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1 Introduction

Throughout the last fifteen years, new technological breakthroughs in high frequency
data processing as well as the accompanying introduction of new mathematical tech-
niques have accelerated the development of the realm of high frequency financial econo-
metrics and statistics to a rapid pace. This allowed for a great deal deeper insight
into the valuable econometric quantities such as jumps, volatility or even volatility of
volatility. The increasingly important role of these quantities in the nowadays financial
world could be readily demonstrated by the following recent observation. On April 16,
2013, the CBOE’s (Chicago Board Options Exchange®) Market Summary indicated an
all-time, single-day trading volume record of VIX (CBOE Volatility Index®) Options,
amounting to 1,399,863 contracts over 673,970 for S&P 500®, which means that over
one day the number of option contracts changing hands for (implied, forward looking)
index volatility was two times higher than the amount of the option contracts for the
index itself.

The contribution of this master thesis primarily consists in the derivation of nonpara-
metric high frequency estimator for the volatility of volatility in the presence of jumps
for the (log) price process. However, substantial amount of time was also devoted first
to the the comprehensive study of the most frequently utilized underlying processes
in financial econometrics, namely Itô semimartingales, as well as in the acquisition of
detailed knowledge about the related estimates and relevant limit theorems. Further-
more, the formulation of the problem of the thesis as well as the taste of its addressing
was developed and greatly influenced by various scientific papers, among which [1]
and [2] deserve a special mention. Volatility of volatility (or strictly speaking, in this
context quadratic variation of the squared volatility process) could be regarded as a
mathematical measure of the variability of volatility or the speed of its change, which
is of paramount importance from an economic point of view. The first estimators for
volatility of volatility appeared independently in the paper [3] of M. Vetter (in the form
of sum of nontruncated unnormalized returns) as well as in the paper [1] of P. A. Myk-
land, N. Shephard, and K. Sheppard (in the form of unnormalised multipower variation
and edge effect corrected realised variance), where both research groups did not allow
for jumps for the price process (assuming it a Brownian Itô semimartingale). The new
(truncated unnormalized) estimator in the thesis allows for the presence of jumps for
the price process (assuming it a general Itô semimartingale) as well as at the same time
proves to be consistent with a certain convergence rate.

Furthermore, in the master thesis proper consideration is given to the following in-
herent characteristics of financial data. Firstly, the price process is observed at discrete
times, since rarely is its complete path available. Secondly, intervals between consecu-
tive observation times tend to zero, i.e the data is supposed to be sufficiently frequent.
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1 Introduction

Finally, a single path of the price process is observed on a finite time horizon with the
volatility process being latent. It has to be pointed out that throughout the thesis the
data is not assumed to be perturbed by any kind of noise.

The thesis is structured in the following way. Chapter Preliminaries introduces spe-
cific theoretical concepts prerequisite for proper understanding of the research topic of
the master thesis. Chapter Consistency and CLT firstly outlines the underlying model
framework and subsequently states the main theoretical results as well as provides
their proofs. Furthermore, chapter Complementary Estimates and Lemmas supports
the proofs of the previous chapter with more detailed insight into some utilized the-
matic concepts. Finally, chapter Conclusion and Potential Further Developments sum-
marizes briefly the results and highlights some further promising research directions.
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2 Preliminaries

In this chapter specific theoretical concepts are introduced for proper understanding
of the research topic of the master thesis. These concepts primarily comprise quadratic
variation of a semimartingale, Itô semimartingale with Grigelionis representation as
well as some limit theorems. For this purpose both books [4] and [5] are followed
sometimes very closely and sometimes one-to-one. For a more detailed study the reader
is encouraged to read [6] or [7]. It assumed here that the reader is already familiar with
Wiener, Lévy, and semimartingale processes as well as with integration with respect to
random measures.

2.1 Quadratic Variation of a Semimartingale

Definition 2.1 A real-valued process X on the filtered probability space (Ω,F ,Ft≥0, P ) is
called a semimartingale if it can be written as

X = A+M, (2.1)

where M is a local martingale and A is an adapted càdlàg process "with finite variation",
which means that the total variation of each path t −→ At(ω) is bounded over each finite
interval [0, t].

For defining the quadratic variation, one needs to recall some properties. The first
one is that a local martingale M can always be written as Mt = M0 +Mc

t +Md
t , where

Mc
0 = Md

0 = 0 and Mc is a continuous local martingale, and Md is a local martingale
orthogonal to each continuous (local) martingale. The second one is that a local martin-
gale starting from 0, which has bounded variation in the context of (2.1), and which is
continuous, is almost surely vanishing everywhere.

Therefore, if we consider two decompositions X = M + A = M ′ + A′ as (2.1), then
necessarily Mc =M ′c a.s. In other words, we can write the semimartingale X as

Xt = X0 +Xct +Mt +At ,

where A0 =M0 = 0 and where A is of finite variation andM is a local martingale orthog-
onal to all continuous martingales, and Xc is a continuous local martingale starting at
0. In this decomposition the two processes M and A are still not unique, but the pro-
cess Xc is unique (up to null sets), and it is called the continuous martingale part of X
(although it usually is a local martingale only). When X is d-dimensional, so are Xc,M
and A.
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2 Preliminaries

At this point, we can introduce the quadratic variation of a one-dimensional semi-
martingale X as being

[X,X]t = 〈Xc,Xc〉t +
∑
s≤t

(∆Xs)
2. (2.2)

The sum above makes sense, since it is a sum of positive numbers on the countable
set {s : ∆Xs , 0}

⋂
[0, t]. What is not immediately obvious is that it is a.s. finite, but

this fact is one of the main properties of semimartingales. Hence the process [X,X] is
increasing and càdlàg, and also adapted (another intuitive but not mathematically obvi-
ous property). Another name for [X,X] is the "square bracket". Note that [X,X] = 〈X,X〉
when X is a continuous local martingale, and in general [Xc,Xc] = 〈Xc,Xc〉 is the "con-
tinuous part" of the increasing process [X,X] (not to be confused with its "continuous
martingale part", which is identically 0).

For example, if Xt = σWt, where W is Brownian motion, then [X,X]t = σ2t. So
[X,X]t is not random, and coincides with the variance of Xt. This is not the case in
general. [X,X]t, unlike the variance, is a random variable. It is not defined by taking
expectations. For example, for a Poisson process, since N jumps by 1 whenever it does,
[N,N ]t = Nt is the number of jumps of the process between 0 and t, and we also have
[X,X]t = Nt for the martingale Xt = Nt − λt if λ is the parameter of the Poisson pro-
cess N . Moreover, [X,X]t is well defined for all semimartingales, including those with
infinite variance.

2.2 Itô Semimartingale

Definition 2.2 A d-dimensional semimartingale X is an Itô semimartingale if its character-
istics (B,C,ν) are absolutely continuous with respect to Lebesgue measure, in the sense that

Bt =

t∫
0

bsds, Ct =

t∫
0

csds, ν(dt,dx) = dtFt(dx), (2.3)

where b = (bt) an Rd-valued process, c = (ct) is a process with values in the set of all d × d
symmetric non-negative matrices, and Ft = Ft(ω,dx)is for each (ω,t) a measure on Rd .

These bt, ct and Ft necessarily have some additional measurability properties, so that
(2.3) makes sense: we may choose bt and ct predictable (or simply progressively mea-
surable, this makes no difference, and does not change the class of Itô semimartingales),
and Ft is such that Ft(A) is a predictable process for allA ∈Rd (or progressively measur-
able, again this makes no difference). This automatically fulfills (‖ x ‖2 ∧1) ? νt(ω) <∞
(where ? denotes integration with respect to a random measure) or equivalently

∑
s≤t ‖

∆Xs ‖2<∞, and we can and will choose a version of Ft which satisfies identically

∫
(‖ x ‖2 ∧1)Ft(ω,dx) <∞ and

t∫
0

ds

∫
(‖ x ‖2 ∧1)Fs(ω,dx) <∞. (2.4)
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2 Preliminaries

For the full use of the notion Itô semimartingale, particular extension of a probabil-
ity space, namely very good extension, is prerequisite.

Let the space (Ω,F ,Ft≥0,P) be fixed and let (Ω′ ,F ′) be another measurable space,
and Q(ω,dω′) be a transition probability from (Ω,F ) into (Ω′ ,F ′). We can define the
products

Ω̃ =Ω ×Ω′ , F̃ = F ⊗F ′ , P̃(dω,dω′) =P(dω)Q(ω,dω′). (2.5)

The probability space (Ω̃, F̃ ,P̃) is called an extension of (Ω,F ,Ft≥0,P). Any variable
or process which is defined on either Ω or Ω′ is extended in the usual way to Ω̃, with
the same symbol: for example Xt(ω,ω′) = Xt(ω) if Xt is defined on Ω. In the same way,
a set A ∈ Ω is identified with the set A ×Ω′ ∈ Ω, and we can thus identify Ft with
Ft ⊗ {∅,Ω′} so (Ω̃, F̃ , F̃t≥0,P̃) is a filtered space.

The filtration (Ft) on the extended space does not incorporate any information about
the second factor Ω′. To bridge this gap we consider a bigger filtration F̃t≥0 on (Ω̃, F̃ ),
that is with the inclusion property Ft ⊂ F̃t ,∀t ≥ 0. The filtered space (Ω̃, F̃ , F̃t≥0,P̃) is
then called a filtered extension of (Ω,F ,Ft≥0,P).

A filtered extension is called very good if it satisfies

ω −→
∫

1A(ω,ω′)Q(ω,dω′)is Ft-measurable for allA ∈ F̃t ,all t ≥ 0. (2.6)

A very good filtered extension is very good because it has the following nice proper-
ties:

• any martingale, local martingale, submartingale, supermartingale on (Ω,F ,Ft≥0,P)
is also a martingale, local martingale, submartingale, supermartingale on (Ω̃, F̃ , F̃t≥0,P̃);

• a semimartingale on (Ω,F ,Ft≥0,P) a semimartingale on (Ω̃, F̃ , F̃t≥0,P̃) with the
same characteristics.

(2.6) is equivalent to saying that any bounded martingale on (Ω,F ,Ft≥0,P) is a mar-
tingale on (Ω̃, F̃ , F̃t≥0,P̃). For example a Brownian motion on (Ω,F ,Ft≥0,P) is also a
Brownian motion on (Ω̃, F̃ , F̃t≥0,P̃) if the extension is very good, and the same for Pois-
son random measures.

At this point it is possible to give representation theorem for Itô semimartingale. The
difficult part comes from the jumps of the semimartingale, and it is fundamentally a
representation theorem for integer-valued random measure in terms of a Poisson ran-
dom measure. The representation below will be called here the Grigelionis form of the
semimartingale X.

Let d-dimensional Itô semimartingale X with characteristics (B,C,ν) be given. More-
over, d′ is an arbitrary integer with d′ ≥ d, and E is an arbitrary Polish space with a
σ -finite and infinite measure λ having no atom, and q(dt,dx) = dt ⊗ λ(dx). Then one
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2 Preliminaries

can construct a very good filtered extension (Ω̃, F̃ , F̃t≥0,P̃), on which there are defined
a d′-dimensional Brownian motion W and a Poisson random measure p onR+×E with
intensity measure λ, such that

Xt = X0 +

t∫
0

bsds+

t∫
0

σsdW
(1)
s + (δ1{‖δ‖≤1}) ? (p − q)t + (δ1{‖δ‖>1}) ? pt , (2.7)

where σt is anRd⊗Rd′ -valued process on (Ω,F ,Ft≥0,P) which is predictable (or only
progressively measurable), and δ is a predictableRd-valued function onΩ×R+×E, both
being such that the integrals in (2.7) make sense.

The process bt is the same here and in (2.3), and we have close connections between
(σt ,δ(t, z)) and (ct ,Ft). Namely, a version of the spot characteristics t and Ft is given by
the following:

• ct(ω) = σt(ω)σ?t (ω)

• Ft(ω, .) = the image of the measure λ restricted to the set {x : δ(ω,t,x) , 0} by the
map x→ δ(ω,t,x).

Conversely, any process of the form (2.7) (with possibly b,σ and δ defined on the
extension instead of (Ω,F ,Ft≥0,P) is an Itô semimartingale on (Ω̃, F̃ , F̃t≥0,P̃), and on
(Ω,F ,Ft≥0,P) as well if it is further adapted to Ft. Therefore, the formula (2.7) may
serve as the definition of Itô semimartingales, if extension of the space is permitted,
and for practical applications it is indeed! Therefore in the thesis the Grigelionis form
above will be utilized freely, pretending that it is defined on our original filtered space
(Ω,F ,Ft≥0,P).

2.3 Limit Theorems

2.3.1 Stable Convergence in Law

First of all, let E denote a Polish (that is, metric complete and separable) space, with
metric δ and Borel σ -field E.

Definition 2.3 We say that Zn stably converges in law if there is a probability measure η on
the product (Ω ×E,F ⊗E), such that η(A×E) =P(A) for all A ∈ F and

E(Y f (Zn)) −→
∫
Y (ω)f (x)η(dω,dx) (2.8)

for all bounded continuous functions f on E and all bounded random variables Y on (Ω,F ).

Since, in contrast with convergence in law, all Zn here are defined on the same space
(Ω,F ,P), it is natural to realize Z on an (arbitrary) extension (Ω̃, F̃ ,P̃), as defined
by (2.5). Recalling that every variable defined on Ω is automatically extended as a
variable on Ω̃, with the same symbol, for example Zn(ω,ω′) = Zn(ω). Letting Z be an

6



2 Preliminaries

E-valued random variable defined on this extension, (2.8) is equivalent to saying (with
Ẽ denoting expectation w.r.t. P̃)

E(Y f (Zn)) −→ Ẽ(Y f (Z)) (2.9)

for all f and Y as above, as soon as P̃(A
⋂
{Z ∈ B}) = η(A×B) for A ∈ F and B ∈ E. It

is possible then to say that Zn converges stably to Z, and this convergence is denoted

by Zn
L−s−→ Z. Note that the stable convergence in law holds as soon as (2.9) holds for all

Y as above and all functions f which are bounded and Lipschitz.

Stable convergence in law obviously implies convergence in law. But it implies much
more, and in particular the following crucial result: if Yn and Y are variables defined
on (Ω,F ,P) and with values in the same Polish space E, then

Zn
L−s−→ Z,Yn

P−→ Y ⇒ (Yn,Zn)
L−s−→ (Y ,Z). (2.10)

Moreover, when Z is defined on the same space Ω as all Zn:

Zn
L−s−→ Z⇐⇒ Zn

P−→ Z. (2.11)

Moreover, a simple necessary and sfficient condition for the stable convergence in
law is:

the sequence Zn converges stably in law if and only if, for any q ≥ 1 and any

q-dimensional variable Y on (Ω,F ),the sequence (Zn,Y ) converges in law.
(2.12)

2.3.2 Convergence for Stochastic Processes

Finite-dimensional convergence is a weak form of convergence, for example if Y n con-
verges to Y in this sense, the suprema sups≤t ‖ Y ns ‖ do not converge to the supremum
of the limit, in general. To remedy this, a stronger form of convergence is necessary,
called "functional" convergence. This means that we consider each process Y n as tak-
ing its values in a functional space (i.e., a space of functions fromR+ intoRq), and this
functional space is endowed with a suitable topology: as seen before, this functional
space has to be a Polish space.

Basically, two functional spaces are going to be of interest here. One is the space
Cq = C(R+,R

q) of all continuous functions from R+ into Rq, endowed with the lo-
cal uniform topology corresponding for example to the metric δU (x,y) =

∑
n≥1 2−n(1∧

sups≤t ‖ x(s)− y(s) ‖). The Borel σ -field for this topology is σ (x(s) : s ≥ 0), and with this
topology the space Cq is a Polish space.

However, although the limiting processes Y are continuous in the master thesis, this
is rarely the case of the pre-limiting processes Yn, which typically are based upon the
discrete observations XT (n,i): they often come up as partial sums

∑
i≥1 f (∆ni X)1{T (n,i)≤t}.

Such a process has discontinuous, although càdlàg, paths. Therefore, the other func-
tional space of interest for us is the Skorokhod space: this is the set Dq = D(R+,R

q) all

7



2 Preliminaries

càdlàg functions from from R+ into Rq.

One possible metric on Dq is δU , which makes Dq a Banach space, but under which
it is unfortunately not separable (hence, not Polish). This prompted the development
of the Skorokhod topology. There is a metric δS compatible with this topology, such
thatDq is a Polish space, and again the Borel σ -field is σ (x(s) : s ≥ 0). This metric is not
needed here and the reader is referred to [6] for a more detailed study.

Denote by xn
u.c.p.
−→ x if δU (xn,x) → 0 (this makes sense for any functions xn,x), and

xn
Sk−→ x if δS(xn,x)→ 0 (this makes sense for xn,x ∈Dq). The following properties, for

xn, yn,x,y ∈Dq, are worth stating:

xn
u.c.p.
−→ x ⇒ xn

Sk−→ x (2.13)

xn
Sk−→ x, x ∈Cq ⇒ xn

u.c.p.
−→ x (2.14)

xn
Sk−→ x, yn

u.c.p
−→ y ⇒ xn + yn

Sk−→ x+ y. (2.15)

However, it has to be pointed out that the Skorokhod topology also suffers from some
drawbacks, of which the reader should be aware:

• xn
Sk−→ x and yn

Sk−→ y does not necessarily means that xn + yn
Sk−→ x+ y

• The mapping x→ x(t) is not continuous for the Skorokhod topology, although it
is continuous at each point x such that x(t) = x(t−) where x(t−) denotes the left
limit of x at time t. Given that x is càdlàg, x(t) = x(t−) means that x is continuous
at time t.

Therefore, this topology is the one to be used when dealing with càdlàg functions or
processes, but a lot of care is necessary when utilizing it.

Returning to the sequence Yn of Rq-valued càdlàg processes, and its potential limit
Y , Rq-valued càdlàg process, both processes can be considered as random variables
with values in the space Dq, and thus the notions of convergence in law, or stably in
law, or in probability, of Yn towards Y are obtained. In the first case, Y is defined on
an arbitrary probability space, in the second case it is defined on an extension, and in
the third case it is defined on the same space as are all the Yn’s. The "local uniform
convergence" refers to the metric δU above onDq, and we write:

Y n
u.c.p.
=⇒ Y if δU (Y n,Y )

P−→ 0, or equivalently if, for all T ,sup
t≤T
‖ Y nt −Yt ‖

P−→ 0. (2.16)

When dealing with the Skorokhod topology, and implicitly using the metric δS , write
for convergence in probability

Y n
P

=⇒ Y if δS(Y n,Y )
P−→ 0.

8



2 Preliminaries

Ssimilarly define Y n
L

=⇒ Y and Y n
L−s
=⇒ Y for convergence in law and stable conver-

gence in law, using the Skorokhod topology. Therefore, a double arrow always means
functional convergence.

9



3 Consistency and CLT

In this chapter firstly the underlying model framework is outlined and subsequently
the main theoretical results are stated as well as proved.

3.1 Model Framework

Define on a given filtered probability space (Ω,F ,Ft≥0,P) X as a 1-dimensional Itô
semimartingale with jump measure µ and characteristics (B,C,ν), where

Bt =

t∫
0

bsds, Ct =

t∫
0

csds, ν(dt,dx) = dtFt(dx), (3.1)

with b = (bt) an R-valued process, c = (ct) a an R-valued non-negative process, and
Ft = Ft(ω,dx) for each (ω,t) a measure on R, all those being progressively measurable
in (ω,t).
Then the Grigelionis form of X is:

Xt = X0 +

t∫
0

bsds+

t∫
0

σ̃sdWs + (δ1{|δ|≤1}) ? (p − q)
t
+ (δ1{|δ|>1}) ? pt .

W here is a d′-dimensional Brownian motion and it should hold that d′ ≥ 2 for a
genuine stochastic volatility, as there should be at least two independent Brownian
motions to drive the pair processes (X,σ̃ ). For illustrative purposes and without loss of
generality, we shall assume that d′ = 2, which results in W = (W (1),W (2)) and σ̃ = (σ,0),
therefore leading to:

Xt = X0 +

t∫
0

bsds+

t∫
0

σsdW
(1)
s + (δ1{|δ|≤1}) ? (p − q)t + (δ1{|δ|>1}) ? pt .

p in both settings above stands for a Poisson random measure on R+ × E with (E,E)
an auxiliary Polish space. Moreover, b as well as σ are 1-dimensional progressively
measurable processes and δ is a predictable function on Ω×R+×E. Finally, it has to be
pointed out:

• ct(ω) = σt(ω)2

• Ft(ω, .) = the image of the measure λ restricted to the set {x : δ(ω,t,x) , 0} by the
map x→ δ(ω,t,x).

10



3 Consistency and CLT

Let σ be Brownian Itô semimartingale with the same W :

σt = σ0 +

t∫
0

b
(σ )
s ds+

t∫
0

σ
(σ )
s dWs = σ0 +

t∫
0

b
(σ )
s ds+

t∫
0

σ
(σ,1)
s dW

(1)
s +

t∫
0

σ
(σ,2)
s dW

(2)
s .

This automatically leads to

ct = c0 +

t∫
0

b
(c)
s ds+

t∫
0

σ
(c)
s dWs = c0 +

t∫
0

b
(c)
s ds+

t∫
0

σ
(c,1)
s dW

(1)
s +

t∫
0

σ
(c,2)
s dW

(2)
s ,

where the coefficients of c can be explicitly computed utilizing Itô formula:

b
(c)
s = 2σsb

(σ )
s + (σ (σ,1)

s )2 + (σ (σ,2)
s )2,σ

(c,1)
s = 2σsσ

(σ,1)
s ,σ

(c,2)
s = 2σsσ

(σ,2)
s .

In the model framework, the process X, being Itô semimartingale in its full general-
ity, which makes it highly appropriate to model (log) asset prices, stock market indices,
and exchange or interest rates in a fair market without arbitrage. Therefore, for the
purpose of complying with the real data, the price process X is observed at the discrete
times i∆n over a finite time interval [0,T ], where ∆n→ 0 in n and ∆inX = Xi∆n −X(i−1)∆n
stands for the observed (log) returns. The volatility process c, or strictly speaking σ , is
latent with ∆inc = ci∆n −c(i−1)∆n representing its increments. For convenience define also
F ni := Fi∆n . Finally, in the thesis the constant K may differ from line to line and depend
on an extra parameter p denoted then by Kp.

Throughout the master thesis, the quantity of particular interest for estimation is
[c,c] - the quadratic variation of the latent volatility process c, which can be explicitly
computed in the model framework above:

[c,c]t =

t∫
0

c
(c)
s ds =

t∫
0

(σ (c,1)
s )2 + (σ (c,2)

s )2ds.

However, before introducing the estimator for the [c,c] and proving its consistency
as well as the associated central limit theorem, it is sensible to start first imposing some
additional mild assumptions on the pair process (X,c).

Assumption (H-r). In the Grigelionis representation of the Itô semimartingale:

(i) the process b is locally bounded;

(ii) the process σ is càdlàg;

(iii) there is a sequence (τn) of stopping times increasing to ∞ and, for each n, a de-
terministic nonnegative function Jn on E satisfying

∫
Jn(z)λ(dz) <∞ and such that

|δ(ω,t,z)|r ∧ 1 ≤ Jn(z) for all (ω,t,z) with t ≤ τn(ω).

11



3 Consistency and CLT

Under (H-1) (and consequently for any r < 1 ) define the genuine drift process

b′t = bt −
∫

{|δ(t,z)|≤1}

δ(t, z)λ(dz),

which will then be well defined at all times, as |
∫
{|δ(t,z)|≤1} δ(t, z)λ(dz)| ≤

∫
Jn(z)λ(dz)

for t ≤ τn with (τn) increasing to∞. By the same token, |δ| ? q
t
<∞ for all times, which

allows to rewrite X as:

Xt = X0 +

t∫
0

b′sds+

t∫
0

σsdWs + δ ? p
t

= X ′t + δ ? p
t
.

Note that both σ as well as X ′ are continuous.

Assumption (PCC-r). For r ≤ 1 the process X satisfies (H-r) and σ - (H-0) corre-
spondingly (with δ(σ ) ≡ 0) and:

(i) the process b′ is càdlàg or càglàd;

(ii) the process b(σ ) is càdlàg or càglàd.

There are the following strengthened assumptions of the previous ones above, which
are prerequisites for reasonable estimates for the increments of the processes X and σ
(hence also for the process c when applying Itô formula to σ ) due to the boundedness
conditions. The connection between the weak and strong assumptions is established
by the powerful Localization Lemma from [4] on page 118, which states that if any
property under (SH-r) or (SPCC-r) holds, it will hold also under (H-r) or (PCC-r) corre-
spondingly.

Assumption (SH-r). The assumption (H-r) is fulfilled and furthermore:

(i) the processes b and σ are bounded;

(ii) there is a a deterministic non-negative bounded function J on E satisfying
∫
J(z)λ(dz) <

∞ such that |δ(ω,t,z)|r ≤ J(z) for all (ω,t,z).

Assumption (SPCC-r). The assumption (PCC-r) is fulfilled and furthermore:

(i) the process X satisfies (SH-r), for r ≤ 1;

(ii) the process σ satisfies (SH-0);

3.2 Main Theorem

Relying upon the notation from the previous subsection, define for some α,β ∈ (0,∞),
$ ∈ (0, 1

2 ), un ∼ α∆$n and kn ∼
β√
∆n

12



3 Consistency and CLT

c(kn,un)ni =
1

kn∆n

kn−1∑
m=0

(∆ni+mX)21{|∆ni+mX |≤un}

c′(kn)ni =
1

kn∆n

kn−1∑
m=0

(∆ni+mX
′)2

Then for each T > 0 define the estimator for volatility of volatility (or strictly speak-
ing, the estimator for quadratic variation of squared volatility):

[c,c]nT =
3

2kn

[T /∆n]−2kn+1∑
i=1

((c(kn,un)ni+kn − c(kn,un)ni )2 − 4
kn

(c(kn,un)ni )2)

as well as the estimator for volatility of volatility if the process X ′ were directly ob-
servable:

[c,c]′nT =
3

2kn

[T /∆n]−2kn+1∑
i=1

((c′(kn)ni+kn − c
′(kn)ni )2 − 4

kn
(c′(kn)ni )2)

Note that 4
kn

(c(kn)ni )2 plays a role of a de-biasing term.

Theorem 3.1 For each T > 0 under (PCC-r) and for $ < 7
4(4−r) ∧

1
2 both consistency and

corresponding central limit theorem hold:

[c,c]nT
P−→ [c,c]T for r < 1

1

∆1/4
n

([c,c]nT − [c,c]T )
L−s−→ UT for r < 0.5,

whereUT is a random variable defined on a very good extension (Ω̃, F̃ , F̃t≥0,P̃) of (Ω,F ,Ft≥0,P)
and which is, conditionally on F , a continuous centered Gaussian martingale with variance

E(U2
T |F ) =

T∫
0

(
48
β3 (cs)

4 +
12
β

(cs)
2c

(c)
s +

151
70

(c(c)
s )2)ds. (3.2)

The Proof.
The scheme of the proof comprises four steps. In step 1, the preliminary decom-

position is performed, which results in 3 terms or 3 successive steps correspondingly,
in which two terms prove to be asymptotically negligible and one converging to the
required random variable presented above. The novelty of the proof consists in the
extension of the step 1 from the book [5] on the page 451 and the performance of the
step 2. Two other steps are taken one-to-one from the book [5] on the pages 454 and
457 and are further commented on for a reader less familiar with the research topic.
Throughout the proof various estimates and lemmas are used which are all placed in

13



3 Consistency and CLT

chapter Complementary Estimates and Lemmas.

Step 1: the Decomposition
As mentioned before in the model framework for some α,β ∈ (0,∞), $ < 7

4(4−r) ∧
1
2 ,

un ∼ α∆$n and kn ∼
β√
∆n

as well with m ∈ {0, ...,2kn − 1} and j, l ∈ Z and u,v,u′ ,v′ ∈ {1,2}
we set

ε(1)mn =

−1 if 0 ≤m < kn
1 if kn ≤m < 2kn,

ε(2)mn = (m+ 1)∧ (2kn −m− 1), ε(3)mn = 1,

znu,v =

1/∆n if u = v = 1

1 otherwise,
γ(u,v;m)nj,l =

3

2k3
n

(l−m−1)∧(2kn−m−1)∑
q=0∨(j−m)

ε(u)nqε(v)nq+m,

Γ (u,v)nm = γ(u,v;m)n0,2kn , H(u,v;u′v′)n = znu,u′z
n
v,v′

2kn−1∑
m=1

Γ (u,v)nmΓ (u′ ,v′)nm,

which clearly satisfy

˜γnu,v = supj,m,l |γ(u,v;m)nj,l | ≤


K if (u,v) = (2,2)

K/kn if (u,v) = (1,2), (2,1)

K/k2
n if (u,v) = (1,1).

(3.3)

We also need, for m ∈ {0, ..., kn − 1} and j, l ∈ Z and u,v ∈ {1,2}, the numbers

ε(1)nm = 1, ε(2)nm = kn −m− 1, γ(u,v;m)nj,l =
6

k4
n

(l−m−1)∧(kn−m−1)∑
q=0∧dd(j−1)

ε(u)nqε(v)nq+m,

which satisfy

|γ(u,v;m)nj,l | ≤


K/kn if (u,v) = (2,2)

K/k2
n if (u,v) = (1,2), (2,1)

K/k3
n if (u,v) = (1,1).

(3.4)
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3 Consistency and CLT

We need to compute the numbers Γ (u,v)nm: a tedious (approximately 15 pages in the
same format) but elementary calculation shows that they are as follows

Γ (1,1)nm =


6kn−9m

2k3
n

if m ≤ kn − 1

−6kn−3m
2k3

n
if m ≥ kn,

Γ (1,2)nm =

−
12knm−9m2+6kn−9m

4k3
n

if m ≤ kn − 1

−3(2kn−m)(2kn−m−1)
4k3

n
if m ≥ kn,

Γ (2,1)nm =


12knm−9m2−6kn+9m

4k3
n

if m ≤ kn − 1
3(2kn−m)(2kn−m+1)

4k3
n

if m ≥ kn,
Γ (2,2)nm =


4k3

n−6knm2+3m3+2kn−3m
4k3

n
if m ≤ kn − 1

(2kn−m)3−2kn+m
4k3

n
if m ≥ kn,

(3.5)

This yields the following behavior of H(u,v;u′v′)n as n −→ ∞, stated for (u,v) ≤
(u′ ,v′) only because of the obvious symmetry H(u,v;u′ ,v′)n =H(u′ ,v′;u,v)n:

√
∆nH(u,v;u′ ,v′)n −→


3
β3 if (u,v,u′ ,v′) = (1,1,1,1)
3

4β if (u,v,u′ ,v′) = (1,2,1,2), (2,1,2,1)
151β
280 if (u,v,u′ ,v′) = (2,2,2,2)

0 if otherwise.

(3.6)

At this stage it is possible to introduce the required decomposition terms.

c′(kn)ni = c(i−1)∆n +
1
kn

kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j

c′(kn)ni+kn − c
′(kn)ni =

1
kn

2kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j .

Thus

(c′(kn)ni )2 = (c(i−1)∆n)
2 +

2c(i−1)∆n

kn

2∑
u=1

kn−1∑
j=0

ε(u)nj ζ(u)ni+j

+
1

k2
n

2∑
u,v=1

(
kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)ni+jζ(v)ni+j + 2
kn−2∑
j=0

kn−1∑
l=j+1

ε(u)nj ε(v)nl ζ(u)ni+jζ(v)ni+l)

(c′(kn)ni+kn)
2 − c′(kn)ni )2)2 =

1

k2
n

2∑
u,v=1

2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)ni+jζ(v)ni+j

+
2

k2
n

2∑
u,v=1

2kn−2∑
j=0

2kn−1∑
l=j+1

ε(u)nj ε(v)nl ζ(u)ni+jζ(v)ni+l .
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3 Consistency and CLT

Then with the convention
∑a′
i=a = 0 when a > a′:

A(0)nT =
6

k2
n

[T /∆n]−2kn+1∑
i=1

(c(i−1)∆n)
2, A(1;u)nT =

12

k3
n

[T /∆n]−2kn+1∑
i=1

c2
(i−1)∆n

kn−1∑
j=0

ε(u)nj ζ(u)ni+j

A(2;u,v)nT =
[T /∆n]−kn∑

i=1

γ(u,v;0)i−1−[t/∆n],iζ(u)ni ζ(v)ni

A(3;u,v)nT =
[T ]/∆n−kn∑

i=2

(
(i−1)∧(kn−1)∑

m=1

γ(u,v;m)ni−1−[T /∆n],iζ(u)ni−m)ζ(v)ni

and

ρ(u,v)ni =
2kn−1∑
m=1

Γ (u,v)nmζ(u)ni−m, Z(u,v)nT =
[T /∆n]∑
i=2kn

ρ(u,v)ni ζ
′′(v)ni

A(1;u,v)nT = Γ (u,v)n0

[T /∆n]∑
i=1

ζ(u)ni ζ(v)ni

A(2;u,v)nT =
[T ]/∆n∑
i=1

(γ(u,v;0)ni+2kn−1−[T /∆n],i − Γ (u,v)n0)ζ(u)ni ζ(v)ni

A(3;u,v)nT =
[T ]/∆n∑
i=2

(
(i−1)∧(2kn−1)∑

m=1

γ(u,v;m)ni+2kn−1−[T /∆n],iζ(u)ni−m − ρ(u,v)ni 1{i≥2kn})ζ(v)ni

A(4;u,v)nT =
[T /∆n]∑
i=2kn

ρ(u,v)ni ζ
′(v)ni

Having done appropriate changes of order of summations as well as after some te-
dious computations (approximately 10 pages in the same format), it is possible to de-
rive the required decomposition for some

ε̃ > 0 arbitrarily small enough and q($,r) =

1/4 if r < 1/2

(4− r)$ − 3/2− ε̃ if 1/2 ≤ r < 1
:

1

∆
q($,r)
n

([c,c]nT − [c,c]T ) =
1

∆
q($,r)
n

([c,c]nT − [c,c]′nT ) +
1

∆
q($,r)
n

([c,c]′nT − [c,c]T ) =

1

∆
q($,r)
n

Dif nT +
1

∆
q($,r)
n

(AnT −A
n
T − [c,c]T ) +

1

∆
q($,r)
n

Un
T ,

(3.7)
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3 Consistency and CLT

where Dif nT = [c,c]nT − [c,c]′nT , [c,c]′nT = AnT −A
n
T +Un

T

AnT =
2∑

u,v=1

(A(1;u,v)nT +A(2;u,v)nT + 2A(3;u,v)nT + 2A(4;u,v)nT )

A
n
T = A(0)nT +

2∑
u=1

A(1;u)nT +
2∑

u,v=1

(A(2;u,v)nT + 2A(3;u,v)nT )

Un
T = 2

2∑
u,v=1

Z(u,v)nT .

In addition, the following simplified notation will be used throughout the proof:

ζ(1)ni =
1
∆n

(∆ni X
′)2 − c(i−1)∆n , ζ(2)ni = ∆ni c,

ζ′(r)ni = E(ζ(r)ni | F
n
i−1), ζ′′(r)ni = ζ(r)ni − ζ

′(r)ni ,

αni =
1
kn

kn−1∑
j=0

ζ(1)ni+j , βni =
1
kn

kn−1∑
j=0

(̧1)(i+j−1)∆n

β
n
i = βni − c(i−1)∆n =

1
kn

kn−1∑
j=0

(c(i+j−1)∆n − c(i−1)∆n) =
1
kn

kn−2∑
j=0

(kn − j − 1)ζ(2)ni+j .

Step 2: the Asymptotic Negligibility 1
Since for each T > 0 the L−s convergence to the random variable defined on the same

probability space is equivalent to the convergence inP to the same random variable, in

this step it is proved that 1
∆
q($,r)
n

Dif nT
P−→ 0.

Dif nT = [c,c]nT − [c,c]′nT

=
3

2kn

[T /∆n]−2kn+1∑
i=1

(c(kn,un)ni+kn − c(kn,un)ni )2 − (c′(kn)ni+kn − c
′(kn)ni )2

+
3

2kn

[T /∆n]−2kn+1∑
i=1

4
kn

(c′(kn)ni )2 − 4
kn

(c(kn,un)ni )2 =

=
3

2kn

[T /∆n]−2kn+1∑
i=1

(Wi +Vi),

where

Wi = (c(kn,un)ni+kn − c(kn,un)ni )2 − (c′(kn)ni+kn − c
′(kn)ni )2

Vi =
4
kn

(c′(kn)ni )2 − 4
kn

(c(kn,un)ni )2
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3 Consistency and CLT

It is obvious that if 3
2∆q($,r)

n kn

∑[T /∆n]−2kn+1
i=1 Wi is asymptotically negligible, than

3
2∆q($,r)

n kn

∑[T /∆n]−2kn+1
i=1 (Wi +Vi) will also be negligible. Therefore, consider equality valid

for any reals a2 − b2 = (a− b)(a− b+ 2b) and for Wi :

Wi = (c(kn,un)ni+kn − c(kn,un)ni )2 − (c′(kn)ni+kn − c
′(kn)ni )2

= (
1

kn∆n

kn−1∑
m=0

(∆ni+kn+mX)21{|∆ni+kn+mX |≤un} − (∆ni+mX)21{|∆ni+mX |≤un})
2

− (
1

kn∆n

kn−1∑
m=0

(∆ni+kn+mX
′)2 − (∆ni+mX

′)2)2

=
1

k2
n∆

2
n

kn−1∑
m=0

(∆ni+kn+mX)21{|∆ni+kn+mX |≤un} − (∆ni+kn+mX
′)2

+ (∆ni+mX
′)2 − (∆ni+mX)21{|∆ni+mX |≤un}

kn−1∑
m=0

(∆ni+kn+mX)21{|∆ni+kn+mX |≤un} − (∆ni+kn+mX
′)2 + (∆ni+mX

′)2 − (∆ni+mX)21{|∆ni+mX |≤un}

+ 2
(
(∆ni+kn+mX

′)2 − (∆ni+mX
′)2

) .
Taking into account Markov inequality for some ε > 0:

P


∣∣∣∣∣∣∣∣ 3

2∆q($,r)
n kn

[T /∆n]−2kn+1∑
i=1

Wi

∣∣∣∣∣∣∣∣ > ε
 ≤ E

[∣∣∣∣∣ 3
2∆q(r)

n kn

∑[T /∆n]−2kn+1
i=1 Wi

∣∣∣∣∣]
ε

(3.8)

and utilizing triangular inequality, it is sufficient to consider only two kinds of cross-
products of sums:

KT∆
−(5/2+q($,r))
n E


∣∣∣∣∣∣∣∣
(∆ni X)21{|∆ni X |≤un} − (∆ni X

′)2


(∆nj X)21{|∆nj X |≤un} − (∆nj X

′)2


∣∣∣∣∣∣∣∣
 (3.9)

KT∆
−(5/2+q($,r))
n E


∣∣∣∣∣∣∣∣
(∆ni+knX

′)2 − (∆ni X
′)2


(∆nj X)21{|∆nj X |≤un} − (∆nj X

′)2


∣∣∣∣∣∣∣∣
 . (3.10)
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Utilization of Cauchy-Schwarz inequality bounds the expression (3.9) by:

KT∆
−(5/2+q($,r))
n E


∣∣∣∣∣∣∣∣(∆ni X)21{|∆ni X |≤un} − (∆ni X

′)2

∣∣∣∣∣∣∣∣
2 (3.11)

After some tedious but elementary calculation (approximately 2 pages in the same
format, generalized version of the inequality can be found in [4] in the proof of Theo-
rem 9.3.2), it is possible to show that for any reals x,y ∈R and u,v,q > 0:

∣∣∣∣∣∣∣∣(x+ y)21{|x+y|≤u} − x2

∣∣∣∣∣∣∣∣
q

≤ Kq,v
(
u2q(
|y|
u
∧ 1)2q + |x|quq(

|y|
u
∧ 1)q +

|x|q(2+v)

uqv

)
(3.12)

Now setting x = ∆ni X
′ as well as y = ∆ni (X −X ′) and applying (3.12) yields with trian-

gular inequality and conditioning on F∆n(i−1):

KT∆
−(5/2+q($,r))
n E


∣∣∣∣∣∣∣∣(∆ni X)21{|∆ni X |≤un} − (∆ni X

′)2

∣∣∣∣∣∣∣∣
2 ≤

KvT∆
−(5/2+q($,r))
n E

u4
nE

sup
s≤t

(
|∆ni (δ ? p)|

un
∧ 1)4|F∆n(i−1)


+E

|∆ni X ′ |2u2
n sup
s≤t

(
|∆ni (δ ? p)|

un
∧ 1)2|F∆n(i−1)


+ E

 |∆ni X ′ |2(2+v)

u2v
n


 .

After applying Hölder inequality, for some ε(1) > 0 sufficiently small, (4.10) as well
as (4.11), for some φn vanishing for n large, the expression above becomes bounded by

KvT∆
−(5/2+q($,r))
n (φn∆(4−r)$+1

n +∆1+2$+1−r$−ε(1)

n +∆2+v(1−2$)
n )

Recalling that $ < 1/2 the last summand above with v large enough becomes negli-
gible in front of the other two summands. The second summand is also negligible in

front of the first one when ε(1) > 0 is sufficiently small. Thus, for ∆−5/2−q($,r)+(4−r)$+1
n

the corresponding power (4−r)$−3/2−q($,r) > 0 for $ chosen sufficiently close to 1/2
or 7

4(4−r) .

Now, utilization of triangular and subsequently Hölder inequality, for some ε(2) > 0
sufficiently small, bounds the expression (3.10) by:
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3 Consistency and CLT

KT∆
−(5/2+q($,r))
n

E[∣∣∣(∆ni X ′)2
∣∣∣1/ε(2)]

ε(2) E
[∣∣∣∣(∆nj X)21{|∆nj X |≤un} − (∆nj X

′)2
∣∣∣∣1/(1−ε(2))

]
1−ε(2)

(3.13)

Utilizing (4.10) for E
[∣∣∣(∆ni X ′)2

∣∣∣1/ε(2)]
and by analogy with (3.11) for

E

[∣∣∣∣(∆nj X)21{|∆nj X |≤un} − (∆nj X
′)2

∣∣∣∣1/(1−ε(2))
]
, bounds the expression above by:

KvT∆
1−(5/2+q($,r))
n

E
u2/(1−ε(2))
n E

sup
s≤t

(
|∆ni (δ ? p)|

un
∧ 1)2/(1−ε(2))|F∆n(i−1)


+E

|∆ni X ′ |1/(1−ε(2))u
1/(1−ε(2))
n sup

s≤t
(
|∆ni (δ ? p)|

un
∧ 1)1/(1−ε(2))|F∆n(i−1)


+ E

 |∆ni X ′ |(2+v)/(1−ε(2))

u
v/(1−ε(2))
n





1−ε(2)

.

After applying Hölder inequality, for some ε(3) > 0 sufficiently small, (4.10) as well
as (4.11), for some φn vanishing for n large, the expression above becomes bounded by

KvT∆
1−(5/2+q($,r))
n

(
φn∆

(2/(1−ε(2))−r)$+1
n +∆1/(2(1−ε(2)))+$/(1−ε(2))+1−r$−ε(3)

n

+∆
(1+ v

2 (1−2$))/(1−ε(2))
n

)1−ε(2)

.

Recalling that $ < 1/2 the last summand above with v large enough becomes negli-
gible in front of the other two summands. The second summand is also negligible in
front of the first one when ε(3) > 0 is sufficiently small. Hence, the expression above is
bounded for some ε(4) > 0 arbitrarily small by:

KvT∆
1−(5/2+q($,r))
n ∆

(2−r)$+1−ε(4)

n = KvT∆
(2−r)$−1/2−q($,r)−ε(4)

n .

Hence, for∆(2−r)$−1/2−q($,r)−ε(4)

n the corresponding power (2−r)$−1/2−q($,r)−ε(4) > 0
for $ chosen sufficiently close to 7

4(4−r) ∧
1
2 .

Finally, taking into account the utilization of Markov inequality (3.8) as well as
boundedness of (3.9) and (3.10) above, it is possible to conclude that for each T > 0

1
∆
q($,r)
n

Dif nT
P−→ 0 and Step 2 is completed.

Step 3: the Asymptotic Negligibility 2
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3 Consistency and CLT

For the same reasons as in the previous step, at this stage it is proved that for all T > 0
1
∆1/4
n

(AnT −A
n
T − [c,c]nT ) goes to 0 in probability, implying convergence for 1

∆
q($,r)
n

(AnT −A
n
T −

[c,c]nT ), since q($,r) ≤ 1
4 .

From Lemma 4.2 and (4.14) it is possible to conclude for the reals ani ’s, all bounded
by some constant L, and q ≥ 2 (recall kn∆n ≤ K):

E

|2kn−1∑
j=0

anj ζ(u)ni+j |
q

 ≤
KqLqkq/2n if u = 1

KqL
q/k

q/2
n if u = 2.

(3.14)

Firstly, recalling that

AnT =
2∑

u,v=1

(A(1;u,v)nT +A(2;u,v)nT + 2A(3;u,v)nT + 2A(4;u,v)nT )

A
n
T = A(0)nT +

2∑
u=1

A(1;u)nT +
2∑

u,v=1

(A(2;u,v)nT + 2A(3;u,v)nT ),

the "non-trivial" terms A(1;1,1)n,A(1;2,2)n and A(0)n are considered. According to
(3.5) Γ (2,2)n0 = 1+O(1/k2

n), hence the CLT for the approximate quadratic variation of the
process (X ′ , c), see Theorem 5.4.2 of [4], yields firstly stable convergence in law to some
process and results with subsequent multiplication with ∆1/4

n in u.c.p convergence to 0
as follows

1

∆1/4
n

(A(1;2,2)n − [c,c]nT )
u.c.p.
=⇒ 0

Next, Theorem 10.3.2 of [4] for the function F((x,y), (x′ , y′)) = (x′2 − y)2 and the pro-

cess (X ′ , c), plus Γ (1,1)n0 = 3/k2
n, yield (with C(4)T =

∫ T
0 (cs)2ds being the quarticity) by

analogy with the explanation above:

1

∆1/4
n

(k2
n∆nA(1;1,1)n − 6C(4))

u.c.p.
=⇒ 0.

Finally, since c satisfies (SH-0), Theorem 6.1.2 of [JP] yields similarly

1

∆1/4
n

(k2
n∆nA(0)n − 6C(4))

u.c.p.
=⇒ 0.

In view of these and of the definition of An and A
n
, it remains to prove

1

∆1/4
n

BnT
P−→ 0if


(a)Bn = A(1;u)n, u = 1,2

(b)Bn = A(j;u,v)n, j = 2,3,u = 1,2,v = 1,2

(c)Bn = A(1;u,v)n, (u,v) = (1,2), (2,1)

(d)Bn = A(j;u,v)n, j = 2,3,4, all(u,v).

(3.15)

21



3 Consistency and CLT

Here Case (a) of (3.15) is considered. The variable χni =
∑kn−1
j=0 ε(u)nj ζ(u)ni+j is F ni+kn-

measurable, and by (4.14) and (3.14) it satisfies for both u = 1,2:

|E(χni |F
n
i−1)| ≤ K, E(|χni |

2|F ni−1) ≤ Kkn.

The result for Case (a) follows from (4.8) applied to the array ξni = 12
k3
n∆

1/4
n
c(i−1)∆nχ

n
i .

In Case (b) for j = 2, upon using (4.14) and (3.4), we see that the variable ξni =
γ(u,v;0)i+kn−1−[T /∆n],iζ(u)ni ζ(v)ni has (|ξni |) ≤ K/k

3
n for all u,v = 1,2, and (|BnT |) ≤ KT

√
kn

follows, implying Case (b) for j = 2.

Next, supposing j = 3 in Case (b) and denoting by χni the ith summand in the sum
defining A(3;u,v)nT , which is F ni -measurable. By (4.14), (3.4) and successive condition-
ing one obtains for all u,v = 1,2:

|E(χni |F
n
i−1)| ≤ K∆3/2

n , E(|χni |
2|) ≤ K∆5/2

n ,

and Case (b) for j = 3 follows from (4.8) applied to the array ξni = χni /∆
1/4
n .

Here, for instance, Case (c) is considered for (u,v)=(1,2). Then Theorem 10.3.2 of
[JP] applied to the process (X ′ , c) and the function F((x,y), (x′ , y′)) = (x′2 − y)y′ implies

that
√
∆n

∑[T /∆n]
i=1 ζ(1)ni ζ(2)ni converges stably in law to some limiting process. Since

Γ (1,2)n0 = −3/2k2
n, it is possible to deduce that Bn satisfies Case (c). A similar argu-

ment shows the result for (u,v) = (2,1).

Here Case (d) for j = 2 is proved. By the first part of (3.3) all summands in Bn

vanish, except for 4kn-2 of them, namely those for i between 1, and 2kn-1, and between
[T /∆n]−2kn+2 and [T /∆n], and for those the coefficient in front of ζ(u)ni ζ(v)ni is smaller
than γnu,v . In view of (3.3) and (4.14), it follows (using Cauchy-Schwarz inequality when
u , v) that in all cases E(|BnT |) ≤ Ksqrt∆n, and Case (d) follows for j = 2.

Next Case (d) is proved for j = 3. As above, all summands in Bn vanish, except for
4kn − 2 values of i. Below we treat only the firts 2kn − 1 summands (for simplicity of
notation), but the last 2kn − 2 are treated analogously. It is possible to rewrite the sum
of these first summands as

B
n,(1)
T =

(2kn−1)∧[T /∆n]∑
i=1

χni , χni = δni ζ(v)ni , δni = ani,mζ(u)ni−m,

where the ani,m’s are reals such that |ani,m| ≤ 2γnu,v , and of course depend on (u,v). It is
then possible to apply (3.14) with L = 2γnu,v and (3.3) to obtain

E(|δni |
p) ≤

Kp/k3p/2
n if v = 1

Kp/k
p/2
n if v = 2.

(3.16)

Moreover, δni is F∆n(i−1)-measurable, so (4.14) yields

|E(χni |F
n
i−1)| ≤ K∆5/4

n , E(|χni |
2)| ≤ K∆3/2

n ,
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3 Consistency and CLT

and B
n,(1)
T

P−→ 0 follows from (4.8) applied with mn = 2kn − 1 and ln = 1 and ξni =
χni /∆

1/4
n .

In conclusion, Case (d) for j = 4 is proved. Similarly to (3.16):

E(|ρ(u,v)ni |
p|F∆n(i−2kn)) ≤

Kp/k3p/2
n if v = 1

Kp/k
p/2
n if v = 2.

(3.17)

In view of (4.14) for u = 1,2:

E(|A(4;u,1)nT |) ≤ K∆
5/4
n E

[T /∆n]∑
i=1

(
√
∆n + ηni )

 .
By Lemma 4.1, this implies A(4;u,1)nT /∆

1/4
n

P−→ 0.

Now, letting v = 2 and V (2) = b(c) as well as utilizing (4.14), the first part of Lemma
4.1 and Lemma 4.2, it is possible to conclude thatE(|ζ′(2)ni −V (2)(i−2kn)∆n∆n|

2|F∆n(i−2kn)) ≤
K(∆nη′

n
i−2kn+1)2. Then the Cauchy-Schwarz inequality and (3.17) for p = 2, plus Lemma

4.1, yield:

E(| 1

∆1/4
n

[T /∆n]∑
i=2kn

ρ(u,2)ni (ζ′(2)ni −V (2)(i−2kn)∆n∆n)|) ≤ K∆nE(
[T /∆n]∑
i=2kn

(
√
∆n + η′ni ))→ 0.

Observe that ∆3/4
n

∑T /∆n
i=2kn

ρ(u,v)ni V (v)(i−2kn)∆n = GnT +Mn
T , where

ξni,T =
([T /∆n]−i)∧(2kn−1)∑
m=(2kn−i)∨1

Γ (u,v)nmV (2)(i+m−2kn)∆n

GnT = ∆3/4
n

[T /∆n]−1∑
i=1

ξni,T ζ
′(u)ni ,M

n
T = ∆3/4

n

[T /∆n]−1∑
i=1

ξni,T ζ
′′(u)ni .

Since ξni,T ≤ Kknγ
n
u,2, so (4.14) and (3.3) yield E(|ξni,T ζ

′(u)ni |) ≤ K
√
∆n in all cases, and

GnT
P−→ 0 follows. On the other hand, ξni,t is F∆n(i−1)-measurable, hence Doob’s inequal-

ity and (4.14) and (3.3) again yield E(sups≤T |Mn
s |2) ≤ KT

√
∆n −→ 0 in all cases. The

proof of Step 3 is complete.

Step 4: the Required Convergence
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3 Consistency and CLT

In this step, finally, in view of (3.7) and three steps of the proof above, it remains to
prove

1

∆
q($,r)
n

Un
T


L−s−→ UT if r < 0.5
P−→ 0 if 0.5 ≤ r < 1.

(3.18)

Assume first that the following (joint) stable convergence in law holds, where (u,v)
runs through the set P = {1,2}2:

1

∆1/4
n

(Z(u,v)n)(u,v)∈P
L−s
=⇒ Z(Z(u,v))(u,v)∈P , (3.19)

where Z is defined on a very good extension (Ω̃, F̃ , F̃t≥0,P̃) of (Ω,F ,Ft≥0,P) and is,
conditionally on F , a continuous centered Gaussian martingale with covariance struc-
ture

Ẽ(Z(u,v)TZ(u′ ,v′)T |F ) = G(u,v;u′ ,v′)T =

T∫
0

g(u,v;u′ ,v)sds, (3.20)

where the process g(u,v;u′ ,v′) is given in the following display:

g(u,v;u′ ,v′)T =



12
β3 (cT )4 (u,v;u′ ,v′) = (1,1;1,1)
3

2β (cT )2(c(c)
T ) (u,v;u′ ,v′) = (1,2;1,2), (2,1;2,1)

151β
280 (c(c)

T )2 (u,v;u′ ,v′) = (2,2;2,2)

0 otherwise.

(3.21)

Indeed, suppose that (3.19) holds. Consequently, (3.18) will also hold (recalling that
q($,r) ≤ 1/4) with

UT = 2
2∑

u,v=1

Z(u,v)T .

Then UT is, conditionally on F , centered Gaussian variables with variances given by
(3.2), as a simple calculation shows: Thus Theorem 3.1 is proved.

Hence, it remains to prove (3.19). Recalling

1

∆1/4
n

Z(u,v)nT =
[T /∆n]∑
i=2kn

ξ(u,v)ni , ξ(u,v)ni =
1

∆1/4
n

ρ(u,v)ni ζ
′′(v)ni ,

and the ξ(u,v)ni are martingales increments, relative to the discrete time filtration
(F ni ). Then, using a standard criterion for the stable convergence of triangular arrays
of martingale increments (see e.g. Theorem 2.2.15 of [4]), in order to obtain the con-
vergence (3.19), it suffices to prove the following three properties: for all t > 0, all
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3 Consistency and CLT

(u,v), (u′ ,v′) ∈ R, and all martingales N which are either bounded and orthogonal to
W , or equal to one component W j :

G(u,v;u′ ,v′)nT :=
[T /∆n]∑
i=2kn

E(ξ(u,v)ni ξ(u′ ,v′)ni |F
n

(i−1))
P−→ G(u,v;u′ ,v′)T (3.22)

[T /∆n]∑
i=2kn

E(|ξ(u,v)ni |
4|F n(i−1))

P−→ 0 (3.23)

B(N ;u,v)nT =
[T /∆n]∑
i=2kn

E(ξ(u,v)ni ∆nN |F
n

(i−1))
P−→ 0. (3.24)

The property (3.23) is simple. If we combine (4.14) and (3.17), by successive condi-
tioning, we see that E(|ξ(u,v)ni |

4) ≤ K∆2
n in all cases, obviously implying (3.23).

For the proof of (3.24) consider when N is a bounded martingale orthogonal to W , it
is possible to apply the estimates (4.16), successive conditioning, and (3.17), to obtain

E(|B(N ;u,v)nT |) ≤ K∆n
[T /∆n]∑
i=2kn

E(N ∗ni ).

Doob’s inequality (forN ∗nt = (Esupt∈((i−1)∆n,i∆n)

∣∣∣Nt −N(i−1)∆n

∣∣∣2 | F ni−1)1/2) yields (N ∗ni )2 ≤
4E((∆ni N )2|F n(i−1)), hence by the Cauchy-Schwarz inequality

E(|B(N ;u,v)nT |) ≤ K
√
T∆n(E(

[T /∆n]∑
i=2kn

(∆ni N )2))1/2 = K
√
T∆n(E([N,N ]∆n[T /∆n]))

1/2.

Since N is a bounded martingale, E([N ;N ]T ) ≤ K for all T, and (3.24) follows for all
martingales N which are bounded and orthogonal to W .

Now turn to the case N =W j for some j = 1, ...,d′, and essentially reproduce the end
of Step 3 Case (d), with a different meaning for the notation V (v). Namely, set V (1) = 0
and V (2) = σ (c) and V (3) = σ and also

B′(N ;u,v)nT = ∆3/4
n

[T /∆n]∑
i=2kn

ρ(u,v)ni V (v)(i−2kn)∆n .

(4.18) and the property E((V (v)i∆n − V (v)(i−2kn)∆n)
2|F n(i−2kn)) ≤ K((∆n) + (η′ni−2kn+1)2),

plus again (3.17), Cauchy-Schwarz inequality and Lemma 4.1, yield

E(|B(N ;u,v)nT −B
′(N ;u,v)nT |) ≤ K∆nE(

[T /∆n]∑
i=1

η′ni ) −→ 0.
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3 Consistency and CLT

Moreover B′(N ;u,1)n ≡ 0, so it remains to show that B′(N ;u,1)nT
P−→ 0 when v =

2,3. This is proved as in the end of Step 3 Case (d), since here B′(N ;u,1)n,σT is exactly
Gn+Mn there, with processes V (v) which are different but still bounded. Hence, (3.24)
is proved.

For the proof of (3.22) fix the two pairs (u,v) and (u′ ,v′) and begin with a reduction
of the problem, in the same spirit as in the previous proof. Set

VT =


2(cT )2 if (v,v′) = (1,1)

c
(c)
T if (v,v′) = (2,2)

0 otherwise

V T =


2(cT )2 if (u,u′) = (1,1)

c
(c)
T if (u,u′) = (2,2)

0 otherwise.

Recall that znv,v′ is 1/∆n if v = v′ = 1 and 1 otherwise. Then, with the notation

G
n
T = znv,v′

√
∆n

[T /∆n]∑
i=2kn

ρ(u,v)ni ρ(u′ ,v′)ni V(i−1)∆n ,

it is possible to deduce from (4.15) and (3.17) that

E(|G(u,v;u′ ,v′)nT −G
n
T |) ≤ KT

√
∆n.

So it remains to prove that G
n
T

P−→ G(u,v;u′ ,v′)T , and the only non-trivial cases are
when (v,v′) = (1,1), (2,2), since otherwise these processes are identically vanishing.

A further reduction is amenable. Namely, set

G′
n
T = znv,v′

√
∆n

[T /∆n]∑
i=2kn

ρ(u,v)ni ρ(u′ ,v′)ni V(i−2kn)∆n , (3.25)

We have E((V(i−1)∆n − V(i−2kn−1)∆n)
2) ≤ K(E(∆n) + (η′ni−2kn

)2). Then, Lemma 4.1 and
(3.17) and the Cauchy-Schwarz inequality yield

E(|GnT −G′
n
T |) ≤ K

√
T (∆n

[T /∆n]∑
i=1

E((η′ni )2))1/2 −→ 0.

So, it remains to show that, for (v,v′) = (1,1), (2,2):

G′
n
T

P−→ G(u,v;u′ ,v′)T . (3.26)

In view of (3.25) it is necessary to express the product ρ(u,v)ni ρ(u′ ,v′)ni in a more
tractable way. Then:

26



3 Consistency and CLT

G′
n
T =

3∑
j=1

Ĝ(j)nT , Ĝ(j)nT = znv,v′
√
∆n

[T /∆n]∑
i=2kn

ρ̂(j)ni V(i−2kn)∆n

ρ̂(1)ni =
2kn−1∑
m=1

Γ (u,v)nmΓ (u′ ,v′)nmζ(u)ni−mζ(u′)ni−m

ρ̂(2)ni =
2kn−2∑
m=1

Γ (u,v)nmζ(u)ni−m

2kn−1∑
m′=m+1

Γ (u′ ,v′)nm′ζ(u′)ni−m′

ρ̂(2)ni =
2kn−2∑
m′=1

Γ (u′ ,v′)nm′ζ(u′)ni−m′
2kn−1∑
m=m′+1

Γ (u,v)nmζ(u)ni−m

Observe that Ĝ(2)nT =
∑[T /∆n]−1
i=2 ξni ζ(u)ni , where

ξni = znv,v′
√
∆n

([T /∆n]−i)∧(2kn−2)∑
m=1∨(2kn−i)

Γ (u,v)nmV(i+m−2kn)∆n

2kn−1∑
m′=m+1

Γ (u′ ,v′)nm′ζ(u′)ni−m′

is F n(i−1)-measurable. Then
∑2kn−1
m′=m+1 Γ (u′ ,v′)nm′ζ(u′)ni−m′ satisfies (3.14) with L = γ̃nv,v′

and u′ instead of u, whereas Vt is bounded, hence we obtain for p = 1,2, and with
a = 1/2 if u′ = 1 and a = −1/2 when u′ ≥ 2, that E(|ξni |

p) ≤ Kp(znv,v′ γ̃
n
u,vγ̃

n
u′ ,v′k

a
n) An

examination of all possible cases (recall that (v,v′) = (1,1), (2,2)) leads us to

E(|ξni |
p)

K∆3p/4
n if u = 1

K∆
p/4
n if u = 2.

If we combine this with (4.14), plus the martingale increment property of ζ′′(u)ni , we
obtain by the usual argument:

E(|
[T /∆n]−1∑
i=2

ξni ζ
′(u)ni |) −→ 0, E(|

[T /∆n]−1∑
i=2

ξni ζ
′′(u)ni |

2) −→ 0

Therefore, Ĝ(2)nT
P−→ 0, and the property Ĝ(3)nT

P−→ 0 is obtained in exactly the same
way.

At this stage it remains to prove that Ĝ(1)nT
P−→ G(u,v;u′ ,v′)T . Letting now ξni =

ζ(u)ni ζ(u′)ni and ξ ′ni =E(ξni |F
n

(i−1)) and ξ ′′ni = ξni − ξ
′n
i :
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3 Consistency and CLT

Ĝ(1)n = Ĝ′
n

+ Ĝ′′
n
, Ĝ′

n
T =

[T /∆n]−1∑
i=1

µni,tξ
′n
i , Ĝ′′

n
T =

[T /∆n]−1∑
i=1

µni,tξ
′′n
i

withµni,t = znv,v′
√
∆n

([T /∆n]−i)∧(2kn−1)∑
m=1∨(2kn−i)

Γ (u,v)nmΓ (u′ ,v′)nmV(i+m−2kn)∆n .

It thus suffices to show that

Ĝ′
n
T

P−→ G(u,v;u′ ,v′)T , Ĝ′′
n
T

P−→ 0. (3.27)

We observe that µni,t is F ni−1-measurable and

|µni,t | ≤ Kz
n
v,v′ γ̃

n
u,vγ̃

n
u′ ,v′ ≤


K∆n if u == u′ = 1

K
√
∆n if u ∧u′ = 1 < u ∧u′

K if u,u′ ≥ 2.

(3.28)

In view of (4.14) and the martingale increment property of ξ ′′ni , we deduceE((Ĝ′′
n
T )2) ≤

KT∆n in all cases, implying the second part of (3.27).

For the first part of (3.27) we use (4.15) and (3.28) and the usual argument (as above
for Ĝ(2)nT to obtain E(|Ĝ′nT − ĜnT |) −→ 0 in all cases, where

ĜnT = ∆n

[T /∆n]−1∑
i=1

µni,tV(i−1)∆nV (i−1)∆n , µni,t = znv,v′z
n
u,u′

√
∆n

([T /∆n]−i)∧(2kn−1)∑
m=1∨(2kn−i)

Γ (u,v)nmΓ (u′ ,v′)nm.

Observe that |µi,t | ≤ Kz
n
v,v′z

n
u,u′ γ̃

n
u,vγ̃

n
u′ ,v′ , which is bounded by (4.16). Moreover, the

equality µi,t =
√
∆nH(u,v;u′ ,v′) except when i ≤ 2kn − 2 or i ≥ [T /∆n] − 2kn + 2. There-

fore, in view of (3.6), in which the limit is denoted by H(u,v;u′ ,v′), and by Riemann
integration, it is possible to obtain (3.27) with G(u,v;u′ ,v′)T = H(u,v;u′ ,v′)

∫ T
0 VsV sds,

and the proof of (3.22) is complete.
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4 Complementary Estimates and Lemmas

For the proof of Theorem 3.1 it is sensible to offer more detailed insight into some uti-
lized thematic concepts in the form of the following estimates as well as lemmas. All
these concepts are treated in-depth in the books [4] and [5].

4.1 Preliminaries for Complementary Estimates and Lemmas

With any q-dimensional càdlàg bounded process Y we associate the variables

ηni,j =

√
E
 sup
s∈(0,j∆n)

‖ Y(i−1)∆n+s −Y(i−1)∆n ‖2| F
n
i−1

, ηni = ηnn,1, η′n = ηni,2kn . (4.1)

Lemma 4.1 For all i ≤ i′ < i′ + j ≤ i + 2kn we have E
(
ηni′ ,j | F

n
i−1

)
≤ Kη′ni , and for all t we

have ∆nF
(∑[t/∆n]

i η′ni

)
→ 0 and ∆nF

(∑[t/∆n]
i ηni

)
→ 0.

Proof. The first claim follows from Cauchy-Schwarz inequality. For the second one,
setting γnt = sups∈(0,(2kn+1)∆n) ‖ Yt+s − Yt ‖2, we observe that E((η′ni )2) is always smaller

than a constant, and smaller than 1
∆n

∫ (i−1)∆n
(i−2)∆n

E(γns )ds when i ≥ 2. Hence

∆nE

[t/∆n]∑
i=1

η′ni

 ≤ √t
E

∆n [t/∆n]∑
i=1

(η′n)2




1/2

≤
√
t

K∆n +E


t∫

0

γns ds




1/2

.

We have γns ≤ K and the càdlàg property of Y yields that γns (ω)→ 0 for all ω, and
all s except for countably many strictly positive values (depending on ω). Then, the
second claim follows by the dominated convergence theorem, and it clearly implies the
third one.

Lemma 4.2 For any reals ani with
∣∣∣ani ∣∣∣ ≤ L for all n, i, and any array ξni of one dimensional

variables such that each ξni and F ni -measurable and satisfies

‖ E(ξni | F
n
i−1) ‖≤ L′ , E(‖ ξni ‖

q| F ni−1) ≤ Lq,

where q ≤ 2 and L,L′ ,Lq are constants, we have

‖ E

2kn−1∑
j=1

anj ξ
n
i+j | F

n
i−1

 ‖≤ LL′kn, E

‖ 2kn−1∑
j=1

anj ξ
n
i+j ‖

q| F ni−1

 ≤ KqLq(Lqkq/2n ).
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4 Complementary Estimates and Lemmas

Proof. Set ξ ′ni = E(ξni | F
n
i−1) and ξ ′′ni = ξni − ξ

′ni , and also A′n =
∑2kn−1
j=1 anj ξ

′n
i+1 and

A′′n =
∑2kn−1
j=1 anj ξ

′′n
i+j . We obviously have ‖ A′n ‖≤ LL′kn, implying the first claim.

The variables ξ ′′ni+j are martingale increments for the discrete-time filtration (F ni+j )j≥0.
Then Burkholder-Gundy and Hölder inequalities give us

E(‖ A′′n ‖q| F ni−1) ≤ KqE


2kn−1∑
j=0

‖ anj ξ
′′n
i+j ‖


q/2

| F ni−1

 ≤ LqKqkq/2−1
n E(

2kn−1∑
j=0

‖ ξni+j ‖
q| F ni−1),

which is smaller than KqLqLqk
q/2
n . The second claim readily follows.

Finally, we prove some estimates for one dimensional continuous semimartingale of
the form

Yt =

t∫
0

bYs ds+

t∫
0

σYs dWs.

Note that Y0 = 0. Here, W is a q′-dimensional Brownian motion, with q′ arbitrary,
and cY = σY σY? . We assume that for some constant A we have

‖ bY ‖≤ A, ‖ σY ‖≤ A. (4.2)

In connection with (4.1), we associate with any process Z the variables

η(Z)t =

√
E
(
sup
s≤t
‖ Zs −Z0 ‖2| F0

)
.

Lemma 4.3 In the previous setting, and with the constant K below only depending on A in
(4.2), we have for t ∈ [0,1]:

‖ E(Yt | F0)− tbY0 ‖ ≤ tη(bY )t ≤ Kt∣∣∣∣E(Y jt Y
m
t | F0)− tcY ,jm0

∣∣∣∣ ≤ Kt(t +
√
tη(bY )t + η(cY )t) ≤ Kt. (4.3)

If further

‖ E(cYt − cY0 | F0) ‖ +E(‖ cYt − cY0 ‖
2| F0) ≤ At (4.4)

for all t, we also have∣∣∣∣E(Y jt Y
m
t | F0)− tcY ,jm0

∣∣∣∣ ≤ Kt3/2(
√
t + η(bY )t) ≤ Kt3/2, (4.5)∣∣∣∣E(Y jt Y

k
t Y

l
t Y

m
t | F0)− t2(cY ,jk0 xY ,lm0 + cY ,jl0 cY ,km0 + cY ,jm0 cY ,kl0 )

∣∣∣∣ ≤ Kt5/2. (4.6)
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4 Complementary Estimates and Lemmas

Proof. The first part of (4.3) follows by taking the F0-conditional expectation in the
decomposition Yt =Mt + tbY0 +

∫ t
0 (bYs − bY0 )ds, where M is a one dimensional martingale

with M0 = 0. For the second part we deduce from Itô’s formula that Y jYm is the sum of
martingale vanishing at 0, plus the process

b
Y ,j
0

t∫
0

Yms ds+ bY ,m0

t∫
0

Y
j
s ds+

t∫
0

Yms (bY ,js − b
Y ,j
0 )ds

+

t∫
0

Y
j
s (bY ,ms − bY ,m0 )ds+ cY ,jm0 t +

t∫
0

(cY ,jms − cY ,jm0 )ds.

Since E(‖ Yt ‖| F0) ≤ K
√
t, we deduce both the second part of (4.3) and (4.5) by taking

again the conditional expectation and by using Cauchy-Schwarz inequality and the first
part.
For and indices j1, · · · , j4 Itô’s formula yields that, with M a martingale vanishing at 0,

4∏
l=1

Y
jl
t =Mt +

p∑
l=1

t∫
0

b
Y ,jl
s

∏
1≤m≤p,m,l

Y
jm
s ds

+
1
2

∑
1≤l,l′≤d,l,l′

c
Y ,jl ,jl′
0

t∫
0

∏
1≤m≤4,m,l,l′

Y
jm
s ds

+
1
2

∑
1≤l,l′≤d,l,l′

t∫
0

(cY ,jl jl′s − cY ,jl jl′0 )
∏

1≤m≤4,m,l,l′
Y
jm
s ds. (4.7)

Again, we take the F0-conditional expectation; using E(‖ Yt ‖q| F0) ≤ Ktq/2 for all
q ≥ 0 and a simple calculation yields (4.6).

Lemma 4.4 If mn, ln ≥ 1 are arbitrary integers, and if for all n ≥ 1 and 1 ≤ i ≥ mn the
variable ξni is F ni+ln-measurable, we have

mn∑
i=1

∣∣∣E(ξni | F
n
i−1)

∣∣∣ P−→ 0

ln

mn∑
i=1

E(
∣∣∣ξni ∣∣∣2)

P−→ 0


⇒ sup

j≤mn

∣∣∣∣∣∣∣∣
j∑
i=1

ξni

∣∣∣∣∣∣∣∣ P−→ 0 (4.8)

Proof. With the convention ξni = 0 when i > mn, we set
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4 Complementary Estimates and Lemmas

ξ ′ni = E(ξni | F
n
i−1),ξ ′′ni = ξni − ξ

′n
i ,

An =
mn∑
i=1

∣∣∣ξ ′ni ∣∣∣ , M(k)ni =
i∑
j=0

ξ ′′nk+lnj
, M(k)n = sup

i≤(mn−k)/ln

∣∣∣M(k)ni
∣∣∣ ,

so

sup
j≤mn

∣∣∣∣∣∣∣
i∑
i=1

ξni

∣∣∣∣∣∣∣ ≤ An +
ln∑
k=1

M(k)n. (4.9)

The first condition in (4.8) implies An
P−→ 0. On the other hand, each sequence Mn(k)

is a martingale, relative to the discrete-time filtration (F nk+(i+)ln
)i≥0, hence Doob’s in-

equality gives us E(|M(k)n|2) ≤ 4
∑(mn−k)/ln
j=0 E(|ξ ′′nk+lnj

|2), which in turn is smaller than

4
∑(mn−k)/ln
j=0 E(|ξnk+lnj

|2). Since E(|M(k)n|2) ≤ łn
∑ln
k=1E(|M(k)n|2), the second condition in

(4.8) yields that this expectation goes to 0, and this completes the proof.

4.2 Increment Estimates

Under (SPCC-r) for r < 1, T > 0 and q ≥ 0 it can be concluded by (2.1.44) of [4]:

E(sup
s≤t
|XT+s −XT |q|FT ) ≤

Kqtq/2 if X is continuous

Kqt
(q/2)∧1 otherwise,

E(sup
s≤t
|X ′T+s −X

′
T |
q|FT ) ≤ Kqtq/2, |E(X ′T+t −X

′
T |FT )| ≤ Kt

E(sup
s≤t
|cT+s − cT |q|FT ) ≤ Kqtq/2, |E(cT+t − cT |FT )| ≤ Kt.

(4.10)

Similarly under (SPCC-r) for r < 1, T > 0 and q ≥ 1 it can be concluded by Corollary
(2.1.9) of [4] with φ a function depending on J, r,q (recalling that J is a a determinis-
tic non-negative bounded function from (SPCC-r) satisfying

∫
J(z)λ(dz) <∞ such that

|δ(ω,t,z)|r ≤ J(z) for all (ω,t,z)), but not on δ as well as satisfying φ(t) −→ 0 as t −→ 0
and Y = δ ? p:

t ≤ 1, 0 < χ <
1
2

⇒ E

(
sup
s≤t

(
|YT+s −YT |

tχ
∧ 1)q|FT

)
≤ Kt1−χrφ(t). (4.11)

For simpler notation late on, we define the following 1-dimensional variables
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4 Complementary Estimates and Lemmas

ζ(1)ni =
1
∆n

(∆ni X
′)2 − c(i−1)∆n , ζ(2)ni = ∆ni c,

ζ′(r)ni = E(ζ(r)ni | F
n
i−1), ζ′′(r)ni = ζ(r)ni − ζ

′(r)ni ,

αni =
1
kn

kn−1∑
j=0

ζ(1)ni+j , βni =
1
kn

kn−1∑
j=0

(̧1)(i+j−1)∆n

β
n
i = βni − c(i−1)∆n =

1
kn

kn−1∑
j=0

(c(i+j−1)∆n − c(i−1)∆n) =
1
kn

kn−2∑
j=0

(kn − 1− j)ζ(2)ni+j .

(4.12)

Here, kn is the sequence of integers used to construct the spot volatility estimators,
and it either satisfies kn ∼ β/

√
∆n for some β > 0, or kn

√
∆n→ 0.

Estimates under (SPCC-r), for r < 1.

ηni , η
′n
i associated by (4.1) with process Y = (b,bc,σ c, cc, cX

′ ,c). (4.13)

We apply (4.10) and also Lemma 4.3 to the processes Yt = X ′(i−1)∆n+t − X
′
(i−1)∆n

or
Yt = c(i−1)∆n+t − c(i−1)∆n , to obtain

‖ ζ′(1)ni ‖≤ K
√
∆n(

√
∆n + ηni ) ≤ K

√
∆n, E(‖ ζ(1)ni ‖

q| F ni−1) ≤ Kq
‖ ζ′(2)ni − b

(c)
(i−1)∆n

∆n ‖ + ‖ ζ′(3)ni − b(i−1)∆n∆n ‖≤ K∆n(
√
∆n + ηni ) ≤ K∆n

E(‖ ζ(2)ni ‖
q| F ni−1) +E(‖ ζ(3)ni ‖

q| F ni−1) ≤ Kq∆
q/2
n , (4.14)

and also, with ζ(r)
n
i denoting either ζ(r)ni or ζ′′(r)ni :∣∣∣∣E(ζ(1)n,jki ζ(1)n,lmi | F ni−1)− (cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n
)
∣∣∣∣ ≤ K√

∆n∣∣∣∣E(ζ(2)n,jli ζ(2)n,kmi | F ni−1)− c(c),jl,km
(i−1)∆n

∆n

∣∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni ) ≤ K∆3/2

n∣∣∣∣E(ζ(3)n,ji ζ(3)n,ki | F
(n)
i−1 )− cjk(i−1)∆n

∆n

∣∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni ) ≤ K∆3/2

n∣∣∣∣E(ζ(2)n,jki ζ(3)n,li | F
n
i−1)− c(X ′ ,c),jk,l

(i−1)∆n
∆n

∣∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni ) ≤ K∆3/2

n∣∣∣∣E(ζ(1)n,jki ζ(2)n,lmi | F ni−1)
∣∣∣∣+

∣∣∣∣E(ζ(1)n,jki ζ(3)n,li | F
n
i−1)

∣∣∣∣ ≤ K∆n. (4.15)

Finally, for any bounded martingale N which is orthogonal to W , and with the no-
tation N ∗nt = (Esupt∈((i−1)∆n,i∆n)

∣∣∣Nt −N(i−1)∆n

∣∣∣2 | F ni−1)1/2, and upon using Itô’s formula,
one gets

∣∣∣∣E(ζ′′(1)n,jki ∆ni N | F
n
i−1)

∣∣∣∣ ≤ K√
∆nN

∗n
i∣∣∣∣E(ζ′′(2)n,ji ∆

n
i N | F

n
i−1)

∣∣∣∣+
∣∣∣∣E(ζ′′(3)n,ji ∆

n
i N | F

n
i−1)

∣∣∣∣ ≤ K∆nN ∗ni , (4.16)
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4 Complementary Estimates and Lemmas

whereas when N =W l is one of the components of W, we have instead:

∣∣∣∣E(ζ′′(1)n,jki ∆niW
l | F ni−1)

∣∣∣∣ ≤ K∆n∣∣∣∣E(ζ′′(2)n,jki ∆niW
l | F ni−1)− σ (c),jk,l

(i−1)∆n
∆n

∣∣∣∣ ≤ K∆nηni (4.17)∣∣∣∣E(ζ′′(3)n,ji ∆
n
iW

l | F ni−1)− σ jl(i−1)∆n
∆n

∣∣∣∣ ≤ K∆3/2
n . (4.18)

Lemma 4.5 Under (SPCC-r), for r < 1, we have for all q ≥ 2:

‖ E(αni | F
n
i−1) ‖≤ K

√
∆n(

√
∆n + η′ni )∣∣∣∣∣E(αn,jki αn,lmi | F ni−1)− 1

kn
(cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n
)
∣∣∣∣∣ ≤ K√

∆n(
1
kn

+ η′ni )

E(‖ αni ‖
q| F ni−1) ≤ Kq(∆

q/2
n + k−q/2n )∣∣∣∣E(αn,jki βn,lmi | F ni−1)

∣∣∣∣ ≤ Kkn∆n
‖ E(β

n
i | F

n
i−1) ‖≤ Kkn∆n

E(‖ βni ‖
q| F ni−1) ≤

Kq(kn∆n)q/2 if c is continuous,
Kqkn∆n otherwise.

Proof. The first claim above directly follows from (4.14) and (4.15). For the second

claim, we set ξni = cjl(i−1)∆n
ckm(i−1)∆n

+ cjm(i−1)∆n
ckl(i−1)∆n

and write α
n,jkαn,lmi
i as

1

k2
n

kn−1∑
u=0

ζ(1)n,jki+u ζ(1)n,lmi+u +
1

k2
n

kn−2∑
u=0

kn−1∑
v=u+1

(ζ(1)n,jki+u ζ(1)n,lmi+v + ζ(1)n,lmi+u ζ(1)n,jki+v ).

By (4.14) and (4.15) and and successive conditioning and the first part of Lemma
4.1, the F ni−1-conditional expectation of the last term above is smaller than K

√
∆n(
√
∆n+

η′ni ). The conditional expectation of the first term, up to K
√
∆n/kn, is 1

k2
n

∑kn−1
u=0 E(ξni+u |

F ni−1). Using the boundedness of ct and (4.10), we easily check that
∣∣∣E(ξni+u | F

n
i−1)− ξni

∣∣∣ ≤
Kkn∆n when u ≤ kn, and the second claim follows. For the third claim, we use (4.14)
and (4.15) and Hölder’s inequality, plus Burkholder-Gundy inequality ζ(1)′′ni+j . For the
fourth claim, we use (4.14) and (4.15) and Hölder’s inequality again, plus successive
conditioning. The last two claims are obvious consequences of (4.10) applied to the
martingale increments.
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5 Conclusion and Potential Further
Developments

In this chapter main results of the master thesis are briefly summarized and further
promising research directions are discussed.

For a bivariate process (X,σ2), with X enjoying full generality of an Itô semimartin-
gale and σ2 being a Brownian Itô semimartingale, consistent truncated unnormalized
estimator with a certain convergence rate has been derived for data observed on a dis-
crete grid with the grid size ∆n. The underlying model framework for the estimator
makes its utilization particularly appropriate for high-frequency financial data.

Potential further developments are:

• derivation of an analogous estimator of quadratic covariation for the bivariate
process (X,σ2);

• increase of a Blumenthal-Getoor index r in assumption (PCC-r) to its theoreti-
cally maximal value 2 or, in other words, allowance for maximal degree of jump
activity;

• introduction of full generality of Itô semimartingale for the volatility process σ2;

• enhancement of estimation robustness with respect to the presence of microstruc-
ture noise.
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