
2 L. Grüne, S. Hirche, O. Junge, J. Lunze, F. Wirth et al.

5.7 A stochastic approach to event-based control

5.7.1 Event-based control as a two-person team problem

This section considers the design of event-triggered controllers in the con-
text of stochastic linear systems. The problem setup is posed as a two-person
team problem, where the two agents are given by the controller and the event-
trigger. Both agents aim at minimizing conjointly a common cost function,
which comprises a quadratic control cost and a penalty that is paid when-
ever an event is generated. Triggering an event evokes the transmission of the
current state information to the controller that adjusts the control inputs.
The event generator, which is situated at the sensor, must therefore decide
carefully, whenever it is worth to pay the penalty in order to update the con-
troller. As the information available differs among the agents, the possibility
of signalling between the agents is an integral part of the stochastic optimal
control problem.

In the present system signaling can occur in two ways. By choosing spe-
cific control inputs, the controller may invoke the event generator to send
another state update. On the other hand, by not sending information to the
controller, the event generator implicitly signals also information to the con-
troller depending on the choice of the event-triggering law.

Signalling can improve the system performance, but it is generally unde-
sired in the design process, as it does not admit efficient numerical algorithms
to be developed that solve the optimization problem. The resulting optimal
policies are usually non-linear and depend on the complete observation history.
In the time-triggered case, when transmission times are chosen beforehand,
signaling is not possible and, therefore, the optimal design can be carried out
in a straightforward manner. Interestingly, it turns out for the event-triggered
transmission scheme that under some mild assumptions, signaling is not ben-
eficial. These mild assumptions presume that the policies are deterministic
and that the distributions of the noise process and the initial condition are
symmetric.

The solution of the initial joint optimization problem reduces to an
emulation-based approach: In the first step, the optimal controller is designed
independently of the event generator and the communication penalty yield-
ing a linear control law and a state estimator. In the second step, the event-
triggering law is computed via stochastic dynamic programming, where events
are triggered by the one-step ahead estimation error. Apart from the similar
structure compared with the event-triggered controller in [sec5-2] , it is in-
teresting to note that both designs use an emulation-based approach despite
of the differing theoretical backgrounds.

This section is separated into three parts. In Section 5.7.2 the problem
setup is introduced. This problem is solved for time-triggered transmission
schemes in Section 5.7.3. The main results for the event-triggered case are
given in Section 5.7.4.
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Fig. 5.1. Resource-constrained control system the with process P , the sensor sta-
tion S executing the event-triggering law, and the control station C.

5.7.2 Problem formulation

The resource-constrained networked control system under consideration is il-
lustrated in Fig. 5.1. It consists of a process P to be regulated by a controller
C, which is implemented at the actuator. The control station C receives mea-
surements from a sensor station S that have to be transmitted over a resource-
constrained communication network. Within the sensor station an event gen-
erator is implemented that decides upon current observations whether or not
to send information to the controller. Subsequently, the individual functional
blocks in Fig. 5.1 are defined.

The process P is described by the following discrete-time stochastic dif-
ference equation

x(k + 1) = Ax(k) +Bu(k) +w(k), x(0) = x0, (5.1)

where A ∈ IRn×n, B ∈ IRn×d. The variables x(k) and u(k) denote the state
and the control input and are taking values in IRn and IRd, respectively. The
initial state x0 is a random variable with finite mean and covariance Cx0

.
The system noise process w(k) is i.i.d. (independent identically distributed),
takes values in IRn, and is normal distributed with zero-mean and covariance
matrix Cw. The random variables x0 and w(k) are statistically independent
for each k. Let (Ω,F ,Prob) denote the probability space generated by the
initial state x0 and noise sequence WN−1, where W k = {w(0), . . . ,w(k)}
denotes the truncated sequence up to time k. The variables x0 and w(k) are
called the primitive random variables of the system. It is assumed that the
statistics of the process P are known a-priori to both, the event generator and
the controller.

Concerning our system model, it is needed to define the amount of infor-
mation available at the control station at each time step k. The output signal
δ(k) of the event generator takes values in {0, 1} deciding whether information
is transmitted at time k, i. e.,

δ(k) =

{

1, measurement x(k) is sent,

0, no measurement is transmitted.
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Therefore, the signal z(k) is defined as

z(k) =

{

x(k), δ(k) = 1,

∅, δ(k) = 0.
(5.2)

As various steps of decisions are made within one time period k, a causal
ordering is specified by the following sequence in which the events within the
system occur:

· · · → x(k) → δ(k) → z(k) → u(k) → x(k + 1) → · · ·

Note that the choice of δ(k) influences the amount of information at the
controller station at time k.

We allow the control input u(k) and the event-trigger output δ(k) to
depend on their complete past history. This implies in particular that they
may have memory and are by themselves dynamical systems. Let the event-
triggering law π = {π0, π1, . . . , πN−1} and the control law γ = {γ0, γ1, . . . γN−1}
denote admissible policies for the finite horizon N with

δ(k) = πk(X
k), u(k) = γk(Z

k). (5.3)

We assume that the mappings πk and γk are measurable mappings of their
available information Xk or Zk, respectively. Let us denote UET to be the set
of all admissible policy pairs (π, γ). As we will also consider time-triggered
policies, we define the set UTT of admissible policy pairs, where the controller
is given by (5.3) and π is either 0 or 1 at each time k, i. e.,

UTT = {(π, γ) ∈ UET|πk ≡ ck, ck ∈ {0, 1}, k ∈ {0, . . . , N − 1}}. (5.4)

The communication channel takes the role of restricting or penalizing
transmissions in the feedback loop. This will be reflected in the optimization
problem. Let JC be the control objective defined as

JC = xT(N)QNx(N) +
N−1
∑

k=0

x(k)TQx(k) + u(k)TRu(k), (5.5)

where QN and Q are positive definite matrices in IRn×nand R ∈ IRd×d is
positive semi-definite. Let r be the communication cost given by the number
of transmissions, i. e.,

r =

N−1
∑

k=0

δ(k). (5.6)

Problem 5.1. For a given λ ≥ 0, find the optimal policies π∗ and γ∗:

inf
(π,γ)∈UET

E [JC + λr] .
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The nonnegative value λ can be interpreted as the weight of penalizing trans-
missions over the communication channel. For notational convenience, we de-
fine the cost function J(π, γ) for (π, γ) ∈ UET to be

J(π, γ) = E [JC + λr] . (5.7)

From the definition of UTT in (5.4), it can be observed that in our frame-
work time-triggered controllers constitute a subset of event-triggered con-
trollers, i. e., UTT ⊂ UET. Therefore, we can state the following inequality

inf
(π,γ)∈UET

J(π, γ) ≤ inf
(π,γ)∈UTT

J(π, γ),

which says that the optimal event-based controller always outperforms the
optimal time-triggered controller.

5.7.3 Optimal time-triggered transmission

In the following we are concerned with the optimal design of the time-triggered
controller. This means we want to minimize J within the admissible time-
triggered control policies given by UTT. First, we fix an arbitrary triggering
sequence πTT and investigate the corresponding optimal control law γ∗ stated
by the following problem:

Problem 5.2.

inf
γ

J(πTT, γ), s.t. (πTT, γ) ∈ UTT.

It can be observed that the communication cost r is constant and can, there-
fore, be omitted from the optimization for a fixed triggering sequence πTT.
What remains is the expected quadratic cost term E[JC ]. Second, the equation
can be written as a linear time-varying measurement equation

z(k) = C(k)x(k), C(k) =

{

In, δ(k) = 1,

0n, δ(k) = 0.
(5.8)

Therefore, we can conclude that the problem of finding the optimal control
law in Problem 5.2 reduces to a standard LQG problem without measurement
noise, as the process evolves according to a linear difference equation given by
(5.1) and the measurement equation given by (5.8) is also linear in the state
x(k) and the costs are quadratic in the state and the control input. Hence,
the separation principle of stochastic control is applicable and the solution
is given by a certainty-equivalence controller consisting of a linear gain and
a Kalman estimator. A certainty-equivalence controller is given by solving a
related deterministic control problem, where all primitive random variables
are set to their means, and by replacing the state variable by its least-squares
estimate within the deterministic solution.

This result is summarized in the following theorem.
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Theorem 5.1. Let an arbitrary time-triggered transmission sequence
πTT be fixed. Then, the solution of Problem 5.2 is given by the
certainty-equivalence controller

u(k) = γ∗
k(Z

k) = −L(k)E[x(k)|Zk], k ∈ {0, . . . , N − 1} (5.9)

with

L(k) =
(

R+BTP (k + 1)B
)−1

BTP (k + 1)A,

P (k) =ATP (k + 1)A+Q

−ATP (k + 1)B
(

R+BTP (k + 1)B
)−1

BTP (k + 1)A,

(5.10)

where P (N) = QN and P (k) ∈ R
n×n is non-negative definite for

k ∈ {0, . . . , N}. The estimator E[x(k)|Zk] is given by the following
recursive form

E[x(k)|Zk] =

{

x(k), δ(k) = 1,

(A−BL(k))E[x(k − 1)|Zk−1], δ(k) = 0.
(5.11)

Having obtained the optimal controller for a given transmission sequence,
we focus now on the calculation of the optimal time-triggered transmission
scheme πTT,∗. For that reason, let e(k) be the estimation error at time k

defined as

e(k) = x(k)− E[x(k)|Zk].

By using Lemma 6.1 in Chapter 8 of [1] and a couple of straightforward
reformulations, the cost function can be rewritten in the following form.

J =λE

[

N
∑

k=0

δ(k)

]

+ E[xT(0)P (0)x(0)] + E

[

N−1
∑

k=0

w(k)TPk+1w(k)

]

+ E

[

N−1
∑

k=0

e(k)TL(k)TΓ (k)L(k)e(k)

]

+ E

[

N−1
∑

k=0

(u(k) +L(k)E[x(k)|Zk])TΓ (k)(u(k) +L(k)E[x(k)|Zk)

]

,

(5.12)

where Γ (k) is defined as

Γ (k) = BTP (k + 1)B +R, k ∈ {0, . . . , N − 1}.

Obviously, the second and the third term on the right-hand side of (5.12) are
constant. For a fixed time-triggered transmission sequence, we observe that
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the first term is constant. In addition, it can be shown that e(k) is a random
variable that is independent of the policy γ. This gives the optimal control law
γ∗ in (5.9) for a fixed transmission sequence as already stated in Theorem 5.1.
On the other hand, only the first and the forth term are varying with different
transmission sequences when assuming that the control law is given by (5.9).
In order to calculate the optimal time-triggered transmission sequence, we
define the one-step ahead estimation error e1(k) by

e1(k) = x(k)− E[x(k)|Zk−1]. (5.13)

From this definition, we have the following connection to the estimation
error.

e(k) =

{

0, δ(k) = 1,

e1(k), δ(k) = 0.

The evolution of e1(k) can be derived by

e1(k + 1) = x(k + 1)− E[x(k + 1)|Zk]

= Ax(k) +Bu(k) +w(k)− E[Ax(k) +Bu(k) +w(k)|Zk]

= A(x(k)− E[x(k)|Zk]) +w(k)

= (1− δk)Ae1(k) +w(k).

The remaining optimization problem has then the following form

πTT,∗ = arg inf
δ0,...,δN−1

E

[

N−1
∑

k=0

(1 − δ(k))e1(k)
TL(k)TΓ (k)L(k)e1(k) + λδ(k)

]

s.t. e1(k + 1) = (1− δ(k))Ae1(k) +w(k) (5.14)

Since the triggering variable δk is chosen before execution, i. e., it is indepen-
dent of e1(k), it is possible to rewrite above optimization problem in order to
apply dynamic programming. For that reason, we define the error covariance

Φ(k) = E[e1(k)e
T
1 (k)].

The evolution of Φ(k) is given by

Φ(k + 1) = (1 − δ(k))AΦ(k)AT +Cw, Φ(0) = Cx0
.

Then, the optimization problem in (5.14) can be written as

πTT,∗ = arg inf
δ0,...,δN−1

N−1
∑

k=0

(1− δ(k))tr[Φ(k)L(k)TΓ (k)L(k)] + λδ(k)

s.t. Φ(k + 1) = (1− δ(k))AΦ(k)AT +Cw, Φ(0) = Cx0

(5.15)
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We observe that the initially stochastic optimization problem reduces to a
deterministic optimal control problem with state variable Φ(k). This implies
that the calculation of the optimal time-triggered transmission sequence πTT,∗

can be performed by deterministic dynamic programming. In summary, the
optimal time-triggered controller within the set UTT can be calculated in two
steps:

1. Obtain the optimal control gain L(k) from the discrete-time Riccati equa-
tion in (5.10)

2. Solve optimization problem (5.15) that yields the optimal transmission
timings.

Inspired by this design approach, the more challenging problem of event-
triggered transmission strategies is studied in the next section.

5.7.4 Optimal event-triggered transmission

What makes the derivation in the previous section appealing relies on the fact
that the cost function J is completely separable with respect to the control law
and the transmission times. This becomes evident when regarding (5.12) that
results from reordering the cost terms of J . When allowing the transmissions
to be triggered by events rather than by a-priori fixed timings, the separation
does not hold in the way as for the time-triggered mechanism. This is due
to the fact that the estimation error ek is generally not independent of the
control law anymore when assuming a fixed event-triggering law π. In other
words, the controller is able to signal through the plant to the event-trigger
that it may want to receive another state update.

Such signalling is called the dual effect of control and refers to the dual role
of control: (i) influencing the state evolution and (ii) decreasing the estimation
error. When the second phenomenon is not present, which is also referred to
as the absence of the dual effect, then the optimal control law is given by
(5.9). On the other hand, in our case the dual effect is present in general,
which implies that the optimal control law will be a nonlinear function of the
complete history Zk, which highly depends on the choice of the fixed event
generator.

Another approach that might be taken is the direct optimization of both
the control law and the event-triggering law at the same time. But as the
information available at the controller and at the event generator differ, the
optimization problem has a non-classical information pattern, whose solution
is very hard to find and no systematic algorithms are available, even for simple
cases. In fact, the joint optimization problem under consideration falls into
the category of sequential stochastic control problems, for which a dynamic
programming formulation is possible. But the value function must be param-
eterized by the distribution of the state, which implies an infinite dimensional
state space, and the minimum is taken over all control laws rather than over
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the inputs. Obviously, this formulation does not allow efficient numerical al-
gorithms and also restrains us from getting new insights.

The aforementioned arguments suggest that only little can be said about
the optimal event-triggered controller that solves Problem 5.1. It is, therefore,
even more surprising that the actual optimal event-triggered controller is a
certainty equivalence controller given by (5.9), i. e., it takes the same form as
in the time-triggered case.

The crucial property that is exploited to show the above statement is the
nestedness property of the information pattern. The information pattern is
nested because the information available at the controller represented by the
sigma algebra ofZk is a subset of the information available at the event-trigger
given by the sigma algebra Xk for any k, i. e.,

σ(Zk) ⊂ σ(Xk) ⊂ F , k ∈ {0, . . . , N − 1}.

The key idea to show that certainty-equivalence controller are optimal bases
on the following common concept in optimal control.

Definition 5.1 (Dominating policies). A set of policies U ′
ET ⊂ UET

is called a dominating class of policies for Problem 5.1 if for any fea-
sible (π, γ) ∈ UET, there exists a feasible (π′, γ′) ∈ U ′

ET, such that

J(π′, γ′) ≤ J(π, γ),

where J is the cost function defined by (5.7) for the corresponding
problem.

Once a dominating class of policies is found, the above definition implies that
we can restrict the solutions of the optimization problem to such policies.
In the following, we show that the set of policy pairs where the controller
is a certainty-equivalence controller denoted by γ∗ is a dominating class of
policies. Therefore, the remaining goal is to prove that for any pair (π, γ), we
can find a pair (π′, γ∗) whose costs are at most that of (π, γ).

In order to achieve this, we introduce a suitable reparametrization of the
triggering law. Given a policy (π, γ), we define another policy (ρ, γ) where
ρ = {ρ0, . . . , ρN−1} is the triggering law and ρk is a function of {x0,W

k−1},
such that

ρk(x0,W
k−1) = πk(X

k), k ∈ {0, . . . , N − 1}, ω ∈ Ω, (5.16)

when both systems use the control law γ. As the control inputs Uk−1 are
known at the event time k by the law γ due to σ(Zk) ⊂ σ(Xk)k, the vari-
ables {x0,W

k−1} can be fully recovered by the state sequence Xk and vice
versa. Therefore, the triggering law ρ satisfying (5.16) always exists. On the
other hand, this also implies that given (ρ, γ), there is always a (π, γ) satisfy-
ing (5.16).

The next auxiliary result gives a statement on the optimal control law for
fixed ρ.
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Lemma 5.1. Let the triggering law ρ be a function of primitive vari-
ables given by

δk = ρk(x0,W
k−1), k ∈ {0, . . . , N − 1}. (5.17)

If the triggering law ρ is fixed, then the optimal control law γ∗ mini-
mizing J(ρ, γ) is a certainty-equivalence controller defined in (5.9).

Proof. The proof can be outlined as follows. First, it is shown that the estima-
tion error ek is a random variable independent of the control law chosen for a
fixed event-triggering law ρ. Inspecting Eq. (5.12), which is also valid for event-
triggering law ρ, it can be seen that unlike the last expression all others are
constants. Hence, it can be concluded that the certainty equivalence controller
defined by (5.9) is optimal. The details of the proof can be found in [7]. �

Lemma 5.1 enables us to show that the certainty-equivalence controller is
optimal for Problem 5.1, which is stated in the following theorem.

Theorem 5.2. Let the system be given by (5.1) and (5.2). The
class of policies UCE ⊂ UET defined by

UCE = {(π, γ∗) ∈ UET | γ∗ = −L(k)E[x(k)|Zk], L(k) given by (5.10)}

is a dominating class of policies for Problem 5.1.

Proof. According to Def. 5.1, it suffices to show that for any feasible pair (π, γ) ∈
UET, there is a feasible policy (π′, γ∗) ∈ UCE whose costs are at most that of (π, γ).

Given an admissible policy (π, γ), there exists an admissible policy (ρ, γ) with
ρk being a function of primitive variables that satisfies (5.16). Condition (5.16)
implies that for (π, γ) and (ρ, γ), we have identical random variables uk and δk
for k ∈ {0, . . . , N − 1} and, therefore, identical costs. In the same way for the pair
(ρ, γ∗), we find a triggering law π′ being a function of Xk, such that both (ρ, γ∗)
and (π′, γ∗) output identical random variables uk and δk for k ∈ {0, . . . , N − 1}.
Due to Lemma 5.1, we obtain

J(π, γ) = J(ρ, γ) ≥ min
γ

J(ρ, γ) = J(ρ, γ∗) = J(π′

, γ
∗).

This concludes the proof. �

Theorem 5.2 implies that we can characterize optimal control policies to
be certainty-equivalent control laws given by (5.9). The remaining problem
is to design the optimal event generator π∗. Opposed to the time-triggered
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case, special care needs to be taken, as the estimator E[x(k)|Zk] depends
on the choice of the event-triggering policy π. This is because not sending
update information to the controller may still be useful information for the
state estimate E[x(k)|Zk] and constitutes another type of signalling between
the event generator and the controller. Throughout the subsequent paragraph,
suppose that a particular event-triggering law π has been selected. We define
τ(k) to be the last time an update was sent, i. e.

τ(k) = max{ℓ|δℓ, ℓ < k}

with τ(k) = −1, if there were no transmissions before k. Obviously, for δ(k) = 1,
we get E[x(k)|Zk] = xk. However, for δ(k) = 0, we have

E[x(k)|Zk] = Ak−τ(k)x(τ(k)) +

k−1
∑

ℓ=τ(k)

Ak−ℓ−1Buℓ + E





k−1
∑

ℓ=τ(k)

Ak−ℓ−1w(ℓ)|Zk





(5.18)

In the time-triggered case, the noise process w(ℓ) for ℓ ∈ {τ(k), . . . , k − 1}
is statistically independent of Zk, as no information is gathered after τ(k)
at the controller. Therefore, the last term vanishes, because w(k) is zero-
mean. On the other hand, by not sending information, when having an event-
triggering law πk that depends on Xk, it also depends on wk−1. Therefore,
the last term may not be zero in the event-triggering case due to the statistical
dependence betweenZk andw(ℓ) for ℓ ∈ {τ(k), . . . , k−1}. The additional bias
represented by the last term in (5.18) is constant for fixed τ(k) at any time
k ∈ {0, . . . , N − 1}. Therefore, the estimator eventually takes the following
form

E[x(k)|Zk] =

{

x(k), δ(k) = 1

(A−BL(k))E
[

x(k − 1)|Zk−1
]

+α(τ(k), k), δ(k) = 0,

(5.19)

which is similar to the least-squares estimator for the time-triggered case given
by (5.11), but differs by the additional bias term α(τ(k), k).

This formulation of the optimal estimator allows us to recover a similar
optimization as for the optimal time-triggered transmission sequence given
by (5.14).

π∗ = arg inf
π

E

[

N−1
∑

k=0

(1− δ(k))(e1(k)−α(τ(k), k))TL(k)TΓ (k)L(k)

]

×

× (e1(k)−α(τ(k), k)) + λδ(k)]

s.t. e1(k + 1) = (1− δ(k))Ae1(k) +w(k). (5.20)

Assuming that the distributions of the primitive random variables are
symmetric, as in our case, it can be shown for first-order linear systems that
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Fig. 5.2. Complete structure of the optimal event based control system with event-
trigger π∗ and certainty-equivalence controller represented by L(k). System block T

denotes a 1-step delay element.

the optimal event generator is a symmetric threshold function and the state
estimator is given by the optimal least-squares estimator for the time-triggered
case, i. e., α ≡ 0. Symmetry means that the event-triggering mapping πk is
an even function in e1(k). The question whether symmetric policies are also
optimal for higher-order systems remains an open problem. In the following,
we assume that also for higher dimensional systems symmetric even-triggering
policies are optimal. Then, the optimization problem takes the standard form
of a optimal stochastic control problem with state e1(k), which can be solved
by means of dynamic programming. As the terminal and the running costs
are radially increasing functions and the noise distributions are symmetric, it
can be concluded for the scalar case that the event-triggering law will be a
time-varying threshold function of the one-step ahead estimation error e1(k).

In summary, it has been shown that the initial Problem 5.1, which was
supposed to be hard to solve, turns out to be numerically tractable, as the
optimal solution can be constrained to a certain structure without loosing
optimality. Fig. 5.2 illustrates the structure of the optimal event-triggered
controller. The steps involved in the computation, which can be performed
offline, can be summarized as follows.

1. Obtain the optimal control gain L(k) from the discrete-time Riccati equa-
tion in (5.10).

2. Solve optimization problem (5.15) that yields the optimal event-trigger as
a function of e1(k) by stochastic dynamic programming.

In terms of numerical complexity, the first step can be solved for higher
dimensional processes, as it has polynomial complexity with respect to the
state dimension n. Therefore, this step does not put severe requirements on
the computations. On the other hand, it is well known that the computational
complexity of the dynamic programming algorithm grows exponentially with
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the state dimension when the cost-to-go function has no closed form solution,
which is also the case for (5.20) with α ≡ 0. However, near-optimal solutions,
which can be solved in polynomial-time, can be obtained by using approximate
dynamic programming.

Bibliographical notes

A proof for the time-triggered case in Section 5.7.3 that shows that the estimation
error is a random variable that is independent of the control policy can be found
in section 5.2 of [2].

The fact that stochastic optimal control problems with non-classical infor-
mation pattern are hard to solve is shown in [9] for a very elementary problem
setting and is also supported by the complexity theoretic viewpoint taken in [8].
The dynamic programming formulation for problems with a certain non-classical
information pattern has been discussed in [10].

The optimality of the certainty equivalence controller for event-triggered sys-
tems has been discussed in [7], where also problem settings with transmission
constraints rather than communication penalties have been analyzed.

The problem of event-triggered estimation for scalar systems has been exten-
sively studied in [4, 6]. They both show that the optimal event-trigger is a symmet-
ric threshold function, when the distributions of the primitive random variables
are symmetric. While this fact is the consequence of results in majorization the-
ory and the Riesz rearrangement inequality in [4], the work in [6] bases on global
convergence properties of the proposed iterative algorithm and uses Lyapunov
methods. In [6], the bias parameter α is considered as a free optimization param-
eter and an iterative method is developed that alternates between optimizing the
event-triggering policy while fixing the estimator and vice versa.

The suboptimal design of the event generator is studied in [3] by means of
approximate dynamic programming.

The obtained results can be used to extend the design of event-triggered con-
trollers for multiple feedback loops over a common communication medium ana-
lyzed in Section [sec7-3] beyond the consideration of integrator subsystems. This
is demonstrated in [5] through a bi-level design approach, where the communica-
tion penalty functions as a Lagrange multiplier constraining the average number
of transmissions.
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