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Summary

Molecular self-diffusion is the result of different molecular dynamics. These include

both inter- and intramolecular motions, which take place on a large range of length

and time scales. It is most likely that these motions are not independent of each other

and can partially occur on the same time and length scale with similar activation

energies. It is hence quite challenging to describe the resulting transport mechanism

in molecular liquids.

The dynamics of unentangled, linear molecules were studied on the pico- to

nanosecond time scale to identify the prevailing dynamics leading to molecular self-

diffusion. In this context neutron scattering experiments and computer simulations

were performed to obtain a comprehensive picture. The neutron scattering data

proved to be eminently suitable to validate and improve the simulation procedure,

while the computational power available nowadays allows for the modeling of large

ensembles, making among others the formation and evaluation of correlated motions

in large volumes possible.

Quasielastic neutron scattering experiments were conducted at the time-of-flight

spectrometer TOFTOF at the Heinz Maier-Leibnitz Zentrum. By changing tem-

perature, observation time, and molecular weight of the sample molecules, different

motions were characterized. They could be attributed to local and global dynamics

at the crossover to self-diffusion. The experimentally measured spectra could be

reproduced with great accuracy by complementary state-of-the-art molecular dy-

namics (MD) simulations. The study of local bond reorientations reveals distinct

relaxation processes.

The molecular dynamics in n-alkane melts are mainly due to local bond rotations

and a rotational motion of the entire chains. The characteristic relaxation times of

these processes separate when longer alkane chains are studied, revealing a third clear

relaxation process occurring on intermediate time scales. By constructing special

correlation functions the respective dynamics could be characterized as a result of

intermolecular flow-like collective motions of many atoms in large clusters. The
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Summary

characteristic time scale of these motions is associated with the breakdown of the

Rouse theory, which fails to model the chain dynamics on time scales where these

flow-like motions are dominant. This observation disproves the concept of total

hydrodynamic screening in polymer melts, as stated by de Gennes. Moreover, first

comparisons show a great agreement of the present dynamics with the findings of

a recent theory accounting for viscoelastic and hydrodynamic interactions to model

the subdiffusive behavior of the molecular dynamics.
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Zusammenfassung

Molekulare Selbstdiffusion resultiert aus dem Zusammenspiel verschiedener inter-

und intramolekularer Bewegungen, die auf weiten Längen- und Zeitskalen statt-

finden. Es ist davon auszugehen, dass diese Bewegungen nicht unabhängig voneinan-

der stattfinden und die entsprechenden dynamischen Relaxationen teilweise durch

ähnliche Relaxationszeiten und Aktivierungsenergien gekennzeichnet sind. Dement-

sprechend ist die Beschreibung des Transportmechanismuses in molekularen Flüssig-

keiten eine große Herausforderung.

Um den Übergang zu molekularer Selbstdiffusion zu beschreiben, wurde die Dy-

namik linearer, nicht verschlaufter Moleküle auf einer Zeitskala im Piko- bis Nano-

sekundenbereich untersucht. Hierfür wurden umfassende Neutronenstreuexperi-

mente und Computersimulationen durchgeführt. Dabei konnten anhand der Neu-

tronenstreudaten die Simulationen mit hoher Genauigkeit validiert und verfeinert

werden. Daneben erlaubt es die heute verfügbare Rechenleistung große Ensembles

zu simulieren.

Quasielastische Neutronenstreuung wurde am Flugzeitspektrometer TOFTOF des

Heinz Maier-Leibnitz Zentrums durchgeführt. Durch Variation der Temperatur,

der Beobachtungszeit und des Molekulargewichts der Probenmoleküle konnten un-

terschiedliche Bewegungen ausgemacht und als lokale und globale Bewegungen am

Übergang zur molekularen Selbstdiffusion charakterisiert werden. Zusätzlich wurden

ausführliche moleküldynamische (MD) Simulationen durchgeführt. Dabei konnten

die mit Neutronenstreuung gemessenen Spektren hervorragend durch die Simula-

tionen reproduziert werden. Durch die Auswertung der Reorientierungen einzelner

Bindungen konnten eindeutige Relaxationsprozesse analysiert werden.

In Schmelzen aus n-Alkanen finden hauptsächlich Bewegungen der Diederwinkel

statt, die von einer Rotation des gesamten Moleküls begleitet werden. Die Rela-

xationszeiten der beiden Prozesse trennen sich deutlich, wenn längere Alkanketten

betrachtet werden. Dabei kann eine weitere Relaxation auf einer intermediären

Zeitskala beobachtet werden, die mittels einer speziellen Korrelationsfunktion als
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Zusammenfassung

Folge einer intermolekularen flussartigen Strömung vieler Atome beschrieben wer-

den kann. Diese Beobachtung kann direkt mit dem Scheitern des Rouse-Modells

verbunden werden. Die Vorhersagen des Rouse-Modells entsprechen erst wieder für

längeren Zeiten der beobachteten Kettendynamik, lange nachdem diese kollektiven

Flüsse nachgelassen haben. Dies widerlegt das Konzept der hydrodynamischen Ab-

schirmung, welches von de Gennes für Polymerschmelzen abgeleitet wurde. Weiter-

hin unterstützen die Ergebnisse die Vorhersagen eines jüngeren Ansatzes, in welchem

explizit viskoelastische und hydrodynamische Wechselwirkungen berücksichtigt wer-

den um die anomale subdiffusive Moleküldynamik zu beschreiben.
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1 Introduction

It is easy to imagine that all observed motions in molecular liquids depend on the

time scale on which the motions are detected. On very short times the single atoms

move ballistically until they feel the chemical bonds. Eventually, on a much longer

time scale, the whole molecules are self-diffusing through the melt. Now the fast,

local motions, which dominate the short-time dynamics, are hardly distinguishable,

as the atomic motion is mainly governed by the translation of the molecules. How-

ever, it is the local dynamics which eventually result in the global dynamics of the

molecules. The knowledge about these short-time motions is essential for under-

standing the mechanism of molecular self-diffusion. Its description is quite complex

due to the interplay of several inter- and intramolecular processes. In order to un-

derstand the onset of molecular self-diffusion, atomic motions must be studied on

short length and time scales.

In this thesis the dynamics of rather simple systems are studied: Melts of n-alkanes

and poly(ethylene oxide) (PEO). Alkanes are the basic component of biological

molecules, and PEO is also used in pharmaceutical industry. Understanding the

dynamics in these systems is relevant among others for the design of novel drug

delivery systems, where drug molecules (which are typically not water soluble) are

incorporated in e. g. a lipid emulsion [1–3]. In this context the knowledge about the

dynamics causing translational motion of the molecules is essential to control the

release of the drug molecules from the carrier.

The results presented in the framework of this thesis are mainly obtained utilizing

two methods: Time-of-flight (TOF) quasielastic neutron scattering (QENS) exper-

iments and molecular dynamics (MD) simulations. The TOF-QENS experiments

were performed at the neutron time-of-flight spectrometer TOFTOF at the new

German high-flux neutron source Forschungs-Neutronenquelle Heinz Maier-Leibnitz

(FRM II). This instrument allows for probing dynamics on the sub-pico- to nanosec-

onds time scale with high statistics, as will be demonstrated in this thesis. Since the

sample molecules have traveled a few angstroms to several nanometers during that
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1 Introduction

extended time frame, TOFTOF is perfectly suited for the study of the dynamics at

the onset of molecular self-diffusion.

Neutron scattering data allows to characterize molecular motions in reciprocal

space. To probe real space dynamics, MD simulations become increasingly pop-

ular. The continuous advance in computer power makes this technique more and

more feasible. The first programmable computer, the Z3 designed by Konrad Zuse in

1941, achieved 2 flop/s with a clock speed of approximately 5 Hz [4]. Since then com-

puting capacity has increased magnificently: The new supercomputer SuperMUC

of the Leibniz-Rechenzentrum, which started operation in summer 2012, reaches a

performance of 2.9 petaflop/s [5].

MD simulations are one of the methods of computational chemistry∗. They allow

for the study of the time-dependent behavior of systems, including vibrations or

Brownian motion, by integrating Newton’s equations of motion over time [7]. Large

ensembles containing more than 1 million atoms can be simulated with computation

speeds of the order of nanoseconds/day on supercomputers. A crucial point of MD

simulations is the validation of the properties under interest. Novel, unexpected

or strange simulation results can simply be wrong, e. g. a simulation artifact [8].

This option must be ruled out before any simulated phenomena can be accepted.

Otherwise the simulations are useless if they do not model the reality correctly to

some extend. The simulated dynamics presented in this thesis were validated by a

careful comparison of computed scattering spectra with experimental QENS data.

This method has proven to be very sensitive to small changes of simulation param-

eters, as already minor variations of the simulation procedure result in noticeable

deviations from the measured data. Hence neutron scattering experiments allow for

a fundamental verification of MD simulations.

Despite their simple structure, the transport mechanism in melts of linear medium-

sized molecules is not fully understood yet. On the one hand the long-range long-

time behavior, characterized by a diffusion coefficient D, is well known from pulsed-

field gradient nuclear magnetic resonance (PFG-NMR) for many n-alkanes (cf. e. g.

[1, 9–11]). On the other hand, the short-time dynamics of n-alkanes are not well

characterized yet. Typically the Rouse model [12] is used to describe the dynamics

of short polymer chains. However, this theory fails if the molecules are too short

to fulfill the Gaussian chain statistics which are already presupposed in the Rouse

model. In line with this, deviations from the Rouse predictions were reported in an

∗Computational chemistry implements theoretical chemistry into computer programs to solve
chemical problems [6].
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early QENS work on the dynamics of medium-sized alkanes in a polyethylene (PE)

melt [13].

It is conceivable that the dynamics at the onset of molecular self-diffusion cannot

be modeled by the coarse grained Rouse model alone, which describes internal mo-

tions by introducing orthogonal modes. Although this abstract model is capable of

predicting concrete motions such as global molecular rotation, specific intermolecu-

lar interactions are not explicitly taken into account. However, it is to be expected

that such intermolecular correlations prevail the atomic motions at the onset of

molecular self-diffusion.

Several QENS measurements of short- and medium-chain alkane melts can be

found in the literature [14–20], which are partially not consistent with PFG-NMR

results [1]. In a systematic QENS study of several different-sized n-alkanes Smuda

et al. tried to extract only the contribution due to molecular long-range diffusion

from the scattering functions [18]. For short n-alkanes at high temperatures the

same long-range diffusion coefficients were extracted as measured on longer time

scales with PFG-NMR. But with increasing chain length and decreasing temperature

the observed dynamics were too fast compared to the PFG-NMR results. Hence

the authors concluded that a crossover of several diffusive motions with similar

relaxation times is present on the picosecond time scale. A decoupling of these

dynamics is quite challenging, since they are not independent of each other and

have similar relaxation times [1].

Besides the sporadic number of QENS articles many MD simulation studies on

various alkane systems have been published (cf. e. g. [19, 21–31]). The simulations

present a detailed picture of the diffusion behavior, which was used to examine the

failure of the Rouse model [26, 28]. Some studies carefully validated their simula-

tions and investigated the short-time dynamics. Such combined neutron scattering

measurements and MD simulations of longer n-alkane chains showed that the single

broad relaxation process observed with QENS is not due to long-range diffusion, but

rather a combination of two local motions: Torsional librations and conformational

jumps [17, 29, 30]. With the information from MD simulations and the improved

data quality from modern neutron scattering instruments it was recently possible to

distinguish these motions as two separate relaxation processes also with QENS [18,

20]. The effect of these local conformational transitions on the long-range molecular

displacement is the subject of controversial discussion: Local chain dynamics are

reported to occur independent from the neighboring chains and without causing
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1 Introduction

large-scale chain reorientations [32], and on the contrary found to be closely linked

to long-range motion [20].

Most of the MD simulation studies quoted above simulated relatively small ensem-

bles, consisting of e. g. 40 C100H202 chains [29]. The corresponding C100H202 simula-

tion study presented in this thesis simulates significantly larger systems, containing

4096 C100H202 molecules, which allows for hydrodynamic interactions to fully develop

and makes an analysis of collective motions unimpeded of influences of boundary

effects possible.

Small- and medium-sized n-alkanes are known to be in an elongated conformation

[19, 24, 33], making the Rouse model inapplicable. But even longer polyethylene

chains, which should be ideal Rouse chains, cannot be described satisfactorily in

terms of the Rouse model [31]. It is mainly an unexpected subdiffusive behavior of

the whole molecules which occurs on time scales before long-range Fickean diffusion

dominates the overall dynamics. This effect has been observed in many simulations

and experimental works on polymer melts (cf. e. g. [31, 34–41]). More elaborated

theories have been developed to describe the deviations from the Rouse theory (cf.

e. g. [42–46] and discussions therein). These theories mainly try to model the global

motion of the molecules correctly. First comparisons with experimental data look

promising [39], underlining that taking cooperative dynamics into account is a step

in the right direction to describe the overall molecular dynamics. However, detailed

predictions on the local, short-time dynamics, are not explicitly made within the

framework of the advanced theories.

The concept of modeling cooperative dynamics in molecular melts is based on in-

sights from glass physics. In a glassy state, which is reached by approaching the glass

transition temperature of a viscous liquid through cooling, the molecules become lo-

calized i. e. trapped in their surroundings, and the system appears “frozen” [3]. In

this state the liquid is mainly dynamically heterogeneous (cf. e. g. [47–49]). The

time scale on which such dynamic correlations take place depends on the temper-

ature. Even at temperatures far above the glass transition temperature a glass

forming system may appear frozen, if adequately short observation times are cho-

sen [3]. Similarities between the correlated dynamics in a metallic glass former and

a polymer melt suggest that these collective features are barely affected by chain

connectivity [50] and suggests that this behavior is universal. The concept of collec-

tive dynamics is applied by many research groups to describe various phenomena,

as e. g. huddling dynamics of Emperor penguins [51] or motion in schools of fish [52].
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In the following chapter relevant models to describe molecular conformation and

dynamics will be outlined. Following the basics of neutron scattering and MD

simulations will be briefly described. The subsequent analysis of the QENS data

points out that different motions are observed by variation of observation time,

temperature and molecular weight of the sample. After characterizing these motions

with QENS a comprehensive MD simulation study of n-alkanes will be presented,

which was applied to identify the prevailing dynamics. In doing so the initial steps

of molecular self-diffusion are disentangled. It will thereby turn out that not only

single-chain dynamics take place. In particular intermolecular collective flow-like

motions of the atoms dominate the observed dynamics on the pico- to nanosecond

time scale.
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2 Molecular Liquids

Several models are available to describe static and dynamic properties of polymers

in solution and in the melt. The Rouse theory, which is commonly used as a starting

point to describe polymer dynamics, is based on the model of a Gaussian chain. In

this chapter the Gaussian chain model will be introduced before the Rouse model

and its characteristics will be explained. Finally a brief overview of recent theoretical

advancements to overcome the well-known shortcomings of the Rouse model will be

given.

2.1 Flexible and Semiflexible Chain Conformations

A molecule is formed by at least 2 covalently bonded atoms. The molecules studied

in this thesis are linear molecules, meaning that they are built up by small repeating

units interconnected to form a single backbone without sidechains and crosslinks.

The basic units are called monomers, with mass mn and position vector of their

center of mass ~rn(t). Polymers are composed of many monomers connected by

covalent bonds of length b0. Short polymers formed by only a few monomers are

called oligomers. The center-of-mass (com) of a molecule consisting of N monomers

is given by the position vector

~rcom(t) =

∑N
n=1mn~rn(t)∑N

n=1mn

. (2.1)

The displacement of the com coordinates is affected by both intra- and intermolec-

ular motions: At short times the vibrations of covalent bonds effect the behavior of

~rcom(t). Later the reorientation of smaller or larger intramolecular subgroups, as e. g.

a stretching of a folded molecule results in a displacement of ~rcom(t). Tracing the

com coordinates for a long time provides information on the translational motion

of the whole molecule. A rotational motion of a rodlike molecule, however, has no

effect on ~rcom(t).

11



2 Molecular Liquids

The global conformation of the molecule and its size is linked to the end-to-end

distance of the chain, which is the norm of the end-to-end vector given by

~ree(t) = ~rN(t)− ~r1(t). (2.2)

A rotational motions of whole molecules, which has no effect on the center-of-mass

translation, results in an unambiguous reorientation of the end-to-end vector.

In the so-called freely jointed (fj) chain model excluded volume interactions are

neglected, meaning that two monomers can occupy the same space. Furthermore

the covalent bond length is assumed to be constant and the bond angles exhibit no

restrictions. In this model the orientation of the backbone bonds along a polymer

chain is described by three-dimensional random walk statistics, and the resulting

mean end-to-end distance is zero. The second moment of the end-to-end distance is

given by 〈~r 2
ee〉fj = (N − 1)b2

0 for this model [53]. The brackets denote the ensemble

average of the value.

Real molecules are not fully flexible. The orientation of the bonds depends on

the chemical structure and hence shows preferred orientations. This causes a local

stiffness of the chain on local length scales. Taking this stiffness into consideration

leads to the characteristic ratio, which is defined as the ratio of the mean-square

end-to-end distance to the value of a freely-jointed chain [54]

C∞ =
〈~r 2

ee〉
(N − 1)b2

0

. (2.3)

Hence a long, not fully flexible molecule can again be treated as a coarse grained

freely-jointed chain formed by segments, which consist of several monomers. An

increasing rigidity of the chain results in a larger C∞, meaning that larger segments

are necessary to treat the stiff chain in terms of the freely-jointed chain model. The

length of a segment is b = b0

√
C∞.

In the framework of the freely-jointed chain model the molecular end-to-end dis-

tance distribution is given by a Gaussian. Taking the effective bond length b into

account results in

P (~ree) =

(
3

2πNb2

)3/2

exp

(
− 3~r 2

ee

2Nb2

)
. (2.4)

The Rouse model, which will be described next, starts from such a Gaussian chain.
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2.2 The Rouse Model

2.2 The Rouse Model

In 1948 Kargin and Slonimskii published a “bead and spring” model for the dynamics

of linear polymers [55]. The Kargin-Slonimskii model was only published in Russian

and hence did not make a strong international impact. In 1953 Prince Earl Rouse, Jr.

published his “theory of linear viscoelastic properties of dilute solutions of coiling

polymers” [12]. In this model Brownian fluctuating forces are included, which were

not considered in the model of Kargin and Slonimskii [56]. The theory has been

termed the Rouse model, and has turned out to be one of the most cited publica-

tions in polymer physics∗. It is the standard starting point for the description of

dynamics in unentangled polymer melts. For entangled chains the reptation model

of de Gennes applies [57]. Since the molecules studied in this thesis are unentangled,

reptation will not be further considered.

In the Rouse model the molecule chain is build up of so-called subchains, or seg-

ments, forming a Gaussian chain. The segments themselves contain several chemical

monomers, as described before. These beads are connected by entropic springs and

random forces model thermal fluctuations. In the Rouse model the length ` of the

springs is again described by a Gaussian as

P (~̀) =

(
3

2π`2
0

)3/2

exp

(
−3~̀ 2

2`2
0

)
, (2.5)

with `2
0 = 〈`2〉 [58]. This coarse-graining of the molecule is illustrated in figure 2.1.

Figure 2.1: Coarse-graining of the molecule. The segments at position Rn(t) are
connected by springs, with a Gaussian distribution of length ` and a spring constant
k = 3kBT/`

2.

∗Cited more than 2700 times (02/13).
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2 Molecular Liquids

In the Rouse model excluded volume interactions and explicit hydrodynamic inter-

actions are disregarded [59]. Only neighboring intramolecular segments, i. e. neigh-

boring segments of the same molecule interact with each other. The motion of bead

n is described by the Langevin equation of the form

ζ
d~Rn(t)

dt
= − dV

d~Rn(t)
+ ~fn(t). (2.6)

In this equation ~fn(t) denotes a stochastic force reflecting thermal fluctuations,

which includes a friction coefficient ζ representing a background friction due to

the surrounding chains [37]. The entropic force on a segment is described by the

potential V , which models the conformational energy for a Gaussian chain of beads

connected with harmonic springs [60]

V =
3kBT

2`2

N∑
n=2

(
~Rn(t)− ~Rn−1(t)

)2

=
3kBT

2`2
Anm ~Rn(t)~Rm(t), (2.7)

using Einstein’s notation with the so-called connectivity matrix or adjacent matrix

[61, 62]

A = (Anm) =



1 −1

−1 2 −1 0

−1 2 −1
. . . . . . . . .

−1 2 −1

0 −1 2 −1

−1 1


. (2.8)

This matrix is symmetric and its diagonal elements Aii describe the number of bonds

or springs connected to the ith bead. The off-diagonal elements Aij are −1 in case

bead i and j are connected, or zero otherwise.

The stochastic force ~fn(t) is defined as〈
~fn(t)

〉
= 0,

〈
fn,α(t)fm,β(t′)

〉
= 2kBTζδnmδαβδ(t− t′), (2.9)

with the Cartesian components α, β.

14



2.2 The Rouse Model

For internal beads the Langevin equation becomes

ζ
d~Rn(t)

dt
= −3kBT

`2

(
2~Rn(t)− ~Rn+1(t) − ~Rn−1(t)

)
+ ~fn(t). (2.10)

For the beads at the ends of the chain (n = 1, N) the segment motion is assumed

as

ζ
d~R1(t)

dt
= −3kBT

`2

(
~R1(t)− ~R2(t)

)
+ ~f1(t), (2.11a)

ζ
d~RN(t)

dt
= −3kBT

`2

(
~RN(t)− ~RN−1(t)

)
+ ~fN(t). (2.11b)

The above equations 2.10 and 2.11 can be rewritten using the connectivity matrix

to obtain

ζ
d~Rn(t)

dt
= −3kBT

`2

N∑
m=1

Anm ~Rm(t) + ~fn(t). (2.12)

This expression describes a Brownian motion of coupled oscillators [59].

Normal Coordinates Equation 2.12 can be analytically solved by multiplying
~Rn(t) with a matrix consisting of the eigenvectors of A [60]. As a result the so-

called normal coordinates ~Xp(t), which are eventually the Fourier-transformed real

space coordinates, are introduced as [40, 63]

~Xp(t) =
1

N

N∑
n=1

cos

[
πp

N

(
n− 1

2

)]
~Rn(t). (2.13)

By this approach the motion of the molecule is decomposed into independent modes

p = 0, 1, 2, ..., (N -1). The inverse transformation is

~Rn(t) = ~X0(t) + 2
N∑
p=1

~Xp(t) cos

[
πp

N

(
n− 1

2

)]
, (2.14)

which is the linear combination of all orthogonal, i. e. independent solutions of equa-

tion 2.12.

The normal coordinate of the zeroth mode ~Xp=0(t) corresponds to the center-

of-mass (com) position of the chain. With increasing mode number more local

dynamics are described. The end-to-end vector of the chain can be expressed as

−4 ·
∑

podd
~Xp(t), summing only over odd mode numbers p [59].
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2 Molecular Liquids

Using the normal coordinates ~Xp(t), the Langevin equation becomes

ζp
∂ ~Xp(t)

∂t
= −kp ~Xp(t) + ~fp(t), (2.15)

with the transformed spring constant kp, friction coefficient ζp and stochastic force

fp(t) similar to definition 2.9

kp = 8Nk sin2
( pπ

2N

)
≈
p�N

8N
3kBT

`2

p2π2

4N2
=

6π2kBT

N`2
p2 (2.16)

ζp=0 = Nζ, ζp>0 = 2Nζ (2.17)〈
fp,α(t)

〉
= 0,

〈
fp,α(t)fq,β(t′)

〉
= 2kBTζpδpqδαβδ(t− t′). (2.18)

The approximation sin(pπ/(2N)) ≈ pπ/(2N) is valid if N is large and allows for a

simplified study of the lower modes†. The spectrum of relaxation times τp is given

by kp and ζp through

τp =
ζp
kp

=
ζ`2

12kBT sin2
(
pπ
2N

) ≈
p�N

ζN2`2

3π2kBTp2
=

N2

Wπ2p2
∼ p−2, (2.19)

with the elementary Rouse rate W = k/ζ. The longest time in the relaxation

spectrum τp=1 is called the Rouse time τR, while τp=N−1 corresponds to the fastest

relaxation time in terms of the Rouse model.

The dynamics of the chain are now described by time correlation functions of the

normal coordinates as [58]〈
~Xp(t) ~Xp(0)

〉
=

2kBT

Nζ
t p = 0, (2.20)〈

~Xp(t) ~Xp(0)
〉

=
kBT

kp
exp

(
− t

τp

)
. p > 0. (2.21)

Consequently the com (p = 0) motion is always freely diffusive, since the dynamics

modeled with equation 2.20 scale linear with time [59]. The amplitudes of the normal

coordinates are given by 〈
~Xp(0) ~Xp(0)

〉
=

N`2

6π2p2
. (2.22)

†The error of this approximation is less 1 % already for N = 9 [60].
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2.2 The Rouse Model

They are independent of temperature and scale with p−2, just as the relaxation

time τp (compare eq. 2.19). In this thesis the validity of the Rouse model will be

analyzed by calculating the Rouse correlators (p > 0), defined as [58]

Φp =

〈
~Xp(t) ~Xp(0)

〉
〈
~X2
p (0)

〉 . (2.23)

Rouse-MSD The mean-square displacement (MSD) is a measure for the average

distance a particle has traveled during a certain time span. The corresponding

expression is obtained by back-transforming the normal coordinates into real-space,

resulting in [58]

〈
R2
n(t)

〉
= 6DRt+

4N`2

π2

N−1∑
p=1

1

p2
cos2

(pπn
N

)[
1− exp

(
− p

2

τR

t

)]
(2.24)

≈
large p

〈
R2

R(t)
〉

= 6DRt+ 2`2

(
3kBT

πζ`2
t

)1/2

= 6DRt+

(
4W`4

π
t

)1/2

, (2.25)

with the Rouse diffusion coefficient

DR =

〈(
~X0(t)− ~X0(0)

)2
〉

(6t)−1 = kBTN
−1ζ−1. (2.26)

The first summand scaling linear with time describes the center-of-mass self-diffusi-

vity. This term dominates the MSD on a long time scale. In the approximation of

large mode numbers p the segmental MSD increases with
√
t in the Rouse regime

(t < τR).
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2 Molecular Liquids

2.3 Hydrodynamic Interactions

The Rouse model described before was developed to describe the dynamics in un-

entangled polymer melts, neglecting explicit hydrodynamic interactions between

monomers. The diffusion coefficient scales with the length of the molecule as

D ∝ N−1 (cf. eq. 2.26). For polymer chains in a solvent hydrodynamic interac-

tions must be included, resulting in a D ∝ N−1/2 scaling in the so-called Zimm

model [59, 64]. This scaling results from the assumption that the molecule drags the

neighboring solvent molecules.

The theoretical predictions for the dilute limit [59] have been confirmed by both

experiments and computer simulations (see discussion in [65]). For finite concentra-

tions, however, the dynamics become more complex due to the interplay of excluded-

volume interactions, hydrodynamic interactions and entanglement [65]. For semidi-

lute solutions de Gennes derived that hydrodynamic interactions are more and more

screened with increasing concentrations, until they are finally screened out com-

pletely in the limit of the Rouse model [66]. The interactions between a polymer

and the surrounding solvent is screened by the presence of further polymer chains,

which are treated as static and absorb the momentum passed from the first poly-

mer to its surroundings [67]. A total screening then results in the smaller diffusion

coefficient D ∝ N−1 in the Rouse model [68].

For the high concentration limit, i. e. for polymer melts, this picture becomes

questionable, since the momentum of a polymer should somehow be passed to its

neighbors. A serious deviation from the classical Rouse model is the presence of

a subdiffusive behavior of the center-of-mass (com) motions on time scales shorter

than the Rouse time. The mean-square displacement (MSD) of the whole molecules

scales with t<1 [34, 35, 37, 39, 40, 69], contrary to the linear scaling as predicted by

the Rouse model (see first term in eq. 2.25).

Different theories have been developed to account for the subdiffusive behavior of

the molecules. In an approach by Guenza true com self-diffusion sets in after the

whole molecule has left its old place, and thereby creating a vacancy [42, 43]. The

resulting potential then accounts for the penetration of other chains into the first

molecule [70]. However, the numerical solution of this theory is hardly applicable [71].

In a recent analytical theory Farago et al. explicitly considered viscoelastic prop-

erties of the polymers in a melt [44–46]. Here the authors suggest that the relative

motion of the individual chains cause transverse collective modes, resulting in de-
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2.3 Hydrodynamic Interactions

viations from the Rouse predictions. In this context viscoelastic hydrodynamic

interactions (VHIs) are not screened, but result in a transient collective flow. Two

time regions can be determined: At very short times the momentum of an atom is

spread along the molecular chain, and at longer times the momentum is passed to

the surrounding chains. This results in a crossover of the center-of-mass velocity

autocorrelation function (VAF) from positive to negative values. In the first part,

the positive VAF scales as −N−1t−5/4. For longer times the behavior is predicted

as −N−1/2t−3/2.

Farago et al. derived an expression for the com MSD incorporating the effect of

VHIs [46]

〈r2(t)〉VHI
com ' 6`2

[
π

12

Wt

N
+

16

(3π)3/2

1

n`3

(
Wt

N

)1/2
]
, (2.27)

with an microscopic timescale W and the monomer number density n. Besides the

linear Fickean scaling in the first summand, a t1/2-term appears, which is due to

the VHIs. The effective apparent scaling of t'3/4 then corresponds to the observed

subdiffusive behavior.

A second model by Farago et al. is a density-based mode-coupling theory approach

to catch the origin of the subdiffusive com motion. This approach is based on

interactions between chains, causing longitudinal collective modes related to density

fluctuations. This model also predicts a crossover of the com VAF, with a short time

scaling of −N−1t−5/4, and −t−5/4 for longer times. Note that the long time scaling

is now independent of chain length. Hence a comparison of the long-time tails of

the com VAF can be used to distinguish between the two theories.

Using a density-based mode-coupling theory Farago et al. obtained the following

expression for the com MSD [72]

〈r2(t)〉df
com ' 6

`2Wt

N

[
1 + 0.752

(Wt)−1/4

n`3

]
. (2.28)

The second summand in this equation again leads to a t3/4 scaling of the MSD.

However, this correction is relatively weak in contrast to equation 2.27.

The theories of Farago et al. are exact for very long, flexible and unentangled

chains. Their applicability to describe the dynamics of rather stiff molecules of

finite size will be tested in this thesis.
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3 Samples

In this thesis two different molecular structures were studied: Short polyethylene

chains (n-alkanes) and poly(ethylene oxide) (PEO). n-Alkanes are saturated hydro-

carbons with the chemical formula CnH2n+2. Their chemical structure is composed

of methanediyl and methyl end groups. Hexadecane (C16H34, >99 %), was purcha-

sed from Merck and used as received. Hectane (C100H202) was kindly provided by

D. Richter (Forschungszentrum Jülich). It was synthesized in this group by anionic

polymerization from a 1,4-polybutadiene parent and subsequent hydrogenation [31].

PEO has the chemical formula (C2H4O)nH2O. Its structure is similar to the one

of n-alkanes, with every third methanediyl group substituted by an oxygen atom

(cf. fig. 3.1). PEO was purchased from Sigma-Aldrich, with molecular weights similar

to the ones of the n-alkane samples, as listed in table 3.1.

(a) PE (b) PEO

Figure 3.1: Structural formulas of polyethylene (PE) and poly(ethylene oxide) (PEO).

Table 3.1: Molecular weights and melting temperatures [73] of the samples studied in
this thesis, as well as the water content of the PEO samples. The melting temperatures
of PEO and C16H34 were determined by differential scanning calorimetry (Perkin Elmer
DSC 8500, scan rate 1 K/min), while the melting point of the C100H202 was taken from
the literature [74].

n-Alkanes Mw (g/mol) Tm (K)

C16H34 226 291
C100H202 1405 388

PEO Mw (g/mol) Tm (K) wH2O

PEO200 206 236 0.11 %
PEO600 581 292 0.37 %
PEO1500 1521 321 0.13 %
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4 Neutron Scattering

Neutron scattering allows to probe the structure, dynamics and magnetic properties

of matter at length scales down to the sub-atomic range and on extended time

scales of about 1 fs to 1µs. This is due to the unique properties of neutrons [75]: (i)

Neutrons are uncharged and therefore show no electric interactions with the sample.

Hence, in contrast to electrons, protons and electromagnetic waves, neutrons can

easily penetrate deeply into the sample where they scatter only at the nuclei by

nuclear forces. (ii) Cold and thermal neutrons have energies in the meV-range,

which is of the same order as typical potentials for atomic motions in condensed

matter. (iii) Due to their mass (mn = 1.675 · 10−27 kg), the wavelength of cold

and thermal neutrons are in the range of 1–20 Å, covering length scales on the

order of interatomic distances. X-rays with similar wavelengths have much higher

energies on the keV scale. (iv) Because the neutron has a magnetic moment, it can

interact with the magnetic field of unpaired electrons, allowing for an analysis of

magnetic properties as e. g. the energies of magnetic excitations. Since the magnetic

interaction is negligible to the nuclear interaction and also of no concern for the

systems studied in this thesis, it will not be further considered.

In the following a short outline of the theory of neutron scattering will be given.

More detailed explanations can be found in the literature (see [75, 76], amongst

others).

4.1 Theory of Neutron Scattering

In a typical scattering experiments two basic quantities are measured:

• The energy transfer ~(ωf−ωi) = ~ω, which is defined as the difference between

the final (Ef = ~ωf ) and initial (Ei = ~ωi) energies of the neutron.
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4 Neutron Scattering

• The momentum transfer ∆~p = ~(~kf − ~ki) = ~ ~Q, where ~kf and ~ki are the

corresponding wave vectors of the neutron. ~Q denotes the scattering vector

and its modulus is given by

Q = | ~Q| =
√
|~ki|2 + |~kf |2 − 2|~ki||~kf | cos(2θ) (4.1a)

elastic
=

scattering

4π

λ
sin

(
2θ

2

)
, (4.1b)

with the scattering angle 2θ. The last line only applies to elastic scattering.

The interaction of a neutron with a nucleus occurs via nuclear and magnetic

forces. Since the range of the nuclear interaction (in the order of femtometers) is

very short compared to the wavelength of a neutron (Å), the nuclei can be treated

as point-like [76]. In this way the interaction of a neutron with a nucleus at distance

~r can be described by the Fermi pseudopotential

V (~r) =
2π~2

mn

bδ(~r), (4.2)

with the scattering length b. This parameter can be complex and its real part can

be positive or negative, corresponding to attractive or repulsive interaction, respec-

tively. The imaginary part describes the probability that the neutron is absorbed

by the nucleus. The scattering length depends irregularly on the atomic species and

isotope, as well as on the spin state of the nucleus-neutron system. Since there is

usually a mix of scattering lengths present, the total scattering can be divided into

coherent and incoherent scattering. The first one corresponds to the mean scattering

of all scatterers, whereas the latter contributes the deviation of the actual scattering

lengths of the scatterers as [77]

bcoh = b, (4.3a)

binc =

√
b2 − b2

. (4.3b)

The scattering cross section is defined as

σ = 4πb2. (4.4)

Table 4.1 lists the cross sections for the elements that are relevant for this thesis.

The double differential cross section is defined as the number of neutrons scattered

into a solid angle dΩ per second with a final energy energy between Ef and Ef+dEf ,
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4.1 Theory of Neutron Scattering

Table 4.1: Coherent and incoherent scattering cross sections and absorption cross section
for 2200 m/s neutrons [78].

Element/Isotope σcoh σinc σabs

1
1H 1.7583 80.27 0.3326
2
1H 5.592 2.05 0.000519

1H 1.7568 80.26 0.3326
3He 4.42 1.6 5333 ±7

2C 5.551 0.001 0.0035

8O 4.232 0.0008 0.00019

13Al 1.495 0.0082 0.231

14Si 2.163 0.004 0.171

18Ar 0.458 0.225 0.675

23V 0.0184 5.08 5.08

normalized to the incoming flux, the solid angle element dΩ and the energy range

dEf [75]. Considering only nuclear scattering, the double differential cross section

can be written in the form [75, 77]

d2σ

dΩdEf
=
kf
ki

1

2π~
∑
l,m

blbm

∞∫
−∞

〈
ei
~Q~rl(t)ei

~Q~rm(0)
〉
e−iωtdt, (4.5)

where kf and ki are the moduli of the wave vectors, ~ri(t) is the position of a scatterer i

at time t and the brackets denote the ensemble average over all t [3]. Assuming that

the distribution of the scattering lengths b among the nuclei is random, the average

of the scattering lengths can be subdivided into

blbm =

b2 for l = m

b
2

for l 6= m.
(4.6)

Using these expressions together with equation 4.4, one can rewrite equation 4.5 as

d2σ

dΩdEf
=
kf
ki

1

2π~
b

2∑
l,m

∞∫
−∞

... dt+
kf
ki

1

2π~
(b2 − b2

)
∑
l

∞∫
−∞

... dt (4.7)

=

(
d2σ

dΩdEf

)
coh

+

(
d2σ

dΩdEf

)
inc

(4.8)

=
kf
ki

N

4π

(
σcohScoh( ~Q, ω) + σincSinc( ~Q, ω)

)
, (4.9)
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4 Neutron Scattering

with the number of scattering nuclei N and introducing the scattering functions

S( ~Q, ω). The coherent part depends on both the time dependent positions of the

same nucleus as well as of different nuclei. Hence it describes interference effects

and represents both the self and pair correlation. The incoherent term however

describes only the self correlation [77]. The scattering functions, also called dynamic

structure factors, contain information about both the structure and the dynamics

of the sample [79]. They are the time-Fourier transforms (FT )

S( ~Q, ω) = FT [I(Q, t)] =
1

2π~

∞∫
−∞

I(Q, t)eiωtdt (4.10)

of the so-called intermediate scattering functions, which are defined as [76]

Icoh( ~Q, t) =
1

N

∑
l,m

〈
ei
~Q~rl(t)e−i

~Q~rm(0)
〉

and (4.11a)

Iinc( ~Q, t) =
1

N

∑
l

〈
ei
~Q~rl(t)e−i

~Q~rl(0)
〉
. (4.11b)

They sum up to the total intermediate scattering function I( ~Q, t). This function

typically starts at I( ~Q, 0) = 1 and decays in time, if decorrelation takes place. A

total decorrelation yields I( ~Q, t) = 0. By introducing a particle-density operator

and its Fourier transform as

ρ(~r, t) =
∑
i

δ (~r − ~ri (t))

ρ( ~Q, t) =
∑
i

ei
~Q~ri(t),

(4.12)

the intermediate scattering function can be expressed in terms of a density-density

correlation function as

I( ~Q, t) =
1

N

〈
ρ(− ~Q, 0)ρ( ~Q, t)

〉
. (4.13)

This expression will be used to calculate intermediate scattering functions from the

computer simulations, vide infra.

A Fourier transformation in space of the intermediate scattering function leads to

the van Hove correlation function [79]

G(~r, t) =
1

(2π)3

∫
I( ~Q, t)e−i

~Qtd ~Q. (4.14)
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4.1 Theory of Neutron Scattering

The space-time correlation functions are defined as [76]

Gpair(~r, t) =
1

N

N∑
l,m

∫
〈δ (~r′ − ~rl(t)) δ (~r − ~r′ + ~rm(0))〉 d~r′, (4.15a)

Gself(~r, t) =
1

N

N∑
l

∫
〈δ (~r′ − ~rl(t)) δ (~r − ~r′ + ~rl(0))〉 d~r′. (4.15b)

These functions contain the Heisenberg operators ~ri(t), which do not communte. In

the classical approximation, the ~ri(t) can simply be regarded as the position vectors.

Now the integration can be carried out resulting in [76]

Gcl
pair(~r, t) =

1

N

N∑
l,m

〈δ (~r − ~rl(t) + ~rm(0))〉 , (4.16a)

Gcl
self(~r, t) =

1

N

N∑
l

〈δ (~r − ~rl(t) + ~rl(0))〉 . (4.16b)

Assuming that all nuclei are equivalent allows for the following interpretation of

the correlation functions: The pair correlation function Gcl
pair(~r, t) gives the proba-

bility density of finding a particle at position ~r(t) at time t if some particle was at

the origin at time t = 0. Likewise, the self correlation function Gcl
self(~r, t) gives the

probability of finding a particle at ~r(t) given that this particle was at the origin at

time t = 0 [3, 80].

The transformation of the different functions described above can be summarized

as

Gpair(~r, t)
space−FT

=⇒ Icoh( ~Q, t)
time−FT

=⇒ Scoh( ~Q, ω), (4.17a)

Gself(~r, t)
space−FT

=⇒ Iinc( ~Q, t)
time−FT

=⇒ Sinc( ~Q, ω). (4.17b)

The dimensions of S( ~Q, ω) and G(~r, t) are (energy)−1 and (volume)−1, respec-

tively, while S( ~Q, t) is dimensionless. Since the systems studied in this thesis behave

as ideally powder samples, meaning that they are statistically isotropic under the

experimental conditions used, the absolute values r,Q will be used instead of ~r, ~Q

in the following.
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4 Neutron Scattering

Dynamics

Motions of single particles are expressed by the self-part of the van Hove correlation

function. At t = 0 this function is a delta function, since all particles are initially at

the origin of their individual coordinate system. Evolving in time, Gself(r, t) will start

to smear out, but the integration over space will always yield unity, guaranteeing

particle number conservation.

Assuming that the particles perform a random walk allows for the approximation

of Gself(r, t) by a Gaussian function [81]

GGauss
self (r, t) =

(
3

2π 〈r2(t)〉

)3/2

exp

(
− 3r2

2 〈r2(t)〉

)
, (4.18)

introducing the mean-square displacement (MSD) 〈r2(t)〉 = 〈(r(t) − r(0))2〉. With

the diffusion coefficient D and the MSD 〈r2(t)〉 = 6Dt which, according to Einstein’s

theory, describes a Brownian motion, one obtains

GGauss
self (r, t) = (4πDt)−3/2 exp

[
− r2

4Dt

]
. (4.19)

Fourier transforming leads to

IGauss
inc (Q, t) = exp

[
−DQ2t

]
, (4.20)

SGauss
inc (Q,ω) =

1

~π
DQ2

ω2 + (DQ2)2
. (4.21)

Hence long-range Fickean diffusive motion leads to a single exponential decay of

the intermediate scattering function IGauss
inc (Q, t). The scattering function 4.21 is a

Lorentzian with the half width at half maximum (HWHM) Γ = DQ2. Therefore

observing a Q2-dependence of the HWHM of the measured scattering functions indi-

cates diffusive motion. However, this diffusive behavior must not straightforwardly

be linked to molecular self-diffusion. It will be pointed out in this thesis that for

molecular liquids a Q2-scaling can be identified on the whole pico- to nanosecond

time scale. But especially at short times molecular self-diffusion is not the domi-

nant motion. Hence the diffusion coefficient D characterizing this short-time motion

does not have to be the same as the long-time diffusion coefficient obtained with

e. g. PFG-NMR, but must be treated as an apparent diffusion coefficient Da.

The above expressions are only true if the Gaussian approximation is fulfilled.

Otherwise higher-order corrections must be included into the incoherent intermedi-
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4.1 Theory of Neutron Scattering

ate scattering function Iinc(t). Expanding it to higher orders of Q gives a modified

function which reads as [82, 83]

Iinc(Q, t) = exp

{
−〈r

2(t)〉Q2

6
+ α2(t)

1

2

(
〈r2(t)〉Q2

6

)2

+ ...

}
. (4.22)

When terminating the expansion after the second term α2(t) is called the non-

Gaussian parameter. It is defined as a function of the second and fourth moments

of the particle displacement by

α2(t) =
〈r4(t)〉

(1 + 2/d) 〈r2(t)〉2
− 1 (4.23)

with the spatial dimension d. This parameter gives the time dependence the devi-

ation of the self part of the van Hove correlation function from a Gaussian. The

origin of the non-Gaussian behavior can be manifold. Therefore the parameter α2(t)

can be among others considered to find dynamic heterogeneous dynamics [84, 85]

and characterize cage motion [86], or used as an order parameter for the glass tran-

sition [87].

Statics

The van Hove function at t = 0, G(r, 0), can be written as

G(r, 0) = δ(r) + g(r) (4.24)

by introducing the pair distribution function g(r), which is the radial distribution

function for isotropic systems [88, 89]. The transformation of G(r, 0) leads to I(Q, 0)

and defines the static structure factor as the zeroth energy moment of the scattering

function [75]

S(Q) := Scoh(Q) =

∞∫
−∞

Scoh(Q,ω)dω

=
1

N

∑
l,m

〈
eiQ(rl−rm)

〉
= 1 +

∫
g(r)eiQrdr.

(4.25)

Since only the coherent part contains the structural information and the incoherent

part only adds a constant background, Scoh(Q) will be denoted S(Q).
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4 Neutron Scattering

Assuming that the incoherent neutron scattering is only due to the disorder of the

spins, the spin state of the neutron is flipped with a probability of 2/3. Coherent

scattering however does not change the spin of the scattered neutron [90, 91]. Hence

the coherent and incoherent differential cross sections can be expressed through the

scattering with (SF) and without (NSF) spin-flip through(
dσ

dΩ

)
inc

=
3

2

(
dσ

dΩ

)
SF

(4.26a)(
dσ

dΩ

)
coh

=

(
dσ

dΩ

)
NSF

− 1

2

(
dσ

dΩ

)
SF

. (4.26b)

Using neutron polarization analysis these coherent and incoherent scattering con-

tributions can be determined.
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4.2 Description of the Instruments

4.2 Description of the Instruments

The time-of-flight Spectrometer TOFTOF

The direct geometry neutron spectrometer TOFTOF [92, 93] of the Technische Uni-

versität München at the FRM II selects the incident energy of the neutrons and

determines their final energy both by the time-of-flight (TOF) method. The “S”-

shaped neutron guide filters out fast neutrons with wavelengths of λ < 1.38 Å and

gamma rays from the neutron source. The working principle of TOFTOF is sketched

in figure 4.1.

The primary spectrometer consists of a multi-chopper system, which selects a

certain energy range out of the white neutron beam. Each of the 7 chopper disks is

made of carbon fibre composites and coated with neutron-absorbing 10B. The first

two counterrotating choppers (pulsing choppers) slice short symmetric pulses out

of the continuous, white neutron beam. Since the pulses are polyenergetic, they

spread along the way to the last chopper pair (monochromating choppers). These

select an almost monoenergetic range of wavelengths out of the broadened pulse.

The third and fourth chopper (higher order removal choppers) filter out neutrons

which have higher order wavelengths and therefore could pass the chopper system

with an unwanted energy. In order to ensure that the scattered neutrons can be

detected before the neutrons from the next pulse arrive, the fifth chopper (frame

Figure 4.1: Schematic working principle of TOFTOF: The white neutron beam n is
pulsed at choppers no. 1 & 2. The pulse broadens, and after a distance of 10 m choppers
no. 6 & 7 select neutrons with a defined energy. Also shown are the higher order removal
choppers no. 3 & 4, as well as the frame overlap chopper no. 5. After scattering at the
sample the neutron energy is determined by the time the neutron needs to reach the
detectors at a distance of 4 m, covering scattering angles from 7.5◦ to 140◦. The colors
represent the neutrons energy, schematically,
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4 Neutron Scattering

overlap chopper) can be adjusted in its rotation frequency such that only every ith

pulse is allowed to pass the chopper system.

The secondary spectrometer contains a variable sample environment and approx-

imately 1000 3He detectors (active area: 40 × 3 cm, thickness: 1.5 cm), which are

positioned tangential to the Debye-Scherrer-cones and also tangential to a virtual

spherical surface with a radius of 4 m around the sample position. The detectors

cover an angular range from 7.5◦ to 140◦. The energy of the neutrons is determined

by the time-of-flight from the sample to the detectors where they are counted with

a gas filled counting detector on the basis of a (n,p)-reaction with 3He [94]. The vol-

ume between the sample and the detectors is filled with Argon, to reduce scattering

from air.

The energy resolution of the instrument is mainly given by the quality of the

selection of monoenergetic neutrons in the primary spectrometer. It can be tuned

continuously by changing the chopper speed and selecting a different wavelength of

the incident neutrons, respectively. Because of Heisenberg’s uncertainty principle

(∆E ·∆t ≥ ~/2) [95] a good energy resolution, obtained by a precise selection of

the incident neutron wave length, corresponds to a long neutron wave packet and

vice versa. Long neutron wave packets take more time to run over the sample,

hence they can interact with the nuclei during a longer time. At TOFTOF these

observation times tobs can be set in the pico- to nanosecond range by adjusting the

energy resolution. The observation times correspond to the decay of the correlation

function of a static scatterer to 10 % of its initial value [19].

The Diffuse Neutron Scattering Instrument DNS

The instrument DNS of the Jülich Centre for Neutron Science at the FRM II allows

for a simultaneous separation of the coherent, incoherent and magnetic scattering

contributions by means of polarization analysis [96–99]. A sketch of DNS is illus-

trated in figure 4.2.

Out of the white neutron beam from the cold source a monochromatic neutron

beam is prepared via Bragg reflection from the (002)-plane of a monochromator

crystal made of pyrolytic graphite (PG). By rotating the whole instrument around

the monochromator, wavelengths in the range from 2.4 to 6.0 Å can be selected.

The beam is polarized using Schärpf bender-type supermirrors (m=3), with a po-

larization rate of nearly 96 % [97]. Before scattering at the sample, a Mezei-type
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Figure 4.2: Schematic drawing of DNS. A monocromatic beam is prepared out of the
white neutron beam n using a monochromator crystal (PG(002), 2.5 × 2.5 cm2, lattice
spacing d = 3.355 Å) The wavelength of the neutrons can be adjusted by rotating the
whole instrument around the monochromator crystal.

π spin-flipper is installed to reverse the polarization of the neutron beam for spin-

flip and non-spin-flip measurements.

To measure the polarization after the scattering, 24 m=3 Schärpf bender-type

supermirrors are mounted in front of 24 3He detector tubes (15 cm long and 2.54 cm

in diameter), placed in 5◦-steps. The whole range of scattering angles from 0◦ to 150◦

can be covered with 1◦ angular resolution by stepwise moving the whole detector

array. Additionally 128 position sensitive 3He detectors (100 cm long and 1.27 cm in

diameter) are installed opposite of the polarization analyzers (see fig. 4.2), covering

an angular range from 0◦ to 135◦.

The chopper system, which is included in figure 4.2, is planned in order to filter

out neutrons with higher-order wavelengths and thus to improve the quality of the

data. In combination with the position sensitive detectors DNS will then allow for

spectroscopy alongside of polarization analysis. However during the beam time at

DNS the chopper system was not in operation yet.

In a first measurement one determines the amount of neutrons which have not

performed a spin flip at the sample, and therefore arrive with an unchanged po-

larization. In a second measurement the π spin-flipper is used. Now only neutrons

that have changed their polarization during the scattering are detected. Using equa-

tions 4.26, the coherent and incoherent scattering contributions can be separated.
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4.3 Experimental Setups and Data Treatment

Measurements were performed both at the time-of-flight spectrometer TOFTOF

and at the diffuse neutron scattering instrument DNS. The conducted experiments,

which are described in the following, are summarized in table 4.2.

Table 4.2: Temperature ranges measured at TOFTOF (left table) and DNS (right ta-
ble). Also listed are the instrumental resolutions used for the measurements at TOFTOF,
corresponding to tabular 4.3.

TOFTOF T ∆E

C16H34 283 – 443 K 23µeV – 3 meV
C100H202 393 – 509 K 2, 23µeV – 3 meV
PEO200 238 – 373 K 4µeV

293 – 383 K 55µeV – 1.5 meV
PEO600 303 – 403 K 55µeV – 1.5 meV
PEO1500 343 – 403 K 55µeV – 1.5 meV

DNS T

C16H34 293 – 403 K
C100H202 393 – 453 K

Neutron Spectroscopy at TOFTOF

Quasielastic neutron scattering (QENS) experiments were performed at the time-

of-flight spectrometer TOFTOF. By adjusting the instrumental resolution of the

instrument, the observation times can be varied in the entire pico- to nanosecond

time scale. The corresponding chopper settings used for the measurements are given

in table 4.3. With these settings a broad Q-range from 0.05 Å−1 up to 5.9 Å−1 is

accessible.

For all measurements except the high resolution (2 and 4µeV) measurements

the samples were filled in thin-walled aluminum hollow cylinders (diameter 23 mm,

height 65 mm) with a sample layer thickness of 0.1 mm [100]. The resulting amount

of the sample was 0.5 ml. For the 2 and 4µeV measurement a flat aluminum sample

container (width 30 mm, height 70 mm) with a gap of 1 mm was used. In order to

decrease the amount of sample an aluminum plate (thickness 0.5 mm) was placed in

the sample container. The resulting sample volume was approximately 1 ml. The

surface normal of the flat container was oriented to a scattering angle of 45◦ or 135◦,

hence the container is shielding the detectors at around 135◦ or 45◦, respectively. The

shielded angular range was removed during the data reduction. The empty sample

holders were measured, too, to later correct for scattering from the container.
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The measurement time was varied to account for the reduced intensity at higher

instrumental resolutions. For the lower resolutions (∆E ≤ 55µeV) the samples

were measured for 1 h at each temperature, while the 23 and 4µeV measurements

were performed for a minimum of 2 and 4 h, respectively. The signal rate with the

best resolution of 2µeV was a factor 100 lower than the signal rate of the lowest

resolution. To get reasonable statistics a measurement time of 12 h was chosen.

To correct for the detector efficiencies and determine the instrumental resolution

a measurement of a vanadium standard or the sample at low temperatures was

performed. The latter method was chosen for the 2µeV measurements of C100H202.

Chain correlation peaks, which emerge at Q ≈ 1.5Å−1, are not accessible with this

high resolution configuration, and an isotropic scattering of the sample is observed.

Most of the data reduction and evaluation was performed using the program

Frida1 [101]. Several errors are known to exist in Frida1 [3], which were taken into

account as far as practicable. The data reduction procedure was done as follows:

First the raw data N(2θ, tof) was normalized to the monitor counts. Following the

time-of-flight channels were converted to energy transfer, according to the descrip-

tion in [1]. To correct the detector sensitivities, the elastic line of the resolution

spectra was integrated and corrected with the Debye-Waller factor. Then the sam-

ple spectra were normalized for the detector efficiencies by dividing the spectra by

these numbers. Following a self-absorption correction using the Frida1 routine, the

Table 4.3: Chopper settings at TOFTOF for different instrumental resolutions ∆E (µeV),
corresponding to an effective observation time tobs: Chopper rotation frequency fch, inci-
dent wavelength λi and frame overlap ratio R. Additionally listed is the accessible Q-range
and the maximum energy transfer allowed for in the data treatment, as described in the
text.

∆E (µeV) tobs (ps) fch (rpm) λi (Å) R Q-range (Å−1) Emax (meV)

3000 1.1 6000 2 1 0.41 – 5.9 20
1500 2 12000 2 2 0.41 – 5.9 20
900 3.5 12000 2.4 2 0.34 – 4.94 8
450 6.8 12000 3 2 0.27 – 3.94 5
250 13.25 12000 3.6 3 0.23 – 3.28 3
150 19 12000 4.2 3 0.20 – 2.81 2
100 35 12000 5 4 0.16 – 2.36 2
55 50 12000 6 4 0.14 – 1.97 1.45
23 118 12000 8 5 0.10 – 1.48 1.26
4 900 16000 14 8 0.06 – 0.84 0.1
2 1200 14000 16 8 0.05 – 0.74 0.025
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Figure 4.3: C100H202 measured at T = 4 K (open symbols) and at T = 509 K (full
symbols) at Q = 0.2 Å−1 at TOFTOF, with an instrumental resolution of 2µeV. The low
temperature data characterizes the instrumental resolution, which can be described by a
Gaussian function (green solid line).

spectra S(2θ, ω) were rebinned to spectra of constant Q using the library sihl [102].

For the 2µeV and 4µeV data Q-steps of 0.01 Å−1 were used. The other data were

rebinned with Q-steps of 0.1 Å−1. Subsequently the spectra of the empty can were

subtracted from the spectra of the samples. The Q-ranges containing Bragg scatter-

ing from the aluminum sample holder were removed and the resulting spectra were

corrected for the detailed balance factor.

Figure 4.3 exemplarily illustrates S(Q,ω) measured for C100H202 at the highest

resolution of 2µeV at 4 K and 509 K, respectively. In the low temperature measure-

ment the quasielastic contribution to the measurement signal is negligible, as the

sample is eventually frozen. Hence the shape of the measured S(Q,ω) determines

the instrumental resolution. The scattering function of liquid C100H202 at 509 K is

broadened by scattering due to aperiodic, e. g. diffusive motions in the liquid.

Intermediate scattering functions were obtained by a numerical Fourier transfor-

mation of the data points with positive energy transfers 0 ≤ ~ω ≤ Emax, with the

maximum energy transfer Emax as listed in table 4.3. In order to improve the statis-

tics of the I(Q, t) obtained from the high resolution measurements (2 & 4µeV),

a numerical Fourier transformation was also performed on the data with negative

energy transfer by taking the absolute values |~ω|. This procedure is justified since
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the resolution function of TOFTOF is symmetric and can be approximated nicely

by a Gaussian [92], as demonstrated in figure 4.3. After the Fourier transforma-

tion the sample I(Q, t) were divided by the resolution functions to correct for the

instrumental resolution.

Neutron Diffraction at DNS

Neutron polarization analysis was performed at the diffuse neutron scattering in-

strument DNS. An incident neutron wavelength of λi = 4.2 Å was selected. Mea-

surements were performed at two positions of the detector bank. Hence 48 angles

from 7.5◦ to 125◦ were covered in angular steps of 2.5◦, resulting in a maximum Q

of 2.65 Å−1. The samples were measured either in the aluminum hollow cylinders

or flat sample containers, which were also used at TOFTOF. The flat cells were

oriented 40◦ to the incoming beam, the surface normal of the container pointing to

a scattering angle of 50◦.

The measurement time was 1 h for each detector bank position and each measure-

ment mode (SF: spin-flip and NSF: non-spin-flip), resulting in a total measurement

time of 4 h per sample temperature. Additionally the empty sample containers as

well as a “black” sample (absorbing 100 %, referred to as background measurement

in the following) were measured at room temperature.

The efficiency of the polarizers and the π-flipper, also referred to as the flipping

ratio R, was measured using a nickel-chromium-alloy, which is a spin coherent and

isotope incoherent scatterer (100 % NSF) [103]. This finite instrument flipping ratio

was determined by relating the NSF counts to SF counts [104] to be approximately

R ≈ 23.

Data reduction was carried out based on the program plot.py∗ [105], which is

the standard data handling software at DNS, and following the method applied

by Gaspar et al. [91]. The measured intensities N(2θ) were first normalized to the

monitor counts and converted to N(Q) according to equation 4.1b. This conversion

is only valid for the case of elastic scattering and will be discussed below. Following

the empty can and background measurements were subtracted, and the appropriate

∗The data reduction was not performed with plot.py solely, due to some doubtful parts in the
plot.py routine.
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self-absorption corrections was performed using the Frida1 routine [101]. The finite

instrument flipping ratio R was factored in as [91, 104]

NNSF,corr.(Q) = NNSF(Q) +
1

R− 1
(NNSF(Q)−NSF(Q)) (4.27a)

NSF,corr.(Q) = NSF(Q) +
1

R− 1
(NSF(Q)−NNSF(Q)) . (4.27b)

From these corrected intensities incoherent Ninc(Q) and coherent Ncoh(Q) scatter-

ing contributions were obtained according to equation 4.26. The incoherent term

should contribute as a constant background and was therefore used to normalize the

coherent term [91, 106]. In that way a calibration factor α was calculated as

α =
Ncoh(Q)

Ninc(Q)
, (4.28)

which was used to obtain normalized scattering intensities as

S ′coh(Q) =
σinc

σtot

α, (4.29a)

S ′inc(Q) =
σinc

σtot

. (4.29b)

During the data reduction procedure the angular detector positions 2θ were con-

verted to Q accoring to equation 4.1b. This is correct if the sample scatters only

elastically. However, quasielastic scattering contributes significantly to the mea-

sured signal of liquid samples. As the detectors integrate over all final energies of

the scattered neutrons, it is not possible to discriminate in- or quasielastically scat-

tered neutrons. This integration at constant angle is not identical to the integral

at constant Q, as can clearly be seen in figure 4.4. All neutrons with Ef 6= Ei are

treated as elastically scattered and are hence allocated to an incorrect Q. As a result

the quantity obtained from the experiment is not the structure factor as defined in

equation 4.25.

A variation of the neutron energy transfer has a direct effect on ~kf and hence on
~Q, as well as on the detector efficiency. For simple systems the so-called Placzek

correction is typically used to correct for the inelastic scattering effects, which is

based on a mass expansion and the first and second moments of the scattering

function [75, 107–110]. This correction requires that the energy transfer is small

compared to the excitation energies of the sample and that the neutron mass is

much smaller than the mass of the scattering nuclei. The latter condition is not
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Figure 4.4: Theoretically accessible dynamical range at DNS with an incident neutron
wavelength of 4.2 Å (green lines: 2θ = 0◦−150◦) and the dynamical range accessed during
the experiment (black lines). Negative energy transfers correspond to neutron energy loss,
and positive values to neutron energy gain. Since the energy transfer cannot be measured
at DNS, all quasielastically scattered neutrons detected at a certain angle are treated
as elastically scattered and allocated to an incorrect scattering vector Q. This effect is
schematically indicated by the blue arrows.

fulfilled for typical molecular liquids, and as a consequence the Placzek correction

fails to correct the measured structure factors [110]. Therefore the inelastic scattering

effects are (if at all) corrected only by empirical fitting approaches in some studies

[111, 112].

In the framework of this thesis neither the Placzek correction nor an empirical

correction is applied to the measured data. Instead, the structure factors obtained

from the MD simulations are modified to account for the inelastic scattering effects.

The intensities calculated from the simulations are shifted along the detector lines

to zero energy transfer, as exemplarily indicated in figure 4.4. This procedure is

described in section 5.4.
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5 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are a powerful tool to access (in principle) all

possible observables of any complex (classical) system, for example to understand

molecular genetics on an atomic level [7]. In general, MD simulations are based on

the calculation of the net force ~Fi acting on an atom i of mass mi at position ~ri,

defined by the negative derivative of a potential function V

~Fi = −∂V
∂~ri

. (5.1)

The resulting displacement of the atom is consequently determined via

∂2~ri
∂t2

=
~Fi
mi

. (5.2)

These steps are the main parts of the basic global MD algorithm, which is illustrated

in figure 5.1.

Figure 5.1: Global MD simulation algorithm [113].

Two basic elements have to be specified in order to perform MD simulations: i)

The model describing the interaction between atoms. The most accurate way is to

calculate the interactions at the quantum level [114]. These ab initio simulations are

very CPU-intensive due to the electron-electron-coupling term in the Hamiltonian.
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Hence to approximate the interatomic potential, empirical functions are used, called

the force field. ii) The method to calculate the movement of the atoms and the

way to integrate the equations of motion. Typically Newton’s equations of motion

(eq. 5.2) are extended to control the temperature and pressure of the system, and

then integrated numerically for discrete time steps δt.

The accuracy and validity of the simulations are limited by this framework. The

choice of force field is crucial for the correct representation of micro- and macroscopic

properties, and already little changes of only one parameter can have huge effects on

the resulting structural and dynamical properties. The simulation time step has to

be chosen meeting two conditions: On the one hand it has to be as short as possible

to improve the precision of the integration of motion. On the other hand the time

step should be long in order to achieve reasonable calculation time and to avoid

errors due to numerical imprecision.

5.1 Structure of Force Fields

A large number of force fields are available for the simulation of various (bio)mol-

ecules [115]. Although they have a similar layout, based on mathematical functional

forms, it is the parameters that differentiate the individual force fields. Most force

fields are empirical, as the underlying functions are based on several approximations

and the parameters are usually derived from experimental data.

In the following a quick overview of the basic components of force fields will be

given. In principle a force field can be divided into three basic parts: Bonded and

non-bonded interactions as well as constraints. The latter can be applied to confine

e. g. bond lengths or bond angles. Since they were not used in the framework of this

thesis they will not be further discussed. More detailed descriptions can be found

in the literature [113, 116, 117].

Non-Bonded Interactions

The non-bonded interactions describe the pair potential between any two atoms at

distance rij, i. e. they act between inter- and intramolecular atoms. An intermolec-

ular attraction stronger than the average kinetic energy of the atoms leads to the

formation of a condensed phase.
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Repulsion and Dispersion These terms are usually combined in the Lennard-Jones

potential [118]

VLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (5.3)

where ε characterizes the depth of the potential and σ is the distance at which

the energy is zero (cf. fig. 5.2). The attractive r−6
ij -term accounts for the van der

Waals force, or London force between unpolar molecules or atoms. A spontaneous

polarization of an atom induces a dipole in nearby atoms, leading to a weakly

attractive force. The repulsive r−12
ij -term describes the repulsion at short range,

where the electron-electron interaction is strong, resulting from the Pauli exclusion

principle. Although the r−12
ij -term has no theoretical justification, it fairly describes

the Pauli repulsion. Besides the calculation of r12 as the square of r6 is computational

efficient. In the Buckingham potential [119] the repulsive term is exponential, which

is more realistic, but also more expensive to compute.

The Lennard-Jones interactions are typically calculated up to a specific cut-off

distance, justified by the rapid decay of the attractive force with increasing distance.

σ

0

r

V
L
J
(r

)

Figure 5.2: Lennard-Jones potential, which is typically applied to model repulsive and
dispersive forces.

Electrostatic Interaction This term accounts for the forces between two particles

with charges qi,j, which is given by the Coulomb potential [120]

VC(rij) =
1

4πε0

qiqj
rij

(5.4)
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with the vacuum permittivity ε0. This term is the computationally most expensive

one, because its effect does not decay as rapidly as the interaction modeled by the

Lennard-Jones potential. Therefore, this term should be calculated for many pairs

of atoms in the system.

Bonded Interactions

The bonded interactions account for the intramolecular potentials which are due to

the covalent bonds, or extend over one or two atoms along the chain, as schematically

illustrated in figure 5.3. The interactions between first and second neighboring atoms

are mainly quantum mechanical, and hence cannot be modeled by a Lennard-Jones

potential. They are therefore explicitly excluded from the non-bonded Lennard-

Jones interactions and typically modeled by harmonic terms [113].

Concerning third neighbors, also called 1–4 pairs, the Lennard-Jones repulsion

is often too strong, especially in the case for carbon-carbon interactions in a cis-

conformation [113]. To avoid a resulting deformation or breakage of the molecule,

non-bonded interactions are reduced for the 1–4 pairs. The factors, by which re-

pulsion, dispersion and electrostatics are scaled are defined within the applied force

field.

Figure 5.3 illustrates the basic bonded interactions, which will be described in the

following.

Figure 5.3: Schematic illustration of bonded interactions: a) Bond stretching, b) angle
bending, c) proper and d) improper dihedral rotation.
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Bond Stretching The bond stretching term describes the force between two co-

valently bonded atoms. When the bond is compressed the electron cloud of the

two atoms overlap, leading to an increase in energy. Stretching the bond will also

lead to an increase of energy, and eventually the bond will disassociate. The Morse

potential [121, 122] describes this behavior and is a convenient model when simu-

lating diatomic molecules. Since the deviations from the equilibrium bond length is

usually very small in molecular dynamics simulations, the potential can be assumed

to be approximately harmonic of the form [113]

Vb(b) =
1

2
kb(b− b0)2, (5.5)

with a force constant kb and the average distance b0 between the atoms. The forces

due to the covalent bonds are very high in comparison to other forces, justifying the

use of the harmonic approximation.

Angle Bending This term models the force due to the deformation of the valence

angles between three covalently bonded atoms. The potential is also represented by

a harmonic potential [113]

Va(θ) =
1

2
kθ(θ − θ0)2, (5.6)

with a force constant kθ and the equilibrium angle θ0. These forces are typically

smaller than the ones due to bond stretching.

Torsional Terms - Dihedrals Defining the rotational barriers between four cova-

lently bonded atoms. For single bonds the torsional interaction is soft compared

to bond stretching and angle bending, hence the changes in dihedral angles can

be large. Torsional angle rotation is of utmost importance for the simulation of

biomolecules, as large-scale dynamics strongly depend on the interplay of the di-

hedrals with the non-bonded interactions [123]. There are two types of dihedrals:

Proper and improper dihedrals.

In a proper dihedral φ is the angle between the planes spanned by atoms (1,2,3)

and (2,3,4) of a linear chain (see fig 5.3), and φ = 0 corresponds to the cis-

configuration of the group. Since the potential is periodic through a 360◦ rotation, it
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cannot be approximated by a Taylor series or harmonic term. It is hence described

by a cosine function as [113]

Vd(φ) = kφ [1 + cos(nφ− φ0)] (5.7)

with a force constant kφ, defining the barrier heights, the periodicity or multiplic-

ity n and the phase φ0. Adding 1 to the cosine sets that the resulting energy is

always larger than zero [116]. For alkanes, the Ryckaert-Bellemans function is used

to represent the dihedral potential according to

Vrb(φ) =
5∑

n=0

Cn (cos(ψ))2 (5.8)

with a parameter set Cn and ψ = φ− 180◦.

Improper dihedrals are used to retain planar groups (e. g. aromatic rings) and to

conserve the chirality in a tetrahedral geometry. As they are not present in linear

chains, they are not of interest for this work and therefore not further discussed.
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5.2 Temperature & Pressure Control and MD

Integrator

In classical MD simulations the total number of atoms N , the volume V and the

total energy E of the simulation system are conserved, resulting in a microcanonical

(NVE ) ensemble. However, rounding and truncation errors will cause a small drift

in energy. For large systems the fluctuations in temperature, which is a statistical

quantity, are small and can be approximated as constant. NVE ensembles are

amongst others useful for the study of constant-energy surfaces of the conformational

space [124].

The simulation of biomolecules requires a precise temperature T control to account

for the raise in temperature when exothermic conformational changes take place. In

the resulting canonical (NVT ) ensemble the energy of the system is adjusted to

retain the desired temperature, by e. g. rescaling the velocities. The temperature

control is needed to simply simulate a constant temperature ensemble or to regulate

the temperature when performing simulated annealing.

To meet lab conditions pressure P needs to be conserved instead of the volume.

This results in the isothermal-isobaric (NPT ) ensemble, where the pressure scales

the dimension of the simulation box. This additional coupling results in a greater

perturbation compared to those in an NVT ensemble.

In the following several methods for temperature and pressure coupling will be

described briefly. These methods give scaling factors which are allowed for in the

configuration update step of the global MD algorithm (cf. fig. 5.1). Afterwards these

temperature and pressure control algorithms will be compared to each other.

Temperature Coupling

The instantaneous temperature T of the simulation system is calculated as

T =
2K

NfkB

, (5.9)

with the total kinetic energy K, the number of degrees of freedom Nf and the

Boltzmann constant kB [113].
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Berendsen The Berendsen algorithm [125] describes a weak coupling to a heat

bath with temperature T0. The principal correction of the system temperature T

follows
dT

dt
=

1

τ
(T0 − T ), (5.10)

resulting in a damped exponential relaxation, with a time constant τ . A short value

of τ results in a stronger coupling to the heat bath, while a longer τ has a minor

influence. Inserting friction and stochastic terms into the equations of motion results

in a scaling of the velocities with the factor

λ =

[
1 +

∆t

τT

(
T0

T
− 1

)]1/2

(5.11)

for a timestep ∆t. The temperature coupling time constant τT is not exactly equal

to the time constant τ of equation 5.10. As the scaling causes a redistribution of

kinetic energy between kinetic and potential energy, the change in temperature is

less than desired [113].

The Berendsen thermostat is often used for equilibration purposes, especially

when the system is far from equilibrium. However, it has no conserved quantity and

does not generate a correct canonical ensemble [113].

Velocity Rescaling The velocity rescaling (v-rescaling) thermostat [126] is an ex-

tension of the Berendsen thermostat, producing a correct ensemble. This is done by

adding a random force to ensure the correct distribution of the kinetic energy. In

principle, the velocities are multiplied by a factor α =
√
K0/K, to force the total

kinetic energy K towards the average kinetic energy at the target temperature K0.

The rescaling is eventually done by using an auxiliary dynamics as

dK = (K0 −K)
dt

τT

+ 2

√
KK0

Nf

dW
√
τT

, (5.12)

where dW is a Wiener noise [113]. Dropping the additional stochastic term (second

term in the equation) again gives the Berendsen thermostat.

This v-rescaling algorithm leads to a fast equilibration when the system is far from

equilibrium, just as the Berendsen algorithm does. Furthermore it also samples the

correct canonical ensemble once the equilibrium is reached. It is therefore used in

the framework of this thesis for the initial equilibration of the simulation system.
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Nosé-Hoover The Nosé-Hoover algorithm, or also called the extended-system

method, was first introduced by Nosé [127] and later reformulated by Hoover [128].

In this approach the heat bath is considered as an integral part of the system. An

artificial dynamical variable s is added, associated with a mass qs and a momentum

ps. The equations of motion are replaced by

d2~ri
dt2

=
~Fi
mi

− ξd~ri
dt
, (5.13)

with the thermodynamic friction coefficient ξ = ps/qs. The equations of motion for

the thermostat parameter ξ are

dpξ
dt

=
1

qs

[∑
m

d~r

dt
− (Nf + 1)kBT0

]
∼ (T − T0). (5.14)

The right-hand term is the difference between the current kinetic energy of the

system and the one at the desired temperature. If the current temperature is higher

than T0, the friction will increase, and vice versa.

The mass parameter qs determines the coupling strength. Large values of qs corre-

spond to a loose coupling, requiring long equilibration times. A tight coupling how-

ever may cause high-frequency oscillations of the temperature. The main difference

to the weak coupling thermostats is the oscillatory relaxation of the Nosé-Hoover

coupling, resulting in longer equilibration times. The parameter q can be related to

a reference temperature T0 with a time constant τT via

qs = NfkBT0τT. (5.15)

The time constant should be 4–5 times larger than the value used with the weak

coupling algorithms (Berendsen or v-rescaling thermostats) [113].

This thermostat also samples the correct ensemble [129]. In contrast to the weak

coupling methods the Nosé-Hoover algorithm allows for fluctuations that produce

more natural dynamics. However, because does it allow for these fluctuations, the

Nosé-Hoover thermostat is less suited for the equilibration of systems that are far

from equilibrium, as will be pointed out later. A detailed comparison with the

Berendsen scheme can be found in the literature [130].
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Pressure Coupling

Controlling the pressure P means controlling the box volume V . For isotropic sys-

tems, which are dealt with in this thesis, the pressure is given by the difference

between the kinetic energy K and the virial Ξ by P = 2(K − Ξ)/(3V ). The ad-

justment of the pressure is accomplished by scaling the interparticle distances (by

simply scaling the coordinates) and thereby shifting the virial.

Berendsen Analogous to the Berendsen thermostat, the pressure P of the system

is relaxed exponentially to a reference pressure P0 according to

dP

dt
=
P0 − P
τP

, (5.16)

with a time constant τP [125]. The scaling factor, which is similar to equation 5.11,

reads as

µ =

[
1− ∆t

τP

β (P0 − P (t))

]1/3

. (5.17)

The isothermal compressibility β is related to a change in pressure via

dP

dt
= − 1

βV

dV

dt
. (5.18)

Since β only influences the time constant τP for coupling, and not the pressure

itself, a rough estimate for the compressibility is already sufficient. Typically the

compressibility of water at room temperature (β = 4.5 · 10−5 bar−1) is used for many

systems. Isothermal compressibilities for various molecular liquids can be found in

the literature [131].

The Berendsen barostat does not generate a proper ensemble as it does not re-

produce the correct distribution of pressures. It is simply able to reproduce the

correct average pressure. If the system pressure is far from the desired reference

pressure, the Berendsen barostat allows for a fast equilibration. It is therefore used

to perform an initial coarse equilibration of the simulation system in the framework

of this thesis.

Parrinello-Rahman Similar to the motivation for implementing the Nosé-Hoover

thermostat, the Parrinello-Rahman barostat [132, 133] is used to obtain a more

precise behavior of the pressure. It was first developed for simulating crystal struc-
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tures, allowing for a necessary change of the shape of the simulation box. Using the

Parrinello-Rahman algorithm, the equations of motion become

d~r2
i

dt2
=

~Fi
mi

−M−1 dM

dt

d~ri
dt
. (5.19)

Here M = hTh is the metric tensor of the box matrix h, which consists of the box

vectors. Eventually the box vectors are coupled to the reference pressure P0 as

dh2

dt2
= VW−1(hT)−1(P − P0), (5.20)

where the mass parameter matrix W controls the coupling strength. Similar to the

Nosé-Hoover thermostat, W can be related to a time constant τP as

W−1 ∼ β

τ 2
P

, (5.21)

again with the isothermal compressibility β.

In combination with a proper thermostat the Parrinello-Rahman barostat allows

for the generation of a proper NPT ensemble. However, it might produce large

volume oscillations, especially if the system is not well equilibrated. Hence the

Parrinello-Rahman coupling scheme is unfavorable if the system pressure is far off

the reference pressure, as will be demonstrated in the following comparison. It is

used in this thesis only after a thorough equilibration with the Berendsen barostat.

Comparison of the Coupling Algorithms

In the preceding paragraphs two general principles for coupling to a heat- or pressure-

bath were described. Additional algorithms exist, as e. g. the stochastic dynamics

algorithm [134–136] or stochastic-coupling method [137]. But since these are less

commonly used for MD simulations they will not be further considered.

The effect of the different coupling methods is exemplarily illustrated in figure 5.4.

There are advantages and disadvantages for the use of these algorithms, which will

be briefly outlined in the following.

Berendsen and Velocity Rescaling Algorithm These weak coupling methods al-

low for a fast and smooth first-order approach to equilibrium, as can be seen in

figure 5.4. But once equilibrium is reached the Berendsen algorithm is less useful,
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Figure 5.4: Response of the temperature (lower graphs) and density (upper graphs)
during a instantaneous change of the reference temperature T0 from 50◦C to 130◦C at
t = 0 ps. The reference pressure was set to 1 atm. The simulation system contains 512
C16H34 molecules. Different methods for temperature- and pressure-coupling were applied:
Red: Nosé-Hoover (τT = 4 ps) and Parrinello-Rahman (τP = 20 ps)
Black: v-Rescaling (τT = 0.1 ps) and Berendsen (τP = 1.0 ps)
Blue: v-Rescaling (τT = 4 ps) and Berendsen (τP = 1 ps)
Note that the absolute densities are slightly incorrect, as will be discussed later.

since it cannot produce a correct canonical ensemble. The symplectic v-rescaling

thermostat, published some years ago, replaces the quite old Berendsen temperature

coupling scheme. In this work the v-rescaling coupling method was used together

with the Berendsen barostat to create starting structures at the desired temperature

and pressure. After this coarse equilibration a fine equilibration was performed by

applying the Nosé-Hoover and Parrinello-Rahman coupling methods.

Nosé-Hoover and & Parrinello-Rahman Algorithm These methods cause a slow

second-order approach to equilibrium and are hence less applicable for equilibration.

When the system is far from equilibration, an initial equilibration using the Nosé-

Hoover and & Parrinello-Rahman coupling schemes can take relatively long, or can

even cause a blowing up of the system. As can clearly be seen in figure 5.4, these

algorithms cause large oscillations when temperature or pressure is a little off. But

since they maintain a canonical ensemble they are the first choice for simulation after

equilibrium has been reached using weak coupling schemes. They were hence applied

after the desired temperature and pressure was reached with the weak coupling

methods. A detailed overview of the equilibration procedure will be given later.
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5.2 Temperature & Pressure Control and MD Integrator

Integration of the Equations of Motion

From the potential energy V the force ~F = −~∇V acting on an atom and eventually

its acceleration ~a = ~F/m is known. But since the potential energy is a function of

the positions of all atoms in the system, the equations of motion cannot be solved

analytically. The integrator is needed to numerically calculate the displacements of

the atoms at discreet time steps δt. After the integration the time point is updated

as t = t + δt. The integration algorithm should allow for energy and momentum

conservation.

Both integrators presented below have three important characteristics [138]: First

of all they are invariant under time reversal, just as Newton’s equations of motion.

Secondly they guarantee an exact conservation of angular momentum, however en-

ergy is not exactly conserved. Finally both integrators are symplectic, in other

words they preserve phase space density [123]. This results in good energy conserva-

tion which guarantees the stability of the integration scheme [123, 139]. A detailed

comparison of several algorithms for molecular dynamics can be found in [140].

The Leap-Frog Integrator In the so-called leap-frog algorithm [141] the velocities

are calculated at intermediate time steps t + 1/2 δt. With these the positions at

t+ δt are calculated. Hence the positions leap over the velocities and vice versa as

~r(t+ δt) = ~r(t) + ~v

(
t+

1

2
δt

)
δt, (5.22)

~v(t+
1

2
δt) = ~v

(
t− 1

2
δt

)
+ ~a(t)δt. (5.23)

A disadvantage of this integrator is that the velocities are not calculated explicitly

at time t. They can only be approximated by∗

~v(t) =
1

2

[
~v

(
t− 1

2
δt

)
+ ~v

(
t+

1

2
δt

)]
. (5.24)

Because of its simplicity and therefore fast computation the leap-frog integrator was

applied for all simulations presented in this thesis.

∗Only necessary if explicit velocities are needed in the output file.
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The Velocity Verlet Integrator With the velocity Verlet algorithm [142] positions,

velocities and accelerations are calculated a the same time step t + δt using the

equations

~r(t+ δt) = ~r(t) + ~v(t)δt+
1

2
~a(t)δt2, (5.25)

~v(t+ δt) = ~v(t) +
1

2
[~a(t) + ~a(t+ δt)] δt. (5.26)

This method has the advantage that the kinetic energy is available at each time step

and provides a higher precision than the leap-frog integrator. The drawback is how-

ever a less efficient computation, due to the more complex form of the integrator.
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5.3 Simulation Procedure

In the preceding section the basics of classical MD simulations were briefly explained.

In the framework of this thesis the program package gromacs† [143] was used

to carry out the simulations. The gromacs project was started by the Herman

Berendsen group of the Biophysical Chemistry department of Groningen University

in the early 1990s. Nowadays it is maintained and further developed by numerous

contributors across the world.

Since the beginning gromacs has been continuously optimized‡. It was cho-

sen in the framework of this thesis because of its relatively high performance and

popularity, which comes along with broad support.

In the following the choice of force field used for the simulations will be motivated,

following by a summary of the simulation procedure.

Used Force Fields

MD simulations allow for the calculation of the motion of molecules, which are sub-

ject to several forces, as outlined above. To account for the internal structure of

the molecules, two general approaches exist to divide the chains into single subunits.

The first approach is to treat several atoms as a single interaction site [145]. For alka-

nes each carbon atom with its bonded hydrogen forms such a pseudo-atom, hence

the equations of motion are only integrated for methyl and methanediyl groups as a

whole. This coarse-graining is called the united atom (UA) or extended atom repre-

sentation. For the simulation of n-alkanes the UA models are known to overestimate

the self-diffusion and local dynamics [19, 21, 27, 146].

The second approach is to include all atoms explicitly, including nonpolar hy-

drogen atoms [147]. These all atom (AA) or explicit atom simulations are obviously

more realistic but are also much slower in computation, due to the increased number

of interaction sites. In this thesis all atom simulations were performed to account

for the motion of the individual hydrogen atoms, which are eventually observed with

quasielastic neutron scattering on the picosecond time scale.

Many all atom force fields exist for the simulation of of alkanes. One of the more

popular ones is the OPLS-AA force field (“Optimized Potentials for Liquid Simula-

†Short for GROningen MAchine for Chemical Simulations.
‡Total estimated effort: 451 person years (03/13) [144].
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tions”) [148]§. It was parameterized for organic liquids by optimizing liquid densities

and heats of vaporization. However, the OPLS-AA force field has some drawbacks:

It gives deviations for the heats of vaporization for alkane chains longer than hex-

ane (C6H14) [149], predicts a incorrect critical temperatures for short alkanes [150,

151] and yields phase transition temperatures for pentadecane (C15H32) that are far

above the experimental value [152].

Chang and Sandler reparameterized the Lennard-Jones parameters for interatomic

interactions, keeping the original intramolecular potentials as defined in the OPLS-

AA force field [153]. Since this reparameterized force field already predicted fair

agreement with quasielastic neutron scattering data for dotriacontane (C32H66) [19],

it was adapted for the simulation work in this thesis. It is able to better reproduce

experimental liquid densities and enthalpies of vaporization [153], but still yields

a too high melting temperature, as will be presented later. In order to lower the

melting temperature, the explicit 1–4 pair interactions (see section 5.1) were ne-

glected in this thesis. In the original Chang & Sandler force field both the Coulomb

and Lennard-Jones forces for third neighbors along the molecular chain are scaled

with a factor of 0.5. Neglecting the nonbonded interactions for these 1–4 pairs re-

sults in a lower melting temperature, with only a marginal effect on the dynamics.

Throughout this thesis all simulations and respective results were obtained using

the Chang & Sandler force field without explicit non-bonded 1–4 pair interactions,

unless otherwise stated.

In a recent work Siu et al. refined the torsional parameters and Lennard-Jones po-

tential for long hydrocarbons [152]. This optimized parameter set, named L-OPLS,

produces phase transition temperatures, diffusion coefficients and viscosities which

are in better agreement with experimental results than the other force fields de-

scribed above. As will be demonstrated later, first comparisons show that the

L-OPLS force field reproduces very similar short-time dynamics as obtained with

the force field parameters of Chang & Sangler, but can describe static properties

more accurately. However, the simulation expense increases due to a more sophisti-

cated simulation procedure, including amongst others a switch function to shift the

Lennard-Jones potential and the use of long range dispersion corrections for energy

and pressure [154].

§Cited more than 3000 times (02/13).
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Building a Simulation System

In the following a quick guideline will be given, to illustrate how the n-alkane sim-

ulation systems were prepared in general.

1. Write molecule backbone in a stretched conformation, with bond lengths and

bond angles according to the force field.

2. Add hydrogen atoms, either manually or by using e. g. the software pymol [155].

3. Generate a simulation box, using the gromacs program genbox, and use this

program to randomly fill in the molecules (or molecule clusters).

4. Perform an energy minimization routine, in case molecules were placed too

close to each other resulting in huge repulsion forces.

5. Equilibrate the system in an NVT ensemble.

6. Equilibrate the system in an NPT ensemble.

To generate large systems (>100,000 atoms), a small cluster of molecules was

generated with the above procedure. This cluster was then multiple placed in a

large simulation box according to step 3. Afterwards the system was equilibrated

analogous to steps 4–6.

In this way two systems were generated: A hexadecane system containing 512

C16H34 molecules (25,600 atoms), and a hectane system with 4096 C100H202 chains

(1,236,992 atoms). Furthermore short simulation runs were performed on a tetra-

tetracontane simulation system, containing 2048 C44H90 molecules (274,432 atoms),

to test among others the scaling behavior of gromacs. The resulting box length

of all simulation systems is more than twice as long as a stretched molecule. This

should suppress any artifacts resulting from the finite box size in combination with

periodic boundary conditions.

Simulation Parameters

All simulations were performed using the leap-frog method to integrate the equations

of motion with a time step of δt = 1 fs. Periodic boundary conditions were applied

in all directions. The neighborlist, based on which of the non-bonded interactions

are computed, is updated every 10 fs with an cutoff radius of 1.0 nm. All forces due

to non-bonded interactions with distances between 1.0 nm and the Lennard-Jones

cutoff of 2.0 nm are calculated only during the update routine of the neighborlist.
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Electrostatics were calculated using the Particle-Mesh Ewald (PME) method

[156]. With this the total electrostatic energy is split into a short-range part, a

long-range part and a constant term. The short-range part is directly calculated

in real space, while the long-range summation is done in reciprocal space. In this

procedure the charges are assigned to a mesh, which is then Fourier transformed.

The allocation of load between the real and reciprocal space calculation of the Ewald

sum allows for an effective calculation of the electrostatic potential when simulating

on a computer cluster. For the short-range interactions a Coulomb-cutoff of 1.0 nm

was chosen.

Slightly different simulation parameters were applied when the L-OPLS force field

of Siu et al. was used. The differences are apparent from the partial simulation input

parameters given in appendix B on page 177.

Coarse Equilibration Initial velocities were generated according to a Maxwell-

Boltzmann distribution. For the initial equilibrations, when the system was far

from equilibrium, the velocity-rescaling thermostat with a time constant τT = 0.1 ps

and the Berendsen barostat with a time constant of τP = 1.0 ps were applied.

Fine Equilibration and Production Run When equilibrium was reached, the tem-

perature and pressure coupling algorithms were changed to the Nosé-Hoover (τT =

4 ps) and Parrinello-Rahman (τP = 20 ps) methods, respectively. After a fine equi-

libration routine production runs were performed with the same parameters.

If pressure coupling was applied, the reference pressure was set to 1.01325 · 105 Pa,

and a compressibility of 4.5 · 10−10 Pa−1 was used. The temperature was shifted by

applying the v-rescaling thermostat with τT = 4 ps, followed by the fine equilibration

routine described above.

Table 5.1: Overview of the n-alkane simulation systems used in the framework of this
thesis.

System total length output step

512 × C16H34 1 ns 0.1 ps
5 ns 0.5 ps

4096 × C100H202 20 ps 0.1 ps
200 ps 1 ps

2 ns 10 ps
20 ns 100 ps
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The total length and output-frequency of the individual production runs were

adjusted to result in manageable sizes of the output files. An overview listing these

characteristics is given in table 5.1.

In this way simulations were performed for C16H34 at T = 293, 303, 363, 403, 443 K

and for C100H202 at T = 393, 453, 509 K.

The C16H34 simulations were run on a 16-node cluster located at the Maier-

Leibnitz Zentrum as well as on the Linux cluster of the Leibniz-Rechenzentrum

(LRZ) [5]. The C44H90 and C100H202 systems were simulated on the latter cluster,

while parts of the C100H202 simulations were performed on SuperMUC, the new

supercomputer of the LRZ [5], using 960 nodes. The computation speed of pro-

duction runs are illustrated in figure 5.5. A linear scaling can be observed for the

C100H202 simulations performed on the Linux cluster. Using 960 nodes on SuperMUC

results in an enhanced performance than expected by extrapolating the simulation

speed obtained on the Linux cluster. Simulating the C16H34 system gives deviations

from a linear scaling when using more than 100 processors. This is due to the rel-

atively small system size, which is decomposed into small domains which are then

allocated to the processors. Part of the total run time is then spent on inefficient

communication between the processors.
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n
s
/d
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25,600 atoms

274,432 atoms

1,236,992 atoms

Figure 5.5: Scaling behavior of the production runs performed in the framework of this
thesis. The solid lines illustrates a linear scaling behavior. The blue symbol represents
the simulation performed on SuperMUC.
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5.4 Data Analysis

On the one hand increasing computing power allows for performing extensive MD

simulations, but on the other hand increasing computing power is needed to improve

the analysis of the simulations. While a visual inspection of the trajectories allows

for an initial evaluation of the prevailing molecular dynamics, the main part of the

data analysis focuses on the efficient extraction of physical properties of interest

from the trajectories.

Trajectory Conversion

netCDF The input file format for the program package nmoldyn which was

used to calculate scattering functions, is the netCDF format. Although nmoldyn

comes with several converters, gromacs trajectories cannot directly be converted

to netCDF (yet), but this is on the to-do list of the nmoldyn developers [157].

Therefore the following conversion routine via the software vmd [158] was applied:

1. Create a snapshot in the pdb-format of the data at time t = 0, using the

gromacs program trjconv as:

trjconv -f trajectory.trr -s input.tpr -dump 0 -o snapshot.pdb

2. In vmd: Read the snapshot.pdb file and then load the gromacs trajectory

file into the snapshot. Afterwards delete frame 0, which corresponds to the

t=0 snapshot of the snapshot.pdb file. Finally save the trajectories as trajec-

tory.dcd.

3. In nmoldyn: Convert snapshot.pdb & trajectory.dcd to trajectory.nc.

In doing so the original time step information is lost. Either vmd does not translate

the time step information correctly or writes a different variant of the dcd-format

than nmoldyn expects [157]. Therefore the time step of the trajectory.nc file is

always 49 fs, and any time-dependent analysis produced with nmoldyn must be

corrected according to the true time step.

XYZ The conversion of the binary trajectory.trr file into human readable coordi-

nate-files was done by using the gromacs programs trjconv and g traj as follows:

1. trjconv -f trajectory.trr -s input.tpr -pbc mol

-o trajectory pbc.trr

With this procedure jumps across the periodic boundaries are removed.
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2a. g traj -f trajectory pbc.trr -s input.tpr -nojump -fp

-ox trajectory pbc.xyz

2b. g traj -f trajectory pbc.trr -s input.tpr -nojump -fp

-ox trajectory pbc subgroup.xyz -n subgroup.ndx

2c. g traj -f trajectory pbc.trr -s input.tpr -nojump -fp

-ox trajectory pbc com.xyz -n molecules.ndx

-ng (# of molecules) -com

The output using command 2a contains all trajectories from the input file. Option-

ally a subgroup, for example a certain chemical element, can be selected by provid-

ing the corresponding index file generated with the gromacs program make ndx

in command 2b [113]. Similar the center-of-mass coordinates can be extracted by

listing a subgroup for each molecule in a molecules.ndx index file and executing

command 2c.

Real-Space Analysis of the Simulations

The gromacs package offers many programs for analysis of the simulated trajecto-

ries, which are documented elsewhere [113]. Few of them were used in the framework

of this thesis, among others:

g msd Calculates mean-square displacements, averaged over all atoms or those

provided in an optional index file. Hence by providing an index file molecules.ndx,

which lists a subgroup for each molecule, MSDs for the center-of-mass coordinates

were obtained.

g vanhove Produces van Hove correlation functions. Using the option -or, the

respective probabilities of atomic displacements during a certain time interval t are

calculated as a function of distance r.

g analyze This program was used to produce autocorrelation functions of ASCII

data sets, by using the option -ac.

These programs allow for a straightforward evaluation of the simulated dynamics.

More sophisticate analysis was performed by running self-written Python scripts

to calculate non-Gaussian parameter, dihedral autocorrelation functions or vector

orientation autocorrelation functions among others. These scripts are given in ap-

pendix A on page 165.
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Calculation of the Scattering Functions

The program package nmoldyn [159, 160] is designed to perform analysis of MD

simulation data. It was first written in Fortran 77 in the early 90’s by Gerald Kneller

and coworkers, and has meanwhile been adapted to Python. In this thesis nmoldyn

was mainly used to calculate scattering functions from the simulated trajectories.

For the calculation of time correlation functions from data with Nt time steps

nmoldyn uses the Fast Correlation Algorithm (FCA) [159], which is an efficient Fast

Fourier Transform [161] (FFT )-based method. With this method the complexity

is reduced from O(N2
t ) to O(Nt logNt).

To account for the different weighting when calculating coherent and incoherent

properties, specific weighting schemes for atom α in the system of N atoms are used

as [162]

√
wα,coh =

bα,coh√∑N
α=1 b

2
α,coh

, (5.27a)

wα,inc =
b2
α,inc∑N

α=1 b
2
α,inc

. (5.27b)

Here b is the scattering length, corresponding to the definitions in equations (4.3),

averaged over both the isotopes and the relative spin orientations of neutrons and

nuclei.

Note that these weighting schemes only account for the different scattering lengths

of the atoms when calculating the incoherent and coherent dynamic structure factors.

They do not take the ratio of incoherent and coherent scattering with respect to the

total scattering into account, hence Iinc(Q, t) and Icoh(Q, t), calculated as described

below, need to be weighted corresponding to the respective scattering cross sections

before summing them to obtain the total dynamic structure factors I(Q, t).

Dynamic Incoherent Structure Factor The incoherent intermediate scattering

function is computed as

Iinc(Q, t)
.
=
∑
α

wα.incIα,inc(Q, t). (5.28)
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The atomic incoherent scattering function

Iα,inc(Q, t) =
〈

exp[−i ~Q~rα(0)] exp[i ~Q~rα(t)]
〉Q
, (5.29)

where ...
Q

denotes an averaging over Q-vectors having approximately the same

modulus, is calculated using the FCA algorithm.

Hence the incoherent scattering function is the sum of the correlation function for

each atom. The cost is therefore O(N · (Nt logNt)). Moreover, the incoherent scat-

tering function requires more I/O operations than the coherent scattering function,

which adds even more overhead. As a result, the incoherent scattering function is

one of the slowest analyses in nmoldyn [157].

In order to reduce the calculation time of Iinc(Q, t) for the C100H202 system, which

contains more than 1.2 million atoms, dynamic incoherent structure factors were

computed taking only 512 of total 4096 molecules into account. For the analysis of

the C16H34 system all 512 molecules were considered. Q-values from 0.1 to 4 Å−1

were used, with Q-steps of 0.1 Å−1. For each vector ofQ 50 additionalQ-vectors were

computed in a shell Q±0.05 Å−1, to account for a proper averaging in equation 5.29.

Dynamic Coherent Structure Factor The coherent intermediate scattering func-

tion, corresponding to equation 4.13, is calculated as

Icoh(Q, t)
.
=
〈
ρ(− ~Q, 0)ρ( ~Q, t)

〉Q
. (5.30)

The Fourier transformed particle density is defined as

ρ( ~Q, t) =
∑
α

√
wα,coh exp

[
i ~Q~rα(t)

]
. (5.31)

In this way the double sum in the definition of the coherent scattering func-

tion (eq. 4.11a) can be expressed as an autocorrelation function of the Fourier-

transformed particle density. nmoldyn calculates that density at O(N ·Nt) cost,

and then uses the efficient FCA algorithm (O(Nt logNt)) to calculate the scattering

function.

The dynamic coherent structure factors were calculated taking all molecules in

the systems into account. Analogous to the previous descriptions, 40 equidistant

Q-values from 0.1 to 4 Å−1 were used with 50 sub-Q-shells.
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Static Coherent Structure Factor The static structure factor is obtained by cal-

culating equation 5.30 at t = 0

S(Q) = Icoh(Q, 0). (5.32)

For the C16H34 system S(Q) was calculated by averaging over 1000 time frames,

while only 20 time frames were used for the larger C100H202 system. In both cases

Q-values from 0.1 to 3 Å−1 were used, again with Q-steps of 0.1 Å−1. As before, 50

sub-Q-shells were averaged for each individual scattering vector.

Modification of the Simulated Static Structure Factor

During the neutron scattering experiment at DNS all inelastically scattered neutrons

are treated as elastically scattered, as described in section 4.3 . Hence, at a constant

angle, the detectors at DNS measure the total intensity∫
const.θ

dEf

(
d2σ

dΩdEf

)
coh

. (5.33)

However, the calculation of the static structure factor from the simulations takes

these effects into account, as the integration is done at constant Q (cf. eq. 4.25).

Hence the measured quantity cannot directly be compared with the static structure

factor calculated with equation 5.32.

Since there is no precise procedure to correct the data measured at DNS, the

intensities calculated from the MD simulations are allocated to a different Q-grid

instead, corresponding to the experimental setup. This was done as follows: First

the coherent intermediate scattering function Icoh(Q, t) (eq. 5.30), calculated for a

Q-range from 0.1 to 10 Å−1 with Q-steps of 0.1 Å−1 in this case, is Fourier trans-

formed. From these scattering functions double differential scattering cross sections

were obtained, according to (cf. eqs. 4.8, 4.9)(
d2σ

dΩdEf

)
coh

=
kf
ki

N

4π
Scoh(Q,ω). (5.34)

With the approriate neutron wave length that was used at DNS the scattering angle

2θ is determined for each point in the spectra, corresponding to equation 4.1a.

Following the scattering vector Qel for elastic scattering is calculated by applying

equation 4.1b. The integral of equation 5.33 was thereby calculated numerically.
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5.4 Data Analysis

The resulting S ′coh(Qel) is now comparable to the S ′coh(Q) as obtained from the

neutron diffraction measurements at DNS.

The corresponding Python script is given in the appendix on page 175.
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6 Dynamics Observed with

Quasielastic Neutron Scattering

In a previous study [18], Smuda et al. performed quasielastic neutron scattering

(QENS) experiments on 11 n-alkanes from octane (C8H18) to tetrapentacontane

(C54H110). They evaluated both the measured scattering functions S(Q,ω) and

intermediate scattering functions I(Q, t) using various models to account for different

local motions besides Fickean diffusion. The obtained diffusion coefficients were

model-independent.

The instrumental resolutions used in their study corresponds to effective obser-

vation times of 55 ps ≤ tobs ≤ 70 ps. For all samples a clear Q2-dependency of the

quasielastic broadening was identified, indicating a diffusive motion of the atoms

(cf. eq. 4.21). The short molecules showed the same diffusivity as observed with

pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) [11], which probes the

dynamics on an extended time scale of milliseconds to seconds [1]. The long chains,

however, moved too fast compared to the long-time PFG-NMR results (cf. fig. 6.1).

Hence a Q2-behavior of the broadening of the elastic line, which will be further

on treated as characteristic for a diffusive motion according to Einstein’s random

walk theory, does not necessarily represent long range center-of-mass molecular self-

diffusion. As a consequence the diffusion coefficients extracted from QENS will be

termed apparent diffusion coefficients, unless they truly describe long range molec-

ular self-diffusion.

Smuda et al. concluded that rather intramolecular motions were observed for the

long n-alkanes, with a smaller activation energy compared to the one for long-range

diffusion. The contribution of center-of-mass molecular self-diffusion on the overall

observed short-time dynamics increased with decreasing chain length. A detailed

study of the dynamics of liquid alkane systems on the pico- to nanosecond time scale

allows for probing the fundamental steps of self-diffusion. The time scales on which
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Figure 6.1: Diffusion coefficients of several n-alkanes measured with TOF-QENS (open
symbols, tobs = 50 ps) and PFG-NMR (full symbols) [1, 11, 18] at T = 383 K.

the individual molecular motions occur can be moved by variation of molecular

weight and temperature.

In order to gain a more detailed picture on the motions taking place at the onset

of molecular self-diffusion, extensive QENS studies were performed in this work

on the following model systems: Hexadecane (C16H34), hectane (C100H202) and

poly(ethylene oxide) (PEO) with similar molecular weight as the n-alkane samples

(cf. table 3.1).

For C16H34 the transition from local motions to translational self-diffusion takes

place on the time window accessible with TOF-QENS. On a 55 ps time scale slight

variations from long-range molecular self-diffusion can still be detected (cf. fig. 6.1).

However, long range diffusion already dominates the signal observed with backscat-

tering techniques on the short nanosecond time scale [163].

For C100H202 only minor contributions of molecular self-diffusion are expected on

the picosecond time scale. A study of this system hence allows for classifying the

local dynamics.

The structure of PEO is similar to the one of n-alkanes. The effect of the oxygen

atom introduced in the molecular backbone is analyzed and the observed dynamics

are compared to the n-alkane dynamics.
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6.1 Hexadecane

6.1 Hexadecane (C16H34)

In order to analyze all C16H34 measurements performed at TOFTOF with different

observation times together, the scattering functions evaluated from the measured

double differential cross sections were Fourier transformed to the corresponding in-

termediate scattering functions I(Q, t). These are more convenient for direct com-

parision with MD simulation results and interpretation with respect to physical

models. With quasielastic neutron scattering one mainly observes the self motion

of the hydrogen atoms, due to their dominating incoherent scattering cross section.

Hence the decay of the I(Q, t) mainly reflects the autocorrelation of the hydrogen

atoms.

The resulting I(Q, t) cover several orders of magnitude in time, and can be empir-

ically described using stretched exponential functions, as the Kohlrausch–William–

Watts (KWW) function

IKWW(t) = A exp

[
−
(
t

τ

)β]
. (6.1)

A is a prefactor, τ is the characteristic relaxation time quantifying the decay of the

correlation function to 1/e of its initial value, and β is the stretching parameter.

A stretching parameter β = 1 corresponds to a single exponential decay, and a

stretching of the decay leads to β < 1 [164]. Such a stretched exponential decay

can be due to the superposition of single exponentials [165, 166]. A broadening of

the distribution of the single relaxation times then causes a stretching of the overall

correlation function. In other words in a heterogeneous system the local environment

and consequently the exponential relaxation time differs from particle to particle. In

many cases the different relaxations can be approximated by a stretched exponential,

with a mean, average relaxation time [167]. Mean relaxation times are calculated as

〈τ〉 =

∞∫
0

dt IKWW(t) =
Γ(β−1)

β
τ, (6.2)

where Γ is the gamma function.

The behavior of the intermediate scattering functions I(Q, t) obtained for the

C16H34 melt is illustrated in figure 6.2. These curves were obtained by merging

the data points resulting from the measurements with eight different instrumental

resolutions for each temperature. The separate spectra overlap perfectly, collapsing
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Figure 6.2: Measured intermediate scattering functions of C16H34 (symbols) together
with stretched exponential fits (solid lines) at T = 293 K (cf. [168]).

into single master curves. These master curves cover three orders of magnitude in

time. The individual error-bars are smaller than the symbols, except for times close

to or longer than the respective observation time. These data points were removed

from the spectra.

The decay of the master curves can be satisfactory described using the KWW

function. In contrast to this, Smuda et al. could model their C32H66 data well only

when considering a two-step exponential decay [18], while Arrighi et al. also observed

a single-step decay of the I(Q, t) for several n-alkanes [20].

The extracted stretching parameters β are displayed in figure 6.3 and are partially

consistent with the findings of other quasielastic neutron scattering studies of tria-

contane (C30H62) [20] and C44H90 [17]. For small scattering vectors Q ≤ 0.6 Å−1 the

extracted stretching exponents give a temperature independent value of β ≈ 0.65,

which corresponds to a moderately stretched decay of the I(Q, t). The correspond-

ing dynamics take place over large distances in real space, since these low values of Q

correspond to a nanometer length scale. Such large-scale motions can be pictured as

e. g. molecular rotation or translational self-diffusion of the entire molecules. It has

to be assumed that different large-scale dynamics cause different relaxation times of

the individual atoms. The atoms at the ends of the chain see a rotational motion of

the entire molecules slightly differently than the atoms located at the chain center,

for instance, resulting in a stretched form of the intermediate scattering function.
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Figure 6.3: Stretching parameter β from a stretched exponential fit to the measured
I(Q, t) of C16H34. The arrow points into the direction of increasing scattering vector
Q. For the measured Q smaller than 0.6 Å−1 or larger than 1.6 Å−1 the temperature
dependency does not change any further.

With increasing scattering vectorQ a change becomes obvious: Now the stretching

increases with decreasing temperature. This is contrary to the behavior of increasing

β with increasing Q found for C30H62 [20] and polyethylene (PE) [169]. The present

data imply that at lower temperatures and large scattering vector a broader dis-

tribution of relaxation times is observed, which might be due to different dynamic

processes with similar relaxation times but slightly different activation energies in

the C16H34 melt. With increasing temperature some of the dynamics then occur

at very short times and are hence not in the time window accessed with TOFTOF

any longer. The resulting distribution of relaxation times then narrows, hence β

increases.

Also local processes acting at different positions along the molecular backbone

might cause a broadening of the I(Q, t) at low temperatures. It is easy to imagine

that torsional dynamics are faster close to the chain ends than at the center of the

chain, due to the locally increased degrees of freedom. The superposition of the

relaxation times then results in a decreasing β.

The mean characteristic relaxation times 〈τ〉 obtained from the KWW fits are pre-

sented in figure 6.4 and 6.5 as a function of scattering vector Q and temperature T ,

respectively. With increasing temperature and scattering vector the relaxation times
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Figure 6.4: Mean relaxation times extracted from stretched exponential fits to the mea-
sured I(Q, t) of C16H34 (symbols). Also shown are different Q-scalings (solid lines). The
arrow points into the direction of rising temperature.
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Figure 6.5: Mean relaxation times from a stretched exponential fit to the measured
I(Q, t) of C16H34 (symbols), fitted with the Arrhenius equation (solid lines). The dotted
line indicates the melting temperature of C16H34, and the arrow points into the direction
of increasing scattering vector Q.

decrease. Consequently the dynamics are faster on local length scales and high tem-

peratures. A non-uniform Q-dependency of 〈τ〉 can be identified. A Q−2.8 scaling
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Figure 6.6: Activation energies as extracted from an Arrhenius fit to the mean relaxation
times for C16H34. The dotted line represents the value measured with PFG-NMR [11] (cf.
[168]).

is present for low values of scattering vector Q ≤ 1Å−1, which is independent of

temperature. For larger Q the scaling changes from Q−4 at T = 293 K to Q−2 at

T = 443 K. Obviously different dynamics are observed when looking on different

length scales. The crossover from small to large length scales also shows a slight

temperature dependence, as the change in the Q-scaling seems to occur at lower

values of Q with increasing T .

The temperature dependency in figure 6.5 can be described by the Arrhenius

equation

〈τ〉 = 〈τ0〉 exp

(
− Ea

RT

)
, (6.3)

with an pre-exponential factor 〈τ0〉, an activation energy Ea and the universal gas

constant R. The Arrhenius fit describes the data neatly, except at temperatures

close the melting point of C16H34. Here the observed motions are slightly slower

than modeled by the Arrhenius equation. The corresponding activation energies are

plotted in figure 6.6. For large values of Q, corresponding to motions on local length

scales, lower values of Ea are obtained than for motions on an extended length scale.

In this low-Q regime the extracted Ea matches the values determined by PFG-NMR

[11]. It can therefore be assumed that all processes leading to molecular self-diffusion

already take place on the time scale under study. By evaluating only the slow,
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diffusive component of the scattering functions S(Q,ω), as will be demonstrated for

the analysis of the C100H202 measurements in the following, Smuda et al. extracted an

activation energy of approximately 13.8 kJ/mol, which is lower than the expected for

true long-range Fickean diffusion [18]. It is to be assumed that the observed dynamics

result from a combination of torsional vibrations and conformational relaxations,

which must also be active for the longer C100H202 chains [20].

The analysis of the QENS spectra of C16H34 reveals that many different motions

are observed, occurring on several length and time scales. At high temperatures

the intermediate scattering functions follow approximately a exp(−Q2t) behavior,

when motions on local length scales are considered. According to equation 4.20 this

corresponds to diffusive motion. With decreasing temperature this scaling is lost,

and a stretching of the I(Q, t) is observed, indicating that a complex composition

of different dynamics dominates the observed dynamics. The Q- and T -dependency

of the stretching parameter β allows for the conclusion that the various motions are

characterized by different activation energies. The analysis of the MD simulations

will yield additional information which allow for the identification of the prevailing

motions.
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6.2 Hectane

6.2 Hectane (C100H202)

The dynamics in the C100H202 melt were evaluated in the frequency domain, allowing

for a straightforward comparison with the results for shorter n-alkanes published by

Smuda et al. [18]. The scattering functions S(Q,ω) were quantitatively modeled by

a sum of a narrow and broad Lorentzian

S2L(Q,ω) = F (Q)
[
A0(Q)L1(Q,ω) + (1− A0(Q))L1,2(Q,ω)

]
. (6.4)

The prefactor F (Q) comprises the Debye-Waller factor and A0(Q) is the elastic

incoherent structure factor [170]. The Lorentzian function

L(Q,ω) =
1

π

Γ(Q)

Γ2(Q) + ω2
(6.5)

is characterized by its half width at half maximum (HWHM) Γ(Q). The narrow com-

ponent L1 describes slow, translational motion of the whole molecules. All fast, local

molecular motions are approximated by the second, broad Lorentzian L1,2. Multi-

ple scattering effects accumulate to a broad background, which is absorbed in the

broad Lorentzian component [171]. By decreasing the observation time the narrow

Lorentzian models the dynamics which prior contributed to the broad Lorentzian.

This allows for the study of different dynamics by varying the observation times and

simply treating only the narrow component [19].

All scattering functions show a clear broadening of the elastic line line. The

fit of two Lorentzian functions describes all data with instrumental resolutions ≥
23µeV fine. Figures 6.7 illustrate several measured S(Q,ω) together with a fit of

equation 6.4, plotted as solid black lines. The fits are hardly visible because they

perfectly coincide with the data points. The two components of the fit, plotted as

dotted and dashed lines, are well separated.

For all fits the extracted HWHM of the first, narrow Lorentzian Γ1(Q) follows

a Q2-dependency. Hence a diffusive motion of the hydrogen atoms is observed.

As already mentioned, this feature must not be linked to Fickean self-diffusion of

the entire molecules, especially when short observation times (lower instrumental

resolutions) are considered. By fitting a linear function to the
√

Γ(Q) data, as

exemplarily illustrated in figure 6.7, apparent diffusion coefficients Da were extracted

according to equation 4.21. The HWHM of the second, broad Lorentzian Γ2(Q) =

Γ1,2(Q) − Γ1(Q), which accounts for all fast, internal motions, is not independent
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(a) ∆E = 900µeV. The scattering function is plotted for T = 509 K and Q = 2.0 Å−1.
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(b) ∆E = 55µeV. The scattering function is plotted for T = 453 K and Q = 1.0 Å−1.
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(c) ∆E = 23µeV. The scattering function is plotted for T = 393 K and Q = 1.0 Å−1.

Figure 6.7: Left figures: Scattering functions measured with different instrumental reso-
lutions ∆E for C100H202. The measured resolution functions are represented in green. A
two-Lorentzian fit is indicated by the black solid lines, the narrow and broad components
of the fit are plotted as dotted and dashed lines, respectively. Right figures: Square root
of the extracted half width at half maximum Γ1(Q) of the narrow Lorentzian component
at T = 393, 453 and 509 K. The arrows point into the direction of rising temperature.
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Figure 6.8: Half width at half maximum of the broad component of a two-Lorentzian
fit to the S(Q,ω) of C100H202 with different instrumental resolutions at T = 393 K (red
symbols) and 509 K (blue symbols).
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Figure 6.9: Instrumental resolution of 2µeV, corresponding to an effective observation
time of 1.2 ns. Left figure: The measured scattering function for C100H202 at T = 393 K
and Q = 0.5 Å−1 (symbols) together with a fit of a single Lorentzian function (solid black
line) and the resolution function (green). Right figure: Square root of the extracted half
width at half maximum at T = 393, 453 and 509 K together with linear fits. The arrows
point into the direction of rising temperature.

of Q and instrumental resolution (cf. fig. 6.8). With a decreasing observation time

(higher instrumental resolution) the width broadens. Hence faster motions, which

are not accessible with long observation times, are now observed and accumulated

in the second Lorentzian.
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Figure 6.10: Apparent diffusion coefficients obtained from fitting the measured S(Q,ω)
of C100H202 with different instrumental resolutions or observation times. The solid lines
represent Arrhenius fits. For the 2µeV data (tobs = 1.2 ns) the value at T = 493 K seems
to be erroneous and was ignored during the fitting procedure. Also shown is the value
extrapolated from PFG-NMR data [172, 173], together with an temperature dependency
according to an extrapolated activation energy of 27.5 kJ/mol, as described in the text.

The scattering functions measured with the highest instrumental resolution of

2µeV can already be well described by a single Lorentzian function (eq. 6.5) plus a

constant background, as exemplarily displayed in figure 6.9. Certainly also a two-

Lorentzian function can fit the data, with similar results. However, substituting the

broad Lorentzian by a constant background results in smaller errors of the extracted

HWHM of the narrow Lorentzian. This specifically applies to the high temperature

data: For large scattering vectors Q a broad quasielastic signal is measured, resulting

in already large fitting errors (cf. fig. 6.9).

The extracted HWHM of the 2µeV measurements again shows aQ2-scaling, allow-

ing for the calculation of an apparent diffusion coefficients Da from the Γ(Q)-slope.

The error-bars for the T = 509 K data points are relatively large at high Q, since

the self-correlation at these local length scales is pretty much lost, resulting in low

intensity.

The resulting apparent diffusion coefficients are plotted in figure 6.10. The values

strongly depend on the instrumental resolution and thus on the effective observation

time tobs. With increasing tobs the diffusive motion becomes slower. Even for the

longest observation time of 1.2 ns (corresponding to the instrumental resolution of
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Figure 6.11: Activation energies as extracted from an Arrhenius fit to the apparent
diffusion coefficients of C100H202. The best and worse instrumental resolutions of 2µeV
and 1.5 meV corresponds to effective observation times of 1.2 ns and 2 ps. All values are
smaller than Ea ≈ 27.5 kJ/mol, as expected for molecular self-diffusion (see text).

2µeV) the apparent diffusion coefficient is nearly an order of magnitude larger than

the value of DNMR ≈ 2.3 · 10−6 cm2/s for T = 509 K, as extracted from PFG-NMR

data from Pearson et al. [172, 173], extrapolating both chain length and temperature.

Hence molecular self-diffusion contributes only little to the observed motions on the

pico- to nanosecond time scale.

Using the Arrhenius equation 6.3 allows for the description of the temperature

dependence of the apparent diffusion coefficient. The resulting activation energies

Ea of the diffusive-like motions are given in figure 6.11. Dynamics occurring on the

nanosecond time scales, and hence with rather large displacements, are characterized

by a relatively high activation energy. Local, short time dynamics show a smaller

activation energy. This tendency is in agreement with the results obtained from the

evaluation of the C16H34 dynamics.

The increasing activation energy with decreasing instrumental resolution (in-

creasing observation time) can be observed up to 55µeV, where a maximum of

15.3 kJ/mol is reached. This Ea is smaller than the value determined by Smuda et

al. for long n-alkanes. Using an instrumental resolution of 55µeV they found an
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activation energy of about 17 kJ/mol, which was independent of molecular weight

and attributed this to the contribution of internal motions.

The activation energies obtained from the high-resolution measurements are slight-

ly lower. The motions detected with observation times in the 100 ps to 1 ns range can

approximately be characterized by a constant Ea between 14 and 15 kJ/mol. How-

ever, this value is much smaller than the value expected for molecular self-diffusion:

Extrapolating PFG-NMR data [11] yields an activation energy of approximately

27.5 kJ/mol.

Mainly local, intramolecular motions of C100H202 seem to prevail on the whole pico-

to nanosecond time scale. The scattering functions show a diffusive-like motion on

all length and time scales, which cannot be attributed to molecular self-diffusion,

since the apparent diffusion is too fast. The analysis of the activation energies

shows almost constant values for observation times of 100 ps and 1 ns, framed by

larger values obtained with much longer (PFG-NMR) and slightly shorter (55µeV)

observation times. The latter yields an Ea which is smaller than expected from

extrapolating the data of Smuda et al. to long chains [18]. This can be explained by

different fitting procedures to obtain diffusion coefficients, which eventually lead to

slight deviations of the resulting activation energy.

With increasing observation time the extracted activation energy does not ap-

proach the value expected for self-diffusion, but remains more or less constant on

the 10 ps – 1 ns time scale instead. The analysis of the MD simulations will reveal

that not only intramolecular motions occur before molecular self-diffusion sets in,

but collective intermolecular dynamics dominate on this extended time scale: It

will be demonstrated that many atoms in extended clusters move collectively and

flow-like in similar directions. It is especially the decorrelation of these flow-like mo-

tions which result in an enhanced chain relaxation on the pico- to nanosecond time

scale. It is hence to be assumed that the activation energy characterizes both these

collective features and single chain dynamics and cannot be attributed to a specific

motion. As will be concluded from the analysis of the MD simulations, global ro-

tational and translational motions of the center-of-mass molecules contribute only

little to the overall dynamics on the sub-nanosecond time regime. Besides the collec-

tive flow-like motions it is mainly torsional dynamics, characterized by an activation

energy of about 14− 15 kJ/mol, which dominate the pico- to nanosecond dynamics

of C100H202.
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Rouse Analysis Since the C100H202 chains at T = 509 K are on the one hand

slightly shorter than the entanglement length of Ne = 136 [31, 174] of polyethylene

at this temperature and on the other hand long enough to show Gaussian chain

characteristics [33], the Rouse model was tested to describe the short time motion

observed with QENS.

The incoherent intermediate scattering function in terms of the Rouse model is

obtained by inserting the approximated Rouse-MSD (eq. 2.25) into the Fourier-

transformed expression of the Gaussian van Hove correlation function 4.18 resulting

in

IR,approx
inc (Q, t) = exp

(
−Q

2

6

〈
R2

R(t)
〉)

= exp
(
−Q2DRt

)
exp

(
−

√
t

τR
inc(Q)

)
, (6.6)

with the Q-dependent Rouse relaxation time

τR
self(Q) =

9π

W`4Q4
. (6.7)

The expression of the coherent correlation function is more complex. The formula-

tion reads [58]

IR
coh(Q, t) =

1

N
exp

(
−Q2DRt

) N∑
n,m=1

exp

(
−|n−m|

6
Q2`2

)
× (6.8)

exp

{
−2

3

R2
EQ

2

π2

N−1∑
p=1

1

p2

[
cos
(pπn
N

)
cos
(pπm
N

)(
1− exp

(
− p

2

τR

t

))]}
,

with the end-to-end chain distance RE =
√
N`. Using this formulation the incoher-

ent not-approximated expression was obtained by setting n = m:

IR
inc(Q, t) =

1

N
exp

(
−Q2DRt

)
× (6.9)

N∑
n=1

exp

{
−2

3

R2
EQ

2

π2

N−1∑
p=1

1

p2

[
cos2

(pπn
N

)(
1− exp

(
− p

2

τR

t

))]}

For small values of Q only the first term in both the coherent and incoherent ex-

pression is significant, describing the center-of-mass self-diffusion of the chain. The

statistical segment length and segmental friction coefficient were taken from the lit-
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Figure 6.12: Symbols: Intermediate scattering functions as obtained for C100H202 at
T = 509 K with quasielastic neutron scattering (QENS, instrumental resolution of 23µeV)
and neutron spin echo (NSE, [31]). The four leftmost datasets are the QENS data, while
the long-time data with scattering vectors Q ≤ 0.3Å−1 were measured by Paul et al. [31].
Lines: Intermediate scattering functions as predicted by the Rouse model using the inco-
herent (dotted lines) and coherent (dashed lines) expressions for the QENS and NSE data,
respectively.

erature (`2 = 13.76 Å2 [31] and ζ = 0.048 · 10−11 Ns/m [58]), while a self-diffusion

coefficient of D = 1.8 · 10−6 cm2/s was chosen in agreement with the results of Paul

et al. [31].

The measured scattering functions S(Q,ω) were numerically Fourier transformed

and divided by the respective spectra of the instrumental resolutions to obtain the

intermediate scattering functions I(Q, t) corrected for instrumental resolution. The

resulting data are illustrated in figure 6.12 together with the prediction by the Rouse

model. QENS data are displayed together with the data obtained with neutron

spin echo (NSE) by Paul et al. [31]. To describe the QENS data the Rouse model

was calculated using the exact incoherent expression (eq. 6.9), while the coherent

notation (eq. 6.8) was taken to test the NSE data, as done by Paul et al. [31].

The Rouse prediction of the QENS data show a poor match for all values of Q.

The motions predicted by the Rouse model are too fast, as the measured interme-

diate scattering functions are consistently above the Rouse predictions. This trend

continues for the NSE-data, and only for the lowest Q values a reasonable agreement

between the NSE data and the Rouse model can be found. At large Q-values mainly
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6.2 Hectane

molecular self-diffusion is observed, to which the Rouse model passes over on long

time scales.

Besides the fact that the Rouse model predicts a dynamics in the ps-range which

is too fast, the overall shape of the experimentally measured intermediate scattering

functions cannot be reproduced. The dynamics observed experimentally decay in

a more narrow time range and exhibit a larger relaxation time than expected from

the Rouse predictions. Obviously some additional motions not accounted for by the

Rouse model are present in the real system.

A detailed Rouse analysis of the simulated data will reveal that only the first

modes (modeling rather global chain dynamics) can be applied to describe the molec-

ular dynamics of the C100H202 molecules. The Rouse model is doomed to fail as it

does not account for collective intermolecular motions. It will be clearly demon-

strated in section 7.4 of this thesis that such motions take place within the whole

picosecond time range, which is well in the Rouse regime.
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6 Dynamics Observed with Quasielastic Neutron Scattering

6.3 Poly(ethylene oxide) (PEO)

The dynamics of poly(ethylene oxide) (PEO) with different molecular weights (cf. ta-

ble 3.1), measured using three instrumental resolutions (4µeV, 55µeV and 1.5 meV),

was studied analogous to the preceeding evaluation of the C100H202 measurements.

The scattering functions obtained with a resolutions of 55µeV and 1.5 meV were fit-

ted with a sum of two Lorentzians (eq. 6.4), as exemplarily illustrated in figure 6.13.

The width of the narrow component again follows a Q2-behavior, indicating diffusive
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(a) ∆E = 55µeV, Mw = 1521 g/mol. The scattering function is plotted for T = 341 K and
Q = 1.5 Å−1. The HWHM are displayed for T = 341, 360, 379, 388 and 398 K.
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(b) ∆E = 1.5 meV, Mw = 581 g/mol. The scattering function is plotted for T = 398 K and
Q = 2.5 Å−1. The HWHM are displayed for T = 303, 322, 341, 360, 379 and 398 K.

Figure 6.13: Left figures: Scattering functions measured with different instrumental
resolutions ∆E for PEO with different molecular weight Mw. The resolution functions
are plotted in green. Fits of the sum of two Lorentzians are plotted as black lines, and
the corresponding narrow and broad components as dotted and dashed lines, respectively.
Right figures: Square root of the extracted half width at half maximum (HWHM) Γ1(Q)
of the narrower Lorentzian. The arrows point into the direction of rising temperature.
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6.3 Poly(ethylene oxide)

motion. These motions can thus be characterized by apparent diffusion coefficients

Da.

High resolution measurements were performed on the low molecular weight sam-

ple (Mw = 206 g/mol). Only at temperatures well above the melting temperature

a broadening of the elastic line could be detected, as illustrated in figure 6.14. The

scattering functions obtained at temperatures below 300 K coincide with the res-

olution function. Hence at these low temperatures no pronounced motions were

observed on the nanometer length and nanosecond time scale accessed with an in-

strumental resolution of 4µeV. It is to be assumed that analogous measurements of

higher molecular weight PEO would yield a quasielastic signal only at temperatures

much higher than their respective melting temperatures.

Only the high resolution spectra measured at temperatures above 300 K (i. e.

T = 308 and 373 K) was evaluated. As pictured in figure 6.14, the data can be

well fitted with a single Lorentzian function (eq. 6.5) and a constant background.

A sum of two Lorentzians can fit the data just as well, but the larger number of

parameters results in larger errors of the individual parameters. Apparent diffusion

coefficients were obtained by assuming a Q2-scaling of the extracted half width at

half maximum (HWHM). This condition is nicely fulfilled for the high temperature

data. The scattering functions at T = 308 K almost coincide with the instrumental

resolution. Hence the quasielstic broadening is marginal and its determination is

limited by the ω-spacing of the data points. As a result the Γ(Q) levels off at
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Figure 6.14: Scattering functions of the low molecular weight PEO (Mw = 206 g/mol,
symbols) and the respective square root of the extracted half width at half maximum,
as described in the text. The scattering functions were obtained with an instrumental
resolution of 4µeV (green), corresponding to an effective observation time of 900 ps, at
T = 308 (blue) and 373 K (red) and fitted using a single Lorentzian function.
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6 Dynamics Observed with Quasielastic Neutron Scattering

  QENS:     Mw = 206 g/mol
    Mw = 581 g/mol
    Mw = 1521 g/mol
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Figure 6.15: Apparent diffusion coefficients extracted from the S(Q,ω) of the three
PRO samples, measured with different instrumental resolutions. The values are about an
order of magnitude larger than those determined by PFG-NMR [175]. The instrumental
resolutions of 4µeV, 55µeV and 1.5 meV correspond to effective observation times of
900 ps, 50 ps and 2 ps, respectively. Also plotted are the results from PFG-NMR [175]
as filled blue symbols, which were determined for PEO with slightly different molecular
masses: Mw = 330 (square), 580 (diamond) and 1470 g/mol (circle).

small Q. A Q2-scaling was assumed nonetheless to extract an upper estimation of

the apparent diffusion coefficient. The actual value might be lower, as the slope of

the data points seems to be flatter than the fit.

The apparent diffusion coefficients extracted from all measurements performed

on PEO are summarized in figure 6.15. Motions observed with lower instrumen-

tal resolutions (shorter observation times) are characterized by larger values of Da.

This spread increases with decreasing temperature. Only a slight chain length de-

pendence can be determined for the 55µeV (tobs = 50 ps) measurement. At high

temperatures the observed motions of the shorter PEO chains are slightly faster

than the dynamics of the higher molecular weight PEO samples. At low tempera-

tures the fast motion (tobs = 2 ps) is independent of the chain length. Hence only

intramolecular motions are observed, and the chain-length dependent contribution

from molecular self-diffusion is indistinguishable.

The high-temperature apparent diffusion coefficients for the fast motions are about

an order of magnitude larger than those determined by Appel & Fleischer using PFG-

NMR [175]. For T = 373 K they obtained the following long-time self-diffusion coef-
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Figure 6.16: Activation energies obtained from an Arrhenius fit to the temperature
dependent apparent diffusion coefficients measured for PEO (black symbols). Also shown
are the values determined with PFG-NMR [175] (blue symbols). To compare the dynamics
of the PEO chains with that of n-alkanes, the values measured with QENS [18] and PFG-
NMR [11] are added to the figure (green, cf. fig. 6.1).

ficients: DNMR(330 g/mol) = 2.1 · 10−6 cm2/s, DNMR(580 g/mol) = 1.3 · 10−6 cm2/s

and DNMR(1470 g/mol) = 3.2 · 10−7 cm2/s. However, the nanosecond dynamics of

the short PEO chains measured with high resolution QENS are in good agreement

with the PFG-NMR results. Self-diffusion of the entire molecules dominates the ob-

served signal of the low molecular weight PEO on the nanosecond time scale. The

dynamics on shorter time scales are faster than this relatively slow global molecu-

lar self-diffusion. These fast motions are rather caused by contributions of internal

motions of the molecules than by a translational motion of the entire molecules.

Using the Arrhenius equation 6.3 activation energies Ea were calculated. For the

4µeV data an Arrhenius behavior cannot be implied from the data, since only two

apparent diffusion constants were obtained. Nonetheless the Arrhenius equation

was applied to obtain an approximate activation energy. Keeping in mind that the

approximate diffusion coefficient at T = 308 K is rather too high, the resulting Ea

can also be interpreted as an upper limit estimation. The resulting values are given

in figure 6.16. The activation energies for the fast motions (instrumental resolution

of 1.5 meV) are about independent of the chain length, as can already be concluded

from the nearly coinciding apparent diffusion coefficient Da in figure 6.15. On a 50 ps

time scale (instrumental resolution of 55µeV) the activation energies are higher than
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6 Dynamics Observed with Quasielastic Neutron Scattering

on a 2 ps time scale (instrumental resolution of 4µeV). This is in agreement with

the results obtained for n-alkanes: Fast, local motions are characterized by smaller

activation energies.

The chain length dependence of the activation energy extracted from the 55µeV

data is opposite to the behavior detected for n-alkanes: The values determined

by Smuda et al. (see fig. 6.16) increase with increasing chain length, analogue to

PFG-NMR data, and level off for high molecular weight. They concluded that

for these long chains only local, intramolecular motions are observed, which are

independent of the molecular dimension. This is not the case for the PEO dynamics

on the same time scale. The dynamics of the smaller PEO molecules are subject to

higher activation energies. Shorter chains approach the regime of global translational

motion, which is characterized by an higher Ea, faster than the long chains. Hence

the dynamics on the 50 ps time scale can be linked to the very onset of molecular

self-diffusion for the low molecular weight PEO.

The motions of the short PEO sample observed with an instrumental resolution

of 4µeV are in line with the long-time PFG-NMR values, obtained for PEO with

higher molecular weight [175, 176]. This confirms that these short PEO chains reach

the self-diffusive regime on the sub-nanosecond time scale.

The slightly different chemical composition of the PEO chains has a huge ef-

fect on the global chain dynamics. Intermolecular hydrogen bonding causes a slow

down of the motions, resulting in a relatively high activation energy for short PEO

chains and a delayed crossover to molecular self-diffusion compared to the n-alkane

dynamics. The internal motions observed for the longer PEO chains with a 50 ps ob-

servation time are characterized by the same activation energy as found for the the

high molecular weight n-alkanes. Whether the local, intramolecular dynamics are

identical on this time scale for the PEO and n-alkane chains needs to be addressed

in future simulation work.
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7 Motions Identified using MD

Simulations

The quasielastic neutron scattering measurements allowed for a study of the motions

on the pico- to nanosecond time scale. The resulting data of the short hexadecane

(C16H34) molecules revealed that a superposition of various motions dominates the

observed signal at low temperatures. Activation energies were extracted characteriz-

ing the dynamics on different time and length scales. For the long hectane (C100H202)

molecules almost constant activation energies were determined, characterizing the

motions observed with observation times in the range of 10 ps to 1 ns.

In order to identify the present motions leading to molecular self-diffusion, detailed

molecular dynamics (MD) simulations were performed on a C16H34 and C100H202

system. Poly(ethylene oxide) has not been simulated in the framework of this thesis.

However such simulations have been started to complement the respective neutron

scattering data.

In the following a throughout validation of the simulated dynamics will be pre-

sented, before the dynamics of the n-alkane chains will be analyzed. By this local,

global and collective motions of the atoms will be differentiated, which dominate

the prevailing dynamics on different time scales.

7.1 Validation of the MD Simulations

Before simulated trajectories can be analyzed for any purpose, a validation of the

subject under interest must be performed [177]. In the framework of this thesis the

simulations are performed to obtain complementary information to the quasielastic

neutron scattering (QENS) data. Therefore the focus of the validation is directed to

the short-time dynamics. Structural information are of minor interest. High quality

force fields, however, need to be able to reproduce spectroscopy and diffraction

patterns, obtained by neutron or x-ray scattering on a wide temperature range. It
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7 Motions Identified using MD Simulations

will be pointed out that optimizing structural details as e. g. density strongly affects

the short-time dynamics.

Dynamics

The validation of the short time dynamics was done by calculating the intermediate

scattering functions I(Q, t) from the MD simulations and comparing them with

the data measured with QENS at TOFTOF. From the simulations coherent and

incoherent dynamic structure factors were computed with nmoldyn as described

in section 5.4.

The measured I(Q, t) cannot be straightforward normalized. I(Q, 0) for instance

corresponds to the Fourier transform of S(Q,ω → ∞). As the measured energy

range is finite I(Q, 0) is not clearly defined. The measured spectra were therefore

divided single constant values to align them with the simulated data.

The comparison of the C16H34 dynamics simulted with the force field of Chang &

Sandler [153] at 293 K is illustrated in figure 7.1. For all scattering vectors Q the

simulated and measured data coincide perfectly on the whole time scale accessed

with QENS. The accordance is of similar quality for the other temperatures. As

already referred to before, explicit 1–4 pair interactions in the force field were ne-
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Figure 7.1: C16H34 - Intermediate scattering functions as calculated from the MD simula-
tions (solid lines) and measured with quasielastic neutron scattering (QENS) at TOFTOF
(symbols) at T = 293 K (cf. [168]).

90



7.1 Validation of the MD Simulations

10-1 100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

t (ps)

I(
Q

,t
)

QENS:
     MD:            /            

    Q = 0.4 A-1

    Q = 0.6 A-1

    Q = 0.8 A-1

    Q = 1.0 A-1

    Q = 1.2 A-1

    Q = 1.6 A-1

    Q = 2.0 A-1

Figure 7.2: C16H34 - Intermediate scattering functions as calculated from the MD simu-
lations using (dotted lines) and neglecting (solid lines) explicit 1–4 pair interactions in the
force field, together with the data measured with quasielastic neutron scattering (QENS)
at TOFTOF (symbols) at T = 363 K (cf. [168]).

glected in order to lower the melting temperature, which is considerably too high

otherwise, as will be pointed out later. To identify the impact of this procedure

on the short time dynamics, intermediate scattering functions were calculated from

simulations with and without these 1–4 interactions. The comparison in figure 7.2

for T = 363 K confirms no major difference of the short time dynamics. The data

from both simulation sets lie on top of each other and also coincide with the QENS

data. This justifies the procedure of neglecting non-bonded interactions for the

first three neighbors to lower the incorrect melting temperature without a severe

influence on the dynamics.

Besides the force field of Chang & Sandler, which reproduces the C16H34 dynamics

excellently, the L-OPLS force field reparametrization of Siu et al. [152] was tested.

A comparison of the resulting dynamic structure factors resulting from simulations

using both force fields is presented in figure 7.3. Only marginal differences in the

shape of the curves can be identified, although the dynamics resulting from the

Chang & Sandler force field are negligible faster. The dynamics simulated with

both force fields are very similar to each other and are both within the errors of

the experimentally measured intermediate scattering functions (cf. fig. 7.2). Both

force fields hence reproduce the observed dynamics very accurately. The Chang &
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Figure 7.3: C16H34 - Comparison of the dynamic structure factors at T = 363 K obtained
from simulations with the force field parameters of Chang & Sandler (solid lines, [153])
and Siu et al. (dotted lines, [152]). Both simulations were performed using explicit 1–4
pair interactions. The arrow points into the direction of increasing scattering vector Q,
ranging from 0.1 to 3.0 Å−1 (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0 Å−1).

Sandler force field results in a better simulation performance compared to the use

of the L-OPLS force field and was hence standardly used in the framework of this

thesis.

The C100H202 melt, which is expected to show slower dynamics than the C16H34

system, was also measured with even higher instrumental resolutions. The master

curves, obtained by joining intermediate scattering functions measured for different

instrumental resolutions, cover four orders of magnitude in time, as can be seen in

figure 7.4 for T = 509 K. Again, an outstanding agreement between the data points

obtained from the MD simulation and neutron spectroscopy can be identified for

C100H202, which extends from the sub-picosecond to nanosecond time scale. This is

also the case for the lower temperatures.

In this high quality validation on the atomic scale the simulated short-time dy-

namics represent the motions observed with neutron scattering excellently. Hence

the simulated motions complement the quasielastic neutron scattering data by pro-

viding equivalent information in real space. The validation also proves the value of

neutron spectroscopy to directly probe the dynamics which directly result from the

force field parameters.
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Figure 7.4: C100H202 - Intermediate scattering functions as calculated from the MD
simulations (solid lines) and measured with quasielastic neutron scattering (QENS) at
TOFTOF (symbols) at T = 509 K (cf. [178]).

Structure

Density A first test of the simulated structure is a validation of the simulated

density. Table 7.1 contains the densities of all simulated systems and allows for a

comparison of the results from different force fields with the literature values from

the Landolt-Börnstein database [179]. The resulting densities using the force field

from Chang & Sandler are too large, and the relative error decreases with increasing

temperature. The relative errors are below 5 %, which is fair enough, considering

that the size of the simulation box is not a fixed parameter in the simulation of an

NPT ensemble.

Including explicit 1–4 pair interactions into the force field results in a crystal-

lization of the n-alkane systems at low temperatures above the literature melting

temperature. Neglecting these 1–4 terms resulted in a artificially low melting point.

The resulting densities are found to be too large compared to the experimental val-

ues, similar to the values obtained from the simulations neglecting non-bonded 1–4

interactions.

The L-OPLS force field presented by Siu et al. yields a more precise density of

the C16H34 system at low temperatures, with relative errors below 1 %. However,

for higher temperatures the densities are too low compared to the literature values
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7 Motions Identified using MD Simulations

Table 7.1: Comparison of the simulated densities (kg/m3) with literature values from the
Landolt-Börnstein (L.-B.) database [179] for the simulated n-alkane systems at different
temperatures T . The densities are listed for the simulations using the Chang & Sandler
(C&S) force field [153] with (4th column) and without (5th column) calculating explicit
non-bonded 1–4 pair interactions. Using 1–4 pairs may result in crystallization (cryst.)
above the melting temperature. Also listed are the densities obtained using the L-OPLS
force field parameters of Siu et al. [152].

C&S C&S
System T L.-B. with 1–4 pairs without 1–4 pairs Siu et al.

C16H34 293 K 773.44 cryst. 799.97 770.58
323 K 752.81 cryst. 775.74 -
363 K 724.89 745.76 743.36 708.77
403 K 696.55 712.03 710.37 -
443 K 667.83 677.44 676.55 636.36

C100H202 393 K - cryst. 804.92 -
453 K - - 762.72 -
509 K - 726.09 724.09 679.40

and the relative error increases with inceasing temperature. The L-OPLS force field

was developed to simulate biologically relevant systems at room temperature and

was therefore not optimized at higher temperatures [154].

The Lennard-Jones potential is an empiric function which is applied to model van

der Waals forces in the MD simulations. The simulated density strongly depends on

the cutoff length rLJ used to truncate the Lennard-Jones interaction. To study the

dependency of the density on the Lennard-Jones cutoff length short MD simulation

runs were performed with varying rLJ. As tabulated in table 7.2, a decrease of the

cutoff length resulted in lowering the density. It is generally believed that a realistic

potential should yield more precise simulation results by increasing the cutoff length.

The results from bulk water simulations showed that this tendency is not true [180].

For C16H34 at 363 K intermediate scattering functions were calculated for simula-

tions with a modified cutoff length rLJ = 1.15 nm and compared with the otherwise

simulated system (rLJ = 2.00 nm). The resulting dynamic coherent and incoherent

structure factors are plotted in figure 7.5 and 7.6, respectively. The dominant co-

Table 7.2: Density of the C16H34 system at 363 K with a variable Lennard-Jones (LJ)-
cutoff.

LJ-cutoff (nm) 1.10 1.15 1.20 1.30 2.00
density (kg/m3) 722 725 728 732 743
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Figure 7.5: C16H34 - Dynamic coherent structure factors as obtained from the MD simu-
lations at 363 K. The simulations were performed using two different Lennard-Jones cutoff
lengths rLJ−cutoff . The symbols label the different values of scattering vector Q.
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Figure 7.6: C16H34 - Dynamic incoherent structure factors as calculated from the
MD simulations at 363 K simulated using two different Lennard-Jones cutoff lengths
rLJ−cutoff = 2.00 nm (solid lines) and 1.15 nm (dotted lines). The arrow points into the
direction of increasing scattering vector Q, ranging from 0.1 to 3.0 Å−1 (0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0 Å−1). The change of rLJ−cutoff

results in an altered form of the spectra at low values of Q.
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7 Motions Identified using MD Simulations

herent structure factor at Q ≈ 1.4 Å−1 corresponds to the chain-chain correlation.

With the reduced Lennard-Jones cutoff the density of the system decreases, and the

coherent structure factor Icoh(Q, t = 0) also decreases slightly.

The incoherent part shows clear differences for low values of Q < 1 Å−1. The

simulated dynamics with the modified Lennard-Jones cutoff rLJ yield a faster decay

of the self part of the correlation function. Hence the short-time motions of the atoms

are strongly influenced by adjusting the Lennard-Jones cutoff. Bending the density

into shape in this way leads to dynamics which do not represent the experimentally

measured intermediate scattering functions.

Since the simulated dynamics are nicely reproduced using the advanced Lennard-

Jones cutoff length rLJ = 2 nm, the minor error in density is accepted. If precise

representations of the simulated structures at low temperatures are needed, the new

L-OPLS force field parameters of Siu et al. [152] should be applied for the simulation

of n-alkanes. A reparametrization of the L-OPLS force field parameters to simulate

the correct temperature dependence of hydrocarbons is the focus of current work

[154].

Static Structure Factor The static structure factors S(Q) was measured with

neutron polarization analysis at DNS and calculated from the MD simulations. Te

latter intensities were modified to account for the inelasticity effects, as described in

section 5.4. The data obtained from both methods are illustrated in figure 7.7 for

C16H34 and C100H202 at all measured temperatures.

For both systems the overall shape of the measured S(Q) is well reproduced by

the simulations. Due to the low coherent scattering of the sample the measured

signal is quite noisy. The position of the chain correlation peak at Q ≈ 1.4 Å−1 in

the MD simulations is at the right position, although the simulated densities are

slightly too high. Hence this has no effect on the intermolecular chain distances,

but rather on the local conformation of the molecules.

At low values of Q < 1 Å−1 an increasing deviation of the measured and simulated

S(Q) can be observed, in particular for the static structure factors of C100H202. It is

to be assumed that this feature is an artifact resulting from the data reduction. It

is especially a proper measurement and subtraction of the experimental background

which affects the low-Q behavior of the S(Q).

It is to be noted that the modification of the simulated intensities is essential

for a direct comparison with the neutron scattering data obtained at DNS. The
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Figure 7.7: Static structure factors as measured with neutron polarization analysis at
DNS (symbols) and as calculated from the MD simulations (lines) for C16H34 (upper
image) and C100H202 (lower image) at several temperatures T . The values obtained from
the simulations were modified to account for the inelasticity effects.
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temperature dependence of the chain correlation peak is in great accordance and also

the width of this peak at Q ≈ 1.4 Å−1 is nicely reproduced by the MD simulations,

particularly for the C16H34 system. For the C100H202 system the simulated amplitude

of the chain correlation peak is too pronounced. Compared to the data analysis of

the C16H34 system, less time frames were used to calculate the static structure factor

for the simulated C100H202 melt, as the computation effort increases magnificantly

with increasing system size. The overestimation of the chain correlation peak may

result from the less detailed analysis.

Also for large scattering vectors of Q & 2 Å−1 the simulated values agree with

the measured ones, mostly due to the correction performed on the simulated values.

The impact of this modification is illustrated in figure 7.8, where the unaltered static

structure factor is plotted together with the modified data set for the C16H34 system.

The relocation of intensities, as described in section 5.4 results in a amplification of

the data points at Q & 2 Å−1, making a comparison to the neutron scatteing data

possible.
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Figure 7.8: C16H34 - Static structure factors as calculated from the MD simulations (solid
lines), compared to the results obtained when accounting for the inelsticity effects (dotted
lines).
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7.2 Atomic and Molecular Self Motion

Since the quasielastic neutron scattering data verify the simulated dynamics on a

wide length and time scale, the motion of the atoms and molecules will be ana-

lyzed in real space in the following. This analysis will focus on the displacements

of individual atoms and of the whole molecules, i. .e. their center-of-mass (com)

coordinates, before the simulated trajectories will be used to test the validity and

applicability of the Rouse model.

Radial Distribution Function

The self-motion of the atoms in real space is represented by the self-part of the

van Hove correlation function Gself(r, t). As introduced in section 4.1, this function

describes the probability of finding a particle at distance r from its origin after time t.

For t= 0 this function results in a δ-function, since the particles have not moved at

all. With increasing time the function starts to broaden, as exemplarily illustrated

in figures 7.9 and 7.10 for C16H34 and C100H202, respectively. The peak maximum

shifts to larger displacements and decreases in height with increasing temperature

and time.
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Figure 7.9: C16H34 - Self-part of the van Hove correlation function at t = 10 ps. The
arrow points into the direction of rising temperature. With increasing temperature the
peak maximum shifts to larger distances while the peak height decreases.
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Figure 7.10: C100H202 - Self-part of the van Hove correlation function. With increasing
time the peak maximum shifts to larger distances while the peak height decreases.

At very short times (t→ 0) the individual atoms move ballistically. Therefore, due

to the equilibrium distribution of velocities, the self-part of the van Hove correlation

function has a Gaussian form as a function of r [89]. In the long time limit (t→∞)

the purely diffusive regime is reached, hence Gself(r, t) is again a Gaussian [181, 182].

Using a Gaussian function, Gself(r, t) can be described according to equation 4.18

[85]. For the calculation of the Gaussian expression of the radial distribution func-

tion, the mean-square displacement is required as an input. It was obtained from

the simulations as 〈
r2(t)

〉
=

∞∫
0

r2
(
4πr2Gself(r, t)

)
dr (7.1)

for this purpose. Figure 7.11 exemplarily presents a comparison of the simulated

Gself(r, t) with the results obtained from equation 4.19 for C16H34 at 443 K.

At t= 1 ps and t= 10 ps clear deviations from a Gaussian distribution are present

in the C16H34 system at high temperatures. The peak of the Gaussian approxi-

mation GGauss
self (r, t) occurs at larger distances than observed from the simulations.

With increasing time the correlation function can be modeled increasingly better

by Gaussians, as can be seen from the only minor differences of the e. g. t= 100 ps

data.
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Figure 7.11: C16H34 - Self-part of the van Hove correlation function at T = 443 K as
calculated from the simulated trajectories (solid lines). In addition the standard Gaussian
function is shown (dotted lines). Clear deviations from the Gaussian distribution function
can be identified on the short picosecond time scale.

Non-Gaussian Parameter

The deviations of the self-part of the van Hove correlation function Gself(r, t) from

a Gaussian distribution are quantitatively determined by the non-Gaussian param-

eter α2(t) (eq. 4.23). The parameter α2(t) was calculated for the center-of-mass

coordinates of the molecules and for the coordinates of the individual carbon atoms

separately. Only carbon atoms are treated in the latter case to reduce the calcula-

tion effort, justified by the fact that the motions of the hydrogen atoms are strongly

linked to the carbon dynamics.

C16H34 For the displacements of the whole C16H34 molecules, i. e. for their com

coordinates, a clear non-Gaussian behavior can be identified on intermediate times

with a maximum at 5 ps . t . 20 ps (see fig. 7.12(a)). The peak maximum is

temperature dependent and shifts to shorter times with increasing temperature.

Furthermore the deviations from a Gaussian behavior decrease with increasing tem-

perature. Neglecting explicit 1–4 pair interactions in the force field leads to a re-

duced value of α2(t), however the peak position seems unchanged. Similar obser-

vations were reported for simple Lennard-Jones systems [84], underlining that this

behavior is not related to intramolecular motions. The maximum amplitude of the
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(a) C16H34 - Center-of-mass coordinates of the molecules.
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Figure 7.12: C16H34 - Non-Gaussian parameter calculated for the center-of-mass coordi-
nates of the whole molecules (upper image) and for only the carbon atoms (lower image).
The MD simulations were performed with (dotted lines) and without (solid lines) explicit
1–4 pair interactions. The arrow points into the direction of rising temperature.
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non-Gaussian parameter can be linked to the crossover to a subdiffusive motion of

the com molecules, which is very pronounced at low temperatures. This will be

addressed in the following section. In addition to the strong maximum a shoulder

appears at longer times. For the lowest simulated temperature (T = 293 K) this

feature is at t ≈ 500 ps and also shifts to shorter times with increasing temperature.

However, it is difficult to clearly identify this feature, since the peak is very domi-

nant. As will be pointed later, this shoulder corresponds to the crossover from the

subdiffusive to the diffusive regime.

A similar behavior can be noticed for the non-Gaussian parameter calculated for

the individual carbon atoms in the C16H34 melt. As can be seen in figure 7.12(b),

the peak and the shoulder that was identified for the com C16H34 coordinates is also

present here. The peak is more difficult so localize with increasing temperature. This

is due to the appearance of an additional distinct peak, which reaches its maximum

at t≈ 0.3 ps. There is only a slight temperature dependence of the peak height. This

characteristic can be is related to fast librational motions of the covalent bonds [183,

184], and is hence not visible in simple Lennard-Jones or colloidal systems.

C100H202 The com trajectories of the C100H202 molecules, plotted in figure 7.13(a)

show similar non-Gaussian features. The first peak of α2(t) is observed between 3

and 10 ps. No clear temperature dependence for this feature could be determined.

Again this short-time feature corresponds to the crossover to a subdiffusive behavior

of the com motions, as will be concluded from the analysis of the mean-square

displacements in the following section. This crossover is reflected in a relatively

little amplitude of the non-Gaussian parameter, compared to the dominant peak of

the com α2(t) of the C16H34 data (cf. fig. 7.12(a)).

With increasing time the non-Gaussianity of the C100H202 com motion increases

and reaches a maximum at long times. For the simulated temperature of T = 453 K

and 509 K the maximum of α2(t) can be identified at tmax ≈ 3 ns and tmax ≈ 1 ns,

respectively. For T = 393 K the maximum is at t > 10 ns. The maximum again shifts

to shorter times and the value of α2(tmax) decreases with increasing temperature.

The crossover from the subdiffusive regime to a freely diffusive motion takes place

on these time scales.

The non-Gaussian dynamics of the carbon atoms in the C100H202 melt also show

the additional feature at t ≈ 0.3 ps, as illustrated in figure 7.13(b). This feature

corresponds to the observations for the dynamics of the carbon atoms in the C16H34

melt. There is only a slight temperature dependence of the peak height, but the
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position of the peak shows no dependence of the chain length. In this microscopic

regime the atoms start feeling the covalent bonds and the observed dynamics are

again due to local vibrations [184].
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(b) C100H202 - Carbon atoms.

Figure 7.13: C100H202 - Non-Gaussian parameter calculated for the center-of-mass coor-
dinates of the molecules (upper image) and for only the carbon atoms (lower image). The
arrow points into the direction of rising temperature.
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Mean-Square Displacement

The mean-square displacement (MSD) was calculated for the coordinates of all in-

dividual atoms and for the the center-of-mass coordinates of the molecules as well.

C16H34 Any translational motion of the whole molecular chain is reflected in the

displacement of the individual atoms of the chain. To characterize the extend to

which the atomic motion is affected by global molecular dynamics, the MSD of the

individual atoms is compared to the MSD of the com molecules in figure 7.14 at

three different temperatures. The MSD of the individual atoms is enhanced, and

merges with the MSD of the com molecules at 500 ps . t . 5 ns, whereas this point

shifts to shorter times with increasing temperature. Hence the motions of the single

atoms on the picosecond time scale is not entirely driven by the com motion, but is

rather due to intramolecular motions.

The whole molecules show a subdiffusive, i. e. t<1 behavior, which is more pro-

nounced at lower temperatures. A fit of a power law 〈r2(t)〉 ∝ tx to the MSD of

the com coordinates at T = 293 K yields an exponent of x = 0.6 (fit range 1–10 ps).

For this temperature the crossover to the freely diffusive regime (x = 1.0) occurs
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Figure 7.14: C16H34 - Mean-square displacement (MSD) at T = 293, 363 and 443 K. The
solid lines represent the MSD of the center-of-mass coordinates of the whole molecules,
while the dashed lines present the MSD calculated for all atoms in the system. The black
dotted lines are power laws. The linear t1-range corresponds to the diffusive regime. The
arrow points into the direction of rising temperature.
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Figure 7.15: C16H34 - Mean-square displacement (MSD) of the hydrogen atoms (dotted
lines) and carbon atoms (solid lines) at T = 293 and 443 K. At short times the MSD of
the hydrogen atoms is enhanced due to e. g. bond vibrations or methyl group rotations.

at roughly t ≈ 100 ps. With increasing temperature this crossover takes place at

shorter times.

In order to study the chain dynamics of the C16H34 molecules only the MSD of the

carbon atoms is considered in the following. The fact that the overall dynamics of

the hydrogen atoms are highly correlated to the motions of the carbon atoms of the

molecular backbone allows for this simplification. At very short times independent

motions such as methyl group rotations provide extra contributions to the MSD of

the hydrogen atoms [185–187] (cf. fig. 7.15).

The relative MSD of the chain ends to the MSD of the chain center is illustrated in

figure 7.16(a), showing that the ends of the chains perform larger displacements than

the atoms at the center of the chain on the whole pico- to nanosecond time range

studied. The first, short time decay of the curves is due to the enhanced flexibility of

the chain ends. The carbon atoms at the chain ends are covalently bonded to only

one neighboring carbon atom. Hence fast sub-picosecond dynamics as e. g. bond

vibrations have a more distinct effect on the MSD of the atoms at the chain ends.

However, with increasing time the relative effect of these local vibrational motions

get lost in more global dynamics.

A second rise of the relative MSD occurs between 10 ps and 1 ns, with the peak

maximum shifting to shorter times with increasing temperature. The maximum
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Figure 7.16: C16H34 - Mean-square displacement (MSD) of carbon atoms Ci at different
positions along the molecule divided (upper image) and subtracted (lower image) respec-
tively by the MSD of the carbon atoms Ccenter at the central positions of the molecular
backbone (cf. [168]). The horizontal arrow points into the direction of rising temperature,
while the other illustrates the position of the carbon atom Ci along the molecule.
The black marks in the lower image represent the maximum displacement of the carbon
atoms due to a centered rotational motion of the C16H34 molecule, as listed in table 7.3.
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Table 7.3: Most probable distance between carbon atoms separated connected by # bonds
along entire C16H34 chains. Also listed are the averaged additional MSD values, calcu-
lated for C16H34 molecules at T = 403 K, which perform a centered rotational motion, as
described in the text and illustrated in figure 7.17.

# bonds 1 2 3 4 5 6 7
most probable distance (nm) 0.154 0.256 0.389 0.505 0.633 0.752 0.875
additional MSD (nm2) 0.032 0.087 0.201 0.339 0.533 0.752 1.018

value of the peak is mainly independent of temperature, indicating that geometrical

aspects of the molecules are the reason for this behavior. A sole centered rotational

motion of the entire molecule would give rise to an enhanced relative MSD, since

the center of the chain would not move at all in this case.

Subtracting the MSD of the carbon atoms at the center of the chain from the MSD

data of the other carbon atoms effectively removes the long-range displacement of the

whole molecule. The resulting data, as pictured in figure 7.16(b) gives information

only on reorientational dynamics of the molecules. On a time scale 10 ps . t . 1 ns

the MSD of the chain ends increases more compared to the MSD of the chain center,

analogous to the observations of the relative MSD in figure 7.16(a). Afterwards, on

the nanosecond time scale, the curves approach a constant value, which can be

interpreted as the maximum displacement of the carbon atoms due to a rotational

motion of the whole molecules.

The constant values of the curves in figure 7.16(b) for large times correspond to

the maximum displacement of the atoms of a stiff molecule performing a centered

rotational motion. The distance of a carbon–carbon bond is 0.154 nm. Moving

Figure 7.17: Illustration of the additional displacement due to a rotational motion of
covalently bonded atoms. Atom A moves into any direction and atom B rotates around
A. The displacement of atom B can be greater or smaller than the displacement of atom A.
Considering all starting positions of atom B at time t0 and all final positions at t1 results
in the additional mean-square displacement as listed in table 7.3.
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one carbon atom (which is located at a central position of the molecular backbone)

steadily in one direction and rotating the other one around it, results in an addi-

tional averaged MSD of 0.032 nm2 of the second carbon atom (cf. fig. 7.17). For

atoms connected via several covalent bonds along the molecular backbone the most

probable distance between these atoms was extracted from the simulations. This

procedure takes into consideration that the molecules are in different configuration,

due to geometric isomerism. The respective most probable distances and the result-

ing additional averaged MSD are listed in table 7.3.

C100H202 In the whole picosecond time scale the MSD of the com C100H202 mole-

cules shows only little movement of the entire chains. As can be seen in figure 7.18,

the displacement during a time interval of 100 ps is of only a few Å, even at the

highest simulated temperature. The MSD shows a subdiffusive behavior, which

spans into the nanosecond time range. As determined for the C16H34 molecules,

the crossover to the diffusive regime (∼ t1) is temperature dependent, and shifts to

shorter times with increasing temperature. At T = 509 K this crossover takes place

at t ≈ 10 ns, which coincides with corresponding neutron spin echo results [39]. By
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Figure 7.18: C100H202 - Mean-square displacement (MSD) at T = 393, 453 and 509 K.
The symbols represent the MSDs of the center-of-mass coordinates of the whole molecules,
while the dashed red line represents the MSDs calculated for the carbon atoms at the center
of the molecule backbone at the highest temperature of T = 509 K. The dotted lines are
linear functions fitted to the center-of-mass MSDs at all temperatures. The arrow points
into the direction of rising temperature.
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fitting a linear function to the MSD of the com coordinates a self-diffusion coefficient

can be determined yielding DMSD
com = 2.38 · 10−6 cm2/s at T = 509 K. Pearson et al.

determined diffusion coefficients for shorter n-alkanes with PFG-NMR [172, 173]. An

extrapolation of their data results in a value of DNMR ≈ 2.3 · 10−6 cm2/s for C100H202

at T = 509 K. This is in good agreement with the simulated long time diffusion

coefficient, regarding the uncertainty involved in the extrapolation of temperature

and chain length.

Although the whole molecules translate only marginally, the MSD of the individ-

ual atoms is more pronounced than the MSD of the com coordinates of the whole

molecules. The MSD of the carbon atoms and of the com molecules coincide on

time scales which were barely accessed with the MD simulations performed in the

framework of this thesis∗. At T = 509 K the MSDs match on a time scale of about

t & 20 ns (cf. fig. 7.18). This time scale shifts to longer times with decreasing

temperature (not shown). Hence the atomic motions are only little driven by the

self-diffusion of the C100H202 molecules on the studied time scale. Therefore the

atomic motions are only little driven by the self-diffusion of the C100H202 molecules

on the studied time scale.

Different behavior can be identified for the MSD of the whole C100H202 molecules,

as indicated in figure 7.19 for T = 509 K. The dynamics on very short times are

characterized by a t2 scaling, corresponding to an initial ballistic regime. This

is followed by a short superdiffusive (t5/4) and the subdiffusive regime, with a t3/4

scaling as predicted by the theories of Farago et al., accounting for either viscoelastic

hydrodynamic interactions (VHIs) [46] or density fluctuations [72]. However, both

models were not prepared to describe the superdiffusive or ballistic regime.

To test the two models, the respective mean-square displacements (eqs. 2.27 and

2.28) were plotted. The only free parameter W , accounting for a time constant,

was obtained according to the method described by Farago et al. [46]: b2
√
Wt was

fitted to the subdiffusive regime of the MSD of the carbon atoms at the center of

the C100H202 molecule, resulting in W ≈ 0.5 ps−1. The statistical segment length

b = 0.4 nm and the particle number density n = 31 nm−3 was chosen in accordance

with other studies [30, 31]. It is to be noted that neither model contains free pa-

rameters which need to be fitted to the com MSD. A comparison of the MSD with

the predictions of both theories, which is illustrated in figure 7.19, clearly illustrates

that the effect of density fluctuations is weak to account for the subdiffusive behav-

∗The maximum simulation time was 20 ns
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Figure 7.19: C100H202 - Mean-square displacement (MSD) of the center-of-mass coordi-
nates at T = 509 K (solid black line). Also plotted are the predictions from two theories to
model the subdiffusive (t<1) regime: One accounting for viscoelastic hydrodynamic inter-
actions [46] (dashed red line) and one including density fluctuations [72] (dotted red line).
The arrows indicate the validity of the two models, which is framed by the mean-square
chain end-to-end distance R2

ee and the squared statistical segment length b as well as the
segmental tS and Rouse tR relaxation time, which were derived from the Rouse analysis
presented in the following section (cf. [178]).

ior. The VHI-model, however, nicely describes the subdiffusive regime as well as the

crossover to Fickean diffusion.

Further verification of the model needs to test the scaling of the long-time com

velocity autocorrelation function (VAF), which is predicted as −N−1/2t−3/2 by the

VHI-model. A straightforward computation of the VAF for the simulated trajec-

tories results in very noisy data and is hence impractical to test the VHI-model

[188]. Nevertheless the experimentally validated simulation presented here strongly

supports the VHI-theory, pointing out that hydrodynamic effects lead to the anoma-

lous com diffusion. Although this theory was developed to model the motions of

very long, unentangles flexible molecules, it is very capable of describing the com

dynamics of the C100H202 chains.
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Rouse Analysis

The Rouse model was developed to describe the dynamics of short polymer chains,

which are long enough to show Gaussian chain statistics. The distributions of the

end-to-end chain distances of the C100H202 chains calculated from the simulations

are displayed in figure 7.20 for two different temperatures. Also plotted are radial

Gaussian distribution functions [33]

w(r) = 4πr2

(
3

2π〈~r 2
ee〉

)3/2

exp

(
− 3r2

2〈~r 2
ee〉

)
, (7.2)

calculated using the mean-square end-to-end distance 〈~r 2
ee〉 taken from the simula-

tions. The comparison shows that the results can be roughly described with a Gaus-

sian distribution. The chains are in a more elongated conformation than modeled, as

the distribution shifts to larger r. Other force fields can yield better Gaussian chain

statistics [33], which must not reflect the true end-to-end chain distance distribution

of a C100H202 melt. It is hence doubtful that these force fields can reproduce the

simulated dynamics with the same quality as demonstrated in this thesis.

Since the simulated chains exhibit roughly a Gaussian chain statistics, the dy-

namics of the C100H202 chains were analyzed in terms of the Rouse model in more

detail.
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Figure 7.20: End-to-end chain distance distribution of the simulated C100H202 molecules
(symbols), together with a Gaussian distribution function (solid lines).
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Figure 7.21: Amplitudes of the normal amplitudes in terms of the Rouse model for
several mode numbers p and all simulated temperatures. The Rouse model predicts no
temperature dependence and a p−2-scaling of the amplitudes, which is fulfilled only for
low p.

As pointed out in section 2.2, the chain dynamics are described by normal co-

ordinates ~Xp(t) of the Rouse modes p. Small mode numbers correspond to more

spatially extended motions of the chain. The mode amplitudes should scale as p−2

(cf. eq. 2.22). As it can be seen in figure 7.21 this scaling is fulfilled for the low

mode numbers p≤ 3 only. For higher mode numbers, describing dynamics on small

spatial extensions, the mode amplitudes are lower than predicted. As the ampli-

tudes are mainly governed the restoring forces of the artificial springs connecting

neighboring beads (cf. eq. 2.22), the deviation of the p−2 scaling indicates that the

actual restoring forces are stronger than those considered in the Rouse model.

Figure 7.22 shows the Rouse correlators Φpp(t) (eq. 2.23), which are the time

correlation functions of the normal coordinates. For all modes > 0 these functions

should exhibit a single exponential decay. In order to test this behavior, the Rouse

correlators were fitted using stretched exponential functions. As can be seen in

figure 7.22, the relaxation of the Rouse correlators for all simulated temperatures

can be well described in this way.

However, the decay of the Rouse correlators are not perfectly single exponential,

which would result in a stretching parameter β= 1. In figure 7.23 the extracted

stretching parameters are displayed. For all values of N/p the parameter β is found

to be smaller than 1. Only for the first two modes the value of β is close to unity.
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Figure 7.22: C100H202 - Rouse correlators for all simulated temperatures and two mode
numbers (full symbols: p= 5, open symbols: p= 20). The decay of the correlators is fitted
by stretched exponential functions (solid lines).
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Figure 7.23: C100H202 - Stretching parameters as extracted from a stretched exponential
fit to the Rouse correlators.

There is only a slight temperature dependence of β: The stretching increases with

decreasing temperature. In conclusion it is to state that the Rouse model starts

to fail to describe the dynamics characterized by higher mode numbers and lower
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    T = 393 K
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Figure 7.24: Relaxation times of a stretched exponential fit to the Rouse correlators
(symbols). The p−2-scaling as predicted by the Rouse model holds only for low mode
numbers p.

temperatures. Local chemical interactions contribute to the decay of the Rouse

correlators, resulting in a non-exponential decay [189].

The mean relaxation times 〈τp〉 as obtained from the stretched exponential fits

are plotted in figure 7.24. The relaxation time of the first mode corresponds to the

Rouse time τR. For the three simulated temperatures the Rouse times are: 22.1 ns

(393 K), 7.15 ns (453 K) and 2.91 ns (509 K). The Rouse model predicts a scaling

〈τp〉 ∼ p−2 (eq. 2.19), which applies for the lower modes p. 6. Hence the Rouse

model starts to fail on length scales corresponding to the size of 16 monomers and

less. Obviously on these length scales local chemical interactions start to suppress

the Rouse correlators [40].

The mean relaxation times 〈τp〉 of the Rouse correlators depend on both the

restoring forces of the artificial springs (as the amplitudes of the Rouse correlators)

and a friction coefficient, which represents the background friction, or white noise,

to include intermolecular effects (cf. eq. 2.19). The analysis of the mean-square dis-

placement revealed a dominant subdiffusive regime on the pico- to nanosecond time

scale (cf. sec. 7.2). This subdiffusive behavior of the whole molecules is not modeled

by the Rouse model, which predicts a simple Fickean diffusion for all times, could

be well described by accounting for viscoelastic and hydrodynamic interactions. As

the Rouse model misses the effect of collective flows induced by hydrodynamic in-
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7 Motions Identified using MD Simulations

teractions, the assumption of white noise fails and alongside the mean relaxation

times of the Rouse correlators start to deviate from the Rouse predictions. As will

be described later, these intermolecular collective motions have a strong effect on

the chain dynamics.
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7.3 Local and Global Chain Reorientations

7.3 Local and Global Chain Reorientations

The results of the preceding section showed that the C100H202 dynamics cannot be

described in terms of the Rouse model, as it was only able to predict dynamics

on a length scale of the whole molecules satisfactorily. However, accounting for

viscoelastic and hydrodynamic interactions allowed for describing the anomalous

diffusion of the whole molecules. In the following local and global chain relaxations

will be treated separately for both C16H34 and C100H202.

Local Chain Dynamics: Torsional Rotation

The torsional dynamics were studied by calculating the C-C-C-C torsional angle

autocorrelation function [190] as

P dih(t) =
〈cosφ(t) cosφ(0)〉 − 〈cosφ(0)〉2

〈cos2 φ(0)〉 − 〈cosφ(0)〉2
, (7.3)

with the torsional angle φ, which is 180◦ in trans-conformation and 0◦ in cis-con-

formation of the molecular backbone (cf. fig. 7.25). The resulting data show an

exponential decay, as exemplarily illustrated in figure 7.26. It is known that the

autocorrelation function of the torsional motion for bonds closer to the chain ends

decays more rapidly [191]. This is also observed for the present data: P dih(t) for

dihedrals at the chain end decays slightly faster than for dihedrals at the chain

center as can be seen from the inset of figure 7.26.

The curves were fitted by KWW functions (eq. 6.1) with the prefactor A set to

1. Mean relaxation times 〈τdih〉 were obtained using equation 6.2. As can be seen

Figure 7.25: Definition of the torsional angle φ.
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Figure 7.26: C100H202 - Backbone torsional angle autocorrelation function calculated at
T = 509 K. The data is plotted for two positions of the dihedral: At the end (full squares)
and at the central position (open squares) along the molecular backbone. The full lines
are fits of stretched exponential functions, the corresponding mean relaxation times for all
different positions of the dihedral are presented in the inset.

from the inset in figure 7.26 the torsional motion of the dihedrals close to the chain

ends is enhanced. The unequal dihedral dynamics along the molecular backbone

causes a broadening of the total distribution of the torsional relaxation times. This

distribution narrows with increasing chain length, as the relative contribution of the

chain ends is reduced. The averaged values of 〈τdih〉 are listed in table 7.4.

The variance of the dihedral relaxation times confirms the assumed chain length

dependence: The relative variance is much larger for the shorter C16H34 molecules

than for the long C100H202 chains. In long chains most dihedrals are far from the

chain ends, hence the resulting mean relaxation times fluctuate less.

The temperature dependence of 〈τdih〉avg can be described by an Arrhenius be-

havior (not shown). From an Arrhenius fit (eq. 6.3) activation energies were ex-

tracted for the torsional dynamics of both the C16H34and C100H202molecules. The

corresponding energies are 11.5 ± 0.5 and 14.1 ± 0.3 kJ/mol, respectively. A non-

Arrhenius Vogel-Fulcher behavior of the temperature dependence of the relaxation

times, as reported for bulk polyethylene [192], is not observed. Other simulation

studies studied the temperature dependence of the conformational transition rates

of tridecane (C13H27) and tetratetracontane (C44H90) [21, 22]. The resulting acti-
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7.3 Local and Global Chain Reorientations

Table 7.4: Mean relaxation times 〈τdih〉avg of torsional dynamics averaged over all di-
hedrals along the molecular backbone for C16H34 and C100H202 for all simulated tem-
peratures. The temperature dependence follows an Arrhenius behavior, with activation
energies as listed.

C16H34 〈τdih〉avg (ps)

293 K 13.5± 1.1
323 K 10.2± 0.6
363 K 5.89± 0.29
403 K 4.15± 0.21
443 K 2.93± 0.14

Ea (kJ/mol) 11.5± 0.5

C100H202 〈τdih〉avg (ps)

393 K 6.84± 0.12
453 K 3.78± 0.04
509 K 2.53± 0.02

Ea (kJ/mol) 14.1± 0.3

vation energies of 13.0 kJ/mol and 13.4 kJ/mol, respectively, are fairly comparable

with the results found in this study.

Global Chain Dynamics: Molecular Rotation

The orientation of a linear, unentangled molecule is reflected by its end-to-end vec-

tor. Consequently, a reorientation of the end-to-end vector reflects the rotation

of the entire molecules. The orientation autocorrelation function (OACF) of the

end-to-end vector was calculated corresponding to the first and second Legendre

polynomials as

P ee
1 (t) = 〈~eee(t)~eee(0)〉 (7.4)

P ee
2 (t) =

1

2

[
3〈
(
~eee(t)~eee(0)

)2〉 − 1
]
, (7.5)

with the unit vector ~eee lying in the direction of the chain end-to-end vector (eq. 2.2).

The two functions are related to the spectral bandshapes measured with infrared

absorption and Raman or depolarized light scattering experiments, respectively [89].

As can be seen in figure 7.27, the end-to-end vector OACFs are approximately

exponential in form. The correlation functions were fitted with a KWW function

(eq. 6.1), again with the prefactor A set to 1. Fitting the end-to-end vector OACF of

the C100H202 molecules at lower temperatures provided less accurate values, since the

correlation functions decayed only to 40 % of its initial values within the simulated

time frame (cf. fig. 7.27).
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Figure 7.27: First (full symbols) and second (empty symbols) Legendre polynomials of
the end-to-end vector orientation for C16H34 at T = 363 K (black symbols) and C100H202 at
T = 393 K (blue symbols) and 509 K (red symbols). The data are modeled with stretched
exponential functions (solid lines).

Assuming that the P ee decay exponentially, i. e. β = 1, the rotation can be ap-

proximated with a rotational diffusion rate Wrot via [89]

P ee
l (t) = exp [−l(l + 1)Wrott] . (7.6)

Corresponding to diffusive behavior of the motion, the characteristic relaxation times

τl = [l(l + 1)]−1 should then be related by [193]

τl
τl+1

=
(l + 1)(l + 2)

l(l + 1)
=
l + 2

l
. (7.7)

As can be seen in table 7.5, the single exponential behavior is fairly well fulfilled

for the C16H34 molecules. The mean correlation times decrease with increasing

temperature and the ratio 〈τ ee
1 〉/〈τ ee

2 〉 is close to 3, indicating a diffusive motion in

accordance with equation 7.7.

For the C100H202 molecules this behavior is not as clear. This can be explained

by the fact that the C100H202 chains are not in a elongated conformation as the

C16H34 molecules. Hence, the decorrelation of the end-to-end vector is not as sharp,

resulting in a stretched form of P ee(t). Furthermore the total simulation time is too

short to obtain good statistics for the low temperature data.

120



7.3 Local and Global Chain Reorientations

Table 7.5: Parameters obtained from a KWW fit to the end-to-end vector orientation
autocorrelation functions (eq. 7.4 and 7.5). Activation energies were obtained from an
Arrhenius fit to the mean relaxation times.

Molecule T 〈τ ee
1 〉 (ps) βee

1 〈τ ee
2 〉 (ps) βee

2 〈τ ee
1 〉/〈τ ee

2 〉

C16H34 293 K 598.7 0.921 221.8 0.780 2.70
323 K 330.4 0.851 105.9 0.802 3.12
363 K 145.7 0.876 47.71 0.834 3.05
403 K 86.16 0.901 27.70 0.873 3.11
443 K 49.89 0.932 16.56 0.912 3.01

Ea (kJ/mol) 17.9± 0.6 18.7± 0.3

C100H202 393 K 19893 0.637 5611.63 0.601 3.54
453 K 5985 0.649 1660 0.617 3.61
509 K 2689 0.675 792.8 0.635 3.39

Ea (kJ/mol) 28.8± 0.6 28.5± 1.1

Activation energies were obtained from the temperature dependence of the corre-

lation times with an Arrhenius fit (eq. 6.3). The respective values are listed in table

7.5. The MD simulations of C16H34 with explicit 1–4 pair interactions resulted in

slower molecular rotation. The respective mean relaxation times were about 20 %

longer than the values listed in table 7.5. This is plausible, since neglecting non-

bonded 1–4 interactions results in a slightly increased flexibility of the chains, leading

to an enhancement of the rotational motion of the whole molecules. However, the

time scales are still alike and clearly separated from other relaxation processes. The

activation energies obtained from the simulation of C16H34 with 1–4 pair interactions

are only slightly larger: Ea, l=1 = 19.2± 0.1 kJ/mol and Ea, l=2 = 19.6± 0.3 kJ/mol,

compared to the activation energies as listed in table 7.5.

A random walk on a circle results in a linear increase of the MSD at short times

[194], just as expected for a diffusive long-range motion. During this initial short

time the respective intermediate scattering function can be described by a single

exponential decay and a Q2 dependence characteristic for a diffusive motion (cf.

eq. 4.20). Only for longer times deviations from these characteristics indicate a

localized motion. It is to be assumed that a global molecular reorientation signifi-

cantly contributes to the signal observed with QENS on the respective time scales.

At the onset of this rotational motion the observed Q2-dependence of the interme-

diate scattering function, which is detected for a large number of n-alkanes [18, 19],

is due to this localized diffusive motion.
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Reorientation of Backbone Bonds

With the unit vector ~ei pointing into the direction of a single carbon–carbon back-

bone bond, the reorientation of this bond is analyzed by calculating the respective

vector OACF as

PC−C
i (t) = 〈~ei(t)~ei(0)〉 . (7.8)

The index i gives the different positions of the carbon–carbon bond along the molec-

ular backbone, ranging from the end of the chain, i. e. i = 1, to the chain center.

The analysis of this correlation function gives information on processes leading to

a change of the local and global conformations of the chain, as will be presented

in the following. Purely translational motions however give no contribution to the

reorientation of the backbone bonds.

C16H34 The OACF of the backbone bonds for the short oligomer C16H34 is ex-

emplarily shown in figure 7.28 for two temperatures. The correlation decays faster

with increasing temperature and the chain dynamics are enhanced at the ends of

the molecular backbone. The functions exhibit a clear two-step decay for all tem-

peratures and positions of the backbone bond along the chain, and the time scales
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Figure 7.28: C16H34 - Orientation autocorrelation function calculated for the carbon–
carbon bond vector orientation (symbols) at T = 293 and 443 K (cf. [168]). Displayed is
the data for the end and second-to-end carbon pairs as well as for the carbon pair at the
center of the molecular backbone, as indicated by the arrows. The data points are fitted
by double exponential functions (solid lines).
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of the two steps are separated by about one order of magnitude in time. The data

were fitted by double exponential functions of the form

IKWW = A exp

[
−
(
t

τA

)βA]
+B exp

[
−
(
t

τB

)βB]
, (7.9)

with the prefactors A,B, the characteristic relaxation times τA, τB and the stretching

parameters βA, βB. The stretching parameter of the second, long-time decay was

≈ 1. In order to reduce the number of fit parameters βB was set to unity. The sum

of the prefactors yield 1.023 ± 0.003, underlining that the OACF decays entirely

within the simulated time frame. The first decay dominates the overall loss of the

correlation of the orientation of bonds which are closer to the ends of the molecules,

which can be concluded from the relatively high values of the first prefactor A

(A/(A+B) & 80 % (cf. table 7.6).

The mean characteristic relaxation times 〈τ〉, also listed in table 7.6, are illustrated

in figure 7.29. Comparing the relaxation times with the results obtained so far, the

two decays can be attributed to dihedral and molecular rotation: The first, fast

decay of the autocorrelation function on the short picosecond time scale occurs

more rapidly closer to the ends of the chains, as the respective relaxation times 〈τA〉
are about 20 - 30 % shorter. The average relaxation times are in good agreement

chain end chain center
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Figure 7.29: C16H34 - Mean relaxation times extracted from a double exponential fit to
the orientation autocorrelation function of backbone bonds. Full symbols: 〈τA〉, empty
symbols: 〈τB〉, according to equation 7.9. The arrows point into the direction of rising
temperature (T = 293, 323, 363, 403, 443 K).

123



7 Motions Identified using MD Simulations

with the values listed in table 7.4. Accordingly, this first relaxation of the backbone

bond orientation can be attributed to dihedral dynamics.

The characteristic relaxation times of the second decay 〈τB〉 are approximately in-

dependent of the position of the carbon–carbon bond along the molecular backbone,

the variations are on the order of only a few percent. Such a behavior is expected for

a rotational motion of the whole, stiff molecule. In line with this, the corresponding

relaxation times of this second decay 〈τB〉 coincide with the values determined for

global molecular reorientation (as listed in table 7.5).

Activation energies were obtained from the temperature dependence of the mean

relaxation times according to Arrhenius equation 6.3. As can be seen from fig-

ure 7.30, the activation energy corresponding to the second, slow decay of the corre-

lation function is almost constant with respect to the position of the carbon–carbon

bond. The average value of 17.6 ± 0.7 kJ/mol is again in good agreement with the

value determined for molecular rotation. The activation energy for the first, fast

decay averages to 14.7 ± 0.9 kJ/mol, which is a little higher than the respective

value obtained for torsional motions of 11.5± 0.5 kJ/mol. It is to be assumed that

this discrepancy results from the use of different methods to characterize torsional

dynamics.
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Figure 7.30: C16H34 - Activation energies from an Arrhenius fit to 〈τA〉 (full symbols,
representing the faster relaxation) and 〈τB〉 (empty symbols, representing the slower re-
laxation), according to equation 7.9.
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Table 7.6: C16H34 - Parameters extracted from a double exponential fit to the orientation
autocorrelation function of carbon–carbon bonds, for different positions of the carbon pairs
along the chain, where i= 1 and i= 8 corresponds to the position at the end and center
of the chain, respectively. The parameter βB is set to unity, as described in the text.

T i A
(A+B)

〈τA〉 (ps) βA 〈τB〉 (ps)

20 ◦C 1 0.782 15.3 0.532 629
2 0.685 23.8 0.526 638
3 0.645 28.7 0.560 653
4 0.556 26.2 0.610 603
5 0.530 26.2 0.631 628
6 0.470 21.2 0.676 612
7 0.458 20.1 0.720 615
8 0.440 18.4 0.717 612

50 ◦C 1 0.811 8.94 0.527 341
2 0.722 14.3 0.533 347
3 0.670 14.9 0.585 362
4 0.628 19.8 0.586 362
5 0.567 17.0 0.611 355
6 0.537 17.1 0.639 357
7 0.511 15.4 0.636 346
8 0.496 13.7 0.685 345

90 ◦C 1 0.824 4.52 0.561 145
2 0.716 5.59 0.595 143
3 0.695 7.98 0.591 153
4 0.619 8.58 0.638 149
5 0.580 8.35 0.645 154
6 0.527 7.45 0.698 150
7 0.497 6.57 0.712 146
8 0.486 6.27 0.740 147

130 ◦C 1 0.839 2.81 0.562 84.3
2 0.766 4.47 0.565 93.8
3 0.706 4.80 0.629 92.8
4 0.645 5.53 0.656 90.4
5 0.577 4.64 0.711 91.7
6 0.544 4.74 0.706 92.1
7 0.508 4.32 0.722 88.2
8 0.524 4.77 0.722 94.6

170 ◦C 1 0.856 1.94 0.569 53.9
2 0.747 2.55 0.616 48.7
3 0.696 2.91 0.682 53.2
4 0.613 3.13 0.722 49.9
5 0.606 3.60 0.694 54.8
6 0.542 3.13 0.738 52.3
7 0.527 3.10 0.746 54.0
8 0.527 2.94 0.748 56.0
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C100H202 The OACF of single backbone bond vectors was also calculated for the

C100H202 chains. In contrast to the results obtained for the C16H34 chains, the re-

sulting autocorrelation functions do not show a clear two-step decay. As illustrated

in figure 7.31, at positions closer to the chain ends a two-step decay can still be

distinguished, where the second decay occurs on time scales of some hundred pi-

coseconds. However, at more central positions of the carbon–carbon bonds along

the chain, rather three relaxations can be observed: A detailed analysis of the reori-

entation of the bond vector at the center of the chain reveals a third process causing

a relaxation on the nanosecond time scale (cf. fig. 7.31), which is even visible to the

unaided eye.

The separation of the second from the third relaxation is difficult to qualify by

fitting three stretched exponential functions to the data, since the two processes

seem to overlap and their amplitudes are relatively low. In order to characterize

the data in a model-independent way, a contin [195] analysis was performed. The

contin algorithm is widely used for the data evaluation in light scattering exper-

iments, and is also applied to evaluate intermediate scattering functions obtained
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Figure 7.31: C100H202 - Orientation autocorrelation function of the carbon–carbon bond
vector at T = 509 K (symbols). The plotted data were calculated for three different
positions of the bonds along the molecular backbone, as indicated by the arrow. Fitting
a continuous distribution of exponentials (green solid lines) perfectly describes the shape
of the data.
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with quasielastic neutron scattering [20] †. It allows to fit a continuous linear combi-

nation of exponential functions to a correlation function, where the single exponen-

tials are weighted by a normalized distribution of relaxation times (DRT) F [ln(τ)],

according to

Icontin(t) =

∞∫
−∞

d ln(τ)F [ln(τ)] exp

(
− t
τ

)
. (7.10)

Using this approach the OACFs can be described nicely, as illustrated in figure 7.31.

The resulting DRT provides information about the number of distinct relaxation

processes, their amplitudes and the dispersion of the exponential decays that are

needed to describe the the spectrum. DRTs for some positions along the molecular

backbone are illustrated in figure 7.32, while the entire trend can be determined

from the colorplot in figure 7.33.

The fastest relaxation process (at about 2 ps at T = 509 K), which is present at all

bond positions, is again due to the torsional motion of the dihedrals. The average

relaxation time
〈
τdih
〉

avg
, determined for the dihedral relaxation at T = 509 K, can
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Figure 7.32: C100H202 - Distribution of relaxation times (DRT) of the backbone bond
reorientation at T = 509 K, plotted for four positions of the carbon–carbon bonds along
the molecule, as indicated by the arrow. The spectra are shifted along the y-axis for better
visualization.

†Further developments of this method will also allow for a similar evaluation of the scattering
functions S(Q,ω) [196].
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Figure 7.33: C100H202 - Distribution of relaxation times of backbone bond reorientations
at T = 509 K, for different positions of the carbon–carbon bonds along the molecule (cf.
[178]). The three distinct relaxation processes are labeled at the top.

be recovered from the first peak of the DRTs. Close to the chain ends the dihedral

motion is enhanced, as the first relaxation peak shift to shorter times. This is in

agreement with the results obtained from the analysis of the backbone torsional

dynamics (cf. fig. 7.26).

A distinct relaxation process can be detected at intermediate times for bondings

close to the central positions. This relaxation has the smallest amplitude of the three

processes, and occurs on time scales of about 10 ps to 1 ns at T = 509 K. Close to

the chain ends this relaxation seems to mix up with the third, long time relaxation

process. In contrast to the 1st and 3rd relaxation process, this 2nd relaxation could

not be assigned to a local or global single-chain dynamics. Its origin is probably due

to an intermolecular collective flow-like motion of the atoms which will be treated

in detail in the following section. To anticipate the outcome (at 509 K): During a

timespan of several picoseconds many atoms in large clusters of thousands of atoms

move flow-like into the same direction. This behavior is most pronounced after a

duration of 25 ps. During this time the dihedrals turn several times, but the overall
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direction of the carbon-carbon pair is fixed by the motion of its surrounding. The

decorrelation of these flow patterns, which extends to the nanosecond regime, allows

for the atoms to move into different directions. This slight reorientation is reflected

by the intermediate relaxation of the backbone bond vector and applies to the atoms

at all positions along the molecular backbone. However, the resulting intermediate

relaxation cannot be identified for the bonds close to the chain ends as it coincides

with the 3rd relaxation process, which causes the bond orientation autocorrelation

function to fully decorrelate.

The slowest, 3rd relaxation shows a strong dependence on the position of the

respective carbon–carbon bond. The characteristic relaxation time shifts from tens

of picoseconds at the chain end to approximately 3 ns at the chain center. At

these central positions the relaxation time agrees with the value determined for

a rotational motion of the whole C100H202 chains. Therefore the whole branch of the

3rd relaxation in figure 7.33 can be attributed to global reorientations. This process

is non-uniformly, in contrary to the findings for C16H34 where the relaxation time

was independent of the position along the molecule. Since the C100H202 molecules

cannot be treated as stiff elongated molecules, it is obvious that large segments at

the ends of the chains can reorientate by π/2 more or less independent from the

rest of the chain due to the increased flexibility at the chain end. This causes a

total decorrelation of the carbon–carbon bond orientation, already at times when

the central bond orientation is not fully relaxe yet.

The distribution of relaxation times at the lower temperatures of T = 393 K and

453 K show a similar behavior. The corresponding colorplots are given in figure 7.34.

However, the carbon–carbon bond OACF does not decay to zero during the sim-

ulation length, since the dynamics, which are temperature dependent, are slowed

down. Only close to the chain ends the dynamics are fast enough and the correlation

function decays close to zero during the probed time scale. As a consequence the

contin algorithm does not produce smooth results as for the T = 509 K case [197].

Longer simulations would be necessary to analyze the DRTs at lower temperatures

in more detail. Nevertheless the data allow for a estimation of the time scale of

the intermediate relaxation process. At T = 393 K a relatively strong relaxation

can be identified with a maximum at roughly 600–700 ps, which shifts to 400–500 ps

at T = 453 K. Additional weak relaxations appear at about 100 ps in the 393 and

453 K colorplots. These relaxations might be artifacts from the contin algorithm,

resulting from the fact that the total function does not fully decay within the probed

time window.
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Figure 7.34: C100H202 - Distribution of relaxation times of backbone bond reorientations
at T = 393 K (top) and 453 K (bottom), for different positions of the carbon–carbon bonds
along the molecule.
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In order to verify the presence of the relaxation process detected at intermediate

times for the reorientation of bond vectors along the C100H202 backbone, a coarse

graining of the molecules was performed. In this process the coordinates of four

neighboring backbone atoms were combined to obtain the coordinates of small seg-

ments. Thereby the C100H202 molecule is transformed to a coarse grained molecule,

consisting of 25 segments.

Following the orientation autocorrelation function (OACF) of the vectors connect-

ing neighboring segments were calculated, according to equation 7.8. By applying

the contin algorithm, distribution of relaxation times (DRTs) were obtained for

each spectrum. The resulting DRTs obtained from the OACF for different positions

of the segments along the molecular chain are illustrated in figures 7.35 and 7.36 for

all simulated temperatures T .

In contrast to the images obtained without this coarse graining (cf. fig. 7.33,

7.34), only two relaxation processes can be determined. The fast process, reflecting

Figure 7.35: C100H202 - Distribution of relaxation times of the reorientation of vectors
connecting neighboring segments at different positions along the molecule at T = 509 K.
Each segment consists of four backbone atoms, in that way dihedral dynamics (corre-
sponding to the 1st relaxation process in figure 7.33) are masked out.

131



7 Motions Identified using MD Simulations

dihedral dynamics, has vanished. In the coarse grained molecule these torsional

motions take place inside of a segment, which was formed by four neighboring atoms,

and do not affect the reorientation of the segments, and are hence masked out. The

resulting OACFs are dominated by the remaining two relaxation processes, with the

slower one being due to molecular rotation and the faster one coinciding with the

intermediate relaxation observed for the atomic, i. e. carbon-carbon reorientation.

This clarifies that this intermediate relaxation is not an artifact of the contin

algorithm, but causes a clear decay of the carbon–carbon orientation autocorrelation

function.

For the lower temperatures of additional weak peaks can be observed in the color-

plots besides the two dominant relaxations. It is to be assumed that these artificial

features result from the fact that the total OACF does not fully decay within the

accessed time window.

Such distinct dynamical relaxations on intermediate time scales were also found

previously for polyisobutylene, cis-1,4-polybutadiene, polypropylene, polyethylene

terephthalate and polyethylene [197–200]. However, in those studies intermediate

relaxation processes appeared only when considering the reorientation of large seg-

ments. For the carbon–carbon OACF just two relaxations were found. This can

be explained by the analysis used in those studies: The local relaxations were stud-

ied by averaging over the entire molecular backbone, i. e. the DRTs from different

positions along the molecular backbone were merged. This procedure causes the

intermediate and long time relaxation process in figure 7.33 to collapse to one broad

peak only. Resolving the correlation function along the chain, as done in this thesis,

reveals a more detailed picture on the local chain dynamics.
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7.3 Local and Global Chain Reorientations

Figure 7.36: C100H202 - Distribution of relaxation times of the reorientation of vectors
connecting neighboring segments at different positions along the molecule at T = 393 K
(top) and 453 K (bottom), respectively.
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7 Motions Identified using MD Simulations

7.4 Collective Motion in the Melt

Detecting and quantifying collective behavior is quite challenging, due to the man-

ifold correlations between many particles. In two-dimensional systems, as e. g. 2D-

Lennard-Jones liquids, collective motions can be easily visualized by generating a

spatial map of single particle displacements [201]. In such systems particles in ex-

tended regions move with similar (relatively high) velocities in similar directions.

Meanwhile other regions are nearly static. Such a transient spatial fluctuation of

the dynamics is termed dynamic heterogeneity.

In order to describe such dynamic heterogeneities or similar collective motions cor-

relations functions designed to specifically highlight intermolecular correlations are

needed. In an approach by Berthier, heterogeneous dynamics in time and space are

characterized by correlating the mobilities of the particles [202]. In this approach the

mobilities are defined as exp(−〈r2(t)〉), with the mean-square displacement 〈r2(t)〉.
In the C100H202 system under study the correlated motions are expected on time

scales up to hundreds of picoseconds as suggested in section 7.3. Within e. g. 100 ps‡

the atoms move quite far (cf. fig. 7.18) and thus the mobility defined is not a mean-

ingful measure of the collective behavior.

Figure 7.37: C100H202 - Displacement vectors in a 0.25 nm thick 2D cut at T = 509 K
(cf. [178]). The timespan extends over 20 ps (left image) and 100 ps (right image), respec-
tively. The vectors are colored according to their orientation for better visualization. The
dimensions are about 23.52 nm2.

‡Expected order of duration of the correlated dynamics at T = 509 K.
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7.4 Collective Motion in the Melt

To detect collective motions displacement vectors were plotted in two-dimensional

cuts. In figure 7.37 such 0.25 nm thick 2D cuts are presented, with atomic displace-

ments during 20 ps (left image) and 100 ps (right image) at T = 509 K, respectively.

The colors represent the direction of the displacement and reveal that many atoms

in large clusters move into the same direction on both time scales. Separated regions

with fast and slow dynamics could not be observed. Dynamic heterogeneities, as

can be observed in 2D systems, are not present on the evaluated time scale in the

3D C100H202 melt.

The collectivity was quantified by the following method, which is also illustrated

in figure 7.38: By picking one carbon atom j and its nearest intermolecular neigh-

boring carbon atom j′ at time t, the collective motions in the three-dimensional

molecular melt were characterized by determining the extent to which atoms j and

j′ move into similar directions during t + τ . The displacement vectors are defined

as ~ui,t(τ) = ~ri(t+ τ)− ~ri(t), with the position vectors ~r. The magnitude of the

correlated dynamics was qualified by calculating the scalar product of the unit dis-

placement vectors of nearest intermolecular neighbors as

s(τ) =

〈
~uj,t(τ)~uj′,t(τ)

|~uj,t(τ)| |~uj′,t(τ)|

〉
j,t

. (7.11)

Figure 7.38: Illustration of equation 7.11: The relative orientation of the displacements
of nearest intermolecular neighbors (red arrows) is used as a measure to characterize
collective motions.
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Figure 7.39: C100H202 - Scalar product according to equation 7.11 (solid line) and distri-
bution of relaxation times (DRT, dashed line) for the relaxation of carbon–carbon bonds
at central positions of the C100H202 molecules (cf. fig. 7.32) at T = 509 K (cf. [178]).

If collective flow-like motions are present in the system, neighboring atoms move

into the same direction, resulting in a positive scalar product of their displacement

vectors. However, entirely random orientations of the displacements results in an

average scalar product of s(τ) = 0.

A resulting s(τ) spectrum for C100H202 at T = 509 K is plotted in figure 7.39.

At short τ the intermolecular dynamics are barely correlated, as can be seen from

the small values of s(τ). In this regime the atomic motions are mostly driven by

dihedral dynamics. With increasing time an increasing strength of the correlation

between the atomic displacements can be observed, indicating that the intermolecu-

lar neighbors move preferably into the same direction. The same behavior was also

found when extending equation 7.11 by allowing j′ to be any atom within a sphere

of radius R< 2 nm around atom j, and averaging s(τ) for all these atoms. Hence

this increasing correlation can be pictured as a flow-like motion of many neighboring

atoms. Such flow patterns can also easily be captured and identified in 2D plots (cf.

fig. 7.37).

At the time τmax ≈ 25 ps the maximal correlation is reached. The displacement

of the atoms is determined by the motion of their surroundings. With increasing

time τ > τmax the flow-like behavior starts to decorrelate. This results in a decreas-

ing effect of the surrounding dynamics on the individual chain dynamics, which is

reflected in a relaxation of the local bond vectors. As can be seen in figure 7.39, the
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Figure 7.40: C100H202 - Scalar product of unit displacement vectors of intermolecular
neighboring carbon atoms in the molecular melt for T =393, 453 and 509 K. The arrow
points into the direction of rising temperature.

Figure 7.41: C100H202 - Displacement vectors in a 0.25 nm thick 2D cut at T = 393 K.
The timespan extends over 500 ps (left image) and 1000 ps (right image), respectively. The
vectors are colored according to their orientation for better visualization. The dimensions
are about 232 nm2.
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Figure 7.42: C100H202 - Scalar product of unit displacement vectors of neighboring com
molecules at T =393, 453 and 509 K. The arrow points into the direction of rising tem-
perature.

maximum of s(τ) corresponds to the onset of the intermediate relaxation process

of the carbon–carbon bond reorientation. The decorrelation of the collective dy-

namics occurs on a wide time scale, characterized by the slow decay of s(τ > τmax),

corresponding to the broad DRT of the intermediate relaxation process.

Similar effects can be observed at lower temperatures. At first the collective

behavor of the displacements increases. With decreasing temperature this process

seems to take place at shorter times and the directed motions persist on a longer

time scale. At T = 393 K the time τmax is not as definite as at high temperatures

and seems to cover about one order of magnitude in time. At this low temperatures

the flow-like motions of the atoms takes place on an extended time scale, and can

be identified in 2D cuts even on the nanosecond time scale (see fig. 7.41).

The decorrelation of the collective motions shifts to longer times with decreasing

temperature. This is expected as the onset of the intermediate relaxation process

shifts similarly to longer times. The fading of the flow-like behavior takes place

on a wide time scale for all temperatures, which is linked to the relaxation of the

molecular backbone.
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7.4 Collective Motion in the Melt

In order to study the collectivity of the whole molecules, equation 7.11 was com-

puted using center-of-mass coordinates of the C100H202 molecules. Thereby the scalar

product was calculated for the unit displacement vectors of neighboring molecules.

The resulting data is plotted in figure 7.42 for all simulated temperatures. The curves

show the same shape and trend as was oberved before: At first the dynamics of the

whole molecules are barely correlated. With increasing time τ the molecules move

collectively in clusters. This effect reaches a maximum during approximately 10 ps

and 100 ps, and extends into the nanosecond regime at low temperatures. This inter-

molecular collectivity of the atomic motion is reflected by the strong non-Gaussian

characteristics observed in section 7.2.

It is these hydrodynamic effects which are considered by the theory of VHI-

controlled dynamics proposed by Farago et. al. [44, 46] and allowed for a proper

modeling of the center-of-mass mean-square displacement in section 7.2. Although

melts of C100H202 have been simulated previously [30, 31], collective features as

presented here were not reported. The simulation system used in this thesis is sig-

nificantly larger compared to the systems simulated in most other studies, which

makes it possible for hydrodynamic interctions to fully develop.
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Figure 7.43: C16H34 - Scalar product of unit displacement vectors of neighboring com
molecules at T =293, 323, 363, 403 and 443 K. The arrow points into the direction of
rising temperature.
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To study the effect of correlated dynamics in the short chain C16H34 melt, the

same procedure was applied as described above. Thereby the scalar product was

calculated for the displacements of the com C16H34 molecules. The results are pre-

sented in figure 7.43. In accordance with the findings for the C100H202 molecules

it can clearly be seen that hydrodynamic effects are pronounced, and increase with

decreasing temperature. In contrast to the C100H202 chain dynamics no explicit in-

fluence of these correlated dynamics on the reorientation of C16H34 backbone bond

vectors could be identified, as the decorrelation of these flow-like motions coincide

with the characteristic relaxation of global molecular.

This study shows that correlated dynamics of many atoms take place in molecu-

lar melts on an extended time scale, which connects to the onset of molecular self-

diffusion. Accounting for these hydrodynamic effects allows for a proper description

of the motion of whole molecules. Consequently these fluid correlations also apply

for the individual atoms. The analysis of collective motions in polymer melts is

subject to extensive research. Many other studies quantify cooperative motions at

low temperatures, close to or below the glass transition temperature, by detecting

stringlike cooperative rearrangements [203, 204]. In this thesis the existence of in-

termolecular collectivity could be visualized and further on quantified by the use of

special correlation functions at temperatures well above the melting temperature.

These hydrodynamic interactions not only cause the pronounced anomalous subd-

iffusive behavior of the atoms and molecules, but also have a strong effect on the

relaxation of the molecular backbone.
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8 Conclusion

In this thesis extensive quasielastic neutron scattering (QENS) experiments and

molecular dynamics (MD) simulations were performed and analyzed to study the

dynamics taking place at the onset of self-diffusion in molecular liquids.

With resolution resolved QENS, performed at the time-of-flight spectrometer

TOFTOF, time scales ranging from 0.1 ps to 1 ns were probed. The neutron scatter-

ing data allowed for a characterization of the prevailing atomic dynamics with high

statistics. The resulting spectra were not only used for precise evaluation, but also

for a throughout validation of the simulated dynamics on a time scale sensitive to

the force field parameters applied in the MD simulations. The comparison yields an

outstanding quantitative agreement between the measured and simulated dynamics.

Hence the study of the simulated trajectories in real space can be used to visualize

molecular motions which significantly helps to find models describing the transport

mechanism in molecular liquids. It is to be mentioned that the state-of-the-art MD

simulations performed in the framework of this thesis cannot reproduce all static

and dynamic properties precisely. The features extracted from the simulations can

only be utilized to the extend to which the simulated trajectories have been vali-

dated. Enhanced experimental capabilities are thus indispensable for a more precise

validation of simulation data. In addition state-of-the-art neutron scattering data

should directly be used to parameterize force fields in the first place.

The analysis of the QENS data indicated that several dynamical processes are

present on the pico- to nanosecond time scale, eventually leading to molecular self-

diffusion. The evaluation of the complementary MD simulations allowed for an

identification of these motions, which are of both intra- and intermolecular nature.

The results will be summarized and discussed in the following.

The intermediate scattering functions measured at TOFTOF on a C16H34 melt

mainly represent the hydrogen motion on the 0.1 to 100 ps time scale. It was found

that by variation of temperature a crossover of different dynamics is observed on local

length scales (Q & 1 Å−1). At low temperatures a broad distribution of relaxations
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contributes to the signal, which can be assigned to torsional motion of the dihedrals.

The analysis of the simulated trajectories revealed that the dihedral rotation is faster

close to the ends of the C16H34 chains. At low temperatures these motions are slow

enough to considerably contribute to the observed signal, and the relative spread

of the relaxation times along the molecular chain results in a stretched form of the

measured I(Q, t).

On the same time scale where dihedral motions occur a strong non-Gaussian

behavior of the center-of-mass (com) displacement arises. This time scale coincides

with the subdiffusive regime of the com mean-square displacement (MSD), which

lasts until the freely diffusive regime is reached. The corresponding motions of the

atoms seem to dominate the measured signal on larger length scales (Q . 1 Å−1). An

analysis of the simulated C16H34 dynamics in terms of collective motions showed that

intermolecular correlations of the molecular dynamics are present and are reflected

by the non-Gaussian behavior of the com dynamics. Since the C16H34 molecules

are quite stiff compared to the long C100H202 chains, it has to be assumed that

these collective motions of the whole molecules strongly impact the dynamics of the

individual atoms.

With increasing temperature torsional motions disappear from the time window

accessed with QENS, and a more global relaxation of the C16H34 chains dominates:

Rotation of the whole molecules. The corresponding activation energy of this process

can be associated to the activation energy of molecular self-diffusion, and the time

scale where these global rotations take place is linked to the crossover from the

subdiffusive to the freely diffusive regime of the molecular dynamics.

The Rouse model, which was developed to describe single-chain motions in short

polymer melts, was tested to describe the the dynamics in a C100H202 melt. The

comparison of the I(Q, t) obtained with QENS and predicted by the Rouse model

showed that the Rouse theory can only describe the motions on a macromolecular

length scale in the time regime where self-diffusion dominates the overall dynamics.

In order to monitor the apparent shortcomings of the Rouse predictions, a detailed

analysis of the simulated C100H202 motions was performed in terms of the Rouse

model. This showed that only global chain dynamics are described accurately by

the first Rouse modes. On more local length scales the entropic springs of the Rouse

model cannot model the actual restoring forces.

Further deviations of the Rouse model were found by analyzing the MSD of the

com coordinates of the C100H202 molecules. The Rouse model predicts a simple
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Fickean diffusive motion, but a clear subdiffusive behavior was found on an extended

time scale, framed by the ballistic and freely diffusive regime. The experimentally

validated simulation presented in this thesis could be used to test two different

theoretical approaches to account for this subdiffusive scaling. It could thereby be

demonstrated that the recent theory of Farago et al., who have explicitly accounted

for viscoelastic and hydrodynamic interactions (VHI) can successfully describe the

subdiffusive molecular motions. Such hydrodynamic effects are not represented by

the classical Rouse model.

The scattering functions measured at TOFTOF on a C100H202 melt were studied

with regard to slow, long-range motions. For all observation times surveyed with

TOFTOF, ranging from 2 ps to more than 1 ns, diffusive-like motions were found,

which were characterized by apparent diffusion coefficients Da. However, all ob-

served motions were too fast, as the values of Da were larger than expected for

long-range long-time molecular self-diffusivity.

In the long chain C100H202 system overall chain relaxations are relatively slow,

hence the onset of self-diffusion is prolonged. The characteristic time scales of local

and global chain motions are well separated. Torsional motions were again found to

dominate the chain relaxations on short time scales of few picoseconds. Large scale

molecular rotations take place in the nanoseconds regime, shortly before the atoms

start to show freely diffusive behavior.

The analysis of local chain reorientation revealed that a third, intermediate re-

laxation process is present on time scales framed by the torsional and global chain

dynamics. The origin of this feature could be attributed to decay of intermolecular

flow-like motions in large clusters. These collective flow effects coincide with the

subdiffusive regime of the MSD and contribute significantly to the observed chain

dynamics.

The observation of highly collective motions in the molecular melt is contrary

to the concept of total hydrodynamic shielding derived by de Gennes for polymer

melts. A model explicitly taking VHI into account gives first results to describe the

subdiffusive behavior of the whole molecules. Consequently also the motions of the

individual atoms, which are strongly coupled to the com motion on this intermediate

time scale, are affected by these hydrodynamic effects. An analytic model for the

atomic transport mechanism in molecular liquids has to take this intermolecular

collectivity into account.
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In the shorter C16H34 melt such an intermediate relaxation processes of the back-

bone bond reorientations could not be identified. The time scales of local and global

chain relaxations are much closer to each other, and the decorrelation of collective

flow-like motions superimposes with the intramolecular chain relaxations.

In addition a detailed QENS study of poly(ethylene oxide) (PEO), having a sim-

ilar structure as n-alkanes, was presented. The observed dynamics were carefully

compared to the ones found for n-alkanes. The overall motions are strongly slowed

down due to the existence of intermolecular hydrogen bonds. An increase of the

extracted activation energies for motions on a 50 ps time scale was found with de-

creasing chain length, opposite to the trend found for n-alkanes. In order to identify

the effect of hydrogen bonding on the observed intramolecular dynamics and on

the expected collective behavior, future MD simulations need to be performed and

evaluated following the methods presented in this thesis.
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method for Ewald sums in large systems”. The Journal of Chemical Physics,

vol. 98, p. 10089 (1993).

[157] K. Hinsen. CNRS Orleans (France). Private communication.

[158] W. Humphrey, A. Dalke, and K. Schulten. “VMD: visual molecular dynam-

ics”. Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38 (1996).

[159] G. R. Kneller, V. Keiner, M. Kneller, and M. Schiller. “nMOLDYN: A pro-

gram package for a neutron scattering oriented analysis of Molecular Dynam-

ics simulations”. Computer Physics Communications, vol. 91, no. 1, pp. 191–

214 (1995).

[160] T. Róg, K. Murzyn, K. Hinsen, and G. R. Kneller. “nMoldyn: A program

package for a neutron scattering oriented analysis of molecular dynamics

simulations”. Journal of Computational Chemistry, vol. 24, no. 5, pp. 657–

667 (2003).

[161] E. O. Brigham. The Fast Fourier Transform. Prentice-Hall, Inc., 1974.

[162] V. Calandrini, P. Calligari, K. Hinsen, and G. R. Kneller. nMOLDYN: User’s

Guide. 2006. url: http://dirac.cnrs-orleans.fr/plone/software/

nmoldyn/nmoldyn_user_guide.pdf.

[163] M. Wolff, B. Frick, A. Magerl, and H. Zabel. “Flow cell for neutron spec-

troscopy”. Physical Chemistry Chemical Physics, vol. 7, no. 6, pp. 1262–1265

(2005).

[164] G. Williams and D. C. Watts. “Non-symmetrical dielectric relaxation be-

haviour arising from a simple empirical decay function”. Trans. Faraday Soc.

Vol. 66, pp. 80–85 (1970).

[165] R. Bergman, F. Alvarez, A. Alegria, and J. Colmenero. “The merging of the

dielectric α-and β-relaxations in poly-(methyl methacrylate)”. The Journal

of Chemical Physics, vol. 109, p. 7546 (1998).

158

http://www.pymol.org
http://dirac.cnrs-orleans.fr/plone/software/nmoldyn/nmoldyn_user_guide.pdf
http://dirac.cnrs-orleans.fr/plone/software/nmoldyn/nmoldyn_user_guide.pdf


[166] A. Triolo, O. Russina, V. Arrighi, F. Juranyi, S. Janssen, and C. M. Gor-

don. “Quasielastic neutron scattering characterization of the relaxation pro-

cesses in a room temperature ionic liquid”. The Journal of Chemical Physics,

vol. 119, p. 8549 (2003).

[167] K. Binder and W. Kob. Glassy materials and disordered solids: An introduc-

tion to their statistical mechanics. World Scientific Publishing Co. Pte. Ltd.,

2011.

[168] H. Morhenn, S. Busch, and T. Unruh. “Chain dynamics in a hexadecane

melt as seen by neutron scattering and identified by molecular dynamics

simulations”. Journal of Physics: Condensed Matter, vol. 24, no. 37, p. 375108

(2012).

[169] A. Arbe and J. Colmenero. “Characterization of the “simple-liquid” state in

a polymeric system: Coherent and incoherent scattering functions”. Physical

Review E, vol. 80, no. 4, p. 041805 (2009).

[170] M. Bée. “A physical insight into the elastic incoherent structure factor”.

Physica B: Condensed Matter, vol. 182, no. 4, pp. 323–336 (1992).

[171] S. Busch and T. Unruh. “The slow short-time motions of phospholipid mole-

cules with a focus on the influence of multiple scattering and fitting artefacts”.

Journal of Physics: Condensed Matter, vol. 23, no. 25, p. 254205 (2011).

[172] D. S. Pearson, G. Ver Strate, E. von Meerwall, and F. C. Schilling. “Viscosity

and self-diffusion coefficient of linear polyethylene”. Macromolecules, vol. 20,

no. 5, pp. 1133–1141 (1987).

[173] D. S. Pearson, L. J. Fetters, W. W. Graessley, G. Ver Strate, and E. von

Meerwall. “Viscosity and self-diffusion coefficient of hydrogenated polybuta-

diene”. Macromolecules, vol. 27, no. 3, pp. 711–719 (1994).

[174] D. Richter, L. Willner, A. Zirkel, B. Farago, L. J. Fetters, and J. S. Huang.

“Polymer motion at the crossover from Rouse to reptation dynamics”. Macro-

molecules, vol. 27, no. 25, pp. 7437–7446 (1994).

[175] M. Appel and G. Fleischer. “Investigation of the chain length dependence of

self-diffusion of poly(dimethylsiloxane) and poly(ethylene oxide) in the melt

with pulsed field gradient NMR”. Macromolecules, vol. 26, no. 20, pp. 5520–

5525 (1993).

159



Bibliography

[176] S. Z. D. Cheng, J. S. Barley, and E. D. von Meerwall. “Self-Diffusion of

Poly(ethylene Oxide) Fractions and Its Influence on the Crystalline Texture”.

Journal of Polymer Science Part B: Polymer Physics, vol. 29, no. 5, pp. 515–

525 (1991).

[177] H. Berendsen. “The eternal truth of physics”. Presented at the First Annual

NBIA Meeting on ESS Science, Copenhagen, Denmark. 2011. url: https:

//indico.nbi.ku.dk/conferenceDisplay.py?confId=291.

[178] H. Morhenn, S. Busch, H. Meyer, D. Richter, W. Petry, and T. Unruh. “Col-

lective Intermolecular Motions Dominate the Picosecond Dynamics of Short

Polymer Chains”. Physical Review Letters, vol. 111, no. 17, p. 173003 (2013).

[179] R. Wilhoit, X. Hong, K. Marsh, and W. Martienssen. Landolt-Börnstein:

Physical Chemistry: Thermodynamic Properties of Organic Compounds and

Their Mixtures, Subvolume B, Densities of Aliphatic Hydrocarbons: Alkanes.

Springer, 1996.

[180] Y. Yonetani. “Liquid water simulation: A critical examination of cutoff length”.

The Journal of chemical physics, vol. 124, p. 204501 (2006).

[181] M. Aichele, Y. Gebremichael, F. Starr, J. Baschnagel, and S. Glotzer. “String-

like correlated motion in the dynamics of supercooled polymer melts”. Jour-

nal of Chemical Physics, vol. 119, pp. 5290–5304 (2003).

[182] M. S. Shell, P. G. Debenedetti, and F. H. Stillinger. “Dynamic heterogene-

ity and non-Gaussian behaviour in a model supercooled liquid”. Journal of

Physics: Condensed Matter, vol. 17, no. 49, p. 4035 (2005).

[183] J. Colmenero, F. Alvarez, and A. Arbe. “Self-motion and the α relaxation in

a simulated glass-forming polymer: Crossover from Gaussian to non-Gaussian

dynamic behavior”. Physical Review E, vol. 65, no. 4, p. 041804 (2002).

[184] M. Brodeck. “A Study of Polymer Melts Combining MD Simulations and

Neutron Scattering Experiments”. PhD thesis. Westfälische Wilhelms-Uni-

versität Münster, 2009.

[185] C. Smuda, G. Gemmecker, and T. Unruh. “Quasielastic and inelastic neu-

tron scattering study of methyl group rotation in solid and liquid pentafluo-

roanisole and pentafluorotoluene”. The Journal of Chemical Physics, vol. 128,

p. 194502 (2008).

160

https://indico.nbi.ku.dk/conferenceDisplay.py?confId=291
https://indico.nbi.ku.dk/conferenceDisplay.py?confId=291


[186] C. Smuda, S. Busch, B. Wagner, and T. Unruh. “Methyl group dynamics

in glassy, polycrystalline, and liquid coenzyme Q10 studied by quasielastic

neutron scattering”. The Journal of Chemical Physics, vol. 129, p. 074507

(2008).

[187] C. Smuda, S. Busch, R. Schellenberg, and T. Unruh. “Methyl Group Dy-

namics in Polycrystalline and Liquid Ubiquinone Q0 Studied by Neutron

Scattering”. The Journal of Physical Chemistry B, vol. 113, no. 4, pp. 916–

922 (2009).

[188] A. N. Semenov and H. Meyer. “Anomalous diffusion in polymer monolayers”.

Soft Matter, vol. 9, no. 16, pp. 4249–4272 (2013).

[189] M. Brodeck, F. Alvarez, A. J. Moreno, J. Colmenero, and D. Richter. “Chain

Motion in Nonentangled Dynamically Asymmetric Polymer Blends: Com-

parison between Atomistic Simulations of PEO/PMMA and a Generic Bead-

Spring Model”. Macromolecules, vol. 43, no. 6, pp. 3036–3051 (2010).

[190] H. Takeuchi and K. Okazaki. “Molecular dynamics simulation of diffusion

of simple gas molecules in a short chain polymer”. The Journal of Chemical

Physics, vol. 92, no. 9, pp. 5643–5652 (1990).

[191] J. Clarke and D. Brown. “Molecular dynamics computer simulation of chain

molecule liquids”. Molecular Physics, vol. 58, no. 4, pp. 815–825 (1986).

[192] R. H. Boyd, R. H. Gee, J. Han, and Y. Jin. “Conformational dynamics in

bulk polyethylene: A molecular dynamics simulation study”. The Journal of

Chemical Physics, vol. 101, p. 788 (1994).

[193] G. F. Signorini, J.-L. Barrat, and M. L. Klein. “Structural relaxation and

dynamical correlations in a molten state near the liquid–glass transition: A

molecular dynamics study”. The Journal of Chemical Physics, vol. 92, p. 1294

(1990).

[194] T. Unruh. Structure and dynamics of colloidal dispersions on molecular scale.

Habilitation thesis, Technische Univerität München. 2010.

[195] S. W. Provencher. “CONTIN: a general purpose constrained regularization

program for inverting noisy linear algebraic and integral equations”. Com-

puter Physics Communications, vol. 27, no. 3, pp. 229–242 (1982).

161



Bibliography

[196] T. Kikuchi, K. Nakajima, S. Ohira-Kawamura, Y. Inamura, O. Yamamuro,

M. Kofu, Y. Kawakita, K. Suszya, M. Nakamura, and M. Arai. “Mode Dis-

tribution Analysis: A New Method for Model-free Analysis on Quasi-elastic

Neutron Scattering”. Presented at the Tenth International Conference on

Quasielastic Neutron Scattering (QENS 2012), Nikko, Japan. 2012. url:

http://j-parc.jp/researcher/MatLife/en/meetings/QENS-WINS2012/

index.html.

[197] D. M. Whitley and D. B. Adolf. “Local segmental dynamics of cis-1,4-poly-

butadiene, polypropylene and polyethylene terephthalate via molecular dy-

namics simulations”. Molecular Simulation, vol. 38, no. 2, pp. 119–123 (2012).

[198] K. Karatasos and D. Adolf. “Slow modes in local polymer dynamics”. The

Journal of Chemical Physics, vol. 112, p. 8225 (2000).

[199] K. Karatasos and J.-P. Ryckaert. “Local dynamics of polyisobutylene revis-

ited”. Macromolecules, vol. 34, no. 21, pp. 7232–7235 (2001).

[200] S. Hotston, D. Adolf, and K. Karatasos. “An investigation into the local seg-

mental dynamics of polyethylene: An isothermal/isobaric molecular dynamics

study”. The Journal of Chemical Physics, vol. 115, p. 2359 (2001).

[201] S. Busch and T. Unruh. “The influence of additives on the nanoscopic dy-

namics of the phospholipid dimyristoylphosphatidylcholine”. Biochimica et

Biophysica Acta (BBA)-Biomembranes, vol. 1808, no. 1, pp. 199–208 (2011).

[202] L. Berthier. “Dynamic Heterogeneity in Amorphous Materials”. Physics,

vol. 4, p. 42 (2011).

[203] C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C.

Glotzer. “Stringlike Cooperative Motion in a Supercooled Liquid”. Physical

Review Letters, vol. 80, no. 11, pp. 2338–2341 (1998).

[204] F. W. Starr and J. F. Douglas. “Modifying Fragility and Collective Motion in

Polymer Melts with Nanoparticles”. Physical Review Letters, vol. 106, no. 11,

p. 115702 (2011).

162

http://j-parc.jp/researcher/MatLife/en/meetings/QENS-WINS2012/index.html
http://j-parc.jp/researcher/MatLife/en/meetings/QENS-WINS2012/index.html


Appendix

A Python Scripts 165

A.1 Non-Gaussian parameter . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2 End-to-End and Carbon-Carbon Vector Orientation Autocorrelation

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.3 Dihedral Autocorrelation Function . . . . . . . . . . . . . . . . . . . 170

A.4 Higher-Order Dynamic Correlation Functions . . . . . . . . . . . . . 173

A.5 Modified Static Structure Factor from Coherent Scattering Function . 175

B Simulation Parameters 177

B.1 changsandler.mdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 siu.mdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Acknowledgements 181

163





A Python Scripts

This section lists the python scripts that were used to extract information from

the simulated dynamics. The ASCII input files were generated as described in

section 5.4. Note that all comments in the input file need to be deleted before

starting any of the following scripts.

A.1 Non-Gaussian parameter

Calculates the non-Gaussian parameter, according to equation 4.23 on a logarith-
mic x-grid. Call the script with the total number of timesteps, total number of
molecules, and number of xyz-coordinates per molecule in the input file (e. g. 1 for
center-of-mass coordinates) as:

python ngp.py trajectory pbc.xvg (#timesteps) (#molecules) (#coordinates per
molecule)

Content of ngp.py:

#! /usr / b in /env python

import sys

from s c ipy import ∗
from matp lo t l i b . pyplot import ∗

f i l e i n=sys . argv [ 1 ]

par={}
par [ ’#t ’ ] = i n t ( sys . argv [ 2 ] )

par [ ’#mol ’ ] = i n t ( sys . argv [ 3 ] )

par [ ’#coord /mol ’ ] = i n t ( sys . argv [ 4 ] )

a=reshape ( f r o m f i l e ( f i l e i n , dtype=f l o a t , sep=” ” ) ,

( par [ ’#t ’ ] , par [ ’#mol ’ ]∗ par [ ’#coord /mol ’ ]∗3+1))

mol=par [ ’#coord /mol ’ ]∗ par [ ’#mol ’ ]

f a c t o r =1.1
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xtime =0.1

tt ime =[ ]

aaa =[ ]

for t i in range ( 1 0 1 ) :

aaa . append ( [ ] )

while c e i l ( xtime∗ f a c t o r )<100:

xtime=c e i l ( xtime∗ f a c t o r )

tt ime . append ( a [ xtime ] [ 0 ] )

for j in range (0 , par [ ’#t ’ ] / 2 , 1 ) :

z a e h l e r =0.

nenner =0.

j t ime=j+xtime

b=a [ j t ime ]−a [ j ]

b=b [ 1 : ] . reshape ( ( l en (b [ 1 : ] ) / 3 , 3 ) )

zaehlertemp = (b ∗∗2 ) . sum( a x i s =1)

nennertemp = zaehlertemp

zaehlertemp = zaehlertemp ∗∗2
z a e h l e r = zaehlertemp . sum ( )

nenner = nennertemp . sum ( )

nenner=nenner ∗∗2
aaa [ i n t ( xtime ) ] . append ( ( 3 . / 5 . ∗ z a e h l e r / nenner∗mol)−1)

NGP=[]

errNGP =[]

for t i in range ( l en ( aaa ) ) :

i f aaa [ t i ] ! = [ ] :

NGP. append ( average ( aaa [ t i ] ) )

errNGP . append ( std ( aaa [ t i ] , ddof =1))

e r r o rba r ( ttime ,NGP, yer r=errNGP)

x s c a l e ( ’ l og ’ )

show ( )
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A.2 End-to-End and Carbon-Carbon Vector

Orientation Autocorrelation Function

Calculates the autocorrelation function for the reorientation of the end-to-end vector
and the single backbone bonds, according to equations 7.4, 7.5 and 7.8. The output
is saved using the packages chaste and sihl (http://www.thamnos.de/repos/).
Call the script with the total number of timesteps, total number of molecules, and
total number of backbone bonds as:

python cpos.py trajectory carbon pbc.xvg (#timesteps) (#molecules) (back-
bone chain length)

Content of cpos.py:

#! /usr / b in /env python

import sys

from s c ipy import ∗
from chaste import Dataset , Data

from s i h l . g ene ra l import Measurement

f i l e i n=sys . argv [ 1 ]

t imes teps=i n t ( sys . argv [ 2 ] )

molecule=i n t ( sys . argv [ 3 ] )

c l=i n t ( sys . argv [ 4 ] )

a=reshape ( f r o m f i l e ( f i l e i n , dtype=f l o a t , sep=” ” ) ,

( t imesteps , c l ∗molecule ∗3+1))

x l i s t ={2:{} ,100:{}}
for x in x l i s t :

for i in range (1 , c l /x , 1 ) :

x l i s t [ x ] [ i ]=[ i , c l−i ]

x l i s t [ x ] [ c l /x ]=[ c l /x ]

l ength=t imesteps /2

time =[ ]

f a c t o r =1.01

xtime =0.1

while c e i l ( xtime∗ f a c t o r )< l ength :

xtime=c e i l ( xtime∗ f a c t o r )

time . append ( a [ xtime ] [ 0 ] )

for x in x l i s t :
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g=Measurement (name=”” )

g . whatis [ ’ x ’ ]=[ ’ t ’ , ’ ps ’ ]

g . whatis [ ’ y ’ ]=[ ’C( t )1 ’ , ’ ’ ]

g . whatis [ ’ z ’ ]=[ ’ cpos ’ , ’ ’ ]

h=Measurement (name=”” )

h . whatis [ ’ x ’ ]=[ ’ t ’ , ’ ps ’ ]

h . whatis [ ’ y ’ ]=[ ’C( t )2 ’ , ’ ’ ]

h . whatis [ ’ z ’ ]=[ ’ cpos ’ , ’ ’ ]

for c i in x l i s t [ x ] :

sca1 =[ ]

sca2 =[ ]

e r r1 =[ ]

e r r2 =[ ]

aaa1 =[ ]

aaa2 =[ ]

for i in range ( l ength ) :

aaa1 . append ( [ ] )

aaa2 . append ( [ ] )

for t0 in range ( l ength ) :

xtime =0.1

while c e i l ( xtime∗ f a c t o r )< l ength :

xtime=c e i l ( xtime∗ f a c t o r )

t i=xtime

bbb1=0

bbb2=0

for m in range ( molecule ) :

for c in x l i s t [ x ] [ c i ] [ 0 ] :

cx=c+x−1

t1=t i+t0

d i s t 0 =(( f l o a t ( a [ t0 ] [ c∗1+( c l ∗3)∗m] )

− f l o a t ( a [ t0 ] [ cx∗1+( c l ∗3)∗m] ) )∗∗2

+( f l o a t ( a [ t0 ] [ c∗2+( c l ∗3)∗m] )

− f l o a t ( a [ t0 ] [ cx∗2+( c l ∗3)∗m] ) )∗∗2

+( f l o a t ( a [ t0 ] [ c∗3+( c l ∗3)∗m])−
− f l o a t ( a [ t0 ] [ cx∗3+( c l ∗3)∗m] ) ) ∗ ∗ 2 ) ∗ ∗ 0 . 5

e0x=( f l o a t ( a [ t0 ] [ c∗1+( c l ∗3)∗m] )

− f l o a t ( a [ t0 ] [ cx∗3−2+( c l ∗3)∗m] ) ) / d i s t 0

e0y=( f l o a t ( a [ t0 ] [ c∗2+( c l ∗3)∗m] )

− f l o a t ( a [ t0 ] [ cx∗3−1+( c l ∗3)∗m] ) ) / d s t i 0

e0z=( f l o a t ( a [ t0 ] [ c∗3+( c l ∗3)∗m] )

− f l o a t ( a [ t0 ] [ cx∗3−0+( c l ∗3)∗m] ) ) / d i s t 0

d i s t 1 =(( f l o a t ( a [ t1 ] [ c∗3−2+( c l ∗3)∗m] )

− f l o a t ( a [ t1 ] [ cx∗3−2+( c l ∗3)∗m] ) )∗∗2

+( f l o a t ( a [ t1 ] [ c∗3−1+( c l ∗3)∗m] )
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− f l o a t ( a [ t1 ] [ cx∗3−1+( c l ∗3)∗m] ) )∗∗2

+( f l o a t ( a [ t1 ] [ c∗3−0+( c l ∗3)∗m] )

− f l o a t ( a [ t1 ] [ cx∗3−0+( c l ∗3)∗m] ) ) ∗ ∗ 2 ) ∗ ∗ 0 . 5

e1x=( f l o a t ( a [ t1 ] [ c∗3−2+( c l ∗3)∗m] )

− f l o a t ( a [ t1 ] [ cx∗3−2+( c l ∗3)∗m] ) ) / d i s t 1

e1y=( f l o a t ( a [ t1 ] [ c∗3−1+( c l ∗3)∗m] )

− f l o a t ( a [ t1 ] [ cx∗3−1+( c l ∗3)∗m] ) ) / d i s t 1

e1z=( f l o a t ( a [ t1 ] [ c∗3−0+( c l ∗3)∗m] )

− f l o a t ( a [ t1 ] [ cx∗3−0+( c l ∗3)∗m] ) ) / d i s t 1

do=(e1x∗e0x+e1y∗e0y+e1z ∗ e0z )

bbb1+=do

bbb2+=(do ∗∗2)

r e l=molecule / l en ( x l i s t [ x ] [ c i ] [ 0 ] )

aaa1 [ i n t ( t i ) ] . append ( bbb1/ r e l )

aaa2 [ i n t ( t i ) ] . append ( 0 . 5∗ ( 3∗ ( bbb2/ r e l )−1))

for t i in range ( l ength ) :

i f aaa1 [ t i ] ! = [ ] :

sca1 . append ( average ( aaa1 [ t i ] ) )

i f aaa1 [ t i ] ! = [ ] :

e r r 1 . append ( std ( aaa1 [ t i ] , ddof =1))

i f aaa2 [ t i ] ! = [ ] :

sca2 . append ( average ( aaa2 [ t i ] ) )

i f aaa2 [ t i ] ! = [ ] :

e r r 2 . append ( std ( aaa2 [ t i ] , ddof =1))

g . append ( Dataset ( x=time , y=sca1 , dy=err1 , z=c i ) )

h . append ( Dataset ( x=time , y=sca2 , dy=err2 , z=c i ) )

del g [ 0 ]

g . w r i t e i 9 6 ( s t r ( f i l e i n [ :−4])+ ” P1 1 ”+s t r ( x ) )

del h [ 0 ]

h . w r i t e i 9 6 ( s t r ( f i l e i n [ :−4])+ ” P2 1 ”+s t r ( x ) )
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A.3 Dihedral Autocorrelation Function

Calculates the C-C-C-C torsional angle autocorrelation function, according to equa-
tion 7.3, for all dihedrals along the molecular backbone. The output is saved using
the packages chaste and sihl (http://www.thamnos.de/repos/). Call the script with
the total number of timesteps, total numper of molecules, and total number of back-
bone atoms as:

python dihedral.py trajectory carbon pbc.xvg (#timesteps) (#molecules) (back-
bone chain length)

Content of dihedral.py:

#! /usr / b in /env python

import sys

from chaste import Dataset , Data

from s i h l . g ene ra l import Measurement

from s c ipy import ∗
from matp lo t l i b . pyplot import ∗

f i l e i n=sys . argv [ 1 ]

t imes teps=i n t ( sys . argv [ 2 ] )

molecule=i n t ( sys . argv [ 3 ] )

cha in l ength=i n t ( sys . argv [ 4 ] )

a=reshape ( f r o m f i l e ( f i l e i n , dtype=f l o a t , sep=” ” ) ,

( t imesteps , c l ∗molecule ∗3+1))

l ength=t imesteps /2

c h l i s t=range (1 , cha in length −2 ,1)

g=Measurement (name=”” )

g . whatis [ ’ x ’ ]=[ ’ t ’ , ’ ps ’ ]

g . whatis [ ’ y ’ ]=[ ’C( t ) ’ , ’ ’ ]

g . whatis [ ’ z ’ ]=[ ’ p o s i t i o n ’ , ’ ’ ]

time =[ ]

f a c t o r =1.1

xtime =0.1

while c e i l ( xtime∗ f a c t o r )< l ength :

xtime=c e i l ( xtime∗ f a c t o r )

time . append ( a [ xtime ] [ 0 ] )

def d i h e d r a l a n g l e ( a , i , mol , chpos , cha in length , deg ) :

”””
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c a l l wi th

a : xyz carbon f i l e

i : t imes t ep

mol : which molecu le ( s t a r t i n g wi th 1)

chpos : which po s i t i o n (1 chain end )

number o f backbone atoms o f a molecu le

deg : in deg (1) or rad (0)

”””

mol=(mol−1)∗ cha in l ength ∗3
b1x=f l o a t ( a [ i ] [ mol+chpos∗3+1])− f l o a t ( a [ i ] [ mol+chpos ∗3−2])

b1y=f l o a t ( a [ i ] [ mol+chpos∗3+2])− f l o a t ( a [ i ] [ mol+chpos ∗3−1])

b1z=f l o a t ( a [ i ] [ mol+chpos∗3+3])− f l o a t ( a [ i ] [ mol+chpos ∗3−0])

b1=array ( ( b1x , b1y , b1z ) )

b2x=f l o a t ( a [ i ] [ mol+chpos∗3+4])− f l o a t ( a [ i ] [ mol+chpos ∗3+1])

b2y=f l o a t ( a [ i ] [ mol+chpos∗3+5])− f l o a t ( a [ i ] [ mol+chpos ∗3+2])

b2z=f l o a t ( a [ i ] [ mol+chpos∗3+6])− f l o a t ( a [ i ] [ mol+chpos ∗3+3])

b2=array ( ( b2x , b2y , b2z ) )

b3x=f l o a t ( a [ i ] [ mol+chpos∗3+7])− f l o a t ( a [ i ] [ mol+chpos ∗3+4])

b3y=f l o a t ( a [ i ] [ mol+chpos∗3+8])− f l o a t ( a [ i ] [ mol+chpos ∗3+5])

b3z=f l o a t ( a [ i ] [ mol+chpos∗3+9])− f l o a t ( a [ i ] [ mol+chpos ∗3+6])

b3=array ( ( b3x , b3y , b3z ) )

x1x=b1y∗b2z−b1z∗b2y

x1y=b1z∗b2x−b1x∗b2z

x1z=b1x∗b2y−b1y∗b2x

x1=array ( ( x1x , x1y , x1z ) )

x2x=b2y∗b3z−b2z∗b3y

x2y=b2z∗b3x−b2x∗b3z

x2z=b2x∗b3y−b2y∗b3x

x2=array ( ( x2x , x2y , x2z ) )

n1=x1 /( ( x1x∗∗2+x1y∗∗2+x1z ∗∗2)∗∗0 .5 )

n2=x2 /( ( x2x∗∗2+x2y∗∗2+x2z ∗∗2)∗∗0 .5 )

aaa=n1 [ 0 ] ∗ n2 [0 ]+ n1 [ 1 ] ∗ n2 [1 ]+ n1 [ 2 ] ∗ n2 [ 2 ]

ang=( arcco s ( aaa ) )

i f deg == 1 :

ang=degree s ( a r c co s ( aaa ) )

else :

ang=arcco s ( aaa )

return ang

c o r l i s t =[ ]

e r r l i s t =[ ]

for ch in c h l i s t :

print ch

out =[ ]
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for t i in range ( l ength ) :

out . append ( [ ] )

for t0 in range ( l ength ) :

xtime =0.1

while c e i l ( xtime∗ f a c t o r )< l ength :

xtime=c e i l ( xtime∗ f a c t o r )

t i=xtime

t1=t i+t0

bbb1=0

bbb2=0

bbb3=0

for m in range ( molecule ) :

m=m+1

cos0=cos ( d i h e d r a l a n g l e ( a , t0 ,m, ch , cha in length , 0 ) )

co s t=cos ( d i h e d r a l a n g l e ( a , t1 ,m, ch , cha in length , 0 ) )

bbb1+=(co s t ∗ cos0 )

bbb2+=cos0

bbb3+=cos0 ∗ cos0

bbb1/=m

bbb2/=m

bbb3/=m

do1=bbb1−bbb2∗∗2
do2=bbb3−bbb2∗∗2
out [ i n t ( t i ) ] . append ( do1/do2 )

cor =[ ]

e r r =[ ]

for t i in range ( l ength ) :

i f out [ t i ] ! = [ ] :

cor . append ( average ( out [ t i ] ) )

e r r . append ( std ( out [ t i ] , ddof =1))

c o r l i s t . append ( cor )

e r r l i s t . append ( e r r )

for i in range ( l en ( c o r l i s t ) ) :

g . append ( Dataset ( x=time , y=c o r l i s t [ i ] , dy=e r r l i s t [ i ] , z=c h l i s t [ i ] ) )

del g [ 0 ]

g . w r i t e i 9 6 ( s t r ( f i l e i n [ :−4])+ ” dih ” )
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Respective equation 7.11, this script calculates the scalar products of unit displace-
ments vectors of nearest intermolecular neighbors. The output is saved using the
packages chaste and sihl (http://www.thamnos.de/repos/). Call the script with the
total number of timesteps, total number of molecules, and the total number of back-
bone atoms as:

python sca.py trajectory carbon pbc.xvg (#timesteps) (#molecules) (backbone
chain length)

Content of sca.py:

#! /usr / b in /env python

from s c ipy import ∗
from chaste import Dataset , Data

from s i h l . g ene ra l import Measurement

from random import cho i c e

f i l e i n=sys . argv [ 1 ]

par={}
par [ ’#t ’ ] = i n t ( sys . argv [ 2 ] )

par [ ’#mol ’ ] = i n t ( sys . argv [ 3 ] )

par [ ’#coord /mol ’ ] = i n t ( sys . argv [ 4 ] )

a=reshape ( f r o m f i l e ( f i l e i n , dtype=f l o a t , sep=” ” ) ,

( par [ ’#t ’ ] , par [ ’#mol ’ ]∗ par [ ’#coord /mol ’ ]∗3+1))

m l i s t =[ ]

for m in range ( par [ ’#mol ’ ] ) :

for c in range ( par [ ’#coord /mol ’ ] ) :

m l i s t . append (m)

ml i s t=array ( m l i s t )

out =[ ]

c o u n t e r l i s t =[ ]

for i in range ( l en ( a ) ) :

out . append (0 )

c o u n t e r l i s t . append (0 )

d l i s t =[ ]

for m1 in range ( par [ ’#mol ’ ] ) :

c1=cho i c e ( range ( par [ ’#coord /mol ’ ] ) )
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aa=m1∗par [ ’#coord /mol ’ ]+c1

for t0 in range ( l en ( a ) ) :

a0 = a [ t0 ] [ 1 : ] . reshape ( ( l en ( a [ t0 ] [ 1 : ] ) / 3 , 3 ) )

aa0 = a0 [ aa ]

d l = array ( ( ( ( a0 − aa0 )∗∗2 ) . sum( a x i s =1))∗∗0.5)

bb=(ma. array ( dl , mask=( ml i s t == m1 ) ) ) . argmin ( )

d l i s t . append ( d l [ bb ] )

bb0 = a0 [ bb ]

for taustep in range (1 , l en ( a ) ) :

t i=t0+taustep

i f t i >= par [ ’#t ’ ] :

break

else :

anow = a [ t i ] [ 1 : ] . reshape ( ( l en ( a [ t i ] [ 1 : ] ) / 3 , 3 ) )

aa1 = anow [ aa ]

aar = aa1−aa0

aare = aar / ( ( ( aar ∗∗2 ) . sum ( ) ) ∗ ∗ . 5 )

bb1 = anow [ bb ]

bbr = bb1−bb0

bbre = bbr / ( ( ( bbr ∗∗2 ) . sum ( ) ) ∗ ∗ . 5 )

s k a l a r = ( aare ∗bbre ) . sum ( )

out [ taustep]+=s k a l a r

c o u n t e r l i s t [ taustep ]+=1

t a u s c a l e =[ ]

ave =[ ]

e r r =[ ]

for taustep in range ( l en ( a ) ) :

t a u s c a l e . append ( a [ taustep ] [ 0 ] )

i f c o u n t e r l i s t [ taustep ]==0.:

ave . append (0 )

else :

ave . append ( out [ taustep ] / c o u n t e r l i s t [ taustep ] )

g=Measurement (name=”” )

g . append ( Dataset ( x=tausca l e , y=ave ) )

del g [ 0 ]

g . whatis [ ’ x ’ ]=[ ’ tau ’ , ’ ps ’ ]

g . whatis [ ’ y ’ ]=[ ’ s ( tau ) ’ , ’ ’ ]

g . whatis [ ’ z ’ ]=[ ’ ’ , ’ ’ ]

g . w r i t e i 9 6 ( f i l e i n [:−4]+ ” i n t e r s c a l a r ” )
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A.5 Modified Static Structure Factor from Coherent

Scattering Function

Calculates the modified static structure factor from the simulated scattering func-
tions, as explained in section 5.4. The input Scoh(Q,w) should be in the Frida1
format. The input and output files are handled using the packages chaste and sihl
(http://www.thamnos.de/repos/). The resulting intensities must be multiplied with
the stepsize of energy transfer dEf . Call the script with the neutron wave length of
the experimental setup as:

python modify sq.py Sqw.i96 (neutron wave length)

Content of modify sq.py:

#!/ usr / b in /env python

from s c ipy import ∗
from chaste import Dataset , Data

from s i h l . g ene ra l import Measurement

f i l e i n=sys . argv [ 1 ]

l aa=sys . argv [ 2 ]

k i=2∗pi / l aa

Ei =81.81/ laa ∗∗2
hbar =1.05457173 e−34

m=1.674927351 e−27

h=6.62606957e−34

e l =1.602176565 e−19

Efactor=h∗∗2/2/m/ e l /(1 e−3)/(1e−20)

k f a c t o r=Efactor /(2∗ pi )∗∗2

g=Measurement (name=”” )

g . r e a d i 9 6 ( f i l e i n )

f a c t o r=i n t ( round ( 1 . / ( f l o a t ( g . z [ l en ( g . z )/2 ] [ 0 ] − g . z [ l en ( g . z ) / 2 −1 ] [ 0 ] ) ) ) )

moddata=ze ro s ( ( l en ( g . z )∗2 ) )

for i in range ( l en ( g . z ) ) :

q=round ( g . z [ i ] [ 0 ] , 5 )

e l i s t=g . x [ i ]

v l i s t=g . y [ i ]

for j in range ( l en ( e l i s t ) ) :

e=e l i s t [ j ]

Ef=Ei+e
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i f Ef<=0.:

continue

kf=(Ef/ k f a c t o r )∗∗ . 5

temp=( k i ∗∗2+ kf∗∗2−q∗∗2)/(2∗ k i ∗ kf )

try :

deg=degree s ( a r c co s ( temp ) )

except :

continue

q e l a s t i c =4∗pi / laa ∗ s i n ( rad ians ( deg /2))

v l i s t [ j ]= v l i s t [ j ]∗ kf / k i

moddata [ i n t ( round ( q e l a s t i c ∗ f a c t o r ))]+= v l i s t [ j ]

q l i s t =[ ]

for i in range ( l en ( moddata ) ) :

q l i s t . append ( f l o a t ( i )/ f a c t o r )

h=Measurement (name=”” )

h . append ( Dataset ( x=q l i s t , y=moddata ) )

del h [ 0 ]

h . whatis [ ’ x ’ ]=[ ’Q ’ , ’AA−1 ’ ]

h . whatis [ ’ y ’ ]=[ ’S (Q) ’ , ’ ’ ]

h . whatis [ ’ z ’ ]=[ ’ ’ , ’ ’ ]

h . w r i t e i 9 6 ( f i l e i n [:−4]+ ”mod” )
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B Simulation Parameters

In the following two specific gromacs simulation input files used in this thesis are

given. The first one was applied with the force field parameters of Chang & Sandler

[153]. The second input file was used in combination with the L-OPLS force field of

Siu et al. [152].

Specific simulation parameters as e. g. simulation length, output frequency, tem-

perature and pressure coupling were applied as described in section 5.3.

B.1 changsandler.mdp

; RUN CONTROL PARAMETERS

i n t e g r a t o r = md

; mode f o r c ente r o f mass motion removal

comm−mode = Linear

; number o f s t ep s f o r c en te r o f mass motion removal

nstcomm = 1

; NEIGHBORSEARCHING PARAMETERS

; n b l i s t update f requency

n s t l i s t = 10

; ns a lgor i thm ( s imple or g r id )

ns type = gr id

; Pe r i od i c boundary c o n d i t i o n s : xyz , no , xy

pbc = xyz

p e r i o d i c m o l e c u l e s = no

; n b l i s t cut−o f f

r l i s t = 1 .0

; long−range cut−o f f f o r switched p o t e n t i a l s

r l i s t l o n g = −1

; OPTIONS FOR ELECTROSTATICS AND VDW

; Method f o r doing e l e c t r o s t a t i c s

coulombtype = PME
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rcoulomb−switch = 0

rcoulomb = 1 .0

; Re l a t i v e d i e l e c t r i c constant f o r the medium and the r e a c t i o n f i e l d

e p s i l o n r = 1

e p s i l o n r f = 1

; Method f o r doing Van der Waals

vdw−type = Cut−o f f

; cut−o f f l eng th s

rvdw−switch = 0

rvdw = 2.0

; Apply long range d i s p e r s i o n c o r r e c t i o n s f o r Energy and Pressure

DispCorr = No

; Extension o f the p o t e n t i a l lookup t a b l e s beyond the cut−o f f

tab le−extens i on = 1

; Seperate t a b l e s between energy group p a i r s

ene rgyg rp tab l e =

; Spacing f o r the PME/PPPM FFT gr id

f o u r i e r s p a c i n g = 0.15

; FFT gr id s i z e , when a value i s 0 f o u r i e r s p a c i n g w i l l be used

f o u r i e r n x = 0

f o u r i e r n y = 0

f o u r i e r n z = 0

; EWALD/PME/PPPM parameters

pme order = 4

e w a l d r t o l = 1e−5

ewald geometry = 3d

e p s i l o n s u r f a c e = 0

o p t i m i z e f f t = yes
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B.2 siu.mdp

; RUN CONTROL PARAMETERS

i n t e g r a t o r = md

; mode f o r c ente r o f mass motion removal

comm−mode = Linear

; number o f s t ep s f o r c en te r o f mass motion removal

nstcomm = 1

; NEIGHBORSEARCHING PARAMETERS

; n b l i s t update f requency

n s t l i s t = 10

; ns a lgor i thm ( s imple or g r id )

ns type = gr id

; Pe r i od i c boundary c o n d i t i o n s : xyz , no , xy

pbc = xyz

p e r i o d i c m o l e c u l e s = no

; n b l i s t cut−o f f

r l i s t = 1 .5

; long−range cut−o f f f o r switched p o t e n t i a l s

r l i s t l o n g = 2 .0

; OPTIONS FOR ELECTROSTATICS AND VDW

; Method f o r doing e l e c t r o s t a t i c s

coulombtype = PME

rcoulomb−switch = 0

rcoulomb = 1 .5

; Re l a t i v e d i e l e c t r i c constant f o r the medium and the r e a c t i o n f i e l d

e p s i l o n r = 1

e p s i l o n r f = 1

; Method f o r doing Van der Waals

vdw−type = switch

; cut−o f f l eng th s

rvdw−switch = 1 .1

rvdw = 1.3

; Apply long range d i s p e r s i o n c o r r e c t i o n s f o r Energy and Pressure

DispCorr = EnerPres

; Extension o f the p o t e n t i a l lookup t a b l e s beyond the cut−o f f

tab le−extens i on = 1

; Seperate t a b l e s between energy group p a i r s

ene rgyg rp tab l e =

; Spacing f o r the PME/PPPM FFT gr id

f o u r i e r s p a c i n g = 0.12

; FFT gr id s i z e , when a value i s 0 f o u r i e r s p a c i n g w i l l be used
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f o u r i e r n x = 0

f o u r i e r n y = 0

f o u r i e r n z = 0

; EWALD/PME/PPPM parameters

pme order = 4

e w a l d r t o l = 1e−5

ewald geometry = 3d

e p s i l o n s u r f a c e = 0

o p t i m i z e f f t = yes
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