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Notation

Conventions

Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted by
lower case letters in boldface type, as the vector v is composed of elements ;u. Matrices are
denoted by upper case letters in boldface type, as the matrix M is composed of elements
;.M (i-th row, j-th column). Sets are denoted by upper case letters in blackboard bold type
or calligraphic type.

a,b, p,w, P, Scalars
a(-),b(-),o(-),w(-), P(-),Q2(-) Scalar functions
a b o,w Vectors
a(-),b(-), (), w() Vector functions
A B, Q Matrices
A(-),B(-),®(-), () Matrix functions
A B, A B Sets
Sets
N Set of all nonnegative natural numbers (without zero)
N; Set of all natural numbers greater or equal than i, i.e. N; = {n € N|n > i}
R Set of all real numbers
R; Set of all real numbers great or equal than i, i.e. R; £ {n € R|n > i}

R™ Set of all real vectors with n components

R™ ™ Set of all real n x m matrices

Arguments, Mathematical Accents, Subscripts and

Superscripts

(\)[1] Tteration [ of the scalar, vector or matrix (-)



Notation

vi
Estimated value of the scalar, vector, matrix or set (-)

< D>

Predicted value of the scalar or vector ()
Scalar, vector, matrix or set (-) belonging to the controller

LR

Vector or matrix collecting similar scalars, vectors or matrices (-)

The i-th element of the vector or set (+)
Transpose of the vector or matrix (-)
Initial value of the scalar or vector (-)

Optimal value of the scalar or vector ()
Scalar, vector, matrix or set (-) belonging to the i-th actuator

Scalar, vector, matrix or set (-) belonging to the i-th sensor

~
~— O — ' ' ' ~— ~— ~— —

Operators and Special Symbols

Definition; A £ B defines A to be equal to B
Column vector or matrix with all elements equal to zero

0
1 Identity matrix
| A Cardinality of the set A, i.e. its number of elements
|| Magnitude or absolute value of scalar z € R
||| 2-norm or Euclidean norm of the vector € R”, ||z|| £ VzTx
||| a Weighted 2-norm or weighted Euclidean norm of the vector & € R with
the positive definite matrix A € R™", ||z|l4 = VaT Az
a>b a > ;b for all 4
a>b a > ;b for all 4
A>B The square matrix A — B is positive definite
A>B The square matrix A — B is positive semi-definite
Amin(A) Minimum eigenvalue of the matrix A € R"*"
col(xz,y) Stacked column vector of the vectors # € R® and y € R™, col(z,y) =
"]
col(z®,i € T) Stacked and ordered column vector of the vectors (¥ € R"™ whose in-
dex i belongs to the index set i € T = {1,2,...,I}, col(z®,i € ) &
col(xM, 2@ ... )
Block diagonal matrix with the square matrix block A,..., Z € R™*"

diag(A, ..., Z)
ker(A) Kernel of the matrix A € R™*™
rank(A) Rank of the matrix A € R"*™
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vii

Derivatives
of
8f oO1x
% 2 Gradient /First-order derivative of f € R with respect to
T
of xeR"”
LOnx
[ 0.f of
a f o1z Onx
e S : Jacobian /First-order derivative of f € R™ with respect to
T
Ot Omf x cR"”
L 01z Onx
[0.f
ot
x = | First-order derivative of f € R™ with respect to t € R
Ot
L ot
02f 2
82f 01201 U 91x0nT
927 S : : Hessian/Second-order derivative of f € R with respect to
T
_o*f f x eR"
LOnxO1x " OnxOnx
[ 02,1
ot2
i & : Second-order derivative of f € R™ with respect tot € R
.t
L ot?
Acronyms
BDA Bilevel Decomposition Algorithm
BSE Batch State Estimator
BVP Boundary Value Problem
CAN Control Area Network
CDEKF  Continuous-Discrete Extended Kalman Filter
CKF Centralized Kalman Filter
CMHE  Centralized Moving Horizon Estimator
CMHO  Centralized Moving Horizon Observer
CMHS Centralized Moving Horizon Strategies
CSTR Continuously Stirred Tank Reactor
DKF Distributed Kalman Filter
DMHE  Distributed Moving Horizon Estimator
DMHO  Distributed Moving Horizon Observer
DMHS Distributed Moving Horizon Strategies
DSP Digital Signal Processor
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EKF
FPGA
FTSP
HIB
TP
1SO
1SS
VP
KF
KKT
LICQ
LP
LQR
MAC
MHE
MHO
MHS
MPBVP
MPC
NCS
NLP
NTP
ODE
0SI
PDE
PI
PVD
QP
RBS
RMSE
SISO
SQP
SVD
TDMA

Extended Kalman Filter

Field Programmable Gate Array
Flooding Time Synchronization Protocol
Hamilton-Jacobi Bellman

Interior Point

International Standards Organization
Input-to-State Stable

Initial Value Problem

Kalman Filter

Karush-Kuhn-Tucker

Linear Independence Constraint Qualification
Linear Program

Linear Quadratic Regulator

Medium Access Control

Moving Horizon Estimator

Moving Horizon Observer

Moving Horizon Strategies
Multi-Point Boundary Value Problem
Model Predictive Control

Networked Control System

Nonlinear Program

Network Time Protocol

Ordinary Differential Equation

Open Systems Interconnection
Partial Differential Equation
Performance Index

Parallel Variable Distribution
Quadratic Program

Reference Broadcast Synchronization
Root Mean Square Error

Single Input Single Output
Sequential Quadratic Programming
Singular Value Decomposition

Time-Division Multiple Access
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Chapter 1

Introduction

The control of dynamical systems requires data transmission between the spatially distributed
components of the control loop. In the most basic case, this comprises the transmission of
sensor information to a controller and of control input from the controller to the actuators. For
conventional control systems, the data is transferred via hardwired point-to-point connections.
However, this type of connection causes high costs of wiring and provides less flexibility
for introducing additional components into the control loop as the needs change. These
shortcomings initiated the search for alternative concepts of data transmission in control
systems. In the 1980’s, the concept of data transmission over a digital network emerged
as the sought after solution and the networked control systems (NCSs) were born. One
of the earliest efforts along the lines of modern networked control systems was the study
started in 1983 by the Bosch GmbH to investigate the feasibility of networked devices to
control different functions in a passenger car. This study was very successful and in 1986
the innovative communication protocol of the control area network (CAN) was announced
and corresponding hardware was available by 1987. Today, almost all cars manufactured in
Europe include embedded systems integrated through CAN. The use of NCSs has not been
restricted to the automobile industry but has also found application in a broad range of other
areas such as manufacturing automation (Biegacki and VanGompel, 1996; Schickhuber and
McCarthy, 1997), aircraft (Seiler, 2001), remote surgery (Meng et al., 2004; Yogesan et al.,
2006), mobile sensor networks (Ogren et al., 2004) and smart grid (Berger and Iniewski, 2012),
to name only a few. These examples illustrate the growing interest in NCSs which is motivated
by the benefits they offer compared to conventional point-to-point wired control systems.
Modern NCSs have surpassed by far the original intended and above mentioned objectives
and offer a variety of additional advantages. Besides the reduced volume of wiring, NCSs are
more reliable due to fewer physical potential points of failure such as connectors and cable
harness. This results in an increased capability of troubleshooting and maintenance which
significantly reduces the installation and operation costs. The enhanced interchangeability
and interoperability of devices offers easy reconfigurability resulting in increased flexibility.
Maybe one of the most significant advantage of NCSs is the feature of enabling the realization
of new control directions which are impossible with conventional point-to-point connections.

Traditionally, conventional control systems with multiple actuators and multiple sensors have
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been studied within either the centralized or decentralized framework. In the former case, the
measurements from the different sensors are collected by a central unit for processing before
the resulting control inputs are sent to the different actuators (Kailath, 1980; Lunze, 1992;
Goodwin et al., 2001; Khalil, 2002). In the latter case, the system is decomposed into a number
of simpler but interconnected subsystems which are controlled by local isolated units (Sandell
et al., 1978; Siljak, 2007; Bakule, 2008). While both frameworks are capable of stabilizing a
dynamical system, the centralized framework possesses, in general, superior performance due
to the explicit consideration of the full system dynamics in the centralized controller design.
However, the installation and maintenance costs as well as the robustness are better for the
decentralized framework due to the reduced wiring and the divide and conquer scheme of the
decentralized controller. In contrast, the utilization of networks for data transmission enables
the creation of novel and innovative distributed control systems realized not only horizontally,
e.g. peer-to-peer coordinated control among sensors and actuators, but also vertically, e. g.
control over different levels (machine to cell to system level), like in manufacturing automation
(Biegacki and VanGompel, 1996; Schickhuber and McCarthy, 1997), smart grid (Berger and
Iniewski, 2012) and building automation (Newman, 1996). The inclusion of the Internet in
the control system achieves a global interconnection and creates new possibilities in a world
wide fashion like in teleoperation (Hirche, 2005), remote surgery (Meng et al., 2004; Yogesan
et al., 2006) and haptics collaboration over the Internet (Hespanha et al., 2000). Moreover,
the recent progress in electronics opened up the possibility of including low-cost wireless
devices. These devices facilitates the expansion of the application to mobile objects because
information can now be transmitted over wireless connections from nearly every place and
without the need of hard-wired connections. Some remarkable applications in this context
are mobile sensor networks (Ogren et al., 2004), coverage control (Cortés et al., 2004) and

environmental monitoring and surveillance (Akyildiz et al., 2002).

1.1 Challenges in Networked Control Systems

The core difference between data transmission over networks and conventional hardwired
point-to-point connections is that in the former case, data is transmitted in atomic units
called packets. The transmission of these packets is governed by protocols. The functionality
of protocols is commonly described and differentiated utilizing the International Standards
Organization - Open Systems Interconnection (ISO-OSI) seven layer reference model (ISO
7498; Zimmermann, 1980). The seven layers are physical, data link, network, transport,
session, presentation, and application. Each layer is a collection of similar functions which
provide services to the layer above it and receives service from the layer below it. For instance,
the physical layer defines electrical and physical specifications for the devices and provides the
service to establish, maintain and terminate connections to a communication medium and to
transmit information. This could be in the form of electrical or optical signals for wired net-

works and electromagnetic waves for wireless networks. The choice of the different protocols
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for each layer and the resulting interaction determines the properties of data transmission
over networks. Compared to conventional data transmission over hardwired point-to-point
connections, several new issues are introduced which make NCSs distinct from other control

systems: In this thesis, we consider the following ones:

& Packet Delays & Packet Reordering: Every information transmitted over a network has
to be encoded in a digital format first, then transmitted over the network and finally
decoded at the receiver side. The execution time of these processes accumulate to the
overall packet delay. This delay can be highly variable since the network access time,
i.e. the time for a shared network to accept data, and the transmission delays, i.e.
the time during which data are in transit inside the network, depend on highly variable
network conditions such as the network status and traffic. Long transmission delays
can sometimes result in packet reordering, i.e. the sequence of transmitted and arrived

packets differs.
© Packet Drops: While the packets are in transit through the network, the possibility

of losing a packet exists. Typical sources for packet drops are buffer overflows due
to congestion or transmission errors in physical network links. The later is far more

common in wireless than wired networks.

& Synchronization: Each device in a network is equipped with an individual clock which
determines the time when an action is executed. However, these clocks will differ after
some amount of time even when all clocks are initially perfectly tuned because of the
imperfections of the clock oscillators. This has severe effects on the network since, for
instance, the transmission scheduling in a network often requires a common notion of
time like in the case of time division multiple access (TDMA) based protocols. Thus,
clock synchronization is of fundamental importance for all networks since it enables the
successful communication between the nodes on the network which leads to a smooth
operation of the NCSs.

© Limited Energy Supplies: The energy supplies of some devices in a network can be
limited. For instance, wireless sensor nodes consist of a micro-controller, sensors, a
transceiver unit and a limited power source. The by far most energy consuming task for
such a device is data transmission. The energy cost of transmitting a packet of size 1kB
a distance of 100 m is approximately the same as that for executing 3 million instruction

by a 100 million instruction per second/W processor (Pottie and Kaiser, 2000).

The protocols of the second layer, or more precisely, the medium access control (MAC)
sublayer of the second layer, determine essentially the packet delays and packet drops (Xia
and Sun, 2008; Hristu-Varsakelis and Levine, 2005). This relation is investigated for some
of the most common MAC protocols (Ethernet, ControlNet and DeviceNet) from a NCS
perspective in Lian et al. (2001).

The common remedy to solve the synchronization problem is the utilization of clock syn-

chronization protocols which establish a common notion of time for all devices in the network.
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However, this task is anything but trivial and requires dedicated methods, like the network
time protocol (NTP) (Mills, 1991), reference broadcast synchronization (RBS) (Elson et al.,
2002) and flooding time synchronization protocol (FTSP) (Maroti et al., 2004). The higher
the requirements on the synchronization precision are, the more and the more frequently
packets have to be transmitted over the network solely for synchronization. This reduces
both the available capacity of the network for the actual control or estimation task and the
limited energy supplies. As a consequence, clock synchronization is one of the most critical
components contributing to energy consumption for wireless devices due to the highly energy
consuming radio transmissions for delivering timing information (Wu et al., 2011). Addi-
tional information about this topic including surveys about different clock synchronization
techniques can be found in Elson (2003), Sundararaman et al. (2005) and Wu et al. (2011).

In the recent years, the theory of networked control systems has become one of the most
active research areas in the control community. It is beyond the scope of this thesis to discuss
all important topics in this area. Therefore, we refer the interested reader to the following
surveys, special issues and books: Antsaklis and Baillieul (2004); Hespanha et al. (2007);
Antsaklis and Baillieul (2007); Moyne and Tilbury (2007); Chiang et al. (2007); Zampieri
(2008); Bemporad et al. (2010); Lunze (2014).

1.2 Moving Horizon Strategies for State Estimation

Both conventional and networked control systems often require knowledge about the full
state of the system to solve the respective control problems. In most practical cases, however,
measurements for all states are not available. On the one hand, this is often caused by
the fact that suitable sensors to measure certain states do not exist. On the other, we
can observe the trend of reducing the installation and maintenance costs simply by saving
sensors. In any case, if knowledge about the full state is unavailable but required, the full
state of the system needs to be estimated from the possibly noisy measurements of the sensors
in combination with a system model gained by physical insight. From an engineering point
of view, it is quiet natural not to be satisfied with any estimate but to ask for the optimal
one. This problem can be tackled within either the deterministic or stochastic framework. In
the former case, one has to minimize a residual function, while in the latter case one has to
maximize a conditional density probability function. Interestingly, even though both problems
originated from different perspectives, they are mathematically equivalent and result in the
identical infinite-horizon optimal estimation problem. The term infinite-horizon indicates
that the size of the problem grows without bound as the number of measurements increases.
For this reason, it is impossible to find analytical or numerical solutions, in general, with
the remarkable exception of linear unconstrained systems. In this case, a recursive solution
method exists which is the well-known Kalman filter. In all other cases, one needs some form
of data compression to handle the ever growing influx of measurements and thus to keep the

problem size manageable.



1.2 Moving Horizon Strategies for State Estimation 7

One powerful method are moving horizon strategies (MHS) which come in two flavors: mov-
ing horizon observers (MHOs) and mowving horizon estimators (MHEs). The main difference
between both is that only the latter considers state disturbances. The key idea behind the
MHS is to reformulate the infinite-horizon optimal estimation problem as a sequence of finite-
horizon optimal estimation problems. The basic strategy is to estimate the state using a
moving but fixed-size window of data and to compress the remaining data in an arrival cost.
Whenever a new measurement becomes available, the oldest measurement is removed from
the data window and the newest measurement is added. As a result, the problem size of the
estimation problem is bounded since only a subset of the available information is used directly.
The remaining ones are taken into account indirectly via the arrival cost. The MHS possess
some significant features which makes their application appealing not only for conventional
but also for networked control systems: First, the MHS approach an optimal performance for
linear as well as nonlinear systems. This means that for the linear unconstrained case, the
MHE is identical to a Kalman filter. For the nonlinear case, however, the MHE is superior
to any traditional recursive estimation methods such as the extended Kalman filter. Second,
because the MHS are formulated as an optimal estimation problem, it is straightforward to
incorporate additional equality and inequality constraints in the estimation process. Third,
MHS can explicitly incorporate more than one measurement in the estimation process as op-
posed to recursive estimation methods. However, the price to pay is an increased complexity
since a fixed-size optimal estimation problem has to be solved whenever a new measurement

is available.

For conventional control systems, the body of research around MHS for state estimation is
deep and diverse. The paper of Bryson and Frazier (1963) is one of the first works where the
connection between Kalman filtering and the equivalent formulation as an optimal infinite-
horizon estimation problem is shown. In the sequel, several early formulations of linear uncon-
strained MHESs, sometimes referred to as limited memory filters, were presented in Schweppe
(1964); Jazwinski (1968); Thomas (1975). Since the computational power was severely limited
and expensive at that time, only recursive solution methods were regarded as computational
feasible. This imposed severe restrictions for state estimation of general nonlinear systems
since in this case the problem of calculating exact recursive solutions becomes infinite dimen-
sional and thus impossible to compute (Kushner, 1964). The common remedy to this problem
was to introduce some forms of approximation which led to several techniques for nonlinear
systems. The extended Kalman filter has been derived by linearizing the nonlinear models
through a first-order Taylor series around the current estimate (Cox, 1964). A first version
of nonlinear MHS has been presented in Jang et al. (1986). In the following years, this work
was extended by Tjoa and Biegler (1991); Liebman et al. (1992); Muske et al. (1993). Subse-
quent research focused on improving the optimality and stability properties which resulted in
effective and stable MHE formulations. This was addressed for nonlinear MHOs in Zimmer
(1994); Moraal and Grizzle (1995); Michalska and Mayne (1995); Alamir (1999); Alamir and
Calvillo-Corona (2002), for linear MHEs in Rao et al. (2001); Alessandri et al. (2003) and
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for nonlinear MHEs in Robertson et al. (1996); Rao (2000); Rao et al. (2003); Zavala (2008);
Alessandri et al. (2008).

For networked control systems, the body of research around MHS for state estimation is
less extensive. This is especially evident for nonlinear NCSs where only few results have
been achieved. For linear NCSs, some literature is available. In Goodwin et al. (2004), a
MHE is presented as part of a control system design strategy where the controller, sensors
and actuators are connected via a data-rate limited channel. In order to minimize bandwidth
utilization, a communication constraint is imposed which restricts all transmitted data to
belong to a finite set. The resulting quantization issues are solved by means of the moving
horizon technique. The problem of packet delays for the transmission of measurement data is
considered in Zou and Li (2009); Valencia et al. (2011). In Zou and Li (2009), it is assumed
that the delays are restricted to be less than one sample period and the problem is solved
by a suitable MHE formulation within the framework of multirate control systems. In Va-
lencia et al. (2011), the packet delays are assumed to be a multiple of the sampling period.
The authors propose a MHE with variable structure to deal with this situation. However,
the stability of the MHE is not investigated. The effect of packet drops is investigated in
Xue et al. (2012a,b); Liu et al. (2012, 2013). In Xue et al. (2012a), packet drops in the
sensor-to-controller channel are considered. Based on a linear model for the packet drops
with stochastic parameters, a MHE combined with a local observer is proposed to deal with
the uncertainty from the lossy network. This approach is extended in Xue et al. (2012a) to
the case of multiple packet drops not only in the sensor-to-controller channel but also in the
controller-to-actuator channel. The work of Liu et al. (2012) models the packet drops for
the transmitted measurement data as a binary switching random sequence. This approach
results in a MHE design for which a maximum packet dropout probability can be given
such that convergence of the state estimation error is achieved. The authors extended their
work in Liu et al. (2013) to tackle simultaneously the problem of packet drops and quantized
measurements resulting from communication constraints. Thereby, the packet drops are mod-
eled as before as a binary switching random sequence and the measurements are quantized
by a logarithmic quantizer. The convergence of the resulting MHE depends on the packet
dropout probability and on the quantization density. For both parameters maximum values
are derived to ensure the convergence of the state estimation error. The problem of restricted
network access is investigated in Xue et al. (2013) where the plant has multiple sensor nodes
and only some of them are allowed to communicate with the remote estimator through a
limited-bandwidth network at each time instant. The key to derive a suitable MHE is the
presented communication logic sequence which enables the derivation of sufficient conditions

for the boundedness of the square norm of the estimation error.

For nonlinear NCSs, only very few literature is available. In Jin et al. (2007), an extended
Kalman filter (EKF) and a MHE are discussed for state estimation over packet-dropping
networks. Sufficient conditions are presented for the EKF that guarantee a bounded EKF

error covariance. The authors propose a scheme for organizing the moving horizon to handle



1.3 Scope of the Thesis 9

intermittent observations. However, the stability of the MHE is not investigated. The work
of Ji’an et al. (2008) investigates the problem of quantized measurements and discuss a MHE
from a practical point view, i.e. without providing a stability analysis. In the upcoming work
of Johansen et al. (2013), a MHO is presented to deal with the problem of simultaneous packet
loss and delay for the transmitted measurement data. This is achieved by deriving a suitable
regularized formulation of the estimation problem within the moving horizon framework. This
includes the addition of stabilizing terms in the cost function coupled with an SVD-based
weight selection method which avoids drift of the estimates when the data in the current
moving horizon is not sufficiently informative. Sufficient conditions for exponential stability
of the observer error are provided.

To sum up, the body of research around MHS for state estimation of conventional control
systems is deep and diverse and important results are available in the literature. However, this
is not the case for networked control systems, especially for nonlinear NCSs. As a consequence,
there are still many open issues which have to be resolved before all advantages of moving

horizon strategies for state estimation of NCSs can be harvested.

1.3 Scope of the Thesis

The goal of this thesis is the development of moving horizon strategies for state estimation
of networked control systems. To this end, we first consider the centralized NCS architecture
depicted in Figure 1.1(a) where the measurements of the nonlinear system ¥ generated by
the different sensors Eg] are transmitted in packets over the network Xy to a centralized

observer/estimator . For this scenario, we develop two centralized moving horizon strate-

b b))
v ¥ 3 3 v v
Z[Sl] L. Egﬂ EE‘}) . EE{”) Z[Sl] L .. Z[Sq]

(a) Centralized NCS architecture. (b) Distributed NCS architecture.

Figure 1.1: Considered NCS architectures with system X, sensors Z[Si], networks Zl{é}, ob-

servers/estimators 30, controller ¢ and actuators Eg).
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gies for state estimation, namely the centralized moving horizon observer (CMHO) and the
centralized moving horizon estimator (CMHE). While the CMHO is constructed for the case
of undisturbed system and sensors, the CMHE takes into account disturbances acting on the
system and the sensors. Both strategies are explicitly designed to deal with the following si-

multaneously appearing imperfections induced by the data transmission over the network »y:

© unknown and variable packet delays which include the possibility of packet reordering,
© unknown and variable packet drops,
© unsynchronized sensor clocks, and

© limited energy supplies of the sensors.

Moreover, we develop methods which facilitate the real-time implementation of both strate-
gies, discuss the problem of observability of undisturbed and disturbed NCSs, analyze the
stability of both strategies and validate their performance not only in simulations but also in
experiments on a test-rig.

Next, we combine the experience gained from the centralized setting with the capability of
NCSs to realize new control directions to propose a novel distributed NCS architecture which
combines the benefits of the centralized and decentralized framework of conventional control
systems. This architecture facilitates the decentralized implementation of any centralized
controller but requires distributed knowledge about the full state of the system. For this
task, distributed versions of the developed centralized moving horizon strategies for state
estimation are predestined. To this end, we consider the novel distributed NCS architecture
depicted in Figure 1.1(b) where the measurements of the linear system ¥ generated by the
different sensors E[Si] are transmitted in packets over the network 21{\11} to different distributed
observers/estimators 320 which are interconnected by the network Zl{\f}. For this scenario, we
develop two distributed moving horizon strategies for state estimation, namely the distributed
moving horizon observer (DMHO) and the distributed moving horizon estimator (DMHE).
Similar as before, the DMHO is constructed for the case of an undisturbed system, while the
DMHE takes into account disturbances acting on the system and the sensors. Both strategies
are explicitly designed to deal simultaneously with the above stated imperfections induced

1{\11} with the exception of synchronized instead

by the data transmission over the network X
of unsynchronized clocks. Moreover, for both strategies, we discuss the allocation of the
measurements over the network El{\}} to the distributed observers/estimators, investigate the

{2}
N

impact of the topology of the network Y5, analyze the stability and validate the performance

in simulations.

1.4 Qutline and Contributions of the Thesis

The following overview reveals the outline of this thesis and briefly summarizes its contribu-

tions.
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Part I: Preliminaries

Chapter 2: Preliminaries

In this chapter, we present the mathematical building blocks, on which this thesis is built.
We start with reviewing moving horizon strategies for state estimation of nonlinear systems
with discrete-time measurements which leads to nonlinear optimal estimation problems on
moving horizons. An important topic in this context is the possibility of reconstructing the
states. This issue is discussed under the aspect of observability of discrete-time nonlinear
systems. Moreover, we give an overview of different solution methods for optimal state esti-
mation problems. The most promising and efficient methods require the solution of nonlinear
optimization problems. Hence, we introduce important notions for nonlinear optimization
and review related and relevant standard solution techniques. These techniques require the
calculation of certain derivatives which can be calculated according to one of the presented
methods. Finally, we introduce some graph related notation which we will use for distributed

state estimation. The main contribution of this chapter is:

© Presentation of the mathematical building blocks of this thesis.

Part II: Centralized Moving Horizon Strategies

Chapter 3: Centralized Moving Horizon Strategies

This chapter presents the centralized moving horizon observer (CMHO) and the centralized
moving horizon estimator (CMHE) for state estimation of nonlinear systems within a com-
mon framework for the centralized NCS architecture. The CMHO is constructed for the case
of undisturbed system and sensors, while the CMHE considers disturbances acting on the
system and the sensors. Both strategies are explicitly designed to deal simultaneously with
the network-induced imperfections of unknown and variable packet delays which include the
possibility of packet reordering, unknown and variable packet drops, unsynchronized sensor
clocks, and limited energy supplies of the sensors. To overcome these challenges, we consider
event-based sampling, introduce time stamps for the measurements, propose an affine clock
model for the sensor clocks and extend the moving horizon to a buffer logic. This buffer
serves as the information basis for both centralized moving horizon strategies and enables us
along with the other introduced steps to formulate the state estimation problems as suitable
optimization problems where we additionally estimate the unknown clock parameters of the
sensors. To achieve a practical feasible implementation of these optimization problems in
real-time and thus of the CMHO and CMHE, we propose the following two steps which sig-
nificantly contribute to this goal. First, we introduce a suboptimal approach which requires
only suboptimal instead of optimal solutions. Second, we provide efficient methods for gen-
erating proper initial conditions for finding (sub)optimal solutions. The main contributions

of this chapter are:
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© Development of the CMHO and CMHE for state estimation of nonlinear systems within

a common framework for the centralized NCS architecture.

© Development of two measures which contribute to the goal of realizing a real-time im-
plementation of the CMHO and CMHE.

Parts of the results presented in this chapter have been published in Philipp and Lohmann
(2009); Philipp (2009); Philipp and Lohmann (2011, 2014).

Chapter 4: Efficient Derivative Calculation

This chapter proposes new methods to efficiently calculate the derivatives required by the
CMHO and CMHE for deriving (sub)optimal solutions to the optimization problems. More
precisely, we present for the CMHO as well as the CMHE a method, which calculates the exact
gradients and excellent approximations of the Hessians of the Lagrangians corresponding to
the respective optimization problems. The key elements of these methods are the first-order
state sensitivities which describe how sensitive the state acts on changes in the optimization
variables. The proposed derivative calculation methods do not only significantly contribute to
the goal of achieving a practical feasible implementation of the CMHO and CMHE but play
also a central role in the observability and stability analysis of Chapter 5 and 6, respectively.

The main contribution of this chapter is:

© Development of new methods for efficiently calculating the gradient and Hessian of
the Lagrangian corresponding to the optimization problems of the CMHO and CMHE
which exploits the structure not only in the derivatives but also in the first-order state

sensitivities.

This chapter is mainly based on Philipp (2011a,b).

Chapter 5: Observability of Networked Control Systems

In this chapter, we deal with the question of observability of networked control systems. We
investigate when it is possible to uniquely reconstruct all unknown states and parameters
of the sensor clocks from the information stored in the buffer. This possibility depends for
the given combined state and parameter estimation problem not only on the structure of the
system but also on the information content in the control input. We formulate this relation as
a sufficient excitation property of the control input. The main contributions of this chapter

are:
© Introduction of an observability notion for undisturbed and disturbed NCSs which en-
sures the well-posedness of the respective observability map defined on the buffer.

© Derivation of necessary conditions for the control input of undisturbed and disturbed
NCSs to be sufficiently exciting which ensures in both cases the possibility of uniquely

reconstructing all unknown parameters from the information stored in the buffer.

Parts of this chapter are based on Philipp (2012).
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Chapter 6: Stability Analysis

In this chapter, we analyze the stability of the CMHO and CMHE. To this end, we introduce
a unifying representation for the optimization algorithms presented in Chapter 2 which utilize
the derivatives derived in Chapter 4. The characteristic feature of this unifying representation
is its formulation as a continuous-time system where the optimization variables are the states.
This perception enables the treatment of the transition from one optimization problem to the
next as a change in the vector field of the introduced continuous-time system along with an
adjustment of its current state due to the choice of the initial conditions. As a consequence, the
core of the CMHO and CMHE stability analysis is tantamount to investigating the stability
of a nonlinear switched impulsive system. This is done by invoking arguments based on the

multiple Lyapunov functions framework. The main contributions of this chapter are:

© Derivation of conditions for the CMHO under which we can proof asymptotic and finite-

time convergence of the observation error to zero.

© Derivation of conditions for the CMHE under which we can proof boundedness of the

estimation error.

Chapter 7: Simulation and Experimental Results

This chapter presents simulation as well as experimental results for both centralized mov-
ing horizon strategies (CMHS). A conventional continuous-discrete extended Kalman filter
(CDEKF) serves in all cases as a comparison to the CMHS. The simulation results are de-
rived for a networked version of a common nonlinear benchmark system. This system is
characterized by the strong nonlinearities not only in the state equation but also in the sens-
ing model. The experimental results are conducted on a networked pendulum test-rig. The
transition between two stationary setpoints and the more challenging swing-up and stabiliza-
tion problem serve as an open and closed loop benchmark, respectively. The latter represents
an especially challenging benchmark due to the unstable and non-minimum phase system
dynamics along with the unsynchronized sensor clock and the network-induced non-negligible

packet delays and packet drops. The main contribution of this chapter is:

@ Presentation of simulation and experimental results for the CMHO and CMHE which
demonstrate the performance of both strategies, in general, and especially compared to

the CDEKF and justify the assumptions made during the derivation and proofs of both
CMHS.

The experimental results of this chapter are based on Philipp and Altmannshofer (2012).

Chapter 8: Conclusions
In this chapter, we provide some conclusive remarks summarizing Part Il of the thesis and

hint to possible future directions of research.
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Part Ill: Distributed Moving Horizon Strategies

Chapter 9: Distributed Moving Horizon Strategies

This chapter presents the distributed moving horizon observer (DMHO) and the distributed
moving horizon estimator (DMHE) for state estimation of linear systems within a common
framework for the distributed NCS architecture. Both distributed moving horizon strategies
(DMHS) provide distributed knowledge about the full state of the system. This enables the
decentralized implementation of any centralized designed controller within the distributed
NCS architecture. Both DMHS are extensions to their respective centralized counterparts.
As a consequence, the DMHO is constructed for the case of an undisturbed system, while the
DMHE considers disturbances acting on the system and the sensors. The derivation of the
DMHS constitutes of the following key steps. First, we discuss the issue of how to allocate the
measurements from the various sensors to the DMHO/DMHE. Then, we propose to model
the communication topology among the distributed estimators as a directed graph and to
extend the optimization problems of the centralized moving horizon strategies by additional
consensus constraints which reflect the interconnection structure. To achieve a distributed
algorithm, we apply a dual decomposition technique to reveal a separable dual problem which

we solve by a suitable subgradient method. The main contributions of this chapter are:

© Development of the DMHO and DMHE for state estimation of linear systems within
a common framework for the distributed NCS architecture based on the CMHO and
CMHE;, respectively.

© Development of a distributed Kalman filter as a special case of the DMHE.

© Derivation of conditions under which we can proof equivalence of the state estimates

derived by centralized and decentralized moving horizon strategies.

Parts of the results presented in this chapter have been published in Philipp and Schmid-Zurek
(2012); Philipp and Schneider (2013); Philipp and Lohmann (2014).

Chapter 10: Simulation Results

This chapter presents simulation results for both distributed moving horizon strategies. The
simulation results are derived for a networked four tank system within the distributed NCS
architecture. Thereby, the plant consists of four interconnected tanks. Three of these tanks
are equipped with an actuator, a sensor and a distributed observer/estimator. This setup
provides the possibility of investigating several strategies for the measurement allocation as
well as the communication topology among the observers/estimators. The controller is a
centralized designed two-degree-of-freedom controller which is implemented in a decentralized

fashion. The main contribution of this chapter is:

© Presentation of simulation results for the DMHO and DMHE which demonstrate the

functionality as well as the performance of both strategies.
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Chapter 11: Conclusions
In this chapter, we provide some conclusive remarks summarizing Part [II of the thesis and

hint to possible future directions of research.

Appendix

Supplementary material is provided in several appendices, referenced at appropriate places,
with the aim to make this thesis self-contained. Appendix A states several definitions, lemmas
and theorems which are of central importance for the proofs in this thesis. Appendix B
presents derivatives of a specific function which are required at several places in this thesis.

Appendix C summarizes the continuous-extended Kalman filter (CDEKF).






Chapter 2

Preliminaries

In this chapter, we present the mathematical building blocks, on which this thesis is built. The
presentation is at times rather brief, but there are references to the relevant literature. The
detailed outline of the chapter is as follows. In Section 2.1, we review moving horizon strategies
for state estimation of nonlinear systems with discrete-time measurements which leads to
nonlinear optimal estimation problems on moving horizons. An important topic in this context
is the possibility of reconstructing the states. This issue is discussed in Section 2.2 under the
aspect of observability of discrete-time nonlinear systems. An overview of different solution
methods for optimal state estimation problems is given in Section 2.3. The most promising
and efficient methods require the solution of nonlinear optimization problems. Hence, we
introduce in Section 2.4 important notions for nonlinear optimization and review related and
relevant standard nonlinear optimization techniques. These techniques require the calculation
of certain derivatives which can be calculated according to one of the methods reviewed in
Section 2.5. Finally, we present some graph related notation in Section 2.6 which we will use

for distributed state estimation.

2.1 Moving Horizon Strategies for State Estimation

In this section, we review moving horizon strategies for state estimation of nonlinear systems
with discrete-time measurements. To this end, we start in Section 2.1.1 with introducing the
dynamic models which we use to describe the dynamical behavior of systems and sensors. In
Section 2.1.2, we derive the batch state estimator (BSE) which is an optimal state estimator.
However, the BSE possesses a severe drawback: it is computational infeasible. To overcome
this problem, moving horizon strategies for state estimation have been developed. In Sec-
tion 2.1.3 and Section 2.1.4, we present the moving horizon estimator (MHE) and the moving

horizon observer (MHO), respectively.

2.1.1 Dynamic Models

There exist a variety of methods to describe the dynamical behavior of systems. In this thesis,

we assume that we can capture our physical insight of the plant > with a finite-dimensional
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differential or difference equation. This leads to a state space representation of the plant X in
continuous or discrete time. The actual behavior of the plant ¥ is observed by measurements
generated by the sensors ¥g. Thus, the objective of the model of these sensors Xg is to couple

our physical insight of the plant with the measurements.

Continuous-Time Models

The continuous-time nonlinear state space representation of the plant ¥ is

&(t) = fz(t), ut) +w(t), (2.1)

where x(t) € R™ is the state with the initial value x(0) € Xy C R™, u(t) € R™ is the
control input, w(t) € R is the state disturbance and ¢ € Ry is the continuous time. The

model for the sensors Xg is
y(t) = h(z(t)) + v(1), (2:2)

where y(t) € R™ is the measurement and v(t) € R™ is the measurement disturbance.

If (2.1) and (2.2) can be written as

x(t) = Azx(t) + Bu(t) + w(t), (2.3a)
Cx(t) +v(t), (2.3b)

<

—
~

S—
I

we have the special case of a continuous-time linear state space representation.

Discrete-time Models

Often measurements are only available at the times t; = ‘AT, where the integer i € Nj
represents the discrete time and AT denotes the sampling period. This situation requires
a representation of the states at the times ¢;. If we suppose that the state equation (2.1)
is discretized with zero-order hold on the control input w(-) and the state disturbance w(-),

then we obtain the following discrete-time nonlinear state space representation
xiy1 = (@i, u;) + w;, (2.4)

where x; € R"™ is the state with the initial value xq € Xy C R, u; € R™ is the control
input, w; € R" is the state disturbance and i € Ny is the discrete time. Note that for the
sake of avoiding an unnecessary and cumbersome notation, we have denoted the function f(-)
identically as in the continuous-time case (2.2) even though they are different. The model for

the sensors g is
y, = h(x;) + v;, (2.5)

where y, € R™ is the measurement and v; € R" is the measurement disturbance.



2.1 Moving Horizon Strategies for State Estimation 19

In analogy to the continuous-time case, if (2.4) and (2.5) can be written as

i1 = AIB,L -+ Buz + w;, (26&)
y; = Cw; +v;, (2.6b)

we have the special case of a discrete-time linear state space representation.

2.1.2 Batch State Estimator

Since we consider only the case of discrete-time measurements in this thesis, we review the
batch state estimator (BSE) only for the discrete-time case and refer the interested reader to
the literature for the continuous-time case (see e.g. Jazwinski, 1970). The objective of the
BSE at time £k can be stated as follows:

Problem 2.1 (Batch State Estimation). Let an initial estimate Ty of g, the measurement
sequence {Yg, ..., Y}, the control input sequence {uy,...,ur_1} and the models (2.4) and
(2.5) be given. The problem is to estimate the error in the initial estimate & L &, — Ty and

the unknown state disturbance sequence {Wy, ..., Wr_1}.

Once the error &, (or equivalently the estimate &) and {wy,...,W,_1} are found, the
current state estimate & is obtained by the state equation (2.4).

Usually there exists an infinite number of choices for the estimates {@o, ..., Wr_1}, {Do, ...,
O} and & that are consistent with the given measurement sequence {y,, ..., ¥y;} and the
control input sequence {uo,...,ur_1}. It should be noted that {dy,..., D} are not inde-
pendent of {Wy,..., W1} and &y. Therefore, it is necessary to establish a criterion for
calculating the best combination of these unknown variables. If we consider {wy, ..., Ws 1},
{Dy, ..., 0} and &5 — Ty to be errors in the state equation, measurement equation and initial
estimate, respectively, then we can use classical least-squares theory to minimize these errors.
This means that we are obtaining in a certain sense the best fit of the state trajectory to the
measurements subject to the models and control inputs. The resulting estimates at time k

can be obtained by the solution of the following weighted least-squares minimization problem:

H}il’l Jk(fig, ’lf)o, o ,’lf)k_l) (27&)

subject to:
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where
k k—1
Je(&o, o, . .., Wr_1) = ||Zo — @Oui,gl + ) 1Dill51 + D il (2.7d)
=0 =0

The positive definite weighting matrices Py', R~ and Q' reflect our confidence in the
initial estimate, the measurement model and the state model, respectively. Once the solu-
tion to the minimization problem is obtained, the current state estimate & is calculated

by the state equation (2.5) with the initial condition &, and the state disturbance sequence

{4, ..., Wy}

Stochastic Interpretation
The preceding formulation has been derived from a purely deterministic viewpoint. Although
this approach is adequate for the scope of this thesis, we nevertheless want to mention that
there exists also a probabilistic motivated derivation of the minimization problem (2.7). Both
viewpoints have their own advantages and disadvantages. Depending on the situation, some-
times one or the other interpretation is more beneficial for achieving the desired objective.
Recall that there are an infinite combination of the variables {&, Wy, . . ., Wx_1, Do, - . ., O}
that explain a given measurement sequence in combination with a certain control input se-
quence. Therefore, we have to provide additional information prior to the estimation. This
knowledge can be included in a rigorous statistical manner by means of the Bayesian frame-
work. All of the information about the states that is contained in the measurement sequence
can be written in terms of the conditional joint density function p(&o, ..., &k|Yg,---,Y). In
general, this density is complex and cumbersome to work with. However, Bayes’ theorem
provides a convenient method of expressing the conditional density in terms of the often less
complicated densities of &y, {w;} and {¥;}. When &, {;} and {®;} are uncorrelated Gaus-
sian sequences with mean &y, 0 and 0 and covariance Py, Q and R, respectively, then we

can write the joint conditional probability density function of the state trajectory as

) . 1 R _ k . k—1 R
p(moa cee a$k|y07 .. 7yk) = AeXp <_2 (H.’Eo - wOH%EI + ZO ||vi||§2_l + ZO ||wl||2Q_1>> ) (28)

where A is a constant independent of {&o, ..., &x} (for a proof, see e. g. Cox, 1964 or Sage and
Melsa, 1971). Maximizing (2.8) with respect to {&y,...,&x} is equivalent to minimizing the
cost function (2.7d). Thus, the weighted least-squares estimates derived from solving (2.7)
corresponds to the peak of the joint conditional density and are known as the maximum a

posteriori (MAP) estimates.

2.1.3 Moving Horizon Estimator

The batch state estimator described above is computationally infeasible because the size of

the optimal estimation problem (2.7) grows without bound as the number of measurements in-
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creases. Therefore, the actual implementation requires that we bound the optimal estimation
problem (2.7). This is achieved by the so-called moving horizon strategy which compresses
the data (Robertson et al., 1996).

Consider the cost function Ji(-) defined in (2.7d). Let us rearrange it by breaking the time
interval into two pieces T} = [0,k — N — 1] and Ty = [k — N, k] as follows:

k—N-1 k—N-1

Ji(&o, W, ..., We_1) = ||Bo — 550”%»(;1 + Y Billf+ Y [lwillp-
=0 1=0
- (2.9)

k—1
+ 2 Bl + D (il
i=k—N i=k—N
Because of the Markov property, which arises from the state space description of the sys-
tem, the last two terms in (2.9) depend only on the state &;_y, the disturbance sequence
{Wy_n, ... Wg_1}, the control inputs {ug_y, ... wg_1} and the measurements {y,_n, ..., Ys}-
Thus, the principle of optimality allows us to replace the estimation problem (2.7) with the

following equivalent fixed-size estimation problem:

k k—1
min Toy@en)+ Y (ol + 3 b (2.10a)
. TReN i=k—N i=k—N
Wk —N;--, Wk —1
subject to:
Ti1 = f(&,u;) + Wy, 1=k—N,... ) k—1 (2.10b)

as
Fj(Z) = II%%)II Jj(fi(], ’lf]o, o ,’lf)j_l) (211&)
11\)0,...,11\}]',1
subject to
& =z, (2.11c)
y, = h(&;) + o, i=0,...]. (2.11d)

In contrast to the problem (2.7), where all of the available measurements were considered, we
explicitly take into account in moving horizon estimation only the last N + 1 measurements.

The remaining ones are accounted for by the arrival cost I'y_n(&r_n).
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The basic strategy of moving horizon estimation is to solve a growing batch state estimation
problem until £ = N and afterwards a fixed-size moving horizon estimation problem. This
means that at every time step £ > N, the oldest measurement y,_,_; is discarded and the
current measurement vy, is added to the moving horizon. The functionality of the MHE is

schematically summarized and illustrated in Figure 2.1.

® measurement

arrival cost
: Fr-n(Zr—n) &% MHE estimate

Figure 2.1: Schematic illustration of the moving horizon estimator approach.

The arrival cost I';(2) plays a fundamental role in moving horizon estimation because it
provides means to compress the data and thus allows us to transform an unbounded estimation
problem into an equivalent fixed-size one. For linear systems, an algebraic expression for the
arrival cost exists. This does not only facilitates the exact compression of the data, but also
provides the foundation for establishing a relation between the MHE and the Kalman filter
(KF). The precise relation is given in the following Theorem which compactly summarizes
the results of Robertson et al. (1996).

Theorem 2.1.1. Let the initial value xy and the disturbances w; and v; be uncorrelated
Gaussian sequences with mean Xy, 0 and 0, and covariance Py, Q and R, respectively, i. e.
xg ~ N (&g, Py), w; ~ N(0,Q) and v; ~ N(0, R). If the constraints (2.10b) and (2.10¢) are
the linear system state space representation (2.6a) and (2.6b), respectively, and if the arrival
cost Ty_n(Zr_n) is chosen as

A 1 A —_
sz—N(wk—N) = §||a:k_N — a:k_NH?);:,lN’ (212&)

where Ty_n denotes the optimal MHE estimate at time k— N given the measurements {y,, . . .,

Yi_n_1} and where the covariance matriz Py_y is updated by the Riccati equation
Py, =Q+ AP,A" — AP,C"(CP,C" + R)'CP A", (2.12b)

then the state estimate obtained by the moving horizon estimator is for all N+1 > 1 equivalent

to the state estimate derived by a Kalman filter.

For nonlinear systems, however, algebraic expressions for the arrival cost do not exist. A
common and often the only remedy to this problem is to generate approximate algebraic ex-

pressions for the arrival cost and to replace I'y_ v (&x_ n) with its approximation [ N(Zr_N).
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A frequent strategy for calculating such an approximate arrival cost is to use a first-order Tay-
lor expansion of the model around the estimated trajectory {&o, ..., &x_n}. This is equivalent
to applying an extended Kalman Filter recursion for the covariance update. The approxima-
tion scheme and its relation to the extended Kalman filter (EKF) are given in the following

Theorem which compactly summarizes the results of Robertson et al. (1996).

Theorem 2.1.2. Let the initial value xy and the disturbances w; and v; be uncorrelated

Gaussian sequences with mean Xy, 0 and 0, and covariance Py, Q and R, respectively, i. e.
xg ~ N (&g, Py), w; ~ N(0,Q) and v; ~ N(0, R). If the arrival cost Ty_n(&x_n) is chosen

as the approximation

” R 1. . _
Fk—N(wk—N) = §||wk—N — wk_NH?D;;,lN’ (213&)

where Ty denotes the optimal MHE estimate at time k— N given the measurements {y, - . .,

Yi_n_1} and where the covariance matriz Py_y is updated by the Riccati equation

P, =Q+A.P.Al — A.P,.C}(C.P,.C] + R)"'C,P,A{, (2.13D)
where
k oz, |, C o, |._,’ (2.13¢)

then the state estimate obtained by the moving horizon estimator is for N +1 =1 equivalent

to the state estimate derived by an iterated extended Kalman filter.

Both theorems show algebraic methods for compressing the data and reveal the relation
of the estimates derived by the MHE to those of the Kalman filter. While this relation is
independent of the moving horizon length in the linear case, it only holds for N +1 = 1
in the nonlinear case. In general, for moving horizon lengths N + 1 > 1, the MHE is more
efficient than the EKF (Robertson et al., 1996). This is due to the fact that since the system
is nonlinear, the conditional density is non-Gaussian and some information will be lost by
the EKF due to the linearization process. In contrast, the MHE utilizes the exact nonlinear
model and thus none of the information contained in the last N 4+ 1 measurements is lost.

Another favorable property of the MHE is the possibility of directly handling constraints.
This is useful from an engineering point of view since in practice, additional information
about the system is often available in form of constraints. For instance, the range of some
values in the system are known. Incorporating this prior knowledge into the estimation process
typically improves the performance and convergence of the estimator (Haseltine and Rawlings,
2005). In general, the following inequalities can be considered as additional constraints in
problem (2.10):

L i=k—-N, .. k-1 (2.14a)
: (2.14b)
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where ¢;(+) are arbitrary nonlinear functions. This includes as a special case bound inequality

constraints of the form

émingjiéé}maxa Z:kf—N,,k' (215&)
wmingwigwmaxa Z:k—N,,k—l (215b)
Omin < B < Diax, i=k—N,... k. (2.15¢)

Regardless of the presence of inequality constraints, we have to be aware of divergence,
i.e. instability, when approximating the arrival cost. As long as this approximation satisfies
certain technical conditions, non-divergence is guaranteed (Rao, 2000). For example, the
choice of the arrival cost for linear system according to (2.12), with or without constraints,
yields a stable estimator (Rao et al., 2001). However, when the system is nonlinear, the
arrival cost choice according to (2.13) does not guarantee stability and additional measures
are needed to ensure stability.

The most important advantages of the MHE compared to the KF/EKF with an eye towards

the application in a networked environment are:
© possibility of incorporating more than one measurement for estimating the current state,
© superior handling of nonlinearities, and
© possibility of incorporating constraints.

The price to pay is an increased complexity since an optimal estimation problem has to be

solved in every time step.

2.1.4 Moving Horizon Observer

The moving horizon observer (MHO) is another frequently used method for state estimation.
Many published methods can be categorized into this framework, like Zimmer (1994); Moraal
and Grizzle (1995); Michalska and Mayne (1995); Alamir (1999); Alamir and Calvillo-Corona
(2002). The MHO is a simpler form of the MHE and estimates the initial state without
including either information prior to the current moving horizon, i.e. P;' = 0, nor estimated
state disturbances. Utilizing the above introduced notation as well as the moving horizon

formulation, we can write the MHO problem as follows

k
T S [0 A (2.16a)
=N j—f—N
subject to:
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This approach is well motivated if there are no state disturbances and if the measurements
are corrupted by zero mean noise (Gelb, 1974). The stochastic interpretation of this approach
is that the initial state &;_n completely describes the value of all future states and that the
prior distribution of the initial states is uniform, i.e. P;' = 0. The advantage of the MHO
over the MHE is on the one hand the lower numerical complexity due to the reduced variable
space and on the other hand the non-requirement of choosing an (approximated) arrival cost.
However, the MHO obtains suitable estimates of the state only if the measurement sequence
{Ys_n,---, Y} contains enough information. For instance, this is the case if the signal-to-

noise-ratio is sufficiently high.

2.2 Observability of Discrete-Time Nonlinear Systems

Nonlinear observability has been studied extensively in the last decades. Different nonlinear
observers require different notions of observability which led to different definitions of ob-
servability in the literature. For instance, a geometric approach has established significant
results for continuous-time systems with continuous measurements (Krener and Respondek,
1985; Nijmeijer and Van Der Schaft, 1990; Isidori, 1995). Although considerable efforts have
been made to obtain similar results for discrete-time systems (Lin and Byrnes, 1995; Cal-
ifano et al., 2003; Rieger et al., 2008), a geometric-like approach has been less successful
for discrete-time nonlinear systems. Hence, an alternative approach has been developed for
nonlinear observers of receding horizon type. The basic idea of this approach is to ensure
that the problem of inverting the nonlinear observation map is well-posed in the sense of
Tikhonov and Arsenin (1977) for any state and input. This means that the state estimate
solution exists, is unique and depends continuously on the measurement data. The resulting
observability definitions guarantee that if the observer selects a sufficiently wide horizon, the

state is uniquely reconstructible from the observed output sequence.

In order to state these different observability definitions, we consider the discrete-time

nonlinear system

i1 = f(QZZ7 'U,Z) (217&)
y; = h(z;), (2.17D)

where x; € R"* is the state with the initial value xy € X C R", u; € U C R™ is the control
input and y,; € R™ is the measurement. The sets X and U are assumed to be compact and
convex and the functions f(-) and h(-) are assumed to be twice continuously differentiable
with respect to their arguments.

Observability is the possibility of reconstructing @,_n from an output sequence {y,_y,
Yi_nN+1> Yu_N42, - - -+ along with the corresponding input sequence {uy_n, Ur_n+1, .. .}. Since

the time k — N is immaterial for time-invariant systems, we restrict our attention to the case
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where £ — N = 0. Consequently, we define the N + 1-length observation map as

h(x,)
hy(xo, uy) = : ) (2.18)
h(¢n (o, u))

where ¢, (2o, u) denotes the solution of (2.17a) at the time 4 initialized with @y at the time
i = 0 and where uy = col(uy,...,un_1) is the control input sequence. The observability
definitions related to discrete-time nonlinear systems used in the literature aim at the common
goal of guaranteeing the well-posedness of the problem of inverting the nonlinear observation
map (2.18). Although different authors use slightly different names, conditions and contexts,
typical observability definitions can be classified into three categories and are based on the
injectivity of the observation map, full-rankness of the Jacobian of the observation map and on
a class IC-function that determines the relation between the state error and the corresponding

observation map error. In the following, we give for each category an exemplary definition.

Definition 2.2.1 (Moraal and Grizzle, 1995; Karafyllis and Kravaris, 2007; Besancon, 2007;
Hanba, 2009). The system (2.17) is said to be observable in N+1 steps if Vuy € UY, the map

hy(xo, uy) is injective as a function of xy.

Definition 2.2.2 (Moraal and Grizzle, 1995; Califano et al., 2003; Besangon, 2007; Hanba,
2009). The system (2.17) is said to satisfy the observability rank condition in N+1 steps if
Va, € X, Vuy € UV,

Ohy
8:130

rank

= ng. (2.19)

T0o,U

Definition 2.2.3 (Alamir and Calvillo-Corona, 2002; Rao et al., 2003; Kreisselmeier and
Engel, 2003; Besancon, 2007; Alessandri et al., 2008). The system (2.17) is said to be K-
observable in N+1 steps if Va1, s € X, Yuy € UV,

p(lley — zoll) < |y (21, uy) — by (22, uy)|| (2.20)

for some class KC-function o(-).

Since all definitions follow the same common goal, one may wonder how these definitions
are related to each other. This question has been tackled in Hanba (2010).

2.3 Overview of Solution Methods for Optimal State

Estimation Problems

In this section, we discuss methods which are commonly used to solve the optimal estima-

tion problems arising from the moving horizon techniques for state estimation presented in
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Section 2.1. To this end, we consider the following general moving horizon optimal state

estimation problem

k k—1
i, Don(@ew)+ 30 (@)~ vl + X il (2:21a)
" A i=k—N i=k—N
Wk —N ;- Wk —1
subject to:
:f:z+1—f(§3z,uz)—1b120, l:]{?—N,,k—l (221b)
Ck(fk) > 0, (2.21d)

where &; € R" is the estimated state, w; € R™ is the control input, @; € R"* is the estimated
state disturbance and y; € R™ is the measurement. The functions f : R"* x R™ — R"*
and h : R™ +— R™ describe the system and sensor dynamics, respectively, while ¢; : R™ x
R™ +— R"i ¢ =k—N,...,k—1, and ¢ : R"™ — R"* are general nonlinear inequality
constraint functions. The objective function incorporates the arrival cost I' : R™ — R and
two sums on the moving horizon which weight on the one hand the difference between the
actual measurements and the corresponding model responses and on the other hand the state
disturbances. The functions f(-), h(-) and ¢;(+), ¢ = k — N, ...,k are assumed to be twice
continuously differentiable with respect to their arguments.

The optimal estimation problem (2.21) results from the MHE problem (2.10) by substitut-
ing the estimated measurement disturbances ¥; in the cost function (2.10a) with the sensor
model constraint (2.10c) and adding the inequality constraints (2.14). Note that by set-
ting I'(£x—n) = 0 and removing the estimated state disturbances, we can recover the MHO
problem (2.16).

There exist three basic approaches for solving optimal state estimation problems of the form
(2.21) which are depicted in Figure 2.2. We will briefly comment on the Hamilton-Jacobi-
Bellman (HJB) equation and dynamic programming in Section 2.3.1 and on the indirect
methods in Section 2.3.2. The direct methods will be presented in more detail in Section 2.3.3,
because they have proven to be most successful in the context of real life applications. For a
more thorough exposition, we refer to Binder et al. (2001). Note that these three basic solution
approaches apply equally well to the optimization problems arising from model predictive
control (MPC). The reason for this is the fact that MHE is the counterpart to MPC.

2.3.1 Hamilton-Jacobi-Bellman Equation & Dynamic Programming

The optimal solution to the estimation problem (2.21) can be obtained from the solution of a
partial differential equation (PDE), the so called Hamilton-Jacobi-Bellman (HJB) equation.
While theoretically appealing, this approach has two severe drawbacks in practice. First, a

closed-form expression for the solution does not exist and numerical solutions can be calculated
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Figure 2.2: Overview of solution methods for optimal state estimation problems.

for very small state dimensions only. Second, inequality constraints on the state usually lead
to discontinuous partial derivatives which cannot easily be included. However, it is worth
mentioning that for the subclass of linear unconstrained systems with quadratic cost function,
the HIB-PDE can be solved analytically or numerically by solving either an algebraic or
dynamic matrix Riccati equation.

Dynamic programming is a similar solution methodology which provides the global optimal
solution (Bellman, 1957). Unfortunately, its application is severely restricted to systems with

small dimension due to the curse of dimensionality.

2.3.2 Indirect Methods

The indirect methods calculate the optimal solution to (2.21) based on the Minimum Principle
(Pontryagin et al., 1962), which we will sketch for the case of optimal state estimation problems
with only inequality constraints for the state disturbance, i.e. W; £ {@,; € R"|¢;(d;) > 0},
i=k—N,....,k—1.

First, we introduce the following abbreviation for the addends of the second and third term

in the cost function (2.21a)

S

Li(&i, @) £ [|[h(&:) — Yl jr + @il 51, i=k—N,... k-1 (2.22a)
Li(#;) £ ||h(&k) — yp |l 51 (2.22b)

Next, we define the Hamiltonians as

Hy(@i, 5, i) 2 Li(&,0:) + AL (F( @ w) + 1), i=k—N,... k=1, (223)
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where A;1; € R™ denotes for t = kK — N, ...,k — 1, the so-called adjoint variables. Necessary
conditions for optimality of the solution trajectories {&; ,...,&;} and {@;_u,..., D5

are given by the following boundary value problem (BVP) in the states and in the adjoint

variables:
aHz Aik7 Ai A* .
27, = (@7, D7, M) i=k—N,.. . k-1 (2.24a)
O 1
aHZ Aik7 Afu A* .
AF = (wla'ﬁ"; %H), i=k—N+1,...,k—1 (2.24b)
£L;
OLy(Z})
A= —— 2.24
0= a(rk—N(QZ—N) + Hk—]j*(£Z—N7 QI)Z—N7 Z—N-‘,—l))‘ (2.24d)
0%y N

The optimal state disturbances are obtained by minimizing the Hamiltonians

w; = arg min H;(&;,W;, A,,), i=k—N,...,k—1 (2.25)
b €W;

Note that (2.24d) is the transversality condition resulting from the free initial optimal state
&, _n. If &, is fixed, like in the optimal control case, then (2.24d) is replaced by &; 5 =
Zr_n. The presented approach has been extended to handle general inequality constraints
(2.21c) and (2.21d) on the state disturbances and the states itself. An overview about this
topic can be found in Hartl et al. (1995). If both state disturbance and state constraints
are present, the optimality conditions form an intricate multi-point boundary value problem
(MPBVP) with a priori unknown interior switching points denoting the times when one of
the constraints become active or inactive. Activation or deactivation of a state constraint

generally leads to a jump in the adjoint variables.
There exist several families of numerical methods for solving the optimality conditions (2.24)
and (2.25). Some of them are listed in Figure 2.2 and are briefly commented in the following.
Gradient methods iteratively improve an approximation of the optimal solution by minimiz-
ing the Hamiltonians (2.25) subject to the BVP (2.24) (see e.g. Chernousko and Lyubushin,
1982). Multiple shooting is a powerful numerical method for generating accurate solutions to
the MPBVPs. An excellent discussion of multiple shooting in this context can be found in
Ascher et al. (1995). Collocation methods have also been applied for solving the optimality

conditions (Ascher et al., 1979), but they are more successful in the context of direct methods.

The practical drawbacks of indirect methods are:

@ Difficulties to derive 0H;/0%; and 0H;/OA] and to formulate a numerically suitable
problem formulation

© Non-intuitive to find proper initial guesses for the adjoint variables

© In order to handle active constraints properly, their switching structure must be guessed
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© Changes in the problem formulation or low differentiability of the model functions are

difficult to include in the solution procedure

2.3.3 Direct Methods

The basic idea of direct methods is to tackle the optimal estimation problem (2.21) directly
by means of nonlinear optimization techniques which we will present in Section 2.4. Due to
the progress in this area along with the increasing computational power, the direct methods
are currently viewed as one of the most powerful approaches for treating real life large scale
optimization problems (Binder et al., 2001). Thereby, two basic approaches can be distin-
guished regarding the treatment of the system equation constraint (2.21b). In the sequential
approach, the two steps, system simulation and optimization are performed sequentially in

each iteration. In the simultaneous approach, these two steps are performed simultaneously.

Direct Single Shooting (Sequential Approach)
In the direct single shooting method, we treat the system equation constraint (2.21b) as a

single initial value problem (IVP) on the interval i € [k — N, k]

@Z_,_l:f(@“’u,l)—{—’li)“ Z:]{T—N,,k’—l (226&)
Zp_N = Tp_nN- (226b)
The solution of this problem is a trajectory which is a function of &,y and {Wy_n,..., Wk 1}

only. To keep this dependency in mind, we will denote in the sequel this solution by (ﬁz(:f:k, N,
Wy_nN, ..., WE_1). Consequently, the constraint (2.21b) can be replaced in the optimization
problem (2.21) by substituting the solution @;(&4_n, Wy_x, ..., Wy_1) with &. Hence, the

problem (2.21) can be reduced to

k k-1
gjﬁg Den(@r-n) + ' > h(@i(Bron, Wi—n, - - Wi—1)) — Yl R + | > HlfJZH%_I
N N i=k—N i=k—N
Wg—N;--- Wk —1
(2.27a)
subject to:

Ci(ﬁgi(iﬁka,’lﬁka,---,UAkal),UAJi) >0, t=k—N,....k—1 (2.27b)
Ci(Pp(@i—n, Wiy, ..., Wr_1)) = 0 (2.27c¢)

The direct single shooting method is a sequential approach and has the following advan-
tages (') and disadvantages (X):

v/ Small number of optimization variables

v State-of-the-art ordinary differential equations (ODE) solvers can be used

v Off-the-shelf nonlinear program (NLP) solvers can be used
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v  State trajectories are continuous for each iteration step
v/ Only initial guesses for the initial state value and the state disturbances are required

X Applicability to highly unstable systems difficult (i.e. initial value problems with strong

dependence on the optimization variables)

X Rate of convergence depends on accurate derivatives which are generally costly to cal-

culate

Direct Mutiple Shooting (Simultaneous Approach)

In the direct multiple shooting method, we treat the system equation constraint (2.21b) as
N independent initial value problems on the N subintervals [i,i + 1], i = k — N,... k — 1.
To this end, we introduce N + 1 additional vectors s,_p, ..., s, of the same dimension n, as
the state which we will refer to as the multiple shooting node values. All but the last serve

as initial values for N independent IVPs on the intervals [i,i + 1], i =k — N,..., k —1

i1 = f(&s,w;) + Dy, (2.28a)

The solution to these problems are N independent trajectories which are a function of s;
and w; on the corresponding intervals only. To keep this dependency in mind, we will denote
this solution by qu(si, w;), j € [i,i+ 1]. The N decoupled IVPs are connected by matching
conditions which require that each node value should equal the final value of the preceding

trajectory, i.e.

A

Sit+1 :¢i+1(8i,’lf)i), Z:k’—N,,k’—l (229)

These constraints remove the additional degrees of freedom introduced with the parameters s;.
It is important to note that the matching conditions do not need to be satisfied during the
optimization. In fact, it is a crucial feature of the direct multiple shooting method that it can
handle infeasible initial guesses of the variables s; and ;. Consequently, the problem (2.21)

can be written as

k k—1
i T w(sien) + [(sien) ~ i wllz + S IR (s i)~ il + S [l
Wg_ Ny Wg 1 i=k—N-+1 i=k—N
(2.30a)
subject to:
Sit1 — Piyq (80, 2;) = 0, i=k—N,.. . k-1 (2.30D)
CZ(SZ,’lf]l)ZO, Z:k—N,,k—l (2300)
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The direct multiple shooting method is a simultaneous approach and has the following ad-
vantages (v), properties (%) and disadvantages (X):

v State-of-the-art ODE solvers can be used

v/ Applicable to highly unstable and chaotic systems

© Initial guesses for all states and all state disturbances are required

© Medium number of optimization variables

X Specially tailored NLP solvers required to exploit the structure of the problem

X State trajectories are continuous only after successful termination of the solution proce-

dure

Direct Collocation (Simultaneous Approach)
The collocation method starts with revisiting the continuous-time system equation (2.1). The
basic idea is to approximate the continuous-time state &(¢) as well as the continuous-time

state disturbance w(t) by piecewise defined functions @(t,-) and 9(¢,-) on the time grid
then < tp_ny1 < ... <Tg, (231)

corresponding to the discrete measurement times. Within each collocation interval [t;, ;1]

k— N < i<k —1, these functions are chosen as parameter dependent polynomials of order
leN, ie.

(t,a)| £ §,(t,a;) 10", (2.32a)

(1, b)|

te[ti,ti+1[

£ 4hy(t, b)) € 11}, (2.32b)

te[ti,ti_‘_l[

where II;” denotes the space of n,-dimensional vectors of polynomials up to degree . The

coefficients of the polynomials are known as the shape parameters and are collected in the

vectors
a2 col(ap_n,...,ap) e RVNGD g c RUFUN -y — L N k-1, (2.33a)
b2 col(by_n, ... byq) e RN p c Ry — N k—1.  (2.33b)

To guarantee continuity of the approximating functions (;5(25, -) and &(t, -) in the complete
interval [tx_n, 1], we have to impose the following matching conditions at the boundaries of

the subintervals

éz( i_-i—la'):(ﬁiJrl(t::f—lv')a i:k_Na"'7k_1> (234&)
"ﬁi(t;—la'):"zi—&-l(t;la'% i:k_Na'“:k_l? (234b)
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where the superscripts ~ and * denote the left-hand and right-hand limits. Similar, we can

ensure differentiability up to order d by imposing

81&"“&(”1"): q@ (thy), i=k=N,... k=1 k=1,...d (2.34c)
o s ,
%d)i(tzﬁrla'): ¢z+1<1+1")7 Z:k_N)"'ak_la K:L”'ud' (234d)

By requiring that (2.1) is only to be satisfied at the collocation points t,,, v = 1,..., M,
within each subinterval [t;,t;41], i =k — N,...,k — 1, with

ti <tio<...<ting <tip, (2.35)
we can replace the continuous-time system
a?(t) = f(&(t),u(t)) +w(t), tE [tr_n,tk (2.36)
by its discretization

d(ti, a) = f(P(ti.a), uty)) +P(ty,b), i=k—N, .. k—1,v=1... M (237

along with the matching conditions (2.34) which form together a system of nonlinear equations

for the shape parameters a and b.

This leads to the following formulation of the MHE optimization problem derived by collo-

cation

k—1
Iglbn Fk—N(¢(tk N, Q + Z ||h’ tlva’ yz”?«i’fl + Z ||¢(t27b)”2)*1 (238&)
=z i=k—N i=k—N

subject to:

Dt a)— F(D(tw, @) ultn))—P(tu.b) =0, i=k—N,... k=1, v=1,....M (2.38b)
I . 0"

@@(ml’ai)—@&H(t;bam) =0, i=k—N,....,k—1, k=0,....d (2.38¢)
gﬁlﬁi(mpbi)—gﬁiﬁm(t;bbm) =0, i=k-N,...,k=1, k=0,...,d (2.38d)
ci(d(tr,a), Pty b)) >0, i=k—=N, .. k=1, y=1,....C (2.38)

c(p(ty, @) >0, y=1,....C. (2.38f)

Note that the inequality constraints ¢;(-), 7 =k — N, ...,k do not have to be fulfilled on the

first time grid but on a second time grid within [t;_y, tx] with

by <16 <. <HS <ty (2.39)
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The collocation method is a simultaneous approach and has the following advantages (v/),

properties (%) and disadvantages (X):

v Applicable to highly unstable and chaotic systems

v  Reliable estimation of the adjoint variables is available which can severe as good start
estimates for indirect methods (leads to a highly accurate hybrid approach, see Stryk
and Bulirsch (1992))

© Initial guesses for all states and all state disturbances are required

X High number of optimization variables

X State-of-the-art ODE solvers cannot be used directly

X Specially tailored NLP solvers required to exploit the sparse structure of the problem

X State trajectories are continuous only after successful termination of the solution proce-

dure

2.4 Optimization

In the previous section, we have seen that optimal state estimation problems can be formulated
as either unconstrained or constrained optimization problems. A huge number of algorithms
have been developed in the last years which can be applied for solving these type of problems.
However, not every algorithm is equally well-suited. This is due to the so-called “No Free
Lunch Theorem of Optimization” that tells us that a general-purpose universal optimization
strategy is impossible, see e. g. the discussion in Ho and Pepyne (2002). Therefore, we will not
attempt to provide a survey of all existing algorithms. Instead, we will focus on algorithms
for efficiently solving constrained and unconstrained optimization problems arising in this
thesis. These algorithms calculate beginning from a starting point a sequence of iterates
that terminate when a solution point has been approximately found. Moreover, we will give a
brief overview of decomposition methods which enables us to split up an original optimization
into several distributively solvable subproblems. These methods provide the foundation for
Part 111 of this thesis.

The remainder of this section is organized as follows. In Section 2.4.1, we introduce impor-
tant notions for optimization. Section 2.4.2 and 2.4.3 present theory of and algorithms for
solving constrained and unconstrained optimization problems, respectively. In Section 2.4.4,

we describe relevant techniques that can be used to decompose an optimization problem.

2.4.1 Definitions

This subsection introduces some important definitions appearing in optimization. For a more
thorough exposition, see e.g. Nocedal and Wright (2006), Boyd and Vandenberghe (2004) or
Bertsekas et al. (2003).
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Definition 2.4.1. A set X CR" is convex if
(ax+ (1 —a)y) e X

for allx,y € X and o € [0, 1].

Definition 2.4.2. A function f : X CR" — R™ is affine if it is a sum of a linear function

and vector, 1. e.
f(x)=Ax+b, AcR™" becR"

forallx € X.

Definition 2.4.3. A function f : X C R" — R s convez if its domain X is convexr and for

every ,y € X and o € [0, 1] the following inequality holds

flax+ (1 - a)y) < af(z) + (1 —a)f(y). (2.40)

If —f is convex, then f is concave.

Definition 2.4.4. A function f : X C R"™ — R is strictly convez if its domain X is conver
and strict inequality holds in (2.40) for x #y and o € [0,1]. If —f is strictly convex, then f

is strictly concave.

A convex set, convex function and strictly convex function is illustrated in Figure 2.3(a),
2.3(b) and 2.3(c), respectively. Convexity plays a role much the same as that of linearity
in the study of dynamical systems. We will see in the upcoming subsections the effect of

convexity.

> >
> »

(a) Example of a convex set.  (b) Example of a convex function.  (c¢) Example of a strictly convex function.

Figure 2.3: Various examples of convexity.

Not all functions are differentiable. To handle this case, we make the following definition.

Definition 2.4.5. A vector s € R" is a subgradient of a convex function f : R — R at a
point x € R™ if

fly) > f(x) + 5" (y — ) (2.41)

holds for any y € R™.
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An exemplary subgradient is depicted in Figure 2.3(c) by a dashed line. Note that if the

convex function f is differentiable, then the subgradient coincides with the gradient.

2.4.2 Unconstrained Optimization

In this subsection, we consider the following unconstrained optimization problem
min f(x), (2.42)
where € R" is a real vector and f : R" — R is a smooth or non-smooth function.

Definition 2.4.6. The problem (2.42) is a convex optimization problem, if f is conver.

2.4.2.1 What is a solution?

Ideally, we want to find a global minimizer of (2.42), i.e. a point where the function attains

its least value. The formal definition is as follows.
Definition 2.4.7. A point x* is a global minimizer if f(x*) < f(x) for all x € R™.

However, the global minimizer can be difficult to find since we usually have only local

knowledge about f. This fact is taken into account by the following definitions.

Definition 2.4.8. A point x* is a local minimizer if there exists a neighborhood N of ©* such
that f(x*) < f(x) for allx € N.

Definition 2.4.9. A point x* is a strict local minimizer if there exists a neighborhood N
of * such that f(x*) < f(x) for all x € N with x # x*.

While the local minimizer is a point which achieves the smallest value of f in its neighbor-
hood, a strict local minimizer is the outright winner in its neighborhood.

The following theorem shows the impact of convexity, see e.g. Nocedal and Wright (2006,
Theorem 2.5).

Theorem 2.4.1. Suppose that f is convex. Then any local minimizer x* is a global minimizer

of f.

2.4.2.2 How to recognize a solution?

When the function f is twice continuously differentiable, then we are able to tell whether a
point * is a (strict) local minimizer just by examining the gradient (0f/0x)(x*) and Hessian
(0%f/0x*)(x*). A first-order necessary condition for optimality is given by the following
Theorem, see e.g. Nocedal and Wright (2006, Theorem 2.2).
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Theorem 2.4.2. If x* is a local minimizer and f is continuously differentiable in an open

neighborhood of x*, then

of

(@) = 0. (2.43)

The following theorem is a direct consequence of Theorem 2.4.1 and shows the impact of

convexity.

Theorem 2.4.3. If problem (2.42) is a convex optimization problem, then any local mini-
mizer * is a global minimizer and the first-order optimality condition (2.43) is a sufficient

condition. If in addition f is strictly convex, then any local minimizer is unique.

If the problem (2.42) is not convex, then the following theorem states a second-order suffi-

cient condition for optimality, see e.g. Nocedal and Wright (2006, Theorem 2.4).

Theorem 2.4.4. Suppose that for some point x* € R"™ the first-order optimality condi-
tion (2.43) holds. Suppose also that O*f/0x? is continuous in an open neighborhood of x*
and that 0*f /0x* > 0. Then x* is a strict local minimizer of problem (2.42).

These results provide the foundations for unconstrained optimization algorithms. In one

way or another, these algorithms seek a point where 0f/0x vanishes.

2.4.2.3 Line Search Methods

Line search methods (see Algorithm 1) can be applied for finding a minimizer of smooth
but not necessarily convex problems (2.42). In each iteration step, these methods choose a
direction s[l] and search along this direction from the current iterate x[l] for a new iterate with
lower function value. The distance to move along s[l] is found by solving the one-dimensional

minimization problem

min f(zl] + y[l)s(i) (2.44)
to find a step length ~[l]. Although the exact minimization would derive the maximum pos-
sible reduction of f in the direction s|/], its calculation is expensive and usually unnecessary.
Instead, line search methods approximately solve (2.44) by generating trial step lengths until
one satisfies some decreasing conditions. These guarantee a sufficient decrease in the objec-
tive functions. Some prominent examples are the Armijo conditions, Wolfe conditions and

Goldstein conditions, see Nocedal and Wright (2006). The actual iteration step reads as

x[l + 1) = x[l] + v[l]s]l]. (2.45)
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Algorithm 1 Line search method
Input: Initial value x°.

: Set [ =0 and x[0] = xz°.

—_

: loop

Compute a search direction s[l].

2
3
4: Compute a step length [l] by (approximately) solving (2.44).
5 Update the current point according to (2.45).

6

: end loop

In the following, we present some prominent line search methods. These methods are
able to find the global minimizer for convex problems and at least local minimizers for non-
convex problems. Moreover, these algorithms differ among other things in their robustness,

convergence speed, accuracy, computational as well as storage requirements.

Steepest Descent Method
The steepest descent method takes steps in the opposite direction of the gradient, i.e.
of

sll] = 51 (2.46)

This method impresses with its simplicity and possesses the lowest computational load of all

presented methods. However, the price to pay is the only linear convergence rate.

Newton’s Method
In contrast to the steepest descent method, Newton’s method possesses a quadratic conver-
gence rate close to a minimizer. This is achieved by incorporating additionally curvature

information in the search direction, i.e.

82f_llc’)f

sll) = 5511 52 1) (247

However, this method possesses the highest computational load of all presented methods due
to the exact Hessian calculation. Note that the Hessian may not always be positive definite
which may result in a non-decreasing direction of (2.47). Therefore, modifications of Newton’s

method exist which replace the exact Hessian by a positive definite modification.

Quasi-Newton Methods

A compromise between the steepest descent and Newton’s method are the quasi-Newton
methods. The main idea of these methods is to increase the convergence rate of the steepest
descent method but to avoid the Hessian calculation required by Newton’s method. Their

superlinear convergence rate is achieved by choosing the search direction as

1 9f

sll) =~ Bl 5h ),

(2.48)
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where B[] is a symmetric positive definite matrix. This matrix approximates the true Hessian
and is generated by measuring the changes in the gradients. The quasi-Newton methods differ
in the way how this approximation is performed. The most popular algorithm is the BFGS
method, named for its discoverers Boyden, Fletcher, Goldfarb and Shanno. It calculates the

matrix B[] as

BIA[IA[TB]I]  z[=[]"
All]"B[l]A[l] z[JTA[l]

B[+ 1] = BJl] — (2.49)
where A[l] = x[l + 1] — x[l] = ~[l|s]l] and z[l]] = (9f/0x)[l + 1] — (0f/0x)[l]. Other
important methods are the DFP method, SR1 method or modifications of the aforementioned,
see Nocedal and Wright (2006).

Gauss-Newton Method

If the objective function (2.42) is a least-squares problem, i.e. f(x) = ||r(x)||> where 7 :

R™ — R™ is the residual vector, then the exact gradient and Hessian of f can be expressed

as

af orT
2f  orTor W 9%
proiale el D DL ol

=1

(2.50b)

The Gauss-Newton method utilizes the search direction (2.48) where B][l] is the first term
of the exact Hessian, i.e. BJ[l] = (dr/0z)"0r/0x. This term can be calculated for free,
since it components are already required for the gradient calculation. The convergence rate of
the Gauss-Newton method depends on the approximation quality of the exact Hessian. This
means that the convergence of the Gauss-Newton method is similar to the one of Newton’s
method whenever the first term of (2.50b) dominates the second term of (2.50b). This is the

case when either the residuals ;r are small or when they are nearly affine.

2.4.2.4 Trust Region Methods

Trust region methods (see Algorithm 2) can be applied for finding a minimizer of smooth
but not necessarily convex problems (2.42). In each iteration step, these methods construct a
model function m/[l] whose behavior near the current point «[l] is similar to that of the actual

objective function f. The model m[l] is usually a quadratic function of the form

r0f

1 T
1] + 5l B[l (2.51)

ml[l](s[l]) = flI] + s[l]
where BYl] is, similar to the line search scenario, either the Hessian of f or some approximation
to it. Trust region methods take into account the fact that this model may not be a good

approximation of f when s[l] is far away from «x[l]. Hence, they restrict the search for a
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minimizer of mll] to a trust region around x[l] which is usually expressed as ||s[l]|| < A[l],
where A[l] is called the trust region radius. In other words, a candidate step s[l] is calculated

by solving the following subproblem

Igl[il]nm[l](s[l]), subject to ||s[l]|| < Afl]. (2.52)

The trustworthiness of the trust region is judged by the ratio

oll) = (2.53)

where the numerator is called the actual reduction and the denominator is the predicted
reduction. This ratio is the decision basis for either rejecting the candidate step s[l] and
resolving (2.52) with a shrinked trust region or to accept the candidate step s[l], update the
iterate by

x|l + 1] = x[l] + s[]] (2.54)

and possibly expand the trust region.

Algorithm 2 Trust region method
Input: Initial value x°

1: Set I =0 and z[0] = x°

2: loop

3: Compute a model function m[l] according to (2.51).

4: Compute a candidate step s[l] according to (2.52).

5: Compute the ratio g[l] according to (2.53).

6: if o[l] > 0 then

7: Update the current point according to (2.54) and possibly increase the trust
region radius A[l].

8: else

9: Reduce the trust region radius All] and go to line 4.

10: end if

11: end loop

Note that besides spherical also elliptical and box-shaped trust-regions may be used. More-
over, all Hessian approximation methods presented for line search methods can be employed
in the trust-region framework resulting in different methods. In the following, we present only

one prominent representative, namely the Levenberg-Marquardt method.

Levenberg-Marquardt Method
This method is suitable for least-squares problems where the objective function (2.42) can

be written as f(x) = [|r(x)||*> with the residual vector  : R™ — R™. It uses the same
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approximation of the exact Hessian as the Gauss-Newton method, but in the trust-region
framework. This avoids one weakness of the Gauss-Newton method, namely, its behavior
when the Jacobian d0r/0x is rank-deficient or nearly so. Since the same approximations are
used in each case, the local convergence properties of the two methods are similar. In fact,
if we are near a minimizer x*, the trust-region becomes inactive and the algorithm takes

Gauss-Newton steps.

2.4.2.5 Subgradient Method

This method can handle non-differentiable convex problems (2.42). The basic idea is similar
to the steepest descent method. However, since the function f is non-differentiable, we use
subgradients (see Definition 2.4.5) instead of gradients to proceed from one iterate to the

next, i.e.
x|l + 1] = x[l] — ~[l]s]], (2.55)

where [l] is the step length and s[] is a subgradient of f at «[l]. In contrast to line search and
trust-region methods, the objective value does not necessarily decrease in each iteration of the
subgradient method. Rather, the distance between the iterate x[l] and the optimal solution x*
will decrease. The following theorem shows that convergence of the subgradient method can

be achieved for diminishing step lengths, see e.g. Bertsekas et al. (2003, Proposition 8.2.5).

Theorem 2.4.5. Let f : R" — R be a convex function which has a bounded set of minimiz-

ers M* and let the sequence of step lengths {v[l]}, | € Ny, satisfy
I > 0, lim 4[l] =0, ;}’W] = 00. (2.56)

If there is a positive constant ¢ € Ry such that ||s[l]|| < ¢, VI € Ny, then for any starting point

x[0] € R", the sequence {x[l]}°, generated according to (2.55) satisfies the relations

lim min |2l -2l =0,  lim f(=[]) = " (2.57)

l—o0 xEM*

This Theorem does not hold if the subgradients cannot be bounded. In this case, we can
slightly modify the subgradient method (2.55) as stated in the following Theorem, see e.g.
Shor (1985, Theorem 2.4).

Theorem 2.4.6. Let f : R" — R be a convex function which has a bounded set of minimiz-

ers M* and let the sequence of step lengths {v[l]}, | € Ny, satisfy

~[1] > 0, lliglo y[I] =0, i’y[[] = 0. (2.58)
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Then for any starting point x[0] € R™, the sequence {x[l|}°, generated according to the

formula

i 1) = [0 sl Al < 250

x[0], otherwise,
where ¢ € Ry is a positive constant, satisfies the relations

lim min
l—o00 zEM*

oll]—al =0, Jim f(all) = /" (2:60)

The advantage of this modification is that a explicit bound for the subgradients is not
required because if y[{] — 0, then the condition v[{] ||s[{]|| < ¢ holds for all sufficiently large I,
regardless of s[l]. However, resetting of the subgradient method whenever this condition is
violated implicates wasted iteration steps. A typical step size which satisfies (2.56) and (2.58)
is v[I] = a/+/1 where a is a positive constant. Additional details about subgradient methods
can be found in Bertsekas et al. (2003); Shor (1985).

2.4.3 Constrained Optimization

In this subsection, we consider the following constrained optimization problem

mﬂgnf(m) (2.61a)

subject to:
ci(x)=0, €€, (2.61b)
ci(x) >0, ieZ, (2.61c¢)

where € R” is a real vector, f : R” — R is a smooth objective function, ¢; : R" +— R
i € & are smooth equality constraints and ¢; : R” — R™i ¢ € 7 are smooth inequality

constraints.

Definition 2.4.10. The feasible set ) contains all points & which satisfies the constraints
(2.61b) and (2.61c), i.e.

Q2 {xlci(z) =0,i € & ci(x) >0,i € T}. (2.62)

Definition 2.4.11. The active set A(x) at any feasible x consists of the equality constraint
indices from & together with the indices of the inequality constraints i for which ¢;(x) = 0,

1. €.

A(z) £ £U{i € Z|ci(z) = 0}. (2.63)
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Definition 2.4.12. The problem (2.61) is a convex optimization problem, if f is convex,
the negative equality constraints —c;(x),i € £ are conver and the inequality constraints

ci(x),i € T are affine.

2.4.3.1 What is a solution?

The addition of constraints may improve the situation since the feasible set might exclude
many local minimizers. However, constraints can also aggravate the situation by generating
additional minimizers. The definition of the solution types are extensions of the corresponding
definitions for the unconstrained case, except that now we restrict our consideration to the

feasible points in the neighborhood of x*. This leads to the following definitions.

Definition 2.4.13. A point «* is a global solution of the problem (2.61) if f(x*) < f(x) for
all x € R™.

Definition 2.4.14. A point &* is a local solution of the problem (2.61) if ** € Q0 and there
is a neighborhood N of ©* such that f(x*) < f(x) forx e N NQ.

Definition 2.4.15. A point * is a strict local solution of the problem (2.61) if * € Q and
there is a neighborhood N of * such that f(x*) < f(x) for x € N NQ with x # x=*.

2.4.3.2 How to recognize a solution?

In order to state conditions for optimality, we need the following definitions.

Definition 2.4.16. The Lagrange function (or just Lagrangian) for the optimization prob-
lem (2.61) is

LX) 2 f(@)~ Y Nea) (2.64)

1€EUL

where A = col(X;,i € EUT) denotes the stacked Lagrange multiplier vector.

Definition 2.4.17. Given a feasible point x and the active set A(x), the set of linearized

feasible directions F(x) is

d % ()
d" % ()

s .
Vie A(z)NT

0, Vie&
. '€ } (2.65)

Definition 2.4.18. Given the point @ and the active set A(x), we say that the linear in-
dependence constraint qualification (LICQ) holds if the set of active constraint gradients
{0c;/0x,i € A(x)} is linearly independent.

In general, if LICQ holds, none of the active constraint gradients can be zero which guar-
antees regularity in some sense of the constraints. The first-order necessary conditions for
optimality are given in the following Theorem, see e.g. Nocedal and Wright (2006, Theo-
rem 12.1).
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Theorem 2.4.7. Suppose that x* is a local solution of (2.61), that the functions f and c¢;
in (2.61) are continuously differentiable and that the LICQ) holds at x*. Then there is a

Lagrange multiplier vector X* £ col(A;,i € £ UT), such that the following conditions are
satisfied at (x*, A")

gi( A =0 (2.66a)
ci(x*)=0, Viel, (2.66b)
ci(x*) >0, Viel, (2.66¢)
>0, Viel, (2.66d)
Alci(x") =0, VieEUL. (2.66e)

The conditions (2.66) are known as the Karush-Kuhn-Tucker (KKT) conditions and form
the foundation for many optimization algorithms. Similar to the unconstrained case, these
algorithms search for a point which satisfies the KKT conditions. The impact of convexity is

shown by the following Theorem.

Theorem 2.4.8. If problem (2.61) is a convex optimization problem, then any local solu-
tion x* is a global solution and the KKT conditions (2.66) are a sufficient condition. If in

addition f is strictly convex, then any local solution is unique.

If the problem (2.61) is not convex, then the following Theorem states second-order sufficient

conditions for optimality, see e.g. Nocedal and Wright (2006, Theorem 12.6).

Theorem 2.4.9. Suppose that for some feasible point x* € R™ there is a Lagrange multiplier
vector X* such that the KKT conditions (2.66) are satisfied. Suppose also that

2
L
ngwZ(w*,)\*)w >0, YweCl(z" "), (2.67)

where C(x*, ") is the critical cone defined as

Clz*, A") = {w € F(x)

T
gz (x)w =0,alliec Alx*) NI with X} > O} : (2.68)

Then x* is a strict local solution of (2.61).

2.4.3.3 Duality

In this subsection, we present some elements of the duality theory. This theory shows how
we can construct an alternative problem to the constrained problem (2.61). In this context,
the original problem (2.61) is referred to as the primal problem while the alternative problem
is known as the dual problem. The primal and dual problem are related in many fascinating

ways. The relation we have in mind enables us to calculate the solution to the primal problem
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by solving the dual problem. This is favorable if the dual problem possesses properties which
the primal problem doesn’t have. In order to state this result, we begin with the following

definition.

Definition 2.4.19. The Lagrange dual function (or just dual function) q : R™ — R of the
problem (2.61) is defined as

q(A) £ min L(z,A) = min <f(:v) - > )\;FCZ(Q:)> . (2.69)

T
1€EUL

When the Lagrangian is unbounded below in @, the dual function takes on the value —oo.
Since the dual function is the pointwise infimum of a family of affine functions of A, it
is concave, even when the problem (2.61) is not convex. An important property of the dual

function is stated in the following Theorem, see e. g. Bertsekas et al. (2003, Proposition 6.2.2).

Lemma 2.4.10. For any X\; > 0,7 € Z and any N\;,i € £ we have

q(A) < f(x). (2.70)

This means that the dual function yields always lower bounds on the optimal value f(x*)
of the problem (2.61). The question for the best lower bound leads to the Lagrange dual

problem.

Definition 2.4.20. The Lagrange dual problem (or just dual problem) associated to the prob-
lem (2.61) is defined as

max q(X), subject to A\; > 0,1 € Z. (2.71)

The Lagrange dual problem (2.71) is always a convex optimization problem, since the dual
function is concave and the constraint is convex. This is the case whether or not the primal
problem (2.61) is convex. The quality of the lower bound can be judged by means of the
duality gap.

Definition 2.4.21. The duality gap is defined as
pr—d >0, (2.72)
where p* £ f(x*) and d* = q(A*). If d* = p*, strong duality holds, otherwise weak duality.

Conditions which assure that strong duality holds are given in the following Theorem, see
e.g. Boyd and Vandenberghe (2004, Subsection 5.2.3).

Theorem 2.4.11. If the problem (2.61) is convex and strictly feasible, i. e. there ezists x € R"
such that ¢;(x) = 0,1 € € and ¢;(x) > 0,i € Z, then strong duality holds.
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Strong duality can sometimes be used to compute a primal optimal solution from a dual
optimal solution. Suppose that strong duality holds and a dual optimal solution A* exists.
Then the primal optimal solutions can be obtained by minimizing the Lagrangian L(x, A™)
over . If in addition L(x, A*) is a strictly convex function of @, then the minimizer of the
Lagrangian L(a,A") is the unique primal optimal solution if it is primal feasible. This fact
is interesting when the dual problem is easier to solve than the primal problem, for example,
because it can be solved analytically, or has some special structure that can be exploited.

This idea is key for the dual decomposition method presented in Section 2.4.4.

2.4.3.4 Linear Programming

A linear program (LP) is a special case of the constrained optimization problem (2.61) and

can be written as

Ax = b,

2.73
z > 0, (2.73)

mwin c'x, subject to {
where ¢,z € R", b € R™ and A € R™*". The algorithms for solving this type of problem are

either simplex methods or interior point (IP) methods, see e.g. Nocedal and Wright (2006,
Chapter 13 and 14).

2.4.3.5 Quadratic Programming

A quadratic program (QP) is another special case of the constrained optimization prob-
lem (2.61) and consists of a quadratic objective function and affine constraints. It can be
written as

1 al’z = b, €€,
min —x’ Gz’ + x’¢, subject to : v
z 2 a’z > b, €T,

i

(2.74)

where G € R™"™ is a symmetric matrix, ¢,a; € R", i« € £ UZ are vectors and b;, i € EUTL
are scalars. If G is positive definite, semi-definite or indefinite, then (2.74) is a strictly
convex, convex or nonconvex problem, respectively. Typical solution methods are active set
methods and interior point (IP) methods, see e.g. Nocedal and Wright (2006, Chapter 16).
The basic idea of these methods is to tackle appropriately the affine KKT conditions (2.66)
corresponding to (2.74). For instance, suppose that there are no inequality constraints. Then

the KKT conditions reduce to a simple system of linear equations which can be readily solved.

2.4.3.6 Nonlinear Programming

The general constrained optimization problem (2.61) involves nonlinear functions and is re-
ferred to as a nonlinear program (NLP). In the following, we outline the key idea of the main

two algorithmic concepts for actually solving a NLP, namely the sequential quadratic pro-
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gramming (SQP) method and the interior point (IP) method. Both methods have in common
that they try to find iteratively a point which satisfies the KKT conditions (2.66).

Sequential Quadratic Programming

The idea of SQP methods consists in linearizing in every iteration step all nonlinear functions
appearing in the KKT conditions. It turns out that the resulting equations can be interpreted
as the KKT conditions of the following QP

1 O L((l] All)) r0f([l])
in iAaz[l] TA:B[Z] + Ax|l] e (2.75a)
subject to:
ci(z[l]) + (Z; (x[l]) Az[l] =0, i€, (2.75Db)
ci(]l]) + g;" (@[l])) Az[l] >0, ieT, (2.75¢)

where L(-) is the Lagrangian to the NLP (2.61). The next iteration step of the SQP is given
by x[l+ 1] = z[l] + Az[l]. Consequently, SQP methods compute a solution to the NLP (2.61)

by solving a sequence of QPs.

Interior Point Methods

The idea of IP methods is to introduce slack variables s; > 0,7 € Z and to replace the
inequality (2.66¢) of the KKT conditions by the equality

ci(x’)—s;=1p, i€, (2.76)

where 1 is a vector with unit elements and p is a positive parameter. The resulting perturbed
KKT conditions form a system of nonlinear equations and are solved by Newton’s method
for a sequence of positive parameters {u[l]} that converges to zero. It can be shown that in a
neighborhood of a solution (x*, s¥,i € Z, A") to (2.61) that satisfies the LICQ conditions (Def-
inition 2.4.18) and the second-order sufficient conditions (Theorem 2.4.9), the perturbed KKT
conditions have a unique solution for sufficiently small positive values of 1 which converges to
the optimal solution as u — 0. It is important to note that Newton’s method for solving the
perturbed KKT conditions requires the same gradient and Hessian of the Lagrangian L(-) to
the NLP (2.61) as the SQP method in (2.75). Moreover, the perturbed KKT conditions can
be interpreted as the KKT conditions of the barrier problem

fl)=nlll > > Wsll) (2.77a)

min
z(l],{s:i[l]}iez
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subject to:

ci((l])
ci(x[l]) — sill] =

0, ic& (2.77b)
, iel. (2.77¢)

This interpretation explains why the inequalities s; > 0,7 € Z do not need to be included.
The barrier term in the objective function prevents the components of s;[l] from being close
to zero. Moreover, we can see from (2.77) that the combinatorial aspect of NLPs is avoided,

i.e. the determination of the active set at the solution.

2.4.4 Decomposition Methods

The basic idea of decomposition methods is to split up an original optimization problem
into several distributively solvable subproblems. These subproblems are then coordinated

by a high-level master problem to reach an optimal solution to the original problem, see

Figure 2.4.
Master Problem
Subproblem 1 Subproblem N

Figure 2.4: Decomposition of an optimization problem into several subproblems coordinated
by a master problem.

Decomposition
Original Problem —_—

Decomposition in optimization is an old idea and appears in early work on linear programs
from the 1960s (Dantzig and Wolfe, 1960). The original primary motivation was to solve
very large problems, which were beyond the reach of standard techniques, by possibly using
multiple processors (Bertsekas and Tsitsiklis, 1997). A prominent method, which follows this
paradigm, is parallel variable distribution (PVD) (Ferris and Mangasarian, 1994; Sagastizabal
and Solodov, 2002). This method distributes the optimization variable among several parallel
processors. Thereby, each processor has the primary responsibility for updating its block of
variables while the remaining variables are allowed to change in a restricted fashion along
some computable search directions. Another class of decomposition methods are bilevel de-
composition algorithms (BDA) (DeMiguel and Murray, 2006; Colson et al., 2005). They are
applicable if the optimization problem is partially separable. This enables the exploitation
of the structure by breaking up the original problem into several subproblems and a master
problem. Both methods are reasonable if the objective is to enable the solvability of large
optimization problems or to increase the efficiency of the solution procedure. However, in
this thesis, our focus is different. Our intention is to use decomposition techniques for divid-

ing the optimization problem resulting from the moving horizon framework into distributed
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subproblems. These subproblems fit the structure of the network and yield a distributed
moving horizon algorithm. To this end, we will review two classes of suitable decomposition
principles: primal and dual, see Palomar and Chiang (2006) and Bertsekas (1999, Chapter 6).
Note that primal and dual has the meaning introduced in Section 2.4.3.3 which indicates that
the optimization problem is decoupled by investigating either the original or the alternative

problem formulation.

2.4.4.1 Primal Decomposition

Primal decomposition is appropriate when the optimization problem has a coupling variable
such that, when fixed to some value, the rest of the optimization problem decouples into

several subproblems. For instance, consider the following problem

cz(a:z) = O, izl,...,N,

. (2.78)
envi(e) >y, i=1,...,N.

min_ Y fi(x;), subject to {
Clearly, if we fix the variable y, then this problem would decouple. Thus, we can split up the
problem (2.78) into two levels of optimization. At the lower level, we have for a fixed y the

N decoupled subproblems (one for each )

I
o

ci(x;)

2.79
cn+i(Ti) ( )

v

fi(y) £ Hglcl,n fi(x;), subject to {

At the higher level, we have the master problem responsible for updating the coupling vari-

able y by solving
N
minY" f; (4). (2.80)
i=1

where f#(y) is the optimal objective function value of problem (2.79) for a given y. If the orig-
inal problem (2.78) is convex, then the subproblems as well as the master problem are convex.
If the function "%, f#(y) is differentiable, then the master problem (2.80) can be solved with
one of the presented gradient-based methods. In general, however, the function -V, f7(y)

may be non-differentiable and the subgradient method becomes a convenient approach.

2.4.4.2 Dual Decomposition

Dual decomposition is appropriate when the optimization problem has a coupling constraint
such that the dual problem decouples into several subproblems. For instance, consider the

following problem

min Y fi(x;), subject to ci(@) C T (2.81)
Tl NG Yitiensi(@) = 0
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Clearly, if the constraint Y | ex,i(x;) > 0 was absent, then this problem would decouple.

Thus, we investigate the dual function

N N

q(A1, . A1) = mlln{;N Z fi(x;) Z A?Cz(mz) - A%H Z cni(®;), (2.82)
T i=1 i=1

which can be decoupled such that the problem (2.81) can be split up into two levels of

optimization. At the lower level, we have the N decoupled subproblems (one for each 7)
G(Xi, Av1) = 1nf fi(25) — Al ei(®s) — Ay ieni(®:). (2.83)

At the higher level, we have the master problem responsible for updating the dual variables

A1, ..., ANg1 by solving

>\1,m2}\>1§+1 z:qZ Ai, An+1), subject to Ay > 0. (2.84)
In fact, this approach solves the dual problem instead of the primal one. Hence, it will only
give appropriate results if strong duality holds, see Theorem 2.4.11. The subproblems and the
master problem can be solved with one of the presented algorithms for solving constrained
and unconstrained optimization problems. Note that in general, the dual function ¢ might be

non-differentiable.

2.5 Derivative Calculation

Gradient-based optimization algorithms require knowledge of derivatives. Sometimes the
derivatives are easy to calculate by hand. However, this is generally not the case for the
derivatives needed for solving the optimization problems arising in the moving horizon frame-
work. As an alternative, there are a number of approaches available which calculate the
required derivatives in a systematic way. Note that in this thesis, as introduced in the No-
tation, the derivative symbol is uniformly O for all types of derivatives. For instance, this
means that there is no difference between the total and partial derivative in notation. Keep-
ing this convention in mind, we review in the following various suitable derivative calculation
methods. To this end, we consider the following smooth optimization problem which reflects

the essential characteristics of the moving horizon framework:
mjn J(:ﬁk—Na- . ,fk,ﬁ) (285&)
p
subject to:

§:1+1_fz(£17ﬁ):07 Z:k_Naak_la (285b)
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where J : R™ x ... x R™ x R™ — R is the objective function, &; € R™* is the estimated
state and p € R" is the parameter vector. This parameter vector can e.g. be the initial
estimated state &;_y, all estimated states col(&;,7 € {k— N, ..., k}), unknown parameters of
the system, all estimated state disturbances col(w;,i € {k — N, ...,k —1}) or a combination

of these values. The objective is now to calculate the gradient of the objective function, i.e.

0./ 0p.

Finite-Difference Approximation

This technique has its roots in Taylor’s theorem. The derivatives are estimated by observing
the change in function values in response to infinitesimal perturbations of the unknowns near
a given point p. For instance, the elements of 0.J/0p can be approximated by the central-

difference formula

oJ _J(p+ee)— J(P—ee)
op 2¢ ’

i=1,...,n,, (2.86)

where € is a small positive scalar and e; is the ¢-th unit vector. The evaluation of all elements
in 0J/0p is as costly as solving 2n,n, difference equations from ¢ = &k — N to k. This
computational load is highly inefficient compared to other existing methods. Moreover, the
resulting derivatives are often significantly inaccurate due to truncation and round-off errors.
The primary advantage of the finite-difference approaches is that they require almost no extra

effort to implement. Further details about the finite-difference approximation can be found
in Nocedal and Wright (2006).

Sensitivity Method

The basic principle of the sensitivity method is the chain rule. Keeping the dependence of &;

on p due to (2.85b) in mind, the application of the chain rule to the cost function J leads to

oJ oJ Fooog T og
“x = s T Z ~
op 0p S~y 0D 0%

(2.87)

where 0&;/0p are the first-order state sensitivities. These sensitivities can be interpreted as
a measure of how sensitive the state &; reacts upon changes in the parameter p and can be
calculated by solving the sensitivity matrix difference equation. Application of the chain rule

to the state difference equation (2.85b) yields the sensitivity matrix difference equation

021 _ 0F,08,  0f,
op 0%, 0p  0p

i=k—N,.. . k-1, (2.88)

with the initial value 0&;_n/0P. The resulting algorithm for computing 9.J/9p follows:
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Algorithm 3 Sensitivity method for the calculation of the gradient 0.J/0p
1: Solve &;11 = f,(&;,p) from i = k — N to k — 1 with the initial condition &j_ .

2: Solve amijl = a'fi 0%; ﬁfz from i = kK — N to k — 1 with the initial condition amk:N
op 0x; (9p op op
oJ oJ & o#ToJ
3 Set — = — +

op 0p 5=y 0D O

The evaluation of this algorithm involves solving n,(n, + 1) difference equations from
t =k — N to k. Further details about the sensitivity method can be found in Rosenwasser
and Yusupov (1999); Sandu et al. (2003).

Adjoint Method

In contrast to the sensitivity method, the objective of the adjoint method is to avoid the
computation of the sensitivities 0&;/0p for all i > k— N. The first step in achieving this goal

is to introduce the Lagrangian corresponding to the optimization problem

k—1

i=k—N
where A; € R" are the Lagrangian multipliers. Because the constraint (2.85b) is always
satisfied by construction, we are free to set the values of A; and 9L/0p = 0J/0p. Next, we
omit for ease of presentation the argument of all functions and change the subscript of &;

from ¢ + 1 to ¢ by writing

k—1
L=J— Z ALz + Y Al f. (2.90)
i=k—N+1 i=k—N

Then, we take the derivative with respect to p and collect terms in 0%&;/0p to yield

oJ oJ L oaf” %HVT 0]  Ofn"
s _9J i A
op 0P 2=, 0p op <asf:kN Ty N) o)
. ’le o " of .y -, of,T od " o5 '
. op \oa, T o aﬁ oz, M)
To avoid the calculation of 0&/0p, we set
8.J
Aot = ——. 2.92
1 5 (2.92)
Similarly, we set
of,t.  aJ
Ai_ DY 2.93
TS & (2.93)



2.6 Graphs 53

to cancel the second-to-last term. The resulting algorithm for computing 0.J/0p follows:

Algorithm 4 Adjoint method for the calculation of the gradient 0.J/0p
1: Solve &1 = f,(&;,p) from i = k — N to k — 1 with the initial condition &;_y.

2: Solve \j_; = (‘9]} A —i— from t = k—1to k— N with the final condition \;_; = 07 )
8 @331 833k
3 et 92 29T 4 > afZAJr%kNT( O, 0wy )
ap  dp . Op op 0%r_n 0%y N

The evaluation of this algorithm involves solving 2n, difference equations from i = k — N
to k. Further details about the adjoint method can be found in Cao et al. (2002); Sandu et al.
(2003).

Automatic Differentiation

This technique evaluates numerically the derivative of a function specified by a computer
program. Automatic differentiation takes the view that every computer code for evaluating
a function, no matter how complicated, can be broken down into a sequence of elementary
arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary
functions (exp, log, sin, cos, etc.). By applying the chain rule repeatedly to these operations,
derivatives of arbitrary order can be computed automatically up to the working precision
accuracy. An excellent textbook regarding automatic differentiation is the one of Griewank
and Walther (2008). The software tools for automatic differentiation can be categorized by
their implementation strategy which uses either source code transformation or operator over-
loading. Tools using the former strategy (such as ADIFOR (Bischof et al., 1996), OpenAD
(Utke et al., 2008) and TAMC (Giering and Kaminski, 1998)) produce new code which calcu-
lates both function and derivative values. Tools using the latter strategy (such as ADOL-C
(Griewank et al., 1996) and ADF (Straka, 2005)) keep a record of the elementary computa-
tions that takes place while the code for evaluating the function is executed. This information

is processed to produce the derivative values.

Symbolic Differentiation
The idea in symbolic differentiation is to manipulate the algebraic specification of a function
by symbolic manipulation tools (such as Maple, Mathematica and Macsyma) to produce new

algebraic expressions for the derivatives.

2.6 Graphs

For the development of the distributed moving horizon strategies presented in Part 11 of this
thesis, we will use some graph notation and a small part of the available graph theory. More
details on graphs can be found e. g. in Diestel (2012) and Godsil and Royle (2001).
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Definition 2.6.1. A graph G = (V, ) consists of a set of vertices or nodes V = {vy,...,von},
V| =N >0 and a set of edges or links E CV x V. Ifv;,v; €V and e;; = (v;,v;) € €, then

there is an edge from node v; to node v;.
Definition 2.6.2. A self-loop is an edge with two identical vertices, i. e. e; = (v;, v;).

Definition 2.6.3. A graph G is called undirected if e;; € € implies ej; € €. Otherwise the
graph is called directed.

Definition 2.6.4. The adjacency matriz Q(G) = [wi;] € RN*N of a graph G is such that

In this thesis, we will only use directed graphs without self-loops. Note that the diagonal
elements of the adjacency matrix of such graphs is always zero. An example of such a graph

with 5 vertices and 7 edges and its adjacency matrix is depicted in Figure 2.5.

01 0 00
® 0001 1l-00" ©
1 Q(G) = =Q(g 1)< 2 )= 3
9) o0l (9) 2)
00100
directed graph G reverse directed graph G

Figure 2.5: Example of a weakly connected directed graph G with 5 nodes and 7 vertices, the
reverse directed graph G as well as both adjacency matrices 2(G) and ©Q(G).

Moreover, we will need the following two special type of graphs.

Definition 2.6.5. A complete directed graph G = (V,E) is a directed graph where each pair
of distinct vertices is connected by a pair of unique edges (one in each direction), i.e. if
v;,v; €V and v; # vj, then e;;,e; € E.

The adjacency matrix of a complete directed graph is all 1’s except for 0’s on the diagonal.

Definition 2.6.6. The reverse directed graph G = (V,E€) of a directed graph G = (V,€)
consists of the same set of vertices V as the original graph G but the set of edges € is reversed,

i.e. if e;; = (v;,v5) € E, then ej; = (vj,v;) € E.

The adjacency matrix of the reverse directed graph is the transpose of the adjacency matrix
of the original graph, i.e. Q(G) = Q(G)7, see the example given in Figure 2.5.
In order to introduce different definitions of connectivity for directed graphs, we first need

to define directed and undirected paths.

Definition 2.6.7. A directed path from node v;, to node v, in a directed graph G = (V,E) is

a sequence {vy,,...,v, } of r > 1 distinct nodes such that (v, v, ) €&, i=1,...,r —1.
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Definition 2.6.8. An undirected path from node vy, to node v, in a directed graph G = (V,E)

is a sequence {vy,, ..., v, } of r > 1 distinct nodes such that (v;,,v,,,) € EUE, i=1,...,7r—1.

Consequently, we can define different types of connectivity as follows.

Definition 2.6.9. A directed graph G = (V, E) is weakly connected if there exists an undirected

path between any pair of vertices.

Definition 2.6.10. A directed graph G = (V, E) is strongly connected if there exists a directed

path between any pair of vertices.

Note that if a directed graph is weakly /strongly connected, then the reverse directed graph

is also weakly/strongly connected, see the example given in Figure 2.5.
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Chapter 3

Centralized Moving Horizon Strategies

In this chapter, we develop the centralized moving horizon observer (CMHO) and the cen-
tralized moving horizon estimator (CMHE) within a common framework for the undisturbed
and the disturbed centralized NCS architecture, respectively.

We start with introducing the undisturbed and the disturbed centralized NCS architectures
including the resulting problem definitions in Section 3.1. In Section 3.2, we design a buffer
which extends the moving horizon to the networked scenario. The clock model introduced
in Section 3.3 enables the extraction of information stored in the buffer by formulating a
suitable optimization problem in Section 3.4 for the undisturbed case and in Section 3.5
for the disturbed case. For both optimization problems, we present in Section 3.6 efficient
methods for choosing proper initial conditions. The actual state estimates are derived in
Section 3.7 based on suboptimal solutions to the optimization problems. Section 3.8 provides
the extension to the parameter estimation case. The resulting overall algorithm of the CMHO
and CMHE is presented in Section 3.9. Finally, we conclude this chapter with a summary

given in Section 3.10.

3.1 Problem Formulation

Consider the centralized NCS architecture depicted in Figure 3.1. The plant ¥ is described

by the continuous-time nonlinear time-invariant system
(1) = f(a(t),uV (1), ..., u™ (1) + w(t), (3.1)

where x(t) € R is the state with the initial value x(0) € Xy C R, u)(t) € UV C R,
le A= {1,2,...,m} is one of the m control inputs, w(t) € W C R" is the state disturbance
and t € Ry is the global time. By introducing the control input w(t) £ col(u®(t),l € A) €
U C R™, we can write (3.1) compactly as

&(t) = f(x(t),u(t)) + w(t). (3.2)
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X
T T 7 7
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tu®@) Tum@ [PH | Pl
X¢
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Figure 3.1: Centralized NCS architecture with system X, sensors Z[Sﬂ, network Yy, ob-

server /estimator 3, controller ¢ and actuators EX).

Each of the ¢ sensors Eg] with j € S = {1,2,...,¢} is equipped with an individual clock
which possesses the local sensor time 9] € R,. Note that the relation between the global
time t and the local sensor times tV! is unknown due to the unsynchronized clocks. Moreover,
each sensor generates a sequence of packets Pz-m = {y[j](tﬂij ]), ﬂ-ﬂ} consisting of measurements
yV! (t—[f ]) € R™7 and corresponding sensor time stamps t—[ij le Ry. These measurements are

derived by non-uniformly sampling the sensing model

yb! ([[j]) — h[i]@({[ﬂ)) + pl] (EU]), jeS (3.3)

]

at the sensor times Ej yielding the measurement model

Y (@) = (2 (@) + 0@, jes, ieN, (3.4)

where vl (ﬂ] ]) € VUl € R™ are the measurement disturbances. Each packet PZ-U Vis transmit-
ted to the observer/estimator 3> over the packet-delaying, packet-dropping and unidirectional

network .

The controller ¢ is designed for the nominal case, i.e. without the network Yy, and is

described as

3(t) = F(@(t),2(0).7(1), (3.59)
uVn)] R @ (), (), ()

ult)=| | =h@0),zt),r{) = : : (3.5b)
w1 R (@(0), (). 7(0)

where &(t) € R™ is the control state with the initial value £(0) € R and r(¢) € R"™ is the

reference input. The control input u"(t) of the I-th actuator results from the corresponding
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rows of (3.5b). The successful implementation of the controller 3¢ requires knowledge about
the full state of the system.

In order to set up reasonable problem formulations, we make the following assumptions:

Assumption 1. The statistics of z(0), w(t) and vV!(¢), j € S, are unknown. Consequently,
x(0), w(t) and vV(¢), j € S are considered as deterministic variables of unknown character
which take their values from the known compact sets Xo, W and VU, j € S, respectively,
with 0 € Wand 0 € VI, j € S,

Assumption 2. The initial value x(0) and the control input w(t), which take their values
from the compact sets Xy and U, respectively, are such that, for any possible disturbance

w(t) € W, the system trajectory x(t) lies in the compact set X.

Assumption 3. The time between two consecutive sensor time stamps is bounded by d;, i. e.
i, —# <5, jes, ieN (3.6)

Assumption 4. The functions f(-) and h(-) are C*>-functions, i.e. at least twice continuously

differentiable, on the closed sets X x U and X, respectively.

Assumption 5. The statistics of the time delays Tim of the packets P are Vj € § and

Vi € N unknown. Consequently, the time delays Ti[j] are Vj € § and Vi € N considered as

deterministic variables of unknown character which take their values from the bounded set

e, CRy, jES, i€N (87)

? max

Assumption 6. The statistics of the packet drop probability of the packets P}j I are VjieS
and Vi € N unknown. Consequently, the maximum number of consecutive packet drops for

the j-th sensor is considered to be bounded by NI eN,jes.

max,drop

Assumption 7. The network >y is unidirectional, i.e. packet transmission is only possible

from the sensors Zg I'to the observer Jestimator 3.

Note that the Assumptions 1-7 are quite reasonable from a practical point of view. It is very
typical that the states and disturbances of a physical system are bounded in some way and that
the characteristics of the disturbances are unknown. For instance, if Assumption 1 is satisfied,
then Assumption 2 automatically holds whenever the system (3.2) is input-to-state stable
(ISS) with respect to the control input and the state disturbances. Moreover, Assumption 3
only bounds the time between two consecutive sampling times of a sensor but facilitates
time-varying and thus event-based sampling. This enables the application of smart sampling
strategies. Compared to conventional equidistant time-based sampling, these strategies can
be designed such that the overall number of measurements is reduced while the information
content gained about the system is maintained or even increased. As a consequence, the

limited energy supplies of wireless sensor nodes are saved and the overall network load is
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reduced. Note that Assumption 3 together with the Assumptions 5 and 6 guarantee that
the time between two consecutive packet arrivals at the observer/estimator is bounded. The
Assumptions 5 and 6 reflect the fact that, in general, only bounds for the network statistics
are known in advance rather than the precise network statistics. This is due to the fact that
the network statistics are essentially the result of the functionality and interaction of the
protocols defining the MAC sublayer (see Section 1.1). For instance in wireless networks, the
property of the transmission medium and therefore the network statistics can change rapidly.
Another consequence of wireless networks is the possibility of utilizing so-called motes, i.e.
ultra low power wireless sensor modules. Thereby, a major challenge represents their limited
energy supplies. The durability of these motes depend especially on the time the radio is
on and on the number of received and transmitted packets. Although Assumption 7 is not
required for the subsequent results to hold, it provides the following two advantages. First,
it enables the efficient operation of those motes by significantly increasing their durability
caused by strictly prohibiting packet receiving. Second, it decreases considerably the overall
network load which generally results in either reduced network requirements or in increased

network performance.

Problem 3.1 (Centralized Observer Design). Let the presented undisturbed centralized NCS
architecture be given consisting of the undisturbed system %, i.e. W = {0}, undisturbed
sensors Zg], i.e. VUl =10}, j € S, controller ¢, actuators EX), [ € A, and network Xy.
The problem is to design under the given circumstances an observer S5 which reconstructs
the current state of the system Y given the sequence of arrived packets {PZ-U ]} and the control

input u(t).

Problem 3.2 (Centralized Estimator Design). Let the presented disturbed centralized NCS ar-
chitecture be given consisting of the disturbed system ¥, i.e. W C R™, disturbed sensors 2[31,

i.e. VUL CR™3, j €8, controller X¢, actuators E%), l € A, and network Xy.

The problem is to design under the given circumstances an estimator S which reconstructs
the current state of the system Y given the sequence of arrived packets {Pim} and the control

input u(t).

Note that for both problems, the difference between the multiple sensor case and the single
sensor case is more notational than theoretical. In other words, the presentation of the
multiple sensor case involves only an increased notational burden. Otherwise, the extension
of the single to the multiple sensor case is straightforward. Therefore, we consider in the
following only one sensor for both problems, i.e. § = {1}. Consequently, we omit the

superscript [j] indicating the sensor affiliation from notation to ease the presentation.

Moreover, it is important to note that throughout Part II of this thesis including the current

chapter, the Assumptions 1-7 are supposed to hold without explicitly stating them.



3.2 Buffer Design 63

3.2 Buffer Design

The transmitted packets P; are subject to different time delays 7; which may cause the packets
to arrive out-of-order at the estimator site. This constitutes a problem for conventional
observer and estimator concepts which suffer in this case from their design of generating the
current estimates based on information stored in only one packet. A common remedy is to
simply ignore packets which contain older information in the estimation process. However,
this approach is not optimal since not all available information is incorporated. To overcome
this problem, the information basis for the CMHO as well as for the CMHE is the buffer ¥g,
which stores N + 1 augmented packets P; ;, rather than a single packet. These augmented
packets P;; are derived by extending each successful received packet P; = {y(t),t:} by
the arrival time stamp ¢; to yield the augmented packet P;; = {y(%),t;,t;}. The decision
logic that generates the ordered sequence {8y} consisting of ordered N + 1-tuples with the
augmented packets P; ; as elements can be seen in Algorithm 5. Whenever a new packet
arrives (line 3), it is decided (line 6) based on the relation between the sensor time stamp
of the new packet, i.e. ,P. ;, and the sensor time stamps stored in the buffer, i.e. ,(;B),
whether to incorporate the new packet in the appropriate position in a new buffer (line 8) or
to discard the packet. Recall that the left subscript indicates the corresponding element of
the associated set.

This buffer design has two main advantages. First, it is optimal in the sense that the latest
packets according to the actual sampling order are stored subject to the condition of limited
buffer size. Second, the impact of packet reordering is countered successfully, as long as the

time stamp of the latest arrived packet is not too old. In this case, the packet is discarded.

Algorithm 5 Buffer X
Input: buffer size N + 1
1: Initialization: -global time ¢ =0
-buffer index £k =0
-buffer By = {{0,0,0},...,{0,0,0}}, |Bo| =N +1
2: for all t € Ry do
3 if t =¢; then
4 Set: termination condition < false and i + N + 1
5: while termination condition = false and 7 > 0 do
6
7
8

if QP'J > 2(@Bk) then
Increase buffer index: k < k + 1
Update buffer by inserting packet P. ; at the i-th position:

Bk = {Qkah ey infla P-,ja i+1Bk717 ey N+1Bk71}

9: Set: termination condition < true
10: end if

11: Decrease position index: ¢ <7 — 1

12: end while

13: end if

14: end for
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To reduce the occurrence of this effect, the buffer size N + 1 can be adjusted accordingly.

For consistency with the established notation in the estimation framework, we number the
elements, i.e. the packets, and subscript the corresponding quantities, i.e. the sensor and
arrival time stamps, in the buffer By, for £ € Ny, from & — N to k. Therefore, we introduce

the following notations.

Notation 3.2.1. Thesets 7, 2 {k—N,k—N+1,...,k}, Z, 2 T\{k— N} and Z; = T\ {k}
denote sets of indices corresponding to the buffer By. The abbreviations t_l-|;C and t;, de-
note for ¢ € Z; and k € Ny, the sensor time stamp and the arrival time stamp stored
in the (i — k+ N 4 1)-th packet in the buffer By, respectively, i.e. & £ J(i_ksnp1Br) and

tik = 5(iksn11Br)-

Figure 3.2 illustrates the functionality of the presented buffer decision logic. A cross on the
upper timescale represents an unknown sensor time stamp in global time ¢ of the corresponding
packet P;. These packets are transmitted over the network Xy and arrive after different
unknown time delays 7; at the estimator site, provided no packet drop occurs. A cross on
the lower timescale depicts the arrival time stamp in global time ¢ of the corresponding
augmented packet P; ;. Note that packet overtaking occurs whenever two arrows intersect.
The resulting buffer sequence {B;}?_, for a buffer size of N +1 = 2 is depicted underneath the

augmented packets. To illustrate the introduced notation, the sensor and arrival time stamp

DDA

T A%
1

Ti--mmm -

S

Figure 3.2: Illustration of the buffer decision logic and the introduced notation.
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abbreviations are highlighted for £ > N + 1 = 2. For instance, the following relations hold

52\2 = 2(262) = E3|3 = 2(283>-

3.3 Clock Model

The buffer provides among other things the information when a measurement has been taken
according to the local sensor time t. However, without any knowledge about the relation
between this local sensor time ¢ and the global time ¢, it is impossible to know when a
measurement was taken in global time. The common remedy to this problem is to utilize clock
synchronization protocols to establish a common notion of time. However, these protocols
have two severe drawbacks. First, most protocols require bidirectional communication which
is prohibited by Assumption 7. Second, these protocols consume bandwidth which should not
be underestimated and reduce the possibly limited energy supplies of sensor nodes. Thus, we
seek for an alternative solution. Although we do not utilize clock synchronization protocols,
we can benefit from the a basic idea of these protocols, namely, to model the clock dynamics
as a linear system. In general, the clock function C(t) representing the time of a clock is

modeled as
C(t) =at+p, (3.8)

where a € Ry is the clock skew (frequency difference) and g € R is the clock offset (phase
difference) (Wu et al., 2011). In the long term, clock parameters are subject to changes due
to environmental or other external effects such as temperature, atmospheric pressure, voltage
changes, and hardware aging (Vig, 1992). But for sufficiently short periods of time, we can

view the clock parameters as constant. This leads directly to the following assumption.

Assumption 8. The relation between the global time ¢ and the local sensor time ¢ is given
by the clock model

t=apl+ B teT= [fka\k, £k|k} C Ry, k& Ny, (3.9)
where o, € Ry and S € R represent the clock skew and the clock offset, respectively.

A graphical representation of Assumption 8 is illustrated in Figure 3.3. Although both
clock parameters are in general unknown, Assumption 8 enables us not only to recast (3.4)

in global time
y(agtir + Be) = h(x(ou ti, + Bi)) + v(aw tye + Br), 1 €N, (3.10)

but also to express the time delay 75, of the i-th packet in the buffer By as a function of the
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sensor time ¢
A

sensor clock

slope = .

» global time ¢

Figure 3.3: Illustration of the relation between the global time ¢ and the local sensor time t
in the time interval ¢ € 7.

clock model parameters
Tk = bijk — Qutie — B, 1 €L, k€ Nyyq. (3.11)

This approach will be key for the presented centralized moving horizon strategies as well
as for the subsequent analysis. Instead of considering the time delays explicitly like in the
theory of time-delay systems (Richard, 2003), we can deal with the time delays implicitly by
investigating the two unknown parameters of the clock model.

For consistency with the established notation in the estimation framework, the following

notations are introduced.

Notation 3.3.1. The abbreviation @;;, of a time-depending vector x(t) denotes for i € I,
and k € Ny its value at the global time ayt;x + B, 1. €. @i = x(oti, + Bi). Similarly, the
abbreviation &;;, of an estimated time-depending vector &(t) denotes for i € Z, and k € Ny

its value at the estimated global time dkt_“k + Bk, ie &y = :fc(ézkf,-|k + Bk)

Consequently, the measurements y(t;) in the buffer B, can be written in global time as
Yip = h(xip) + v, i €Ly, k€ Npyyy. (3.12)

Note that this notation as well as the associated meaning are extensions of the usual ones in
the estimation framework to the networked scenario. In fact, both notations are identical for
the nominal case, i.e. without the network >x and with synchronized clocks.

For the later analysis, we additionally introduce the following notations.

Notation 3.3.2. The sets Tj, 2 {te Rolowti + Br < t < aglip + B} define for i € 7,
and k € Np,; all admissible global times between two consecutive measurements in the
buffer B,. The union of these sets T £ Uiez, Tiji denotes for k& € Nyy all admissible
global times between the first and the last measurement in the buffer By. Similarly, the sets
Tiw 2 {t € Rolaxtip + B < t < Qytisa + B} define for i € Ty, and k € Ny, all admissible
estimated global times between two consecutive measurements in the buffer B;. The union of
these sets 7?, = Uiez, 77‘ x denotes for k& € Ny all admissible estimated global times between

the first and the last measurement in the buffer B;,.
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3.4 Update Step of the Centralized Moving Horizon

Observer

Before presenting the update step of the CMHO, we need a suitable mathematical formulation
for the discrete-time states ;) as well as for the estimated counterparts &;. These are re-
quired for expressing the measurements y,, and the estimated counterparts g, corresponding
to the buffer By, which are described by the measurement model (3.12).

The continuous-time nonlinear system defined in (3.2) without state disturbance and with
the initial value corresponding to the buffer B can be seen in the upper left of Figure 3.4.

The discrete-time states ;) are derived by integrating (3.2) over the sets T, for i € 7 and

continuous time, t € T or T discrete time, i € Zy,
s s
&(t) = f(a(t), u(t)) I i By B
]
< s =zt [ fa.u)d
+—
a:(ak 'Ek—N|k+ﬂk) = Tr_N|k ag tig+Bk
e e
T 2 5, Gty 1 )k +Br
%‘; 2(t) = f(2(t), u(?)) L
3 S T R COROY
g #(ax th_nik + Br) = Bk & By p+Bk

Figure 3.4: Relation between the mathematical formulation of the true and estimated system
in continuous and discrete time for the CMHO.

are depicted in the upper right of Figure 3.4. The estimated discrete-time states &, are
derived by copying the equation for x;; and then replacing all unknowns by their estimated
counterparts, see the lower right of Figure 3.4. In order to evaluate the estimated states &;,
however, &(t) is required which is the solution of the associated estimated continuous-time
nonlinear system depicted in the lower left of Figure 3.4. Note that the estimated dynamics

are able to reflect exactly the true dynamics.

Now we can define the update step of the CMHO within the presented moving horizon

framework (cf. Section 2.1) as follows:

Definition 3.4.1. The update step of the centralized moving horizon observer is a constrained

optimization problem of the form

k
min >, ik (Y, R(Zipr)) (3.13a)
B j=k—N
a:k_N‘k,...,:Ek“C
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subject to:
R R g tip1)ptBk R -
Ei1e — Tk — / o f(@&@),u(t)dt=0, i€l (3.13b)
Ak tik+Bk
Ci|k(Ai|k) 0, ¢ I (3.13C)

The different components of the problem are given by

© cost function (3.13a):

Although the cost function is formulated in a general manner for consistency with the

CMHE, it is defined as a least-squares approach

k k
A~ B oA N 1
Jk(amﬁkamk—Mka---awHk Z ilk yz|k7 $z|k 5 Z Hh wz|k yz’\kHQ' (3.14)
1=k—N i=k—N

O state constraints (3.13b):

These equality constraints combine the system dynamics (3.2) with the clock model (3.9)
by expressing (3.2) in integral form. It is important to note that the estimated clock pa-
rameters appear in the integral bounds. This leads to the fact that not only the estimated
measurement values are, as usual, subject to the optimization formulation but also the

estimated measurement times.
@ state constraints (3.13¢):

These inequality constraints are optional and enable the incorporation of restrictions for
the states and disturbances, see Section 2.1. Special care must be taken to guarantee

non-emptiness of the feasible set.
@ clock parameter constraints (3.13d):

This inequality constraint is optional and enables the incorporation of additional infor-
mation about the clock parameters. This can be useful, e. g., if some properties about the

quality of the clock hardware is known, like its precision.

The optimal solution to this NLP can be derived by means of the methods presented
in Section 2.3. However, calculating the optimal solution in a few milliseconds, which is
necessary for a real-time application, is a challenging and difficult task and still an active area
of research (Diehl et al., 2009). To relax this problem, we propose to compute a suboptimal
solution instead of the optimal one. This suboptimal solution has to satisfy the decreasing

condition

Jp < &Ji—1, k€ Nyyq, (3.15)
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where & € [0, 1] are the decreasing factors and where the initial cost function value Jy is
the cost function value of the N + 1-th step before the optimization, i.e. Jy = J% +1- Note
that the cost function values itself are used as a measure of optimality. The sequence of the
decreasing factors {¢;} determines on the one hand the solution time and on the other hand
the convergence speed. We will show in Chapter 6, that the suboptimal approach is sufficient
for the stability of the CMHO.

A consequence of the suboptimal approach for the NLP (3.13) is that its formulation as a
simultaneous approach is no longer suitable. As discussed in Section 2.3, this method has the
property that the trajectories are only continuous for the optimal solution. This is problematic
for the suboptimal approach since the estimation quality of the CMHO depends only on the
estimation quality of dk,Bk and £, see Section 3.7. If the trajectories are discontinuous, the
cost function and therefore the decreasing condition (3.15) is no longer a reliable measure for
the estimation quality of &kﬁk and &), and thus for the CMHO. To resolve this issue, we
propose to transform the NLP (3.13) into sequential form where the trajectories are always

continuous. To this end, we define the overall optimization variable corresponding to the
buffer B as

Py 2 col(u, B, Tr_npk) € PCR™, (3.16)

The constraint (3.13b) uniquely determines &;, for i € Z, if p,, is fixed. Thus, a function
&(t, P, w) can be defined that satisfies (3.13b) for all p,..

Definition 3.4.2. The function @(t,ﬁk, u) is a mapping & : T x P x U — R"™ which satisfies

0 .
i) 0t o) = PP ul), (317
) b(antenp + Br, P, w) = T i (3.17b)

In accordance with the introduced notation, q@i‘k(ﬁk, u) denotes qﬁ(&k tije + Bk,ﬁk, u).

Consequently, we can remove the constraint (3.13b) in the optimization problem (3.13) by

substituting the function cﬁi‘k(ﬁk, w) with ;.

Definition 3.4.3. The update step of the centralized moving horizon observer in sequential

form is
k A
min Z ik (yi|k7 h<¢i|k(ﬁk7 u))) (3.18a)
Pr j=k—N
subject to:
cip(Py(Pr,w) 20, €T, (3.18h)
dy, (6, Br) > 0. (3.18c¢)



70 Chapter 3 Centralized Moving Horizon Strategies

This leads to the sequential approach, where in each optimization iteration, the two steps,
system simulation and optimization, are performed sequentially, one after the other. Besides
the suitability for the suboptimal approach, the advantage of this method is the strongly
reduced variable space compared to the problem (3.13). However, the computation of the
derivatives is more costly, but there is a certain structure in the problem which will be fully

exploited in Chapter 4.

3.5 Update Step of the Centralized Moving Horizon

Estimator

The update step of the CMHE is based on the same ideas as the update step of the CMHO.
However, the situation is significantly aggravated by the measurement and state disturbances.
For instance, the latter has to be considered in the derivation of a suitable mathematical for-
mulation for the discrete-time states x;;, and for the estimated counterparts £;;, corresponding
to the buffer Bj.

The continuous-time nonlinear system defined in (3.2) with the initial value corresponding

to the buffer By can be seen in the upper left of Figure 3.5. The discrete-time states x;;, are

continuous time, t € T or Ty discrete time, i € Ty,
( e = =
ap i1k +Bk ap tiyy |k Bk B
z(t) = f(x(t),u(t)) + w(t
| 0= w0+ l N wieae = @i + / (), u(®)) dt + / w(t) dt
£ _ ar bk +Bk ag, ) +Bk
z(ok tk—N|k + Br) = Tp—N|k —
L \_ = Wk )
= P
s e N
5 & 2 A G tip1tBr
= 2(t) = f(2(t), u(t)) + @(t) L
g Tit1k = ik + / F(&(t), w(t)) dt + W
S r 'y
Bl 2(Grtp—nik + Pr) = BNk G By +Bre

\—

Figure 3.5: Relation between the mathematical formulation of the true and estimated system
in continuous and discrete time for the CMHE.

derived by integrating (3.2) over the sets T for ¢ € Z, and are depicted in the upper right
of Figure 3.5. Note that w; are the integral values of w(t) over the sets T for i € Zy.
The estimated discrete-time states &;;, are derived by copying the equation for x;;, and then
replacing all unknowns by their estimated counterparts, see the lower right of Figure 3.5. Note
that ;) are for i € 7. the estimates of wj|;. In order to evaluate the estimated states &;,
however, &(t) is required which is the solution of the associated estimated continuous-time
nonlinear system. This system is depicted in the lower left of Figure 3.5, where w@(t) is an
estimate of w(t). It is important to note, that, in general, @w(t) and thus the estimated

system itself cannot be defined uniquely although their integrated representation is unique.
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In other words, this means that, in general, @w(¢) cannot be an exact copy of w(t). On
the one hand, this is due to the problem of measuring only the accumulated impact of the
continuous disturbance w(t) at discrete times. On the other hand, this is due to the absence
of knowledge about the characteristic of w(t), see Assumption 1. Therefore, we make the

following assumption to relate uniquely @(t) with ;.

Assumption 9. The estimated state disturbance is a piecewise constant function  : T
W C R" defined as
A 1

’lf)(t) = — ’lf)ﬂk, t e 7Az|k, 7 € Tk, ke NN+17
O4]<:Tz'|k

A T — . . . .
where Ty, = ti41x — tijx is the difference between two consecutive measurement time stamps

in the buffer B;.

This choice expresses W(t) as a zero-order-hold approximation of the determinable integral

values ;) and satisfies the integral relation

dk£i+l\k+3k . . =
[ W(t)dt = Wy, €Ly, ke Nyyi.

Gy, ﬂ'\k"‘ﬁk

Now we can define the update step of the CMHE within the presented moving horizon frame-

work (cf. Section 2.1) as follows:

Definition 3.5.1. The update step of the centralized moving horizon estimator is a con-

strained optimization problem of the form

k k—1
P i=k—N i=k—N
Lk—N|k>Lk|k
Do N D1k (3.19a)
subject to:
. . QkliprtBe R o
Biva — B — / ST @), u(t) dt — by, =0, i €T, (3.19b)
Aty pt+Br
ik (i, Wi) > 0, i €Iy (3.19¢)
ke (Zrpk) > 0, (3.19d)
dy. (6, Br) > 0. (3.19)

The different components of the problem are given by

© cost function (3.19a):

Depending on the characteristics of (0), w,. and vy, different formulations based on
e. g. the ly-norm, the las-norm or the Huber loss-function are appropriate for the cost

function. To retain this possibility, the cost function is formulated in a general manner.
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However, due to Assumption 1, a natural criterion to define the terms of the cost function

consists in resorting to a least-squares approach.
@ first term:

This term penalizes the distance between the predictions ay,, B, Ty Nk derived in the
previous buffer By_1 and the corresponding optimization variables Gy, Bk, Tr_nNpk of
the current buffer By,. Usually, these predictions are the (sub)optimal values derived
in the previous buffer, i.e. ay = Gup_1, By 2 ﬁAk_l and Tp_N|k = qg(dk_l Eka\k +
Bk_l,ﬁk_l,u). The purpose of the first term is twofold. First, it enables the incor-
poration of information which is not explicitly accounted for in the current buffer,
see Section 2.1. Second, it guarantees uniqueness of the solution to the optimization
problem even if the current problem is unobservable, see Chapter 5. The nominal

least-squares choice for the first term is

2
1 dk A
Ly (&, Br, B> Ok Brs T nNjk) = 5 Be | =1 Bw ; (3.20a)
Ty Ty_
k—N|k h=Nk] || p-1
where Pyt > 0 determines the weight that is given to the predictions relative to the
other terms in the cost function. If we have high (low) confidence in the predictions

then P;" is chosen large (small).
@ second term:

This term penalizes the distance between the measurements y,,, stored in the buffer By,
and the corresponding estimated measurements h(&;). The nominal least-squares

choice for the second term is

k k
1
> Tir(Yap: h(@ix)) =5 Yo (@) — Yael R (3.20D)
1=k—N i=k—N

where R™' > 0 determines the weight that is given to the measurement model
relative to the other terms in the cost function. If we have high (low) confidence in

the measurement model then R~ is chosen large (small).
® third term:

This term penalizes the state disturbances corresponding to the buffer By.. The pur-
pose of the third term is to guarantee uniqueness of the solution to the optimization

problem, see Chapter 5. The nominal least-squares choice for the third term is

1 k—1 R
Z U p (W) = =5 Z ||’wi|k||zg—1, (3.20¢)
i=k—N i=k—

where Q™ > 0 determines the weight that is given to the system model relative to
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the other terms in the cost function. If we have high (low) confidence in the system

model then Q" is chosen large (small).
@ state constraints (3.19b):

These equality constraints combine the system dynamics (3.2) with the clock model (3.9)
by expressing (3.2) in integral form. It is important to note that the estimated clock pa-
rameters appear in the integral bounds. This leads to the fact that not only the estimated
measurement values are, as usual, subject to the optimization formulation but also the

estimated measurement times.
O state (3.19¢) and disturbance constraints (3.19d):

These inequality constraints are optional and enable the incorporation of restrictions for
the states and disturbances, see Section 2.1. Special care must be taken to guarantee

non-emptiness of the feasible set.
@ clock parameter constraints (3.19¢):

This inequality constraint is optional and enables the incorporation of additional infor-
mation about the clock parameters. This can be useful, e. g., if some properties about the

quality of the clock hardware is known, like its precision.

The optimal solution to this NLP can be derived once again by means of the methods
presented in Section 2.3. However, with a real-time application in mind, just like in the
CMHO case, we propose to compute a suboptimal solution instead of the optimal one. This

suboptimal solution has to satisfy the decreasing condition
Jr < max {gk’kalj (5]} , ke NN+1, (321)

where &, € [0, 1] are the decreasing factors, 6; € Ry is a bound for the optimal cost function
values and where the initial cost function value Jy is the cost function value of the N + 1-th
step before the optimization, i.e. Jy = Jg +1- Note that the cost function values itself are
used as a measure of optimality. The sequence of the decreasing factors {§;} determines on
the one hand the solution time and on the other hand the convergence speed until the cost
function values reach the bound ¢;. This bound is necessary because the cost functions of
the CMHE cannot be made arbitrarily small as contrary to cost functions of the CMHO, see
Chapter 6.

As in the case of the CMHO, the consequence of the suboptimal approach is that the
formulation of the NLP (3.19) as a simultaneous approach is no longer suitable. To resolve
this issue, we propose to transform the NLP (3.19) into sequential form. To this end, we

define the overall optimization variable corresponding to the buffer B, as

Dy, 2 col(Gu, By B N D iy - - - W) € P C R™. (3.22)
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The constraint (3.19b) uniquely determines &;;, for i € Z if p, is fixed. Thus, a function
&(t, Py, w) can be defined that satisfies (3.19b) for all p,.

Definition 3.5.2. The function ¢(t, Py, w) is a mapping ¢ : T x Px U — R™ which satisfies

i) %f(t,ﬁk, u) = f(@(t, Py, w), u(t)) + b(t), (3.23a)
i1) Qg(@k te-nik + Bk,ﬁk, u) = Ep_ N (3.23b)

In accordance with the introduced notation, $i|k(ﬁk, w) denotes ¢(dy, bk + Brs Prr ).

Note that in contrast to the CMHO, the function qg(t,ﬁk, u) of the CMHE also depends
on the estimated state disturbance sequence {W;;},.7. By utilizing Definition 3.5.2, we can

remove the constraint (3.19b) in the optimization problem (3.19) by substituting the function
& (D, w) With ;.

Definition 3.5.3. The update step of the centralized moving horizon estimator in sequential

form is
A _ k R k-1
H%in Li(Go, B Broniks Qs By Trmnie) + D Tap( Wi B( @i (B w)) + D2 Wap(ypr)
r i=k—N i=k—N

(3.24a)

subject to:
Cik(Pipp By w), i) >0, i €Ty (3.24b)
ki (B By, w) > 0, (3.24c)
di (6, Bi) > 0 (3.24d)

This leads to the sequential approach, where in each optimization iteration, the two steps,
system simulation and optimization, are performed sequentially, one after the other. Besides
the superior suitability for the suboptimal approach, the advantage of this method is the
strongly reduced variable space compared to the problem (3.19). However, the computation
of the derivatives is more costly, but there is a certain structure in the problem which will be

fully exploited in Chapter 4.

3.6 Choice of the Initial Conditions

The time until a (sub)optimal solution to the optimization problem of the CMHO (3.18)
and the CMHE (3.24) are found, depends mainly on two facts: an efficient optimization
algorithm and a proper choice of the initial conditions. The better the latter are, the faster
the solution is found. Two consecutive optimization problems of both, the CMHO (3.18)

and the CMHE (3.24), are similar in the sense that two consecutive buffers are identical
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except one packet. Thus, we use a so-called “warm-start-strategy” to initialize the current
optimization problem. This means that the initial conditions of the current optimization
problem are taken from the solution of the previous one. Since the optimization problems are
almost identical, the expectation is that the (sub)optimal solution of the previous problem
is also close to a (sub)optimal solution of the current problem. Consequently, for all but the
very first optimization, i.e. k € Ny, 9, we choose the initial values as follows. The clock

parameters are initialized as

& = 1, (3.25a)

B2 = B, (3.25h)

and the initial value for the state is

@Z_Mk = Qg(dk—l Ek—N|k + Bk—lyﬁk—lv u), (3.25¢)

where the function ¢(-) has been defined for the CMHO and the CMHE in Definition 3.4.2
and 3.5.2, respectively. The initial values of the state disturbance sequence {wj; },7 required
by the CMHE depends on the position j € [k — N, k] of the latest arrived packet in the
buffer By,

o W1, 1=k—N,..., k=2
if j=k:j, =

wi\k—l; Z:]{?—N,,j—2

_ b=tk

Wj—1|k-1, 1=7—1

. . A~ tie—1—ti_1|k—
fk—N<j<k:ag ="/~ e (3.25d)
_ tj+1\k7—tj\k 'lf] i :j
Lik—1—tj—1k-1 j=1k=15
W;—1|k-1, Z:j+177k_1
) Ek—N+1\k_*£k—N|k Wy Nib—1 i—k_N
e can0 ) e N1tk 14 N k-1 —1+Nik=1s -
ifj=Fk—N:dy,, = " ! .
Wi—1]k-1, Z:k—N+1,,]{Z—1

The case 5 = k reflects the nominal case without packet reordering, i.e. the latest arrived
packet in the current buffer is the one with the latest information. In this case, no information
about the latest disturbance is available in the previous solution. Thus, Wj_y, is initialized
by 0. In the remaining two cases, packet reordering occurred, i.e. the latest arrived packet in
the current buffer is not the one with the latest information. In this case, information about
the new disturbances w;_,;, and @;, if j > k — N, and @W,_np, if j = k — N, is available
in the previous solution. Thus, these new disturbances receive their initial values by linearly
dividing the respective state disturbance from the previous solution w;_ i1, if 7 > k — N,

and wk—l—&—N\k—l, lfj =k —N.

However, for the very first optimization, some proper initial guesses have to be provided.
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This is especially difficult for the clock parameters &y,; and BNH. Fortunately, these two
values are not required right away from the start for the prediction but only when the N +1-th
packet arrives. Therefore, the information stored in buffer By i can be used to derive proper
initial guesses.

In the following, we present two methods for finding proper initial guesses 4%, and va 41
which differ in their complexity, computational load and the achieved accuracy. The idea of
both methods is first to find an admissible region for a3, and Bf\, +1 which is then used to
generate proper initial guesses. Both methods are afterwards illustrated and compared with

each other by an example.

3.6.1 Initial Conditions for the Clock Parameters: Method 1

The idea of the first method is to upper and lower bound the time delays 7; 541 of each packet
in the buffer Byy; by some provided guesses Tiin and Tmax, respectively, which yields with
(3.11) the inequalities

v+ — Qg tinet — Bygr = Tmins @ € Ing (3.26a)
tiin+1 — O tive1 — Bt < Tmax, @ € I (3.26b)

Note that the bounds 7, and 7.« do not have to be tight or even true in order to yield

some proper initial guesses for the optimization. The inequalities (3.26) define the polytope

as
N+1
Mpolytope -

. € R?
ﬂN-{-l

EiINJrl 1 a4
1] By

< [_%min + tiN+1

Tmax — ti|N+1

] : z’eINH}. (3.27)

—ti|N+1

A reasonable choice for the initial conditions &3, ; and B]OV +1 would be the center of Mqiytope-
However, its determination involves costly numerical calculations, like finding the inequalities
in Mpoiytope Which are actually necessary for describing the domain of Mygiytepe and the
subsequent computation of its vertexes, which are inappropriate for real-time application. An
alternative choice is the center of an easy to compute subset of Myoiytope. To this end, ng
search directions s; € R? have to be provided, e. g. the unit vectors. Then this subset can be
formulated as the polygon Myoiygon = {91, - -, g, } with the vertices g; € R? resulting from

the solution of the linear programs

do
= arg max s [ NH] , i=1,...,n, (3.28)

A~ i AO
[&?erpﬁ?\/Jrl]TeMpolytope /BN+1

A proper choice for the initial conditions &%, and §3.; is the vertex center of Mqygon

A0 1 ns
[OfN“] -—Yg. (3.29)

By 11 Ns i1
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3.6.2 Initial Conditions for the Clock Parameters: Method 2

The idea of the second method is based on the causality of events. This means that the first

packet in By i cannot be transmitted in negative time, i.e.
Ay tiyn + va+1 >0, (3.30a)
and that the last packet in By, cannot be received before being transmitted, i. e.
Gy rtvsin1 + B]O\H-l < EN41N1- (3.30b)

Moreover, it is reasonable to assume that the clock frequency error is bounded around the

nominal value 1, i.e.
|0y — 1] < da. (3.30¢)

These inequalities define the trapezoid Miapesoid = {91, 92, g3, g4} With the vertices g, € R?

given in Table 3.1. A proper choice for the initial conditions &%, and Bj’\, 41 is the vertex

Table 3.1: Vertex coordinates of the trapezoid Miyapesoid = {91592, 93,94}

vertex @-coordinate [-coordinate

g 1 —da —(1 = ba)tnsins1 + Enga v
9o 1+ da —(1+ 0a)tni1n+1 + EN1 N1
gs 1+ 04 — (14 da)tin+1
g4 1 —da (1 5a) 1|N+1

center of M apesoia calculated as

A3 1 & 1
v SSg = | . . . (3.31)
4 3(

B tNF1N1 — ENpN 41 — TNgl)

Note that this result is independent of 4.

3.6.3 lllustration and Comparison of Method 1 and Method 2

Both proposed methods are applied to a generic buffer Bs, for which the corresponding

values are given in Table 3.2. For method 1, the bounds are chosen as 7,;, = 0s and
Fmax = 0.6s and the search directions as s; = [2,1]7, sy = [-2,—1]T, 83 = [-1,1]T and

sy = [1,—1]T. The strategy of method 1 and method 2 for finding proper initial guesses
are illustrated in Figure 3.6(a) and 3.6(b), respectively. The lower bounds (3.26b), (3.30a)
for B;’VH, the upper bounds (3.26a), (3.30b) for B}’VH and the bound (3.30c) for a3, are

shown as solid green, dashed blue and dash dotted red lines, respectively. The true value
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Table 3.2: Relevant values corresponding to the generic buffer Bs.

description symbol i=1 =2 =3 =4 =5
sensor time stamp fi|5 1.122s 1.450s 1.776s 2.005s 2.280s
time delay Til5 0.280s 0.348s 0.233s 0.298s 0.378s
arrival time stamp ;5 0.626s 1.088s 1.364s 1.704s 2.114s
15 : 1 — :
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N X~ \:\\\\\\\\ : > ~
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(a) Method 1. (b) Method 2.

Figure 3.6: Illustration of different methods for finding proper initial guesses 4%, ; and BAX, 41

l[anyi1, Bnvs1] = [1.2,—1s|, the vertices g, and the resulting choices of the initial values
(A% 415 B 1]method 1 = [1.322, —=1.2018], [4%41, B%41)methoa 2 = [1, —0.6445] are depicted as
a vertical cross, as diagonal crosses and as point markers, respectively.

Here and in general, the advantage of method 1 is the more accurate choice of the initial
values. This is especially true if the clock skew of the sensor ayy,; significantly differs from 1.
However, the price to pay for this advantage is the increased complexity, the higher compu-
tational load and the in advance determination of the parameters Tin, Tmax and s;. These
facts hamper a real-time application of the centralized moving horizon strategies. Therefore,
the recommendation is to apply method 2 whenever the sensors are equipped with accurate
clocks. For low-cost sensors which possess low-accuracy clocks, however, method 1 might be

necessary to get proper initial values.

3.7 Prediction Step

The update step provides information about the system at the discrete times when a new
packet arrives and the buffer changes. However, due to the time delays affecting the packet
transmissions, the time at which the latest information about the system is gained in the
update step lies in the past and is not the current time ¢ where the actual state estimate is

required. Moreover, the state estimates have to be provided continuously and not only at dis-
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crete times. To address both issues, we define the state prediction function g?)pre(t, tini, Lini, W)

as follows.

Definition 3.7.1. The state prediction function qz,’;pm(t, tingy Bini, W) 1S @ mapping (ﬁpm : [ting, 00]
xRy x R™ x U +— R™ which satisfies

. OPpre, - ; .
Z) 8: (t> Ling, Ling, u) = f(¢pre(t7 Lini, T inis u), U(t)), (332&)
ZZ) $pre(tim'> tinia iim’a ’Ll,) = a/}zm (332b)

Based on the state prediction function, we can express the actual estimated continuous-time

state &(t) as

A

¢pre<t707§30’u)7 te [OatN+1[
NOPR A o (3.33)
Dore(t, Gty + Bi, Biji,u), t € Tjne%iitﬂz’,jfélgi tijiv1|> € Nygr.

This means that the actual estimated state at time ¢ of both, the CMHO and the CMHE, is
the solution to the undisturbed nonlinear system, however, with changing initial times and
initial values. Until the N + 1-th packet has been arrived, the initial time and the initial value
is 0 and &°, respectively. Afterwards, the latest information gained in the latest update step
of the respective CMHS is used to update the initial time and the initial value to &; t;; + 5’@
and £;;, respectively. Note that the cumbersome formulation of the prediction intervals is
necessary since not every arrived packet is incorporated in the buffer and thus the arrival time

stamps t; cannot be directly used to define the prediction intervals.

3.8 Parameter Estimation

Often, not all parameters of the nonlinear system g are known in advance, i.e. the func-
tion f(-) in (3.2) depends also on an unknown parameter vector @ € R™. This problem can

be tackled within the presented framework by imposing a model on the parameter variation

a’(t> - fparameter(a’(t)v m(t), u(t>> (334)

and treating the parameter vector a as additional states of the system. If no explicit model
for the parameter variation is available, the parameter vector can be assumed constant, i. e.
a(t) = 0. In this case, the resulting estimated parameter sequence {@;}, ., can reflect
constant as well as slowly time-varying parameters. This is reasonable since parameters
typically vary much slower than states.

One may wonder if the unknown clock parameters &; and Bk could be treated the same
way. The answer to this question is negative since the function f(-) in (3.2) is independent
of the clock parameters. The clock parameters come into play only in the respective integral
formulation (3.13b) and (3.19b) of the system instead of its differential form (3.2).
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3.9 Overall Algorithm

The presented components are assembled in Algorithm 6 to yield the CMHO and the CMHE
which solve the Problem 3.1 and 3.2, respectively. The algorithm is identical for the CMHO
and the CMHE except in the update step (line 16) and in the required input which is summa-
rized in Table 3.3. Whenever a new packet arrives (line 3) with suitable information (line 6),
the buffer is updated (line 8). If enough packets have been arrived (line 10), the information

in the buffer is extracted (line 16) to update the actual state estimation (line 23).

Algorithm 6 Centralized moving horizon observer /estimator 3 (Black, and red text
color valid for CMHO & CMHE, , CMHE only, respectively.)
Input: Initial parameters according to Table 3.3
1: Initialization: -global time ¢t =0
-buffer index £ =0
-buffer By = {{0,0,0},...,{0,0,0}}, |Bo| =N + 1

2: for all t € Ry do

3 if ¢ =t; then

4 Set: termination condition < false and position index 7 <~ N + 1
5: while termination condition = false and 7 > 0 do
6
7
8

if ,P.; > ,(;B;) then
Increase buffer index: k < k + 1
Update buffer by inserting packet P.; at the i-th position:

Bk - {QBk—la ey in‘—la P~7j7 i+18k’—1a sy N+1Bk—1}

9: Set: termination condition < true

10: if £k > N + 1 then

11: if k=N +1 then

12: Set initial conditions &%, ; and ﬁAj{, 41 by either Method 1 (see
Section 3.6.1) or Method 2 (see Section 3.6.2).

13: else

14: Set initial conditions by the warm-start-strategy (3.25).

15: end if

16: Find a suboptimal solution p, to /(3.24) by the gradient

based optimization methods presented in Chapter 2 with the
derivatives calculated according to the methods derived in Chap-

ter 4 such that the decreasing condition /(3.21) is satisfied.

17: Use the suboptimal solution P, to update the initial time and the
initial value of the prediction step (3.33) to Ay typ + Bk and Ty,
respectively.

18: end if

19: end if

20: Decrease position index: 7 <— ¢ — 1

21: end while

22: end if

23: Predict state &(t) according to (3.33).

24: end for
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Table 3.3: Initial parameters for the nominal CMHO and CMHE.

description CMHO+CMHE  CMHE only restrictions

buffer size N+1 - N+12>(n, +2)/n,
decreasing factors ey k€ Nyog — 1>&& >0

bound — 0 0;>0

initial state &’ - -

initial disturbances - Wyni1, €I —

initial clock parameters:
-Method 1 %min7 7A—max — 7A-rnax > 7A_min Z 0

si,ie{l,...,ns} — —

-Method 2 — — —
weighting matrices — P,;l, k € Nyiq P,;1 >0
— R R'>0
— -1 Q'>0

3.10 Summary

In this chapter, we have presented the CMHO and the CMHE within a common framework for
the undisturbed and the disturbed centralized NCS architecture, respectively. Both strategies
have been explicitly designed to deal simultaneously with the network-induced imperfections
of unknown and variable packet delays which include the possibility of packet reordering,
unknown and variable packet drops, unsynchronized sensor clocks, and limited energy supplies
of the sensors. To overcome these challenges, we have introduced event-based sampling along
with time stamping of the resulting measurements. Moreover, we have proposed an affine clock
model for the sensor clocks and have extended the moving horizon to a buffer logic. This buffer
serves as the information basis for both centralized moving horizon strategies and has enabled
us along with the other introduced steps to formulate the state estimation problems as suitable
optimization problems where we additionally estimate the unknown clock parameters of the
sensors. To achieve a practical feasible implementation of these optimization problems in
real-time and thus of the CMHO and CMHE, we have proposed the following two steps which
significantly contribute to this goal. First, we have introduced a suboptimal approach which
requires only suboptimal instead of optimal solutions. Second, we have provided efficient

methods for generating proper initial conditions for finding (sub)optimal solutions.






Chapter 4

Efficient Derivative Calculation

In Chapter 3, the centralized moving horizon observer (CMHO) and the centralized moving
horizon estimator (CMHE) have been presented. The update step of both strategies consists
of an optimization problem. When solving these problems with the optimization algorithms
presented in Section 2.4, the derivatives of the Lagrangian to each optimization problem is
required. In this chapter, we investigate how the gradient and the Hessian of these Lagrangians
can be efficiently calculated. It is important to note that these derivatives do not only play a
crucial role in the efficient solution of the optimization problems but are also of key importance
for the observability and stability analysis of Chapter 5 and 6, respectively.

After recalling the different derivative calculation methods presented in Section 2.5, the
adjoint method does seem at a first glance like the appropriate and straightforward choice for
computing the gradient. However, the networked situation is far more complex and we have to
consider the whole picture. First of all, the special nature of the optimization problem of the
update steps is reflected in the derivative calculation. The state constraint for both centralized
moving horizon strategies (CMHS) is not anymore a conventional difference equation but
rather an integral equation resulting from the underlying differential equation (cf. Section 3.4
and 3.5) where the clock parameters appear in the integral bounds. This causes the following
severe effects on the sensitivity and adjoint method summarized in Algorithm 3 (page 52) and
4 (page 53), respectively. The difference equations in line 1 and 2 of the former and in line 1 of
the latter are replaced by their differential equations counterpart. Moreover, the calculation
of the derivatives 0 f,/0p in line 3 of the adjoint algorithm is not anymore a simple derivative
calculation but requires the solution of sensitivity matrix differential equations which are
similar to the sensitivity case. The calculation of the solution to these differential equations
is now the dominating computational load for both methods. The number of ODEs that have
to be solved for evaluating the gradient is depicted in Table 4.1. While the sensitivity and
the adjoint method show the best efficiency in the CMHO case, the CMHE case is a clear
vote in favor of the latter. However, the performance of the optimization algorithms does not
only depend on the gradient but also on the Hessian. Law and Sharma (1997) have found by
numerical comparison that for a sum-of-squares cost function, a Gauss-Newton strategy with
the sensitivity method is superior to a quasi-Newton approach with the adjoint method. This

is mainly due to the fact that the Gauss-Newton method provides an excellent approximation
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Table 4.1: Number of ODEs required for calculating the gradient of the Lagrangian.
ODEs for CMHO ODEs for CMHE

finite-difference approximation 2n2 +4n, 2(N + 1)n? + 4n,
sensitivity method n2+ n, (N+1)ni+ n,
adjoint method n2+4 n, 2n2 + n,

of the Hessian almost for free.

Finally, one may wonder why automatic and symbolic differentiation are inappropriate.
The application of the former is hampered by the problem formulation which requires the
manual implementation of a specially tailored ODE-solver for incorporating the influence of
the clock parameters on the state differential equation. The general lack of a closed-form
representation of the solution to this state differential equation renders the utilization of the
latter infeasible.

Based on these considerations, the contribution of this chapter is three-fold. First, we
present for both CMHS a sensitivity method for calculating the gradient of the Lagrangian
for the optimization problem of the respective update step. Second, we exploit the structure of
the state sensitivities resulting from the CMHE case such that the number of ODEs required
for calculating the gradient is independent of the number of optimization variables and equal
to the adjoint case, namely 2n2 + n,. Third, we derive for both CMHS an efficient method
for calculating an excellent approximation of the Hessian of the respective Lagrangian almost
for free for arbitrarily cost functions based on the already available state sensitivities.

The remainder of this chapter is organized as follows. In Section 4.1, we state the problem
formulation. The sensitivity method and the structure exploiting version for calculating the
gradient of the Lagrangian to the optimization problem resulting from the update step of the
CMHO and the CMHE are presented in Section 4.2 and 4.3, respectively. The corresponding
Hessian approximation method is shown in Section 4.4 and 4.5 for the CMHO and the CMHE,
respectively. In Section 4.6, we verify the efficiency of the presented derivative calculation
strategies by investigating a networked continuously-stirred tank reactor. Finally, we conclude

this chapter with a summary given in Section 4.7.

4.1 Problem Formulation

The problem formulations are stated as follows.

Problem 4.1 (CMHO Derivative Calculation). Let the Lagrangian to the optimization prob-
lem of the CMHO update step (3.18) be given by

k k

L pka)‘k Z ik (yi|k7 (¢ ik pk7 ) Z z|k:cl|k pk7 )) - Ngdk(@kaﬁk)a (4~1)

1=k—N i=k—N
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where Ay, = col(Nyj, i € Iy, py,) are the overall Lagrange multipliers and where g?)() has been
defined in Definition 3./.2.

The problem is to calculate the exact gradient OLy(DPy, A,)/0Py, and an approximation of
the Hessian 0% Li(Py, Xy)/0D; in an efficient way.

Problem 4.2 (CMHE Derivative Calculation). Let the Lagrangian to the optimization prob-
lem of the CMHE wupdate step (3.24) be given by

— k‘ A
Li(Br, Ar) = TG, B, Br—niks Qs Brs Boenvie) + O Lige (Wi, (D (B, w))
i=k—N
- & T 4 T, (4 (4.2)
+ > () — | D A Cip(Pipp (Br, w), Wipe) — A, i (D (B, w))

i=k—N i=k—N
- u?dk(@k, 5k)7

where Ay, = col(Nyj, 1 € Ty, ;) are the overall Lagrange multipliers and where &(-) has been
defined in Definition 3.5.2.

The problem is to calculate the exact gradient OLy(Py, Ar)/0D, and an approximation of
the Hessian 0% Ly (Py, X\y)/0D; in an efficient way.

Both problems can be tackled within a fixed buffer B;. Thus, to increase the understand-
ability, we ease the presentation by omitting the subscripts indicating the buffer affiliation.
Moreover, we suppress the arguments of all functions from the notation when the meaning
is clear. It is important to recall that throughout Part II of this thesis including the current

chapter, the Assumptions 1-9 are supposed to hold without explicitly stating them.

4.2 Gradient of the Lagrangian for the CMHO

Following the basic principle of the sensitivity method, the gradient of the Lagrangian (4.1)

can be stated as follows.

Lemma 4.2.1. The exact gradient of the Lagrangian L defined in (4.1) with respect to P is

T ‘ k

aﬁgiTaCiT ._@T
b 4y 0D 0§, Ax 0P 0, op "

(4.3)

where O, /0P are the first-order state sensitivities.

Proof. Equation (4.3) results from differentiating (4.1) with respect to p where the dependence

of quS on P is taken into account by Lemma B.1. n

The straightforward idea to calculate the first-order state sensitivities would be to directly
differentiate the function $Z defined in Definition 3.4.2 with respect to p. However, this

procedure is not viable as no general closed-form representation of the function qAﬁz can be
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given. Due to the fact that 9?’1 is described as a solution to an ODE, a natural approach is
to describe the first-order state sensitivities as (possibly appropriately combined) solutions to
first-order sensitivity ODEs. To this end, we classify the first-order state sensitivities into the
following categories 1 and 2

O¢; _ |0¢; 0¢;  0¢;

= = €1 4.4
aﬁ ad7 8/87 8§3k_N Y Ze Y ( )

category 2 category 1

depending on the required mathematical representation level to fully describe the influence of
the different parameters in p on (ﬂ In other words, this classification answers the question
which level is sufficient to investigate in order to calculate the first-order state sensitivities.
In category 1, the influence of the parameters on qAbz can be fully covered on the ODE level,
i.e. it is sufficient to investigate only the ODE (3.17). In category 2, its integral equation

. ati+p u
$pu)=den+ [ F@puwu)d, i€ (45)

Gl_N+B

is additionally required to fully cover the influence of the corresponding parameters (cf. Sec-
tion 3.4).
First, we tackle the problem of calculating the first-order state sensitivities in category 1.

To this end, the following notation is introduced.
Notation 4.2.1. The abbreviation X () denotes the first-order state sensitivity d@(t) /0% ,_ .

Lemma 4.2.2. The first-order state sensitivity X (t) € R"*"= satisfies fort € T the follow-

ing first-order sensitivity matrix differential equation

X (t) = 873@) X (1), (4.6a)
with the initial value
X (atpn+p) =1 (4.6b)
The unique solution is
X (t)=®(t,atyn+ ) X(atp_n + F), (4.6¢)

where ®(-) € R™*™ denotes the time-varying transition matriz.

Proof. Equation (4.6a) and (4.6b) results from differentiating (3.17a) and (3.17b) with re-
spect to &r_n, respectively. The solution approach for linear time-varying matrix differential
equations and linear time-varying systems (see Kailath (1980, pg. 595-601) or Ludyk (1995,
pg. 40-55)) are identical. Its application to (4.6a) combined with (4.6b) leads to (4.6¢). [
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Next, we introduce the following notation which facilitates the compact description of the

first-order state sensitivities.

Notation 4.2.2. The abbreviation X¢ denotes the solution of (4.6a) at the time &, + 3

with the initial value I at the initial time &, + B :

As previously discussed, we need additionally the integral equation (4.5) for the first-order
state sensitivities in category 2. The idea now is to interpret the integral equation (4.5) as a
parameter integral in terms of & and B and to apply the Leibniz integral rule (Flanders, 1973).
The outcome is combined with Lemma 4.2.2 to yield the desired sensitivities in category 2.
The resulting first-order state sensitivities for both categories are stated in the following

Theorem.

Theorem 4.2.3. The first-order state sensitivities in (4.4) are fori € T

A

a(:bz k—N
_ X! 4,
DB i (4.7a)
0, -, - .
54 =t fi —t-nXI " fiin (4.7b)
0, kN
= f,— X; N 4.7¢c
% f Fr-n (4.7¢)

Proof. Equation (4.7a) is a direct result of Lemma 4.2.2 and Notation 4.2.2. Application of
the Leibniz integral rule (Flanders, 1973) to the integral equation (4.5) reveals

. ati+p 0 _ _

ad @l?k_N—i-ﬂA aéé

which can be further rearranged by the chain rule to yield

o, /@M of o0 0

i e — s dt +t,f; — te-nFri_n-
94 65 n+B O OBlsn 9% f k-NTr_n

k—N

Note that 3&)/8@‘1671\[ and O, n/0a are not identical. The difference between both lies
in the interchanged order of calculating the derivative and evaluating the expression at the

corresponding time. While the latter term vanishes, the former term is

I
13J6)

Qtp N+

0 ¢ _
= hm - (@k_]\[ ‘l— / B R fdt) - _tk—kafN

N t—ateon+B da g

and can be taken out of the integral to yield

A

99,
o0&

/a i+ Of O

Gty n+B 8(73 0Zp_N

=t;f, — (I—i— dt)t_kak_N.
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The term in brackets is the right-hand side of the integral equation corresponding to (4.6a)
and thus identical to X* which proves (4.7b). By noting that 8¢/dj ‘k_N is equivalent
to —f,_n, the prove of (4.7c) goes along the very same lines as the prove of (4.7b) and is
therefore omitted. 0

The overall number of ODEs that have to be solved for evaluating the gradient of the
Lagrangian is n2 + n, since no additional ODEs have to be solved for the first-order state
sensitivities d¢,/0& and d¢p,;/df. Note that the difference between both results from the

different derivative of the clock model (3.9) with respect to the corresponding clock parameter.

4.3 Gradient of the Lagrangian for the CMHE

The main problem of calculating the gradient of the Lagrangian in the CMHE case stems
from the assumption that the estimated state disturbance is a piecewise constant function (cf.
Assumption 9) which significantly aggravates the sensitivity calculation of (/31 Nevertheless,

we follow again the basic principle of the sensitivity method and derive the following Lemma.

Lemma 4.3.1. The exact gradient of the Lagrangian L defined in (4.2) with respect to P is

L or k. 8¢, oY, Kl aw, k. 9. 9T, 9dT
876_8757::2 > o5 > ‘

= = + ~ ~ T AA IJ’)
N 0D 0p, =N 0P TN 0D 09, 9p

(4.8)

where A, /0P are the first-order state sensitivities.

Proof. Equation (4.8) results from differentiating (4.2) with respect to p where the dependence

of (% on P is taken into account by Lemma B.1. n

As in the CMHO case, the straightforward idea to calculate the first-order state sensitivities
by directly differentiating the function ¢A)z defined in Definition 3.5.2 with respect to p is not
viable due to the lack of a general closed-form expression of qﬁ Thus, we describe the first-
order state sensitivities as (possibly appropriately combined) solutions to first-order sensitivity
ODEs. To this end, we classify the first-order state sensitivities once again into the following
categories 1 and 2
0, _ |0§: 0d; 0, 09, 09,

= = €L 4.9
aﬁ 8&7 8/87 a{B\k_N7aﬁ)k_N7 ’8’(2}]9_1 Y Ze Y ( )

category 2 category 1

depending on the required mathematical representation level to fully describe the influence
of the different parameters in p on cZ»Z Recall that this classification answers the question
which level is sufficient to investigate in order to calculate the first-order state sensitivities.

In category 1, the influence of the parameters on qAbZ can be fully covered on the ODE level,
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i.e. it is sufficient to investigate the ODE (3.23). In category 2, the integral equation

“ ati+p A~ .
b =@pnt [ F@Dw) ) vd)d i€T  (410)
atp—N
is additionally required to fully cover the influence of the corresponding parameters.
First, we tackle the problem of calculating the first-order state sensitivities in category 1.

To this end, the following notation is introduced.

Notation 4.3.1. The abbreviations X (t) and “Z(t) denote for j € T the first-order state
sensitivities d@(t)/0&y_n and d(t)/dab;, respectively.

Lemma 4.3.2. The first-order state sensitivity X (t) € R"*" satisfies fort € T the follow-

ing first-order sensitivity matrixz differential equation

X(t) = g(];)(t) X (1), (4.11a)
with the initial value
X(aben+0) =1 (4.11b)
The unique solution is
X(t)=®(t,aty_n+ ) X(ate_n + F), (4.11c)

where ®(-) € R" " denotes the time-varying transition matriz.

Proof. Equation (4.11a) and (4.11b) results from differentiating (3.23a) and (3.23b) with
respect to &y, respectively. The solution approach for linear time-varying matrix differential
equations and linear time-varying systems (see Kailath (1980, pg. 595-601) or Ludyk (1995,
pg. 40-55)) are identical. Its application to (4.11a) combined with (4.11b) leads to (4.11c). [

Note that Lemma 4.3.2 and Lemma 4.2.2 are identical except for the different definition of
the function (}3 The remaining first-order state sensitivities in category 1 are derived in the

following Lemma.

Lemma 4.3.3. The first-order state sensitivities *Z (t) € R"*"= satisfy for j € T and t € T

the following first-order sensitivity matrixz differential equation

0, te ‘U 7.
. 8]3 1 i=k—N
i . )
Z(t)=—t"Z(t)+<{—1I, teT; 4.12a
(t) 3¢< ) Z(t) aT, ;:_1 ( )
0, te T,
1=7+1
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with the initial value

IZ(aty-n+ ) =0. (4.12b)
The unique solution is
Jj=1 4
0, te U T
i=k—N
IZ(t) = @ / teT; (4.12¢)
]+l+ﬁ k=1 .
_ / ®(t,7)dr, te U T,
aT; Jat;+p i=j+1

where ®(-) € R"™*"= denotes the time-varying transition matriz.

Proof. Equation (4.12a) and (4.12b) results from differentiating (3.23a) and (3.23b) with re-
spect to W;, respectively. Note that the piecewise character of (4.12a) is due to the piecewise
definition of @(¢) in Assumption 9. The piecewise matrix differential equation (4.12a) is for
each of the three time intervals an ordinary linear matrix differential equation with corre-
sponding initial value. While the initial condition for the first ordinary matrix differential
equation is given in (4.12b), the initial condition for the second and third one is the final
condition of the first and second one, respectively. The solution approach for ordinary linear
time-varying matrix differential equations is identical to the one for linear time-varying sys-
tems (see Kailath (1980, pg. 595-601) or Ludyk (1995, pg. 40-55)). Its application to the
three cases with the corresponding time intervals and initial values leads to three solutions
which are the three cases in (4.12c¢). O

Evaluating only the non-zero elements in the first-order sensitivities is as costly as solving
(% + %)ng + n, ODEs over 7. To further reduce this complexity, we exploit the common
structure of the first-order sensitivity matrix differential equations. This means that we break
down the problem of determining the sensitivities X (& ¢; + B) and/Z (& t;+ B) on the set 7 to
independent problems on the sets 77, i € T. Afterwards, the solutions to these subproblems
are assembled in a suitable manner to yield the desired sensitivities. The advantage of this
procedure is two-fold. First, several of these subproblems are identical due to the common
underlying structure and thus need to be solved only once. Second, the solutions to these
subproblems can be used to calculate the first-order sensitivities in category 2. To this end,

the following notation is introduced.

Notation 4.3.2. The abbreviations X{ and “Z¢ denote the solutions of (4.11c) and (4.12c)
at the time &t + /3’ with the initial value I and O at the initial time & ¢, + 3 , respectively.
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Lemma 4.3.4. The solution X and “Z{ satisfy for a,b,c € T andd € T witha < d <b < c
the following properties

(¢) X: = X.X; (w) zy = Zj
@) (X3 = X, (v) ‘zy = XyZy,
(447 X* =1 (vi) ‘Z* = 0.

Proof. The proof is based on the properties of the state transition matrix ®(-) which are
stated in Kailath (1980, pg. 599) or Ludyk (1995, pg. 47): (i) ®(te,to) = P(t2,t1) P(t1,t0),
(i1) ®(t1,t0)"" = ®(ty,t1) and (i) P(to,ty) = I. Furthermore, the Notation 4.3.2 implies
together with (4.11c) that X¢ = ®(at, + 3, dt, + 3). The combination of both facts proofs
the properties (i)-(7i7). Writing the solution (4.12¢) in terms of the Notation 4.3.2 and noting
that the solution (4.12¢) is identical to 0 in the first case proofs the property (iv). For i > j,

the solution (4.12c) is transformed by using the properties of the state transition matrix

atg1+8 = A 1 ~T 5 AT A
Z = /— (Al + B, 1) - dr = ®(aty + B, atar + B)Z5, = XTTVZG,
atg+h aTy

which proofs the property (v). The property (vi) is just the initial value O. O

These properties are key to decompose the first-order state sensitivities as follows.

Theorem 4.3.5. The first-order state sensitivities 8@/8@;6_1\; and 8@/8@]- in (4.9) are for
1€1

A

0. o
afb@ = X' X X TN (4.13a)
Lr—N
0. 0, i<j+1 _
S _ / jel. (4.13b)

A . . . . . Y
0w; | XX XNz i

Proof. Equation (4.13a) and (4.13b) are derived by applying the properties stated in Lem-
ma 4.3.4 to the solutions (4.11c) and (4.12c¢), respectively. O

The advantage of this Theorem over the finite-difference approximation and the approach
described in Lemma 4.3.2 and 4.3.3 is two-fold. First, the number of ODEs that have to
be solved over T is independent of N, namely 2n2 + n,. In other words, the complexity of
determining the first-order state sensitivities is independent of the number of unknowns w;
and independent of the number of first-order state sensitivities /Z. Second, each subproblem
can be solved independently and thus in parallel. It is important to note that these advantages
does not only hold for the networked scenario but also for conventional MHESs, see Philipp
(2011a).

Now, the first-order sensitivities in category 2 are considered. As discussed previously, we
need additionally the integral equation (4.10) for the first-order state sensitivities in cate-

gory 2. Just like in the CMHO case, the idea is to interpret the integral equation (4.10) as a
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parameter integral in terms of & and [3’ and to apply the Leibniz integral rule (Flanders, 1973).
The outcome is combined with Theorem 4.3.5 to yield the desired sensitivities in category 2.
In contrast to the CMHO case, however, the Leibniz integral rule cannot be applied directly
to the integral equation (4.10). Due to the piecewise estimated state disturbance w(t), the
integrand f(@(t, P, w), u(t)) + @(¢) is only continuous in 7; but not in 7. Consequently, the

Leibniz integral rule can be applied only to

A

The result is given in the following Lemma.

Lemma 4.3.6. Two consecutive first-order state sensitivities d¢p,/da and quASHl/(()& respec-

tive D¢, /OB and O, /dp satisfy fori € T

o, . 0, w; ; Ly o
&;1 =Xings T tita (flurl + &T> X5 (f + T) 5 ZinWi (4.15a)
b, . 0, w; : w;
i+l xi L . - X . . 4.15b
8/6 Z+16/6+ fz+1+6éﬂ i+1 fl—i_é\éiz‘vz ( 5)

Proof. Differentiating (4.14) with respect to & by means of the Leibniz integral rule (Flanders,
1973) reveals

A

8$i+1 09, alinith 9 w - w;
R S e S CESRS 1) R SR ) R

AN
=a

Performing the derivation in the intermediate term a by repetitive application of the chain-

rule and recalling the Assumption 9 about @ leads to

_of <a¢> a&aw) 0w Of 09 0

of ow _Of 0§ 0¢| _(0f 0d .\
op \oa  owoa) & o¢ 33," da|,

¢ 0w QT

4| and 8¢,/ are not identical. The difference between both lies in the inter-
(2
changed order of calculating the derivative and evaluating the expression at the corresponding

time. The former term is

2 09, - W
o [ ()
T anp 04 (¢ el dt) 26 ! (f it aT)

which is used for the intermediate term a to yield

_Of 0¢ [09, - w; \] (0f 0 W,
" 9d0g] laa tl(’cﬁdﬂﬂ ( ‘”) |

)
I5J6%
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— ¢,, the desired derivative (4.16) is obtained as

96 04 " Janis 06 0d, a@ aT,
. w@f;) . . A (4.17)
Gtiyn - w;
" Jataa (97@’3310 A2T+tz+1<fz+1+ T>_ti<fi+€m>7
e

where the intermediate terms abbreviated with B and C' have to be determined. The term B
results from the integral equation of the corresponding first-order sensitivity matrix differential

equation with respect to q?)l fort € T;, i.e.

—1I.

b [0
atith O O, i+

For the determination of C, the matrix differential equation derived by differentiating (3.23a)
with respect to W for t € T;

ASS

oW 9 0w

o))
&

is compared to the first-order sensitivity matrix differential equation (4.12a) multiplied by

& T; on the same interval ’7A;
~ afA i ~ i ~T

Both matrix differential equations are identical if Oqg/ 0w = &T,'Z is chosen. This fact is
exploited to calculate C' which is the integral equation of these differential equations over T:

Oétz 1"‘[‘3 atl 1+5
cz/ R L AP ) OTiZ + Tdt = aTiZi,, —
O

ati+p 8¢ 8w ati+p
Substituting B and C' in (4.17) concludes the proof of (4.15a). The proof of (4.15b) goes
along the very same lines as the proof of (4.15a) and is therefore omitted. The major difference
is that @ does not depend on 3, i.e. 8127/8@ = 0, and thus the corresponding term C does

not exist. O
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Based on this result, the overall first-order state sensitivities of category 2 can be derived

as follows.

Theorem 4.3.7. The first-order state sensitivitics O, /06 and dp, /05 are fori € T

aAi _ 1—1 A . 1 1—1 ) B R

(f)dz =tif;i — X7V frn + Z (]+1X]+1 — XJ) p = - = Z Iz N’wj (4.18a)
@ j=k—N al’ J a]:k N

0, k—N = 1 N\ W

—= = fi- X vt D ( X7 = Xf) - (4.18b)

98 j=k-N Qalj

Proof. The proof is done by induction. Let S(i) be the statement for d¢,;/dé@ in the above
Theorem. For i = k— N, equation (4.15a) of Lemma 4.3.6 leads together with d¢,_y/d& = 0
to

0y ni1
o0&

Wi-—N - _ Wy—N
= X~ ]NV+10 + N1 (.fk N41 T m) — tkaXﬂ%H (fk—N + AT N)
1

k NZk N+1'Li’k N>
which is equivalent to S(k—N+1),i.e. S(k— N +1) is true. This starts the induction. Now

assume that S(i) is true for some ¢ € Z. Replacing this assumption with d¢,;/da in (4.15a)
of Lemma 4.3.6 and applying the properties stated in Lemma 4.3.4 yields

O, i1 F i k—N - X ) s
T@j ZtXHf L NX@+1X fi_ N+J ;N(]+1X1+1X§ —th7;+1X5> @]ij
. l Z Xl+1]Zk Nw] +tz+1 (fz—i—l + w ) thJrl ( ) _ 71Z1 112)1
CY] k—N T T
. 1
=tipfi — i NXz+1 Fr N+Z ( +1XZ+1 tX”l) aT; a Z "z + g,
Py i YN

which is S(i 4+ 1), completing the inductive step. Thus, by the principle of induction, S(7)
and, accordingly, (4.18a) is true for all # € Z. The proof of (4.18b) goes along the very same
lines as the proof of (4.18a) and is therefore omitted. [

The overall number of ODEs that have to solved for evaluating the gradient of the La-
grangian is 2n2 + n, since no additional ODEs have to be solved for the first-order state
sensitivities 8@ /O0& and 89132- / 63. Note that the difference between both results from the
different derivative with respect to the corresponding clock parameter of the clock model in
Assumption 8 and of the estimated state disturbance in Assumption 9. Moreover, if @(t) = 0,
then Theorem 4.3.7 recovers the result of the CMHO derived in Theorem 4.2.3.

The following corollary summarizes the overall approach for calculating the first-order state
sensitivities defined in (4.9) and is a direct consequence of the Theorems 4.3.5 and 4.3.7

combined with Lemma 4.3.4.
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Corollary 4.3.8. The first-order state sensitivities in (4.9) are fori € Z

oo, - n i—1 yrie — i—1 yrie S
94 =tif;, —te-nX; 1Xze%‘ N+1fk N — ZXz' 1X1;j X;S Z;ij
o j=k—N
1—1 i . ’lf) (419&)
+ 3 XXX (D — 5 X) ,_;
j=k—N aT;
aqgi i—1 yrie — i—1 yrie i+1 (0¥
83 = fi—X; 1Xi—% X N+1fk—N ‘i;NXi 1X¢—%~-X§12 (I Xg+1) @jjﬂj (4.19b)
]_
0,
0% rn =X X0 X N+1 (4.19¢)
Ob. 0, 1<j+1 _
b _ IR eT (4.19d)

0W; | XX XNz i 4

and for i =k — N all identical to O, except 8($k_N/8aA:k,N which is the identity matrix I.

4.4 Hessian of the Lagrangian for the CMHO

The finite-difference method could once again be applied to approximate the Hessian of L.
However, the computational complexity is even higher than in the gradient case. An alterna-
tive and more commonly used method is to estimate the Hessian by applying a quasi-Newton
approximation which measures only the changes in the gradients, see Section 2.4. The draw-
back of this approximation method is that it does not explicitly consider the true structure of
the Hessian which may result in significant deviations from the real one. As a consequence,
the quality of the overall optimization algorithm can be poor, and many costly iteration steps
are required to converge to a local optimum. For this reason, the following approach is pro-
posed to improve the convergence speed and to reduce the computational load by exploiting
the structure of the Hessian.

Applying the chain rule to (4.3) yields the Hessian of L stated in the following Lemma.

Lemma 4.4.1. The exact Hessian of the Lagrangian L defined in (4.2) with respect to P is

0p, 0°Y,; 0, W9, Py 0 dlzmw 0 d
¢’L d)z ¢ ] ¢ J/J, J

5, 0p = 7 0P

where ;u, jd, jci, ;A and jngSi denote the j-th element of u, d, c;, A\; and g?)i, respectively, and
where 89{3i/8ﬁ and 82jgzgi/8ﬁ2 are the first-order and second-order state sensitivities, respec-

tively.
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Proof. Equation (4.20) results from differentiating (4.3) with respect to p where the depen-

dence of q§ on p is taken into account by Lemma B.1. O]

Based on this structure of the Hessian, we partition it into two parts

02

o =H, + H,, (4.21a)

where H contains the second-order derivatives of the cost function and the terms involving

the first-order state sensitivities

Eoo0d. T 92T, 00 EoodimQo) 52 T g za ) g2 q
S L S e S Wyl ()

iZn OP 8@2 S/ op 0¢- j=1

and where H, contains the terms involving the second-order state sensitivities

dim(A 2 0
Z Z (aT (Af acﬁ)) %}g’. (4.21¢)

i=k— J=1 aj¢z a]¢z

The first part H; can be easily calculated due to the already available first-order sensitivities
that were necessary for the computation of the gradient L/0p. A crucial role in the com-
putation of the second part H, plays the second-order state sensitivities. For a discussion
of this topic, we restrict ourselves to the conventional MHE scenario without the network.
Then, three cases can be differentiated for H5 depending on the characteristic of the system

dynamic:

a2
® If 9*f/0¢ = 0 holds, like for linear systems, then Hy = 0, because the second-order
state sensitivities are exactly zero. This fact directly results from investigating the

second-order sensitivity matrix differential equations.

@ 1If the system has only “weak nonlinearities”, then H, =~ 0. Note that this approach
shows strong similarities to the Gauss-Newton approach for solving nonlinear least-

squares problems.

® In the general case, neglecting H5 may result in a reduced performance of the opti-
mization algorithm which motivates the inclusion of H,. Ideally, the exact second-order
sensitivities should be calculated. However, this is not even reasonable for small-sized
systems due to the high complexity involved for solving the n?> ODEs for the second-order

sensitivity matrix differential equations.

Based on these considerations and with a real-time application in mind, we do not further
investigate the second-order sensitivities. Instead, we propose to approximate the Hessian of

the Lagrangian L as follows.
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Proposition 4.4.2. The Hessian of the Lagrangian L defined in (4.1) with respect to p can
be approzimated by

PL i By + AL (4.222)
op

where the argument [l denotes the [-th iteration step of the optimization. Thereby, the ma-
triz Hq[l] is

b a¢” Y, 0, k_ dim(A 0p, " & i a¢ dim(p 2d

Hyll] =3 — 5o -> ZH] (1] lej

(4.22b)
i=k—N op' atﬁ Ip LN i op 8(;5 8p

where 8(131-/815 are the first-order state sensitivities derived in Theorem J.2.3. The matriz H, 7]
is either neglected, 1. e. ffz[l] = 0, or updated according to

A oo H[J AP AP Holl] | =[] z[l]"
H,[l + 1] = H,[l] AﬁmTﬁz[l] N 21T A

(4.22¢)
with AP[l] = pll+1]—p[l], z[l] = (OL/0P)[l+1]— (DL/0P)[l] — H1[I+1)Ap[l] and H,[0] = 0.

This approximation schema follows the strategy of calculating only the parts of the exact
Hessian which can be derived without solving any additional ODEs, i.e. Hy, and to ap-
proximate the rest, i.e. Hy. This approximation is either 0 or a modified BFGS update.
The decision which one to choose depends on the choice of the decreasing factor &, in the
decreasing condition (3.15) and on the nonlinearities of the optimization problem (3.18). For
instance, a choice of &, close to 1 results in only few iteration steps of the optimization algo-
rithm. Consequently, Hy can be neglected since the influence of the modified BFGS update
on the Hessian is noticeable only after a few iteration steps. Note that the proposed Hessian
approximation schema is not restricted to the presented modified BFGS approach. Modi-
fications, like damped BFGS or limited-memory BFGS, or other update schemes, like SR1

updating, can be used when deemed appropriate.

4.5 Hessian of the Lagrangian for the CMHE

The idea for calculating the Hessian of the Lagrangian (4.2) is identical to the CMHO case.
This means that all what have been said for calculating the Hessian of the Lagrangian in
the previous section is now also valid in the figurative sense. Thus, we only present the key

aspects and refer the interested reader for details to the previous section.

Applying the chain rule to (4.8) yields the following exact Hessian of the Lagrangian (4.2).
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Lemma 4.5.1. The exact Hessian of the Lagrangian L defined in (4.2) with respect to p is

8L T k. 9. 92T, a$ L ogry, ko dmQo 55 T g2 clﬁgb
Ereiair ol > 35 + 2 b -2 Z P
p P =N 9P 3¢> N O’ i=k—N  j=1 p 8¢ (4.23)
dim(p) 82 0Ci 92 (51 '
D s Z ) = || 55
j=1 a i=k—N j=1 0 ¢z anSZ ap

where ju, jd, ;c;, jAi and jggi denote the j-th element of u, d, c;, A; and $i, respectively, and
where 0¢,; /0P and 82]-@/8152 are the first-order and second-order state sensitivities, respec-
tively.

Proof. Equation (4.23) results from differentiating (4.8) with respect to p where the depen-

dence of qAb on p is taken into account by Lemma B.1. O]

Based on this structure of the Hessian, we partition it again into an easy to compute
part H; and in an hard to compute part Hs which is approximated. The resulting approxi-
mation schema is identical to the one in Proposition 4.4.2 except that H; contains now two
more terms. For sake of completeness, we state the approximation schema in the following

proposition.

Proposition 4.5.2. The Hessian of the Lagrangian L defined in (4.2) with respect to P can
be approximated by

0L
op°

1], = Hy[l] + H,|1), (4.24a)

where the argument [l denotes the I-th iteration step of the optimization. Thereby, the ma-
triz H1[l] is

o°T Eoad, o2, O, =192y,
Hi[l]= 5[]+ : U [l] [+ >, o[l
) L= Op op =D
- PV ey Sl SE,
i:%_:NJZ_:l []aAL]aqbiH@p[] 2 ju[]aﬁg[]

where 8&31-/815 are the first-order state sensitivities derived in Corollary 4.5.5. The ma-
triz H,[l] is either neglected, i. e. Hy[l] = 0, or updated according to

L[l Apll) AP EL[I | =[] =[)"

H,[l+1] = H,[l] - Ap[l]T HL[l] Apll] z[l|" Ap[l)’

(4.24c¢)

with Ap[l] = pll+1]—p[l], 2[1] = (OL/Op)[I+1]— (OL/0p)[[] — H, 1+ 1 Ap[l] and EL,[0] = 0
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4.6 Numerical Case Study

In this section, we verify the efficiency of the presented derivative calculation strategies. To
this end, we consider the centralized NCS architecture depicted in Figure 3.1 where the
system ¥ consists of a continuously stirred tank reactor (CSTR) (Hicks and Ray, 1971). The
CSTR can be described by the nonlinear system (Uppal et al., 1974)

44
(1) = 1a(sa — 12(t) — saz(t) e 2P0 4 o) (4.25)
4Q
2(t) = 1a(sa — 92(1)) + ga () e 221 4 ra(u(t) — s2(t)) + w(t). (4.25D)
The system involves two states x(t) = [1x(t), 2z(t)] corresponding to the concentration

and the temperature, respectively, the control input u(t) corresponding to the cooling wa-
ter temperature and two state disturbances w(t) = [1w(t), ;w(t)].
x(0) = [0.005,445]7 and the model parameters are ja = 1, sa = 0.02, 3a = 10°, 4a = 5665,
sa = 340, ¢a = 4.25-10° and 7a = 2. The sensor ¥g shall be able to move freely in the

surrounding reaction mixture and transmits the measured temperatures y(¢;) together with

The initial condition is

the corresponding time stamps ¢; as packets P; = {y(t;),%;} over the network Xy to the
CMHO/CMHE. These measurements are described by the measurement model

where v(t) is the zero-mean measurement disturbance with variance R = 1. To compare the
results for different derivative calculation strategies and various settings for the CMHS, we

provide an identical initial situation for all experiments. This is achieved by generating the
measurement y(#) from a simulated closed-loop feedback control scenario with direct access to
the full state vector. More precisely, we use a two-degree-of-freedom control scheme consisting
of a flatness-based feedforward controller (Fliess et al., 1995) and a linear quadratic state
feedback controller (Kwakernaak and Sivan, 1972). The resulting trajectories are shown in
Figure 4.1 where the covariance of the zero-mean state disturbance is Q = diag(0.0022,250).
To enable a meaningful comparison of different experiments, we set the clock parameters to
ar = 1 and B = 0 and use an ideal network without packet delays nor packet drops. The
cost functions of the CMHS are chosen as the nominal least-squares approaches defined in
(3.14) respective (3.20). The CMHE weights are P} ' = diag(10,10,10,0.1), R~* and Q.
Furthermore, both CMHS should satisfy the inequalities 0 < ;Z(¢) < 0.03, 300 < ,&(t) < 500.

Figure 4.2 compares the complexity, i.e. the normalized calculation time, for computing the
gradient of the Lagrangian L of the CMHO and the CMHE for the following three scenarios:

® CMHO: SM: sensitivity method according to Theorem 4.2.3,
@ CMHE: SM: structure exploiting sensitivity method according to Corollary 4.3.8, and
® CMHE: CDF: central-difference formula according to equation (2.86).
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Figure 4.1: Trajectories of the CSTR resulting from a closed-loop feedback control scenario
with direct access to the full state vector.
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Figure 4.2: Comparison of the numerical complexity for different methods of computing
OL/0p.

Thereby, we consider the constant time interval 7 = [25s,125s] and measure the time for
calculating 0L /0p for various buffer sizes NV + 1. The sampling times in (4.26) are chosen as
a function of the buffer size N to t; = 25s + %100 s,t=0,...,N, N=1,2,5,10, 25, 50, 100.
This means that the first and the last measurement are always taken at 25s and 125s,
respectively, while all other sampling times are equally spaced in between. This enables in
combination with the ideal network a reasonable comparison for different choices of N since
T is constant and independent of N. The time needed for the case CMHO: SM with N = 1
corresponds to the complexity 1. All calculations have been performed in MATLAB(R2011a)
on an Intel Core 2 Duo E8400 CPU with 3 GHz. The ODE solver used in all simulations is
a classical 4-step Runge-Kutta. The complexity of the case CMHO: SM is independent of N
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and identical to 1 since the number of ODEs which have to be solved over T is constantly 6.
Although the number of ODEs which have to be solved over 7 is constantly 10 for the scenario
CMHE: SM, there is a slight increase in the complexity due to the increasing number of matrix
multiplications for forming the derivatives in Corollary 4.3.8. It is important to note that even
though the dimension of the optimization variable p in the CMHE grows linearly with NV, the
complexity for calculating the gradient for the case CMHE: SM is almost kept constant. The
linear growth of the 8N + 16 ODEs which have to be solved over 7T for the scenario CMHE:
CDF is reflected in the linear growth in complexity.

The iteration numbers of the CMHE corresponding to the previous scenario for various
values of N and three different Hessian approximation methods is shown in Table 4.1. The
optimization has been performed with the fmincon function of MATLAB. The results provide
preliminary evidence that the sensitivity method presented in Proposition 4.5.2 is more effi-
cient than the conventional BFGS method. Moreover, in the considered scenario, the results
justify the negligence of the second part of the true Hessian because its BFGS approximation

yields almost the identical performance.

Table 4.2: Tteration numbers of the CMHE for three different Hessian approximation methods.

Hessian method Iterations
H, H, N=1 N=2 N=5 N=10 N=25 N=50 N =100
BFGS of H, + H, 9 11 12 14 15 13 14
SM -
SM BFGS 4 5 5

4.7 Summary

In this chapter, we have presented an efficient, parallelizable and sensitivity-based method
to calculate the gradient and Hessian of the Lagrangian to the optimization problem of the
CMHO and CMHE. The gradient computation method has been derived by applying the
chain rule to the Lagrangian and depends on the respective first-order state sensitivities.
These sensitivities have been calculated based on the solution of first-order sensitivity matrix
differential equations as an answer to the difficulties stemming from the special nature of the
optimization problem formulation where the clock parameters arise in the integral bounds.
This perception facilitates the accomplishment of exploiting the structure of the state sen-
sitivities such that the number of ODEs required for calculating the gradient in the CMHE
case is independent of the number of optimization variables and equal to the adjoint case,
namely 2n2 + n,. The Hessian computation method is founded on the idea of partitioning
the exact Hessian into two parts. The first part can be readily calculated due to the already

available first-order state sensitivities while the second part can either be approximated by
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a modified BFGS method or completely neglected. In contrast to the adjoint method, the
proposed sensitivity-based method provides an excellent approximation of the Hessian for
arbitrary cost functions almost for free. The theoretical benefits have been substantiated by
a numerical case study of a continuously-stirred tank reactor where the proposed method has
been compared to the finite-difference approach. Finally, it should be noted that the pro-
posed derivative calculation methods also hold for conventional moving horizon estimators,
cf. Philipp (2011a).



Chapter 5

Observability of Networked Control

Systems

The update step of the centralized moving horizon observer (CMHO) and the centralized
moving horizon estimator (CMHE) presented in Chapter 3 answer the question how the
information stored in the buffer can be extracted to determine the parameter p,. In this
chapter, we answer the question when this procedure is feasible, i.e. when it is possible to
determine uniquely the parameter p,. In other words, we investigate the observability of
undisturbed and disturbed NCSs.

The basic idea behind the observability definitions for discrete-time nonlinear systems pre-
sented in Section 2.2 is to guarantee the well-posedness of the nonlinear observation map.
This perception will act as the model for the observability notion of NCSs. Even though ev-
ery observability definition presented in Section 2.2 for discrete-time nonlinear systems can be
extended to the networked scenario, not every observability definition is equally well-suited.
This is due to the fact that the observation map for NCSs depends not only on the state but
additionally on the clock parameters. For combined state and parameter estimation problems,
the possibility of reconstructing the parameter often depends on the information content in
the input data. This is typically formulated as a condition for persistently or sufficiently excit-
ing input data appearing, inter alia, in identification (Ljung, 1999), estimation (Kreisselmeier,
1977) and adaptive control (Krstic et al., 1995).

Based on these considerations, the contribution of this chapter is three-fold. First, we
present the observation map for undisturbed and disturbed NCSs which is formulated based
on the buffer By. Second, we define observability of undisturbed and disturbed NCSs based
on the full-rankness of a certain derivative of the respective observation map. The resulting
observability notion guarantees (at least local) well-posedness of the respective observation
map and is key for the stability analysis presented in Chapter 6. Third, we derive for the
undisturbed as well as for the disturbed NCSs a necessary condition for the control input to
be sufficiently exciting such that all unknown parameters can be estimated. This is achieved
by establishing a relation between the first-order state sensitivities (cf. Chapter 4) appearing

in the elements of the derivative of the observation map and the control input.
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The remainder of this chapter is organized as follows. In Section 5.1, we state the problem
formulation. The observation map for NCSs, the observability definitions and the necessary
condition for the control input to be sufficiently exciting are derived for the undisturbed
and the disturbed NCSs in Section 5.2 and 5.3, respectively. Section 5.4 reveals the relation
between the presented notion of observability to other quantities. The introduced terminology
and the derived conditions are clarified by several examples in Section 5.5 before the Chapter

is ended with a summary in Section 5.6.

5.1 Problem Formulation

The problem formulations are stated as follows.

Problem 5.1 (Observability of undisturbed NCSs). Let the buffer By, and the corresponding
control input u(t) € U be given for the undisturbed centralized NCS architecture described in
Section 3.1.

The problem is to answer the question when it is possible for the CMHO to determine

uniquely the parameter P, defined in (3.16)7

Problem 5.2 (Observability of disturbed NCSs). Let the buffer By and the corresponding
control input u(t) € U be given for the disturbed centralized NCS architecture described in
Section 5.1.

The problem is to answer the question when it is possible for the CMHE to determine

uniquely the parameter P, defined in (3.22)7

It is important to recall that throughout Part I of this thesis including the current chapter,
the Assumptions 1-9 are supposed to hold without explicitly stating them.

5.2 Observability of Undisturbed NCSs

5.2.1 Definitions

Following the lines of the observability notion presented in Section 2.2, we define a N+1-length

observation map for NCSs associated to the buffer By,

h(Zk-Nik)

h(‘f’k-N+1|k(ﬁka u))

hy.(y, u) = g (5.1)

h($k|k<ﬁk> u))

where (Z)Hk(ﬁk, u) is defined in Definition 3.4.2. Note that in the undisturbed scenario, the
mappings ¢(-) and @(-) are identical. This means that y, = col(y,, i € Zy) is in the image
of P under hy, i.e. y, € h,(P), k € Ny,;. Consequently, we formulate observability in
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the context of undisturbed NCSs in terms of full-rankness of the Jacobian of the observa-
tion map (5.1). The idea behind is that hy(p,,u) is at least locally injective. The precise

observability definition reads as follows.

Definition 5.2.1. The undisturbed NCS described in Section 5.1 is said to satisfy the extended
observability rank condition in N + 1 steps if Ju(t) € U, VP, € P, Vk € Ny 41,

Ohy|  _ Ny + 2. (5.2)

rank —
apk ﬁlmu

This definition takes account for the fact that in contrast to state estimation of linear
systems, the combined state and parameter estimation of nonlinear systems depends on the
information content in the input data. This dependence is reflected in the following definition

as a property of the control input w(t).

Definition 5.2.2. The control input u(t) € U of the undisturbed NCS described in Section 5.1

is said to be extended N + 1-exciting at the sampling instance k if

Oh,

rank 95
pk ﬁkvu

=n, +2. (5.3)

The word eztended in Definition 5.2.1 and 5.2.2 indicates the fact that both Definitions are
extensions to the corresponding network-free scenario where the output y(t¢) of a nonlinear
continuous-time system is sampled non-uniformly. In this case, Definition 5.2.1 and 5.2.2

reduces to the following Definition 5.2.3 and 5.2.4, respectively.

Definition 5.2.3. The undisturbed system described in Section 3.1 is said to satisfy the
observability rank condition in N + 1 steps if Ju(t) € U, V&y_npi € X, VE € Ny,

Oh,,

rank —
3CUk—N\k:

= n,. (5.4)

Lk—N|k U

Definition 5.2.4. The control input u(t) € U of the undisturbed system described in Sec-
tion 3.1 is said to be N + 1-exciting at the sampling instance k if

Oh,,

rank —
8wk—N\k

= n,. (5.5)

I

Definition 5.2.3 is, in turn, an extension of Definition 2.2.2 to the non-uniformly sampled
output scenario. Suppose that the output y(¢) of a nonlinear continuous-time system is
uniformly sampled and the nonlinear continuous-time system itself is discretized with zero-
order-hold for the control input and the state disturbance. Then the sampling instance k
becomes immaterial for the observability investigation and Definition 5.2.3 coincides with
Definition 2.2.2. Moreover, note that Definition 5.2.1 and 5.2.2 implies Definition 5.2.3 and
5.2.4, respectively.
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5.2.2 A Necessary Condition for Extended N+41 Excitation

The goal of this subsection is to derive a necessary condition for the control input w(t) to
be extended N + 1-exciting for undisturbed NCSs at the sampling instance k. Since we will
consider only a fixed buffer By, we ease the presentation by omitting the subscripts indicating
the buffer affiliation. Moreover, we suppress the arguments of all functions from the notation
when the meaning is clear.

By applying the chain rule, the Jacobian of the observation map (5.1) can be written as

[Ohy_N 0@  Ohyn 0B  Ohip_n OP,_n |
oh 8$k—N da aégk—N 53 6$k—Na®k_N
55 = - - , (5.6)
Ohy, 0, Ohy, a¢>k Ohy, 0,
| 0y da Oy 0P 0, 02 |

where the derivatives d¢, /04, 0¢,/05 and d¢,/0&)_n are for i € T the already known
first-order state sensitivities, cf. Chapter 4.2. Recall that, in general, there does not exist a
closed-form expression for these sensitivities due to the absence of an analytical expression
for qAﬁl Nevertheless, the knowledge about the first-order sensitivities derived in Theorem 4.2.3

can be applied to (5.6). The elements of the resulting Jacobian are for i € Z

Oh; 0§, _ Oh,
e L ) (5.7)
o¢; 0B 0¢;

3@1' ?qbz :8}52’X§—N. (5.7¢)
00, 0Z1-Nn 0,

(1f —tk NXk ka N) (57&)

The next step is to establish a relation between the expression for the first-order state sensi-

tivities (3q3i / 33 and the control input. This is achieved by the following Lemma.

Lemma 5.2.1. The following equivalence holds Vi € I, ¥p € P and Yu(t) € C}(U)

B ati+h _ A a
fi_Xf ka—N:/ /

aik_wﬁ " ou

H—
Q

—(7)a(r)dr.

Proof. Since u(t) € C'(U), differentiating (3.17) with respect to ¢ leads to the second-order

differential equation

:f:k ~ and (/5(& then + B) = f._n. By introducing

with the initial values b B)
¢(t) £ $(t), the second-order differential equation can be

b(a
new coordinates {(t) = gg( )

|||> Il

¢(t)



5.2 Observability of Undisturbed Networked Control Systems 107

rewritten as the following linear time-varying first-order differential equation

or of . .
= 530S0+ GO0,

¢()
with the initial value ¢(&#,_y + B) = fr_y- The solution ¢(t) is given by the superposition
of the homogeneous solution ¢,(¢) and the particular solution ¢, (t) (see Kailath (1980, pg.
595-601) or Ludyk (1995, pg. 40-55))

C(t) = Cul(t) + ¢, (1)
o St of

=®(t,at,_n +B) Gty + B) +

where ®(-) denotes the time-varying transition matrix. Consequently, the overall solution
evaluated at the sampling times &t; + B becomes
AT 5 E—N ati+B ~T 5 a.f . .
Clati+p)=X7""fr_n+ | _ ®(at,+ 6, 7)== (r)u(r)dr, Viel.
atp_N+p ou
Noting that ¢(a

t;+ A) — £, and subtracting X*~~ £, on both sides yields the equivalence
stated in Lemma 5.2.1

which concludes the prove. O]

The equivalence stated in Lemma 5.2.1 provides the basis for deriving necessary and suffi-

cient conditions for the elements of the first and second column of (5.6) to be non-vanishing.

Lemma 5.2.2. The i-th element of the second column of (5.6), 1. e. ahi/aB, is non-vanishing
if and only if Ju(t) € C1(U),

of

/ ol Oh (7) @(r) dr £ 0. (5.8)

al-n+B O,

Proof. Equation (5.8) directly results from applying Lemma 5.2.1 to the elements (5.7b) of

the Jacobian of the observation map (5.1). O

The terms in front of @(¢) in Lemma 5.2.2 describe how the temporal change of wu(t),
i.e. a(t), is mapped to the output dh;/d3. The terms Of /Ou, ® and Oh;/dP,; can be
interpreted as maps from the input space to the state space, within the state space reflecting
the system dynamics and from the state space to the output space, respectively. For instance,
if we consider the continuous-time linear system &(t) = A#&(t) + Bu(t) with the linear
measurement model §(f;) = Ca(L;), then 0f /ou = B, ® = ¢A@Lt+5-7) and dh,; /¢, = C.
Consequently, Oh;/ O3 is only vanishing if the integral of the mapped temporal change of u(t)
over the time interval ¢ € [ t,_y + B LAt + B} is vanishing. For instance, this is the case if

there does not exist a temporal change of w(t).
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Lemma 5.2.3. The i-th element of the first column of (5.6), i.e. Oh;/0&, is non-vanishing
if and only if Ju(t) € U,

ahz 8hz fk—N
88 7é 8:?3k,N (( t_z - 1) fk—N)' (59)

Proof. After recalling the first-order state sensitivities derived in Theorem 4.2.3, the derivative

Oh;/0d can be rearranged in the following way

68’2 = gg (fz‘fi - tik:—NXf*kafN)
= (t_i - fkd\/) ggﬁxﬁ_ka—N + Zlgg: (fi - Xf_ka—N)
8;11 — 8h1 Z

= <Ei - Ekz—N) +1

G T g5
The requirement for this expression to be non-vanishing leads to the desired condition (5.9)

which concludes the proof.

Lemma 5.2.3 connects the three derivatives dh;/0a, 8hi/aﬁ and Oh;/0&y_n. If 6hi/83
cannot be generated by a certain linear combination of the columns of Oh;/0&_n, then
Oh;/0d is non-vanishing. This Lemma also includes some interesting special cases. If, on
the one hand, the temporal change of w(t) is vanishing for ¢ € [@ty_n + 3, t; + (], then
Oh; /04 is non-vanishing if and only if the vector field f,_, satisfies (tx_n/t; — 1)f1_n ¢
ker(Oh;/0%y_n). A counterexample would be if the system remains in an equilibrium in the
interval t € [@tp_n + B,at; + B] If, on the other hand, the temporal change of u(t) is non-
vanishing for ¢ € [aty_y + 3, &t; + ], then Oh;/da is non-vanishing if the vector field £,y
satisfies f,_y = 0.

Based on Lemma 5.2.2 and 5.2.3, we derive in the following Theorem a necessary condition

for u(t) € C'(U) to be extended N + l-exciting at the sampling instance k.

Theorem 5.2.4. A necessary condition for the control input u(t) € C*(U) of the undisturbed

NCS described in Section 3.1 to be extended N + 1-exciting at the sampling instance k is that
the following conditions (C0), (C1), (C2) and (C3) are fulfilled:

2
(CO)N+1> "2
Ty
(C1) u(t) is N + l-exciting at the sampling instance k.
atj+h  Oh,; s Of
C2)3d;5 €T, = ®(at; + 3,7) =—(7)0(r)dr #0.
3jex. [IT TR+ h) G dr 4

. Oh; Oh; th—N
(09 3ieT, T %k_N(< - —1>fk_N).
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Proof. The condition (CO0) ensures that (5.6) has at least n, + 2 rows. The condition (C1)
guarantees that the last n, columns of (5.6) have full column rank. The conditions (C2) and
(C3) make sure according to the Lemmas 5.2.2 and 5.2.3 that the first and second column
of (5.6) are not 0, respectively. All conditions together are a necessary condition for the full
rankness of (5.6). O

5.3 Observability of Disturbed Networked Control Systems

5.3.1 Definitions

As in the case of undisturbed NCSs, we define a N + 1-length observation map associated to
the buffer B,

h(Zx—nk)

h(ékaJrl\k(ﬁk? u))

h(Py, u) = ) (5.10)

h(ék\k(ﬁk? u))

where $i‘ w(Dr, ) is defined in Definition 3.5.2. In contrast to undisturbed NCSs, disturbed
NCSs are characterized, as the name suggests, by the presence of disturbances. This fact is
expressed without limitation in Definition 3.5.2 of q.’sﬂk(ﬁk, u) and in (3.22) defining p,. As
a consequence, we cannot equate observability of disturbed NCSs with the requirement that
the rank of the Jacobian of the observation map (5.10) is identical with the dimension of
Py, since the dimension of §, = col(g,,i € Zy) is smaller than the dimension of p;. This
means that the observation map (5.10) is not injective which becomes clear based on the
following consideration. Suppose that g, is fixed and generated without measurement distur-
bances, i.e. ¥;, = 0. Then for every col(du, Bk, £x—nk), there exists at least one disturbance
sequence {w;;}1-_y such that h,(p,,u) = g, holds. Consequently, we formulate observ-
ability in the context of disturbed NCSs in terms of full-rankness of the partial derivative of
the observation map (5.10) with respect to col(dy, B, Zi_nk). The idea behind is that there
exists for a fixed g, which is generated without measurement disturbances, i.e. 9;; = 0, and
a fixed col(ay, By, &1 Nik), at least locally, only one disturbance sequence {w;}¥= y such

that hy(Py, w) = g, holds. The resulting observability definition reads as follows.

Definition 5.3.1. The disturbed NCS described in Section 3.1 is said to satisfy the extended
observability rank condition in N + 1 steps if 3u(t) € U, Vp, € P, Vk € Ny,

h,,

0 col(ay, By, Zr—nk)

rank =n, + 2. (5.11)

ﬁk?u



110 Chapter 5 Observability of Networked Control Systems

As for undisturbed NCSs, the dependence of the combined state and parameter estimation
problem on the information content in the input data is reflected in the following definition

as a property of the control input w(t).

Definition 5.3.2. The control input u(t) € U of the disturbed NCS described in Section 3.1
is said to be extended N + 1-exciting at the sampling instance k if

Ohy,

0 col(éu, Br, Br_ni)

rank =n, + 2. (5.12)

ﬁkvu

Similar to undisturbed NCSs, the word “extended” in Definition 5.3.1 and 5.3.2 indicates
the fact that both Definitions are extensions to the corresponding network-free scenario where
the output §(¢) of a nonlinear continuous-time system is sampled non-uniformly. In this case,

Definition 5.3.1 and 5.3.2 reduces to the following Definition 5.3.3 and 5.3.4, respectively.

Definition 5.3.3. The disturbed system described in Section 5.1 is said to satisfy the ob-
servability rank condition in N + 1 steps if Ju(t) € U, V&_np € X, Wi, € W, Vi € Ty,
VEk € Ny,

Oh,,

rank —
833ka|1€

= Ng. (5.13)

Tl Nk Wh—N{kse - Wh—1] kU

Definition 5.3.4. The control input u(t) € U of the disturbed system described in Section 3.1
is said to be N + 1-exciting at the sampling instance k if

oh,

rank —
333ka|1§

= Ng. (5.14)

B Nk WE—N{k> W1k U

Note that Definition 5.3.1 and 5.3.2 implies Definition 5.3.3 and 5.3.4, respectively.

5.3.2 A Necessary Condition for Extended N+1 Excitation

The goal of this subsection is to derive a necessary condition for the control input w(t) of
the disturbed NCSs to be extended N + 1-exciting at the sampling instance k. Since we will
consider only a fixed buffer By, we ease the presentation by omitting the subscripts indicating
the buffer affiliation. Moreover, we suppress the arguments of all functions from the notation

when the meaning is clear.

The procedure is identical to the case of undisturbed NCSs. This means, we derive the

partial derivative of the observation map (5.10) with respect to col(&, B, & ~) by applying
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the chain rule

[Ohy_n 0y Ohy_n 0Py n  Ohi_n 0Py ]
8¢A’ka 9 aﬁz’ka 33 aﬁz’ka 0%y

oh = : : : , (5.15)
GCOI(dv 57 ik—N) In 2
L 09, 0d 0d, 03 0 0%y |

where the derivatives anSi /04, 8&- / 0 and 8(},’32- /0&_ N are for i € T the already known first-
order state sensitivities, cf. Chapter 4.3. By applying Theorem 4.3.5 and 4.3.7, the elements
of (5.15) are fori € Z

Oh; 0b,  Oh, o ;1\
e Xk b AR ¢ 'z N,
06, 06 0, (tf beon X e NT;JS a g >aTj a ; )
(5.16a)
Yy ‘ i—1 A w;
b (g S X x)) 5100
06, 05~ 09, SN i,
oh; 0¢, ahiXk—N. (5.16¢)

aﬁz’i OBp-n aégi i

The next step is to establish a relation between the expression for the first-order state sensi-

tivity 8@?% / df3 and the control input. This is achieved by the following Lemma.

Lemma 5.3.1. The following equivalence holds Vi € Z, Vp € P and Vu(t) € C(U)

ati+p

i—1 N
= XN+ xit - xi) == | <

f Frn j%_:N< ) aT; Gty N8 ou

Proof. Since (t) is only continuous in t € 7;, i € Z, and not in t € T and u(t) € C1(U), we

differentiate (3.23) with respect to ¢ on the intervals 7;, i € Z, which leads for all i € T to the

second-order differential equation
N of X
B0 = 52 0)80) + 5 (1)), (5.18)

with the initial values ¢(at; + () = &; and G(at; + B) = f; +;/aT;. By introducing new
coordinates ¢(t) £ @(t) and ¢(t) £ ¢

rewritten as the following linear time-varying first-order differential equation

¢(t), the second-order differential equation (5.18) can be

with the initial value ¢ (A& t;+ A ) = f;+;/&T;. The solution {(t) is given by the superposition
of the homogeneous solution ¢}, (¢) and the particular solution ¢, () (see Kailath (1980, pg. 595-
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601) or Ludyk (1995, pg. 40-55))

where ®(-) denotes the time-varying transition matrix. Consequently, the overall solution
evaluated at the sampling time & ;. + 3 becomes
- ~ ; Gtiy1+p - ~ of .
Gl +8) = Xi (fit gz )+ [ @(@di + B.r) 5 (e dr.

ati+p

By noting that ¢ (&4 + f) = fi1 +W;/aT;, weget Vie L

fz+1+ T

alip1+8 _ A 0
X <f + T> /”t~+,3+ (Gt +ﬂ,7’)8£(7')11(7) dr. (5.19)

This result is now key for proofing Lemma 5.3.1 by means of induction. Let S(i) be the
statement (5.17). For ¢ = k — N, equation (5.19) reads as

"1\7ka k—N wka
Je-nii Tt = Xinva | Fron + =

OA(Tk:—N aTk—N
Gty Ni1+B - ~ 0 .
=/ o P(atg_ni1 + 0O, T)l(T)’u,<T) dr,
Gtp_N+B ou

and is equivalent to S(k — N + 1), i.e. S(k— N + 1) is true. This starts the induction. Now
assume that S(7) is true for some ¢ € Z. Solving this assumption for f; and inserting it into
(5.19) yields

i1 "
i k—N j+1 j w;
.fz+1+ - Xin (X Frn— %;N(XZ X) aT; +@Ti)

_xi, /at i+ ati+ B, 7) 8f( Yu(T)dr + /dtitﬁﬂ D(Qtip1 + B, T)al(T)u(T) dr.

&ty N+,B ou ati+8 ou

J

By applying the properties stated in Lemma 4.3.4, we get

B i 11 . W Gtip1+B 6f .
Finn— Xi5 Fron +j=§N (Xiil —X§+1) &7{]’ = /atk N+B‘I’(atz+1 + 8,7 )au(T)U(T) dr,

which is S(i + 1), completing the inductive step. Thus, by the principle of induction, S(i) is
true for all 7 € Z and, accordingly, Lemma 5.3.1 holds. O

The equivalence stated in Lemma 5.3.1 provides the basis for deriving necessary and suffi-

cient conditions for the elements of the first and second column of (5.15) to be non-vanishing.
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Lemma 5.3.2. The i-th element of the second column of (5.15), i.e. ahi/ﬁﬁ, is non-
vanishing if and only if u(t) € CY(U),

/a L+ Oh, _ . Of

ati_ntB O, B(at; +p,7) 5 (1) u(r)dr #0. (5.20)

Proof. Equation (5.20) directly results from applying Lemma 5.3.1 to the elements (5.16b) of

the derivative of the observation map (5.10). O

Note that the condition derived in this Lemma is identical to the one in Lemma 5.2.2.

Consequently, the aforementioned does apply universally.

Lemma 5.3.3. The i-th element of the first column of (5.15), i.e. Oh;/0&, is non-vanishing
if and only if Ju(t) € U,

th 8hz Ek:—N = ahz wj
3 7 (( 7 _1>f’f—N>+ 2 9w, a.

op Oy j=k—N

(- (-5)e] 3
j=k— Na¢ tz ’ tz ! OA‘

+Z -
J

(5.21)

Proof. After recalling the first-order state sensitivities derived in Theorem 4.3.7, 0&. /O0& can

be rearranged in the following way

0b; _; 09, - LSS gk
i—1 ) B ~
+J§N ((fj — 1) X — (1, - 1) XI) ;‘;{]

A subsequent left multiplication with dh;/8¢, in combination with the requirement for the
resulting expression to be non-vanishing leads to the desired condition (5.21) which concludes
the proof. O]

Lemma 5.3.3 connects the derivatives dh; /0, Oh; /03, Oh; /0%,y and Oh;/dw;, i € T. If

Oh;/ df3 cannot be generated by a certain combination, then Oh;/0é& is non-vanishing.

Based on Lemma 5.3.2 and 5.3.3, we derive in the following Theorem a necessary condition
for the control input u(t) € C'(U) of the disturbed NCSs to be extended N + 1-exciting at

the sampling instance k.

Theorem 5.3.4. A necessary condition for the control input u(t) € C*(U) of the disturbed
NCS described in Section 5.1 to be extended N + 1-exciting at the sampling instance k is that
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the following conditions (C0), (C1), (C2) and (C3) are fulfilled:

2
(CONt1>"T2

v
(C1) u(t) is N + 1-exciting at the sampling instance k.

at;+8 ah - . f .
aien+B O, ®(at;+0,7) u()U(T)dT;AO.

. . n Zl . A.
(C3)3i e, 88}57& ?hz (("l )fk N>+ > affqu’_ﬂ

8wk_N tl j=k—N 8wj Oéti

i-1 7 . [ @
28 s L UL
j=k—N 8@52 tl tz a,I’j
Proof. The condition (C0) ensures that (5.15) has at least n, + 2 rows. The condition (C1)

guarantees that the last n, columns of (5.15) have full column rank. The conditions (C2)

(C2)3j €T,

and (C3) make sure according to the Lemmas 5.3.2 and 5.3.3 that the first and second column
of (5.15) are not 0, respectively. All conditions together are a necessary condition for the full
rankness of (5.15). O

It is important to note that if we compare the necessary condition of the undisturbed
NCSs, i.e. Lemma 5.2.4, to the one of the disturbed NCSs, i.e. Lemma 5.2.4, we see that
the conditions (CO0), (C1) and (C2) are identical and (C3) differs by two additional terms.
The reason for this stems from the different definitions of the function (]3 for undisturbed
and disturbed NCSs, cf. Definition 3.4.2 and 3.5.2, respectively. The difference between
both is the estimated state disturbance @(t) defined in Assumption 9. The fact that @(t) is
piecewise constant and independent of &;_n and B is reflected in the aforementioned finding
that the respective conditions (C1) and (C2) are identical for undisturbed and disturbed
NCSs. However, the dependence of @(t) on & forces the appearance of two additional terms
in the condition (C3) for the disturbed NCSs.

5.4 Relation of Observability of NCSs to Other Quantities

In this section, we reveal the relation between the introduced notion of observability to the
conventional Kalman observability matrix for linear systems, to the update step of the CMHO
and CMHE explained in Section 3.4 and 3.5, respectively, and to the gradient of the La-
grangian for the CMHO and CMHE derived in Section 4.2 and 4.3, respectively.

5.4.1 Relation to the Kalman Observability Matrix

The condition (5.5) of Definition 5.2.4 for undisturbed systems as well as the condition (5.14)
of Definition 5.3.4 for disturbed systems can be reformulated by means of the transition

property stated in Lemma 4.3.4 to yield a nonlinear analogon to the well-known Kalman
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observability matrix

rank 20— pank | OPuons gy | < (5.22)
Th-N OPj_ni2 o o

Ohy 14 k—N
— X7 X
0%, k k—N+1

The relation between Oh/0&;_n and the Kalman observability matrix is clarified by the
following example. Consider the undisturbed or disturbed continuous-time linear system
&(t) = A%(t) + Bu(t) + w(t) where the output §(t) = C&(t) is uniformly sampled with the
sampling time 7. Then, Oh;/d¢p;, = C, i € T, and X}, = AT = Ay, i € Z, and (5.22)

becomes

C
CA
rank ?hk = rank ¢ = n, (5.23)
0Zy_N :
CcAY

and coincides for N + 1 = n, with the conventional observability definition based on the
Kalman observability matrix. Consequently, the introduced notion of observability for NCSs
can be understood as an extension of the observability definition for linear systems based on

the Kalman observability matrix to the case of nonlinear NCSs.

5.4.2 Relation to the Update Step of the CMHS

In this subsection, we explain the relation between the introduced notion of observability of
NCSs and the update step of the CMHO and the CMHE by a graphical illustration. To this
end, we consider an exemplary situation for which the values of the defining quantities are
given in Table 5.1. Although the dimension of the optimization variable P, is unrealistic,
the considered situation reflects the dominating characteristics and enables a graphical vi-
sualization. The variable py and 1y, reflects the optimization variables col(dy, Bk, &,_n) and
col(Wg_n, ..., Wk_1), respectively. The main two differences between the considered undis-
turbed and disturbed NCS are as follows. First, the dimension of P, is in the latter case
two while it is one in the former case. Second, in contrast to the former case, the measure-
ments y, are in the latter case not always in the image of P’ under /. due to the measurement
disturbances. Although the difference between the undisturbed and disturbed case doesn’t

look much at a first glance, its impact on the observation problem is significant.
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Table 5.1: Tllustrative example: values for the defining quantities.

NCS description source value

undisturbed optimization variable p, Eq. (3.16) p,=pr € PCR

observation map hy, Eq. 5.1)  h(P) =19, i Tpd CR
observabilit Def. 5.2.1  true Ohy,(p
Y = rank *’“Epk) =1
Def. 5.2.2  true Ok
measurements y, alwaysin [g,_ g, |

disturbed optimization variable p, Eq. (3.22) P, = [pr, wx]’ € P C R?

observation map hy, Eq. (5.10) h(P) =19, .-, . JCR
observabilit Def. 5.3.1  true Ohy, (P, W
Y = rank 74“(29?’ ) =1
Def. 5.3.2  true ODr,
measurements y, not alwaysin [§, .9, ]

Undisturbed Networked Control System

Figure 5.1 illustrates the relation between the introduced notion of observability of undis-
turbed NCSs and the functionality of the update step of the CMHO.Since the conditions in
Definition 5.2.1 and 5.2.2 are satisfied, we can invoke the implicit function theorem (Fleming,
1977) to investigate the equation hy(Px) — g, = 0. This theorem states that there exists a
neighborhood P of pj, and a neighborhood Y of g, such that for every §, in } there exists
precisely one py in P such that hy(pr) — g, = 0. In other words, this guarantees (at least
local) injectivity of h;(py). This can be seen in Figure 5.1 by the fact that every intersection

between the line §, = c with c € [§, | and hy,(pr) is (at least locally) a single point.

~
in’ yk,max

<>
£

Figure 5.1: Illustration of the relation between observability of undisturbed NCSs and the
functionality of the update step of the CMHO.

The CMHO tackles this observation problem by trying to find a point p, on the blue curve
hy(Pr) such that the distances d between this point and the gray line §, = y, is minimized.

Since the true measurement y, is always inside [ , the minimal distance is always

gk,min’ gk,max]
zero. In other words, the optimal solution of the update step of the CMHO is the true variable.
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Disturbed Networked Control System

Figure 5.2 illustrates the relation between the introduced notion of observability of disturbed
NCSs and the functionality of the update step of the CMHE.Since the conditions in Defini-
tion 5.3.1 and 5.3.2 are satisfied, we can invoke the implicit function theorem (Fleming, 1977)
to investigate the equation hy (g, W) — g, = 0. Suppose that g, is fixed, then there exists a
neighborhood P of pr and a neighborhood W of 0y such that for every py in P there exists
precisely one Wy in W such that hy (Pr, Wr) — g, = 0. In other words, there exists infinite
unique combinations (P, wy) which are mapped to the same §, . It is important to stress that
these combinations are (at least locally) unique. This can be seen in Figure 5.2 by the fact
that every intersection between the planes §, = ¢ with ¢ € [gkmin, gk’max] and hy,(pg, W) are
(at least locally) non-intersecting curves. Moreover, the observation problem is aggravated
by the fact that the true measurements y, need not to be inside [Qk’min,gk’max] due to the
measurement disturbances. This can be seen in Figure 5.2 by the fact that the gray plane

Qk =Y, is beneath the red plane gk =Yy min’

plane Ye = Yi max

/7]/1‘ (]A)/v" ”ﬁ/‘> - QA'_NMX

plane §, =g,

LY},.(])I{- U ]‘7> - ‘llA’.min A

\/
=
>

Wk

Figure 5.2: Illustration of the relation between observability for disturbed NCSs and the func-
tionality of the update step of the CMHE.

The CMHE tackles this estimation problem by trying to find a point (pg, @) on the blue
surface hy(pr, wy) such that the weighted sum of the three distances d;, ds and ds are min-
imized. The distances d;, dy and d3 are the distances between a point (P, W) on the blue
surface hy(px, wy) and the purple plane p, = py, gray plane 9, =Y, and the plane @y = 0,
respectively. Moreover, the distances dy, dy and d3 correspond to the first term (3.20a), second
term (3.20b) and third term (3.20c) of the cost function (3.20) in the update step, respec-
tively. These distances are exemplary depicted for two points marked with a filled circle.
The optimal point depends on the chosen weightings. It is important to note that a simple

minimization of the distance d», like in the undisturbed case, is ill-posed since there are infi-



118 Chapter 5 Observability of Networked Control Systems

nite points minimizing d, namely all points on the curve in the plane §, = gk’mm. For this
reason, the weighted distance dj is considered in the cost function as the third term (3.20¢).
On the one hand, this addition guarantees well-posedness of the minimization problem. On
the other hand, this addition can be interpreted as a model for the state disturbances. This
means that the estimation quality depends on the relation between the characteristic of the
true state disturbance and the estimated state disturbance model. Consequently, if we know
some characteristics of the true state disturbances, then we can incorporate this information
by formulating a suitable expression for the third term (3.20c). For instance, if the state
disturbance is w(t) = N (a, @), then a good choice for the third term is W, = ||, — aH?Q_l.
Another consequence is that, in contrast to the undisturbed scenario, the state estimation
error in the disturbed case won’t vanish and the best thing to hope for is boundedness. The
remaining first term (3.20a) serves two goals. First, it enables the incorporation of past in-
formation which is not explicitly accounted for in the current buffer. Second, it guaranties
well-posedness of the minimization problem even if the condition of Definition 5.3.2 is not
satisfied in the current buffer. In this case, there exists points (P, W) on the blue surface

which have the same distances dy and d3. However, these points have different distances d;.

5.4.3 Relation to the Gradient and Hessian of the Lagrangian for the
CMHS

Having the relation between observability of NCSs and the update steps of the CMHS pre-
sented in the previous subsection in mind, it is not surprising that there exists a relation
between the Jacobian dh, /0P, of the observation map and the derivatives of the Lagrangian
for the CMHS.

The first and second term of the exact gradient of the Lagrangian L stated in Lemma 4.2.1
and 4.3.1 for the CMHO and CMHE are of identical structure, respectively. This term can

be reformulated to yield

A~ T ~ T
8¢¢|k 8T2|k k a¢z|k 8hi‘kT€)Ti‘k 8@,€T8001(Ti|k,i S Ik)

k
~ ~ = A ~ - ~ s 5.24
i:;N Opy Ob; z’:%;N Opy ofo Ohyy 0Py Ohy, ( )

which reveals the aforementioned relation. This opens up the possibility of checking observ-
ability online at the price of additionally calculating the rank of a matrix.

Similar, the first and second term of the first part H; of the Hessian of the Lagrangian L
stated in (4.22b) and (4.24b) for the CMHO and CMHE are of identical structure, respectively.
By applying Lemma B.1 to 0°T;;/ 89?); i this term can be reformulated as follows

A T A ~ T /dim(h; k A
b0 0P 0, _ R (Ol T 0Py O, N Ob; dimiie) OY ik 0% hik \ 0Pk
N 0P 8q§3k Opy, o \ 0Dy 8h?|k Opy, Oy, j=1 djhi aé?‘k Opy,
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"B, 2 b

T 2T'
_ Oy diag (8 M,z’ € Ik) Ol

(5.25)

~ T im(h; i
FO0d (d (i) oYk anhﬂk) 0P, s,

+ = - s
i:;N Py, = Ojhn 8(;b?|k Py

which reveals the aforementioned relation. Note that both relations will be of key importance

for the stability analysis in Chapter 6.

5.5 Examples

In order to clarify the introduced terminology and the derived conditions, we first consider
two cases of undisturbed linear NCSs which can be investigated analytically. For the first
case, we derive the elements of the Jacobian of the observation map in closed form and verify
analytically the equivalence presented in Lemma 5.2.1. This insight is used for the second case
to clarify the introduced notion of observability and the derived conditions in Theorem 5.2.4.
Afterwards, we consider a networked pendulum which falls into the category of disturbed
nonlinear NCSs. We examine the extended excitation property of the control input to a real

networked pendulum test-rig and compare them to the simulated counterpart.

5.5.1 Linear Networked Control System: The Undisturbed General Case

Consider the centralized NCS architecture depicted in Figure 3.1 where the system > consists

of the linear model
&(t) = Ax(t) + Bu(t) (5.26)

and where the sensor g possesses the measurement model y(t;) = Cx(t;). Since we consider
in the following only the buffer By, we ease the presentation by omitting the subscripts
indicating the buffer affiliation. By introducing the abbreviations

ati+p

P, £ eA‘i('?"_f"'—N), n, = / eA(é‘{iJ“B_T)Bu(T)dT, (5.27)

Gtp_n+B
we can analytically express the states &;, i € Z, corresponding to the buffer B as (Kailath,
1980)

Due to the existence of a closed-form solution, the equivalence presented in Lemma 5.2.1 can
be analytically verified. To this end, we need to calculate the first-order state sensitivities

which can be calculated either by Theorem 4.2.3, or, in this case, by direct differentiation
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of &;. In the former case, by noting that for i € 7

~ =C, 5.29a
O, (-2
XN — pAd(ti—ti-n), (5.29h)
fi=A(®:&,_y+mn,)+ Bu,, (5.29¢)
Ji-n = AZy_n + Buy_n, (5.29d)
we can express the elements of (5.6) for i € Z as
Oh; - _ _ _
o =C ((t, — tk_N)A‘I)i + 12147’]Z + tiB’U,i — tk_Ni'iBuk_N) s (530&)
oh;
oh;
— =C9®,. 5.30
O,y (5.30c)

Note that if u(t) € C}(U), (5.30b) can be integrated by parts to yield

oh; ati+p
ap

which is equivalent to the aforementioned latter case of direct differentiation. This is a straight

— C(Bu, — ®Bu,_y — (—An,)) =C / cAGE-D) By(r)dr,  (5.30d)

atp_n+B
consequence of the equivalence derived in Lemma 5.2.1.

5.5.2 Linear Networked Control System: An Undisturbed Example

Consider the identical NCS setup as before where the system ¥ described in (5.26) is

W8] =1y | [a(t)
2% (t) 0 =1 |22(t)

with v € R. The sensor Xg possesses the measurement model y(¢;) = 1z(f;). Then the ele-

+ | u) (5.31)

0

ments of the Jacobian of the observation map corresponding to the buffer B can be calculated
by means of (5.30) for i € Z as

Oh; - —A(E—T N nfr = N o A
5g — (ti —te-n)e (=) <—1$k—N + 7(1 —a (ti - tk—N))zxk—N +u(dtpn + 5)
+1t; /dtﬁ_ﬁ 6_(@Ei+3)+7u<7_) dr, (5.32&)
atp_n+B
ahl ati+p A
= = e @AY () do, (5.32b)

. 1 P
Oh  _ { _ ] e~ 0lti—te—n), (5.32¢)
g
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If v # 0, we see from (5.32¢) that the system satisfies for any N+1 > 2 the N + 1-observability
rank condition and any u(t) € R is N 4 1-exciting at any sampling instance k. The inspection
of (5.32b) reveals that the choice of 5 is immaterial for the mapping from @ to dh; /5. In
contrast to (5.32c) and (5.32b), (5.32a) depends explicitly on the condition of the state and
the control input at the time &t,_y + B Moreover, if v # 0, the NCS satisfies for any
N + 1 > 4 the extended N + l-observability rank condition. However, not every w(t) is
extended N + l-exciting, like the trivial choice of a constant control input which violates
condition (C2) of Theorem 5.2.4. Another possibility is if u(t) is such that (5.32b) and/or
(5.32a) vanishes if the system is sampled at certain sensor times ¢;. As a consequence, the
conditions (C2) and/or (C3) of Theorem 5.2.4 are not fulfilled and u(¢) is not extended N + 1-
exciting. To investigate such a situation, we consider the case where N + 1 = 4 and examine
the buffer B4. This results in the index set Z, = {1,2,3,4}. Since we consider in the following
only the buffer B,, we ease the presentation by omitting the subscripts indicating the buffer
affiliation. Moreover, the sensor possesses the clock parameters o = 1 and f = —0.5s and
the sensor times ¢; = (1 T — 0.5)s, i € N, where T'= 1s is the sampling time. Then a control
input which renders (5.32b) zero at the times & t; + B,i€Z, witha=1and 8= —05s, for

any -, any initial state &; and any packet delay 7;, ¢ € Z, is
ug(t) = i (2 — (2 cos(2rt) + sin(2t)) e ") |

where @ € R is an arbitrary amplitude. Similarly, a control input which renders (5.32a) zero
at the times &t; + B, 1 € Z, with @ =1 and B = —0.5s, for any ~, any initial state x; and
any packet delay 7;, 1 € Z, is
ua(t) = 135 [(20+ (—20+ 28t — 126%) e7") iy + (94 (=9 — 42t +18¢%) e7") i | .

Figure 5.3 shows these control inputs and the corresponding derivatives (5.32) as a function
of the sensor time t; expressed in global time, i.e. t = 1¢ + 0.5s. The sampling times ¢; €
{0.58,1.58,2.55,3.5s}, which are {0s,1s,2s,3s} in global time, and where the derivatives
Oh; /O and Oh;/dé vanish, are marked with a cross in Figure 5.3(a) and 5.3(b), respectively.
Note that in both figures, the derivative 0h;/0&; is identical since it is independent of the
control input.

The condition number p of the Jacobian of the observation map is the ratio of the largest to
the smallest singular value and can be used as a measure of observability. If the observability
rank condition is not satisfied, i.e. the Jacobian is rank-deficient, the smallest singular value
is zero and the condition number tends to infinity. Hence, the lower is the condition number,
the better is the observability.
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control input u(t)

control input ug(¢)
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(b) Control input ua(t).

Figure 5.3: Comparison between different control inputs and the resulting derivatives 0h;/dé&,
Oh;/ 83 , Oh; /0%, as a function of the sensor time ¢; expressed in global time, i.e.
t = 1%+ 0.5s, for the parameters & = 1, § = —0.5s, {_y = 0.5s, & = [—1,4]T
and v = 1.

In Figure 5.4, the condition numbers of Oh, /0%, and dh,/0p, are depicted as a function of

the sampling time 7" for the scenario shown in Figure 5.3(b). We can observe two important

things. First, the control input us(t) is 2-exciting for all depicted sampling times and extended

4-exciting for all depicted sampling times except T' = 1s. In this case, the condition number

condition number o(7")
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-
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0(Ohy/021) with N +1 =2

0(0h,/0p,) with N +1=14

0.2

0.4 0.6

Tins

0.8 1

Figure 5.4: Comparison between the condition numbers o(0h,/0%1) and o(0h,/0D,) as a
function of the sampling time T
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turns to infinity due to the zero column in 0h,/0p, caused by the vanishing derivatives
Oh;/0é, i € T, which can be seen in Fig. 5.3(b) marked with crosses. Second, the slightly
higher condition number of dh, /0P, indicates that the combined state and clock parameter

estimation problem is slightly more demanding compared to the sole state estimation problem.

5.5.3 Nonlinear Networked Control System: The Networked Pendulum

We use the networked pendulum described in Section 7.2 with the parameters and set-
tings corresponding to the closed-loop benchmark with the network scenario A shown in
Figure 7.11(a,b).

The upper plot in Figure 5.5 shows the simulated and experimental closed-loop control
inputs ugim(t) and uexp(t), respectively, for the three phases: @ swing-up, @ stabilization
and @ set-point change. Note that the smoother course of ugy,(t) is due to the undisturbed
simulation.

The lower plot of Figure 5.5 depicts the related condition numbers ggm(ORy/0Zk—N), Oexp
(Ohy,/0Zk_N), 0sim(Ohy/ODy,) and gexp(Ohy, /OP;,) for a buffer size of N+1 = 25. The condition
numbers QOgim (O, /0&x—n) and gexp(Ohy,/0Z)_y) are bounded and almost identical which
implies that the networked pendulum satisfies the 25-observability rank condition and that
the control inputs ugm (t) and uey,(t) are 25-exciting. In fact, the networked pendulum system
satisfies for any N +1 > 2 the N + 1-observability rank condition and for any N +1 > 3 the
extended N + l-observability rank condition. However, not every control input is extended

N +1-exciting. This can be seen by the condition numbers ggm (Ohy/0P;,) and gexp(Ohy./0Py,).

@ swing-up @ stabilization ® setpoint change
40 [ T T T T : T T T : ]
T 20 ! 5
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< 20 ' Ugim (t) = const ' Usim (t) Uexp(t) '
O J 1
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6
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2
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tins

chp(ahk/a:ﬁk—N) - - - Qsim(ahk/aﬁk)

| Qsim(aﬁk/afék—N) Qexp (aﬁk/aﬁk) |

Figure 5.5: Comparison between the simulated and experimental control inputs g, (t) and
Uexp(t) and the resulting condition numbers ggm(Ohy, /0% kN ), Oexp(Ohy,/0Fk—_N),
Qsim(abk/aﬁk) and Qexp(ahk/aﬁk)-
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Both tend to infinity whenever the control input corresponding to the buffer By is constant, like
in the swing-up phase where both control inputs reach the maximum allowed value and thus
violets condition (C2) of Theorem 5.2.4 respective Theorem 5.3.4. Note that the time between
the moment where the control input remains constant and the moment where observability
is lost corresponds to the time between the first and the last measurement in the buffer and
scales with the buffer size N.

It is important to note that in contrast to ugm(t), the control input ey, (t) is extended
25-exciting during the stabilization phase. This means that slight perturbations, which are
characteristic for real world applications, are enough to satisfy the extended excitation prop-
erty and thus to enable observability of NCSs. Moreover, the combined state and clock
parameter estimation problem of the real networked pendulum is better conditioned than
the simulated counterpart and possesses almost the same condition numbers as the sole state

estimation problem itself.

5.6 Summary

In this chapter, we have introduced the observability notion for undisturbed and disturbed
NCSs. This notion ensures (at least locally) the well-posedness of the respective observation
map by guaranteeing the full-rankness of its derivative with respect to col(éy, Bk,a%k, Nk)-
The observability of NCSs does not only depend on the structure of the system but also on
the information content of the control input. To this end, we have derived for the undisturbed
as well as for the disturbed NCSs a necessary condition for the control input to be sufficiently
exciting. The key idea for achieving this condition was to establishing a relation between the
control input and the first-order state sensitivities appearing in the elements of the derivative
of the observation map. The resulting conditions are almost identical for the undisturbed and
disturbed NCSs and the only difference stems from the dependence of the estimated state
disturbance w(t) on the clock parameter &. Moreover, we have revealed the relation between
the introduced notion of observability to the conventional Kalman observability matrix for
linear systems and to the update step as well as to the gradient and Hessian of the Lagrangian
of the CMHO and CMHE. Finally, we have clarified the introduced terminology and the
derived conditions by a linear example system and pointed out their practical relevance by

investigating a real networked pendulum test-rig.



Chapter 6

Stability Analysis

In this chapter, we analyze the stability of the nominal centralized moving horizon observer
(CMHO) and the nominal centralized moving horizon estimator (CMHE) presented in Chap-
ter 3. The arising difficulties and challenges stem on the one hand from the complexity of
the centralized moving horizon strategies (CMHS) and on the other hand from the general
framework expressed by the non-restrictive assumptions made in Chapter 3. Although these
assumptions aim to capture realistically the actual circumstances, they do significantly ag-
gravate the stability analysis. More precisely, the major six sources of difficulties are: @ the
nonlinearities induced by the system ¥ and the sensor X5, @ the special nature of the problem,
i.e. the combination of a continuous-time system with non-uniformly sampled discrete-time
measurements, @ the unsynchronized sensor clocks, @ the bounded but unknown disturbance
statistics, ® the bounded but unknown network statistics and ® the usage of suboptimal
solutions to the optimization problems of the update steps instead of the optimal ones which
can be derived by all admissible gradient based optimization algorithms.

The approach to tackle the CMHS stability analysis consists of two key ideas. The first one
is to treat the gradient-based optimization algorithms used for finding (sub)optimal solutions
to the optimization problems stemming from the nominal update step of the k-th buffer
as a nonlinear continuous-time dynamical system with the optimization variable p, as the
state vector. This facilitates the investigation of the stability properties of this system by
means of Lyapunov-type arguments. The second one is to understand the transition from
one optimization problem to the next, combined with the choice of the initial conditions
according to Section 3.6, as a change in the vector field of the gradient-based optimization
system along with an impulsive adjustment of its current state. From this point of view, the
core of the CMHS stability analysis is tantamount to investigating the stability of a nonlinear
continuous-time switched impulsive system. This is done by invoking arguments based on the
multiple Lyapunov functions framework (Branicky, 1998).

Based on these considerations, the contribution of this chapter is three-fold: First, we intro-
duce the perception of the gradient-based optimization algorithms presented in Section 2.4.2,
which use the efficient gradient calculation method derived in Chapter 4 for generating (sub)-
optimal solutions to the optimization problems stemming from the update steps, as nonlinear

continuous-time dynamical systems. Second, we derive conditions under which we can prove



126 Chapter 6 Stability Analysis

that the observation error of the CMHO converges asymptotically as well as in finite-time
to zero. Third, we derive conditions under which we can prove boundedness of the CMHE
estimation error, discuss the influence of various parameters on this bound and deduce actions
to increase the estimation performance by decreasing this bound.

The remainder of this chapter is organized as follows. In Section 6.1, we state the problem
formulation. The optimization algorithms are revisited in Section 6.2 and their treatment as
dynamical systems is introduced. In Section 6.3, we give an outline of the stability analysis
performed in Section 6.4 and Section 6.5 for the CMHO and CMHE, respectively. Finally, we

conclude the chapter with a summary given in Section 6.6.

6.1 Problem Formulation
The problem formulations are stated as follows.

Problem 6.1 (Nominal CMHO Stability Analysis). Let the CMHO according to Chapter 3
be given for the undisturbed NCS architecture presented in Section 3.1.
The problem is to analyze the stability of the nominal CMHO, i.e. to investigate the con-

vergence behavior of the observation error e(t) = &(t) — x(t).

Problem 6.2 (Nominal CMHE Stability Analysis). Let the CMHE according to Chapter 3
be given for the disturbed NCS architecture presented in Section 3.1.
The problem is to analyze the stability of the nominal CMHE, 1. e. to investigate the bound-

edness of the estimation error e(t) = &(t) — x(t).

To ease the stability analysis and to increase the understandability, we suppress the argu-
ments of all functions from the notation when the meaning is clear. It is important to recall
that throughout Part II of this thesis including the current chapter, the Assumptions 1-9 are
supposed to hold without explicitly stating them.

6.2 Gradient Based Optimization Algorithms Revisited

The centralized moving horizon strategies calculate their (sub)optimal solutions to the opti-
mization problems stemming from the update steps by means of gradient-based optimization
algorithms. According to Definition 3.4.3 respective 3.5.3, these optimization problems can

be compactly written for the nominal choice, i.e. without inequality constraints, as

min Ji,(Py,)- (6.1)
Py
As discussed in Section 2.4.2 there exists a variety of algorithms to tackle these type of
unconstrained and, in general, non-convex problems. Taking into account each algorithm

separately in the stability analysis of the CMHS would be possible but cumbersome and hence
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unrewarding. Instead, we tread a different path by proposing a unifying formulation which
includes all presented gradient-based optimization algorithms as special cases. As a result,
only this unifying representation has to be considered in the overall stability analysis. To this
end, we introduce the following unifying optimization algorithm representation formulated as

the continuous-time dynamical system

310 2 P ) =~ MLy ) S5 D1l (6:2)

where P, (k) € P C R™ is the state with the initial value p,(0) € P C R™ abbreviated as Py,
M (py) : R™ — R™>" is a positive definite matrix function, Ji(p,(x)) is the cost function
defined in (3.18a) and (3.24a) for the CMHO and CMHE, respectively, and x € Ry is the
optimization time. Note that the optimization time is not a time in the proper sense and,
hence, in no way related to either the global time ¢ or the local sensor time ¢. Instead, it should
be seen as the counterpart to the iteration step [ occurring in the gradient-based optimization
algorithms. To see this fact and reveal the relation between (6.2) and the algorithms for
unconstrained optimization problems presented in Section 2.4.2; we consider in a first step
the discretization of (6.2) derived by the Euler forward method. The resulting discrete-time

system can be expressed as

0Jy
Ipy,

Dl + 1] = Py [l] — Al M [l o= [1], (6.3)
where Ay [l] € Ry is the discretization step size and | € Ny is the discrete-time. As the notation
has already suggested, we understand the state P, as the optimization variable corresponding
to the k-th buffer defined in (3.16) and (3.22) for the CMHO and CMHE, respectively.

Adapting the line search methods presented in Section 2.4.2.3 for solving (6.1) yields the

iteration rule
Drll + 1] = p[l] + vell] sk 1], (6.4)

where v,[l] € Ry is the step length, si[l] € R" is the search direction and [ € Ny is the
iteration step. Consequently, (6.3) coincides with (6.4), if we identify the discrete time [, the
discretization step size Ag[l] and the matrix M [l] as the iteration step [, the step length ~,[(]
and the inverse of the exact or approximated Hessian By[l] of the cost function Ji. The latter

identification becomes clear if we recall that the search direction s;[l] can be expressed as

-1 8Jk
Opy

skll] = —Bi[l] [1]. (6.5)

To reveal the relation between (6.4) and the trust region algorithms presented in Sec-
tion 2.4.2.4, we need to derive an explicit expression for the update equation (2.54). By

invoking the theory of constrained optimization, i.e. the KKT conditions of Theorem 2.4.7,
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we can derive an explicit expression for the candidate step solving the constrained prob-

lem (2.52). Thus we can express the update equation of trust region methods as

1 aJk

Pull +1] = Pull] — (Bel] + A1)~ 55

(1], (6.6)

where \; € Ry is the Lagrange multiplier resulting from the trust region inequality and By[l] is
the Hessian of the cost function Ji, or some approximation to it. Consequently, (6.3) coincides
with (6.6), if we set the discretization step size Ag[l] to 1 and identify the discrete time [ and
the matrix M[l] as the iteration step [ and the expression (By[l] + M\[l]I) !, respectively.
Figure 6.1 illustrates the above obtained relations.Note that the stability properties derived
for (6.2) can be carried over to (6.3) to some extent. Furthermore, the introduced unifying
formulation contains all the presented unconstrained optimization algorithms as special cases
including the steepest descent, Newton’s, quasi-Newton’s, Gauss-Newton and the Levenberg
Marquardt method. Moreover, the unifying representation opens up the possibility of in-
corporating the approximate Hessian calculation methods derived in Proposition 4.4.2 and
4.5.2 for the CMHO and CMHE, respectively, in the line search as well as the trust region
framework. Note that according to (5.25), these approximations are guaranteed to be posi-
tive definite for the nominal choice of the update steps if the NCS is observable in the sense

derived in Chapter 5 and the sensing model (3.3) is affine.

Continuous-time unifying formulation:

381:@ ) = _Mk(ﬁk(n))g—;’i(ﬁk(“))’

Euler forward discretization
Line Search Algorithm: Discrete-time unifying formulation: Trust Region Algorithm:
Agl] = (1] Ay, Al =1
B Drll + 1] = Dy[l] — Ax[l| M i[l) =—[1], _
Ml - Byl lt 11 =2ull] = SlIMH8, U T aain = (Bt + Ay

Figure 6.1: Illustration of the relation between the unifying formulation for the optimization
algorithms, line search algorithms and trust region algorithms.

For the subsequent stability analysis, we define the function 5(/{, Py, u) as follows.

Definition 6.2.1. The function 19(/4:,152, u) is a mapping 9 : Ry xPxU — R™ which satisfies

, o9, A e O A
i) %(H,pk, u) = —M(V(k, Dy, u)a?":(ﬂ(m,pk, u)), (6.7a)

i) (0,5, w) = B (6.7b)
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6.3 Outline of the Stability Analysis

The CMHS stability analysis consists of three major steps which are outlined in the following.
The first step is to investigate the equilibria of the system (6.2). We show that if the NCS is
observable in the sense derived in Chapter 5, then the optimal solution p; of the optimization
problem stemming from the update step of the k-th buffer is an isolated asymptotically
stable equilibrium of the system (6.2). The corresponding proof is based on Lyapunov-type
arguments utilizing a Lyapunov function V) which is constructed by a suitable shift of the
cost function J,. The second step is to show that if the suboptimal approach satisfies the
proposed decreasing condition, then the suboptimal solutions p, approach to the optimal
solutions P, as k increases. Recall that this condition principally states that we switch
to next system of the form (6.2), which triggers an impulsive change of its current state,
whenever the cost function value J; is less or equal than the previous cost function value J;_1
multiplied with the decreasing factor &, € [0,1[. We illustrate the corresponding proof idea
by means of the schematic illustration given in Figure 6.2. Thereby, we consider exemplary
three systems of the form (6.2) corresponding to the i — 1-th, i-th and i + 1-th buffer. The
equilibrium of each system is marked as a bottom-up triangle and the associated regions of
attractions R;_1, R; and R,y are depicted as red, green and blue areas, respectively. The
level sets of the cost functions J;_q, J; and J;, 1 are plotted as red, green and blue dashed
lines, respectively. Note that the stroke width of these lines correlates with the value of the
level curves. The trajectory of each system is represented as an arrowed red, green and blue
solid line starting from the corresponding initial values marked with a square. The proposed
decreasing condition, which results in a switching procedure with impulsive state change, is

depicted as yellow dashed arrows. This condition ensures that the suboptimal solutions p,

A0 G AO
73, [] Ijj = 19(071)j!1t)
Ri-1 "/ “‘ A~ 19 A0
------- . P . p; = (H]pju)
- -~ . kY
4 3 o R - . o Y
e =00 VvV P = lim 9(k,p;,u)
o ""\‘ o Riti 7 k5o 7
N .
DS -- level set of J;
Ll
. l' ," O “\ ~~~ v : L N‘ ,' . . A
g : i R . N .-"| R, region of attraction of p;
. H H o . (98 d h
S =

_____

~§

.

Pes
.
.
G
G
g -

j=i—1 j=i j=i+]1

Figure 6.2: Schematic illustration of the stability analysis for the CMHS.
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approach to the optimal solutions P, as k increases. In the third step, we conclude from this
fact stability of the CMHS by invoking the continuous dependence of initial value problems

on the initial conditions, times, parameters and vector fields.

6.4 Stability Analysis of the CMHO

In this section, we investigate the stability properties of the nominal CMHO. To this end, we
consider the unconstrained case where the update step of the CMHO defined in (3.18) reads

as

min Ji(py,) (6.8a)
P
with the cost function
1 & )
= 3 (BB w) vyl (6.8)
i=k—N

Then the associated gradient based optimization system (6.2) becomes with Lemma 4.2.1 and
(5.24)

o T
2 i Ohy. 09,
Dy = — M, Z ( = L Ak) (hi|k - yi|k)

i=k—N aﬁbi\k apk
B oh, "
=M, 5, (he —w,), (6.9)

where M, is a positive definite matrix function, h;, is the observation map defined in (5.1)
and y, = col(y, ., @ € Zx) is the stacked measurement vector of the buffer By. Moreover, we
denote the optimal solution of (6.8) as p; = arg min, . Ji(Dy,). Note that py exists due to the
Weierstrass Maximum Theorem (Bronshtein et al., 2007). However, two important questions
remain open. First, is Py unique and second, how is p; related to (6.9)7 In order to address

both questions, we make the following assumption.

Assumption 10. The undisturbed NCS described in Section 3.1 satisfies the extended ob-
servability rank condition in N + 1 steps and the input w(t) € U is extended N + 1l-exciting

for all sampling instances k& > N.

This assumption is quite reasonable since it ensures the possibility of uniquely reconstruct-
ing Py, see Section 5.2. Moreover, if the sensing model (3.3) is affine, this assumption guar-
antees for the nominal case positive definiteness of the Hessian calculated by the approxima-
tion scheme given in Proposition 4.4.2. With this assumption, we can derive the following

result.

Theorem 6.4.1. Suppose that the Assumption 10 holds. Then the optimal solution P; of
(6.8) is an isolated asymptotically stable equilibrium of (6.9).
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Proof. Since we consider only a fixed buffer By, we ease the proof by omitting the subscripts
indicating the buffer affiliation. To prove the theorem, we use the cost function J(p) of (6.8b)
as a Lyapunov function candidate V' (p) for the system (6.9). The derivative of V(p) along
the trajectories of (6.9) is given by

V() = —%(ﬁ)M(ﬁ)?‘;@). (6.10)

By construction, V (p) and V (p) are positive semi-definite and negative semi-definite around p*,
respectively. To show that V' (p) and V(ﬁ) are positive definite and negative definite around p*,
respectively, we need to examine the gradient of J(p), which is given by

Oh

22 5) = i) (1) — ).

ap!

A

D)

Application of the Mean Value Theorem A.2 to h(p) results in

ho)= [ Z;f«l 9P+ 5p)ds (B — ) + h(F").

Since y = h(p), it follows

9J . 0Oh . tOh AL aN A s
55®) = 5p0) || 55((1 =)D+ 5p)ds (b — "),

which can be rearranged to yield

a‘] A A A Ak A
673@ = A(P)(P - P") + a(p), (6.11a)
with
Ap) = L) 08 5 (6.110)
A é @TA 1% Ak A 82 A A Ak
a(p) = 813(19) ; ap((l s)P" + sp) 0P (P)ds (P — D). (6.11c)

The function a(p) satisfies

Ja@)l < ( s

By continuity of h(p) and 0h(p)/0p, we see that

M%O as ||[p—p*|| — 0.

1D — 2"l
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Therefore, for any v > 0, there exists r > 0 such that

la@®@)[ <~lp—o7ll, VIp-Pll <r (6.12)

By inserting (6.11) into (6.10), the derivative of V(p) along the trajectories of (6.9) is

V() = —%(ﬁ) <ﬁ>§‘;<ﬁ>

Using (6.12) and suppressing henceforth the argument p from the notation, we get

V<—(p-p)"ATMAP—p") +270||p - p*|* —a"Ma, V|p-p*|<r

where
§ = Sup IM(p)AD)]-
But
p—p) ATMA(D D) > ollp — P,
where

0 £ min Ain (A (D) M (D) A(D))
with Apin(+) denoting the minimum eigenvalue of a matrix. Thus,
V < —(0—290)[p - P|]” — " Ma, VY|p-p*|<r

Note that p is real and nonnegative since AT M A is symmetric and nonnegative. Moreover,
since M > 0, p is positive if and only if A has full rank. Assumption 10 guarantees full-
rankness of Oh/0p and therefore full-rankness of A and thus ¢ > 0. Then choosing

<7
TS 9

ensures that V(p) is negative definite around p* since —a” Ma is negative semi-definite
around p*. This implies that 0J(p)/0p # 0 for all ||p — p*|| < r,p # p*. Therefore, V(p) is
positive definite around p*. From application of Theorem A.1 follows that p* is an isolated

asymptotically stable equilibrium of (6.9). ]
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This theorem guarantees that we can find the optimal solution P, by a forward simulation
of (6.9), provided that the initial value Py is inside the region of attraction of p;. Thus, we

make the following assumption.

Assumption 11. The initial value p; is bounded and inside the region of attraction of the

isolated asymptotically stable equilibrium P, of system (6.9), i.e.
Py € Ry 2 {p}, € R™| lim d(x, Py, u) = P}, Vk € Nyya.

Note that assumptions of this kind are quite typical for gradient-based algorithms used
for solving non-convex optimization problems. It is well known that these algorithms only
converge to the global optimal value, if the initial value is close enough to the optimal one,
cf. Section 2.4. Thereby, the meaning of close enough is relative and depends on the specific
problem. For instance, close enough means for convex optimization problems arbitrary far
away while no generally valid statements are possible for unconstrained non-convex problems.

The next question results from the fact that we are interested in a suboptimal solution
to (6.8) rather than in the optimal one. This means that the forward simulation of (6.9)
is stopped as soon as the decreasing condition (3.15) is fulfilled. Consequently, the arising
question is if we can make any statements about the observation error e(t) £ &(t) — () when
we stop prematurely the forward simulation of (6.9) at time ;. By means of the following

bounded quantities

of (xz,u)
ox

A
L = max

rxeX,ucl reX,uclU

’, 5fé max_ || f(x,u)l, (6.13)

we can give the answer to this question in the following Lemma.

Lemma 6.4.2. Suppose that Assumptions 10 and 11 hold and that P, = ﬁ(mk,ﬁz,u). Then

the norm of the observation error is bounded in the prediction intervalt € max Lk max Ejlk+1
J€Lk J€Lkta

for any k € Nyi1, ki € Ry, Py € Ry and any admissible u € U by
le@I < (@i — @xniall + 16 — )i nip + (B — Br)[0y) 7o T=nt00 - (6.14)

Proof. The following holds for all k£ € Ny, 1: Application of Theorem A .4 with y = x, z = &,

g(t) = h(t) =0, yo = Ty_np, 20 = r—nNpw, to = Qpli_np + B, t1 = ek + Brs
ty = maxjez, ., tjjk+1, 0 = 0y and the Lipschitz constant L reveals the desired result. O

Recall that the cumbersome formulation of the prediction interval is necessary since not
every arrived packet is incorporated in the buffer and thus the arrival time stamps ¢; cannot
be used directly to define the prediction interval, cf. Section 3.7.

Based on the findings so far, we can state the following stability result for the CMHO.



134 Chapter 6 Stability Analysis

Theorem 6.4.3. Let the Assumptions 10 and 11 hold. Then the decreasing condition

Ji(Br) < &ee1(Py—1) (6.15)

with the decreasing factor & € [0, 1] and the initial cost function value Jy(Py) = Jn41(Pys1)
is feasible by the optimization algorithm (6.9) for any k € Nyy1 and guarantees the CMHO

convergence of the observed parameters, i. e.
lim p;, = py, (6.16)
k—o00

and convergence of the observation error, i. e.

lim e(t) = 0. (6.17)

t—o0
Proof. The following holds for all k € Ny 1: Assumption 10 implies that Theorem 6.4.1 holds,
i.e. Py, is an isolated asymptotically stable equilibrium of (6.9). Assumption 11 guarantees
that the initial value p;, is bounded and inside the region of attraction Ry of the equilibrium py.
Since Py, is the only equilibrium of (6.9) in Ry and M, > 0, it follows from (6.9) that

0J
Opy,

70, VD, € Ri \ {D}}-

Thus, Ji(Py) is a Lyapunov function for system (6.9) which is positive definite around pj, for
all p, € Ri. Note that Ji(p,) is zero in Ry if and only if p, = p;. The derivative of Ji(p,.)
along the trajectories of (6.9) is

oJ. T o.J
— (D) M (P — (P
apk(Pk) k(pk)apk (Pk)

Jk(ﬁk) =

and is negative definite around py, for all p, € Ry, since M (p,) > 0. Therefore, the cost
function Ji(Py) with p, = 9(k, P, u) converges to zero as the optimization time x goes to

infinity, i. e.
,.@hg{.lo Jk({,\(lﬁﬁzv U’)) = 0.

Hence, for any & € [0, 1], there always exists an optimization time kj and an associated
optimization variable P, = 9(k, P, u) such that the decreasing condition (6.15) is satisfied,
ie. Jp(Pp) < &Jk—1(Py_1). Furthermore, the only limit point of the resulting sequence of
Lyapunov function values {Ji(p,)} satisfying the decreasing condition (6.15) is 0. Thus,

lim Ji(p,) =0,

k—o0
which implies

lim p, = p;.
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Since the Assumptions 10 and 11 hold, it follows from Lemma 6.4.2 that the observation error
e(t) converges to zero if and only if p, converges to p,. Hence,

lim e(t) = 0,

t—00
because p; = p,. O

The importance of this theorem is substantiated among other things by the following three
facts. First of all, this theorem holds for any network which satisfies the quite general As-
sumptions 5-7. This means that the stability of the nominal CMHO is independent of the
packet delay and packet drop statistics and requires only their boundedness. Note that these
statistics may be time-varying and do not need to be known at all.

Second, due to the utilized unifying formulation (6.9), all optimization algorithms are per-
missible which utilize the exact gradient and a positive-definite matrix M. This includes
not only all the algorithms presented in Section 2.4.2 but also line search and trust region
methods which utilize the Hessian approximation derived in Proposition 4.4.2. The difference
between the algorithms stems from differing vectors fields of (6.9) which results in varying
trajectories and different regions of attractions.

Third, instead of the optimal approach, the proposed suboptimal one is sufficient to guar-
antee stability of the nominal CMHO. This suboptimal concept is straightforward to im-
plement and requires only the choice of the decreasing factors &. These allow to set up a
compromise between the achievable convergence speed and the required computation time.
From a performance point of view, these factors should be chosen as small as possible, while
from a real-time point of view, these factors should be selected as close as possible to 1.

One may notice that by choosing §; = 0, we can instantly get J; = 0. Hence, the following

corollary stems directly from Theorem 6.4.3.

Corollary 6.4.4. Let the Assumptions 10 and 11 hold. If the j-th decreasing factor is chosen

as zero, i.e. § =0, j € Nyy1, then the observed parameters converge in finite time, 1. e.
P.=Di, Vk>3j, j€Nnpy (6.18)
and the observation error converges in finite time, 1. e.
e(t)=0, Vt> ri%%?cti,j, J € Nyug. (6.19)

Now we utilize the presented stability analysis to discuss the to be expected CMHO perfor-
mance by means of the schematic illustration given in Figure 6.3. Without loss of generality,
we consider the case where the arrival time stamps can be directly used for defining the predic-
tion intervals. The initial cost function values J;(p;) and the suboptimal cost function values
J;(p,;) are marked with blue circles and blue squares at the corresponding arrival times ¢;, re-

spectively. The suboptimal cost function values J;(p;) are identical to the Lyapunov function
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Figure 6.3: Schematic illustration of the CMHO performance.

values V;(p;) and are connected by a blue dashed line to highlight the effect of the decreasing
condition (6.15) which guarantees a steady decline of J;(p,;). The resulting observation error
bound ep.x(t) derived in (6.14) is depicted as an orange solid line. Note that this bound
is conservative, i.e. it represents only the worst case scenario. Moreover, it jumps at the
beginning of each prediction interval due to the new information available synthesized in the
suboptimal solution to the optimization problem of each update step. From the j-th arrival
time stamp onwards, J;(P;) as well as ey (f) are vanishing due to the zero choice of the j-th
decreasing factor, i.e. ; = 0. Note that this implies that not only the state but also the
clock parameters are reconstructed exactly. It should be stressed that the presented results

hold for all networks which feature bounded packet delay and packet drop statistics.

Remark 6.4.1. Since the network-free MHO is included as a special case of the CMHO, the
derived stability results hold for the network-free scenario, i.e. for the MHO.

6.5 Stability Analysis of the CMHE

In this section, we investigate the stability properties of the nominal CMHE. To this end, we
consider the unconstrained case where the update step of the CMHE defined in (3.24) is

min Jy(py,) (6.20a)
Py
with the cost function
. - 2
| ok o 1 1 k=l
Je(Dy) = 2 B |—| DB 2 Z ||h(¢i|k(15kau)) - y¢|k||§rl + 9 Z ||ﬁ’i\k||éfl-
X _ i=k—N i=k—N
Lk—N|k Li—N|k

P! (6.20b)
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Then the associated gradient based optimization system (6.2) becomes with Lemma 4.3.1 and
(5.24)

(077 (07 k A~ T
2 _ A > Ry, Oy, 1
Py =—M,; | P’ B | — | B + > = = R (hj — Y
. _ i \ O, 0Dy, ( | | )
LL—N|k Lr—N|k

0 Py,

- Pt 0 L
- (|75 g (o

where M, is a positive definite matrix function, p, = col(ay, B, T ~) is the stacked predic-
tion vector, R™' £ diag(R™,...,R™") and Q‘l 2 diag(Q7*,...,Q ") are stacked weighting

matrices, hy, is the observation map defined in (5.10) and y, = col(y, . i € Ti) is the stacked

) + G%kTB_I (B - yk>) , (6.21)

measurement vector of the buffer By. Moreover, we denote the optimal solution of (6.20)
as p; = arg min, Ji(Py). Note that p; exists due to the Weierstrass Maximum Theorem
(Bronshtein et al., 2007). However, just like in the CMHO case, two important questions
remain open. First, is P, unique and second, how is P, related to (6.9)7 In order to address

both questions, we make the following assumptions.

Assumption 12. The matrices P} ' are Yk € Ny, positive semi-definite, i.e. P! > 0,
and the matrices R~ and Q‘l are positive definite, i.e. R '>0and Q‘l > 0.

Assumption 13. The disturbed NCS described in Section 3.1 satisfies the extended observ-
ability rank condition in N + 1 steps and the input u(t) € U is extended N + 1-exciting for

all sampling instances k € Ny .

Assumption 12 restricts the weighting matrices to reasonable values. Assumption 13 is the
counterpart of Assumption 10 for the disturbed case and is quite reasonable since it ensures
the possibility of uniquely reconstructing p,, see Section 5.3. If the sensing model (3.3)
is affine, both assumptions together guarantee for the nominal case positive definiteness of
the Hessian calculated by the approximation scheme given in Proposition 4.5.2. With these

assumptions, we can derive the following result.

Theorem 6.5.1. Suppose that the Assumptions 12 and 13 hold. Then the optimal solution Py,
of (6.20) is an isolated asymptotically stable equilibrium of (6.21).

Proof. Since we consider only a fixed buffer By, we ease the proof by omitting the subscripts
indicating the buffer affiliation. To prove the theorem, we use V(p) = J(p) — J(P*) as a
Lyapunov function candidate for (6.21). The derivative of V(p) along the trajectories of

(6.21) is given by

V(p) = —*p(ﬁ)TM(ﬁ)*(ﬁ)- (6.22)
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By construction, V(p) and V() are positive semi-definite and negative semi-definite around p*,
respectively. To show that V(p) and V(p) are positive definite and negative definite around p*,

respectively, we need to examine the gradient of J(p), which is given by

P!t o . ohT R
0 Ql](p— ) 87() ' (h(p) — y).

Application of the Mean Value Theorem A.2 to h(p) results in

0T ) =

op

ho)= [ §g<<1 P+ sp)ds (P — 5°) + h(").

Hence,

.P_1 0 Ak p 8QTA —1 A
1o Q‘1] ( o )Jraﬁ(p) (h(p") - ),
which can be rearranged to yield
oJ R R .
673( P)=AP)(P—P") + a(p) + ax(p), (6.23a)
with
apye [P0 01 O Ok (6.23)
s ORT o Oh, . Oh,.
ar(p) & SBR[ FR((1= 5P+ p) — G (P)ds (b 7). (6.23¢)
P!t 0 D ohT
p) £ ' Do (h(p) - y). 2
as(p) 0 Q‘1] (p 0 )+ aﬁ(p)B (h(®") - y) (6.23d)

Thus, by inspection of (6.23), both functions a;(p) and ay(p) satisfy
lai@)l =0 as [p—p* =0, i=12

Moreover, application of the Mean Value Theorem A.2 to as(P) results in

A ! aa’ Ak A A Ak Ak
az(p):/o a1;((1—8)10 + sp)ds (p — P*) + ax(p")
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1 aCLQ

“+sp)ds(p—P"),

and the function a(p) £ a1 (p) + as(p) satisfies

oh” oh oh das
5)| < p 1 — )P +5P) — ——(p 1—)p"+sp)|| | 1D — 97
Jaio< s, | ShoIR (G =970 5200 )+ S i vn)| ) 1 7]

By continuity of h(p) and Oh(p)/0p, we see that

Ne®@)I

~p 0 as [[p—p7| =0
1D — D7

Therefore, for any v > 0, there exists » > 0 such that

la@) <~lp—o7ll, VIp-Pll <r (6.24)

By inserting (6.23) into (6.22), the derivative of V(p) along the trajectories of (6.21) is

Using (6.24) and suppressing henceforth the argument p from the notation, we get
V(D) < =B —-p)V ATMAP - p") +270|p — §|* — a" Ma, VY|p-p|| <,
where
5= sp 1M (p)A(D)|-
But
B-P) ATMAB-p) = op - pI,
where
0 £ min Auiy (A(P)" M (P)A(P))

with Apin(+) denoting the minimum eigenvalue of a matrix. Note that g is real and nonnegative
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since AT M A is symmetric and nonnegative. Thus,
V<—(e=20)lp-p";—a" Ma, Y|p—p[l<r
Suppose for the moment that ¢ > 0 holds. Then choosing

0

7 < 2%

ensures that V(p) is negative definite around p* since —a” Ma is negative semi-definite
around p*. This implies that 0J(p)/0p # 0 for all ||p — p*|| < r,p # Pp". Therefore, V(P) is
positive definite around p*. From application of Theorem A.1 follows that p* is an isolated
asymptotically stable equilibrium of (6.21). However, this requires that ¢ > 0, which holds
if and only if A has full rank for all admissible P!, Q_l and R™'. By introducing the

abbreviation

O
o=|_" éa—%, where O; £ (‘3@ N = ?b. _
0O, op dcol(&, B, &x_nN) d col(w;,i € 7)

the matrix A defined in (6.23) can be decomposed into

Pt 0 O'R 'O, O'R'O
A= » e T = (6.25)
0 Q O, R 0O, O,R 0O,
By application of Theorem A.6, we see that A has full rank if and only if
det(P+OTR10;) #0 (6.26a)
det(Cy) # 0, (6.26b)

with Cy £ Q‘l +O0IR1'0,-0OYR'0,(OTR'0,)"'O{ R"'0O,. The worst case regarding
the full-rankness of A results from P~ = 0. From Assumption 13 follows that O; has full
rank. Thus, (6.26a) is always fulfilled because rank(OT R'0;) = rank(O,) since R™* > 0

according to Assumption 12. By decomposing R~ = R™Y2R™/2, we get for C,

T v

O T T T
C, = Qil + 0,0, —0,0,(0,0:,)7'0, 0,
vT 9 v v vT v
=Q '+ 0,(I-0,0,0,)70,)0,,

where 61 £ 01371/2 and 02 £ 02371/2. Using a singular value decomposition of él, i.e.

O, =UXV7T with & =

, we get

T ~ wT v T v
C;=Q '+0,(I—-0:0,0,)'0,)0,
— Q'+ 0,(I-USVI(VAVT)'VTsUT)0,
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v I O v

Q' +0,(I-U [ ] Uuho,

= 00

o [oo]. .
—Q'+0,U UTo

Q *“lo I ?

- 1T

—o+olu | 0 [0 0 yrs
S oI |01 >

Due to Assumption 12, which guarantees Qil > 0, C, is positive definite since it is a sum of
a positive definite and a positive semi-definite matrix. Hence, (6.26b) is fulfilled and A has
full rank. O]

It is interesting to note that if the first term (3.20a) and the third term (3.20c) are not
present in the cost function, i.e. P;' = 0 and Q;l = 0, then p; would not be an isolated
asymptotically stable equilibrium of (6.21). In other words, the optimization problem would
not be well-posed. Thanks to Assumption 12, Theorem 6.5.1 ensures that we can find the
optimal solution p; by a forward simulation of (6.21), provided that the initial value P, is

inside the region of attraction of p;. Thus, we make the following assumption.

Assumption 14. The initial value p; is bounded and inside the region of attraction of the

isolated asymptotically stable equilibrium p; of system (6.9), i.e.
Py € Ri 2 {p} € R™| lim O(x, P}, uw) = Py}, Vk € Ny

Recall that assumptions of this kind are quite typical for gradient-based algorithms used
for solving non-convex optimization problems since they only converge to the global optimal
value, if the initial value is close enough to the optimal one, cf. Section 2.4.

Since we are interested in a suboptimal solution to (6.20) rather than in the optimal one,
we stop the forward simulation of (6.21) as soon as the decreasing condition (3.21) is fulfilled.
This raises the question, if we can make any statements about the estimation error e(t) £
Z(t) — z(t) when we stop the forward simulation of (6.21) prematurely at time x;. By means

of the Lipschitz constant

0
L% max 7f(w,u) ,
zeX,ucl 8$
and the bounds
2 L S n 2 — < N
G 2 a1 @, w6 2 o ] s 2 max 4], 6a £ max [w(t) — b(0)] < 6o+ b,

we can answer this question in the following Lemma.
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Lemma 6.5.2. Suppose that Assumptions 12, 13 and 14 hold and that P, = ﬁ(m,ﬁz, u). Then
the norm of the estimation error is bounded in the prediction intervalt € |maxtj, max tjju41
J€L J€Lk+1

for any k € Ny11, k € Ry, Py, € Ry and any admissible w € U by

le@)l < ((18r-vik — Te-niell + 16 — ax)tinip + (Br = Bi) (5 + i) ) - ue=timnie)

OA (L (fun—Txnir) L(t— Tap—Br) 1 Ow [ L(t—én Tye—fB) (6.27)
+f(6 k(Crje—th—N|k _1) e ktk|k k_{_f(e k |k —Bk _1).

Proof. The following holds for all k& € Ny4;. The interval [y t—npi + Bk,maijIkH tilkt1)
is divided into two parts according to the estimated state disturbance. In the first part
[T By, . trjr + ﬁAk] the estimated state disturbance @(t) is present, while in second
part [dy L?WC + Bk, maxez, ,, jjk+1] no estimated state disturbance occurs. For each interval,
Theorem A .4 is applied and afterwards the results are combined to yield the desired bound.

Application of Theorem A.4 results with y = x, z = &, g(t) = w(t), h(t) = W(t),
Yo = Tp_Njk, 20 = Zp—npp and with the times tg = A tp_np + B, t1 = i te—npk + Brs
ty = Gy fk“c + Bk, and with the bounds 0 = d¢, i = dy, p = a as well as with the Lipschitz

constant L for t € [y ty_npp + Bk, Gn trp + Bi] in

le@ll < (15— n1k — Tr-niill + (G — c)bnps + (B — Br) (0 + 0,) ) X0k Fuonis =)

N L(t—ag ty— N1 —Br)
+—= (eMtmtution=e) — 1) (6.28)

Application of Theorem A.4 results with y = x, z = &, g(t) = w(t), h(t) = 0, y, =
x (G typr, + @), zg = &y, and with the times to = t; = &y by + Bk, ty = maXjez, , tjjkt1,
and with the bound p = §,, as well as with the Lipschitz constant L for ¢t € [dy fk‘k + @k,
maX;er, tj\k-H] in
. a6 R
le@)|| < |@r — (G trgp + Br) || P00 Bn=) - <6L(t_ak t—Brk) _ 1) ' (6.29)
Bounding || & — (& typ + Bx)|| in (6.29) with (6.28) for t = dy g + Fp yields for ¢ €

[maxez, ik, MaXjez, ,, tjjkt1)

le@®)]] < ((H"%k*N\k — el + (G — )b + (Be — Bi) (67 + 5w)) e L0k (b=t 1)
+ (Sf (eL&k(Eklk_fka\k) _ 1)) eL(t—dxk theie—Br) + (5[1/” (eL(t—@k toe—Br) _ 1)

which completes the proof. O]

Note that the error bound (6.27) is conservative but constructive. This means that it is
only tight for the worst case scenario but it reflects the influence of the different parameters
on the performance of the CMHE. For instance, the better the estimation quality of P, is,

the smaller is the estimation error bound. Note that the cumbersome formulation of the
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prediction interval stems from the fact that not every arrived packet is incorporated in the
buffer and thus the arrival time stamps ¢; cannot be used directly to define the prediction

interval, cf. Section 3.7. The maximal length of the prediction interval is

Tmax.pre = (Nmax.drop + 1) (ké%]?\f}il ozk) 07 + Tmax- (6.30)
Consequently, a reduction of the prediction interval and thus a diminution of the error bound
is accompanied with either a decrease of the time between two consecutive measurements oy
or of the maximum number of consecutive packet drops Npax drop Or 0f the maximum packet
delay Tiax. The main difference compared to the CMHO lies in the fact that the error bound
does not vanish when the estimation derived in the update step is precisely the true state, i.e.
ik = ik In this case, the first term in (6.27) vanishes but the second one remains. This
is due to the unknown state disturbance acting on the system during the prediction interval.

Nevertheless, we can state the following stability result for the CMHE based on the findings

so far.

Theorem 6.5.3. Let the Assumptions 12, 15 and 1/ hold. Then the decreasing condition

Je(Pr) < max{&Ji—1(Pr_1), 0} (6.31)

with the decreasing factors & € [0, 1], the upper bound for the optimal cost function values
0, > maxkeny., Ju(Py) and the initial cost function value Jy(Py) = JIn+1(Pyyr) is feasible
by the optimization algorithm (6.21) for any k € Nyi1. Moreover, the norm of the CMHE

estimation error ||e(t)|| is bounded for all t € Ry.

Proof. The following holds for all £ € Ny, 1: The Assumptions 12 and 13 imply that Theo-
rem 6.5.1 holds, i.e. Py is an isolated asymptotically stable equilibrium of (6.21). Assumption
14 guarantees that the initial value p; is bounded and inside the region of attraction Ry of
the equilibrium p;. Since Py, is the only equilibrium of (6.21) in Ry and M > 0, it follows
from (6.21) that

0Jy
9Py,

Thus, Vi(py) = Ji(Pr) — Jr(Py) is a Lyapunov function for system (6.21) which is positive
definite around py, for all p, € Ry. Note that Vi(p,) is zero in Ry if and only if p, = py.
The derivative of Vi(p,) along the trajectories of (6.21) is

oo oJ T W OJk
Vi(Be) = — 5 (BIMi(Bi) 55 ()

and is negative definite around p; for all p, € Ry, since My(p,) > 0. Therefore, the
Lyapunov function Vi(p,) = Vi(9(k, P, u)) and the cost function Ji(p,) = Ju((x, p5, u)
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converge to zero and to the optimal value as the optimization time goes to infinity, respectively,

i.e.
lim Vi(d(r, pp,w)) =0 and  lim Jy(D(k, B}, u)) = Je(B;) < 6.

Hence, for any & € [0, 1], there always exists an optimization time r; and associated opti-
mization variable p, = 9(ky, P5, w) such that the decreasing condition (6.31) is satisfied, i.e.
Je(Pr) < max{&xJp—1(Py_1),0s}. Furthermore, the only limit point of the resulting sequence
of cost function values {Ji(P,)} satisfying the decreasing condition (6.31) is d, i.e.

k—o00

Since the Assumptions 12, 13 and 14 hold, it follows from Lemma 6.5.2 that the norm of the

estimation error |le(t)]| is bounded for all ¢ € R,. O

This theorem constitutes the counterpart of Theorem 6.4.3 for the disturbed scenario and
has been developed based on the same techniques. Therefore, it is hardly surprising that
the major three CMHO facts still hold in the core. Due to their importance, we state them
subsequently in adapted form.

First of all, note that Theorem 6.5.3 holds for any network which satisfies the quite general
Assumptions 5-7 and any weighting matrices which satisfy Assumption 12. As long as these
Assumptions are fulfilled, the specific choice of the weighting matrices, the packet delay and
the packet drop statistics do not influence the boundedness of the nominal CMHE. But they
do, of course, determine the quality of the estimation error bound and therefore the achievable
performance of the CMHE. This means that the weighting matrices are an important tool for
setting up the estimation performance, cf. Section 3.5.

Second, due to the utilized unifying formulation (6.21), all optimization algorithms are
permissible which utilize the exact gradient and a positive-definite matrix M. This includes
not only all the algorithms presented in Section 2.4.2 but also line search and trust region
methods which utilize the Hessian approximation derived in Proposition 4.5.2.

Third, instead of the optimal approach, the proposed suboptimal one is sufficient to guar-
antee boundedness of the nominal CMHE. This suboptimal concept is straightforward to
implement and requires only the choice of the decreasing factors &. These have the same
meaning as for the CMHO and opens up the possibility to set up a compromise between the
achievable convergence speed and the required computation time.

One may notice that by choosing

N+1+j 5J
é'i S ~ \ ) ] € N07 (632)
1211;14.1 JN(pk)

we can get Jyi14; < ;7. Hence the following corollary stems directly from Theorem 6.5.3.
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Corollary 6.5.4. Let the Assumptions 12, 13 and 14 hold. Then there exists for every j € Ny
a sequence of decreasing factors {&}Z]\E\}H such that the cost function values converge in finite

time, 1. e.
Je(Py) <65, VE=N+1+7, j€N. (6.33)

Now we utilize the presented stability analysis to discuss the to be expected CMHE perfor-
mance and to compare it to the CMHO one by means of the schematic illustration given in
Figure 6.4. Without loss of generality, we consider the case where the arrival time stamps can
be directly used for defining the prediction intervals. The initial cost function values J;(p;),
the suboptimal cost function values J;(p;) and the Lyapunov function values V;(p,) are marked
with blue circles, blue squares and a green rhombuses at the corresponding arrival times t;,
respectively. Note that in contrast to the CMHO, the Lyapunov function values V;(p,) are
generally not identical to suboptimal cost function values J;(p;) due to the fact that the
optimal cost function values J;(p;) are non-vanishing. Each value of J;(p;) and V;(p;) is con-
nected by a blue dashed line and a dashed green line, respectively, to highlight the effect of
the decreasing condition (6.31). This condition guarantees a steady decline of J;(p;) but not
necessarily of V;(p,). The resulting maximal estimation error bound ey, (t) derived in (6.27)
is depicted as an orange solid line. Note that this bound is conservative, i.e. it is not tight.
Moreover, it jumps at the beginning of each prediction interval due to the new information
available synthesized in the suboptimal solution to the optimization problem of each update
step. From the (N + 1 + j)-th arrival time stamp onwards, J;(p;) is bounded by d; due to
the decreasing factor choice (6.32). The fact that the suboptimal solutions p, remain in the
bounded sublevel sets {p;, € P|Ji(Py) < b5,k > N+1+j,5 € Ny} guarantees the existence of
the maximal estimation error bound d, for ¢ > ty4,41. Note that in contrast to the CMHO,

the state and the clock parameters cannot be reconstructed exactly. Nevertheless, it should
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Figure 6.4: Schematic illustration of the CMHE performance.
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be stressed that the presented results hold for all networks and disturbances which feature

bounded statistics.

6.6 Summary

In this chapter, we have analyzed the stability of the nominal CMHO and the nominal CMHE.
Both analyses are founded on the idea of expressing gradient-based optimization algorithms
as a single unifying continuous-time dynamical system. The essential characteristic of this
system is that its vector field is the product of an arbitrary positive definite matrix function
and the negative gradient of the cost function derived in Chapter 4. The freedom in choosing
this matrix has opened up the possibility of selecting any line search or trust region method
presented in Section 2.4.2. This perception has facilitated the accomplishment of the stability
analysis in three steps. In the first step, we have shown that if the NCS is observable in
the sense derived in Chapter 5, then the aforementioned unifying continuous-time system
possesses an isolated asymptotically stable equilibrium which is the optimal solution to the
optimization problem stemming from the corresponding update step. We have proven in
the second step that if the suboptimal approach satisfies the decreasing condition, then the
suboptimal solutions approach to the optimal ones. In the third step, we have concluded from
this fact and by invoking the continuous dependence of initial value problems the following
results for the disturbed and undisturbed scenario. For the former case, we have shown
boundedness of the CMHE estimation error. For the latter case, i.e. in the absence of
disturbances, we have proven asymptotic and even finite-time convergence of the CMHO
observation error depending on the choice of the decreasing factors. These factors allow to
set up a compromise between the achievable convergence speed and the required computation
time. It should be pointed out that the main feature of these results is its generality. This
means that the derived analysis hold for the general assumptions made in the framework
presented in Chapter 3 which includes, inter alia, the quite general packet delay and packet

dropout assumptions.



Chapter 7

Simulation and Experimental Results

In this chapter, we present simulation as well as experimental results for both developed
centralized moving horizon strategies (CMHS) applied to a networked version of a nonlinear
benchmark system and to a networked pendulum test-rig. A conventional continuous-discrete
extended Kalman filter (CDEKF) (see Appendix C) serves in each case as a comparison to
the CMHS.

In Section 7.1, we present the simulation results for the centralized moving horizon observer
(CMHO), the centralized moving horizon estimator (CMHE) and the CDEKF applied to a
networked version of a nonlinear benchmark system. These three methods are compared to
each other for various settings of the disturbances, the network conditions and the decreasing
factors describing the quality of the suboptimal approach used by the CMHS. A significant
characteristic of the benchmark system are the strong nonlinearities not only in the state
equations but also in the sensing model. In Section 7.2, we present the experimental results
for the CMHE and the CDEKF applied to a networked pendulum test-rig. The transition
between two stationary setpoints and the swing-up and stabilization problem serve as an
open-loop and closed-loop benchmark, respectively. The latter represents an especially chal-
lenging benchmark due to the unstable and non-minimum phase system dynamics along with
the network-induced non-negligible packet delays and packet drops. In order to achieve a
satisfactory real-time performance, we develop and implement additional steps to exploit the
available computational power by reducing the idle time and guaranteeing the strict obser-
vance of an upper bound for the execution time. Finally, we conclude the chapter with a

summary given in Section 7.3

7.1 Networked Nonlinear Benchmark System

In this section, we present the simulation results for the centralized moving horizon observer
(CMHO) and the centralized moving horizon estimator (CMHE) applied to a networked ver-
sion of a nonlinear benchmark system. Thereby, we compare both methods and contrast them
to a conventional continuous-discrete extended Kalman filter (CDEKF) (see Appendix C).

All simulations are performed within the centralized NCS architecture depicted in Figure 3.1.
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The simulation results are presented in Section 7.1.2 for the simulation setup given in Sec-
tion 7.1.1.

7.1.1 Simulation Setup

The plant ¥ is a commonly used nonlinear scalar benchmark system (Lo, 1994; Alessandri

et al., 2008) extended by the control input u(t) and reads as
B(t) = 272 1 4 u(t) + w(t), (7.1)

where the initial state is 2(0) = z° and the state disturbance w(t) is uniformly distributed in
the interval [—by, b,]. The control input u(t) is chosen to be u(t) = sin(2¢) sin(0.5¢ 4+ 2) and
is sufficiently exciting to enable observability of the NCS, cf. Theorem 5.2.4 and 5.3.4.

The sensor g posses the sensing model

y(t) = 23(t) +v(t), (7.2)

where the measurement disturbance v(t) is uniformly distributed in the interval [—b,, b,]. The
sensor time ¢ is related to the global time via the clock parameters o, = 0.9 and 8, = —1s.
A packet P; of the form {y;,t;} is transmitted over the network, if either y or ¢ changes by
0.15 or 0.84s (0.75s in global time) based on the information in the latest transmitted packet.
Note that (7.1) and (7.2) are strongly nonlinear.

The network >y is simulated by a Matlab-based network simulator which enables the
emulation of various protocols and network conditions. These lead to different packet delay
distributions in the intervals [b; min, by max]-

In order to evaluate the effectiveness of the proposed CMHS, the CMHO and the CMHE
are compared with the CDEKF. The settings of these three estimators 3> are described in the

following.

Centralized Moving Horizon Observer
The CMHO utilizes the nominal choice of the update step which minimizes the cost function

k
Ju(Dy) = Z ”i'zgm - yz’|kH2>
—k—

N

N | —

7

where the buffer size is N 4+ 1 = 5. The initial value z° of the CMHO is chosen manually
depending on the investigated scenario while the clock parameters a3, and BA]OV 41 are auto-
matically initialized by Method 2, see Section 3.6.2. The optimization problems of the update
steps are solved by a forward simulation of the system (6.2) which unifies various gradient-
based optimization algorithms. The required gradient of the cost function Jj is calculated
according to the sensitivity based method derived in Section 4.2 and the matrix My is the

inverse of the Hessian approximation H; derived in Proposition 4.4.2.
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Centralized Moving Horizon Estimator

The CMHE utilizes the nominal choice of the update step which minimizes the cost function

R B 2
(6773 677

R 1 ~ ~ 1 k ) 1 k—1 )
J@dr) =51 B | = | B +5 2 & =gkl +5 D0 danllg
A _ i=k— i=k—
TEp—Nk Tk—N|k N N

-1
P,

The buffer size is identical to the one of the CMHO, i.e. N+1 = 5. The initial value zZ° of the
CMHE is chosen manually depending on the investigated scenario while the clock parameters
a4 and BAJ"V 41 are automatically initialized by Method 2, see Section 3.6.2. The prediction
values are initialized by ayi1 = &34, Bni1 = B]O\T—l—l and ZTp_npp = ngﬁpre(tNJr”NH,O,fco,u).
The weighting matrices are set to P;,' =0.5I, R~ =1 and Q! = 1. Similar to the CMHO
case, the optimization problems of the update steps are solved by a forward simulation of
the system (6.2). The required gradient of the cost function J is calculated according to
the sensitivity based method derived in Section 4.3 and the matrix M, is the inverse of the

Hessian approximation H; derived in Proposition 4.5.2.

Continuous-Discrete Extended Kalman Filter

The conventional CDEKEF is described in Appendix C and is implemented for the networked
scenario in the following way. The CDEKF checks whenever a new packet P; ; arrives if the
corresponding sensor time stamp ?; is newer than the one of the packet used for the last
update step. If this is true, an update step is performed where the arrival time ¢; is used
as the time where the corresponding sampling occurred, i.e. the time delays are neglected.
Otherwise the packet will be dropped and the prediction proceeds. The weighting matrices
are chosen as Py = 1, ) = 1 and R = 1/5 while the initial value z° is identical to the CMHS.

7.1.2 Simulation Results

Figure 7.1 presents the results of the CMHO for the undisturbed scenario and different values
of the decreasing factors §;. The initial value of the CMHO is chosen to 2° = 1.75 (2° = 1.25)
and the clock parameters are initialized by Method 2, cf. Section 3.6.2, which leads to
Gy =1 (ayg1 = 0.9) and B]OVH = —1.037s (Bn41 = —1s). The upper plot of Figure 7.1
shows the sensing model y(#) depicted in global time ¢ as a gray solid line where the event-
based generated measurements y(t;) are marked with a blue cross. The blue arrows indicate
the run of the corresponding packet P; through the network. This means that the time of the
beginning of the arrow corresponds to the sensor time stamp depicted in global time while the
tail of the arrow correlates to the arrival time stamp. The middle plot of Figure 7.1 presents
the estimated state Z(t) of the CMHO for different values of the decreasing factors ;. The
resulting absolute estimation error |e(t)] is illustrated in the lower plot of Figure 7.1. The
impact of the update steps can be seen in both plots at the times where the buffer B changes

which are indicated by dashed gray lines. At these times, the estimates #(t) change abruptly
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Figure 7.1: Performance of the CMHO for b, = 0, b, = 0, by min = 0.2, by max = 0.4s and
different values of the decreasing factors &;.

towards the true state x(t). Thereby, the rate of convergence depends on the value of the
decreasing factors. For the special case of & = 0, we obtain a dead-beat observer, i.e. the
estimation error vanishes after the first update step. The condition number o(0h;,/0Zr_ k)
is a measure of observability, cf. Section 5.5.2, and is for the depicted scenario in the interval
[14.1,295.8].

Figure 7.2 is the counterpart of Figure 7.1 and presents the results of the CMHE for the
disturbed scenario and different values of the decreasing factors &;. Apart from different values
of b, and b,, both settings are identical. Similar to the CMHO, we can observe an abrupt
change of the estimated states Z(¢) towards the true states x(t) whenever an update step
is performed. In contrast to the CMHO, the estimation error |e(t)| of the CMHE does not
vanish but remains bounded due to the unknown disturbances. The middle and the lower
plot of Figure 7.2 show that #(t) converges for £ = 0, §; = 0.1 and & = 0.5 after 1, 5 and 8
update steps which corresponds to the times 0.65s, 1.65s and 2.81 s, respectively.
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Figure 7.2: Performance of the CMHE for b,, = 0.25, b, = 0.025, b, min = 0.28, by max = 0.4s
and different values of &;.

For the sake of comparison, we consider the performance index given by the root mean
square error (RMSE)

RMSE 2 (/tt ’e(t”th)Q, (7.3)

ta —t

where |e(t)] is the absolute value of the estimation error at time ¢, ¢; is the time where the first
update step of the corresponding estimator is performed and ¢5 is 5.6s. The RMSE values
of the CMHO, CMHE and CDEKF for different settings are depicted in Table 7.1.  The
absolute estimation errors |e(t)| of the CMHO, CMHE and CDEKF for the first setting of
the time delay variation and for the second setting of the disturbance variation are depicted
in Figure 7.3(a) and 7.3(b), respectively. The dashed gray lines in Figure 7.3 indicate the
times where an update step of the CMHS respective CDEKF is performed. In the presence
of high disturbances and low delays, the performance of the CDEKF is almost comparable to
those of the CMHO and CMHE. For increasing delays, however, the CMHO and the CMHE
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Table 7.1: Performance of the CMHO, CMHE and CDEKF for #° = 1.35, a3, and B}’VH

according to Method 2, & = 0 and different values of by, by, by min and b; yax.

time delay variation

disturbance variation

b 0.25 0.05 0.15 0.25
b, 0.025 0.005 0.015 0.025
b+ min 0.05s 0.2s 0.4s 0.2s
br max 0.1s 0.4s 0.7s 0.4s
RMSE CMHO 0.019687 0.021246 0.024809 0.004191 0.012852 0.021246
CMHE  0.019360 0.019950 0.019955 0.005059 0.012364 0.019950
CDEKF 0.024437 0.053526 0.080830 0.053997 0.053373 0.053526
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(b) Parameter setting: b, = 0.15, b, = 0.015, by min = 0.25 and by max = 0.4s.

Figure 7.3: Absolute estimation error |e(t)| of the CMHO, CMHE and CDEKF for different
parameter settings.

significantly outperform the CDEKF. This is hardly surprising, since the CDEKF is not
constructed for dealing with the networked scenario. The CDEKF performs only reasonable
in regions where the delays have low influence, i.e. y(t;) =~ y(t;, — ;). For instance, this
situation can be seen in the interval [2.5s,4 s in both plots of Figure 7.3. As to the comparison
between the CMHO and the CMHE, the CMHO is slightly superior to the CMHE for the
almost undisturbed scenario. However, this situation changes in favor to the CMHE for
increasing disturbances. This becomes even more noticeable for high disturbances combined

with high time delays.
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7.2 Networked Pendulum

In this section, we present the experimental validation of the centralized moving horizon
estimator (CMHE) and contrast it to those of a conventional continuous-discrete extended
Kalman filter (CDEKF). All experiments are conducted on a networked pendulum test-rig
within the centralized NCS architecture depicted in Figure 7.4. Thereby, we utilize a two-
degree of freedom controller ¥ . This means that the feedforward controller Xgp is supported
by the state feedback controller ¥pg with one of the above two estimators ) in order to
stabilize the pendulum system ¥ along the nominal trajectories &*(t) provided by the sig-
nal generator X*. The transition between two stationary and stable setpoints and the more
challenging swing-up and stabilization problem serve as an open-loop and closed-loop bench-
mark, respectively. A feature of the proposed CMHE is the compensation of network induced
imperfections. This means that the feedforward controller Ypp as well as the feedback con-
troller Xpg are designed as if no network Xy is present. In the following subsections, the

above mentioned points are addressed.

Figure 7.4: Centralized NCS architecture with pendulum system ¥, sensor g, network >y,
estimator 3 (consisting of buffer ¥g, updater ¥y and predictor ¥p), two-degree-
of-freedom controller ¢ (consisting of signal generator ¥*, feedforward con-
troller Xpr and feedback controller ¥gp) and actuator 4.
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7.2.1 Pendulum Test Rig

The pendulum test rig used for the experiments is shown in Figure 7.5(a). The cart is driven
by a toothed belt connected to a synchronous motor with a maximum input of |tmay| = 45'V.
The position of the cart x and the angle of the rod ¢ are measured by incremental angle
encoders which have a resolution of 27 /4096 rad. Both measurements are combined to emulate
the sensor Yg depicted in Figure 7.4 with one local sensor time ¢ and the clock parameters
ap = 1.2 and B, = —3s. A packet P; of the form {w;, p;,t;} is transmitted over the network,
if either x, ¢ or t changes by 0.01m, 0.0175rad or 10ms based on the information in the

latest transmitted packet.

toothed belt

(a) Pendulum test-rig. (b) Real-time target machine.

Figure 7.5: The networked pendulum test-rig.

The real-time control of the pendulum test-rig is realized via XPC TARGET' from MATH-
WORKS. This enables the execution of SIMULINK models in real-time on x86-based real-time
target machines. The one used for the experiments is depicted in Figure 7.5(b). It possesses
an Intel Core i5-680 CPU with 3.6 GHz, runs a xPC Target kernel with dual core support
and is equipped with a NI PCI-6602 data acquisition board for the signal processing. Apart
from one exception (see Section 7.2.5), all tasks are performed on the first CPU core with a
sampling time of T4 = 1ms. In order to test different network protocols and to guarantee
reproducibility of the network conditions, the network Yy is emulated by a MATLAB-based
hardware in the loop (HiL) network simulator. It enables the emulation of various network
protocols and network conditions which leads to different packet delay and packet dropout

distributions.

7.2.2 Equations of Motion

The model of the pendulum is derived within the Lagrangian mechanics framework. To this
end, we consider the pendulum schematics shown in Figure 7.6 and the associated description
of the pendulum parameters in Table 7.2. Based on the absolute position r(t) = [z(t) —

Isin (), lcos (t)]T of the center of mass of the rod, the kinetic and potential energies can

http://www.mathworks.de/products/xpctarget/
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description symbol value unit
half pendulum length [ 0.1925 m
rod mass m 0.146 kg
cart mass M 5.9 kg
moment of inertia G} 1.8-107% kgm?
P rotational friction constant d, 54-10* Nms
horizontal friction constant d, 843 Ns/m
motor constant b 24.95 N/V
gravitation constant g 9.81 N/kg
Figure 7.6: Pendulum
schematics. Table 7.2: Pendulum Parameters.
be expressed as
T 1 9. R
T(t) = GMi(t)’ + 50(1)° + 5m (#(1)° + Pe(1)* — 2i(1)p(t)l cos (1)) (7.4a)
V(t) = mgl cos p(t). (7.4b)

The non-conservative forces projected in the space of the generalized coordinates r(t) =

[x(t), gD(t)] are
I 1 ) I 2 Z(p . ('L‘) ) I 3

where Fi(t) and Fy(t) are the viscous friction between the cart and the rail and in the link,

Fu(1)

N (7.5)

respectively. The dynamics of the electrical part of the motor are much faster than the
dynamics of the mechanical system and are thus neglected. This leads to the linear relation
F4(t) = bu(t) between the voltage u(t) applied to the motor and the force F4(t) on the cart.

The equations of motion are derived by means of the Lagrange equation of second kind

0 OL(t) OL(t) &
o or  or 2T (7.6)

with the Lagrangian function L(t) = T'(t) — V(t). The resulting dynamics of the pendulum
can be written with @(t) = [12(t), 22(t), 32(t), sz (t)]T = [x(t), 2(t), o(t), o(t)]T in state space
form @&(t) = f(x(t),u(t)) as

1 (t) = 2x(t) (7.7a)
_ (© +mi*)bu(t) — (O + mi?)d,ox(t) — mld,4z(t) cos 5x(t)
(© +ml?)(M 4+ m) —m2? 0082 37 (t)
—(© + ml*)mix(t)? sin 32:(t) + m?1?g cos 32(t) sin 32(t)
(© 4+ ml?)(M + m) — m?1? cos? 3x(t)
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32 (t) = 4x(t) (7.7¢)
i(t) = bml cos sx(t)u(t) — mldyox(t) cos sx(t) — (M 4+ m)d,a2(t) — mldy,ax(t) cos sx(t)
! (© 4+ ml?)(M + m) — m?? cos? 32(t)
—(M + m)mlgsin 3z(t) + m*1?g4x(t)? cos 3z(t) sin 32(t)
(© +mi2)(M + m) — m?2(2 cos? 5x(t)

+

(7.7d)

The parameters of the pendulum have been measured and identified at the experimental

device and are summarized in Table 7.2.

7.2.3 Feedforward Controller

The overall feedforward control problem can be treated as a sequence of transition problems

between two stationary setpoints

[27(0), w*(0)] ; f(7(0),u"(0)) =
[2"(T), u™(T)] : f(&*(T),w(T))

0 (7.8a)
0 (7.8b)

of system (7.7) within a finite time interval ¢ € [0, 7] subject to the limited voltage uyax of
the DC-motor. Thereby, the feedforward variables are indicated by the superscript x. The
actual constraint uy . for the feedforward control is set to 40 V and is tighter compared to the

physical limit of 45V in order to leave sufficient reserve for the underlying feedback controller.

This imposes the following boundary conditions (BCs) on system (7.7)

x*(0) = [12*(0), 0, 52*(0), 0]" (7.9a)
x*(T) = [12*(T), 0, 52*(T), 0]" (7.9b)
|u*(t)| < upas  t€10,7T). (7.9¢)

The determination of the feedforward control trajectory uw*(¢) is strongly related to the
design of the desired output trajectory y*(¢) and the corresponding state trajectory a*(t).
These are provided by the signal generator >*. The trajectories must appropriately connect
the initial and terminal values given in (7.9a) and (7.9b) while satisfying the constraints (7.9¢).
In the following, we apply the inversion-based design method presented in Graichen et al.

(2005) in a suitable manner.

In order to determine all trajectories u*(t), y*(t) and x*(t), we need an appropriate system

representation in input-output coordinates. This is achieved by applying the transformation

[y(t), 9(1), (), n()]" = @(x(t)) £ [12(t), yo(t), 52(1), ()] (7.10)

to the system (7.7). For ease of presentation, we suppress the argument ¢ of all functions

when the meaning is clear. In the new coordinates, the inverted pendulum has the relative
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degree r = 2 and is given as

i =x@,n,n,u) (7.11a)
ﬁ - 2/}(777 ,r‘]? y7u>7 (7'11b)

where (7.11a) is the input-output dynamic and (7.11b) is the internal dynamic. The zero
dynamic of the system following from (7.11b) with w = 0 is unstable. This means that the
pendulum is non-minimum phase. The inversion-based feedforward control u* results from

inverting the input-output dynamics
ut =Xy Y ) (7.12)

and depends on the output trajectory y* and the state n* of the internal dynamics (7.11Db).
To calculate n*, the feedforward control (7.12) is inserted into (7.11b) to yield

mli* cosm* + mlgsinn* — d,n*

i =0, ") = O+ mi

(7.13)

Note that n* depends on the second time derivative of the output trajectory y*.

The basic idea for tackling the BCs (7.9a) and (7.9b) is to formulate the feedforward control
problem as the two-point boundary value problem (BVP)

g = xr, 0t u) (7.14a)
i =D, 0, i) (7.14b)
y*(0) = 127(0), y*(T) = 12*(T), y*(0) =0, y*(T) =0, (7.14c)
n*(0) = 32%(0), n*(T) = s2*(T), 17"(0) =0, " (T) =0, (7.14d)

where the BCs (7.14¢) and (7.14d) result from the transformed BCs (7.9a) and (7.9b), respec-
tively. This BVP is overdetermined with the two second-order ODEs and the eight BCs. As
a necessary condition for the solvability of the BVP (7.14), we provide four free parameters

b= [1]?, oD, 3D, 4D, ]T in a set-up function

4
Q(t,p) =) psin ot (7.15)

i=1 T
for the second-order derivative of the output trajectory, i.e. § = (¢, p). The solution of the
resulting BVP with free parameters compromises the parameter set p as well as the states
v,y n*,n*. The numerical solution is a standard task in numerics and is performed by
using the MATLAB function bvp4c? which is designed for the solution of two-point BVPs

2http://www.mathworks.com/bvp_tutorial
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with unknown parameters. Consequently, the feedforward control u* can be calculated by
evaluating (7.12).

However, since this approach does not explicitly considers the control constraints (7.9¢),
it can result in a feedforward control w* which violates (7.9¢). The observance of these con-
trol BCs can be guaranteed by means of the feedforward control ug, = a=*(Q(t, p), y*, n*, n*)
resulting from the set-up function Q(¢,p). Whenever the control constraints are exceeded,

the second-order derivative of the output trajectory will be set to the second-order deriva-

*

tive resulting from the system dynamics with v* = +u’_ ., i.e. §* = a(y*,n*, 0", £ul,..)

Consequently, the overall BVP can be written as

*

(y 777 777 ) max) if UQ < umax
(t7p> if ’uQ| < umax (716&)

e

<
%

I
)

« y*777 777 7umax) if UQ > umax

=" 0", ) (7.16D)

with the BCs (7.14c¢) and (7.14d). Note that this choice for §* always satisfies §*(0) = 0 and
i*(T) = 0 and hence implies C°-continuity of the feedforward trajectory v* at the bounds ¢ = 0
and ¢t = T'. This property is used to assemble the overall open and closed loop trajectories from
a sequence of suitable single trajectories. In Table 7.3, snapshots of the trajectories ;2* and
3T* are given at certain times ¢. These values uniquely define the boundary conditions (7.9)
such that each single trajectory in between can be calculated by means of the presented
approach. The overall trajectories * for the open-loop and closed-loop case are depicted in
Figure 7.9 and 7.10, respectively. In Figure 7.7, we can see that the feedforward control u*

goes into saturation during the swing-up phase, i.e. during the first 1.7s.

Table 7.3: Boundary conditions of the feedforward controls.

open-loop closed-loop
t=0s t=1s t=2s t=0s t=17s t=37s t=6.4s t=84s t=11.1s
* 0 0.5 0 0 0 0 0.5 0.5 0
3T* —T —T —T —T

7.2.4 Feedback Controller

The pendulum is stabilized along the nominal trajectories by the feedback controller. In order
to compensate for a possible steady-state error in the cart position x(t), we augment the
pendulum model (7.7) by the additional state 5z(t) = [y 17(7) dr resulting in the overall state
vector & (t) = [,z(t), ,x(t), s2(t), (1), sz(t)]" € R5. Due to the compensation of the network

induced imperfections by the CMHE and the accuracy of the nonlinear feedforward controller,
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Figure 7.7: Comparison of the control inputs u*(t), ucpekr(t) and ucyug(t) for the closed-
loop case with the network scenario A depicted in Figure 7.11(a,b).

the feedback controller is designed with linear methods by linearizing the extended state space
model around the nominal trajectories *(t) = [,2*(¢), yo*(t), 32*(t), j2*(t), s2*(¢)]" (note that

w5(t)* = [¢ 3(7) dr) and u*(t). This leads to the linear time-varying system

Ad(t) = A(t)Ax(t) + b(t)Au(t), (7.17a)

with
Ax(t) = xz(t) — z*(1), A(t) = gi o (7.17b)
Auft) 2 u(t) — u*(b), b(t) 2 g{: o (7.17¢)

For this system, we design an optimal linear quadratic time varying feedback control Au(t) =

—k(t)Ax(t) which minimizes the cost functional
1 T 1 /T T
J = 582 (T)"SA(T) + ; /O Az()TQAZ(1) + Au(t)RAu(t) dt, (7.18)

where S,Q € R°*® are symmetric positive semidefinite matrices and R > 0 is a positive
scalar. The solution P(t), t € [0,T] of the Riccati ODE

P(t)=-Pt)A(t) - AT)P(t) + POb)R'D" () P(t) — Q (7.19a)
P(T)=S8 (7.19h)

determines the feedback gains

k(t) = R'b(t)" P(t). (7.20)
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The terminal condition P(7T) = S for the reverse time integration of the Riccati equation
(7.19a) is determined by solving the algebraic Riccati equation following from (7.19a) with
P = 0. First, the MATLAB function 1gr is used to calculate S and afterwards, a standard
ODE solver of MATLAB is used to perform the reverse-time integration.

The weighting matrices in (7.18) are chosen to @ = diag(107,10%,105,103,10%) and R = 10.
The end time T is 11.1s according to Table 7.3. In Figure 7.8, the time-varying feedback gains
k(t) = [1k(t), ok(t), 3k(t), 4k(t), sk(t)] are shown in the time interval ¢ = [0, 2]s. Outside of this
interval, the feedback gains are only subject to minor variations and are thus omitted from
presentation. As the CDEKF and the CMHE are initialized with wrong initial conditions, the
feedback control is turned off during the first 0.5s. On the one hand, this provides enough time
for the estimators to converge and on the other hand, to prevent the feedback controller from
acting based on wrong estimated states of the system. In the bordering interval ¢ € [0.5,0.7 s,
the feedback gains k(t) are linearly interpolated between zero and the respective gain values

in order to smoothly switch on the feedback controller.

1000 T T
feedback off

500

feedback gains

-500

tins

Figure 7.8: Illustration of the time-varying feedback gains k(t) = [1k(t),2k(t),3k(t),4k(t),5k(t)].

7.2.5 Centralized Moving Horizon Estimator

The CMHE utilizes the nominal choice of the update step which minimizes the cost function

2

o] o7
R 1 Ak 7k 1 k
T =5 || B |—| B S 2 1R(Pip(Brw) — w3 1+ Z x|+
2 A — 21:14: N i=k—N
Lr—N|k Lk—N|k Py (7 21)

The initial value of the CMHE is chosen to £° = [0.2, —0.2, —7+0.2, —0.2]7 (z° = [0,0, —, 0]T)
and the clock parameters are initialized by Method 2, see Section 3.6.2. This leads, e. g. for the
open-loop scenario depicted in Figure 7.9, to 43,; = 1 (an41 = 1.2) and ﬁN—i—l = —2.485s
(Bv+1 = —3s). The prediction values are initialized by ayy1 = &%,, Bni1 = 5N+1 and

TN = ggpre(tN+1|N+1, 0,2°, u). The weighting matrices are set to P! = min{10%*, 106} I,
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R = diag(200,4)-10° and Q' = diag(200, 20,4, 1)-10%. Thereby, the increase of the weight-
ing P; ' in the first 60 steps reflects the gradually gained confidence in the predicted values
from initially low 10°! to finally high 10%. The vector field of the pendulum dynamic (7.7)
is used for the definition of the function q3 and ¢A)
tively. Although the minimal buffer size is N + 1 = 3, we have set the actual buffer size

ore 11 Definition 3.5.2 and 3.7.1, respec-
to N + 1 = 25 to enable the incorporation of almost all successfully received packets in the

estimation process which contain outdated information.

The predefinition of the decreasing factors &; is possible but not the most efficient way to
fully exploit the computing power of the target machine. This can be seen by the following
consideration. Each optimization problem requires a different number of iteration steps of
the optimization algorithm until the decreasing condition is satisfied. This leads to different
execution times for the estimator. However, a guaranteed fixed upper bound on the execution
time is required for the implementation on the real-time target machine. The obvious remedy
is to set this bound to the largest possible execution time, if procurable. Of course this

approach is conservative since it contains a lot of idle time.

Thus, we introduce the following modifications which exploit the dual core support of the
xPC Target Kernel. All elements except the updater Xy are performed on the first CPU core
with the above mentioned sampling time Ty = 1 ms. Only the updater ¥y is executed on the
second CPU core with the sampling time 7. To guarantee the observance of a fixed Tz and
to exploit the computing power of the target machine, we modify the updater ¥y as follows.
Whenever the updater Yy is executed, it first checks if the buffer X5 has changed. If this is
the case, the first iteration step of the new optimization problem is performed. Otherwise, one
additional iteration step of the previous optimization problem is executed. In any case, the
predictor Xp is updated afterwards. This approach allows a sampling time T as low as 6 ms
which is broken down as follows. The calculation of the cost function (7.21), its gradient and
Hessian according to Corollary 4.3.8 and Proposition 4.5.2 (H is neglected), respectively,
takes 1.4ms. Note that a conventional finite-difference approximation of the derivatives takes
244 ms and is thus 174 times slower and therefore not suitable for the real-time implemen-
tation. The execution of the IPOPT solver (Wéchter and Biegler, 2006), which is used for
calculating one iteration step, requires 4.3 ms. Since this solver is written in C, we have de-
veloped a C MEX S-FUNCTION? such that IPOPT can be used in both MATLAB/SIMULINK
and REAL-TIME WORKSHOP and thus for the real-time target machine. In summary, we
efficiently utilize the computing power of the target machine at the cost of not predefining

the decreasing factors &; directly but indirectly via the number of iteration steps.

3http://www.mathworks.de/help/toolbox/simulink/slref/sfunction.html
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7.2.6 Experimental Results

7.2.6.1 Open-Loop Results

Figure 7.9 presents the results for the open-loop case which involves the transition between

two stable downward equilibria, see Table 7.3. The chosen network protocols and settings

-
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(a) Histogram of the time delays 7; of the successful transmitted packets P;.
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(b) Comparison between the nominal trajectory x*(¢) and the estimated states &(t).
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(¢) Run of the packets P; from the sensor ¥g through the network Xy to the estimator 3.

Figure 7.9: Illustration of the open-loop results.
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result in a packet loss rate of 19.8% and in a time-delay distribution of the successfully

transmitted packets P; within the interval [0 ms, 370 ms]. The histogram of this distribution
is shown in Figure 7.9(a).

The run of the packets P; from the sensor >g through the network Yy to the estimator )y
is schematically illustrated in Figure 7.9(c). The packets P; generated by the sensor g are
marked with either a blue cross or a red circle, depending on whether or not the corresponding
packet is successfully transmitted. These packets are located on the vertical axis at the level
of Yg at the sensor time stamps t; transformed into the global time, i.e. a;t; + 3;. Note that
the non-equidistant spacing of the packets is caused by the event-based sampling strategy
of the sensor. The successfully received packets P; ; are marked with a blue cross and are
located on the vertical axis at the level of 3 at the arrival time stamps t;. Each pair (P;,P; ;)

is connected by a solid line. Note that packet reordering has taken place whenever two lines

intersect.

Figure 7.9(b) shows the comparison between the nominal trajectory *(¢) and the estimated
states &(t) generated by the CDEKF and CMHE. In contrast to the CMHE, the CDEKF
conducts the first update step right after the first packet has arrived. The CMHE, however,
has to wait until 25 packets are stored in the buffer ¥ which is approximately after 0.5s.
Afterwards, the CMHE significantly outperforms the CDEKF. The estimation error of the
CMHE for the clock parameters is within 2 %. If we look closely, then we can observe that
the estimates generated by the CDEKF are shifted by the unknown time delays which cannot
be compensated. Consequently, the CDEKF performs only reasonable when the trajectory

dynamics are slow compared to the time delays, i.e. y(t;) ~ y(t; — 7).
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Figure 7.10: Hlustration of the closed-loop results without a network.
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(d) Scenario B: Comparison between the nominal trajectory @*(t) and the estimated states &(t).

Figure 7.11: Hlustration of the closed-loop results for the network scenario A and B.
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7.2.6.2 Closed-Loop Results

The objective in the closed-loop scenario is to swing-up the pendulum followed by a transition
between two unstable upward equilibria, see Table 7.3, for three different network scenarios:
the nominal case, scenario A and B depicted in Figure 7.10, 7.11(a,b) and 7.11(c,d), respec-
tively. The chosen network protocols and settings for scenario A and B result in a packet
loss rate of 4.8% and 15.2% and in a time-delay distribution of the successfully transmit-
ted packets P; in the intervals [0 ms, 27 ms] and [0 ms, 390 ms|, respectively. The histogram
of these time delay distributions for the scenario A and B are shown in Figure 7.11(a) and
7.11(c), respectively. The last scenario results in an especially challenging control task, since
the pendulum has a high dynamic due to the short pendulum length and the low moment
of inertia (cf. Table 7.2). Starting from the initial condition x° = 7/18010,0,2,20]7, the
pendulum rotates in 200 ms about 8.8° and in 400 ms about 30.4°. Thus, the influence of the
time delays is significant.

The results for the nominal case, i.e. with an ideal network, are depicted in Figure 7.10
while the ones for scenario A and B are shown in Figure 7.11. In order to improve the
comparability of the estimated states resulting from the three settings, the same scale is used
for every plot and particular sections of the cart position and the rod angle are magnified by
a factor of 5 and 15, respectively. The observability of the scenario B has been investigated
in Section 5.5.3. While the CDEKF performs quite nicely in the nominal case, the closed-
loop system is near the border of stability for scenario A. The corresponding control input
is depicted in Figure 7.7. Note that it was not possible to either swing-up or stabilize the
pendulum with the CDEKF for the harsh setting of scenario B. In contrast, the CMHE can
cope with all three settings without major impact. Of course, the performance decreases with
increasing time delays. As in the open-loop case, the estimation error of the CMHE for the

clock parameters is within 2 %.

7.3 Summary

In this chapter, we have presented simulation and experimental results for the developed cen-
tralized moving horizon strategies and the continuous-discrete extended Kalman filter. We
have analyzed the performance for each of these three methods by evaluating the simula-
tion results of a networked version of a common nonlinear benchmark system. Without the
influence of a network but with small disturbances, the performance of the CDEKF was al-
most comparable to those of both CMHS. For increasing delays, however, the CMHO and
the CMHE significantly outperform the CDEKF. While in this scenario the CMHO is for low
disturbances slightly superior to the CMHE, the situation changes in favor to the CMHE for
increasing disturbances. By choosing the decreasing factors to & = 0, we could verify the

convergence of the CMHS in finite-time.
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The experimental results have been conducted on a networked pendulum test rig within
a two-degree-of-freedom control scheme for different network scenarios. These confirm the
conclusions derived in simulation and underline the performance of the CMHE in general
and especially in comparison to the CDEKF. In order to achieve a satisfactory real-time
performance of the CMHE, we have developed and implemented two additional steps to
increase the efficient utilization of the available computing power of the target machine.
First, we have indirectly predefined the decreasing factors via the number of iteration steps.
Second, we have divided the overall execution task into two tasks which run on separate CPU

cores.
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Conclusions and Future Work

In Part II of this thesis, we have presented the centralized moving horizon observer (CMHO)
and the centralized moving horizon estimator (CMHE) for state estimation within the undis-
turbed and disturbed centralized NCS architecture, respectively. Furthermore, we have devel-
oped methods which facilitate the real-time implementation of both strategies which includes
structure-exploiting techniques to efficiently calculate the involved derivatives. We have also
introduced a notion of observability for undisturbed and disturbed NCS and have derived
necessary conditions for the control input to be sufficiently exciting which enables the estima-
tion of all unknown parameters. Finally, we have analyzed the stability of the CMHO as well
as the CMHE and have validated their performance not only in simulations of a networked
benchmark system but also in experiments on a networked pendulum test-rig.

In this chapter, we summarize each chapter of Part II of this thesis. In addition, we also

outline possible and natural extensions, as well as broader ideas for future work.

8.1 Summary

Chapter 3: Centralized Moving Horizon Strategies

In this chapter, we have presented the CMHO and the CMHE within a common framework for
the undisturbed and the disturbed centralized NCS architecture, respectively. Both strategies
have been explicitly designed to deal simultaneously with the network-induced imperfections
of unknown and variable packet delays which include the possibility of packet reordering,
unknown and variable packet drops, unsynchronized sensor clocks, and limited energy supplies
of the sensors. To overcome these challenges, we have introduced event-based sampling along
with time stamping of the resulting measurements. Moreover, we have proposed an affine clock
model for the sensor clocks and have extended the moving horizon to a buffer logic. This buffer
serves as the information basis for both centralized moving horizon strategies and has enabled
us along with the other introduced steps to formulate the state estimation problems as suitable
optimization problems where we additionally estimate the unknown clock parameters of the
sensors. To achieve a practical feasible implementation of these optimization problems in
real-time and thus of the CMHO and CMHE, we have proposed the following two steps which
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significantly contribute to this goal. First, we have introduced a suboptimal approach which
requires only suboptimal instead of optimal solutions. Second, we have provided efficient

methods for generating proper initial conditions for finding (sub)optimal solutions.

Chapter 4: Efficient Derivative Calculation

In this chapter, we have presented an efficient, parallelizable and sensitivity-based method
to calculate the gradient and Hessian of the Lagrangian to the optimization problem of the
CMHO and CMHE. The gradient computation method has been derived by applying the
chain rule to the Lagrangian and depends on the respective first-order state sensitivities.
These sensitivities have been calculated based on the solution of first-order sensitivity matrix
differential equations as an answer to the difficulties stemming from the special nature of the
optimization problem formulation where the clock parameters arise in the integral bounds.
This perception facilitates the accomplishment of exploiting the structure of the state sen-
sitivities such that the number of ODEs required for calculating the gradient in the CMHE
case is independent of the number of optimization variables and equal to the adjoint case,
namely 2n2 + n,. The Hessian computation method is founded on the idea of partitioning
the exact Hessian into two parts. The first part can be readily calculated due to the already
available first-order state sensitivities while the second part can either be approximated by
a modified BFGS method or completely neglected. In contrast to the adjoint method, the
proposed sensitivity-based method provides an excellent approximation of the Hessian for
arbitrary cost functions almost for free. The theoretical benefits have been substantiated by
a numerical case study of a continuously-stirred tank reactor where the proposed method has

been compared to the finite-difference approach.

Chapter 5: Observability of Networked Control Systems

In this chapter, we have introduced an observability notion for undisturbed and disturbed
NCSs. This notion ensures (at least locally) the well-posedness of the respective observation
map by guaranteeing the full-rankness of its derivative with respect to col(dy, By, & Nik)-
The observability of NCSs does not only depend on the structure of the system but also on
the information content of the control input. To this end, we have derived for the undisturbed
as well as for the disturbed NCSs a necessary condition for the control input to be sufficiently
exciting. The key idea for achieving this condition was to establishing a relation between the
control input and the first-order state sensitivities appearing in the elements of the derivative
of the observation map. The resulting conditions are almost identical for the undisturbed and
disturbed NCSs and the only difference stems from the dependence of the estimated state
disturbance w(t) on the clock parameter &. Moreover, we have revealed the relation between
the introduced notion of observability to the conventional Kalman observability matrix for
linear systems and to the update step as well as to the gradient and Hessian of the Lagrangian
of the CMHO and CMHE. Finally, we have clarified the introduced terminology and the
derived conditions by a linear example system and pointed out their practical relevance by

investigating a real networked pendulum test-rig.
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Chapter 6: Stability Analysis
In this chapter, we have analyzed the stability of the nominal CMHO and the nominal CMHE.

Both analyses are founded on the idea of expressing gradient-based optimization algorithms
as a single unifying continuous-time dynamical system. The essential characteristic of this
system is that its vector field is the product of an arbitrary positive definite matrix function
and the negative gradient of the cost function derived in Chapter 4. The freedom in choosing
this matrix has opened up the possibility of selecting any line search or trust region method
presented in Section 2.4.2. This perception has facilitated the accomplishment of the stability
analysis in three steps. In the first step, we have shown that if the NCS is observable in
the sense derived in Chapter 5, then the aforementioned unifying continuous-time system
possesses an isolated asymptotically stable equilibrium which is the optimal solution to the
optimization problem stemming from the corresponding update step. We have proven in
the second step that if the suboptimal approach satisfies the decreasing condition, then the
suboptimal solutions approach to the optimal ones. In the third step, we have concluded from
this fact and by invoking the continuous dependence of initial value problems the following
results for the disturbed and undisturbed scenario. For the former case, we have shown
boundedness of the CMHE estimation error. For the latter case, i.e. in the absence of
disturbances, we have proven asymptotic and even finite-time convergence of the CMHO
observation error depending on the choice of the decreasing factors. These factors allow to
set up a compromise between the achievable convergence speed and the required computation
time. It should be pointed out that the main feature of these results is its generality. This
means that the derived analysis hold for the general assumptions made in the framework
presented in Chapter 3 which includes, inter alia, the quite general packet delay and packet

dropout assumptions.

Chapter 7: Simulation and Experimental Results

In this chapter, we have presented simulation and experimental results for the developed cen-
tralized moving horizon strategies and the continuous-discrete extended Kalman filter. We
have analyzed the performance for each of these three methods by evaluating the simulation
results of a networked version of a common nonlinear benchmark system. Without the influ-
ence of a network but with small disturbances, the performance of the CDEKF was almost
comparable to those of both CMHS. For increasing packet delays, however, the CMHO and
the CMHE significantly outperform the CDEKF. While in this scenario the CMHO is for low
disturbances slightly superior to the CMHE, the situation changes in favor to the CMHE for
increasing disturbances. By choosing the decreasing factors to & = 0, we could verify the

convergence of the CMHS in finite-time.

The experimental results have been conducted on a networked pendulum test rig within
a two-degree-of-freedom control scheme for different network scenarios. These confirm the
derived simulative conclusions and underline the performance of the CMHE in general and

especially in comparison to the CDEKF'. In order to achieve a satisfactory real-time perfor-
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mance of the CMHE, we have developed and implemented two additional steps to increase
the efficient utilization of the available computing power of the target machine. First, we
have indirectly predefined the decreasing factors via the number of iteration steps. Second,

we have divided the overall execution task into two tasks which run on separate CPU cores.

8.2 Future Work

Moving horizon strategies are a powerful tool for state estimation with a vast potential of
multifaceted industrial applications. With the explicit consideration of network induced im-
perfections, the research presented in Part II of this thesis provides a significant contribution
to extend the range of application to networked control systems. However, there are still

unresolved issues. Some recommendations for future work are the following:

© Optimal choice of the degrees of freedom - The presented CMHS provide several degrees
of freedom like the choice of the weighting matrices, the buffer size and the decreasing
factors. On the one hand, these parameters allow the customization of the CMHS to
the specific circumstances of the particular application. On the other hand, the choice
of these parameters is crucial for the estimation performance and can lead in the worst
case to unstable observers/estimators. The conditions derived in Chapter 6 guarantee
convergence of the observation error to zero for the CMHO and boundedness of the
estimation error for the CMHE. However, these conditions do not answer the following
two questions which are important from a practical point of view: What are admissible
ranges of the free parameters such that the results derived in Chapter 6 hold? What
is the optimal parameter combination such that the smallest estimation error and thus
the optimal performance of the CMHE can be obtained? Therefore, it is desirable to
develop methods which replace the current trial and error approach for choosing the

parameters of the CMHS by a systematic procedure.

© Stability analyses for constrained state estimation - A favorable property of the moving
horizon strategies for state estimation is the possibility of directly handling constraints
on the states as well as the disturbances. This is useful from an engineering point of
view since in practice often additional information in form of constraints is available.
For instance, the range of some values in the system is known. Incorporating this prior
knowledge into the estimation process might improve the performance of the CMHS.
While the practical implementation of this approach has been shown in Part II of this

thesis, the stability analysis for constrained state estimation remains unanswered.

© Simple, robust and fast algorithms - One of the biggest obstacles which prevents moving
horizon strategies for state estimation from broader application in industrial environ-
ments is the complexity involved with setting up such methods. This is mainly due to
the lack of optimization algorithms which are specially tailored to satisfy the needs of

moving horizon strategies. The desired algorithms should be simple to set up, sufficiently
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robust to operate in practical environments and fast enough to satisfy the real-time re-
quirements of the particular application. In Part II of the thesis, we have proposed a
first step in this direction by combining powerful off-the-shelf optimization algorithms
with the structure exploiting derivative methods presented in Chapter 4. The next step
could be the development of an algorithm which eases the overall set up by automatically
providing the efficient calculated derivatives to off-the-shelf optimization algorithms. In
a broader scope, another desirable direction is to develop algorithms which facilitates
automatic code generation and implementation on embedded hardware, e.g. field pro-
grammable gate arrays (FPGAs) or digital signal processors (DSPs). This would further

reduce computation times and widen the application scope.
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Chapter 9

Distributed Moving Horizon Strategies

In this chapter, we develop the distributed moving horizon observer (DMHO) and the dis-
tributed moving horizon estimator (DMHE) within a common framework for the undisturbed
and disturbed distributed NCS architecture, respectively. As discussed in Chapter 1, the
distributed NCS architecture combines the benefits of the centralized (Kailath, 1980; Lunze,
1992; Goodwin et al., 2001; Khalil, 2002) and decentralized (Sandell et al., 1978; Siljak, 2007;
Bakule, 2008) framework of conventional control systems. The idea is to exploit the ca-
pabilities of modern actuators and sensors which are equipped with small microcontrollers.
These offer computational capabilities as well as wired or wireless intercommunication and
thus render a central processing unit redundant. To overcome the performance limitations
of decentralized control approaches, a centralized controller is designed but implemented in a
distributed manner on the actuators. This requires distributed knowledge of all states of the
system which is provided by both distributed moving horizon strategies (DMHS).

Distributed problems arise in several areas like in decentralized receding horizon control
(Keviczky et al., 2006), quasi-decentralized state estimation and control (Sun and El-Farra,
2008), distributed estimation (Farina et al., 2010), consensus problems (Olfati-Saber and
Murray, 2004) and in dynamic networks (Dai and Mesbahi, 2011). The common concept is
to accomplish an overall objective while multiple subsystems interact with one another.

If the objective can be posed as an optimization problem, the dual decomposition technique
(see Section 2.4.4.2) constitutes a powerful tool to distribute an optimization problem into
smaller subproblems. Successful applications have been recently reported in several areas.
In particular, the dual decomposition is used in Xiao et al. (2004) for simultaneous routing
and resource allocation in data networks, in Raffard et al. (2004) for trajectory optimization
of formation flights and in Rantzer (2009) for distributed control. Another field of applica-
tion is distributed model predictive control (DMPC), where in Wakasa et al. (2008) a DMPC
method is developed for systems consisting of multiple SISO subsystems with coupling output
constraints and a fixed communication chain structure. In Giselsson and Rantzer (2010), a
stopping criterion is designed for DMPC such that the closed-loop performance above a certain
pre-specified degree is achieved and asymptotic stability of the closed-loop system is guaran-
teed. Dual decomposition has also been applied in distributed estimation for static problems

(Samar et al., 2007) and has been used for distributed receding horizon Kalman filtering for
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systems consisting of multiple subsystems with coupling output constraints (Maestre et al.,
2010).

Both DMHS are essentially derived by the dual decomposition technique applied to the re-
spective centralized moving horizon strategies (CMHS) presented in Part I of this thesis. In
particular, the main steps to derive the distributed versions of the CMHS are as follows: First,
we investigate the issue of how to allocate the measurements from the various sensors to the
DMHO/DMHE. In a next step, we model the communication topology among the distributed
estimators as a directed graph and extend the optimization problems of the centralized mov-
ing horizon strategies by additional consensus constraints which reflect the interconnection
structure. Finally, we apply the dual decomposition technique to reveal a separable dual
problem which we solve by a suitable subgradient method to achieve a distributed algorithm.

The remainder of this chapter is organized as follows. In Section 9.1, we introduce the
distributed NCS architecture and the resulting two problem definitions for the disturbed and
undisturbed scenario. At the heart of this chapter in Section 9.2, we develop the DMHS
based on the CMHS for the given scenarios. The resulting algorithm of the DMHO and
DMHE is presented in Section 9.3. The stability of both DMHS is analyzed in Section 9.4.
In Section 9.5, we derive a distributed Kalman filter as a special case of the DMHE. In
Section 9.6, we sketch several extensions for the DMHS. Finally, we conclude this chapter

with a summary given in Section 9.7.

9.1 Problem Formulation

Consider the distributed NCS architecture depicted in Figure 9.1. The plant ¥ is described

Figure 9.1: Distributed NCS architecture with system X, sensors Zg], network Yy consisting
of networks El{\}} and El{\?}, observers /estimators %), controller ¥ and actua-

tors EX).
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by the discrete-time linear time-invariant system

ulh
(m)

u;

where x; € R™ is the state with the initial value &y € R, ugl) cR™ e A= {1,2,...,m}
is one of the m control inputs, w; € R™ is the state disturbance and i € Ny is the discrete
global time. By introducing the control input u; = col(ugl),l € A) € R™, we can write (9.1)

compactly as

Each of the ¢ sensors E[Sﬂ with j € S £ {1,2,...,¢} is equipped with an individual clock
which possesses the discrete global time ¢ € Ny. This means that all clocks in the architecture
depicted in Figure 9.1 are synchronized. Moreover, each sensor generates a sequence of packets
Pl[j I = {yy ], i} consisting of measurements ij l'e R and corresponding time stamps ¢ € Np.

These measurements are derived according to the measurement model

ygj] _ C[j]mi + ’Uz[j], jes, €Ny, (93)

4]

. € R™J are the measurement disturbances. Each packet P is transmitted to one

where v ;

of the observers/estimators 3! over the network Zl{\}} .

The key feature of the distributed NCS architecture consists of implementing decentralized
any centralized designed controller Y. In contrast to decentralized controllers, centralized
controllers consider the overall system dynamics and thus have in general a superior perfor-
mance compared to pure decentralized solutions. Just like in the centralized NCS architecture
depicted in Figure 3.1, the controller ¥ is designed for the nominal centralized case, i.e.

without the network Yy, and is described as

Ziy1 = f(&i, i, 1), (9.4a)
’U;Z(l) iL(l) (fﬁl, Z;, ’I"Z)

where &; € R"® is the control state with the initial value &, € R™ and r; € R"™ is the
(1

reference input. The control input ui) of the [-th actuator results from the corresponding
rows of (9.4b). However, the successful decentralized implementation of the controller ¢
requires distributed and identical knowledge about the full state of the system. Since the
measurement information is only distributed available, the observers/estimators have the

possibility to exchange information over the network 21‘{?} in order to agree upon the estimates.
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The separation of the network Xy into the two parts Zl{\ll} and 21{\12} is motivated by their
different tasks which result in different properties. The network ZI‘E?} is responsible for the in-
tercommunication between the observers/estimators and describes a reliable wired high-speed

1{\11} models several different possibilities of measurement

network. In contrast, the network X
transmission from the sensors to the observers/estimators: conventional wired transmission,
wired network transmission and wireless network transmission. Thus, the properties of El{\fl}
depend on the considered transmission types and might vary significantly from those of 21{\12}.
In order to set up reasonable problem formulations, we make the following assumptions:
[41

Assumption 15. The initial value x(, the disturbances w; and v;”, j € &, are uncorrelated
Gaussian sequences with mean &o, 0 and 0 and covariance Py > 0, Q > 0 and RY > 0,

je S, ie xy~N(Zo, Poy), w; ~N(0,Q) and 'vgj] ~ N(0,RY), j € S, respectively.
Assumption 16. The pair (A, B) is stabilizable.
Assumption 17. The pair (col(CV!, j € S), A) is observable.

Assumption 18. Each packet Phl i Vj € S and Vi € Ny transmitted over the ideal net-

7

work EI{\}} to only one observer/estimator 3 which may vary over time.

Assumption 19. The packet transmission between two observers/estimators S0 and 30

over the network 21{\12} is Vi,j € A, i # j, either ideal or impossible.

Note that the Assumption 16 is not necessary for the design of the observers/ estimators 0}
But it is reasonable from a practical point of view since it allows a controller design such that
a satisfactory overall performance within the distributed NCS architecture can be achieved.
In contrast, Assumption 17 is necessary since it facilitates the possibility of reconstructing
the state vector by implying global observability. Assumption 18 ensures that the available
measurements for each observer /estimator 320 are always different. This excludes the trivial
solution which consists of implementing m identical centralized observers/estimators where
each one would require all measurements. Compared to this trivial approach, Assumption 18
favors solutions which possess lower local computational load and can handle reduced local
information. Note that Assumption 18 facilitates a time-varying measurement allocation
which, e.g., is helpful for incorporating mobile sensors. Since the measurement information
is only distributed available, the observers/estimators SO have to exchange information in
order to agree upon the estimates. Note that Assumption 19 imposes no restrictions on
the topology of the network Ei}?}. Moreover, both Assumptions 18 and 19 state that the
respective network, i. e. Zl{\ll} and EI{VQ}, are ideal, i.e. without packet delay nor packet drop.
While this assumption is justified for El{\?}, it might be inadequate for 21{\11} to describe all of
the above mentioned measurement transmission possibilities. Therefore, we will drop later
on the assumption of an ideal network and present in Section 9.6.3 the extension to the case

of a packet-delaying and packet-dropping network EI{\II}.
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Problem 9.1 (Distributed Observer Design). Let the presented undisturbed distributed NCS
architecture be given consisting of the undisturbed system X2, i. e. Q = 0, without information
about the initial state, 1. e. Pgl = 0, the disturbed sensors 2[55, i.e. RV > 0,5 €S8, the
controller X¢, the actuators EX), l € A, and the network Xy .

The problem is to design under the given circumstances

& m distributed observers S0, [ € A,

@ Vj e S and Vi € Ny the allocation of the measurements ygj] over the network E}{VI} to the
m distributed observers ﬁ(l), le A, and

2
@ the topology of the network Z},},

such that the current state of the system ¥ is reconstructed in a distributed manner where
0

i =

all observed states are identical to those of a centralized moving horizon observer, i.e. &
2MHO vl e A, Vi € Ny.

Problem 9.2 (Distributed Estimator Design). Let the presented disturbed distributed NCS
architecture be given consisting of the disturbed system %, i.e. Q > 0, with information
about the initial state, 1. e. Pal > 0, the disturbed sensors EE], i.e. RV >0, j €S, the
controller ¢, the actuators Zﬁ), l € A, and the network Xy .

The problem is to design under the given circumstances

& m distributed estimators S0, 1 € A,

@ V5 €S and Vi € Ny the allocation of the measurements ygj] over the network EEVI} to the
m distributed estimators fl(l), le A, and

2
o the topology of the network Z},},

such that the current state of the system ¥ is reconstructed in a distributed manner where
all estimated states are identical to those of a centralized moving horizon estimator, 1. e.

) = 2MIP e A, Vi€ N,.

)

It is important to note that throughout Part 11 of this thesis including the current chapter,
the Assumptions 15-19 are supposed to hold without explicitly stating them.

9.2 From Centralized to Distributed Moving Horizon
Strategies

Problem 9.1 and 9.2 require among other things that all distributed estimates are identical
to those of a centralized moving horizon observer (CMHO) and a centralized moving horizon
estimator (CMHE), respectively. The strategy we pursue to fulfill this requirement is to
develop distributed versions of the CMHS. In this section, we present the steps to achieve

this goal.
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The starting point of this endeavor are the CMHS for which we assume that all packets
of the sensors are transmitted over the ideal network Zl{\}} to a single CMHO/CMHE. Since
the network is ideal and all clocks of the distributed NCS architecture are synchronized, we
do not need either the clock model or the notation introduced in Section 3.3. By using the
simpler notation of the moving horizon framework presented in Section 2.1, we can state the

update step and the prediction step of the CMHS as follows.

Centralized Moving Horizon Observer

The update step of the CMHO for the given problem consists of the following optimization

problem
N min . Jk<.’f3k,]\], c ,Iﬁk> (95&)
Lp—N,-- Tk

subject to

ii}'i_;,_l = Aii)'z + Bu;, 1€ jk, (95b)

where the cost function is given by

DO | —

Jk:(jk‘—Ny e ,:f:k) =

)

k: o
> Yz — y 2, (9.5¢)
=k—

N j=1

Based on the solution of (9.5), the actual observed state is calculated by

Br-nii = A'@pn+ > AT Bup_n_145. (9.6)

=1

Note that &,_n is the best linear unbiased minimum-variance estimator for problem (9.5)
(Humpherys and West, 2010). Moreover, the CMHO becomes a dead-beat observer in the

case of noise-free measurements, i.e. & = xy, Vk € Ny.

Centralized Moving Horizon Estimator

The update step of the CMHE for the given problem consists of the following optimization

problem
N IIliHA Jk(ﬁ\jk_N,...,Zf.’:k,’lf?k_]\[,...,’(i)k_l) (97&)
RN, Bl
Wy Ny Wh—1
subject to

{i;iJrl = Afﬁl -+ B’l,l,Z -+ ’lf)i, 1 E jk, (97b)
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where the cost function is given by

J(Br—n,s - B, Wi, - -, Wi—1) =
Ll LA RN 1 Al (9.7¢)
Teon(@x) +y 3 S N0U8 — 9l 45 3 il

The function T'y_n(&x_n) in (9.7¢) is the arrival cost and summarizes the information not
explicitly accounted for in the current moving horizon. Based on the solution of (9.7), the

actual state estimate is calculated by

min(s,N)
Tr_Nyi = A'gy N"‘ZA “Buy_n_ 145 T Z A"y, N 145 (9.8)
Jj=1 j=1

This expression computes a smoothed state estimate when ¢ < NV, a filtered state estimate
when ¢ = N, and a predicted state estimate when ¢ > V.

Recall that according to Theorem 2.1.1, we can express the arrival cost in this case al-
gebraically and establish a relation between the CMHE and the Kalman filter (KF). More
precisely, the state estimate & and &y, are equivalent to the one derived by a Kalman filter
(Rao, 2000) and an one-step prediction Kalman filter (Muske et al., 1993), respectively, if the

arrival cost is chosen as

Ui n(@k-n) = s [|@k-n — Bo-np1 . (9.9)
2 k—N

where x;,_n denotes the optimal CMHE estimate at time k — N given the measurements up

to time k — N — 1 and where the covariance matrix Pj_y is updated by the Riccati equation
-1
P. xn=AP, y AT — AP, _y_,C" (CPk_N_lc’T + R) CP,_y_1A"+Q, (9.10)

where R £ diag(R!Y,..., R1Y). Positive definiteness (and thus invertibility) of Pj_y is

assured by the following Lemma:

Lemma 9.2.1. If(C, A) is detectable and (A, Ql/z) is controllable, then limy_,oo Pp_ny = Poo
where Py, > 0 is the unique steady sate solution to the Riccati equation (9.10). Furthermore,
if Py > Py (meaning that Py — P, is nonnegative definite), then Py_y is positive definite
for all k € Ny.

Proof. The proof of the former and latter part can be found in de Souza et al. (1986) and
Bitmead et al. (1985), respectively. O

Consequently, if we choose Pj_x as the steady state covariance matrix P, in (9.9), the
filtered or predicted state estimate derived by (9.8) coincides with the respective steady state

Kalman filter.
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The CMHO: A Special Case of the CMHE

It is important to mention that we obtain the optimization problem of the CMHO stated
in (9.5) from the one of the CMHE presented in (9.7) by removing the estimated state dis-
turbances w,; and the arrival cost I',_y. For this reason, we do not derive the distributed
versions of the CMHO and CMHE separately. Instead, we detail only the derivation of the
DMHE and derive the DMHO afterwards as a special case of the DMHE.

Reformulation by Vector and Matrix Representation

The prediction step (9.8) of the CMHE is already available in a form suitable for distributed
implementation. Therefore, we focus in the following only on the update step given by the

optimization problem (9.7). By denoting

R 2 diag(RY, ... R9), R £ diag(R, ..., R),

Q = diag(Q, ..., Q),

y, = col(y,,i € I), wy, = col(u;,i € Iy),

vy, £ col(vy,i € Iy), w;, = col(w;,i € Iy),
[0 0 .. 0] 0 0 ... 0]

C .

CA CB 0 : C 0
FZ| |,G=| cAB cB . o |.H=| ca c .0l
CAY'B cA" B ... CB]| cAN! cAN? L C]

we can write the dynamics of Y, as
Yy, = Fxp_ny + Gu, + Hw;, + vy (9.11)

Consequently, we can express the constrained problem (9.7) with the arrival cost (9.9) in

terms of vectors and matrices as the unconstrained problem

min  Jp (& y,aBy,), (9.12a)
Lk N,Wy

with the cost function

A A 1 A A
Je(@e-n, @) = = |ly, — F&r_n — Guy, — H, || 5
o 1Yy, R

1

) (9.12b)
+ |l @ille-1 + 21N — T Ba
2 —kllQ 2 - PN

where the covariance matrix Pj_ is either updated according to the Riccati equation (9.10)

or chosen as the steady state solution P .
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Measurement Allocation

The first step in deriving a distributed algorithm is to allocate the measurements y, of the k-th
moving horizon to the m estimators. To this end, we recall the sets Z,, = {k — N, ..., k} and
S =1{1,2,...,q} whose elements represent the time indices of the k-th moving horizon and
the sensors, respectively The resulting index set V, = Z;, x S associated to y , is separated in
m index sets yk such that U, yk =V, y,f’ my(j = {0}, Vi,j € A, i+# j, and y,j) # {0},
Vi € A. This ensures that each measurement y[] ! with (1,7) € YV is assigned precisely to one
estimator. The measurements available to the i-th estimator at the time k are denoted by

Q,(;) = col(yy], (i,7) € y,ff)). Consequently, we can rearrange (9.11) as follows

W] TROT 0] [P [
= | TN Wt Wt | (9.13)
ym| | G ™ o™

Ji(Br—n, Wy_y) = 52 ly” —FV% n — Gy, — Hl(:)@knz(i)*l
11: o (9.14)

+ 5@l + 5 Hwk N = Zinlpo

Decoupling of the Cost Function

Although the measurements have been assigned to the m estimators, the optimization problem
stemming from (9.14) cannot be solved in a distributed manner because of the coupling
variables &;_n and W,;. Thus, we introduce local estimates m,(f) y and W k) for each estimator

and divide the cost function (9.14) into m decoupled parts
~(1 ~ (1 Alm A (m - 7 (7 ~ (T
Jk(wl(c )N>wl(c)77w§c—?f\/’7w§c )> :Zjlg)(wl(ﬁleJQI(c))ﬂ (915&)

where the addend J,gi) is

1)/ a2 A~ (7 1 (2 ’L 1) A
Jé)(wézN,wé)):*Hy,i ~Fa) v~ Glw, — HYw| - 0150
B 9.15b

The reason for this choice of J,gi) will become clear later. The solution to the problem stemming
from (9.15a) is identical to the solution of (9.7) if and only if each local solution :f:,(le,@,(f)
coincides with &,_y, ;. In order to reach this consensus, the estimators have to exchange
information. The information flow of the primal variables p.’ £ [aA:,(QTN, @,(j)T}T € RW+bne
among the estimators is described by the directed graph G = {V,£}, where the nodes in

V = {1,2,...,m} represent the estimators and the edge (7,7) in the set & C V x V models
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that estimator ¢ can transmit information about 15,(? to estimator j. By means of the adjacency

matrix £2(G) = [w;;] € R™*™, with entries

oy — 1 (i,5) €€ (9.16)
0 (,5) €€,
we can express (9.7) as
pi=min 1V (By) + ... + min J (") (9.17a)
k k
subject to ﬁ,(f) = ﬁ,(gj), V(i,j) €&, (9.17b)

if the set &€ is such that the consensus constraints (9.17b) ensure equality of all local solu-
tions 13,(;), i.e. ﬁ,(f) = ﬁg ),‘v’i, j € V, and thus identity to the central solution p,. This is

guaranteed by the following assumption.

Assumption 20. The directed graph G = (V, £) is weakly connected and has no self-loops.

Dual Problem

Although the cost function in (9.17a) is decoupled, the primal problem (9.17) still cannot
be solved in a distributed manner because of the coupling through the consensus constraints
(9.17b). Decoupling can be achieved by dual decomposition (cf. Section 2.4.4.2) which utilizes
the dual problem of (9.17). To this end, we introduce the dual variables )\,(f’j) € RWHDrne
which are transmitted from estimator ¢ to estimator j. The information flow of )\,(f’j ) among
the estimators is described by the reverse graph G = {V, £ }, which is obtained by reversing
Rmxm

the order of the nodes of all the pairs in £. Recall that the adjacency matrix Q = ;5] €
associated to the graph G is Q = Q7.

By denoting
p, 2 col(p,icV), A, 2 col AV (i) € &), (9.18)
we can decouple the Lagrangian of (9.17) regarding the primal variables as follows
Li(p,. M) = — S 1Y, (9.19)
i=1
where L,(f) (D, Ap) is

1) [/ A i) i - 7 — )1 T .
LB ) = 1B = o (@M — @ 0) By (9.20)

.
—_
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Consequently, we can also decouple the dual function gx ()

Py

=min) L8, M) (9.21)
Py =1
=1
where
g’ (Ax) = min L (B, ). (9:22)

k

Recall that the dual function (9.21) is concave and yields according to Lemma 2.4.10 for
any A, a lower bound on the optimal value p} of the primal problem (9.17). The question
about the best lower bound dj that can be obtained leads to the dual problem

dy = max qx(Ag)
Ap

™ (9.23)
= max ; % (Ar)-

Due to the Assumptions 17 and 20, the primal problem (9.17) is strictly convex and strictly
feasible. This implies according to Theorem 2.4.11 that strong duality holds, i.e. dj = pj.
In other words, we can use the dual problem (9.23) to solve the primal problem (9.17) in a

distributed manner.

Subgradient Method
The method of choice to solve the dual problem is the subgradient method presented in
Section 2.4.2.5. To this end, we transform this maximization problem into a minimization

problem in the following way
dy = max a(Ar) = n&in —qr(A)- (9.24)
Ak 2k

Since —qx(Ay,) is a convex function, we can apply the subgradient method which consists for

the given problem in the following iterative procedure

NP+ = N = wll) 80, VG0 G) €€, LN, (9.25)
where [ is the iteration counter, s,(f’j ) [{] are any subgradients of the negative dual function —gy
at the current iterate A,(f’j) ] and 7x[l] is the step size of the [-th iteration. The required

subgradients are given as follows.
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Lemma 9.2.2. Let ﬁl(f)*[l/ denote Vi € V the optimal solutions to the dual functions q,gi) (Aell])
given in (9.22). Then

siI ) = p 1) - Y1) (9.26)

isV(i, ) € € a subgradient of —qe(AVV[1]) at the point AU7[1].

Proof. By choosing an arbitrary /\,(f’j ) [1], (i,j) € £ as the dependent variable and all other
)\gf’b) 1], (a,b) € £\ {(,7)} as the independent variables, (9.21) becomes

A1) = min (L = 20 (6110 - 5010 ).

b, [l]
where

L= 70 (6010) — 3o 5 @ (6010 - p010).

a=1 a=1b=1
aFi b#j

Let L} denote the optimal value of L, corresponding to the optimal solution P, [l] of qk()\gf’j ) ).
Then the following relationship holds for all A}/ (i3 )[l], (i,7) € €

a:(€) = min (L — €7 (6 ~ 510
<Ly € (p" 1 - B 1)
= = M (B0~ B 1) + M (870 - B 1) - €7 (871 - B 1)

= ) — (B0 - P 10) (€ - AL
and thus
~0(&) = —a A + (B - 7 0) (& - AV ).

Consequently, according to Definition 2.4.5, s,(f’j) 1] = p(l)*[l] ﬁ,& 1] is ¥(i,j) € € a subgra-
dient of the convex function qk(/\(”)[l]) at the point )\k, 1. O

The calculation of the subgradients require the optimal solutions ﬁ,(:) *[I] which are given as

follows.

Lemma 9.2.3. The optimal solutions ﬁ,(;)*[l] to the dual functions q,g)()\k[l]) given in (9.22)
are Vi € V

i)% RO N i . j i
P = NP (o) + 3 (A0 1) = @00 10)), (9.272)

J=1
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where
()T 5(6) 71 (i _ AT =1
i [FOROTEO R R oo
ko= i A1 @ i i)~ i - :
| HYRY FY  HY) R HY+lQ7
- T N1
) s | FY RY A » 1pt
@) a [Tk A4 (3) (i) mTh-N| -
0" = T 1| \Y,7 — Gk u ) + Tp_N- (927C)
_H,(;) BS) (fk ) 0

Proof. The proof is sketched as follows: The dual function (9.22) is Vi € V an unconstrained
strictly concave quadratic problem. Thus, the optimal solution can be obtained analytically
by solving 8L§f) /8ﬁ,(f) = 0. The matrix N Sj’ is always positive definite because it can be
decomposed into the sum of the positive definite matrix % diag(Py_n, Q) " and the positive

T .
semi-definite matrix M ,(J) M ,(;), where

N—1/2 . .
w 1 |RY / 0 [F & H;(f)]

Mk_i N—1/2 7 %
e m e my

[]

Note that the distribution of the arrival cost among the local cost functions J,gi) in (9.15)
guarantees positive definiteness of N ff) regardless of the matrices F,(f) and H ,(;). As a con-
sequence, the solvability of the dual functions (9.22) is independent of the measurement
allocation. This means that there is no need for the measurement allocation to imply local
observability of the states. This would have been necessary if the local cost functions J,gi) are
independent of the arrival cost. In this case, it is easy to see that IN ,(f) is positive definite if
and only if F,(j) has full rank for which local observability is required. In any case, if solv-
ability of the local problems is given, the consensus of the local variables ﬁg) to the optimal

solution Py, is guaranteed by the constraints (9.17b).

The DMHO: A Special Case of the DMHE
As stated earlier, we derive the DMHO as a special case of the DMHE by removing the

estimated state disturbances w;, the arrival cost I',_y and the associated terms. Conse-
quently, the primal variables ﬁki) of the DMHO reduce to the local initial values :E;jl Ny 1€
ﬁ,(f) £ s?:,(fz y € R™. The remaining procedure of the DMHO is identical to the one of the
DMHE in adapted form. However, there is one step where special care has to be taken. As

mentioned above, if there is no arrival cost, then the optimal solutions ﬁ,(;)*[l] required for the
calculation of the subgradients can only be determined if F,(f) has full rank. This is stated in

the following Lemma which is the adapted version of Lemma 9.2.3.
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Lemma 9.2.4. Suppose that Vi € V, rank(F,(f)) = ng. Then the optimal solutions ﬁl(f)*[l] to
the dual functions q,(f)()\k [1]) given in (9.22) are Vi € V

PO = N ( O Z (@A) — @y )\,(j’i)[l])), (9.28a)
where
A T N —1 .
N](Z) éF](CZ) E](;) FS), (9.28b)
i )T @)1 (G i
of) £F) RV (49 - GVwy). (9.28c¢)

The only way to achieve Vi € V full rankness of Fl(f) is to develop a suitable measurement

allocation algorithm. Its objective can be stated as follows.

Problem 9.3. The problem is to design a measurement allocation algorithm such that the

following conditions are satisfied

(C0) 1yk = Vi,

(C1) Y nyP={0}, Vi,jeV,i+j
(C2) yk £ {0}, VieV,

(C3) rank(F)=n,, Vie V.

Our strategy to tackle this problem is as follows. First, we note that a necessary condition
for rank(F,(:)) = n, is that the number of rows of F,(f), which is equivalent to the dimension
of y ), is at least n,. This means that we have to chose the size of the moving horizon
sufficiently large. Once this is ensured, the basic idea of the proposed measurement allocation
algorithm is to assign the measurements periodically to the observers, i.e. the (i — 1+ jm)-
th measurement is assigned to the i-th observer with i € V, j € Ny and m = |V|.
illustrate this idea by an exemplary situation depicted in Table 9.1. In order to derive a
general description for this approach, we introduce the greatest integer operator (Graham
et al., 1994).

Definition 9.2.1. Let x € R and z € Z be a real number and an integer, respectively. The

greatest integer operator |-| is defined as
|x] = max z, subject to z < x,
z

and maps x to the greatest integer less than or equal to x.

Then we can state the periodic measurement allocation algorithm in the following Theorem.
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Table 9.1: Elements in the sets y,i” fori=1,2,3,k=1,2,...,11, m=3and N+1=6. The
current index of each step is framed to highlight the periodicity of the measurement

allocation.

discrete time &k

0 1 2 3 4 ) 6 7 8 9 10 11
0 1 1 1 4 T T
e 4 4 7 10 10
SO 2 2 2 2 2 5 5 5 8 8
- 5 5 8 8 11
o T 3 3 3 3 3 6 6 6 9
- - - - - 6] 6 6 [ 9 9
Theorem 9.2.5. Suppose that the pair (C A, A™) is observable for all j € {0,1,...,m—1}.
If the length of the moving horizon is
N+1= (L%J +14 B8)m (9.29)

Y

where 3 € Ny is a free parameter determining the overall moving horizon size and if the index

sets y,i“ are chosen Vi € V as

v

(1) . (1)
s —1 >0
S R R B SR TN
{0} V=0
with
i . k+1—1 N+1
|y£>|=m1n{t i, }
m m
; kE+1—1 N+1
m m

where \y,ﬁ")| is the cardinality of y,g“ and ly,g“ is the first element of y,f), then

rank(F,(f)) =n, Vi€V, Vke&Ny.

Proof. The consequence of the periodic measurement allocation is that

N+1
:iny, Vie V.

number of rows of F,(;) = dim(y\")
<z m

k

(9.30a)

(9.30D)

(9.30c)

(9.31)
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From (9.29) we know that

N+1 Ny
=(]|—]+1 > Ny
p— ([nyj+ —I—B)ny_n
Combining both results ensures that Vi € V and Vk € Ny the number of rows of F,(;) is
at least n, which is a necessary condition for full rankness of F,(f). According to the index

sets (9.30), we can write the matrix Fg) as

C A"
CA"A™
F) = | CA"A™ . Vi€V, VkeNy, (9.32)

| caram (5|
where k = (m — 1) — ((k +1 —4) mod m) € {0,1,...,m — 1}. Since the pair (C A7, A™) is
observable for all j € {0,1,...,m —1} and (N +1)/m —1 > n, — 1, F,(f) has Vi € V and
Vk € Ny full rank. O

Note that if rank A = n,, then the pair (C A7, A™) is observable for all j € {0,1,...,m—1}
if and only if (C, A™) is observable.

9.3 Overall Algorithm

The algorithm that is followed by the i-th observer/estimator of both DHMS is presented
in Algorithm 7. The differences between the DMHO and the DMHE in this algorithm are
indicated by different text colors. It is important to note that the distinguishing difference
between the DMHO and the DMHE is not visible in the presented algorithm since it concerns
the different requirements for allocating the measurements. As discussed in the previous
section, the measurement allocation has to be designed for the DMHO such that some form
of local observability is ensured (cf. Theorem 9.2.5), while there are no restrictions for the
DMHE.

When choosing the input to Algorithm 7, we have to consider the following aspects. As a
consequence of the measurement allocation, the moving horizon size N + 1 for the DMHO
has to be chosen sufficiently large (cf. Theorem 9.2.5), while there are no restrictions for the
DMHE. To ensure equality of all local estimates :i:,(;), the graph G, which describes the inter-
communication of the observers/estimators, has to be weakly connected (cf. Assumption 20).
The step sizes v,[l] have to satisfy in general certain conditions (see Section 9.4) in order to
guarantee stability of the DMHS.

Starting from zero initial values for the primal and dual variables (line 3), the optimiza-

tion procedure alternates between updating and transmitting the primal and dual variables
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Algorithm 7 Distributed moving horizon observer/estimator 50, (Black, and red
text color valid for DMHO & DMHE, , DMHE only, respectively.)
Input: initial state &y, communication graph G, moving horizon size N + 1, step sizes ||,
Vk € Ny, VI € Ny, covariance matrix R, covariance matrix (), covariance matrices P,
Vk € Ny (either calculated by Riccati equation (9.10) or set constant to steady state
solution P.)
1: for all k € Ny do

2: if £ > N then
3: Initialization: [ =0, A")[0]=0,V(i,j) €& pP*[0]=0,VieV
4: while termination condition = false do
5: Increase iteration counter: [ <1 +1
6: Update dual variables A" [1]:
A = A= 1] =t = 1) (B — 1) = 91— 1)), V(0. j) € &

7: Communicate )\,(f’j )[l] according to the graph G.

Update primal variable p\”*[l]:

B0 = NP (o + X (@M1 - @A)
j=1

with N,(f) and o,(f) defined in /(9.27h) and /(9.27h), respec-

tively. '
9: Communicate ﬁg)*[l] according to the graph G.
10: end while
11: Predict state z’é,(f) based on ﬁ,(f) = ﬁg)*[l] according to /(9.8).
12: else A
13: Predict state :IA:,(;) based on &, according to (9.6).
14: end if
15: end for

(line 5-9) until a terminal condition is satisfied (line 4). While the exact solution can in gen-
eral only be derived for infinitely many iterations (see Section 9.4), a practical approximate
solution can be found by prematurely stopping the optimization procedure. In this case, sev-
eral suitable termination conditions exist, like the convergence tolerance of the dual variables
and many more (Bertsekas et al., 2003; Shor, 1985; Kiwiel, 2004). It is important to note
that there is no need for the i-th observer/estimator to exchange information in order to cal-
culate the control inputs. All these values can be calculated fully decentralized based on the
decentralized available controller Y. Since each observer/estimator is initialized identically
by &y and each observer/estimator converges to the identical optimal primal variable p,, the
decentralized calculated control inputs are identical for all observers/estimators. Moreover, if

the measurement allocation scheme is known in advance, the inverse of the matrix IN S) nec-

essary for calculating ﬁ,(;)*[l] in line 8 can be calculated offline such that only simple matrix

vector multiplications have to be performed online in each iteration step.
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9.4 Stability Analysis

In this section, we analyze the stability of the DMHS presented in Algorithm 7. To this end,
we recall that the CMHO described in (9.5) and (9.6) as well as the CMHE described in (9.7)
and (9.8) are stable. Consequently, both DMHS are stable if all distributed estimates a‘:,(f)
are identical to the corresponding centralized counterpart &;. Since the prediction steps
of the distributed and centralized moving horizon strategies are identical, it is sufficient to
show that all local solutions ﬁ,(:) are identical to the centralized solution p,. As previously
mentioned, this property depends on the connectivity of the observers/estimators described
by the graph G. Thus, we analyze the stability of the DMHS for the general case of a weakly
connected directed graph in Section 9.4.1 and for the special case of a complete directed graph

in Section 9.4.2. Note that the latter is tantamount to an all-to-all communication scheme.

9.4.1 General Case: Weakly Connected Directed Communication Graph

The convergence behavior of ﬁ,(f) and thus the stability of the DMHS for a weakly connected
directed graph G is analyzed in the following Theorem.

Theorem 9.4.1. Suppose that Assumption 20 holds. If the step size sequences {vik[l]}2,
satisfy Vk € Ny

Wl >0, Jm ) =0, Sl =co, wlll {7l < e, VG €E (933)
1=0
where s,(;’j)[l] 1s the subgradient defined in Lemma 9.2.2 and ¢ € Rq is a positive constant,
then the sequences of local optimal solutions {ﬁ,(f)*[l]}fio generated in line 8§ by the DMHS
Algorithm 7 satisfy
lim P =p,, VieV, VkeNy. (9.34)
—00
Proof. Since —qi(A;,) is a strictly convex function and the sequences of step lengths {7x[l]}72,
satisfy Vk € Ny the conditions stated in (9.33), we can apply Theorem 2.4.6. Since the

condition |!] HSSJ)[Z]H < ¢ holds, this theorem ensures that the sequences {)\](f’j) 13524,
(1,7) € &, generated by the update rule stated in line 6 of the DMHS Algorithm 7 satisfy

lim AP =AD" v j) e €, Yk € Ny, (9.35a)
—00

llim a(Me[l]) = df, Vk € Ny. (9.35Db)
—00

Since (i) strong duality holds, (ii) the Lagrangian Ly (p,,Ay) is Vk € Ny a strictly convex
function of p, and (iii) Assumption 20 holds, which ensures equality of all local solutions ﬁ,(j) ,

i.e. 15,(:) = ﬁ,gj),w, j €V, the sequences {ﬁ,(:)*[l]}jﬁl generated by the update rule stated in
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line 8 of the DMHS Algorithm 7 satisfy

lim P =p,, VieV, VkeNy, (9.36a)
lim L (p, [, All)) = pj, = di, Wk € N, (9.36b)
and thus (9.34) holds. O

Note that boundedness of the subgradient s,(f’j )[l] depends on boundedness of ﬁ,(f)*[l] and
Aﬁj’j )[l]. This has two severe consequences. First, boundedness of sgf’j )[l] cannot be guaran-
teed in advance. Second, not all step size sequences {vi[l]}7°, which satisfy the first three
conditions in (9.33) lead to bounded and convergent sequences {ﬁ,(;)*[l]}j’il and {)\,(f’j )[l]}fil.
Therefore, the step size sequences have to additionally satisfy the fourth condition in (9.33).
For instance, the step size v;[l] = a/+/1 satisfies for all positive a the first three conditions

in (9.33), but the satisfaction of the last one depends on the choice of a.

9.4.2 Special Case: Complete Directed Communication Graph

The convergence behavior of ﬁ,(f) and thus the stability of the DMHS for a complete directed
graph G is analyzed in the following Theorem.

Theorem 9.4.2. Suppose that G is a complete directed graph without any self-loops. If the
update rule stated in line 6 of the DMHS Algorithm 7 is replaced by

m -1 . _
M= w9 (S ) ol e o
a=1

then the optimal solution Py, is attained in the first iteration of the update rule in line 8 of the
DMHS Algorithm 7, i. e.

P[] =p,, VieV, VkeNy. (9.38)
Proof. Since G is a complete directed graph without self-loops, its adjacency matrix is all 1’s
except for 0’s on the diagonal. By denoting N, = Y7, N,(Ca) and o, = Y, 0,(;), we can
write (9.37) as )\g’j)* = —Ng)N,zlog). Inserting both results into the update rule stated in
line 8 of the DMHS, we get

which holds for all 7 € V. O
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9.5 Special Case: Distributed Kalman Filter

Consider the case where the DMHE involves only the most recent measurements ym cee ij],

i.e. N+ 1 =1, distributed among the m estimators such that each one is assigned with at
least one measurement y,[f}, i.e. ¢ > m. Then Algorithm 7 becomes a distributed Kalman

filter (DKF).

Lemma 9.5.1. Suppose that N =0 and ¢ > m. Then the update rule in line 8 of the DMHS
Algorithm 7 reduces to the i-th state estimate update

P = a0 = @+ K (5 - CPm) +mPL S (@Al - 500 ll)  (0.30m)
j=1
with the i-th Kalman gain matrix
K = p,c?" (C,(f)PkC,(f)T + ;R,Ef))l (9.39b)
and the i-th updated covariance matriz
Pl = <I - K,Ef)C,(f)>Pk. (9.39¢)

Proof. By settlng N=0 and g > m, we have from Lemma 9.2.3 that IV}, @ C’(Z R ) C,(:)+
-1 ~

(mPk) and ok = C’,(; Ekl gé) + (mPk) Zj,. Consequently, we can write the update

rule in line 8 of the DMHS Algorithm 7 as

)% NOE - )T 561~ -1\ !
Pyl = &) [l}zmwr(c,ﬁ) R\ C,ﬁ)+(mPk) )

: (Cl(:)TRl(ci)l(y;(f) ) i(wlj)‘k” @ji)\z(gj’i) U]))

Combining this with the definition of the i-th Kalman gain matrix

>

i DT 56~ ~( -0\ T )L
K2 (c{"R)C+ (mP) ) ) RY

T . T N —1
=mPCy (CmPC) +RY)

1

T . NT N\ —1
=P C(l) C(l)P C(l) 7R(Z)
kG ( S s 2 )

and the definition of the ¢-th updated covariance matrix

) AT o —1 . 1\ !
mP{) & (C,(j) R C + (mPy) )

= (1-K;’Cy)mP,.

yields (9.39) and concludes the proof. O



Table 9.2: Summary of the centralized and distributed discrete Kalman filter equations.

centralized Kalman filter (CKF)

distributed Kalman filter (DKF')

System Model

Measurement Model

State Estimate Prediction

Covariance Extrapolation

State Estimate Update

Kalman Gain Matrix

Covariance Update

x, = Az + Buy_

y, = Cxy

Tpp—1 = AZp_1 -1 + Bup_

Py = AP, 1 1 A"+ Q

Tk = Brjp—1 + Ky (yk - Cﬁilﬂkfl)

-1
Ky = Py 1.C" (CPysC" + R)

Py = (I - KiC) Py

x, = Az + Buy_,

gl(:) =CYg,, i€V

Trp—1 = AZp_qp—1 + Buy_

Py =AP; 151 A" +Q

A0 =0,v(i, ) €€, 0] =0,VieV
for [ =0 to [, do
M = M= 1] = 3l = 1 (2410 — 1] - 2,

Zell] = i + K} (30 — CF @)
+m Py, Sy (@A (1) — X [)
end for

—1
K = Py 1C" (CPysC" + R)

i oT i T i\ 1
K} = PyiCy) (C Py CY) + LRY)
Py = (I - KiC) Py

Py = (I- K{'C) Py

=)

I99[I URW[RY PoINqLIYSI(] :ose)) [eadS GG

S61
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The equations for the centralized Kalman filter (CKF) and the distributed Kalman filter
(DKF) are summarized in Table 9.2 in order to contrast the similarities and differences be-
tween both versions. Therefore, we use the established notation in the estimation framework,
where the notation &;; represents the estimate of x at time 4 given observations up to, and
including at time j. Note that in this notation, Zy is described as @y_1.

The equations for the state estimate prediction, covariance extrapolation, Kalman gain
matrix and the covariance update of the CKF and the DKF are identical. However, since the
measurement vy, is only distributed available for the DKF, the state estimate update equation
differs and results for the DKF in the adapted version of Algorithm 7. The first part of the

update equation for z%,(g?k[l] is a conventional Kalman filter which utilizes due to the local

measurement Q,(;) a local covariance matrix P,(;) and a local Kalman gain matrix K ,(j). The
second part is a consensus term which guarantees convergence of each local updated state
estimate z?:,(j‘)k to the updated global state estimate &,. Since the DKF is a special version

of the DMHE, the stability analysis presented in Section 9.4 also hold for the DKF.

0.6 Extensions

In this section, we sketch the extensions for the presented DMHS to the following three cases:

@ linear time-variant system and measurement model (Section 9.6.1),
@ state and disturbance constraints (Section 9.6.2), and

® packet-delaying and packet-dropping network Ef{ll} (Section 9.6.3).

9.6.1 Linear Time-Variant System and Measurement Model

Consider the problems given in Section 9.1 where the plant ¥ is described instead of the linear

time-invariant system (9.2) by the linear time-variant system

and the linear time-invariant measurement model (9.3) is replaced by its linear time-variant

counterpart
yEJ] = ng}wl + ’Uzm, ] S S, 1€ NO. (941)

The extension of the DMHS to deal with this situation is straightforward. Roughly speaking,
the main challenge consists in replacing the time-invariant matrices A, B and C' by its time-
variant counterparts A;, B;, C;, respectively. Everything else including strong duality and
the stability analyzes presented in Section 9.4 still hold. The only difference in Algorithm 7
is that the matrix N ,(;) and the vector o,(f) required in line 8 are build with the time-variant

matrices A;, B;, C; instead of the time-invariant counterparts.
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0.6.2 State and Disturbance Constraints

As discussed in Section 2.1, one favorable property of the moving horizon strategies is the
possibility of directly handling constraints. Consider the problems given in Section 9.1 where

the states and disturbances satisfy additionally Vi € Ny the following constraints
z, €EXCR™, w,eWCR™=, eVl cRwijes, (9.42)

where the sets X, W and V!, j € S are nonempty, bounded and convex with 0 € W and
0cVll jes.

To deal with this situation, we extend the DMHS as follows. First, we express the con-
straints (9.42) in terms of constraints for the primal variable Py, i.e. P, € Pr. Consequently,

we extend (9.17) by these constraints as follows

pi = min U (B) + ..+ min J" (B (9.43a)

5 P
subject to ) =pY, (i,7) € €, (9.43Db)
Py € P, i€V (9.43¢)

This problem is still convex and strictly feasible which implies strong duality to hold according
to Theorem 2.4.11. Thus, we can use once again the dual problem to solve the primal problem.

The additional introduced constraints carry over as follows to the dual functions

') = min L0 Ap). (9.44)
ﬁkz €Pk

The resulting dual problem is now solved by the projected subgradient method

)‘g‘,j)[l +1] = Pp, (A](:,j)[l] — el s,(f’j)[l]) , V(i,5) € éf, [ € N, (9.45)
where
Pp,(a) £ arg min|a —b]| (9.46)

is the projector on P,. The remaining quantities are identical as for the subgradient method
(9.25) including the subgradients. Similar convergence Theorems exists for the projected
subgradient method (Bertsekas et al., 2003; Kiwiel, 2004). As discussed in Section 2.1, the
CMHS and therefore the DMHS are stable estimators for linear constrained problems. The
only difference in Algorithm 7 is that the update step in line 8 is replaced by its projected
version (9.45).
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0.6.3 Non-ldeal Network

1”{11} might be inadequate for

As discussed in Section 9.1, the assumption of an ideal network X
describing all possibilities of measurement transmission. Therefore, we consider the problems

given in Section 9.1 where the Assumption 18 is replaced by the following one.

Assumption 21. Each packet Pim is Vj € § and Vi € Ny transmitted over the non-ideal

network Zl{\}} to only one observer/estimator SO which may vary over time. Thereby, the

statistics of the time delays Ti[j] € Ny of the packets PZ-U I are Vj € § and Vi € Ny unknown.
(7]

Consequently, the time delays 77" are V5 € S and Vi € Ny considered as deterministic variables

of unknown character which take their values from the bounded set
el ]cNy, jeS, ieN,. (9.47)
Similar, the statistics of the packet drop probability of the packets PZ»U] are Vj € S and

Vi € Ny unknown. Consequently, the maximum number of consecutive packet drops for the
j-th sensor is bounded by NV €Ny, j€8.

max,drop

This assumption models a non-ideal network 21{\11}

where, in general, only bounds but not
the precise network statistics are known in advance. Note that this assumption is similar to
the Assumptions 5 and 6.

The extension of the DMHS to the present case is more a notational challenge than a
theoretical problem. Since the network is non-ideal, we cannot use the previous notation
anymore. Thus, we have to extend the buffer based notation introduced in the Sections 3.2
and 3.3 to the present case of m decentralized buffers. This requires the introduction of a
cumbersome notation which is necessary to formally describe the DMHS. Fortunately, this step
is unnecessary for describing the basic ideas required for extending the DMHS. To this end,
we consider the exemplary situation depicted in Figure 9.2(a) where two sensors E[Sj ], =12,
transmit their packets PI-U Vor i = 0,1, 2,3 one time over the ideal network and another time
over the non-ideal network to a single buffer By. For the latter case, we can utilize the notation
introduced in the Sections 3.2 and 3.3 and do not need an extended version. Depending on
whether or not the packets PZ»U Vare successfully transmitted over the network, they are marked
on the sampling time axises with either a blue cross or a red circle. Moreover, the successfully
transmitted packets are connected to their corresponding counterparts located on the arrival
time axis by an arrow. This representation illustrates the fact that in contrast to the case of
an ideal network, the arrival times are not necessarily tantamount to the sampling times for
the case of a non-ideal network. The resulting consequences combined with those of packet
drops are illustrated for the buffer By in Figure 9.2(b) which depicts the temporal evolvement
of the stored packets in the buffer for a buffer size of N + 1 = 2. For the ideal network, the
buffer index k£ is identical to the global time ¢ and the structure of the stored packets in the
buffer is always identical. However, the situation for the non-ideal network is different. In

this case, the buffer index k£ generally differs from the global time ¢ and the structure of the
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Ideal network Non-ideal network
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(a) Run of the packets Pim through the network E}{\Il} to the buffer By for i = 0,1,2,3 and j = 1, 2.
Ideal network Non-ideal network
stored & sorted packets in the buffer buffer buffer stored & sorted packets in the buffer
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(b) Temporal evolvement of the stored packets in the buffer By, for a buffer size of N + 1 = 2 and of the buffer
counter & resulting from the scenario depicted in (a).

Figure 9.2: Comparison of the effects on the buffer By caused by packet transmission over an
ideal and a non-ideal network Zl{\%} based on an exemplary situation.

stored packets in the buffer varies with the buffer index k. This structure has to be reflected
in the constraints of the DMHS which describe the dynamics of the measurements stored in

the current buffer. While these constraints are for the ideal network time-invariant, i. e.
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they become time-variant for the non-ideal network due to the time-varying structure, i. e.

Zipe = Ak + g,(A, B)uy, + Wy (9.49a)
Yiip = Ciijp + Dy (9.49D)

The time-variance in (9.49a) and (9.49b) is due to the non-equidistant spacing of the sampling
times associated to the buffer By and the non-availability of all measurement at a certain
sampling time associated to the buffer By, respectively. The former and latter case can be
seen in Figure 9.2 in the non-ideal case by vertical and horizontal gaps in the stored packets
of the buffer By, respectively. Moreover, note that in general the measurements y; and y,
are not identical and thus the estimated disturbances w; and ;) as well as §; and D,
differ. As a consequence, we have to replace the time-invariant dynamics of the measurements

corresponding to the buffer By
g, = F&,_n + Guy, + H, + 9y, (9.50)
with the time-variant counterpart

Anon-ideal A Anon-ideal anon-ideal
Y, = Fy&x-nik + Gruy, + H iy, + Dy (9.51)

As discussed in Section 9.6.1, it is straightforward to extend the DMHS to deal with the present
time-variant but linear case. The only difference in Algorithm 7 is that the matrix IN gf) and
the vector o,(f) required in line 8 are build based on the time-variant representation (9.49)

instead of the time-invariant counterpart (9.48).

Due to the time-varying structure of the stored packets in the buffer By, observability and
therefore solvability of the primal and dual problem is only guaranteed if the moving horizon
size N + 1 is chosen properly. This means that depending on the network parameters 701 |
N[ﬂ

max,drop’

or adapted dynamically. Once this is assured, the stability analyzes presented in Section 9.4
hold, i.e. the state estimates derived by the DMHS are identical to those of the CMHS.
For the stability analyses of the CMHS, we can invoke the results derived in Chapter 6 after

j € S8, the size of the moving horizon N + 1 has to be chosen sufficiently large

adapting some of the assumptions made in Section 9.1 to the ones made in Section 3.1.

9.7 Summary

In this chapter, we have presented the DMHO and the DMHE within a common framework for
the undisturbed and disturbed distributed NCS architecture, respectively. The main feature
of this architecture is the possibility of implementing any centralized designed controller fully
decentralized. This is enabled by both DMHS which provide distributed knowledge about
the full state of the system. The key step to derive the DMHS is the extension of the CMHS
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optimization problems by additional suitably designed consensus constraints which reflect the
communication topology among the observers/estimators by means of a directed graph. This
reformulation allows us to apply the dual decomposition technique to derive a decoupled dual
optimization problem which we have solved by a suitable subgradient method. The resulting
algorithm possesses a simple structure and alternates between updating and transmitting
the primal and dual variables. Convergence of this algorithm and therefore stability of the
DMHS is assured for several step sizes if the following three conditions are fulfilled. First, the
system has to be observable. Second, the directed graph, which represents the communication
topology among the observers/estimators, has to be weakly connected. Third, the allocation of
the measurements to the observers of the DMHO has to imply full-rankness of a certain matrix
which is assured by a periodic measurement allocation provided that the system satisfies a
certain form of observability. As a consequence, the DMHO requires a certain minimum
moving horizon length while the DMHE can operate with measurements from one time step
only. In this case, the DMHE becomes a distributed Kalman filter. Finally, we have sketched
the extension of the DMHS to the cases of time-variant system and measurement models,

state and disturbance constraints, and non-ideal networks.






Chapter 10

Simulation Results

In this chapter, we present simulation results for both developed distributed moving horizon
strategies (DMHS) applied to a networked four tank system. In Section 10.1, we describe the
simulation setup of the considered distributed NCS architecture. Thereby, the plant ¥ con-
sists of four interconnected tanks. Three of these tanks are equipped with an actuator sz),
a sensor Egﬂ and a distributed observer/estimator $U). This setup provides the possibility
of investigating several strategies for the measurement allocation as well as the communica-
tion topology among the observers/estimators. The corresponding results are presented in
Section 10.2 for varies settings of the distributed moving horizon observer (DMHO) and the
distributed moving horizon estimator (DMHE). This also includes a comparison between both

methods. Finally, we conclude this chapter with a summary given in Section 10.3.

10.1 Simulation Setup

Consider the distributed NCS architecture depicted in Figure 9.1. The plant X is the four

tank system shown in Figure 10.1 and can be described by the fourth-order discrete-time

(a) Top view. (b) Cross section A-A.

Figure 10.1: Schematic diagram of the four tank system.
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linear system

0.50 0 0 0.07 01 0 O
0 050 O 0.35 0 05 0
0 0 050 0.56 0 0 038

0.07 0.35 0.56 —0.48 0 0 0

This system involves four states @; = [,1;, 9T, 34, 475]7 € R* corresponding to the fill levels

of the four tanks with the initial condition xy = [20, 30,40, 23.1]7, the zero-mean state distur-

bance w; € R* with covariance Q € R*** and the control inputs u; = [ugl), u?, ug?’)]T c R?

of the three pump voltages.

[s]

The first three states are measured by the three sensors Egj , 7 = 1,2,3 according to the

measurement models

w'=[10 0 ofz+ov" (10.2a)
y=1[0 1 0 o]z+0v” (10.2b)
y=10 0 1 0]zi+0v, (10.2¢)
where vY! j = 1,2,3, are zero-mean measurement disturbances with variance RU! € R,

1)

j = 1,2,3. Note that the system (10.1) is not observable by one of the three sensors alone,
i.e. the pairs (C’[j], A), j = 1,2,3 are not observable, but by all sensors combined, i.e. the
pair (C, A) with C £ col(CU!, j = 1,2, 3) is observable. Each measurement yl[j ! is transmitted

in a packet of the form Pi[j] = {yzm,i} over the ideal network 21{\11} to one of the m = 3
observers/estimators. These are placed next to the different pumps. The measurements are

allocated to the observers/estimators according to one of the following two methods:

Local measurement allocation: The measurements of the j-th sensor are allocated to the
j-th estimator. The length of the moving horizon is set to N +1 = 1 and the associated
sets are Z = {k} and S = {1,2,3}. This results for k£ € Ny in the following index sets

W = {(k,1)},
W = {(k2)}, (10.3)
W = {(k,3)}

Periodic measurement allocation (Theorem 9.2.5): The (j — 1 + 3i)-th measurements of
all sensors are allocated to the j-th observer/estimator for j = 1,2,3 and ¢ € Ny. By
choosing 5 =0 in (9.29), the length of the moving horizon becomes N + 1 = 6 and the
associated sets are 7, = {k — 5,k — 4,k — 3,k — 2,k — 1,k} and § = {1,2,3}. This
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results for k£ € N according to (9.30) in the following index sets

v ={6lE -20),6l5 -2,2),6% -23),
BLE] +1,1),3[%) +1,2),3[%) +1,3)},

v ={615-1,1), 8152 -1,2), (3[55-1,3),

B 12,1, (3451 1+2,2), (3|55 +2,3)), 104
VI ={GE2 D652 2,652 .3),
(3l5521+3,1), 3[452]+3,2), (3| 552]+3,3)

The local measurement allocation can only be applied to the DMHE while the periodic mea-
surement allocation is suitable for both DMHS. Note that the assumptions of Theorem 9.2.5
are fulfilled because A has full rank and the pair (C, A®) is observable.

Each of the three observers/estimators 30 ), j =1,2,3, are identically initialized with &, =
[0,0,0,0] and use the step size rule 7;[l] = a/+/1 where the positive parameter a is adapted
for the respective situation. The intercommunication between the observers/estimators is
according to one of the three graphs depicted in Figure 10.2. These graphs G;, G, and G3
represent a line, a ring and an all-to-all communication topology, respectively. Note that the

latter case allows the usage of the optimal Lagrange variables derived in Theorem 9.4.2.

graph Gy graph G graph Gs

o Iy

0 1 0 010 0 1 1
we= o § 1 e = |1 4 ] CNIEE

Figure 10.2: Three cases for the communication topology of the observers/estimators repre-
sented by the graphs G; and the associated adjacency matrices (G;): line (i = 1),
ring (¢ = 2) and all-to-all (i = 3).

The controller X¢ is a centralized designed but decentralized implemented combined linear

static feedforward and linear quadratic feedback controller

with the reference input r; = [174, o7, 575)7 € R3 and the matrices K € R34, M, € R¥3,

M, € R¥3. The feedforward part is calculated as the solution to

[A(;I Jg] [ﬁ] B m (10.6)
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which results from the requirement that in the stationary case, i.e. x;y; — ax; = 0, the
conditions y, = r; and ®; = T; desired = M ,T; have to be fulfilled. The LQR feedback gain K
is determined for the state weighting matrix Qpqr = diag(1,1,1,10) and the control input
weighting matrix Ryqr = diag(1, 1, 1), see Kwakernaak and Sivan (1972).

10.2 Simulation Results

In this section, we present the simulation results for the distributed moving horizon observer
(DMHO) and the distributed moving horizon estimator (DMHE) as well as the comparison
of both methods.

10.2.1 Distributed Moving Horizon Observer

Figure 10.3 depicts the closed-loop performance of the DMHO for the state disturbance co-
variance Q = 0 and the measurement disturbance variances RU = 2.5, j = 1,2,3. Thereby,
the DMHO utilizes the periodic measurement allocation and the all-to-all communication
topology Gs in combination with the optimal dual variables derived in Theorem 9.4.2 which
provides convergence of the DMHO in the first iteration step. As long as k < 5, the feedback
part of the controller is turned off and the state is predicted by a forward simulation based
on &y. After the moving horizon is filled, i.e. k > 5, the observers reconstruct the state of
the system from the noisy measurements. Note that the depicted performance is identical to

the case where a CMHO is used within a centralized NCS architecture.

60 _tanki=1 60 _tanki=2

501 1 501

40t - 1 40t

30| o " L 30 - i

20 s I 20

100 5IO 160 150 100

60 _tanki=3 60

501 1 501

40 ¢ 1 40 ¢

30 ¢ \ 1 30 ¢

20t 1 20 ¢

100 5IO 160 150 100 5IO 160 150
k k

Figure 10.3: Comparison between the noisy measurements y,[f], nominal trajectories ;ry, true
states ;rp and estimated states ii,(j) generated by the DMHO (all-to-all commu-

nication topology G3 & optimal dual variables) for the tanks ¢ = 1,2, 3, 4.
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10.2.2 Distributed Moving Horizon Estimator

Figure 10.4 depicts the closed-loop performance of the DMHE for the state disturbance covari-
ance @ = diag(1,1,1,1) and the measurement disturbance variances RVl = 2.5 j = 1,2,3.
Thereby, the DMHE utilizes the local measurement allocation, the update of the covari-
ance Py_y according to the Riccati equation (9.10) with the initial value Py = diag(1,1,1,1),
the step size y[l] = 0.35/+/1 and the line communication topology G;. Since the length of
the moving horizon is N + 1 = 1, the DMHE reduces to the DKF presented in Section 9.5.
The DMHE is able to reconstruct the state of the system right from the start, i.e. for all
k > 0. Note that the depicted performance is identical to the case where a Kalman filter is

used within a centralized NCS architecture.

60 . tank i = 1 . 60 . tank 7 = 2 .
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10 : : : :
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Figure 10.4: Comparison between the noisy measurements y,[f}, nominal trajectories ;rg, true

states ;z and estimated states Z.fc,(f) generated by the DMHE (line communication

topology G;) for the tanks ¢ = 1,2, 3, 4.

Since optimality of the DMHE is only guaranteed for infinitely many iterations, we in-
vestigate a suboptimal approach where we prematurely stop the optimization after only 25
iterations per time step. Thereby, we use the relative error d,(f) between the distributed

estimates 9’1‘3,(;) and the centralized estimate &) defined as

o _ 112 — @]

d! . i=1,2,3, (10.7)

12|
to judge the performance of this approach. Figure 10.5 shows the relative errors for the
scenario depicted in Figure 10.4. We can observe that the relative errors are below 7- 1073
and the distributed estimators have almost reached a consensus after only 25 iterations per

time step for the line communication topology G.
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Figure 10.5: Relative errors d,(;), 1 = 1,2,3, of the three observers for a line communication

topology G; and 25 iterations per time step.

Figure 10.6 reveals the influence of the communication topology on the duality gap pg — djl].
Thereby, the parameter a of the step size rule y,[l] = a/v/1 is determined for each communi-
cation topology individually such that a maximum reduction in each iteration step is achieved
while the assumptions of Theorem 9.4.1 are satisfied and thus stability is maintained. This
results in the maximum values a = 0.35, a = 0.2 and a = 0.12 for the line, ring and all-to-all
communication topology, respectively. We can observe that a higher connectivity results in an
increased reduction of the duality gap. This confirms the intuitive expectation that a higher

connectivity of the estimators results in an increased convergence rate.

100 E T T T T T T T T T

10°

duality gap p§ — d§ll]

107° k

Figure 10.6: Duality gap p§—dg[!] for different communication topologies in combination with
the respective maximum admissible step size parameter a of the step size rule

wll] = a/V1.

10.2.3 Comparison between the Distributed Moving Horizon Strategies

For the comparison between the DMHO and the DMHE, we consider the open-loop scenario
with the state disturbance covariance @ = diag(1,1,1,1), the measurement disturbance vari-

ances RV = 2.5, j = 1,2,3, and the reference input r; according to the one depicted in
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Figure 10.3 and 10.4. Since the DMHO is incapable of dealing with the local measurement
allocation, we utilize the periodic measurement allocation for both DMHS. Moreover, both
DMHS are interconnected by the ring communication topology G, and utilize the step size
Yell] = a/+/1 with the maximum admissible values a = 0.03 for the DMHO and a = 0.25
for the DMHE. The covariance Pj_y of the DMHE is updated according to the Riccati
equation (9.10) with the initial value Py = diag(1,1,1,1).

For the sake of comparison, we consider the performance index given by the root mean
square error (RMSE)

2 [1] — a?

g(tQ —) (10.8)

RMSE[l] £ 23: tZ ”

i=1 k=t

where a‘:,(f) [{] is the estimate derived by the i-th observer/estimator when prematurely stopping
the optimization after [ iterations, ¢; is the time where the moving horizon is filled, i.e.
t; = N =5 and t5 is the time where the simulation is stopped, i.e. t5 = 150. Note that for
infinitely many iterations, the RMSE values of the DMHS coincide with those of the respective

CMHS. Moreover, we consider the performance index (PI)

(10.9)

. RMSE[1] — RMSE]]
PI[l] &1
1= B NS E] — RMSEL]

which indicates the performance of a DMHS compared to the respective centralized counter-
part on a scale between 0 and 1. A value of 1 means that the performance of the DMHS is
identical to the one of the respective CMHS.

The RMSE and corresponding PI values of the DMHO and DMHE for different number
of iterations per step are depicted in Figure 10.7. Thereby, the state and measurement
disturbance sequences are identical for all simulations. Based on these values, we can conclude

the following. First, the DMHE is superior to the DMHO but requires a higher computational

1.9 100
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Figure 10.7: RM SE][l] and corresponding PI[l] values for a ring communication topology G
among the DMHO and DMHE.
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load for the given setup. However, the DMHE can utilize the local measurement allocation
which results in a significantly reduced computational load compared to the DMHO. Second,
the performance of the DMHO and the DMHE improves with increased number of iterations.
Third, it is sufficient to perform only 12 and 6 iterations per time step for the DMHO and
DMHE, respectively, because in these cases, the respective RM S E values are almost identical

to the centralized case and the PI values are above 99%.

10.3 Summary

In this chapter, we have presented simulation results for the developed distributed moving
horizon strategies. We have analyzed the performance for each of these two methods includ-
ing the special case of a distributed Kalman filter by evaluating the simulation results of a
networked four tank system for various settings. These results confirm the high performance
of all strategies whereby the CMHE has been slightly superior to the CMHO at the price of
requiring a higher computational load for identical moving horizon lengths. Since optimality
of all DMHS is only guaranteed for infinitely many iterations if the communication topology is
not described by a complete directed graph, we have proposed and investigated a suboptimal
approach where we prematurely stop the optimization after a certain number of iterations.
Thereby, we have made two interesting observations. First, a higher connectivity among the
observers/estimators results in an increased convergence rate. Second, the overall perfor-
mance of the suboptimal approach reaches for only view iterations almost the performance of

the optimal one.
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Conclusions and Future Work

In Part IIT of this thesis, we have presented the distributed moving horizon observer (DMHO)
and the distributed moving horizon estimator (DMHE) for state estimation within the undis-
turbed and disturbed distributed NCS architecture, respectively. Both strategies provide
distributed knowledge about the full state of the system which facilitates the decentralized
implementation of any centralized controller. Furthermore, we have devised a method for the
allocation of the measurements to the distributed observers. We have also investigated the
impact of the interconnection topology among the distributed observers/estimators within
the stability analysis of the DMHO as well as the DMHE. Finally, we have validated the
performance of both strategies in simulations of a networked four tank system.

In this chapter, we summarize each chapter of Part III of this thesis. In addition, we also

outline possible and natural extensions, as well as broader ideas for future work.

11.1 Summary

Chapter 9: Distributed Moving Horizon Strategies

In this chapter, we have presented the DMHO and the DMHE within a common framework for
the undisturbed and disturbed distributed NCS architecture, respectively. The main feature
of this architecture is the possibility of implementing any centralized designed controller fully
decentralized. This is enabled by both DMHS which provide distributed knowledge about
the full state of the system. The key step to derive the DMHS is the extension of the CMHS
optimization problems by additional suitably designed consensus constraints which reflect the
communication topology among the observers/estimators by means of a directed graph. This
reformulation allows us to apply the dual decomposition technique to derive a decoupled dual
optimization problem which we have solved by a suitable subgradient method. The resulting
algorithm possesses a simple structure and alternates between updating and transmitting
the primal and dual variables. Convergence of this algorithm and therefore stability of the
DMHS is assured for several step sizes if the following three conditions are fulfilled. First, the
system has to be observable. Second, the directed graph, which represents the communication

topology among the observers/estimators, has to be weakly connected. Third, the allocation of
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the measurements to the observers of the DMHO has to imply full-rankness of a certain matrix
which is assured by a periodic measurement allocation provided that the system satisfies a
certain form of observability. As a consequence, the DMHO requires a certain minimum
moving horizon length while the DMHE can operate with measurements from one time step
only. In this case, the DMHE becomes a distributed Kalman filter. Finally, we have sketched
the extension of the DMHS to the cases of time-variant system and measurement models,

state and disturbance constraints, and non-ideal networks.

Chapter 10: Simulation Results

In this chapter, we have presented simulation results for the developed distributed moving
horizon strategies. We have analyzed the performance for each of these two methods includ-
ing the special case of a distributed Kalman filter by evaluating the simulation results of a
networked four tank system for various settings. These results confirm the high performance
of all strategies whereby the CMHE has been slightly superior to the CMHO at the price of
requiring a higher computational load for identical moving horizon lengths. Since optimality
of all DMHS is only guaranteed for infinitely many iterations if the communication topology is
not described by a complete directed graph, we have proposed and investigated a suboptimal
approach where we prematurely stop the optimization after a certain number of iterations.
Thereby, we have made two interesting observations. First, a higher connectivity among the
observers/estimators results in an increased convergence rate. Second, the overall perfor-
mance of the suboptimal approach reaches for only view iterations almost the performance of

the optimal one.

11.2 Future Work

The following recommendations for future work are proposed to enhance the DMHS presented
in Part III of this thesis:

© Stability analysis for the suboptimal approach - In general, optimality for the DMHS
is only guaranteed for infinitely many iterations. Therefore, we have investigated in
Chapter 10 a suboptimal approach, where we prematurely stop the optimization after
a fixed number of iterations per time step. This approach has shown for the considered
scenario almost the identical performance as the optimal one. However, the theoretical
analysis of this procedure remains open. In this context, one might also contemplate a
warm start strategy for the dual variables along with a decreasing condition for the cost
functions similar to the one of the CMHS. In this way, it might be possible to design a

suboptimal approach which converges to the optimal solution.

© Speed of convergence analysis - The stability analysis presented in Chapter 9 answers the
question when the DMHS converge to the optimal solution. However, this analysis does
not give any answer about how fast this happens. The simulation results of Chapter 10

suggest that the higher the connectivity among the distributed observers/estimators are,
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the higher is the convergence speed. This expectation is reasonable because we know
from consensus algorithms that their speed of convergence is quantified by the algebraic
connectivity of the communication graph which is the second smallest eigenvalue of the
graph Laplacian (Olfati-Saber et al., 2007). Since the DMHS algorithm looks similar to
a consensus algorithm, it is not unreasonable to hope to derive similar results for the
DMHS by applying the analysis techniques of the consensus algorithms. In this context,
it is desirable to develop methods which replaces the current trial and error approach for
choosing the maximal allowable step size parameter for a given communication topology

by a systematic procedure.

© Robustness enhancement - Throughout the derivation of the DMHS, we have assumed
that the networks ZI{\}} and 21{\12} are ideal. However, this assumption might not be
adequate to model all real-world circumstances. Therefore, we have presented in Sec-
tion 9.6.3 the extension to an imperfect network El{\ll}. However, a similar extension
for the network ZI{\?}, which describes the communication topology among the dis-
tributed observers/estimators, remains open. Reasonable extensions should consider
time-varying communication topologies, packet delays, packet loss and asynchronous
operation and communication. A first port of call in this context might be the work
of Gatsis and Giannakis (2012) which investigates asynchronous subgradient methods

with unbounded delays.

© Nonlinear systems and unsynchronized sensor clocks - Finally, it would be desirable to
derive distributed versions of the full CMHS including nonlinear systems and unsyn-
chronized sensor clocks. While this does not constitute a practical problem within the
presented framework, it raises the question whether or not this approach is reasonable.
In both cases, the main challenge is that the primal problem becomes non-convex and
thus, in general, strong duality does not hold any longer. Therefore, the duality gap
should be investigated if it enables us to draw any conclusions regarding the quality of
the primal solutions calculated based on the optimal dual ones. Another approach might
be to restrict ourselves to a certain class of nonlinear systems for which it is possible to

find a reformulation of the optimal estimation problem such that strong duality holds.






Appendix A

Background Material

For the sake of completeness, we state in this appendix several Definitions, Lemmas and

Theorems which are of central importance for this thesis.

Definiteness of Functions
Definition A.1 (Slotine and Li, 1991). A scalar continuous function V(x) : D C R" — R is

said to be

© locally positive semi-definite around x* € D if V(x*) =0 and V(x) > 0,
z e {Dl|e -z <rz#x}.

@ locally positive definite around x* € D if V(x*) =0 and V(x) > 0,
z € {Dl|||lx —z*|| < r,x # x*}.

@ locally negative semi-definite around x* € D if =V (x) is positive semi-definite around
" eD.

© locally negative definite around x* € D if =V (x) is negative definite around x* € D.
If the above properties hold Y € D, then the above statements are valid globally.

Stability of Autonomous Systems
Theorem A.1 (Slotine and Li, 1991; Khalil, 2002). Consider the autonomous system

& = f(x) (A1)

where f : D +— R™ is a locally Lipschitz map from a domain D C R™ into R™. Let x* € D
be an equilibrium point of (A.1) and let V : D +— R be a continuously differentiable function
such that

i) V(x*) =0 and V(x) >0, x € D\{z*}
i) V(xz) <0, x € D.

Then x* is stable. Moreover, if
iii) V(x) <0, © € D\{x*},

then x* is asymptotically stable.
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Mean Value Theorem

Theorem A.2 (Abraham et al., 2002, pg. 77). Let £ and F be real Banach spaces, f(z) :
U C &— F a continuously differentiable map, &,y € U, and ¢ a continuously differentiable

arc inU connecting  to y, i. e., ¢ is a continuous differentiable map ¢ : [0,1] — U, for which
c(0) = x and ¢(1) =y holds. Then

Fly) — f(z) = /01 gi(c(t)) c(t) dt.

IfU is conver and c(t) = (1 — t)x + ty, then

Fw) -~ 5@ = [ - er w)dr(y - )

Gronwall-Bellman Inequality

Lemma A.3 (Khalil, 2002, pg. 651). Let A : [a,b] — R be continuous and y : |a,b] — R be

continuous and non-negative. If a continuous function y : [a,b] — R satisfies

o0 <0+ [ a)(s)ds

fora <t <b, then on the same interval

y(t) < A(t) + /at A(s)u(s) exp (/:,u(T)dT> ds.

In particular, if \(t) = X is a constant, then

t

y(t) < Xexp [ u(ryar).

If, in addition, p(t) = p > 0 is a constant, then

y(t) < Aexp (u(t —a)).

Continuous Dependence on Initial Conditions, Times and Parameters

The following Theorem is derived by extending Theorem 3.4 given in Khalil (2002, pg. 95) by
additionally considering the continuous dependence on initial times. The proof heavily relies

on the Gronwall-Bellman Inequality stated in Lemma A.3.

Theorem A.4. Let f(t,x) be piecewise continuous in t and Lipschitz in @ on [to,ta] X W

with a Lipschitz constant L, where VW C R" is an open connected set. Let

Hf(taw)H <o, V(t,.’B) € [tO,tQ] X W
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for some § > 0. Let y(t) and z(t) be solutions of

Y= f(t,y) +g(t), y(t1) =y
z = f(t,z) + h(t), z(tg) = 2o

with ty € [to, ta], such that y(t), z(t) € W for all t € [to,t2]. Suppose that

IR < p, Vit € [to,t2]
lg(t) —h@)| < p, VtE [to,ta]

for some p,p > 0. Then
ly(®) = 2] < lyo — 2olle™*") + [ty = to](0 + p)eHt710) - £ (ktt=t0) 1)

Vt € [to, ta].

Proof. The solutions y(t) and z(t) are given by

y(t) = v+ [ Fls.y(s) + gl ds

t1

z(t) = zo + \ f(s,2(s)) + h(s)ds + : f(s,z(s)) + h(s) ds.

Subtracting the two equations and taking norms yield

Jy(t) = 201 < 1y — 2ol + [ 1G5, 26D + 1) ds
+ [ 1# Gy = s 26D ds + [ lg(s) — i) ds

< (t=tp+ [ Lyl - 2()]ds

where v = ||y, — 2ol + |t1 — to|(0 + 11). Application of the Gronwall-Bellman inequality stated

in Lemma A.3 to the function [|y(t) — z(t)|| results in

ly() — 2l <7+ (E—t)p+ [ (v + (E = ta)p) Lt ds.

t1

Integrating the right-hand side by parts, we obtain

t
ly(t) = 2(B)| < v+ (t—ta)p =7 — (¢t — tr)p+ e + / pe =) ds.
t1

= Il — 20lleX) + Ity — to](6 + p)eHt0) 4 £ (eb-) 1)

which completes the proof. O
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Leibniz-Integral Rule
Lemma A.5. Let a(p) and B(p) be C'-functions. Suppose that both f(p,t) and Of(p,t)/Op
are continuous in the variables p and t. Then ff((i)) f(p,t)dt exists as a continuously differ-

entiable function of p, with derivative

0 B(p) B B(p) af(p’ t) aﬁ(p) Oa(p)
8p/a(p) f(p,t)dt_A(p) p dt + B fp,B(p)) — Fp,ap)).

Block matrices
Lemma A.6 (Kailath, 1980; Petersen and Pedersen, 2012). Given a block matriz

All A12
A21 A22

] , with Ay, € Rnxu) A € Rnxm’ Ay € R"™ ™ and Ay € R
Then the determinant of this block matriz is

A A
det |71 bl det(Aqq)det(Cy), if Ayy is invertible
Ay A

= det(Ag) det(C1), if Ags is invertible,

with

C,2 A, - A12A2_21A21, if Aoo is invertible
C2 = A22 — A21A1_11A12, Zf AH 1s invertible.
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Derivatives of a Specific Function

At several places in this thesis, we need the first-order and second-order derivative of the
scalar function ¢! f(x(b)) with respect to b which are stated in the following Lemma. Note
that this Lemma contains the first-order and second-order derivatives of the scalar function

f(x(b)) with respect to b as a special case by setting ,c = 1/k and ,f = f.

Lemma B.1. Let the functions f(x) = [,f(x),..., . f(x)]" and =(b) = [1z(b),..., o (b)]T
be at least twice continuously differentiable mappings f : R — R* and = : R™ — R",
respectively. Moreover, let ¢ = [ic,..., |t be a vector with ¢ € RE. Then the first-order

derivative of the scalar function ¢’ f(x(b)) with respect to b is

0 /7 oxTofT
%(c f(a:(b))) =35 B0 © (B.1a)

and the second-order derivative with respect to b is

2 k T 02 n 2
0 ox” 0°,f Ox (c 8]")8@ (B.1b)

o (' f (b)) = Z “ob 8w28b+2 9.2) 96

Proof. Recalling the notation of the gradient as a column vector (see Notations), the first-

order derivative (B.1a) is derived by

a _@Ti 0.f _ 0T of"
o 20w " b ow

1

i oz
— “ob
Equation (B.1b) is expressed as

H2 T k 52 f
o (T (@(B) =X ies

=1

where the Hessian of ;f is

0% f ?if
2 01b01b e 31170 b
of "
7] : :
ob % if _Ohf

Omb01b " OmbOmb
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[0 (047 o2 0 (047 ox
91b \ 9z 91b 91b \ Oz Omb
d T o o (047 ox
_8 ox 01b Omb \ O  Omb
T 9 <n  Of 37 9 n  9;f Ojz
d1b ijl x 01b o1b ijl sz Omb
9,f 0z 9,f 0z
msz 18x31b me] 16:camb
n ozl 9,* 95 n oxT 0,2 0jz
j:l d1b ajxaa': 01b j=1 d1b 8]'3387: Omb
n oz T 31f 95z n aw 3if2 9z
7=1 9ub 80z D1b J=1 9mb 0,0z Om
n o,f BQj:v n 9;f 02 7T
j=1 ajl‘ 01b01b j=1 ajx 01bOmb
+ :
n o,f BQJ'm n 0 f 92 o5
J=1 02 OmbO1b J=1 8z OmbOmb
axTBf ox 8a:Taf2 ox 823'37
91b 0x2 01b 91b 0x2 Omb n 61b81b D16 Omb
— +> a’ : :
. T
ox Tﬁif2 oz oz Ta S ox J=1 02 ju 0%
Omb 0zZ 91b Omb  0x2 Omb OmbO1b Omb Omb
T 02 n 2
_0x" 0 f(?:c 8 J 0%
~ b 022 0b — 0z Ob°
Finally, the desired derivative is
k T 92 n 2
82cf Z 633 8§8m+zi08i 6]2:70
pa “ob 0x? b o1 Oz b
k 2T 52 n k 2
D I §§Z+zzlc§ifaf§
i=1 j=1i=1 YT ob
i 8:13T82f8w+i of \ sz
= c’
= 0b Ox 2.0b = ob*’

which concludes the proof.
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Continuous-Discrete Extended Kalman
Filter

Consider the continuous-time nonlinear system

a(t) = F(@(t), ult) +w(). (C.1a)

where x(t) € R™ is the state, u(t) € R™ is the control input and w(t) € R is the zero mean
state disturbance with covariance Q(t), i.e. w(t) ~ N (0, Q(t)). The mean and the covariance
of the initial state at the initial time ¢, are assumed to be &9 and Py)y, respectively. The

state vector is observed through the discrete-time measurement equation
Yy :h(a:(tk))—i—'uk, k=1,2,..., (Clb)

where y, € R™ is the measurement and v, € R" is the zero mean measurement disturbance
with covariance Ry, i.e. v, ~ N (0, Ry).
The continuous-discrete extended Kalman filter (CDEKF) alternates between a prediction

step and an update step which may be stated as follows, see Gelb (1974).

Prediction Step

The state and covariance predictions are computed as the solutions to the system of differential

equations
j(t) = f(:ﬁ(t)v u(t))’ C 2a)
Pt)=Ft)Pt)+ POFt)" +Q(t), (C.2b)
in which
of
F(t) = -~ ; (C.2¢)
O 2 (t)=2(1)

with the initial conditions &(t;—1) = ®p—1s—1 and P(ty—1) = Pj_1jx—1. The one-step ahead

predictions required for the subsequent update step are for the state &,_1 = &(t) and for
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the covariance Py = P(t;).

Update Step

Utilizing the gain matrix
-1
Ky = Py H (H Py HY + Ry) (C.3a)

the filtered state £, and its covariance Py, are calculated by

T = Brp—1 + K (yk - h(:ﬁk\kfl)) ) (C.3b)
Pk\k = (I—Kka) Pk\k—la (C3C)
where
oh
H,= — (C.3d)
Oz z(tk)=2g|k—1
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