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ABSTRACT

Recently, it has been shown that the superposition property of wire-
less multiple-access channels can be exploited to compute func-
tions in sensor networks much more efficiently. By using appro-
priate pre- and post-processing functions operating on real sensor
readings and the superimposed signal received by a fusion center,
every function of the measurements is in principle computable by
means of the wireless channel in which the pre-processing func-
tions, and therefore the transmitting nodes, do not depend on the
function of interest. In this paper we extend these general consider-
ations by examining how robust this kind of universality is against
variations in network topology due to nodes that drop out of the
network or due to new nodes that connect to the network.

Index Terms— Computation over multiple-access channels,
representation of functions, wireless sensor networks

1. INTRODUCTION

Since the computation of functions of the measurements is one of
the most challenging problems in sensor networks [1], it was re-
cently found that the natural superposition property of the wireless
multiple-access channel (MAC) can profitably be exploited to com-
pute linear functions much more efficiently [2], [3]. In this context,
“efficiency” refers to the need of less wireless resources in compar-
ison to approaches that try to avoid interference by using standard
medium-access protocols.

To allow the computation of some nonlinear functions by
means of the wireless MAC as well, the authors of [4] proposed
a novel analog (i.e., non-digital/uncoded) computation scheme
that employs appropriate pre-processing functions, operating on
real sensor readings prior to transmissions, and a post-processing
function, operating on the real superimposed signal received by a
fusion center, to match the resulting overall channel to the nonlinear
function of interest.

A natural question that arose in this context was which func-
tions are computable1 via an ideal MAC and we found in [5] that
the corresponding function space is equal to the space of nomo-
graphic functions (see Definition 1). If no additional restrictions
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1To avoid confusion with information-theoretic settings please note
that whenever we write in this paper “computable”, we exclusively mean
analog-computable.

are imposed, then in fact every real function of n variables is nomo-
graphic and thus in principle computable via the channel, where n
denotes the number of active nodes in the network. A surprising
observation in [5] was that the corresponding pre-processing func-
tions are completely independent of the function the fusion center
aims to evaluate at sensor readings, which results in universal com-
putation schemes consisting of nodes with simple architecture that
do not need to be updated if the function of interest changes.

In this paper we extend the work of [5] by analyzing the robust-
ness of the universal computation scheme against variations in net-
work topology. More precisely, after introducing the system model
in Section 2, we analyze in Section 3 if the universality property is
preserved when nodes drop out of the network (due to for instance
failures or battery depletion) or when new sensor nodes join the
network.

1.1. Contributions

The contributions of the paper are summarized as follows:

• We give a precise definition of universality in the context of
analog computations over a MAC and state in Lemma 1 a
necessary and sufficient condition on pre-processing func-
tions to ensure this universality.

• Theorem 1 and Observation 2 show that the transmitting sen-
sor nodes (i.e., the pre-processing functions) are still inde-
pendent of the desired function even if some of the nodes
drop out of the network. Thus, the universality is robust
(i.e., preserved) under the loss or failure of network nodes.

• Theorem 2 and Observation 3 imply that the above men-
tioned universality is also preserved if new sensor nodes
connect to the network such that it is unnecessary to update
already existing nodes.

1.2. Notational Remarks

The k-times cartesian product A× · · ·×A of a space A is written
as Ak. The natural and real numbers are denoted by N, R, respec-
tively, and E := [0, 1] ⊂ R defines the unit interval. The identity
map on any set A is described by idA : A → A. Furthermore,
F [B�] denotes the space of every function g : B� → R, defined
on B

� ⊆ R
�, � ∈ N. Finally, N [Ak] denotes the space of nomo-

graphic functions with domain A
k which are defined as follows.
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Definition 1 (Nomographic Functions [5]). Let Ak, k ≥ 2, be a
metric space. Then, every f ∈ F [Ak] for which a representation

f(x1, . . . , xk) = ψ

(
k∑

i=1

ϕi(xi)

)
(1)

exists, with ψ ∈ F [R] and ϕi ∈ F [A], for all i = 1, . . . , k, is
called nomographic function.

2. SYSTEM MODEL

Consider a wireless sensor network consisting of n ≥ 2 spatially
distributed, simultaneously active nodes and a designated fusion
center. The nodes jointly observe a certain physical phenomenon
resulting in sensor readings xi ∈ E, i = 1, . . . , n.

We view a sensor network as a collection of distributed com-
putation devices with the aim of efficiently determining a desired
function f ∈ F [En] of sensor readings at a fusion center (i.e.,
f(x1, . . . , xn)), where a strategy is said to be more efficient if it
needs less wireless resources to compute function values with the
same precision.

Definition 2 (MAC). Let si(xi) ∈ R be a transmit signal of node
i depending on sensed value xi ∈ E, i = 1, . . . , n, let hi ∈ R be
a fading coefficient between node i and the fusion center, and let
ni ∈ R be the receiver noise. Then, we refer to the standard affine
model

(x1, . . . , xn) �→
n∑

i=1

hisi(xi) + n (2)

of a wireless multiple-access channel as the MAC and to

(x1, . . . , xn) �→
n∑

i=1

si(xi) (3)

as the ideal MAC, respectively.

Equation (3) emphasizes that the natural mathematical opera-
tion of a wireless MAC is simply summation which can immedi-
ately be used to compute linear desired functions much more ef-
ficiently in comparison to orthogonalizing protocols such as time-
division multiple access or carrier-sens multiple access [2], [3]. To
allow the computation of nonlinear functions by means of the wire-
less MAC as well, we employ appropriate pre- and post-processing
functions defined as follows.

Definition 3 (Pre-Processing Functions). We define the n real
functions ϕi ∈ F [E], operating on the sensor readings xi ∈ E

(i.e., ϕi(xi), i = 1, . . . , n), to be the pre-processing functions.

Definition 4 (Post-Processing Function). Let y ∈ R be the output
of the wireless MAC according to Definition 2. Then, we define the
univariate function ψ ∈ F [R], operating on y (i.e., ψ(y)), to be the
post-processing function.

Considering the ideal MAC from Definition 2 in combination
with transmit signals si ≡ ϕi(xi), i = 1, . . . , n, the pre- and
post-processing functions transform the MAC such that the result-
ing overall channel is in principle able to compute every nomo-
graphic function.

Remark 1. Although practical computation schemes suffer from
limitations such as power constraints, fading, receiver noise, syn-
chronization issues, we consider in this paper computations over
an ideal MAC only to focus on the core of the computation prob-
lem and the related questions. The extension to realistic MACs (2)
follows along similar lines such as in [4], [6].

3. UNIVERSALITY AND ROBUSTNESS

In [5] we have shown that every f ∈ F [En] is essentially com-
putable by exploiting the superposition property of a wireless MAC
(i.e., mathematically N [En] ≡ F [En]). The surprising fact was
that the pre-processing functions are universal and thus indepen-
dent of the desired function. As a consequence the design of trans-
mitting nodes is independent of the desired function as well.

However, the corresponding proof (see [5, Theorem 2]) is
based on a result by Buck in [7], where Bucks construction of uni-
versal pre-processing functions depends on the number n of active
nodes which implies that transmitting sensors have to be adapted
if the network topology changes (i.e., the universality is not robust
against modified n). This in turn would be highly undesired in
sensor networks such that we ask in this section what happens
in general with the universality if the network topology changes.
Hence, we start by precisely defining what is meant by universality
during the rest of the paper.

Definition 5 (Universality). We say that analog computation over
a MAC is universal if the pre-processing functions {ϕk}1≤k≤n are
universal, that is if they allow to compute every desired function
f(x1, . . . , xn) ∈ F [En].

Universal pre-processing functions are highly desirable as they
provide valuable insights into the design of all-purpose sensor
nodes that can be universally used for computing every desired
function of interest in practical wireless sensor networks.

In preparation for the proofs of this section, the following
lemma states a necessary and sufficient condition for ϕ1, . . . , ϕn

to be universal.

Lemma 1. Let n ≥ 2 be arbitrary but fixed and let g : En → Rg ,
g(x) := g(x1, . . . , xn) =

∑n

i=1 ϕi(xi), with Rg ⊆ R denot-
ing the range of g. Then, {ϕi}1≤i≤n are universal pre-processing
functions for computing every f ∈ F [En] if and only if the function
g is bijective.

Proof. The proof is a generalization of an idea from [8].
“⇐”: Let x(1),x(2) ∈ E

n, with x
(1) 
= x

(2). Since g is
bijective, it follows that g(x(1)) 
= g(x(2)) and from the fact that
E

n has the cardinality of the continuum, Rg has the cardinality of
the continuum as well.

Now, let g(x) =: x ∈ Rg and g� be a function such that
g� ◦ g = idEn , that is

g
� : Rg → E

n
, g

�(x) =

⎛
⎜⎝
g�1(x) = x1

...
g�n(x) = xn

⎞
⎟⎠ .

Then, we conclude

f(x1, . . . , xn) = f
(
g
�
1(x), . . . , g

�
n(x)

)
= (f ◦ g�)(x)

= ψ(x) = ψ
(
g(x1, . . . , xn)

)
= ψ

(
n∑

i=1

ϕi(xi)

)
,withψ := f ◦ g� .
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Fig. 1. A line grid of points g(x1, x2) = ϕ1(x1)+ϕ2(x2) = const.
to illustrate the bijectivity requirement on function g. The pre-
processing functions have to be chosen such that ∀(x(1)

1 , x
(1)
2 ) 
=

(x
(2)
1 , x

(2)
2 ) : ϕ1(x

(1)
1 ) + ϕ2(x

(1)
2 ) 
= ϕ1(x

(2)
1 ) + ϕ2(x

(2)
2 ). This

means in the figure that for example only the black points are al-
lowed in the range of g while the whites have to be avoided.

“⇒”: If g is not bijective, there exist at least two points
x

(1),x(2) ∈ E
n, with x

(1) 
= x
(2) but g(x(1)) = g(x(2)), as

well as an f ∈ F [En] with f(x(1)) 
= f(x(2)). This, however,
leads to a contradiction because of f(x(1)) = ψ

(
g(x(1))

)
=

ψ
(
g(x(2))

)
= f(x(2)), from which follows that {ϕi}1≤i≤n are

not universal pre-processing functions in the sense of Definition
5. �

Observation 1. For the function g to be bijective, the pre-
processing functions ϕ1, . . . , ϕn have to be chosen in such a way
that for all x(1),x(2) ∈ E

n, x(1) 
= x
(2), always

∑
i ϕi

(
x
(1)
i

)

=∑

i ϕi

(
x
(2)
i

)
holds (see Fig. 1), which means that the ranges

of the pre-processing functions have to be appropriate. To illus-
trate that this is possible, we consider the special case n = 2
and construct a field K ⊂ R which has the cardinality of the
continuum without containing every real number.2 More pre-
cisely, we consider a real number α which is not in K (i.e.,
α ∈ R\K) and define K as the range of ϕ1. Furthermore,
we define the range of ϕ2 to be the field 1

α
K. Then, for every

(x
(1)
1 , x

(1)
2 ), (x

(2)
1 , x

(2)
2 ) ∈ E

2, (x(1)
1 , x

(1)
2 ) 
= (x

(2)
1 , x

(2)
2 ), it fol-

lows ϕ1(x
(1)
1 ) +ϕ2(x

(1)
2 ) 
= ϕ1(x

(2)
1 ) +ϕ2(x

(2)
2 ). Would this not

be the case, then

ϕ1

(
x
(1)
1

)
− ϕ1

(
x
(2)
1

)︸ ︷︷ ︸
∈K

= ϕ2

(
x
(2)
2

)
− ϕ2

(
x
(1)
2

)

=
1

α

(
y
(2) − y

(1)
)

︸ ︷︷ ︸
∈K

would follow and thus α ∈ K, which would be a contradiction
since α ∈ R\K.

2In [9], von Neumann constructed an example of such a field without
using the axiom of choice.

Remark 2. Lemma 1 and Observation 1 are important because they
ensure that such pre-processing functions exist, and therefore open
up the possibility of algorithmic constructions.

Remark 3. Note that Lemma 1 and Observation 1 imply that g
and ψ are discontinuous functions in general. Since continuity of
pre- and post-processing functions can be advantageous for prac-
tical implementations, we found in [5, Theorem 3], however, that
the requirement for continuous pre- and post-processing functions
entails that to compute every continuous desired function of n vari-
ables, a sum of 2n+1 nomographic functions is necessary. Even if
the corresponding n(2n + 1) continuous pre-processing functions
are universal as well, the number 2n + 1 cannot be reduced such
that continuity requires more wireless resources.

3.1. Dropped Out Nodes

Now let us consider the case where a number of sensor nodes drop
out of the network due to for instance failures or battery depletion.
The objective is to show that the universality property is preserved
when an arbitrary subset of nodes leave the network. To this end,
we prove the following theorem.

Theorem 1. The universality of analog computation via an ideal
MAC is robust against dropped nodes.

Proof. Let n ≥ 2 and ϕ1, . . . , ϕn ∈ F [E] be fixed universal pre-
processing functions to compute every f(x1, . . . , xn) ∈ F [En].
Furthermore, let I 
= ∅ be any subset of In := {1, . . . , n}. Then,
we have to prove that {ϕk}k∈I are also universal pre-processing
functions to compute every f(x1, . . . , xk) ∈ F [Ek], k ∈ I.

Since the problem is permutation invariant, the numbering of
nodes does not matter. Hence, we assume I = I� = {1, . . . , �}
with � < n, since otherwise there is nothing to prove.

If we proceed inductively, we have to show that ϕ1, . . . , ϕn−1

are universal pre-processing functions for nodes {1, . . . , n− 1} to
compute every f(x1, . . . , xn−1) ∈ F [En−1]. If this is successful,
we arrive in n− � steps at I� ⊂ In.

We prove the induction hypothesis by contradiction. Assume
ϕ1, . . . , ϕn−1 are not universal pre-processing functions. Then,
due to Lemma 1,

∑n−1
i=1 ϕi(xi) is not bijective and hence there

exist at least two points x
(1) := (x

(1)
1 , . . . , x

(1)
n−1) ∈ E

n−1 and

x
(2) := (x

(2)
1 , . . . , x

(2)
n−1) ∈ E

n−1, x(1) 
= x
(2), such that

n−1∑
i=1

ϕi

(
x
(1)
i

)
=

n−1∑
i=1

ϕi

(
x
(2)
i

)
.

Now we choose an arbitrary x̂n ∈ (0, 1) and consider the

points x̂
(1) :=

(
x

(1)

x̂n

)
and x̂

(2) :=

(
x

(2)

x̂n

)
. Of course x̂

(1) 
=

x̂
(2) and therefore

n∑
i=1

ϕi

(
x̂
(1)
i

)
=

n−1∑
i=1

ϕi

(
x
(1)
i

)
+ ϕn

(
x̂n

)

=

n−1∑
i=1

ϕi

(
x
(2)
i

)
+ ϕn

(
x̂n

)
=

n∑
i=1

ϕi

(
x̂
(2)
i

)
contradicts the universality of ϕ1, . . . , ϕn when n nodes are active,
which proves the preservation of universality for In → In−1. Pro-
ceeding essentially along the same lines shows that the property is
preserved for In−1 → In−2 → · · · → I2 → I1. �
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Observation 2. It is not necessary to update the remaining active
transmitting nodes (i.e., the pre-processing functions) if nodes drop
out of the network.

Remark 4. It should be emphasized that even if the pre-processing
functions do not depend on the desired function and the number of
active nodes, the post-processing function does. This means that
the fusion center has to appropriately adapt the post-processing
function if the desired function changes or some nodes have
dropped out of the network. Furthermore, it has to identify which
nodes are inactive.

3.2. Additional Nodes

Now we consider the opposite case where an existing sensor net-
work for computation purposes is enlarged by adding a finite num-
ber of active nodes. More precisely, assume that we connectm−n,
∞ > m > n, transmitting sensor nodes to the network to univer-
sally compute every desired function f(x1, . . . , xn, . . . , xm) of the
measurements. Then, we want to answer the question if the univer-
sality is preserved if the existing n active nodes were already able
to universally compute every f(x1, . . . , xn).

Theorem 2. The universality of analog computation via an ideal
MAC is robust against a fixed enlargement of the network.

Proof. The proof follows immediately from the proof of Theorem
1 by setting n = m and by considering all subsets I� = {1, . . . , �}
of Im = {1, . . . ,m}, with n ≤ � < m.

Starting with the assumption that {ϕk}1≤k≤m are fixed uni-
versal pre-processing functions to compute every f ∈ F [Em], the
induction arrives in m−n steps at � = n such that {ϕk}1≤k≤� are
universal pre-processing functions to compute every f ∈ F [E�],
for all n ≤ � ≤ m. �

Observation 3. It is not necessary to update the existing transmit-
ting nodes (i.e., the pre-processing) if the network is enlarged by
adding further active transmitting nodes.

Note that the term “fixed” in Theorem 2 as well as the idea of
proof refers to the fact that in the current form, the robustness of
universality holds if the original network was already designed for
m > n nodes but only n nodes are deployed to the measuring field.
Then, adding up to m − n nodes during network operation has no
impact on the previous n nodes. The more general case in which
the original network was designed for at most n nodes but extended
to m nodes afterwards is therefore still an open problem.

It should be emphasized, however, that this limits the practical
significance of Theorem 2 only marginally since a network for com-
putation purposes can always be designed by virtually choosing m
sufficiently large and using only n out of m nodes in practice.

Remark 5. Such as in the case where nodes drop out (cf. Remark
4), unlike the pre-processing functions, the post-processing func-
tion has to be updated if new nodes join the network.

4. CONCLUSIONS

In the present paper, we considered a sensor network for efficient
analog computations over idealized wireless multiple-access chan-
nels. Analog systems become again more important since recently
it was shown that digital signal processing has in this context some
fundamental limits [10], [11].

The main concern of the paper was to analyze the impact of
changing network topologies. Therefore, we first considered the
case where nodes dropped out of the network due to for instance
failures or battery depletion and afterwards we focused on the sce-
nario where an existing sensor network is extended by integrating
additional active nodes.

We found that the universality property which ensures the com-
putability of every desired function via the wireless channel on the
basis of a fixed set of pre-processing functions, is robust against any
change in network topology. As a consequence with high practical
relevance for sensor network applications, the transmitting nodes
are independent of the desired function the fusion center wants to
compute such that they do not need to be updated if nodes leave
or enter the network. Therefore, the architecture of corresponding
sensor nodes for computation purposes is universal and of reduced
complexity, which make them cheap and easy to handle.
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