the shifted path (red) is collision-free. The dashed lines illustrate the path of the

supporting manipulator (lifting one thread, tightening). The green crosses indicate the pick-up

points of the threads.

Table 7.11: Results for scenario II (knot-tying). The maximal and the average speed of

all joints is computed for both paths and both manipulators.

Path and manipulator (man.): Magnitude of the speed peak: Average speed:
Original path, main man.: 0.7 rad per time unit 3.1 rad per time unit
Shifted path, main man.: 0.6 rad per time unit 3.1 rad per time unit
Original path, supporting man.: 0.1 rad per time unit 0.3 rad per time unit
Shifted path, supporting man.: 0.1 rad per time unit 0.5 rad per time unit

Table 7.11 shows the results of the simulation of the know-tying scenario. The differences

between the original and the shifted path are small regarding the average speed and the maximal

speed peak (average: about 0.7 and 0.6 rad per time unit; peak: both 3.1 rad per time unit).

The large speed peaks are due a defined movement, which required a significant change of the

end-effector’s orientation (when the tip of thread t 1 needs to be moved from behind t 2 under

t 2 to the front). The movements have been defined manually. Possibly, a usage of a physical

simulation plus an advanced path optimization could avoid such movements.

116

7.2 Contact State-Based Representation of the Environment for Dexterous
Manipulations

The average speed of the supporting manipulator (lifting the thread, tightening) is the same
in the original and the shifted path (0.1 rad per time unit). The peaks in the speed profile
differ (0.3, respectively, 0.5 rad per time unit). To conclude, the shift of the path influences the
efficiency of the manipulation just partly. The obstacle avoidance can be performed without
disadvantages regarding the efficiency of the main manipulator. The speed peaks in the profile
of the supporting manipulator differ.

7.2.3 Scenario III: Suturing

The third scenario describes a suturing during an operation. A suturing is performed between
at least two objects, which have to be in contact at certain points afterwards. The contact
suturing consists of the tissues, which have to get in contact under consideration of the suturing
properties.

contact(suturing_tissues,

suturing_properties)

We consider two objects o1, o2 for our suturing scenario, which have a respective stiffness sti.
Moreover, an additional tool (”supporting item“) is introduced to keep the objects o1, o2 in
contact.

suturing_tissues = {o_1(st_1),o_2(st_2),

supporting_item}

Theoretically, the objects can be set in contact in any way. For example, the end-effectors of a
two-armed robot could move the objects together. If the end-effector unhand its contact to the
respective object, the objects might jump back into their original positions without contact.
Hence, another tool (supporting item) like a thread is needed to keep the objects in a long-term
contact. Theoretically, one could bind the thread around both objects. If the thread cannot
be put around the objects, the thread can connect both objects through a stitch. We want to
achieve the contact of the suturing through stitches along a desired contact line. A sufficient
number of suturing points has to ensure this contact.

suturing_properties = {

suturing_points,

stitch_properties,

tightening_suturing}

The suturing points are described by vectors. The stitches at these points are described through
certain stitch properties. For example, a simple direct stitch from one tissue to the other can
be chosen. A stitch in form of a cross is more demanding, but more stable. We choose a simple
stitch for our experiments. This means, that the ingoing and outgoing penetration point are
placed in a manner, such that (1) they are next to the respective suturing point, (2) each of

117

7. EXPERIMENTS

them is located on respective one object, (3) they are mirrored on each other with respect to the
suturing point and (4) the vector from the ingoing to the outgoing point points into the desired
penetration direction. However, depending on the requirements of the respective application,
the penetration direction can be more or less restricted. A tolerance t s, penetration reflects
the magnitude of the restriction. It can, e.g., be the maximally allowed angle between the
vector from the ingoing to the outgoing point points and the penetration direction. Similarly,
the definition of next to a respective suturing point depends on the application. We introduce
the tolerance t s, simple as maximally allowed distance to the respective suturing point. The
more precise and the smaller the stitch has to be, the smaller both tolerances are.

stitch_properties = {

{simple_stitch},

{penetration_direction},

tolerance t_{s, simple},

tolerance t_{s, penetration},

depth d_s}

In our simulations, we choose generous values for the tolerances, since we just want to determine
one possible path of the stitch to illustrate the principle (t s, simple = 50 mm, t s, penetra-
tion = ± 30◦). The depth d s is the maximal depth, which the stitch is supposed to reach. We
set it to 40 mm in our simulation.

Moreover, a tightening is required for each suturing point i.

tightening_suturing = {

[maximize distance, (t_{1, tip}, suturing_outgoing_penetration_point(i))],

tolerance t_s}

It is important to point out, that the suturing outgoing penetration point(i) is defined implicitly
through the suturing points and the type of stitch (see paragraph above). Similarly to before,
we use a tolerance for the tightening to allow, e.g., the consideration of obstacles. In our
implementation, we considered a very small tolerance t s with a quarter of the distance between
the ingoing to the outgoing point at each stitch, since we do only assume one obstacle next to
an ingoing point. It hardly affects the areas for the distance maximization in the tightening
operation.

The contact of the suturing scenario illustrates our concept of the role of the involved objects.
In order to perform the desired stitch, a needle is necessary. The needle and the thread are
non-active objects, which are used as tools. The thread is the additional tool (the supporting
item) to keep the objects in contact. The needle is a further tool, which is necessary during
the execution. The tissues which have to get in contact are non-active. The two-armed robot
is the active object, which performs the task.

In our simulation, we assume that the tissues are soft and deformable. No handover of the
needle is required. We treat the needle as elongation of the manipulator as long as it is grasped

118

7.2 Contact State-Based Representation of the Environment for Dexterous
Manipulations

by the end-effector. The path of the end-effector is restricted at the respective stitch points.

However, it is less restricted in the approach phase and in the after-stitch phase. The closer

the path point to the stitch point is in these phases, the more restricted it is. Hence, we use a

cone-shaped path restriction in the approach and after-stitch phase. The cone’s height points

towards the ingoing penetration direction. The ingoing penetration direction depends on the

depth d s and the shape of the stitch within the tissue. For simplicity, we choose a isosceles

trapezoid as shape of the stitch.

In the approach and after-stitch phase with the cone-shaped path restriction, we represent the

cone by points on the cone’s cover (see Fig. 7.15). The orientation is adapted step-wise to the

desired orientation. If restrictions have to be considered, alternatives can be chosen within the

cone and the step-wise adaption of the orientation. For example, other organs should not get

injured by the needle tip. In order to decrease injury avoidance, one could choose the path

with the maximal distance to other organs. The organs could be represented through virtual

fixtures [193], [194]. The alternative paths in cone-shape are similar to principles in [83]. Parts

of our path are fixed (stitch points), whereas others are more flexible (approach phase).

Figure 7.15: Path of the suturing scenario [7]. Left: The blue path depicts the fixed part of

the path in the scenario (unit: mm). The red part shows alternative paths in the approach phase,

which is less restricted. The green cross indicates the center of an obstacle (e.g., another organ).

Right: The entire obstacle is illustrated.

First, the configuration set with minimal average speed (0.21 rad per time unit; peak:

1.26 rad per time unit) is determined for the fixed part of the path (the stitch points). Its

first configuration along the fixed path is the desired configuration at the end of the approach

phase. We focus on the analysis of the possible approach paths. Each of them leads to the first

fixed point in the stitch. In our simulations, four paths form the described cone (see Fig. 7.15,

left). They are alternative paths, which want to analyze further. Hence, we just use the first

119

7. EXPERIMENTS

configuration of the fixed part of the path (the stitch points) as a constraint: It has to be
reached at the end of the approach phase. The rest of the fixed path is not analyzed further,
since there are no alternatives.

Table 7.12: Results for scenario III (suturing). The maximal and the average speed of

all joints is computed for all four paths reflecting the cone (see Fig. 7.15). The path with the

maximal distance to the organ is the top path. The left path has the smallest average speed and

the smallest speed peak.

Path: Magnitude of the speed peak: Average speed:
Top: 1.2 rad per time unit 2.9 rad per time unit
Left: 1.1 rad per time unit 2.6 rad per time unit

Table 7.12 depicts both of the most interesting results: The result for the path with the
maximal distance to the organ (top path), and the path which has the smallest average speed
and the smallest speed peak (left path). In order to check the distance between the path and
the organ, we check the distance between each path point and the center of the organ. If the
distance is smaller than the radius of the organ, the path intersects the organ. The system
analyses correctly, that the bottom path intersects the organ. Hence, it cannot be used. The
other three paths can be used, since they do not intersect the organ. The top path is furthest
away from the organ. Fig. 7.15 illustrates these results clearly. Both paths at the side have the
same distance to the organ. The path on the left has the smallest average speed (1.1 rad per
time unit) and the smallest speed peak of all four paths (2.6 rad per time unit). The average
speed of the top path is slightly worse with 1.2 rad per time unit. Its speed peak at 2.9 rad
per time unit is just a bit higher. The relatively large speed peaks occur for the last two joints
(close to the end-effector). Possibly, this is due to the split estimation of inverse kinematics
(described at the beginning of Section 7.2). Both joints are used for the fine adaption to the
desired position. The required fine motions during the manipulation are, probably, performed
by them. The same holds for the estimation of the inverse kinematics along the fixed part of
the path (the stitch points). The speed peak is also relatively high, there.
To sum up, the path furthest away from the organ leads just to a slightly worse efficiency of
the manipulator than the path for which the manipulator’s efficiency is best.

120

7.3 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and
Human-Like Robotic Hands

7.3 Estimation of Inverse Kinematics of Arbitrary Serial

Chain Manipulators and Human-Like Robotic Hands

In the first Sections of this Chapter, we presented the experiments on abstract representations
of manipulation tasks. In order to be able to analyze robots’ manipulation capabilities with
respect to desired tasks, we need to be able to estimate the inverse kinematics. If forms the
basis to allow a robot’s manipulation at all. Hence, we presented such an estimation approach
in Chapter 2. Now, we test it on the data sets extracted from observation of real human
actions (Section 7.1). The robot has to grasp an object at a certain position and to move it to
another position in an upright orientation. The robot’s base positions are shown in Fig. 7.16.
The orientation of the base is chosen in a manner, such that the joint axis of the first joint
is perpendicular to the expected main plane of manipulation (e.g., table plane). Each path
consists of N = 20 consecutive points.

Figure 7.16: Data set I (left) and II (right) with the robots’ base positions [4]. Similarly

to Fig. 7.1, the lines/ curves between the blue Location Areas (LA) refer to trajectories of lifted

objects (red) and trajectories of pushed objects (green). Additionally, the robots’ base positions

are shown in yellow.

7.3.1 Implementation

The implementation is done in C/C++. The stochastic approach for global minimization was
presented in [26]. We use the implementation by Oliver Ruepp [195]. The simulated serial chain
manipulator is described in Table 7.13. It consists of six rotational joints perpendicular to each
other. We are also interested in the estimation of the inverse kinematics of a human-like robotic
hand. The hand is supposed to be moved in a manner, such that the tips of the fingers and the

121

7. EXPERIMENTS

thumb are able to reach desired grasp points on an object. The parameters of the human-like

robotic hand are described in Table 7.14. It consists of a thumb and four fingers with three

DoF each. Moreover, the hand has one additional DoF between the root of the thumb and the

roots of the fingers. For simplification, this DoF is modeled as the fourth joint of the thumb.

Each finger joint has a range from 0 to 120 degree. Fig. 2.3 illustrates the corresponding hand.

Table 7.13: Parameters of the serial chain robot (angles in degree, length in mm,

EE = transformation to the end-effector).

joint i: αi−1: ai−1: di: θi:
1 0 0 0 θ1

2-6 90 0 300 θi

EE 0 0 0 0

Table 7.14: Parameters of the human-like robotic hand (similarly to Table 7.13) with

t=thumb and fF = finger F. Joint 1 of the thumb is the joint closest to the tip of the thumb. The

first joint of each finger is its corresponding root. BF describes the transformation from the end

of the thumb at the carpus to the base of finger F.

joint i: αi−1: ai−1: di: θi:
t 1-3 0 20 0 θt,i

t 4 0 40 0 θt,4

t EE 0 0 0 0
fF 1-3 0 20 0 θfF ,i

fF EE 0 20 0 0
B1 EE 0 0 0 0
B2 EE 0 0 20 0
B3 EE 0 0 40 0
B4 EE 0 0 60 0

The robot is supposed to reach the points along the desired paths. We introduce a tolerance

around the each of these points. If the end-effector cannot exactly be moved on the point,

but, it can reach the point within a tolerance th, the point is still defined to be hit. We set

the tolerance for such a hit to th = 20. The manipulator can, then, easily reach all points

on the paths. Often, several manipulator configurations exist as solutions. Hence, alternative

configurations can be found as well. Then, the final configuration for a task execution can be

chosen among these alternatives. For example, efficiency criteria can be considered for such

a choice. In general, the smaller the tolerance is, the less configurations exist to reach the

122

7.3 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and
Human-Like Robotic Hands

desired points. On the one hand, the end-effector is closer to the desired points with any of the
(estimated) solutions. On the other hand, there are less solutions and, therefore, less alternative
configurations. In the worst case, no solution exists.
The variable γ (Eq. 2.3) works as penalization factor, if perspective solutions are close to each
other. The higher the factor, the higher the penalization of known configurations. It is more
probable, then, that the estimated solutions are significantly more different. In our case, the
solutions need to differ, but, we do not search for very separated solutions. Hence, we set
the factor to 1

3 to penalize configurations smoothly, when they are close to each other. Two
configurations are treated as different, if the euclidean distance ec in between is at least u
(Eq. 2.3). The larger the minimal distance u is, the further away the solutions need to be from
each other. We choose a relatively small minimal distance with u = 0.2 rad. It allows us to find
solutions which differ. At the same time, we are able to estimate a larger number of solutions.
The scaling α = 300 is large, since the range of the second term (error with respect to the
desired orientation, in rad) in Eq. 2.4 is much smaller than the first one (error with respect to
the desired position, in mm; workspace: 45 x 30 cm (Section 7.1.2)). If we want to ensure a
very accurate estimation of the position of the end-effector, we need to put an emphasis on the
first term. The scaling α has to be decreased, then. Similarly, if a very accurate estimation
of the end-effector’s orientation is required, the scaling needs to be increased. The search
for further solutions is stopped, if either the result of the corresponding objective function is
higher than 2.5 · th or a maximal number of iterations is reached (200 in our experiments). If
the result of the corresponding objective function is higher than 2.5 · th, we assume, that it
is very unlikely to find a solution with a result smaller than the tolerance th. The maximal
number of iterations is never reached in the experiments. It has been chosen in a magnitude,
that it is never reached. However, depending on the application, it could be a good tool to
speed up the estimation, since the estimation could be stopped earlier. If possible solutions
get lost due to the maximal number of iterations, a further examination of the quality and the
necessity of these solutions would be needed. For the estimation of inverse kinematics along
entire paths, we apply the concept of adaptive tunneling (Section 2.3). We want to ensure,
that the manipulator configurations are really close to each other along the path. Hence, we
choose a very small initial search space around the previous configuration of the manipulator
(lc = 0.01). Furthermore, we set m = 0.2, in order to increase the search space just in very
small steps to ensure smooth motions along a path (see Eq. 2.5-2.7). The larger both values
are chosen, the faster the search space is enlarged. On the one hand, a solution can be found
faster. On the other hand, the estimated solution can be further away from its ancestor, since
it is determined in a much larger search space.

7.3.2 Results

We analyze the manipulation tasks for each data set. Moreover, we repeat each experiment five
times to check the stability of the experiments.

123

7. EXPERIMENTS

At first, we estimate the inverse kinematics of the human-like hand. An exemplary virtual

shut grasp is depicted in Fig. 7.17. Nearly all of the grasps are done successfully. There is just

one grasp among all experiments and repetitions, which could not be applied in reality: Since

we do not have implemented a collision detection yet, the fingers are intersecting themselves in

form of a loop. A collision detection could be added to the objective function in Section 2.2

as penalization of undesired intersections. Once the hand has successfully grasped the object,

we just need to position the end-effector of the serial chain manipulator appropriately. It has

to be positioned in a manner, such that the computed grasp can be performed. Some of the

solutions are illustrated in Fig. 7.18.As it can be seen, the solutions differ significantly.

Figure 7.17: Exemplary virtual shut grasp, data set II [6]. The illustrated hand has a

black palm, blue real fingers and a magenta model of the hand with the virtual finger, the thumb

and the red orientation stick. The red dots are the aim positions of the real fingers, the blue one

is the goal of the virtual finger. The black axes of the global coordinate frame give an impression

about the magnitude of the hand (unit: mm). As it can be seen, the virtual finger does not exactly

reach its aim position. However, the real fingers are achieving their aim positions precisely.

Afterward, the desired manipulation is performed. We focus on the serial chain manipulator.

The hand needs just to stay in the known grasp position to hold the object. The desired

manipulation consists of a 3D trajectory, on which the object has to be kept upright (e.g., a

cup with coffee). We repeat the process of adaptive tunneling for different start configurations,

if the start position can be reached with different configurations.

Fig. 7.19 shows the average and maximum of, resp., the joint speed, the angle around the

horizontal axes and the residual of the position for data set II. In an ideal case, all three values

are low. A low joint speed is a sign for smooth motions along the path. The angle around the

horizontal axes should be close to zero, since the object is, then, kept upright as desired. A low

residual in position means, of course, that the desired position is achieved accurately. The best

result is shown on the left, the worst on the right. Even the worst result has very desirable low

values. This shows clearly, that the direct optimization of the angle around the horizontal axes

and the residual in position (see Eq. 2.4) succeeds. The desired low joint speeds are achieved

124

7.3 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and
Human-Like Robotic Hands

Figure 7.18: Exemplary manipulator configurations [6]. Configurations of the magenta

manipulator with the red base for the same position of the end-effector are drawn (data set I). For

illustration, a stick stub was added to the end-effector instead of the hand to show its orientation

more clearly. The black axes of the global coordinate frame are given as orientation between the

subfigures (unit: mm).

Figure 7.19: Statistical results of the adaptive tunneling [6]. Statistical results of the

best (left) and the worst (right) results of adaptive tunneling for data set II. Each figure shows

the blue mean and the orange maximum of the joint speed (in rad/ time unit), the angle around

the horizontal axes (in degree) and the residual of the position (in 10 mm).

indirectly through the limitation of the search space in the adaptive tunneling method. The

results for data set I are even better. Fig. 7.20 shows an exemplary development of joint speeds.

On the right, we see, that one trajectory is done at an extremely low speed, but in a zig-zag-

pattern. This can be explained through the application of the Stochastic Optimization: We

search for the solution in a very small search space at the beginning. Within this space, the

solution is picked arbitrarily. The joint speed of the trajectory in Fig. 7.20 is so small, that the

solution is already found within this extremely small search space. Some trajectories have a

peak in the development of the joint speed, but even this peak is very low with 0.5 rad. Fig. 7.21

illustrates some consecutive configurations of the manipulator along the trajectory. As we can

see, its motions are smooth.

Concerning the computation time and the stability of the solutions, we achieve satisfying

results. The estimation of the inverse kinematics of one single point takes between 15 and

60 seconds, depending on the number of possible solutions (between 20 and 80 solutions for a

125

7. EXPERIMENTS

Figure 7.20: Exemplary joint speeds along the trajectories [6]. The x-axis can be seen

as the time axis, if 1 s is needed to move to a consecutive point. Left: Speed of joint 1 in data

set I. Right: Speed of joint 4 in data set II.

Figure 7.21: Consecutive configurations of the manipulator along a trajectory [6]. The

robot is depicted at position 1, 5, 10 (data set I) on the blue trajectory. Illustration similarly to

Fig. 7.18 (unit: mm).

point in our experiments). The adaptive tunneling is started with the three best solutions of

the inverse kinematics of the start positions, the best one according to the statistical values

in Fig. 7.19 is chosen at the end. The adaptive tunneling for the entire trajectory is done

in 45-90 seconds. The inverse kinematics of the entire human like robotic hand is estimated

within 5-10 seconds. We tested several local optimization methods (e.g., Matlab Optimization

Toolbox: simplex search method, Trust-Region Dogleg method, Levenberg-Marquardt method)

on the same data sets, but all of them got stuck in local minima. It was not possible to find the

inverse kinematics for all desired points with any of these methods. This forced us to search

for a global estimation of inverse kinematics. The small peaks in the speed profiles (see, e.g.,

Fig. 7.20) are negligible, if one considers, that it was not possible to find solutions with another

method.

126

7.3 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and
Human-Like Robotic Hands

The number of solutions is stable for the inverse kinematics of a single point in data set I
with just two outliers (just about 25 solutions found instead of about 40). For data set II,
the estimation of the inverse kinematics seems to be more difficult for two places: About
50 solutions are found in ca. 50% of the repetitions, while just the half of this amount is
determined in the other repetitions. The amount of possible solutions depends also on the
definition of “different solutions”, e.g., the tolerance th and the minimal distance u between
two different configurations. Moreover, the number of possible solutions can differ, depending
on the real distance between two configurations. Nevertheless, the large amount of solutions
in our experiments shows, that we find many possible solutions, even in the worst case. As
described, the three best results of the inverse kinematics of the start position are evaluated
before the adaptive tunneling. The best result is taken at the end. A third of the other solutions
have single higher outliers in the joint speed about 1.5 - 2.5 rad/ time unit, the other values
are approximately the same. The repetitions show similar results, just one outlier occurs in one
repetition of one trajectory for the joint speeds (about 3 rad/ time unit). The estimation of
the inverse kinematics of the hand is very stable, there is just one outlier among all repetitions
(residual of 10 mm for a finger; normally a residual about 1.5 mm), which is still very small.

127

7. EXPERIMENTS

7.4 Path Optimization for Abstractly Represented Tasks

with Respect to Efficient Actuation

In this Section, we present the experiments on the proposed path optimization (Section 4). In
the first part of this Section, the experiments on the path configuration with respect to efficient
actuation are processed. These experiments indicate, whether there is a potential to improve
the efficiency. The experiments on the proposed path optimization are shown afterward.

7.4.1 Path Configuration

The experiments on the path configuration method are performed on simulated and real world
data. We use simulated scenes for the first scenario A and real scenes for the second scenario B.
The first simulated scene (Scene I, scenario A) has simply two Location Areas on a table
(distance between both Location Areas: 400 mm). The second simulated scene (Scene II,
scenario A) consists of three Location Areas, which are placed on the corners of a quadrilateral
(side length of the quadrilateral: 400 mm). Both scenes are simple test scenes. They form a
basic test frame for the path configuration method. In the real world scenario (scenario B),
we use the Location Areas of the Functionality Maps extracted in Section 7.1 (illustrated in
Fig. 7.1). The paths between the Location Areas can be applied to manipulate objects. Each
path consists of 20 points.
The factor e ranges from 0.5 to 2.0 with a step size of 0.5. The angle β is chosen from the set
{-45◦, 0◦, +45◦}. The wiggly line is built up on the half quadrilateral with a perpendicular
deviation from the half quadrilateral of 20 mm (see also Section 4.1).

A simple 3-DoF robot with three rotational joints perpendicular to each other is simulated.
All links have a length of 400 mm (DH-Parameter: d1, d2, a3). An end-effector position is
defined to be reached, when the distance between the desired and the real position is below
50 mm (tolerance th in Section 7.3).

The position of the robot’s base is varied on circles and rectangles, which are spanned up
around the mean of all Location Areas. The circles and rectangles have three different sizes
(Fig. 7.22) and three different heights (table height and above). In experiment (A) scene I, the
radius of the circle is chosen within the set {400 mm, 500 mm, 600 mm} and the half of the
side length of the rectangle has a value of the set {300 mm, 400 mm, 500 mm}. In all other
experiments, these values are increased by 200 mm (radius: {400 mm, 600 mm, 800 mm}; half
of the side length of the rectangle: {300 mm, 500 mm, 700 mm}). The height is chosen within
the set {0 mm, 200 mm, 400 mm}. Experiment (A) scene I consists just of two Location Areas,
hence, smaller values are sufficient to place the circles and rectangles out of the region of the
Location Areas. In the other experiments, three or four Location Areas are used. Therefore,
larger values are necessary to span the circles and rectangle outside of the Location Areas. We
choose six equally distributed points on each circle and eight points on each rectangle. Hence, a
large number of different base positions ((6+8)x3x3=126) are distributed around the Location

128

7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient
Actuation

Areas, where the manipulations take place. All of them are used in the experiments on the
path configuration.

Figure 7.22: Possible positions of the robot’s base in relation to the Location Areas

(LA). The red crosses show the different base positions on circles and rectangles spanned up

around the mean of all Location Areas.

We analyze the properties of the 100 best results for each scene. This large number should
give a good overview of the preferred properties for the path configuration. The best results are
defined as the paths, for which the maximally required joint speeds are the lowest. The maximal
change of the joint speed (maximal acceleration) is very small in all scenes of the 100 best results
(below 7 · 10−5 rad/s; average joint speed for comparison: 0.004 - 0.038 rad/s). Therefore, the
maximal change is not included in the definition of the best results here. In general, we just
evaluate paths, which can be reached by the manipulator (within the tolerance of 50 mm).
Fig. 7.23 shows the ratio of each basic motion shape in each scenario. It is surprising, that a
line, which is the shortest connection between two points, is hardly among the best results in
the scenarios. The line seems to be a demanding motion shape. Even the wiggly line and the
half quadrilateral are significantly more often among the 100 best results than the straight line.
The half circle is the most favorite motion shape. In general, compressed paths are preferred,
which lead to relatively short connections (compression/ elongation factor e = 0.5 in 80% of
the best 100 results). At first, this seems to be quite logical. However, the line (the shortest
connection) is hardly among the best 100 results. Apparently, the path of a straight line is
more demanding to reach than a compressed path in one of the other three shapes.

129

7. EXPERIMENTS

Figure 7.23: Ratio of each basic motion shape (among the 100 best results) [3].

130

7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient
Actuation

Fig. 7.24 illustrates the most favorite motion shapes and compression/ elongation factors
of the paths in general. The figure visualizes clearly, that the shortest connection, the line, is
hardly among the best results. The compressed paths are preferred, especially the curve shaped
one.

Figure 7.24: Illustration of the preferable basic motion shapes and compression/

elongation factors among all scenarios [3]. The thicker a line/ curve, the higher its preference.

As it can be seen, the half circle is the most favorite motion shape. Moreover, it is visible, that a

small compression/ elongation factor is preferred.

The 100 best results do not show one general value preferred as bias (angle β). For example,
in scene I of experiment (A), the positions, which are further away from the mean Location Area
are preferred. A further analysis of the relation between the angle β and the chosen positions
shows, that β is pushing the trajectory away from the chosen base most of the times. In scene II
of the same experiment, this effect is less strong, but still visible: Smaller distances are preferred
here and the β is often pulling the trajectory towards the robot’s base. For experiment (B), a
similar observation can be done, even though the effect is less significant. It seems to be used
as a fine adaption of the distance between the base and the desired points of the end-effector.
The path can be “pushed away” or “pulled” towards the robot’s base, in order to enable more
efficient actuation.

An additional result of our work are the preferable areas of the robot’s base with respect
to efficient actuation. We analyze the base position of the 100 best results in this experiment.
Most of the areas are on the side of the desired path at table height. A base placement at
table height is preferred in three out of four scenes (Fig. 7.25). Just in scenario A, Scene I, the

131

7. EXPERIMENTS

Figure 7.25: Ratio of height of the robot’s base [3]. “Plane height” is the height at the

table plane. “Above plane x” refers to a height “x” above the table. The higher “x”, the further

away the height from the table.

base positions of the 100 best results are approximately equally distributed among the three
different heights. The height of the base does not seem to influence the efficiency of actuation
in this scene.

132

7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient
Actuation

Figure 7.26: Exemplary preferred positions of the robot’s base in relation to the

Location Areas (LA) [3]. The color of the preferred regions (red, magenta, blue and green

circles, resp., ellipsoids) for the robot’s base refers to the corresponding path in the same color.

Fig. 7.26 shows, that base positions on the side of the desired path are preferred. Appar-
ently, the manipulator can work more efficiently, if the manipulation area is on its side. If the
manipulator is placed behind a start, resp., end position, the manipulation area is further away.
The manipulator’s capabilities probably decrease and, hence, the efficiency decreases as well.
It is interesting to see, that the base positions on the rectangles are hardly among the 100 best
results. The base positions on the rectangles do not seem to allow an advantageous positioning
of the base in comparison to the positions on the circles.

Our experiments show, that the intuitive solution does not necessarily agree with the results
optimizing for efficiency. Therefore, it is worth to further analyze the path properties with
respect to efficient actuation. Hence, the proposed path optimization method is presented in
the next Section.

133

7. EXPERIMENTS

7.4.2 Path Optimization

After the promising results of the path configuration method, the experiments on the optimiza-
tion of the path follow. The experimental setup and the implementation are described first.
The results are shown afterward.

7.4.2.1 Experimental Setup and Implementation

The simulated manipulator consists of three rotational joints perpendicular to each other
(D = 3). All links have a length of 300 mm (DH-Parameter: d1, d2, a3)

During the optimization, the configuration of the path points is changed. However, the
path points need to be arranged in a manner, such that characteristic properties of the original
manipulation are still kept. Therefore, we limit the possible change of a path point x to a
sphere Sx with radius rx (see Section 4.2.3). We allow each joint j to change a point on the
path partially within the sphere. Hence, the part within which, resp., one joint is allowed to
change a path point is limited to rx/D (D is the number of joints as before). The Jacobian is
used to transfer the part rx/D to the configuration space. This transferred part gives us the
new range, within which the respective joint can be moved. The optimization is, afterward,
processed within the new ranges.
The radius rx of each sphere depends on the position of the corresponding path point x within
the path. The closer the point to the start of end point (Location Areas), the more limited
it is (see Eq. 4.10). This allows to ensure, that the path leads to the desired start and end
point. The magnitude of the radius depends on a constant basic distance C (see Eq. 4.10),
which scales the radius. It is chosen as C = D · 10.0 mm. Hence, the constant basic distance is
10.0 mm per joint. A definition in dependence of the number of joints is reasonable, since each
joint is allowed to change partially with rx/D (see above). The choice of 10.0 mm as constant
basic distance is per joint is large enough to allow a large search space is enabled for the points
in the middle of the path. At the same time, it is sufficiently small to ensure, that the path
leads to the desired start and end point.

The path consists of N = 5 points. We choose a relatively small number of points, since we
want to optimize the overall path in a very short computation time. Intermediate points can
be computed after the optimization by a simple partial movement of the joints if desired.

In order to keep the paths of pushed objects on the original height ho above the plane, we
add a residual Rx for each point px to the Objective Function O:

Rx =

{
0 if ‖ho − hx‖ ≤ th,h,
A · ‖ho − hx‖ otherwise.

(7.4)

hx is the current height of the point px above the plane. We introduce a tolerance th,h around
the desired height ho. The tolerance has to be chosen sufficiently small to ensure, that the path
refers still to a path of a pushed object. At the same time, a small tolerance allows a limited
freedom to configure the path points in an advantageous manner.

134

7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient
Actuation

The placement of points outside the region of the tolerance is penalized with a factor A.
We use the normal vector of the corresponding table plane to compute the desired and cur-
rent height of the points. Of course, Rx = 0 for objects which are not pushed during the
manipulation.

The estimation of the inverse kinematics is done through the approach presented in Sec-
tion 2. The underlying stochastic approach for global minimization in [26] is also used for the
optimization of the path. The original path points are uniformly distributed along a line (if
the object is pushed) or along a half circle which is positioned upright above the table (if the
object is lifted). We estimate the three best configurations for the start point to position the
manipulator as close as possible to the desired start point. Afterward, we estimate the inverse
kinematics along the entire paths (see adaptive tunneling method in Section 2.3) for all three
configurations. The resulting three configuration sets are optimized with the proposed method.
The best one is taken at the end.

Similarly to the already presented experiments (e.g., Section 7.3), we introduce a tolerance
around each desired point. If the manipulator can reach a point within the tolerance, the
point is defined to be reached. In this experiment, just the grasp has to be extremely accurate
(tolerance below 5 mm). Once the object has been grasped, we can extend the tolerance. The
points after the start point are considered as reached by a certain configuration, if the distance
of the real end-effector position to its desired position is smaller than a tolerance th (defined
similarly in Section 7.3). It is chosen in a manner, such that all path points can be reached by
the manipulator. The points of data set I are reached with a tolerance th of 50.0 mm. For data
set II, the tolerance has to be extended to 75.0 mm to ensure, that all end-effector positions
are within the tolerance.
In our experiments, we want to compare the efficiency in actuation of the robot along the
original path and along the optimized path. In order to show the performance of our system, we
need to determine configurations at the original points, which should already be advantageous
with respect to actuation and not arbitrarily. Hence, we determine just an arbitrary start
configuration of the manipulator and search for consecutive configurations which are close to
their corresponding ancestors along the path (see adaptive tunneling in Section 2.3).

The tolerance th,h for the allowed height above the table is set to 5.0 mm. It is relatively
small in comparison to the entire manipulation area (45 x 30 cm (Section 7.1.2). This ensures,
that the property “pushed object” is preserved. Similarly to the tolerance th, tolerance th,h had
to be extended to 25.0 mm for data set II, to ensure, that all end-effector positions are within
the tolerance.

The placement of points outside the region of the tolerance is penalized with a factor of A =
10.0 (Eq. 7.4). The results of the experiments show, that the points are not placed outside the
allowed region.

135

7. EXPERIMENTS

7.4.2.2 Results

The overall results of the optimization are depicted in Fig. 7.27 and 7.28. They visualize clearly,
that nearly all of the initial values of the Objective Function (Eq. 4.9) have been decreased as de-
sired. This shows, that a modification of the path configuration leads a significant improvement
of the efficiency in actuation in nearly all cases.

Figure 7.27: Result of the Objective Function, data set I [5]. The figure shows clearly,

that the values of the Objective Function decrease from their blue initial values to the orange final

values after the optimization (push/ lifted = pushed/ lifted object along the path, LA = Location

Area).

More details of the results are shown in Fig. 7.29-7.32. They show the change of the ac-
celeration peaks for each single joint along the path. An advantageous change of such a peak
means, that it is either reduced or it is merged with another peak. This refers to an efficiency
improvement in actuation, since the required accelerations are either reduced or a change in
the acceleration direction has been eliminated (see Section 4.2.2).
A look at the change of the acceleration peaks is most of the times enough to see the improve-
ment after the optimization clearly (see, e.g., Fig. 7.29). Just the optimization of the path
of the pushed object between Location Area (LA) 1 and 2 requires an additional look at the
change of the joint speed to see the improvement (Fig. 7.30). The acceleration peak is shifted
to another time step, where the corresponding joint speed is significantly lower. The resulting
speed profile is more smooth, then. Sometimes, an acceleration peak might be increased slightly
to enable a significant reduction of another peak as, e.g., in Fig. 7.31.

In the experiments on the paths of the pushed objects in data set II, we can see, that the
paths are not only optimized with respect to actuation. The distances between the desired and
the real height above the table are also improved (see Fig. 7.32 and 7.33).

136

7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient
Actuation

Figure 7.28: Result of the Objective Function, data set II [5]. The figure on the left

shows the same results as the figure on the right. However, the figure on the right has a smaller

data range on the vertical axis for a better illustration of the smaller values. As is can be seen,

most of the values can be significantly reduced. This shows, that the modification of most of

the paths has a strong effect. Just one path (lifted object between LA 2 and 3) can hardly be

improved with respect to actuation.

Figure 7.29: Acceleration values per joint and per acceleration time step ax along

the path [5]. The acceleration time step ax (in rad/s2) refers to the time between point px and

point px+2. For each acceleration time step ax, the acceleration values at the beginning and the

end of the optimization are shown (initial, resp., final values). The depicted acceleration values

are the 4vj,i values which are relevant for the final Objective Function O (Eq. 4.9) at their time of

occurrence x. Hence, the peaks of the hills in the acceleration profile are shown. The acceleration

peaks of the path for the pushed object between Location Area (LA) 1 and 2 show a significant

reduction of the acceleration of the third joint at a2 (left figure). Moreover, the blue peak of the

acceleration at a1 is not existing any more after the optimization. This means, that the original

hill is merged with another hill, in this case the hill with the the peak at a2. If hills have been

merged, an undesired zero crossing has disappeared. Such a merge of hills is one of the desired

aims of our approach. Some of the depicted acceleration values are very small, so that they are

hardly visible (e.g., joint 2 on the left). Very desirable results are shown on the right : Most of the

peaks are clearly reduced.

137

7. EXPERIMENTS

Figure 7.30: Acceleration values per joint and per acceleration time step ax (left),

and the corresponding speed values (right) [5]. The left figure shows the acceleration values

similarly to Fig. 7.29 (unit: rad/s2). The improvement of the peaks of the acceleration becomes

just clear in the comprehensive survey with the speed values. Instead of an acceleration peak of the

first joint at the beginning at a1, the peak is shifted to a2. This is useful, since the corresponding

speed value s2 is significantly smaller than s1 (resp. the yellow final values). Hence, the result

of |vj,i| · | 4 vj,i| in Eq. 4.9 has a smaller magnitude than the original one at initialization.

Figure 7.31: Acceleration values per joint and per acceleration time step ax along the

path (similarly to Fig. 7.29) [5]. Especially the peak of the joint 1 for the lifted object between

LA 1 and 2 is significantly decreased at a1 (unit: rad/s2). Therefore, the slightly increasing peak

of the same joint at a2 is an acceptable price to pay and can be easily compensated in the overall

result of the Objective Function. All acceleration peaks of the other paths of lifted objects in data

set II are clearly reduced, too (not depicted).

138

7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient
Actuation

Figure 7.32: Acceleration values per joint and per acceleration time step ax along

the path (similarly to Fig. 7.29) [5]. As it can be seen, nearly all of the acceleration peaks along

the paths of pushed objects in data set II are significantly reduced (unit: rad/s2). Additionally,

the new points are also better positioned with respect to the table plane than the original points

(see Fig. 7.33).

Figure 7.33: Remaining residual with respect to the table [5]. The residual (in mm)

is shown for each point along the paths of pushed objects in data set II. As it can be seen, the

proposed optimization method reduces also the remaining residuals along the path. As described,

the residuals are included in the Objective Function. This explains the large magnitude of the

values of the Objective Function in Fig. 7.28 for the paths of the pushed objects in comparison to

the paths of lifted objects.

139

7. EXPERIMENTS

Figure 7.34: Exemplary original path in comparison to the new points [5]. The

original path is drawn in blue in comparison to the new magenta points along the path of a lifted

object LA 1-2, data set I (unit: mm). The possibility to change the position of the middle point

at a large extent is clearly used here.

The change of the path configuration itself is illustrated in Fig. 7.34 for a path of data set I.
It is clearly visible, that the position of the points in the middle of the path has been changed
within a large radius (see Section 4.2.3).

The runtime of the method and the stability of the results are good. We want to achieve very
accurate start configurations with respect to the desired start position in 3D. Hence, we accept
a relatively long runtime for the estimation of a start configuration with about 20 seconds.
We use the stochastic optimization approach to be able to compute several different start
configurations and to be able to apply the implementation independently of the build-up of
the robot. In general, any other procedure to estimate/ compute the inverse kinematics could
be used as well. The optimization of the path itself took less than one second per path. We
optimize the paths of the three best start configurations and take the best result after the
optimization (Section 7.4.2.1). About the half of the other two results is just slightly worse
than the corresponding best result (until +1 in the result of the overall Objective Function).
The other half has clearly worse results (between +10 and +30 in the result of the overall
Objective Function). A repetition of the experiments might lead to slightly varying results,
since we use the stochastic optimization approach to estimate the inverse kinematics. We
repeat the experiments three times, hardly any change of the results is observable.

To sum up, we achieve very desirable results in our experiments, since the efficiency in
actuation is significantly improved most of the times.

140

7.5 Structure Analysis of Manipulators

7.5 Structure Analysis of Manipulators

After the extraction of the validation scenarios (Section 7.1) and the experiments on the re-
quired components (estimation of inverse kinematics in Section 7.3, path optimization method
in Section 7.4), we analyze manipulator structures as proposed in Section 5. After a short
description of the experimental setup and the implementation, the results of the analyses are
presented. First, the general Maneuverability Analysis is processed, before the analysis with
path optimization follows.

7.5.1 Experimental Setup and Implementation

The context of our experiments is the described manipulation task (Section 7.1). We analyze
the robot’s capabilities with respect to this task under the failure of none, one or multiple joints.

The Maneuverability Analysis is processed for two different 6-DoF manipulators. The first
one is an test robot, which has simply consecutive rotational joints perpendicular to each other
and all links have a length of 300 mm (DH-Parameter: di, a5). The other manipulator is a
widely known Unimation PUMA 560. The robot’s base positions are shown in Fig. 7.16. The
orientation of the base is chosen in a manner, such that the joint axis of the first joint is
perpendicular to the expected main plane of manipulation (e.g., table plane).

We use a fixed angular rate of θ̇fix = 1.0 rad (Eq. 5.4) to compute the Maneuverability
Volume. The magnitude has been chosen arbitrarily for illustration. It is large enough to move
the joint in a clearly visible way (1

6 turn) without causing very large volumes. Moreover, we focus
on the parallelepiped K of the Maneuverability Volume (Eq. 5.10). The parallelepiped L puts
just an additional emphasis on perpendicular base velocity vectors. Therefore, K is prioritized
with a weighting of ωk = 0.8 in contrast to ωl = 0.2. For the Spinning Pencil (Section 5.2), the
angle γ is set to 180◦, considering the maximally crossed distance in the turn of a joint in the
worst case. The weighting of the different components of the Spinning Pencil in Eq. 5.15 is set
to ω1 = 1

12 , ω2 = 1
12 and ω3 = 5

6 . This leads to an equal weighting of the first two terms and an
emphasis on the third term in the equation. Both of the first two terms show how perpendicular
the joint axes are to each other (in 2D and 3D). The third term is important to us, since it
supports the desired thin Spinning Pencil. We set a strong priority on the Maneuverability
Volume in the Maneuverability Analysis MAl with ωm = 0.75 and ωs = 0.25 (Eq. 5.16), since
we prioritize the capability to move the object in the manipulation experiment.

Concerning the weighting of the Location Areas, we choose the following priorities. Char-
acteristic area 2 in data set I is chosen as the most important area with a weighting of 0.5. It is
located on the table and can, therefore, be used for more, and also more complicated manipula-
tions than the other Location Areas. These act as places of storage and have a weighting factor
of 0.25. The weighting of the Location Areas in data set II is related to the number of in- and
out-coming trajectories. The more in- and out-coming trajectories, the higher the weighting.

141

7. EXPERIMENTS

7.5.2 Results: Maneuverability Analysis

The end-effector needs to reach certain positions in order to perform a desired task. We define a

position as reached, if the remaining distance between the desired and the real position is smaller

than a tolerance th (defined similarly in Section 7.3). We use a city block distance p = pp+α · po
with the distance pp in 3D position (unit: mm) and the distance po in orientation (unit: rad) to

measure the remaining distance. The variable α is used to compensate the different scales of pp
and po (α = 300 showed good results in our experiments). The tolerance th is set to 25 in the

experiments with no, resp., one broken joint. A higher tolerance th = 150 is necessary in the

experiments with two or three broken joints, in order to be able to reach the desired positions

at all before the remaining maneuverability can be analyzed. This shows already, that the

failure of multiple joints influences the capabilities of the robots significantly, since the robot is

often not even able to move its end-effector to a desired position. If several configurations are

possible to reach such a desired position, we analyze all of them and take the most advantageous

one according to the Maneuverability Analysis. Hence, our experiments are not limited to the

analysis of a single configuration.

At first, the Maneuverability Analysis is processed for the entirely working robots in com-

parison to the robots with one broken joint. As the results in Fig. 7.35 and 7.36 show, each

robot has joints, which are essential to reach the desired positions. In contrast, a failure of

another joint might hardly affect the performance. It is interesting, that joint 4 of the test

robot is essential for both tasks. Moreover, a failure of one of the last three joints of the PUMA

hardly affects the performance as in both data sets. This can be explained through the physical

structure of the PUMA (see description below Fig. 7.35). In the following, we focus on the

discussion of data set II, since both robot’s have approximately the same magnitude of the

results in the Maneuverability Analysis, what enables a better comparison of the joint failures.

An evaluation of data set I would be done similarly.

As already mentioned, the tolerance for a hit is enlarged for the experiments with two or

three broken joints. This is important for the discussion of the results for the robots with two

broken joints in Fig. 7.37. For example, Fig. 7.36 shows, that the PUMA does not reach its

desired position if joint 1 fails. Therefore, the PUMA should not be able to reach its desired

positions if joint 1 and a further joint are broken. Due to the necessary extension of the

tolerance, the PUMA is able to reach its desired position if, e.g., joint 1 and 4 are broken.

Fig. 7.37 shows the joints, which are essential under the extended tolerance.

Of course, we expect, that a higher number of working joints increases the magnitude of

the result in the Maneuverability Analysis. The comparison of the experiments with a different

number of broken joints confirms this widely (see Fig. 7.38). One has to consider the larger

tolerance for a hit in the experiments with two or three broken joints. Therefore, it is possible,

that the robot can reach points in the additional tolerance with new configurations. The new

configurations can be advantageous with respect to the Maneuverability Analysis. Hence, the

142

7.5 Structure Analysis of Manipulators

Figure 7.35: Complete manipulator vs. manipulator with one broken joint for the

test robot (left) and the PUMA (right), data set I [4]. As it can be seen, there are

essential joints: If these joints fail, the robot cannot reach the desired positions any more, since

the Maneuverability Analysis results in MA = 0 (joint 4 of the test robot; joint 2, resp., 3 of the

PUMA). The failure of other joints can reduce the maneuverability (e.g., joint 3 of the test robot),

whereas the failure of some others hardly affects the maneuverability in our requirements (e.g., joint

4 of the PUMA). We have put an emphasis on the capability to move the end-effector rather than

to turn it in our requirements. Therefore, it is quite consequential from the PUMA’s structure,

that the failure of one of the last three joints of the PUMA reduces the robot’s maneuverability

less significantly than a failure of one of the first three joints. The last three joints are significantly

closer to the end-effector than the first three (see link lengths of the PUMA). Hence, the first three

joints can be used to bridge a large gap to a desired position, whereas the last three joints can

hardly perform this. It becomes clear, that especially joint 2 and 3 are essential for the PUMA to

reach the desired positions in data set I.

result of the Maneuverability Analysis of the test robot with two broken joints can be better

than with one broken joint.

Fig. 7.39-7.43 show some of the resulting Maneuverability Volumes and Spinning Pencils in a

simplified, but more illustrative manner. We just show the parallelepiped K as Maneuverability

Volume. The remaining parallelepiped L puts an additional emphasis on the angles between

the edges, which are already illustrated in K. The illustration of the Spinning Pencil is different

from Fig. 5.4: Our aim is an intuitive, compact interpretation of the figures. Hence, we draw

the joint axis of each joint. We wish that a large pencil corresponds to a large value of the

Spinning Pencil. Therefore, we set the length of the pencil to β
ej

. A disadvantageous large

distance ej results, then, in a short pencil. We use β = 50000. It allows a sufficiently large

visualization of the Spinning Pencil as the Fig. 7.39-7.43 show.

The change of mV and sP in the case of the failure of one, resp., three joints of the test robot

becomes clear in Fig. 7.39-7.41. The robot is loosing its capabilities, especially at the prioritized

Location Areas at the bottom. Hence, its capability to perform the desired manipulation task

143

7. EXPERIMENTS

Figure 7.36: Complete manipulator vs. manipulator with one broken joint for the

test robot (left) and the PUMA (right), data set II [4]. Similarly to Fig. 7.35, the essential

joints for the task become visible (Maneuverability Analysis MA).

Figure 7.37: Capability of the test robot (left) and the PUMA (right) to reach the

desired positions with two broken joints [4]. As it can be seen, joint 2 and 4 is very essential

for the test robot to reach the positions (even under the extended tolerance).

is significantly affected.

Furthermore, Fig. 7.41 shows the additional tolerance, which the robot needs to reach the

positions at all: The blue circles in Fig. 7.39 and 7.40 symbolize the original tolerance. For the

purpose of a better illustration, these circles are larger than the original tolerance. The circles

in Fig. 7.41 are proportionally enlarged according to the additional tolerance, which the robot

needs to be able to reach the desired position. Consequently, not only the robot’s capabilities

are less advantageous, but, also, the robot get problems to reach the desired positions at all.

144

7.5 Structure Analysis of Manipulators

Figure 7.38: Average result of the Maneuverability Analysis (MA) with respect to

the number of broken joints for the test robot (left) and the PUMA (right) [4]. Most

of the times, a higher number of broken joints leads to a reduced maneuverability as expected.

The higher value of the Maneuverability Analysis for the test robot with two broken joints can be

explained through the higher tolerance for the hit of a desired position in the experiments with

two or three broken joints.

However, this is not surprising, if one considers, that a failure of three joints reduces the number
of DoF by the half in this case. The results clearly show the reduced capabilities and the required
additional tolerance.

Fig. 7.42 and 7.43 illustrate the results of the PUMA similarly to the previous figures. Since
the detail of both figures is the same as for the figures of the test robot, the larger magnitudes
of the simplified mV and sP for the PUMA become visible. Nevertheless, the final results of
both entirely working robots in Fig. 7.36 are nearly the same for both robots. This due to
several reasons. First, multiple parts of the PUMA’s Spinning Pencils point (nearly) into the
same direction. Second, we put an emphasis on mV , which is not as large for the PUMA as
its Spinning Pencils. Third, the large Maneuverability Volumes at the top are located at a less
important Location Areas. Therefore, they influence the final result less significantly.

We repeat the experiments with none, one and two broken joints a second time to check the
repeatability of the results. The Stochastic Optimizer in the estimation of the inverse kinemat-
ics can lead to slightly different configurations at the desired positions. The repetition of the
experiments show, that these differences affect the magnitude of the results of the Maneuver-
ability Analysis just slightly with an average difference of 0.005, including five outliers with a
difference higher than 0.02

145

7. EXPERIMENTS

Figure 7.39: Simplified Maneuverability Volume mV (left) and Spinning Pencil sP

(right) for the test robot when all joints are working [4]. The Location Area at the top

right has low priority, therefore, the disadvantageous mV and sP at LA 3 does hardly carry

weight (unit in left and right subfigure: mm). The corresponding mV has just one long side and

the sP is just spanned up in a plane.

Figure 7.40: Simplified mV (left) and sP (right) for the test robot with broken

joint 1 [4]. At the important Location Areas at the bottom, the robot can just reach strongly

disadvantageous mV (unit in left and right subfigure: mm). Even though the sP is not significantly

affected by the joint failure, the bad mV at the bottom reduces the possible maneuverability

significantly as the statistics in Fig. 7.36 show.

Figure 7.41: Simplified mV (left) and sP (right) for the test robot with broken joint 4,

5 and 6 [4]. As the larger blue circles at the top Location Areas already indicate, the robot has

problems to reach the desired positions. At the same time, the mV are reduced, especially at the

bottom left, and the sP are getting smaller (unit in left and right subfigure: mm).

146

7.5 Structure Analysis of Manipulators

Figure 7.42: Simplified mV (left) and sP (right) for the PUMA when all joints are

working [4]. The detail of Fig. 7.39 and this figure is the same to enable an easier comparison,

even though the mV and sP do not fit in this figure any more (unit in left and right subfigure:

mm).

Figure 7.43: Simplified mV (left) and sP (right) for the PUMA with broken joint 3 [4].

The robot is not able to reach the less important Location Areas at the top any more, but it

can position its end-effector at the prioritized areas at the bottom. The sP is still relatively

advantageous there (unit in left and right subfigure: mm).

147

7. EXPERIMENTS

7.5.3 Results: Maneuverability Analysis under Path Optimization

In this part of our experiments, we perform a maneuverability analysis under the proposed path
optimization approach for no, one or two broken joints. We start with the analysis of the failure
of none and one joint. The points are considered to be reached by a certain configuration, if the
distance of the real end-effector position to its desired position is smaller than a tolerance th.
In the case of no failure, the points are considered to be reached within a tolerance th = 75.0
(defined similarly in Section 7.3). In comparison to the smaller tolerance in the experiments
in Section 7.5.2 and 7.4.2, one needs to consider, that (1) all points along the path need to be
reached and (2) the appropriate position as well as the upright orientation have to be achieved.
The tolerance is extended to 150 (resp., 250) for the failure of one joint to allow to reach all
Location Areas (resp., original points along the path).
In contrast to the experiments in Section 7.5.2, we consider also the desired orientation along
a path (upright object orientation for transportation). It is important to us to ensure, that
possible objects in the end-effector can be kept upright during the manipulation. Hence, we
choose a relatively large penalization γEPP = 10 (Eq. 5.18) to avoid undesired changes of the
orientation.

Fig. 7.44 illustrates the mean and the maximal EPP values. Hence, we show the average
and the worst performance. Here, it is important to consider, that a result is better, the smaller
the EPP value is. As it can be seen, several EPP-values are very high in comparison to others.
This is due to the paths of pushed objects: They require an object movement on the plane,
which is an additional constraint in comparison to a path of a lifted object. The more limited
the set of possible path points is, the more difficult it is to reach desired points, especially in
the case of a broken joint. The EPP-values of the paths of lifted objects (hence, without the
pushed objects) are depicted in Fig. 7.45 for data set II. They are significantly smaller.

Most of the essential joints are similar to the Maneuverability Analysis without path opti-
mization: E.g., joint 2 is important for the test robot. However, in the analysis with the path
optimization, the test robot does not suffer from the loss of joint 4. One has to consider the
higher tolerance for a hit in comparison to the experiments without path optimization (250
along the path vs. 25 at Location Areas before). Hence, the extended tolerance seems to allow
a better performance in the case of a failure of joint 4. The joints mainly essential for the
pushed objects become visible in the comparison of Figure 7.44 and 7.45. Joint 5 in the test
robot is such an example.

148

7.5 Structure Analysis of Manipulators

Figure 7.44: Complete manipulator vs. manipulator with one broken joint for the

test robot (left) and the PUMA (right), data set I (top) and data set II (bottom).

The mean of the EPP-values of all paths is shown in red, the maximal EPP-value of all paths is

depicted in blue (resp., per robot and data set). Fig. 7.45 shows the EPP-values without paths

of pushed objects, which cause some high EPP-values in this Figure here (EPP: Elastic Power

Path).

149

7. EXPERIMENTS

Figure 7.45: Complete manipulator vs. manipulator with one broken joint for the

test robot (left) and the PUMA (right), data set I (top) and data set II (bottom),

without paths of pushed objects. Most of the results are similar to the maneuverability

analysis without path optimization: E.g., in data set II, joint 2 is important for the test robot.

However, it robot does not suffer from the loss of joint 4 in data set II. One has to consider

the higher tolerance for a hit in comparison to the experiments without path optimization (EPP:

Elastic Power Path).

150

7.5 Structure Analysis of Manipulators

Figure 7.46: Comparison of the EPP-values before and after the optimization for

the test robot (left) and the PUMA (right), data set I (top) and data set II (bottom).

The improvement due to path optimization (start: blue; final: red) becomes visible for most of the

cases. Some EPP-values are not within the scaling any more (EPP: Elastic Power Path). This is,

again, due to the paths of pushed objects. Hence, Fig. 7.47 shows the improvement of the result

without the paths of pushed objects. However, the improvement of the EPP-values of all paths

(including paths of pushed objects) is successful (also for the non-visible parts).

151

7. EXPERIMENTS

Figure 7.47: Comparison of the mean EPP-values before and after the optimization

for the test robot (left) and the PUMA (right), data set I (top) and data set II

(bottom), without paths of pushed objects. Similarly to Fig. 7.46, but without paths of

pushed objects (start: blue; final: red). The effect of the path optimization itself is clearly visible:

The EPP-values have been reduced in all cases of single joint failures (EPP: Elastic Power Path).

Fig. 7.47 further illustrates the improvement after the path optimization in the case of one
joint failure. All EPP-values have been improved. Fig. 7.47 shows the results of the paths of
lifted objects (without paths of pushed objects). The evaluation of the EPP-values of all paths
(including paths of pushed objects) shows a similar reduction of the EPP-values (Fig. 7.46).
Fig. 7.47 shows a significant improvement after the optimization for a failure joint 1, resp., 3 of
the PUMA. Hence, it becomes visible, that the path optimization is able to partially compensate
lost capabilities (see Fig. 7.35).

152

7.5 Structure Analysis of Manipulators

Figure 7.48: Capability of the test robot to reach the desired positions with two

broken joints before (left) and after (right) the optimization, data set II. As it can be

seen, the path optimization allows to reach the desired positions which were not reachable before

the optimization in four cases.

Figure 7.49: Comparison of the EPP-values before and after the optimization, test

robot, data set II. The EPP-values (start: blue; final: red) of the four cases, in which desired

positions are just reachable after the optimization (see Fig. 7.48). The mean and maximal EPP-

value are depicted (resp., left and right for each case). The improvement due to the optimization

is clearly visible (EPP: Elastic Power Path).

Exemplary results of the experiments with two joint failures are shown in Fig. 7.48 and

7.49. The tolerance for a hit is set to 250 (Location Area), resp., 350 (along the path) to

allow a larger set of paths which can be reached at all. Fig. 7.48 shows the combinations for

which the robot is capable to perform the desired manipulations. A manipulation is defined

to be performable, if the EPP is below 100. Most of the paths of lifted objects achieved an

EPP-value below 100 in case of no and just one joint failure (see, e.g., Fig. 7.45). Hence, 100

seems to be a reasonable border. After the path optimization (Fig. 7.48, right), the robot is

153

7. EXPERIMENTS

Figure 7.50: Capability of the PUMA to reach the desired positions with two broken

joints before (left) and after (right) the optimization, data set II. Similarly to the test

robot, the path optimization allows the PUMA to reach desired positions which were not reachable

before the optimization (three cases).

Figure 7.51: Comparison of the EPP-values before and after the optimization,

PUMA, data set II (similarly to Fig. 7.49). The EPP-values (start: blue; final: red; mean:

left; maximum: right) of the three cases, in which desired positions are just reachable after the

optimization (see Fig. 7.50). The EPP-values are significantly improved in all three cases (EPP:

Elastic Power Path).

able to reach paths which were not reachable before (Fig. 7.48, left). The improvement of these
paths is shown in Fig. 7.49. The results of data set I look similarly. The optimization for the
PUMA does not achieve such an improvement for two joint failures in data set I. However, the
improvements for data set II are significantly as Fig. 7.49 and 7.50 show (three cases).

154

7.6 Analysis of Master-Slave Systems

7.6 Analysis of Master-Slave Systems

In this part of the experiments, we indicate a further application area for the proposed analysis:

Master-slave systems. We perform the experiments on three different scenarios of medical

applications (MIS). The first scenario is a simple cut, the second one is knot-tying and the

third one is a suturing task. They are further described in Section 3.2 and Section 7.2.

The cut does not provide any alternative paths, it is fixed. The path of the knot-tying scenario

is less constrained and can be shifted. A second manipulator is necessary to support the main

manipulator to ty the knot. In the suturing scenario, the path is partly fixed: The path of

the stitch phase in the object is fixed. Just the approach phase is less constrained. Hence,

alternative paths are possible there.

The simulated console is built up similarly to a traditional base with a parallel kinematics

structure of the “delta” family [196]. The simulated links of the console have a length of, resp.,

200 mm. A handle with 3 DoF is attached to the traditional base. Its three joint axes are

perpendicular to each other and they intersect at the human’s wrist. It allows to change the

orientation during teleoperations. The console is inspired by the sigma.7 haptic interface for

MiroSurge [197]. The simulated path of the MiroSurge system from DLR with a gripper [104],

[191], [192] is the same as in Section 7.2. In principle, any console could be simulated in the

experiments. We have chosen a traditional base with a parallel kinematics structure (a console

of the delta family). In order to allow a change of the orientation, we attach the handle to the

base.

The inverse kinematics of the console is estimated similarly to the method in Chapter 2. The

desired position of the end-effector is estimated for each serial chain of the parallel kinemat-

ics structure separately. We use the attached handle to move the end-effector in the desired

orientation. Hence, we estimate the inverse kinematics for the orientation just with the handle.

The human’s behavior is assumed to be convenient with respect to smooth and slow motions

(see also Chapter 6). Furthermore, “inconvenient” elbow positions close to or above the shoulder

are considered as undesired. We compare the convenience of alternative paths if available.

Furthermore, the convenience is also examined for different users who have different, arbitrarily

chosen arm lengths (resp., 250 mm, 300 mm, 350 mm from the hand to the elbow, resp., from

the elbow to the shoulder). Additionally, different positionings of the user with respect to

height are tested. The basic height is 250 mm above the center of the console. The changed

positionings are, resp., + 50 mmm, + 100 mmm above the basic height. The, resp., arm lengths

are 300 mm (intermediate length before). We could also interpret the height of the positioning

as follows. The height of one positioning (300 mm) has the same magnitude as the arm length

(intermediate length before). The height of the other two positionings is ±50 mm.

To sum up, five different experiments are performed in total (three different arm length; one of

the lengths with two further, different positionings).

155

7. EXPERIMENTS

The five experiments are performed on each of the three scenarios. For each experiment

in one scenario, the paths of five different start configurations are evaluated. If available,

alternatives are also evaluated.

Figure 7.52: EPP human, different arm lengths. The results differ clearly between the

users with different arm lengths. Here, the best results are achieved for the user with the longest

arm lengths (EPP: Elastic Power Path).

The overall results are shown in Fig. 7.52 and 7.53. The minimal and the average result of

the EPP-evaluation is respectively drawn (blue, resp., orange). The minimal EPP shows the

best possible performance in each experiment. The average EPP gives an indication about the

convenience for a set of different, alternative configuration sequences.

The comparison of the EPP values for the three different arm lengths (Fig. 7.52) shows, that

156

7.6 Analysis of Master-Slave Systems

the longest one (l=350 mm) achieves the smallest minimal and average EPP values for most of
the paths. Most of the times, the results of the arm lengths of l=300 mm are still better than
the arm lengths of l=250 mm. To conclude, the usage is more convenient for a user with longer
arms in our exemplary experiments.
The positioning of the user can significantly influence the level of convenience for the system
usage as the experiments show. As described, the position of the shoulders with respect to height
has been changed (+50 mm, +100 mm) for the arm lengths of l=300 mm. An increase of 50 mm
improves the convenience for most of the paths, whereas an increase of 100 mm improves some
EPP values while others worsen. The increase of the position by +50 mm achieves even better
results than the original positioning of the user with the longest arm lengths of l=350 mm (arm
lengths in the experiment with the changed positioning: l=300 mm).
If one considers just the results of the experiment with the different arm lengths (longer arms,
higher convenience), the question arises, whether the convenience is, in general, higher for users
with longer arms. This could be due to leverage. However, the results of the different user
positioning show, that the positioning has also a significant influence on the convenience. The
question is, whether an appropriate positioning is more important than the arm lengths of
the user. In order to be able to answer this question, a large user study and a sophisticated
analysis tool would be required (Section 6.3). This is, however, out of the focus of this thesis.
We just want to indicate the potential of the Elastic Power Path concept as a framework for
the efficiency analysis of a human’s motion during the work on a master-slave system.

157

7. EXPERIMENTS

Figure 7.53: EPP human, different heights. The figure shows the results for different height

positionings of the user (arm length of, resp., 300 mm; original height h = 250 in Fig. 7.52). The

large EPP-value in the suturing approach in the last experiment is due to an inconvenient, high

elbow position (EPP: Elastic Power Path).

158

7.6 Analysis of Master-Slave Systems

We have seen in the results of the knot tying scenario (see Fig. 7.52), that the efficiency
along the shifted path is slightly worse than along the original path for the first experiment
(original positioning, arm lengths of, resp., 250 mm). The underlying reasons can partially be
visualized by the trace of the elbow movement. If just the change of the elbow height is drawn,
the differences between both paths become clear: The elbow height is changed much more
often along the shifted path (see Fig. 7.54). Fig. 7.55 and Fig. 7.56 illustrate the corresponding
configuration sequence for the knot tying scenario of the original, resp., shifted path.
Similarly, Fig. 7.57 and Fig. 7.58 show the configuration sequence for the suturing scenario
with arm lengths of 250 mm, resp., 300 mm. The arm lengths with, resp., 300 mm are more
efficient, since they do not require significant vertical movements like in the experiments with
arm lengths of, resp., 250 mm. The advantages of the arm lengths of 300 mm becomes also
visible in the corresponding speed profiles in Fig. 7.59 and Fig. 7.60. Most of the (“human
joint”) speeds are significantly lower for the arm lengths of 300 mm. There are still peaks
existing (e.g., joint 1 or 7), but many peaks are eliminated and the curve is more smooth than
before.

Figure 7.54: Change of the elbow height in the knot tying scenario. The change of

the elbow height with respect to its previous position is depicted (unit: mm). The elbow height

is clearly changed much more often along the shifted path (see, e.g., magnitude of the values and

number of zero crossings).

159

7. EXPERIMENTS

Figure 7.55: Console and arm configurations for the knot tying scenario. Both arms

are drawn in blue, the respective consoles in magenta (“delta” family [196], buildup inspired by

the sigma.7 haptic interface for MiroSurge as described at the beginning of the Section). The

Figure visualizes the configuration sequence along the original path, for which the change of the

elbow height depicted in Fig. 7.54. The red line is used as a reference height to achieve a better

illustration of the elbow movement. As it can be seen, the left elbow moves upwards in the first

four steps (unit: mm). Then, it is moved down in the fifth step. Afterwards, it moves again

upwards until step eleven, where starts to move downwards again. The right arm performs just

the supporting steps in knot tying (see Section 7.2.2).

160

7.6 Analysis of Master-Slave Systems

Figure 7.56: Console and arm configurations for the knot tying scenario, shifted

path. Similarly to Fig. 7.55, the arms are drawn in blue, the respective consoles in magenta

(unit: mm). The Figure visualizes the configuration sequence along the shifted path, for which

the change of the elbow height depicted in Fig. 7.54. The slightly worse efficiency (see Fig. 7.52)

is visible in the left elbow movement. It changes its motion upwards, resp., downwards in most of

the steps.

161

7. EXPERIMENTS

Figure 7.57: Console and arm configurations for the suturing scenario, arm length of

respectively 250 mm. The configurations of the left arm are shown in blue, the configurations

of the robot are drawn in magenta (unit: mm). As it can be seen, the elbow moves not only in the

vertical direction, but also in the horizontal plane. Sometimes, the elbow is even overlaps with the

entire arm. The configurations with arm lengths of respectively 300 mm are more advantageous,

since they do not have an additional horizontal movement (see Fig. 7.58).

162

7.6 Analysis of Master-Slave Systems

Figure 7.58: Console and arm configurations for the suturing scenario, arm length of

respectively 300 mm. The configurations of the left arm are shown in blue, the configurations

of the robot are drawn in magenta (unit: mm). The elbow is mainly changing its position with

respect to height. This is more advantageous with respect to efficiency than the elbow movements

in the suturing scenario with an arm length of respectively 250 mm. There, the movements have

an additional horizontal movement (see Fig. 7.57). The more advantageous movements here are

reflected in the evaluation in Fig. 7.52. The respective speed profiles in Fig. 7.59 and 7.60 confirm

this.

163

7. EXPERIMENTS

Figure 7.59: Speed profile of the human’s motion, suturing scenario, arm length

of respectively 250 mm. Each subfigure depicts the speeds of one joint. Each color within a

subfigure refers to one of the five experiments.

164

7.6 Analysis of Master-Slave Systems

Figure 7.60: Speed profile of the human’s motion, suturing scenario, arm length of

respectively 300 mm. Similarly to Fig. 7.59, each subfigure depicts the speeds of one joint for

the five experiments (resp., one color per experiment). In comparison to Fig. 7.59, most of the

speeds are significantly lower. There are still peaks existing (e.g., joint 1 or 7), but many peaks

are eliminated and the curve is more smooth than before.

165

7. EXPERIMENTS

We compared also the EPP-results of the console for the different scenarios and experiments.
“Alternative” configurations of the console do hardly exist (e.g., differences about 10−5 rad,
which is extremely small). This is not surprising due to the structure of the console. Moreover,
it is quite consequential, that the results of the Objective Function of the EPP do also hardly
change for these “alternative” configurations (e.g., differences about 10−4). Furthermore, there
are hardly any changes in the EPP values for alternative paths as, e.g., for the original and the
shifted path in the knot tying scenario.

To sum up, the results show the influence of the different arm lengths and the user position-
ing. Therefore, the consideration of arm lengths of the expected users as well as an appropriate
positioning are important. Furthermore, a good model of the human user would be of enormous
benefit to provide a sophisticated analysis. Additionally, the current simulation includes just a
simulation of the user’s motion. The “inverse kinematics“ of the human is estimated similarly
to the inverse kinematics of serial chain manipulators in Chapter 2 and Section 7.3. The eval-
uation on real human actions could provide further aspects and insights. A large user study
would be required for an analysis at a sophisticated level. This is, however, out of the focus
of this thesis. To conclude, the current simulations can only indicate the potential of structure
analyses for master-slave systems.

166

Chapter 8

Conclusion and Future Work

In this thesis, serial chain manipulator structures have been analyzed in the context of abstractly
represented tasks. Possible joint failures and the potential of path optimization have been
examined. A conclusion and a discussion of the presented work follow next. The thesis closes
with possible directions for future work.

8.1 Conclusion and Discussion

All components of the proposed maneuverability analysis in the context of abstractly repre-
sented tasks are, once again, shown in Fig. 8.1. We shortly review the abstract representation
of tasks, first. Afterward, a short summary of the manipulation analysis follows, before the
additional components are briefly revised. At the end of this Section, the components of the
task-specific structure analysis of manipulators and their interplay are discussed.

8.1.1 Summary and Conclusion

The abstract representation of tasks forms the first of the two main parts. The proposed
estimation and representation of manipulation-relevant object properties and actions enables
a focused observation of human actions. The framework allows to deal with strong variations
in actions performed by a human operator. Only changes of characteristic properties require
an update of the information in the internal representation. The proposed descriptors consist
of an Object Container and a Functionality Map spanning typical object locations in a graph.
They allow a close monitoring of changes in a physical state of the object or its function in the
environment, since the detection of really new information is enabled. This is an important
contribution towards robotic systems, which act in a more autonomous manner. The object-
centric perspective allows the system to acquire knowledge efficiently and, moreover, to re-use
the knowledge in similar situations. Furthermore, the experiments on external tracking data
and vision data show, that the system can derive the knowledge from different sources.

167

8. CONCLUSION AND FUTURE WORK

Figure 8.1: Maneuverability analysis for abstractly represented tasks - Components.

The Figure shows the components for both main parts and the additionally required components

as already in Fig. 1.3. All components are presented in this thesis.

More complex dexterous manipulations are represented in the form of object relations in the

environment based on a contact state perspective. This allows not only an easy handling of

complex dexterous manipulations, but also a reusage and an adaption in changing environments

if feasible. Our scenarios illustrate the advantages. The paths are adapted if necessary due

to obstacles (e.g., other organs in medical applications). Moreover, efficiency criteria can be

included in the final choice of the path. The usage of different robots is possible, since the

representation is robot-independent.

After the summary of the first main part of the manipulator structure analysis, we shortly

review the second main part: The structure analysis itself.

It comprises also the analysis of the potential of path optimization with respect to efficient ac-

tuation. The context of abstractly represented tasks is utilized to optimize path configurations

in general. The introduced concept of the Elastic Power Path reflects the desired elasticity of

the path as well as the aim to minimize the necessary energy. The experiments show, that the

number and the magnitude of the peaks in the acceleration profile can be reduced significantly

168

8.1 Conclusion and Discussion

to improve the efficiency. Hence, the system is able to make use of the freedom in path planning

which accompanies the abstract representation of tasks.

The abstract task representation forms the context of the actual analysis of the maneuverability

of different, arbitrary manipulators. We introduce the Maneuverability Volume and the Spin-

ning Pencil to abstractly represent the robot’s capabilities with respect to efficiency. Possible

joint failures are also considered in the analysis. The already described Elastic Power Path

concept allows to optimize paths which is of special interest in this context.

The entire structure analysis provides an inter-robot and an intra-robot comparison. The re-

sults of our experiments show, (1) whether the specified task areas can be reached, (2) the

essential joints for a desired task, (3) the illustrative comparison of the capabilities of robots,

(4) the magnitude of the reduction of the original maneuverability under joint failure and (5) the

potential of path optimization.

The analysis of master-slave systems indicates a further application area of the proposed ap-

proach. It differs from the analysis of autonomous serial chain manipulators with respect to

its human-centered perspective. Advanced experiments would require a sophisticated model of

the human user and his/ her behavior, which is out of the focus of this thesis. However, our

basic experiments point out possible potentials. The results indicate, that it would be worth

to investigate further into this direction, if a a sophisticated model of the human user and his/

her behavior is available.

Besides the two main parts of the thesis, two additional components are provided. The first

one is the overview of the current state of the art in robotic grasping and manipulation. It

shows, that many successful approaches exist for a lot of aspects of the overall problem. Both

discussed perspectives, bio-mimicry/ bio-inspiration and technical approaches, make important

contributions. The entire grasping and manipulation capabilities and abilities (including inde-

pendence of humans and knowledge about, e.g., physical and handling properties of unknown

objects) in any environment (including the capability to interact with any human) have not been

achieved yet by a robotic system. The missing or incomplete components comprise limited sens-

ing capabilities and a further independence of human teachers in unstructured environments.

The work presented here, contributes mainly to technical approaches, since the major part of

this thesis has an object-centric or robot-centric perspective. The object-centric perspective is

applied for the estimation and representation of knowledge relevant for (dexterous) manipula-

tions, since the objects and their properties, resp., relations are in the focus. The representations

contribute towards autonomous systems which acquire knowledge efficiently and which allow a

reusage of the knowledge in similar situations. The robot-centric perspective forms the base for

the path optimization and the manipulator structure analysis. Of course, the robot is the object

of interest, since the robot’s capabilities are optimized, resp., analyzed with respect to its own

actuation. The developed analysis of the task-specific suitability of a robotic system has not

been presented yet. The human-centric perspective is only used in the additional analysis of

master-slave systems. The human is the one who controls the system. Moreover, the perceived

169

8. CONCLUSION AND FUTURE WORK

level of convenience is an important aspect in the deployment of the system. Therefore, it is
reasonable to focus on the human, there.
The overview of the current state of the art in robotic grasping and manipulation forms the
first additional component in this work. The second additional component is an important
technical background: The advanced concept for the estimation of the inverse kinematics of
arbitrary serial chain manipulators. Only this type of concept allows the exhaustive manipu-
lator structure analysis. The separate experiments on this component achieve good results. A
large number of solutions is found for the inverse kinematics at single points. The estimation
of the inverse kinematics along entire paths provides consecutive configurations which are close
to each other as desired. Moreover, we apply the estimation on a human-like robotic hand
successfully. The corresponding experiments with the efficiently reduced model of a complex,
arbitrary hand show very accurate results for the estimation of the inverse kinematics.

8.1.2 Discussion of the Concepts

The components of the task-specific structure analysis of manipulators and their interplay are
discussed in the following. The first main part of the thesis, the knowledge representation,
consists of two components: The first one focuses on general manipulation-relevant properties.
The second one deals with more dexterous manipulations. This allows the consideration of the
specific requirements of both types of manipulations.
The second main part of the thesis, the structure analysis itself, is essentially based on two
concepts: The Maneuverability Analysis and the Elastic Power Path. The Maneuverability
Analysis provides a more general analysis of the manipulator capabilities. It is based on the
characteristic areas of manipulation, the Location Areas. In contrast, the Elastic Power Path is
built up on the possible paths and their properties. This concept is more specific to the actual
accomplishment, since we analyze the potential of path optimization with respect to efficiency.
Hence, the possible paths need to be included in this type of analysis. A further application of
the Elastic Power Path are setups which do not or do hardly allow to determine the characteristic
Location Areas in an appropriate manner. To sum up, both presented concepts are developed
to consider different types of analyses and applications.

All components of the presented analysis are shown in Fig. 8.1. They are interconnected.
In general, the interfaces are built up in a manner, such that components can be substituted
as long as they fulfill the respective requirements. For example, the general task description
has to be chosen in a manner, such that it allows to make use of, e.g., the Location Areas
as characteristic manipulation areas. Overall, the components work at an abstract level of
knowledge. This means, they can be applied to any serial chain manipulator and to any
task, since they are independent of the robot structure and the task. Hence, a substitution
is only reasonable, if these independences are kept. However, the single components are not
only applicable in the provided context as we have already shown in our experiments. In the
following section, further applications are discussed as future work.

170

8.2 Future Work

8.2 Future Work

After the discussion of the presented task-specific structure analysis, we indicate possible di-
rections of future work.

8.2.1 Extension of Single Components

The estimation and representation of manipulation-relevant object properties, actions and func-
tionanlities in the environment could be extended as stand-alone part with a focus on more un-
known situations and environments. For example, the transfer of knowledge could be examined
further in this context.

The path optimization approach with the Elastic Power Path concept could be extended
with respect to further properties stored in the Functionality Map. They can be included in
the optimization. Moreover, the influence of obstacle avoidance could be analyzed. Both, the
inclusion of further properties and the consideration of obstacles, will reduce the set of possible
paths. An analysis of the limits of path optimization in different applications (e.g., manipula-
tions of daily-life objects vs. medical applications) could be interesting in this context.
The optimization could also be applied to more complex dexterous manipulations. The repre-
sentation of the object relations in the environment based on a contact state perspective can
allow different paths to fulfill a task, too. The final choice of the path could be determined
based on the proposed path optimization approach. Currently, a limited, discrete set of paths is
considered. This set could be extended to a continuous one, if the developed path optimization
would be applied.

In the experiments on master-slave systems, an appropriate model of the human’s hand arm
system would be important for an advanced analysis. The evaluation on real human actions
could provide further aspects and insights. A large user study would be required for an analysis
at a sophisticated level.
The experiments indicate, that the positioning of the user has a significant influence on ef-
ficiency. A development of a positioning procedure could be of advantage. An interesting
question could be, whether, resp., under which conditions a general positioning procedure has a
larger influence on the convenience than a very focused task-specific system development. The
integration of a positioning procedure into planning in teleoperation systems (e.g., [198]) could
be another issue.

8.2.2 Further Extensions and Applications of the Entire Analysis of

Manipulators

We focused on the analysis of manipulator structures with respect to efficient control. In future
work, the inclusion of other criteria relevant for the choice of a robot, e.g., available sensors and
interaction capabilities (see also Chapter 1), could provide further important information.
For example, one could analyze the available sensors with respect to a desired task to answer

171

8. CONCLUSION AND FUTURE WORK

the following questions: Are the available sensors sufficient to fulfill the task? Is the robot,

e.g., able to detect an object? Does one of the available robots have more appropriate sensors,

which allow this robot to perform the task at a better quality in comparison to other robots

(e.g., regarding runtime, accuracy)?

In the context of interactions, one could consider communication and intention recognition

capabilities as well as physical interaction capabilities. Is the robot, e.g., able to recognize a

changed intention of a human during a cooperation? Can the human, for example, command

the robot by verbal communication? What happens, if the robot hits the human accidentally?

Is it able to recognize such a hit? If yes, is it able to react?

The motion capabilities of a manipulator structure are analyzed in this thesis. As described,

we do not consider the mass, mass-distribution or other physical properties of the robot, since

they are extensive topics on their own. However, the forces acting on a robot are influenced by

these properties. An analysis with respect to forces and torques (including forces and torques

the robot can apply), could provide further interesting arguments to deploy one or another

robot.

The structure analysis developed in this thesis can be used as a base for the design of robots.

Currently, different platforms can be compared with respect to their suitability for desired tasks.

In future work, the proposed concepts can be used as components towards a general robot design

with the determination of all design parameters, e.g., all Denavit-Hartenberg parameters. Such

a design faces the large dimensionality as a new challenge, especially, in advanced robotic

systems.

Moreover, the proposed analysis can be extended to manipulators with translational joints

and more complex systems like humanoid robots. Another extension could be mobile robots

and walking robots. In the case of mobile robots, serial chain manipulators can be attached

to mobile platforms and the entire system can be analyzed. Of course, new aspects occur due

to the mobile platform. It has to be moved appropriately. Currently, the manipulator’s base

is fixed at one position. In the area of mobile manipulation, several approaches have already

been presented. For example, Yamamoto and Yun [199] developed a control algorithm for

the coordinated locomotion and manipulation of a mobile manipulator considering the effect

of dynamic interaction [200]. Seraji [201] presented a general approach for motion control of

a mobile base with a mounted manipulator arm. The manipulability is, e.g., kept in [202].

Bayle et al. [203] analyzed the manipulability of mobile manipulators based on the manipulabil-

ity measure of [204], [86]. The extension of our approach to mobile manipulators can contribute

a check for the task-specific suitability in this area.

Coordinated task executions between a human and a mobile manipulator could be examined as

well (e.g., control scheme in [205]). Similarly to the analysis of master-slave systems, the conve-

nient system usage for the human is an important aspect. However, it differs from master-slave

systems, since the human and the executing robot interact directly without an intermediate

“controlling” system like the master system. For this kind of interaction, the robot has to be

172

8.2 Future Work

able to understand the human’s intention during each step of the interaction as we described
already at the beginning of this Section. Moreover, several mobile manipulators could coop-
erate to perform a task (e.g., decentralized control of cooperating mobile manipulators [206]).
Such a cooperation could provide further interesting aspects for an analysis. In the case of
a decentralized control, the robot needs to be able to understand the intention of its robotic
teammates, similarly to an interaction with humans.
Humans can also control robotic systems in a more “direct” manner via, e.g., EEG maps [207]
or a neural interface system [208]. Electromyography measurements [209] are another way to
control a robotic system. The analysis of such systems requires the consideration of the new,
more “direct” ways of controlling.
A further application area are parallel, possibly open-chain robots. A robotic hand is such an
example. However, further aspects need to be considered here. Advanced sensing modalities
can provide an important feedback. Hence, the quality of the sensing capabilities is crucial in
this area.

173

8. CONCLUSION AND FUTURE WORK

174

Appendix A

Further Information about the

Vision Data

Figure A.1: Object Candidates: Different positions - vision data. The figure illustrates

the different sizes of object candidates, depending on their distance to the observer system (see

Section 7.1.2.1). As it can be expected, an object closer to the observer appears to have a bigger

size in pixel than the same object placed further away.

175

A. FURTHER INFORMATION ABOUT THE VISION DATA

Figure A.2: Object Candidates: Smaller objects candidates in the image - vision data.

Some object candidates cover smaller regions in the image than expected (see Section 7.1.2.1).

This is due to the fact, that the disparity is not computable for some parts of the object. The

figure depicts two reasons. First, there are reflections on the top of the object in the top left,

leading to non-connected parts of the object in the disparity map on the top right. Second, the

top of the object in the bottom left contains ambiguous structure, resulting in missing disparity

information on the bottom right.

176

Figure A.3: Blob detection hand - vision data. The figure shows one exemplary correct

identified hand and one example of a false positive detection of the contact between the hand

and the object candidate (see Section 7.1.2.2). The false positive alarm is due to similar colors,

appearing on the object and the glove, which is just used for the purpose of the blob detection.

177

A. FURTHER INFORMATION ABOUT THE VISION DATA

Figure A.4: Development of the angles for both horizontal axes - vision data. The

change of the angles along both horizontal axes is shown for the sequences of object 1 (see Sec-

tion 7.1.2.4). Left: Seq. 1 (red), 2 (cyan), 3 (mag.), 4 (green), 5 (blue). Right: Seq. 6 (red),

7 (cyan), 8 (mag.), 9 (green), 10 (blue). The thick and thine lines refer, resp., to one of the

horizontal axes. The strong variations of the rotated sequences (seq. 7-10, on the right) are clearly

visible. The mislabeled sequences without rotation (seq. 3, 4, 5, on the left) have also variations,

at least along one of the horizontal axes (thick line of seq. 3 and 4, both axis of seq. 5, on the left).

178

Figure A.5: Functionality Map: ideal solution - vision data. The resulting perfect Func-

tionality Map, which should be achieved with the sequences (Type of all grasps: Power, thumb

abd.) (see Section 7.1.2.4).

179

A. FURTHER INFORMATION ABOUT THE VISION DATA

Figure A.6: Functionality Map: object 1 - vision data [2] (see Section 7.1.2.4). Except

for the end location of self-loop at Location Area 2, all start and end locations are assigned to

the correct Location Area. All of the connection properties are correctly identified. All types of

grasps are correctly identified (Power, thumb abd.).

180

Figure A.7: Functionality Map: object 2 - vision data [2] (see Section 7.1.2.4). The

misclassifications of the connection properties in the Functionality Map of object 2 become visible.

The assignment to the Location Areas is done without any error. All types of grasps are correctly

identified (Power, thumb abd.).

181

A. FURTHER INFORMATION ABOUT THE VISION DATA

Figure A.8: Functionality Map: object 3 - vision data (see Section 7.1.2.4). The problem

with seq. 21 (misclassified movement property and wrong assignment of the end location) can be

observed in the connection of the arbitrary movement from Location Area 0 to Location Area 1.

Besides one other misclassified connection property (arbitrary movement from Location Area 2

to Location Area 0), the Functionality Map is correct. All types of grasps are correctly identified

(Power, thumb abd.).

182

Figure A.9: Functionality Map: object 4 - vision data (see Section 7.1.2.4). The Func-

tionality Map is nearly perfect, just the constrained connection from Location Area 1 to Location

Area 2 should not exist. This is due to the wrong assignment of the end location, Location Area

0 is the proper one. All connection properties are correctly identified. All types of grasps are

correctly identified (Power, thumb abd.).

183

A. FURTHER INFORMATION ABOUT THE VISION DATA

184

Appendix B

Parameter Descriptions

B.1 Denavit Hartenberg Convention

The robotic systems in this thesis are described in the DH-convention suggested by Denavit
and Hartenberg [164] in the form shown in [9].

The link frames are attached according to [9] as follows:

1. “Identify the joint axes and image infinite lines along them. For steps 2 through 5 below,
consider two of these neighboring lines (at axes i and i+ 1).”

2. “Identify the common perpendicular between them, or point of intersection. At the point
of intersection, or at the point where the common perpendicular meets the ith axis, assign
the link-frame origin.”

3. “Assign the Ẑi axis pointing along the ith joint axis.”

4. “Assign the X̂i axis pointing along the common perpendicular, or, if the axes intersect,
assign X̂i to be normal to the plane containing the two axes.”

5. “Assign the Ŷi axis to complete a right-hand coordinate system.”

6. “Assign 0 to match 1 when the first joint variable is zero. For N , choose an origin
location and X̂n direction freely, but generally so as to cause as many linkage parameters
as possible to become zero.”

185

B. PARAMETER DESCRIPTIONS

The involved parameters describe the transformation between successive coordinate frames
as described in [9]:

1. “ai = the distance between Ẑi and Ẑi+1 along X̂i”

2. “αi = the angle between Ẑi and Ẑi+1 measured about X̂i”

3. “di = the distance between X̂i−1 and X̂i along Ẑi”

4. “θi = the angle between X̂i−1 and X̂i measured about Ẑi”

The joint parameter is either θj (revolute joint) or di (prismatic joint). The total number
of joints is D.

The resulting overall transformation matrix is i−1
i T (see [9]):

i−1
i T =

cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1

 ,
.

B.2 Z-Y-X Euler angles

The orientation of the robot’s end-effector is described as Z-Y-X Euler angles [9]. There, a
rotation A

BR is described as follows:
“Rotate frame B first about ẐB by an angle α, then about ŶB by an angle β, and, finally,

about X̂B by an angle γ. In this representation, each rotation is performed about an axis of
the moving system B rather than one of the fixed reference A.”

The final rotation matrix is ABRZ′Y ′X′ = RZ(α)RY (β)RX(γ):

A
BRZ′Y ′X′ =

 cosα cosβ cosα sinβ sinγ − sinα cosγ cosα sinβ cosγ + sinα sinγ
sinα cosβ sinα sinβ sinγ + cosα cosγ sinα sinβ cosγ − cosα sinγ
− sinβ cosβ sinγ cosβ cosγ

186

B.3 General Parameters

B.3 General Parameters

Table B.1: General Parameters.

Parameter Description
D Total number of joints
j Joint j within the total number of joints D
θj Joint angle θj at joint j
vj Linear velocity of joint j
ωj Rotational velocity of joint j
N Total number of points on a path
pi Point pi along a path

187

B. PARAMETER DESCRIPTIONS

188

Mathematical Notation

Table B.2: Explanation of the mathematical notation.

Symbols/ Examples: Description:
x,X Scalar variables are italic lower or upper case letters
a Vectors are bold, italic lower case letters
−−→papb A vector between two points pa and pb is denoted by an arrow
X Matrices are bold, italic, Latin upper case letters
LA Characteristic places bold, regular, Latin upper case letters

(here: “Location Areas”)
F(x) Functions are usually regular lower or upper case letters

contact(o, p) The special function “contact” is written in bold, lower case letters
S Sets and intervals are represented by calligraphic literals
{θj} The brackets { and } denote a set of variables or vectors
|x| Absolute value of x
|a| Length of vector a
‖papb‖ Euclidean distance between two points pa and pb

189

B. PARAMETER DESCRIPTIONS

190

List of Abbreviations

Table B.3: List of abbreviations which are used in this thesis.

Abbreviation: Description:
DLR Deutsches Zentrum für Luft- und Raumfahrt e.V.
DMP Dynamic Movement Primitives
DoF Degree of Freedom
DH Denavit Hartenberg
GPS Global Positioning System
GRASP Emergence of Cognitive Grasping through Introspection,

Emulation and Surprise (EU-project, 7th Framework Program)
HMM Hidden Markov Model
IEEE Institute of Electrical and Electronics Engineers
KLT Kanade-Lucas-Tomasi (feature tracker)
MA Maneuverability Analysis
MIS Minimally invasive surgery
mV Maneuverability Volume
PCA Principal Component Analysis
resp. respectively
ROI Region of Interest
RSJ The Robotics Society of Japan
seq. sequences
sP Spinning Pencil
V-GPS Visual GPS
vs. versus

191

B. PARAMETER DESCRIPTIONS

192

Author’s Publications

[1] Susanne Petsch and Darius Burschka. Estimation of Spatio-Temporal Object

Properties for Manipulation Tasks from Observation of Humans. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 192–198, Anchorage,

Alaska, USA, May 2010.

[2] Susanne Petsch and Darius Burschka. Representation of Manipulation-

Relevant Object Properties and Actions for Surprise-Driven Exploration. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 1221–1227, San Francisco, California, USA, September 2011.

[3] Susanne Petsch and Darius Burschka. Path Configuration for Abstractly Rep-

resented Tasks with Respect to Efficient Control. In IEEE/RSJ International

Conference on Intelligent Robots and Systems: Workshop Beyond Grasping - Modern Ap-

proaches for Dynamic Manipulation, Vilamoura, Algarve, Portugal, October 2012.

[4] Susanne Petsch and Darius Burschka. Analysis of Manipulator Structures un-

der Joint-Failure with Respect to Efficient Control in Task-Specific Contexts.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages

1955–1961, Karlsruhe, Germany, May 2013.

[5] Susanne Petsch and Darius Burschka. Path Optimization for Abstractly Rep-

resented Tasks with Respect to Efficient Control. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, pages 1268–1273, Karlsruhe, Germany,

May 2013.

[6] Susanne Petsch and Darius Burschka. Estimation of Inverse Kinematics of

Arbitrary Serial Chain Manipulators and Human-Like Robotic Hands. In

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 728

– 733, Wollongong, Australia, July 2013.

[7] Susanne Petsch and Darius Burschka. Contact State Based Representation

of Object Relations in the Environment for Dexterous Manipulations. In

193

AUTHOR’S PUBLICATIONS

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 1051 –
1057, Wollongong, Australia, July 2013.

194

References

[8] Franziska Zacharias, Christoph Borst, and Gerhard Hirzinger. Capturing

Robot Workspace Structure: Representing Robot Capabilities. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 3229 – 3236, 2007. 7

[9] John J. Craig. Introduction to Robotics - Mechanics and Control. Prentice Hall, 2005. 7,

34, 68, 75, 76, 110, 185, 186

[10] D. Pieper and B. Roth. The Kinematics of Manipulators Under Computer

Control. In Proceedings of the Second International Congress on Theory of Machines and

Mechanisms, 2, pages 159–169, 1969. 7

[11] Haider Mohamed, Samer Yahya, M. Moghavvemi, and S.S. Yang. A New In-

verse Kinematics Method for Three Dimensional Redundant Manipulators. In

ICCAS-SICE, pages 1557 – 1562, 2009. 7

[12] Alain Liégeois. Automatic Supervisory Control of the Configuration and Be-

havior of Multibody Mechanisms. IEEE Transactions on Systems, Man, and Cyber-

netics, 7(12):868–871, 1977. 7

[13] D. Tolani, A. Goswami, and N.I. Badler. Real-Time Inverse Kinematics Tech-

niques for Anthropomorphic Limbs. Graphical models, 62:353–388, 2000. 7

[14] Rainer Konietschke and Gerhard Hirzinger. Inverse Kinematics with Closed

Form Solutions for Highly Redundant Robotic Systems. In IEEE International

Conference on Robotics and Automation, pages 2945–2950, 2009. 7

[15] Rodney G. Roberts and Anthony A. Maciejewski. Nearest Optimal Repeatable

Control Strategies for Kinematically Redundant Manipulators. IEEE Transactions

on Robotics and Automation, 8(3):327–337, 1992. 7

[16] Andrew A. Goldenberg, B. Benhabib, and Robert G. Fenton. A Complete

Generalized Solution to the Inverse Kinematics of Robots. IEEE Transactions on

Robotics and Automation, 1(1):14–20, 1985. 7

195

REFERENCES

[17] F. Pierrot, A. Fournier, and P. Dauchez. Towards a Fully-Parallel 6 DOF

Robot for High-Speed Applications. In IEEE International Conference on Robotics
and Automation, pages 1288–1293, 1991. 7

[18] Dominik Bertram, James Kuffner, Rüdiger Dillmann, and Tamim Asfour. An

Integrated Approach to Inverse Kinematics and Path Planning for Redundant

Manipulators. In IEEE International Conference on Robotics and Automation, pages
1874–1879, 2006. 7

[19] D. Lyons. A Simple Set of Grasps for a Dexterous Hand. In IEEE International
Conference on Robotics and Automation, 2, pages 588–593, 1985. 7, 33, 36

[20] Stuart Russell and Peter Norvig. Artificial Intelligence - A Modern Approach.
Prentice Hall, 2003. 8, 9

[21] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition. IEEE, 77(2):257–286, 1989. 9, 55

[22] N. Padoy, D. Mateus, D. Weinland, M.-O. Berger, and N. Navab. Workflow

Monitoring based on 3D Motion Features. In Proceedings of the International Confer-
ence on Computer Vision Workshops, IEEE Workshop on Video-oriented Object and Event
Classification, 2009. 9, 12, 15

[23] Carol E. Reiley and Gregory D. Hager. Task Versus Subtask Surgical Skill

Evaluation of Robotic Minimally Invasive Surgery. In Medical Image Computing
and Computer-Assisted Intervention -MICCAI 2009, pages 435–442, 2009. 9, 12, 15, 56

[24] Sabine Webel, Yana Staykova, and Ulrich Bockholt. Towards Workflow Ac-

quisition of Assembly Skills using Hidden Markov Models. In Proceedings of the
2009 IEEE International Conference on Systems, Man, and Cybernetics, pages 841–846,
2009. 9

[25] Sanmohan and Volker Krüger. Primitive Based Action Representation and

Recognition. In A.-B. Salber, J. Y. Hardeberg, and R. Jenssen, editors, SCIA 2009,
5575, pages 31–40. Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg,
2009. 9

[26] Chavdar Papazov and Darius Burschka. Stochastic Global Optimization for

Robust Point Set Registration. Computer Vision and Image Understanding, 115, De-
cember 2011. 9, 32, 121, 135

[27] Elmar Mair, Klaus Strobl, Michael Suppa, and Darius Burschka. Efficient

Camera-Based Pose Estimation for Real-Time Applications. In IEEE International
Conference on Intelligent Robots and Systems, 2009. 9, 98, 102

196

REFERENCES

[28] Tamim Asfour, Pedram Azad, Florian Gyarfas, and Rüdiger Dillmann. Imi-

tation Learning of Dual-Arm Manipulation Tasks in Humanoid Robots. Interna-

tional Journal of Humanoid Robotics, 5(2):183–202, 2008. 9

[29] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement Imitation

with Nonlinear Dynamical Systems in Humanoid Robots. In IEEE International

Conference on Robotics and Automation, pages 1398–1403, Washington, DC, USA, 2002. 9,

64

[30] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning

and Generalization of Motor Skills by Learning from Demonstration. In IEEE

International Conference on Robotics and Automation, pages 763–768, Kobe, Japan, 2009.

9, 64

[31] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, 1998. 9, 19

[32] Deepak Verma and Rajesh P. N. Rao. Imitation Learning Using Graphical

Models. In J. N. Kok et al., editor, ECML 2007, 4701, pages 757–764. Lecture Notes

in Artificial Intelligence, Springer-Verlag Berlin Heidelberg, 2007. 9, 19

[33] Grazia Bombini, Nicola Di Mauro, Teresa M. A. Basile, Stefano Ferilli, and

Floriana Esposito. Relational Learning by Imitation. In A. Håkansson et al.,

editor, KES-AMSTA 2009, 5559, pages 273–282. Lecture Notes in Artificial Intelligence,

Springer-Verlag Berlin Heidelberg, 2009. 9, 19

[34] Sylvain Calinon, Florent Guenter, and Aude Billard. On Learning, Repre-

senting, and Generalizing a Task in a Humanoid Robot. IEEE Transactions on

Systems, Man, and Cybernetics - Part B: Cybernetics, 37(2):286–298, April 2007. 9

[35] Sylvain Calinon, F. D’halluin, Eric L. Sauser, Darwin G. Caldwell, and Aude

Billard. Learning and Reproduction Gestures by Imitation. IEEE Robotics and

Automation Magazine, 17:44 – 54, 2010. 9, 19

[36] Koichi Ogawara, Jun Takamatsu, Hiroshi Kimura, and Katsushi Ikeuchi. Gen-

eration of a Task Model by Integrating Multiple Observations of Human Demon-

strations. In IEEE International Conference on Robotics and Automation, pages 1545–

1550, May 2002. 10

[37] Bart Jansen and Tony Belpaeme. A Model for Inferring the Intention in Imita-

tion Tasks. In The 15th IEEE International Symposium on Robot and Human Interactive

Communication, RO-MAN’06, pages 238–243, 2006. 10

197

REFERENCES

[38] Michael Pardowitz, Raoul Zöllner, and Rüdiger Dillmann. Learning Sequen-

tial Constraints of Tasks from User Demonstrations. In 5th IEEE-RAS International
Conference on Humanoid Robots, pages 424–529, 2005. 10

[39] Michael Pardowitz, Steffen Knoop, Rüdiger Dillmann, and Raoul D. Zöll-

ner. Incremental Learning of Tasks From User Demonstrations, Past Experi-

ences, and Vocal Comments. IEEE Transactions on Systems, Man, and Cybernetics -
Part B: Cybernetics, 37(2):322–332, April 2007. 10

[40] Hae Won Park and Ayanna M. Howard. Understanding a Child’s play for

Robot Interaction by Sequencing Play Primitives using Hidden Markov Models.
In IEEE International Conference on Robotics and Automation, pages 170–177, Anchorage,
Alaska, USA, 2010. 10

[41] Volker Krüger, Dennis L. Herzog, Sanmohan Baby, Aleš Ude, and Danica

Kragic. Learning Actions from Observations. IEEE Robotics and Automation Mag-
azine, pages 30–43, June 2010. 10, 19

[42] Zoran Duric, Jeffrey A. Fayman, and Ehud Rivlin. Function from Motion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6):579–591, June
1996. 10

[43] Raoul D. Zöllner and Rüdiger Dillmann. Using Multiple Probabilistic Hy-

pothesis for Programming One and Two Hand Manipulation by Demonstration.
In IEEE International Conference on Intelligent Robots and Systems, pages 2926–2931, Las
Vegas, Nevada, USA, 2003. 10

[44] Louise Stark, Kevin Bowyer, Adam Hoover, and Dmitry B. Goldgof. Recog-

nizing Object Function Through Reasoning About Partial Shape Descriptions

and Dynamic Physical Properties. In Proceedings of the IEEE, 84, pages 1640–1656,
1996. 10

[45] Masakatsu Mitani, Mamoru Takaya, Atsuhiro Kojima, and Kunio Fukunaga.
Environment Recognition Based on Analysis of Human Actions for Mobile

Robot . In The 18th International Conference on Pattern Recognition (IEEE), pages
782–786, 2006. 10

[46] Antonio Chella, Haris Dindo, and Ignazio Infantino. Learning High-Level

Tasks Through Imitation. In Proceedings of the 2006 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 3648–3654, 2006. 11

[47] M. Eich, M. Dabrowska, and F. Kirchner. Semantic Labeling: Classification of

3D Entities Based on Spatial Feature Descriptors. In IEEE International Conference
on Robotics and Automation: Workshop on Best Practice Algorithms in 3D Perception and
Modeling for Mobile Manipulation, Anchorage, Alaska, USA, 2010. 11

198

REFERENCES

[48] Rohan Paul and Paul Newman. FAB-MAP 3D: Topological Mapping with

Spatial and Visual Appearance. In IEEE International Conference on Robotics and
Automation, pages 2649–2656, Anchorage, Alaska, USA, 2010. 11

[49] Rainer Jäkel, Sven R. Schmidt-Rohr, Martin Lösch, and Rüdiger Dillmann.
Representation and Constrained Planning of Manipulation Strategies in the

Context of Programming by Demonstration. In IEEE International Conference on
Robotics and Automation, pages 162–169, Anchorage, Alaska, USA, 2010. 11

[50] Nadeesha Ranasinghe and Wei-Min Shen. Surprise-Based Learning for De-

velopmental Robotics. In ECSIS Symposium on Learning and Adaptive Behaviors for
Robotic Systems, pages 65–70, August 2008. 11

[51] Nadeesha Ranasinghe and Wei-Min Shen. Surprise-Based Developmental

Learning and Experimental Results on Robots. In IEEE 8th International Con-
ference on Development and Learning, pages 1–6, 2009. 11

[52] Masahito Yashima. On Planning for Whole Arm Manipulation with Switch-

ing Contact Modes. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1596–1601, 2001. 11

[53] Masahito Yashima and Hideya Yamaguchi. Dynamic Motion Planning Whole

Arm Manipulation Systems Based on Switching Contact Modes. In IEEE Inter-
national Conference on Robotics and Automation, pages 2492–2499, 2002. 11

[54] Masahito Yashima. Randomized Manipulation Planning Considering the Local

Optimization of Contact Mode Sequence. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2914–2919, 2003. 11

[55] Masahito Yashima, Yoshikazu Shiina, and Hideya Yamaguchi. Randomized

Manipulation Planning for a Multi-Fingered Hand by Switching Contact Modes.
In IEEE International Conference on Robotics and Automation, pages 2689–2694, 2003. 11

[56] Tetsuyou Watanabe, Kensuke Harada, Tsuneo Yoshikawa, and Zhongwei

Jiang. Towards Whole Arm Manipulation by Contact State Transition. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5682–5687,
2006. 11

[57] G.F. Liu, J. Li, and Z.X. Li. Coordinated Manipulation of Objects by Multi-

Fingered Robotic Hand in Contact Space and Active Joint Space. In IEEE Inter-
national Conference on Robotics and Automation, pages 3743–3748, 2002. 11

[58] Kensuke Harada and Makoto Kaneko. Whole Body Manipulation. In IEEE
International Conference on Robotics, Intelligent Systems and Signal Processing, pages 190–
195, 2003. 11

199

REFERENCES

[59] Kenneth Salibury, William Townsend, Brian Eberman, and David DiPietro.
Preliminary Design of a Whole-Arm Manipulation System (WAMS). In IEEE
International Conference on Robotics and Automation, pages 254–260, 1988. 11

[60] Toshiharu Mukai, Shinya Hirano, Morio Yoshida, Hiromichi Nakashima, Shi-

jie Guo, and Yoshikazu Hayakawa. Whole-Body Contact Manipulation Using

Tactile Information for the Nursing-Care Assistant Robot RIBA. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2445–2451, San Fran-
cisco, California, USA, 2011. 11

[61] Yasumichi Aiyama and Kazuki Sato. Kinematics Analysis of Manipulation of

Environment-Contacting object with Free-Joint-Structure. In IEEE International
Conference on Mechatronics and Automation, pages 40–45, 2011. 11

[62] Yasumichi Aiyama, Toshinori Yasui, and Tamio Arai. Planning of Object Mo-

tion by Graspless Manipulation using Contact State Transition Graph. In 4th
IEEE International Symposium on Assembly and Task Planning, pages 184–189, 2001. 11

[63] Siddharta S. Srinivasa, Michael A. Erdmann, and Matthew T. Mason. Control

Synthesis for Dynamic Contact Manipulation. In IEEE International Conference on
Robotics and Automation, pages 2523–2528, 2005. 11

[64] Michael Pardowitz, Raoul Zöllner, and Rüdiger Dillmann. Learning Sequen-

tial Constraints of Tasks From User Demonstrations. In 5th IEEE-RAS International
Conference on Humanoid Robots, pages 424–429, 2005. 12

[65] Peter Kazanzides, Gabor Fichtinger, Gregory D. Hager, Allison M. Oka-

mura, Louis L. Whitcomb, and Russell H. Taylor. Surgical and Interventional

Robotics: Core Concepts, Technology, and Design. IEEE Robotics and Automation
Magazine, 15(2):122–130, 2008. 12, 15

[66] Gabor Fichtinger, Peter Kazanzides, Allison M. Okamura, Gregory D.

Hager, Louis L. Whitcomb, and Russell H. Taylor. Surgical and Interventional

Robotics: Surgical CAD-CAM Systems. IEEE Robotics and Automation Magazine,
15(3):94–102, 2008. 12, 15

[67] Gregory D. Hager, Allison M. Okamura, Peter Kazanzides, Louis L. Whit-

comb, Gabor Fichtinger, and Russell H. Taylor. Surgical and Interventional

Robotics: Surgical Assistance Systems. IEEE Robotics and Automation Magazine,
15(4):84–93, 2008. 12, 15

[68] Russell H. Taylor. A Perspective on Medical Robotics. Proceedings of the IEEE,
94(9):1652–1664, 2006. 12, 15

200

REFERENCES

[69] R. H. Taylor, A. Menciassi, G. Fichtinger, and P. Dario. Handbook of Robotics,

Part F: Field and Service Robotics, Chapter 51 Medical Robotics and Computer-Integrated

Surgery. Springer Verlag Berlin Heidelberg, 2008. 12, 15

[70] Jaydev P. Desai and Nicholas Ayache. Editorial: Special Issue on Medical

Robotics. The International Journal of Robotics Research, 28(9):1098–1100, 2009. 12, 15

[71] Darius Burschka and Oliver Ruepp. Vision-Based Analysis of Conventional

Surgical Procedures. In IEEE/RSJ International Conference on Intelligent Robots and

Systems: Workshop on Methods for Safer Surgical Robotics Procedures, San Francisco, Cal-

ifornia, USA, 2011. 12, 15

[72] Nicolas Padoy, Tobias Blum, Seyed-Ahmad Ahmadi, Hubertus Feussner,

Marie-Odile Berger, and Nassir Navab. Statistical Modeling and Recognition

of Surgical Workflow. Medical Image Analysis, 16(3):632–641, apr 2010. 12, 15

[73] Nicolas Padoy and Gregory D. Hager. Human-Machine Collaborative Surgery

Using Learned Models. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 5285–5292, San Francisco, California, USA, 2011. 12, 15

[74] Rainer Konietschke, Andreas Tobergte, Carsten Preusche, Paolo Tripic-

chio, Emanuele Ruffaldi, Sabine Webel, and Ulrich Bockholt. A Multimodal

Training Platform for Minimally Invasive Robotic Surgery. In IEEE International

Symposium on Robot and Human Interactive Communication, pages 422–427, 2010. 12, 15

[75] Yixin Gao, Mert Sedef, Amod Jog, Peter Peng, Michael Choti, Gregory

Hager, Jeff Berkley, and Rajesh Kumar. Towards Validation of Robotic

Surgery Training Assessment Across Training Platforms. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 2539–2544, San Francisco,

California, USA, 2011. 12, 15

[76] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram

Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion. The

MIT Press, 2005. 13

[77] Dmitry Berenson, Thierry Simeon, and Siddharta S. Srinivasa. Addressing

Cost-Space Chasms in Manipulation Planning. In IEEE International Conference on

Robotics and Automation, pages 4561–4568, Shanghai, China, 2011. 13

[78] Hao Ding, Georg Schnattinger, Benjamin Passenberg, and Olaf Stursberg.

Improving Motion of Robotic Manipulators by an Embedded Optimizer. In IEEE

Conference on Automation Science and Engineering, pages 204–209, 2010. 13

201

REFERENCES

[79] Lian Guangyu, Sun Zengqi, and Mu Chundi. Optimal Motion Planning Pass-

ing Through Kinematic Singularities for Robot Arms. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4349–4354, 2006. 13

[80] Stephen L. Smith, Jana Tumová, Calin Belta, and Daniela Rus. Optimal Path

Planning for Surveillance with Temporal Logic Constraints. International Journal

of Robotics Research, 30(14):1695–1708, 2011. 13

[81] Igor Belousov, Claudia Esteves, Jean-Paul Laumond, and Etienne Ferre.

Motion Planning for the Large Space Manipulators with Complicated Dynamics.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2160–2166,

2005. 13

[82] T.A. Rieswijk, G.G. Brouwn, and G. Honderd. A Robust and Efficient Ap-

proach for the Time Optimization of Path Constrained Motions of Robotic

Manipulators Incorporating Actuator Torque and Jerk Constraints. In IEEE

International Symposium on Intelligent Control, pages 507–513, 1992. 13

[83] Oliver Brock and Oussama Khatib. Executing Motion Plans for Robots with

Many Degrees of Freedom in Dynamic Environments. In IEEE Conference on

Robotics and Automation, 1, pages 1–6, 1998. 13, 119

[84] Oliver Brock and Oussama Khatib. Elastic Strips: A Framework for Motion

Generation in Human Environments. International Journal of Robotics Research,

21(12):1031–1052, 2011. 13

[85] Oussama Khatib. Inertial Properties in Robotics Manipulation: An Object-

Level Framework. International Journal of Robotics Research, 14(1):19–36, 1995. 13

[86] Tsuneo Yoshikawa. Manipulability of Robotic Mechanisms. The International

Journal of Robotics Research, 4(2), 1985. 13, 172

[87] Jin-Oh Kim and Pradeep K. Khosla. Dexterity Measures for Design and Con-

trol of Manipulators. In IEEE/RSJ International Workshop on Intelligent Robots and

Systems, pages 758–763, Osaka, Japan, 1991. 13

[88] Christiaan J. J. Paredis and Pradeep K. Khosla. Kinematic Design of Serial

Link Manipulators From Task Specifications. The International Journal of Robotics

Research, 12(274):273–287, 1993. 13

[89] Haruhiko Asada. Dynamic Analysis and Design of Robot Manipulators Using

Inertia Ellipsoids. In IEEE International Conference on Robotics and Automation, pages

94 – 102, 1984. 14

202

REFERENCES

[90] Jihong Lee. A Study of the Manipulability Measures for Robot Manipulators.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1458–1465,

1997. 14

[91] Alan Bowling and Oussama Khatib. The Dynamic Capability Equations: A

New Tool for Analyzing Robotic Manipulator Performance. IEEE Transactions

on Robotics, 21(1):115 – 123, 2005. 14

[92] Matei Ciocarlie, Corey Goldfeder, and Peter Allen. Dimensionality Reduc-

tion for Hand-Independent Dexterous Robot Grasping. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3270–3275, San Diego, California, USA,

2007. 14, 19

[93] Javier Romero, Thomas Feix, Hedvig Kjellström, and Danica Kragic. Spatio-

Temporal Modeling of Grasping Actions. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2103–2108, Taipei, Taiwan, 2010. 14, 19

[94] Kok-Meng Lee and Dharman K. Shah. Kinematic Analysis of a Three-Degrees-

of-Freedom In-Parallel Actuated Manipulator. IEEE Journal of Robotics and Au-

tomation, 4(3), 1988. 14

[95] G. Niemeyer, C. Preusche, and G. Hirzinger. Handbook of Robotics, Part D: Ma-

nipulation and Interfaces, Chapter 31 Telerobotics. Springer Verlag Berlin Heidelberg, 2008.

14

[96] Yasuyoshi Yokokohji and Tsuneo Yoshikawa. Bilateral Control of Master-Slave

Manipulators for Ideal Kinesthetic Coupling - Formulation and Experiment.

IEEE Transactions on Robotics and Automation, 10(5):605–620, 1994. 14

[97] Blake Hannaford, Laurie Wood, Douglas A. McAffee, and Haya Zak. Per-

formance Evaluation of a Six-Axis Generalized Force-Reflecting Teleoperator.

IEEE Transactions on Systems, Man, and Cybernetics, 21(3):620–633, 1991. 14, 84

[98] Septimiu E. Salcudean, Ming Zhu, Wen-Hong Zhu, and Keyvan Hashtrudi-

Zaad. Transparent Bilateral Teleoperation under Position and Rate Control.

The International Journal of Robotics Research, 19:1185–1202, 200. 14

[99] Yasuyoshi Yokokohji, Noreo Hosotani, and Tsuneo Yoshikawa. Analysis of

Maneuverability and Stability of Micro-Teleoperation Systems. In IEEE Interna-

tional Conference on Robotics and Automation, 1, pages 237–243, 1994. 14

[100] Dale A. Lawrence. Stability and Transparency in Bilateral Teleoperation.

IEEE Transactions on Robotics and Automation, 9(5):624–637, 1993. 14

203

REFERENCES

[101] Keyvan Hashtrudi-Zaad and Septimiu E. Salcudean. Tranparency in Time-

Delayed Systems and the Effect of Local Force Feedback for Transparent Tele-

operation. IEEE Transactions on Robotics and Automation, 18(1):108–114, 2002. 14

[102] Jaime Rubi, Angel Rubio, and Alejo Avello. Involving the Operator in a

Singularity Avoidance Strategy for a Redundant Slave Manipulator in a Tele-

operated Application. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2973 – 2978, 2002. 14

[103] Dal-Yeon Hwang and Blake Hannaford. Teleoperation Performance with a

Kinematically Redundant Slave Robot. The International Journal of Robotics Re-
search, 17(6):578–597, 1998. 14

[104] Ulrich Hagn, Tobias Ortmaier, Rainer Konietschke, Bernhard Kübler, Ul-

rich Seibold, Andreas Tobergte, Mathias Nickl, Stefan Jörg, and Gerhard

Hirzinger. Telemanipulator for Remote Minimally Invasive Surgery. IEEE
Robotics and Automation Magazine, 15(4):28–38, 2008. 14, 110, 155

[105] Peter Berkelman and Ji Ma. A Compact Modular Teleoperated Robotic

System for Laparoscopic Surgery. The International Journal of Robotics Research,
28(9):1197–1215, 2009. 14

[106] Blake Hannaford. Stability and Performance Tradeoffs in Bi-Lateral Tele-

manipulation. In IEEE International Conference on Robotics and Automation, pages
1764–1767, 1989. 14

[107] Carol E. Reiley, Henry C. Lin, David D. Yuh, and Gregory D. Hager. A

Review of Methods for Objective Surgical Skill Evaluation. Surgical Endoscopy,
25(2):356–366, 2011. 15

[108] Riccardo Muradore, Davide Bresolin, Luca Geretti, Paolo Fiorini, and

Tiziano Villa. Robotic Surgery: Formal Verification of Plans. IEEE Robotics
and Automation Magazine, 18(3):24–32, 2011. 15

[109] Ilana Nisky, Michael H. Hsieh, and Allison M. Okamura. A Framework for

Analysis of Surgeon Arm Posture Variability in Robot-Assisted Surgery. In IEEE
International Conference on Robotics and Automation, pages 245–251, Karlsruhe, Germany,
2013. 15

[110] Franziska Zacharias, Ian S. Howard, Thomas Hulin, and Gerhard Hirzinger.
Workspace Comparisons of Setup Configurations for Human-Robot Interaction.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3117 –
3122, Taipei, Taiwan, 2010. 17

204

REFERENCES

[111] Allison M. Okamura, Niels Smaby, and Mark R. Cutkosky. An Overview of

Dexterous Manipulation. In IEEE International Conference on Robotics and Automa-
tion, pages 255 – 262, 2000. 17

[112] Antonio Bicchi. Hands for Dexterous Manipulation and Robust Grasping: A

Difficult Road Toward Simplicity. IEEE Transactions on Robotics and Automation,
16(6):652 – 662, 2000. 17

[113] Schunk. Schunk GmbH und Co. KG: Service Robotics, 2012. http://www.schunk-
modularrobots.com/SCHUNKModularRobotics.html. 17, 18, 21

[114] Yoshiiaki Sakagami, Ryujin Watanabe, Chiaki Aoyama, Shinichi Matsunaga,

Nobuo Higaki, and Kikuo Fujimura. The Intelligent ASIMO: Aystem Overview

and Integration. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 2478 – 2483, 2002. 18

[115] Honda. American Honda Motor Co. Inc.: ASIMO Specifications, 2012.
http://asimo.honda.com/asimo-specs/ , Access: 11-02-2012. 18

[116] ottobock. Otto Bock Healthcare Products GmbH: Michelangelo, 2012.
http://www.living-with-michelangelo.com/gb/home/ , Access: 11-02-2012. 18

[117] Markus Grebenstein, Alin Albu-Schäffer, Thomas Bahls, Maxime Chalon,

Oliver Eiberger, Werner Friedl, Robin Gruber, Sami Haddadin, Ulrich Hagn,

Robert Haslinger, Hannes Höppner, Stefan Jörg, Mathias Nickl, Alexander

Nothhelfer, Florian Petit, Josef Reill, Nikolaus Seitz, Thomas Wimböck,

Sebastian Wolf, Tilo Wüsthoff, and Gerhard Hirzinger. The DLR Hand

Arm System. In IEEE International Conference on Robotics and Automation, pages 3175
– 3182, Shanghai, China, 2011. 18, 25

[118] Maxime Chalon, Markus Grebenstein, Thomas Wimböck, and Gerhard

Hirzinger. The Thumb: Guidelines for a Robotic Design. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 5886 – 5893, Taipei, Taiwan,
2010. 18

[119] Hugo Gravato Marques, Michael Jäntsch, Steffen Wittmeier, Owen Hol-

land, Cristiano Alessandro, Alan Diamond, Max Lungarella, and Rob Knight.
ECCE1: The First of a Series of Anthropomimetic Musculoskeletal Upper Tor-

sos. In IEEE-RAS International Conference on Humanoid Robots, pages 391 – 396, 2010.
18

[120] Aaron M. Dollar and Robert D. Howe. Simple, Robust Autonomous Grasp-

ing in Unstructured Environments. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pages 4693–4700, 2007. 18, 21

205

REFERENCES

[121] Lael U. Odhner and Aaron M. Dollar. Dexterous Manipulation with Un-

deractuated Elastic Hands. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 5254–5260, Shanghai, China, 2011. 18, 25

[122] L.U. Odhner, Raymond R. Ma, and Aaron M. Dollar. Precision Grasping and

Manipulation of Small Objects from Flat Surfaces using Underactuated Fingers.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages

2830–2835, Saint Paul, Minnesota, USA, 2012. 18

[123] C. Rodloff, Raphael Deimel, and Oliver Brock. Adaptive Pneumatic Con-

trol for Soft Robotics. Ongoing Diploma Thesis, 2012. http://www.robotics.tu-

berlin.de/?id=118710 , Access: 11-02-2012. 18

[124] Oliver Brock. Beyond Grasping - Back to Square One. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems: Workshop Beyond Grasping - Modern

Approaches for Dynamic Manipulation, Vilamoura, Algarve, Portugal, 2012. 18

[125] Raphael Deimel and Oliver Brock. A Compliant Hand Based on a Novel

Pneumatic Actuator. In IEEE International Conference on Robotics and Automation,

pages 2039–2045, Karlsruhe, Germany, 2013. 18

[126] Sing Bing Kang and Katsushi Ikeuchi. Toward Automatic Robot Instruction

from Perception-Mapping Human Grasps to Manipulator Grasps. IEEE Trans-

actions on Robotics and Automation, 13(1):81 – 95, 1997. 19

[127] M. A. Arbib, T. Iberall, and D. M. Lyons. Coordinated Control Programs for

Movements of the Hand. Hand function and the neocortex, Experimental Brain Research

Supplemental 10, A. W. Goodwin and I. Darian-Smith, Eds., 1985. 19

[128] Javier Romero, Hedvig Kjellström, and Danica Kragic. Modeling and Eval-

uation of Human-to-Robot Mapping of Grasps. In IEEE International Conference

on Advanced Robotics, pages 1–6, 2009. 19

[129] Heni Ben Amor, Oliver Kroemer, Ulrich Hillenbrand, Gerhard Neumann,

and Jan Peters. Generalization of Human Grasping for Multi-Fingered Robot

Hands. In IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilam-

oura, Algarve, Portugal, 2012. 19

[130] Raymond R. Ma and Aaron M. Dollar. On Dexterity and Dexterous Ma-

nipulation. In 15th International Conference on Advanced Robotics, pages 1 – 7, 2011.

19

206

REFERENCES

[131] Franziska Zacharias, Daniel Leidner, Florian Schmidt, Christoph Borst,

and Gerhard Hirzinger. Exploiting Structure in Two-Armed Manipulation

Tasks for Humanoid Robots. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 5446 – 5452, Taipei, Taiwan, 2010. 19

[132] David Fischinger and Markus Vincze. Empty the Basket - A Shape Based

Learning Approach for Grasping Piles of Unknown Objects. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 2051 – 2057, Vilamoura,

Algarve, Portugal, 2012. 20

[133] Lillian Chang, Joshua R. Smith, and Dieter Fox. Interactive Singulation of

Objects from a Pile. In IEEE International Conference on Robotics and Automation,

pages 3875 – 3882, Saint Paul, Minnesota, USA, 2012. 20

[134] Oliver Birbach, Udo Frese, and Berthold Bauml. Realtime Perception for

Catching a Flying Ball with a Mobile Humanoid. In IEEE International Conference

on Robotics and Automation, pages 5955 – 5962, Shanghai, China, 2011. 20

[135] T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum,

N. Vahrenkamp, and R. Dillmann. ARMAR-III: An Integrated Humanoid Plat-

form for Sensory-Motor Control. In IEEE-RAS International Conference on Humanoid

Robots, pages 169 – 175, 2006. 20

[136] Erico Guizzo and Evan Ackerman. The Rise of the Robot Worker. IEEE

Spectrum, 49(10):34–41, 2012. 20

[137] DLR. Dexterous Robot Hands - Data sheet of DLR Hand II, 2013.

http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3802/6102 read-8922/ , Access: 01-

09-2013. 21

[138] David Silvera Tawil, David Rye, and Mari Velonaki. Interpretation of the

Modality of Touch on an Artificial Arm Covered with an EIT-Based Sensitive

Skin. The International Journal of Robotics Research, 31(13):1627–1641, 2012. 21, 26

[139] DLR. Dexterous Robot Hands - Future Work / Versions, 2013.

http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3802/6102 read-8915/ , Access: 01-

09-2013. 21, 26

[140] Mario Prats, Steven Wieland, Tamim Asfour, Angel P. del Pobil, and Rüdi-

ger Dillmann. Compliant Interaction in Household Environments by the Armar-

III Humanoid Robot. In IEEE-RAS International Conference on Humanoid Robots,

pages 475 – 480, 2008. 21

207

REFERENCES

[141] Tatsuya Nomura, Tomohiro Suzuki, Takayuki Kanda, and Kensuke Kato.

Measurement of Anxiety toward Robots. In 15th IEEE International Symposium on

Robot and Human Interactive Communication, pages 372 – 377, 2006. 21

[142] Lars Oestreicher. Cognitive, Social, Sociable or just Socially Acceptable

Robots? In 16th IEEE International Symposium on Robot and Human interactive Com-

munication, pages 558 – 563, 2007. 21

[143] Satoshi Koizumi, Takayuki Kanda, Masahiro Shiomi, Hiroshi Ishiguro, and

Norihiro Hagita. Preliminary Field Trial for Teleoperated Communication

Robots. In 15th IEEE International Symposium on Robot and Human Interactive Com-

munication, pages 145 – 150, 2006. 21

[144] Neta Ezer, Arthur D. Fisk, and Wendy A. Rogers. Attitudinal and Inten-

tional Acceptance of Domestic Robots by Younger and Older Adults. Universal

Access in Human-Computer Interaction, Intelligent and Ubiquitous Interaction Environ-

ments, Lecture Notes in Computer Science, 5615:39–48, 2009. 21

[145] Tatsuya Nomura, Takayuki Kanda, Tomohiro Suzuki, Jeonghye Han, Namin

Shin, Jennifer Burke, and Kensuke Kato. Implications on Humanoid Robots in

Pedagogical Applications from Cross-Cultural Analysis between Japan, Korea,

and the USA. In 16th IEEE International Symposium on Robot and Human Interactive

Communication, pages 1051 – 1057, 2007. 21

[146] Hiroko Kamide, Yasushi Mae, Koji Kawabe, Satoshi Shigemi, and Tatsuo

Arai. Effect of Human Attributes and Type of Robots on Psychological Eval-

uation of Humanoids. In IEEE International Workshop on Advanced Robotics and its

Social Impacts, pages 40 – 45, 2012. 21

[147] Cynthia Breazeal. Social Interactions in HRI: The Robot View. IEEE Trans-

actions on Systems, Man and Cybernetics - Part C: Applications and Reviews, 34(2):181 –

186, may 2004. 21

[148] Takayuki Kanda, Takahiro Miyashita, Taku Osada, Yuji Haikawa, and Hi-

roshi Ishiguro. Analysis of Humanoid Appearances in Human-Robot Interac-

tion. IEEE Transactions on Robotics, 24(3):725 – 735, 2008. 21

[149] Hiroko Kamide, Yasushi Mae, Koji Kawabe, Satoshi Shigemi, and Tatsuo

Arai. A Psychological Scale for General Impressions of Humanoids. In IEEE

International Conference on Robotics and Automation, pages 4030 – 4037, Saint Paul, Min-

nesota, USA, 2012. 22

208

REFERENCES

[150] Aelee Kim, Hyejin Kum, Ounjung Roh, Sangseok You, and Sukhan Lee. Robot

Gesture and User Acceptance of Information in Human-Robot Interaction. In
7th ACM/IEEE International Conference on Human-Robot Interaction, pages 279 – 280,
2012. 22

[151] G. Veruggio and F. Operto. Handbook of Robotics, Part G: Human-Centered and
Life-Like Robotics, Chapter 64 Roboethics: Social and Ethnical Implications of Robotics.
Springer Verlag Berlin Heidelberg, 2008. 22

[152] Reg G. Grant. Flight - 100 Years of Aviation. German Translation by B. Schäfer ad
T. Kriele: Fliegen - Die Geschichte der Luftfahrt. Dorling Kindersley Limited, Dorling
Kindersley Verlag GmbH, 2002, 2003. 22

[153] G. Bossow. Die Geschichte der Luftfahrt. GeraMond Verlag GmbH, 2009. 22

[154] Otto-Lilienthal-Museum-Anklam. Time line of aviation, 2012.
http://www.lilienthal-museum.de/olma/e5.htm , Access: 11-14-2012. 22

[155] Bernd Lukasch. To fly like a bird, 2012. http://www.lilienthal-
museum.de/olma/esoest.htm , Access: 11-14-2012. 22

[156] Bernd Lukasch. From Lilienthal to the Wrights, 2012. http://www.lilienthal-
museum.de/olma/ewright.htm , Access: 11-14-2012. 22

[157] Alexis v. Croy. Was Sie über das Fliegen wissen sollten. Herbig Verlagsbuchhandlung
GmbH, 2010. 22

[158] Dawna L. Rhoades. Evolution of International Aviation. Ashgate Publishing Limited,
Ashgate Publishing Company, 2008 (2nd ed.). 22

[159] Karlhans Müller. Das komplete Buch vom Fliegen. Wolfgang Krüger Verlag, S.
Fischer Verlag GmbH, 1981. 22

[160] Heni Ben Amor, Ashutosh Saxena, Oliver Kroemer, and Jan Peters. Work-

shop Beyond Grasping - Modern Approaches for Dynamic Manipulation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Al-
garve, Portugal, 2012. 25

[161] IEEE/RSJ. IEEE/RSJ International Conference on Intelligent Robots and

Systems. Vilamoura, Algarve, Portugal, 2012. 25

[162] Grodon Cheng, Etienne Burdet, Ravinder S. Dahiya, and Philipp Mitten-

dorfer. Research Frontiers in Electronic Skin Technology: Multi-functional

Bendable and stretchable electronic skin for robots and beyond. In IEEE Inter-
national Conference on Robotics and Automation, 2013. 26

209

REFERENCES

[163] Markus Grebenstein, Maxime Chalon, Werner Friedl, Sami Haddadin,

Thomas Wimböck, Gerhard Hirzinger, and Roland Siegwart. The Hand of

the DLR Hand Arm System: Designed for Interaction. The International Journal
of Robotics Research, 31(13):1531–1555, 2012. 26

[164] J. Denavit and R. S. Hartenberg. A Kinematic Notation for Lower-Pair Mech-

anisms Based on Matrices. Journal of Applied Mechanics, pages 215–221, 1955. 34, 68,
75, 110, 185

[165] Guangqi Ye, Jason Corso, Darius Burschka, and Gregory D. Hager. VICs:

A Modular Vision-Based HCI Framework. In Proceedings of 3rd International Con-
ference on Computer Vision Systems, pages 257–267, 2003. 44

[166] Darius Burschka and Gregory Hager. Scene Classification from Dense Dis-

parity Maps in Indoor Environments. In 16th International Conference on Pattern
Recognition. Proceedings, 2002. 44

[167] Darius Burschka and Gregory D. Hager. Vision-Based 3D Scene Analysis

for Driver Assistance. In IEEE International Conference on Robotics and Automation,
2005. 44, 45

[168] I. Oikonomidis, N. Kyriazis, and A.A. Argyros. Markerless and Efficient 26-

DOF Hand Pose Recovery. In Asian Conference on Computer Vision, pages 2926–2931,
Queenstown, New Zealand, 2010. 46

[169] Darius Burschka and Gregory Hager. V-GPS – Image-Based Control for 3D

Guidance Systems. In IEEE International Conference on Intelligent Robots and Systems,
pages 1789–1795, October 2003. 47, 48, 98, 102

[170] B. K. P. Horn. Robot Vision. MIT Press, 1986. 48

[171] Juan Carlos Ramirez and Darius Burschka. Framework for Consistent Main-

tenance of Geometric Data and Abstract Task-Knowledge from Range Obser-

vations. In IEEE International Conference on Robotics and Biomimetics, pages 963 – 969,
2011. 50

[172] Thomas Feix, Roland Pawlik, Heinz-Bodo Schmiedmayer, Javier Romero,

and Danica Kragic. The Generation of a Comprehensive Grasp Taxonomy. In
Robotics, Science and Systems Conference: Workshop on Understanding the Human Hand
for Advancing Robotic Manipulation, Poster Presentation, June 2009. 53, 109

[173] M. Kawato. Trajectory Formation in Arm Movements: Minimization Princi-

ples and Procedures. In Advances in Motor Learning and Control, ser. Human Kinetics,
H. N. Zelaznik, Ed. Human Kinetics Publishers, Chanpaign Illinois, pages 225–259, 1996.
55

210

REFERENCES

[174] J.A. Hartigan and M.A. Wong. A k-means Clustering Algorithm. Applied
Statistics, 8(1):100–108, 1979. 55

[175] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
55, 56

[176] Tamar Flash and Neville Hogan. The Coordination of Arm Movements:

An Experimentally Confirmed Mathematical Model. The Journal of Neuroscience,
5(7):1688–1703, july 1985. 84

[177] Y. Uno, M. Kawato, and R. Suzuki. Formation and Control of Optimal Tra-

jectory in Human Multijoint Arm Movements. Biological Cybernetics, 61:89–101,
1989. 84

[178] Jeffrey Dean and Michael Brüwer. Control of human arm movements in

two dimensions: paths and joint control in avoiding simple linear obstacles.
Experimental Brain Research, 97:497–514, 1994. 84

[179] W.L. Nelson. Physical Principles for Economies of Skilled Movements. Biolog-
ical Cybernetics, 46:135–147, 1983. 84

[180] Armin Biess, Mark Nagurka, and Tamar Flash. Simulating discrete and

rhythmic multi-joint human arm movements by optimization of nonlinear per-

formance indices. Biological Cybernetics, 95:31–53, 2006. 84

[181] Emanuele Lindo Secco, Luca Valandro, Roberto Caimmi, Giovanni Magenes,

and Benedetto Salvato. Optimization of two-joint arm movements: a model

technique or a result of natural selection? Biological Cybernetics, 93:288–306, 2005.
84

[182] Jur van den Berg, Stephen Miller, Daniel Duckworth, Humphrey Hu, An-

drew Wan, Xiao-Yu Fu, Ken Goldberg, and Pieter Abbeel. Superhuman Per-

formance of Surgical Tasks by Robots using Iterative Learning from Human-

Guided Demonstrations. In IEEE International Conference on Robotics and Automa-
tion, pages 2074–2081, Anchorage, Alaska, USA, 2010. 84

[183] Evan A. Suma, Belinda Lange, Albert Rizzo, David Krum, and Mark Bolas.
Flexible Action and Articulated Skeleton Toolkit (FAAST). In Proceedings of IEEE
Virtual Reality Conference, pages 247–248, 2011. 87

[184] ROS (Robot Operating System). ROS Wiki, 2013. http://www.ros.org/wiki/ ,
Access: 04-08-2013. 87

[185] ROS (Robot Operating System). MIT Kinect Demos, 2012.
http://www.ros.org/wiki/mit-ros-pkg/KinectDemos , Access: 04-08-2013. 87

211

REFERENCES

[186] Tadashi Kashima, Keisuke Yanagihara, and Masao Iwaseya. Trajectory for-

mation based on a human arm model with redundancy. In IEEE International
Conference on Systems, Man, and Cybernetics, pages 959 – 963, 2012. 87

[187] Lee Jaemin, Hironori Takimoto, Hitoshi Yamauchi, Akihiro Kanazawa, and

Yasue Mitsukura. A Robust Gesture Recognition Based on Depth Data. In 19th
Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), pages 127 – 132,
2013. 87

[188] Hyunchul Kim, Zhi Li, Dejan Mulitinovic, and Jacob Rosen. Resolving the

Redundancy of a Seven DOF Wearable Robotic System Based on Kinematic and

Dynamic Constraint. In IEEE International Conference on Robotics and Automation,
pages 305–310, Saint Paul, Minnesota, USA, 2012. 87

[189] Susanne Petsch. Representation of Manipulation-Relevant Object Properties and Ac-
tions. Master’s thesis, Technische Universität München, 2011. Unpublished. 89

[190] Chavdar Papazov and Darius Burschka. Stochastic Optimization for Rigid

Point Set Registration. In In Proceedings of the 5th International Symposium on Vi-
sual Computing (ISVC’09), 5875, pages 1043–1054. Lecture Notes in Computer Science,
Springer Verlag, December 2009. 98

[191] Ulrich Seibold, Bernhard Kübler, and Gerhard Hirzinger. Prototype of In-

strument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability.
In IEEE International Conference on Robotics and Automation, pages 496–501, 2005. 110,
155

[192] Sophie Thielmann, Ulrich Seibold, Robert Haslinger, Georg Passig, Thomas

Bahls, Stefan Jörg, Mathias Nickl, Alexander Nothhelfer, Ulrich Hagn, and

Gerhard Hirzinger. MICA - A New Generation of Versatile Instruments in

Robotic Surgery. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 871–878, Taipei, Taiwan, 2010. 110, 155

[193] Louis B. Rosenberg. Virtual Fixtures: Perceptual Tools for Telerobotic Ma-

nipulation. In IEEE Virtual Reality Annual International Symposium, pages 76–82, 1993.
119

[194] Ankur Kapoor, Ming Li, and Russell H. Taylor. Constrained Control for Sur-

gical Assistant Robots. In IEEE International Conference on Robotics and Automation,
pages 231–236, 2006. 119

[195] Oliver Ruepp. Recovery of Structure and Motion from Monocular Images under Poor
Lighting and Texture Conditions. PhD thesis, Technische Universität München, 2012. 121

212

REFERENCES

[196] Sébastien Grange, François Conti, Patrice Roullier, Patrick Helmer, and

Charles Baur. The Delta Haptic Device. Mechatronics 2001, 2001. 155, 160

[197] Andreas Tobergte, Patrick Helmer, Ulrich Hagn, Patrice Roullier, So-

phie Thielmann, Sébastien Grange, Alin Albu-Schäffer, François Conti, and

Gerhard Hirzinger. The sigma.7 Haptic Interface for MiroSurge: A New Bi-

Manual Surgical Console. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2445–2451, San Francisco, California, USA, 2011. 155

[198] Andreas Tobergte, Rainer Konietschke, and Gerhard Hirzinger. Planning

and Control of a Teleoperation System for Research in Minimally Invasive

Robotic Surgery. In IEEE International Conference on Robotics and Automation, pages

4225–4232, 2009. 171

[199] Yoshio Yamamoto and Xiaoping Yun. Coordinating Locomotion and Manipu-

lation of a Mobile Manipulator. IEEE Transactions on Automated Control, 39(6):1326–

1332, 1994. 172

[200] Yoshio Yamamoto and Xiaoping Yun. Effect of Dynamic Interaction on Co-

ordinated Control of Mobile Manipulation. IEEE Transactions on Robotics and Au-

tomation, 12(5):816–824, 1996. 172

[201] Homayoun Seraji. A Unified Approach of Motion Control of Mobile Manipu-

lators. The International Journal of Robotics Research, 17(2):106–118, 1998. 172

[202] K. Nagatani, T. Hirayama, A. Gofuku, and Y. Tanaka. Motion Planning

for Mobile Manipulator with Keeping Manipulability. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1663 – 1888, 2002. 172

[203] B. Bayle, J.-Y. Fourquet, and M. Renaud. Manipulability Analysis for Mobile

Manipulators. In IEEE International Conference on Robotics and Automation, pages

1251–1256, 2001. 172

[204] T. Yoshikawa. Analysis and Control of Robot Manipulators with Redundancy.

Robotics Research: The First International Symposium, 1984. 172

[205] Yoshio Yamamoto, Hiroshi Eda, and Xiaoping Yun. Coordinated Task Exe-

cution of a Human and a Mobile Manipulator. In IEEE International Conference on

Robotics and Automation, pages 1006–1011, 1996. 172

[206] Thomas Sugar and Vijay Kumar. Decentralized Control of Cooperating Mo-

bile Manipulators. In IEEE International Conference on Robotics and Automation, pages

2916–2921, 1998. 173

213

REFERENCES

[207] Andres Ubeda, Eduardo Ianez, Javier Badesa, Ricardo Morales, Jose M.

Azorin, and Nicolas Garcia. Control Strategies of an Assistive Robot Using a

Brain-Machine Interface. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3553 – 3558, Vilamoura, Algarve, Portugal, 2012. 173

[208] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vo-

gel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue.
Reach and Grasp by People with Tetraplegia Using a Neurally Controlled

Robotic Arm. Nature, 485:372–377, 2012. 173

[209] Arash Ajoudani, Nikos Tsagarakis, and Antonio Bicchi. Tele-Impedance:

Teleoperation with Impedance Regulation Using a Body-Machine Interface. The
International Journal of Robotics Research, 31(13):1642–1656, 2012. 173

214

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.2.1 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and Human-Like Robotic Hands
	1.2.2 Estimation and Representation of Manipulation - Relevant Object Properties and Actions from Human Observation
	1.2.3 Representation of Object Relations in the Environment for Dexterous Manipulations
	1.2.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient Actuation
	1.2.5 Structure Analysis of Manipulators
	1.2.6 Analysis of Master-Slave Systems

	1.3 Research in Dexterous Robotic Manipulation with Respect to Bio-mimicry, Bio-inspiration and Technical Approaches
	1.3.1 Physical structure of robotic hands
	1.3.2 Grasping and manipulation
	1.3.3 Usage of sensors in grasping and manipulation
	1.3.4 Psychological aspects in human-robot interaction
	1.3.5 Relation of Bio-Mimicry and -Inspiration to Technical Approaches Using the Example of the Design of Airplanes
	1.3.5.1 Early attempts
	1.3.5.2 The first flights
	1.3.5.3 Technology Acceptance

	1.3.6 Discussion of the Current State of the Art

	1.4 Overview of the Contributions
	1.5 Outline

	2 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and Human-Like Robotic Hands
	2.1 Description of the used variables and parameters
	2.2 Inverse kinematics for a single point
	2.3 Adaptive tunneling
	2.4 Virtual shut grasp

	3 Manipulation-Relevant Knowledge Representation
	3.1 Estimation and Representation of Manipulation - Relevant Object Properties, Actions and Functionalities
	3.1.1 Estimation and Representation of Manipulation - Relevant Object Properties and Actions from Human Observation
	3.1.1.1 Focus of Attention
	3.1.1.2 Determination of the Object Candidates
	3.1.1.3 Selection of an Object as Region of Interest
	3.1.1.4 Object Tracking and Determination of the Object's Type
	3.1.1.5 Representation of Object Knowledge

	3.1.2 Representation of Manipulation-Relevant Object Properties and Functionalities
	3.1.2.1 Manipulation-Relevant Object Properties
	3.1.2.2 Functionality Map of the Environment
	3.1.2.3 Knowledge Extraction

	3.2 Representation of Object Relations in the Environment for Dexterous Manipulations
	3.2.1 Contact State Definition
	3.2.2 Object Role Definition
	3.2.3 Composition and Usage of the Contact State Knowledge

	4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient Actuation
	4.1 Path Configuration
	4.2 Path Optimization
	4.2.1 Elasticity of the Path
	4.2.2 The Elastic Power Path
	4.2.3 Optimization of the Path

	5 Structure Analysis of Manipulators
	5.1 Maneuverability Volume
	5.2 Spinning Pencil
	5.3 Maneuverability Analysis under Joint-Failures
	5.4 Analysis of Multiple Location Areas
	5.5 Structure Analysis under Path Optimization

	6 Analysis of Master-Slave Systems
	6.1 Structure Analysis: Autonomous vs. Non-autonomous Systems
	6.2 Master-Slave Systems: Workspace Mapping
	6.3 Structure Analysis: Limits and Potentials

	7 Experiments
	7.1 Validation Scenarios
	7.1.1 Experiments on an External Tracking System
	7.1.1.1 Object Container
	7.1.1.2 Functionality Map

	7.1.2 Experiments on a Vision System
	7.1.2.1 Clustering of Object Candidates on a Table
	7.1.2.2 Candidate Selection
	7.1.2.3 Parsing of Human Action
	7.1.2.4 Representation of Manipulation-Relevant Object Knowledge and Functionality in the Environment

	7.2 Contact State-Based Representation of the Environment for Dexterous Manipulations
	7.2.1 Scenario I: Cut
	7.2.2 Scenario II: Knot-tying
	7.2.3 Scenario III: Suturing

	7.3 Estimation of Inverse Kinematics of Arbitrary Serial Chain Manipulators and Human-Like Robotic Hands
	7.3.1 Implementation
	7.3.2 Results

	7.4 Path Optimization for Abstractly Represented Tasks with Respect to Efficient Actuation
	7.4.1 Path Configuration
	7.4.2 Path Optimization
	7.4.2.1 Experimental Setup and Implementation
	7.4.2.2 Results

	7.5 Structure Analysis of Manipulators
	7.5.1 Experimental Setup and Implementation
	7.5.2 Results: Maneuverability Analysis
	7.5.3 Results: Maneuverability Analysis under Path Optimization

	7.6 Analysis of Master-Slave Systems

	8 Conclusion and Future Work
	8.1 Conclusion and Discussion
	8.1.1 Summary and Conclusion
	8.1.2 Discussion of the Concepts

	8.2 Future Work
	8.2.1 Extension of Single Components
	8.2.2 Further Extensions and Applications of the Entire Analysis of Manipulators

	A Further Information about the Vision Data
	B Parameter Descriptions
	B.1 Denavit Hartenberg Convention
	B.2 Z-Y-X Euler angles
	B.3 General Parameters

	Mathematical Notation
	List of Abbreviations
	Author's Publications
	References

