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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. Claudia Eckert
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Abstract

This work describes methods to verify information flow properties of processes
manipulating tree-structured data. The developed techniques can be applied,
e.g., to enterprise workflows and web service technologies, where data is fre-
quently represented in the form of XML documents. These systems are highly
security critical, because they may be in control of important processes of or-
ganizations, while communicating with external partners over the network.

The first solution is a runtime monitor. It applies generalized constant prop-
agation to overapproximate the results of secret-dependent branching constructs
in order to prove their equality. The second method is a static analysis that ver-
ifies information flow properties at compilation time. It relies on relational ab-
stract interpretation applied to a statically determined alignment of two copies
of the program and regular overapproximations of sets of pairs of program states.
Both methods allow to enforce end-to-end information flow policies only, which
are composed in terms of the initial and final states of computations.

In the third part of the thesis tree-manipulating reactive systems are con-
sidered, where information flow policies may change over time. The positive
fragment of the Linear Temporal Logic is extended with a modal operator, the
so-called hide operator, in order to express that the observable behavior of the
system is independent of specific input values until a certain point in time. A
model checking algorithm is provided to verify temporal information flow prop-
erties, which combines methods of abstract interpretation with model checking.

In order to foster semantic clarity, the algorithms and techniques are pre-
sented for a small “assembly” language for tree-manipulation.
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Zusammenfassung

Diese Arbeit beschreibt Methoden, die Informationsfluss-Eigenschaften von Pro-
grammen sicherstellen können, deren Schwerpunkt die Verarbeitung von baum-
strukturierten Daten ist. Die entwickelten Techniken können z.B. bei Enterprise-
Workflow-Systemen und Web-Service-Technologien eingesetzt werden, bei denen
Daten oft durch XML Dokumente repräsentiert werden. Diese Systeme sind
sicherheitskritisch, weil sie wichtige Prozessabläufe einer Organisation kontrol-
lieren können, während sie mit externen Partnern über das Netzwerk kommu-
nizieren.

Die erste Methode nutzt einen Laufzeit-Monitor. Ein verallgemeinerter
Konstantenfaltungs-Algorithmus wird verwendet, um das Ergebnis von Verzwei-
gungen, die von geheimzuhaltenden Informationen abhängen, zu überapproxi-
mieren, damit deren Äquivalenz bewiesen werden kann. Die zweite Methode
verifiziert Informationsfluss-Eigenschaften zur Übersetzungszeit. Sie basiert auf
relationaler abstrakter Interpretation, angewandt auf die statische Abgleichung
zweier Kopien des Programms, und regulärer Überapproximation von Mengen
von Paaren von Programmzuständen. Beide Methoden können lediglich soge-
nannte “end-to-end” Informationsfluss-Eigenschaften sicherstellen, die in Bezug
auf die ersten und letzten Zustände der Ausführung definiert sind.

Im dritten Teil dieser Dissertation werden Baummanipulierende reaktive
Systeme betrachtet, deren Sicherheitseigenschaften sich zur Laufzeit ändern
können. Sicherheitseigenschaften werden in einer Erweiterung des positiven
Teils der linearen temporalen Logik erfasst, die es ermöglicht, mithilfe des hide
Operators die Unabhängigkeit des beobachtbaren Verhaltens des Systems von
bestimmten Werten bis zu einem bestimmten Zeitpunkt zu spezifizieren. Im
Rahmen dieser Arbeit wurde ein Model-Checking-Algorithmus für die Analyse
derartiger Eigenschaften entwickelt, der Methoden aus der abstrakten Interpre-
tation mit Model-Checking kombiniert.

Um die semantische Klarheit zu fördern, werden die Algorithmen und Metho-
den mithilfe einer kleinen Assemblersprache für Baummanipulationen darge-
stellt.
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Chapter 1

Introduction

Today companies and organizations frequently use computer systems to store
data and to execute business logic. These workflow systems bear the risk of
revealing critical information through software bugs, attacks, or simple miscon-
figuration. Since these systems are frequently used by several principals possibly
having conflicting interests, the conscious design and enforcement of information
flow policies is of paramount importance.

Reviewers

Authors

Program Committee
Chair

Conference Management
System

Figure 1.1: An imaginary conference management system and its cooperating
partners.

As an example, Figure 1.1 illustrates the users of an imaginary conference
management system like EasyChair. The users cooperate in order to success-
fully execute the workflow of submitting, reviewing and deciding about the
acceptance of papers. The conference management system itself maintains a
document base describing the state of the submission and review process. The
document base stores among others the uploaded documents, the comments and
scores given by the reviewers, and a value describing whether the submissions
have been accepted. Some examples for conflicting interests in the context of
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conference management systems may be the following:

• Authors might be interested in knowing the identity of their reviewers.

• Authors might wish to know about their competitors previous to the dis-
closure of accepted papers.

There have already been security breaches in conference management systems.
For instance HotCRP [40] version 2.47 had a bug which exposed comments of
reviewers to the authors, which were exclusively meant for the program com-
mittee.

There are well established programming languages and technologies for the
implementation of process management systems that are responsible for the
coordination of workflows of organizations. The family of standards for web
services (e.g., [37, 20]) enables the platform independent communication of com-
puter programs on a network using messages in XML [16] format. Based on this
technology, high level workflows can be composed from the functionalities of in-
dividual web services using the Web Services Business Process Execution Lan-
guage (BPEL) [6]. Accordingly, BPEL is designed to implement the autonomous
business logic of companies and organizations that can also communicate with
external, independent entities. Therefore, the information flow security of these
processes may be crucial for organizations to fulfill their missions. Another cen-
tral aspect of BPEL workflows is that the values of variables are document trees.
Even though the goal of BPEL programs is not to carry out complex computa-
tions, still the language is Turing complete. Data manipulation can be carried
out using the XML Path Language [14] (XPath), and XSL Transformations [46]
(XSLT).

As motivated above, the goal of this work is to give methods for the verifica-
tion and enforcement of information flow properties of programs manipulating
tree-structured data. We will illustrate the developed solutions using exam-
ples that implement fragments of the imaginary conference management system
sketched in Figure 1.1. We suppose that the workflow of organizing a conference
consists of a series of phases. In one phase authors are allowed to upload papers,
an other phase is e.g., when the submission deadline is passed, and papers are
reviewed.

1 <if name="If1">

2 <condition>

3 <![CDATA[$phase = "notify"]]>

4 </condition>

5 <assign> <copy> <from>$subDB </from>

6 <to> $toAuthors </to> </copy>

7 </assign>

8 <else>

9 <sequence>

10 <if name="If2">

11 <condition> <![CDATA[$averageScore < 1.5]]>

12 </condition>

13 <assign name="EvalReject">

14 <copy> <from>"rejected"</from>

15 <to> $subDB/submission[id=$paperId]

16 /acceptance/text()

17 </to> </copy>
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18 </assign>

19 <else>

20 <assign name="EvalAccept">

21 <copy> <from>"accepted"</from>

22 <to> $subDB/submission[id=$paperId]

23 /acceptance/text()

24 </to> </copy>

25 </assign>

26 </else>

27 </if>

28 <assign> <copy> <from>$subDB </from>

29 <to> $subDB_Output </to> </copy>

30 </assign>

31 </sequence>

32 </else>

33 </if>

Listing 1.1: A BPEL-like pseudo-code fragment of an imaginary confer-
ence management system.

submission

id acceptance

’123’ ’accepted’

submission

id acceptance

’42’ ’pending’

root

Figure 1.2: An example database mapping the identifiers of submissions to their
acceptance values. The dotted rings mark the elements that can be addressed
by the XPath expressions at lines 15 and 22 in Listing 1.1 depending on the
value of the variable paperId.

Listing 1.1 shows a possible fragment of a document submission system like
EasyChair implemented in a BPEL-like language. A tree-shaped data struc-
ture stored in variable subDB is manipulated, which contains the identifiers and
acceptance states of the uploaded papers. The code covers two phases of the
review process. In the phase “review” the average scores of papers are pro-
cessed by the workflow engine. In this phase, the code is executed each time a
review is submitted. Based on the value of variable averageScore containing
the average of the scores already submitted for a paper, the program updates
the acceptance status of the paper identified by the value of variable paperId.
In the phase “notify” the database is sent to the authors by assigning it to the
variable toAuthors.

A possible data structure representing a database is illustrated in Figure 1.2.
A simple information flow policy for the document submission system could be
the following:

“The scores of the papers may not be revealed to the authors
before the notification phase.”

(1.1)
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The properties this work aims to analyze belong to the class of properties
called hyperproperties [21]. A hyperproperty is a statement about multiple
runs of a system. Semantically, the requirement in (1.1) refers to at least two
executions, the initial state of which may differ in the value of the variable
averageScore and the acceptance status of documents in the database. It
poses the requirement that authors should not be able to observe any difference
in the outputs of any two executions until a specific point in time. The policy
in (1.1) illustrates the nature of problems this work seeks to tackle.

The goal of this work is, therefore, to give methods to verify and enforce in-
formation flow security policies on programs manipulating tree-structured data,
as motivated by the BPEL language. The corresponding technical challenges
are the following:

1. Formalisms are needed that can express information flow policies speci-
fying the secrecy of subtrees of document trees. Furthermore, algorithms
have to be found that can either enforce the policies during runtime, or
prove them in compilation time.

2. Enterprise workflows may run for an unbounded period of time, while
information flow policies may change in response to events triggered by
the environment. Therefore, formalisms are needed that can express the
temporal nature of information flow policies, and algorithms are needed
for their verification or runtime enforcement.

This work presents the following contributions:

• In Chapter 2 a runtime monitor is introduced that enforces information
flow policies on tree-manipulating programs. The runtime monitor ad-
dresses challenge 1, the focus is on the properties of programs manipu-
lating tree-structured documents. The presented solution is based on the
results published in [48].

• In Chapter 3 a static analysis is developed based on relational abstract
interpretation. The goal of this analysis is to prove information flow prop-
erties of programs at compilation time. Again, Chapter 3 addresses chal-
lenge 1. The presented results are based on [49].

• In Chapter 4 a model checking algorithm is described that tackles challenge
2. Policies are composed using the logic Restricted SecLTL. Restricted Se-
cLTL extends the positive fragment of the Linear Temporal Logic with an
additional modal operator, the so-called hide operator. The hide operator
expresses that the observable behavior of the system is independent of
specific pieces of secret until an event occurs. The presented algorithm
extends the model checking procedure of [28] to systems with unbounded
state space.

Much effort has been invested in finding adequate formalisms that describe
the functionality of service orchestrations and choreography, in particular, the
BPEL [6] language. The majority of the publications in this topic can be sorted
into two groups. One [42, 74, 73, 61] applies formalisms based on Petri-nets [55]
to model workflows, the other [39, 50, 63, 81, 18] prefers algebraic calculi like
the Π-calculus [52] as the basis for investigations. The authors of [3] and [82]
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present security-related results using Petri-net based formalisms. A common
property of these approaches is that they mostly focus on the control flow of
orchestrations, sometimes with emphasis on error handling, whereas data values
undergo severe abstractions: They are either considered as atomic values, or
completely disregarded by handling branching decisions as nondeterminism.

The goal of this work is to provide security guarantees by taking advantage of
the properties of data values. Therefore, we introduce an “assembly” language
for tree manipulation that formalizes business workflows, and apply program
analysis and model checking techniques in order to tackle the challenges listed
above.
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Chapter 2

Runtime Monitor

In this chapter we present a runtime monitor to enforce end-to-end information
flow policies on programs manipulating tree-structured data. The authors of
[66] note that runtime approaches [38, 77, 64] are on the rise, because they can
be more permissive than static solutions, while providing the same guarantees.
In our case this statement especially holds, because our monitor takes advan-
tage of the fact that during runtime data instances are available. In principle,
our monitor executes programs in parallel to the operational semantics of the
language, while maintaining a state which only depends on public data. In other
words, the monitor carries out a parallel computation on the public view. The
computation of the public view is challenging in the case, when the result of
a branching construct, whose condition depends on the secret, is about to be
evaluated. In this case we apply a dataflow analysis procedure, which is a gen-
eralization of constant propagation (see e.g. [68]) for handling semi-structured
data. The key difference is the hierarchic nature of lattice elements, which aligns
to our purpose of preventing information leakage in tree-manipulating programs.
Moreover, we gain precision by only considering a modification of a subtree in-
side a secret-dependent branch as potentially secret, if it does not occur in the
other alternative as well, and thus must be excluded from the public view. In
summary, this chapter provides the following innovations:

• A runtime monitor is introduced to support the specification of informa-
tion flow policies in terms of tree-like data and their enforcement.

• The enforcement mechanism applies a generalized variant of constant
propagation in order to compute the public view of the state at the end
of branching instructions.

This chapter is organized as follows. In Section 2.1 we introduce the program-
ming language, and discuss how information flow policies are composed. In
Section 2.2 we illustrate the intuition behind our solution through an example,
a fragment of a hypothetical paper submission system. We formalize the ap-
proach in Section 2.3, and in Section 2.4 we discuss the guarantees the monitor
provides us. Finally, in Section 2.5 we relate our work to others.

7
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2.1 Preliminaries

This section presents the necessary formalisms, languages and notations that
are the basis of this work.

2.1.1 Binary Trees

In order to foster semantic clarity and simplicity, the techniques of this work
are elaborated using a small but powerful “assembly” language for tree manip-
ulation. The language is constructed to work with binary trees only. This is
no restriction in general, since binary trees are in one-to-one correspondence
with unranked trees. Unranked trees in turn can be considered as the natural
internal representation of XML documents.

submission

id

acceptance’123’

’accepted’ #

submission

id

acceptance’42’

’pending’ #

root

#

#

Figure 2.1: The binary representation of the database in Figure 1.2.

Definition 1 (Binary Trees). The set of binary trees BΣ2,Σ0 over the finite set
of binary alphabet elements Σ2 and the set of nullary alphabet elements Σ0 is
defined by the language:

τ ::= σ0 | σ2(τ1, τ2)

where σ0 ∈ Σ0, σ2 ∈ Σ2 and τ1, τ2 ∈ BΣ2,Σ0 . The set of nullary alphabet
elements Σ0 does not necessarily need to be finite.

Figure 2.1 illustrates the binary representation of the data structure of Figure
1.2 constructed using the first-child/next-sibling (FCNS) encoding [22]. The
binary tree σ2(τ1, τ2) is interpreted as an unranked forest, where the root of
the leftmost tree is labeled σ2. Its content is the unranked variant of τ1, while
the forest on its right hand side is the unranked variant of τ2. The nullary
node labeled # ∈ Σ0 represents the empty forest. Nullary nodes can also be
labeled with basic values like ’42’, which are always between ’ signs in order
to emphasize that they belong to Σ0. The FCNS encoding maps nullary nodes
representing basic values to themselves.

2.1.2 Assembly Language for Tree Manipulation

The grammar of the assembly language for tree manipulation is shown in Figure
2.2. The value of a tree expression generated by the nonterminal e is either the
content of a variable x, the nullary node #, or a binary tree composed of a new
root labeled σ2 having the contents of variables x1 and x2 as subtrees. The
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(tree expressions) e ::= x | # | σ2(x1,x2) | x/1 | x/2 | λt(x1, x2, ...)
(Boolean expressions) b ::= top(x)=σ | λb(x1, x2, ...)
(commands) c ::= skip | x:=e | if b then {p1} else {p2} |

while b do {p}
(program) p ::= ε | c;p

Figure 2.2: The grammar of the assembly language for tree manipulation, where
σ2 ∈ Σ2 and σ ∈ Σ2 ∪ {#}.

expressions x/1 and x/2 refer to the first and second subtrees of the tree stored
in variable x. In case the children of leaves are addressed by x/1 or x/2 an error
occurs. It is also possible to carry out an arbitrary computation based on the
values of an arbitrary set of variables using interpreted functions λt(x1,x2,...).
The only constraint against these interpreted functions is that they must return
a nullary node. Boolean expressions generated by the nonterminal b may test
the label of the root of the tree stored in a variable, and carry out an arbitrary
computation using the interpreted function λb(x1,x2,...) returning a Boolean
value. Interpreted functions λt(x1,x2,...) and λb(x1,x2,...) are deterministic,
they do not have side effects, and the execution of λt can also result in the error
state. In our examples we will use infix operators like less or equal to =< or
equivalence = as instances for interpreted function symbols with the intuitive
semantics.

Jtop(x)=σKs = s if σ ∈ Σ2 ∪ {#} and
s(x) has root labeled with σ

J¬top(x)=σKs = s if σ ∈ Σ2 ∪ {#} and
s(x) has root labeled with some σ′ 6= σ

Jλb(x1,x2,...)Ks = s if JλbK(s(x1), s(x2), ...) holds

Jx:=yKs = s[x 7→ s(y)] Jx:=#Ks = s[x 7→ #] JskipKs = s
Jx:=σ2(x1,x2)Ks = s[x 7→ σ2(s(x1), s(x2))] where σ2 ∈ Σ2

Jx:=y/1Ks =


s[x 7→ τ1] if s(y) = σ2(τ1,τ2) for some

label σ2, and trees τ1 and τ2

 otherwise

Jx:=y/2Ks =


s[x 7→ τ2] if s(y) = σ2(τ1,τ2) for some

label σ2, and trees τ1 and τ2

 otherwise

Jx:=λt(x1,x2,...)Ks = s[x 7→ JλtK(s(x1), s(x2), ...)] or  

JfK =  for assignments and expressions f

Figure 2.3: State transformers of assignments and Boolean expressions. States
of the form s[x 7→ τ ] stand for states, where we have s[x 7→ τ ](y) = s(y) for all
y 6= x, and s[x 7→ τ ](x) = τ .

A structured program generated by the nonterminal p is a possibly empty
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sequence of commands. A command can be either the empty command skip,
an assignment x:=e, which updates the value of the variable x with the value
of the tree expression e, a conditional execution of alternative programs if, or
an iteration while.

In this chapter the semantics of the language is defined by the transition
relation cfg →ρ cfg ′ between configurations of the form 〈p, s〉, where p is the
program to be executed on the state s. In case of final configurations, where
p = ε we simply write s instead of 〈ε, s〉. The state s : (X → BΣ2,Σ0

) ∪ { } is
a mapping from the set of variables X of the program to binary trees BΣ2,Σ0 ,
or the error state, denoted by  , symbolizing that a runtime error has occurred
during the execution.

The functionality of basic state transformers corresponding to assignments
and Boolean expressions is defined in Figure 2.3. Note that even though the
negation operator (¬) is not available for programmers according to the gram-
mar, it occurs in the semantics. The transformers in Figure 2.3 are also going to
be used in later sections, where the semantics of the programming language is
defined using control flow graphs. There, the application of the negation opera-
tor is necessary. On the other hand, the absence of the negation operator does
not decrease the expressiveness of the programming language and simplifies the
notation.

E: s =  
〈c, s〉 →ρ  

A:
s 6=  

〈x:=e, s〉 →ρ Jx:=eKs
S:

〈c, s〉 →∗ρ s′
〈c;p, s〉 →ρ 〈p, s′〉

WT:
s 6=  JbKs = s 〈p, s〉 →∗ρ s′

〈while b do {p}, s〉 →ρ 〈while b do {p}, s′〉

WF:
s 6=  J¬bKs = s

〈while b do {p}, s〉 →ρ s

IT:
s 6=  JbKs = s 〈ptt, s〉 →∗ρ s′

〈if b then {ptt} else {pff}, s〉 →ρ s
′

IF:
s 6=  J¬bKs = s 〈pff, s〉 →∗ρ s′

〈if b then {ptt} else {pff}, s〉 →ρ s
′

Figure 2.4: The semantics of the programming language.

The semantics of the programming language is shown in Figure 2.4. In the
condition parts of the rules we use the relation →∗ρ, which denotes the reflexive
and transitive closure of →ρ. A central rule of the semantics is S, which is
responsible for executing a program, in other words a sequence of commands.
The remaining rules define the effects of individual commands. Due to rule E,
the error state is not modified by any command. Instead, it is passed over to
the next command in the sequence, or to the final configuration. In case the
state is not erroneous, the execution of an assignment is specified by rule A. The
rules WT and WF execute iterations, IT and IF execute conditional selections of
alternative programs as it is usual in other structured programming languages.

Because here we are concerned with end-to-end information flow policies, we
assume that input values of computations are given in the initial configuration,
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and the result is presented in the final configuration. We assume furthermore,
that each variable carries a value in the initial state, therefore, no error can be
triggered by a variable access.

1 // 1. Selecting the phase:

2 if top(phase)=notify then {

3 toAuthors := subDB;

4 }

5 else {

6

7 // 2. Initialization:

8 empty := #;

9 submissionsRev := #;

10 submissions := subDB/1;

11

12 // 3. Branching based on conditional value:

13 if averageScore < ’1.5’ then {

14

15 // 4/tt. Searching the elements to be modified:

16 found := false(empty,empty);

17 while top(found)=false do {

18 id := submissions/1;

19 idVal := id/1;

20 if idVal = paperId then {

21 found := true(empty,empty);

22 } else {

23 submissionsRev := submission(id,submissionsRev);

24 submissions := submissions/2;

25 };

26 };

27

28 // 5/tt. Modifying the acceptance value depending on

29 // averageScore:

30 acceptanceVal := ’rejected’;

31

32 // 6/tt. Reconstructing the data structure of the submission:

33 acceptance := acceptance(acceptanceVal,empty);

34 id := id(idVal,acceptance);

35 submissions := submissions/2;

36 submissions := submission(id,submissions);

37

38 // 7/tt. Reconstructing the data structure of the database:

39 stop := false(empty,empty);

40 while top(stop)=false do {

41 if top(submissionsRev)=submission then {

42 id := submissionsRev/1;

43 submissions := submission(id,submissions);

44 submissionsRev := submissions/2;

45 } else {

46 stop := true(empty,empty);

47 };

48 };

49

50 } else {
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51

52 // 4/ff. Searching the elements to be modified:

53 found := false(empty,empty);

54 while top(found)=false do {

55 id := submissions/1;

56 idVal := id/1;

57 if idVal = paperId then {

58 found := true(empty,empty);

59 } else {

60 submissionsRev := submission(id,submissionsRev);

61 submissions := submissions/2;

62 };

63 };

64

65 // 5/ff. Modifying the acceptance value depending on

66 // averageScore:

67 acceptanceVal := ’accepted’;

68

69 // 6/ff. Reconstructing the data structure of the submission:

70 acceptance := acceptance(acceptanceVal,empty);

71 id := id(idVal,acceptance);

72 submissions := submissions/2;

73 submissions := submission(id,submissions);

74

75 // 7/ff. Reconstructing the data structure of the database:

76 stop := false(empty,empty);

77 while top(stop)=false do {

78 if top(submissionsRev)=submission then {

79 id := submissionsRev/1;

80 submissions := submission(id,submissions);

81 submissionsRev := submissions/2;

82 } else {

83 stop := true(empty,empty);

84 };

85 };

86 };

87

88 // 8. Presenting the result.

89 subDB := root(submissions,empty);

90 subDB_Output := subDB;

91 };

Listing 2.1: The implementation of the functionality of the pseudo code
of Listing 1.1 in the assembly language for tree manipulation.

Listing 2.1 shows the implementation of the functionality of the pseudo code
of Listing 1.1 in the assembly language for tree manipulation. The program as-
sumes that the binary representation of a database like that in Figure 2.1 is given
in the variable subDB, and the modified database at the end of the computation
is stored in variable subDB Output. The identifier of the paper, the acceptance
value of which is to be updated is stored in variable paperId, the average of
the scores already submitted for the paper is stored in variable averageScore.
Each time the program is executed, first the actual phase of the review process
is determined based on the value of phase. In case we are in the “review” phase,
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the program modifies the database based on the average score corresponding to
the specified paper. In the phase “notify”, the program assigns the database
to the variable toAuthors, which is visible by the authors. The code itself is
divided into 12 separate sections. In the first section the actual phase is deter-
mined. The second section initializes some variables that will be necessary later
on during the computation. In particular, the variable submissions is initial-
ized with the first child of the tree stored in variable subDB. The third section is
a branching decision based on the value of averageScore. The corresponding
Boolean expression averageScore < ’1.5’ at line 13 is an example of an inter-
preted Boolean function λb. The functionalities of the branches are very similar,
because they implement a tree manipulation specified by identical XPath expres-
sions at lines 15 and 22 in Listing 1.1. We tried to emphasize the correspondence
of some fragments of code in the two branches. Therefore, for example, the sec-
tion responsible for querying the submission identified by paperId is numbered
4/tt in the positive branch and 4/ff in the negative branch. Accordingly, the
fourth section is the query in both of the branches, which selects the submission
with identifier as it is stored in variable paperId. In each iteration of the loops
at lines 17 and 54, the head of the list of submissions is examined, whether it
corresponds to the document with the right identifier. If not, then the head is
appended to the list submissionsRev. Accordingly, submissionsRev contains
a prefix of the initial value of submissions in reverse order. The examination
of identifiers is carried out by the branching constructs at lines 20 and 57, where
the Boolean expression is idVal = paperId. This expression is an other exam-
ple of an interpreted Boolean expression λb. The fifth section assigns a value
to the variable acceptanceVal depending on the average of scores given. Next,
the data structure for the actual paper is reassembled in both of the branches
and appended to submissions. The seventh section reconstructs the original
order of papers in the database submissions using submissionsRev. By this
last iteration the database is reconstructed so that only the acceptance value of
the appropriate submission is modified. Note that the list of trees as it is stored
in variable submissions at the end of section 7 corresponds to a binary forest.
The second child of the root of the binary representation of an unranked tree is
always #. Therefore, by the first line of section 8 the binary representation of
the unranked database is restored, and the second line assigns it to the output
variable.

2.1.3 Information Flow Policies

In the seminal paper [26] Denning made the observation, that information flow
policies must be necessarily composable in terms of lattices. Our information
flow policies considering trees adhere to this observation. The simplest infor-
mation flow lattice is low v high specifying that pieces of information classified
high must not be observed by principals classified low . In this work we group
the pieces of information and the principals participating in the activities of
workflows into these two groups as well.

In this work we consider programs manipulating tree-shaped data, therefore,
information flow policies classify nodes in trees. Our techniques can enforce
information flow policies, where the secrecy level of nodes does not decrease on
the paths from the root to the leaves. A policy is defined in terms of public views
corresponding to the elements of the information flow lattice. The public view
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corresponding to a lattice element ξ can be obtained by replacing the greatest
subtrees, the roots of which have secrecy level higher than ξ with a leaf labeled
?. In our case, where the information flow lattice consists of two elements, the
information flow policy is defined by a single public view corresponding to the
element low . The view corresponding to high is not necessary because that is
identical to the entire document without nodes labeled ?.

submission

id

acceptance’123’

#

submission

id

acceptance’42’

#

root

#

#

?

?

Figure 2.5: The policy specifying that the acceptance values of the submissions
in the data structure of Figure 2.1 are secret.

As an example, let us compose an information flow policy specifying that the
acceptance values of submissions in the database of Figure 2.1 are secret. This
is done by the policy in Figure 2.5, where the leaves labeled with the acceptance
values are replaced with nullary nodes labeled ?.

Information flow policies for programs realizing a function from the initial
state to the final state are frequently defined in terms of these states. We call
these policies end-to-end information flow policies, in order to emphasize their
difference to temporal information flow policies characterizing the sequence of
values exchanged between a system and its environment during the execution.

2.2 The Runtime Monitor through an Example

Similarly to other runtime monitors, e.g., [77, 38, 66, 64], in order to enforce
information flow properties, we extend the configuration of the semantics of the
language with an additional member. The new member D : (X → BΣ2,Σ0∪{?})∪
{⊥,>, }, referred to as the monitor state, assigns to every variable either a
binary tree having the extra nullary alphabet element ?, or is one of the symbols
⊥, > and  . Intuitively, D(x) stores the public view of the value of the variable
x in the corresponding real state s. The monitor recalculates D in parallel to
each transition of the operational semantics, and at the end the final monitor
state is presented as the result of the computation for principals belonging to
the security lattice element low .

1 empty:=#;

2 if top(author)=A_Mustermann then {

3 if top(topic)=Databases then {

4 rev2:=conflict(empty,rev2);

5 rev1:=listElem(doc,rev1);

6 }

7 else {

8 rev2:=conflict(empty,rev2);
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9 rev3:=listElem(doc,rev3);

10 };

11 }

12 else {

13 skip;

14 };

Listing 2.2: Branching on a secret value.

In the next paragraphs, we informally illustrate the functionality of the run-
time monitor by an example. The code fragment in Listing 2.2 could be part of
a paper submission system distributing the papers to reviewers. Let us suppose
that reviewer 2 declared a conflict of interest with the author A. Mustermann,
and therefore the distribution system is not allowed to send information to him
about the content. Therefore, from the point of view of reviewer 2, the topic
of the paper of A. Mustermann is secret too. Let us suppose that the runtime
monitor reaches line 3 of the code in Listing 2.2 with monitor state:

D0 = {..., topic 7→ ?, rev1 7→ #, rev2 7→ listElem(document(...), #), ...}

Because the conditional expression depends on the secret, constant propagation
is carried out on this branching command. We can identify the value ? with
the top element of constant propagation expressing that the value is not con-
stant and therefore, may leak information about the secret. After executing the
branches we get:

Dthen = {..., rev1 7→ listElem(document(...), #),
rev2 7→ conflict(#, listElem(document(...), #)), ...}

Delse = {..., rev1 7→ #, rev2 7→ conflict(#, listElem(document(...), #)), ...}

After the join computation we have:

D = {..., rev1 7→ ?, rev2 7→ conflict(#, listElem(document(...), #)), ...}

Computing the join of two states can be done by replacing the values of
variables at positions where they differ, with the symbol ?. In this way, it is
guaranteed that the monitor state is independent of the secret after the branch-
ing construct. For the join computation, therefore, it is not necessary to replace

author

authorM. Smith
authorJ. Doe

R. Miles

author

authorM. Smith
authorR. Miles

J. Doe

author

authorM. Smith
author?
?

⊔
=

Figure 2.6: The join on document trees, where the leaves labeled # are omitted
for the sake of simplicity.

the entire value of a variable with ? if the two values differ only for certain
subtrees. Figure 2.6 illustrates the join computation for the values of variable
authors in monitor states Dthen and Delse in a situation like that. The vari-
able contains a list of authors and their documents that they submitted. Let
us suppose that the order of two authors has been exchanged in one of the two
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secret-dependent conditional branches in order to leak information. By com-
puting the join, we only need to replace those members of the list which were
exchanged, but we can leave the others as they are. In this way, we take the
semi-structured nature of data into account and gain additional precision.

Another advantage of our approach is the following. Because in the code
fragment of Listing 2.2 the variable rev2 is assigned in a secret branch, many
information flow analyzers would consider its value secret. The solutions mo-
tivated by the type system of Volpano et al. [78] like Jif [56, 4], SIF [19] and
Paralocks [17] do so because the variable rev2 has been assigned in an environ-
ment, where the program counter depends on the secret and therefore is high.
Similarly behave runtime monitors [77, 38, 66, 64] for the same reason. The
program slicing [43] based solutions like Joana [41] do so, because of the control
dependence edges from the conditional expressions to assignments. Our idea is
based on the observation that in the final configuration the value of the variable
rev2 is independent of the value of topic. This could happen, perhaps, because
the program noticed by the embedding branching decision, that the content of
the paper is secret and behaved correctly. Accordingly, the observation of rev2
does not give us information on the secret value. Our runtime monitor would
consider the value of rev2 as public, because it determines the confidential parts
of values by means of the join computation after exiting from branching com-
mands depending on secret values. There are approaches based on bisimulation,
e.g. [51, 47], allowing public assignments in secret branches, if the equivalence
of the public effects of these branches is proved. Because program equivalence is
in general undecidable, these solutions rely on syntactic approximations. In our
solution if programs p and q are equivalent, they do not read confidential vari-
ables, and they terminate, then the result of if secret=0 then {p} else {q}
is recognized public regardless of the syntactic representation of p and q.

In the next section we formally elaborate the ideas introduced here.

2.3 Formal Treatment of the Monitor

In order to describe the runtime monitor formally, we need some more defini-
tions. In the following, we regard a tree τ as a mapping from its positions Pos(τ)
to the alphabet Σ = Σ2∪Σ0∪{?}, where the domain is a prefix closed subset of
{1, 2}∗. Accordingly, we use the notation τ(π) to refer to the alphabet element
at position π of the tree τ . If a node π of τ has successors, then τ(π) ∈ Σ2,
otherwise τ(π) ∈ Σ0 ∪ {?}. We denote the subtrees rooted at the first and the
second child of the root of τ with τ/1 and τ/2 respectively.

Definition 2 (Preorder of Trees). If τ1, τ2 ∈ BΣ2,Σ0∪{?} then τ1 v τ2 holds if
one of the following is true:

• τ2(ε) = ?.

• τ2(ε) 6= ? and τ1(ε) = τ2(ε), furthermore, if τ1(ε) ∈ Σ2 then τ1/1 v τ2/1
and τ1/2 v τ2/2.

In Definition 2 the symbol ? occurs as an additional nullary element, which
represents a secret subtree in the public view. Similarly to the state, the monitor
state can also be erroneous, denoted by  , meaning that the execution reached
an inconsistent situation. It is also possible that the error state itself depends
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MJtop(x)=σK]D =


D if D(x)(ε) = σ
D[x 7→ σ(?, ?)] if D(x) = ? and σ ∈ Σ2

D[x 7→ σ] if D(x) = ? and σ ∈ Σ0

⊥ otherwise

(2.1)

MJ¬top(x)=σK]D =

{
D if D(x)(ε) 6= σ

⊥ if D(x)(ε) = σ
(2.2)

MJx:=yK]D = D[x 7→ D(y)] MJx:=#K]D = D[x 7→ #]

MJx:=σ2(x1,x2)K
]
D = D[x 7→ σ2(D(x1), D(x2))] where σ2 ∈ Σ2

MJskipK]D = D

(2.3)

MJx:=y/1K]D =


D[x 7→ τ1] if D(y) = σ2(τ1,τ2) for some σ2

> if D(y) = ?

 otherwise

MJx:=y/2K]D =


D[x 7→ τ2] if D(y) = σ2(τ1,τ2) for some σ2

> if D(y) = ?

 otherwise

(2.4)

MJλb(x1,x2,...)K
]
D = D′

where D′ =
d
{D∗ | ∀s v D : Jλb(x1,x2,...)Ks v D∗}

(2.5)

MJx:=λt(x1,x2,...)K
]
D = D′

where D′ =
d
{D∗ | ∀s v D : Jx:=λt(x1,x2,...)Ks v D∗}

(2.6)

MJfK]D = D if D ∈ { ,>,⊥}
for all assignments and Boolean expressions f

(2.7)

Figure 2.7: Monitor state transformers of assignments and Boolean expressions.
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on the secret. This happens for instance, if one conditional branch of a decision
depending on the secret exhibits an error, while the other does not. We have in-
troduced the top element > to represent this case. For the monitor state, a data
flow analysis will be performed to approximate the public view after a secret-
dependent branching construct. For this analysis, a bottom element (denoting
unreachability) comes in handy to obtain a complete lattice (see Definition 3).

Definition 3 (Complete Lattice of Monitor States). The complete lattice of
monitor states is D = (X → BΣ2,Σ0∪{?}) ∪ { ,>,⊥}. For any D1, D2 ∈ D the
relation D1 v D2 holds if one of the following is true:

• D1 = ⊥

• D2 = >

• D1 =  and D2 =  

• If D1, D2 6∈ { ,>,⊥} then for all variables x it holds that D1(x) v D2(x)
according to Definition 2.

The idea of the monitored execution is to carry out the state transformations
on the real state and on the monitor state in parallel. For each assignment or
Boolean expression f the function JfK is carried out on the real state s, and the

function MJfK] is carried out on the monitor state D. The function MJfK] is

defined so that whenever s v D then JfKs vMJfK]D holds too. The intuitive
meaning of the relation v between the real state and the monitor state is that
they agree on public values, and this is the property our monitor guarantees
along the run.

The state transformers for monitor states are shown in Figure 2.7, where the
effects of Boolean expressions are displayed by formulae (2.1) and (2.2). Boolean
expressions are transformations on the monitor state just as tree expressions are.
Basically, a Boolean expression b holds on the monitor state D (i.e.,MJbK]D =
D) if there is potentially a state s where s v D and JbKs = s. In the other case
the result is ⊥, which represents unreachability. In (2.1) however, additional
modifications are carried out on the monitor state. The content of the variable
x is transformed to the greatest tree that does not equal to ?, for which the
Boolean expression holds. The purpose of the transformation is to enhance
precision while preserving soundness.

1 if top(x)=σ2 then {

2 y:=x/2;

3 ...

4 } else { ... };

Consider the listing above having an assignment y:=x/2 in the positive branch
of a branching construct. Since the condition tests the label of the root of the
tree in x for the symbol σ2 ∈ Σ2, it is impossible that the root of the value in x

at line 2 is labeled with an element of Σ0. Therefore, the monitor state after the
assignment does not need to represent the error state, which cannot happen for
any real state anyway. On the other hand, soundness is preserved by the fact
that the monitor state of the negative branch is not modified by the Boolean
expression (2.2). Therefore, the final monitor states of both branches are in the
desirable relation with all possible real states, given that the relation was also
present initially.
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The monitor state transformers corresponding to assignments as shown by
(2.3) and (2.4) are almost identical to the real state transformers in Figure 2.3.
The only difference is in (2.4), where there is an additional case for the situation,
when the children of a leaf with label ? are addressed. Depending on the secret,
the result of the expression on the corresponding real state may possibly be
 but it is not necessary. Therefore, the monitor state must be switched to
>, in order to indicate that the occurrence of the error state may depend on
confidential information.

CA:
D 6∈ { ,>}

〈x:=e, n, (s,D)〉 →γ (Jx:=eKs,MJx:=eK]D)

CCE:
D ∈ { ,>} 〈c, s〉 →∗ρ s′
〈c, n, (s,D)〉 →γ (s′, D)

CS:
〈c, n, (s,D)〉 →∗γ (s′, D′)

〈c;p, n, (s,D)〉 →γ 〈p, n, (s′, D′)〉

CIT:
D 6∈ { ,>} MJ¬bK]D = ⊥ 〈ptt, n, (s,D)〉 →∗γ (s′, D′)

〈if b then {ptt} else {pff}, n, (s,D)〉 →γ (s′, D′)

CIF:
D 6∈ { ,>} MJbK]D = ⊥ 〈pff, n, (s,D)〉 →∗γ (s′, D′)

〈if b then {ptt} else {pff}, n, (s,D)〉 →γ (s′, D′)

CIH:

D 6∈ { ,>} MJbK]D 6= ⊥ MJ¬bK]D 6= ⊥
〈if b then {ptt} else {pff}, s〉 →∗ρ s′

〈(if b then {ptt} else {pff}), s,D〉 →∗µ D′
〈if b then {ptt} else {pff}, n, (s,D)〉 →γ (s′, D′)

CWT:
D 6∈ { ,>} MJ¬bK]D = ⊥ 〈p, n, (s,D)〉 →∗γ (s′, D′)

〈while b do {p}, n, (s,D)〉 →γ 〈while b do {p}, n, (s′, D′)〉

CWF:
D 6∈ { ,>} MJbK]D = ⊥

〈while b do {p}, n, (s,D)〉 →γ (s,D)

CWH:

D 6∈ { ,>} MJbK]D 6= ⊥ MJ¬bK]D 6= ⊥
〈while b do {p}, s〉 →∗ρ s′ 〈(while b do {p})(n), D〉 →∗µ D′

〈while b do {p}, n, (s,D)〉 →γ (s′, D′)

Figure 2.8: The monitored semantics.

The transformers corresponding to interpreted functions λb and λt are speci-
fied by (2.5) and (2.6). Since the real semantics of these functions are unknown,
the equations only specify the conditions that need to be fulfilled by all possible
sound runtime monitors. Accordingly, the resulting monitor state D′ needs to be
greater or equal to all possible resulting real states. An additional requirement
against D′ is that it needs to be the least among those that fulfill the previous
requirement. This way, the resulting monitor state is the smallest among those
that are sound with respect to the concrete state transformer.

The semantics of the monitored execution is defined in the form of relations
cfg →γ cfg ′ between configurations of the form 〈p, n, (s,D)〉, where p is a pro-



20 CHAPTER 2. RUNTIME MONITOR
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Figure 2.9: A monitored execution of the example program at Listing 2.2, where
the numbers of edges identify the line in the code they stand for. In particular,
the meaning of ¬3 is that the negated version of the Boolean expression of line
3 is executed.

gram to be executed and s is the state of the execution. The member D is the
public view of the state s, which we call the monitor state, s is called the real
state. The member n is a natural number influencing the precision of the mon-
itor when computing the public effect of branching constructs. Larger values
correspond to enhanced precision and longer computation time. In the initial
configuration 〈p0, n, (s0, D0)〉 it holds that s0 v D0. Furthermore, there are no
trees with nodes labeled ? in the contents of s0.

The transition rules of the monitored semantics are shown in Figure 2.8, and
a monitored execution of the program in Listing 2.2 is illustrated in Figure 2.9.
As long as the monitored semantics does not execute a branching construct,
the condition of which depends on the secret, the monitored execution carries
out the transformations on s and D simultaneously. Accordingly, assignments
are executed in parallel on s and on D as it is defined by rule CA. If the
monitor state D ∈ {>,⊥, }, then it is simply propagated to the next command
in the sequence using rule CCE. The truth values of Boolean expressions are
determined based on the monitor state. If MJbK]D = ⊥, then we assume ¬b to
be true. Accordingly, since the content of the variable author does not depend
on the secret, line 2 of Listing 2.2 is executed on the monitor and the real
state using rule CIT in Figure 2.8. In case MJbK]D 6= ⊥ and MJ¬bK]D 6=
⊥ simultaneously, we execute a branching construct, the condition of which
may depend on the secret. In this case, according to rules CIH and CWH,
the result of the branching command on the real state is computed using the
original semantics of Figure 2.4, the resulting monitor state is computed using
a generalized constant propagation algorithm. This is visualized in Figure 2.9,
where multiple branches of a branching construct are executed on the monitor
state using rules →µ. At the common final node of the branches the results of
the branches are joined in order to compute the result of the whole branching
construct.

The parameter n in the configuration of the monitored execution is used by
the generalized constant propagation algorithm. Assume that the command c
in the configuration 〈c;p, n, (s,D)〉 is a branching construct, the condition of
which depends on the secret. In this case we apply the generalized constant
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propagation on the command c(n), which we construct based on c by replacing
all occurrences of the command while b do {p} in the program text of c by
while(n) b do {p}.

MCE:
D ∈ {>,⊥, }
〈c,D〉 →µ D

MA:
D 6∈ {>,⊥, }

〈x:=e,D〉 →µMJx:=eK]D

MS:
〈c,D〉 →∗µ D′

〈c;p,D〉 →µ 〈p,D′〉

MI:

〈ptt,MJbK]D〉 →∗µ Dtt 〈pff,MJ¬bK]D〉 →∗µ Dff

D 6∈ {>,⊥, } D′ = Dtt tDff

〈if b then {ptt} else {pff}, D〉 →µ D
′

MWT:
D 6∈ {>,⊥, } MJ¬bK]D = ⊥ n > 0 〈p,MJbK]D〉 →∗µ D′
〈while(n) b do {p}, D〉 →µ 〈while(n− 1) b do {p}, D′〉

MWF:
D 6∈ {>,⊥, } MJbK]D = ⊥
〈while(n) b do {p}, D〉 →µ D

MWH:

(MJ¬bK]D 6= ⊥ ∧MJbK]D 6= ⊥) ∨ n ≤ 0

D 6∈ {>,⊥, } 〈p,MJbK]D〉 →∗µ D1 D′ = D1 tD D′ 6v D
〈while(n) b do {p}, D〉 →µ 〈while(n− 1) b do {p}, D′〉

MWX:

(MJ¬bK]D 6= ⊥ ∧MJbK]D 6= ⊥) ∨ n ≤ 0

D 6∈ {>,⊥, } 〈p,MJbK]D〉 →∗µ D1 D′ = D1 tD D′ v D
〈while(n) b do {p}, D〉 →µ D

Figure 2.10: Generalized constant propagation.

The generalized constant propagation algorithm is defined in Figure 2.10,
which is basically the rule-based formalization of a syntax-directed fixed-point
computation algorithm on the program text as it is presented in [15]. The lattice
is the set of possible monitor states according to Definition 3.

The rules defining the functionality of assignment (MA), sequential execution
of commands (MS), and the propagation of the states >, ⊥ and  (MCE) are
very similar to rules A, S and E of the original semantics. The only difference
is at rule MCE, which propagates the states ⊥ and > unmodified as well.

The rule MI is responsible for computing the monitor state transformation
corresponding to an if command. It evaluates both branches with initial states
MJbK]D and MJ¬bK]D and then joins the results.

The rules MWT, MWF, MWH and MWX are used to compute the public
effect of iterations. If the parameter n is less or equal to zero, or the condition b
is secret-dependent, then a fixed point is computed by rules MWH and MWX. If,
however, the condition is independent of the secret, and n is greater than zero,
the monitor executes the body of the loop iteratively by applying rules MWT
and MWF. At the same time this might not terminate. So the purpose of n is
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to allow the user to specify how many times the monitor should apply the rule
MWT before switching to the fixed point computation. In particular, setting
the parameter n to zero in the initial configuration of the monitored execution
〈p, n, (s,D)〉 amounts to choosing to omit the application of rules MWT and
MWF, and use only the fixed point computation offered by rules MWH and
MWX. At the same time this might result in an unnecessarily inaccurate monitor
state.

Because the complete lattice of Definition 3 has the ascending chain condi-
tion, as Theorem 1 states below, the fixed point computation always terminates.

Theorem 1. If there is an s′ so that s v D and 〈p, s〉 →∗ρ s′, then there is a
D′ so that 〈p, n, (s,D)〉 →∗γ (s′, D′).

Proof. The idea behind the proof is the following: If there is no branching
construct executed having a secret-dependent condition along the monitored
execution, then the state transitions are carried out simultaneously on the real
state and on the monitor state.

In the case of a branching construct having a secret-dependent condition,
the public effect is computed by the algorithm in Figure 2.10. The only rule,
which could be applied an unbounded number of times is MWH, but because
the lattice of Definition 3 has the ascending chain condition, the fixed point
computation terminates. For the detailed proof of this case please refer to
Lemma 3 in Section 6.1.

2.4 Guarantees

In this section we formally discuss the guarantees provided by the runtime mon-
itor.

Similarly to other language-based information flow controlling solutions [27,
56, 4, 65, 64, 41, 38, 77], our approach enforces a variant of termination-
insensitive noninterference [7] tailored for our computational model. Accord-
ingly, we do not consider covert channels like the timing channel, the heat
channel, or the memory consumption channel, or any other channel that could
result from the properties of a specific implementation or runtime environment.

Definition 4 (Termination-Insensitive Noninterference1). Program p satisfies
termination-insensitive noninterference relative to the initial and final public
views D and D′ if and only if for all s1, s2 v D it is true that if

• 〈p, s1〉 →∗ρ s′1 and

• 〈p, s2〉 →∗ρ s′2
then s′1 v D′ and s′2 v D′ hold too. In this case we say that D′ is an appropriate
final public view corresponding to the program p and the initial public view D.

The monitored execution 〈p, n, (s,D)〉 →∗γ (s′, D′) computes a pair (s′, D′) based
on (s,D), where D′ is an appropriate final public view corresponding to p and D.
We may consider the public view D as an indistinguishability relation between

1There is an algebraically equivalent and simpler formulation to this definition: Program
p satisfies termination-insensitive noninterference relative to D and D′, if for all s v D from
〈p, s〉 →∗ρ s′ it follows that s′ v D′.
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any initial states s∗, for which it holds that s∗ v D. The meaning of the
resulting monitor state D′ is that by observing it, we do not gain information
on which s∗ was the initial state. Accordingly, we can communicate parts or the
entire final public view D′ to principals having security clearance low , and we
can consider nodes labeled ? as a default value that secret pieces of information
have been replaced with. If D′ = >, then the observers of the public do not gain
more information than the fact that the execution of the program terminated.
Still, principals with security clearance high may observe the resulting real state
s′, and use the computed values.

The following theorem assures us that our monitor computes indeed an ap-
propriate final public view corresponding to the program and the initial public
view:

Theorem 2. If there are two initial states s1 and s2 so that s1, s2 v D, then if

• 〈p, n, (s1, D)〉 →∗γ (s′1, D
′
1) and

• 〈p, n, (s2, D)〉 →∗γ (s′2, D
′
2)

then D′1 = D′2 = D′ and s′1 v D′ and s′2 v D′.

Proof. The result follows from Lemma 9 and Lemma 8 in Section 6.1.

2.5 Related Work

We have presented an approach to enforce information flow security in tree ma-
nipulating processes during runtime. Since practical information flow policies
refer to the structure of data, approaches where security specifications are bound
to variables such as [4, 56, 41, 17, 19, 38, 77] may not suffice. In their paper [64],
Russo et al. aim at a similar goal like us. In their formal model of JavaScript,
they consider one DOM tree representing the data in a Web browser. However,
their formalism is still quite different to ours. Their computational model op-
erates on a single unranked tree using a pointer on one specific working node,
and supports operations like insertion, modification and removal. Since their
monitor maintains the security levels of the positions of the DOM tree during
the run, it can be considered as a generalization of the idea of binding secrecy
levels to variables. Our monitor, on the other hand, maintains the concrete
values of public nodes making it possible to take the semantics of branches into
account where the conditional depends on the secret, and compute the public
effect by means of a value-based comparison of the resulting states.

An approach based on abstract interpretation has been presented in [34],
where the security of programs is investigated depending on the observational
capabilities of attackers. If the public input values are handled as constants in
the initial state, then no information leaks to public variables in the final state,
if the property that the attackers can observe can be proved to be constant. Our
generalized constant propagation used to compute the public effect of secret-
dependent branching constructs is based on a similar observation.
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Chapter 3

Relational Abstract
Interpretation

In this chapter we introduce a framework for proving 2-hypersafety properties
of programs by means of abstract interpretation. The main idea is to apply ab-
stract interpretation on the self-compositions of the control flow graphs (CFG)
of programs. As a result, our method is inherently capable of analyzing rela-
tional properties of even dissimilar programs.

Constructing self-compositions of control flow graphs is nontrivial. There-
fore, we present an algorithm for constructing quality self-compositions driven
by a tree distance measure between the abstract syntax trees of subprograms.
Finally, we demonstrate the applicability of the approach by proving intricate
information flow properties of programs written in the assembly language for
tree manipulation motivated by the Web Services Business Process Execution
Language (BPEL) [6].

Abstract interpretation [23] is a well established approach for proving safety
properties of programs. However, an interesting class of properties, namely
information flow properties, are best formalized not as safety properties, but as
safety hyperproperties [21]. Safety hyperproperties are not invariants maintained
by individual runs of systems but are properties of multiple runs.

The authors of [21] have observed that the verification of k-hypersafety prop-
erties can be reduced to the verification of ordinary safety properties of the k-fold
self-composition of programs. In this chapter we apply this idea to control-flow
graphs, and present a method for proving 2-hypersafety properties. We apply
the general approach for proving the noninterference of programs written in the
assembly language for tree manipulation as presented in Figure 2.2.

Noninterference means that two executions are indistinguishable based on
public observations if their initial states differ in secret data only [36]. Consider,
e.g., the code fragment in Listing 1.1 written in a pseudo language similar
to BPEL. Our goal is to prove that the value of variable averageScore only
interferes with the acceptance status in the description of the corresponding
submission, but neither with its identifier nor with the size of the database etc.
It is challenging, because data manipulation is carried out in different branches
depending on the secret. By comparing two executions corresponding to the
two branches of the if construct at line 10 in Listing 1.1, we notice, however,

25
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that only the acceptance status of the paper with the given id can be different
in the results, while all public data remains equal. In this chapter we show a
method to prove properties like this automatically using static analysis.

We regard the execution of a program as the sequence of assignments and
condition evaluations that take place during the computation. We take ad-
vantage of the fact that inserting skip instructions into arbitrary places of an
execution does not change the result. Therefore, different alignments of a pair
of executions can be achieved by the insertion of skip instructions. Knowing
an initial abstract value describing the potential set of pairs of initial states,
we are interested in computing the final abstract value describing the possible
set of pairs of states that can result from any pairs of executions. For that we
require a relational abstract domain describing pairs of concrete states, together
with abstract transformers for pairs of instructions set in alignment within the
two executions. The abstract effect of a given pair of executions w.r.t. a fixed
alignment of instructions is obtained by applying the composition of the occur-
ring transformers to the initial abstract value. Since the abstract effect of any
alignment results in a safe overapproximation of the desired outcome, we can
approximate it by the greatest lower bound over all alignments. In order to
obtain a safe approximation for all pairs of executions reaching a given pair of
program points, we then take the least upper bound of the values provided for
each pair of executions individually. We refer to this value as the merge over
all twin computations (MTC) solution, and consider it as the ideal solution of
the analysis problem.

In general, it might be difficult to compute the MTC solution directly. In-
stead, we propose to select one promising static alignment of instructions for
each pair of executions resulting in a self-composition of the CFG of the program.
Here, the key problem is to find decent self-compositions of CFGs, which is non-
trivial. Therefore, we present an algorithm to construct them recursively based
on the abstract syntax trees of programs. In order to achieve good precision, the
structural similarities of two subprograms are taken into account using a tree
distance measure during the construction. Once a particular self-composition
of the CFG is ready, an over-approximation of the MTC solution is obtained as
a solution to a constraint system formulated based on the self-composition.

Our goal is to apply the general approach described above to verify the se-
curity of web service orchestrations implemented, e.g., in BPEL. Accordingly,
information flow policies are composed in terms of public views of document
trees specifying the potential positions of secrets. We introduce an abstract do-
main based on regular sets of public views of documents together with abstract
transformers modeling operations on document trees using Horn clauses. During
the analysis implications are generated to specify the relations of abstract values
corresponding to the nodes of the self-composition of the CFG. These implica-
tions fall into a special class, which can be solved e.g., using H1-normalization
[60, 79].

In order to simplify the presentation and concentrate on the key issues of
information flow, we restricted ourselves to the assembly language for tree ma-
nipulation as it is presented in Figure 2.2.

To summarize, this chapter presents the following contributions:

• We define the ideal solution of the analysis problem of pairs of executions
of a program, and propose to overapproximate it by applying abstract
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interpretation on a particular self-composition of the corresponding CFG.

• A concrete algorithm for the construction of self-compositions of CFGs is
proposed, which is driven by a tree distance measure in order to take into
account the similarities of subprograms.

• The applicability of the general framework is demonstrated using a com-
plex abstract domain for semi-structured data. Based on the self-composi-
tion of the CFG of a tree-manipulating program, a translation is proposed
into Horn clauses, which can be solved, e.g., by means ofH1-normalization
[60, 79].

• The approach is evaluated on case studies found in the literature [29, 11, 2].

The rest of this chapter is structured as follows. In Section 3.1 the theoretical
framework is elaborated. In Section 3.2 we present a method to construct the
necessary self-compositions of CFGs based on structured programs, while in
Section 3.3 we instantiate our approach for the case of the assembly language
for tree-manipulation and information flow policies composed as regular sets
of public views of document trees. In Section 3.4 we validate the presented
analysis using practical experiments on case studies found in the literature. In
Section 3.5 we describe a technique to enhance the precision of the analysis
using multiple self-compositions of a CFG. Finally, in Section 3.6 we relate our
work to others.

3.1 Merge over all Twin Computations

In this section we establish the formal foundations for proving 2-hypersafety
properties using relational abstract interpretation.

We define the semantics of programs by means of control flow graphs (CFG).
A CFG is a tuple G = (N,E, nin , nfi) consisting of a set of nodes N including
the unique initial and final nodes nin and nfi , and a set of directed and labeled
edges E. Members of the set E are of the form (n1, f, n2), where the nodes
n1 ∈ N and n2 ∈ N are the initial and final nodes of the edge and the label
is f . Labels f of edges represent state transformers JfK : S 9 S, which are
partial mappings on the set of states S. We presume the existence of a special
label skip with JskipKs = s for all s ∈ S. A run or execution of a program
is defined by a path from the initial node to the final node. The effect of the
sequence of labels π = f1...fn of edges in a run is given by the composition of
the effects of the individual labels: JπKs0 = Jf1...fnKs0 = (JfnK ◦ ... ◦ Jf1K)s0. In
the remainder, we denote the set of sequences of labels of paths from node n1

to node n2 by n1  n2.
Properties we aim to verify in this chapter are defined below:

Definition 5 (2-Hypersafety Properties). We define a 2-hypersafety property
by an initial and a final relation of program states ρin , ρfi ⊆ S × S. A program
given by CFG G = (N,E, nin , nfi) satisfies the 2-hypersafety property specified
by ρin and ρfi , if for all pairs of initial states (s0, t0) ∈ ρin and all pairs of final
states s = Jπ1Ks0 and t = Jπ2Kt0 reachable by arbitrary computations π1, π2 ∈
nin  nfi , it holds that (s, t) ∈ ρfi .
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When applying abstract interpretation to this problem, we may choose a
Cartesian abstraction of pairs of states. This means that each program state in
the pairs is abstracted separately. Let us briefly argue why this approach may
often return unsatisfactory results. Consider, e.g., the program if h>’5’ then

{l:=l+’2’;} else {l:=l+’2’;};, with integer variables h and l. Assume that
ρ1 and ρ2 consist of all pairs of states where the values of variable l are equal.
Since the precise initial values for l are unknown, the final values for l will also
be unknown, implying that their equality cannot be inferred. Therefore, better
results can be obtained by using a relational abstraction of pairs of program
states. A relational abstraction of pairs of program states may record the fact
that the variables l in the two program states tracked in parallel, are equal, and
that this equality is preserved by all possible pairs of program executions.

The following definition is necessary in order to formalize the relation be-
tween concrete states and abstract values.

Definition 6 (Galois Connections). A Galois connection (A, α, γ,B) between
lattices (A,vA) and (B,vB) is a pair of functions α : A→ B and γ : B→ A so
that the following holds:

α(a) vB b⇔ a vA γ(b)

In general, let (Drel ,v) be a complete lattice forming a Galois connection
(P(S × S), α, γ,Drel) with the powerset of pairs of states P(S × S), where α :
P(S × S) → Drel is an abstraction function and γ : Drel → P(S × S) is a
concretization function. The only requirement against abstract transformers

S
r
f
g

z]
of pairs of labels

[
f
g

]
(otherwise called twin steps) is that they must

satisfy the following property:

γ(S
rf
g

z]
d) ⊇ {

[s′
t′

]
| ∃
[s
t

]
∈ γ(d) : JfKs = s′ ∧ JgKt = t′} (3.1)

Given two sequences, π1 and π2, the set of all possible alignments is defined

by the nonterminal A
[
π1

π2

]
according to the following grammar:

A
[
ε
ε

]
1−→ ε

A
[
ε
ε

]
2−→

[
skip
skip

]
A
[
ε
ε

]
A
[
ε
gπ

]
3−→

[
skip
g

]
A
[
ε
π

]
A
[
ε
gπ

]
4−→

[
skip
skip

]
A
[
ε
gπ

]
A
[
fπ
ε

]
5−→

[
f

skip

]
A
[
π
ε

]

A
[
fπ
ε

]
6−→

[
skip
skip

]
A
[
fπ
ε

]
A
[
fπ1

gπ2

]
7−→

[
skip
g

]
A
[
fπ1

π2

]
A
[
fπ1

gπ2

]
8−→

[
f

skip

]
A
[
π1

gπ2

]
A
[
fπ1

gπ2

]
9−→

[
f
g

]
A
[
π1

π2

]
A
[
fπ1

gπ2

]
10−→

[
skip
skip

]
A
[
fπ1

gπ2

]
(3.2)

We denote the language generated by the nonterminal A
[
π1

π2

]
by L

(
A
[
π1

π2

])
.

According to (3.2), an alignment of two sequences of labels of a CFG, π1 and
π2, is a sequence of twin steps ω representing both of the original runs. Note,
that the insertion of skip labels does not change the result of a run. Therefore,

if Jπ1Ks0 = s, Jπ2Kt0 = t, ω ∈ L
(
A
[
π1

π2

])
and ω =

[
f1

g1

]
...
[
fn
gn

]
, then we can

write that
[
s
t

]
= JωK

[
s0
t0

]
=
r[

f1

g1

]
...
[
fn
gn

]z[
s0
t0

]
=
r
fn
gn

z
◦ ... ◦

r
f1

g1

z[
s0
t0

]
, where[

si
ti

]
=
r
fi
gi

z[
si−1

ti−1

]
if si = JfiKsi−1 and ti = JgiKti−1 so that s = sn and t = tn.
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In later sections we are going to apply the alignment construction of (3.2)
to programs, i.e., sequences of commands. For the sake of clarity, in this case,
the alignment is denoted by Ω, where the members are pairs of commands.

Given two runs π1, π2 and an abstract value d0, we are interested in the most
precise abstract value d that can be computed using the abstract semantics of
twin steps:

d =
l

ω∈L
(
A

[
π1
π2

])SJωK]d0

Since there can be multiple pairs of paths executed on the members of the
concretization of an initial abstract value, we obtain a sound overapproximation
for the abstract value at any pair of nodes by computing the least upper bound
of the abstract effects for all possible pairs of paths of the CFG reaching these
nodes.

Definition 7 (The MTC Solution). Given a CFG G = (N,E, nin , nfi) and
the initial abstract value d0, the merge over all twin computations solution is
defined by:

MTC(G, d0) =
⊔

π1∈nin nfi
π2∈nin nfi

l

ω∈L
(
A

[
π1
π2

])SJωK]d0

The MTC solution can be considered as the extension of the meet over all
paths (MOP) solution of Kam and Ullman [45] to pairs of paths on the CFG.
We have:

Theorem 3. Consider a pair of sequences of labels π1, π2 ∈ nin  nfi on
the CFG G = (N,E, nin , nfi), and states s0, s, t0, t ∈ S, where s = Jπ1Ks0,

t = Jπ2Kt0 and
[
s0
t0

]
∈ γ(d0). In this case d w MTC(G, d0) implies

[
s
t

]
∈ γ(d).

The proof of Theorem 3 can be found in Section 6.2.
According to Theorem 3, the MTC solution is an abstraction of all possible

pairs of states resulting from any pair of executions of the program. In general it
might be difficult, though, to compute the MTC solution directly. A perhaps less
precise, but still sound solution is obtained by restricting the set of alignments

L(A
[
π1

π2

]
) for which the greatest lower bound is computed in the MTC solution.

In particular, we may even fix a single alignment for each pair of paths. A fixed
alignment like that can be obtained by constructing a self-composition GG of
the CFG G. Here, we define more generally, when a graph is a composition of
two CFGs.

Definition 8 (Composition of CFGs). Given the CFGs G = (NG, EG, nGin , n
G
fi )

and H = (NH , EH , nHin , n
H
fi ), GH = (N ′, E′, n′in , n

′
fi) is a composition of G and

H, if each edge in E′ has a label
[
f
g

]
where f and g are labels of G and H

respectively, or skip, and furthermore for all πG ∈ nGin  nGfi and πH ∈ nHin  
nHfi there is an ω ∈ n′in  n′fi so that ω ∈ L

(
A
[
πG
πH

])
.

According to Definition 8, a CFG GG is considered to be a self-composition
of G, if for all pairs of paths on G there is a path on GG so that the latter is
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an alignment of the former two paths. Note that due to the insertion of skip

operations, a self-composition may be quite different from the Cartesian product
of the two graphs, where every two aligned paths have exactly the same length.

Theorem 4. Given the CFG G = (N,E, nin , nfi) and one of its self-compo-
sitions GG = (N ′, E′, n′in , n

′
fi), the following holds for all d0:⊔

ω∈n′in n′fi

SJωK]d0 w MTC(G, d0)

Again, the proof of Theorem 4 can be found in Section 6.2. By Theorem
4, any overapproximation of the analysis problem [45] corresponding to the self
composition GG of G is a safe overapproximation of MTC(G, d0).

Proving a 2-hypersafety property by means of our methods proceeds in two
steps. First, a self-composition GG of the CFG is constructed. The graph GG
gives rise to a constraint system over a suitable relational abstract domain, which
describes how relations of states are transformed by pairs of edges. A solution
to this constraint system then provides the analysis result. Accordingly, the two
key practical problems consist in finding a decent self-composition and a decent
abstract domain that achieve reasonable precision at an acceptable price. Note
that different analysis results can be obtained if different self-compositions are
chosen. Theorem 4 guarantees that all results are sound, and therefore, their
greatest lower bound can be considered as the final result of the analysis.

3.2 Self-Compositions of Control Flow Graphs

When an appropriate alignment of computations is chosen, we assume that

abstract transformers S
r
f
f ′

z]
for pairs of identical or similar actions f, f ′ are

more precise than abstract transformers for arbitrary pairs. Therefore, the goal

is to maximize the number of edges labeled
[
f
f ′

]
in a self-composition of a

CFG. If the program in question has been specified by means of a structured
programming language, a quality self-composition can be obtained by means of
syntactically matching abstract syntax trees (ASTs) of program fragments. In
order to illustrate the approach, assume that programs are generated by the
nonterminal p of the grammar in Figure 2.2.

CFGs of programs are constructed by two mutually recursive functions “pro-
gram to CFG” (p2cfg) and “command to CFG” (c2cfg). The CFG correspond-
ing to a program p can be obtained by means of the function p2cfg(p, nin , nfi),
where the initial and final nodes of the resulting graph nin and nfi need to be
given as parameters. In case p = c1;...;cm;, then m− 1 fresh nodes are instan-
tiated, and c2cfg(ci, ni−1, ni) is called for each i to construct the CFG fragment
corresponding to the command ci so that n0 = nin and nm = nfi . c2cfg(skip, ni,
ni+1) = (ni, skip, ni+1) and c2cfg(x:=e, ni, ni+1) = (ni, x:=e, ni+1), further-
more, the CFG fragments corresponding to branching constructs are shown in
Figure 3.1.

A self-composition of the CFG corresponding to a program can be con-
structed by two mutually recursive functions “pair of programs to CFG” (pp2cfg)
and “pair of commands to CFG” (pc2cfg). The function pp2cfg can also be
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nin

nfi

nttin nffin

b ¬b

p2cfg(ptt, n
tt
in , nfi)

nfi

nin

¬b
b nttin

c2cfg(if b then { ptt} else {pff}, nin , nfi)

c2cfg(while b do {p}, nin , nfi)

p2cfg(pff, n
ff
in , nfi)

p2cfg(p, nttin , nin)

Figure 3.1: CFGs corresponding to branching constructs

called for two different programs in order to align the two alternatives in a con-
ditional. The function makes use of a distance measure for trees as introduced,
e.g., in [69]. The evaluation of pp2cfg(p1, p2, nin , nfi) proceeds in two steps:

Step 1: Computing a Best Alignment of Two Programs. Here, we
adapt the definition of alignments (3.2) to two sequences of commands. An
optimal alignment of two sequences of commands, c1;...;ck; and d1;...;dl;,
with respect to a tree distance measure td is the sequence of pairs of commands

Ωopt, where the sum of the distances td(c
Ωopt

i , d
Ωopt

i ) of the ASTs of the aligned

pairs of commands
[
c
Ωopt
i

d
Ωopt
i

]
is minimal. Formally, an optimal alignment Ωopt of

p1 = c1;...;ck; and p2 = d1;...;dl; is defined as:

Ωopt = arg min

Ω∈L
(
A

[
p1
p2

]) ∑
1≤i≤|Ω|

td(Ω[i].1,Ω[i].2) (3.3)

In (3.3), Ω[i] stands for the ith pair of commands in the sequence Ω, and Ω[i].1
and Ω[i].2 denote the first and second components of the pair respectively. In
our implementation we use the Robust Tree Edit Distance described in [62] as
tree distance measure.

Step 2: Computing the Compositions of CFGs of Pairs of Commands.
If the alignment is ready, the function pc2cfg(ci, di, ni−1, ni) is called for each
aligned pair of commands ci and di to construct the corresponding subgraph in
the self-composition between the nodes ni−1 and ni. Assume that the chosen

alignment of the two programs is Ω =
[
c1
d1

]
, ...,

[
ck
dk

]
. In this case for each

1 ≤ i ≤ k−1 we instantiate a fresh node, and call pc2cfg(ci, di, ni−1, ni) so that
n0 = nin and nk = nfi .

Now we discuss how the subgraphs corresponding to pairs of commands are
constructed. First, the roots of the abstract syntax trees corresponding to the
commands are examined. The roots of the ASTs corresponding to c and d are
considered composable in the following cases:
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ntt,ttin nff,ffin

nfi

nin

ntt,ffin nff,ttin

[
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] [
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]
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¬b1
b2

]

pp2cfg(p1
tt, p

2
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tt,ff
in , nfi)

pp2cfg(p1
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tt,tt
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2
ff, n
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in , nfi)

pp2cfg(p1
ff, p

2
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in , nfi)
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[
b1
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]
ntt,ttin

ntt,ffin

nff,ttin
nfi

[
¬b1
b2

]
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]
[
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]
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skip

]
[
skip
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]
[
¬b1
skip

]
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skip
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]

pp2cfg(p1, p2, n
tt,tt
in , nin)

skip2(p2cfg(p1, n
tt,ff
in , n′))

skip1(p2cfg(p2, n
ff,tt
in , n′′))

The resulting CFG of pc2cfg(while b1 do { p1}, while b2 do { p2}, nin , nfi):

The resulting CFG of pc2cfg(c1, c2, nin , nfi), where
c1 = if b1 then { p1

tt} else {p1
ff}, and

c2 = if b2 then { p2
tt} else {p2

ff}:

Figure 3.2: The compositions of CFGs corresponding to branching constructs
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• c = d = x := e or c = d = skip, i.e., in case of assignments the commands
need to be identical including the variable on the left and the expression
on the right.

• c = if b1 then {p1
tt} else {p1

ff} and d = if b2 then {p2
tt} else

{p2
ff}.

• c = while b1 do {p1} and d = while b2 do {p2}

In case the roots of the ASTs of the commands c and d are not composable,
then we put them in sequence. This is achieved by means of two additional
functions. The function skip1(G) replaces each label f of the edges of the graph

G with
[
skip
f

]
, and similarly, skip2(G) replaces these labels with

[
f

skip

]
. In

order to compute pc2cfg(c, d, nin , nfi) in this case, we instantiate a fresh node
n′ and compute skip2(c2cfg(c, nin , n

′)) and skip1(c2cfg(d, n′, nfi)).
It remains to consider a pair of commands c and d where the roots of the

corresponding ASTs are composable. If they are not branching constructs, then

pc2cfg(c, d, nin , nfi) = (nin ,
[
c
d

]
, nfi).

Now consider a pair of branching constructs. Their composition is defined
in Figure 3.2. The idea is to compose the CFGs of the bodies of the branching
constructs according to all possible valuations of the conditional expressions,
and then to connect them with edges so that they fulfill the conditions of com-
positions of CFGs stated in Definition 8. In particular, the composition of two
loops results in three. One loop handles the case when the bodies are executed
simultaneously, the other two execute the body of only one original loop. This
way we handle the situation when the two original loops execute a different
number of times.

Note that the functions pp2cfg and pc2cfg are mutually recursive. Accord-
ingly, subprograms at each level of the ASTs are aligned separately.

The following theorem states the correctness of the given construction.

Theorem 5. Consider a program p together with its CFG G as constructed by
the call p2cfg(p, nin , nfi). In this case, the CFG constructed by the function call
pp2cfg(p, p, n′in , n

′
fi) is a self-composition of G according to Definition 8.

Proof. The statement follows from Lemma 16 in Section 6.2.

For the following theorem, assume that the size of a CFG is defined as the
sum of the number of its nodes and its edges.

Theorem 6. Given that the CFG of program p as computed by the func-
tion p2cfg(p, nin , nfi) has size K, the self-composition computed by the function
pp2cfg(p, p, nin , nfi) has size O(K2).

Proof. The statement follows from Lemma 19 in Section 6.2.

According to Theorem 6, the size of the self-composition of a CFG is at most
quadratic in terms of its original size. In none of our practical experiments,
though, the theoretical upper bound was ever attained (see Section 3.4). In
all of our results presented in Section 3.4, the sizes of the self-compositions are
strictly less than ten times that of the original CFGs.
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3.3 Proving Noninterference

In this section we show how to apply the developments of Sections 3.1 and 3.2 in
order to verify the compliance of tree-manipulating programs with end-to-end
information flow policies.

In order to verify an information flow policy, our analysis maintains abstract
states d : X → P(BΣ2,{#,bv ,?}), which are mappings from variables to sets
of trees possibly containing occurrences of dedicated leaves bv and ?. A pair

of states
[
s
t

]
is in the concretization

[
s
t

]
∈ γ(d) of d, if for all variables x,[

s(x)
t(x)

]
∈ γ(d(x)) holds. Here, we overload the notation γ by applying it to the

concretization of abstract states as well as to the concretization of abstract sets
of trees. A pair of trees

[
τ1
τ2

]
is in the concretization of a set Λ of abstract

trees, if Λ contains a tree τ such that both τ1 and τ2 can be obtained from τ by
replacing the occurrences of bv with identical basic values, and the occurrences
of ? with any, possibly different subtrees. Consider, e.g., the language Λ =

{a( ? ,bv), b(bv, ? )}. Then
[
τ1
τ2

]
∈ γ(Λ) for τ1 = a(’Top secret!’,’42’),

and τ2 = a(’Top secret, too!’, ’42’). Accordingly, if
[
τ1
τ2

]
∈ γ(Λ), then

the elements of Λ can be considered as potential public views of the trees τ1 and
τ2, where the occurrences of ? identify the positions of secrets. A public view
is a piece of relational information on two trees in the sense that it determines
their common upper parts and the locations of potential secrets. Therefore,
information flow policies that can be verified by our method need to be given in
the form of sets of public views for each variable in the initial abstract state of
the analysis. In this chapter, abstract values d do not record precise information
on basic values. Leaves labeled bv only mark the positions of basic values having
secrecy level low .

For our analysis, we assume that the given set of public views for each pro-
gram variable in the initial abstract state is regular, and thus can be described
by a nondeterministic finite tree automaton [22]. A nondeterministic finite tree
automaton A is a tuple A = (Q,Σ2,Σ0, Qf ,∆) with the following members:

• Q is a finite set of states;

• Σ2 and Σ0 are the finite sets of binary and nullary alphabet elements
respectively;

• Qf is a finite set of accepting states;

• ∆ is a finite set of rules of the form:

q ← σ0

q ← σ2(q1, q2)

Above, we have that q, q1, q2 ∈ Q, σ0 ∈ Σ0 and σ2 ∈ Σ2.

A run of a tree automaton computes a final state for a tree by replacing its
subtrees by the members of Q bottom up according to the rules. An automaton
accepts a tree, if there is a run that results in an accepting state qf ∈ Qf .

In our analysis we use Horn clauses to define regular sets of trees. By identi-
fying the set of states Q with names of predicates, we can construct implications
describing the functionality of the rules the following way:
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• Rules of the form p← σ0 are represented by predicates of the form p(σ0)

stating that a leaf labeled σ0 is accepted by state p.

• Rules of the form p ← σ2(q, r) are represented by implications of the
form p(σ2(X1,X2))⇐ q(X1),r(X2). The implication states that if the
children of a node labeled σ2, are accepted by states q and r then the
corresponding subtree should be accepted by state p.

qSubmissions(submission)

qId(id)

qAcc(acceptance)qBV(bv)

qEmpty(#)

qSubmissions(submission)

qId(id)

qAcc(acceptance)qBV(bv)

qEmpty(#)

qSubDB(root)

qEmpty(#)

qEmpty(#)

qStar(?)

qStar(?)

Figure 3.3: The public view of the database of submissions shown in Figure 2.1
accepted by the predicate qSubDB defined by the implications of (3.4).

In our running example the acceptance state of submissions is confidential.
In (3.4) we give implications defining the public views of all possible databases,
and thus formalizing the corresponding information flow policy.

qSubDB(root(L,R))⇐ qSubmissions(L),qEmpty(R).

qSubmissions(submission(L,R)) ⇐ qId(L),qSubmissions(R)

qSubmissions(#).

qId(id(L,R)) ⇐ qBV(L),qAcc(R).

qAcc(acceptance(L,R)) ⇐ qStar(L),qEmpty(R).

qBV(bv). qStar( ? ). qEmpty(#).

(3.4)

As Figure 3.3 illustrates, the public view of a database accepted by the pred-
icate qSubDB is a tree with root labeled root having a first child accepted by
qSubmissions and a second child accepted by qEmpty. The other predicates can
be understood similarly. In particular, the predicate qAcc accepts only trees,
the first child of which is a leaf labeled ?, specifying that the corresponding
value is confidential.

Given an initial abstract state d0 describing the set of public views of pairs
of potential initial states, we are interested in computing the sets of potential
public views for every pair of jointly reachable program points. In our analysis,
the sets of public views for variables x occurring at nodes n of the CFG are
described by means of unary predicates varx,n, which are defined by means of
Horn clauses. Formally, τ ∈ d(x) at node n if varx,n(τ) holds. There are two
kinds of Horn clauses. The first group is used for specifying the set of initial
public views for each variable at the initial node nin . In our running example
the variable subDB contains the database in the initial state of our program,
therefore, the corresponding information for the initial node nin is defined by:
varsubDB,nin

(X) ⇐ qSubDB(X). The second group of clauses describes how the
public views at different program points are related to each other. These clauses
are obtained from the self-composition of the CFG.
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In order to deal with program errors as well, we additionally provide Boolean
values B and B? in abstract states. If B holds in the abstract state for a

program point, then
[
 
 

]
can be a member of the concretization. If B? holds,

then it is also possible that only one of component of a pair of concrete states
is  . This means that the occurrence of an error may depend on the secret.
The values of B and B? at node n are represented by means of the nullary
predicates public errorn and secret errorn respectively.

In the following, we describe how the abstract state transformers S
r
f
g

z]
of

edges (n,
[
f
g

]
, n′) are formalized by means of Horn clauses. In order to do so we

need that the set of binary alphabet elements Σ2 potentially occurring in the
variables of a program is finite and a priori known. This information can be ex-
tracted from the interface descriptions of web services, and needs to be provided
for the analysis. Therefore, in this chapter we extend the assembly language for
tree manipulation so that programs begin with the following declaration:

binary alphabet:σ1,...,σn;

It suffices to provide only those binary alphabet elements explicitly that do not
occur in the program text.

Recall that, due to our alignment procedure, edges either correspond to
assignments or to Boolean expressions, but never to both.

Assignments as Horn Clauses

First, we discuss the case of assignments, i.e., transformers of edges of the form:

(n,
[x:=e1(x1, . . . , xn)

y:=e2(y1, . . . , ym)

]
, n′) (3.5)

If no error occurs, then x and y are updated, the values of other variables remain
unchanged. Error propagation is discussed later. Accordingly, for all variables
z 6= x and z 6= y the following clauses are defined, which propagate their values
without modification:

varz,n′(X)⇐ varz,n(X).

Note that according to the construction of compositions of CFGs described
in Section 3.2, it holds in (3.5) that x = y, e1 = e2 and for all i we have that
xi = yi, or one of the assignments is skip. The reason is that only equivalent
assignments are composable.

Now we discuss the abstract transformers of edges with assignments that
can occur in compositions of CFGs. Values of variables on the left hand sides
of the assignments are defined by the following clauses.

• For edges with label
[
x:=#
x:=#

]
we define varx,n′(#) ⇐ vary,n( ) for all vari-

ables y occurring in the program, where ’ ’ denotes an anonymous logic
variable. The implication is required to ensure that # is added to the
predicate varx,n′ only if node n may be reachable. We consider a node n
as unreachable, if there is no variable x and tree τ so that varx,n(τ) holds.

• For edges with
[
x:=y
x:=y

]
we define: varx,n′(X)⇐ vary,n(X).
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• For edges with
[
x:=σ2(y,z)
x:=σ2(y,z)

]
we define:

varx,n′(σ2(L,R))⇐ vary,n(L),varz,n(R).

• For edges with
[
x:=y/1
x:=y/1

]
we define varx,n′(L) ⇐ vary,n(σ2(L, )) for all

σ2 ∈ Σ2. As an example, let us suppose that the abstract value of variable
subDB at node n is a model of the predicate qSubDB according to the im-
plications in (3.4). Using the command submissions := subDB/1 we can
assign the list of submissions into variable submissions. The implication
defining the abstract value of submissions after the assignment is:

varsubmissions,n′(L)⇐ varsubDB,n(root(L, ))

However, the state transformer needs to be able to carry out this modifi-
cation for all possible abstract values having a binary root. Therefore, the
implication is repeated for all possible binary alphabet elements σ2 ∈ Σ2.

An error is caused by an expression of the form x/1, if the root of the
content of x does not have children, i.e., it is a leaf. Therefore, in addition
the following is defined:

public errorn′ ⇐ vary,n(#).

public errorn′ ⇐ vary,n(bv).
secret errorn′ ⇐ vary,n( ? ).

(3.6)

• For edges with
[
x:=y/2
x:=y/2

]
we define varx,n′(R) ⇐ vary,n(σ2( ,R)) for all

σ2 ∈ Σ2. The implications handling errors are identical to those in (3.6).

• By edges with
[
f
f

]
where f = x:=λt(x1,x2, . . . ,xk) it needs to be exam-

ined whether the variables in the arguments contain secrets. The impli-
cations below are used for the purpose, where the second and third lines
are defined for all σ2 ∈ Σ2:

secret( ? ).
secret(σ2(L, )) ⇐ secret(L). ∀σ2 ∈ Σ2

secret(σ2( ,R)) ⇐ secret(R). ∀σ2 ∈ Σ2

(3.7)

Concerning the resulting value of x we have:

varx,n′(bv)⇐ varx1,n( ),varx2,n( ), . . . ,varxk,n( ). (3.8)

varx,n′( ? ) ⇐ varxi,n(Xi),secret(Xi),

varx1,n( ), . . . ,
varxk,n( ). ∀xi ∈ {x1, ..., xk}

(3.9)

According to implication (3.8), the value of x at node n′ will contain bv
if all of the input variables of the function λt are defined. Furthermore,
according to implication (3.9), if any of the input variables depends on the
secret, then the resulting abstract value will also contain ?. Implications
of the form (3.9) are defined for all input variables xi of the function λt.
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Since the evaluation of λt can result in the error state, we need in addition:

public errorn′ ⇐ varx1,n( ),varx2,n( ), . . . ,varxk,n( ). (3.10)

However, the occurrence of an error can also depend on secret values. In
order to handle this we need:

secret errorn′ ⇐ varxi,n(Xi),secret(Xi),

varx1,n( ), . . . ,
varxk,n( ). ∀xi ∈ {x1, ..., xk}

(3.11)

An implication of the form (3.11) needs to be defined for each input vari-
able xi of the function λt.

By defining implications (3.10) and (3.11), our only assumption about the
semantics of λt is that it is deterministic. However, it is possible to enhance
the precision of the analysis, if further conditions for the occurrence of an
error can be captured using Horn clauses. Given that conditions like
that are available, we can restrict the set of cases when the occurrence
of an error is considered by appending those conditions to the tails of
implications (3.10) and (3.11).

• For edges of the form
[
x:=e(x1,...,xk)

skip

]
and

[
skip

x:=e(x1,...,xk)

]
we define:

varx,n′( ? )⇐ varx1,n( ), . . . ,varxk,n( ).

If the effect of an edge consists of an assignment and a skip command,
then in the resulting abstract state the value of the variable on the left
hand side becomes ?, indicating that its value might be different in the
corresponding two concrete states. This happens independently of the
values of input variables of expressions on the right hand side. If the
expression is of the form y/1, y/2 or λt(x1,x2, . . . ,xk), then we define
in addition secret errorn′ ⇐ varxi,n( ? ) for all input variables y and
xi in order to indicate that an error may occur only in one of the pair
of states. Again, depending on the semantics of the specific interpreted
function λt, it is possible to pose further conditions for the inclusion of
the secret-dependent error state in the resulting abstract value.

Boolean Expressions as Horn Clauses

We now discuss the abstract transformers for Boolean expressions. In our im-
plementation we treat two branching constructs composable only if their con-
ditional expressions are syntactically equivalent in addition to the conditions
discussed in Section 3.2.

• By edges labeled
[
b
b

]
,
[

b
skip

]
or
[
skip
b

]
, where b = λb(x1, x2, . . . , xk), the

values of all variables y occurring in the program are propagated using the
following implication generated for all y ∈ X :

vary,n′(X)⇐ vary,n(X),varx1,n( ), . . . ,varxk,n( ).

In other words, it is checked whether the values of input variables of the
conditional expression have been defined, in order to ensure that the node
n is reachable. The actual values of variables are propagated without
modification.
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• In case the label of the root of a tree is tested using an edge having a label

of the form
[
top(x)=σ
top(x)=σ

]
, then the following clauses are defined to propagate

the values of variables y 6= x if σ ∈ Σ2:

vary,n′(X) ⇐ vary,n(X),

varx,n(σ( , )).

vary,n′(X) ⇐ vary,n(X),varx,n( ? ).
(3.12)

The value of the variable x is propagated as well:

varx,n′(σ(L,R))⇐ varx,n(σ(L,R)). (3.13)

varx,n′(σ( ? , ? ))⇐ varx,n( ? ). (3.14)

If σ = # then σ(X,Y ) is exchanged with # in (3.12), (3.13) and (3.14).

• For edges with
[
top(x)=σ

skip

]
or
[

skip
top(x)=σ

]
implications (3.12) and (3.13) need

to be repeated and in addition varx,n′( ? )⇐ varx,n( ? ) defined.

• By edges with
[
¬top(x)=σ
¬top(x)=σ

]
,
[
¬top(x)=σ

skip

]
or
[

skip
¬top(x)=σ

]
, the values of vari-

ables are only propagated in the case when the root of the value of x is not
equal to σ. Therefore, the following implication is defined for all variables
y other than x and for all alphabet elements δ ∈ Σ2 \ {σ}:

vary,n′(X)⇐ vary,n(X),varx,n(δ( , )). (3.15)

In order to handle the value of x as well, the following implication is
defined for all δ ∈ Σ2 \ {σ}:

varx,n′(δ(L,R)) ⇐ varx,n(δ(L,R)). (3.16)

Additionally, we need to define (3.15) and (3.16) so that δ(X,Y ) is re-
placed by ? and bv , and if σ 6= # then by # too.

• In case the two components of the label of an edge are the negations

of each other, e.g.,
[
¬b(x1,x2,...,xk)
b(x1,x2,...,xk)

]
, then the values of variables need to

be propagated only in the case, when at least one of the variables in
the argument depends on the secret. Assuming that a Boolean expres-
sion is a deterministic function, it can only return different values for
different arguments. Therefore, considering two concrete states s and t,r
¬b(x1,x2,...,xk)
b(x1,x2,...,xk)

z[
s
t

]
=
[
s
t

]
is only possible if s(xi) 6= t(xi) at least for one

variable xi of the argument. Furthermore,
[
s(xi)
t(xi)

]
∈ γ(d(xi)) is only possi-

ble in this case, if there is at least one leaf labeled ? in d(xi). Accordingly,
the following is defined for all variables y occurring in the program and
for all variables xi ∈ {x1, ..., xk}:

vary,n′(X) ⇐ vary,n(X),varxi,n(Xi),
secret(Xi).

(3.17)
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Propagating the Error

Finally, in order to propagate the error state, for all edges we define:

public errorn′ ⇐ public errorn.
secret errorn′ ⇐ secret errorn.

This concludes the description of Horn clauses formalizing abstract state
transformers.

Discussion

We observe the following:

Theorem 7. The abstract transformer S
r
f
g

z]
for a pair

[
f
g

]
as defined by Horn

clauses is a correct abstract transformer, i.e., it satisfies the conditions of (3.1).

In other words, if JfK(s0) = s, JgKt0 = t where
[
s0
t0

]
∈ γ(d0) and S

r
f
g

z]
d0 = d,

then
[
s
t

]
∈ γ(d).

Proof. The statement follows by a comparison of the concrete transformers in
Section 2.1.2 and the implications defined for pairs of labels of edges.

Because of Theorem 7, the least solution of the set of Horn clauses defined
for a program overapproximates the MTC solution. Therefore, for example,
noninterference for a particular output variable x holds at program exit nfi , if
the predicate varx,nfi

does not accept trees containing ?.
Algorithmically, therefore, the analysis boils down to computing (or approx-

imating) the model of the set of Horn clauses defined for the program. The head
of each clause possibly generated by our analysis is of one of the forms

h ::= p | p(X) | p(σ0) | p(σ2(X1,X2)),

where X1, X2 are distinct. Therefore, all of them belong to the class of Horn
clauses H1 [60, 79]. Finite sets of clauses of this class are known to have least
models consisting of regular sets. Moreover, finite automata characterizing these
regular sets, can be effectively computed.

3.3.1 Case Study

Let us come back to our running example, the document submission system,
which updates the acceptance status of papers depending on the average of the
scores given by reviewers. Now we demonstrate the functionality of the analy-
sis by proving an end-to-end information flow policy on the program in Listing
2.1, the implementation of the database updating routine. Note that the pro-
gram has been extended with the declaration of binary alphabet elements as
it is required by the analysis. Our goal is to prove that the confidential value
of averageScore in the initial state may only affect the acceptance state of
submissions, and nothing else. In order to do so, we need to construct an ini-
tial abstract state d0 for the analysis reflecting the desired information flow
policy. Therefore, we set d0(averageScore) = {?}. Since the identifier of the
submission, the acceptance state of which is to be updated, is public, we set
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d0(paperId) = {bv}. Furthermore, we also suppose that there is a database
of submissions similar to that in Figure 2.1 in the initial value of variable
subDB. Therefore, we assign the set of public views of all possible databases
to d0(subDB) by specifying that all trees τ for which qSubDB(τ) holds are also
members of d0(subDB). Finally, because we would like to investigate the case
when the acceptance value of a submission is updated in the “review” phase,
we set d0(phase) = {review(#,#)}.

1 binary_alphabet: review, root, submission, id, acceptance;

2

3 // 1. Selecting the phase:

4 if top(phase)=notify then {

5 toAuthors := subDB;

6 }

7 else {

8

9 // 2. Initialization:

10 empty := #;

11 submissionsRev := #;

12 // varsubmissionsRev,(13,13)(X) ⇐ qSubmissions(X).

13 submissions := subDB/1;

14 // varsubmissions,(17,17)(X) ⇐ qSubmissions(X).

15

16 // 3. Branching based on conditional value:

17 if averageScore < ’1.5’ then {

18

19 // 4/tt. Searching the elements to be modified:

20 found := false(empty,empty);

21 while top(found)=false do {

22 id := submissions/1;

23 // varid,(24,73)(X) ⇐ qId(X).

24 idVal := id/1;

25 // varidVal,(26,75)(X) ⇐ qBV(X).

26 if idVal = paperId then {

27 found := true(empty,empty);

28 } else {

29 submissionsRev := submission(id,submissionsRev);

30 // varsubmissionsRev,(31,80)(X) ⇐ qSubmissions(X).

31 submissions := submissions/2;

32 // varsubmissions,(21,70)(X) ⇐ qSubmissions(X).

33 };

34 };

35

36 // 5/tt. Modifying the acceptance value depending on

37 // averageScore:

38 acceptanceVal := ’rejected’;

39 // varacceptanceVal,(42,91)(X) ⇐ qStar(X).

40

41 // 6/tt. Reconstructing the data structure of the submission:

42 acceptance := acceptance(acceptanceVal,empty);

43 // varacceptance,(44,93)(X) ⇐ qAcc(X).

44 id := id(idVal,acceptance);

45 // varid,(46,95)(X) ⇐ qId(X).

46 submissions := submissions/2;
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47 // varsubmissions,(48,97)(X) ⇐ qSubmissions(X).

48 submissions := submission(id,submissions);

49 // varsubmissions,(52,101)(X) ⇐ qSubmissions(X).

50

51 // 7/tt. Reconstructing the data structure of the database:

52 stop := false(empty,empty);

53 while top(stop)=false do {

54 if top(submissionsRev)=submission then {

55 id := submissionsRev/1;

56 // varid,(57,106)(X) ⇐ qId(X).

57 submissions := submission(id,submissions);

58 // varsubmissions,(59,108)(X) ⇐ qSubmissions(X).

59 submissionsRev := submissions/2;

60 // varsubmissionsRev,(53,101)(X) ⇐ qSubmissions(X).

61 } else {

62 stop := true(empty,empty);

63 };

64 };

65

66 } else {

67

68 // 4/ff. Searching the elements to be modified:

69 found := false(empty,empty);

70 while top(found)=false do {

71 id := submissions/1;

72 // varid,(24,73)(X) ⇐ qId(X).

73 idVal := id/1;

74 // varidVal,(26,75)(X) ⇐ qBV(X).

75 if idVal = paperId then {

76 found := true(empty,empty);

77 } else {

78 submissionsRev := submission(id,submissionsRev);

79 // varsubmissionsRev,(31,80)(X) ⇐ qSubmissions(X).

80 submissions := submissions/2;

81 // varsubmissions,(21,70)(X) ⇐ qSubmissions(X).

82 };

83 };

84

85 // 5/ff. Modifying the acceptance value depending on

86 // averageScore:

87 acceptanceVal := ’accepted’;

88 // varacceptanceVal,(42,91)(X) ⇐ qStar(X).

89

90 // 6/ff. Reconstructing the data structure of the submission:

91 acceptance := acceptance(acceptanceVal,empty);

92 // varacceptance,(44,93)(X) ⇐ qAcc(X).

93 id := id(idVal,acceptance);

94 // varid,(46,95)(X) ⇐ qId(X).

95 submissions := submissions/2;

96 // varsubmissions,(48,97)(X) ⇐ qSubmissions(X).

97 submissions := submission(id,submissions);

98 // varsubmissions,(52,101)(X) ⇐ qSubmissions(X).

99

100 // 7/ff. Reconstructing the data structure of the database:
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101 stop := false(empty,empty);

102 while top(stop)=false do {

103 if top(submissionsRev)=submission then {

104 id := submissionsRev/1;

105 // varid,(57,106)(X) ⇐ qId(X).

106 submissions := submission(id,submissions);

107 // varsubmissions,(59,108)(X) ⇐ qSubmissions(X).

108 submissionsRev := submissions/2;

109 // varsubmissionsRev,(53,102)(X) ⇐ qSubmissions(X).

110 } else {

111 stop := true(empty,empty);

112 };

113 };

114 };

115

116 // 8. Presenting the result.

117 subDB := root(submissions,empty);

118 // varsubDB,(119,119)(X) ⇐ qSubDB(X).

119 subDB_Output := subDB;

120 // varsubDB Output,(121,121)(X) ⇐ qSubDB(X).

121 };

Listing 3.1: The results of the analysis of the program in Listing 2.1
extended with the declaration of binary alphabet elements.

In order to illustrate the functionality of the analysis on the program in List-
ing 2.1, we identify the nodes of the self-composition of the corresponding CFG
with pairs of numbers standing for the lines in the code before their execution.
Accordingly, we specify the initial analysis information for the initial node (2, 2)
of the self-composition of the CFG using the following implications:

varaverageScore,(2,2)(X) ⇐ qStar(X).
varpaperId,(2,2)(X) ⇐ qBV(X).
varsubDB,(2,2)(X) ⇐ qSubDB(X).
varphase,(2,2)(review(#,#)).

The actual code that has been analyzed is shown in Listing 3.1, where the
result of the analysis is indicated in comments for each relevant assignment.
The result of the analysis reveals that the final abstract value of the variable
subDB Output equals to the initial one defined by the predicate qSubDB. In other
words, the secret remains in the variable averageScore and in the acceptance
values of submissions in the variable subDB, and does not interfere with other
values.

3.4 Practical Experiments

We have implemented a prototype to carry out the analysis described in this
chapter. We have implemented the function pp2cfg(p, r, nin , nfi) in OCaml,
where the Robust Tree Edit Distance algorithm [62] is used to compute the
distance between the ASTs of commands. The set of Horn clauses generated
from the self-compositions of CFGs is solved using the H1 solver of Nielson et
al. [60]. We have carried out the analysis on five examples.
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• Joining Tables. This program implements the join of two tables as pub-
lished in [29] and in [11]. An array of payment data of employees is joined
together with an array storing their personal information. According to
the privacy policy, this join can only take place for the employees that
have explicitly agreed to it.

• Submission Database. This program is our running example shown in
Listing 3.1.

• Medical Records. This example implements the benchmark of [2], where
a list of medical records is manipulated. Here we address the situation
when there are separate updating and query routines for the confidential
and the public data in one program. We demonstrate that the manipula-
tion of the confidential information of patients does not influence public
data.

• Bayes Classifier. This program is an implementation of the second
example in [29], which demonstrates how to verify the noninterference of
a data-mining algorithm, the Naive Bayes classifier. The classifier predicts
the class of records based on statistics compiled from a training set. We
prove that the data of only those individuals is going to influence the
statistics who have explicitly agreed to it.

Experiment # of lines |G| |GG| # of implications
Joining Tables 26 45 237 3510
Submission Database 64 109 751 14008
Medical Records 97 163 859 22532
Bayes Classifier 133 241 1561 89720

Experiment running time peak memory usage
Joining Tables 4.839 sec 19.17 MiB
Submission Database 10.371 sec 21.03 MiB
Medical Records 12.590 sec 21.82 MiB
Bayes Classifier 131.980 sec 89.85 MiB

Table 3.1: Summary of the runtime behavior of the analysis.

For all four examples, our analysis succeeded to infer noninterference auto-
matically. Table 3.1 summarizes some quantitative details of our experiments.
The experiments have been carried out in a 32 bit virtual machine on a laptop
having a 2 GHz Intel R© CoreTM i7 processor. For each experiment Table 3.1 lists
the following information: a) the number of lines of the code without comment
and empty lines; b) the size of the CFG |G| as the sum of the number of nodes
and edges; c) the size of the self-composition of the CFG |GG|; d) the number of
implications generated; e) the complete running time of the analysis including
the computation of the self-composition of the CFG, and the computation of
models of predicates; f) the peak memory consumption during the verification
process involving the computation of self-compositions of CFGs and models of
predicates.
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For all examples, the self-composition increases the size of the CFG by a
factor significantly less then 10. On the other hand, the number of Horn clauses
does not only depend on the size of the corresponding self-composed graph, but
additionally also on the number of variables and number of binary alphabet
elements in the program. As expected, the running times typically grow with
the number of generated clauses.

3.5 Combining the Results of Multiple Analyses

Intuitively, if a CFG has multiple self-compositions delivering different analysis
results, then one could suspect that it should be possible to combine these results
in order to obtain a more precise overapproximation for the MTC solution. Let
us now demonstrate through an example that this is indeed the case.

1 if sec = ’0’ then {

2 x := ’1’;

3 y := ’2’;

4 } else {

5 y := ’2’;

6 x := ’1’;

7 };

Listing 3.2: A branching
construct.

nin

nfi

b = (sec = ’0’) ¬(sec = ’0’) = ¬b

f = (x := ’1’) (y := ’2’) = g

g = (y := ’2’) (x := ’1’) = f

Figure 3.4: The CFG of the pro-
gram in Listing 3.2, where assignments
and Boolean expressions are abbrevi-
ated with f, b, etc.
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Self-composition 2.

Figure 3.5: Two possible self-compositions of the CFG in Figure 3.4. For the
meaning of f , g and b please refer to Figure 3.4.

Listing 3.2 shows a branching construct with a Boolean expression depending
on a secret value stored in the variable sec. The corresponding CFG is illus-
trated in Figure 3.4. It is easy to see that in the final state of the computation
the values of the variables x and y do not depend on the secret, because their
values are identical at the end of the branches. At the same time, we cannot
prove this using the developments of the previous sections of this chapter. The
reason is that using one self-composition we can either prove the independence
of x or y from the secret, but not both in the same time. Figure 3.5 illustrates
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two different self-compositions of the CFG in Figure 3.4. As it is indicated by
the figures, it is impossible to align both of f and g in all of the paths. There-
fore, given that the initial abstract state is so that din(sec) = {?}, the results
d of the analyses on the self-compositions will either be so that {?} ⊆ d(x) or
{?} ⊆ d(y).

Let us examine the analyses corresponding to the two CFGs in Figure 3.4

closer. We have that S
r

sec = ’0’
¬sec = ’0’

z]
din = din and S

r
¬sec = ’0’
sec = ’0’

z]
din = din ,

because there are pairs of states
[
s
t

]
∈ γ(din) so that s(sec) 6= t(sec). There-

fore, those paths of the CFGs in Figure 3.5 need to be evaluated as well that

begin with
[
b
¬b

]
or
[
¬b
b

]
. The resulting abstract value d1 of the analysis on

self-composition 1 is so that:

d1(x) = {?, bv}
d1(y) = {bv}

d1(y) = {bv} holds, because on all paths of self-composition 1 the variable

y is only manipulated by edges having label
[
y:=’2’
y:=’2’

]
. However, the labels of

edges manipulating x are not aligned well on some paths, therefore, ? ∈ d1(x).
Similarly, the resulting abstract value of the analysis on self-composition 2 is so
that:

d2(x) = {bv}
d2(y) = {?, bv}

Accordingly, if
[
s1
t1

]
∈ γ(d1) then s1(y) = t1(y) and similarly, if

[
s2
t2

]
∈ γ(d2)

then s2(x) = t2(x). By taking the intersection of the two concretizations γ(d1)∩
γ(d2), we can conclude that neither of the final values of x and y depends on
the initial value of sec.

Theorem 8. Given that we have multiple results d1, ..., dn for an analysis,
where for each di it holds that di w MTC(G, d0), then

d
i di is also a sound

result so that: l

i

di wMTC(G, d0)

Proof. The statement trivially follows from the properties of lattices.

Theorem 8 assures us that in the case, when a CFG has multiple self-com-
positions yielding different analysis results, then the greatest lower bound of the
results is a sound result too. Furthermore, as the example above shows, there
could be cases, when desired properties can only be proved by computing the
greatest lower bound of the analysis results of multiple self-compositions of the
CFG corresponding to the program.

3.6 Related Work

This work relies on the observation [21, 13, 25] that the verification of k-
hypersafety properties of programs can be reduced to the verification of safety
properties of the k-fold self-compositions of the programs.
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Several authors have used self-compositions of programs for the analysis of
hyperproperties, i.e., [13, 59, 71, 25]. In [71] a type-system based transformation
is presented to construct the self-composition. The self-composition of branching
constructs with low-security conditionals results in one branching construct with
the same condition expression. In [59] the same idea is applied for object-
oriented languages. Differently from our approach, these solutions cannot take
advantage of similarities in the code of different branches. Their motivation is
to apply already existing techniques of proving safety properties for the purpose
of proving hypersafety properties.

Barthe et al. [11] offer a variety of possibly conditional rewritings of the orig-
inal program to achieve appropriate alignments. Such conditions may enforce,
e.g., that two loops are iterated equally often. These conditions must be later
discarded by the theorem prover or remain and then restrict the admissible in-
put values. Furthermore, no algorithm or heuristics is provided how these rules
should be applied. In our solution no extra conditions are imposed. Instead,
skip instructions are inserted where needed. In case the conditions of two dif-
ferent loops are equal, we are still able to infer equal numbers of iterations and
thus achieve a perfect alignment. In [12] notions of compositions of CFGs simi-
lar to ours are applied for proving relational properties of potentially dissimilar
programs with the help of theorem provers. However, no algorithm is provided
for the construction of the self-compositions. Here, we presented an algorithm
for the purpose, which is completely deterministic and well tailored for the ap-
plication of relational abstract interpretation. In particular, our solution uses
the Robust Tree Edit Distance [62] algorithm in order to align similar program
fragments with each other. Furthermore, similarly to [12], our approach can
also deal with dissimilar programs. This capability is taken advantage of when
different branches of a branching construct are analyzed.

While our method is based on self-compositions of control flow graphs, other
people apply type systems for the verification of noninterference properties, e.g.,
[78, 57, 56, 17]. An other alternative is to use program dependence graphs [41].
Generally, though, the above solutions consider the program counter to have a
security level implying that all data possibly manipulated in secret-dependent
branches are declared secret. Accordingly, they would have difficulties with
some of our benchmarks, e.g., the data-base of paper submissions.

A non-relational abstract interpretation has been presented in [34], where the
security of programs is investigated depending on the observational capabilities
of attackers. If the public input values are handled as constants in the initial
state, then no information leaks to public variables in the final state, if the
property that the attackers can observe can be proved to be constant. A different
way of applying abstract interpretation for proving the information flow security
of programs is presented in [83] and in [10], where the security labels [26, 27]
are treated as abstractions of values, and a consistent labeling is computed
according to the abstract semantics. The approaches of [34, 83, 27, 10] do not
consider self-compositions of the programs, and therefore cannot take advantage
of similarities in different branches of branching constructs.

Abstract interpretation of tree-manipulating programs is described, e.g., in
[53], where Møller et al. summarize their experiences using XML Graphs as an
abstract domain. Our analysis is similar to that, in the sense that the trees
generated by the grammars or automata correspond to public views. Each
public view, though, represents a relational piece of information, namely, the
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common part of two tree-structured values.
There are also papers focusing on proving hyperproperties of programs ma-

nipulating complex data structures. In [11, 12, 58] the authors present poten-
tially interactive approaches using theorem provers, which are also capable of
dealing with our examples. In contrast to these techniques, our static analysis
based on abstract interpretation is fully automatic.

Since XML is a standard format for hierarchically organizing and commu-
nicating data, security here is a major concern. Several authors therefore, have
investigated how to enforce access control policies on XML documents by com-
puting “user views”, i.e., fragments of the documents accessible for certain users
[1, 24, 33, 54]. These approaches however, do not consider self-compositions.



Chapter 4

Model Checking

Complex workflow systems, as frequently used by organizations, bear the risk of
revealing critical information through software bugs, attacks, or simple miscon-
figuration. Their thorough analysis can prevent costly security incidents and
helps building trust in the system. However, the verification of information
flow properties is beyond the scope of classical automatic verification methods
for functional properties, as it requires the comparison of different execution
paths [5]. On the other hand, verification techniques for information flow prop-
erties (e.g. type systems motivated by [78]) may lack the flexibility to express
that requirements may change over time in response to events in the environ-
ment. The temporal logic Restricted SecLTL [28] combines both worlds and al-
lows to precisely characterize under which temporal conditions and until which
point in time a piece of information needs to be considered secret.

Web-based applications and enterprise systems perform their jobs mainly
by manipulating semi-structured data like XML documents (or data structures
such as linked lists and hash maps), which results in a potentially infinite state
space. The model checking approach presented in [28], however, can only deal
with systems having a finite state space.

Here, we develop a technique to verify temporal information flow properties
of transition systems modeling tree-manipulating processes that exchange an
unbounded number of tree-shaped data values with the environment during an
execution. These transition systems are defined using programs written in an
extension of the assembly language for tree manipulation shown in Figure 2.2.

Policies to be verified need to be composed in the logic Restricted SecLTL
[28]. Restricted SecLTL extends the positive fragment of the Linear Temporal
Logic [75] (LTL) with an additional modal operator, the so-called hide operator
H . Using the hide operator we can express that the values of specific output
variables are independent of the introduced secret values until a specific event
occurs. The secrecy of data is specified using regular sets of public views of
documents as it has been discussed in Section 3.3.

Our solution is motivated by the automata theoretic model checking ap-
proach of [75, 28]. The product of the negated formula corresponding to the
policy specification and the model is constructed, and then checked for empti-
ness. Since we are analyzing classical functional properties combined with infor-
mation flow properties, unlike standard abstraction-based model checkers (cf.
[30]), our model checker tracks multiple states of the same system simultane-

49
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ously. An extended transition system is constructed, which tracks an additional
execution of the system in parallel to the original one for each hide operator
occurring in the policy specification. The extended transition system is nonde-
terministic. Each time a hide operator is evaluated, there is a successor state
for each possible confidential input value. Therefore, it is possible to compare
the output values of the original execution with that of the alternative runs cor-
responding to each potential secret value. Still, the extended transition system
has an infinite state space. The abstraction techniques developed in Chapter
3 are applied in order to construct a finite overapproximation of the extended
transition system. In particular, relational abstract values are used to describe
the relation between the original execution and an alternative execution of the
system corresponding to a secret value.

This chapter is structured in the following way. In Section 4.1 we discuss how
to identify a transition system with a tree-manipulating program, and in Section
4.2 we introduce the policy specification language. In Section 4.3 we discuss how
to construct extended transition systems, and show how to model-check infor-
mation flow properties using these systems. In Section 4.4 we construct abstract
models for extended transition systems using the program analysis techniques
of Chapter 3, which endows us with the capability of checking information flow
properties of systems having an infinite state space. In Section 4.5 we describe
the implementation of the model checker, and in Section 4.6 we demonstrate its
applicability. Finally, in Section 4.7 we relate our work to others.

4.1 Transition Systems

Here, we model tree-manipulating processes like web services and enterprise
workflows using transition systems (or otherwise called state machines) having
a potentially infinite state space. Therefore, we define now the concept of tran-
sition systems. Given that a : X → Z is a mapping from set X to set Z, we
denote its projection to the subset Y ⊆ X by a|Y .

Definition 9 (Transition Systems). A transition system M is a tuple M =
(XI ,XO,V, S, s0, δ), where S is a set of states including the initial state s0 ∈ S,
XI is the set of input variables, and XO is the set of output variables. The
members of the alphabet A = {a | a : XI ∪ XO → V} are mappings from the
set of variables XI ∪ XO to the set of values V, and δ : S ×A9 S is a partial
transition function. Furthermore, XI ∩ XO = ∅ needs to hold. We consider
input enabled systems, that is, we require for every s ∈ S and a ∈ A that there
exists an a′ ∈ A with a′|XI = a|XI so that δ(s, a′) is defined.

Now we identify the members of the tuple describing a transition system with
the objects of the semantics of the assembly language for tree manipulation. We
extend the language defined in Figure 2.2 so that programs declare the set of
input and output variables, furthermore the set of binary alphabet elements
occurring in the values. Therefore, here, programs begin with the following
declaration:

input: xi1,...,x
i
l;

output: xo1,...,x
o
m;

alphabet: σ1,...,σn;
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Accordingly, the sets of input and output variables are defined as XI = {xi1, ...,
xil} and XO = {xo1, ..., xom} respectively. Furthermore, the set of binary alphabet
elements required by the abstract interpretation is defined by the elements σi in
addition to those occurring in the program text. For the sake of simplicity, we
suppose in the rest that the set of variables occurring a program is X = XI∪XO.

Since the values of variables in our programs are binary trees, the set of
values V equals to the set BΣ2,Σ0

. Similarly, each member s of the set of states
S is a mapping s : X → BΣ2,Σ0

from the set of variables occurring in the
program to the set of binary trees. We define the initial state so that s0(x) = #

for each variable x ∈ X occurring in the program. In other words, the initial
values of the variables are the binary equivalents of empty forests.

We suppose that the execution of a program generated by nonterminal p in
Figure 2.2 always terminates. In this work we regard the non-termination of a
program as an error, the absence of which the presented techniques do not seek
to prove. Furthermore, our programs are deterministic. In other words, for each
initial state s there is at most one resulting state s′. Therefore, we will use the
notation JpKs = s′ in order to express that the execution of the program p on
the initial state s results in the final state s′.

State State ...
...

si si+1

Communication:
si|XO = ai|XO
s′i = si[XI → ai(XI)]

Computation:
si+1 = JpKs′i

• Input values are
provided

• Output values are
observed

Figure 4.1: A transition of the state machine specified by a tree-manipulating
program.

Transitions δ(si, ai) = si+1 of the transition system M specified by a pro-
gram p are defined the following way as it is illustrated by Figure 4.1:

• First, it is checked whether the values of the output variables of the alpha-
bet element are equal to the values of the output variables of the actual
state. Accordingly, the transition can only take place if si|XO = ai|XO
holds.

• The next state si+1 = JpKs′i is the result of the computation of the program
p on the state s′i = si[XI 7→ ai(XI)], where the values of the input variables
of si are replaced with the values of the corresponding variables in ai.
Accordingly, the notation si[XI 7→ ai(XI)] is an abbreviation for si[x

i
1 7→

a(xi1)][xi2 7→ a(xi2)]...[xin 7→ a(xin)], where each xij ∈ XI .

In order to handle erroneous configurations, we extend the set of variables
X with an implicit output variable err ∈ XO. In case err = #, then no error
has occurred during the execution. On the other hand, if err 6= #, then an error
occurred during the execution. In this case the values of other variables are
unspecified. Furthermore, whenever s(err) 6= #, then we have that s′(err) 6= #

for any a where s′ = δ(s, a).
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The externally observable behavior of transition systems is given by the se-
quences of labels (or otherwise called letters) of transitions that are taken during
an execution. Therefore, in the next section we specify temporal information
flow policies over these sequences as well.

4.2 Temporal Information Flow Policies

Temporal information flow policies enable the specification of conditional se-
crecy and declassification based on the occurrences of events at the interfaces
of reactive systems. In this work temporal information flow policies are defined
using an extension of the positive fragment of the Linear Temporal Logic [76]
called Restricted SecLTL [28], which is generated by the nonterminal ϕ using
the grammar below:

ϕ ::= x M L | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕUψ | ψRϕ | HH,Oψ
ψ ::= x M L | ψ ∨ ψ | ψ ∧ ψ | ©ψ | ψUψ | ψRψ (4.1)

Atomic propositions are of the form x M L specifying that the value of the
variable x is described by the regular tree language L ⊆ BΣ2,{#,bv}. These
constructs are atomic propositions from the point of view of the temporal logic.
However, since they make statements about the properties of trees stored in
variables, they are also predicates. Still, for the sake of clarity, we will call them
atomic propositions. A tree τ is described by a language L, denoted τ M L, if
there is a τ ′ ∈ L, so that τ ′ can be constructed from τ by replacing its leaves
having basic values with leaves labeled with bv .

Formulae are composed by the Boolean connectives except for negation and
the LTL operators next ©, release R and until U . We additionally introduce
the common abbreviations tt = (x M L ∨ x M L), ff = (x M L ∧ x M L),
♦ϕ = ttUϕ, �ϕ = ffRϕ, and ϕ1Wϕ2 = (ϕ1Uϕ2) ∨ �ϕ1, where L denotes
the complement of the regular language L. Restricted SecLTL introduces the
additional hide operator HH,Oψ in order to specify noninterference properties.
In HH,Oψ, H : I → P(BΣ2,{#,bv ,?}) is a mapping from the set of variables
I ⊆ XI to regular sets of binary trees over the binary alphabet Σ2 and nullary
alphabet {#, bv , ?}. O is a set of output variables, and ψ is a positive LTL
formula. The formula HH,Oψ specifies the secrecy of certain subtrees of the
values of variables xi ∈ dom(H) assigned by the environment at the time of
evaluation. The requirement is that it must not be possible to make inferences
on the secret subtrees based on the values in variables O until ψ holds. The
positions of the secret subtrees of the input value in xi are specified by the
regular language H(xi), which defines a regular set of public views with respect
to the security lattice element low .

The semantics of the logic Restricted SecLTL is defined in terms of the runs
of the transition systems being examined.

Definition 10 (Runs and Executions of a Transition System). Runs of a tran-
sition system M are infinite sequences of letters: ~a = a0, a1, . . . , with all ai ∈ A.
Given a state s ∈ S, each run ~a is associated with a unique finite or infinite
sequence of states, s0, . . . , sn or s0, s1, . . . , called execution of M from s on ~a
and denoted ExecM (s,~a), such that s0 = s and si+1 = δ(si, ai) for all 0 ≤ i < n
or i ≥ 0, respectively. Given a state s, we denote the set of runs on which M
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has an infinite execution by Runss,M . For a run/execution π and i ∈ N, π[i] is
the (i + 1)th element of π, π[0, i) is the prefix of π up to (excluding) position i
and, if π is infinite, π[i,∞) is its infinite suffix starting at i. The length of a
finite execution π is |π|.

Now we extend the concretization function γ as it has been defined in Section
3.3 to letters of the alphabet A, sets of variables X ⊆ X and functions H : I →
P(BΣ2,{#,bv ,?}).

[
a1

a2

]
∈ γX(H) holds, if for all x ∈ X where x ∈ dom(H) it

holds that
[
a1(x)
a2(x)

]
∈ γ(H(x) ∪BΣ2,{#,bv}), furthermore, for all other variables

y ∈ X, where y 6∈ dom(H) it holds that a1(y) = a2(y). There is no restriction
on the values of variables z 6∈ X. Furthermore, we apply the notation a1 =X a2

in order to abbreviate that for all variables x ∈ X it holds that a1(x) = a2(x).
We apply the notation =X also to sequences of letters. Accordingly, ~a1 =X ~a2

means that for all j it holds that ~a1[j] =X ~a2[j].

Definition 11 (Alternative Runs). The set of alternative runs of a transition
system for a given run ~a and initial state s is the set of runs such that on each
of them each letter except for the first one agrees with the corresponding letter
on ~a in the input variables, and the values of the input variables of the first
letter may differ in the secret subtrees specified by H. Formally, for ~a ∈ Aω and
s ∈ S,

AltRunsM (s,~a,H) = {~a′ ∈ Runss,M |
[
a[0]
~a′[0]

]
∈ γXI (H) and

~a[1,∞) =XI ~a
′[1,∞)}

Now we define the semantics of the logic Restricted SecLTL.

Definition 12 (Semantics of Restricted SecLTL [28]). Let M = (XI ,XO,
BΣ2,Σ0

, S, s0, δ) be a transition system. An infinite run ~a ∈ Runss,M for some
state s ∈ S and the state s satisfy a formula ϕ of the logic Restricted SecLTL,
denoted M, s,~a |= ϕ if the following conditions are satisfied:

1. if ϕ = x M L for some x ∈ X , then M, s,~a |= ϕ iff ~a[0](x) M L holds;

2. if ϕ = ϕ1 ∨ ϕ2, then M, s,~a |= ϕ iff M, s,~a |= ϕ1 or M, s,~a |= ϕ2;

3. if ϕ = ϕ1 ∧ ϕ2, then M, s,~a |= ϕ iff M, s,~a |= ϕ1 and M, s,~a |= ϕ2;

4. if ϕ =©ϕ′, then M, s,~a |= ϕ iff M, s′,~a[1,∞) |= ϕ′ where s′ = δ(s,~a[0]);

5. if ϕ = ϕ1Uϕ2, then M, s,~a |= ϕ holds iff for some i ≥ 0 we have
that M,~s[i],~a[i,∞) |= ϕ2 and for all j with 0 ≤ j < i we have that
M,~s[j],~a[j,∞) |= ϕ1, where ~s = ExecM (s,~a);

6. if ϕ = ϕ1Rϕ2, then M, s,~a |= ϕ iff either M,~s[i],~a[i,∞) |= ϕ2 holds for
all i ≥ 0, or there is a j ≥ 0 such that M,~s[j],~a[j,∞) |= ϕ1 and for all
0 ≤ k ≤ j we have M,~s[k],~a[k,∞) |= ϕ2, where ~s = ExecM (s,~a);

7. if ϕ = HH,Oϕ
′, then M, s,~a |= ϕ iff for every ~a′ ∈ AltRunsM (s,~a,H) it

holds that ~a =O ~a
′ or there exists i ∈ N such that M,~s[i],~a[i,∞) |= ϕ′ and

it holds that ~a[0, i) =O ~a
′[0, i), where ~s = ExecM (s,~a).
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We say that a transition system M satisfies a formula ϕ denoted M |= ϕ, iff
M, so,~a |= ϕ for every ~a ∈ Runss0,M .

As an example, let us compose a Restricted SecLTL formula formalizing the
informal requirement of (1.1) for the state machine defined by the program in
Listing 2.1:

“The scores of the papers may not be revealed to the authors
before the notification phase.”

(1.1)

The formalization is:

�
(
H{

averageScore 7→ secret

subDB 7→ qSubDB

}
,{toAuthors}

(phase M notify)
)

(4.2)

In the formula (4.2) languages are defined using names of predicates as they
have been applied in Section 3.3. Accordingly, the language corresponding to
the predicate secret has been defined in (3.7), and qSubDB is the predicate
defining the set of public views of databases according to (3.4). The language
corresponding to notify is the set of trees with roots labeled notify. The
informal meaning of (4.2) is the following. At each point of time it is a require-
ment that the value of the input variable averageScore, and the acceptance
values stored in the database subDB do not influence the value of the output
variable toAuthors until the value of the input variable phase does not have
root labeled notify. This is enforced by the semantics in Definition 12 so that
the value of toAuthors in each alternative run needs to equal to that on the
original one until the value of phase becomes notify.

In the next sections we elaborate on how to verify specifications composed in
Restricted SecLTL using automaton-based model checking techniques combined
with relational abstract interpretation.

4.3 Model Checking Systems with Finite State
Space

In this section we describe an algorithm that can verify state machines having a
finite state space, and in the next section we extend this algorithm for systems
with infinite state space using relational abstract interpretation.

Similarly to the automata-theoretic model checking techniques of [75], the
main idea here is to construct a nondeterministic Büchi automaton accepting
the set of runs violating the specification and check its intersection with the set
of runs generated by the model for emptiness. However, the verification of a sub-
formula HH,Oϕ requires the comparison of the actual run of the state machine
with the alternative runs. Therefore, it does not suffice to construct the product
of the automata corresponding to the formula and the state machine. In order
to verify whether the formula ϕ holds on the state machine M , we will apply
the model checking techniques of [75] to the corresponding extended model Mk

and a modified formula tr(NNF(¬ϕ)), where k is the number of hide operators
in ϕ, and NNF(¬ϕ) is the negation normal for of ¬ϕ. Mk and tr(NNF(¬ϕ)) are
constructed so that the validity of tr(NNF(¬ϕ)) on Mk entails the validity of
¬ϕ on M .
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Definition 13 (Extended Transition Systems). An extended transition sys-
tem is a nondeterministic transition system defined by a tuple Mk = (XI ,XO,
BΣ2,Σ0

, k, S∗, s∗0, δ
∗) with the following components:

• XI is the set of input variables, and XO is the set of output variables so
that XI ∩ XO = ∅ holds.

• The elements of the alphabet A∗ are of the form a∗ = (a, ϑ), where a :
X → BΣ2,Σ0

is a mapping from variables to binary trees, and ϑ is a subset
of {start i, leak i | 1 ≤ i ≤ k}.

• S∗ is a set of states.

• s∗0 is the initial state so that s∗0 ∈ S∗.

• δ∗ : S∗×A∗ → P(S∗) is a transition function, which maps a state and an
alphabet element to a set of states.

Since extended transition systems are nondeterministic, we need an addi-
tional definition.

Definition 14 (Runs and Executions of a Nondeterministic Transition System).
Runs of a nondeterministic transition system Mk are infinite sequences of let-
ters: ~a∗ = a∗0, a

∗
1, . . . , so that each a∗j ∈ A∗. Given a state s∗ ∈ S∗, each run ~a∗

is associated with the set of finite or infinite sequences of states, s∗0, . . . , s
∗
n or

s∗0, s
∗
1, . . . , called executions of Mk from s∗ on ~a∗ denoted ExecMk

(s∗,~a∗), where
s∗0 = s∗ and s∗j+1 ∈ δ(s∗j , a∗j ) for each j ≥ 0. Given a state s∗, we denote the set
of runs on which Mk has at least one infinite execution from s∗ by Runss∗,Mk

.

In order to verify whether ϕ holds on the state machine M = (XI ,XO,
BΣ2,Σ0

, S, s0, δ), we need to construct the corresponding extended state machine
Mk, where k is the number of hide operators H i

Hi,Oiψ in ϕ. Accordingly, we
need an arbitrary but fixed indexing of these operators in ϕ beginning with 1.
We define Mk = (XI ,XO,BΣ2,Σ0 , k, S

∗, s∗0, δ
∗) based on M and ϕ the following

way:

• The states of Mk are k + 1 long tuples of the states of M :

S∗ = {(s0, ..., sk) | ∀si ∈ S}

The member s0 of a state s∗ = (s0, s1, ..., sk) corresponds to the state of
the original system, and each si with i > 0 represents an alternative run
corresponding to the hide operator H i having index i.

• The initial state s∗0 = (s0, ..., s0) is a k+ 1 long tuple, where each member
is the initial state of M .

• The alphabet A∗ of Mk consists of tuples of the form a∗ = (a, ϑ), where
a ∈ A is a member of the alphabet of M , and ϑ is a subset of the set
{start i, leak i | 1 ≤ i ≤ k} where i is an index of a hide operator in ϕ. For
the sake of simplicity, by writing a∗(x) we mean a(x) for some variable
x ∈ X , and a∗(ϑ) means ϑ, where a∗ = (a, ϑ). Therefore, the semantics
of LTL formulae remains valid on the runs of Mk, except for point 7. We
are not going to verify formulae containing hide operators explicitly on an
extended machine.
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• Mk is a nondeterministic transition system. Therefore, its transition func-
tion δ∗ : Sk+1 × A∗ → P(Sk+1) is a function from the set of states and
alphabet elements to the powerset of states. If s∗′ ∈ δ∗(s∗, (a, ϑ)), where

s∗ = (s0, ..., si, ...) and s∗′ = (s0′, ..., si
′
, ...), then s0′ = δ(s0, a). Further-

more, each si
′

is an arbitrary state satisfying the following constraints:

– If start i 6∈ ϑ, then δ(si, b) = si
′

for some b ∈ A so that a|XI = b|XI .
Further constraints on b are:

∗ If leak i 6∈ ϑ then b =Oi a.

∗ If leak i ∈ ϑ then b 6=Oi a.

– If start i ∈ ϑ, then si
′

= δ(s0, b) where
[
a
b

]
∈ γXI (Hi). Here, Hi is the

function specifying public views for input variables corresponding to
the operator H i

Hi,Oiψ with index i in the formula ϕ. This constraint
is responsible for starting the alternative runs corresponding to the
hide operator. Further constraints on b are:

∗ If leak i 6∈ ϑ then b =Oi a.

∗ If leak i ∈ ϑ then b 6=Oi a.

In order to verify the validity of M |= ϕ using the extended machine Mk,
we also need to transform the specification ϕ. The first step is to negate ϕ
and construct its negation normal form NNF(¬ϕ) by pushing the negation to
propositions using the following equalities:

• ¬(x M L) = x M L

• ¬(ϕ1 ∨ ϕ2) = ¬ϕ1 ∧ ¬ϕ2

• ¬(ϕ1 ∧ ϕ2) = ¬ϕ1 ∨ ¬ϕ2

• ¬© ϕ =©¬ϕ

• ¬(ϕ1Uϕ2) = ¬ϕ1R¬ϕ2

• ¬(ϕ1Rϕ2) = ¬ϕ1U¬ϕ2

• ¬HH,Oψ = LH,O¬ψ

Since L is a regular set of trees, it can be represented using a regular tree au-
tomaton [22]. Regular tree automata can be complemented, and L denotes the
set of trees accepted by the complemented automaton. Because of the last equal-
ity, a negated Restricted SecLTL formula is not a Restricted SecLTL formula.
The operator LH,Oψ is called the leak operator [28]. It enforces information
leakage meanwhile ψ holds.

Definition 15 (Semantics of the Leak Operator). Let M be a transition system.
An infinite run ~a ∈ Runss,M for some state s ∈ S and the state s satisfy a
SecLTL formula ϕ with leak operators, denoted M, s,~a |= ϕ, if the following
condition is satisfied in addition to points 1-7 in Definition 12:

8. if ϕ = LH,Oψ, then M, s,~a |= ϕ iff for at least one ~a′ ∈ AltRunsM (s,~a,H)
there exists j ∈ N such that ~a[j](xo) 6= ~a′[j](xo) for some xo ∈ O,
meanwhile for all 0 ≤ l ≤ j it holds that M,~s[l],~a[l,∞) |= ψ where
~s = ExecM (s,~a).
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The second step of transforming ϕ succeeds by applying the function tr on
NNF(¬ϕ), which replaces each subformula of the form LiHi,Oiψ by the following:

start i ∧ ψ ∧
[
leak i ∨©

(
(¬start i ∧ ψ)U(¬start i ∧ ψ ∧ leak i)

)]
(4.3)

Intuitively, (4.3) enforces the initialization of the alternative runs corre-
sponding to the leak operator Li by start i, and enforces the occurrence of an
information leakage by leak i. Accordingly, the semantics of the logic needs to
be extended as well in order to handle the new propositions start i, and leak i:

Definition 16 (Semantics of start i and leak i). Let Mk be an extended transition
system. An infinite run ~a∗ ∈ Runss∗,Mk

for some state s∗ ∈ S∗ and the state s∗

satisfy an LTL formula ϕ, denoted Mk, s
∗,~a∗ |= ϕ, if the following conditions

are satisfied in addition to points 1-6 in Definition 12:

• if ϕ = P for some P ∈ {start i, leak i}, then Mk, s
∗,~a∗ |= ϕ iff P ∈ ~a∗[0](ϑ)

holds;

• if ϕ = ¬P for some P ∈ {start i, leak i}, then Mk, s
∗,~a∗ |= ϕ iff P 6∈

~a∗[0](ϑ) holds;

In the rest we denote a tuple of states with s. Accordingly, if there is a state
s∗ = (s0, s1, ..., sk) of Mk, then sometimes we abbreviate s∗ with (s0, s). We
observe the following about the relation between a transition system and the
corresponding extended transition system:

Theorem 9. Let us consider the state machine M = (XI ,XO,BΣ2,Σ0
, S, s0, δ),

an arbitrary state of it s ∈ S, an arbitrary run ~a = a0, a1, ... ∈ Runss,M and
an arbitrary formula ϕ of the logic Restricted SecLTL having k hide operators.
In this case, M, s,~a |= NNF(¬ϕ) implies that for any s = s1, ..., sk there is a
sequence ϑ0, ϑ1, ... so that it holds for the run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... that ~a∗ ∈
Runs(s,s),Mk

and Mk, (s, s),~a
∗ |= tr(NNF(¬ϕ)), where Mk = (XI ,XO,BΣ2,Σ0 , k,

S∗, s∗0, δ
∗) is the extended transition system corresponding to M .

The proof can be found in Section 6.3.
According to [75] and [28], given an LTL formula in negation normal form ψ

over the set of propositions Prop it is possible to construct a nondeterministic
Büchi automaton Nψ = (SN ,P(Prop), sN0 , ρ, F ), which accepts exactly the set
of runs specified by ψ. In our setting a proposition is either of the form x M L,
start i, leak i, ¬start i or ¬leak i. In the definition of Nψ, SN is a finite set of
states, P(Prop) is the powerset of the set of propositions occurring in ψ, sN0 is
the initial state, and F is a set of accepting states. ρ : SN ×P(Prop)→ P(SN )
is the transition function mapping a state and a set of propositions to a set of
successor states. Now, we define a transition function ρ0 : SN×A∗ → P(SN ) on
the alphabet of Mk too. sN ′ ∈ ρ0(sN , a∗) if and only if there is a Ψ ∈ P(Prop)
so that sN ′ ∈ ρ(sN ,Ψ), where a∗ |=

∧
P∈Ψ P . (a, ϑ) |= x M L if a(x) M L,

(a, ϑ) |= start i if start i ∈ ϑ, and (a, ϑ) |= leak i if leak i ∈ ϑ. And similarly,
(a, ϑ) |= ¬start i if start i 6∈ ϑ and (a, ϑ) |= ¬leak i if leak i 6∈ ϑ. The new
transition function ρ0 was necessary so that we can define the execution of
Nψ on runs of Mk. An execution of Nψ = (SN ,P(Prop), sN0 , ρ, F ) on a run
~a∗ = a∗0, a

∗
1, ... is a sequence of states sN0 , s

N
1 , ... so that for each j ≥ 0 it holds
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that sNj+1 ∈ ρ0(sNj , a
∗
j ). An execution of Nψ is accepting, if it is infinite, and

there is an infinite number of accepting states sN ∈ F in it.

Now we can construct the product automaton NMk,Nψ of an extended state
machine Mk and a Büchi automaton Nψ. Given that Nψ = (SN ,P(Prop), sN0 ,
ρ, F ), and Mk = (XI ,XO,BΣ2,Σ0 , k, S

∗, s∗0, δ
∗), the product NMk,Nψ = (S×, A∗,

s×0 , δ
×, F×) is a tuple having the following constituents:

• S× is a set of states of the form (s∗, sN ), where s∗ ∈ S∗ is a state of
the extended machine, and sN ∈ SN is a state of the Büchi automaton
corresponding to the formula ψ.

• A∗ is the alphabet of the extended automaton Mk.

• s×0 = (s∗0, s
N
0 ) is the initial state of the product automaton. It is a pair

of the initial states of the extended automaton and the Büchi automaton
corresponding to the formula.

• F× is a set of states of the form (s∗, sN ), where s∗ ∈ S∗ is a state of Mk,
and sN ∈ F is an accepting state of Nψ.

• δ× is the transition function. (s∗′, sN ′) ∈ δ×((s∗, sN ), a∗) whenever we
have that s∗′ ∈ δ∗(s∗, a∗) and sN ′ ∈ ρ0(sN , a∗).

Similarly to Nψ, the acceptance condition of NMk,Nψ is that its execution is
infinite, and contains an infinite number of accepting states.

Theorem 9 yields a method to directly verify a property ϕ on a state machine
M in case its state space and its alphabet are finite. First, we need to construct
the corresponding extended machine Mk and the modified formula tr(NNF(¬ϕ)).
Then, we need to construct the Büchi automaton Ntr(NNF(¬ϕ)) accepting the runs
satisfying tr(NNF(¬ϕ)). Finally, we need to construct the product automaton
NMk,Ntr(NNF(¬ϕ))

of Ntr(NNF(¬ϕ)) and Mk, and check whether it is empty [76]. If
the language accepted by NMk,Ntr(NNF(¬ϕ))

is empty, it follows then that there is
no run ~a∗ for which it would hold that Mk, s

∗
0,~a
∗ |= tr(NNF(¬ϕ)). Taking the

contrapositive of the statement of Theorem 9, it follows that there is no run ~a
for which it would hold that M, s0,~a |= ¬ϕ. From this we can then conclude
that M |= ϕ.

However, our focus is on systems with infinite state space. Therefore, in the
following sections we introduce a verification algorithm based on abstraction
techniques, in order to verify information flow policies specified in the logic
Restricted SecLTL on systems with infinite state space.

4.4 Model Checking Systems with Infinite State
Space

In this section we apply the abstract interpretation techniques of Chapter 3 in
order to model-check transition systems with infinite state space and alphabet.
Therefore, we define now abstract transition systems that overapproximate the
behavior of extended transition systems.
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Definition 17 (Abstract Transition System). The abstract transition system

M̂k = (XI ,XO,P(BΣ2,{#,bv}), k, Ŝ, ŝ0, δ̂) is an abstraction of the extended tran-
sition system Mk = (XI ,XO,BΣ2,Σ0

, k, S∗, s∗0, δ
∗) if the following conditions

hold:

• The alphabet Â consists of elements of the form â = (â, ϑ). Each â :
XI ∪ XO → P(BΣ2,{#,bv}) is a mapping from the set of input and output
variables to regular sets of binary trees. The binary alphabet of these trees
is Σ2 and the nullary alphabet is {#, bv}. Furthermore, ϑ is a subset
of {start i, leak i | 1 ≤ i ≤ k}. We define the concretization function

γA : Â → P(A∗) from the abstract alphabet to the powerset of the alphabet
of the extended machine. (a, ϑ2) ∈ γA(â, ϑ1) whenever ϑ2 = ϑ1, and for
all x ∈ XI ∪ XO we have that a(x) M â(x).

• Ŝ is a set of abstract states. We require the existence of a concretization
function γS : Ŝ → P(S∗) from the set of abstract states to the powerset of
the set of states of the concrete transition system.

• ŝ0 ∈ Ŝ is the initial state, so that s∗0 ∈ γS(ŝ0).

• δ̂ : Ŝ × Â → Ŝ is the abstract transition function. Whenever s∗′ ∈
δ∗(s∗, a∗), where s∗ ∈ γS(ŝ) and a∗ ∈ γA(â), then we have that ŝ′ = δ̂(ŝ, â)
so that s∗′ ∈ γS(ŝ′).

We want to reduce the verification problem of M |= ϕ to proving that the
language accepted by the Büchi automaton N

M̂k,Ntr(NNF(¬ϕ))
is empty. Here,

N
M̂k,Ntr(NNF(¬ϕ))

is the product of the Büchi automaton Ntr(NNF(¬ϕ)) correspond-

ing to the specification ϕ and the abstract state machine M̂k corresponding to
Mk. Therefore, we define now the product N

M̂k,Nψ
of an arbitrary abstract ma-

chine M̂k = (XI ,XO,P(BΣ2,{#,bv}), k, Ŝ, ŝ0, δ̂) and the nondeterministic Büchi
automaton Nψ = (SN ,P(Prop), sN0 , ρ, F ) corresponding to the LTL formula

ψ. The Büchi automaton N
M̂k,Nψ

= (Ŝ×, Â, ŝ×0 , δ̂
×, F̂×) is a tuple with the

following constituents:

• Ŝ× is a set of states of the form (ŝ, sN ), where ŝ ∈ Ŝ and sN ∈ SN .

• Â is the alphabet, which is identical to the alphabet of M̂k.

• ŝ×0 = (ŝ0, s
N
0 ) is the initial state, where ŝ0 is the initial state of M̂k and

sN0 is the initial state of Nψ.

• δ̂× is a nondeterministic transition function. (ŝ′, sN
′
) ∈ δ̂×((ŝ, sN ), (â, ϑ)),

if it holds that ŝ′ = δ̂(ŝ, (â, ϑ)), and there is a transition sN
′ ∈ ρ(sN ,Ψ)

of Nψ so that (â, ϑ) |=
∧
P∈Ψ P . (â, ϑ) |= x M L holds if â(x) ⊆ L holds.

Furthermore, (â, ϑ) |= start i if start i ∈ ϑ, (â, ϑ) |= leak i if leak i ∈ ϑ,
(â, ϑ) |= ¬start i if start i 6∈ ϑ and finally, (â, ϑ) |= ¬leak i if leak i 6∈ ϑ.
Since L is a regular language of trees, the question whether â(x) ⊆ L
holds is decidable.

• F̂× is the set of tuples (ŝ, sN ), where ŝ ∈ Ŝ and sN ∈ F .
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Theorem 10. Let us consider the product NMk,Ntr(NNF(¬ϕ))
of the extended state

machine Mk and the Büchi automaton Ntr(NNF(¬ϕ)) corresponding to the LTL
formula tr(NNF(¬ϕ)). Furthermore, let us consider the product N

M̂k,Ntr(NNF(¬ϕ))

of the abstract state machine M̂k and Ntr(NNF(¬ϕ)). In this case the fact that
L(N

M̂k,Ntr(NNF(¬ϕ))
) = ∅ entails that L(NMk,Ntr(NNF(¬ϕ))

) = ∅.

For the proof, please, refer to Section 6.3.
According to Theorem 10, the product automaton N

M̂k,Ntr(NNF(¬ϕ))
can be

used for the verification of the modelM . Together with Theorem 9, its emptiness
entails that M |= ϕ.

4.4.1 Constructing the Abstract Transition System

Now, we construct the abstract transition system M̂k = (XI ,XO,BΣ2,{#,bv},

k, Ŝ, ŝ0, δ̂) corresponding to the extended transition system Mk = (XI ,XO,
P(BΣ2,{#,bv}), k, S

∗, s∗0, δ
∗) using the abstract interpretation techniques intro-

duced in Chapter 3. An abstract state ŝ ∈ Ŝ is a tuple (ŝ0, ŝ1, ..., ŝk) so that
its concretization γS(ŝ) consists of states of the extended transition system
s∗ = (s0, s1, ..., sk) ∈ S∗. (s0, s1, ..., sk) ∈ γS(ŝ0, ŝ1, ..., ŝk) holds, if (s0, s1, ..., sk)
satisfies the following conditions:

• For each x ∈ X , we have that s0(x) M ŝ0(x). The member ŝ0 of the
abstract state is used to overapproximate the original execution of the
system. Therefore, there are no leaves labeled ? here. For each x, we have
that ŝ0(x) ∈ P(BΣ2,{#,bv}).

• For i ≥ 1, abstract values ŝi carry relational information on the states s0

and si in the form of sets of potential public views. For the concretization
of abstract values having leaves labeled ? we apply the concretization
function γ as it has been defined in Section 3.3. Therefore, we have the
requirement that for each i > 0 and each x ∈ X it holds that:[s0(x)

si(x)

]
∈ γ(ŝi(x))

Since each variable in the initial state s∗0 of Mk carries the value #, we define
ŝ0 = (ŝ0, ŝ1, ...ŝk) so that for each i and x, ŝi(x) = {#}. It holds now trivially
that s∗0 ∈ γS(ŝ0).

The transition function δ̂ of the abstract machine is defined using the analysis
technique of Section 3.3. In order to take a transition, we carry out a separate
analysis for each member of the state of M̂k. Given that we would like to
compute δ̂(ŝ, (â, ϑ)), where ŝ = (ŝ0, ŝ1, ..., ŝk), we need to carry out the following
steps:

Step 1. In this step we check whether the transition can take place at all.

• We need to check whether all information leakages are potentially present
that are specified by ϑ. Let us suppose that we would like to verify the
formula ϕ, which has subformulae H i

Hi,Oiψ for all 0 < i ≤ k. If leak i ∈ ϑ,

then there must be at least one xo ∈ Oi so that there is at least one tree
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having leaves labeled ? in ŝi(xo). If this is not the case, then δ̂(ŝ, (â, ϑ))
is undefined.

• We also need to check whether there is a concrete letter a and a concrete
state (s0, ..., sk) corresponding to â and ŝ, so that their output variables
agree. In other words we need that a(xo) = s0(xo) for all xo ∈ XO.

Therefore, in case ŝ0(xo) ∩ â(xo) = ∅ for some xo ∈ XO, then δ̂(ŝ, (â, ϑ))
is not defined either.

Step 2. We construct now the initial analysis information di0 for each member
of the abstract state ŝi, so that the corresponding analysis can take place. For
the main run of the system we define d0

0(y) = â(y) for each y ∈ XI , and
d0

0(x) = ŝ0(x) ∩ â(x) for each x ∈ XO.
For the analyses of alternative runs regular sets of public views might need

to be computed in case they are initialized by the transition. This happens if
start i ∈ ϑ for some i. Let us suppose that in the formula we verify ϕ, there is
a subformula H i

Hi,Oiψ, and that y ∈ XI is an input variable. The problem by

the construction of the language di0(y) is the following. It is possible that Hi(y)
contains public views, which are not appropriate public views of any trees in
â(y). If there is a public view, for which there is no corresponding secret in â(y),
then its presence reduces the precision of the analysis without need. Therefore,
we remove those. Now we construct a subset hy,i of Hi(y), which contains only
those public views, for which there are corresponding trees in â(y).

For the sake of simplicity, we suppose that regular sets of trees are repre-
sented using regular tree grammars. This does not contradict the fact that the
analysis of Section 3.3 is defined in terms of regular tree automata, because they
are in one-to-one correspondence with regular tree grammars [22]. We construct
the grammar describing the regular set hy,i based on the grammars correspond-
ing to â(y) and Hi(y). Let us suppose that the grammar of â(y) consists of
rules of the following form:

A → σ(B,C)
D → #

E → bv
(4.4)

In (4.4) capital letters are nonterminals, σ ∈ Σ2, and # and bv are the only
nullary alphabet elements. Furthermore, let us suppose that the regular set of
trees in Hi(y) is given by a grammar having rules of the following form:

U → ζ(V,Z)
X → #

Y → bv
W → ?

(4.5)

In (4.5) capital letters are nonterminals, ζ ∈ Σ2, and #, bv and ? are the nullary
alphabet elements.

Now we construct a new grammar for hy,i based on the rules of (4.4) and
(4.5). Given that the initial nonterminal of the grammar of â(y) is F , and the
initial nonterminal of the grammar of Hi(y) is Z, the initial nonterminal of the
new grammar is [F,Z]. The rules of the new grammar are the following:
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• Whenever there is a rule A → σ(B,C) in â(y) and there is a rule U →
σ(V,Z) in Hi(y), then we add [A,U ]→ σ([B, V ], [C,Z]) to the new gram-
mar.

• Whenever there is a rule W → ? in Hi(y), then we add the new rule
[G,W ]→ ? for all nonterminals G of the grammar of â(xi).

• For all rules I → ξ of â(y) and all rules J → ξ of Hi(y), where ξ ∈ {bv , #},
we have the new rule [I, J ]→ ξ.

The new grammar generates only those public views, the public parts of which
can be generated by the grammar of â(y). By public part we mean the upper
prefix without leaves labeled ?.

Now we can define the initial analysis information for the alternative runs
of the system. For all i > 0 the initial analysis information di0 is defined the
following way. We have two cases now depending on whether start i ∈ ϑ or not.

• start i 6∈ ϑ. In this case the output variables are simply copied from the
previous state. Therefore, we define di0(x) = ŝi(x) for each x ∈ XO.
Furthermore, for each input variable y ∈ XI we have that di0(y) = â(y).

• start i ∈ ϑ. Now, di0(y) = â(y) ∪ hy,i for all variables y ∈ dom(Hi),
where hy,i is a subset of Hi(y) defined above. Values of output variables
are initialized with those of the original execution. Therefore, for each
x ∈ XO we define di0(x) = ŝ0(x).

For variables y ∈ XI that are not members of dom(Hi) we simply define
di0(y) = â(y).

Step 3. Let us suppose that the transition system M has been defined by
program p. In the successor state (ŝ0′, ŝ1′, ..., ŝk′) = δ̂(ŝ, (â, ϑ)) each ŝi′ is the
result of the analysis described in Section 3.3 based on the corresponding initial
value di0 and program p. We require that no variable in the resulting abstract
values is the empty set. Formally, we need that for each i and x, ŝi′(x) 6= ∅
holds. Otherwise, we consider that the transition does not exist.

Theorem 11. The abstract machine M̂k = (XI ,XO,P(BΣ2,{#,bv}), k, Ŝ, ŝ0, δ̂)
constructed based on Mk = (XI ,XO,BΣ2,Σ0 , k, S

∗, s∗0, δ
∗) using the abstract in-

terpretation techniques of Section 3.3, is indeed an abstraction of Mk according
to Definition 17.

For the proof, please, refer to Section 6.3.
According to Theorem 11, abstract machines constructed using the abstrac-

tion techniques of Section 3.3 can be applied for verification as it has been
suggested by Theorem 10. However, there is no guarantee, that the state space
of M̂k will be finite. Therefore, in the next section we introduce techniques to
construct an abstract transition system with finite state space.

4.4.2 Constructing an Abstract State Machine Having Fi-
nite State Space

There is no guarantee that the state space of M̂k is finite. In order to enforce
finiteness, we construct a set of Horn clauses, the model of which is a state ma-

chine N̂
M̂k,Nψ

= (
̂̂
S
×
, Â, ŝ×0 ,

̂̂
δ
×
,
̂̂
F
×

) overapproximating the state space of the
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product automaton N
M̂k,Nψ

= (Ŝ×, Â, ŝ×0 , δ̂
×, F̂×) corresponding to M̂k and

Nψ. The set of states
̂̂
S
×

consists of pairs of the form (̂̂s, sN ), where ̂̂s overap-

proximates all states of M̂k for which there is a state (ŝ, sN ) in Ŝ×. Formally, for

all sN ∈ SN there is exactly one ̂̂s = (̂̂s0
, ̂̂s1

, ..., ̂̂sk) where (̂̂s, sN ) ∈ ̂̂S×. There-

fore, it holds on all ((̂̂s0
, ̂̂s1

, ..., ̂̂sk), sN ) ∈ ̂̂S×, on all ((ŝ0, ŝ1, ..., ŝk), sN ) ∈ Ŝ×,
on all 0 ≤ i ≤ k and all x ∈ X that:

̂̂si(x) ⊇ ŝi(x) (4.6)

The alphabet, and the initial state of N̂
M̂k,Nψ

are equal to that of N
M̂k,Nψ

. The

set of accepting states
̂̂
F
×

is a set of tuples of the form (̂̂s, sN ), where sN is an
accepting state of Nψ.

Let us suppose that the Restricted SecLTL formula we would like to verify
is ϕ, where the corresponding Büchi automaton is Ntr(NNF(¬ϕ)) = (SN ,P(Prop),
sN0 , ρ, F ). Now we construct the corresponding product automaton:

̂N
M̂k,Ntr(NNF(¬ϕ))

= (
̂̂
S
×
, Â, ŝ×0 ,

̂̂
δ
×
,
̂̂
F
×

)

We represent the transition function1 ρ as a set of tuples, where (sN ,Ψ, sN
′
) ∈ ρ

if and only if sN
′ ∈ ρ(sN ,Ψ). Let us suppose that the transition system M we

would like to analyze is defined by program p. Now we generate the implications
corresponding to the analysis of program p for all transitions of Ntr(NNF(¬ϕ)) and
parallel executions of Mk separately. The original analysis of Section 3.3 consists
of implications over predicates of the form varx,n, where x ∈ X is a variable of
the program and n is a node in the self-composition of the CFG of the program.
Now we extend the names of the predicates to varx,n,i,r, where 0 ≤ i ≤ k and
r ∈ ρ. We generate the implications as described in Section 3.3 for all possible
transitions r ∈ ρ, and 0 ≤ i ≤ k.

In the next step we define a unary predicate statex,i,sN for each x ∈ X , each

execution in M̂k identified by i, and each sN ∈ SN . Let us suppose that the final
node of the self-composition of the CFG of the program p is nfi , and that the
result of the analysis corresponding to transition r, execution i and variable x is
represented by predicate varx,nfi ,i,r. In order to realize the overapproximation

of the states of M̂k as it is specified for ̂N
M̂k,Ntr(NNF(¬ϕ))

, we generate the following

implication for all variables x, executions i, and transitions r = (sN ,Ψ, sN
′
):

statex,i,sN ′(X)⇐ varx,nfi ,i,(sN ,Ψ,sN
′)(X). (4.7)

Intuitively, implication (4.7) unifies the results of the analyses corresponding

to the transition (sN ,Ψ, sN
′
) of Ntr(NNF(¬ϕ)), and identifies the values by the

state sN ′. Based on implication (4.7) we can define the states of ̂N
M̂k,Ntr(NNF(¬ϕ))

.

Accordingly, a state ̂̂s× = ((̂̂s0
, ..., ̂̂sk), sN ) is defined as follows:

∀x ∈ X , 0 ≤ i ≤ k : ̂̂si(x) = {τ | statex,i,sN(τ)}
1Here, we overload the notation ρ. It stands for a transition function, and also for the set

of transitions it enables. The transitions are represented as tuples.
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However, in order to generate the complete state space of ̂N
M̂k,Ntr(NNF(¬ϕ))

, addi-

tional implications are needed.
We define now the initial state. Let us suppose that the initial abstract

value for each variable x is defined as the model of the unary predicate initx.
Therefore we define the following implication:

statex,i,sN0 (X)⇐ initx(X).

In our case, in the initial state of M the content of each variable is #. Therefore,
we define for all x ∈ X :

initx(#).

We also need to define the initial analysis information for the transitions.
Here we rely on the description of the transition function δ̂ presented in Sec-
tion 4.4.1. Let us suppose that we would like to compute the successor state

(̂̂s′, sN ′) of the transition (̂̂s′, sN ′) ∈ ̂̂δ×(((̂̂s0
, ̂̂s1

, ..., ̂̂sk), sN ), (â, ϑ)), where sN
′ ∈

ρ(sN ,Ψ). Since we overapproximate, we need to take into consideration all
letters for which (â, ϑ) |=

∧
P∈Ψ P .

First, let us treat propositions of the form y M Lm in Ψ where y ∈ XI . These
constraints refer to the main run only, and not to alternative runs corresponding
to hide operators. Note that, there can be multiple languages constraining the
same variable. Let us suppose that the set of trees Lm is given by means of
the predicate langLm . As usual, node nin stands for the initial node of the
self-composition of the CFG of program p. We initialize each variable y ∈ XI
of the main run the following way:

vary,nin ,0,(sN ,Ψ,sN
′)(X)⇐

∀(yMLm)∈Ψ︷ ︸︸ ︷
langL1

(X), ..., langLl(X) . (4.8)

We initialize output variables in a similar way. The only difference is that
the predecessor state needs to be taken into consideration as well. Therefore,
we define for all x ∈ XO:

varx,nin ,0,(sN ,Ψ,sN
′)(X)⇐ statex,0,sN(X),

∀(xMLm)∈Ψ︷ ︸︸ ︷
langL1

(X), ..., langLl(X) . (4.9)

By means of implications (4.8) and (4.9) we define the initial analysis infor-
mation d0

0(x) for the analysis corresponding to the main run and to the transition

(sN ,Ψ, sN
′
) of Ntr(NNF(¬ϕ)).

Now we define initial values for the analyses of alternative runs. Here we
treat two cases based on whether start i ∈ Ψ or ¬start i ∈ Ψ.

The case when start i 6∈ Ψ or ¬start i ∈ Ψ. In this case we define the input
variables for alternative runs exactly as we did for the original run. Accordingly,
for all 0 < i ≤ k and all y ∈ XI we define:

vary,nin ,i,(sN ,Ψ,sN
′)(X)⇐

∀(yMLm)∈Ψ︷ ︸︸ ︷
langL1

(X), ..., langLl(X) .

Now we treat two additional subcases based on whether leak i is a member of Ψ
or not. Note that, transitions of Büchi automata Ntr(NNF(¬ϕ)) constructed based



4.4. MODEL CHECKING SYSTEMS WITH INFINITE STATE SPACE 65

on our formulae tr(NNF(¬ϕ)) do not have propositions of the form ¬leak i. This
is due to the properties of the formula (4.3) replacing leak operators.

• leak i 6∈ Ψ. In this case we define for all x ∈ XO:

varx,nin ,i,(sN ,Ψ,sN
′)(X)⇐ statex,i,sN(X).

• leak i ∈ Ψ. We define for all x ∈ XO the following implication:

varx,nin ,i,(sN ,Ψ,sN
′)(X)⇐ statex,i,sN(X),secret(X).

In this case we explicitly make sure that the value of x has at least one
leaf labeled ? using predicate secret as it has been defined by implication
(3.7). This is a key implication of our analysis. In this case, the transition
can only take place, if there are potentially confidential values in the vari-
able. However, this transition is part of an automaton generated based
on a negated formula having hide operators H i

Hi,Oiψ. Therefore, if there
are no leaves labeled ?, then no leakage can happen at this transition.
Furthermore, if leak i can never be satisfied, then the corresponding hide
operator is in turn satisfied.

The case when start i ∈ Ψ or ¬start i 6∈ Ψ. We allow the initialization of
a new alternative run also in the case, when it is not explicitly forbidden by
Ψ. Let us suppose now that there is a hide operator H i

Hi,Oiψ in the formula

we check. Now we treat input variables y ∈ XI that are in the domain of Hi.
According to Step 2 in the description of the transition function δ̂ in Section
4.4.1, now we need to compute a value hy,i. Let us suppose that there are
multiple propositions y M Lm in Ψ constraining the value of y. The value hy,i
is the set of public views for which there is a corresponding document in the
concretization of the intersection of the languages Lm. We cannot use Horn
clauses in order to compute this. Therefore, we compute the intersection of the
languages Lm using theH1 solver [60] resulting in a finite tree automaton. Based
on the tree automaton we construct a regular tree grammar [22], and carry out
the algorithm described in Section 4.4.1 in order to compute the grammar for
hy,i. Finally, we define the set of implications, the model of which is exactly
the set of trees hy,i. Let us suppose that the result is presented by means of the
predicate hy,i. Accordingly, the variable y in the alternative run i is defined by
the following implications:

vary,nin ,i,(sN ,Ψ,sN
′)(X) ⇐

∀(yMLm)∈Ψ︷ ︸︸ ︷
langL1

(X), ..., langLl(X) .
vary,nin ,i,(sN ,Ψ,sN

′)(X) ⇐ hy,i(X).

(4.10)

In case of variables y 6∈ dom(Hi) no secret is introduced. Therefore we define:

vary,nin ,i,(sN ,Ψ,sN
′)(X)⇐

∀(yMLm)∈Ψ︷ ︸︸ ︷
langL1

(X), ..., langLl(X) .

Again, we treat two additional subcases based on whether leak i is a member of
Ψ or not. The difference to the previous case is, that output variables are now
initialized based on the original run identified by index 0.
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• leak i 6∈ Ψ. In this case we define for all x ∈ XO:

varx,nin ,i,(sN ,Ψ,sN
′)(X)⇐ statex,0,sN(X).

• leak i ∈ Ψ. We define for all x ∈ XO the following implication:

varx,nin ,i,(sN ,Ψ,sN
′)(X)⇐ statex,0,sN(X),secret(X).

In this case we explicitly make sure that the considered values have leaves
labeled ? using predicate secret as it has been defined by implication
(3.7). Note that, the condition of the implication above never holds. In
our model there are no values having label ? in the original run.

The models of predicates statex,i,sN yield the state space of ̂N
M̂k,Ntr(NNF(¬ϕ))

.

However, we still need to identify the transitions. We define the nullary predicate

trans(sN ,Ψ,sN ′) that holds if the transition of ̂N
M̂k,Ntr(NNF(¬ϕ))

corresponding to

the transition (sN ,Ψ, sN
′
) of Ntr(NNF(¬ϕ)) can take place using the following

implication:

trans(sN ,Ψ,sN ′) ⇐
∀x∈X and 0≤i≤k︷ ︸︸ ︷

varx,nin ,i,(sN ,Ψ,sN
′)(Xx,in,i),... ,

∀x∈X and 0≤i≤k︷ ︸︸ ︷
varx,nfi ,i,(sN ,Ψ,sN

′)(Xx,fi,i),...

(4.11)

According to implication (4.11), trans(sN ,Ψ,sN ′) holds if all variables are defined

for the original run and all alternative runs modeled by M̂k at the initial nin and
final nfi nodes of the corresponding analyses. Now we can define the transition

function
̂̂
δ
×

of the automaton ̂N
M̂k,Ntr(NNF(¬ϕ))

. (̂̂s′, sN ′) ∈ ̂̂δ×((̂̂s, sN ), (â, ϑ))

holds, if and only if trans(sN ,Ψ,sN ′) holds and for all x ∈ X we have that
â(x) =

⋂
(xMLm)∈Ψ Lm

Theorem 12. L( ̂N
M̂k,Ntr(NNF(¬ϕ))

) = ∅ entails that L(N
M̂k,Ntr(NNF(¬ϕ))

) = ∅.

For the proof, please refer to Section 6.3.

Theorem 12 assures us that abstract machines ̂N
M̂k,Ntr(NNF(¬ϕ))

possess the

property, which is needed for verification.

4.4.3 Computing the Result

The goal is to construct a Büchi automaton based on ̂N
M̂k,Ntr(NNF(¬ϕ))

, the empti-

ness of which entails the emptiness of ̂N
M̂k,Ntr(NNF(¬ϕ))

, and which can be checked

with an already implemented algorithm. This automaton, the “distilled” au-

tomaton, is constructed based on Ntr(NNF(¬ϕ)) and ̂N
M̂k,Ntr(NNF(¬ϕ))

. Given the

implications in Section 4.4.2, we “distill” the automaton Ntr(NNF(¬ϕ)) = (SN ,
P(Prop), sN0 , ρ, F ) by removing those transitions from ρ, the corresponding tran-

sition of which cannot be taken in ̂N
M̂k,Ntr(NNF(¬ϕ))

. A transition of ̂N
M̂k,Ntr(NNF(¬ϕ))

cannot take place if the corresponding predicate trans(sN ,Ψ,sN ′) does not hold.
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Now we define the distilled automaton N∗tr(NNF(¬ϕ)) = (SN ,P(Prop), sN0 ,

ρ∗, F ) based on Ntr(NNF(¬ϕ)) = (SN ,P(Prop), sN0 , ρ, F ). The only difference
between the two automata is in their transition functions. sN ′ ∈ ρ∗(sN ,Ψ) holds

if sN
′ ∈ ρ(sN ,Ψ) and trans(sN ,Ψ,sN ′) hold. Now we enumerate the transitions

in Ntr(NNF(¬ϕ)) and remove those on which trans(sN ,Ψ,sN ′) does not hold. Now
N∗tr(NNF(¬ϕ)) is the usual nondeterministic Büchi automaton, the emptiness of

which can be checked according to [72].

Theorem 13. Let us consider the transition system M and the formula ϕ of
the logic Restricted SecLTL. We suppose that N∗tr(NNF(¬ϕ)) is the corresponding

“distilled” automaton. In this case L(N∗tr(NNF(¬ϕ))) = ∅ entails that M |= ϕ.

For the proof, please, refer to Section 6.3.
According to Theorem 13, the emptiness of the distilled automaton entails

that the system adheres to the corresponding information flow policy. Further-
more, there are already implemented tools, e.g, GOAL [72] for deciding whether
the language of a Büchi automaton is empty.

In the next sections we describe the practical implementation of the model
checker and demonstrate its usability.

4.5 Implementation

This section describes the practical implementation of the model checking ap-
proach introduced in Section 4.4.

4.5.1 Transforming Formulae into Büchi Automata

We have extended the LTL2Buchi translator implemented at the NASA Ames
research Center [35], in order to transform formulae of the logic Restricted Se-
cLTL into nondeterministic Büchi automata. In the previous sections, a formula
was negated first, then its negation normal form was constructed, and then leak
operators have been replaced with a dedicated LTL subformula (4.3). For prac-
tical reasons, in the implementation we do it differently. First, hide operators
are replaced with an other subformula. Therefore, if we would like to check
the validity of the formula ϕ on a model, then each subformula of the form
H i
Hi,Oiψ

′ is replaced by the following:

¬start i ∨ (¬leak iWψ′) (4.12)

By negating (4.12) we obtain:

start i ∧
(

(¬leak i ∧ ¬ψ′)U(leak i ∧ ¬ψ′)
)

(4.13)

Essentially, therefore, leak operators of the form LiHi,Oiψ are replaced in the
implementation with:

start i ∧
(

(¬leak i ∧ ψ)U(leak i ∧ ψ)
)

(4.14)

From now on, we denote the transformation of the implementation by tr′. It
replaces leak operators of the form LiHi,Oi(ψ) in NNF(¬ϕ) with (4.14). The
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application of tr′ is correct because of the following reasons. In the implementa-
tion, the construction of the product automaton NMk,Ntr(NNF(¬ϕ))

corresponding
to the model M and the formula ϕ differs to some extent to that discussed
in Section 4.3. Let us regard the transition (s∗′, sN

′
) ∈ δ×((s∗, sN ), (a, ϑ))

of NMk,Ntr(NNF(¬ϕ))
, where the corresponding transition of Ntr(NNF(¬ϕ)) is sN

′ ∈
ρ(sN ,Ψ). In the implementation, start i 6∈ ϑ if start i 6∈ Ψ. In other words,
Mk does not start a new alternative run corresponding to a hide operator
nondeterministically, if it is not explicitly prescribed by the Büchi automaton
Ntr(NNF(¬ϕ)). As a result, each ¬start i can be removed from the replacement of
leak operators. Let us denote the product automaton with the new semantics by
N ′Mk,Ntr′(NNF(¬ϕ))

. The following theorem indicates that we can use the product

automaton N ′Mk,Ntr′(NNF(¬ϕ))
for verification.

Theorem 14. L(N ′Mk,Ntr′(NNF(¬ϕ))
) = ∅ entails that L(NMk,Ntr(NNF(¬ϕ))

) = ∅.

For the proof, please, refer to Section 6.3.

4.5.2 The Verification Procedure

We have implemented the model checker in OCaml. It was possible to decom-
pose the model checking procedure into many subproblems, for the majority of
which there has already been an implementation. Therefore, the model checker
integrates many already existing tools and contains the implementation of miss-
ing functionalities.

For the verification of a model, a dedicated directory needs to be opened.
This directory will contain several files describing the model, the property to
be verified, the regular grammars corresponding to sets of documents, the Horn
clauses implementing the analysis of Section 3.3, etc. Now we go over the
verification process, and discuss the emerging subproblems with their solutions.
We refer to the Restricted SecLTL formula to be verified by ϕ.

1. In this step we construct the Büchi automaton for the formula to be ver-
ified. The formula needs to be stored in the file property.ltl. In the
first step of the verification, hide operators are replaced with (4.12), and
then the formula is negated. Next, the corresponding Büchi automaton
is constructed. We have used an extension of the LTL2Buchi translator
implemented at the NASA Ames research Center [35] in order to carry out
this step. The XML representation of the resulting automaton is written
into the file property.xml. We denote this automaton by Ntr′(NNF(¬ϕ)).

2. In this step additional grammars are generated. The program to be veri-
fied needs to be stored in the file workflow.wf. This file contains the set of
binary alphabet elements Σ2 that can possible occur in the values too. In
this step, two grammars are constructed. One generates the universal lan-
guage, and the other generates the set of secret-dependent documents over
the binary alphabet Σ2 and nullary alphabet {bv , ?, #}. The first gram-
mar is stored in the file anything.inputLang, and the second is stored in
secret dep.inputLang. The purpose of these languages is the following.
There are cases, when a transition of the Büchi automaton Ntr′(NNF(¬ϕ))

does not pose constraints on an input variable. Still a grammar for the
corresponding value needs to be defined. The corresponding language is
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going to be the intersection of the universal language and the complement
of the set of secret-dependent documents.

3. In this step all grammars are complemented. The languages that the user
refers to in ϕ need to be represented in the form of Horn clauses, and
need to be stored in files having extension inputLang. In this step we
complement all grammars stored in files with extension inputLang. The
Binary Tree Automata Library written by Emmanuel Filiot [32] is used
for the purpose. The complemented grammars are output in the form of
Horn clauses into files having the same names as the original ones with
the postfix .complemented appended to them.

4. In this step the input grammars for transitions are computed. The tran-
sitions of Ntr′(NNF(¬ϕ)) are enumerated and the conditions examined that

they pose. For each transition of the form sN
′ ∈ ρ(sN ,Ψ), and for each

variable x ∈ X occurring in the program, we compute the intersection of
the grammars L, where x M L ∈ Ψ occurs. The constraints of transitions
Ψ are always extended with the universal language and the complement of
the language of secret-dependent documents. This resulting intersection
language is the effective input language of the variable x in the original
run. The result is written into a file with extension intersection. The
computation is carried out by the H1 solver [60].

5. In this step, input grammars for alternative runs are computed. Let us
suppose that there are subformulae of the form H i

Hi,Oiψ in ϕ. Now, the
transitions of Ntr′(NNF(¬ϕ)) are examined again. For each transition having
constraints of the form start i ∈ Ψ, grammars are constructed describing
the input values of variables of the corresponding alternative runs. The
subset hx,i of Hi(x) is computed2 for each input variable x which is a
member of dom(Hi). hx,i contains public views only for trees that are
contained by the effective input language as computed by the previous
step. Note that in Section 4.4, two implications (4.10) have been used
to assign the effective input language and the corresponding set of public
views to a variable. In the implementation, we unify the corresponding
languages separately. In the next step, therefore, the grammar of hx,i is
unified with the effective input language for x. The resulting grammar
is called combined grammar. It is required that the grammar of Hi(x)
is stored in a file having extension secGram. The combined grammar is
stored in a file having extension combined. This step of the model checking
process is carried out by the OCaml implementation.

6. A separate set of Horn clauses implementing the program analysis of Sec-
tion 3.3 is generated for the original run of the system and for each of
the alternative runs corresponding to hide operators. This set of clauses
is written into the file called h1.p. Additionally, the contents of all files
describing grammars are copied into this file. Because there could be
name clashes among the predicates of grammar descriptions, the actual
file names are prepended to them. An additional implication of the form

2 hx,i is computed according to Step 2. of the construction of the abstract transition system
as it is described in Section 4.4.1.
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of (4.11) is generated for each transition of Ntr′(NNF(¬ϕ)) in order to check
its fireability. These implications are also written into h1.p.

7. In this step, the “distilled” automaton is constructed. The transitions of
Ntr′(NNF(¬ϕ)) are enumerated and their fireability is determined based on
the corresponding implication of the form (4.11). The models of predicates
in h1.p are computed by theH1 solver described in [60]. The transitions of
Ntr′(NNF(¬ϕ)) are removed that cannot fire, and the distilled automaton is
written into the file properties processed.xml. The XML manipulation
is carried out using the XML-Light library [70].

8. The distilled automaton N∗tr′(NNF(¬ϕ)) is checked for emptiness using the

GOAL tool [72].

The last step delivers the final result of the analysis as well. If GOAL reports
N∗tr′(NNF(¬ϕ)) to be empty, then M |= ϕ is proved. In the other case we have no
answer. One reason is that abstract interpretation is involved in the verification
process. In this case it is possible that the property does not hold. However, it
is also possible that the property holds, but the verification algorithm was too
imprecise to prove it.

4.6 Case Studies

In this section we describe two examples that we used to test the implementation
of the model checker. First, we verified the information flow policy (4.2) on the
model corresponding to the program in Listing 2.1 extended with the description
of variables and the alphabet. Note that it is impossible to verify the program
without taking the temporal aspect into consideration, or restricting the value
of variable toAuthors as it has been done in Section 3.3.1. The reason is that
the database containing secrets is assigned to the public variable toAuthors at
line 3. Therefore, either the value of variable phase needs to be chosen so that
the conditional expression at line 2 is always false, or when it is true, then the
temporal information flow policy needs to have released the secret by that time.
Considering the policy in (4.2) the latter is the case. In (4.2) the condition of
information release is that the value of variable phase has root labeled notify,
which coincides with the branching condition at line 2.

doc

reviewers content

r r

JDoe RMiles
#

#

#

doc

reviewers

r content

JDoe r

RMiles

##

# #

Figure 4.2: A document submission in unranked form on the left and in binary
form on the right.

Now we discuss an other case study, on which we tested the model checking
algorithm. We consider an other module of the imaginary conference manage-
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ment system. Using this module, submissions are uploaded together with the
list of reviewers who are allowed to read the submission. Figure 4.2 illustrates a
submission like that in unranked and in binary form. The submissions are then
assigned to reviewers that appear in the list. In our example there are three re-
viewers, John Doe (abbreviated JDoe), John Styles (abbreviated JStyles) and
Richard Miles (abbreviated RMiles).

1 input: phase, indoc;

2 output: toJDoe, toRMiles, toJStyles;

3 alphabet: upload, release, doc, reviewers,

4 JDoe, RMiles, r, content;

5

6 empty:=#;

7 if top(phase) = init then {

8 toJDoe := listElement(empty,empty);

9 toRMiles := listElement(empty,empty);

10 toJStyles := listElement(empty,empty);

11 allSubmissions := listElement(empty,empty);

12 } else {

13 if top(phase) = release then {

14 toJDoe := allSubmissions;

15 toRMiles := allSubmissions;

16 toJStyles := allSubmissions;

17 } else {

18 // top(phase) = upload

19 // Here are the submissions uploaded together

20 // with the list of reviewers, who are allowed to

21 // read them.

22 allSubmissions := listElement(indoc,allSubmissions);

23 reviewers := indoc/1;

24 r := reviewers/1;

25 last :=false(empty,empty);

26 while top(last) = false do {

27 allowedRev := r/1;

28 if top(allowedRev) = JDoe then {

29 toJDoe := listElement(indoc,toJDoe);

30 } else {

31 skip;

32 };

33 if top(allowedRev) = RMiles then {

34 toRMiles := listElement(indoc,toRMiles);

35 ////////////////////////////////////

36 // Uncomment the line below

37 // to make the property invalid.

38 // toJStyles := listElement(indoc,toJStyles);

39 } else {

40 skip;

41 };

42 if top(allowedRev) = JStyles then {

43 toJStyles := listElement(indoc,toJStyles);

44 } else {

45 skip;

46 };

47 r:=r/2;
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48 if top(r)=# then {

49 last:=true(empty,empty);

50 } else {

51 skip;

52 }; }; }; };

Listing 4.1: A module of the conference management system where sub-
missions are uploaded.

The program implementing the module is shown by Listing 4.1. Similarly to the
previous example, the functionality of the module is governed by phases. The
actual phase is given by the label of the root of the tree in variable phase. An
execution of the system consists of three phases. First, an initialization step is
needed, where the phase is init. Then, several transitions in the phase upload

follow, and finally, a release phase is expected with a single step. During
the upload phase documents are uploaded and assigned to reviewers. In the
final release phase all of the uploaded documents are disclosed to all reviewers.
We suppose that the discussion about the acceptance of the papers takes place
before the release phase, and therefore, the potential conflicts of interest between
authors and reviewers becomes irrelevant after that.

The piece of code in Listing 4.1 works the following way. During the upload
phase, the relevant part of the execution of each transition starts at line 22.
First, the input document in variable indoc is appended to the list in variable
allSubmissions containing all of the submissions uploaded so far. The loop at
line 26 assigns the document to the allowed reviewers. There is an iteration for
each element of the list of allowed reviewers, where the document is appended
to the lists of the appropriate reviewer. In the release phase on the other hand,
all of the uploaded submissions stored in variable allSubmissions are copied
to the output variables of the reviewers.

We would like to verify that a document only gets sorted into the list of
a specific reviewer, if his name appears in the list of allowed reviewers. For
the formalization of the requirement we need to be able to express that the
contents of submissions are secret. In this example this is done by the predicate
contentSec, which accepts binary trees similar to that in Figure 4.2, where the
subtree of the content is exchanged with a single leaf labeled ?. The requirement
from the point of view of John Styles can be formalized by the following formula:

�
[
indoc M allowedJS ∨H{indoc7→contentSec},{toJStyles}(phase M release)

]
(4.15)

Let us suppose that the predicate allowedJS accepts document trees, where
John Styles is among the allowed reviewers. The formula (4.15) is an example,
where secrecy is specified conditionally based on the value of a variable. The
formula holds on the model in two cases. One of the cases is when the secret
does not influence the variable toJStyles. The other case is when John Styles
is among the allowed reviewers as it is specified by the predicate allowedJS.
In the latter case, of course, the noninterference specified by the hide operator
does not need to hold.

However, as it is the case by many practical applications, in order to execute
the program in Listing 4.1 successfully, the environment also has to satisfy some
conditions. The program in Listing 4.1 is not prepared to handle an arbitrary se-
quence of input values. It assumes, that the first phase of the execution consists
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of an initialization step, and that the value of variable indoc is always a valid
input document. Using Restricted SecLTL we can also incorporate assumptions
of the verified model regarding the environment into the specification. These
assumptions can be formalized as implications as the formula below exemplifies:

phase M init⇒ �
[
indoc M doc⇒(

indoc M allowedJS ∨H{indoc7→contentSec},{toJStyles}(phase M release)
)]

(4.16)
Here, we assume that the predicate doc accepts the set of valid documents, and
init holds on values having root labeled with init. The intuitive meaning
of the formula (4.16) is that the desired secrecy only needs to hold in case
the value of the variable indoc is a valid input document. Additionally, we
are only interested in the behavior of the system, when it is initialized first.
This is expressed by the first implication, the left hand side of which constrains
the value of variable phase. However, a formula a ⇒ b equals to ¬a ∨ b, and
Restricted SecLTL does not support negation. Since regular tree grammars can
be complemented, we can still express the requirements of (4.16) in Restricted
SecLTL:

ϕ = phase M init ∨�
[
indoc M doc∨(

indoc M allowedJS ∨H{indoc7→contentSec},{toJStyles}(phase M release)
)]

(4.17)
Figure 4.3 illustrates the Büchi automaton constructed by GOAL based on ϕ

in (4.17). The distilled automaton corresponding to the model and the formula is
shown in Figure 4.4. As the figure illustrates, the accepting state is unreachable.
Therefore, the automaton has no accepting run, and the specification is proved
to be valid. We also carried out an experiment to find out what happens, if
the instruction at line 38 is commented out. In this case the program violates
the property of (4.17), because John Styles can receive documents also in the
situation e.g., when only Richard Miles is entitled to read. The corresponding
distilled automaton is shown in Figure 4.5. As we can see, this automaton has
accepting runs, therefore, the property ϕ could not be proved on the system.

Note that, the labels of edges of the automata in Figures 4.3, 4.4 and 4.5 have
been modified for the sake of readability. It is necessary for the implementation
that these labels are machine-readable. The machine-readable labels have the
same meanings as the ones in the Figures, but they are much more difficult to
comprehend.
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Figure 4.3: The Büchi automaton Ntr′(NNF(¬ϕ)) constructed by GOAL based
on the formula in (4.17). The initial state s0 is marked with a triangle, and
the accepting state s1 is marked with two rings. Propositions of the form
variable M grammar are written as variable grammar, and ∼ stands for nega-
tion.
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Figure 4.4: The distilled automaton corresponding to the formula (4.17) and
the model on Listing 4.1.
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Figure 4.5: The distilled automaton corresponding to the formula (4.17) and
the model in Listing 4.1, when an error is injected by the instruction at line 38.
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4.7 Related Work

In [28] an automata-theoretic approach was presented for the verification of
finite-state systems against temporal information flow properties specified in
SecLTL. The logic Restricted SecLTL used in this work is a modification of
SecLTL, where negation is not allowed. Therefore, Restricted SecLTL is a min-
imalistic extension of positive LTL specifically oriented towards information
flow. It thus provides a more natural specification framework than previous ap-
proaches to combining information flow and temporal properties. These include
the usage of epistemic logic to specify noninterference [31, 9] and the charac-
terization of observational determinism in CTL* and in the polyadic modal
µ-calculus[44] using the self-composed system. Our model checking algorithm
can be seen as an extension of the idea to reduce the information flow analysis
to the analysis of the self-composition of the model [13, 71, 8, 21]. Unlike previ-
ous works however, our technique is not bound to two (or any fixed number of)
copies of the system, but can be applied to properties over an arbitrary amount
of copies (specified via multiple hide operators). Sabelfeld et al. [67] investigate
the principles and dimensions of declassification. Restricted SecLTL addresses
the dimensions “What” and “When” among others, because the conditional
declassification of specific pieces of information can be specified.
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Chapter 5

Conclusion

In this work we have shown three methods to analyze information flow properties
of tree-manipulating programs. Information flow properties are composed in
terms of public views, which are the public upper parts of trees not containing
confidential values. Therefore, our algorithms can cope with information flow
properties that assign different security levels to different subtrees in a single
document.

Chapter 2 introduced a runtime monitor that can enforce the secrecy of
subtrees during the execution. The key idea of the approach is to apply a
generalized constant propagation in order to compute the public views of the
results of branching constructs depending on secret.

In Chapter 3 we have presented a general approach for statically analyzing
2-hypersafety properties. The approach is based on finding appropriate self-
compositions of control flow graphs. Our algorithm to construct quality self-
compositions is completely deterministic and uses the Robust Tree Edit Distance
[62] measure in order to align similar program fragments with each other. We
have applied our technique to analyze information flow properties of programs
manipulating semi-structured data.

Our results open many directions for further research, e.g.:

• In our analysis, different program variables are treated separately. Extra
precision, perhaps may be obtained by using predicates that relate the
contents of different variables in states. The resulting clauses then may
no longer be members of the class H1. Still, one may apply a Horn clause
based approach, but use a first order theorem prover such as, e.g., SPASS
[80] as a back-end, instead of an H1 solver.

• The language we have considered in this work does not support procedure
calls. It still remains an open question, how the Horn clause formulation
of the analysis can be optimally extended also to recursive procedures.

• As the theory of the merge over all twin computations solution and the
construction of self-compositions of control flow graphs is independent of
specific programming languages and semantics, it is possible to apply our
framework to additional programming languages as well.

The solutions in Chapter 2 and Chapter 3 do not consider information flow
policies changing in time. Therefore, in Chapter 4 we have presented a method
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for verifying reactive systems with possibly infinite state space against require-
ments specified in Restricted SecLTL. We have integrated the abstract interpre-
tation technique of Chapter 3 with the model checking algorithm for SecLTL
[28], which yields a powerful verification method. The resulting model checker
is applicable to infinite state reactive systems manipulating document trees and
specifications capturing the interplay between information flow and functional
properties in a temporal context.



Chapter 6

Proofs

6.1 Proofs for Chapter 2

Lemma 1. Let us consider the program c1;...;cn, where n ≥ 0. If for each i and
Di there exists a Di+1 so that 〈ci(m), Di〉 →∗µ Di+1 then 〈(c1;...;cn)(m), D1〉 →∗µ
Dn+1.

Proof. If n = 0, then p = ε and the result follows. If n > 0, we prove inductively
on the number of steps the rule MS is applied. About c1 we know that there
exists a D2 so that 〈c1(m), D1〉 →∗µ D2. So for this reason we can apply rule MS
on program c1;...;cn. We have 〈(c1;...;cn)(m), D1〉 →µ 〈(c2;...;cn)(m), D2〉.

We suppose that there is a Di−1 so that:

〈(c1;...;cn)(m), D1〉 →∗µ 〈ci−1;...;cn, Di−1〉

We know that for each Di−1 there exists a Di so that 〈ci−1(m), Di−1〉 →∗µ Di.
Using rule MS, we have: 〈(ci−1;...;cn)(m), Di−1〉 →µ 〈(ci;...;cn)(m), Di〉. So
we have 〈(c1;...;cn)(m), D1〉 →∗µ 〈(ci;...;cn)(m), Di〉. This reasoning is valid
for any i and specifically for n too, so the statement is proved.

Lemma 2. The preorder of trees has the ascending chain condition.

Proof. In this proof the set Σ2 stands for the binary alphabet elements, and Σ0

for the nullary ones without ?. Furthermore τ/π denotes the subtree of the tree
τ at position π.

Let us suppose that τ1 v τ2, τ1 6= τ2 and there is no τ3 such that τ1 v τ3 v τ2.
In this case there are the following possible differences between τ1 and τ2:

1 There is one position π for which τ1(π) 6= τ2(π) but in all other positions
ν it is true that τ1(ν) = τ2(ν). In this case, τ1(π) ∈ Σ0 and τ2(π) = ?.

2 There is one position π among those positions ν for which τ1(ν) ∈ Σ2 so
that τ1(π) 6= τ2(π). For all other ν like that it is true that τ1(ν) = τ2(ν).
Furthermore, τ1/π = α(?, ?) for some alphabet element α, and τ2/π = ?.

Our statement is that if there is an ascending sequence of trees τ0 v τ1 v ...
then there exists a finite number n so that for each i ≥ n it is true that τi = τn.
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Let us collect the information on the number of different node types in a tree
τ into a tuple (nb, nu, n?), where the members are the number of binary nodes,
the number of nullary nodes, and the number of nodes labeled ? respectively.
nu does not contain nodes labeled ?. Because of the properties of a binary tree
we know, that for each tree nb + 1 = nu + n?.

So if there are two trees τ1 and τ2 for which it is true that τ1 v τ2, τ1 6= τ2,
and there is no τ3 such that τ1 v τ3 v τ2 then we can say the following about
the tuples belonging to them:

1) nτ2b = nτ1b , nτ2u − 1 = nτ1u and nτ2? = nτ1? + 1. Or

2) nτ2b = nτ1b − 1, nτ2u = nτ1u and nτ2? = nτ1? − 1.

The top element of the preorder is the tree τ = ?, with tuple (0, 0, 1).
Accordingly, if we have a tree τ0 with tuple (nτ0b , n

τ0
u , n

τ0
? ), it takes at the most

n = nu + nb steps for an ascending chain to arrive at the tree ?.

Lemma 3. For all programs p and monitor states D there exists another mon-
itor state D′ so that 〈p(m), D〉 →∗µ D′. In other words, the generalized constant
propagation always terminates.

Proof. First we prove the statement on commands of the form while b do {p}
and if b then {ptt} else {pff} inductively on the maximal number of such
commands on any root-leaf path of the abstract syntax tree.

0 In this case the program is either one assignment, or a sequence of assign-
ments.

Let us consider one assignment. If D ∈ {>,⊥, } then the rule MCE is
applied on the monitor state and D = D′. If D 6∈ {>,⊥, } then the

rule MA is applied. Since the denotation function MJx:=eK] is a total
function, the assignment always has a resulting monitor state.

If the program is a sequence of assignments then termination follows from
Lemma 1 and from the above statement.

i In this case we suppose that in the programs p, ptt and pff there are max-
imally i− 1 if and while constructs on any root-leaf path of the abstract
syntax tree. We suppose that these programs terminate. In other words
there exists a D′ for any D so that 〈p(m), D〉 →∗µ D′, 〈ptt(m), D〉 →∗µ D′
and 〈pff(m), D〉 →∗µ D′. There are two cases: Either the program is a
command if b then {ptt} else {pff} or while b do {p}. We treat these
cases separately.

– if: The program is of the form if b then {ptt} else {pff}. If
D ∈ {>,⊥, } the the rule MCE is applied, and the termination is
trivial, the resulting state is D′ for which D′ = D holds.

If D 6∈ {>,⊥, } then the rule MI is applied. The denotation function

MJbK] is a total function, therefore, MJbK]D and MJ¬bK]D always
exist. According to the inductive assumption, there exist D1 and D2

so that 〈ptt(m),MJbK]D〉 →∗µ Dtt and 〈pff(m),MJ¬bK]D〉 →∗µ Dff.
According to rule MI, the result D′ is Dtt tDff, which always exists
too.
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– while: We consider two cases. In case 1 the rules MWT and MWF
are used by the monitor semantics to execute the program, in case 2
MWH and MWX are used to execute the program.

1. In this case we suppose that in the execution

〈while(n) b do {p(n)}, D〉 →∗µ D′

only the rules MWT and MWF are used. Let us look closer at
this execution, which looks the following:

〈while(n) b do {p(n)}, D0〉 →µ

〈while(n− 1) b do {p(n)}, D1〉 →µ ...
→µ 〈while(n− i) b do {p(n)}, Di〉

Because of the condition n > 0 in rule MWT, i < n in all con-
figurations. But because the application of MWT increments i,
it can be applied at most n times. By the application of the rule
MWF the execution of the command terminates. If the condi-
tion of the rule MWF cannot be satisfied along the execution,
then sooner or later the conditions of the rule MWT are going
to be unsatisfiable too, and case 2 will apply.

2. In this case we suppose that one of the rules, MWH or MWX
is applied on the monitor state D = D0. The execution of the
while loop looks the following:

〈while(n) b do {p(n)}, D0〉 →µ

〈while(n− 1) b do {p(n)}, D1〉 →µ ...
→µ 〈while(n− i) b do {p(n)}, Di〉

Because of the condition of rule MWH, it is true for each i in
the above execution that Di v Di+1. Furthermore, if the condi-

tion (MJ¬bK]D 6= ⊥ ∧MJbK]D 6= ⊥) ∨ n ≤ 0 once holds for a
monitor state D it is always going to hold in the rest of the exe-
cution. Accordingly, it is not possible for an execution, that once
MWH or MWX has been executed, MWT or MWF is executed
afterwards for the same while instance.
The execution of the while instance terminates, when the rule
MWX is applied. This is the case if the condition Di+1 v Di

holds. But because we know that Di v Di+1 always holds, in
reality, MWX is applied if Di = Di+1. Lemma 2 assures us that
there exists an i for which this is the case.

Until now we have proved that our statement holds for commands of the form
while b do {p}, if b then {ptt} else {pff}, and for assignments. It follows
then from Lemma 1 that any sequence of these commands also terminates.

Lemma 4. If s v D, then for each assignment or Boolean expression f it holds
that if JfKs = s′ then MJfK]D = D′ so that s′ v D′.

Proof. First we treat the case when s =  . In this case we know that D =  
or D = > because of the assumptions of the lemma that s v D. According to
the rules in Figure 2.3 JfK =  for all possible f , and according to rule (2.7)
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MJfK]D = D for all possible f if D ∈ { ,>}. Therefore, the statement follows
because  v  and  v >.

Now we treat the case when s : X → BΣ2,Σ0
. According to the assumptions

of the lemma, it is possible now that D = >. Since according to rule (2.7)

MJfK]> = > for all f and there is no s∗ for which s∗ 6v >, the statement
follows.

Now we treat the case when s : X → BΣ2,Σ0 and D : X → BΣ2,Σ0∪{>,⊥, }.
Since there are finitely many Boolean and tree expressions, we prove the state-
ment of the lemma for each one in a separate case.

• x:=y. It follows from Definition 3 that s(y) v D(y). Similarly, we know
that for all variables z it holds that s(z) v D(z). Putting all together,
s[x 7→ s(y)] v D[x 7→ D(y)].

• x:=#. Trivial.

• x:=σ2(x1,x2). From the assumptions of the lemma follows that s(x1) v
D(x1) and s(x2) v D(x2). From Definition 2 and the fact that for all
other variables the statement holds, the result follows.

• x:=y/1. Regarding the value of D(y)(ε) we have the following possibilities:

– ?. In this caseMJx:=y/1K]D = >. Because for any state s∗ it holds
that s∗ v > the statement is proved.

– #. In this case because of our assumption, s(y)(ε) = # and the result
of the transformers on both, s and D is  . Because  v  the
statement holds.

– σ2 ∈ Σ2. Because of the assumptions of the lemma and Definition 3
we know that in this case s(y) = σ2(τ1, τ2) for some τ1 and τ2, and

D(y) = σ2(τ ]1 , τ
]
2) for some τ ]1 and τ ]2 , where τ1 v τ ]1 and τ2 v τ ]2 . It

follows now that s′(x) = τ1 and D′(x) = τ ]1 , for which our statement
holds.

• x:=y/2. It can be shown similarly to the previous case.

• x:=λt(x1,x2,...). For this case the statement follows directly from the
definition of the monitor state transformer in (2.6).

• top(x)=σ. In this case if Jtop(x)=σKs = s, then the assumptions of the
lemma entail that D(x)(ε) ∈ {σ, ?}. According to rule (2.1) in this case
the statement holds.

• ¬top(x)=σ. In this case if J¬top(x)=σKs = s, then the assumptions of
the lemma entail that D(x)(ε) ∈ (Σ2 ∪ Σ0 ∪ {?}) \ {σ}. Therefore, the
statement holds according to (2.2).

• λb(x1,x2,...). In this case the statement follows directly from (2.5).

Lemma 5. Let us suppose that the program p is of the form c1;...;cn so that
n ≥ 0, and that for all ci it holds that if 〈ci, si〉 →∗ρ si+1 and si v Di, then
〈ci(m), Di〉 →∗µ Di+1 so that si+1 v Di+1. In this case if s1 v D1 and
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〈c1;...;cn, s1〉 →∗ρ sn+1, then 〈(c1;...;cn)(m), D1〉 →∗µ Dn+1 so that sn+1 v
Dn+1.

Proof. We prove inductively on the number of times the rules MS and RS are
executed:

0 In this case the statement trivially holds.

i We suppose that the statement holds for i − 1 applications of the rules
RS and MS. In this case the program p is of the form c1;...;cn and
we know that s1 v D1. Because of the inductive assumption it fol-
lows that if 〈c1;...;cn, s1〉 →∗ρ 〈ci;...;cn, si〉 then 〈(c1;...;cn)(m), D1〉 →∗µ
〈(ci;...;cn)(m), Di〉 so that si v Di. According to Lemma 4 we know
that if furthermore 〈ci, si〉 →∗ρ si+1, then 〈ci(m), Di〉 →∗µ Di+1 so that

si+1 v Di+1. So after applying the rules the ith time it follows that
〈ci;...;cn, si〉 →ρ 〈ci+1;...;cn, si+1〉 and similarly, 〈(ci;...;cn)(m), Di〉 →µ

〈(ci+1;...;cn(m), Di+1〉, where of course si+1 v Di+1 holds.

Lemma 6. If s v D and 〈p, s〉 →∗ρ s′ then 〈p(m), D〉 →∗µ D′ so that s′ v D′.

Proof. First we prove the statement on programs of the form while b do {p};
and if b then {ptt} else {pff}; inductively on the number of commands of
these forms to be found on any root-leaf path of the abstract syntax tree. In
other words, on the number of if and while constructs embedded into each
other.

0 In this case there are no if and while constructs in the program. So the
program is either one assignment, or a sequence of assignments. Let us
treat first the case of one single assignment. In this case the statement di-
rectly follows from Lemma 4. If the program is a sequence of assignments,
then our statement follows from Lemma 5.

i Let us first suppose that the program is if b then {ptt} else {pff};. We
suppose that in the abstract syntax trees of the programs ptt and pff there
are maximally i−1 pieces of if and while constructs embedded into each
other, and that if s v D and 〈ptt, s〉 →∗ρ s′ then 〈ptt(m), D〉 →∗µ D′ so
that s′ v D′. We suppose that this statement also holds for the program
pff.

If s =  then D ∈ { ,>} and our statement follows from the rule E
in Figure 2.4 and rule MCE in Figure 2.10. If s 6=  and D = > then
according to rule MCE in Figure 2.10 〈if b then {ptt} else {pff},>〉 →µ

>. Furthermore, we suppose that according to rules IT and IF there is
an s′ so that 〈if b then {ptt} else {pff}, s〉 →ρ s

′. From Definition 3 it
follows that s′ v >, and the statement is proved.

If D : (X → BΣ2,Σ0∪{?}) then it is true for the corresponding execution
state s that s : (X → BΣ2,Σ0). Accordingly, exactly one of the rules IT
or IF is applied on s by the real semantics. We investigate the two cases
separately.

IT In this case JbKs = s. Because of Lemma 4 we know that MJbK]D =
D′ so that s v D′. the rest follows from the inductive assumption.
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IF In this case J¬bKs = s. Because of Lemma 4 we haveMJ¬bK]D = D′

so that s v D′. the rest follows from the inductive assumption.

We now come to the point where the program p is while b do {p};. If
s =  then D ∈ { ,>} and our statement follows from the rule E in Figure
2.4 and rule MCE in Figure 2.10. If s 6=  and D = > then according
to rule MCE in Figure 2.10 〈while(n) b do {p},>〉 →µ >. Furthermore,
we suppose that according to rules WT and WF there is an s′ so that
〈while b do {p}, s〉 →∗ρ s′. From Definition 3 it follows that s′ v >, and
the statement is proved.

Now we investigate the case when s : (X → BΣ2,Σ0
) and D : (X →

BΣ2,Σ0∪{?}). We investigate two cases depending on whether the rules
MWH and MWX are applied or not.

1. The rules MWH and MWX are not applied, only the rules MWT
and MWF are applied during the execution of the while instance.

The real configuration is 〈while b do {p}, s〉 and the monitor config-
uration is 〈while(n) b do {p}, D〉, so that s v D.

If J¬bKs = s then from Lemma 4 it follows that MJ¬bK]D = D′ so
that s v D′. In this case our statement trivially follows, only the
rule MWF is applied on the monitor state and the rule WF on the
real execution state.

However, if JbKs = s it means that the rule WT is applied on the real

configuration, and because of Lemma 4 it follows that MJbK]D =
D∗, where s v D∗, so the rule MWT is applied on the monitor
configuration. In this case the program p is executed on the real state
s and on the monitor state D∗. Based on the inductive assumption
we see that on the resulting states s′ and D′ it holds that s′ v D′.
(Please refer to the rules in order to see what s′ and D′ mean.)
The resulting configurations are 〈while b do {p}, s′〉 and 〈while(n−
1) b do {p}, D′〉 after executing p. So if along the execution of the
while loop a monitor configuration 〈while(n − i) b do {p}, D∗∗〉 is

never reached where i = n or MJbK]D∗∗ 6= ⊥ and MJ¬bK]D∗∗ 6= ⊥
in the same time, then inductively applying the above arguments we
can see that at the point where MJbK]D∗∗ = ⊥ holds and the rule
MWF is applied on the monitor configuration, WF is going to be
applied on the real configuration, and our statement holds.

On the other hand, if a state is reached where either i = n or
MJbK]D∗∗ 6= ⊥ and MJ¬bK]D∗∗ 6= ⊥ in the same time, then one
of the rules MWH or MWX is applied, and case 2 applies.

2. In this case the monitor rules MWH and MWX are applied on the
monitor configuration.

Let us define a sequence of real states s0, s1, ... and a sequence of
monitor states D0, D1, ... so that for each i it holds that 〈p, si〉 →∗ρ
si+1 and 〈p(m), Di〉 →∗µ D′i so that Di+1 = Di t D′i. We regard
these two sequences as the states at the time the configurations to be
executed are 〈while b do {p}, si〉 and 〈while(n− i) b do {p}, Di〉.
We know that s0 v D0. Let us suppose si v Di. In this case because
of the inductive assumption we know that si+1 v D′i v (D′i tDi) =
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Di+1. Let us suppose that we have reached an i where Di+1 v Di.
Because Di+1 = Di tD′i it follows that Di v Di+1 for each i. So if
Di+1 v Di, then Di+1 = Di. It means that for each j > i Dj = Di.
So we can just as well finish the computation and apply MWX to
return Di as the result.

Until this point we have proved for all commands c of the programming
language that if s v D and 〈c, s〉 →∗ρ s′, then 〈c(m), D〉 →∗µ D′ and s′ v D′

hold. Because of Lemma 5 it is also true for programs which are sequences of
such commands.

Lemma 7. Let us consider the program p = c1;...;cn. If for all commands ci,
it follows from s v D and 〈ci,m, (s,D)〉 →∗γ (s′, D′) that s′ v D′, then if s v D
and 〈c1;...;cn,m, (s,D)〉 →∗γ (s′, D′) then s′ v D′.

Proof. We prove inductively on the number of applications of the rule CS in
Figure 2.8, that if 〈ci;...;cn,m, (s,D)〉 →γ 〈ci+1;...;cn,m, (s

′, D′)〉 so that s v
D then s′ v D′. Specifically, if 〈cn;ε,m, (s,D)〉 →γ 〈ε,m, (s′, D′)〉 so that
s v D then s′ v D′.

We have a case splitting now according to the number of applications of the
rule CS:

0 The statement trivially holds.

i We have the configuration 〈ci;...;cn,m, (s,D)〉. The inductive assumption
is that s v D. From the assumption of the lemma we know that if
〈ci,m, (s,D)〉 →∗γ (s′, D′) so that s v D then s′ v D′. We can now
apply the rule CS:

〈ci;...;cn,m, (s,D)〉 →γ 〈ci+1;...;cn,m, (s
′, D′)〉

The statement of the lemma follows.

Lemma 8. If we have

〈p,m, (s1, D)〉 →∗γ (s′1, D
′
1) and 〈p,m, (s2, D)〉 →∗γ (s′1, D

′
2)

so that s1, s2 v D then D′1 = D′2.

Proof. By looking at the monitored semantics in Figure 2.8 and the rules of
the generalized constant propagation in Figure 2.10 one can observe that the
monitor state never depends on the real state, and the final monitor state can be
computed independently of the real state. Because of this reason the statement
holds.

Lemma 9. If 〈p,m, (s,D)〉 →∗γ (s′, D′) so that s v D, and for all variables x
we have that s(x) ∈ BΣ2,Σ0 and D(x) ∈ BΣ2,Σ0∪{?} then both of the following
holds:

1. If s′ 6=  , then for all variables x we have that s′(x) ∈ BΣ2,Σ0
and;

2. s′ v D′
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Proof. The transition rules having names beginning with C are the rules of the
monitored semantics as they are shown in Figure 2.8.

1. Considering the tree expression semantics in Figure 2.3, it is easy to see
that if there are no positions in the variables of the execution state s
labeled ? then there aren’t any in JfKs either, because the semantics does
not introduce them. So no sequence of assignments executed by the rule
CA will introduce these labels.

2. First, we prove the lemma on programs of the form while b do {p}; and
if b then {ptt} else {pff};. If D ∈ { ,>} then the rule CCE is applied
and the result follows trivially, because the states are not modified. If
this is not the case then we prove inductively on the maximal number of
occurrences of if and while constructs on any root-leaf path of the the
abstract syntax tree of the program.

0 Let us first investigate the case when the program is a single assign-
ment x:=e. If D ∈ { ,>} then the rule CCE is applied. If D =  
then s =  too because of our assumption. Since the application of
the rule does not modify the states, our result follows. If D = > then
our result follows from the fact that for any mapping s : X → BΣ2,Σ0

it is true that s v >.

If D 6∈ {>, } then D is the mapping D : X → BΣ2,Σ0∪{?}. In this
case the rule CA is applied and the result follows from Lemma 4.

If the program is a sequence of assignments, the statement follows
from the proof above and Lemma 7.

i We investigate the case of the if and while commands in separate
cases:

if In this case the program is if b then {ptt} else {pff} where ptt
and pff contain i−1 levels of embedded if and while constructs
at the maximum. Our inductive assumption is that if s v D and
〈ptt,m, (s,D)〉 →∗γ (s′, D′) or 〈pff,m, (s,D)〉 →∗γ (s′, D′) then

s′ v D′. Here, we have 3 cases according to the result ofMJbK]D
and MJ¬bK]D.

∗ MJ¬bK]D = ⊥. In this case the rule CIT is applied. Accord-
ing to our inductive assumption if 〈ptt,m, (s,D)〉 →∗γ (s′, D′)
then s′ v D′. Based on this and the rule CIT we can con-
clude the validity of the lemma.

∗ MJbK]D = ⊥. In this case the rule CIF is applied. According
to our inductive assumption if 〈pff,m, (s,D)〉 →∗γ (s′, D′)
then s′ v D′. Based on this and the rule CIF we can conclude
the validity of the lemma.

∗ MJ¬bK]D 6= ⊥ ∧MJbK]D 6= ⊥. In this case the rule CIH is
applied, and our statement follows from Lemma 6.

while Our inductive assumption is that s v D and 〈p,m, (s,D)〉 →∗γ
(s′, D′) entail that s′ v D′. If the rule CWF is used, our state-
ment trivially follows, because this rule does not modify the real
and monitor states.
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In order to prove our statement on the rule CWT let us look at
a sequence of applications of it:

〈while b do p,m, (s0, D0)〉 →γ

〈while b do p,m, (s1, D1)〉 →γ ...→γ

〈while b do pt,m, (si, Di)〉

Next, we prove inductively that if we have a sequence of ap-
plications of the rule CWT as shown above, then the property
sj v Dj is an invariant along the transitions. For the initial
configuration s0 v D0 holds because of the assumption of the
lemma.
Let us suppose that the property holds after executing the tran-
sition CWT i− 1 times. So we have the configuration:

〈while b do {p},m, (si−1, Di−1)〉

We know about the configuration above that si−1 v Di−1 be-
cause of the inductive assumption. Based on the assumption on
the program p we know that if si−1 v Di−1 and

〈p,m, (si−1, Di−1)〉 →∗γ (si, Di)

then si v Di. Accordingly, our statement holds for each i.
In case CWH is applied, the validity of our statement is guaran-
teed by Lemma 6.

Until this point we have proved our statement on programs, which are either
assignments, or are of the form while b do {p}; or if b then {ptt} else {pff};.
The validity of the lemma for any program, i.e., any sequence of commands, is
assured by Lemma 7.
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6.2 Proofs for Chapter 3

Lemma 10. If (A, α, γ,B) is a Galois connection then the following holds:

a vA γ(b1) uA ... uA γ(bn)⇒ a vA γ(b1 uB ... uB bn)

Proof. From the precondition follows:

a vA γ(b1)
...

a vA γ(bn)

Therefore, for each i it follows from Definition 6:

α(a) vB bi

Therefore, we have that:

α(a) vB b1 uB ... uB bn

And again from Definition 6 follows:

a vA γ(b1 uB ... uB bn)

Lemma 11. Let us regard two computations: π1 and π2. From Jπ1Ks0 = s,

Jπ2Kt0 = t,
[
s0
t0

]
∈ γ(d0) and d w

d
ω∈A

[
π1
π2

] SJωK]d0 follows that
[
s
t

]
∈ γ(d).

Proof. Let us regard a specific ω ∈ L
(
A
[
π1

π2

])
, where ω =

[
fωnω
gωnω

]
, ...,

[
fω1
gω1

]
and

for all i it holds that dωi = S
r
fωi
gωi

z]
dωi−1, so that dω0 = d0. Furthermore, let

us suppose that si = Jfωi , ..., fω1 Ks0 and ti = Jgωi , ..., gω1 Kt0. We prove induc-

tively on the length of ω that

[
sωi
tωi

]
∈ γ(dωi ). The inductive assumption is that[

sωi
tωi

]
∈ γ(dωi ). The inductive assumption holds on d0, s0 and t0, because of the

assumptions of the lemma. According to the requirement in (3.1) we know now
that: [

sωi+1

tωi+1

]
∈ γ(

rfωi+1

gωi+1

z]
dωi )

We know that Jfωnω ...f
ω
1 K = Jπ1K and Jgωnω ...g

ω
1 K = Jπ2K, because accord-

ing to the semantics in Figure 2.3 inserting skip operations in a sequence of
instructions does not alter the result of a computation. It follows then that[
s
t

]
=

[
sωn
tωn

]
∈ γ(SJωK]d0). Therefore, for each ω ∈ L

(
A

[
π1

π2

])
we know that[

s
t

]
∈ γ(SJωK]d0). It follows then that

[
s
t

]
∈
⋂
ω∈L

(
A

[
π1
π2

]) γ(SJωK]d0). Oth-

erwise put it we have {
[
s
t

]
} ⊆

⋂
ω∈L

(
A

[
π1
π2

]) γ(SJωK]d0). According to Lemma

10 we have {
[
s
t

]
} ⊆ γ(

d
ω∈L

(
A

[
π1
π2

]) SJωK]d0).
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From Definition 6 of Galois connections follows that:

α({
[
s

t

]
}) v

l

ω∈L
(
A

[
π1
π2

])SJωK]d0

If for some d it holds that
d
ω∈L

(
A

[
π1
π2

]) SJωK]d0 v d then α({
[
s
t

]
}) v d too.

Therefore, from Definition 6 follows that {
[
s
t

]
} ⊆ γ(d).

Theorem 3. Consider a pair of sequences of labels π1, π2 ∈ nin  nfi on
the CFG G = (N,E, nin , nfi), and states s0, s, t0, t ∈ S, where s = Jπ1Ks0,

t = Jπ2Kt0 and
[
s0
t0

]
∈ γ(d0). In this case d w MTC(G, d0) implies

[
s
t

]
∈ γ(d).

Proof. We know that:

MTC(G, d0) =
⊔

π1∈nin nfi
π2∈nin nfi

l

ω∈L
(
A

[
π1
π2

])SJωK]d0

From Lemma 11 follows that if d′ w
d
ω∈L

(
A

[
π1
π2

]) SJωK]d0 then
[
s
t

]
∈ γ(d′).

Since π1 ∈ nin  nfi and π2 ∈ nin  nfi , MTC(G, d0) w d′.

Theorem 4. Given the CFG G = (N,E, nin , nfi) and one of its self-compo-
sitions GG = (N ′, E′, n′in , n

′
fi), the following holds for all d0:⊔

ω∈n′in n′fi

SJωK]d0 w MTC(G, d0)

Proof. According to Definition 8 for all π1, π2 ∈ nin  nfi there is an ωπ1,π2 ∈
n′in  n′fi so that ωπ1,π2 ∈ L

(
A
[
π1

π2

])
. Therefore:

MTC(G, d0) =
⊔
π1∈nin nfi
π2∈nin nfi

d
ω∈L

(
A
[
π1
π2

]) SJωK]d0 v⊔
π1∈nin nfi
π2∈nin nfi

SJωπ1,π2K]d0 =⊔
ωπ1,π2

∈n′in n
′
fi
SJωπ1,π2

K]d0

Lemma 12. The following holds for any pair of sequences of sequences π1,1...π1,n

and π2,1...π2,n:

L
(
A
[π1,1...π1,n

π2,1...π2,n

])
⊇ L

(
A
[π1,1

π2,1

]
...A
[π1,n

π2,n

])
Note, that any πi,j above may equal to ε, which is the empty sequence.



92 CHAPTER 6. PROOFS

Proof. Let us denote the configurations of the derivation starting with the series

of nonterminals A
[
π1,1

π2,1

]
...A
[
π1,n

π2,n

]
using 〈ω1A

[
πk1,i
πl2,i

]
...A
[
π1,n

π1,n

]
〉1, and similarly,

denote the configurations of the derivation starting with A
[
π1,1...π1,n

π2,1...π2,n

]
using

〈ω2A
[
πk1,i...π1,n

πl2,i...π2,n

]
〉2, where ω1 and ω2 are the sequences of pairs that have been

generated, and πk1,i and πl2.i are the postfixes of π1,i and π2.i where k and l
indicate the length of the prefixes of π1,i and π2.i that have been processed
already.

Now we prove inductively on the length of the derivations that whenever
there is an α and an ω such that

〈A
[π1,1

π2,1

]
...A
[π1,n

π1,n

]
〉1

α−→
∗
〈ωA

[πk1,i
πl2,i

]
...A
[π1,n

π1,n

]
〉1,

then there is a β such that

〈A
[π1,1...π1,n

π2,1...π2,n

]
〉2

β−→
∗
〈ωA

[πk1,i...π1,n

πl2,i...π2,n

]
〉2

holds. Above, α and β denote sequences of numbers indicating the order of
the application of the rules of the grammar in (3.2). The rules corresponding
to α are always applied to the left-most nonterminal of the configuration cfg1.
The inductive assumption is that the configurations of the two derivations are
in relation cfg1 ∼ cfg2. cfg1 ∼ cfg2 holds if cfg1 and cfg2 are of the form:

cfg1 = 〈ωA
[πk1,i
πl2,i

]
...A
[π1,n

π1,n

]
〉1 ∼ 〈ωA

[πk1,i...π1,n

πl2,i...π2,n

]
〉2 = cfg2

In each step we apply one rule on

cfg1 = 〈ωA
[πk1,i
πl2,i

]
...A
[π1,n

π1,n

]
〉1

and show what to do with

cfg2 = 〈ωA
[πk1,i...π1,n

πl2,i...π2,n

]
〉2

in order to preserve the inductive assumption. During the application of the
rules on cfg1, we always expand the leftmost nonterminal. In the initial case
when ω = ε and no rules have been applied yet, the statement trivially holds.

Now we make a case distinction, based on the form of cfg1.

1) πk1,i 6= ε and πl2,i 6= ε. In this case we apply the same rule x on both of
the configurations cfg1 and cfg2:

〈ωA
[
πk1,i
πl2,i

]
...A
[
π1,n

π1,n

]
〉1

x−→ 〈ω
[
f
g

]
A
[
πk
′

1,i

πl
′

2,i

]
...A
[
π1,n

π1,n

]
〉1

〈ωA
[
πk1,i...π1,n

πl2,i...π2,n

]
〉2

x−→ 〈ω
[
f
g

]
A
[
πk
′

1,i...π1,n

πl
′

2,i...π2,n

]
〉2

The inductive assumption holds on the resulting configurations.
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2) πk1,i = ε and πl2,i 6= ε, but πk1,i...π1,n 6= ε. If rule 3 is applied on cfg1 then
rule 7 is applied on cfg2:

〈ωA
[

ε
πl2,i

]
A
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

3−→

〈ω
[
skip
g

]
A
[

ε
πl+1

2,i

]
A
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

〈ωA
[
π0

1,i+1...π1,n

πl2,i...π2,n

]
〉2

7−→ 〈ω
[
skip
g

]
A
[
π0

1,i+1...π1,n

πl+1
2,i ...π2,n

]
〉2

If rule 4 is applied on cfg1, then rule 10 is applied on cfg2:

〈ωA
[

ε
πl2,i

]
A
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

4−→

〈ω
[
skip
skip

]
A
[

ε
πl2,i

]
A
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

〈ωA
[
π0

1,i+1...π1,n

πl2,i...π2,n

]
〉2

10−→ 〈ω
[
skip
skip

]
A
[
π0

1,i+1...π1,n

πl2,i...π2,n

]
〉2

The application of these rules preserve the inductive assumption, further-
more, no other rules can be applied on the left-most nonterminal in cfg1.

2a) The case when πk1,i 6= ε and πl2,i = ε, but πk2,i...π2,n 6= ε can be proved
analogously to case 2). If rule 5 is applied on cfg1 then rule 8 is applied
on cfg2, and if rule 6 is applied on cfg1 then rule 10 is applied on cfg2.
No other rules can be applied on the left-most nonterminal in cfg1.

3) πk1,i = ε and πl2,i 6= ε and πk1,i...π1,n = ε. Either rule 3 can be applied on
cfg1, and we apply the same rule on cfg2:

〈ωA
[

ε
πl2,i

]
A
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

3−→

〈ω
[
skip
g

]
A
[

ε
πl+1

2,i

]
A
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

〈ωA
[

ε
πl2,i...π2,n

]
〉2

3−→ 〈ω
[
skip
g

]
A
[

ε
πl+1

2,i ...π2,n

]
〉2

Or we can apply rule 4 on both of the configurations:

〈ωA
[

ε
πl2,i

]
A
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

4−→

〈ω
[
skip
skip

]
A
[

ε
π1

2,i

]
A
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

〈ωA
[

ε
πl2,i...π2,n

]
〉2

4−→ 〈ω
[
skip
skip

]
A
[

ε
πl2,i...π2,n

]
〉2

There are no other rules that can be applied on the left-most nontermi-
nal of configuration cfg1, furthermore, the inductive assumption has been
preserved by the application of the above rules.

3a) The case when πk1,i 6= ε and πl2,i = ε and πk2,i...π2,n = ε can be proved
similarly. Either rule 5 or rule 6 is applied on the left-most nonterminal
of the configurations, which preserves the inductive assumption.

4) πk1,i = ε, πl2,i = ε, πk1,i...π1,n = ε, but πl2,i...π2,n 6= ε. In this case one of the
rules 1 and 2 may be applied on the left-most nonterminal of configuration
cfg1. If rule 1 is applied on cfg1 then we do not apply anything on cfg2:

〈ωA
[
ε
ε

]
A
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

1−→ 〈ωA
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

〈ωA
[

ε
π0

2,i+1...π2,n

]
〉2 〈ωA

[
ε

π0
2,i+1...π2,n

]
〉2
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If rule 2 is applied on cfg1 then rule 4 is applied on cfg2:

〈ωA
[
ε
ε

]
A
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

2−→ 〈ω
[
skip
skip

]
A
[
ε
ε

]
A
[

ε
π0

2,i+1

]
...A
[

ε
π1,n

]
〉1

〈ωA
[

ε
π0

2,i+1...π2,n

]
〉2

4−→ 〈ω
[
skip
skip

]
A
[

ε
π0

2,i+1...π2,n

]
〉2

The application of these rules preserves the inductive assumption, fur-
thermore, no other rules can be applied on the left-most nonterminal of
cfg1.

4a) The case when πk1,i = ε, πl2,i = ε, πk1,i...π1,n 6= ε, but πl2,i...π2,n = ε can
be proved similarly to case 4). Whenever rule 1 is applied on cfg1 then
cfg2 is not modified. And whenever rule 2 is applied on cfg1, then rule 6
is applied on cfg2.

5) πk1,i = ε, πl2,i = ε, πk1,i...π1,n = ε, and πl2,i...π2,n = ε. In this case one of
the rules 1 and 2 may be applied on the configuration cfg1. If rule 2 is
applied on cfg1 then this rule is also applied on cfg2:

〈ωA
[
ε
ε

]
A
[
ε
ε

]
...A
[
ε
ε

]
〉1

2−→ 〈ω
[
skip
skip

]
A
[
ε
ε

]
A
[
ε
ε

]
...A
[
ε
ε

]
〉1

〈ωA
[
ε
ε

]
〉2

2−→ 〈ω
[
skip
skip

]
A
[
ε
ε

]
〉2

However, if rule 1 is applied on cfg1 then this rule is only applied on cfg2

if cfg1 = 〈ωA
[
ε
ε

]
〉1:

〈ωA
[
ε
ε

]
〉1

1−→ 〈ω〉1
〈ωA

[
ε
ε

]
〉2

1−→ 〈ω〉2

Otherwise no rule is applied on cfg2:

〈ωA
[
ε
ε

]
A
[
ε
ε

]
...A
[
ε
ε

]
〉1

1−→ 〈ωA
[
ε
ε

]
...A
[
ε
ε

]
〉1

〈ωA
[
ε
ε

]
〉2 〈ωA

[
ε
ε

]
〉2

These rule applications preserve the inductive assumption. Furthermore,
no other rules can be applied on the left-most nonterminal of cfg1.

6) πk1,i = ε, πl2,i = ε, but πk1,i...π1,n 6= ε and πl2,i...π2,n 6= ε. Now rules 1 and
2 can be applied on the left-most nonterminal of cfg1. If rule 1 is applied,
then we do not modify cfg2:

〈ωA
[
ε
ε

]
A
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

1−→ 〈ωA
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

〈ωA
[
π0

1,i+1...π1,n

π0
2,i+1...π2,n

]
〉2 〈ωA

[
π0

1,i+1...π1,n

π0
2,i+1...π2,n

]
〉2

If rule 2 is applied on cfg1 then rule 10 is applied on cfg2:

〈ωA
[
ε
ε

]
A
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

2−→ 〈ω
[
skip
skip

]
A
[
ε
ε

]
A
[
π0

1,i+1

π0
2,i+1

]
...A
[
π1,n

π1,n

]
〉1

〈ωA
[
π0

1,i+1...π1,n

π0
2,i+1...π2,n

]
〉2

10−→ 〈ω
[
skip
skip

]
A
[
πk
′

1,i...π1,n

πl
′

2,i...π2,n

]
〉2

The application of these rules preserves the inductive assumption.
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Lemma 13. The following holds for all sequences π:

L
(
A
[
ε
π

])
⊇ L

(
A
[
skip
π

])
and

L
(
A
[
π
ε

])
⊇ L

(
A
[

π
skip

])
Proof. We prove now the first statement, the second can be proved analogously.

We show that for all ω ∈ L
(
A
[
skip
π

])
, ω is an element of L

(
A
[
ε
π

])
too. We de-

note the configurations of the derivation of an arbitrary ω starting from A
[
skip
π

]
with 〈ω∗A

[
π1

π2

]
〉1, where ω∗ stands for a prefix of ω that has already been gener-

ated, and A
[
π1

π2

]
is the nonterminal that has not been expanded yet. Similarly,

tuples of the form 〈ω∗A
[
π1

π2

]
〉2 denote the configurations of the derivation start-

ing from the nonterminal A
[
ε
π

]
.

The initial configurations of the derivations are 〈εA
[
skip
π

]
〉1 and 〈εA

[
ε
π

]
〉2

respectively. During the construction of ω ∈ L
(
A
[
skip
π

])
there must be a

step when the upper label of the nonterminal A
[
skip
π

]
, skip, is processed using

one of the rules 5, 8 or 9. Therefore, we split ω into subsequences so that

ω = ω1

[
skip
g

]
ω2. Accordingly, during the derivation of ω we need to have the

following step:

〈ω1A
[skip
π′

]
〉1 → 〈ω1

[skip
g

]
A
[ ε
π′′

]
〉1

The following production rules in (3.2) are used for the generation of ω1 by
the two derivations:

〈εA
[
skip
π

]
〉1

α−→
∗
〈ω1A

[
skip
π′

]
〉1

〈εA
[
ε
π

]
〉2

β−→
∗
〈ω1A

[
ε
π′

]
〉2

Above α, β ∈ {1, ..., 10} are strings identifying the sequences of production rules
in (3.2) that have been used for the generation of ω1, where we assume that
always the left-most nonterminals are expanded in the configurations. Below
we give a function η : {1, ..., 10} → {1, ..., 10} to construct β from α by applying
η on the members of α:

η(7) = 3
η(10) = 4

Other rules than 7 and 10 can not occur in α without consuming the upper

skip of the nonterminal A
[
skip
π

]
. Now we make a case distinction based on the

rule, which is applied on 〈ω1A
[
skip
π′

]
〉1 after the prefix ω1 has been generated:

• If π′ = ε, then rule 5 can be applied:

〈ω1A
[skip
π′

]
〉1

5−→ 〈ω1

[skip
skip

]
A
[ε
ε

]
〉1
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In this case rule 2 must be applied on the other derivation:

〈ω1A
[ ε
π′

]
〉2

2−→ 〈ω1

[skip
skip

]
A
[ε
ε

]
〉2

After the steps above, rule 2 is applied on both of the configurations an
equal number of times to construct ω2 and then finally rule 1 is applied
once.

• Rule 8 is applied:

〈ω1A
[skip
π′

]
〉1

8−→ 〈ω1

[skip
skip

]
A
[ ε
π′

]
〉1

Rule 4 is applied on the other derivation:

〈ω1A
[ ε
π′

]
〉2

4−→ 〈ω1

[skip
skip

]
A
[ ε
π′

]
〉2

And then an identical sequence of production rules is applied on both of
the configurations to produce ω2.

• Rule 9 is applied:

〈ω1A
[skip
π′

]
〉1

9−→ 〈ω1

[skip
g

]
A
[ ε
π′′

]
〉1

Here we suppose that π′ = gπ′′. Furthermore, rule 3 is applied on the
other derivation:

〈ω1A
[ ε
π′

]
〉2

3−→ 〈ω1

[skip
g

]
A
[ ε
π′′

]
〉

Now an identical sequence or production rules is applied on both of the
configurations in order to produce ω2.

Lemma 14. We consider the two CFGs:

Gc = c2cfg(c, ncin , n
c
fi)

and
Gd = c2cfg(d, ndin , n

d
fi)

and their compositions: Gc,d = pc2cfg(c, d, nin , nfi). The following holds:

a) If c and d are not composable, then Gc,d = pc2cfg(c, d, nin , nfi) satisfies
the conditions of Definition 8 with respect to Gc and Gd without further
conditions.

b) If c = d = skip or c = d = x:=e, then Gc,d = pc2cfg(c, d, nin , nfi) satisfies
the conditions of Definition 8 with respect to Gc and Gd without further
conditions.
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c) We suppose that Gptt,rtt = pp2cfg(ptt, rtt, n
tt,tt
in , nfi) is a composition

of Gptt = p2cfg(ptt, n
tt,c
in , ncfi) and Grtt = p2cfg(rtt, n

tt,d
in , ndfi) accord-

ing to Definition 8, Gptt,rff = pp2cfg(ptt, rff, n
tt,ff
in , nfi) is a composition

of Gptt = p2cfg(ptt, n
tt,c
in , ncfi) and Grff = p2cfg(rff, n

ff,c
in , ndfi) according

to Definition 8, Gff,tt = pp2cfg(pff, rtt, n
ff,tt
in , nfi) is a composition of

Gpff = p2cfg(pff, n
ff,c
in , ncfi) and Grtt = p2cfg(rtt, n

tt,d
in , ndfi) according to

Definition 8 and Gff,ff = pp2cfg(pff, rff, n
ff,ff
in , nfi) is a composition of

Gpff = p2cfg(pff, n
ff,c
in , ncfi) and Grff = p2cfg(rff, n

ff,d
in , ndfi) according to

Definition 8.

In this case, if c = if b1 then {ptt} else {pff} and d = if b2 then {rtt}

else {rff} then Gc,d = pc2cfg(c, d, nin , nfi) satisfies the conditions of Def-
inition 8 with respect to Gc = (c, ncin , n

c
fi) and Gd = (d, ndin , n

d
fi).

d) We suppose that Gp,r = pp2cfg(p, r, ntt,ttin , nin) is a composition of Gp =

p2cfg(p, ntt,cin , ncin) and Gr = p2cfg(r, ntt,din , ndin) according to Definition 8.

In this case if c = while b1 do {p} and d = while b2 do {r} then Gc,d =
pc2cfg(c, d, nin , nfi) satisfies the conditions of Definition 8 with respect to
Gc = c2cfg(c, ncin , n

c
fi) and Gd = c2cfg(d, ndin , n

d
fi).

Proof. We assume that the nodes generated by the functions c2cfg, p2cfg, pc2cfg
and pp2cfg are always fresh. Therefore, the generated subgraphs of the function
calls are only connected by the initial and final nodes given in the arguments.

We prove according to the cases of the statement of the lemma.

a) In this case according to Section 3.2:

pc2cfg(c, d, nin , nfi) = skip2(c2cfg(c, nin , n
′)) ∪ skip1(c2cfg(d, n′, nfi))

According to the properties of the function c2cfg there is only one com-
mon node in skip2(c2cfg(c, nin , n

′)) and skip1(c2cfg(d, n′, nfi), which is
n′. Let us consider an arbitrary path πc = f1, ..., fk of the graph Gc =
c2cfg(c, nin , n

′) from node nin to n′, and an arbitrary path πd = g1, ..., gl
of the graph Gd = c2cfg(d, n′, nfi) from n′ to nfi . According to the
definition of the functions skip1 and skip2, then skip2(Gc) has a path

π′c =
[
f1

skip

]
...
[
fk
skip

]
and skip1(Gd) has a path π′d =

[
skip
g1

]
...
[
skip
gl

]
with

the same initial and final nodes as πc and πd. Since the final node of π′c
on the subgraph skip2(Gc) and the initial node of π′d on the subgraph

skip1(Gd) is n′ in Gc,d, ω =
[
f1

skip

]
...
[
fk
skip

][
skip
g1

]
...
[
skip
gl

]
is a path of Gc,d

from nin to nfi . Furthermore we know that:

ω =
[ f1

skip

]
...
[ fk
skip

][skip
g1

]
...
[skip
gl

]
∈ L

(
A
[πc
πd

])
Therefore, our statement is proved.

b) c = x1:=e1, d = x2:=e2 or c = d = skip. Now, pc2cfg(c, d, nin , nfi) =

(nin ,
[
c
d

]
, nfi), and this graph has only one path

[
c
d

]
. c2cfg(c, ncin , n

c
fi) =

(ncin , c, n
c
fi) has the only path c and c2cfg(d, ndin , n

d
fi) = (ndin , d, n

d
fi) has the

only path d. Since
[
c
d

]
∈ L

(
A
[
c
d

])
, our statement trivially holds.
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c) Now we investigate the case when c = if b1 then {ptt} else {pff} and
d = if b2 then {rtt} else {rff}.

Let us suppose that the graph Gc = c2cfg(c, ncin , n
c
fi) has a path πc =

f0, f1, ..., fk from node ncin to node ncfi , and similarly, the graph Gd =

c2cfg(d, ndin , n
d
fi) has a path πd = g0, g1, ..., gl from node ndin to ndfi . Ac-

cording to the CFG corresponding to the if construct in Figure 3.1 each
path of Gc begins with either a f0 = b1 or a f0 = ¬b1. Similarly, each path
on Gd must start with either a g0 = b2 or a g0 = ¬b2. Therefore, we would
need to examine four cases depending on the values of f0 and g0. We show
the proof for the case when f0 = b1 and g0 = ¬b2, the other three cases can
be shown analogously. In this case πptt = f1, ..., fk is a path on Gptt from

node ntt,cin to node ncfi , and πrff = g1, ..., gl is a path on Grff from node nff,din

to node ndfi . According to the assumptions, there is an ω ∈ L
(
A
[
f1,...,fk
g1,...,gl

])
on Gptt,rff from node ntt,ffin to node nfi . Furthermore,

[
b1
¬b2

]
ω is a path

on Gc,d from node nin to node nfi . Since
[
b1
¬b2

]
ω ∈ L

(
A
[
πc
πd

])
and it is a

path on Gc,d = pc2cfg(c, d, nin , nfi) according to the graph in Figure 3.2
the statement is proved.

d) Now we consider the case when c = while b1 do {p} and d = while b2 do

{r}.

Let us suppose that the graph Gc = c2cfg(c, ncin , n
c
fi) has a path πc from

node ncin to node ncfi , and similarly, the graph Gd = c2cfg(d, ndin , n
d
fi) has

a path πd from node ndin to node ndfi . In general πc starts with i number of

loops b1π
k
p on Gc from node ncin to ncin so that πkp is a path from ntt,cin to

ncin on Gp during loop number k, and πd starts with j number of loops b2π
l
r

on Gd from node ndin to ndin so that πlr is a path from ntt,din to ndin on Gr
during the loop number l. We prove here the statement for the case when
i ≤ j. For the case when i > j the statement can be proved analogously.
Therefore, we split πd into two parts. In the first part the body of d is
executed i times, in the second yet another j − i times. Accordingly, πc
and πd look the following:

πc =

π′c︷ ︸︸ ︷
b1π

1
pb1π

2
p...π

i
p ¬b1

πd =

π′d︷ ︸︸ ︷
b2π

1
rb2π

2
r ...π

i
r b2

π′′d︷ ︸︸ ︷
πi+1
r ...b2π

j
r¬b2

(6.1)

According to our assumption, for all pairs of paths πξp and πξr of Gp and

Gr where 1 ≤ ξ ≤ i there is a path ωξ on Gp,r = pp2cfg(p, r, ntt,ttin , nin)

so that ωξ ∈ L
(
A
[
πξp

πξr

])
. Therefore, we have a path

ω′ =
[b1
b2

]
ω1...

[b1
b2

]
ωi

on Gc,d = pc2cfg(c, d, nin , nfi) from node nin to nin according to Figure
3.2. There are two cases now.
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– If i = j then πc = π′c¬b1 and πd = π′d¬b2. Now we have an ω on
Gc,d:

ω = ω′
[¬b1
¬b2

]
=
[b1
b2

]
ω1...

[b1
b2

]
ωi
[¬b1
¬b2

]
We know about ω the following:

ω ∈ L
([b1
b2

]
A
[π1

p

π1
r

]
...
[b1
b2

]
A
[πip
πir

][¬b1
¬b2

])
Because

[
f
g

]
∈ L

(
A
[
f
g

])
, it follows that:

ω ∈ L
(
A
[b1
b2

]
A
[π1

p

π1
r

]
...A
[b1
b2

]
A
[πip
πir

]
A
[¬b1
¬b2

])
From Lemma 12 follows:

ω ∈ L
(
A
[b1π1

p...b1π
i
p¬b1

b2π1
r ...b2π

i
r¬b2

])
= L

(
A
[πc
πd

])
Furthermore, because ω is a path from nin to nfi on Gc,d, the state-
ment is proved.

– In this case i < j. According to the graph Gc,d in Figure 3.2 and
the definition of skip1(p2cfg(r, nff,ttin , n′′)) there is a path ω′′ begin-
ning with nff,ttin and ending with nfi so that it trespasses the graph
Gskip,2 = skip1(p2cfg(r, nff,ttin , n′′)) at least once. Now, it holds that

ω′′ ∈ L
(
A
[
ε
π′′d

])
. Therefore, ω′

[
¬b2
b1

]
ω′′ is a path on Gc,d from nin

to nfi . Furthermore, we know the following about ω = ω′
[
¬b2
b1

]
ω′′:

ω = ω′
[¬b1
¬b2

]
ω′′ =

[b1
b2

]
ω1...

[b1
b2

]
ωi
[¬b1
¬b2

]
ω′′

Therefore:

ω ∈ L
([b1
b2

]
A
[π1

p

π1
r

]
...
[b1
b2

]
A
[πip
πir

][¬b1
¬b2

]
A
[ ε
π′′d

])
Because

[
f
g

]
∈ L

(
A
[
f
g

])
, it follows now that:

ω ∈ L
(
A
[b1
b2

]
A
[π1

p

π1
r

]
...A
[b1
b2

]
A
[πip
πir

]
A
[¬b1
¬b2

]
A
[ ε
π′′d

])
From Lemma 12 follows:

ω ∈ L
(
A
[ b1π

1
p...b1π

i
p¬b1

b2π1
r ...b2π

i
r¬b2π′′d

])
= L

(
A
[πc
πd

])
Therefore, the statement is proved.
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Lemma 15. We suppose for all commands c, d ∈ C ∪ {skip} that Gc,d =

pc2cfg(c, d, nc,din , n
c,d
fi ) satisfies the conditions of Definition 8 with respect to the

CFGs Gc = c2cfg(c, ncin , n
c
fi) and Gd = c2cfg(d, ndin , n

d
fi). In this case, if p =

c1;...;ck and r = d1;...;dl are so that for each i and j, ci, dj ∈ C ∪{skip} then
Gp,r = pp2cfg(p, r, nin , nfi) satisfies the conditions of Definition 8 with respect
to Gp = p2cfg(p, npin , n

p
fi) and Gr = p2cfg(r, nrin , n

r
fi).

Proof. We assume that the nodes generated by the functions c2cfg, p2cfg, pc2cfg
and pp2cfg are always fresh. Therefore, the generated subgraphs of the function
calls are only connected by the initial and final nodes given in the arguments.

Let us suppose that the function pp2cfg(p, r, nin , nfi) computes the alignment

of commands: Ω =
[
c′1
d′1

]
, ...,

[
c′m
d′m

]
∈ L

(
A
[
p
r

])
= L

(
A
[
c1;...;ck
d1;...;dl

])
. The result of

the function pp2cfg(p, r, nin , nfi) equals to the following:

pc2cfg(c′1, d
′
1, nin , n1) ∪ pc2cfg(c′2, d

′
2, n1, n2) ∪ ... ∪ pc2cfg(c′m, d

′
m, nm−1, nfi)

Therefore, any path from nin to nfi in Gp,r crosses the nodes nin , n1, ..., nfi .
Therefore, we can split any path ωp,r on Gp,r into subpaths ωc′i,d′i , each corre-

sponding to the actual pair of commands
[
c′i
d′i

]
.

Now we construct a path ω on Gp,r from node nin to node nfi for any pair
of paths πp and πr so that it fulfills the requirements of this lemma, where πp
is a path on Gp from node npin to node npfi and πr is a path on Gr from node
nrin to nrfi . We follow the choices made by the function pp2cfg(p, r, nin , nfi) at
the construction of the alignment of commands Ω, and we construct ω along
these choices. We prove the statement inductively on the length of the prefix
ωi,j of ω which has already been constructed. Let us suppose that the prefix

ωi,j is already constructed so that it holds that ωi,j ∈ L
(
A
[
πip

πjr

])
where πp =

πipπci+1
πi+2,k
p and πr = πjrπdj+1

πj+2,l
r , so that the path πip is on the CFG of

the program c1;...;ci and πjr is on the CFG of the program d1;...;dj from
the corresponding initial to the corresponding final nodes. πci+1 and πdj+1 are
fragments of the path on Gp and Gr corresponding to the commands ci+1 and
dj+1. Therefore, πci+1

is a path on Gci+1
= c2cfg(ci+1, n

ci+1

in , n
ci+1

fi ) from node

n
ci+1

in to node n
ci+1

fi , and πdj+1
is a path on Gdj+1

= c2cfg(dj+1, n
dj+1

in , n
dj+1

fi ).

πi+2,k stands for a path on the CFG of the program ci+2;...;ck, and πj+2,l

stands for a path on the CFG of the program dj+2;...;dl.

Initially, i = j = 0, and ω0,0 = π0
p = π0

r = ε. In the initial case the

statement holds because ε ∈ L
(
A
[
ε
ε

])
. In the next step of the construction of

the alignment of commands Ω the following choices can be made:

• The next element of the alignment of commands Ω is
[
skip
dj+1

]
. We suppose

that this twin command is number o in the sequence of twin commands
that have already been processed. According to the assumptions of the
lemma there is a path ωskip,dj+1

on Gskip,dj+1
= pc2cfg(skip, dj+1, no,

no+1) so that ωskip,dj+1
∈ L

(
A
[
πskip

πdj+1

])
, where πskip = skip is a path

on the CFG Gskip = c2cfg(skip, n∗in , n
∗
fi) and πdj+1

is a path on the CFG
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Gdj+1
= c2cfg(dj+1, n

∗∗
in , n

∗∗
fi ). From Lemma 12 follows that:

L
(
A
[ πip

πjrπdj+1

])
⊇ L

(
A
[πip
πjr

]
A
[ ε

πdj+1

])
From Lemma 13 follows that:

L
(
A
[πip
πjr

]
A
[ ε

πdj+1

])
⊇ L

(
A
[πip
πjr

]
A
[ πskip
πdj+1

])
Therefore, ωpi,riωskip,dj+1 ∈ L

(
A
[
πip

πjr

]
A
[
πskip

πdj+1

])
entails ωpi,riωskip,dj+1 ∈

L
(
A
[

πip

πjrπdj+1

])
. The rest postfix of the path πp that needs to be processed

in the next step is πci+1
πi+2,k
p , and the rest postfix of the path πr that

needs to be processed in the next step is πj+2,l
r .

• If the next element of the alignment of commands Ω is
[
cj+1

skip

]
then the

statement of the lemma can be proved symmetrically to the case above.

• The next element of the alignment of commands Ω to be processed is[
ci+1

dj+1

]
. We suppose that this is number o in the sequence of twin com-

mands that have already been processed. According to the assumptions of
the lemma there is a path ωci+1,dj+1 on Gci+1,dj+1 = pc2cfg(ci+1, dj+1, no,

no+1) from no to no+1, so that ωci+1,dj+1
∈ L

(
A
[
πci+1
πdj+1

])
, where πci+1

is a path on the CFG Gci+1
= c2cfg(ci+1, n

∗
in , n

∗
fi) and πdj+1

is a path
on the CFG Gdj+1

= c2cfg(dj+1, n
∗∗
in , n

∗∗
fi ) from the corresponding ini-

tial nodes to the corresponding final nodes. Therefore, ωpi,rjωci+1,dj+1
∈

L
(
A
[
pi

rj

]
A
[
ci+1

dj+1

])
. According to Lemma 12:

ωpi,rjωci+1,dj+1
∈ L

(
A
[
pi

rj

]
A
[
ci+1

dj+1

])
entails

ωpi,rjωci+1,dj+1
∈ L

(
A
[
pici+1

rjdj+1

])
Therefore, the statement of the lemma holds. The rest postfix of the path
πp that needs to be processed in the next step is πi+2,k

p , and the rest postfix

of the path πr that needs to be processed in the next step is πj+2,l
r .

Lemma 16. Given two programs p, r, and the corresponding CFGs Gp =
p2cfg(p, npin , n

p
fi) and Gr = p2cfg(r, nrin , n

r
fi), their composition Gp,r constructed

by the call pp2cfg(p, r, nin , nfi) satisfies the conditions of Definition 8.

Proof. We prove the statement inductively on the maximal number of com-
mands embedded into each other on the root-leaf paths of the abstract syntax
trees corresponding to the subprograms of p and r. We collect the subprograms
of p and r having m commands on their root-leaf paths at the maximum into
the set Pm.
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The initial case. In the initial case, the members p′, r′ ∈ P1 consist of pro-
grams with no commands embedded into each other. Therefore, each member
of P1 is a sequence of commands of the form skip and x:=e. According to
Lemma 14 for pairs of commands c and d of this form it always holds that
Gc,d = pc2cfg(c, d, n∗in , n

∗
fi) satisfies the conditions of Definition 8 with respect

to Gc = c2cfg(c, ncin , n
c
fi) and Gd = c2cfg(d, ndin , n

d
fi). According to Lemma 15,

Gp′,r′ = pp2cfg(p′, r′, nin , nfi) then satisfies the conditions of Definition 8 with

respect to Gp′ = p2cfg(p′, np
′

in , n
p′

fi ) and Gr′ = p2cfg(r′, nr
′

in , n
r′

fi ).

The inductive case. We suppose now that the members of the set Pm are
programs having at most m commands on any root-leaf paths of the correspond-
ing abstract syntax trees. We suppose that for each pair p′, r′ ∈ Pm it holds
that Gp′,r′ = pp2cfg(p′, r′, nin , nfi) satisfies the conditions of Definition 8 with

respect to Gp′ = p2cfg(p′, np
′

in , n
p′

fi ) and Gr′ = p2cfg(r′, nr
′

in , n
r′

fi ). In this case
according to Lemma 14 for each pair of commands c and d that are composed
of the members of Pm, Gc,d = pc2cfg(c, d, nin , nfi) satisfies the conditions of
Definition 8 with respect to Gc = c2cfg(c, ncin , n

c
fi) and Gd = c2cfg(d, ndin , n

d
fi).

Let us call the set of these commands Cm+1. Let us denote the set of programs
composed from the set of commands in Cm+1 by Pm+1. According to Lemma
15, for all pairs of programs p′′, r′′ ∈ Pm+1, Gp′′,r′′ = pp2cfg(p′′, r′′, nin , nfi)

satisfies the conditions of Definition 8 with respect to Gp′′ = p2cfg(p′′, np
′′

in , n
p′′

fi )

and Gr′′ = p2cfg(r′′, nr
′′

in , n
r′′

fi ). Therefore, the statement of this lemma holds
on each pair of programs that are members of Pm+1.

Lemma 17. We suppose that Gc,d is the composition of the graphs Gc and Gd
corresponding to the commands c and d. Given that the additional conditions
below are met, we have that Nc,d ≤ M ·Nc ·Nd and Ec,d ≤ M · Ec · Ed, where
M > 4, Nc and Ec are the number of nodes and edges in Gc = c2cfg(c, ncin , n

c
fi),

Nd and Ed are the number of nodes and edges in Gd = c2cfg(d, ndin , n
d
fi), and

Nc,d and Ec,d are the number of nodes and edges in Gc,d = pc2cfg(c, d, nc,din , n
c,d
fi )

respectively. The additional conditions are:

1) If c and d are not composable then no additional conditions are imposed.

2) If c = d = skip or c = d = x:=e then no additional conditions are
imposed.

3) If c = if b1 then {ptt} else {pff} and d = if b2 then {rtt} else {rff}

then the additional conditions are the following:

– Nptt,rtt ≤M ·Nptt ·Nrtt
– Npff,rtt ≤M ·Npff ·Nrtt
– Nptt,rff ≤M ·Nptt ·Nrff
– Npff,rff ≤M ·Npff ·Nrff
– Eptt,rtt ≤M · Eptt · Ertt
– Epff,rtt ≤M · Epff · Ertt
– Eptt,rff ≤M · Eptt · Erff
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– Epff,rff ≤M · Epff · Erff

Above, Nx and Ex denote then number of edges of the graph Gx where we
have that:

– Gptt,rtt = pp2cfg(ptt, rtt, n
tt,tt
in , nfi)

– Gpff,rtt = pp2cfg(pff, rtt, n
ff,tt
in , nfi)

– Gptt,rff = pp2cfg(ptt, rff, n
tt,ff
in , nfi)

– Gpff,rff = pp2cfg(pff, rff, n
ff,ff
in , nfi)

– Gptt = p2cfg(ptt, n
tt,c
in , ncfi)

– Gpff = p2cfg(pff, n
ff,c
in , ncfi)

– Grtt = p2cfg(rtt, n
tt,d
in , ndfi)

– Grff = p2cfg(rff, n
ff,d
in , ndfi)

4) If c = while b1 do {p} and d = while b2 do {r} then the additional con-
ditions are that:

– Np,r ≤M ·Np ·Nr
– Ep,r ≤M · Ep · Er

Above, Nx and Ex denote then number of edges of the graph Gx where we
have that:

– Gp,r = pp2cfg(p, r, ntt,ttin , nin),

– Gp = p2cfg(p, ntt,cin , ncin)

– Gr = p2cfg(r, ntt,din , ndfi)

Proof. We prove each case separately:

1) If c and d are not composable, then we have:

Gc,d = skip2(c2cfg(c, nin , n
′)) ∪ skip1(c2cfg(d, n′, nfi))

Accordingly:

Nc,d = Nc +Nd − 1
Ec,d = Ec + Ed

(6.2)

Considering the number of nodes in Nc,d, we need to subtract one from the sum
of Nc and Nd because they have one node n′ in common. Because Nc, Nd ≥ 2
and Ec, Ed ≥ 1 we have:

Nc,d = Nc +Nd − 1 ≤ 2 ·Nc ·Nd ≤M ·Nc ·Nd
Ec,d = Ec + Ed ≤ 2 · Ec · Ed ≤M · Ec · Ed

(6.3)

(6.3) holds because M > 4.
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2) In this case Gc = (ncin , c, n
d
fi), Gd = (ndin , d, n

d
fi) and Gc,d = (nin ,

[
c
d

]
, nfi).

Therefore, we have:

Nc,d = 2 ≤M · 2 · 2 = M ·Nc ·Nd

Concerning the edges we have:

Ec,d = 1 ≤M · 1 · 1 = M · Ec · Ed

Since according to our assumptions M > 4, our statement holds.

3) First we prove the statement considering the number of nodes in the CFGs.
In this case according to Figures 3.1 and 3.2 we have:

Nc = Nptt +Npff
Nd = Nrtt +Nrff
Nc,d = Nptt,rtt +Npff,rtt +Nptt,rff +Npff,rff − 2

(6.4)

What we want to prove is:

Nc,d ≤M ·Nc ·Nd

Using (6.4) we can reformulate our goal above:

Nptt,rtt +Npff,rtt +Nptt,rff +Npff,rff − 2 ≤M · (Nptt +Npff) · (Nrtt +Nrff)

Using the assumption of the lemma considering the number of nodes in Gptt,rtt ,
Gpff,rtt , Gptt,rff and Gpff,rff , we have:

M ·Nptt ·Nrtt +M ·Npff ·Nrtt +M ·Nptt ·Nrff +M ·Npff ·Nrff − 2 ≤
M · (Nptt +Npff) · (Nrtt +Nrff)

Using algebraic reorganizations we obtain:

Nptt ·Nrtt +Npff ·Nrtt +Nptt ·Nrff +Npff ·Nrff − 2
M ≤

Nptt ·Nrtt +Nptt ·Nrff +Npff ·Nrtt +Npff ·Nrff

The above statement reduces to:

− 2

M
≤ 0

Therefore, our statement holds.
Now we prove the statement for the number of edges. According to Figures

3.1 and 3.2 we have:

Ec = Eptt + Epff + 2
Ed = Ertt + Erff + 2
Ec,d = Eptt,rtt + Eptt,rff + Epff,rtt + Epff,rff + 4

(6.5)

What we want to prove is:

Ec,d ≤M · Ec · Ed
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Using (6.5) we can reformulate our goal above:

Eptt,rtt +Eptt,rff +Epff,rtt +Epff,rff + 4 ≤M · (Eptt +Epff + 2) · (Ertt +Erff + 2)

Using the assumptions of the lemma considering the number of edges in Gptt,rtt ,
Gpff,rtt , Gptt,rff and Gpff,rff , we can reformulate our goal again:

M · Eptt · Ertt +M · Eptt · Erff +M · Epff · Ertt +M · Epff · Erff + 4 ≤
M · (Eptt + Epff + 2) · (Ertt + Erff + 2)

Using algebraic reformulations we obtain:

Eptt · Ertt + Eptt · Erff + Epff · Ertt + Epff · Erff + 4
M ≤

Eptt · Ertt + Eptt · Erff + Eptt · 2
+Epff · Ertt + Epff · Erff + Epff · 2

+2 · Ertt + 2 · Erff + 2 · 2

After further algebraic reformulations we obtain:

+
4

M
≤ Eptt · 2 + Epff · 2 + 2 · Ertt + 2 · Erff + 2 · 2

Because the number of edges of a CFG is always a non-negative number, the
above statement holds.

4) First we prove the statement considering the number of nodes in a CFG.
Based on Figures 3.1 and 3.2 we know the following:

Nc = Np + 1
Nd = Nr + 1
Nc,d = Np,r +Np +Nr + 1

(6.6)

What we want to prove is:

Nc,d ≤M ·Nc ·Nd

Using (6.6) we can reformulate our goal above:

Np,r +Np +Nr + 1 ≤M · (Np + 1) · (Nr + 1)

Using algebraic reorganizations we obtain:

Np,r +Np +Nr + 1 ≤M ·Np ·Nr +M ·Np +M ·Nr +M

Using the assumption of the lemma that Np,r ≤M ·Np ·Nr we can reorganize
the statement above:

M ·Np ·Nr +Np +Nr + 1 ≤M ·Np ·Nr +M ·Np +M ·Nr +M

Further algebraic reorganizations result:

Np +Nr + 1 ≤M ·Np +M ·Nr +M

The above statement trivially holds because the values of all variables are pos-
itive numbers, and M > 4.
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Now we investigate the number of edges in Gc,d. What we know based on
Figures 3.1 and 3.2 is:

Ec = Ep + 2
Ed = Ep + 2
Ec,d = Ep,r + Ep + Er + 8

(6.7)

What we want to prove is:

Ec,d ≤M · Ec · Ed

By substituting (6.7) into the above statement we get:

Ep,r + Ep + Er + 8 ≤M · (Ep + 2) · (Er + 2)

Algebraic reorganizations result:

Ep,r + Ep + Er + 8 ≤M · Ep · Er + 2 ·M · Ep + 2 ·M · Er + 4 ·M

Using the assumption of the lemma concerning the number of edges in Gp,r that
Ep,r ≤M · Ep · Er we obtain:

M · Ep · Er + Ep + Er + 8 ≤M · Ep · Er + 2 ·M · Ep + 2 ·M · Er + 4 ·M

Using algebraic reorganizations we obtain:

8 ≤ (2 ·M − 1) · Ep + (2 ·M − 1) · Er + 4 ·M

The above statement holds because according the assumptions M > 4 which
entails that (2 ·M − 1) > 7, furthermore Ep ≥ 1 and Er ≥ 1.

Lemma 18. We consider the programs p = c1;...;ck; and r = d1;...;dl;, where
Gp = p2cfg(p, npin , n

p
fi), Gr = p2cfg(p, nrin , n

r
fi), Gp,r = pp2cfg(p, r, nin , nfi) and

Nx and Ex are the number of nodes and edges of the graph Gx respectively.
Given that for all M > 4, ci and dj it holds that Nci,dj ≤ M · Nci · Ndj and

Eci,dj ≤M · Eci · Edj , where Gci = c2cfg(ci, n
ci
in , n

ci
fi ), Gdj = c2cfg(dj , n

dj
in , n

dj
fi )

and Gci,dj = pc2cfg(ci, dj , n
ci,dj
in , n

ci,dj
fi ), the following holds:

• Np,r ≤M ·Np ·Nr

• Ep,r ≤M · Ep · Er

Proof. The function pp2cfg constructs an alignment Ω =
[
c′1
d′1

]
...
[
c′ρ
d′ρ

]
of the two

programs p and r, where each c′i is either a cj for some j or skip, and similarly,
each d′i is a dj for some j or skip. We reorder Ω so that the first m members

are matched, i.e., they are of the form
[
ci
dj

]
, and the rest is of the form

[
ci

skip

]
or[

skip
dj

]
. The CFGs of sequences of pairs commands are the sequences of CFGs

corresponding to the pairs of commands, so that the members are connected
by their initial and final nodes. Therefore, the reordering of Ω does not change
the number of nodes and edges occurring in Np,r. This statement holds on the
reordering of sequences of commands (i.e., programs) as well. Therefore from
now on we assume that, Ω = Ω′Ω′′ so that:
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• Ω′ =
[
cα1
dβ1

]
...
[
cαm
dβm

]
• Ω′′ =

[
cαm+1

skip

]
...
[
cαk
skip

][
skip
dβm+1

]
...
[
skip
dβl

]
We reorder p and r accordingly:

p =

p′︷ ︸︸ ︷
cα1

;...;cαm;

p′′︷ ︸︸ ︷
cαm+1

;...;cαk;

r =

r′︷ ︸︸ ︷
dβ1

;...;dβm;

r′′︷ ︸︸ ︷
dβm+1

;...;dβl;

Above, 1 ≤ αi ≤ k and 1 ≤ βj ≤ l are two sequences of integers identifying
indexes of commands in p and r.

First we prove the statement of the lemma separately on Ω′ and on Ω′′.

The matched subsequence of Ω: Ω′. The subgraph GΩ′ =
⋃m
j=1Gcαj ,dβj

corresponding to Ω′ consists of graphs Gcαj ,dβj = pc2cfg(cαj , dβj , nj−1, nj) con-

nected by their initial and final nodes. We prove inductively, therefore, in the
rest we denote the i long subsequence of Ω′ with Ω′i, and we denote the number
of nodes and edges of the subgraph GΩ′i

by NΩ′i
and EΩ′i

respectively.
First we prove the statement concerning the number of nodes inductively on

the length of Ω′i. Our inductive assumption is that NΩ′i
≤M ·Np′i ·Nr′i , where

Ω′i =
[
cα1
dβ1

]
...
[
cαi
dβi

]
, p′i = cα1

;...;cαi and r′i = dβ1
;...;dβi .

In the initial case i = 1. Therefore, GΩ′1
= Gcα1

,dβ1
, and the statement

follows from the assumptions of the lemma.
We would like to prove now the following:

NΩ′i+1
≤M ·Np′i+1

·Nr′i+1
(6.8)

We know that:
NΩ′i+1

= NΩ′i
+Ncαi+1

,dβi+1
− 1 (6.9)

And:
Np′i+1

= Np′i +Ncαi+1
− 1

Nr′i+1
= Nr′i +Ndβi+1

− 1
(6.10)

In (6.9) and (6.10) there is 1 subtracted from the sum of nodes of the i long
prefix and the member i + 1 because their initial and final nodes are common.
By substituting (6.9) and (6.10) into (6.8) we get:

NΩ′i
+Ncαi+1

,dβi+1
− 1 ≤M · (Np′i +Ncαi+1

− 1) · (Nr′i +Ndβi+1
− 1)

Because of the inductive assumption concerning NΩ′i
we can reformulate the

statement that we want to prove:

M ·Np′i ·Nr′i +Ncαi+1
,dβi+1

− 1 ≤M · (Np′i +Ncαi+1
− 1) · (Nr′i +Ndβi+1

− 1)

Because of the assumption of the lemma concerning the number of nodes of
Gcαi+1

,dβi+1
that Ncαi+1

,dβi+1
≤M ·Ncαi+1

·Ndβi+1
we can rewrite the statement

that we want to prove:

M ·Np′i ·Nr′i +M ·Ncαi+1
·Ndβi+1

−1 ≤M ·(Np′i +Ncαi+1
−1) ·(Nr′i +Ndβi+1

−1)
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By reorganizing the right hand side of the above inequation we get:

M ·Np′i ·Nr′i +M ·Ncαi+1
·Ndβi+1

− 1 ≤
M ·Np′i ·Nr′i +M ·Ncαi+1

·Nr′i −M ·Nr′i
+M ·Np′i ·Ndβi+1

+M ·Ncαi+1
·Ndβi+1

−M ·Ndβi+1

−M ·Np′i −M ·Ncαi+1
+M

By applying simplifications we get:

0 ≤ Ncαi+1
·Nr′i −Ncαi+1

−Nr′i +Np′i ·Ndβi+1
−Ndβi+1

−Np′i + 1 + 1
M

(6.11)
Because the number of nodes of CFGs are at least two, we have:

Ncαi+1
·Nr′i ≥ Ncαi+1

+Nr′i
and

Np′i ·Ndβi+1
≥ Ndβi+1

+Np′i

The above observation implies (6.11), therefore, our statement is proved.
Now we prove the statement concerning the number of edges in CFGs. In

the initial case we have that GΩ′1
= Gcα1

,dβ1
, therefore, the statement follows

from the conditions of the lemma.
Our inductive assumption is that EΩ′i

≤ M · Ep′i · Er′i . We would like to
prove the following:

EΩ′i+1
≤M · Ep′i+1

· Er′i+1
(6.12)

We know the following:

EΩ′i+1
= EΩ′i

+ Ecαi+1
,dβi+1

Ep′i+1
= Ep′i + Ecαi+1

Er′i+1
= Er′i + Edβi+1

(6.13)

By substituting (6.13) into (6.12) we get:

EΩ′i
+ Ecαi+1

,dβi+1
≤M · (Ep′i + Ecαi+1

) · (Er′i + Edβi+1
)

Because of the inductive assumption we can write:

M · Ep′i · Er′i + Ecαi+1
,dβi+1

≤M · (Ep′i + Ecαi+1
) · (Er′i + Edβi+1

)

Because of the assumption of the lemma considering the number of edges in
Gcαi+1

,dβi+1
that Ecαi+1

,dβi+1
≤M ·Ecαi+1

·Edβi+1
we can rewrite the statement

that we want to prove:

M · Ep′i · Er′i +M · Ecαi+1
· Edβi+1

≤M · (Ep′i + Ecαi+1
) · (Er′i + Edβi+1

)

After simplifications we obtain:

Ep′i ·Er′i +Ecαi+1
·Edβi+1

≤ Ep′i ·Er′i +Ep′i ·Edβi+1
+Ecαi+1

·Er′i +Ecαi+1
·Edβi+1

We can further reduce the above inequality and get:

0 ≤ Ep′i · Edβi+1
+ Ecαi+1

· Er′i

The above inequality trivially holds, therefore our statement is proved for Ω′.
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The unmatched subsequence of Ω: Ω′′. We know that:

Ω′′ =
[cαm+1

skip

]
...
[ cαk
skip

][ skip
dβm+1

]
...
[skip
dβl

]
There are two possibilities concerning the CFG of a pair of the form

[
c

skip

]
or[

skip
d

]
. If c = d = skip, then the components of the pairs are alignable. In this

case Gc,skip = Gskip,d = (n∗in ,
[
skip
skip

]
, n∗fi). Accordingly, Nskip = Nskip,skip = 2

and Eskip = Eskip,skip = 1.
If c 6= skip or d 6= skip then the pairs are not alignable. In this case for[
c

skip

]
we have:

Gc,skip = skip2(c2cfg(c, n∗in , n
′)) ∪ skip1(c2cfg(skip, n′, n∗fi))

And for
[
skip
d

]
we have:

Gskip,d = skip2(c2cfg(skip, n∗∗in , n
′)) ∪ skip1(c2cfg(d, n′, n∗∗fi ))

Because Gskip = (n
skip
in , skip, n

skip
fi ) we can say that:

Nc,skip = Nc + 1 Ec,skip = Ec + 1
Nskip,d = Nd + 1 Eskip,d = Ed + 1

Therefore, in the rest of the proof we will assume that for all c and d:

Nc,skip ≤ Nc + 1 Ec,skip ≤ Ec + 1
Nskip,d ≤ Nd + 1 Eskip,d ≤ Ed + 1

(6.14)

We prove the statement now concerning the number of nodes in GΩ′′ . We
have p′′ = cαm+1

;...;cαk and r′′ = dβm+1
;...;dβl . Since the number of nodes of

the CFG of a command is at least two, we can write the following:

Np′′ =

k∑
i=m+1

(Ncαi − 1) + 1 =

k∑
i=m+1

Ncαi − (k −m) + 1 =

2 · (k −m)− (k −m) + 1 + θ1 = (k −m) + 1 + θ1

Nr′′ =

l∑
j=m+1

(Ndβj − 1) + 1 =

l∑
j=m+1

Ndβj − (k −m) + 1 =

2 · (l −m)− (l −m) + 1 + θ2 = (l −m) + 1 + θ2

(6.15)

Above, (k −m) and (l −m) are the number of commands in the sequences p′′

and r′′ respectively, and θ1 and θ2 are non-negative numbers.
What we would like to prove is:

NΩ′′ ≤M ·Np′′ ·Nr′′ (6.16)

We can say the following about NΩ′′ :

NΩ′′ =

k∑
i=m+1

Ncαi ,skip− (k−m) + 1 +

l∑
j=m+1

Nskip,dβj
− (l−m) + 1− 1 (6.17)
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(6.17) holds because of the following. In Ω′′ we have k −m pieces of pairs of

the form
[
ci

skip

]
. Since the initial node of each member is identical to the final

node of the previous one, we need to subtract k−m. But this does not hold for

the first piece of the form
[
ci

skip

]
, therefore we add one. Accordingly, we have∑k

i=m+1Ncαi ,skip − (k −m) + 1 for the number of nodes for pairs of the form[
c

skip

]
. Similarly, we have

∑l
j=m+1Nskip,dβj

−(l−m)+1 for the sum of nodes for

pairs of the form
[
skip
dj

]
. Since the final node of the sequence

[
cαm+1

skip

]
...
[
cαk
skip

]
is identical to the initial node of the sequence

[
skip
dβm+1

]
...
[
skip
dβl

]
, therefore we

finally subtract one.
In order to simplify the notation we have:

x = (k −m)
y = (l −m)

(6.18)

Because of (6.14) we can reformulate (6.17):

NΩ′′ ≤
k∑

i=m+1

(Ncαi + 1)− x+ 1 +

l∑
j=m+1

(Ndβj + 1)− y + 1− 1 (6.19)

After reorganizing the above we have:

NΩ′′ ≤
k∑

i=m+1

(Ncαi )+(k−m)−x+1+

l∑
j=m+1

(Ndβj )+(l−m)−y+1−1 (6.20)

After simplifications we have:

NΩ′′ ≤
k∑

i=m+1

(Ncαi ) +

l∑
j=m+1

(Ndβj ) + 1 (6.21)

Therefore, we can reformulate our goal that we would like to prove (6.16):

k∑
i=m+1

(Ncαi ) +

l∑
j=m+1

(Ndβj ) + 1 ≤M ·Np′′ ·Nr′′ (6.22)

Because of (6.21) (6.22) implies (6.16).
After substituting (6.15) into (6.22) we have:

k∑
i=m+1

(Ncαi ) +

l∑
j=m+1

(Ndβj ) + 1 ≤M · (x+ 1 + θ1) · (y + 1 + θ2) (6.23)

Because of (6.15) we know that:

Np′′ =

k∑
i=k−m

Ncαi − x+ 1 = x+ 1 + θ1

Nr′′ =

k∑
j=k−m

Ndβj − y + 1 = y + 1 + θ2
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Therefore:
k∑

i=k−m

Ncαi = 2 · x+ θ1

k∑
j=k−m

Ndβj = 2 · y + θ2

After substituting the above into (6.23) we get:

2 · x+ θ1 + 2 · y + θ2 + 1 ≤M · (x+ 1 + θ1) · (y + 1 + θ2)

After simplifications we get:

2 · x+ θ1 + 2 · y + θ2 + 1 ≤ M · x · y +M · x+M · x · θ2

+M · y +M +M · θ2

+M · θ1 · y +M · θ1 +M · θ1 · θ2

After reorganizations we have:

1 ≤ M · x · y + (M − 2) · x+M · x · θ2

+(M − 2) · y +M + (M − 1) · θ2

+M · θ1 · y + (M − 1) · θ1 +M · θ1 · θ2

BecauseM is a member of the summation on the right hand side of the inequality
above and M > 4, furthermore, all the members of the summation are greater
or equal to zero, the statement holds.

Now we prove that:
EΩ′′ ≤M · Ep′′ · Er′′ (6.24)

We know about Ω′′ that:

EΩ′′ =

k∑
i=m+1

Ecαi ,skip +

l∑
j=m+1

Eskip,dβj

By substituting (6.14) into the above equation we get:

EΩ′′ ≤
k∑

i=m+1

Ecαi + x+

l∑
j=m+1

Edβj + y (6.25)

Because the number of edges in a CFG is at least one, we know about p′′ and
r′′ that:

Ep′′ =

k∑
i=m+1

Ecαi = (k −m) + κ1 = x+ κ1

Er′′ =

k∑
j=m+1

Edβj = (l −m) + κ2 = y + κ2

(6.26)

Above, κ1 ≥ 0 and κ2 ≥ 0, and k −m and l −m are the number of commands
in p′′ and r′′ respectively. Using (6.25) we reformulate the goal (6.24) to be
proved:

EΩ′′ ≤1

k∑
i=k−m

Ecαi + x+

l∑
j=l−m

Edβj + y ≤2 M · Ep′′ · Er′′ (6.27)



112 CHAPTER 6. PROOFS

Now we prove ≤2 in (6.27), which implies the validity of (6.24). We reorganize
(6.27) using (6.26) and get:

x+ κ1 + x+ y + κ2 + y ≤2 M · (x+ κ1) · (y + κ2)

After further reorganizations we have:

2 · x+ κ1 + 2 · y + κ2 ≤2 M · x · y +M · x · κ2 +M · κ1 · y +M · κ1 · κ2

≤2 above follows from the validity of two inequalities where M > 4:

2 · x+ 2 · y ≤3 M · x · y
κ1 + κ2 ≤4 M · κ1 · κ2

The entire sequence: Ω = Ω′Ω′′. Let us consider the sequences of pairs Ω′ =[
cα1
dβ1

]
...
[
cαm
dβm

]
and Ω′′ =

[
cαm+1

skip

]
...
[
cαk
skip

][
skip
dβm+1

]
...
[
skip
dβl

]
and the programs

p′ = cα1
;...;cαm , r′ = dβ1

;...;dβm , p′′ = cαm+1
;...;cαk and r′′ = dβm+1

;...;dβl .
Above we have proved that if M > 4 then:

NΩ′ ≤ M ·Np′ ·Nr′
EΩ′ ≤ M · Ep′ · Er′
NΩ′′ ≤ M ·Np′′ ·Nr′′
EΩ′′ ≤ M · Ep′′ · Er′′

(6.28)

What we would like to prove is:

Np,r = NΩ = ≤ M ·Np ·Nr
Ep,r = EΩ = ≤ M · Ep · Er

(6.29)

We also know the following:

Np,r = NΩ = NΩ′ +NΩ′′ − 1
Ep,r = EΩ = EΩ′ + EΩ′′

(6.30)

In (6.30) there is one subtracted from the sum of nodes of GΩ′ and GΩ′′ because
they have one node in common in GΩ. Furthermore:

Np = Np′ +Np′′ − 1
Ep = Ep′ + Ep′′

Nr = Nr′ +Nr′′ − 1
Er = Er′ + Er′′

(6.31)

In (6.31) there is one subtracted from the number of nodes Np′ + Np′′ and
Nr′ + Nr′′ because they have one node in common in Np and Nr respectively.
By substituting (6.28) into (6.30) we get:

Np,r ≤ M ·Np′ ·Nr′ +M ·Np′′ ·Nr′′ − 1
Ep,r ≤ M · Ep′ · Er′ +M · Ep′′ · Er′′

(6.32)

So in order to prove (6.29) it suffices to prove that:

M ·Np′ ·Nr′ +M ·Np′′ ·Nr′′ − 1 ≤ M ·Np ·Nr
M · Ep′ · Er′ +M · Ep′′ · Er′′ ≤ M · Ep · Er

(6.33)
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By substituting (6.31) into (6.33) we get:

M ·Np′ ·Nr′ +M ·Np′′ ·Nr′′ − 1 ≤ M · (Np′ +Np′′ − 1) · (Nr′ +Nr′′ − 1)
M · Ep′ · Er′ +M · Ep′′ · Er′′ ≤ M · (Ep′ + Ep′′) · (Er′ + Er′′)

(6.34)
After reorganizing (6.34) we get:

Np′ ·Nr′ +Np′′ ·Nr′′ − 1
M ≤ Np′ ·Nr′ +Np′ ·Nr′′ −Np′

+Np′′ ·Nr′ +Np′′ ·Nr′′ −Np′′
−Nr′ −Nr′′ + 1

Ep′ · Er′ + Ep′′ · Er′′ ≤ Ep′ · Er′ + Ep′ · Er′′ + Ep′′ · Er′ + Ep′′ · Er′′

Further reorganizations lead us to:

0 ≤ Np′ ·Nr′′ −Np′ −Nr′′
+Np′′ ·Nr′ −Np′′ −Nr′
+1 + 1

M
0 ≤ Ep′ · Er′′ + Ep′′ · Er′

(6.35)

Because the number of nodes of a CFG is at least 2 and the number of edges is
at least 1, (6.35) holds.

Lemma 19. We consider the two programs p = c1;...;ck and r = d1;...;dl,
and their CFGs Gp = p2cfg(p, npin , n

p
fi) and Gr = p2cfg(r, nrin , n

r
fi). It holds

on the number of nodes Np,r and edges Ep,r of the composition of Gp and Gr,
Gp,r = pp2cfg(p, r, nin , nfi) that Np,r ≤ M · Np · Nr and Ep,r ≤ M · Ep · Er
respectively, where M > 4, Np and Ep are the number of nodes and edges in
Gp = p2cfg(p, npin , n

p
fi) respectively, and Nr and Er are the number of nodes and

edges in Gr = p2cfg(r, nrin , n
r
fi) respectively.

Proof. We prove inductively on the maximal number of commands on the root-
leaf paths of the abstract syntax trees of the subprograms of p and r inductively.
Therefore, we organize the subprograms of p and r into sets Pm, where m is
the maximal number of commands on the root-leaf paths of the abstract syntax
trees of the members of Pm.

The initial case. In the initial case we consider the members p′, r′ of the set
P1. In this case each command c of p′ and d of r′ is either of the form skip or
x := e. According to Lemma 17 in this case if Nc is the number of nodes and
Ec is the number of edges of the graph Gc = c2cfg(c, ncin , n

c
fi), Nd is the number

of nodes and Ed is the number of edges of the graph Gd = c2cfg(d, ndin , n
d
fi)

and Nc,d is the number of nodes and Ec,d is the number of edges of the graph

Gc,d = pc2cfg(c, d, nc,din , n
c,d
fi ) then Nc,d ≤ M · Nc · Nd and Ec,d ≤ M · Ec · Ed.

Therefore, according to Lemma 18, Np′,r′ ≤M ·Np′ ·Nr′ and Ep′,r′ ≤M ·Ep′ ·Er′ ,
where Np′ is the number of nodes and Ep′ is the number of edges of the graph

Gp′ = p2cfg(p′, np
′

in , n
p′

fi ), Nr′ is the number of nodes and Er′ is the number of

edges in Gr′ = p2cfg(r′, nr
′

in , n
r′

fi ), and Np′,r′ is the number of nodes and Ep′,r′

is the number of edges in the graph Gp′,r′ = pp2cfg(p′, r′, nin , nfi).
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The inductive case. Let us consider the set of subprograms Pm, where it
holds that for each p∗ ∈ Pm the number of commands on any root-leaf path of
the corresponding abstract syntax tree is m at the maximum. We suppose now
that for each p∗, r∗ ∈ Pm it holds that Np∗,r∗ ≤ M · Np∗ · Nr∗ and Ep∗,r∗ ≤
M ·Ep∗ ·Er∗ , where Np∗ is the number of nodes and Ep∗ is the number of edges of

the graph Gp∗ = p2cfg(p∗, np
∗

in , n
p∗

fi ), Nr∗ is the number of nodes and Er∗ is the

number of edges in Gr∗ = p2cfg(r∗, nr
∗

in , n
r∗

fi ), and Np∗,r∗ is the number of nodes
and Ep∗,r∗ is the number of edges in the graph Gp∗,r∗ = pp2cfg(p∗, r∗, nin , nfi).

Now we prove the statement for programs composed from the members of
Pm having m + 1 commands at the maximum on the root-leaf paths of the
abstract syntax trees. According to Lemma 17, for each command c and d that
are composed from the members of Pm it holds that Nc,d ≤ M · Nc · Nd and
Ec,d ≤M ·Ec·Ed, where Nc is the number of nodes and Ec is the number of edges
of the graph Gc = c2cfg(c, ncin , n

c
fi), Nd is the number of nodes and Ed is the

number of edges of the graph Gd = c2cfg(d, ndin , n
d
fi) and Nc,d is the number of

nodes and Ec,d is the number of edges of the graph Gc,d = pc2cfg(c, d, nc,din , n
c,d
fi ).

Let us call the set of these commands Cm+1. Cm+1 may also contain commands
composed of programs having less than m commands on the root-leaf paths on
their abstract syntax trees, in particular, it can be zero. In the latter case,
the commands are either of the form skip or x := e. According to Lemma
18, now it holds on all pairs of programs p′′, r′′ composed of the members of
Cm+1 that Np′′,r′′ ≤ M · Np′′ · Nr′′ and Ep′′,r′′ ≤ M · Ep′′ · Er′′ , where Np′′

is the number of nodes and Ep′′ is the number of edges of the graph Gp′′ =

p2cfg(p′′, np
′′

in , n
p′′

fi ), Nr′′ is the number of nodes and Er′′ is the number of edges

in Gr′′ = p2cfg(r′′, nr
′′

in , n
r′′

fi ), and Np′′,r′′ is the number of nodes and Ep′′,r′′ is
the number of edges in the graph Gp′′,r′′ = pp2cfg(p′′, r′′, nin , nfi).

Therefore, the statement of the lemma holds on any m, so the statement is
proved.
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6.3 Proofs for Chapter 4

Theorem 9. Let us consider the state machine M = (XI ,XO,BΣ2,Σ0
, S, s0, δ),

an arbitrary state of it s ∈ S, an arbitrary run ~a = a0, a1, ... ∈ Runss,M and
an arbitrary formula ϕ of the logic Restricted SecLTL having k hide operators.
In this case, M, s,~a |= NNF(¬ϕ) implies that for any s = s1, ..., sk there is a
sequence ϑ0, ϑ1, ... so that it holds for the run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... that ~a∗ ∈
Runs(s,s),Mk

and Mk, (s, s),~a
∗ |= tr(NNF(¬ϕ)), where Mk = (XI ,XO,BΣ2,Σ0

, k,
S∗, s∗0, δ

∗) is the extended transition system corresponding to M .

Proof. We prove the statement inductively on the height of the syntax tree of
NNF(¬ϕ), and the number of leak operators k occurring in NNF(¬ϕ).

The initial case is the bottom of the abstract syntax tree, which is always
of the form x M L. If NNF(¬ϕ) = x M L then there is no L operator in
NNF(¬ϕ), therefore, NNF(¬ϕ) = tr(NNF(¬ϕ)) = x M L. The statement holds
now trivially, because M = M0, there is no extended machine needed in this
case.

Now we investigate the inductive case. The inductive assumption is that
if M, s,~a |= NNF(¬ϕ) holds for the run ~a = a0, a1, ... then for any s there is
a sequence ϑ0, ϑ1, ... so that it holds for the run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... that
~a∗ ∈ Runs(s,s),Mk

and Mk, (s, s),~a
∗ |= tr(NNF(¬ϕ)).

We make a case distinction based on the root of the syntax tree of NNF(¬ϕ).

• NNF(¬ϕ) = L1
H,Oψ, where ψ is an LTL formula in negation normal form.

Since in L1
H,Oψ there is exactly one leak operator, the corresponding ex-

tended model is M1. Here we suppose that M, s,~a |= L1
H,Oψ holds for

some ~a ∈ Runss,M and some state s. From the assumptions above and the
semantics of the leak operator according to Definition 15, we have that
there is at least one ~a′ ∈ AltRunsM (s,~a,H) and at least one xo ∈ O so
that ~a[j](xo) 6= ~a′[j](xo) for some j, meanwhile for all 0 ≤ l ≤ j it holds
that M,~s[l],~a[l,∞) |= ψ, where ~s = ExecM (s,~a).

According to Section 4.3 in this case the corresponding tr(NNF(¬ϕ)) is
the following:

start1 ∧ ψ ∧
[
leak1 ∨©

(
(¬start1 ∧ ψ)U(¬start1 ∧ ψ ∧ leak1)

)]
(6.36)

A legal run ~a∗ of M1 satisfying (6.36) looks the following:

~a∗ = a∗0, a
∗
1, ... = (a0, {start1}), (a1, ∅), ...

..., (aj , {leak1}), (aj+1, ϑj+1), ...
(6.37)

In particular, it is possible that the first letter of the alternative run ~a′

realizes the leakage, in this case a∗0 = (a0, {start1, leak1}).
Now we examine the execution of M1 on ~a∗. Let us investigate the first
transition of M1 on the run ~a∗. According to the construction of extended
state machines described in Section 4.3 we have that:

δ∗((s, s1), (a0, {start1} ∪ ϑ†0)) =

{(s1, s
1
1) | s1 = δ(s, a0) ∧

[
a0

a′0

]
∈ γXI (H) ∧ s1

1 = δ(s, a′0)∧
∃xo ∈ O : a0(xo) 6= a′0(xo)⇒ leak1 ∈ ϑ†0∧
∀xo ∈ O : a0(xo) = a′0(xo)⇒ leak1 6∈ ϑ†0}

(6.38)



116 CHAPTER 6. PROOFS

(6.38) shows that for each alternative run in AltRunsM (s,~a,H) there is
a state (s1, s

1
1) of M1 where s1

1 corresponds to the state of M on the
alternative run. Note that because transition systems are input enabled
according to Definition 9, for each a′0 there is an s1

1 so that s1
1 = δ(s0, a

′
0).

For each l ≥ 1 the transition of an execution of M1 on ~a∗ is the following,
where start1 6∈ ϑl:

δ∗((sl, s
1
l ), (al, ϑl)) =

{(sl+1, s
1
l+1) | sl+1 = δ(sl, al) ∧ s1

l+1 = δ(s1
l , a
′
l) ∧ a′l|XI = al|XI∧

∃xo ∈ O : a0(xo) 6= a′0(xo)⇒ leak1 ∈ ϑl∧
∀xo ∈ O : a0(xo) = a′0(xo)⇒ leak1 6∈ ϑl}

(6.39)
According to Definition 9, state machines are input enabled. Therefore,
there is always an a′l and an s1

l+1 so that a′l|XI = al|XI and s1
l+1 = δ(s1

l , a
′
l).

Now we see, that there is a sequence of states s∗0, ..., s
∗
j+1 so that s∗l+1 ∈

δ∗(s∗l , a
∗
l ) for each 0 ≤ l ≤ j. Furthermore, the projection of the sequence

of states of M1 on the member s1
l is an execution of M on the alternative

run ~a′. Therefore, if there is a j where sj+1 = δ(sj , aj) and s1
j+1 = δ(s1

j , a
′
j)

so that a′j |XI = aj |XI and aj(xo) 6= a′j(xo), then the runs ~a′ and ~a satisfy

the leak operator, and therefore, a∗j is going to be of the form (aj , {leak1}).
This enforces that 6.36 holds on ~a∗ if ψ holds on ~a∗[l,∞) for each 0 ≤ l ≤ j.
Because the projection of ~a∗ on the first member equals to ~a, according to
the semantics in Definition 12 if there is an l so that M,~s[l],~a[l,∞) |= ψ
then M1, ~s

∗[l],~a∗[l,∞) |= ψ. We have furthermore that tr(ψ) = ψ because
it is an LTL formula without leak operators.

We still need to determine the sequence ϑj+1, ϑj+2, ... so that ~a∗[j+1,∞) ∈
Runss∗j+1,M1

where ~a∗[j + 1,∞) = (aj+1, ϑj+1), (aj+2, ϑj+2), .... Because
of the fact that state machines are input enabled, the only thing that
needs to be made sure is that whenever there is a variable xo ∈ O for
which the values in the real run and the alternative run are different, then
leak1 ∈ ϑn, otherwise leak1 6∈ ϑn for each n ≥ j + 1.

Accordingly, we have found a run ~a∗ ∈ Runs(s,s1),M1
corresponding to

~a ∈ Runss,M so that it satisfies our conditions.

• NNF(¬ϕ) = ©ϕ1. We suppose now that M, s,~a |= ©ϕ1 for some run ~a
and state s. According to the semantics of the © operator we have that
M, s1,~a[1,∞) |= ϕ1 where s1 = δ(s,~a[0]). Therefore, we need to show
that there is a ϑ0 and an s1 so that (s1, s1) ∈ δ∗((s, s), (a0, ϑ0)) for any s.
We choose ϑ0 so that startξ 6∈ ϑ0 for any ξ. According to the definition of
Mk in Section 4.3 we have:

δ∗((s, ..., sξ, ...), (a0, ϑ0)) = {(s1, ..., s
ξ
1, ...) |

s1 = δ(s, a0) ∧ sξ1 = δ(sξ, a′0) ∧ a′0|XI = a0|XI}
(6.40)

Since transition systems according to Definition 9 are input enabled, there
is always a possible transition sξ1 = δ(sξ0, a

′
0), where a′0|XI = a0|XI . Con-

sidering the output values of a′0 we have the following options. If sξ1 =

δ(sξ0, a
′
0) so that there is an xo ∈ XO where a(xo) 6= a′0(xo) then leakξ ∈ ϑ0,

if xo ∈ Oξ for the leak operator Lξ
Hξ,Oξ

in the formula ϕ1. Otherwise

leakξ 6∈ ϑ0.
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On the other hand from the inductive assumption follows that there is
a ~b∗ = (a1, ϑ1), (a2, ϑ2), ... so that Mk, (s1, s1),~b∗ |= tr(ϕ1) for any s1.
Furthermore, we have seen above that for all s there is an s1 and a ϑ0

so that (s1, s1) ∈ δ∗((s, s), (a0, ϑ0)). Accordingly, if ~a∗ = (a0, ϑ),~b∗ then
Mk, (s, s),~a

∗ |= ©tr(ϕ1). Since ©(tr(ϕ1)) = tr(©ϕ1) we have that for
any s there is an ~a∗ so that Mk, (s, s),~a

∗ |= tr(©ϕ1).

• NNF(¬ϕ) = ϕ1Uϕ2 for some LTL formula ϕ1 and some negated Restricted
SecLTL formula ϕ2 in negation normal form. Note that ϕ1Uϕ2 is a deriva-
tive of a negated Restricted SecLTL formula ¬(ϕ′1Rϕ′2). According to the
grammar (4.1), in a formula ϕ′1Rϕ′2 of the logic Restricted SecLTL ϕ′1
needs to be an LTL formula.

We assume now that M, s,~a |= NNF(¬ϕ) for some machine M , its arbi-
trary state s, and run ~a. From the semantics according to Definition 12 it
follows that for some i ≥ 0 we have M,~s[i],~a[i,∞) |= ϕ2 and for all j with
0 ≤ j < i we have M,~s[j],~a[j,∞) |= ϕ1, where ~s = ExecM (s,~a). Now
we need to select a run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... for which it holds that
Mk, (s, s),~a

∗ |= tr(NNF(¬ϕ)) and ~a∗ ∈ Runs(s,s),Mk
for any s. Therefore,

we select a finite sequence ϑ0, ..., ϑi−1 by examining the transition rules
of Mk. We select ϑj so that startζ 6∈ ϑj for any 0 ≤ j < i and for any
1 ≤ ζ ≤ k. Let us examine a transition of Mk on ~a∗[j] for any 0 ≤ j < i if
there is no startζ ∈ ϑj . According to the definition of Mk in Section 4.3
we have:

δ∗((sj , ..., s
ξ
j , ...), (aj , ϑj)) = {(sj+1, ..., s

ξ
j+1, ...) |

sj+1 = δ(sj , aj) ∧ sξj+1 = δ(sξj , a
′
j) ∧ a′j |XI = aj |XI}

(6.41)

Since transition systems according to Definition 9 are input enabled, there
is always a possible transition sξj+1 = δ(sξj , a

′
j), where a′j |XI = aj |XI .

Considering the output values of a′j we have the following options. If

sξj+1 = δ(sξj , a
′) so that there is an xo ∈ XO where a(xo) 6= a′(xo) then

leakξ ∈ ϑj if xo ∈ Oξ for the leak operator Lξ
Hξ,Oξ

in the formula ϕ2.

Otherwise leakξ 6∈ ϑj . This way we have constructed a sequence of states
(s0, s0), ...., (si, si) so that (sj+1, sj+1) = δ∗((sj , sj), (aj , ϑj)) for each 0 ≤
j < i.

Our assumption is that M,~s[i],~a[i,∞) |= ϕ2 holds. According to the

inductive assumption, then there is a ~b∗ = (ai, ϑ
b
0), (ai+1, ϑ

b
1), ... so that

Mk, (si, si),
~b∗ |= tr(ϕ2). Accordingly, there is a sequence of states ~t∗ =

(si, si), (si+1, si+1), ... so that ~t∗ ∈ ExecMk
((si, si),

~b∗).

Accordingly, the run we select is of the following form:

~a∗ = (a0, ϑ0), ..., (ai−1, ϑi−1), (ai, ϑ
b
0), (ai+1, ϑ

b
1), ...

From the arguments above follows that ~a∗ ∈ Runs(s,s),Mk
.

– Because the values of variables on ~a and on ~a∗ are equal, it follows
for all 0 ≤ j < i that:

Mk, ~s
∗[j],~a∗[j,∞) |= tr(ϕ1) (6.42)



118 CHAPTER 6. PROOFS

In (6.42) ~s∗ = (s0, s0), ...., (si+1, si+1),~t∗. Note, that because ϕ1 is
an LTL formula, tr(ϕ1) = ϕ1.

– We have that M,~s[i],~a[i,∞) |= ϕ2. Therefore, from the inductive
assumption follows that:

Mk, (si, si),~a
∗[i,∞) |= tr(ϕ2)

The above two statements entail that Mk, (s, s),~a
∗ |= tr(ϕ1)Utr(ϕ2). Since

tr(ϕ1)Utr(ϕ2) = tr(ϕ1Uϕ2), the statement is proved.

• NNF(¬ϕ) = ϕ1Rϕ2 for some LTL formula ϕ2 and negated Restricted Se-
cLTL formula ϕ1 in negation normal form. Note that ϕ1Rϕ2 is a negated
Restricted SecLTL formula. According to the grammar (4.1), in a formula
ϕ′1Uϕ′2 of the logic Restricted SecLTL ϕ′2 needs to be an LTL formula.
Here, ϕ1Rϕ2 is a derivation of ¬(ϕ′1Uϕ′2).

We assume now that M, s,~a |= NNF(¬ϕ) for some machine M , its arbi-
trary state s, and run ~a. From the semantics according to Definition 12 it
follows that either

a) M,~s[j],~a[j,∞) |= ϕ2 holds for all j ≥ 0

b) or there is a i ≥ 0 such that M,~s[i],~a[i,∞) |= ϕ1 and for all 0 ≤ j ≤ i
we have M,~s[j],~a[j,∞) |= ϕ2, where ~s = ExecM (s,~a)

Now we need to select a run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... for which it holds
that Mk, (s, s),~a

∗ |= tr(NNF(¬ϕ)) and ~a∗ ∈ Runs(s,s),Mk
for any s. There-

fore, we select a sequence ϑ0, ..., ϑi−1 by examining the transition rules
of Mk. We select ϑj so that startζ 6∈ ϑj for any 0 ≤ j < i and for any
1 ≤ ζ ≤ k. Let us examine a transition of Mk on ~a∗[j] for any 0 ≤ j < i if
there is no startζ ∈ ϑj . According to the definition of Mk in Section 4.3
we have:

δ∗((sj , ..., s
ξ
j , ...), (aj , ϑj)) = {(sj+1, ..., s

ξ
j+1, ...) |

sj+1 = δ(sj , aj) ∧ sξj+1 = δ(sξj , a
′
j) ∧ a′j |XI = aj |XI}

(6.43)

Since transition systems according to Definition 9 are input enabled, there
is always a possible transition sξj+1 = δ(sξj , a

′), where a′j |XI = aj |XI .
Considering the output values of a′j we have the following options. If

sξj+1 = δ(sξj , a
′) so that there is an xo ∈ XO where a(xo) 6= a′(xo) then

leakξ ∈ ϑj if xo ∈ Oξ for the leak operator Lξ
Hξ,Oξ

in the formula ϕ1.

Otherwise leakξ 6∈ ϑj . This way we have constructed a sequence of states
~s∗ = (s, s), ...., (si, si) so that (sj+1, sj+1) = δ∗((sj , sj)(aj , ϑj)) for each
0 ≤ j < i.

– If case a) holds above, then we continue the above described selection
so that i goes to infinity. Therefore, we have found a run ~a∗ =
(a0, ϑ0), (a1, ϑ1), ... so that ~a∗ ∈ Runs(s,s),Mk

. Furthermore, because
the values of variables in ~a and ~a∗ coincide and M,~s[j],~a[j,∞) |= ϕ2

holds for all j ≥ 0, we have that Mk, ~s
∗[j],~a∗[j,∞) |= tr(ϕ2). Note

that ϕ2 is an LTL formula, therefore, tr(ϕ2) = ϕ2.
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– Now we assume that case b) holds above. Our assumption is that
M,~s[i],~a[i,∞) |= ϕ1 holds for some i. According to the inductive

assumption, then there is a ~b∗ = (ai, ϑ
b
0), (ai+1, ϑ

b
1), ... where it holds

that Mk, (si, si),
~b∗ |= tr(ϕ1) for any si. Accordingly, there is a se-

quence ~t∗ = (si, si), (si+1, si+1), ... so that ~t∗ ∈ ExecMk
((si, si),

~b∗).
Accordingly, the run we select is of the following form:

~a∗ = (a0, ϑ0), ..., (ai−1, ϑi−1), (ai, ϑ
b
0), (ai+1, ϑ

b
1), ...

From the arguments above follows that ~a∗ ∈ Runs(s,s),Mk
.

∗ Because the values of variables on ~a and on ~a∗ are equal, it follows
for all 0 ≤ j ≤ i that:

Mk, ~s
∗[j],~a∗[j,∞) |= tr(ϕ2) (6.44)

In (6.44) ~s∗ = (s0, s0), ...., (si−1, si−1),~t∗. Note, that because ϕ2

is an LTL formula, tr(ϕ2) = ϕ2.

∗ We have that M,~s[i],~a[i,∞) |= ϕ1. Therefore, from the induc-
tive assumption follows that:

Mk, (si, si),~a
∗[i,∞) |= tr(ϕ1)

The above two statements entail that Mk, (s, s),~a
∗ |= tr(ϕ1)Rtr(ϕ2).

Since tr(ϕ1)Rtr(ϕ2) = tr(ϕ1Rϕ2), the statement is proved.

– NNF(¬ϕ) = ϕ1 ∧ϕ2. Let us suppose that the number of L operators
in ϕ1 is k1 and the number of L operators in ϕ2 is k2. We define
the function g so that it renames all occurrences of an index ξ in the
object in its argument by ξ + k1. Therefore, g(ϕ2) is an equivalent

formula to ϕ2 but each occurrence of an operator Lξ
Hξ,Oξ

is renamed

to Lξ+k1

Hξ+k1 ,Oξ+k1
. Now we construct the corresponding extended ma-

chine Mk1+k2
= (XI ,XO,BΣ2,Σ0

, k1 + k2, S
∗, s∗0, δ

∗) according to its
description in Section 4.3.

We consider now an arbitrary run ~a = a0, a1, ... for which the follow-
ing holds:

M, s,~a |= ϕ1 ∧ ϕ2

Now according to the semantics of Restricted SecLTL in Definition
12 we have that:

(M, s,~a |= ϕ1) and (M, s,~a |= ϕ2)

The inductive assumptions are now that for all s there is a ~a∗ so
that Mk1

, (s, s),~a∗ |= tr(ϕ1), and for all t there is a ~b∗ so that

Mk2 , (s, t),
~b∗ |= tr(ϕ2), where:

~a∗ = (a0, ϑ0), (a1, ϑ1), ... for some ϑ0, ϑ2, ...
~b∗ = (a0, κ0), (a1, κ1), ... for some κ0, κ2, ...

Let us define ~c∗ the following way:

~c∗ = (a0, ϑ0 ∪ g(κ0)), (a1, ϑ1 ∪ g(κ1)), ...
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Based on the construction of Mk1+k2
and the inductive assumption

we have that:
Mk1+k2

, (s, s, t),~c∗ |= tr(ϕ1)

And:
Mk1+k2 , (s, s, t),~c

∗ |= g(tr(ϕ2))

From this it follows that:

Mk1+k2
, (s, s, t),~c∗ |= tr(ϕ1) ∧ g(tr(ϕ2))

Because tr(ϕ1) ∧ g(tr(ϕ2)) = tr(ϕ1 ∧ g(ϕ2)) our statement holds.

– NNF(¬ϕ) = ϕ1 ∨ϕ2. Let us suppose that the number of L operators
in ϕ1 is k1 and the number of L operators in ϕ2 is k2. We define
the function g so that it renames all occurrences of an index ξ in the
object in its argument by ξ + k1. Therefore, g(ϕ2) is an equivalent

formula to ϕ2 but each occurrence of an operator Lξ
Hξ,Oξ

is renamed

to Lξ+k1

Hξ+k1 ,Oξ+k1
. Now we construct the corresponding extended ma-

chine Mk1+k2
= (XI ,XO,BΣ2,Σ0

, k1 + k2, S
∗, s∗0, δ

∗) according to its
description in Section 4.3.

We consider now an arbitrary run ~a = a0, a1, ... for which the follow-
ing holds:

M, s,~a |= ϕ1 ∨ ϕ2

Now according to the semantics of Restricted SecLTL in Definition
12 we have that:

(M, s,~a |= ϕ1) or (M, s,~a |= ϕ2)

The inductive assumptions are now that if M, s,~a |= ϕ1 then for all
s there is a ~a∗ so that Mk1

, (s, s),~a∗ |= tr(ϕ1), and if M, s,~a |= ϕ2

then for all t there is a ~b∗ so that Mk2
, (s, t),~b∗ |= tr(ϕ2), where:

~a∗ = (a0, ϑ0), (a1, ϑ1), ... for some ϑ0, ϑ2, ...
~b∗ = (a0, κ0), (a1, κ1), ... for some κ0, κ2, ...

Let us define ~c∗ the following way:

~c∗ = (a0, ϑ0 ∪ g(κ0)), (a1, ϑ1 ∪ g(κ1)), ...

Based on the construction of Mk1+k2
and the inductive assumption

we have that:
Mk1+k2 , (s, s, t),~c

∗ |= tr(ϕ1)

Or:
Mk1+k2 , (s, s, t),~c

∗ |= g(tr(ϕ2))

From this it follows that:

Mk1+k2 , (s, s, t),~c
∗ |= tr(ϕ1) ∨ g(tr(ϕ2))

Because tr(ϕ1) ∨ g(tr(ϕ2)) = tr(ϕ1 ∨ g(ϕ2)) our statement follows.
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Theorem 10. Let us consider the product NMk,Ntr(NNF(¬ϕ))
of the extended state

machine Mk and the Büchi automaton Ntr(NNF(¬ϕ)) corresponding to the LTL
formula tr(NNF(¬ϕ)). Furthermore, let us consider the product N

M̂k,Ntr(NNF(¬ϕ))

of the abstract state machine M̂k and Ntr(NNF(¬ϕ)). In this case the fact that
L(N

M̂k,Ntr(NNF(¬ϕ))
) = ∅ entails that L(NMk,Ntr(NNF(¬ϕ))

) = ∅.

Proof. We prove the contrapositive of the statement. In other words, we prove
that if there is a concrete run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... ∈ L(NMk,Ntr(NNF(¬ϕ))

)

then there is an abstract run ~̂a = (â0, ϑ0), (â1, ϑ1), ... ∈ L(N
M̂k,Ntr(NNF(¬ϕ))

) so

that for each i and each x ∈ X it holds that ai(x) M âi(x).
Therefore, let us regard the run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... and the accept-

ing execution ~s× = (s∗0, s
N
0 ), (s∗1, s

N
1 ), ... of L(NMk,Ntr(NNF(¬ϕ))

) on ~a∗. The ini-

tial state of N
M̂k,Ntr(NNF(¬ϕ))

is (ŝ0, s
N
0 ), where according to Definition 17 s∗0 ∈

γS(ŝ0). Now we prove inductively, that there is a run ~̂a = (â0, ϑ0), (â1, ϑ1), ...

of N
M̂k,Ntr(NNF(¬ϕ))

and a corresponding execution ~̂s
×

= (ŝ0, s
N
0 ), (ŝ1, s

N
1 ), ... on

~̂a so that for each i and x ∈ X it holds that ai(x) M âi(x) and s∗i ∈ γS(ŝi).
The inductive assumption is that if the member number i in ~s× is (s∗i , s

N
i ), then

member number i in the abstract execution ~̂s
×

is (ŝi, s
N
i ), so that s∗i ∈ γS(ŝi).

Let us consider the next transition of NMk,Ntr(NNF(¬ϕ))
:

(s∗i+1, s
N
i+1) ∈ δ×((s∗i , s

N
i ), (ai, ϑi)) (6.45)

According to the definition of NMk,Ntr(NNF(¬ϕ))
in this case there is a transition

s∗i+1 ∈ δ∗(s∗i , (ai, ϑi)) of Mk. From Definition 17 it follows now that there is a

transition ŝi+1 ∈ δ̂(ŝi, (âi, ϑi)) for any ŝi where s∗i ∈ γS(ŝi), and for any (âi, ϑi)
where (ai, ϑi) ∈ γA((âi, ϑi)) so that s∗i+1 ∈ γS(ŝi+1).

Now we show that there is a corresponding successor state of Ntr(NNF(¬ϕ)),
too. Let us choose âi so that for each x ∈ X , âi(x) = {τx} is a singleton tree
where τx ∈ BΣ,{#,bv}. We construct τx by exchanging each leaf in ai(x) labeled
with a basic value with the symbol bv . From (6.45) follows that Ntr(NNF(¬ϕ)) has
a transition sNi+1 ∈ ρ(sNi ,Ψi). Now because we have that sNi+1 ∈ ρ(sNi ,Ψi), it
follows that (ai, ϑi) |=

∧
P∈Ψi

P . This entails that ai(x) M L, for each member
of Ψ of the form x M L. It follows that τx ∈ L for each member of Ψ of the form
x M L. Accordingly, if âi(x) = {τx} for each x, then we have for each x that
âi(x) ⊆ L, where (x M L) ∈ Ψi. According to the definition of N

M̂k,Ntr(NNF(¬ϕ))

now it follows that (ŝi+1, s
N
i+1) ∈ δ̂×((ŝi, s

N
i ), (âi, ϑi)).

Theorem 11. The abstract machine M̂k = (XI ,XO,P(BΣ2,{#,bv}), k, Ŝ, ŝ0, δ̂)
constructed based on Mk = (XI ,XO,BΣ2,Σ0

, k, S∗, s∗0, δ
∗) using the abstract in-

terpretation techniques of Section 3.3, is indeed an abstraction of Mk according
to Definition 17.

Proof. Let us now investigate the relation between the initial state s∗0 = (s0
0, s

1
0,

..., sk0) of Mk and the initial state ŝ0 = (ŝ0
0, ŝ

1
0, ..., ŝ

k
0) of M̂k. The initial state of

Mk is s∗0 = (#, ..., #), and the initial state of M̂k is ŝ0 = ({#}, ..., {#}). Therefore,
it holds trivially that s∗0 ∈ γS(ŝ0).
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Let us now investigate the abstract transition function δ̂ together with the
concretization functions γS and γA. We suppose now that Mk is in the state
s∗ = (s0, s1, ..., sk) and M̂k is in the state ŝ = (ŝ0, ŝ1, ..., ŝk). Our assumption
is that s∗ ∈ γS(ŝ). Furthermore, we assume that the next letter a∗ of Mk and

the next letter â of M̂k are so that a∗ ∈ γA(â). Now we suppose that there is

an s∗′ ∈ δ∗(s∗, (a, ϑ)), where a∗ = (a, ϑ). Let us suppose that Mk and M̂k have
been constructed in connection with the Restricted SecLTL formula ϕ. If there
is a leak i ∈ ϑ it means that there is a subformula H i

Hi,Oiψ in ϕ so that there is

an xo ∈ Oi where s0(xo) 6= si(xo). According to our assumption we have that[
s0(xo)
si(xo)

]
∈ γ(ŝi). Because s0(xo) 6= si(xo), there is at least one ? in their public

view which is contained in ŝi(x0). Because the predicate secret in (3.7) will

hold on the value of ŝi(x0), the transition of M̂k is not going to be in conflict
with the existence of any leak i ∈ ϑ for any i.

There is still the constraint on the abstract transition that a(o) ∩ s0(o) 6= ∅
needs to hold for each o ∈ XO. From the assumption that s∗′ ∈ δ∗(s∗, (a, ϑ))
follows that for each o ∈ XO, a(o) = s0(o) = τo for some τo. Our assumptions
entail that τo M ŝ0(o) and τo M â(o). Therefore, by exchanging all leaves of τo
labeled with basic values with bv we get an abstract tree τ̂o, for which it holds
that τ̂o ∈ â(o) ∩ ŝ0(o). Therefore, the corresponding condition holds on the
abstract transition, and therefore, it can take place.

Now we will investigate the initial analysis information corresponding to
the main run and each alternative run (d0

0, d
1
0, ..., d

k
0), and the state s∗′ =

(s0′, s1′, ..., sk
′
) after the assignment of the input values in a∗ to the input vari-

ables of the state took place. For each xi ∈ XI we have that s0′(xi) = a(xi),

and accordingly, we have that d0
0(xi) = â(xi). Therefore, we have that s0′(xi) M

d0
0(xi). According to our assumptions we had for each xo ∈ XO that s0(xo) M
ŝ0(xo). Since output variables of states on the main run are simply copied to the

initial states of the computation, we have now that s0′(xo) M d0
0(xo). Therefore,

we have for each x ∈ X that s0′(x) M d0
0(x). Considering states sj

′
where j > 0

we have two options.

• startj 6∈ ϑ. In this case sj
′
(xi) = a(xi) for each xi ∈ XI . Therefore,

sj
′
(xi) = s0′(xi) for each xi ∈ XI . In the abstract case we have that

dj0(xi) = â(xi). Furthermore, we supposed that a(xi) M â(xi). There-

fore, there are no leaves labeled ? in the members of dj0(xi). Accordingly,[
s0
′
(xi)

sj ′(xi)

]
∈ γ(dj0(xi)).

Furthermore, according to our assumptions, we have for each xo ∈ XO
that

[
s0(xo)
sj(xo)

]
∈ γ(ŝj(xo)). Because s0′(xo) = s0(xo), s

j ′(xo) = sj(xo) and

dj0(x0) = ŝj(xo), it holds that
[
s0
′
(xo)

sj ′(xo)

]
∈ γS(dj0(x0)).

• startj ∈ ϑ. Now there is a letter b ∈ A which is the first letter on an
alternative run of the original machine M . We suppose now that there is
a subformula H j

Hj ,Ojψ in the formula that corresponds to Mk and M̂k. In

this case it holds that
[
a
b

]
∈ γXI (Hj). This means according to Section

4.2 that for each x ∈ dom(Hj) it holds that
[
a(x)
b(x)

]
∈ γ(Hj(x)∪BΣ2,{#,bv}).

This means that there is a public view τ in Hj(x) ∪BΣ2,{#,bv} which can
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be constructed from a(x) and b(x) by replacing the different subtrees by ?
and by replacing leaves having basic values with bv . There are two cases
regarding τ :

– There is no leaf labeled ? in τ . In this case a(x) and b(x) are equal
so that a(x), b(x) M τ , and their common public view is of course in
BΣ2,{#,bv}, and therefore also in â(x).

– There is at least one leaf labeled ? in τ . In this case τ must be in
Hj(x), and in addition, there is a corresponding abstract document

in â(x), namely a(x). According to the definition of M̂k, dj0(x) =
â(x) ∪ h, where h is the subset of public views in Hj(x) to which
there is a corresponding document in â(x). There is now at least
one, namely a(x), therefore, τ ∈ h. τ cannot be an element either
of BΣ2,{#,bv} or â(x) because they do not contain trees having leaves
labeled ?.

Therefore, we have that τ ∈ â(x) ∪ h. According to the definition of M̂k,

we have now that dj0(x) = â(x) ∪ h, which entails that
[
a(x)
b(x)

]
∈ γ(dj0(x)).

This in turn entails that
[
s0(x)

′

sj(x)′

]
∈ γ(dj0(x)), because s0(x)

′
= a(x) and

sj(x)
′

= b(x) in the concrete machine.

Regarding those variables y ∈ XI where y 6∈ dom(Hj) we have the re-
quirement that a(y) = b(y). Therefore, sj(y) = a(y). According to the

definition of M̂k, dj0(y) = â(y) in this case. â(y) does not contain trees

with nodes having labels ?, therefore, we have that
[
s0(y)

′

sj(y)′

]
∈ γ(dj0(y)).

We consider now output variables xo ∈ XO. According to the definitions
of Mk and M̂k we have in this case that s0′(xo) = s0(xo), s

j ′(xo) = s0(xo)
and dj0(xo) = ŝ0(xo). Furthermore, we had that s0(xo) M ŝ0(xo). It

follows now that s0′(xo) = sj
′
(xo) for all xo ∈ XO, which entails that[

s0
′
(xo)

sj ′(xo)

]
∈ γ(dj0(xo)).

From the above reasoning follows that for all j > 0 and for all x ∈ X we have that[
s0(x)

′

sj(x)′

]
∈ γ(dj0(x)). Furthermore, for all x ∈ X we have that s0′(x) M d0

0(x).

Accordingly, we have that (s0′, s1′, ..., sk
′
) ∈ γS(d0

0, d
1
0, ..., d

k
0).

Let us suppose now that (s0′′, ..., sk′′) ∈ δ∗(s∗, (a, ϑ)) and (ŝ0′′, ..., ŝk′′) =

δ̂(ŝ, (â, ϑ)). Now based on the correctness of the static analysis described in
Section 3.3 and the above reasoning, we have for each j > 0 and for all x ∈ X
that

[
s0′′(x)
sj ′′(x)

]
∈ γ(ŝj ′′(x)), where ŝj ′′ is the result of the analysis of Section 3.3

with initial abstract value dj0 on the program p based on which M has been
constructed. Furthermore, s0′′ is the result of the execution of the program p
on the initial state s0′ and sj ′′ is the result of the execution of the program p
with the initial state sj ′.

Furthermore, we have that d0
0 does not contain trees with nodes labeled ?

in any variables. In this case the preconditions of implications generated for

edges with labels
[
¬b
b

]
do not hold, and therefore, all assignments are going

to be carried out on the abstract values in synchrony. Therefore, no nodes
labeled ? will be introduced during the analysis based on the initial values in



124 CHAPTER 6. PROOFS

d0
0. Accordingly, the members of the concretization of ŝ0′′(x) are pairs of equal

trees for each variable x. Therefore, we have for all x that s0′′(x) M ŝ0′′(x).
According to the above reasoning we have that:

(s0′′, s1′′, ..., sk′′) ∈ γS(ŝ0′′, ŝ1′′, ..., ŝk′′)

Lemma 20. Let us consider an arbitrary hide operator H i
Hi,Oiϕ and two regular

tree grammars G1 and G2, where L(G1) ⊆ L(G2). Let us suppose that the sets
of public views h1 and h2 have been constructed using the algorithm of Section
4.4.1 based on the grammars G1 and G2, and the set of public views Hi(x). In
this case L(h1) ⊆ L(h2).

Proof. Let us suppose that the grammar G1 consist of rules of the following
form:

A1 → σ(B1, C1)
D1 → #

E1 → bv

We suppose furthermore, that the initial nonterminal of G1 is F1.
Let us suppose furthermore, that G2 consists of rules of the following form:

A2 → σ(B2, C2)
D2 → #

E2 → bv

We suppose furthermore, that the initial nonterminal of G2 is F2.
Finally, let us suppose that Hi(x) consists of rules of the following form:

U → ζ(V,Z)
X → #

Y → bv
W → ?

We suppose that the initial nonterminal of Hi(x) is Z.
We suppose that h1 and h2 have been constructed using the algorithm in

Section 4.4.1. Now we suppose that h1 consists of rules of the form:

[A1, U ] → σ([B1, V ], [C1, Z])
[D1, X] → #

[E1, Y ] → bv
[I1,W ] → ?

We suppose that the initial nonterminal of h1 is [F1, Z].
Now we suppose that h2 consists of rules of the form:

[A2, U ] → σ([B2, V ], [C2, Z])
[D2, X] → #

[E2, Y ] → bv
[I2,W ] → ?

We suppose that the initial nonterminal of h2 is [F2, Z].



6.3. PROOFS FOR CHAPTER 4 125

Let us suppose that there is a tree τ in L(h1). This means that there is
a corresponding document τ0 ∈ L(G1). The difference between τ and τ0 is
that τ0 can be constructed from τ by replacing its leaves labeled ? with some
subtrees. Let us denote the upper prefix of τ where its leaves labeled ? are
replaced with some nonterminals of G1 by τ1. Since τ has been generated by
the grammar resulting from the algorithm of Section 4.4.1, there exists a τ1
that can be generated by the rules of G1 too. Let us denote a tree, where the
nonterminals of G1 in τ1 are replaced with nonterminals of G2 by τ2. Since
L(G1) ⊆ L(G2), there is a τ2 that can be generated using the rules of G2 too.
But since h2 has been constructed from G2 and Hi(x), τ2 can now be generated
from the rules of h2 too. Here the components of rules corresponding to Hi(x)
are the same as by the generation τ1. Therefore, whenever we could generate a
leaf labeled ? using the rules of h1, then we can generate a ? using the rules of
h2 too. By applying rules of the form [I2,W ]→ ? on the nonterminals in τ2 we
obtain τ . From this, our statement follows.

Theorem 12. L( ̂N
M̂k,Ntr(NNF(¬ϕ))

) = ∅ entails that L(N
M̂k,Ntr(NNF(¬ϕ))

) = ∅.

Proof. We prove now the contrapositive. We prove that ~̂a ∈ L(N
M̂k,Ntr(NNF(¬ϕ))

)

entails the existence of a run
~̂
â so that

~̂
â ∈ L( ̂N

M̂k,Ntr(NNF(¬ϕ))
). Let us suppose

that N
M̂k,Ntr(NNF(¬ϕ))

= (Ŝ×, Â, ŝ×0 , δ̂
×, F̂×) and ̂N

M̂k,Ntr(NNF(¬ϕ))
= (

̂̂
S
×
, Â, ŝ×0 ,̂̂

δ
×
,
̂̂
F
×

). We consider an accepting execution ŝ×0 , ŝ
×
1 , ... of N

M̂k,Ntr(NNF(¬ϕ))
on ~̂a =

(â0, ϑ0), (â1, ϑ1), .... We have now for each i that ŝ×i+1 ∈ δ̂×(ŝ×i , (âi, ϑi)). Given

that ŝ×i = (ŝi, s
N
i ) and ŝ×i+1 = (ŝi+1, s

N
i+1), we have that ŝi+1 = δ̂(ŝi, (âi, ϑi)),

sNi+1 ∈ ρ(sNi ,Ψi), and that (âi, ϑi) |=
∧
P∈Ψi

P . The latter entails, that for
all variables x ∈ X we have that âi(x) ⊆

⋂
(xML)∈Ψi

L. Let us now define

the run
~̂
â = (̂̂a0, ϑ0), (̂̂a1, ϑ1), ... so that for each i and x ∈ X we have that̂̂ai(x) =
⋂

(xML)∈Ψi
L. This is how the letters of the transitions of ̂N

M̂k,Ntr(NNF(¬ϕ))

are defined by implications (4.9) and (4.8).
Now we prove inductively on the length of the execution ŝ×0 , ŝ

×
1 , ... that there

is an execution ̂̂s×0 , ̂̂s×1 , ... of ̂N
M̂k,Ntr(NNF(¬ϕ))

on
~̂
â so that for each i whenever

ŝ×i = ((ŝ0
i , ŝ

1
i , ..., ŝ

k
i ), sNi ) then ̂̂s×i = ((̂̂s0

i ,
̂̂s1

i , ...,
̂̂ski ), sNi ) so that for each x ∈ X

and 0 ≤ j ≤ k we have that:

̂̂sji (x) ⊇ ŝji (x)

We can say the following about the initial state. According to the definition
of N

M̂k,Ntr(NNF(¬ϕ))
we have for each x and j that ŝj0(x) = {#}. According to the

definition of ̂N
M̂k,Ntr(NNF(¬ϕ))

we have that initx(#) for each x ∈ X . Further-

more, the following is defined for each variable x and execution j:

statex,j,sN0 (X)⇐ initx(X).

Based on the above statements, it follows that ŝ×0 = ̂̂s×0 .
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Now we treat the inductive case. We suppose about the states number i in

the executions, ŝ×i = ((ŝ0
i , ŝ

1
i , ..., ŝ

k
i ), sNi ) and ̂̂s×i = ((̂̂s0

i ,
̂̂s1

i , ...,
̂̂ski ), sNi ), that for

each x ∈ X and 0 ≤ j ≤ k it holds that:

̂̂sji (x) ⊇ ŝji (x)

We also suppose about the letters (âi, ϑi) and (̂̂ai, ϑi) that for each x ∈ X it

holds that ̂̂ai(x) ⊇ âi. We suppose here that for each x and j, ̂̂sji (x) = {τ |
statex,j,sN(τ)}. We furthermore suppose that ((ŝ0

i+1, ŝ
1
i+1, ..., ŝ

k
i+1), sNi+1) ∈

δ̂×((ŝ×i ), âi). Let us suppose that the initial values of the analyses corresponding

to δ̂ are defined by dj0. Furthermore, let us suppose that the initial values of the

analyses corresponding to
̂̂
δ
×

are defined by
̂̂
d
j

0.
Because of the above assumptions and Lemma 20, we can say that for each

j and x, it holds on the initial abstract states of the analysis that:

̂̂
d
j

0(x) ⊇ dj0(x)

Let us denote the results of the analyses of Section 3.3 on initial states dj0(x)

and
̂̂
d
j

0(x) by dj(x) and
̂̂
d
j

(x) respectively. The analysis of Section 3.3 consists
exclusively of monotonous implications. Therefore, it holds that

̂̂
d
j

(x) ⊇ dj(x)

This guaranties that trans(sNi ,Ψ,s
N
i+1) holds, because the transition δ̂ could take

place, and therefore, the values of variables have been defined there. Further-
more, because of implication (4.7) we have for all variables x ∈ X , executions
j, and trees τ that:

statex,j,sNi+1
(τ)⇐ ̂̂

d
j

(τ)

Therefore, we have that ((̂̂s0

i+1,
̂̂s1

i+1, ...,
̂̂ski+1), sNi+1) ∈ ̂̂δ×((̂̂s×i ), ̂̂ai) so that the

resulting state satisfies the desired property. Since the projection of this re-
sulting state on the component of Ntr(NNF(¬ϕ)) is the same as by ((ŝ0

i+1, ŝ
1
i+1, ...,

ŝki+1), sNi+1), it follows that the run ŝ×0 , ŝ
×
1 , ... is accepting if and only if ŝ×0 , ŝ

×
1 , ...

is accepting.

Theorem 13. Let us consider the transition system M and the formula ϕ of
the logic Restricted SecLTL. We suppose that N∗tr(NNF(¬ϕ)) is the corresponding

“distilled” automaton. In this case L(N∗tr(NNF(¬ϕ))) = ∅ entails that M |= ϕ.

Proof. From the fact that L(N∗tr(NNF(¬ϕ))) = ∅ follows that:

L( ̂N
M̂k,Ntr(NNF(¬ϕ))

) = ∅

The above implication is true, because there is a corresponding transition of the

form (̂̂s′, sN ′) ∈ ̂̂δ×((̂̂s, sN ), â) of ̂N
M̂k,Ntr(NNF(¬ϕ))

to each transition of the form
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sN
′ ∈ ρ∗(sN , â) of N∗tr(NNF(¬ϕ)) with additional constraints. Furthermore, there

is no transition in ̂N
M̂k,Ntr(NNF(¬ϕ))

for which there would not be a corresponding

transition in N∗tr(NNF(¬ϕ)).

Based on Theorem 12 follows that L( ̂N
M̂k,Ntr(NNF(¬ϕ))

) = ∅ entails the fact

that L(N
M̂k,Ntr(NNF(¬ϕ))

) = ∅.
Theorem 11 together with Theorem 10 entail that L(N

M̂k,Ntr(NNF(¬ϕ))
) = ∅

implies L(NMk,Ntr(NNF(¬ϕ))
) = ∅.

L(NMk,Ntr(NNF(¬ϕ))
) = ∅ implies that there is no run ~a∗ ∈ Runs(s0,s0)Mk

for
which it would hold that Mk, (s0, s0),~a∗ |= tr(NNF(¬ϕ)). Here, s0 is the initial
state of M , and (s0, s0) = (s0, s0, ..., s0) is the initial state of Mk, a k + 1 long
tuple, where each member is s0. It follows now from Theorem 9 that there is no
such ~a either, for which it would hold that M, s0,~a |= NNF(¬ϕ). This entails in
turn that M, s0,~a |= ϕ holds for all ~a, which implies that M |= ϕ.

Lemma 21. The set of runs satisfying the formulae (¬ϕ1 ∧ϕ2)U(ϕ1 ∧ϕ2) and
ϕ2U(ϕ1 ∧ ϕ2) are the same for any arbitrary formulae ϕ1 and ϕ2 of the logic
LTL.

Proof. Now we prove that (¬ϕ1∧ϕ2)U(ϕ1∧ϕ2)⇒ ϕ2U(ϕ1∧ϕ2). Let us consider
an arbitrary extended machine Mk, an arbitrary state of it s∗, and a run ~a∗ ∈
Runss∗,Mk

, where we have that Mk, ~s
∗,~a∗ |= (¬ϕ1 ∧ϕ2)U(ϕ1 ∧ϕ2). In this case

there is at least one i ≥ 0 for which it holds that Mk, ~s
∗[i],~a∗[i,∞) |= (ϕ1∧ϕ2).

Furthermore, for all 0 ≤ j < i we have that Mk, ~s
∗[j],~a∗[j,∞) |= (¬ϕ1 ∧ ϕ2).

(¬ϕ1 ∧ ϕ2) entails ϕ2. Accordingly, we have now that there is one i ≥ 0 for
which it holds that Mk, ~s

∗[i],~a∗[i,∞) |= (ϕ1 ∧ ϕ2), and for all 0 ≤ j < i we
have that Mk, ~s

∗[j],~a∗[j,∞) |= ϕ2. This satisfies the conditions of Mk, ~s
∗,~a∗ |=

ϕ2U(ϕ1 ∧ ϕ2).
Now we prove that ϕ2U(ϕ1 ∧ ϕ2) ⇒ (¬ϕ1 ∧ ϕ2)U(ϕ1 ∧ ϕ2). Let us con-

sider an arbitrary extended machine Mk, an arbitrary state of it s∗, and a
run ~a∗ ∈ Runss∗,Mk

, where we have that Mk, ~s
∗,~a∗ |= ϕ2U(ϕ1 ∧ ϕ2). Accord-

ing to the semantics in Definition 12 there is at least one i ≥ 0 for which it
holds that Mk, ~s

∗[i],~a∗[i,∞) |= (ϕ1 ∧ ϕ2), and for all 0 ≤ j < i we have that
Mk, ~s

∗[j],~a∗[j,∞) |= ϕ2. Let us consider the smallest such i for which the pre-
vious statement holds. Now we have for all 0 ≤ j < i that Mk, ~s

∗[j],~a∗[j,∞) 6|=
(ϕ1 ∧ ϕ2), and Mk, ~s

∗[j],~a∗[j,∞) |= ϕ2. This entails that for these j we
have that Mk, ~s

∗[j],~a∗[j,∞) |= (¬ϕ1 ∧ ϕ2). But this satisfies the conditions
of Mk, ~s

∗,~a∗ |= (¬ϕ1 ∧ ϕ2)U(ϕ1 ∧ ϕ2).

Theorem 14. L(N ′Mk,Ntr′(NNF(¬ϕ))
) = ∅ entails that L(NMk,Ntr(NNF(¬ϕ))

) = ∅.

Proof. We repeat now the formula replacing leak operators of the form LiHi.Oiψ
in the theoretical elaboration of Section 4.3:

start i ∧ ψ ∧
[
leak i ∨©

(
(¬start i ∧ ψ)U(¬start i ∧ ψ ∧ leak i)

)]
(4.3)

We rewrite now (4.3) to the equivalent formula:

ξ =
[
start i ∧ ψ ∧ leak i

]
∨[

start i ∧ ψ ∧©
(

(¬start i ∧ ψ)U(¬start i ∧ ψ ∧ leak i)
)] (6.46)
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We rewrite now (4.14):

start i ∧
(
ψU(leak i ∧ ψ)

)
(6.47)

(6.47) equals to (4.14) because of Lemma 21. The expansion rule [75] of the
until operator is:

αUβ = β ∨ α ∧©(αUβ) (6.48)

We also rewrite (6.47) to an equivalent formula using the expansion rule:

start i ∧
(

(leak i ∧ ψ) ∨ ψ ∧©ψU(leak i ∧ ψ)
)

(6.49)

Now by reformulating the above we obtain:(
start i ∧ leak i ∧ ψ

)
∨
(

start i ∧ ψ ∧©ψU(leak i ∧ ψ)
)

(6.50)

Another reformulation results in:

ξ′ =
[
start i ∧ ψ ∧ leak i

]
∨[

start i ∧ ψ ∧©
(

(tt ∧ ψ)U(tt ∧ ψ ∧ leak i)
)] (6.51)

We see now that (4.3) equals to (6.46), and that (4.14) equals to (6.51). We
therefore define the function tr2(·) that replaces leak operators LiHi,Oiψ with

(6.46), and we define the function tr2′(·) that replaces leak operators LiHi,Oiψ
with (6.51). Accordingly, we modify our statement. We are going to prove the
following: L(N ′Mk,Ntr2′(NNF(¬ϕ))

) = ∅ entails that L(NMk,Ntr2(NNF(¬ϕ))
) = ∅.

Statement 1. We see now that by replacing all occurrences of ¬start i in (6.46)
with tt we obtain (6.51). According to Section 4.3 the Büchi automata are con-
structed the following way. First they are transformed to alternating Büchi
automata based on the proof of Theorem 22 in [75] and then into nondeter-
ministic Büchi automata according to Proposition 2 in [28]. Since Ntr2(NNF(¬ϕ))

and Ntr2′(NNF(¬ϕ)) are generated based on the syntax trees of tr2(NNF(¬ϕ)), and

tr2′(NNF(¬ϕ)) whenever there is a run ~Ψ = Ψ0,Ψ1, ... ∈ L(Ntr2(NNF(¬ϕ))) then

there is a run ~Ψ′ = Ψ′0,Ψ
′
1, ... ∈ L(Ntr2′(NNF(¬ϕ))) so that for each j we have

that:
Ψ′j = Ψj \ {¬start i | 1 ≤ i ≤ k} (6.52)

Statement 2. We suppose now that Ntr2(NNF(¬ϕ)) = (SN ,P(Prop), sN0 , ρ, F )
and furthermore that Ntr2′(NNF(¬ϕ)) = (SN ′,P(Prop), sN0

′, ρ′, F ′). Let us con-

sider now a run ~Ψ = Ψ0,Ψ1, ... ∈ RunssN0 ,Ntr2(NNF(¬ϕ))
and a corresponding run

~Ψ′ = Ψ′0,Ψ
′
1, ... ∈ RunssN0 ′,Ntr2′(NNF(¬ϕ))

, where for each j (6.52) holds. We can

say the following based on the subformulae (6.46) and (6.51), and the automata
construction [75]:

• If start i ∈ Ψj then the subsequence ~Ψ[j,∞) has been generated based on ξ

in (6.46) among other subformulae, and the subsequence ~Ψ′[j,∞) has been
generated based on ξ′ in (6.51) among other subformulae. Therefore, there
must be an l ≥ j so that leak i ∈ Ψl and leak i ∈ Ψ′l, and in the meanwhile
for all j < m ≤ l we have ¬start i ∈ Ψm and start i 6∈ Ψm

′.
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• If there is an ¬start i ∈ Ψm, then there is a j < m so that start i ∈ Ψj and
start i ∈ Ψj

′. Furthermore, for all j < n ≤ m we have that ¬start i ∈ Ψn.
In this case we have start i 6∈ Ψm

′, and for all j < n ≤ m we have that
start i 6∈ Ψn

′ too.

• If leak i ∈ Ψl then there is a j ≤ l so that start i ∈ Ψj , furthermore, for
all j < m ≤ l we have that ¬start i ∈ Ψm. In this case we have that
leak i ∈ Ψ′l, start i ∈ Ψj

′ and for all j < m ≤ l we have that start i 6∈ Ψm
′.

Proof of the theorem. We prove now inductively that if there is an run ~a∗ ∈
L(NMk,Ntr2(NNF(¬ϕ))

) then there is a corresponding run ~a∗′ ∈ L(N ′Mk,Ntr2′(NNF(¬ϕ))
).

This is the contrapositive of the statement of the theorem. Therefore, its validity
entails the statement of the theorem.

We define now the relation sN � sN ′ between a state sN of Ntr2(NNF(¬ϕ))

and a state sN ′ of Ntr2′(NNF(¬ϕ)). sN � sN ′ holds if and only if for all runs
~Ψ = Ψ0,Ψ1, ... accepted by Ntr2(NNF(¬ϕ)) from the state sN , there is a run
~Ψ′ = Ψ′0,Ψ

′
1, ... accepted by Ntr2′(NNF(¬ϕ)) from state sN ′ so that for all n we

have that Ψn and Ψn
′ satisfy (6.52).

Let us consider now an arbitrary run ~a∗ = (a0, ϑ0), (a1, ϑ1), ... for which it
holds that ~a∗ ∈ L(NMk,Ntr2(NNF(¬ϕ))

). Because ~a∗ is accepted, there must be an

accepting execution ~s× ∈ ExecNMk,Ntr2(NNF(¬ϕ))
(s×0 ,~a

∗) so that:

~s× = s×0 , s
×
1 , ... = ((s0

0, s
1
0, ..., s

k
0), sN0 ), ((s0

1, s
1
1, ..., s

k
1), sN1 ), ...

Accordingly, for each n ≥ 0 we have that:

((s0
n+1, s

1
n+1, ..., s

k
n+1), sNn+1) ∈ δ×(((s0

n, s
1
n, ..., s

k
n), sNn ), (an, ϑn))

where it holds that sNn+1 ∈ ρ(sNn ,Ψn) so that (an, ϑn) |=
∧
P∈Ψn

P , and further-

more (s0
n+1, s

1
n+1, ..., s

k
n+1) ∈ δ∗((s0

n, s
1
n, ..., s

k
n), (an, ϑn)).

Now we construct ~a∗′ = (a0, ϑ
′
0), (a0, ϑ

′
1), ... from ~a∗ = (a0, ϑ0), (a0, ϑ1), ....

In the first step, for each n and i we remove start i from ϑn if start i 6∈ Ψn. In
the second step we add or remove leak i for each ϑn so that for the resulting run
~a∗′ it holds that ~a∗′ ∈ RunsMk,((s00,s

1
0,...,s

k
0 ),sN0 ). There must be an ~a∗′ like that,

because the base transition system M is input enabled, so there is always a run
if there are no constraints on the output variables of the states s1

n, ..., s
k
n. The

constraints on states s0
n remain the same. Now we prove inductively that there

is an execution ~s×′ ∈ ExecN ′Mk,Ntr2′(NNF(¬ϕ))

(s×0 ,~a
∗′) so that:

~s×′ = s×0
′, s×1

′, ... = ((s0
0
′, s1

0
′, ..., sk0

′), sN0
′), ((s0

1
′, s1

1
′, ..., sk1

′), sN1
′), ...

where for each n it holds that s0
n = s0

n
′ and sNn � sNn ′. For n = 0 the statement

holds because of Statement 1. Now we inductively assume that the statement
holds on an arbitrary n, and prove that it holds on n+ 1 too.

According to the inductive assumption we have a state ((s0
n, s

1
n, ..., s

k
n), sNn )

of NMk,Ntr2(NNF(¬ϕ))
, and a state ((s0

n
′, s1

n
′, ..., skn

′), sNn
′) of N ′Mk,Ntr2′(NNF(¬ϕ))

, where

s0
n = s0

n
′ and sNn � sNn ′. Let us consider the next transition of NMk,Ntr2(NNF(¬ϕ))

:

((s0
n+1, s

1
n+1, ..., s

k
n+1), sNn+1) ∈ δ×(((s0

n, s
1
n, ..., s

k
n), sNn ), (an, ϑn))
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where we have that sNn+1 ∈ ρ(sNn ,Ψn) so that (an, ϑn) |=
∧
P∈Ψn

P , and

(s0
n+1, s

1
n+1, ..., s

k
n+1) ∈ δ∗((s0

n, s
1
n, ..., s

k
n), (an, ϑn))

We prove now that there is a transition of N ′Mk,Ntr2′(NNF(¬ϕ))
:

((s0
n+1
′, s1

n+1
′, ..., skn+1

′), sNn+1
′) ∈ δ×(((s0

n
′, s1

n
′, ..., skn

′), sNn
′), (an, ϑn

′))

where we have that sNn+1
′ ∈ ρ(sNn

′,Ψn
′) so that (an, ϑn

′) |=
∧
P∈Ψn′

P , Ψn and
Ψ′n satisfy, (6.52), and in addition the following holds:

(s0
n+1
′, s1

n+1
′, ..., skn+1

′) ∈ δ∗((s0
n
′, s1

n
′, ..., skn

′), (an, ϑn
′))

We observe the following:

• The member an of a∗n = (an, ϑn) and a∗n
′ = (an, ϑ

′
n) is the same. Because

Ψn and Ψ′n satisfy (6.52), whenever there is an x M L ∈ Ψn for some
language L, then we have that x M L ∈ Ψ′n. Therefore, if (an, ϑn) |=∧
xML∈Ψn

x M L then (an, ϑ
′
n) |=

∧
xML∈Ψ′n

x M L. Accordingly, if an
satisfies Ψn, then it satisfies Ψ′n too.

• In the case when start i, leak i 6∈ ϑn for some i, then (an, ϑn) |= Ψn for
example when start i, leak i 6∈ Ψn. But it is possible that ¬start i ∈ Ψn.
We have now that start i 6∈ ϑ′n according to the construction of ~a∗′. On
the other hand, it is not possible that ¬leak i ∈ Ψn. According to the
automata construction of Theorem 22 in [75], no transition having label
¬leak i can be generated based on ξ and ξ′ in (6.46) and (6.51). On the
other hand, the removal of any start i from any ϑm where m ≤ n might
have introduced a leak i into ϑ′n. According to above, the presence of
leak i does not violate Ψ′n. Furthermore, according to the input enabled
property of M , the transition can always take place. The conditions of
Ψn and Ψ′n are now satisfied.

• Now, start i ∈ ϑn. There are two cases:

– start i 6∈ Ψn: In this case, according to the construction of ~a∗′, we
have that start i 6∈ ϑ′n. Furthermore, we have that start i 6∈ Ψ′n,
therefore, the conditions posed by Ψn and Ψ′n are satisfied.

– start i ∈ Ψn: Now we have that start i ∈ Ψ′n and start i ∈ ϑ′n too, and
the conditions are satisfied.

• leak i ∈ ϑn. Again, there are two cases:

– leak i 6∈ Ψn. In this case leak i 6∈ Ψ′n either. There is no constraint
whether leak i ∈ ϑ′n or not, the conditions are satisfied.

– leak i ∈ Ψn. In this case there is a leakage observed on the alternative
run corresponding to sin. According to Statement 2 above, now we
had a 0 ≤ j ≤ n so that start i ∈ Ψj , and therefore start i ∈ Ψj

′.
Furthermore, for all j < m ≤ n we had that ¬start i ∈ Ψm and
start i 6∈ Ψ′m. According to the definition of Mk in Section 4.3, when
start i ∈ Ψj the next state of an alternative run is chosen nonde-
terministically. Because the possible set of successor states depends
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only on s0
j and aj , the value of sij does not matter. Since we have

that s0
j
′ = s0

j , it is possible to chose the same successor state for sij+1

and sij+1
′. Furthermore, we have that start i 6∈ ϑm and start i 6∈ ϑ′m

for any j < m ≤ n, no additional alternative runs have been ini-
tialized between j and n. Therefore, we have for each j < m ≤ n
that sim = sim

′. Accordingly, there is also a leakage observed in
N ′Mk,Ntr2′(NNF(¬ϕ))

, and therefore, the conditions are satisfied.

According to our inductive assumption, we had that NMk,Ntr2(NNF(¬ϕ))
accepts

Ψn,Ψn+1, ... from state sN . Furthermore, we had that sNn � sNn ′, which entails
that N ′Mk,Ntr2′(NNF(¬ϕ))

accepts Ψ′n,Ψ
′
n+1, ... from sNn

′, where for each j, Ψj and Ψ′j

satisfy (6.52). Accordingly, if sNn+1 ∈ ρ(sNn ,Ψn) then there is a corresponding
sNn+1

′ ∈ ρ(sNn
′,Ψ′n) for which sNn+1 � sNn+1

′ holds. We choose sNn+1
′ for the

component of Ntr2′(NNF(¬ϕ)) in the state of N ′Mk,Ntr2′(NNF(¬ϕ))
, and our statement

is proved.
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