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Abstract—To increase the spectral efficiency of future wireless
networks, it is important to wisely integratemultiple services at the
physical layer. Here the efficient integration of confidential services
in the three-node bidirectional relay channel is studied. A relay
node establishes a bidirectional communication between two other
nodes using a decode-and-forward protocol, which is also known
as two-way relaying. In the broadcast phase, the relay transmits
not only the two bidirectional messages it received in the previous
multiple access phase, but also an additional confidential message
to one node while keeping the other node completely ignorant of it.
The concept of strong information theoretic secrecy is used to ensure
that the nonlegitimate node cannot decode the confidentialmessage
nomatter what its computational resources are. Moreover, this im-
plies that the average decoding error at the nonlegitimate node goes
exponentially fast to one for any decoding strategy it may use. This
results in the study of the bidirectional broadcast channel with con-
fidential messages for which the strong secrecy capacity region is
established. Furthermore, it is shown that the efficient integration
of confidential messages with strong secrecy extends to such sce-
narios, where the relay further transmits an additional common
message to both nodes.

Index Terms—Bidirectional broadcast channel, bidirectional re-
laying, capacity region, confidential message, physical layer secu-
rity, strong secrecy, wireless network.

I. INTRODUCTION

A research area that is gaining importance is the efficient
integration of certain services at the physical layer. For

example, already in current cellular systems, operators offer not
only traditional services such as (bidirectional) voice commu-
nication, but also further multicast services or confidential ser-
vices that are subject to certain secrecy constraints. Nowadays,
the integration of multiple services is realized by policies that
allocate different services on different logical channels. In gen-
eral this is quite inefficient and thus there is a trend to merge
multiple coexisting services efficiently from an information the-
oretic point of view so that they work on the same wireless
resources.
When integrating confidential services, operators of wireless

networks are confronted with an inherent problem: due to the
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open nature of the wireless channel a transmitted signal is re-
ceived by its intended users but can also easily be eavesdropped
by nonlegitimate receivers. To keep information secret, current
systems usually apply cryptographic techniques which are
based on the assumption of insufficient computational capabil-
ities of nonlegitimate receivers. It is clear that with increasing
computational power, improved algorithms, or recent advances
in number theory, these techniques become more and more
insecure.
Information theoretic, or physical layer, security uses the

physical properties of the wireless channel in order to establish
a higher level of security. This security only depends on the
channel; so whatever transformation is applied to the signals
that are received by nonlegitimate receivers, the original
message cannot be reproduced with high probability. Not sur-
prisingly, information theoretic security is becoming more and
more attractive and is identified by operators as a promising
task for next generation mobile networks [1].
Information theoretic security was initiated by Wyner, who

introduced the wiretap channel [2], and later generalized by
Csiszár and Körner to the broadcast channel with confidential
messages [3]. Recently, there is growing interest in information
theoretic security, for example we refer to [4]–[7] and references
therein. Besides the wiretap channel [2], [8]–[10], there is also
work on multiuser settings such as the multiple access channel
with confidential messages [11], the MIMO Gaussian broad-
cast channel with common and confidential messages [12], [13],
the interference channel with confidential messages [14], or the
two-way wiretap channel [15], [16]. Secure communication in
wireless networks, where the source broadcasts several confi-
dential messages is studied in [17]. Secret key agreement over
wireless fading channels is analyzed in [18].
However, most of these works use the criterion of weak se-

crecywhich is heuristic in nature, in that no operational meaning
has been given to it yet. This means that even if this criterion
holds, one still does not know what a nonlegitimate receiver
can or cannot do to decode the confidential message. A crite-
rion that can be given an operational meaning is the criterion of
strong secrecy introduced by Maurer and Wolf in [19]: it was
established in [20], [21] for the wiretap channel that under the
strong secrecy criterion, the average decoding error at a nonle-
gitimate receiver tends to one for any decoding strategy it may
use. This criterion is stronger than the one used so far and has
further been investigated under several aspects in [20]–[26]1.
The observation in [20], [21] constitutes the main motivation

to consider strong secrecy in bidirectional relay channels.

1The authors thank the anonymous reviewer who brought their attention to
reference [25].
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Fig. 1. Decode-and-forward bidirectional relaying. In the initial multiple ac-
cess (MAC) phase, nodes 1 and 2 transmit their messages and with
rates and to the relay node. In the succeeding bidirectional broadcast
(BBC) phase, the relay forwards the messages and with rates and

and adds a confidential message for node 1 with rate to the com-
munication which has to be kept secret from node 2. (a) MAC phase. (b) BBC
phase.

Here, a relay node establishes a bidirectional communication
between two other nodes using a two-phase decode-and-for-
ward protocol [27]–[31]. In the initial multiple access (MAC)
phase both nodes transmit their messages to the relay node
which decodes them. This is the classical multiple access
channel which is well understood. In the succeeding broadcast
phase the relay reencodes and transmits both messages in such
a way that both receiving nodes can decode their intended
message using their own message from the previous phase
as side information. It is shown in [29]–[31] that capacity is
achieved by a single data stream that combines both messages
based on the network coding idea. The concept of bidirectional
relaying and its extensions are widely studied. Besides the de-
code-and-forward protocol [29]–[32] there are other strategies
such as amplify-and-forward [32], [33], compress-and-forward
[34]–[36], compute-and-forward [37]–[41], or noisy network
coding [42]–[44].
In this paper we consider the three-node bidirectional relay

channel as depicted in Fig. 1, where the relay node establishes
the bidirectional communication and at the same time transmits
an additional confidential message to one node in the broadcast
phase in such a way that the other nonlegitimate node is kept
completely ignorant of it. Due to the side information at the
receivers this differs from the classical broadcast scenario and is
therefore known as bidirectional broadcast channel (BBC) with
confidential messages.
The rest of the paper is organized as follows.We introduce the

system model for strong secrecy in bidirectional relay channels
in Section II. Therefore, we define the BBC with confidential
messages and state the corresponding strong secrecy capacity
region. In Section III we present the key idea to achieve strong
secrecy in the BBC with confidential messages. This allows us
to establish the corresponding strong secrecy capacity region in
Section IV. Section V discusses the scenario where the relay ad-
ditionally integrates a common message, and Section VI finally
concludes the paper.

Notation

In this paper we denote discrete random variables by capital
letters and their realizations and ranges by lower case letters
and script letters, respectively; and are the sets of pos-
itive integers and nonnegative real numbers; and
are the traditional entropy and mutual information; is
the Kullback-Leibler (information) divergence and is
the total variation distance of measures , on defined as

or equivalently as

, cf. for example [45, Lemma 4.1.1];
denotes a Markov chain of random variables , ,

and in this order; all logarithms, exponentials, and informa-
tion quantities are taken to the basis 2; denotes the set of
all probability distributions; the product distribution is
defined by the product of its marginal distributions and ,
i.e., for all , ; is
the indicator function; and are the expectation and the
probability; means the value of the right hand side
(rhs) is assigned to the left hand side (lhs).

II. BIDIRECTIONAL BROADCAST CHANNEL
WITH CONFIDENTIAL MESSAGES

A. System Model and Strong Secrecy

Let and , be finite input and output sets. Then
for input and output sequences and
, of length , the discrete memoryless broadcast channel is

given by . Since
we do not allow any cooperation between the receiving nodes, it
is sufficient to consider the marginal channels

, only.
In this paper we consider the standard model with a

block code of arbitrary but fixed length . The set of indi-
vidual (or bidirectional) messages of node is denoted by

, which is also known at
the relay node. Further, the set of confidential messages of
the relay node is denoted by . We
will frequently abbreviate the set of all individual messages
by and the set of all messages by

. Note that the
messages sets will have the size of the form ,

, and , where and are the
rates of the corresponding individual and confidential mes-
sages, .
In the bidirectional broadcast (BBC) phase we assume that

the relay has successfully decoded both individual messages
and that nodes 1 and 2 have sent in

the previous multiple access (MAC) phase. Besides both indi-
vidual messages the relay additionally transmits a confidential
message intended for node 1, which has to be kept
secret from nonlegitimate node 2.
Definition 1: An -code for the BBC

with confidential messages consists of one stochastic encoder
at the relay node

and decoders at nodes 1 and 2

The encoder is allowed to be stochastic which means that
it is specified by conditional probabilities with

for each . Here,
denotes the probability that the message is encoded as

.
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When the relay has sent the message , and
nodes 1 and 2 have received and , the decoder at node 1
is in error if . Accordingly, the decoder
at node 2 is in error if . Then, the average
probabilities of error at nodes 1 and 2 are given by

To ensure that the confidential message is kept secret from
nonlegitimate node 2, we require for
some (small) with and the random vari-
ables uniformly distributed over the sets and and

the corresponding output at node
2. This criterion is known as strong secrecy [19].
Remark 1: There exists a weaker notion of secrecy where

the mutual information term is additionally normalized by the
block length , i.e., we require for
some (small) . This criterion is known as weak secrecy.

B. Strong Secrecy and Classes of Attacks

Based on the wiretapper’s intentions and its available re-
sources, one can classify the behavior of the wiretapper into
different classes of attacks. For example, attacks with limited
computational power as usually assumed in the cryptographic
context or attacks with unlimited computational capabilities.
The weak secrecy criterion has the drawback that no opera-

tional meaning has been given to it yet. This means that even
if this criterion is satisfied, it is not clear what a nonlegitimate
receiver can or cannot do to obtain information about the confi-
dential message. Thus, it is not clear against what kind of attacks
the confidential message is protected. However, this secrecy cri-
terion is widely adopted and was first analyzed by Wyner in his
landmark paper [2].
In contrast, it is shown in [20], [21] for the wiretap channel

that the strong secrecy criterion has the following operational
meaning: no matter how the nonlegitimate node tries to decode
the confidential message, the average probability of error tends
to one. Since this holds for all possible decoding strategies, the
confidential message is protected against attacks with unlimited
computational capabilities (and therewith also against attacks
with limited resources). Here, we want to establish a similar
interpretation for the BBC with confidential messages.
Proposition 1: Assume that for any given code of Definition

1 the nonlegitimate node 2 has a decoder intended for the con-
fidential message given as

If , then

with as .
Proof: Suppose that the decoder at nonlegitimate node

2 is specified by decoding sets
with for every .

Note that for given side information , the decoding
sets are disjoint, i.e., for ,
but need not be disjoint for different . Since and

are assumed to be independent and uniformly distributed,
we can write the average probability of error as

(1)

On the other hand we know from the strong secrecy criterion
that

where the second last step follows from Pinsker’s inequality2

and the last one from the definition of total variation distance.
Using the Jensen’s inequality, we obtain

2This bound with a worse constant was first given by Pinsker [46] and is
therefore also known as Pinsker’s inequality, cf. also [47, Problem 3.18].
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Extracting the root and inserting this into (1), the average prob-
ability of error can be bounded from below as

with . The first equality follows
from the fact that and are independent of each other
and uniformly distributed and the last equality follows from the
observation that for any nonnegative numbers with

we have . Later we will
choose to have the form with some , so
that the average (and therewith also the maximum) probability
of error at nonlegitimate node 2 tends to one exponentially fast
as .
Remark 2: Proposition 1 shows that if is

small, the decoding error at nonlegitimate node 2 tends to
one regardless of the decoding sets at the nonlegitimate node.
Thus, the confidential message is protected against all possible
decoding strategies the nonlegitimate node might choose.
Definition 2: A rate triple is said to

be achievable for the BBC with confidential messages if
for every there is an and a sequence of

-codes such that for all we
have , ,

, and

(2)

while as . The set of all achievable
rate triples is the strong secrecy capacity region of the BBCwith
confidential messages and is denoted by .
Now we are in the position to state the main result of this

paper which is given the following theorem.
Theorem 1: The strong secrecy capacity region of the

BBC with confidential messages is the set of all rate triples
that satisfy

(3a)

(3b)

for random variables with joint probability
distribution .

Proof: The converse follows immediately from the fol-
lowing observation. In [48] we established the weak secrecy
capacity region of the BBC with confidential messages where

(2) is replaced by the weaker condition , cf.
also Remark 1. Thus, it is clear that the strong secrecy capacity
region must be contained in the weak secrecy capacity
region , i.e., . Since interestingly,
is given by exactly the same expression (3), the weak secrecy
capacity region establishes immediately the desired con-
verse for . Therefore, it remains to show the achievability
of (3) for the strong secrecy criterion.

III. KEY IDEA FOR STRONG SECRECY

There were several methods proposed to establish strong
secrecy based on different techniques such as coloring hyper-
graphs [22], privacy-amplification [19], or resolvability [25],
[26]. In this paper we use Devetak’s approach introduced in
[24] for the wiretap channel and extend it to the BBC with con-
fidential messages. This approach establishes strong secrecy
using only the noisy broadcast channel. Therefore we start
with a basic observation concerning the relationship of total
variation distance and (conditional) mutual information.
Lemma 1: Let , , and be finite sets and , , and be

corresponding random variables. If

is satisfied for every , then

Proof: Basically, the proof follows from the continuity of
the entropy function, cf. [47, Lemma 1.2.7]. Accordingly, we
observe that we can rewrite the (conditional) mutual informa-
tion as

using the definition of mutual information. Since
for all , we immediately

obtain from [47, Lemma 1.2.7] that
for all which proves

the lemma.
Thus, for to be small, it suffices to find for

every a code that satisfies
for all . Moreover, the fol-

lowing lemma shows that it suffices to find for every
a measure on such that

.
Lemma 2: If there exists for every a

measure on with

(4)

for some , then

(5)

for large enough.
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Proof: Since we can write

and , , and are independent and uniformly dis-
tributed, we get for all

where the second inequality follows from the triangle inequality
and the last inequality from assumption (4). Thus, we have

for large enough, so that Lemma 1 immediately yields

where the last inequality holds for large enough proving the
lemma.
Remark 3: The measure in Lemma 2 is constructed in

such a way that the mutual information term
decreases exponentially fast for increasing block length. With
Proposition 1 this immediately implies that the decoding error
at nonlegitimate node 2 goes exponentially fast to one regardless
of the decoding strategy the nonlegitimate receiver may use, cf.
also Section II-B.

IV. CODEBOOK DESIGN FOR STRONG SECRECY

In this section we present the proof of achievability
of Theorem 1. First, we only consider random variables

and prove the achievability of all rate triples
that satisfy

(6a)

(6b)

with strong secrecy. After that we are able to extend this to the
desired region (3).
To prove (6) we construct a codebook that enables reliable

communication of all messages with the desired rates, while
ensuring the secrecy of the confidential message. Additionally
to the key observation in Lemma 2, we need the following two
ingredients.
The first one ensures reliable communication of the two bidi-

rectional messages and to nodes 2 and 1, respectively,

and of the confidential message to node 1. Let us drop the se-
curity requirement on for a moment, i.e., it need not be kept
secret from nonlegitimate node 2. For better differentiation we
call this a private message and obtain the following achievable
rate region.
Lemma 3: An achievable rate region for the BBC with an

additional private message for node 1 is given by set of all rate
triples that satisfy

(7a)

(7b)

for random variables with joint probability
distribution and average proba-
bility of errors smaller than with some for block
length large enough.

Proof: The proof can be found in the appendix.
The second ingredient will be used to incorporate the strong

secrecy requirement on and to ensure the validity of (4). In
more detail, we will exploit the concentration of sums of i.i.d.
random variables around their expectation as given in the fol-
lowing lemma which is due to Chernoff and Hoeffding.
Lemma 4: Let and let be i.i.d. random

variables with values in . Let be the expectation
of . Then

where denotes the interval .
After these preliminary considerations we come to the coding

part. Here we extensively make use of the concept of -typ-
ical sequences from Csiszár and Körner [47] which is briefly
recalled.
For any distribution a sequence is

said to be -typical if for every
and, in addition, if . Here,
denotes the number of indices such that
. The set of all such typical sequences is denoted by

. Further, for any stochastic matrix a
sequence is called -typical for given if

for every
and, in addition, if .

The set of all such sequences is denoted by .
For any probability distribution we define the

probability measure as

(8)

if and else, where
. Similarly, for any we de-

fine as

(9)

if and else, where
.
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This allows us to define the random coding schemewith block
length as follows. Let and be the sets of individual
messages where their sizes and are determined by
(7b), cf. Lemma 3. Let be the set of confidential messages
and further with and to be fixed
later. Let be i.i.d. random vari-
ables with values in according to , cf. (8). Then for each
pair of bidirectional messages we de-
fine random variables with
values in , which are i.i.d. conditional on according to

, cf. (9).
Now we come to the application of Lemma 4. Note that the

channel to the nonlegitimate node 2 can also
be regarded as a channel where the
-inputs do not make any difference. Moreover, it will be suf-
ficient to concentrate only on those outputs that are typical; the
probability of all other outputs will be of no consequence as
we will see later, cf. (18). Therefore, for every

and , let

(10)

where for any set , we let if and
else. Then for any we define

(11)

and finally set

(12)

Next, we consider for every
and , the random variable

(13)

Note that from (10)–(13) follows that

is satisfied. Conditional
on , these random variables are i.i.d. Moreover, as the
input pair is jointly -typical with respect
to the joint distribution , and the outputs of are
-typical conditional on the inputs, it is well-known that (13)
is upper-bounded by

(14)

for some , see e.g., [47]. Then we define
to be the event that

(15)

Now let . Then the probability of the complement of
is

(16)

where the equality follows from the law of total probability, the
first inequality is due to Lemma 3 (with in the role
) and (14), and the second inequality follows from (11) and

for some , see e.g., [47], which applies here because
is -typical. Note that if we choose with

, cf. also Lemma 3, then (16) tends to zero
doubly-exponentially for

(17)

This provides the basis for the proof of (4), which is the exis-
tence of a measure for given individual messages

such that then all outputs at the nonlegitimate node are
close to it regardless of the transmitted message . Once (4) is
established, Lemma 2 guarantees the strong secrecy of the con-
fidential message.
Next, we determine the sizes of the remaining sets for the con-

fidential messages. Without loss of generality we can assume
that holds. We choose (and there-
with also and ) small enough such that (17) is satisfied and
at the same time

for some small enough. Further, for the set of confidential
messages we set

From (16)–(17) we know that (15) is satisfied for every
and every with probability

close to one. Further, with we know from the
random coding proof of Lemma 3, cf. also the appendix, that
the random codewords we have chosen are the codewords of a
deterministic code achieving average errors
with probability close to one. Thus, there must be realizations
of and which also have both these
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properties. We denote these realizations by
and respectively.
Now we construct an appropriate code with a stochastic

encoder. Therefore, each message triple
is mapped into the codeword with probability

. This already defines a stochastic encoder. Legitimate
node 1 decodes the complete triple having its side
information available, while nonlegitimate node 2 only
decodes its intended individual message with its own .
Interpreting as a private message for node 1 we
know from Lemma 3 that this code is suitable for reliable
transmission of all messages to their respective receivers. It
remains to prove that (4) is satisfied.
Using the triangle inequality we obtain for every

We denote the three parts of the sum above by , , in that
order and bound each of them separately in the following. As
the codewords satisfy (15), we immediately have .
We can write the first term as

(18)

for some constant , where we again interpret
with additional -inputs which do not make a dif-

ference and use the fact that the probability that the output of

a channel is not -typical conditional on the inputs is expo-
nentially small, cf. for example [49, Lemma 2] or [50, Lemma
III.1.3].
The second term can be written as

(19)

where the inequality follows from the validity of (15), the
second equality from the fact that ,
cf. (12), and the last equality from the definition of , cf.
(11). Now we have

(20)

and further

(21)

Inserting (20) and (21) into (19) the second term can be bounded
from above as

Altogether, we can bound the total variation distance as

Note that this distance is exponentially small, as we chose
to have the form . This establishes (4) so that by
Lemma 2, the mutual information term can be
made exponentially small as well.
This proves the achievability of the desired rate region, but

only for random variables as given in (6). To
obtain the whole region as given in (3), note that the relay can
prefix an artificial channel with a finite al-
phabet as initially proposed in [3] for the classical broadcast
channel with confidential messages. Then the above construc-
tion can also be performed for the channel

which completes the proof of Theorem 1.
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Fig. 2. Physical-layer service integration in bidirectional relay channels. In the
BBC phase, the relay forwards the individual messages and and adds a
common message with rate to the communication and further a confi-
dential message for node 1 with rate which has to be kept secret from
node 2.

Remark 4: Note that the effect of the prefix channel can be
integrated in the stochastic encoder, cf. Definition 1.

V. PHYSICAL LAYER SERVICE INTEGRATION

The efficient integration of different services at the physical
layer has been identified as a promising and important technique
to further improve the spectral efficiency in next generation mo-
bile networks. So far we studied the efficient integration of con-
fidential services with strong secrecy in the three-node bidirec-
tional relay channel at the physical layer. But besides such con-
fidential services, operators of current wireless systems usually
offer also multicast services where a common message has to be
transmitted to a whole group of receivers; for example the Mul-
timedia Broadcast Multicast Service (MBMS), as specified by
the 3GPP organization, or the Multicast and Broadcast Service
(MCBCS) in WiMAX.
Assuming the weak secrecy criterion, the efficient integra-

tion of common and confidential services in bidirectional relay
channels is studied in [51], [52]. Therewith and with the results
and techniques obtained so far, it is straightforward to extend
the previous results to the case where common and confiden-
tial services are integrated in the three-node bidirectional relay
channel at the physical layer where strong secrecy (instead of
weak secrecy) is required for the confidential service, cf. Fig. 2.
We immediately obtain the following result.
Corollary 1: The strong secrecy capacity region of the BBC

with common and confidential messages is the set of all rate
tuples that satisfy

for random variables .

VI. CONCLUSION

In this work we studied the efficient integration of confiden-
tial services in the three-node bidirectional relay channel at the
physical layer with strong secrecy. This required the analysis of
the BBC with confidential messages for which we derived the
strong secrecy capacity region. Interestingly, it is shown that the
strong secrecy capacity region coincides with the corresponding
weak secrecy capacity region. Thus, a requirement of strong se-
curity for confidential services in bidirectional relay channels
does not lead to a loss in transmission rates compared to weaker
security requirements.

APPENDIX

Here we present the proof of Lemma 3. We show the ex-
istence of a codebook that achieves the desired rates (7) by
random coding arguments. Basically, we combine techniques of
the classical bidirectional broadcast channel for the individual
messages, cf. for example [29], and superposition coding tech-
niques for the additional private message.

Remark 5: Note that for proving the achievability we will
use the same input distributions (8)–(9) as considered later in the
strong secrecy analysis, cf. Section IV. This will be indispens-
able to ensure that the random codebook will possess both prop-
erties-establishing reliable communication and realizing strong
secrecy-simultaneously with high probability.
1) Random Codebook Generation and Encoding:

We define individual message sets and with
and ,

respectively, and a private message set with
for some (small) .

In a first step, we generate independent
random codewords with ac-
cording to , cf. (8). Then, for each we generate

independent random random codewords
according to , cf. (9).
2) Decoding: The receiving nodes use typical set decoding

where each node uses the received sequence and its side infor-
mation to create the decoding sets. In more detail, if the message
triple has been sent, we define for the individual
messages the sets

and therewith the decoding sets at receiving node 1 as

with . Then in a second step we define
for the additional private message the sets

and therewith the decoding sets as

with . The sets
and for all individual mes-

sages at receiving node 2 are defined accordingly.
3) Analysis of Probability of Error: In the following we

show that the expectations of the average probabilities of error
at nodes 1 and 2 are exponentially small. For the corresponding
analysis at receiving node 1, we identify from the decoding sets
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defined above for any message triple the random
error events:

(22a)

(22b)

(22c)

(22d)

Here is a random variable whose law is determined by the
channel . From the union bound fol-
lows that the average probability of decoding error is small if
the probabilities of all these error events are small.
In more detail, the first two events regard the decoding of the

individual message at node 1 given its own message as
side information. For the probability of the first error event (22a)
we have

(23)

for some constant , where the third step follows from
(9) and the fourth and sixth step from

, cf. for example [49, Lemma 2] or [50,
Lemma III.1.3]. The last inequality holds for some for
sufficiently large .
Similarly, we get for the probability of the second event (22b)

(24)

where the first step comes from the union bound, the third step
from (8) and (9), the fourth step from [49, Lemma 2] or [50,
Lemma III.1.3], and the fifth step from the size of and [49,
Lemma 3] with as . Again, the last inequality
holds for large enough and small enough such that

.
The third and fourth events deal with the decoding of the

additional private message at receiving node 1. The key idea
in the following is to interpret the channel as
a channel with inputs in where
the -inputs do not matter. Then we get for error event (22c)

(25)

using the same argumentation as for the first error event (22a).
It remains to bound error event (22d) as follows

(26)

where the first step comes from the union bound, the third step
from (9) and ,
and the fourth step from the size of and similarly as in [49,
Lemma 3] with as . Again, the last inequality
holds fro large enough and small enough such that

.
The analysis of probability of error at receiving node

2 follows accordingly with the error events

and
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. Note that receiving node 2 only
has to decode its intended individual message and is not
interested in the additional private message from the relay
node. Thus, there is no need for further error events as given in
(22c) –(22d).
From (23)–(26) and the corresponding expressions for re-

ceiving node 2, we conclude that the probabilities of decoding
error, averaged over all codewords and codebooks, decreases
exponentially fast for increasing block length . Finally, from
the random coding argument it follows that for large enough
there exists a codebook with desired rates (7) and required av-
erage probability of decoding errors proving the lemma.
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