
Technische Universität München

Lehrstuhl für Sicherheit in der Informationstechnik
an der Fakultät für Elektrotechnik und Informationstechnik

Attacking and Protecting Ring Oscillator

Physical Unclonable Functions and

Code-Offset Fuzzy Extractors

Dominik Merli

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Infor-
mationstechnik der Technischen Universität München zur Erlangung des
akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten
Dissertation.

Vorsitzende: Univ.-Prof. Dr. D. Schmitt-Landsiedel
Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. G. Sigl
2. Univ.-Prof. Dr.-Ing. M. Ortmanns,

Universität Ulm

Die Dissertation wurde am 24.09.2013 bei der Technischen Universität
München eingereicht und durch die Fakultät für Elektrotechnik und Infor-
mationstechnik am 09.04.2014 angenommen.

Abstract

Many cryptographic algorithms require secure storage of secret keys. One
common way to achieve this is the usage of flash memory. However, be-
cause of additional process costs, this is often not an option for low-cost
devices. On the other hand, less expensive memory technologies like fuses
are vulnerable against simple optical inspection attacks. Physical Unclonable
Functions (PUFs) are information storage primitives, which offer a compro-
mise storage solution by deriving device-specific information from submicron
process variations of microchips. They can be beneficial in terms of higher
security than fuses, but also in less process costs than flash memory. During
the last decade, PUFs have increasingly gained interest in industry as well as
in academia. Among the variety of proposed architectures, the Ring Oscilla-
tor PUF (RO PUF) evolved as one of the most promising PUFs. One reason
for that is its implementation advantage on Field-Programmable Gate Ar-
rays (FPGAs). Moreover, its basis, namely Ring Oscillator (RO) frequencies,
is known to have good statistical properties that support its usage as a source
for device-specific PUF bits. Its basic concept is to measure RO frequencies
by counters and perform a relative comparison on the result values to get
a secret PUF response bit. This is repeated with different ROs to obtain a
unique bit sequence. One of the main applications of PUFs is key generation,
where a cryptographic key is reconstructed based on noisy PUF output bits
and a set of helper data that is generated during an enrollment process. The
Code-Offset Fuzzy Extractor (COFE) is one of the most popular key gener-
ation algorithms. It is able to handle the noise of an RO PUF’s output bits
to ensure reliable key generation. Despite immense research on developing
efficient PUF implementations and key derivation algorithms, one important
aspect has been more or less neglected until now: PUF-based systems have
to face a variety of physical attacks when out in the field.

In this thesis, I investigate the resistance of RO PUFs and COFEs against
physical attacks and suggest countermeasures to protect them. First, I show
how to implement RO PUFs on FPGA devices. On the one hand, design-
ers have to achieve as identical as possible RO implementations to avoid

i

ii

vulnerabilities by statistical imbalances. On the other hand, the frequency
measurement circuits have to provide accurate values to allow for an efficient
and reliable RO PUF. Regarding attacks, one potential target is the PUF
primitive itself. As shown in this thesis, one possible physical attack vec-
tor for RO PUFs is capturing its ElectroMagnetic (EM) emission to learn
about its internal secrets. This technique can be used by an adversary to
observe the internally measured RO frequencies of an RO PUF and then map
them to their corresponding ROs. Thereby, the RO PUF’s security is bro-
ken. Further, an attacker could use side-channel attacks mounted at the key
generation algorithm, e.g., a COFE, to recover internal secrets. There, phys-
ical characteristics of devices such as power consumption or EM emission are
observed during cryptographic operations to derive information about the
used secret key by statistical means. My work demonstrates the feasibility of
several attacks on RO PUFs and COFEs and provides means to counteract
these threats.

My first contribution to the attack resilience of RO PUFs is the inves-
tigation of their localized EM emission. Since localized EM measurements
have to be mounted as closely as possible to the die surface, I determined the
influences of chip decapsulation on RO frequencies in a beforehand analy-
sis. I implemented 256 ROs on an FPGA and compared their characteristics
before and after removing the chip’s package. The results show only very
slight deviations clearing the way for localized EM analyses of RO PUFs.
Following, I developed and performed an attack on a standard RO PUF im-
plementation which enables an adversary to observe RO frequencies and map
them to the correct ROs. With this attack, all generated RO PUF output
bits can be disclosed, which breaks the RO PUF’s security. As a counter-
measure, I propose an RO comparison strategy which does not allow to map
emitted frequencies to their corresponding ROs and thereby eliminates the
discovered attack vector. However, the gained security comes with an re-
source overhead, which is why I also present a way to improve an RO PUF’s
efficiency while maintaining its attack resistance.

During a second analysis phase, I discovered an enhanced attack which
enables an attacker to extract secret PUF bits even if the protection against
the previous attack is implemented. Here, the crucial point is that during
each measurement run of an RO PUF, each RO frequency is measured by
one distinct counter. If an attacker is able to separately observe the RO
frequencies sequentially measured by each counter, he is finally only left
with the complexity of testing all possible counter comparison combinations.
This is a fairly simple task since the number of counters is usually very
low. To perform this attack, an attacker has to be able to locally separate
the EM emissions of all RO PUF measurement counters or other emitting

iii

components of each measurement path. In this thesis, I show that this is
possible after collecting EM traces over the whole die area of an RO PUF
device. To protect RO PUFs from this attack, I suggest a location masking
countermeasure destroying the relation between measurement locations and
measured ROs. Additionally, I propose interleaved placement of RO PUF
components to enhance its attack resilience against localized EM attacks.

In the last part of this thesis, I focus on the vulnerabilities of COFEs
against side-channel attacks. Since attacks on key generation algorithms can
be applied no matter which underlying PUF is used and how high its secu-
rity level might be, they have a high relevance for embedded systems using
secret keys derived from PUFs. First, I developed a differential power anal-
ysis attack exploiting side-channel leakage originating from Error-Correcting
Code (ECC) modules, which are an essential part of COFEs. This differ-
ential attack can be performed if an adversary is able to manipulate helper
data, which is the only input data to a COFE besides a noisy variant of the
secret PUF response bits. Thereby, all PUF output bits can be disclosed,
which breaks the security of the PUF-based key generation system. In a sec-
ond attack on COFEs, I show that the Toeplitz hashing, which is often used
as the extractor function in COFEs, is prone to simple power analysis. The
input bits of this function correspond to the enrolled secret PUF response
bits in COFEs and can be revealed by analyzing the operation-dependent
leakage exhibited by its hardware implementation.

To protect COFEs from the described attacks, I propose a masking scheme
which, in contrast to standard masking schemes, does not rely on completely
random masks, but on encoded masks representing random codewords of an
ECC. This enables the protection of linear ECCs without losing their funda-
mental error correction features. Further, the proposed masking scheme can
be extended throughout the Toeplitz hashing function to protect COFEs also
against the shown simple power analysis attack. The result is a consistently
masked COFE, which protects the generated key until it is handed over to a
cryptographic module using it in a masked or demasked fashion.

Summarizing, this thesis demonstrates attacks on RO PUFs as well as
on COFEs and proposes countermeasures to protect these circuits, which is
an important contribution to the attack resilience of PUF-based hardware
security systems.

iv

Acknowledgements

After years of research, successes, setbacks, and a good deal of experiences,
there is only one thing left to say: thank you!

I sincerely appreciate the support, guidance, and advice of my supervisor
Prof. Dr.-Ing. Georg Sigl. I also thank my second examiner Prof. Dr.-Ing.
Maurits Ortmanns.

During my time at Fraunhofer AISEC, I got to know great people, some
of which I meanwhile call friends. I thank Dieter Schuster, Dr.-Ing. Johann
Heyszl, Benedikt Heinz, Mattias Hiller, Robert Hesselbarth, and Dr. Rainer
Plaga for scientific discussions and cooperations, and Philipp Zieris for proof-
reading my dissertation. Further, I thank Dr. Frederic Stumpf and Prof. Dr.
Claudia Eckert for their support and trust in my work.

I thank Prof. Dr. Helia Hollmann for initially encouraging me to pursue
a doctorate.

Finally, I sincerely thank my father and my mother for their endless
support, and my brother, my sister, and all my friends for being there for me
whenever I was in need.

v

vi

Contents

Abstract i

Acknowledgement v

List of Figures xi

List of Tables xiii

Nomenclature xv

1 Introduction 1

2 Background 9
2.1 Security Based on Physical Properties 9

2.1.1 Unique Physical Properties 9
2.1.2 Physical Unlonable Functions 11
2.1.3 PUF Quality Measures 15

2.2 Silicon PUFs . 16
2.2.1 Ring Oscillator PUF 16
2.2.2 Arbiter PUF . 18
2.2.3 SRAM PUF . 19
2.2.4 Butterfly PUF . 20
2.2.5 Bistable Ring PUF . 20
2.2.6 Sum PUF . 23

2.3 Key Generation Based on PUFs 24
2.3.1 Code-Offset Secure Sketch 24
2.3.2 Code-Offset Fuzzy Extractor 26
2.3.3 Robust Sketches and Robust Fuzzy Extractors 27
2.3.4 Index-Based Syndrome Coding 27
2.3.5 Other Key Embedding/Extracting Algorithms 28

2.4 Physical Attacks . 28
2.4.1 Secret Extraction by Physical Measurements 29

vii

viii CONTENTS

2.4.2 Side-Channel Attacks 29

2.4.3 Other Physical Attacks 30

3 Implementation of RO PUFs on FPGAs 31

3.1 Ring Oscillators . 31

3.1.1 Functionality . 32

3.1.2 Influences on RO Frequency 32

3.1.3 FPGA Implementation 33

3.2 Frequency Measurement . 35

3.2.1 Asynchronous Counter 35

3.2.2 Measurement Error . 35

3.3 RO Placement and Comparison 37

3.3.1 Spatial Ring Oscillator Frequency Analysis 37

3.3.2 Physical Mapping and Comparison Strategy 38

3.4 Summary . 40

4 Attacks on RO PUFs 41

4.1 Related Work . 42

4.2 Impact of RO PUF Decapsulation 43

4.2.1 FPGA Decapsulation 43

4.2.2 Analysis Before and After Decapsulation 44

4.3 Localized Electromagnetic Analysis 46

4.3.1 Measurement Setup . 46

4.3.2 Analysis Preliminaries 47

4.4 EM Emission of Ring Oscillators 49

4.4.1 Test Design . 49

4.4.2 Frequency Spectra . 49

4.4.3 RO Localization . 52

4.5 Attack on Standard RO PUFs 53

4.5.1 Detailed Attack Steps 54

4.5.2 Case Study: FPGA Ring Oscillator PUF 58

4.5.3 Countermeasure . 64

4.6 Localized Attack on Protected RO PUFs 65

4.6.1 Location-Dependent Frequency Leakage 65

4.6.2 Attack Steps . 66

4.6.3 Case Study: Protected FPGA RO PUF 70

4.6.4 Countermeasures . 75

4.7 Summary . 77

CONTENTS ix

5 Attacks on Key Generation 79
5.1 Related Work . 80
5.2 Attack on Error-Correcting Codes 81

5.2.1 Implementation Diversity of ECCs 81
5.2.2 DPA based on Helper Data Manipulation 82
5.2.3 DPA on Secure Sketch FPGA Implementation 83

5.3 Attack on Toeplitz Hashing 86
5.3.1 Leakage of PUF Response Bits 86
5.3.2 SPA on Toeplitz Hashing FPGA Implementation . . . 89

5.4 Codeword Masking as a Countermeasure 92
5.4.1 Secure Sketch Protection 93
5.4.2 COFE Masking . 95
5.4.3 Robust Sketches and Robust Fuzzy Extractors 96
5.4.4 Masking Other PUF Key Generation Algorithms . . . 96

5.5 Summary . 97

6 Conclusions 99

Bibliography 101

x CONTENTS

List of Figures

1.1 Embedded system with secret key 2
1.2 Basic PUF concept . 3
1.3 RO PUF concept . 4
1.4 General PUF usage for key generation 5
1.5 Basic COFE reconstruction concept 6

2.1 External measurement of unique physical features 10
2.2 PUFs as challenge-response primitives 11
2.3 PUF-based challenge-response authentication 12
2.4 Basic key generation process 13
2.5 RO PUF architecture . 17
2.6 Arbiter PUF architecture . 18
2.7 SRAM PUF cell . 20
2.8 Butterfly PUF architecture . 21
2.9 Bistable ring PUF architecture 21
2.10 Comparison between BR PUF and TBR PUF 22
2.11 Twisted bistable ring PUF architecture 23
2.12 Sum PUF architecture . 23
2.13 PUF response reconstruction module of a COSS 25
2.14 Key reconstruction module of a COSS 26
2.15 COFE reconstruction module 27

3.1 Architecture of a 5-inverter RO 32
3.2 Asynchronous counter architecture 36
3.3 Hard macro of one CLB containing two ROs 37
3.4 Spatial RO frequency distribution on a Xilinx Spartan-3E . . . 39
3.5 Spatial RO mapping strategies 40

4.1 Step-by-step backside decapsulation of an FPGA 44
4.2 RO frequency maps for ROs with seven inverters on a Xilinx

Spartan-3 XC3S200 FPGA . 45

xi

xii LIST OF FIGURES

4.3 EM probe on FPGA die surface 47
4.4 Floorplan of RO emission test design on Xilinx Spartan-3

XC3S200 FPGA . 50
4.5 Exemplary amplitude standard deviation spectra of (a) a ring

oscillator and (b) a disturbance frequency 51
4.6 EM map revealing the position of RO6 53
4.7 Overlapping RO comparisons 54
4.8 Frequency amplitude difference spectrum revealing RO fre-

quency range around 100 MHz 59
4.9 Spectrum range with highest peaks 60
4.10 Maps to identify the area of leakage 61
4.11 Frequency amplitude spectra for each of the 8 RO comparisons 62
4.12 Ring oscillator measurement chain 66
4.13 Floorplan of 3-counter RO PUF design on a Xilinx Spartan

XC3S200 FPGA . 71
4.14 Standard deviation map indication leaking areas 72
4.15 Map showing three separated areas of leakage acquired from

analyzing the first measurement run 73
4.16 Cluster map at half frequencies 75
4.17 Randomized RO PUF measurement architecture 76

5.1 Secure sketch implementation under test 84
5.2 Maximum correlation of repetition decoder output 86
5.3 Efficient Toeplitz hashing implementation 87
5.4 Noise reduction effect of alignment and averaging 90
5.5 Toeplitz hashing trace with XOR (red) and shift operations

(blue) . 90
5.6 Weighted peaks, basis for bit interpretation 91
5.7 Masked secure sketch (Rec) 93
5.8 Maximum correlation of masked repetition decoder output . . 94
5.9 Masked COFE reconstruction module 95
5.10 Attacking IBS-based key generation 96
5.11 Masking of ECCs in IBS architecture 97

List of Tables

4.1 Mean RO frequency before/after decapsulation 45
4.2 Decapsulation effect on RO PUF responses 46
4.3 Identified RO frequencies . 52
4.4 RO frequency comparison list 63
4.5 Complete RO PUF model . 63
4.6 Comparison of parameters for a resistant RO PUF concept . . 65
4.7 RO PUF analysis results . 74

5.1 Number of required traces for SPA attack 91

xiii

xiv LIST OF TABLES

Nomenclature

ASIC Application-Specific Integrated Circuits

BR PUF Bistable Ring PUF

C-IBS Complementary Index-Based Syndrome

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

COFE Code-Offset Fuzzy Extractor

COSS Code-Offset Secure Sketch

CRP Challenge-Response Pair

DPA Differential Power Analysis

ECC Error-Correcting Code

EM ElectroMagnetic

FFT Fast Fourier Transform

FIB Focused Ion Beam

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IBS Index-Based Syndrome

IC Integrated Circuit

LFSR Linear Feedback Shift Register

LUT Look-Up Table

xv

xvi LIST OF TABLES

NVM Non-Volatile Memory

OTP One-Time Programmable

POWF Physical One-Way Function

PUF Physical Unclonable Function

RO Ring Oscillator

ROM Read-Only Memory

RO PUF Ring Oscillator PUF

SCA Side-Channel Analysis

SIMPL SIMulation Possible but Laborious

SNR Signal-to-Noise Ratio

SPA Simple Power Analysis

SRAM Static Random-Access Memory

TBR PUF . . . Twisted Bistable Ring PUF

UCF User Constraints File

VHDL Very high speed integrated circuit HDL

Chapter 1

Introduction

Our society lives in a world full of electronic devices. Daily, billions of people
rely on the support of a diversity of communication channels, intelligent
infrastructures and an incredible number of digital services. We use cars,
computers, tablets, mobile phones, credit cards and any other electronic
devices as if it would be the most normal thing in the world. However, this
new electrified world also entails risks. What if thieves found out which
digital sequences have to be transmitted to cars to unlock them without any
mechanical trace? What if adversaries were able to listen to every call and
read all text messages on mobile phones from any remote location? What if
credit cards could be cloned and used for illegal transactions everywhere in
the world? The answer to these questions is: Then, our society would not
function anymore. Therefore, it is inevitable to consider information security,
i.e., the security of private, corporate and governmental data, as one of the
most important and essential topics of our modern society.

The area of information security deals with a variety of applications rang-
ing from cloud services distributed over hundreds of servers in different coun-
tries to enterprise and industrial networks prone to espionage and manipula-
tion to secure microchips in mobile phones and smartcards. The continuous
trend of increasing integration density leads to the fact that millions of net-
worked high-performance computation devices surround us all day. Believing
the vision of the Internet of Things, this will even increase in the next years.
Then, not only every car, mobile phone and smartcard will be equipped with
an embedded processor, but sensors and electronic devices will be everywhere
around us, communicating with each other and the environment. However,
many of these devices operate on private information, i.e., secrets not meant
to be accessible to everyone. Therefore, the development of robust and af-
fordable security solutions for embedded systems is a very important research
topic.

1

2 CHAPTER 1. INTRODUCTION

Embedded System

Applications

Cryptographic Algorithms

Secure Key Storage

Key Storage Solutions

Flash Memory

One-Time Programmable

PUF + Key Generation

...

Figure 1.1: Embedded system with secret key

One fundamental requirement for many embedded security applications
is that a secret cryptographic key is somehow stored on an embedded device
as shown in Figure 1.1. This key can be used for encryption and decryption
routines, but also for authentication protocols. The most comfortable way
of realizing this key storage is by integrating a flash memory, which can be
programmed with a specific key during manufacturing. However, in order
to implement a flash memory, an additional cost-intensive manufacturing
process is required, which is not affordable for low-cost products. On the
other hand, simpler storage implementations, e.g., fuses or mask Read-Only
Memories (ROMs), are relatively easy to read out by optical die inspection.

The research field of Physical Unclonable Functions (PUFs) deals with
alternative information storage mechanisms, which intrinsically provide a se-
curity mechanism to impede duplication. The basic concept of every PUF
can be described as shown in Figure 1.2. There, a challenge input config-
ures a physical structure that is measured afterwards to obtain a response
value that depends on the PUF’s unique physical properties and their con-
figuration. One goal of PUF research can be lower implementation costs
than flash memory, while keeping the resistance against optical inspection
higher than in the case of fuses. Further, PUFs can be used to enhance
tamper resistance of information storage devices compared to conventional
memories. Described in a more philosophical way, this means that PUFs free
embedded security systems from the fetters of requiring a conventional Non-
Volatile Memory (NVM) with additionally implemented, dedicated security
mechanisms for storing secret key material. This might seem abstract, but it
allows to combine storage and security mechanisms by measuring unique, not
necessarily silicon-based features of an embedded system that can be used as
a basis for generating a device-specific bit string.

3

challenge response

PUF

configure measure

Figure 1.2: Basic PUF concept

Practical advantages of this liberation can be of financial but also of
security-related value. Since PUFs based on sophisticated materials usu-
ally require development and integration of new manufacturing processes
and thereby induce significant costs, they constitute a quite narrow appli-
cation niche. One example application in this niche is the combination of
two subsystems, e.g., a smartcard’s plastic body that is physically connected
to and measured by an integrated security chip [EFK`12]. There, the in-
formation storage is implemented by the binding of plastic structures and
microchips, which also increases the system’s security by protecting it from
attacks tampering with the unique material constellation. On the other hand,
silicon PUFs [GCvDD02, SD07, GKST07, KGM`08, YD10a, CCL`11] can
be implemented with standard Complementary Metal Oxide Semiconduc-
tor (CMOS) processes and can even be instantiated on Field-Programmable
Gate Arrays (FPGAs), resulting in a low additional costs. Hence, construc-
tions based on CMOS component measurements, e.g., propagation delays or
oscillator frequencies, were preferred by researchers as well as industry during
the last decade. These PUFs enable security applications on devices where
an additional manufacturing process for integrated NVM is not affordable.

A popular representative of the class of silicon PUFs is the Ring Oscillator
PUF (RO PUF) [SD07]. Its basic concept is shown in Figure 1.3. It measures
the frequencies of a set of identically implemented Ring Oscillators (ROs),
which are considered to be randomly distributed. Since these frequencies
vary depending on environmental conditions such as ambient temperature
and supply voltage, the RO PUF architecture performs a relative compari-
son of two measured RO frequencies to compensate occurring disturbances.
The RO PUF’s response bit signals if the first RO frequency was higher or
lower than the second one. This measurement process is repeated for several
subsequently overlapping RO pairs, e.g., RO1 and RO2, RO2 and RO3, and
so on, to acquire a bit string long enough for the desired application. This

4 CHAPTER 1. INTRODUCTION

Ring Oscillator PUF

Array of
Ring Oscillators

Ring Oscillator
Selection Logic

Frequency
Measurement
by Counters

Bit Extraction
by Frequency
Comparison

challenge response

Figure 1.3: RO PUF concept

architecture has been shown to be advantageous over other PUFs in terms of
statistical properties [KKR`12] and does not suffer from FPGA implemen-
tation limitations as much as other PUFs do [MMS09]. In Chapter 2, I give
a more detailed introduction to the field of PUFs, the most popular silicon
PUFs and why I chose to use the RO PUF as one of main subjects of my
thesis. In Chapter 3, I discuss how to implement RO PUFs on FPGA devices
in a solid way and which details have to be handled with care.

The difference between a PUF and a conventional memory lies in its se-
curity mechanism protecting it from duplication. Therefore, PUFs are often
advertised to be unclonable, or at least hard to clone. However, cloning is
usually just a question of practical feasibility. Comparing PUFs to One-
Time Programmables (OTPs), e.g., fuses, they have the potential to achieve
a higher resilience against optical imaging attacks, because their secret in-
formation is stored in sub-micron physical structures when the PUF device
is not powered. In this case, attackers need costly high-precision equipment
and sophisticated non-influencing measurement methods to attack the de-
vice. However, PUF output bits are determined by measuring its unique
physical characteristics, which can be observed and analyzed by an attacker
much easier. As a result, the practical unclonability becomes questionable. In
Chapter 4, I show that the claim of unclonability does not hold for standard
RO PUFs, since they reveal their unique properties by ElectroMagnetic (EM)
emissions of subsequent RO frequency comparisons, which can be captured
by an attacker. Then, a clone of an RO PUF instance can be generated. I also
propose an improved concept that eliminates the conceptual problem leading
to the found leakage. In the second part of Chapter 4, I show that an adver-
sary equipped with high resolution EM equipment is even able to extract the
unique frequencies and the mapping to their ROs from the previously pro-

5

Embedded System

Physical Properties of
Embedded System

PUF

Measurement
Components

Key Generation

Security Application

Figure 1.4: General PUF usage for key generation

tected design by localized EM measurements [HMH`12a, HMH`12b] on the
die of an RO PUF chip. This, again, allows to establish a model which be-
haves like the original instance of an RO PUF. To protect RO PUFs against
such sophisticated attacks, I propose two countermeasures. One breaks the
relation between measured ROs and the correspondingly used measurement
components by randomizing the RO measurement process. The other one is
a practical hiding countermeasure including interleaved placement and inter-
woven routing of RO PUF components and signals.

The main use case for RO PUFs, and also for many other PUF con-
structions, is the generation of a secret cryptographic key from unique chip
features, as shown in Figure 1.4. Based on physical measurements result-
ing in secret, device-specific data, e.g., RO frequencies, a reliable key is
generated. However, physical measurements vary over time and environ-
mental conditions like supply voltage and temperature. Because of that,
ROs may, e.g., exhibit decreasing frequencies when their operating tem-
perature is increased. This noise leads to flipping PUF output bits, which
are not tolerated by cryptographic algorithms. Therefore, PUF output bits
cannot be used directly, but have to be processed by key generation algo-
rithms [DRS04, BDHV07, YD10b, PD11, HMSS12] that compensate varia-
tions in PUF output bits and can provide a reliable and still unique bit string.
These algorithms are also called helper data algorithms, because, during an
enrollment phase, they collect information about the noisy PUF fingerprint
and generate so-called helper data. It consists of redundancy information
about the internal PUF characteristics, but does not reveal a significant
amount of information about the secret PUF bits to an attacker. Some of
these algorithms, directly extract a device-specific bit string, a secret key,

6 CHAPTER 1. INTRODUCTION

COFE Key Reconstruction

Code-Offset
Resolution

helper data cryptographic key

PUF data Error
Correction

Code-Offset
Resolution

Extractor

Figure 1.5: Basic COFE reconstruction concept

from PUF output bits. Others take a key as an additional input and bind it
to the unique PUF fingerprint by involving it in the helper data generation.
All methods have in common that, when out in the field, they are able to
reconstruct the enrolled key from a noisy version of the PUF fingerprint and
the stored helper data.

One of the first and still popular algorithms of this kind is called Code-
Offset Fuzzy Extractor (COFE) and was proposed by Dodis et al. [DRS04].
There, the helper data consists of an XOR code-offset between all PUF out-
put bits and a randomly chosen codeword of an Error-Correcting Code (ECC).
Its basic reconstruction process is shown in Figure 1.5. There, the code-offset
is resolved by XORing the helper data with the noisy PUF fingerprint, re-
sulting in a noisy codeword that can be corrected by the corresponding ECC
module, if less than a certain amount of bit flips occurred. The corrected
codeword can then be XORed to the helper data recovering the original
PUF output bits. Since these bits usually have a bias, i.e., are not uniformly
distributed, an extractor module is necessary to convert them into a cryp-
tographic key. A popular extractor algorithm for efficient COFE implemen-
tations [BGS`08, MTV09] is the Toeplitz hashing [Kra94], which basically
consists of a Linear Feedback Shift Register (LFSR) and an XOR accumula-
tor.

PUF-based key generation can be used in a variety of devices to replace
expensive NVM key storage or to enable a unique key in the first place.
Smartcards, automotive and industrial control units, and many other embed-
ded systems can make use of this technique. However, all of these devices are
out in the field, where users and attackers can tamper with them and mount
physical attacks. While invasive manipulations by a Focused Ion Beam (FIB),
or semi-invasive laser fault injection attacks can only be performed with spe-

7

cialized and expensive equipment, a much more affordable attack method
for adversaries is Side-Channel Analysis (SCA). Since its first publication in
1996 [Koc96], these attacks have been considered a strong threat to embed-
ded systems. There, the principle idea is to monitor the power consumption
or the timing behavior of a device during the execution of a cryptographic
algorithm. Based on statistical measures, information about internally pro-
cessed secret intermediate values can be gathered. There are two methods
that have become very popular for the analysis of symmetric and asymmetric
cryptographic algorithms during the last years and that can be performed
even with low-cost equipment: Simple Power Analysis (SPA) [KJJ99] and
Differential Power Analysis (DPA) [KJJ99]. For SPA, a collected EM or
power trace can directly be interpreted, i.e., internal secrets can directly be
extracted from a small number of traces. On the other hand, DPA observes
tiny differences in intermediate values of an algorithm by collecting a rather
high number of traces with different input values. With the help of statistical
tools, this differential approach is able to extract secrets even from very noisy
measurements.

For a PUF key generation system, all parts of the reconstruction algo-
rithm of a COFE, as shown in Figure 1.5, can be the target of SCA. After
enrollment, when the device is out in the field, it is performed every time
the key is generated from the secret PUF response bits. Hence, it is highly
probable that adversaries will choose to attack the key generation algorithm
of PUF-based devices instead of directly tackling a PUF’s information stor-
age. Therefore, I see it as inevitable to analyze side-channel vulnerabilities
of COFEs. In Chapter 5, I demonstrate two possible attacks and present
a countermeasure for secure COFE implementations. The first attack is
a DPA, where helper data manipulation leads to changes of intermediate
values. There, the side-channel leakage of the error correction modules in
COFEs is exploited. It can be used to extract the secret PUF bits by observ-
ing the power consumption or EM emission of intermediate values of ECCs.
The second attack focuses on a hardware implementation of the Toeplitz
hashing function, which exhibits changing power consumption depending on
the function’s input data, namely, the secret PUF response bits. This can
be exploited by SPA. As a countermeasure for both attacks, I propose a
codeword masking scheme. It enables the protection of the key generation
process beginning at code-offset helper data processing over error correction
and Toeplitz hashing up to the point where the key is used by a crypto mod-
ule. It uses random codewords of linear ECCs to break the relation between
intermediate values and helper data input bits, which can also be extended
throughout the Toeplitz hashing extractor. Thereby, the essential error cor-
rection capabilities of the ECCs implemented in COFEs are preserved and

8 CHAPTER 1. INTRODUCTION

protection against SPA and DPA attacks is achieved.
This thesis is organized as follows. Chapter 2 gives relevant background

information on PUFs, key generation algorithms and physical attacks. In
Chapter 3, implementation obstacles for RO PUFs on FPGAs are discussed.
Attacks directly targeting the EM emission of RO PUFs and protective coun-
termeasures are shown in Chapter 4. In Chapter 5, two attacks on COFE
implementations are demonstrated and a codeword masking scheme is pro-
posed as a countermeasure. Conclusions drawn from the results of this thesis
and suggestions for future work are summarized in Chapter 6.

Chapter 2

Background

This chapter provides background information on the research field and appli-
cations of PUFs and related ideas. It also explains some of the most popular
silicon PUF architectures, including the RO PUF. Further, PUF-based key
generation algorithms, such as fuzzy extractors and secure sketches based on
a code-offset, are introduced. To give an overview of relevant attack vectors,
this chapter also lists physical attacks, which pose a threat to PUF-based
security systems.

The chapter is organized as follows. In Section 2.1, an overview of the
research field of PUFs is given, while Section 2.2 explains several proposed
PUF architectures for CMOS chips and FPGAs. Section 2.3 details relevant
key generation algorithms. An introduction to physical attacks is presented
in Section 2.4.

2.1 Security Based on Physical Properties

This section details the development of the research field of PUFs and similar
security mechanisms based on unique physical properties.

2.1.1 Unique Physical Properties

The most basic idea of using unique physical features for security purposes
is to measure physical objects with external equipment and compare the
measurements to earlier acquired results in order to verify the authenticity
of an object. This principle is schematically shown in Figure 2.1. In practice,
this approach is applicable in scenarios where products that do not possess
a digital processing unit have to be protected from unauthorized cloning.
Examples are banknotes, clothes, and optical data carriers. The security

9

10 CHAPTER 2. BACKGROUND

stimulus
Physical
Structurereaction

Measurement
Apparatus

Figure 2.1: External measurement of unique physical features

of this protection scheme lies in the fact that an attacker is not able to
reproduce a given physical structure with sufficient precision, even if he is
able to measure its characteristics with a high resolution.

Identification methods based on unique physical device properties date
back to the Cold War. In 1989, it was reported [GM89] that Bauder had
proposed a technique to uniquely mark missiles by spraying a thin random
layer of particles onto each weapon. Illuminating the device from different
angles, light is scattered by this layer in a device-specific way. Recording the
reflection patterns directly after manufacturing enables the identification of
the device at a later stage. These markings were regarded as unforgeable,
because even if an attacker knew the different illumination angles and could
retrieve the resulting speckle patterns, he would not be able to built a particle
layer that exhibits exactly the same unique features.

In 2001, Pappu et al. introduced the term Physical One-Way Func-
tion (POWF) [Pap01, PRTG02]. Their idea was to stimulate an optical
token with a laser beam from one side and capture the resulting speckle pat-
tern on the other side. The angle of the laser beam was meant to be the input
of the POWF and the pattern captured by a camera was the output. The
POWF, namely the light transformation, was assumed to be very complex
and not invertible for an attacker, i.e., provided with a speckle pattern, it was
impossible to tell the corresponding input laser angle. This idea is sometimes
referred to as the first PUF construction, but, actually, it is no PUF because
it relies on external analog measurements of an optical scattering structure,
which are only compared to previously recorded results.

Later, devices with the described security mechanism were also called
unique objects [Rüh09] or certificates of authenticity [DK07]. It was shown
that these methods can also be implemented by measuring metallic struc-
tures with arrays of radio frequency antennas [DK07]. Even the physical
characteristics of standard optical data carriers can be used for this pur-
pose [HDS09].

2.1. SECURITY BASED ON PHYSICAL PROPERTIES 11

challenge response

PUF

configure measure

Figure 2.2: PUFs as challenge-response primitives

2.1.2 Physical Unlonable Functions

Loosely speaking, PUFs are functions which map an input value, the chal-
lenge, to an output value, the response, where each specific instance of this
function depends on internally measured physical characteristics of each PUF
device. The basic structure of a PUF is shown in Figure 2.2. However, this
characterization does not suffice for a clear separation from similar security
primitives and to stress the specific value of PUFs. In my opinion [MP13],
PUFs can be defined as information storage devices which include a security
mechanism that impedes their duplication and that is indivisible connected
to its storage mechanism. However, until now, the PUF research community
has not agreed on a comprehensive and widely accepted definition that could
serve as a solid basis for certification processes and future research. There-
fore, in the following, I explain the milestones of PUF history to convey a
sense of what PUFs are meant to be.

In 2002, to the best of my knowledge, the first idea for using intrinsic
electrical properties for identification and authentication of Integrated Cir-
cuits (ICs) was described. Layman et al. filed a patent [LCNT02] which
explains that transistor manufacturing mismatch consistently influences the
start-up values of memory cells. They suggested to use the resulting start-up
states as a unique device signature.

In the same year, Gassend et al. [GCvDD02, GCvDD03] coined the term
physical unclonable function because they disagreed that PUFs and one-way
functions match regarding meaning and properties, as suggested by the earlier
proposal of POWFs. In the same publication, they proposed the arbiter
PUF architecture, which is one of the best analyzed PUF implementations
to date. The arbiter PUF has a binary challenge input, which configures the
delay parameters of two identically implemented signal paths. Measuring the
delay difference of each delay path configuration by an arbiter element leads
to a single bit PUF response. Figure 2.3 shows a basic challenge-response

12 CHAPTER 2. BACKGROUND

Verifier

PUF

CRP
1

CRP
2

…
CRP

N

device ID PUF DeviceCRP
list per
device challenge(s)

responses(s)

Figure 2.3: PUF-based challenge-response authentication

device authentication scheme based on PUFs, which was also described in
their publication. First, a verifier collects Challenge-Response Pairs (CRPs)
directly after manufacturing the PUF device and saves them in a secure
database. At a later stage, when the device is out in the field, the verifier
can remotely challenge the PUF with randomly selected challenges from the
database and compare the acquired responses to the stored ones. If the
responses match, except for a certain tolerance percentage of noise involved in
PUF measurements, then the device can be regarded as authentic. Compared
to conventional challenge-response algorithms, the advantage of PUF-based
device authentication is that no binary secret key is available on the PUF
device at all times.

In 2004, Dodis et al. [DRS04] proposed an algorithm to reliably extract
a cryptographic key from noisy sources, such as, biometric features. How-
ever, this so-called fuzzy extractor also paved the way for PUF-based key
generation, because PUFs are also unique but noisy sources, similar to bio-
metric data. The similarity between PUFs and biometrics is also reflected in
the term fingerprints of microchips, which is often used to explain PUFs. As
shown in Figure 2.4, in order to generate a key from a PUF, during an enroll-
ment phase, a noisy PUF response is collected and redundancy information
about it is stored. Later, this information helps reliably reconstructing the
originally enrolled PUF response bits without revealing enough information
to enable an attack.

The U.S. company Verayo was founded in 2005 to bring the arbiter PUF
to the market. They offer device authentication solutions based on arbiter
PUFs, but also key generation modules based on the secret bits that can be
extracted from an arbiter PUF.

The first PUF architecture designed as a countermeasure against inva-
sive physical attacks was proposed by Tuyls et al. in 2006. The basis for

2.1. SECURITY BASED ON PHYSICAL PROPERTIES 13

Extraction
enroll

PUF

Reconstruction

Helper
Data

key

Initial PUF Responses

Noisy PUF Responses

Figure 2.4: Basic key generation process

the coating PUF [TSŠ`06] is a microchip that has comb-shaped capacitive
sensors distributed over its top metal layer. The attack resilience is achieved
by covering the chip with a protective coating, consisting of an aluminophos-
phate matrix material and randomly distributed TiO2 and TiN particles.
A device-specific key can be generated based on the material-dependent ca-
pacity values measured by the sensors on top of the chip. Any invasive
tampering, e.g. by a FIB, will alter the material characteristics and thereby
implicitly destroy the unique device key. However, the additional process
of applying the random layer to a microchip adds significant costs to the
manufacturing process of a device, compared to pure silicon PUFs.

In 2007, two still very important PUF architectures, mainly used for
cryptographic key generation, have been published. Suh and Devadas pro-
posed the RO PUF [SD07], which generates PUF response bits based on
relative RO frequency comparisons. This type of PUF is very popular, be-
cause, in practice, it can be properly implemented in FPGAs as well as
Application-Specific Integrated Circuits (ASICs). Additionally, a PUF ar-
chitecture built from Static Random-Access Memory (SRAM) cells has been
proposed, which made its way to commercial availability through the 2008
founded Dutch company Intrinsic ID. It uses the power-up states of an SRAM
memory to generate a device-specific key. Further, PUF proposals based on
cross-coupled latches [KGM`08] or flip-flop start-up behavior [MTV08] fol-
lowed the trend of providing unique physical sources for cryptographic key
generation, but never reached the popularity and quality of RO PUFs and
SRAM PUFs.

Afterwards, the development of PUFs with complex challenge-response
behavior, which can be used for device authentication, has gained more
prominence. Majzoobi et al. [MKP08a] and Rührmair et al. [RSS`10] showed

14 CHAPTER 2. BACKGROUND

that machine learning attacks can be used to model a variety of PUFs, in-
cluding arbiter PUFs as well as their extensions [LLG`04, GLC`04, LLG`05,
SD07, MKP08b]. This demonstrated that many of the previously proposed
PUFs are not suited for secure challenge-response authentication. An in-
teresting approach to obtain a more complex behavior is the algorithmic
processing of PUF output values, e.g., calculating the sum of RO frequen-
cies depending on the challenge input, in the case of the sum PUF [YD10a,
YMSD11, YSS`12]. Another architecture exploits the fuzzy shape of glitches
generated in a combinational network [SS10]. A third idea builds on the os-
cillation behavior of a bistable ring [CCL`11, CCL`12], which is supposed to
be more complex than an arbiter PUF’s signal propagation and is therefore
worth further investigations.

In 2009, public key cryptography pendants of PUFs have been devel-
oped independently by Beckmann and Potkonjak as public PUFs [BP09]
and by Rührmair et al. as SIMulation Possible but Laborious (SIMPL)
systems [Rüh09], which were later joined by a related concept called time-
bounded FPGA authentication [MEK10]. In these PUF applications, a pub-
lic PUF simulation model is provided as kind of a public key, which allows
to simulate the PUF behavior. It is used to obtain the correct PUF response
upon a random challenge which is then compare to the hardware PUF’s re-
sponse. The security mechanism of this PUF application lies in the fact that
the original PUF device can produce the response within a very short time
span, which cannot be achieved by any simulation. The strong advantage of
this idea is the fact that no secret information would be present in the device
at all. However, a practical problem remains. Until now, there have been
very few investigations about how to specify and evaluate the required time
window between real device performance and simulation in order to reach a
specific level of security.

Similar to the idea of a coating PUF, a recent proposal [EFK`12] aims
at protecting smartcards from invasive attacks. Esbach, me et al. describe
an architecture, where the combination of a security microcontroller and the
unique material properties of the card body form a PUF. Light emitting
diodes on the smartcard chip generate light, which propagates through the
thin layers of material and is then captured by photo sensors. The measured
sensor values are used to generate a secret key. Therefore, any material
manipulation results in an altered key.

Summarizing, no matter if PUFs have been proposed for challenge-response
authentication, key generation or tamper resistance, they always have the
goal to combine information storage with a protective security mechanism.

2.1. SECURITY BASED ON PHYSICAL PROPERTIES 15

2.1.3 PUF Quality Measures

The quality of a PUF strongly depends on the statistical properties of its
fundamental physical information sources, e.g., RO frequencies. However, a
source with a good statistical distribution does not automatically lead to a
high-quality PUF. In order to assess the quality of PUFs, several measures
have been proposed [HYKS10, MGS11]. However, no standardized set of
tests is used and accepted by PUF researchers, yet. Also, practical issues
like efficient implementation or intrinsic tamper resistance are important key
facts to judge the suitability and quality of a PUF for a certain application.
However, these properties are hard to capture in statistical figures.

In the following, I explain the three most important statistical measures
used to judge new PUF constructions. They are essential for a basic under-
standing of a PUF’s quality.

Intra-Device Hamming Distance

The intra-device Hamming distance is a measure for the noise of a PUF ar-
chitecture. Variations of it have been called ’reliability’ [MGS11] or ’steadi-
ness’ [HYKS10]. This measure is determined for every single PUF device.
Looking at the intra-device Hamming distance of many PUF devices allows
to judge the PUF architecture’s typical noise level. HDintra,i of a chip i can
be calculated as the mean of Hamming distances HDpri,ref; ri,tq of an n-bit
reference response bit vector ri,ref at normal operating conditions and m n-
bit response bit vector samples ri,t at different times or operating conditions.
The optimal value, indicating no noise, is 0 %.

HDintra,i “
1

m

m
ÿ

t“1

HDpri,ref; ri,tq

n
ˆ 100% (2.1)

Uniformity

Another property of each PUF device is its distribution of output values, cap-
tured by the measures of ’uniformity’ [MGS11] and ’randomness’ [HYKS10].
However, I favor the term uniformity, because it better describes that it is a
measure for the uniform distribution of ones and zeros among all PUF output
bits of a device. It can be determined as the mean value of all n response
bits ri,l of a device i, where 50 % represents perfect uniformity.

Uniformityi “
1

n

n
ÿ

l“1

ri,l ˆ 100% (2.2)

16 CHAPTER 2. BACKGROUND

Inter-Device Hamming Distance

This measure is also called ’uniqueness’ [HYKS10, MGS11] because it de-
scribes how good an individual PUF can be distinguished in a whole popu-
lation of PUFs. The following formula calculates the inter-device Hamming
distance HDinter as the average of all Hamming distances HDpri; rjq of two
n-bit response bit vectors ri and rj of two PUFs on two different chips i and
j. The best value of this measure is 50 %, which means that every PUF
device differs in half of its response bits from any other device.

HDinter “
2

kpk ´ 1q

k´1
ÿ

i“1

k
ÿ

j“i`1

HDpri; rjq

n
ˆ 100% (2.3)

2.2 Silicon PUFs

Using standard CMOS technology for PUF implementations [GCvDD02,
SD07, GKST07, KGM`08, YD10a, CCL`11] instead of other materials is
favored because of three reasons. First, no additional manufacturing process
is required to produce these kind of PUFs, as it is the case for, e.g., coating
PUFs [TSŠ`06]. This way, additional costs are kept low. Second, chip man-
ufacturers already have statistics about variations and corner cases of their
CMOS technology, which allows for a better insight to identify which effects
can be exploited by PUFs. Third, also FPGAs can make use of PUFs that
are based on simple logic gates.

This section gives an overview of silicon PUF architectures, focusing on
the ones repeatedly used and analyzed in literature. It also compares all
explained architectures to the RO PUF and explains why it is one of the
most flexible, reliable and best-analyzed PUF architectures.

2.2.1 Ring Oscillator PUF

Since the introduction of silicon PUFs, oscillating circuits have been regarded
as possible sources to extract unique properties of silicon devices [GCvDD02].
The nowadays popular RO PUF architecture, as shown in Figure 2.5, was
introduced in 2007 [SD07]. Its secret information originates from inevitable
silicon manufacturing variations of ROs, which lead to randomly distributed
RO frequencies. These frequencies are measured by counters increasing with
every rising edge of their input signal. The RO PUF’s binary output bit is
obtained by a relative comparison of two RO frequencies. If the first RO
exhibits a higher frequency than the second one, the output will be set to

2.2. SILICON PUFS 17

0, and otherwise to 1. This relative comparison already partly compensates
for environmental influences such as temperature and supply voltage vari-
ations. This RO PUF response generation process is repeated for several
subsequently overlapping RO pairs, i.e., RO1 and RO2, RO2 and RO3, and
so on, to acquire a device-specific bit sequence that can be used, e.g., for key
generation.

output

enable

enable

enable

oscillator 1

oscillator 2

oscillator n

n-
to

-2
 m

ul
tip

le
xe

r counter

counter

> ?

challenge

freq. 1

freq. 2

freq. n

Figure 2.5: RO PUF architecture

One of the strongest advantages of RO PUFs is that they do not require
symmetric placement and routing as other PUFs do [MMS09]. It is only
important that identical RO instances are used, which can be achieved, e.g.,
by hard macros or placement constraints. This fact also enables the use
of RO PUFs on FPGAs with good statistical properties [MCMS10]. Also,
for ASIC implementations, RO PUFs achieve one of the best and mostly
unbiased statistical distributions [KKR`12] leading to good uniqueness and
uniformity.

Since the publication of the RO PUF, several variants of it have been pro-
posed, e.g., to enhance its reliability [MS09]. Also, improvements regarding
the information extraction have been published, e.g., a grouping algorithm
to maximize an RO PUF’s secret extraction [YQ10] and an entropy distiller
for RO PUFs [YQ11].

Summarizing, the reasons for taking the RO PUF as the basis for this
thesis are its broad applicability on FPGAs and ASICs, its outstanding sta-
tistical properties and its popularity in literature. These facts make the

18 CHAPTER 2. BACKGROUND

RO PUF one of the most widespread and promising PUF architectures for
future security applications.

2.2.2 Arbiter PUF

The first silicon PUF, proposed in 2002, is the arbiter PUF [GCvDD02].
Its delay-based architecture is shown in Figure 2.6. There, a sequence of
multiplexer stages implements two configurable delay paths. Depending on
the challenge input bits, at every stage, the multiplexers select a straight
signal propagation or a path crossing. To obtain a response from a challenge
configuration of an arbiter PUF instance, a signal edge is provided at the
delay paths’ input. At the end, an arbiter component, e.g., a latch, decides
which path had a shorter propagation delay and then outputs a 0 or a 1,
respectively. This architecture is currently commercially available by the
company Verayo.

D Q

E

output

latch

arbiter

run

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

challenge

Figure 2.6: Arbiter PUF architecture

Originally, it was proposed for challenge-response authentication, but ma-
chine learning attacks [MKP08a, RSS`10] have shown that the arbiter PUF
model can be easily learned and simulated.

In order to counteract machine learning attacks, variants of the basic ar-
biter PUF have been proposed [LLG`04, GLC`04, LLG`05, SD07, MKP08b].
XOR arbiter PUFs, feed-forward arbiter PUFs and lightweight secure PUFs
have the common idea to introduce non-linearity in order to complicate the
model of the standard arbiter PUF. Non-linear behavior can be achieved by
the following measures:

• PUF response XOR. Several arbiter PUFs are measured in parallel
and their responses are XORed at the end to obtain a single response

2.2. SILICON PUFS 19

bit. Since this bit depends on the non-linear XOR operation, it is
harder to draw conclusions about the internal delay components.

• Feed forward paths. Additional arbiters are introduced at intermedi-
ate stages of an arbiter PUF. The resulting output bit of these arbiters
is fed forward to control one of the following multiplexer stages.

• Input and output network. A lightweight secure PUF encloses
several arbiter PUFs with input networks that mix challenge bits and
an output network that transforms all output bits non-linearly to a
smaller response string with the help of XOR operations.

These extensions improve the security of an arbiter PUF, but also in-
crease its resource consumption. However, although exhibiting more com-
plexity, it has been shown, that they are still prone to machine learning
attacks [MKP08a, RSS`10] and only very large versions reached exhaustive
computation limits. Therefore, the arbiter PUF’s suitability for challenge-
response authentication is questionable, but it can still be used to gen-
erate bits for PUF-based key generation. However, its statistical proper-
ties [KKR`12], which are relevant for key generation applications, also lie
behind the ones of RO PUFs and SRAM PUFs.

Compared to RO PUFs, arbiter PUFs have a lower area requirement, but
also exhibit a lower entropy [KKR`12], which makes them less suitable for
efficient key generation. Additionally, one requirement of arbiter PUFs is
the symmetric layout of all delay components, signal lines and the arbiter
component. This demand is hard to fulfill on FPGAs and requires very
careful design of ASIC implementations.

2.2.3 SRAM PUF

The SRAM PUF is one of the most important PUF architectures to date.
The idea of using uninitialized start-up values of memory cells was already
described in a patent [LCNT02] in 2002, but the popular SRAM PUF ar-
chitecture was proposed in 2007 [GKST07]. Figure 2.7 shows an SRAM cell
that, in the ideal case, is completely balanced. However, in real implemen-
tations, one can observe a tendency for each cell to fall to one or the other
side after power-up. An SRAM PUF exploits these device-specific start-up
bits and uses them to generate a device-specific cryptographic key.

The SRAM PUF exhibits a high quality regarding statistical proper-
ties [KKR`12]. However, it requires non-initialized SRAM memory, which
is only available on very few FPGA devices [MTV08]. Therefore, on the
statistical side, the SRAM PUF is on a similar level as the RO PUF, but

20 CHAPTER 2. BACKGROUND

BL

WL

BL

VDD

M1

M2 M4

M3

M6

M5

Figure 2.7: SRAM PUF cell

when it comes to practical FPGA implementation, the RO PUF shows clear
advantages. But nevertheless, for ASICs or specific microcontrollers, the
SRAM PUF architecture can provide additional security features. It has
reached the stage of commercial availability by the company Intrinsic-ID.

2.2.4 Butterfly PUF

The butterfly PUF [KGM`08] was introduced in 2008 to enable SRAM-like
cells on FPGAs.

As shown in Figure 2.8, it consists of two cross-coupled latches. To obtain
a device-specific output bit, first, one of the latches is pulled to 1 and the
other one to 0. After releasing the latches from this forced state, the cell
oscillates and finally falls into an output state that depends on the physical
characteristics of both latches, such as their signal propagation delay.

Although the butterfly PUF was designed for FPGA implementation, the
required symmetric routing of the cross-coupled latch connections is hard to
achieve [MMS09]. Also, this PUF architecture cannot compete with the
quality and robustness of an RO PUF’s statistical distributions, even when
implemented on an ASIC [KKR`12].

2.2.5 Bistable Ring PUF

The Bistable Ring PUF (BR PUF) [CCL`11, CCL`12] originates from the
idea of having an inverter ring with an even number of inverters, where
the smallest possible ring with two inverters is very similar to an SRAM cell.

2.2. SILICON PUFS 21

D Q

CLR

PRE

E

D Q

CLR

PRE

E

excite

1

1

0

0

output

latch 1

latch 0

Figure 2.8: Butterfly PUF architecture

These ring structures have two stable states, where the nodes have alternating
values, i.e., 010...101 and 101...010. The challenge bits of a BR PUF configure
which delay element, out of two possible, is inserted into the bistable ring, as
shown in Figure 2.9. The final response bit is acquired by capturing the state
of one ring stage. This architecture enables a large number of different ring
configurations. Therefore, the authors proposed it for device authentication
and, because of less symmetric routing than for arbiter PUFs, they also
emphasized its suitability for FPGA implementations.

responsereset

≥1

≥1

challenge [0]

≥1

≥1

≥1

≥1

≥1

≥1

≥1

≥1

≥1

≥1

≥1

≥1

≥1

≥1

challenge [1] challenge [n/2-2] challenge [n/2-1]

challenge [n-1] challenge [n-2] challenge [n/2+1] challenge [n/2]

Figure 2.9: Bistable ring PUF architecture

22 CHAPTER 2. BACKGROUND

I0_0

I0_1

I1_0

I1_1

I2_0

I2_1

I3_0

I3_1

(a) Abstract BR PUF with 8 elements for
a 4-element ring and a 4-bit challenge

I0_0

I0_1

I1_0

I1_1

(b) Abstract TBR PUF with 4 elements
for a 4-element ring and a 2-bit challenge

Figure 2.10: Comparison between BR PUF and TBR PUF

The authors claim that the oscillating behavior leading to the PUF re-
sponse might be more complex than the arbiter PUFs response measure-
ments. However, I discovered a strong bias in its architecture, leading to a
strong lack in uniformity of many BR PUF devices. The reason for that is
that a flipped challenge bit replaces one delay element with another, while to
original one is disregarded. If both delays are similar, a challenge change can
lead to the same behavior and, consequently, to the same response. If this
occurs for many challenge combinations, a strong bias in the PUF responses
can be observed.

A recent patent application of me and Schuster [MS13] explains that
the BR PUF architecture has the described structural flaw, which results
in highly biased PUF responses for many devices. The invention describes a
new ring structure, the Twisted Bistable Ring PUF (TBR PUF). There, delay
elements are not plugged in and plugged out depending on the challenge bits,
but change positions within the ring, leading to a twist in the ring structure
that results in a balanced response distribution. The difference between the
two architectures is depicted in Figure 2.10.

Drawing the structure of the TBR PUF is more difficult as in the case
of the BR PUF because the building blocks of a TBR PUF have two inputs
at the left and two outputs at the right (which is neglected in Figure 2.10
for simplicity). Therefore, the back path of the ring structure, i.e., the lower
path, contains loops from a block’s output to the next left block’s input as
shown in the detailed architecture in Figure 2.11.

First analyses suggest that the TBR PUF architecture is more complex
than arbiter PUFs and BR PUFs and also exhibits a more uniform distribu-
tion of PUF responses, compared to the BR PUF, i.e. shows a better value
for uniformity of PUF devices. However, its oscillating behavior is not com-
pletely understood yet and it has not been analyzed as much as the RO PUF.

2.2. SILICON PUFS 23

response

reset

challenge [0]

≥10

1

≥11

0

≥10

1

≥11

0

challenge [1]

0

1

1

0

0

1

1

0

≥10

1

≥11

0

challenge [n-2]

0

1

1

0

≥10

1

≥11

0

0

1

1

0

challenge [n-1]

Figure 2.11: Twisted bistable ring PUF architecture

Although promising, this architecture is not at a stage where it would make
sense to analyze it regarding physical attacks. Therefore, the RO PUF is fa-
vored over the TBR PUF for the analyses provided in this thesis. However,
the TBR PUF can be regarded as an interesting candidate for future PUF
research.

2.2.6 Sum PUF

Using recombination functions for PUFs [YD10a] is another interesting idea
to provide complex and yet reliable PUF behavior. The sum PUF [YD10a,
YMSD11, YSS`12] is the first architecture resulting from this idea. As shown
in Figure 2.12, it accumulates the differences of RO frequency pairs. Each
corresponding challenge bit decides if the difference (either negative or posi-
tive) enters the sum with its original or its inverted sign. In the end, the sign
of the resulting sum gives the PUF response value, while the less significant
bits can be used as reliability information.

challenge [0]

1

0

RO

RO

-1

1

challenge [1]

1

0

RO

RO

-1

1

challenge [n-1]

1

0

RO

RO

-1

1

sum response

Figure 2.12: Sum PUF architecture

24 CHAPTER 2. BACKGROUND

The sum PUF can be regarded as an extension of the RO PUF and is
obviously based on the same primitives. However, it has not gained as much
attention as RO PUFs and is still to be analyzed.

The reason why the sum PUF is mentioned in this collection of impor-
tant silicon PUFs, is the fact that it also relies on measuring RO frequencies.
Therefore, its architecture and also future developments based on ROs might
be vulnerable to similar attacks as described in Chapter 4. Also, the coun-
termeasures proposed in this thesis can be a first step towards protecting
sum PUFs.

2.3 Key Generation Based on PUFs

Every physical measurement involves a certain amount of noise, so do PUFs.
For device identification and authentication by CRPs, this can be handled
by the number of requested CRPs and a tolerance limit at the verifier side.
However, for a cryptographic key, noisy bits are unacceptable and a high reli-
ability has to be guaranteed. This can be achieved by helper data algorithms,
which generate helper data during an enrollment phase and are usually sup-
ported by error correction modules. This data can then be used to reliably
reconstruct the secret defined at enrollment when the device is out in the
field. During the last decade, a variety of algorithms [DRS04, BDHV07,
YD10b, PD11, HMSS12] has been proposed, among which, the code-offset
constructions proposed by Dodis et al. [DRS04] are the most popular ones.
Also, the Index-Based Syndrome (IBS) coding scheme proposed by Yu and
Devadas [YD10b] has received notable attention. This section explains the
most popular helper data algorithms, focusing on their reconstruction func-
tions, which are used in the field for key generation. These modules are
necessary for reliable key recovery, but are also prone to physical attacks as
shown in this thesis.

2.3.1 Code-Offset Secure Sketch

One of the most basic key generation algorithms, the secure sketch [DRS04],
was proposed by Dodis et al. in 2004 and follows a similar principal as the
earlier proposed fuzzy commitment scheme by Juels and Wattenberg [JW99].
It originates from the field of biometrics, where it is used to reconstruct the
enrolled biometric data from a noisy version of biometric features and stored
helper data, the sketch. Since PUFs operate on bits instead of features, as
in the case of biometrics, the Code-Offset Secure Sketch (COSS) is the most
suited variant of the secure sketch family. It can be used to reliably recover

2.3. KEY GENERATION BASED ON PUFS 25

original PUF bits, but also to embed a secret key into PUF response bits.
It is used in cases where the PUF output bits are uniformly distributed. In
this thesis, I show how these basic building blocks of key generation can be
attacked and thereupon protected.

Reconstruction of PUF Bits

A COSS can be used to recover enrolled biometric data and, therefore, in the
same way, can reconstruct the original PUF bits acquired during enrollment.
First, a random binary codeword c “ encodeCpxq of a code C has to be
generated by encoding a random bit vector x. Then, the helper data bit
vector (the sketch) w “ c ‘ r is the result of an XOR operation, i.e., the
code-offset, between c and the secret PUF response bit vector r. If the
bit flips contained in the noisy PUF response bit vector r1 do not exceed
the correction capabilities of the decoding function decodeC of code C, the
original PUF response bit vector r, which can be used to generate a binary
key k, can be computed as follows:

r “ encodeCpdecodeCpr
1
‘wqq ‘w “ correctCpr

1
‘wq ‘w (2.4)

I denote the combination of the decoding and encoding functions encodeC
and decodeC as correctCp.q “ encodeCpdecodeCp.qq, for simplicity. The archi-
tecture of the reconstruction module is depicted in Figure 2.13.

PUF Response

Helper Data

correctC Original PUF Bits

internal / secret

external / public

r'

w

c' c r

Figure 2.13: PUF response reconstruction module of a COSS

Embedding a Secret Key

The basic COSS architecture can also be used to embed a secret key into PUF
output bits, which results in an even simpler architecture. There, during the
enrollment phase, no random codeword is used, but an external binary key k
is encoded to a binary codeword c of a code C: c “ encodeCpkq. The public

26 CHAPTER 2. BACKGROUND

helper data is again the code-offset between codeword c and the initial PUF
response bit vector r, i.e., w “ c ‘ r. During the reconstruction phase, the
reconstruction module, as shown in Figure 2.14, is used to reliably generate
the embedded key k from a noisy PUF response bit vector r1:

k “ decodeCpr
1
‘wq (2.5)

PUF Response

Helper Data

Secret Key

internal / secret

external / public

r'

w

c' k
decodeC

Figure 2.14: Key reconstruction module of a COSS

2.3.2 Code-Offset Fuzzy Extractor

If the underlying PUF used for key generation does not exhibit a completely
random distribution of bits in the response bit vector r, a COSS has to be
extended by an extractor Ext to obtain a COFE as proposed by Dodis et
al. [DRS04]. Ext can be any extractor algorithm that takes the corrected
PUF response bit vector r as an input and compresses it to a binary key
k, where each key bit is completely random for each device and, therefore,
suited for cryptographic purposes. For efficient COFE implementations, until
now, Toeplitz hashing [Kra94] was a popular choice for the required extractor
function.

For COFEs, the COSS architecture to extract the enrolled PUF bits, is
simply extended by an extractor Ext. The reconstruction module, as shown
in Figure 2.15, first resolves the code-offset between the helper data bit vector
w and the noisy PUF output bit vector r1 and then corrects the resulting
noisy codeword c1 “ r1 ‘ w to c “ correctCpc

1q. Afterwards, the helper
data is XORed to the corrected binary codeword to obtain the enrolled PUF
response bit vector r “ c ‘ w. Finally, r is compressed to a binary key k
with a uniform distribution of ones and zeros by an extractor Ext:

k “ ExtpcorrectCpr
1
‘wq ‘wq (2.6)

2.3. KEY GENERATION BASED ON PUFS 27

PUF Response

Helper Data

correctC Secret Key

internal / secret

external / public

Ext

r'

w

c' c r k

Figure 2.15: COFE reconstruction module

2.3.3 Robust Sketches and Robust Fuzzy Extractors

In 2005, Boyen et al. [BDK`05] explained that an active adversary can gain
information about the user’s biometric data (or PUF) by maliciously manipu-
lating the communication between a server (implementing a fuzzy extractor)
and the user. As a solution, they proposed robust sketches and robust fuzzy
extractors which can detect helper data manipulations.

Their proposed robust constructions use a hash function H to generate a
hash value h “ Hpk,wq of the helper data and the enrolled key. This hash
value is then stored along with helper data w. During each reconstruction,
a (maybe manipulated) secret key k̂ is generated as in a standard secure
sketch or fuzzy extractor, but before using k̂, the hash value ĥ “ Hpk̂, ŵq is
compared to the previously generated value h. If the hash values match, ŵ
was not manipulated and k̂ “ k, otherwise, k̂ will be discarded.

While these constructions are secure for remote scenarios, they are still
vulnerable to side-channel attacks based on helper data manipulation, as I
explain later in this thesis.

2.3.4 Index-Based Syndrome Coding

The Index-Based Syndrome (IBS) [YD10b] coding scheme was developed by
Yu and Devadas in 2010. It embeds a secret key into noisy PUF response
bits. During enrollment, it tests each bit of a block of PUF response bits for
its reliability. Depending on the key bit to embed, it then stores the index of
the most reliable 1 or 0 as helper data. The stored indices are selected from
the PUF bit blocks again during reconstruction, which leads to increased
reliability.

An extension of IBS, Complementary-IBS (C-IBS), was developed under
my supervision and published by Hiller, me et al. [HMSS12]. There, not
only one index, but a set of indices is stored as helper data for each key
bit. The indices point to reliable bits of the same value as the key bit, but

28 CHAPTER 2. BACKGROUND

also to complementary bits. During reconstruction, the set of indices per key
bit is used to select all necessary PUF bits, which are then decoded to the
corresponding key bit. Thereby, compared to IBS, the stability of key bits is
further enhanced.

Usually, the IBS or C-IBS output bit vectors are still not as reliable as
desired for many applications. Therefore, these methods can be supported
by error correction modules to generate a highly reliable cryptographic key.
However, attacks against ECCs, e.g., as shown in this thesis, may also pose a
threat to IBS and C-IBS implementations, but the masking scheme I propose
in Chapter 5 can also be used to protect ECCs in IBS and C-IBS modules.

2.3.5 Other Key Embedding/Extracting Algorithms

Two further key generation techniques have been presented in literature that,
however, have not gained as much attention as the ones presented above.
They are not relevant for this thesis and are therefore only briefly explained
for completeness.

One method is based on quantization index modulation [BDHV07], a
class of data hiding codes. It originates from the field of watermarking.
The authors show that embedding a watermark into a host signal has close
resemblance to embedding a secret key into noisy PUF responses. Therefore,
they model fuzzy extractors in terms of watermarking notation and show
that this enables to derive measures for the embedding rate, the reliability
and the information leakage characteristics of fuzzy extractors.

Another interesting approach [PD11] publishes parts of PUF response
sequences during the enrollment phase, depending on the key bits to embed.
It uses efficient pattern matching techniques to identify the correct position of
the published pattern within the generated PUF response bit sequence during
reconstruction. The bits of the resulting position index can then be used as
secret key bits. However, in contrast to the other presented algorithms, this
scheme only works for PUFs that have a large challenge-response space.

2.4 Physical Attacks

During the last decade, a large number of papers have been published [Wag12]
about physical attacks on smartcards, secure microcontrollers, or FPGAs.
Some of these attacks also pose a threat to secure embedded systems based
on PUFs. This section gives relevant background information on physical
attacks on embedded systems. It supports the comprehension of the analyses

2.4. PHYSICAL ATTACKS 29

described in this thesis, which demonstrate some of the first physical attacks
on PUFs and key generation algorithms.

2.4.1 Secret Extraction by Physical Measurements

Measuring physical characteristics that are supposed to be secret is one of
the most straight-forward attacks, but, nonetheless, a very important one
in the area of PUFs. Its practical feasibility is always determined by the
manufacturing technology of the device under attack as well as the preci-
sion of an attacker’s equipment. These attacks have two main goals: mem-
ory content extraction and functionality reverse engineering. Optical imag-
ing [KK99, Sko05] is one of the relevant techniques to extract information
from microchips, such as secret cryptographic keys.

For PUFs, optical imaging is not as critical as for other memory struc-
tures, e.g., mask ROMs or fuses. However, PUFs are also a kind of memory,
which exploit information stored in sub-micron variations. One possible way
to extract a PUF’s secret information, e.g., its unique RO frequencies, are
EM emission measurements, as I detail in Chapter 4. Recently, it was also
shown that photonic emission analysis [SNK`12] can be used to analyze PUF
secrets such as SRAM start-up values [HNBJP13].

One should note that these direct physical measurement attacks always
target the information storage component, e.g., a memory or a PUF, and not
an algorithm.

2.4.2 Side-Channel Attacks

Since their introduction in 1996 by Kocher [Koc96], the analysis of side-
channels in embedded security devices has gained a lot of interest in academia
as well as in industry. The basic principle is that implementations of cryp-
tographic algorithms leak secret information through side-channels, such
as execution time [Koc96], power consumption [KJJ99], and electromag-
netic [GMO01, QS01] emission. Therefore, an attacker is able to extract
secrets from cryptographic algorithms running on an embedded system by
measuring its physical properties during execution time.

PUF-based key generation is also an algorithm, which processes a secret,
namely, the secret key it generates and the secret PUF response bits. There-
fore, this class of attacks is highly relevant for key embedding and extraction
algorithms. In this thesis, I consider attacks on the power consumption and
the EM emission of PUF devices, because these physical effects can be mea-
sured quite well with state-of-the-art laboratory equipment and still allow
for strong attacks.

30 CHAPTER 2. BACKGROUND

One class of power analysis attacks is SPA [KJJ99]. There, an attacker
tries to interpret power consumption or EM emission traces, which have been
recorded during the execution of an algorithm. This is possible, if the traces
show a strong dependency on the secret data involved in the calculation. This
is the case, e.g., if a secret is processed serially and a 0 input bit leads to
a much lower/higher power consumption than a 1 input bit. Then, one can
visually interpret the power consumption trace and link power consumption
values to secret data bits. These attacks require a low noise level, because
they usually operate only on one or a few traces. In Section 5.3, I show how
the Toeplitz hashing module of a COFE can be attacked by SPA.

The most popular power attack technique is DPA [KJJ99]. It exploits the
differences in power consumption of intermediate values of a cryptographic
operation when provided with changing input data. Compared to SPA, it
usually requires a larger number of traces to successfully extract the used
secret. One of its advantages is that it allows to exploit very small power
variations, even in the presence of noise disturbances. Also, with an increas-
ing number of recorded traces with different input values, the guess for the
secret data gets more and more confident. In Section 5.2, I show a DPA
attack that can be mounted on error correction modules of COFEs.

For a comprehensive overview of SCA, I refer the reader to the book
Power Analysis Attacks: Revealing the Secrets of Smart Cards of Mangard
et al. [MOP07].

2.4.3 Other Physical Attacks

The attacks shown in this thesis focus on measuring power consumption and
EM emission, but there are also other physical attacks that can be used
to break cryptographic devices. Some of them are important to consider
when designing a PUF-based security system and should be regarded as
future work for PUFs. One of these methods are fault attacks [BDL97],
which have been discovered by Boneh et al. in 1997. They allow to derive
information about internal secrets by analyzing the effects of faults injected
into cryptographic operations. This attack vector can also be relevant for key
generation algorithms. Further, more sophisticated techniques within the
class of semi-invasive attacks, as introduced by Skorobogatov [Sko05], can be
used to extract PUF properties. When it comes to deeply invasive attacks,
e.g., microprobing and FIB manipulations [KK99], pure silicon PUFs and
especially their post-processing are as vulnerable as conventional integrated
circuits, if no dedicated protection is implemented.

Chapter 3

Implementation of RO PUFs
on FPGAs

In this chapter, I analyze the specific problems designers face when design-
ing an RO PUF on an FPGA. This includes implementation of identical ROs
and their consistent placement. Further, I discuss the usage of asynchronous
counters as frequency measurement circuits. I also show a spatial frequency
distribution analysis over an FPGA die, which is influenced by measurement
logic placement. Parts of this chapter have been published in the paper Im-
proving the Quality of Ring Oscillator PUFs on FPGAs at the 5th Workshop
on Embedded Systems Security in 2010 [MSE10]. The results presented in
this chapter provide a solid basis for reliable RO PUF implementations.

The chapter is organized as follows. Section 3.1 explains the functionality
of ROs and how to design them for FPGAs. In Section 3.2, frequency mea-
surements based on asynchronous counters are discussed. In Section 3.3, an
analysis on spatial RO frequency distribution is shown and a design strategy
for reliable RO PUFs is proposed. Section 3.4 summarizes this chapter.

3.1 Ring Oscillators

A ring of an odd number of inverters is one of the most basic oscillating
circuits in digital IC design. These oscillators can be implemented in ASICs
as well as in FPGAs and are a popular solution for PUFs, where their de-
pendency on manufacturing variations is exploited. The reason for that is
that these structures, compared to other PUF architectures, exhibit a rel-
atively low-biased statistical distribution [KKR`12]. Another application
for ROs in secure embedded devices are True Random Number Genera-
tors (TRNGs) [FMC85], where their random jitter is extracted.

31

32 CHAPTER 3. IMPLEMENTATION OF RO PUFS ON FPGAS

enable

5-inverter ring oscillator

oscillation
frequency

Figure 3.1: Architecture of a 5-inverter RO

3.1.1 Functionality

An RO consists of an odd number of inverters and, therefore, has no sta-
ble digital state, which is the reason why it starts oscillating after powering.
Its oscillation frequency depends on the sum of propagation delays of all in-
verters. Since the propagation delay of each inverter depends on its unique
physical characteristics, RO operation can be seen as a repetitive measure-
ment of propagation delays. Therefore, ROs are a suitable measure to extract
unique characteristics introduced during IC manufacturing.

RO implementations for PUFs and TRNGs are usually equipped with an
enable signal integrated by a NAND gate in order to save power. Figure 3.1
shows the architecture of a 5-inverter RO with an enable input. Note that
there are only four dedicated inverters in this implementation and the fifth
inverter is integrated into the enable NAND gate.

3.1.2 Influences on RO Frequency

RO PUFs build on the uniqueness and stability of individual RO frequen-
cies. These frequencies are subject to a set of influences, which have to be
considered during RO PUF design.

• Implementation details. The number of inverters in an RO, the
technology-specific propagation delay of each inverter, and the routing
of the RO-internal signals determine the nominal frequency of an RO.
In order to avoid measurement problems, this mean frequency should
be designed to be lower than the maximum operating frequency of the
used counter flip-flops.

• Manufacturing variations. The deviation of inverter delays, arising
from sub-micron physical variations, occurring during manufacturing,
are responsible for the uniqueness of every RO PUF. The standard
deviation of RO frequencies among the population of ROs is determined
by these influences. A wide distribution of RO frequencies together

3.1. RING OSCILLATORS 33

with a low individual RO frequency noise suggests a good quality of
RO comparisons, because ROs can be differentiated better as with a
narrow distribution and the same individual noise.

• Thermal noise. Thermal noise occurs at every transistor, therefore,
also inverter delays involve this ever-present noise. This leads to a
certain amount of inevitable noise contained in RO frequencies, even
under stable environmental conditions.

• Temperature variations. Inverters in ROs are sensitive to temper-
ature changes. Therefore, with increasing temperature, RO frequen-
cies decrease and vice versa. This effect increases the RO frequency
noise over the application temperature range. As a result, the reliabil-
ity of RO PUF measurements is decreased. This effect can be partly
compensated by comparing two ROs that are both subject to similar
temperature influences.

• Supply voltage variations. Variations in the supply voltage of
RO circuits also influence their behavior and lower the reliability of
RO PUFs.

• Frequency locking. ROs are also prone to frequency locking, i.e.,
they can synchronize with other internal or external oscillating sources.
This can be a point of attack, but it can also cause issues with other
oscillating circuits implemented in the same device.

3.1.3 FPGA Implementation

Usually, digital hardware designs are developed using Hardware Description
Languages (HDLs) like VHDL or Verilog. Also, the functional behavior of an
RO can be described in such a language. However, one faces some difficulties
when designing physical primitives like ROs:

• Unwanted optimization. The FPGA synthesis tool tries to optimize
all described circuits and reduces an RO until it is removed completely.
Of course, this is unacceptable for RO PUFs, which want to extract
unique device features by measuring ROs.

• Random placement. Whenever changes are made to the design, the
placement of the RO components can change, i.e., the absolute location
on the FPGA floorplan can be altered as well as the routing distances
between its inverters. This happens because the FPGA synthesis tool

34 CHAPTER 3. IMPLEMENTATION OF RO PUFS ON FPGAS

searches for optimized placement and routing, e.g., regarding most ef-
ficient resource usage or shortest signal paths, which might lead to
different results, if the design is changed. This is critical for RO PUFs,
because they require identical ROs that have the same physical struc-
ture and nominal oscillation frequency.

The problem of unwanted optimization can be handled by configuring the
synthesis tool to ignore ROs during optimization. For VHDL, this can be
done by attaching the SAVE attribute to all RO internal signal lines. This is
independent of the target device and ensures correctly synthesized ROs.

Exact placement and routing, however, always depend on the used devices
and tools. In this thesis, I use Xilinx Spartan-3 [Xil12a], Spartan-3A [Xil10]
and Spartan-3E [Xil12b] devices for the implementations. Xilinx FPGA de-
vices are internally organized in Configurable Logic Blocks (CLBs). For the
Spartan-3, Spartan-3A, and Spartan-3E families, each CLB groups four slices.
Each slice contains two Look-Up Tables (LUTs), two storage elements, which
can be used as flip-flops or latches, and miscellaneous supporting circuits.

For Xilinx FPGAs, it is possible to develop hard macros to overcome
the problems explained above. The Xilinx FPGA Editor tool can be used
to develop templates, called hard macros, of basic building blocks like ROs,
which can then be instantiated in any HDL. In this application, the LUTs
and flip-flops of slices can be configured manually and, also, the inputs and
outputs of slices can be manually connected leading to specific manual rout-
ing within the hard macro. If this hard macro is instantiated, it ensures
that every instance of this block has the same slice configuration and the
same block-internal routing. In the case of RO PUFs, this is sufficient, be-
cause it enables to implement ROs that have identical FPGA configuration
properties, although hard macros and the FPGA Editor tool do not provide
exact internal FPGA layout information. To complete the implementation,
it is necessary to define placement constraints for each RO hard macro in-
stance to ensure adjacent placement of ROs in the FPGA’s floorplan. For
Xilinx, these constraints are written into the User Constraints File (UCF)
of a project. Thereby, consistent absolute and relative placement as well as
routing of RO-internal components and signals is achievable.

However, developing hard macros for RO PUFs with the FPGA Editor
has some drawbacks. It can be quite inconvenient to initially design a hard
macro or to change its details at a later stage. Also, porting the hard macro
to a new device family usually requires a new hard macro design. An alterna-
tive to using hard macros is the extension of the RO placement constraints,
which are also necessary in the hard macro case. It is possible to add the
generation of detailed placement constraints for each component of an RO

3.2. FREQUENCY MEASUREMENT 35

FPGA implementation. This allows for more flexibility because handling
text-based constraint files is easier than working with the FPGA Editor and
can be adapted faster to new designs and devices. Therefore, for some of
the experiments in this thesis, I used scripts that output constraints for ev-
ery single LUT used in an RO. Thereby, identical placement of ROs can be
achieved and the same routing will be generated implicitly because the con-
nections of input and output ports of all used LUTs are defined. And since
placement constraints have to be defined anyway, this does not represent
large additional effort.

3.2 Frequency Measurement

In this section, important considerations about the counters used for fre-
quency measurements in RO PUFs are detailed.

3.2.1 Asynchronous Counter

ROs oscillate with a unique frequency depending on the propagation de-
lays of their gates. In order to extract this RO-specific property, RO PUFs
implement counters incrementing on the positive edge of an RO’s output.
Synchronous counters are not suitable in this case, because these counters
can produce incorrect counter values if controlled by a varying RO output
signal instead of a stable and uniformly routed clock signal. Therefore, one
has to use asynchronous counters to allow for reliable operation even when
controlled by jittery RO oscillation signals.

In Figure 3.2, the architecture of an asynchronous counter is shown as
used for RO PUFs. It consists of a series of toggle flip-flops, where the first
one is clocked by an RO output signal. Each flip-flop output represents one
counter bit, which is inverted and then connected to the next flip-flop’s clock
input to toggle the following flip-flop, if the previous one signalizes a 1-bit
overflow by a negative edge.

3.2.2 Measurement Error

The runtime during which an RO frequency is measured has a significant
influence on the measurement error, i.e., the measurement tolerance, caused
by the counter implementation and, therefore, on the quality of an RO PUF.
A first requirement is that the RO runtime is balanced between reliable RO
discrimination and fast response extraction. Further, counter sizes have to
be chosen wide enough to avoid overflows for ROs with high frequencies.

36 CHAPTER 3. IMPLEMENTATION OF RO PUFS ON FPGAS

RO signal

T Q

CLK

T Q

CLK

T Q

CLK

T Q

CLK

C0 C1 Cn-2 Cn-1

reset

CLR CLR CLR CLR

Figure 3.2: Asynchronous counter architecture

The maximum absolute error eabs,max resulting from a given RO measure-
ment runtime trun can be calculated as follows:

eabs,max “ ˘
1

2 ¨ trun

(3.1)

Taking the mean RO frequency value fmean into account, the maximum
relative error erel,max can be determined as:

erel,max “ ˘
1

2 ¨ trun ¨ fmean

(3.2)

For instance, if a maximum relative error of erel,max “ ˘0.1 % “ 0.001 is
required for frequency measurements of ROs with a nominal mean frequency
of fmean “ 100 MHz, the minimal runtime for each RO measurement can be
calculated as:

trun “
1

2 ¨ 0.001 ¨ 100 MHz
“ 5µs (3.3)

This defines the lower bound on RO comparison runtime, while the upper
bound of measurement time is determined by application requirements.

However, one should also notice that other factors, such as enable signal
propagation delay deviations, temperature variations, and supply voltage
deviations, can cause further measurement errors.

3.3. RO PLACEMENT AND COMPARISON 37

Figure 3.3: Hard macro of one CLB containing two ROs

3.3 RO Placement and Comparison

This section deals with the questions, where to preferably place ROs on an
FPGA floorplan and which ROs should be compared to obtain unique and
reliable RO PUF responses.

3.3.1 Spatial Ring Oscillator Frequency Analysis

Maiti and Schaumont [MS09] mentioned that RO frequencies depend on their
location on an FPGA die, e.g., frequencies of ROs at the edges of an FPGA
are slower than central ROs. In the following, I show that also the placement
of RO measurement logic has an influence on their frequencies.

In order to analyze the spatial dependency of RO frequencies, I instan-
tiated an array of 2712 ROs. I used the hard macro shown in Figure 3.3
to implement two ROs per CLB and covered more than half of a Xilinx
Spartan-3E XC3S1200E die with ROs. Additionally, an RS232 interface and
measurement counters were implemented. I synthesized four different ver-
sions with different placement of RO measurement logic.

Figure 3.4 shows the different areas of measurement logic and the spatial
distribution of frequencies over the FPGA floorplan. The presented results

38 CHAPTER 3. IMPLEMENTATION OF RO PUFS ON FPGAS

show that the position of interfaces and read-out logic significantly influences
intra-die conditions and RO frequencies.

My analysis results show that RO frequencies increase with increasing
distance to the communication and read-out logic for every placement case.
A clear spatial dependency of RO frequencies is shown. Possible explanations
for this effect can be a local temperature increase at the continuously running
measurement circuits, which might lower surrounding RO frequencies, or
influences arising from increased routing length of RO output signals.

Second, a stripe pattern is visible over the entire area. This is due to the
fact that the hard macro shown in Figure 3.3 consists of two oscillators, which
are displayed in two different columns in the FPGA floorplan view. Alternat-
ing, one column consists of only RO0 instances, while the next one has only
RO1 implementations. The stripe pattern is visible because these two RO
implementations, although looking nearly identical in the hard macro view,
still show a noticeable mean frequency difference of approximately 10 MHz,
which is almost a third of the whole range of oscillator frequencies from 185
to 218 MHz.

When looking closer, the locations at the bottom borders of Figures 3.4(a)
to 3.4(d) show lower instead of further increasing frequencies. This might re-
sult from higher energy densities at the die borders because of nearby output
buffer locations, local heat accumulation or different physical implementa-
tion.

Comparing Figures 3.4(c) and 3.4(d), one will find that moving the logic
farther away only shows little improvement. So, the idea of placing dummy
cells between ROs and logic, as proposed in [SHO08], is not applicable here.

I draw two conclusions from this experiment. On the one hand, only
ROs within the same spatial region, i.e., neighborhood on the die, can be
compared to each other because RO frequencies exhibit a strong spatial de-
pendency. On the other hand, even if RO implementations look quite similar
in the FPGA Editor tool, as it is the case for RO0 and RO1 in Figure 3.3,
they cannot be assumed to have the same nominal frequency. Therefore,
only identical instances of ROs placed and routed in a completely equivalent
way within a slice should be compared to avoid predetermined comparison
results. Unfortunately, the physical structure of different slices is usually not
published by FPGA manufacturers, which complicates identical RO imple-
mentation.

3.3.2 Physical Mapping and Comparison Strategy

Usually, RO PUFs extract n´1 bits from n ROs [MS09] by sequentially com-
paring overlapping RO pairs and it was shown that the quality of RO PUFs

3.3. RO PLACEMENT AND COMPARISON 39

(a) (b)

(c) (d)

Figure 3.4: Spatial RO frequency distribution on a Xilinx Spartan-3E

40 CHAPTER 3. IMPLEMENTATION OF RO PUFS ON FPGAS

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a)

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

(b)

1 0 10

2 3 9

4 8

5 6 7
P
R
O
H
I
B
I
T
E
D P

R
O
H
I
B
I
T
E
D

(c)

Figure 3.5: Spatial RO mapping strategies

increases with controlled RO placement [MS09]. However, even when placed
with location constraints, as shown in Figure 3.5(a), problems can occur,
when comparing the last RO of the first row with the first RO of the second
row. Therefore, I suggest to use a chain-like placement approach, as shown
in Figure 3.5(b), to enable comparisons of only adjacent ROs because only
closely located ROs are exposed to similar intra-die conditions.

Note that this approach allows to select one RO pair after the other with
a simple counter feeding addresses to the RO multiplexer. Only the different
physical placement is responsible for increased RO PUF quality. Even in
cases with hard area constraints, where ROs have to be place in unshaped
structures, the chaining method can be applied, as depicted in Figure 3.5(c).

For Xilinx FPGAs, this placement method can also be combined with
the anyhow important placement constraints when implementing ROs on
FPGAs. This guarantees an enhanced selection of RO pairs.

3.4 Summary

In this chapter, I showed that the design of ROs on FPGAs involves some
obstacles, such as automatic optimization and random placement. However,
these problems can be solved by HDL constructions, hard macros, and place-
ment constraints. Further, I explained the necessity of using asynchronous
counters for RO frequency measurement purposes and described the incurred
measurement error. The last part of this chapter dealt with the spatial
placement of ROs on an FPGA’s floorplan, which is significant for RO PUF
quality. For a flexible and powerful design flow, I suggested to implement a
script-based constraint generator, which is able to handle both identical RO
implementation and all related placement issues.

Chapter 4

Attacks on RO PUFs

RO PUFs are usually implemented to measure unique device features that
can be used for cryptographic key generation. They represent a kind of secure
memory and, therefore, also have to face physical attacks that try to extract
their secret information. In contrast to classical memories, which have a
quite short read-out time, RO PUFs measure ROs running for a relatively
long time and, thereby, emitting EM signals correlated with their unique
frequencies. Therefore, I chose to evaluate attacks on RO PUFs based on
EM measurements.

In this chapter, I propose two EM attacks on RO PUFs. The first one
exploits EM emissions of a standard RO PUF implementation. There, vul-
nerabilities arise from overlapping RO comparisons. I also propose a coun-
termeasure to overcome this problem by avoiding overlapping comparisons.
Further, I show how efficiency can be maintained for protected RO PUF ar-
chitectures. The second attack exploits localized EM leakage, which helps an
attacker to separate an RO PUF’s measurement components. Thereby, it is
possible to extract the secret RO frequencies for each RO measurement run,
even for implementations protected against the first attack. I propose ran-
domized measurement chains and interleaved placement as countermeasures
against this attack. Randomizing the usage of measurement components
breaks the relation between RO and measurement circuits, while interleaved
circuit placement provides practical protection because of EM emission over-
lap and does not incur any overhead. Additionally, this chapter provides ex-
planations of the used EM measurement setup, discusses the impact of FPGA
decapsulation on RO PUFs, and shows in a pre-analysis that even a single
RO can be located by state-of-the-art EM measurement equipment. Parts of
this chapter have been published in the paper Semi-invasive EM Attack on
FPGA RO PUFs and Countermeasures at the 6th Workshop on Embedded
Systems Security in 2011 [MSSS11a] and the contribution Localized Electro-

41

42 CHAPTER 4. ATTACKS ON RO PUFS

magnetic Analysis of RO PUFs at the IEEE International Symposium on
Hardware-Oriented Security and Trust in 2013 [MHH`13].

This chapter is organized as follows. A brief overview of related work is
given in Section 4.1. The impact of decapsulating an FPGA on its RO PUF
is analyzed in Section 4.2. Section 4.3 explains the measurement setup I
used, while Section 4.4 shows the practical feasibility to locate a tiny 3-
inverter RO by EM analysis. In Section 4.5, the first attack exploiting RO
overlap is shown and a countermeasure is proposed. The second attack based
on localized EM measurements is demonstrated in Section 4.6. Section 4.7
summarizes this chapter.

4.1 Related Work

Until now, there is no related work on RO PUF secret extraction based on
EM emissions besides my contributions. In the following, I will list works
that adjoin and contributed to EM analysis of RO PUFs.

In 2001, Gandolfi et al. [GMO01] and Quiscater and Samyde [QS01] used
the electromagnetic emission of a cryptographic device to break it. They
performed a side-channel attack based on algorithmic leakage present in EM
emissions. In contrast to their analysis, I exploit the leakage of physical, not
algorithmic, properties that reveal an RO PUF’s secret.

A first paper about using localized EM emission for chip cartography was
presented by Sauvage et al. [SGM09]. They demonstrated that an FPGA
exhibits different EM emissions at different die locations (mostly at the edges
of the die), depending on the internally programmed design. In my attacks,
I directly exploit separable EM emissions coming from different die areas
corresponding to different RO PUF components.

Heyszl et al. [HMH`12a, HMH`12b] showed that high-resolution probes
enable localized acquisition of EM emission traces over a grid of locations
on the surface of a die. Each trace will capture the emissions of parts of an
integrated circuit close to the measurement location. They further showed
that this can be exploited for attacks on cryptographic modules. Building on
these results, I use localized EM analysis for high-resolution frequency emis-
sion cartography, which allows to spatially separate components of RO PUFs.

Rührmair et al. [RSS`10] demonstrated that RO PUFs can be modeled by
machine learning algorithms, if an attacker is able to collect a sufficient num-
ber of CRPs. They also remark that a full read-out of RO PUFs is possible.
However, these attacks become infeasible for key generation scenarios, where
no public challenge-response interface is available to an attacker. Therefore,
they are not relevant or comparable to the attacks I propose.

4.2. IMPACT OF RO PUF DECAPSULATION 43

Besides extracting information from the EM emission of RO PUFs, an-
other way to attack them is the injection of EM signals as shown by Bayon
et al. [BBA`12]. There, RO frequency locking can be achieved by externally
injecting frequencies. The locking effect synchronizes all ROs and, thereby,
cancels the uniqueness of the RO signals. However, although these attacks
can disturb the correct operation of a PUF, they do not allow the extraction
of information about the original RO behavior.

4.2 Impact of RO PUF Decapsulation

A popular (marketing) argument for using PUFs instead of conventional
key storage like NVM is their natural tamper resistance property [GKST07,
GŠT`09, SVW10]. This assumption holds true if an attacker aims at ma-
nipulating the PUF structure itself, as for any other memory, but does not
automatically protect a whole microchip and its package from tampering, at
least in the case of silicon PUFs.

In this section, I show that decapsulating a Xilinx Spartan-3 XC3S200
FPGA in a VQ100 package from the backside does not have a significant
influence on internal RO frequencies. As a result, attacks like on-die EM
cartography are valid for RO PUFs and probably many other silicon PUFs
not involving package properties into their measurements.

4.2.1 FPGA Decapsulation

For the following analysis, I followed the suggestion of Skorobogatov [Sko10]
to open an FPGA package from the backside, which can be done manually
and without the application of acids. First, the FPGA was soldered on
a printed circuit board having a hole in the center allowing to access the
backside of the package, as shown in 4.1(a). Then, a drill was used to remove
the plastic packaging down to the copper lead-frame of the package, as shown
in Figure 4.1(b). After cutting the corner connections of the ground-plate
with a carpet cutter, one can take away the plate, exposing the backside of
the die. Finally, the remaining glue was scraped off and die’s surface was
cleaned with acetone. Figure 4.1(c) shows the final result.

For later experiments, I also used FPGAs that were decapsulated from
the frontside by fuming nitric acid, because one can achieve an even higher
Signal-to-Noise Ratio (SNR) there [HMH`12b].

44 CHAPTER 4. ATTACKS ON RO PUFS

(a) (b) (c)

Figure 4.1: Step-by-step backside decapsulation of an FPGA

4.2.2 Analysis Before and After Decapsulation

In order to investigate the impact of chip decapsulation on FPGA RO PUFs,
I designed an array of 256 oscillators on a Xilinx Spartan-3 XC3S200 FPGA
occupying 256 CLBs. Additionally, a multiplexer, a 16-bit counter, and
control logic were integrated to enable frequency measurements for all oscil-
lators. Each oscillator was measured 10000 times over a period of 4096 clock
cycles at 20 MHz in a temperature-controlled room to precisely characterize
the given RO frequencies. The resulting maximum absolute measurement
error with the measurement runtime trun “ 4096 ¨ 1

20MHz
“ 204.8µs can be

calculated by Equation 3.1 to be ˘2441Hz.
Measurements were conducted for ROs consisting of three, five, and seven

inverters before and after decapsulation. To analyze the differences before
and after decapsulation, I first generated frequency maps, as shown in Fig-
ure 4.2 for the 7-inverter case, to visually compare the frequency fingerprint.
Then, I also calculated the mean value fmean of all RO frequencies to inves-
tigate if there was a shift in the mean frequency. Further, to simulate an
RO PUF, I determined the 255-bit PUF response vector ri, i “ 1, ..., 10000
by sequential relative comparison of all 256 measured frequencies of my im-
plementation. From these responses, the intra-device Hamming distance, a
measure for the present noise, can be calculated, as explained in Equation 2.1.
Also, the mean PUF response rmean can be determined:

rmean “
1

10000

10000
ÿ

i“1

ri (4.1)

Figure 4.2 shows the frequency maps, i.e., the physical fingerprint, for
the 7-inverter RO test design before and after decapsulating the FPGA. By
visual inspection, no significant difference can be observed.

4.2. IMPACT OF RO PUF DECAPSULATION 45

(a) before (b) after

Figure 4.2: RO frequency maps for ROs with seven inverters on a Xilinx
Spartan-3 XC3S200 FPGA

Table 4.1 shows the RO mean frequencies of all analyzed RO types before
and after decapsulation. They indicate that opening the chip package shifts
the mean frequency slightly higher. A reason for that might be lesser heat
accumulation without package.

Table 4.1: Mean RO frequency before/after decapsulation
RO Type fmean,before fmean,after fmean,after ´ fmean,before

3-inverter 197.96 MHz 198.07 MHz `0.11 MHz
5-inverter 132.56 MHz 132.70 MHz `0.14 MHz
7-inverter 98.10 MHz 98.20 MHz `0.10 MHz

Analyzing the Hamming distances between the mean RO PUF responses
rmean,before and rmean,after, I found that the influence of decapsulation alters
less than 3% of RO PUF output bits, as shown in Table 4.2. In the perfect
tamper resistance case, tampering with the device should lead to a change in
50% of all response bits. Additionally, the noise contained in the RO PUF
measurements of the original device causes a maximum intra-device Ham-
ming distance maxpHDintra,beforeq that is significantly higher than the change
caused by the decapsulation. This noise and even additional noise from
temperature and voltage variations has to be handled by key generation al-
gorithms in order to enable reliable key extraction anyway. This means, the
smaller response deviation introduced by opening the FPGA package will
also be corrected by the key reconstruction algorithms, leading to no alter-
ation of the generated key. Therefore, I conclude that decapsulation does
not lead to significant changes in RO PUF behavior and does not hinder an

46 CHAPTER 4. ATTACKS ON RO PUFS

attacker from removing an FPGAs package to mount attacks like on-die EM
emission analysis.

Table 4.2: Decapsulation effect on RO PUF responses
RO Type maxpHDintra,beforeq HDprmean,before, rmean,afterq

3-inverter 11.81% 0.79%
5-inverter 7.87% 2.76%
7-inverter 5.12% 2.36%

4.3 Localized Electromagnetic Analysis

In this section, I explain the measurement setup I used for localized EM
analysis over multiple locations of an FPGA die. In contrast to global EM
measurements at a fixed measurement point with a coarse EM probe, an
array of local measurement points enables a much more detailed analysis of
a device’s EM emission. For the first EM attack shown later in this thesis, the
setup significantly enhances the SNR over an attack at a single measurement
point without package removal. For the second attack, the specific localized
leakage of RO PUFs is exploited, i.e., the attack requires to separate leakage
from different RO PUF components, which is not possible with a single-
point measurement. This section also gives an overview of the basic analysis
measures I used for the following attacks.

4.3.1 Measurement Setup

The basic measurement equipment for the two following attacks is the same.
I used a Langer ICR HH 150-6 magnetic field probe, with a 150 µm shielded
horizontal coil, 6 windings, 100 µm resolution, and a 30 dB amplifier to cap-
ture the EM emission close to the die surface. Further, I used an additional
Langer PA 303 30 dB amplifier and a LeCroy WavePro 715Zi oscilloscope
to record measurement traces. In order to automate the position movement
and the trace acquisition, I wrote a script to control the oscilloscope and
an x-y-table accordingly. The distance between the EM probe and the die
surface was approx. 50 µm to prevent damaging die or probe. Figure 4.3
shows two pictures of the EM probe being close to the FPGA die surface as
during my measurements.

4.3. LOCALIZED ELECTROMAGNETIC ANALYSIS 47

(a) (b)

Figure 4.3: EM probe on FPGA die surface

4.3.2 Analysis Preliminaries

This section explains some basic preliminaries for the subsequent attacks.

Grid of Traces

In the following analyses, I always collect traces tpx,yq, where x and y denote
coordinates of locations px, yq in the ranges 1, ..., X and 1, ..., Y over an FPGA
die location set Adie. Each trace tpx,yq consists of T samples tpx,yq,k, k “
1, ..., T .

Adie “ tpx, yq | x “ 1, ..., X; y “ 1, ..., Y u (4.2)

tpx,yq “ ttpx,yq,k | px, yq P Adie; k “ 1, ..., T u (4.3)

The x-y-table I used automatically moved the mounted EM probe step
by step through all required locations, while a script provided input data to
the device under test, which then triggered the oscilloscope to record an EM
trace.

Fast Fourier Transform

The secret of RO PUFs lies in their unique RO frequencies. Therefore, the
attacks I present in the following sections mainly operate in the frequency
domain instead of the time domain. In order to transform time series, such
as EM traces, into the frequency domain, I utilize the Fast Fourier Trans-
form (FFT) [Smi97] with a rectangular window. It allows fast decomposition
of traces into frequency components, namely amplitude and phase of each

48 CHAPTER 4. ATTACKS ON RO PUFS

frequency, which then can be visualized, e.g., as a frequency amplitude spec-
trum. I denote the Fourier transform F of a trace tpx,yq into a complex FFT
vector gpx,yq by:

gpx,yq “ Fptpx,yqq (4.4)

gpx,yq “ tgpx,yq,k | k “ 1, ..., T u (4.5)

The amplitude values of this complex vector, i.e., the absolute magni-
tudes, are denoted as |gpx,yq,k| for every frequency bin k. The phase value is
not relevant for my analyses.

EM Maps

To visualize local properties of EM emission, I use a X ˆ Y pixel map M,
where each map pixel mpx,yq was generated from the according FFT vector
gpx,yq by a function f that depends on the specific attack step.

M “ tmpx,yq | x “ 1, ..., X; y “ 1, ..., Y u (4.6)

mpx,yq “ fpgpx,yqq @ x “ 1, ..., X; y “ 1, ..., Y (4.7)

Spectrum Filtering

I use the term filtering to describe the procedure of considering only a part
of a frequency spectrum. I do not apply digital filter techniques, but just
restrict the analysis from a T -bin FFT vector gpx,yq to a vector g˚

px,yq with
T ˚ frequency bins within a frequency range from flo to fhi. This filtering is
denoted as:

g˚px,yq “ filterpgpx,yq, flo, fhiq (4.8)

Clustering of Data

In the second attack, where I exploit local differences of EM emissions, I aim
at separating RO PUF components. Therefore, a clustering algorithm, such
as the k-means [DHS01] algorithm, is required. These algorithms partition
a set of n values into q clusters. I denote the clustering of values tx1, ..., xnu
into q clusters Q1, ..., Qq as:

tQ1, ..., Qqu “ clusterptx1, ..., xnuq (4.9)

4.4. EM EMISSION OF RING OSCILLATORS 49

4.4 EM Emission of Ring Oscillators

In this section, I answer the question whether it is feasible to identify the
frequency and location of a tiny oscillating circuit, such as a single 3-inverter
RO, by measuring its weak EM emission with the above mentioned state-
of-the-art equipment. Also, I explain how to identify ROs in a frequency
amplitude spectrum. This is a preliminary experiment to understand the
characteristics of ROs’ EM emission, which is implicitly required by the fol-
lowing attacks.

4.4.1 Test Design

For this analysis, I implemented a test design with six manually placed ROs
on a Xilinx Spartan XC3S200 FPGA device, as shown in Figure 4.4. RO1

and RO2 consist of seven inverters, RO3 and RO4 of five inverters, and RO5

and RO6 of only three inverters. The right column of ROs was implemented
in one CLB, using only local routing. In order to analyze the influences of
global routing, the ROs in the left column used four, three and two CLBs,
respectively. All oscillators were running simultaneously for 2048 cycles.
Note that the components on the very left of the FPGA floorplan are control
logic and have only negligible influence on the ROs.

4.4.2 Frequency Spectra

I recorded 54 ˆ 54 “ 2916 traces with 512000 samples each over the whole
FPGA die and transformed them into the frequency domain by FFT.

Adie “ tpx, yq | x “ 1, ..., 54; y “ 1, ..., 54u (4.10)

gpx,yq “ Fptpx,yqq @ px, yq P Adie (4.11)

gpx,yq “ tgpx,yq,k | k “ 1, ..., 512000u (4.12)

Then, I calculated the standard deviation spectrum Ssd of all amplitude
spectra over all locations, yielding high values at frequencies which show a
strong spatial dependency, i.e., are present at some locations and missing at
others.

50 CHAPTER 4. ATTACKS ON RO PUFS

Figure 4.4: Floorplan of RO emission test design on Xilinx Spartan-3
XC3S200 FPGA

Ssd “ tssd,k | k “ 1, ..., 512000u (4.13)

µk “
1

2916

54
ÿ

x“1

54
ÿ

y“1

gpx,yq,k @ k “ 1, ..., 512000 (4.14)

ssd,k “

g

f

f

e

1

2916

54
ÿ

x“1

54
ÿ

y“1

pgpx,yq,k ´ µkq
2 @ k “ 1, ..., 512000 (4.15)

I used Ssd to identify the implemented ROs without prior knowledge
about their frequencies. I found that RO emission spectra, e.g., as shown
in Figure 4.5(a), are quite different from frequency spectra originating from
disturbances, as shwon in Figure 4.5(b). These disturbances are introduced
by the control circuits or by the measurement environment. The RO spectra
show a wider frequency range, because their frequencies vary over time and
measurement location. Therefore, they are represented as a “hill” in the
spectrum. Disturbances often show a spike, which corresponds to the spe-
cific frequency on which the disturbance source is operating, e.g., in wireless
network applications.

4.4. EM EMISSION OF RING OSCILLATORS 51

(a)

(b)

Figure 4.5: Exemplary amplitude standard deviation spectra of (a) a ring
oscillator and (b) a disturbance frequency

52 CHAPTER 4. ATTACKS ON RO PUFS

Table 4.3: Identified RO frequencies
RO Type Freq. Range Mean Freq. Variation

/ MHz / MHz / MHz

1 7 inverters in 4 CLBs 123.55´ 123.85 123.700 ˘0.150
2 7 inverters in 1 CLB 142.95´ 143.10 143.025 ˘0.075
3 5 inverters in 3 CLBs 177.75´ 178.05 177.900 ˘0.150
4 5 inverters in 1 CLB 202.80´ 202.95 202.875 ˘0.075
5 3 inverters in 2 CLBs 298.95´ 299.25 299.100 ˘0.150
6 3 inverters in 1 CLB 338.80´ 339.00 338.900 ˘0.100

I was able to find all six ROs and identify their frequency characteristics
by looking for characteristic RO signatures, as shown in Figure 4.5(a), in
the spectrum Ssd. Table 4.3 shows that larger ROs (more inverters, longer
routing) exhibit lower frequencies, as expected. It also shows that ROs imple-
mented in one CLB show a lower variation, i.e., occupy a narrower frequency
range.

4.4.3 RO Localization

In order to locate the position of the implemented ROs, I filtered the pre-
viously obtained FFT result vectors gpx,yq, i.e., I reduced the T “ 512000
frequency bins to T ˚ bins within the range of 338.80´ 339.00 MHz to select
RO6. Then, I generated an EM map where each pixel mpx,yq represents the
average amplitude in the filtered spectrum at the corresponding location.

g˚px,yq “ filterpgpx,yq, 338.8, 339.0q @ px, yq P Adie (4.16)

mpx,yq “
1

T ˚

T˚
ÿ

k“1

g˚px,yq,k @ px, yq P Adie (4.17)

In Figure 4.6, the local emission of RO6 can clearly be identified at the
lower right position, as expected from the floorplan in Figure 4.4.

Therefore, my measurements show that the localization and measurement
of a single 3-inverter RO is possible. However, it has to be noted that,
although measured very close to the surface of the FPGA die, even the EM
emission of the smallest RO extends to a circle with a diameter of approx.
500 µm, which suggests that it is very hard to distinguish closely placed
ROs. In other words, the results support interleaved placement as a method
to disguise RO EM emission, because separation of ROs or other emitting
components placed in close proximity becomes unlikely.

4.5. ATTACK ON STANDARD RO PUFS 53

Figure 4.6: EM map revealing the position of RO6

4.5 Attack on Standard RO PUFs

This first attack focuses on the extraction and mapping of RO frequencies
based on EM measurements performed on a standard RO PUF implementa-
tion. This enables an attacker to fully characterize a given RO PUF. Com-
pared to the second attack, no separation of RO PUF components takes
place, i.e., no localized leakage is exploited. However, compared to standard
power or EM analyses, the localized EM trace acquisition technique provides
a higher SNR for the following analysis traces [HMH`12b], which supports
this attacks.

The attack is divided into several steps. First, the frequency range of the
analyzed ROs has to be determined. Then, the die area with the highest RO
frequency leakage, i.e., the area where ROs frequencies can be observed best,
has to be identified, which enhances the SNR. After restricting the frequency
range and the die location, two distinct frequencies for each comparison of
two ROs can be identified. The overlapping RO comparison, as shown in
Figure 4.7, is the key to the presented attack. It allows to link the observed
RO frequencies to their corresponding ROs in the correct sequence. Thereby,
a full RO PUF model can be generated.

In the following, I detail the EM analysis methods for attacking a stan-
dard RO PUF implementation with two counters a and b, and Ncomp ` 1
ROs generating an Ncomp-bit response from Ncomp comparisons of two ring
oscillators ROa,n and ROb,n for n “ 1, ..., Ncomp.

54 CHAPTER 4. ATTACKS ON RO PUFS

Ring Oscillators RO1 RO2 RO3 ROnROn-1

Response Bits

Comparison

Bit 1 Bit 2 Bit n-1

Figure 4.7: Overlapping RO comparisons

As described in Section 2.2.1, for each comparison n, the result is obtained
as follows:

counterapROa,nq ą counterbpROb,nq Ñ 0 (4.18)

counterapROa,nq ď counterbpROb,nq Ñ 1 (4.19)

Following, I demonstrate the practical feasibility of the described attack
and show how RO PUFs can be protected against the presented attack.

4.5.1 Detailed Attack Steps

In this section, I detail the necessary steps for EM emission attacks on stan-
dard RO PUFs.

RO Frequency Range

The first step in the EM analysis of standard RO PUFs is to identify the fre-
quency range in which the ROs operate. Since clock signals, their harmonics,
and other disturbances are spread over the entire frequency spectrum, it is
essential to concentrate on a restricted frequency range for analysis.

My approach is based on the fact that every comparison in a standard
RO PUF exhibits two specific frequencies, corresponding to the two compared
oscillators. For each comparison, these frequencies change while all other
frequencies resulting from irrelevant parts of the device or external sources
are rather constant or noisy. The number of comparisons Ncomp, which is
important to know for this attack, is either publicly available because it
is mentioned in the data sheet of an RO PUF device, or it can easily be
extracted by looking at the regular RO measurement intervals present in the

4.5. ATTACK ON STANDARD RO PUFS 55

power side-channel of an RO PUF. Thus, I first divide the collected traces
tpx,yq into Ncomp equal time slots tpx,yq,n, one for every comparison. Then, I
transform all tpx,yq,n to the frequency domain:

Adie “ tpx, yq | x “ 1, ..., X; y “ 1, ..., Y u (4.20)

gpx,yq,n “ Fptpx,yq,nq @ px, yq P Adie;n “ 1, ..., Ncomp (4.21)

gpx,yq,n “ tgpx,yq,n,k | k “ 1, ..., T u (4.22)

I accumulate the differences of frequency amplitudes |gpx,yq,i,k|´ |gpx,yq,j,k|
between all comparisons i and j in each trace. Finally, for easier comparison,
the possibly signed accumulations of amplitude differences are unified to the
positive range by taking their absolute value leading to the spectrum Sdiff.

Sdiff “ tsdiff,k | k “ 1, ..., T u (4.23)

sdiff,k “
ˇ

ˇ

X
ÿ

x“1

Y
ÿ

y“1

Ncomp´1
ÿ

i“1

Ncomp
ÿ

j“i

p|gpx,yq,i,k|´ |gpx,yq,j,k|q
ˇ

ˇ @ k “ 1, ..., T (4.24)

In Sdiff, high difference peaks indicate frequencies that are present in some
comparisons but missing in others, i.e., these frequencies are very likely to
be RO frequencies. With the highest amplitudes in this spectrum, the RO
frequency range flo to fhi can be identified.

Area of Leakage

I present two ways to identify the area of RO PUF frequency leakage. Com-
mon to both approaches is the filtering of the frequency domain vectors
gpx,yq,n, i.e., reducing them to T ˚ frequency bins within the before obtained
frequency range flo to fhi:

g˚px,yq,n “ filterpgpx,yq,n, flo, fhiq @ px, yq P Adie;n “ 1, ..., Ncomp (4.25)

The first method is plotting the mean difference between comparisons
in the above identified frequency range in a map M. The resulting map
highlights points, where the frequencies can be distinguished. Each pixel
mpx,yq of map M can be calculated as follows:

mpx,yq “
1

T ˚

T˚
ÿ

k“1

ˇ

ˇ

Ncomp´1
ÿ

i“1

Ncomp
ÿ

j“i

p|g˚px,yq,i,k|´ |g˚px,yq,j,k|q
ˇ

ˇ @ px, yq P Adie (4.26)

56 CHAPTER 4. ATTACKS ON RO PUFS

Another possibility is using the amplitudes of the leaking frequencies
directly. One can plot the mean of all amplitudes in the found frequency
range for every map point. This map gives a hint which area of a design
discloses high amplitudes of RO frequencies.

mpx,yq “
1

T ˚

T˚
ÿ

k“1

Ncomp
ÿ

i“1

|g˚px,yq,i,k| @ px, yq P Adie (4.27)

These methods allow to identify locations px, yq, where a high leakage is
present, in order to combine them into a leakage location set Aleak.

Distinct RO Frequencies

In the third step, I focus only on the |Aleak| locations px, yq in Aleak, deter-
mined in the previous analysis step. I average all spectra to obtain a noise
reduced average spectrum Scomp,n for every RO frequency comparison n.

Scomp,n “ tscomp,n,k | k “ 1, ..., T ˚u (4.28)

scomp,n,k “
1

|Aleak|

ÿ

px,yqPAleak

|g˚px,yq,n,k| @ n “ 1, ..., Ncomp; k “ 1, ..., T ˚ (4.29)

Afterwards, one should be able to visually extract two distinct frequencies
f1 and f2 (with high amplitudes) in every spectrum Scomp,n where f1 ă f2.
These frequencies represent the two RO signals of each comparison. A list
L with elements l1, l2, ..., lNcomp , containing the comparison n linked with
the found frequencies f1,n and f2,n, n “ 1, ..., Ncomp, can be generated as
preparation for the last analysis step.

L “ tln “ pn; f1,n; f2,nq | n “ 1, ..., Ncompu (4.30)

RO PUF Modeling

Until now, an attacker only knows about the RO frequencies present during
each comparison, but does not have any information about the secret bits,
which can be extracted from the RO PUF. In the last step, the measured RO
pairs ROa,n and ROb,n of each comparison n come into play. They constitute
the missing link between the found frequencies and the corresponding ROs.

When generating a secret response from Ncomp`1 oscillators by applying
a sequential comparison scheme, where ROa,1 “ RO1 and ROb,1 “ RO2,

4.5. ATTACK ON STANDARD RO PUFS 57

ROa,2 “ RO2 and ROb,2 “ RO3 and so on, a response length of Ncomp bits
can be achieved. There, the rule ROa,n “ ROb,n´1, n “ 2, ..., Ncomp (second
RO in one comparison will be first RO in following comparison) is meant to
achieve independent RO comparisons.

However, this rule can be exploited to correctly map the measured fre-
quencies to their corresponding ROs because it leads to the condition that
one of two frequencies of a comparison, i.e., f1,n or f2,n, must be common to
one of the preceding comparison frequencies f1,n´1 or f2,n´1:

pf1,n “ f1,n´1q _ pf1,n “ f2,n´1q _ pf2,n “ f1,n´1q _ pf2,n “ f2,n´1q

@ n “ 2, ..., Ncomp

(4.31)

Therefore, the frequency fROa,n of the oscillator ROa,n can be determined
as the frequency that is equal to one of preceding frequencies f1,n´1 or f2,n´1:

fROa,n “

#

f1,n : if pf1,n “ f1,n´1q _ pf1,n “ f2,n´1q

f2,n : if pf2,n “ f1,n´1q _ pf2,n “ f2,n´1q
@ n “ 2, ..., Ncomp

(4.32)

Clearly, fROb,n
must be the other frequency of the two possible frequencies.

The frequencies of the very first and the very last oscillator in the sequence,
RO1 and RONcomp`1 respectively, will only appear once in the list L, but
knowing the mapping of the ROs compared to them, RO1 and RONcomp`1

can be linked to the left over frequencies.
By the shown rules, it is possible to solve the comparisons and map all fre-

quencies to their corresponding ROs. To obtain a full model of an RO PUF,
the list of all Ncomp` 1 ROs RO1, ...,RONcomp`1, linked with their frequencies
fRO1 , ..., fRONcomp`1

, has to be derived from the found RO frequencies fROa,n

and fROb,n
:

fRO1 “ fROa,1 (4.33)

fROn “ fROa,n @ n “ 2, ..., Ncomp (4.34)

fRONcomp`1
“ fROb,Ncomp

(4.35)

If an attacker has reached this point, he can perform the comparisons
between all ROs himself and, thereby, generate all secret PUF output bits.
However, assuming that an attacker does not know if the comparison uses
a ą or a ă, he still has to check which of the two possibilities leads to the
correct bit sequence.

58 CHAPTER 4. ATTACKS ON RO PUFS

Discussion on Analysis Limits

The main attack scenario of the presented methods are RO PUFs used for
secret key generation. There, a fixed sequence of Ncomp challenges is applied
step by step to efficiently use the number of integrated ROs. I assume that
this challenge sequence is not concealed, but can be regarded as known, as
requested for good security designs. However, even in the case of a scrambled
challenge sequence, Ncomp´1 ROs are measured at least twice to obtain Ncomp

response bits. Therefore, the list L can be generated and sorted in a way
that subsequent comparisons contain one common frequency. Afterwards,
the analysis can be continued as described.

Further, the runtime of a single RO frequency comparison or the number
of frequency comparisons is assumed to be known, i.e., it is possible to sep-
arate the sequence of frequency comparisons. However, even if the runtime
would not be known, an attacker could estimate it by dividing the whole
measurement time by the number of generated response bits or observe the
regularity of RO measurements in the power side-channel of an RO PUF.

In case of very close RO frequencies in one comparison, it might not be
possible to distinguish between them. Since this effect is also responsible for
noise in RO PUF responses, the uncertainty of my analysis only reflects this
noise. Algorithms like fuzzy extractors or error-tolerant protocols can handle
a specified amount of noise anyway, which means that an attacker only has to
extract the PUF response with a certain precision and eventually happening
extraction errors can be seen as noise contained in the PUF response bits.

4.5.2 Case Study: FPGA Ring Oscillator PUF

For practical verification of the proposed attack method, I implemented an
RO PUF prototype with chained RO comparisons to extract Ncomp bits from
Ncomp` 1 ROs. Step-by-step, it compares two ROs running during the mea-
surement.

For the proof-of-concept, I implemented nine ring oscillators, each built
out of seven inverters. During eight comparisons, each of them lasting 4096
cycles of the 20 MHz system clock, eight PUF response bits were generated.
I used a small number of oscillators to focus on the evaluation of the basic
attack while keeping the data and computational effort for trace storage and
processing low. Also, designs with a higher number of ROs lead to large
multiplexers, which function as a kind of amplifier and even increase the EM
emission related to RO frequencies.

The design was loaded on a Xilinx Spartan XC3S200 FPGA, which was
decapsulated from the backside. As I explained in Section 4.2, removing the

4.5. ATTACK ON STANDARD RO PUFS 59

package of an FPGA does not influence the ROs’ frequencies noticeably.
I chose a grid of 50 ˆ 42 measurement points over the 4.8mm ˆ 4.0mm

die area to acquire 2100 EM emission traces over the FPGA die hosting my
RO PUF design. The oscilloscope was set to a sampling rate of 1 GS/s and
recorded 600000 samples per trace. The function generator for the device’s
clock signal was synchronized with the oscilloscope.

RO Frequency Range

The first step to disclose the implemented ROs was to identify their fre-
quency range. I calculated the accumulated frequency amplitude difference
spectrum as described in Equation 4.24. Figure 4.8 shows the resulting spec-
trum for my RO PUF implementation. One can find significant peaks in
this spectrum that signalize that these frequency amplitudes change from
one comparison to another. The largest peak is located at around 100 MHz.
By closer inspection, as shown in Figure 4.9, the exact frequency range can
be determined to reach from flo “ 100.3 MHz to fhi “ 102.1 MHz. Other
peaks found in the spectrum correspond to harmonics of the RO frequen-
cies or other comparison-dependent frequencies, e.g., originating from the
components of the measuring counter.

Figure 4.8: Frequency amplitude difference spectrum revealing RO frequency
range around 100 MHz

60 CHAPTER 4. ATTACKS ON RO PUFS

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08

Frequency Am plitude Difference between Com parisons

frequency [Hz]

a
cc

u
m

u
la

te
d

 a
m

p
lit

u
d

e
 d

if
fe

re
n

ce
 [

m
V

]

Figure 4.9: Spectrum range with highest peaks

Area of Interest

Next, I generated maps of the FPGA die to find the locations where the
oscillators’ frequencies can be observed best. I used both proposed methods
given by Equations 4.26 and 4.27. One can see light areas in Figure 4.10(a)
that indicate amplitude differences between comparisons and therefore rep-
resent points of interest for an attacker. The frequency amplitude map, as
depicted in Figure 4.10(b), shows similar results indicating high amplitudes
of RO frequencies at bright pixels.

Thus, the area of main leakage can coarsely be limited to the locations
within the rectangle spanning over x “ 18, ..., 28 and y “ 15, ..., 29. This
means that the number of traces to process can be reduced from 2100 to 165
relevant ones, which accelerates the analysis and significantly enhances the
quality of the final results.

RO Frequency List

As a last step, I calculated the mean frequency amplitude spectra for ev-
ery comparison slot, as described by Equation 4.29, and plotted them one
beneath the other, as shown in Figure 4.11. One can see that every compar-
ison contains two distinct frequency peaks representing two RO frequencies.
Table 4.4 shows an RO frequency comparison list.

4.5. ATTACK ON STANDARD RO PUFS 61

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

Accum ulated Am plitude Differences Map

X

Y

0.7 [m V]

1.5 [m V]

2.3 [m V]

3.1 [m V]

3.9 [m V]

(a) amplitude difference map

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

RO Frequency Am plitudes Map

X

Y

0.2 [m V]

0.2 [m V]

0.3 [m V]

0.3 [m V]

0.4 [m V]

(b) frequency amplitude map

Figure 4.10: Maps to identify the area of leakage

62 CHAPTER 4. ATTACKS ON RO PUFS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08
frequency [Hz]

am
p

lit
u

d
e

[m
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08
frequency [Hz]

am
p

lit
u

d
e

[m
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08
frequency [Hz]

am
p

lit
u

d
e

[m
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08
frequency [Hz]

am
p

lit
u

d
e

[m
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08
frequency [Hz]

am
p

lit
u

d
e

[m
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08
frequency [Hz]

am
p

lit
u

d
e

[m
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08
frequency [Hz]

am
p

lit
u

d
e

[m
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.000e+ 08 1.005e+ 08 1.010e+ 08 1.015e+ 08 1.020e+ 08 1.025e+ 08

am
p

lit
u

d
e

[m
V

]

f requency [Hz]

Figure 4.11: Frequency amplitude spectra for each of the 8 RO comparisons

4.5. ATTACK ON STANDARD RO PUFS 63

Table 4.4: RO frequency comparison list
comparison n f1 / MHz f2 / MHz

1 100.71 100.91
2 100.93 101.56
3 101.58 101.94
4 100.87 101.94
5 100.88 101.45
6 100.55 101.45
7 100.44 100.55
8 100.44 101.82

RO PUF Model

To recover the secret response generated by my RO PUF implementation,
I finally exploited the frequency overlap of RO comparisons to decode the
found frequencies according to Equation 4.32. Since the chain of oscillators
is evaluated pair by pair, i.e., first, RO1 and RO2, then, RO2 and RO3, etc.,
I know that, e.g., RO2 is common to the first and the second comparison. As
one can see, the frequencies 100.91 MHz of comparison 1 and 100.93 MHz of
comparison 2 are very close, while the other frequencies of these comparisons
are farther away. Thus, fRO2 can be averaged to 100.92 MHz. If one continues
like that, a full model of the analyzed RO PUF can be generated by a list,
as shown in Table 4.5.

Table 4.5: Complete RO PUF model
ROm fROm / MHz

1 100.71
2 100.92
3 101.57
4 101.94
5 100.88
6 101.45
7 100.55
8 100.44
9 101.82

On the basis of Table 4.5, an attacker is able to extract two possible
secret PUF responses, depending on the comparison operator, i.e., if the
RO PUF uses a ą or a ă comparison. In this case, one of the two bit
sequences, which can be generated by comparison of the found frequencies, is

64 CHAPTER 4. ATTACKS ON RO PUFS

p1, 1, 1, 0, 1, 0, 0, 1q. This matches the correct response bits I collected in a log
file during measurements. Therefore, this experiment successfully extracted
the secret response bits of my RO PUF implementation.

4.5.3 Countermeasure

As shown above, the extraction of RO frequencies from EM measurements
is feasible in practice. Therefore, countermeasures are necessary to protect
RO PUFs.

The crucial point allowing an attacker to map frequencies to oscillators
is the overlapping of ROs in a comparison sequence extracting Ncomp bits
from Nro “ Ncomp`1 ROs. A straight forward approach to prevent oscillator
identification is to use every oscillator only once in a single comparison,
resulting in a reduced bit extraction rate of Nro{2 bits from Nro ROs. Hence,
more oscillators have to be implemented for the same number of response
bits. This leads to a higher hardware footprint, but the overall extraction
runtime stays the same.

Another fact facilitating EM attacks on RO PUFs is the sequential call
of all comparisons, i.e., always two frequencies are present at a time during
RO measurement. Therefore, the RO sequence can be exploited to map
frequencies to oscillators. Comparing allNcomp`1 oscillators at the same time
would be resistant against the shown attack and one could still extract Ncomp

response bits. Also, the runtime would be reduced to the measurement time
of a single comparison. However, the significant drawback of this solution is
the immense hardware overhead, since every oscillator would need its own
counter consisting of several flip-flops and logic gates.

The ideas of non-overlapping RO comparisons and parallel RO measure-
ments are inefficient in terms of their required hardware components if only
one of them is used. However, their combination is the solution to achieve a
resistant RO PUF architecture, while keeping the required overhead low.

Using a small number of measurement counters Ncnt in parallel allows to
keep the hardware overhead low, while the measured oscillators can then be
compared with overlap to extract Ncnt´ 1 bits. To achieve a high number of
RO PUF response bits, several measurement runs Nrun need to be performed,
generating NrunˆpNcnt´1q bits from Nro “ NrunˆNcnt ROs. However, none
of the ROs is allowed to be measured twice in order to consistently avoid
any exploitable RO overlap. Table 4.6 shows a list of possible parameters
to securely extract 128 bits from an RO PUF. Depending on the required
hardware components of an RO and a counter, one could choose the optimal
solution for a given device or technology.

4.6. LOCALIZED ATTACK ON PROTECTED RO PUFS 65

Table 4.6: Comparison of parameters for a resistant RO PUF concept
Ncnt Nrun Nrun ˆ pNcnt ´ 1q Nro “ Nrun ˆNcnt

2 128 128 256
3 64 128 192
4 43 129 172
5 32 128 160
6 26 130 156
7 22 132 154

4.6 Localized Attack on Protected RO PUFs

In this section, I detail how RO PUFs that are protected against the attack
shown in Section 4.5 can still be attacked by localized EM analysis. The
key to this attack is the separation of RO PUF measurement components by
exploiting localized EM leakage. If an attacker is able to separately observe
measured RO frequencies leaked at multiplexers, counters, or comparators,
the security of an RO PUF is broken.

4.6.1 Location-Dependent Frequency Leakage

When attacking RO PUFs, an attacker aims at disclosing the mapping be-
tween ROs and their corresponding frequencies. Using localized measure-
ments, a theoretical straight forward approach would be to record a trace at
every RO position, extract the dominant frequency, and map it to the RO at
this location. However, there are practical problems mitigating this threat:

1. As shown in Section 4.4, the EM emission of a single RO extends to
several 100 micrometers, making differentiation of closely placed ROs
very hard.

2. There can be more than 1000 oscillators with unknown locations in a
PUF design, leaving an attacker with the task to precisely locate each
single RO.

3. Even if all ROs can be measured, an attacker still needs to find out
which ROs are compared to each other to generate the final PUF bits.

More promising and exploitable points for an practical attack can be
discovered by looking at the logic and registers connected to an RO, e.g.,
multiplexers and counters. These resources are shared among several oscil-
lators, so the number of locations to determine is reduced drastically. And

66 CHAPTER 4. ATTACKS ON RO PUFS

ROs
A

MUX
A

Counter
A

OutputComparison
Counter

B
MUX

B

fRO fRO/2, fRO/4, fRO/8, ...

ROs
B

Counter
C

MUX
C

ROs
C

RO Select Sequence

Figure 4.12: Ring oscillator measurement chain

since these circuits usually consist of larger and more complex structures, the
emitting area and the emission’s amplitude are increased. Also, the number
of possible component combinations to obtain the PUF output bits is very
much lower than possible RO combinations.

In the common case where ROs are measured by asynchronous counters,
each counter flip-flop divides the original RO frequency by 2 (beginning with
the least significant bit), as shown in Figure 4.12. This generates additional
leakage at fractions of the ROs’ frequencies, which can also be exploited.

4.6.2 Attack Steps

As shown in Section 4.5, standard RO PUF architectures are vulnerable to
EM analysis. Therefore, I proposed a protected architecture, where the RO
comparison overlap is eliminated. In order to enhance efficiency, I proposed
the usage of more than two counters for RO measurements. Figure 4.12 shows
the architecture of a protected 3-counter RO PUF with its three measurement
paths.

If an attacker is able to separate the three measurement paths of an
RO PUF implementation of the architecture shown in Figure 4.12, then he
is able to obtain a list of RO frequencies that have been measured by each
measurement counter during several measurement runs. The challenging task
in this case is to locate and separate each measurement path. In this section,
I explain how this can be achieved.

4.6. LOCALIZED ATTACK ON PROTECTED RO PUFS 67

A set of Nro oscillators is measured by Ncnt counters. Then, Nrun “ r Nro

Ncnt
s

sequential measurement runs are necessary to determine all frequencies that
are subsequently used for key generation. The EM emission of an RO PUF
has to be observed during this time frame. As Nro, Ncnt and Nrun might
be found in the specification of the device, I assume that they are known to
an attacker. This helps the adversary to successfully perform the following
attack steps:

1. Trace acquisition. Record EM traces for all Nrun measurement runs
at every location on a grid over the devices’ die surface.

2. Domain transform. For every location, divide the recorded trace into
Nrun equal time slots and transform each of them into the frequency
domain. This leads to Nrun frequency spectra at each location.

3. Location identification. Identify locations where information about
RO frequencies is leaked, i.e., locations that show a significant stan-
dard deviation in the frequency domain over all measurement runs.
Locations where the frequency spectrum does not vary over different
measurement runs do not leak RO frequencies.

4. Frequency range determination. Determine the frequency range
where ROs can be observed best in order to be able to focus on a
narrow frequency band for further processing. This can be achieved
by analyzing the contribution of frequencies to the standard deviation
at all significant locations found in the previous step. This step might
either reveal the original RO frequencies, or fractions of them.

5. Location-to-path mapping. Cluster all significantly contributing lo-
cations into Ncnt measurement paths according to their mainly present
frequency in the previously found frequency range. This represents the
actual separation of measurement paths, the key to this attack. It can
be done by a clustering algorithm such as k-means [DHS01].

6. RO frequency extraction. Decide on a location (or a set of locations)
for each measurement path and extract the dominant frequency for
each path during every measurement run. This leads to a sequence
of Nrun frequency values for every measurement path. Then, the last
information about the RO PUF an attacker does not know, is how
its measurement counters are compared to each other. However, since
there is only a small number of counters, he only needs to test which of
the Ncnt! possible measurement path comparison combinations is the
correct one leading to the full PUF model.

68 CHAPTER 4. ATTACKS ON RO PUFS

Trace Acquisition and Domain Transformation

The first step is recording traces tpx,yq, x “ 1, ..., X; y “ 1, ..., Y over a grid
Adie of X ˆ Y measurement points including all Nrun measurement runs,
as described in Section 4.3. Afterwards, the traces tpx,yq are divided into
Nrun subtraces tpx,yq,n, n “ 1, ..., Nrun, which are then transformed into the
frequency domain:

Adie “ tpx, yq | x “ 1, ..., X; y “ 1, ..., Y u (4.36)

gpx,yq,n “ Fptpx,yq,nq @ px, yq P Adie;n “ 1, ..., Nrun (4.37)

Every transformed trace gpx,yq,n consists of T frequency bins:

gpx,yq,n “ tgpx,yq,n,k | k “ 1, ..., T u @ px, yq P Adie;n “ 1, ..., Nrun (4.38)

Location Identification

The identification of leaking locations is an important preparation step for
localized attacks, because only these locations provide information about the
leakage of all measurement paths. Separating the found locations is the main
challenge for this attack vector.

A map Mloc with points mloc,px,yq indicating the locations of leakage can
be calculated as follows. The mean value µpx,yq,k of each frequency amplitude
|gpx,yq,n,k| at every location px, yq is calculated before hand.

µpx,yq,k “
1

Nrun

Nrun
ÿ

n“1

|gpx,yq,n,k| @ px, yq P Adie; k “ 1, ..., T (4.39)

σpx,yq,k “

g

f

f

e

1

Nrun

Nrun
ÿ

n“1

p|gpx,yq,n,k|´ µpx,yq,kq2 @ px, yq P Adie; k “ 1, ..., T

(4.40)

mloc,px,yq “
1

T

T
ÿ

k“1

σpx,yq,k @ px, yq P Adie (4.41)

There, locations px, yq with a high average frequency amplitude standard
deviation over all RO measurement runs represent RO-dependent EM emis-
sions. Therefore, these leaking locations can be combined into a set Aleak.

4.6. LOCALIZED ATTACK ON PROTECTED RO PUFS 69

Frequency Range Determination

Focusing only on locations in Aleak, the contributing frequency range can be
determined. Therefore, the amplitude standard deviation spectrum Ssd is
calculated as follows.

Ssd “ tssd,k | k “ 1, ..., T u (4.42)

ssd,k “
1

|Aleak|

ÿ

px,yqPAleak

σpx,yq,k @ k “ 1, ..., T (4.43)

From this spectrum Ssd, the frequency range of interest, flo to fhi, can
be extracted by taking the range with the highest mean standard deviation
values.

Mapping of Locations to Measurement Paths

Until now, an attacker has only gained information about where RO fre-
quencies leak on the die surface. However, he is still not able to separate the
locations into Ncnt parts, which is necessary to observe each measurement
path independently. Therefore, this mapping step is essential for the pro-
posed attack. All locations in Aleak have to be mapped to one of the Ncnt

measurement paths once. In order to achieve this location mapping, only one
measurement run nalloc of all Nrun measurement runs is necessary. This run
nalloc has to be chosen by inspecting the frequencies present during each mea-
surement. A suitable run exhibits three well separable and distinguishable
RO frequencies.

For the data of measurement run nalloc, every location px, yq in Aleak is
analyzed for the mainly present frequency bin fmax

px,yq, i.e., the frequency with
the highest amplitude in the frequency range flo to fhi. Afterwards, the
locations px, yq can be clustered into clusters Q1, ..., QNcnt according to their
frequencies fmax

px,yq, e.g., by the k-means algorithm [DHS01]. In this case, a
clustering algorithm is useful because it automates the process of separating
the number of locations in Aleak according to the locally emitted frequencies.
Thereby, the Ncnt measurement paths can be identified.

fmax
px,yq “ k : |gpx,yq,nalloc,kq| “ maxp|g˚px,yq,nalloc

|q (4.44)

tQ1, ..., QNcntu “ clusterptfmax
px,yq @ px, yq P Aleakuq (4.45)

70 CHAPTER 4. ATTACKS ON RO PUFS

RO Frequency Extraction

Finally, for every cluster Qi P tQ1, ..., QNcntu, i.e., every measurement path,
one observation point pi “ pxQi

, yQi
q out of all locations in each cluster Qi

has to be fixed. This is achieved by taking the one that exhibits the highest
amplitudes in the frequency spectrum from flo to fhi for each cluster. Then,
at these locations, the frequency bins fmax

pi
can be extracted for every of the

Nrun measurement runs. The results from this analysis are Ncnt lists Li with
elements li,1, ..., li,Nrun of sequential RO frequencies for every measurement
path i “ 1, ..., Ncnt:

Li “ tli,n “ pn; fpi,nq | n “ 1, ..., Nrunu @ i “ 1, ..., Ncnt (4.46)

Since the frequencies in these lists are compared in a fixed manner within
an RO PUF, the final step an attacker has to perform is to generate the
relative comparison results for each of the Ncnt! possible comparison com-
binations of the obtained frequency lists. One can then check which of the
generated keys is the correct one by comparing it to en-/decryption data of
the PUF system under attack.

Discussion on Attack Limits

For this attack, I assume that an attacker has knowledge about the number
of implemented counters Ncnt and the number of RO measurement runs Nrun.
However, if unknown, the number of measurement runs could be identified
by looking at the power consumption of the device. The number of counters
might be found in the datasheet of the device, but can also be obtained
by visual inspection of the frequency spectrum of the RO frequency range
during a measurement run. There, depending on the SNR, clear peaks are
visible representing the number of RO frequencies measured in parallel, i.e.,
the number of counters. Therefore, the underlying assumptions are realistic.

The crux of the matter for this attack is the feasibility to separate all
measurement paths from each other. This is a practical issue that depends
on the technology of the device under attack as well as the precision of the
used measurement equipment. Therefore, this will be discussed after the
proof-of-concept attack presented in Section 4.6.3.

4.6.3 Case Study: Protected FPGA RO PUF

In this case study, I analyze the presented attack on a protected RO PUF
design that is resistant against the EM attack shown in Section 4.5. I explain

4.6. LOCALIZED ATTACK ON PROTECTED RO PUFS 71

Figure 4.13: Floorplan of 3-counter RO PUF design on a Xilinx Spartan
XC3S200 FPGA

the design under attack and demonstrate how to locate leaking RO PUF com-
ponents. Further, I perform the identification of the leaking RO frequency
range, and show the final extraction results.

Protected Implementation

The design under attack generates 32 PUF bits based on Nro “ 48 5-inverter
ROs, which are measured by Ncnt “ 3 counters in Nrun “ 16 RO mea-
surement runs, each lasting 1027 cycles. I implemented three measurement
paths A, B, and C, each consisting of an array of 16 ROs, a multiplexer, and
an asynchronous counter, as shown in Figure 4.13. I used a Xilinx Spartan
XC3S200 FPGA as the device under attack. To obtain two PUF output bits,
CNTA is compared to CNTB and CNTB to CNTC, each comparison yielding
a 1, if the first counter measured a higher frequency than the second one,
and a 0 otherwise. Note that components at the very left side of the FPGA
floorplan are necessary for control purposes. To verify my attack results, the
generated PUF bits are logged over serial communication.

For this proof of concept, I chose to generate only 32 PUF response bits,
because for designs with more generated bits (and therefore more ROs), the

72 CHAPTER 4. ATTACKS ON RO PUFS

Figure 4.14: Standard deviation map indication leaking areas

multiplexers will be larger generating even higher amplitudes for leaking in-
formation about RO frequencies. Also, I deliberately placed each component
within a compact area, leaving space between each part of the RO PUF. This
gives me the opportunity to judge the origin and the spatial extent of EM
leakage. It also allows me to determine whether closer placement would lead
to strong EM signal overlap or not.

Leaking Locations and RO Frequency Range

After trace acquisition and domain transform, an attacker has to identify
locations, where EM emissions reveal currently active RO frequencies over
all RO runs, i.e., these locations will have a high standard deviation in the
frequency spectrum over different RO measurement runs. Therefore, for
every location, i.e., every recorded trace, I obtained the standard deviation
over all FFT spectra of the 16 RO measurement runs. The map shown
in Figure 4.14 was generated according to Equation 4.41 and depicts the
mean value of the standard deviation of all frequency amplitudes over all 16
measurement runs.

Comparing Figure 4.14 to the floorplan in Figure 4.13, one can see that
exploitable frequency emissions mainly occur at locations of multiplexers and
between counters and comparators. Note that the multiplexers and compara-
tors serve as a kind of amplifier for the leakage generated at ROs and counters
because they consist of several gates oscillating with RO/counter frequencies,

4.6. LOCALIZED ATTACK ON PROTECTED RO PUFS 73

Figure 4.15: Map showing three separated areas of leakage acquired from
analyzing the first measurement run

which makes them a favored target. My comparator implementation contin-
uously compares the counter states to demonstrate their possible leakage.
However, the counter signals to the comparators can also be gated to avoid
comparator leakage during operation. For all further analyses, I only focus
on the identified locations exhibiting significant values in Figure 4.14 (upper
half of the map’s value range).

To determine the ROs’ frequency range, I averaged the standard deviation
spectra of all identified locations as described by Equation 4.43. In the result-
ing spectrum, all frequencies contributing to the location-dependent leakage
are represented by peaks. I found accumulations of frequencies with high
values at 188.75 ´ 195.25 MHz, 94.37 ´ 97.63 MHz, and 47.18 ´ 48.82 MHz,
representing the original RO frequency range, the half, and the quarter fre-
quency ranges, respectively.

Mapping Locations to Components

In this step, I mapped the identified locations to three measurement paths,
in order to be able to measure frequencies for each path separately. I per-
formed this mapping as described in Equation 4.45 and chose the first RO
measurement run (nalloc “ 1) as a basis. I restricted my analysis to identified
locations that showed a significant standard deviation in the RO frequency
range of 188.75 ´ 195.25 MHz. For each of these locations, I extracted the
frequency value with the highest amplitude.

Then, the actual mapping was achieved by a k-means algorithm [DHS01],

74 CHAPTER 4. ATTACKS ON RO PUFS

Table 4.7: RO PUF analysis results
Meas. Run ROA / MHz ROB / MHz ROC / MHz PUF Bits

1 191.883 192.839 194.205 00
2 193.288 190.302 191.434 01
3 192.566 191.317 193.151 01
4 193.561 190.712 189.249 11
5 189.444 189.015 189.990 01
6 190.205 188.917 189.639 01
7 191.649 189.483 191.863 01
8 189.815 190.146 190.127 10
9 192.176 190.224 193.268 01
10 193.444 190.420 193.093 01
11 192.449 192.488 192.976 00
12 192.956 193.717 193.151 10
13 191.122 191.571 190.810 10
14 192.312 190.868 192.761 01
15 192.468 189.580 192.098 01
16 191.649 191.122 192.683 01

clustering all location-frequency pairs according to their frequencies into
three categories. After this step, all locations emitting similar frequencies
belonged to the same cluster (measurement path). The resulting separation
is shown in Figure 4.15 and indicates that also closely placed designs can be
attacked, since the clusters are far apart and clearly separated. Note that
counter/comparator locations are not visible, since they leak in a different
frequency range.

RO Frequency Extraction

In the final step, I chose the observation locations for the three measurement
path clusters to be p1 “ p20, 32q, p2 “ p34, 33q, and p3 “ p43, 32q, respec-
tively, because these locations exhibited the highest values in Figure 4.14 for
each cluster. I was able to obtain the three concurrently emitted RO fre-
quencies during all measurement runs by extracting the frequency with the
highest amplitude at all three locations for every run. My results are listed
in Table 4.7.

Testing the Ncnt! “ 3! “ 6 possibilities of how the counter values can
be compared, I found a bit sequence exactly matching the PUF response
bits logged over serial communication during trace acquisition. Even small

4.6. LOCALIZED ATTACK ON PROTECTED RO PUFS 75

Figure 4.16: Cluster map at half frequencies

differences, e.g., in measurement run 5, lead to correct results. At this point,
an attacker would have to confirm his possible bit sequences by performing
a test en-/decryption with the crypto module using the PUF’s key.

Counter/Comparator Leakage

Performing the clustering for the frequency range 94.375´ 97.625 MHz, i.e.,
the half of the original RO frequency range, I derived Figure 4.16. Thereby, I
demonstrate that the attack can also be performed at fractions of the original
RO frequencies that are leaked by asynchronous counters and the subsequent
comparators. There, the advantage of using a clustering algorithm becomes
clear because it allows to separate adjacent and different sized areas. The
black rectangle in the upper left part of Figure 4.16 seems to be a side-effect
present in this frequency range.

4.6.4 Countermeasures

In Section 4.6.3, I showed that it is feasible in practice to break the security
of RO PUFs by localized EM analysis. In this section, I discuss two coun-
termeasures to protect RO PUF devices: (1) randomizing the measurement
paths as far as possible to break the relation between an RO and the mea-
surement components used to determine its frequency, and (2) interleaving
the placement of critical measurement components to render the practical
separation harder or even impossible.

76 CHAPTER 4. ATTACKS ON RO PUFS

MUX
A

Counter
A

Output

Comparison

+

Demasking

Counter
B

MUX
B

Counter
C

MUX
C

RO Select Sequence

ROs
A

ROs
B

ROs
C

Measurement Masking

Figure 4.17: Randomized RO PUF measurement architecture

Measurement Path Randomization

The proposed attack exploits that each RO has a fixed location and a specific
measurement path through a multiplexer to a counter. Clearly, the location
of a unique RO cannot be randomized during runtime, but the subsequent
measurement paths can be changed dynamically by a randomized RO selec-
tion logic. This yields a location masking scheme that breaks the relation
between an RO and its measurement path. An attacker facing a random-
ized measurement scheme has no chance of mapping present frequencies to
measurement paths and will therefore not succeed with the proposed attack.

To achieve this, each Nrun-to-1 multiplexer of an RO PUF architecture,
as shown in Figure 4.12, has to be replaced by an Nro-to-1 multiplexer that
is connected to all available ROs, as shown in Figure 4.17. Additionally, the
Ncnt addresses of the measured ROs must be distributed to these multiplexers
according to a random location mask ml to randomly choose the measure-
ment paths for each measurement run. After the measurement process, the
masked measurement paths have to be demasked again, e.g., by Ncnt multi-
plexers controlled by the location mask ml, which resolve the earlier random
permutation performed in the masking step. Thereby, randomization of the
measurement paths through multiplexers and counters is possible. However,
as the RO locations cannot be randomized, the RO array stays vulnerable.

This countermeasure would also require significant overhead. For the

4.7. SUMMARY 77

implementation attacked in Section 4.6.3, all 16-to-1 multiplexers would have
to be replaced by 48-to-1 multiplexers, resulting in approx. 200% multiplexer
area overhead. Further, RO address masking and demasking logic has to be
added as well as a TRNG.

Interleaved Placement

Interweaving signal routing and purposely interleaving component placement
is a kind of practical hiding countermeasure [HdlTR12] that can only provide
security to a certain degree depending on an attacker’s facilities. Figure 4.15
shows that the leaking areas of each multiplexer are clearly defined and only
adjacent placement would not provide protection from localized EM attacks.
Therefore, I propose to interleave ROs, multiplexers, comparators, and coun-
ters on a register and look-up table level.

The strength of this countermeasure is that neither additional logic nor
a TRNG is needed. However, careful placement and routing techniques are
required to achieve a high protection level. Also, this technique can be com-
bined with the location masking countermeasure to hide leakage originating
from the RO array and the multiplexer input gates, which cannot be pro-
tected otherwise.

4.7 Summary

I presented two physical attacks on RO PUF implementations that exploit
information leaked by their EM emissions.

For standard implementations, the mapping between measured frequen-
cies and corresponding ROs can be achieved by observing which measured
frequency overlaps with the subsequent comparison. Thereby, a full RO PUF
model can be generated by a physical attacker. In this case, localized EM
measurements allow for a higher SNR than standard power or EM measure-
ments and, therefore, enable clear identification and interpretation of RO
frequencies. I also demonstrated the practical feasibility of the described at-
tack. As a countermeasure, I proposed completely avoiding overlapping RO
comparison as well as using more than two counters for efficiency reasons.

In the second attack, location-dependent leakage of standard and pro-
tected RO PUFs is exploited. I showed the steps which an attacker has to
perform in order to separate RO PUF measurement paths. Based on this
separation, an adversary can sequentially observe all RO frequencies for each
RO measurement path, which, again, allows him to create a functional dupli-
cate of the RO PUF under attack. In a case study, I analyzed the practical

78 CHAPTER 4. ATTACKS ON RO PUFS

obstacles of this attack and conclude that it is feasible with state-of-the-art
measurement equipment. However, smaller technology nodes will require
even more precise equipment. I proposed two countermeasures against the
presented localized attack, namely, randomization of measurement paths and
interleaved placement of RO PUF components.

Summarizing, I discovered two important attack vectors for RO PUFs
that represent the two first physical attacks on RO PUF implementations.
Further, I showed that these threats can be exploited in practice by two
case studies. I proposed countermeasures against both attacks in order to
protect RO PUFs. Considering a wider scope, the presented attacks and
countermeasures can also serve for the development and hardening of other
RO-based PUFs, e.g., the sum PUF.

Chapter 5

Attacks on Key Generation

Currently, the main application of PUFs is secret key generation, e.g., as
brought to market by the companies Verayo and Intrinsic-ID. However, this
application is not limited to silicon PUFs, but also used in the case of PUFs
aiming for increased tamper resistance, e.g., coating PUFs [TSŠ`06] or opti-
cal smartcard PUFs [EFK`12]. Key generation algorithms, e.g., fuzzy extrac-
tors [DRS04] or IBS [YD10b], have to be used to process internally generated
PUF bits in order to obtain a reliable cryptographic key. They consist of an
enrollment phase and a reconstruction phase. The enrollment phase takes
place in a secure environment after manufacturing. There, a specific key is
fixed by embedding it into PUF response bits or extracting it directly from
these bits. Also, helper data is generated from the characteristics of the noisy
PUF response bits during this phase. This redundancy data does not contain
enough information about the secret key to be of help to an attacker and can
therefore be stored in external, unsecure memory. During the reconstruction
phase, the stored helper data and a vector of noisy PUF response bits are
used to regenerate the enrolled secret key. Since the reconstruction is per-
formed again and again in the field, this part of the algorithm is prone to
physical attacks.

As demonstrated in Chapter 4, PUFs can be attacked directly without
any knowledge about the subsequent key generation mechanisms. However,
this approach usually requires insight into the PUF architecture and sophis-
ticated measurement equipment. In this chapter, I present two attacks on
implementations of COFEs. The first one mounts a DPA attack on the
error correction module of a COFE based on collected power consumption
traces. The second one targets the Toeplitz hashing extractor by an SPA
attack. I propose codeword masking as a countermeasure against these at-
tacks, which enables masking of linear ECCs without affecting their error
correction capabilities. This scheme can be applied to the helper data input

79

80 CHAPTER 5. ATTACKS ON KEY GENERATION

and can be continued throughout the whole reconstruction algorithm up to
the point where the masked key and its mask leave the module. Then, the
subsequent modules can make use of the already masked key, enabling a con-
sistent PUF key generation masking scheme. Parts of this chapter have been
published in the paper Side-Channel Analysis of PUFs and Fuzzy Extractors
at the 4th International Conference on Trust and Trustworthy Computing in
2011 [MSSS11b] and the preprint publication Protecting PUF Error Correc-
tion by Codeword Masking in 2013 [MSS13].

This chapter is organized as follows. Section 5.1 gives an overview of
related work in side-channel attacks on key generation systems. Section 5.2
demonstrates a DPA attack by helper manipulation exploiting leakage from
a COFE’s error correction module. An SPA attack on the popular Toeplitz
hashing for COFEs is shown in Section 5.3. A consistent countermeasure to
protect against both attacks is described in Section 5.4. A summary of this
chapter is found in Section 5.5.

5.1 Related Work

After the fundamental work about power analysis of Kocher et al. [KJJ99],
a large amount of further research was conducted regarding improved signal
processing, enhanced attacks, and strong protection strategies. The book
Power Analysis Attacks: Revealing the Secrets of Smart Cards of Mangard et
al. [MOP07] represents a solid basis for side-channel attacks. In this chapter,
I do not aim at developing a qualitatively new power analysis method, but
use well-known methodologies to demonstrate vulnerabilities of PUF-based
key generation mechanisms. The difference to previous work in the field of
side-channel attacks is that changes of intermediate values in key genera-
tion algorithms are achieved by helper data manipulation instead of different
plain- or ciphertexts. Also, the proposed countermeasure is an extension of
random masking techniques to enable protection of error correction modules
that cannot be protected by standard masking.

Until now, only a few publications deal with side-channel analysis of se-
cure sketches and fuzzy extractors. Karakoyunlu et al. [KS10] presented
two attacks on software implementations of Reed-Solomon codes [Bos99] and
Bose-Chaudhuri-Hocquenghem (BCH) codes [Bos99]. The authors claimed
that standard software implementations of these codes show data dependent
leakage that can be attacked by SPA. Further, they proposed a differential
template attack, where they built templates for every possible input symbol
by varying the helper data. Then, a set of distinguished templates is chosen
for the analysis of the device under attack. In contrast to this earlier attack

5.2. ATTACK ON ERROR-CORRECTING CODES 81

paper, I also propose a countermeasure to protect secure sketches and fuzzy
extractors against the attacks I discovered.

There exists some related work about ECCs causing vulnerabilities in se-
curity critical systems. In 2009, Dai and Wang [DW09] presented a study
on side-channels of ECCs used in reliability enhancing techniques for mem-
ories. Also, side-channel attacks on the McEliece public key cryptosys-
tem [STM`08, MSSS11c] exploit leakage of ECC implementations. I show
that also side-channel leakage of ECCs in PUF-based key generation algo-
rithms has to be considered as a realistic threat to their security.

Side-channel leakage of extractors in the scenario of leakage-resilient cryp-
tography has been investigated by Medwed and Standaert [MS11]. However,
in their case, extractors implement a secret key used in every operation,
whereas in the case of COFEs, the extractor function generates a secret key
from the input bits of a secret source.

5.2 Attack on Error-Correcting Codes

In this section, I first discuss the fact that no standardized COSS and
COFE implementations exist. Then, I demonstrate that correlation-based
DPA [BCO04] is applicable to a COSS. The shown vulnerability of the ECC
implementation also holds for COFEs because they are extensions of COSSs.

The basis for the following analyses are Ntr traces tn with T samples
tn,k obtained from power or EM measurements of a device during the key
generation process.

tn “ ttn,k | k “ 1, ..., T u @ n “ 1, ..., Ntr (5.1)

5.2.1 Implementation Diversity of ECCs

COFEs require the use of ECCs to ensure highly reliable key reconstruction.
Error correction schemes have been under research for a long time and a
diversity of ECCs exists. A comprehensive overview of codes, their decoding
algorithms, and efficient implementations can be found in the book Channel
Coding for Telecommunications by Bossert [Bos99].

In the case of COFEs, one important requirement is an efficient soft-
ware or hardware implementation of the used ECC. Until now, research has
focused on efficient hardware implementations that keep the silicon area foot-
print of PUF key generation modules low. Bösch et al. [BGS`08] presented a
study on the efficiency of hardware implementations of hard-decision ECCs

82 CHAPTER 5. ATTACKS ON KEY GENERATION

for COFEs. They investigated repetition codes, Reed-Muller codes, Golay
codes, and BCH codes. Their results indicate that, compared to the other
evaluated codes, BCH codes have the strongest error correction capabili-
ties. However, BCH codes are known to have a large hardware footprint,
resulting in inefficient implementations. They proposed to use concatenated
codes [For65] to achieve a compromise between error correction strength and
implementation complexity. One of the shown results is the fact that ECC
output word error probabilities of less than 10´6 can be achieved without
requiring a complex BCH code, e.g., by the combination of repetition and
Golay codes. On the other hand, combinations of repetition and BCH codes
significantly lower the number of required PUF response bits. Therefore, no
general suggestion for COFE implementations can be made. PUF system
designers always have to decide between hardware implementation efficiency
and required PUF bits. Another factor influencing the choice of implemen-
tation is the generated amount of helper data. Also note that the mentioned
study does rely on the noise and error characteristics of SRAM PUFs with
an average bit error probability of 0.15. However, optimizing a COFE for
another PUF architecture might lead to results suggesting different combina-
tions as most efficient compromise between strong error correction and low
hardware resource consumption.

A further fact to consider for COFE design is that the average bit error
probability is not the best error characterization technique for PUFs because,
usually, some PUF bits are very stable and others are very noisy. Including
these properties into error correction can gain further efficiency. For COFEs,
this can be handled by using soft-decision information for error correction,
as shown by Maes et al. [MTV09]. There, the authors suggest the usage of a
concatenation of a repetition code and a Reed-Muller code, both using soft-
decision information about the reliability of their input bits gathered from
an SRAM PUF.

The bottom line is that many different COFE implementations exist be-
cause resource constraints vary over different applications and the PUF re-
sponse bit error probabilities always depend on the used PUF type and tech-
nology. Therefore, possible attacks on error correction modules have to be
adapted for the specific type of ECC implementation. However, the code-
word masking countermeasure I propose in Section 5.4 can be applied to all
linear ECCs no matter which type.

5.2.2 DPA based on Helper Data Manipulation

Differential side-channel attacks on cryptographic algorithms require the ma-
nipulation of one of the algorithm’s inputs to generate changing intermediate

5.2. ATTACK ON ERROR-CORRECTING CODES 83

values. Looking at Figures 2.13, 2.14, and 2.15, one finds that helper data
w is actually the only input data that can be manipulated without inva-
sive tampering. The noisy PUF response bit vector r1 is determined by the
unique PUF properties, therefore, manipulation of helper data w is the only
practical way to achieve changes in internal intermediate values. In the case
of code-offset constructions, the manipulation of a single bit of w directly
flips one input bit of the analyzed decoding function decodeCpr

1 ‘wq, which
is a desirable property for an attacker.

It is legit to assume deterministic write access to the helper data string for
many embedded security applications because helper data is usually stored in
external memory, which actually is a profitable advantage of PUFs. However,
if the helper data is located in a memory that is hard to manipulate, as it
might be the case for smartcards, DPA on PUF key generation becomes
impossible or at least very hard.

In order to apply correlation-based DPA to the error correction of a COSS,
first, an intermediate value of decodeCpq has to be chosen as an attack point.
It can be assumed that an attacker knows the function decodeCpq from spec-
ification documents of a device with PUF-based key generation or has deter-
mined its characteristics by reverse engineering.

Then, traces t1, ..., tW with T samples each have to be collected for W
different helper data input vectors w1, ...,wW resulting in a W ˆ T trace
matrix T. Based on the chosen power model, for each combination of the
R possible PUF response vectors r1, ..., rR and the values for each possible
helper data vector w1, ...,wW , hypothetical intermediate values have to be
calculated and stored as a W ˆR hypothesis matrix H.

Finally, the correlation between the T sample columns of T and each
of the R PUF response hypothesis columns of H has to be computed as
used in standard correlation-based DPA [BCO04, MOP07] to obtain a RˆT
correlation matrix M. The maximum correlation value in M gives the trace
sample and the best correlating PUF bit vector hypothesis. This PUF bit
vector represents the extracted secret that, together with the original helper
data w, can be used to calculate the embedded key k.

For practical attacks, the noise contained in r1 now and then changes
bits of the ECC decoder input of a secure sketch, which makes the DPA
inaccurate. Therefore, PUF noise generally leads to an increased number of
required traces.

5.2.3 DPA on Secure Sketch FPGA Implementation

For the investigation of a secure sketch implementation, I decided to use a
concatenation of two ECCs C1 and C2 to achieve a compromise between im-

84 CHAPTER 5. ATTACKS ON KEY GENERATION

PUF Response
(7-bit words)

Helper Data
(7-bit words)

Repetition Decoder
(n=7,k=1,t=3)

Secret Key

internal

external

BCH Decoder
(n=127,k=64,t=10)

r'

w

c' k

Attack Point

(128-bit)

1x127x

2x

Figure 5.1: Secure sketch implementation under test

plementation complexity and error correction capabilities [BGS`08, MTV09].
During enrollment, first the encoding function of C1 is used and then its out-
put is further processed by the encoding function of C2. For decoding during
the reconstruction phase, the process is reversed, i.e., first C2, then C1.

The COSS reconstruction architecture to be attacked is shown in Fig-
ure 5.1. I chose an (n2“7, k2“1, t2“3) repetition code for C2 because it can
be implemented very efficiently. For C1, I chose an (n1“127, k1“64, t1“10)
BCH code, which has the ability to significantly lower the residual error
probability, but also incurs a more complex implementation.

As shown by Bösch et al. [BGS`08], the output word error probabilities
P1 and P2 after decoding a noisy codeword with bit error probability pb by
C1 and C2, respectively, can be estimated as follows. The resulting bit error
probability of the output bits is known to be lower than the calculated word
error probability [DMV04].

P2 “

n2
ÿ

i“t2`1

ˆ

n2

i

˙

pibp1´ pbq
n2´i “ 1´

t2
ÿ

i“0

ˆ

n2

i

˙

pibp1´ pbq
n2´i (5.2)

P1 “

n1
ÿ

i“t1`1

ˆ

n1

i

˙

P i
2p1´ P2q

n1´i “ 1´
t1
ÿ

i“0

ˆ

n1

i

˙

P i
2p1´ P2q

n1´i (5.3)

For the two codes I chose, P2 can be calculated to be 0.5 ¨ 10´6, i.e., the
resulting bit error probability is less then 10´6, which represents a realistic
requirement [BGS`08].

I embedded a 128-bit key into 1778 PUF response bits, which results
in 1778 bits of helper data. My implementation has two 7-bit input inter-
faces for chunks of PUF response bits and helper data bits. The code-offset

5.2. ATTACK ON ERROR-CORRECTING CODES 85

XOR and the repetition decoding are implemented in combinational logic,
which yields a decoded 1-bit output for each 7-bit helper data input word.
After each repetition decoding, the output bit is shifted into the BCH de-
coder [Jam97], which bit-serially decodes 127 input bits to a stable 64-bit
word. This procedure is performed twice to obtain a 128-bit key.

I did not use a real PUF implementation, but provide PUF response bits
as well as helper data from a preloaded circular buffer. This is important
to obtain DPA results that are not influenced by a PUF’s specific noise
characteristic.

I chose the output of the repetition code decoder, which is stored in
the input register of the BCH decoder, as the intermediate value to attack,
as shown in Figure 5.1. One reason for that is the smaller computational
complexity of a repetition code decoding compared to the calculation of in-
termediate values of a BCH code. The second reason is that all codeword
inputs of the 7-to-1 repetition decoder can be covered by manipulating the
7-bit helper data chunks, which leads to W “ 128 traces per repetition code-
word. I used a Hamming distance model hypothesis between two succeeding
repetition code output bits to estimate the hypothetical power consumption
under W “ 128 different helper data manipulations and R “ 128 possible
PUF response bit vectors. For the first decoded bit, the preceding register
value is assumed to be zero after reset.

I synthesized my COSS design for a Xilinx XC3S200 FPGA and analyzed
its power consumption over a 10 Ohm shunt resistor with a differential probe
connected to a LeCroy wavePro 715Zi oscilloscope. I recorded 128 traces per
repetition codeword for every possible manipulation of the 7-bit helper data
input. I focused my analysis on the first four cycles after each helper data
word was provided to the key reconstruction because the repetition decoding
happens during this time frame. Afterwards, I correlated the hypothetical
power values with the measured traces. For all following hypothesis corre-
lation figures, I only depicted positive hypothesis correlations because the
linearity property of the analyzed COSS circuit leads to the fact that in-
verted PUF inputs show a ’mirrored’ negative correlation, which does not
provide further information.

In Figure 5.2, the maximum correlation of all 7-bit PUF hypothesis for one
repetition code decoder run are shown. The values were generated with only
128 measured traces without any preprocessing. The estimated significance
bound [MOP07] for a DPA attack with 128 traces is approx. 4{

?
128 “ 0.35.

Therefore, I am confident that my attack worked correctly, since the results
show a correlation of 0.52 for the correct PUF response bits (0x43) and leave
all other hypothesis below or only slightly above the significance bound (0.38,
in the best case).

86 CHAPTER 5. ATTACKS ON KEY GENERATION

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

Figure 5.2: Maximum correlation of repetition decoder output

For a full attack on all 1778 PUF bits of my implementation, an attacker
would have to perform the described analysis for all 254 repetition code
decoder runs, which results in a minimum of 254 ˆ 128 “ 32512 traces to
record and analyze.

5.3 Attack on Toeplitz Hashing

In this section, I present an SPA attack on the hardware implementation of
Toeplitz hashing. This extractor algorithm was previously used for efficient
COFE implementations. Also, I demonstrate the practical feasibility of the
attack for an FPGA implementation.

5.3.1 Leakage of PUF Response Bits

Besides error correction, which is essential for COSSs and COFEs, also, an
extractor algorithm is necessary for COFEs. Until now, the papers focus-
ing on efficient COFE implementations, namely, Bösch et al. [BGS`08] and
Maes et al. [MTV09], make use of the LFSR-based Toeplitz hashing [Kra94].
It fulfills the requirements of redistributing the non-uniformly distributed
PUF response bits [BGS`08] to obtain a bit string that can be used as a
cryptographic key.

Its basic hardware architecture is shown in Figure 5.3. When operating,
first, an LFSR is initialized with a random start value, called helper data 2

5.3. ATTACK ON TOEPLITZ HASHING 87

Accumulator

Shift Register

Feedback Polynomial

...

...
Linear
Feedback

Data

1 = ENABLE / 0 = BLOCK

Figure 5.3: Efficient Toeplitz hashing implementation

by Bösch et al. [BGS`08]. Then, for every input bit, the LFSR is shifted
once. If the input bit is a 1, then the value of the LFSR will be XORed
into the accumulator register, if the input bit is 0, only the LFSR shift takes
place without accumulation.

In COFEs, the input data of the Toeplitz hashing algorithm corresponds
to regenerated and corrected PUF response bits r. The resulting output bits
represent a cryptographic key k.

An attacker can exploit the fact that different operations, namely XOR
accumulations and LFSR shifts, are performed by the LFSR-based hardware
implementation, depending on the module’s input data. This means, it is
possible to extract the secret PUF response bits r from which the secret key
k can be derived.

For a COFE, where an R-bit PUF response bit vector r is processed by
a Toeplitz hashing extractor to obtain a secret key k, the basic steps of my
SPA attack are:

1. Trace acquisition. Collect several power consumption or EM emis-
sion traces of the Toeplitz hashing operation. One basic requirement is
that the time slot of the extractor processing can be identified within
the trace. Since the key reconstruction can be performed repeatedly,
recording hundreds or thousands of traces of the same operation se-
quence is realistic.

88 CHAPTER 5. ATTACKS ON KEY GENERATION

2. Noise cancellation. Process the captured traces in order to obtain
a low-noise trace that can be interpreted. Common processing steps
include trace alignment and averaging.

3. Point identification. Determine the sequence of R samples that
strongly depend on the input data, i.e., the secret PUF response bits.

4. Bit extraction. Divide the identified values into two groups, one for
all points where an XOR accumulation takes place, representing a 1,
and one for points without XOR accumulation, representing a 0.

Low-Noise Traces

For SPA attacks, usually, traces with a high SNR are required in order to
enable their direct interpretation. In the case of COFEs, the Toeplitz hashing
operation can be executed over and over again, which enables the collection
of Ntr traces. These traces t1, ..., tNtr can then be averaged to obtain a
mean trace st with significantly lower noise level. However, because of several
practical effects, collected traces are not perfectly aligned to achieve the
best averaging result. Therefore, based on a significant trace sample t̂n, n “
1, ..., Ntr, e.g., a significant peak that has to be found in every trace, each
trace has to be shifted by a value ∆n to match the first trace.

∆n “ t̂n ´ t̂1 @ n “ 1, ..., Ntr (5.4)

st “
1

Ntr

Ntr
ÿ

n“1

shiftptn,∆nq (5.5)

Peaks of Interest

If the averaged trace st has a significantly high SNR, one is able to extract R
trace values v1, ..., vR corresponding to R bits sequentially processed by the
Toeplitz hashing. This can be done by visual inspection of st, but also, e.g.,
by extracting the maximum value of each clock cycle during Toeplitz hashing
operation.

tv1, ..., vRu P st (5.6)

5.3. ATTACK ON TOEPLITZ HASHING 89

PUF Response Extraction

The final step of this attack is the extraction of bits from the extracted values
v1, ..., vR. For that, the threshold vth is calculated as the mean of all values
v1, ..., vR.

vth “
1

R

R
ÿ

i“1

vi (5.7)

Then, all values vi with a value above the threshold correspond to a
1 bit because a 1 at the input of the Toeplitz hashing causes additional
power consumption generated by the XOR accumulation. Values below the
calculated threshold indicate a 0 bit, respectively.

Thereby, the whole PUF response bit sequence r “ tr1, ..., rRu can be
extracted by inspection of the averaged trace. Having this sequence, an
attacker is able to derive the secret key k by manually applying the Toeplitz
hashing function on the obtained bits of r.

As for every attack, an attacker has to verify the correctness of the key by
testing it against the real system. However, if he finds the key to be incorrect,
the best way to search for the real key is to try other possible values for r by
flipping bits ri where the corresponding value vi is close to the threshold vth.
This is reasonable because deriving bits from values close to the threshold is
less reliable than for the ones further away.

5.3.2 SPA on Toeplitz Hashing FPGA Implementation

In order to verify the practical feasibility of the described SPA attack, I
applied the above explained attack steps to a COFE implementation, where a
64-bit key k is generated from a error-corrected 74-bit PUF response vector r.
The Toeplitz hashing implementation in the prototype under attack performs
the LFSR shift and the XOR accumulation in two subsequent cycles, i.e., the
compression of 74 bits takes 148 cycles.

For this experiment, the device under test was a Xilinx Spartan3E-1200
FPGA running at 50 MHz. I captured EM traces at the surface of the FPGA
package with a Langer ICR HH 150 EM probe and a Langer PA 303 amplifier
at a sample rate of 20 GS/s based on a LeCroy wavePro 715Zi oscilloscope.
I used a trigger generated at the point in time when the key generation was
finished to support this proof-of-concept attack.

Figure 5.4(a) shows a single EM trace that hardly permits to interpret
anything except recognizing the trigger signal’s influence, namely, the high
peak in the right part of the trace, and the end of the error correction phase

90 CHAPTER 5. ATTACKS ON KEY GENERATION

0

50

100

150

200

250

300

0 22500 45000 67500 90000

Toeplitz Hashing - Noisy EM Trace

sam ples

v
o

lt
a

g
e

(a) single noisy trace

0

50

100

150

200

250

300

0 22500 45000 67500 90000

Toeplitz Hashing - Averaged EM Trace

sam ples

v
o

lt
a

g
e

(b) result after processing of 5000 traces

Figure 5.4: Noise reduction effect of alignment and averaging

100

110

120

130

140

150

160

20000 30000 40000 50000 60000 70000

Toeplitz Hashing - Zoom ed Averaged EM Trace with Ext racted Peaks

sam ples

v
o

lt
a

g
e

Figure 5.5: Toeplitz hashing trace with XOR (red) and shift operations (blue)

represented by the higher peaks in the left part of the trace. The Toeplitz
hashing happens in between, but cannot be analyzed in this state.

After aligning 5000 traces with the help of the trigger influence peak
and averaging them as described in Equation 5.5, the final trace, shown in
Figure 5.4(b), exhibits a much higher SNR, which is a good basis for an SPA
attack on the Toeplitz hashing.

After extracting the peak values v1, ..., vR mentioned in Equation 5.6,
shown as red dots in Figure 5.5, one can see that the recorded measurement
traces show a drift towards higher values over the Toeplitz hashing operation.

This drift cannot be handled generally by the method explained in Sec-
tion 5.3.1. In the case of my measurements, I was able to compensate the drift
by also extracting the shift operation peaks v1,ref, ..., vR,ref, shown in blue, that

5.3. ATTACK ON TOEPLITZ HASHING 91

are independent from the XOR operations, but are also subject to the drift.
Then, for every XOR peak, I calculated the quotient vi{vi,ref, i “ 1, ..., R, to
lower the drifting effect by using the peaks caused by the shifting operation as
reference values. The resulting values are depicted in Figure 5.6. The shown
threshold value vth was calculated according to Equation 5.7 and allows to
interpret the collected values as bits of the secret PUF response vector r.

0.90

0.95

1.00

10000 20000 30000 40000 50000 60000 70000 80000

Toeplitz Hashing - Weighted Peaks

vth

sam ples

v_
i /

 v
_i

_r
ef

Figure 5.6: Weighted peaks, basis for bit interpretation

Table 5.1 shows that 3000 of my traces are enough to reduced their noise
to a level where correct bit extraction becomes possible. However, even with
only 500 traces, a bit extraction error of only 4.1% can be reached.

Table 5.1: Number of required traces for SPA attack
Traces Bit Extraction Error

5000 0 p0%q
4000 0 p0%q
3000 0 p0%q
2000 1 p1.4%q
1000 1 p1.4%q
500 3 p4.1%q
250 5 p6.8%q
100 12 p16.2%q

92 CHAPTER 5. ATTACKS ON KEY GENERATION

Although I had to compensate a drifting effect in these measurements,
other devices and implementations might not exhibit such an effect. There-
fore, I cannot give a general rule how to handle these practical influences
trace, but the general approach of the presented attack is valid.

5.4 Codeword Masking as a Countermeasure

A popular method to prevent DPA attacks is masking input values of an
algorithm with random masks [CJRR99, GP99, MOP07] to destroy the de-
pendency of intermediate and input values. However, this is not possible
for ECCs, because a random mask would be regarded as a random error
vector introducing (additional) errors to the original codeword. Therefore,
trivial masking cannot be applied without loosing the ECC’s essential error
correction properties.

In this section, I propose a codeword masking scheme that can be applied
to linear ECCs without having an impact on their error correction capabilities
and is therefore not influencing the functionality of the original application,
e.g., PUF key generation. First, I explain the principle of codeword masking.
Then, I show how to apply it to a basic secure sketch architecture and I
demonstrate its practical protection.

The linearity property [Bos99] of the functions encodeC and decodeC of
a linear code C defines that the sum (XOR) of two codewords of C always
results in another codeword of C. This also holds for concatenations of linear
codes and represents the basis for my codeword masking scheme. I propose
to mask an original codeword c of C by XORing it with the codeword mask
cm, where cm is a random codeword of C. The result of this boolean masking
can still be decoded by decodeC to cancel bit errors, if present. Decoding cm

leaves the random bit vector m that corresponds to the ’raw’ mask. This
mask can then be used to demask the decoded result by XORing:

decodeCpc‘ cmq “ decodeCpcq ‘ decodeCpcmq “ decodeCpcq ‘m (5.8)

The relation between the original input codeword and the processed in-
termediate values is broken by this method while preserving the ECCs error
correction features. Therefore, I propose this scheme to protect linear ECCs
from DPA attacks like the one shown in Section 5.2.

Looking at the overhead of codeword masking, the straight forward ap-
proach would be duplicating the decoding module. However, I propose to
generate a random mask m (used for demasking) and encode it to obtain cm.
Thereby, only the encoding function encodeC has to be implemented, which

5.4. CODEWORD MASKING AS A COUNTERMEASURE 93

PUF Response

Helper Data

decodeC Secret Key

internal / secret

external / public

Random MaskencodeC

r'

w

w cm cm m

c' cm k m k

(ECC-dataword-sized)

Figure 5.7: Masked secure sketch (Rec)

has a significantly lower implementation complexity than the decoding func-
tion decodeC [Bos99]. Further, the encoding function is also required for the
enrollment phase, which means that it can be reused for masking purposes
resulting in almost no overhead.

5.4.1 Secure Sketch Protection

The application of the proposed technique to secure sketches is shown in
Figure 5.7. There, the helper data w is masked by the masking codeword
cm “ encodeCpmq of a random mask m. The resulting ECC decoder input
w ‘ cm ‘ r1 can be decoded to k‘m, which results in the generated key k
after demasking with the raw mask m.

For a practical evaluation, I extended the secure sketch implementation
described in Section 5.2 by the codeword masking scheme shown in Figure 5.7.
In detail, I added a 128-bit mask register (same size as key), which is first
encoded by the BCH code encoder and then by the repetition code encoder,
representing the encoding function for the concatenated ECC. I preloaded
the mask register with random bits before each analysis run. The overhead
in this proof-of-concept FPGA design sums up to 20% more slices, 45%
more registers and 22% more look-up tables, which is mainly determined
by the additional registers for the raw and the encoded codeword mask,
but also by the additional BCH encoder. I regard these results as rather
efficient, because the overhead is significantly below the numbers for AES,
where masked FPGA implementations are reported to have around 60% slice
overhead [KBG08]. Also, the overhead can be reduced even more, if the
existing BCH encoder of the enrollment module is used for masking purposes.

In order to evaluate the codeword masking countermeasure in practice,
I performed the correlation-based first-order DPA attack described in Sec-
tion 5.2 on the protected COSS implementation.

94 CHAPTER 5. ATTACKS ON KEY GENERATION

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(a) 128 traces (1st dataset)

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(b) 128 traces (2nd dataset)

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(c) 128 traces (3rd dataset)

0.0

0.2

0.4

0.6

0.8

1.0

0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 7F

Repet it ion Decoder Output Correlat ion

PUF Response Vector

C
o

rr
e

la
ti

o
n

(d) 6400 traces

Figure 5.8: Maximum correlation of masked repetition decoder output

Figures 5.8(a), 5.8(b), and 5.8(c) show results for attacks on one repetition
decoder run with three different sets of 128 traces covering all 128 possible
helper data manipulations. They exhibit significant correlations, but neither
for the correct PUF response vector (0x43, red mark), nor for the same value
at all. An attack based on 6400 traces (50 repetitions of the 128 helper data
manipulations) leads to the correlations shown in Figure 5.8(d). Although
6400 traces does not sound like a high number for DPA, note that this attack
only targets 7 out of 1778 bits and, if the attack would be successful with
6400 traces, a total of 254 ˆ 6400 “ 1625600 traces would be required for a
complete attack. However, also with 6400 traces, the correct PUF value is
not distinguishable. I blame the visible patterns of significant correlations on
the linearity of the repetition code implementation, but they do not reveal
the secret PUF bits. This demonstrates the protective capabilities of the
proposed masking scheme for PUF error correction against first-order DPA
attacks. Higher-order attacks might be a threat to it, but were out-of-scope
for this work.

5.4. CODEWORD MASKING AS A COUNTERMEASURE 95

PUF Response

Helper Data

correctC Masked Key

internal / secret

external / public

Random MaskencodeC
(ECC-dataword-sized)

Toeplitz Hash

Toeplitz Hash

r'

w

m

cm

w cm

c' cm c cm r cm TH(r cm)

TH(cm)
Mask

Figure 5.9: Masked COFE reconstruction module

5.4.2 COFE Masking

Since the error correction of the COFE architecture is very similar to the one
of a secure sketch, it is also vulnerable to the attack shown in Section 5.2.
Additionally, the second processing of helper data w allows to manipulate in-
termediate values of the extractor module Ext and, thereby, to mount extrac-
tor DPA attacks based on helper data manipulations. The double influence
of helper data w is shown in the equation of a code-offset fuzzy extractor’s
reproduction phase:

k “ ExtpcorrectCpr
1
‘wq ‘wq (5.9)

With the proposed codeword masking scheme, it is possible to consistently
mask and, thereby, protect fuzzy extractor architectures. The application to
the error correction module is identical as for secure sketches, but in the
case of a COFE, the error correction output, i.e., the masked PUF response
r ‘ cm, is fed into the Toeplitz hashing TH, as shown in Figure 5.9. The
encoded mask is also processed by the Toeplitz hashing. In this case, the
linearity property of this hash algorithm is of advantage. Its final result is a
linear combination of LFSR states, because the state of the Toeplitz hashing
LFSR is XORed into an accumulator depending on the algorithm’s input
data. This leads to a hashed masking codeword THpcmq that represents the
correct mask for the masked key THpr‘ cmq:

THpr‘ cmq “ THprq ‘ THpcmq “ k‘ THpcmq (5.10)

The resulting pair of masked key and corresponding mask can be used to
resolve the masking, if required, but can also be provided to the subsequent

96 CHAPTER 5. ATTACKS ON KEY GENERATION

crypto module leading to a consistently masked COFE from the first helper
data input to the subsequent cryptographic algorithm.

By implementing this masked COFE architecture, the power consump-
tion and intermediate values of a COFE are randomized. This also protects
devices from the SPA attack shown in Section 5.3 because the Toeplitz hash-
ing processes masked PUF response bits.

5.4.3 Robust Sketches and Robust Fuzzy Extractors

Boyen et al. [BDK`05] proposed robust sketches and robust fuzzy extrac-
tors in 2005, as introduced in Section 2.3. While their constructions are
secure for remote scenarios, I want to stress that this does not hold for a
physical attacker who is able to observe side-channel leakage. The reason
for that is that the operations of standard secure sketches and fuzzy extrac-
tors that cause exploitable side-channel leakage still need to be performed
for the proposed robust architectures before a decision can be made whether
the helper data was manipulated or not. Therefore, observing side-channels
enables an attacker to extract information about intermediate results, even
before a robust sketch or a robust fuzzy extractor detects the manipulation.
As a result, also robust COSSs and COFEs need to be protected against
side-channel attacks, e.g., by the proposed codeword masking.

5.4.4 Masking Other PUF Key Generation Algorithms

The main part of this chapter is based on code-offset algorithms, however, I
want to emphasize that similar DPA attacks are also applicable to other PUF
key generation algorithms, e.g., IBS [YD10b] and its optimized extension C-
IBS [HMSS12] as shown in Figure 5.10.

PUF Response

Helper Data

decodeC Secret Key

internal / secret

external / public

IBS / C-IBS

Manipulation

Side-Channel
Observation

Figure 5.10: Attacking IBS-based key generation

5.5. SUMMARY 97

IBS stores indices of reliable PUF output bits as helper data, which are
used to select the most reliable bits during reconstruction. C-IBS additionally
stores indices of reliable bits with complementary values to increase reliabil-
ity. Both constructions are usually supported by an ECC implementation to
achieve lower residual error probabilities.

Regarding DPA attacks, there is a slight differences compared to code-
offset algorithms. While flipping a bit in code-offset helper data directly leads
to a flipped bit of the ECC input data, for IBS, an attacker has to guess (from
a small number of choices) a valid index of an inverted PUF bit to achieve
the necessary bit flip. For C-IBS, again, an attacker can manipulate single
bits easily, since exchanging original and complementary indices in the helper
data deterministically causes a bit flip.

In order to protect the error correction module of IBS and C-IBS im-
plementations, I propose to apply a random codeword mask to PUF bits
selected by IBS/C-IBS before processing them by ECCs, as shown in Fig-
ure 5.11. Afterwards, the masked key can be demasked or forwarded to the
subsequent crypto module.

PUF Response

Helper Data

decodeC

internal / secret

external / public

IBS / C-IBS Secret Key

Random MaskencodeC
(ECC-dataword-sized)

Figure 5.11: Masking of ECCs in IBS architecture

5.5 Summary

I proposed a DPA and an SPA attack on COFE implementations, which can
compromise the secret key generated based on secret PUF response bits.

DPA attacks on COSSs and COFEs can be performed by manipulating
the code-offset helper data, which is processed with the secret PUF bits dur-
ing key reconstruction. Thereby, intermediate values of the error correction
modules can be influenced leading to leakage, which can be exploited by DPA

98 CHAPTER 5. ATTACKS ON KEY GENERATION

attacks. I explained the necessary steps to perform the described attack and
showed that this attack vector is feasible in practice.

The Toeplitz hashing, usually used for efficient fuzzy extractor implemen-
tations, exhibits a power consumption and EM emission that depends on the
secret PUF bits fed into the extractor algorithm. If an attacker is able to
record several traces during the operation of this algorithm and manages to
reduce the contained noise to a minimum, he can extract all PUF bit values.
I described the vulnerability of Toeplitz hashing that can be exploited by
attackers and demonstrated the attack for an FPGA implementation.

In order to protect COFEs from the described attacks, I proposed a code-
word masking scheme that enables randomization of the power consumption
of ECCs. I showed that its implementation can be efficient because the
duplication of an ECC’s decoder is not necessary, but only an additional en-
coder is needed. Also, the proposed scheme can forward the generated key
in a masked fashion, which enables DPA protection from PUF response and
helper data processing up to the crypto module, where the secret key is used.

Summarizing, I presented two attacks on COFEs that represent signif-
icant attack vectors posing a serious threat on PUF-based key generation.
Codeword masking can be an important step towards SCA-resistant COFE
implementations and, as shown, can also be applied to other key generation
algorithms.

Chapter 6

Conclusions

In this thesis, I investigated vulnerabilities and protection techniques to en-
hance the security of RO PUFs and COFEs against physical attacks.

First, I discussed the obstacles of solid RO PUF implementations on
FPGAs. I conclude that designers of RO PUFs, and PUFs in general, have
to focus on best-possible physical implementations in terms of equality and
local placement. Only then, reliable and secure PUFs can be created that
can serve as a high-quality source for device-specific bit extraction.

As a basic step before evaluating vulnerabilities of RO PUFs, I showed
that removing an FPGA’s chip package does not significantly influence RO
frequencies. This paves the way for any semi-invasive attack on RO PUFs.
Following, I showed that standard RO PUFs are prone to EM emission anal-
ysis and proposed an improved architecture. However, with high-precision
equipment even the protected implementation can be broken by exploiting
localized EM emission. Therefore, I proposed a randomized measurement
scheme to break the relation between ROs and used measurement counters
to protect RO PUFs. Further, I suggested to used interleaved placement
techniques to achieve a higher level of practical security in cases where the
rather high overhead of the randomization countermeasure is not acceptable.
In conclusion, RO PUFs as originally proposed are not secure when assum-
ing a physical attacker. However, as shown in this thesis, there are ways to
achieve secure RO PUF implementations even when facing physical attacks.

In the second part of this thesis, I showed that an attacker does not nec-
essarily have to attack the underlying PUF structure, but can also mount
side-channel attacks on key generation modules like COFEs. They can leak
information that reveals the secret key during its generation. I showed that
well-known attack concepts, like SPA and DPA, can be adapted and suc-
cessfully applied to the PUF key generation use case. Further, I presented a
protection scheme that enables SPA and first-order DPA protection for code-

99

100 CHAPTER 6. CONCLUSIONS

offset algorithms, but can also be applied to other key generation schemes. I
conclude, that also COFE implementations show exploitable vulnerabilities.
Since side-channel attacks can be performed with even low-cost measurement
equipment, attacking the key generation modules is probably the first target
of an attacker. Here, my work is the first approach to consistently protect
PUF-based key generation against SCA from its first processing stage to its
output.

I finally conclude that I discovered several vulnerabilities of RO PUFs
and code-offset algorithms and proposed suitable countermeasures. Thereby,
I contributed to the development of attack-resistant PUF systems.

Future Work

My work shows that RO PUFs are not secure against physical attacks. I can
imagine that this is also true for other PUF architectures. Therefore, I see it
as essential to perform similar analyses on other promising PUF structures,
such as the SRAM PUF, the optical smartcard PUF, and the twisted bistable
ring PUF. In my opinion, randomized PUF measurement processes are a key
countermeasure to withstand future physical attacks.

Further, other popular key generation systems, such as IBS and C-IBS
have to be investigated to understand, if they show specific vulnerabilities
regarding helper data manipulation and side-channel exploitation. Also, the
implementation efficiency and implementation security of codeword masking
with specific hard- and soft-decision codes can be valuable future work.

A third field of future work is the development of more sophisticated
attacks on COFEs, e.g., without the necessity to manipulate helper data.
Also, other physical attacks, such as laser fault injection, have not been
considered for PUFs yet, but might reveal further vulnerabilities which have
to achieve secure PUF applications.

Bibliography

[BBA`12] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer,
François Poucheret, Bruno Robisson, and Philippe Maurine.
Contactless electromagnetic active attack on ring oscillator
based true random number generator. In Proceedings of the
Third international conference on Constructive Side-Channel
Analysis and Secure Design, COSADE’12, pages 151–166,
Berlin, Heidelberg, 2012. Springer-Verlag.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correla-
tion power analysis with a leakage model. In Marc Joye and
Jean-Jacques Quisquater, editors, Cryptographic Hardware and
Embedded Systems - CHES 2004, volume 3156 of Lecture Notes
in Computer Science, pages 135–152. Springer Berlin / Heidel-
berg, 2004.

[BDHV07] Ileana Buhan, Jeroen Doumen, Pieter Hartel, and Raymond
Veldhuis. Constructing practical fuzzy extractors using QIM.
Technical Report 07-52, University of Twente, CTIT, Enschede,
Netherlands, 2007.

[BDK`05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostro-
vsky, and Adam Smith. Secure remote authentication using
biometric data. In Ronald Cramer, editor, Advances in Cryp-
tology EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 561–561. Springer Berlin / Heidelberg,
2005.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On
the importance of checking cryptographic protocols for faults.
In EUROCRYPT, pages 37–51, 1997.

[BGS`08] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi,
Jamshid Shokrollahi, and Pim Tuyls. Efficient helper data key

101

102 BIBLIOGRAPHY

extractor on FPGAs. In CHES ’08: Proceedings of the 10th In-
ternational Workshop on Cryptographic Hardware and Embed-
ded Systems, pages 181–197, Berlin, Heidelberg, 2008. Springer-
Verlag.

[Bos99] Martin Bossert. Channel Coding for Telecommunications. Wi-
ley, 1999.

[BP09] N. Beckmann and M. Potkonjak. Hardware-based public-key
cryptography with public physically unclonable functions. In
Information Hiding, pages 206–220. Springer, 2009.

[CCL`11] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and
U. Rührmair. The bistable ring PUF: A new architecture for
strong physical unclonable functions. In IEEE Int. Symposium
on Hardware-Oriented Security and Trust, June 2011.

[CCL`12] Qingqing Chen, G. Csaba, P. Lugli, U. Schlichtmann, and
U. Ruhrmair. Characterization of the bistable ring PUF.
In Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, pages 1459 –1462, march 2012.

[CJRR99] Suresh Chari, Charanjit Jutla, Josyula Rao, and Pankaj Ro-
hatgi. Towards sound approaches to counteract power-analysis
attacks. In Michael Wiener, editor, Advances in Cryptology -
CRYPTO’ 99, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 791–791. Springer Berlin / Heidelberg, 1999.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork. Pat-
tern Classification (2nd Edition). Wiley-Interscience, 2 edition,
November 2001.

[DK07] G. DeJean and D. Kirovski. RF-DNA: Radio-frequency certifi-
cates of authenticity. Cryptographic Hardware and Embedded
Systems (CHES), pages 346–363, 2007.

[DMV04] C. Desset, B. Macq, and L. Vandendorpe. Computing the word-
, symbol-, and bit-error rates for block error-correcting codes.
Communications, IEEE Transactions on, 52(6):910–921, 2004.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy ex-
tractors: How to generate strong keys from biometrics and other
noisy data. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, volume 3027 of

BIBLIOGRAPHY 103

Lecture Notes in Computer Science, pages 523–540. Springer
Berlin / Heidelberg, 2004.

[DW09] Jianwei Dai and Lei Wang. A study of side-channel effects in
reliability-enhancing techniques. In Proceedings of the 2009 24th
IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, DFT ’09, pages 236–244, Washington, DC,
USA, 2009. IEEE Computer Society.

[EFK`12] Thomas Esbach, Walter Fumy, Olga Kulikovska, Dominik Merli,
Dieter Schuster, and Frederic Stumpf. A new security architec-
ture for smartcards utilizing PUFs. In Proceedings of the 14th
Information Security Solutions Europe Conference (ISSE’12).
Springer Vieweg, 2012.

[FMC85] R. C. Fairfield, R. L. Mortenson, and K. B. Coulthart. An LSI
random number generator (RNG). In Proceedings of CRYPTO
84 on Advances in cryptology, pages 203–230, New York, NY,
USA, 1985. Springer-Verlag New York, Inc.

[For65] George David Forney, Jr. Concatenated Codes. PhD thesis,
Massachusetts Institute of Technology, 1965.

[GCvDD02] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. Silicon physical random functions. In CCS ’02: Pro-
ceedings of the 9th ACM conference on Computer and commu-
nications security, pages 148–160, New York, NY, USA, 2002.
ACM.

[GCvDD03] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. Delay-based circuit authentication and applications.
In Symposium on Applied Computing (SAC), 2003.

[GKST07] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and
Pim Tuyls. FPGA intrinsic PUFs and their use for IP protec-
tion. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES,
volume 4727 of Lecture Notes in Computer Science, pages 63–
80. Springer, 2007.

[GLC`04] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas.
Identification and authentication of integrated circuits. Concur-
rency and Computation: Practice and Experience, 16(11):1077–
1098, 2004.

104 BIBLIOGRAPHY

[GM89] S. N. Graybeal and P. B. McFate. Getting out of the starting
block. Scientific American (USA), 261(6), 1989.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Elec-
tromagnetic analysis: Concrete results. In Çetin Kaya Koç,
David Naccache, and Christof Paar, editors, CHES, volume 2162
of Lecture Notes in Computer Science, pages 251–261. Springer,
2001.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power
analysis the ”duplication” method. In Cetin Koc and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems,
volume 1717 of Lecture Notes in Computer Science, pages 728–
728. Springer Berlin / Heidelberg, 1999.

[GŠT`09] Jorge Guajardo, Boris Škorić, Pim Tuyls, Sandeep S. Kumar,
Thijs Bel, Antoon H. Blom, and Geert J. Schrijen. Anti-
counterfeiting, key distribution, and key storage in an ambient
world via physical unclonable functions. Information Systems
Frontiers, 11(1):19–41, March 2009.

[HdlTR12] Wei He, Eduardo de la Torre, and Teresa Riesgo. An interleaved
EPE-immune PA-DPL structure for resisting concentrated EM
side channel attacks on FPGA implementation. In Proceed-
ings of the 3rd international conference on Constructive Side-
Channel Analysis and Secure Design, COSADE’12, pages 39–53,
Berlin, Heidelberg, 2012. Springer.

[HDS09] G. Hammouri, A. Dana, and B. Sunar. CDs have fingerprints
too. Cryptographic Hardware and Embedded Systems (CHES),
pages 348–362, 2009.

[HMH`12a] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic
Stumpf, and Georg Sigl. Localized electromagnetic analysis of
cryptographic implementations. In Orr Dunkelman, editor, Top-
ics in Cryptology CT-RSA 2012, volume 7178 of Lecture Notes
in Computer Science, pages 231–244. Springer Berlin / Heidel-
berg, 2012.

[HMH`12b] Johann Heyszl, Dominik Merli, Benedikt Heinz, Fabrizio De
Santis, and Georg Sigl. Strengths and limitations of high-
resolution electromagnetic field measurements for side-channel
analysis. In Stefan Mangard, editor, Smart Card Research and

BIBLIOGRAPHY 105

Advanced Applications, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012.

[HMSS12] M. Hiller, D. Merli, F. Stumpf, and G. Sigl. Complemen-
tary IBS: Application specific error correction for PUFs. In
Hardware-Oriented Security and Trust (HOST), 2012 IEEE In-
ternational Symposium on, pages 1 –6, june 2012.

[HNBJP13] Clemens Helfmeier, Dmitry Nedospasov, Christian Boit, and
Seifert Jean-Pierre. Cloning physically unclonable functions. In
Proceedings of the IEEE Int. Symposium of Hardware-Oriented
Security and Trust. IEEE, June 2013.

[HYKS10] Yohei Hori, Takahiro Yoshida, Toshihiro Katashita, and Akashi
Satoh. Quantitative and statistical performance evaluation of
arbiter physical unclonable functions on FPGAs. In Proceedings
of the 2010 International Conference on Reconfigurable Comput-
ing and FPGAs, RECONFIG ’10, pages 298–303, Washington,
DC, USA, 2010. IEEE Computer Society.

[Jam97] Ernest Jamro. The design of a VHDL based synthesis tool for
BCH codecs. Master’s thesis, School of Engineering, The Uni-
versity of Huddersfield, Sep 1997.

[JW99] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme.
In Proceedings of the 6th ACM conference on Computer and
communications security, CCS ’99, pages 28–36, New York, NY,
USA, 1999. ACM.

[KBG08] N. Kamoun, L. Bossuet, and A. Ghazel. SRAM-FPGA im-
plementation of masked s-box based DPA countermeasure for
AES. In Design and Test Workshop, 2008. IDT 2008. 3rd In-
ternational, pages 74–77, 2008.

[KGM`08] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls.
Extended abstract: The butterfly PUF protecting IP on every
FPGA. Hardware-Oriented Security and Trust, 2008. HOST
2008. IEEE International Workshop on Hardware-Oriented Se-
curity and Trust (HOST), pages 67–70, June 2008.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Michael J. Wiener, editor, CRYPTO, vol-
ume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

106 BIBLIOGRAPHY

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design principles
for tamper-resistant smartcard processors. In WOST’99: Pro-
ceedings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology, pages 2–2, Berke-
ley, CA, USA, 1999. USENIX Association.

[KKR`12] Stefan Katzenbeisser, Ünal Kocabas, Vladimir Rozic, Ahmad-
Reza Sadeghi, Ingrid Verbauwhede, and Christian Wachsmann.
PUFs: Myth, fact or busted? a security evaluation of physically
unclonable functions(PUFs) cast in silicon. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and
Embedded Systems CHES 2012, volume 7428 of Lecture Notes
in Computer Science, pages 283–301. Springer Berlin Heidel-
berg, 2012.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-
hellman, RSA, DSS, and other systems. In Proceedings of the
16th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’96, pages 104–113, London, UK, 1996.
Springer-Verlag.

[Kra94] Hugo Krawczyk. LFSR-based hashing and authentication. In
CRYPTO ’94: Proceedings of the 14th Annual International
Cryptology Conference on Advances in Cryptology, pages 129–
139, London, UK, 1994. Springer-Verlag.

[KS10] D. Karakoyunlu and B. Sunar. Differential template attacks on
PUF enabled cryptographic devices. In Information Forensics
and Security (WIFS), 2010 IEEE International Workshop on,
pages 1 –6, dec 2010.

[LCNT02] P. Layman, S. Chaudhry, J.G. Norman, and J.R. Thomson.
Electronic fingerprinting of semiconductor integrated circuits.
US Patent 6,738,294, September 2002.

[LLG`04] J-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated
circuits with identification and authentication applications. In
IEEE VLSI Circuits Symposium, New-York, June 2004.

[LLG`05] Daihyun Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk,
and S. Devadas. Extracting secret keys from integrated circuits.

BIBLIOGRAPHY 107

Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 13(10):1200–1205, December 2005.

[MCMS10] Abhranil Maiti, Jeff Casarona, Luke McHale, and Patrick
Schaumont. A large scale characterization of RO-PUF. In IEEE
International Symposium on Hardware-Oriented Security and
Trust (HOST), pages 66–71, 2010.

[MEK10] M. Majzoobi, A. Elnably, and F. Koushanfar. FPGA time-
bounded unclonable authentication. In Information Hiding,
pages 1–16. Springer, 2010.

[MGS11] Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont. A
systematic method to evaluate and compare the performance
of physical unclonable functions. Cryptology ePrint Archive,
Report 2011/657, 2011. http://eprint.iacr.org/2011/657.

[MHH`13] Dominik Merli, Johann Heyszl, Benedikt Heinz, Dieter Schus-
ter, Frederic Stumpf, and Georg Sigl. Localized electromagnetic
analysis of RO PUFs. In Proceedings of the IEEE Int. Sym-
posium of Hardware-Oriented Security and Trust. IEEE, June
2013.

[MKP08a] M. Majzoobi, F Koushanfar, and M. Potkonjak. Testing tech-
niques for hardware security. In Test Conference, 2008. ITC
2008. IEEE International, pages 1–10, 2008.

[MKP08b] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkon-
jak. Lightweight secure PUFs. In ICCAD ’08: Proceedings of the
2008 IEEE/ACM International Conference on Computer-Aided
Design, pages 670–673, Piscataway, NJ, USA, 2008. IEEE Press.

[MMS09] Sergey Morozov, Abhranil Maiti, and Patrick Schaumont. A
comparative analysis of delay based PUF implementations on
FPGA. Cryptology ePrint Archive, Report 2009/629, 2009.
http://eprint.iacr.org/2009/629.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards (Ad-
vances in Information Security). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

108 BIBLIOGRAPHY

[MP13] Dominik Merli and Rainer Plaga. Was ist der mehrwert von
physical unclonable functions in der chipsicherheit? In 13.
Deutscher IT Sicherheitskongress, 2013.

[MS09] Abhranil Maiti and Patrick Schaumont. Improving the quality
of a physical unclonable function using configurable ring oscilla-
tors. In 19th International Conference on Field Programmable
Logic and Applications (FPL), 2009. FPL ’09., 2009.

[MS11] Marcel Medwed and Franois-Xavier Standaert. Extractors
against side-channel attacks: Weak or strong? In Bart Pre-
neel and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2011, volume 6917 of Lecture Notes
in Computer Science, pages 256–272. Springer Berlin / Heidel-
berg, 2011.

[MS13] Dominik Merli and Dieter Schuster. Physical unclonable func-
tion. European patent application, EP13153481, 2013.

[MSE10] Dominik Merli, Frederic Stumpf, and Claudia Eckert. Improving
the quality of ring oscillator PUFs on FPGAs. In 5th Workshop
on Embedded Systems Security (WESS’2010), Scottsdale, AZ,
USA, October 2010. ACM.

[MSS13] Dominik Merli, Frederic Stumpf, and Georg Sigl. Pro-
tecting PUF error correction by codeword masking.
Cryptology ePrint Archive, Report 2013/334, 2013.
http://eprint.iacr.org/2013/334.

[MSSS11a] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg
Sigl. Semi-invasive EM attack on FPGA RO PUFs and coun-
termeasures. In 6th Workshop on Embedded Systems Security
(WESS’2011), Taipei, Taiwan, October 2011. ACM.

[MSSS11b] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg
Sigl. Side-channel analysis of PUFs and fuzzy extractors. In 4th
International Conference on Trust and Trustworthy Computing
(TRUST2011), Pittsburgh, PA, USA, June 2011. Springer.

[MSSS11c] H. Molter, Marc Stöttinger, Abdulhadi Shoufan, and Falko
Strenzke. A simple power analysis attack on a McEliece crypto-
processor. Journal of Cryptographic Engineering, 1:29–36, 2011.

BIBLIOGRAPHY 109

[MTV08] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Intrinsic
PUFs from flip-flops on reconfigurable devices. In 3rd Benelux
Workshop on Information and System Security (WISSec 2008),
page 17, Eindhoven,NL, 2008.

[MTV09] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Low-overhead
implementation of a soft decision helper data algorithm for
SRAM PUFs. In Christophe Clavier and Kris Gaj, editors,
CHES, volume 5747 of Lecture Notes in Computer Science,
pages 332–347. Springer, 2009.

[Pap01] Ravikanth Pappu. Physical One-Way Functions. PhD thesis,
Massachusetts Institute of Technology, 2001.

[PD11] Zdenek Sid Paral and Srinivas Devadas. Reliable and efficient
PUF-based key generation using pattern matching. In HOST,
pages 128–133. IEEE Computer Society, 2011.

[PRTG02] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershen-
feld. Physical one-way functions. Science, 297(5589):2026–2030,
September 2002.

[QS01] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic
Analysis (EMA): Measures and Counter-Measures for Smard
Cards. In Smart Card Programming and Security (E-smart
2001), volume 2140 of Lecture Notes in Computer Science, pages
200–210. Springer-Verlag, 9 2001.

[RSS`10] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srini-
vas Devadas, and Jürgen Schmidhuber. Modeling attacks on
physical unclonable functions. In Proceedings of the 17th ACM
conference on Computer and communications security, CCS ’10,
pages 237–249, New York, NY, USA, 2010. ACM.

[Rüh09] Ulrich Rührmair. Simpl systems: On a public key variant of
physical unclonable functions. Technical report, Cryptology
ePrint Archive, International Association for Cryptologic Re-
search, 2009.

[SD07] G. E. Suh and S. Devadas. Physical unclonable functions for
device authentication and secret key generation. Design Au-
tomation Conference, 2007. DAC ’07. 44th ACM/IEEE, pages
9–14, 2007.

110 BIBLIOGRAPHY

[SGM09] Laurent Sauvage, Sylvain Guilley, and Yves Mathieu. Elec-
tromagnetic radiations of FPGAs: High spatial resolution car-
tography and attack on a cryptographic module. ACM Trans.
Reconfigurable Technol. Syst., 2:4:1–4:24, March 2009.

[SHO08] Ying Su, Jeremy Holleman, and Brian P. Otis. A digital 1.6
pj/bit chip identification circuit using process variations. IEEE
JOURNAL OF SOLID-STATE CIRCUITS, 43(1):69–77, Jan
2008.

[Sko05] Sergei P. Skorobogatov. Semi-invasive attacks – A new approach
to hardware security analysis. Technical Report UCAM-CL-
TR-630, University of Cambridge, Computer Laboratory, April
2005.

[Sko10] Sergei Skorobogatov. Optical fault masking attacks. In Luca
Breveglieri, Marc Joye, Israel Koren, David Naccache, and In-
grid Verbauwhede, editors, FDTC, pages 23–29. IEEE Com-
puter Society, 2010.

[Smi97] Steven W. Smith. The scientist and engineer’s guide to digital
signal processing. California Technical Publishing, San Diego,
CA, USA, 1997.

[SNK`12] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Su-
sanna Orlic, and Jean-Pierre Seifert. Simple photonic emission
analysis of AES. In Emmanuel Prouff and Patrick Schaumont,
editors, Cryptographic Hardware and Embedded Systems, CHES
2012, volume 7428 of Lecture Notes in Computer Science, pages
41–57. Springer Berlin Heidelberg, 2012.

[SS10] D. Suzuki and K. Shimizu. The glitch PUF: A new delay-PUF
architecture exploiting glitch shapes. Cryptographic Hardware
and Embedded Systems (CHES) 2010, pages 366–382, 2010.

[STM`08] Falko Strenzke, Erik Tews, H. Molter, Raphael Overbeck, and
Abdulhadi Shoufan. Side channels in the McEliece PKC. In
Johannes Buchmann and Jintai Ding, editors, Post-Quantum
Cryptography, volume 5299 of Lecture Notes in Computer Sci-
ence, pages 216–229. Springer Berlin / Heidelberg, 2008.

[SVW10] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachs-
mann. PUF-enhanced RFID security and privacy. In Workshop
on Secure Component and System Identification (SECSI), 2010.

BIBLIOGRAPHY 111

[TSŠ`06] Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van Geloven,
Nynke Verhaegh, and Rob Wolters. Read-proof hardware from
protective coatings. In Louis Goubin and Mitsuru Matsui, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES
2006, volume 4249 of Lecture Notes in Computer Science, chap-
ter 29, pages 369–383. Springer Berlin Heidelberg, 2006.

[Wag12] Mathias Wagner. 700+ attacks published on smart cards: The
need for a systematic counter strategy. In COSADE, pages 33–
38, 2012.

[Xil10] Xilinx Inc. Spartan-3A FPGA Family Data Sheet -
DS529, v2.0 edition, 2010. http://www.xilinx.com/ sup-
port/documentation/data sheets/ds529.pdf.

[Xil12a] Xilinx Inc. Spartan-3 FPGA Family Data Sheet -
DS099, v3.0 edition, 2012. http://www.xilinx.com/ sup-
port/documentation/data sheets/ds099.pdf.

[Xil12b] Xilinx Inc. Spartan-3E FPGA Family Data Sheet -
DS312, v4.0 edition, 2012. http://www.xilinx.com/ sup-
port/documentation/data sheets/ds312.pdf.

[YD10a] Meng-Day (Mandel) Yu and Srinivas Devadas. Recombination
of physical unclonable functions. In 35th Annual GOMACTech
Conference, Reno, NV, March 2010. United States. Dept. of
Defense.

[YD10b] Meng-Day (Mandel) Yu and Srinivas Devadas. Secure and ro-
bust error correction for physical unclonable functions. IEEE
Des. Test, 27(1):48–65, 2010.

[YMSD11] Meng-Day (Mandel) Yu, David M’Raihi, Richard Sowell, and
Srinivas Devadas. Lightweight and secure PUF key storage using
limits of machine learning. In Bart Preneel and Tsuyoshi Takagi,
editors, Cryptographic Hardware and Embedded Systems (CHES
2011), volume 6917 of Lecture Notes in Computer Science, pages
358–373. Springer Berlin Heidelberg, 2011.

[YQ10] Chi-En Yin and Gang Qu. Lisa: Maximizing RO PUF’s secret
extraction. In Hardware-Oriented Security and Trust (HOST),
2010 IEEE International Symposium on, pages 100–105, 2010.

112 BIBLIOGRAPHY

[YQ11] Chi-En Yin and Gang Qu. A regression-based entropy distiller
for RO PUFs. Technical report, University of Maryland, Insti-
tute for Systems Research, 2011.

[YSS`12] Meng-Day Yu, R. Sowell, A. Singh, D. M’Raihi, and S. De-
vadas. Performance metrics and empirical results of a PUF
cryptographic key generation asic. In Hardware-Oriented Secu-
rity and Trust (HOST), 2012 IEEE International Symposium
on, pages 108 –115, june 2012.

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Security Based on Physical Properties
	Unique Physical Properties
	Physical Unlonable Functions
	PUF Quality Measures

	Silicon PUFs
	Ring Oscillator PUF
	Arbiter PUF
	SRAM PUF
	Butterfly PUF
	Bistable Ring PUF
	Sum PUF

	Key Generation Based on PUFs
	Code-Offset Secure Sketch
	Code-Offset Fuzzy Extractor
	Robust Sketches and Robust Fuzzy Extractors
	Index-Based Syndrome Coding
	Other Key Embedding/Extracting Algorithms

	Physical Attacks
	Secret Extraction by Physical Measurements
	Side-Channel Attacks
	Other Physical Attacks

	Implementation of RO PUFs on FPGAs
	Ring Oscillators
	Functionality
	Influences on RO Frequency
	FPGA Implementation

	Frequency Measurement
	Asynchronous Counter
	Measurement Error

	RO Placement and Comparison
	Spatial Ring Oscillator Frequency Analysis
	Physical Mapping and Comparison Strategy

	Summary

	Attacks on RO PUFs
	Related Work
	Impact of RO PUF Decapsulation
	FPGA Decapsulation
	Analysis Before and After Decapsulation

	Localized Electromagnetic Analysis
	Measurement Setup
	Analysis Preliminaries

	EM Emission of Ring Oscillators
	Test Design
	Frequency Spectra
	RO Localization

	Attack on Standard RO PUFs
	Detailed Attack Steps
	Case Study: FPGA Ring Oscillator PUF
	Countermeasure

	Localized Attack on Protected RO PUFs
	Location-Dependent Frequency Leakage
	Attack Steps
	Case Study: Protected FPGA RO PUF
	Countermeasures

	Summary

	Attacks on Key Generation
	Related Work
	Attack on Error-Correcting Codes
	Implementation Diversity of ECCs
	DPA based on Helper Data Manipulation
	DPA on Secure Sketch FPGA Implementation

	Attack on Toeplitz Hashing
	Leakage of PUF Response Bits
	SPA on Toeplitz Hashing FPGA Implementation

	Codeword Masking as a Countermeasure
	Secure Sketch Protection
	COFE Masking
	Robust Sketches and Robust Fuzzy Extractors
	Masking Other PUF Key Generation Algorithms

	Summary

	Conclusions
	Bibliography

