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Summary 

 

Non-targeted metabolomics is a discipline of systems biology that has attained increasing 

interest in the recent decade. Metabolomics aims at the holistic and contemporary detection, 

quantification and identification of the entire set of small molecules that are being 

transformed or synthesized by living beings. The abundance of these metabolites varies over 

a range of several orders of magnitude and so do their physico-chemical properties. This 

strong variation makes it virtually impossible to fulfil the goal of metabolomics research in its 

entirety. It is either possible to detect, quantify and identify small sets of metabolites at a time 

(targeted metabolomics) or to maximize the set of detectable metabolites under loss of 

quantitative performance and possibility of identification (non-targeted metabolomics). 

Non-targeted metabolomics however can extend the knowledge on biochemical processes, a 

feat that targeted metabolomics is barely capable of, as it can only revolve about existing 

knowledge. 

We use non-targeted metabolomics under application of ultra-high resolution/accuracy mass 

spectrometry in order to determine the metabolic profiles of a yet poorly described sample 

matrix – exhaled breath condensate (EBC). EBC is an artefact of the pulmonary airway lining 

fluid and is therefore representative of its composition. While EBC research has focused on 

pulmonary diseases, we want to establish a link between EBC patterns and systemic 

metabolism. This endeavour is complicated by the exceptionally high variability in absolute 

metabolome concentration that is intrinsic to EBC. 

The present thesis develops partially network based approaches for the extension of 

metabolite annotation and matrix effect control. Finally, it establishes the link between EBC 

and systemic metabolism at hand of the HuMet study.       

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung 

 

Ungerichtete Metabolomik ist eine Disziplin der Systembiologie, welche im vergangenen 

Jahrzehnt stark an Popularität gewonnen hat. Das Ziel der Metabolomik ist die holistische, 

zeitgleiche Detektion, Quantifizierung und Identifizierung aller kleinen Moleküle, welche 

von lebenden Organismen umgesetzt oder synthetisiert werden. Die Konzentration dieser 

Metabolite variiert über eine Spanne von mehreren Zehnerpotenzen. Gleichsam variieren ihre 

physiko-chemischen Eigenschaften. Diese starke variation macht es praktisch unmöglich die 

Ziele der Metabolomik – wie oben formuliert – zu verwirklichen. Es ist entweder möglich 

kleine Sets von Metaboliten zu detektieren, zu quantifizieren und zu identifizieren (gerichtete 

Metabolomik) oder es ist möglich – unter Verlust von quantitativer Performance und 

Identifizierbarkeit – das Spektrum detektierbarer Metabolite zu maximieren (ungerichtete 

Metabolomik) 

Ungerichtete Metabolomik kann jedoch den Definitionsbereich biochemischen Wissens 

erweitern. Dies ist mit gerichteter Metabolomik kaum möglich, da sich diese nur innerhalb 

des bekannten Wissens bewegt. 

In dieser Arbeit verwenden wir ultra hoch auflösende/akkurate Massenspektrometrie um 

mittels ungerichteter Metabolomik eine zur Zeit kaum beschriebene Analysematrix zu 

charakterisieren – Atemkondensat (EBC). EBC ist ein Artefakt der Oberflächenflüssigkeit, 

welche das pulmonale Epithelium überzieht. Während EBC Analyse bisher nur durchgeführt 

wurde um pulmonale Fragestellungen zu beleuchten, wollen wir in dieser Arbeit eine 

Verbindung zwischen EBC-Profilen und systemischem Metabolismus herstellen. Diese 

Anstrengung wird durch die starke variierende Konzentration des EBC-Metaboloms 

erschwert. 

Die vorliegende Arbeit entwickelt Ansätze für die Erweiterung von Möglichkeiten der 

Annotierung sowie für die Kontrolle von Matrix-Effekten. Schließlich wird anhand der 

HuMet-Studie ein Link zwischen EBC und systemischem Metabolismus hergestellt.  
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1 Introduction 
 

1.1 Motivation and Overview 
 

The title of the present manuscript contains four major keywords, which are ‘Metabotyping‘, 

‘Surrogate Marker‘, ’Exhaled Breath Condensate‘ and ‘Systemic Metabolism’. Metabotyping 

is a sub-discipline of ‘Metabolomics’ and/or ‘Metabonomics’ (both increasingly used 

synonymously) [Nicholson, J. K., et al., 2008]. Both techniques are based on the parallel 

measurement (quantitation and/or identification) of large sets of molecules, and therefore 

employ multivariate statistics for data management [Lindon, J. C., et al., 2008]. The term 

‘Systemic Metabolism’ [Soininen, P., et al., 2009] refers to metabolic processes, which 

pertain to an entire organism in contrast to the metabolome of histologically defined tissues. 

‘Surrogate Markers’ [Kumar, M., et al., 2009] are defined to be (any) analytical measures, 

which allow statements on a process or state of interest without having to invasively dissect 

(and therefore disturb) that process or state itself.  

Surrogate markers can be the absolute levels of analytes or relative concentrations or patterns 

of analytes, which can significantly and validly be associated to e.g. a disease, nutritional 

state, state of health of an eco system and many more. Ultimately, it is as well desirable for a 

marker to enrich current knowledge on a metabolic state and for it to point out means of 

treatment. An in-depth introduction on surrogate markers and metabotyping is given in 

chapter 1.1. 

A prerequisite for the definition of surrogate markers is the definition of a chemo-analytical 

workflow.  

Workflows in traditional physiological research are deductive, i.e. hypothesis driven. The use 

of deductive workflows is appropriate if there is a fundamental body of knowledge, which 

supports the hypothesis that the workflow is supposed to test or verify. For example, if there 

are numerous indications that a specific biochemical pathway (like cholesterol biosynthesis) is 

associated to heart disease, it is reasonable to choose a set of analytes related to the respective 

pathway and to set up an analytical strategy, which is optimal for the sensitive detection and 

quantification of these targets.  

However, if only the symptoms of a disease are known, if indications from literature do not 

converge, or if a disease may be too multi-factorial to comprehend, it can be more useful to 

choose an inductive route. Inductive science in the context of metabolomics and metabotyping 

is often referred to as being ‘non-targeted’ for the fact that no analytical target is defined; 
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notwithstanding that there actually is a hypothesis underlying inductive research.  

This hypothesis could be formulated as follows:  

‘Given the existence of at least two different populations of metabolic phenotypes among a 

sample set, there should be at least one feature among all measured variables, which 

discriminates between the metabolic phenotypes. Likewise, there might be a set of such 

features, which enables the distinct determination of a metabolic phenotype’  

This hypothesis implies the existence of a chemo-analytical technique that is in fact capable 

of not only the detection, but as well the resolution of a multitude of such features.  

 

In the present thesis, surrogate markers for systemic metabolism – and optimally diabetes 

mellitus – are to be found in exhaled breath condensate (EBC), which is a surrogate matrix for 

the airway lining fluid (ALF) [Hunt, J., 2002]. The ALF guarantees the optimal mechanical 

function of the lung and supports the molecular intercourse between an (aerobic) organism 

and its environment.  

In the search for surrogate markers, EBC has almost exclusively been investigated in the 

context of pulmonology and clinical chemistry. Literature on EBC analysis reflects the impact 

of clinical chemistry, as the entire spectrum of so far analyzed compounds is a subset of 

standard clinical determinants for inflammatory actions and – more specifically – pulmonary 

complications [Risby, T. H., et al., 1999; Cao, W., et al., 2006]. The concern that analyte 

patterns in EBC could reflect diseases in other organs or the nutrition state of a human being 

were never seriously formulated even though exhaled volatile organic compounds (VOCs) 

such as acetone are known to reflect the metabolic state of the liver, the kidney or the intestine 

[Phillips, M., 1992].  

Current metabolomics preferably uses multi-variate techniques of data analysis rather than 

uni-variate data analysis. Multi-variate data analysis is performed by analyzing measures of 

similarity or distance between the relative (also semi-quantitative) abundances of all variables 

in a given dataset. In contrast, uni-variate data analysis concerns with the comparison of 

statistical moments such as mean, standard deviation, variance or median and inter quartile 

range between two populations of samples (e.g. healthy versus diseased). Using such 

techniques, an analyst wants to infer about the significance of the difference of absolute 

variable concentrations.  

Studying the surrogate marker catalogues of clinical medicine laboratories (e.g. of the Charité 

in Berlin) shows that applied markers are exclusively uni-variate in nature, which reflects the 

fact, that no multivariate surrogate marker has made it to clinical practice within two decades 
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of ‘omics science. 

Figure 1 gives a schematic representation of the disparity between science on surrogate 

markers and the end-users requirements (pharmacy, clinical chemistry, the patient) of 

markers. Here may lay one of the major causes for which ‘omics sciences have yet to deliver 

their first accepted clinical marker.   

 

 

Figure 1: Scheme of the current disparity between research (left block) and customer (right block); colored according to 

existent or preferred dimensionality as indicated by the two ellipses 

 

An introduction into different techniques of data analysis will be given in chapter 1.3. The 

reader is introduced into characteristics of EBC data in chapter 1.4. Chapter 1.5 summarizes 

the previous sub-section and points out the major problems which have to be treated in this 

thesis.  

 

1.2 Metabolomics 1: State of the Art and Theory 

 

1.2.1 Metabolism and ‘Omics 

 

Metabolism is a term that pertains to change; the (inter)conversion of organic substances 

(metabolites) is a function and condition for what is called “life”. Metabolism contrasts living 

beings from non-living, abiotic things. The question as to what “life” is has puzzled mankind 

since its existence. Up until the end of the 19th century, “life” was something vaguely 

described, something that fell under the realm of vitalism, i.e. processes that characterize 
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“life” have an inherent and mystic “life-force”. Finally, in the last century, fast progresses in 

biochemistry and/or physiology, (cell)biology and many more have yielded a more objective 

definition as to what “life” actually is: According to [McKay, C. P., 2004; Davison, P. G., 

2008] life is characterized by objects that 

 are composed of one or more cells, which 

o maintain homeostastis; a constant inner state (like the relatively constant 

organo-chemical setup of a cell) 

o grow and/or reproduce themselves (autocatalism) 

o have the ability to adapt their homeostatic state to environmental changes 

 respond to stimuli 

 “perform metabolism” 

So metabolism is the set of chemical conversions, which fuels or enables all the other 

manifestations of life. It encompasses 

Catabolism:  the decomposition of organic compounds into smaller organic compounds. 

This process produces and fixes energy and small organic molecules that can 

be used in anabolism. 

Anabolism: the process that uses the energy and small molecules produced in catabolism in 

order to build larger molecules. 

These larger molecules are in turn DNA, RNA, proteins (polypeptides), carbohydrates 

(polysaccharides) and lipids of different kinds. DNAs, RNAs and proteins – enzymes 

specifically – curiously contain the “blue print” for metabolism in that DNAs code for RNAs 

and RNAs code for proteins (enzymes inclusively) and then the coding stops. Proteins, 

carbohydrates and lipids in turn build up physical structure. The compartmentalization of a 

cell – much like a funnel – directs and optimizes the flow of mass and energy.  

So the living cell is the manifestation of its own intertwined and inter-causative actions. 

Omics sciences – genomics, proteomics and metabolomics in particular – make use of 

instrumental-analytical techniques and ever more powerful computers and computer science 

in order to study the concerted responses of self-interactive living systems towards stimuli. 

Therefore, these scientific disciplines are summarized under the term “systems biology” 

[Villas-Boas, S.G., et al., 2007;  Nicholson, J., 2006] 

.  

As indicated above, genomics and proteomics are “coding” each other and can therefore be 

directly compared. That means the amount of RNA transcripts stemming from the DNA 
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template can be compared to the amount of protein that it codes for and the coded pairs can 

directly be associated to each other. In that sense, cause and response can unequivocally be 

mapped to each other. These properties of DNA, RNA and proteins are reflected in their 

instrumental analysis; DNA and RNA can be amplified in abundance and sequences and the 

protein’s abundance can be measured (e.g. by means of mass spectrometry) and their code can 

be sequenced.  

The subjects of metabolomics do not have such direct coding towards DNA, RNA and 

proteins; rather their template is implied or manifests in DNA, RNA and proteins, by the 

specific functions that proteins have on metabolites. This again is impressive: Physical cell 

structure, enzymes and DNA codes; everything is constructed around the virtual image of 

metabolic reactions that again serve for the self-maintenance of the very same construction. 

The “mapping domain” is the domain of genotype, the non-mapping domain (the metabolites) 

manifests the phenotype. 

However, this indirect implication of a metabolite in DNA, RNA and proteins complicates the 

analysis of metabolites; their structure cannot be “physically mapped” against the proteome 

and the genome; they can only be mapped by virtue of function, i.e. the observation of 

changes in phenotype as a function of changes in genotype. Instrumental analysis of 

metabolites is therefore inherently dependent on an experimental setup in which one group of 

cells is allowed to stay “normal” and another group of cells is perturbed by a specific 

stimulus. This stimulus can be a change in nutrient composition or a genetic manipulation. 

This experimental approach is the deductive (targeted or hypothesis driven) approach. The 

inductive approach (non-targeted or data-driven) would be the collection of individuals of 

different phenotype and the consequent differentiation of their genotype. Interestingly, the 

inductive approach is poorly accepted among scientists, even though the achievements of 

Gregor Mendel were based on inductive experiments and not on deductive experiments. 

Metabolomics is ultimately the static or dynamic description of a living system’s molecular 

phenotype (metabotype) [Nicholson, J. K., et al., 2002; Holmes, E., et al., 2008].         

  

Metabolic Pathways 

Throughout the taxonomic system of biology, each genotype defines a species but different 

phenotypes develop as a function of environmental stimuli – weather, nutrition, parasitic 

interactions between species (a form of disease) [Gavaghan, C. L., et al., 2000]. Phenotypes of 

a species can also change as a function of slight variation in genotype, which can be normal 

and it can also be a form of disease. As indicated above, metabolism is multifactorial, which 
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complicates its analysis. Yet, metabolism adheres to the organization of cellular structure and 

the enzymes it contains. Metabolism itself is therefore organized and its organizational 

subunits are called metabolic pathways. Metabolic pathways describe the sequence of 

reactions, which a living cell performs in order to convert a metabolite A into a metabolite Z 

or into a poly-Z structure. Commonly, on the way from A to Z energy is either produced and 

stored (catabolism) or energy is required to build up structures (anabolism). The first 

pathways discovered were glycolysis, the Calvin cycle and the tri-carboxylic acid cycle.  

Metabolic pathways are entirely anthropogenic; they indicate directions and connections 

between entities that were significantly associated in the human eye. It is not known whether 

each of the known pathways is naturally “intended” as it is described by scientists. However, 

in the end pathways are the major observed routes of mass flux that are addressed by a 

(experimental) stimulus.  

The analysis of metabolic pathways supports the classification of genotypes and phenotypes 

because they represent an ordered system or network whose topology can be more or less 

specific for a species. While the primary energy metabolism throughout different species is 

very similar, the secondary metabolism – that what happens with metabolites apart from 

energy production – may vary strongly, and may thus finally be the determinative difference 

between phenotypes. 

Also, the magnitude of mass flux that an organism directs through a pathway is indicative of 

the “metabolic preferences” an organism, tissue or cell has. As a consequence, even if 

pathways are hypothetical (often experimentally verified) constructs, which enable a scientist 

to systematically compare different species and phenotypes; they – much like a road map – 

help scientists to communicate the site and direction of an event.  

The sequence of enzymes along a metabolic pathway can be used to relate the metabolome to 

the proteome and the genome [Nagarajan, N., et al., 2010; De Souza, A. G., et al. 2009]. 

 

Uses of Metabolomics and Omics in general 

Apart from gaining an understanding of the things, these disciplines’ major purpose is the 

identification of control points, or surrogate markers, which can be used to judge, whether a 

process works as it should and if not, why it does not. This knowledge again should enable the 

human to control the process and revert it into a normal working state. 

Consequently, metabolomics and/or metabotyping is of large interest for medicine, biology 

and ecology. Human action has caused several “abnormal” developments in ecosystems, in 

the environment in general, and the increasing amount of humans on earth nurtures the 
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development of new diseases. Humans have an interest to control all these factors. 

As indicated above, what is necessary for control is an understanding of what is to be 

controlled in order to manipulate a process most effectively. The formulation of surrogate 

markers is one central part of this thesis. 

 

1.2.2 State of the Art 

 

Omics sciences gained much attention throughout the last decade and metabolome analysis is 

widely applied. As it was recognized, that symbiotic microorganisms in the human intestine 

have the ability to modulate human metabolism, there is large interest in the deconvolution of 

the inherent regulatory mechanisms [Nicholson J.K.et al. 2005]. Metabolites, which are 

produced not by the host himself were decided to be called co-metabolites [Li, M., et al., 

2008]. It is generally acknowledged, that the microbial setup of intestinal flora (the 

Microbiome) is able to modulate the physiological state of a host; e.g. Crohn’s Disease 

[Jansson et al., 2009]. A broad multi-platform screening of human nutritional metabolism was 

recently published in the scope of the HuMet study [Krug, S., et al., 2012]. Here 15 volunteers 

were led through multiple nutritional challenges and their blood plasma, urine and EBC were 

analyzed by means of enzymatic assays (ELISAs), NMR, LC-MS and Ion Cyclotron 

Resonance Fourier Transform Mass Spectrometry (ICR-FT-MS). In close relation to 

nutritional habits and intestinal microflora, diabetes research is in the focus of metabolomics 

endeavors.  

 

1.2.3 Chemo-Analytical Tools for Metabotyping 

 

Metabolomics, in particular was on its way since the 1980’s, where NMR experiments on 

complex mixtures were extended to a broad scan-biochemistry concept by the Nicholson 

laboratory [Nicholson J.K et al., 1983; Nicholson, J.K et al., 1985; Bales J.R.et al., 1984; 

Gartland K.P.R., et al., 1989; Nicholson J.K., et al., 1989, 1989; Moka D.et al., 1998]. Finally, 

in 1999, the term ‘Metabonomics’ was born [Nicholson, J.K et al., 1999]; Olivier and Fiehn 

defined ‘Metabolomics’ in 2000 and 2001, respectively [Fiehn, O., 2002]. Both disciplines 

have inherently the same aim: a broad band detection and description of the response of as 

many as possible (if not ALL) metabolites in a living system towards stimuli. Nicholson had 

pharmacological stimuli and diseases in mind, Olivier and Fiehn focused on plant 

manipulation. The research unit Analytical BioGeoChemistry at Helmholtz Zentrum 
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München – led by Prof. Philippe Schmitt-Kopplin – has a vast body of experience in the field 

of complex mixture analysis, which roots in the analysis of natural organic matter. In this 

discipline, high resolution techniques, which are drafted in the following sections, build a 

fundament for the detailed description of compositional- and chemical spaces of any sample 

type [Hertkorn, N., et al., 2008]. Compositional metabotypes, as they are analyzed in the 

present manuscript, envelope the structural spaces of the known metabolome, and they 

therefore include the unknown metabolome as well.   

 

1.2.3.1 Physical Principles of Measurement  

 

NMR 

The nuclei of elemental isotopes of odd neutron number have a non-zero electro-magnetic 

spin, which causes these nuclei to oscillate at a specific frequency in a homogenous magnetic 

field of a given strength. Depending on the immediate stereochemical environment of such an 

isotopic atom, oscillation frequencies deviate from normal frequencies of whichever reference 

compound. In order to acquire NMR spectra, all analytes need to be able to oscillate freely, 

which requires liquid samples. By means of magic angle techniques, intact tissue samples can 

be analyzed. However, tissues can only be obtained by means of invasive biopsies.  

Since NMR depends on the existence of rare nuclei with odd neutron numbers, this technique 

is inherently insensitive. Consequently, it is only possible to acquire spectra pertaining to the 

most abundant metabolites or to acquire spectra of purified substances. A technique, which is 

less quantitative and specific but more sensitive is mass spectrometry. 

 

Mass Spectrometry 

All elements and each of their isotopes have a well defined mass. Isotopes of an element have 

equal numbers of positrons and electrons but different numbers of neutrons. The most 

abundant isotope of an element is taken to be the reference isotope which represents that 

element. The percentage of less abundant isotopes may vary depending on age and origin of 

the element (e.g. relative abundances are different in meteorites or meteorite craters than they 

are in the earth’s crust). Also depending on the decay of an isotope like 14C, sequestered 

moieties like deep see organic matter may have different abundances of this isotope as 

compared to the earth’s crust [Flerus, R., et al., 2012]. These exceptions put aside, relative 

abundances can be seen as fairly constant.  

A molecule only composed of the most abundant reference isotopes is said to have the exact 
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mass as opposed to the molecular mass, which is the weighted average of all stable isotope 

permutations of all the elements which make up a molecule’s elemental formula or sum 

formula (e.g. Glucose: C6H12O6). A molecule can as well be attributed a composition, which 

is the smallest divisor of a formula (e.g. Glucose: C6H12O6 = 6*C1H2O1). Back in the days of 

Justus von Liebig, chemicals were described by pyrolysing a sample and measuring the 

amount of e.g. C, H and O. In these days large amount of pure sample were needed, so that 

their remains could be weighted by means of a common laboratory scale. By modern 

standards, this method is very insensitive and inaccurate since much more accurate 

measurements can now be carried out by means of mass spectrometry.  

Mass spectrometry being a much more sensitive and accurate technique than mechanical 

scaling of a sample’s weight, can use the above described relative isotope abundances as a 

means of molecular formula validation.  

The first concept in mass spectrometry is that a charge that is transferred to a molecule – 

using one of a variety of techniques to be introduced later on – attributes the molecule with a 

mass to charge ratio (m/z). Once exposed to an electric or magnetic field in an evacuated 

chamber, it is possible to accelerate or decelerate and to manipulate the trajectory of a charged 

molecule. Because of the principle of mass inertia and the quantized nature of charges, equal 

masses of the same charge state are experiencing the same force when being exposed to an 

electric or magnetic field of the same strength. Mass inertia then causes molecules to have 

different final linear velocities and different electromagnetic deflections. All known measures 

for the differentiation of m/z ratios are proportional to time, which will later on turn out to be 

an important note. 

Depending on the physical concept and the architecture of a mass spectrometer, the response 

to the manipulation exerted on molecules of similar yet different m/z, have different 

magnitudes. The magnitude of response also varies as a function of the ion number populating 

the mass spectrometer at a time. After manipulation of a sample of molecular ions their 

response is commonly measured by recording an image current, which is generally produced 

by letting the ion flows pass by a transistor.  

The detected responses to manipulation are finally transformed into a spectrum by applying 

the mathematical relation which describes the ion’s behavior in the mass spectrometer and by 

plotting the resulting m/z and magnitude of response on the spectrum’s x-axis and y-axis, 

respectively. The strength of response is typically proportional to the abundance of ions of the 

same m/z in the mass spectrometer; it does not necessarily imply proportionality to the 

analyte’s abundance in a sample. 
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The quality of a so produced mass spectrum can be assessed by the following measures:  

 

Mass Accuracy: Mass accuracy is defined to be the absolute or relative difference between the 

theoretical mass of a compound with a given sum formula and the m/z ratio measured 

(normalized to z = 1).  

 

Absolute Mass Accuracy = (mmeasured-mtheoretical) in Da. 

 

Relative Mass Accuracy =106*(mmeasured-mtheoretical)/ mtheoretical in parts per million (ppm). 

 

Mass Resolving Power: Mass resolving power reflects the conciseness of the separation of 

two adjacent m/z species, which in default of an adjacent m/z species is expressed as the given 

m/z value standardized on its full width at half maximum peak height: 

 

Resolving Power (R) = [m/z]/∆[m/z50%].     

 

Sensitivity: The sensitivity of a mass spectrometer is always linked to the capability of the 

instrument to produce an m/z signal of one compound larger than a specified signal to noise 

ratio. Sensitivity is therefore compound specific and is not an inherent measure of a mass 

spectrometer’s quality. It much rather reflects the efficacy of an analytical procedure from 

sampling through sample pre-treatment up until mass spectrometric measurement.   

 

Signal to Noise Ratio: A mass spectrometer interacts not only with ions but with any kind of 

electromagnetic irradiation as well. These and other interactions cause a base-line response of 

the mass spectrometer, which is called noise. It can be attributed with a standard deviation if it 

is Gaussian. The signal to noise ratio (S/N) expresses the distance of an m/z peak magnitude 

from the mean noise level in quants of standard deviations. An S/N major to 2.5 indicates a 

deviation from the noise distribution with a probability P < 1% for the peak to be a random 

aberration from the noise level.    

 

Duty cycle: The duty cycle is the time that a molecule takes to cross all stations of 

measurement: ionization → ion optics → “mass separation” → scan → computerized 

transformation of the signal into a mass spectrum. It is an important measure for the 

adjustment of mass spectrometric measurement counts (sampling rate) to the resolution of 
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hyphenated chromatographic techniques. 

 

Ionization of the sample matrix 

For mass spectrometric measurements, it is necessary to transfer analytes from liquid phase 

into gas phase and to ionize them in that process. Nowadays, the principal concept for 

ionization is based on pumping the liquid sample through a thin metal tube and spraying it 

into a heated ionization chamber. Ionization is then realized by different principles. In 

atmospheric pressure photo ionization (APPI) the liquid sample partition is completely 

vaporized at high temperatures and ionization is induced by the impact of ultra-violet light. 

This process leads to electron abstractions in the π-systems of analytes. Atmospheric pressure 

chemical ionization (APCI) is based on complete liquid vaporization as well. However, 

ionization works by arcing or corona discharge on the tip of a metal needle that is placed in 

the ionization chamber. This discharge ultimately transfers electrons onto the gaseous 

environment in the ionization chamber, which results in radical ions. These radicals then 

ionize the analytes. 

The third technique, which is softer than APPI and APCI, is electrospray ionization (ESI). It 

is the most frequently used ionization technique in the mass spectrometry of liquid samples. A 

comparison of all three techniques in terms of sensitivity and analyte specificity is provided in 

a pharmaceutical study [Garcia-Ac., A., et al., 2011]. It was found that ESI ionization is more 

sensitive towards phosphocholines and sphingomyelins while APCI was more sensitive 

towards phosphoethanolamines [Byrdwell, W. C., 1998].  

 

Electro Spray Ionization (ESI) 

ESI is the most used method in metabolomics, as it coveres a wide range of analyte 

specificities, and since there is fewer analyte fragmentation than in other techniques. In ESI, 

ions are produced in solution while the sample is sprayed through a grounded metal capillary, 

which is placed in vicinity to the charged mass spectrometer entrance. This setup generates an 

electric field and ions are separated in the tip of the ESI capillary. As a consequence, liquid 

surfaces are populated by charges of the same polarity. Their repulsion causes explosions of 

liquid droplets in the sprayed sample while a heated gas stream vaporizes the solvent. The 

vaporization causes the charged sample droplets to shrink, which in turn increases surface 

tension and charge density. Eventually the charged droplets will explode again due to 

coulombic repulsions.  

Common electric field strengths which are applied for ionization vary between 3,000V and 
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4,500V, which causes an electric field of 1,000V/cm [Chech, N. B., et al., 2001]. 

The ESI process can produce ions by means of proton abstraction or clustering with anions in 

negative mode ([M-H]-, [M+F]-, [M+Cl]-) and by the formation of different clusters in 

positive mode ([M+H]+, [M+Na]+ or [M+K]+) [Boutegrabet, L., et al., 2012]. Positive 

ionization is thermodynamically favored as less energy is needed for adduct formation than 

for breaking a covalent bond. Different compound classes have different ionization 

efficiencies (IE) given the same conditions because they differ in polarizability, their 

distribution coefficient between an aqueous solvent and hexane (LogPHexanol) and they differ 

by their pKa [Oss, M., et al., 2010; Cole, R. B., et al. 1993; Henriksen, T., et al., 2005].  

It has been shown that the affinity of N-hetero aromatic compounds to [M+H]+ ion production  

is five-fold larger than the affinity of oxidized polyaromatics towards [M+H]+ ion production 

[Oss, M., et al., 2010]. It was as well shown, that LogP has a larger influence on ionization 

than acidity. In consequence, surfactant molecules tend to suppress other signals both, in 

negative and in positive ionization mode [Cole, R. B., et al. 1993; Henriksen, T., et al., 2005]. 

On the other hand, a reduction in ES droplet size can compensate these effects. Respecitve 

nano-ESI sources are available, but they are difficult to handle because their small dimensions 

support clotting and small deviations in the used material can cause stronger changes in 

responses as compared to conventional ESI.  

In consequence, if the aim of a metabolomics study is to maximize metabolically relevant 

information, the spiking of standards into samples (for calibration purposes) has to be avoided 

when direct infusion mass spectrometry is applied.  

 

Mass Spectrometers commonly used in Metabolomics 

The most common mass spectrometers in general are variations of the quadrupole mass 

spectrometer (Q-MS) and the time of flight mass spectrometer (TOF-MS). A less common but 

unequally stronger mass spectrometer in terms of accuracy and resolution is the Ion Cyclotron 

Resonance Fourier Transform Mass Spectrometer (ICR-FT-MS). Since 2006 another Fourier 

transform mass spectrometer has entered the market, the Orbitrap. In terms of resolution and 

accuracy it is placed between Q-MS/TOF-MS and ICR-FT-MS.  

Predominantly used for metabolomics experiments – in conjunction to chromatographic 

techniques – is the TOF mass spectrometer. Orbitrap and ICR-FT-MS are less commonly 

used; the first because of its young existence, the second because of its requirements in terms 

of laboratory space and its expensive price. The next pages will give a short introduction into 

these mass spectrometers’ concepts. The aptitude of these apertures for metabolomics 
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experiments is afterwards discussed in Metabolomics 2. 

  

Time of Flight Mass Spectrometry (TOF-MS) 

TOF mass spectrometers measure the flight time that an ion needs in order to pass a field-free 

zone, which is called ‘the flight tube’ [Guihaus, M., 1995; Mamyrin, B.A., 2001]. Prior to the 

flight in the flight tube, charged molecules are accelerated by an electric field. As all ions of 

the same charge receive the same force, ions of different mass reach different terminal 

velocities.  

The following equation describes how mass (m), charge (z), field strength (eV), and flight 

tube length relate to each other in a TOF mass spectrometer. 
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The time of flight increases linearily with the length of the flight path, which causes a similar 

increase in resolution. In a review on mass spectrometric techniques we have calculated that a 

Bruker MaXis3G-TOF can perform 10.000 consecutive scanning events per second, given 

m/z = 1000 [Forcisi, S., et al., 2012]. A reviewer of the manuscript had pointed out, that the 

length of duty cycles of TOF mass spectrometers is determined by the accumulation of scans, 

which increase sensitivity. 

The aptitude of a mass spectrometer for metabolomics measurements is determined by their 

resolving power, accuracy and precision. Most efforts in the development of TOF mass 

spectrometers were centered on the increase of flight paths in the last decade. For this reason, 

different techniques for flight path reflection were developed. An extreme example is the high 

resolution TOF developed by LECO Corporation, which provides a resolving power of 

100.000 at m/z 400 [Klitzke, C. F., et al., 2012]. TOF mass spectrometers are sensitive to 

temperature insulation and all mass spectrometers can potentially be over-saturated by too 

high ion abundances. However, TOF mass spectrometers are commonly more resistant to 

oversaturation than the high resolution ICR-FT mass spectrometer, which was used in this 

thesis.  

 

Ion Cyclotron Resonance Fourier Transform Mass spectrometry (ICR-FT-MS)  

Ion Cyclotron Resonance Fourier Transform Mass Spectrometers (ICR-FT-MS) are unrivalled 

in terms of mass accuracy, precision and resolution in broad band scan.  

Other than in TOF mass spectrometers, the m/z-time relationship is based on ion trajectory 
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manipulation in a homogenous magnetic field. Once introduced into such a field, charged 

particles commence circular high frequency oscillation. Stronger magnetic fields cause 

oscillation at higher frequencies.   

The circular oscillation is caused by the Lorentz force: 
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dt

dv
mF 

 

where m is the mass, z is the charge, v is the velocity and the magnetic field strength is 

denoted by B. Rearrangements of this relationships lead to the mass to charge relationship 
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where wc is the cyclotron frequency by which a given m/z oscillates [Marshall, A., et al., 

1998]. Ion detection is possible by overlaying the circular oscillation of an ion with a radio 

frequency that matches wc. In consequence, the given ion increases its oscillation radius and 

eventually comes into vicinity to detection plates, which are placed around the measurement 

chamber. 

The resolution and mass accuracy of an ICR-FT mass spectrometer depends on the cyclotron 

frequency of an ion and on the duration of the oscillation, i.e. the time for which the 

oscillation can be detected. The free flight path in TOF mass spectrometers measures meters 

and the flight path in ICR-FT-MS measures kilometers.  

By sweeping the excitation frequency over a range of frequencies it is possible to excite and 

analyze thousands of different m/z at the same time. This capability is important for 

metabolomics measurements because it enables the differentiation of isobars and different 

isotopologues. ICR-FT-MS measurements are not per se less quantitative than TOF 

measurements, however, since ICR-FT detection happens in a closed volume – the ICR cell – 

ICR-FT-MS is more vulnerable to oversaturation. Quantitative measurements of analytes 

require all ions to have minimum influence upon each other. Direct infusion injection into 

TOF-MS is just as non-quantitative as direct infusion into ICR-FT-MS. However, TOF mass 

spectrometers scan fast enough to support coupling to liquid chromatography. This technique 

separates the molecules and therefore minimizes interactions during ionization and detection. 

Still, TOF mass spectrometers do not provide sufficient resolution as to support good 

resolution of isobars or isotopologue peaks of different m/z species. ICR-FT-MS scans too 

slowly as to support LC-MS coupling.  

In addition, liquid chromatography often requires strong pre-concentration of samples; in part 
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because the ionization conditions for a wide range of analytes are not optimal in LC-MS 

coupling. Literature on EBC indicates such a strong dilution of metabolites that several 

milliliters of sample would have to be concentrated for the application of broad range LC-

TOF-MS. Since, in addition, few is known about the metabolome of EBC, and since a 

principal goal of this thesis is to annotate as many analytes as possible, only ICR-FT-MS was 

used for the present manuscript.    

 

1.2.4 Data Analysis 

 

Metabolomics measurements produce large amounts of data, which have to be treated so as to 

obtain understandable and interpretable results. The data analytical techniques used for this 

purpose are data mining techniques and statistics – in that context often called chemometrics. 

Data mining is used to extract potentially important data and statistics are used to verify its 

significance.  

Data mining techniques are typically classified into unsupervised and supervised methods. 

Unsupervised methods – also called clustering algorithms – summarize data in a way that 

similar objects or variables are associated with each other (they cluster). Methods which 

pertain to this group are Principal Component Analysis (PCA), Hierarchical Clustering 

Analysis (HCA) or K-means Clustering (K-means). The first two methods enable the 

clustering of data into its natural grouping and K-means clusters the data into K groups.  

“Supervised methods” pertain to algorithms, which are first trained on a training set 

(commonly 1/3 of the data) to separate the data into a desired grouping. This training works 

by “fishing” variables that give a separation of the desired groups and joining them into a 

model. This group of variables is tested as to whether they separate the rest of the data as well 

and the goodness of the separation is verified by a statistic afterwards. If this statistic 

indicates, that the separation was significant (as well as specific and sensitive), the responsible 

variables can be said to represent the sample grouping and that they are therefore of 

importance for the experiment. 

Supervised methods are for example Self Organizing Maps (SOMs) [von der Malsburg, Chr., 

1973], Partial Least Squares or Projection on Latent Structures (both PLS) [Wold, S., et al., 

2001], Support Vector Machines (SVMs) [Cortes, C., et al., 1995] or Random Forest Analysis 

(RF) [Breimann, L., 2001].  

It is common praxis, to extract the important variables which either relate to a cluster of 

interest (usually one that separates a known grouping) or which relate to a successful 
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supervised analysis outcome and to then perform statistics on them. 

The number of literature references, which lay out the most commonly used data mining 

techniques is too vast to be cited here. 

 

1.3 Metabolomics 2: Practical Aspects – Closing in on Reality 

 

1.3.1 Practical Aspects of Instrumental Analysis 

 

Where the copies of genes can be selectively amplified and detected, proteins can selectively 

be digested and thus sequenced, which allows for a direct comparison and matching of what 

we may call the DNA→RNA→Protein (DRP) trinity. Results on these levels can be directly 

associated to one and another. In the case of metabolites, however, relations to the DRP trinity 

are at best indirectly implied: in the case that a DRP includes a metabolite-specific enzyme or 

is regulated by a metabolite, it is possible to infer from function to sequence aspects and the 

other way around. In the case of lipids a much wider regulative cascade including many 

concertedly acting DRPs may lead to e.g. the general composition of a cell membrane. This 

composition may be regulated by surrounding cells or even much more distal tissues and 

organs. It may be regulated in part by proportions of transmembrane proteins, which form 

lipid rafts around them. Ultimately, membrane microstructures can be thought of as a basic 

recipe which is “hidden” on different genetic loci and the final membrane microstructure is a 

function of self-assembly. Additionally, the composition of the metabolome is – if at all – 

only vaguely predictable by means of DRPs as the total metabolite setup and its regulation 

depends on the cell-exterior supply with organic compounds and external regulation by e.g. 

the microbiome or environmental factors such as irradiation, mineral supply, temperature and 

so on. As the domains of DRPs are additionally a sink (or final destination) of metabolite 

fluxes – as they are polymers of metabolites – metabolites cannot be fragmented into sub-

structures that correlate to the DRP domains. Metabolites cannot be amplified or over-

expressed. At best genes of known relation to a metabolite can be knocked out by targeted 

mutagenesis or by insertion of genes, which produce the exactly mirrored RNA sequence as a 

function of the same promoter, which finally leads to an RNA knock out.  

Ultimately, metabolites have to be quantified and identified solely at hand of their mass and 

their physico-chemical properties. This, however, is problematic for the following reasons: 

 Metabolite concentrations vary from pico-molar (hormones) to molar scale (urea) 

 Hydrophilicity can vary by 10 orders of magnitude: The substrates for the synthesis of 
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Sphingosine are Serine (LogDpH=5.5 = -3.99) and palmitic acid (LogDpH=5.5 = 6.02) 

  Differences in pKa, gas pressure, dipole moment and gas phase basicity vary in 

similar ranges as reported above 

The analytical access to reaction partners can be largely impaired by strongly varying 

properties of metabolites. Additionally, given a constant chemical environment, one 

metabolite may entirely suppress another metabolite’s response to a given analytical 

technique. These impairing factors concern with all techniques that are contemporarily used 

for metabolome analysis.  

 

1.3.2  Practical Aspects of Data Analysis: Understanding the Methods  

 
1.3.2.1 Prologue 

 

Data Analysis pertains to two circles of methods, one of which – datamining – encompasses 

the extraction of important information from a given dataset and/or the creation of 

hypotheses. The other circle of methods – statistics – encompasses the verification of 

hypotheses, which either existed prior to instrumental analysis – hypothesis driven research – 

or which were created by means of data mining – data driven research.  

In algorithms where each data mining iteration is first statistically verified before the next 

iteration starts, both circles are occasionally not distinguishable.  

Data mining methods are often classified into supervised and non-supervised methods, where 

supervised methods are conditioned onto prior existing knowledge like a predefined 

classification of samples. Unsupervised methods develop a classification without prior 

knowledge. While this distinction is important for bio-informaticians and computer scientists, 

for the analytical chemist it is of less importance than the classification described below.  

The second classification of methods is the differentiation between uni-variate methods and 

multi-variate methods. Univariate methods center on statistics on one variable over several 

objects at a time – it does mostly not encompass dataming steps. Clustering – a datamining 

technique – can be used in univariate analysis, but this is practically never done. Exceptions 

pertain to political sciences in the context of microaggregation. Multivariate methods 

encompass datamining steps and simultaneously treat multiple variables over several objects. 

This classification of methods is – often unbeknownst – of large impact for the interpretation 

of results by biologists, analytical chemists, physicians or other end-users of the data 
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analytical results. 

The following sub-sections elucidate why this differentiation is important and where 

unconsciousness of the inherent differences can lead to confusions, especially in the context 

of surrogate marker definition. 

 

Uni-variate and Multi-variate Methods 

 

Apart from the fact that univariate methods address one variable at a time and multi-variate 

methods address sets of variables, it is important to ask how these methods work with the 

variables. 

Uni-variate approaches are used in order to find out, whether the manifestation of a variable is 

significantly different (e.g. over-represented) in one sample set as opposed to another. Uni-

variate methods can be understood as being “level approaches”. 

As indicated above, multi-variate approaches fundamentally differ from uni-variate 

approaches. Independently of the algorithm used – be it PCA, PLS, HCA, SOM or correlation 

networks – multi-variate techniques are “relational approaches”. They are all based on types 

of similarity matrices; correlation-matrix, covariance-matrix, distance matrix, adjacency 

matrix (graph theory). These matrices are either computed prior to the actual classification 

(PCA, PLS, Networks) or are filled on the fly – while classification is performed (HCA, 

Random Forest).  

Given a dataset with N variables, similarity matrices are squared N*N matrices, where each 

slot contains a scalar measure that describes the relationship between the variable in the 

respective row and the variable in the respective column.  

The importance of the differentiation of both classes – “level approaches” versus “relational 

approaches” becomes evident when the typical workflow of published metabolomics papers is 

laid out schematically (Fig. 2). 
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Figure 2: Schematic workflow of analysis in common metabolomics publications 

 

It is common to perform “sophisticated” multivariate data analysis in order to extract 

important variables. Afterwards these important variables are tested for their level-

differentiation and the variables that significantly differentiate in a uni-variate manner are 

reported. The fact, that multivariate analyses center on “relationship” and not on level 

differences commonly is unnoticed. The alleged “black box character” of multivariate tools is 

accepted and as a consequence a large amount of important information cannot be recognized, 

interpreted and much less published.  

 

Black Box or no Black Box?    

There are multivariate approaches, which also among specialists are considered as being black 

boxes and there are multivariate approaches which can be reasonably interpreted. 

References in literature and the World Wide Web indicate that PLS and its variants as well as 

random forest clustering are indeed black box approaches, i.e. the cause as to why a variable 

supports data clustering cannot be reasonably explained. On OPLS-DA for example 

orthogonal signal correction is applied onto the data prior to PLS. As a consequence, data 

clusters in a Euclidean space which has a different basis or orientation than the original data 

itself. Results that are produced by such methods are sometimes not interpretable in a uni-

variate fashion [practical experience]. Orthogonal signal correction is commonly applied 
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when no valid model for the data separation can be devised by means of PCA or normal PLS. 

As will be discusses in chapter 3, the use of such “black box” techniques can be avoided by 

means of reasonable data pre-treatment.  

Approaches which are no black boxes and are in their essence closely related to each other are 

PCA and correlation networking. Hierarchical clustering and K-means Clustering can be 

interpreted as well.  

In order to support the intuitive understanding of results, only PCA and correlation networks 

are used throughout the present manuscript; univariate techniques are either assumed to be 

known or are introduced, where needed. The following sub-section first gives an overview of 

basic operations in linear algebra as well as some geometrical interpretations of these 

operations. Subsequently, PCA and graph theory – with a focus on correlation networks – are 

introduced and their relationship towards each other is elucidated. 

 

1.3.2.2 Basic Operations of Linear Algebra as well as their Geometric Interpretation   

 

Linear algebra pertains to the manipulation and analysis of vectors and matrices. Vectors are 

lists of numbers (scalars) and matrices are arrays of scalars. Mass spectra, which contain the 

variable pairs m/z|magnitude can be expressed as an N*2 matrix, where each row contains 

m/z in the first column and the respective magnitude in the second column. Basic vocabulary 

and operations of linear algebra are delineated below. 

  

Scalar: a number; here a real number. 

 

Vector: Vectors are lists of scalars. Vertical lists of scalars are column vectors, horizontal 

lists of scalars are row vectors. A vector in which N scalars are listed has N dimensions. 

[  
   

]  
       Column Vector        

[ … … ] Row Vector 

Vectors can be interpreted as lines in a Cartesian, N-dimensional space, which start at the 

origin. The vector entries remark the end coordinate of the line.  
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Magnitude of a Vector or the Euclidean Norm:  |�| = √∑ �= ,  

The Euclidean is the N-dimensional Pythagoras over a vector. A vector whose every element 

was divided by the Euclidean norm is a normalized vector of magnitude 1 (a unit vector).  

 

Matrix: Matrices are rectangular arrays of scalars. Its rows are read as row vectors and are 

typically numbered from i=1:M; its columns are read as column vectors and are typically 

indexed as j=1:N. | a row vector is a matrix with N = 1 and a column vector is a matrix with 

M = 1. 

[  
   

, , … , … ,, , … , … ,⋱, , … , ,⋱, , … , … , ]  
    

N*M Matrix 

 

Square Matrix: A matrix where N = M. 

 

Transposed Matrix: A matrix rotated by 90°; rows become columns and columns become 

rows. Matrix X becomes Matrix XT. 

So Matrices are systems of vectors in the same coordinate space. 

 

Operations on Vectors: 

Addition of Vectors and/or Matrices:  

[− ] + [− ] = [ + −− ++ ] = [− ] 

Vector addition can be interpreted as „taking“ the line each vector represents and laying them 

end to peak without changing the direction of the summands. The above system can be 

interpreted as the summands being the cathetuses of a triangle and the sum being the 

hypotenuse. 

Vector subtraction in turn can be interpreted as rotating the direction of the subtrahend vector 

by 180° and then laying its end onto the peak of the minuend vector. The difference between 

both is then the vector which connects the origin of the minuend with the peak of the 
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subtrahend.  

 Scalar (Dot) Product [ … … ]×[ … … ]=∑[  … … ] 
or ∙  

 

Angle of two vectors x and y: cos � = ∙| |∗| | 
The angle of two centered unit vectors is likewise their (Pearson) correlation coefficient. This 

is an important basis for multi-variate data analysis. 

 

The inner product of a matrix: Two matrices X and Y, which are to be multiplied have to 

have the exact same dimensions. Inner product computation works by first transposing Y into 

YT so that the row vectors of all N dimensions X compare to the column vectors of all M 

dimensions in YT. Then each matrix slot is filled with the scalar product of the incident row in 

X and the incident column in YT.  

, ,, ,, ,, ,  ∗  , ,, ,, ,, ,  =  
, , , ,, , , ,

, , : ∙ : : ∙ : : ∙ : : ∙ :, , : ∙ : : ∙ : : ∙ : : ∙ :, , : ∙ : : ∙ : : ∙ : : ∙ :, , : ∙ : : ∙ : : ∙ : : ∙ :
 

Note that the indices for the transposed Y matrix were kept in order to indicate their original 

coordinate. The shorter side of the matrices is the M dimension and the longer side is the N 

dimension. The product XYT of the matrices X and Y is an N*N matrix filled with dot 

products of the vectors along the M dimension.  

In order to understand the importance of matrix multiplication, recall that many multivariate 

methods are based on operations on correlation or covariance matrices: 

If the vectors in X and Y are normalized (and optionally centered) along M, the matrix XYT is 

immediately the correlation matrix and without normalization XYT is the covariance matrix!  

This means that both, correlation matrix (CM) and covariance matrix of a data matrix D with 

N variables and M samples are directly accessible by calculating the inner product of the data 
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matrix.  

 If CM = DDT, the correlation or covariance matrix pertains to the variables. 

 If CM = DTD, the correlation or covariance matrix pertains to the samples. 

 

Eigenvectors and Eigenvalues: Eigenvectors and eigenvalues can only be created on a square 

matrix, e.g. a CM. An eigenvector e is a vector that, when multiplied with its respective 

square matrix S, results in a vector v that is a multiple of the eigenvector itself. The resulting 

vector v is either stretched, contracted or points into the opposite direction, however, it is co-

linear with the eigenvector. The factor by which v is a contracted, stretched or inverted 

multiple of e is the eigenvalue. A multiple of an eigenvector is also an eigenvector. Likewise, 

an eigenvector on S is always an eigenvector on scalar multiples of S.  

A square matrix of N dimensions usually has N eigenvectors, which each are associated with 

an eigenvalue. The set of all eigenvalues is denoted as the spectrum of the square matrix S. 

The product of all eigenvalues is the determinant of the matrix S, which in turn is associated 

to the volume S encompasses in N dimensional space. As a consequence, the relative 

proportion that the eigenvalue of an eigenvector has in respect to the sum over the spectrum 

of S (the trace) is associated with the proportion of variability that this eigenvector covers. In 

fact it is reasonable to say, that an eigenvector with a large eigenvalue covers a large part of 

variability within S. Eigenvectors of different eigenvalue are orthogonal. 

  

Knowing these basic concepts it is now possible to explain and understand  

 what PCA does.  

 how different types of data pre-treatment affect the result of PCA. 

 why it is not always appropriate to focus on uni-variate level difference when using 

multi-variate techniques.   
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1.3.2.3 Principal Component Analysis 

 

Common schematic representations of what PCA is and how it works are the following: 

 

Figure 3: Schematic representation of PCA with X being the data matrix, T being a set of so called t-scores, P
T
 being the 

tra spose of a set of pri ipal o po e ts eige e tors  a d E ei g the residual et ee  a predi tio  Ẋ a d X, where Ẋ  
is TP

T
. Ẋ does ofte  ot o ur in such schemes (because some knowledge is implied here). 

 

Another representation which is commonly [whenever searching for PCA in the internet] 

presented in order to support understanding: 

 

Figure 4: Second scheme supporting the understanding of PCA 

 

The pre-omics era was characterized by the data consisting of more samples than variables, 

for which reason all classical representations of techniques associate the N-dimension of 

figure 3 with the samples and the M dimension with the variables. Due to the dimensionality 

of omics data, this notion has switched places.  

In these schemes two important steps are often omitted. The first is as to how PT was 

generated and the second is as to how T (the scores which associate to the samples) were 

created. Commonly the first issue is completely omitted and the second issue is 

contextualized as follows: “P represents a new coordinate system and T represents the 

coordinates of the old data points in the new coordinate system.” [generalization]. 
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Several misunderstandings – and misinterpretations – are induced due to these often 

metaphoric notions: 

P is not directly related to the data entries in X because the set P contains the eigenvalues that 

pertain to the correlation/covariance matrix (CM) describing the relations between the 

samples; CM = XTX → P and not X → P. Yet, the coordinates of P refer to the same 

coordinates along the M dimension. This means the magnitude of an entry in an eigenvector 

describes a large involvement of the corresponding variable into the correlation behavior over 

the samples that this eigenvector describes. Additionally, if CM is a covariance matrix, a 

large entry in the eigenvector indicates that the respective variable is either of large magnitude 

(and determinant for the interrelation of samples) or that it has moderate intensity but is 

associated with many other variables of the same trend and that they all are determinant for 

the interrelation of the samples.  

The scores in T are calculated by T = XP and refer to each sample; the entries of T are the 

scalar products of the “list of variables” and their impacts in P. Accordingly, a score 

describes, whether the magnitudes of the variables in the respective sample are in a relation to 

their impact on correlation structure. Conceivably, the metaphoric notions often used for the 

description of PCA are not helpful for the understanding of the technique.  

The estimation Ẋ of X is calculated by the term TPT in figure 3. Since the T-scores are scalar 

representations of the involvement of the sample’s variable set with the correlation structure, 

and overall there are as many eigenvectors as there are variables, the scalar entries in Ẋ will at 

some point converge with the relative structure of X. Coherently, the difference E = X-Ẋ 

converges to a minimum. The more eigenvectors are needed for E to be minimized, the more 

differently covarying variable groups are in the data. They all describe a specific part of the 

data; experimental impact and different sources of systemic error. Random error will never 

have large entries in PCA because they have poor correlation structure. A note at the side: It is 

now clear, that the representation in figure 4 does as well not show, what happens in PCA. 

One often noted term in PCA is yet to be explained: the Loadings L, which refer to the 

importance of the variables. Loadings are commonly described as being the angles between 

the variables and the principal components (eigenvectors).  

The formula L = XT is the only solution which allows a matrix multiplication along N and 

would therefore describe the variables. This again means that loadings cannot be the angles 

between the old variables and the principle components, as they do not have the same 

dimension. The loadings can only be the angle of each variable into the scores, so there is an 

indirect relation between the new coordinate system and the scores.  
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PCA is an unsupervised technique, which finds variable sets that correlate or co-vary given 

the data X. PLS (partial least squares or projection on latent structures) is a technique which 

basically tries to find the eigenvectors P that co-vary according to some grouping. It searches 

for the correlation/covariance structure in the data that reflects the grouping. These structures 

are already hidden in the PCA results and PLS supposedly finds them. PCA and PLS are 

extensively used approaches in metabolomics (not in other omics sciences!), however, in this 

thesis only PCA will be used. 

After the true nature of PCA has been laid out, it is possible to present and discuss different 

problems, which underlie metabolomics analysis and to elucidate how different techniques of 

data pre-treatment help minimizing these problems.  

 

1.3.2.4 Data Pre-treatment 

 

Data pre-treatment is a matter that is largely under-addressed in metabolomics literature. It is 

a topic mostly discussed among bio-informaticians but it should be given much higher 

importance in the portfolio of anyone – also instrumental analysts – performing 

metabolomics. This is because bio-informaticians and statisticians are often not familiar with 

the confounding factors specific to an analytical aperture. Therefore, common techniques for 

data-pretreatment are merely reviewed briefly in this section. An in depth analysis of different 

techniques follows in chapter 3. 

Data analytical techniques are bound to mathematical axiomism and therefore they require 

“cleaned data” in order to work properly. Data that is to be used for PCA or PLS analysis has 

to be multivariately normal distributed. This means that the entries in the correlation or co-

variance matrix have to adhere to a normal distribution. Therefore, the intensity distribution 

over every sample and over the entire data matrix has to follow a normal distribution.  

Three steps can be necessary to induce normal distribution of the CM: transformation, 

scaling/normalization and centering.  

Remembering, that the CM is based on scalar products throughout the data, it is clear that the 

distribution of scalar products cannot be normal if the factors for this operation are not 

normal. Depending on the value of the signal to noise ratio in mass spectrometric analysis, 

intensity distributions of mass spectra (samples) are either power distributions or log-normal 

distributions with a power tail but always positive infinite. There is no negative value and 

there is a majority of peaks at small magnitude and a minority of peaks with a large 
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magnitude [Lu. T., et al., 2005].  

This means, the data has to be transformed so that the mean intensity of all peaks coincides 

with the median intensity of all peaks, i.e. the intensities need to follow a normal distribution. 

This is normally achieved by performing a log-transformation of the intensity entries. 

Transformation has to always be performed prior to normalization/scaling and centering. For 

log transformation, zero-entries have to be replaced by ones (they yield zero after 

transformation) and the basis of the logarithm has to be chosen to not be too large, because 

that would reduce the variation in the data too much.  

After transformation, normalization/scaling is to be applied. Sometimes data transformation is 

omitted because some normalization/scaling techniques are believed to yield similar results.  

Scaling implies, that intensity distributions over samples are already normal throughout all 

variables, but in comparison they are either multiplied by some factor or shifted by some 

value.  Scaling is assumed to pertain to the variables, not the samples [van den Berg., R.A., et 

al., 2006]. Normalization pertains to spectra, but in their essence they are the same processes. 

The equations used for this procedure are the same, just that one is applied on the variables 

and one is applied on the samples.  

Van den Berg et al. list multiple scaling techniques, which all imply parallel centering and 

“scaling” upon some value which is representative for the respective variable or observation. 

Here an inherent mistake can already be identified: Centering is performed using the un-

scaled/un-normalized data. In terms of estimative statistics (mean, standard deviation, 

variance) this can be fatal, in terms of robust statistics (Median and inter-quantile ranges) this 

is not a major problem, as long as both compared entities have the same amount of non-zero 

values.  

In general, first scaling should be applied, then normalization and then re-scaling. Centering 

should be applied afterwards. Details are discussed in chapter 3. In that sense, normalization 

is often neglected and scaling is regarded to be of more importance.  

As indicated in the previous section, the differentiation between supervised and unsupervised 

methods is of minor importance than the differentiation between uni-variate and multi-variate 

techniques.  
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1.3.2.5 Network Analysis 

 

The scientific discipline, which delivers the theoretical basis to network analysis, is called 

‘Graph Theory’. Graph theory started with Euler in the 18th century, as he tried to find a way 

of walking through Königsberg, trespassing each bridge over the Pregel River once. Despite 

being a very old scientific discipline it became recognized in omics science only recently. 

Rather than in life science, it was foremostly applied in computer science and sociology 

[Girvan, M. 2002]. Graphs are the mathematical expressions of networks. Graph theory is a 

multivariate technique for data analysis because it analyzes manifestations of pairwise 

relationships between variables. Graphs can be formulated on any pairwise relationship; be it 

physical interactions, probabilistic interactions or similarity, graphs can help formulating and 

analyzing issues not perceivable by statistics.  

Graphs are mathematical models of the form G = (V, E) with V being a set of nodes of 

dimension N and E being a set of edges. While each v Є V can be associated to multiple 

elements of E, each e Є E can only be associated to a tuple of elements from V. Graphs are 

mathematical representations of networks and can be used to describe topological features of 

a network. An analyst who expresses his data in form of a network may want to know: 

 Is there a path through the network, which touches each node only once? 

 What is the least number of edges that have to be passed in order to get from node A 

to node B, i.e. what is the shortest path from A to B? 

  How many shortest paths from A to B are there? 

 Which other nodes are elements of this path? 

 How many connections does each node have? 

 How central is each node to the network, i.e. how important is it for the network 

structure?  

 

The question of interest typically arises from the network’s context, i.e. ‘Is the graph directed 

or undirected?’; ‘What was the criterion for the formation of an edge?’.  

Road maps are an example of directed graphs where nodes are cross roads and edges are 

streets, while there are one way streets and two way streets. Undirected networks based on 

physical interaction are protein interaction networks. Edges in correlation networks are based 

on the similarity relation between node pairs, they are undirected as well. Metabolic pathways 

are directed graphs where edges reflect a reaction from substrate to product [Guimerà, R. 

2005], they may be reversible (undirected) and irreversible (directed); one may see the 
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equilibrium constants of reactions as a weight, which reflects the strength of directedness.  

In linear algebra, graphs can be written as an N-dimensional square matrix of zeros in which 

each node is confronted to all other nodes of G and the existence of an edge is indicated by a 

non-zero entry (e.g. 1). This matrix A is called adjacency matrix and all properties of a given 

network can be calculated by means of linear algebraic operations on A. 

An important measure in network analysis is the degree (connectivity) of a node. The degree 

is the number of connections a node is incident to. In the adjacency matrix, it is exactly the 

number of non-zero elements in the row vector that is associated to a given node (feature or 

variable). The higher the degree of a node is, the more other nodes it is associated to. If the 

degree distribution of a given network is not random, but adheres to a scale-free distribution 

or power distribution, then a node having a large degree is a rare and therefore significant 

occurrence. A network with such topology is as well said to be robust against random attacks 

but vulnerable to targeted attacks. That means, if a node of a scale free network is randomly 

selected and then deleted, the network structure stays intact. If a node is chosen and deleted 

because it has a high degree, the network structure will collapse.  

Knowledge about the degree and degree distribution of a network is important in multiple 

types of networks; a correlation networks could for example pertain to genetic regulation. If a 

gene is causing the action of other genes, its knock out will impair cellular function 

dramatically. On the other hand, if an exon is knocked out (degree = 0), cellular function 

might be un-impaired. 

Another network characteristic is the clustering coefficient. It indicates, whether the neighbors 

of a node are connected among each other as well. If all neighboring nodes are connected, 

they constitute a full graph, where all nodes are connected with all nodes. The number m of 

edges in a full graph of n nodes is known to be 0.5*n(n-1). A node of degree n must be 

associated to n-2 triangles. The number of triangles in an undirected graph is easily found by 

raising the adjacency matrix A to the power of three. The diagonal read outs indicate how 

many paths of length three exist from a node to itself. For metabolic pathways this is a rather 

unimportant measure; inspection of metabolic maps will rarely reveal triangles. A scenario, 

which would lead to a triangle between a, b and c would be if b-a = H2, c-a = -H2 and b-c = 

2H2.  

Another measure that is often considered is betweenness centrality. It indicates how many of 

all existing shortest paths between all nodes run through a node of interest. Nodes of high 

betweenness centrality are necessarily important for questions of flux. In a metabolic 

pathway, the metabolite with highest betweenness centrality might be a very stable node, 
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since it would have many supply routes.  

There are many more network measures, but all of them are relatively useless if the network 

has a random topology [Barabási, A-L. 2004].  

 

Network Clusters 

Networks may have regions of high connectivity that are separated by regions of low 

connectivity. Members of such modules share more similarities with each other than they do 

with the rest of the network. Such modules are clusters and they can be found according to the 

Newman algorithm, which works on the basis of nodal degrees and eigenvectors [Newman, 

M. E. J. 2004a; Newman, M. E. J., 2004b]. The magnitude of eigenvector entries is 

proportional to the degree of the respective node. Grouping the nodes according to their 

eigenvector entries is the basis to the identification of network modules. A network can 

ultimately be seen as the graphical interpretation of PCA results.  

 
1.4 Exhaled Breath Analysis 

 

Breath analysis is a non-invasive technique for the diagnosis of possible pathologies. Already 

in ancient times the smell of the breath was a distinctive pattern to recognize diseases such as 

diabetes, liver, lung or renal pathologies or severe infections [Phillips, M. 1992]. Nowadays, 

breath analysis dresses a role in the detection of aging and neurodegenerative diseases and 

environmental pollutants or drug exposure [Risby, T. H., et al., 1999; Cao, W., et al., 2006]. 

The molecular composition of breath was characterized in healthy and pathological 

conditions, reporting as principal component (up to 99 %) nitrogen, oxygen, carbon dioxide, 

water vapor and inert gases [Miekisch, W., et al., 2004]. The remainder is composed of 

different kinds of molecules that range from parts per million concentrations to parts per 

trillions [Chen, S., et al.,  1970; Pauling, L., et al., 1971; Riely, C. A. et al., 1974; Dannecker, 

J. R., et al., 1981; Solga, S. F., et al., 2010]. Volatile Organic compounds (VOC) are 

described to be present in normal subjects in a variety of 3400 molecules, constituted 

principally of isoprenes, alkanes, methylalkanes and benzene derivatives of which only a 

small partition is found in all screened subjects [Phillips, M., et al., 1999]. These compounds 

are an interesting target for the investigation of different pathologies [Risby, T. H., 2002] 

especially via high resolution analytical techniques [Risby, T. H., et al., 2006; Solga, S. F., et 

al., 2010]. 

Early studies on exhaled breath biomarkers are based on an analytical screening via GC 
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[Jansson, B. O., et al., 1969; Chen, S., et al., 1970; Pauling, L., et al., 1971; Riely, C. A., et 

al., 1974; Dannecker, J. R., et al., 1981] allowing the detection and identification of molecules 

with a concentration higher than 40µmol/mL. To increase the sensitivity in the detection, 

several sample concentration techniques, such as cryogenic trapping and adsorption onto 

carbonaceous or hydrophobic polymeric sorbents, were adapted. In order to detect a wider 

range of VOCs, especially oxidative stress markers, the analysis of methylated alkane was 

adapted. The oxidative stress modulates the DNA methylation levels [Campos A. C. E., et al., 

2007]. Direct breath analysis is taken in account due to the minimized loss of sample. It is 

performed via electrochemistry, chemical sensors, optical spectroscopy, mass spectrometry, 

ion mobility, differential mobility spectroscopy, proton transfer mass spectroscopy or fast gas 

chromatography [Amann, A., et al., 2010]. 

 

Exhaled breath condensate analysis and its role in metabolomics 

Exhaled breath condensate is a matrix constituted of three kinds of components: the droplets 

derived from aereosol formation from the airway lining fluid (ALF), the distilled water from 

the condensation of the water-saturated exhaled air and the water-soluble volatiles in the 

condensed breath. The studies on EBC allow ALF monitoring in health and disease [Hunt, J. 

F., 2002; Kharitonov, S. A., et al., 2001; Mutlu, G. M., et al., 2001]. Metabolomics on EBC 

focuses its interest onto the non-volatile compounds and the water-soluble fractions [Hunt, J., 

2002]. The most prominent compounds described in scientific literature until 2012 (850 

publications examined) are inorganic compounds (347 publications) such as hydrogen 

peroxide, nitric oxide and gaseous compounds. The second class of frequently described 

compounds encompasses isoprostanes/prostaglandins/prostanoids (114 publications) followed 

by leukotrienes (103 publications).  

One of the main bottlenecks that concerns EBC sampling is the dilution factor [Effros, R.M., 

2010]. The dilution is due to water vapor, which is exhaled as a product of metabolic 

processes, and which condenses in the cooled sampling process. The ALF compounds in EBC 

can be diluted in a range from 20 fold to 30 000 fold [Effros, R. M., 2010; Effros, R. M., et 

al., 2002]. Additionally, the inter day and subject variability in dilution needs to be 

considered. Commonly, internal standards are necessary in order to estimate the dilution 

factor of the ALF aerosol. One of the standards used is urea [Rennard, S. I., et al., 1986], 

because of its good diffusion, its proper distribution in all body compartments (renal papilla 

excluded) and non-excessive metabolization in the lungs. It is assumed that the dilution factor 

of non-volatile compounds can be estimated via urea concentration measurements 
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(considering the interstitial urea as well). Different models, based on gender and age, are used 

for measuring blood urea nitrogen (BUN) [McPherson, K., et al., 1978] and estimate 

interstitial urea concentration. Examples of measured urea concentrations in EBC (with 

consequent dilution factor calculation) are reported in studies on protein, albumin and 

ammonia in EBC [Dwyer, T. M., 2004]. 

Another limiting factor in EBC research is the complexity in comparing different studies, due 

to the variations derived from different collection techniques [Horvath, I., et al., 2005] and 

from the lack of standards that can be used in EBC research [Davis, M. D., et al., 2012]. 

Studies comparing inter- and intra-individual variability of EBC biomarker measurements, 

due to different collection techniques are reported [Do, R., et al., 2008]. The response of long 

term sample storage, short term sample storage and sample volume were evaluated 

monitoring acid stress biomarkers, pH, and ammonia.  

Metabolomics research on EBC is a topic that has been addressed by no more than a dozen 

publications [e.g. Bertini, I., et al., 2013; Sofia, M. et al., 2011; Montuschi, P., et al., 2012]. 

The only study that has included EBC into systemic metabolome screening is the HuMet 

study [Krug, S., et al., 2012]. For this reason there is no body of knowledge as to how the 

above mentioned complications in EBC analysis affect the mass spectrometry based deep 

screening of the metabolome.  

 
1.5 Diabetes mellitus 

 

Diabetes mellitus is one of the most globally spread chronic metabolic diseases, recorded as 

one of the five leading causes for death in developed countries [International Diabetes 

Federation, 2011]. Its main feature is a failure in liver metabolism, which leads to a 

malfunction of insulin and glucagon [Harris, M. et al., 1997]. In diabetes mellitus these two 

hormones are not able to maintain a constant blood glucose level. One of the key hormones in 

the glucose homeostasis, insulin, is being produced in the β-cells of the pancreas. Its role is 

important in the absorption of glucose from the blood by liver cells, skeletal muscle and fat 

tissue. In order to accomplish the absorption of glucose, it inhibits the release of glucagon. 

The latter is produced in the α-cells in the Langerhans Islets as answer to a decrease of blood 

glucose concentration. When the level of glucose remains high in the blood, the condition of 

hyperglycemia is present. There are three main classes of Diabetes mellitus: Type 1 Diabetes, 

Type 2 Diabetes and gestational Diabetes (GDM). The first form of Diabetes is caused by an 

autoimmune reaction against the pancreas cells, which causes a malfunction of the insulin 



43 

 

secretion [Medvei, V.C., 1993]. The second form of Diabetes is the most common form world 

wide. In this case the liver is insulin resistant or a condition of impaired secretion is observed 

(in some cases both conditions were recorded). This form of the disease correlates with other 

metabolic disorders that belong to the metabolic syndrome, such as: high blood pressure, high 

cholesterol levels, high triglycerides, high inflammatory marker levels and central and 

visceral obesity. All these factors lead to a risk of heart disease and cardiovascular 

complications [International Diabetes Federation, 2011]. The monitoring of the glucose and 

insulin levels in the fasting state, allows the diagnosis of diabetes via ISI Matsuda index 

calculation [Matsuda, M., et al., 1999]. This index is calculated after subjecting patients to an 

oral glucose tolerance test (OGTT). The results lead to the observation of the whole body 

insulin sensitivity. Both types of Diabetes are correlating with lung dysfunctions [Goldman, 

M. D., 2003]. Investigation of EBC may be a useful tool to study different markers such as 

inflammatory markers in order to understand mechanisms related to diabetes and in order to 

enable diagnosis of early states of insulin resistance by means of non-invasive sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

1.6 Aim of the Thesis and Outline 

 

1.6.1 Aim of the Thesis 

 

The aim of the present thesis is to develop an analytical workflow that allows for the 

extraction of mass spectrometric surrogate marker candidates from exhaled breath condensate. 

Particularily, the final workflow is intended to enable the extraction of markers for diabetes 

mellitus from EBC. As there is currently no proof for the involvement of the EBC 

metabolome with systemic metabolism; the equivalent aim is to establish this link.  

The workflow is intended to maximize the amount of metabolically relevant information in 

the context of non-targeted metabolomics. The term ‘Deep Metabotyping’, which is used in 

this manuscript’s title is intended to emphasize this aim as opposed to the aim of identification 

and quantification in parallel.  

The present manuscript is intended to pave the way for future applications of EBC beyond the 

scope of pulmonary diseases. 

 

1.6.2 Outlining the Thesis   

 

Chapter 2 will continue with the introduction, extension and evaluation of mass difference 

network based annotation (Netcalc). Central topics will be mass spectral calibration, the 

introduction of the Netcalc algorithm, the specification of elemental filters, an adaptation of 

the Netcalc transformation sets towards applications in metabolomics and the investigation of 

sources for false annotations. 

Chapter 3 focuses on data cleaning, especially the control of binary dependencies, the power-

nature of signal distributions, normalization techniques and their effects as well as the use of 

Netcalc in the elimination of co-linearity. Ultimately a network-based normalization 

workflow is introduced. 

Chapter 4 uses a dataset on smokers and non-smokers in order demonstrate how mass 

difference networks, co-intensity matrices and their eigenvectors can be used to mine and 

understand different types of surrogate markers and matrix effects. In addition, mass 

difference enrichment analysis is introduced as a method that can support data interpretation 

in case of lacking database support. 
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Chapter 5 will use the approaches developed in Chapters 3 and 4 to analyze EBC data from 

the HuMet study. In this study, 15 volunteers were led through five nutritional and metabolic 

challenges: 36 hours of fasting (F), ingestion of a standard liquid diet (SLD), oral glucose 

tolerance test (OGTT), oral lipid tolerance test (OLTT) and a physical activity test (PAT). The 

study was designed for the investigation of the normal dynamic range of the human 

metabolome. Here, this study is used in order to establish the link between EBC and systemic 

metabolism, which in extension gives prospects towards the screening of diabetes mellitus. 

Chapter 6 will summarize the thesis, evaluate to which extent the objectives of the thesis were 

met, and develop an overall workflow for ICR-FT-MS based metabotyping. An outlook 

towards future research is given.  
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2 Netcalc. A Network based Annotation Algorithm and its Adaptation to 
Metabolomics 
 

Annotation of mass spectral peaks is the assignment of either a sum formula (putative 

annotation) or an identity (annotation or identification) to a mass spectrometric peak. In 

literature the term ‘annotation’ increasingly refers to ‘putative annotation’ and not to 

identification. In theory, metabolic profiling can be performed independently from metabolite 

annotation/identification, since a phenotype specific m/z-profile itself does not require such 

information. However, m/z feature annotation has a multitude of advantages: 

1) Broad scan mass spectra contain a multitude of co-linear or redundant information, 

since multiple features can be thermal adducts with solvent molecules, other 

molecules, different charge states of the same feature, fourier transform artifacts or 

isotopic peaks. The presence of such co-linear features hampers data analysis as non-

random co-linearity leverages the underlying correlation structure. Feature annotation 

and omission of non-annotated features can improve the data analytical situation. 

2) Feature annotation supports the evaluation of sample processing aspects like the 

introduction of contaminations. To that end, feature annotation helps assessing 

whether a peak can be related to the sample or to extraneous factors. 

3) For data to be analyzed, singular mass spectra have to be translated into a 

feature*sample matrix, which is only possible if data is adequately calibrated or if two 

features from different mass spectra can be identified to be the same with sufficient 

accuracy. The appearance of redundant annotations can give hints as to whether 

calibration and alignment processes were performed appropriately.   

4) Early annotation of features helps estimating physico-chemical properties of features 

and enables the analyst to devise appropriate strategies for targeted analysis. 

5) Feature annotation supports the formulation of (bio-)chemical hypotheses, which can 

then be tested in bioassays, on cell cultures, other model systems and/or 

proteomics/genomics databases. It helps understanding the processes underlying the 

investigated phenomenon and supports causative inferences. To that end, annotation 

helps to devise strategies for the manipulation/treatment of a phenomenon.  
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2.1 Prior to Annotation: Calibration and Error Distributions 

 

Calibration is a process by which measurement errors are estimated in order to correct for 

them. The simplest model of the relation between theoretical variables and empirical variables 

can be expressed as: ��,�/ = ���,�/ + ��/  

With Xt being the set of theoretical values, k being a factor, Xe being the set of empirical 

values and E being the set of errors; with all sets being a function of m/z. Calibration is 

performed by approximating k so as to minimize E. In praxis, E follows a close to Gaussian 

distribution – an error distribution – at any nominal m/z. Its mean is to be centered on zero at 

any given m/z. 

Classically, calibration of mass spectra is performed at hand of the error distribution 

pertaining to a set of spiked standards, which optimally span the entire m/z range of the 

spectrum.  

As discussed in chapter 1, standard spiking is to be avoided in direct infusion MS, since the 

standards may suppress the signals that are intrinsic to the sample. In default of standard 

reference peaks, mass spectral calibration is performed against a list of well known reference 

masses by listing the m/z values which are the closest to that of the reference masses and by 

then approximating the observed error distribution. 

This internal calibration is based on the process of mass matching and is therefore vulnerable 

to a number of factors, which in the end lead to a nominally good, yet false approximation of 

E, ultimately leading to an offset of the true error distribution. As a consequence, it is possible 

that annotation results appear to be accurate where they are not.  

Scenarios in which a calibration offset can be observed are: 

 Choice of the wrong function for error approximation; e.g linear approximation when 

the distribution is in fact of higher order 

 Choice of a too small set of reference masses, and therefore failure to approximate the 

error centers 

 Choice of a reference mass set, which contains isobars instead of the actual identities 

of the empirical peaks (this is often dependent on the sample type)  

Types of error distributions depend on the mass spectrometer. ICR-FT-MS distributions are 

close to linear but depending on ion density slight higher order deviations at the beginning 

and end of the m/z dimension may occur (Horwitz trumpet). TOF mass spectrometers tend to 
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have polynomial error distributions; the number of polynomials can range from 2 to 6. The 

higher the number of polynomials used, the higher are the degrees of freedom of the 

approximation (i.e. there are multiple minima of E). In consequence, the more polynomials 

are used for approximation, the more data points or reference mass hits have to be available in 

order to avoid over-fitting.  

High degree polynomial error distributions have the disadvantage, that they do not vary 

linearly but polynomially, which means that the displacement of the error distributions’ center 

is not constant over the m/z range and time; resulting local offsets of the error distribution are 

difficult to identify if the attempt to identify them is undertaken at all. Softwares of mass 

spectrometer vendors offer to control this problem by means of lock mass injection but the 

corrections for variations of these constantly injected reference analytes are typically linear 

which leads to calibration offset without the user noticing it. In such cases, an annotation error 

reported to be close to 0 ppm is void of essence.  

Calibration is not only important for the correct annotation of single mass spectra, it is 

essential for the unification of single mass spectra into an m/z*sample matrix (sample matrix), 

which is needed for data analysis. If all spectra that are to be unified into such a matrix are 

calibrated in the same way, i.e. their error distributions are the same, then they will have good 

alignment. In this case, annotation of the unified m/z list gives a well shaped error distribution 

(Gaussian with constant standard deviation for all m/z bins). However, if the calibration was 

not uniform throughout all spectra, the distribution will be dispersed and consequent 

annotation results cannot be trusted. 

The calibration strategy adopted in the present manuscript relies on the annotation of the mass 

spectrum with the most m/z peaks by means of Netcalc. An invaluable advantage of the 

annotation strategy that was introduced by Tziotis [Tziotis. D, 2011] is that the annotation 

process ‘walks along’ the error distribution. In consequence, an annotation run of a raw 

spectrum can be used to give the best possible approximation of a ‘taylor made’ reference 

mass list. Such a large reference list, which may contain hundreds of references, allows for a 

good resolution of the error distribution. 
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Figure 5: Screen shots of the calibration process using a reference spectrum that was pre-annotated by Netcalc 
 

Figure 5 A shows multiple error distributions and one large, dense and centered distribution. 

Assuming this distribution to be the appropriate reference, we crop the variables at the upper 

end (5 B) and the lower end (5 C). The result is a well centered and dense error distribution, 

which leaves any doubt concerning alignment behind. The red line in 5 A indicates just one of 

many calibration results that might occur using insufficient numbers of potentially 

inappropriate reference masses.  

Abnormal error distributions can be recognized and omitted from the data set. It is difficult to 

even discover abnormalities if calibration is performed with four points only. The detection of 

such abnormalities is crucial for spectral alignment. It is probably a rare phenomenon, but in 

the preparation for the present manuscript, one slightly mis-calibrated mass spectrum was 

sufficient to cause mis-alignment of more than 200 accurately calibrated mass spectra. 
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Figure 6: Alginment of 15 mass spectra at the lower and upper end of the acquired m/z range. The m/z deviations are 

0.07 ppm at m/z = 148 and 0.15 ppm at m/z = 655. Using the above introduced workflow the calibration of each 

spectrum took more or less 30 seconds.  
 

Perfect alignment was possible only after identification and omission of the mis-calibrated 

spectrum. It is therefore more important to verify zero alignment of the spectra, than to find a 

constellation of reference masses that provides an as small as possible standard deviation of E. 

The first strategy in order to obtain a sample matrix consisting of trustworthy annotations is to 

annotate each spectrum, to then omit all non-annotated m/z values and then to unify the exact 

theoretical masses of the respective annotations.  

If the mass spectra are well aligned then the second (and more time saving) strategy is to 

unify all spectra before annotation. This second option can turn out to be more reliable as 

there are different annotation strategies, which all have their inherent advantages and 

disadvantages.  

 

2.2 Annotation Strategies 

 

There are two traditional approaches and one novel approach to m/z feature annotation.  

The first traditional approach – the combinatorial approach – involves the calculation of 

elemental combinations, which as close as possible add up to the same mass as the given m/z 

(z = 1) value with consequent identification of isotopologues and comparison of relative 

theoretical isotopologue abundances versus the observed abundances.  

The second technique can be called database matching. In this case m/z signals are queried 

against a metabolite-m/z list stored in a database.  

The third annotation strategy, introduced in 2011 by Tziotis et al. is a mass difference network 

based algorithm called Netcalc. M/z differences between mass spectral peaks, acquired on a 
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high accuracy mass spectrometer, can be associated to a specific elemental difference between 

these peaks. For example: Two peaks which have an m/z difference of 14.015650 m/z are 

related to another by a sum formula difference of [CH2]. Consequently, if the smaller mass 

has the formula C2H6O2, the larger mass must have the formula C3H8O2. This principle is used 

in tandem MS with the mass of a neutral loss being representative for the loss of a certain 

combination of elements in response to fragmentation of a molecule. Netcalc searches for all 

pairs in a mass spectrum, which can be brought into relation by a list of ∆m/z|∆element 

relationships (later called REMDs for Reaction Equivalent Mass Differences) and builds up a 

network from them. Finally, the (hypothesized) knowledge of the formula of only one 

member (node) of the network implies the knowledge of all other nodes’ formulae that are 

reachable through assigned network edges (∆m/z|∆element relationships). 

In its essence, Netcalc uses cross linked homologous series and it was first applied in order to 

extract and visualize exactly these homologous series from NOM data. For this reason 

elemental REMDs were used, which are not optimal for the description of multi-step 

biochemical reactions as they occur in metabolism. 

In the following sections the Netcalc algorithm is explaind in depth, elemental filters for the 

exclusion of false annotations are introduced and an REMD list which is adapted to 

metabolomics data annotation is developed. Afterwards, extensions to the algorithm which 

minimize the occurrence of false annotations are introduced and the performance of Netcalc 

in respect to the combinatorial approach and the database matching approach is evaluated. 

This evaluation centers on: the proportion of annotated data to non-annotated data, false 

positive annotations, error distributions, annotation of noise perturbed data and finally the 

identification of error sources.    

2.3 Netcalc 

 

Metabolic networks can be generalized into stoichiometric networks in which each edge 

describes the stoichiometric change that occurs during a (bio-)chemical reaction. The use of 

ultra high accuracy mass spectrometry allows for the replacement of these stoichiometric 

changes by differences in molecular ion mass. The resulting mass difference networks enable 

the researcher to translate mass spectra into stoichiometric networks, which are the immediate 

link to the description of metabolic networks or metabolic pathways [Breitling, R., et al., 

2006].  

Mass difference networks have a useful property which was left unattended by Breitling: Each 

node which is adjacent to another node defines the neighboring node’s molecular formula by 
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virtue of the stoichiometric transformation described by the incident edge. Consequently, 

Tziotis et al. used this property and defined that the molecular formula of each node in G is 

immanently accessible given the molecular formula of only one other accessible node, if G is 

a graph component in which no unconnected node exists. By this virtue they defined the 

Netcalc algorithm which has a wide spectrum of applications for metabotyping.  

2.3.1 The Concept 

 

The first step of the Netcalc process is the construction of a network by comparing each ith 

and jth entry as to whether they match one of k reaction equivalent mass differences 

(REMDs). The equivalence criterion is the edge formation error (EFE), which is calculated as 

follows:  

EFE = 1000000*||mj-mi|-REMD|/(0.5*( mj-mi)).  

It is the absolute deviation of the absolute difference between the masses mi and mj from a 

given REMD, expressed over the mean mass of both ‘reaction partners’ in ppm. 

 

Figure 7: Construction of mass difference networks. 
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The lower right matrix in the figure is a so called adjacency matrix, which assigns the ID of 

each found REMD to pairs of features m. In order to save the computational space and 

complexity, the adjacency matrix can be re-written as a sparse matrix (upper matrix in figure 

7). Both matrices are a blue print for the network given in figure 7. 

If we now assign a formula to node 2, the formula of all other nodes can be calculated by 

walking along the edges. In theory the degree of the starting node is not of importance, for 

which reason it does not matter, whether we know the formula of node 2 and start from there, 

or whether we know the formula of node 9 and start from there. However, in praxis, and by 

experience, nodes with low degree tend to be associated with wrong edge assignments. Nodes 

of higher degree necessarily have many partners, which validate their involvement into the 

chemistry that is represented by the network. Nodes with low degree consequently represent 

rather exotic formulae, which have not more than one potential chemical relationship in the 

network. Reasons for low degrees are either based on the true chemical context of the mass 

spectrum, or they are distal to the spectral error distribution, or they have a false edge 

assigned. The reason for false edge assignment will be investigated in chapter 2.6. 

 

2.4 Elemental Filters 

 

Elemental filters narrow down the solution space of elemental combinations by testing 

combinatorial solutions for their validity in terms of electron configurations. By watching at 

the electron configurations of elements it is possible to tell how many covalent bonds an 

element can form. The electron configurations of CHONS and P are shown in table 1. 

Table 1: Electron configurations of CHONS and P. 

Element 1s 2s 2p 3s 3p 3d 
Number of Valence Electrons (VEs) 

and bonds 

Carbon 1s2 2s2 2p2    2s2+2p2 = 4; 8-4 = 4 bonds 

Hydrogen 1s1      2s1 = 1; 2-1 = 1 bond 

Nitrogen 1s2 2s2 2p3    2s2+2p3 = 5; 8-5 = 3 bonds 

Oxygen 1s2 2s2 2p4    2s2+2p4 = 6; 8-6 = 2 bonds 

Sulfur 1s2 2s2 2p6 3s2 3p4  3s2+3p4 = 6; 8-6 = 2 bonds* 

Phosphorus 1s2 2s2 2p6 3s2 3p3  3s2+3p3 = 5; 8-5 = 3 bonds* 

 *Sulfur and phosphorus can delocate (promote) their paired electrons into the d orbitals. S, p 

and d orbitals then hybridize to give an sp3d orbital for phosphorus (allowing for five bonds) 

and an sp3d2 orbital for sulfur (allowing for six bonds).  
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Traditional elemental filters are based on elemental ratios that are allowed for different 

elements. For example: van Krevelen diagrams are typically based on a range of H/C ratios 

(0.5 < H/C < 2.5) and O/C ratios (0<= O/C <= 1) [Hertkorn, N., et al., 2008]. Expressing 

filters in terms of such ratios is convenient but in case of metabolites they may be 

inappropriate (phosphorylated compounds can have O/C > 1).  

It is therefore a more accurate solution to build up a filtering algorithm, which is based on the 

principles of covalent bonding; on electron configurations. Such a filter is elaborated in the 

subsequent section.  

 

2.4.1 The Seven Golden Rules 

 

The golden standard paper for m/z formula annotation is momentarily considered to be the 

work of T. Kind and O. Fiehn, [Kind, T. and Fiehn., O., 2007] which state the seven golden 

rules for formula annotation. 

The “golden rules” can be separated into two groups: 1) rules that limit the degrees of 

freedom and 2) rules to validate candidate formulae. 

Group one constitutes of rule #1 and rule #6. Rule #1 suggests a database driven limitation of 

maximal element counts throughout different mass ranges. It is necessary for purely 

combinatorial annotation algorithms in order to minimize the solution space. In principal, rule 

#6 does the same as it suggests a database-driven filtering of maximally observable co-

occurrence of elements. This rule restricts the solution space by excluding rarely observed 

combinations of elements. These rules are relatively unnecessary in Netcalc annotation, since 

the number of elements is restricted by the number of elements in each reaction and the 

maximum number of times each reaction can occur as a homologous series within the 

observed mass range. 

Group number two constitutes rules #2, #3, #4 and #5. Rule #7 does not concern with this 

thesis as it centers on GC-MS.  

Rule #3 enforces the necessity to validate molecular formulae by means of isotopologue 

ratios. Without a doubt only isotopologue patterns can validate molecular formulae at any 

mass spectrometric resolution. However, a molecule which is meant to be validated by this 

measure needs to occur in such high abundance, that only targeted analysis can guarantee the 

detection of the isotopologue micro-structure which is necessary for that feat. The fewest 

chemical analysts are aware of the fact, that nominally equal isotopologues of different 

elements exhibit different mass defects, i.e. that they have different mass. A verification 
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especially of complex analytes containing more than just CHO can only be performed with 

ultra-high resolution (R> 100 000). At lower resolution it is not possible to distinguish 

isotopologues caused by different elements; their mass spectrometric peaks tend to merge 

which causes a shift in the averaged, non-resolved isotopologue peak. In targeted settings it is 

very well possible to achieve sufficient ion abundances and (mixed) isotopologue peaks 

which are still specific for a molecular formula.  

The common scenario in non-targeted mass spectrometry is different:  

The 12C/13C ratio of glucose is 6.718 at R = 90 000. Given an S/N marigin of 3, the minimum 

S/N that the 12C peak has to satisfy is S/N13C
min, 12C = 3*100/6.718 = 44.66. Analogously, 

18O/12C = 1.254 at a margin of S/N = 3 gives S/N18O
min, 12C = 3*100/1.254 = 239.23. 

Consequently, the identification of the sum formula C6H12O6 by means of isotopologue 

abundances requires a glucose concentration, which is high enough to cause an S/N ≥ 239.23.  

Different mass spectrometers allow for different S/N margins. ICR-FT-MS allows for a very 

accurate calculation of the local noise levels due to the large numbers of picture points per 

spectrum (1M or 2M). TOF instruments develop a less constant noise pattern which 

necessitates higher S/N margins like S/N > 100, which results in  

S/N18O
min, 12C = 100*100/1.254 = 7974.48.  

Only a small proportion (1% to 5%) of 12C peaks fulfill these requirements, which makes 

isotopologue based formula validation a limiting task given the aim of metabolomics, to 

maximize the range of metabolite detection.   

Performing non-targeted metabolomics and following the dogma to maximize the content of 

information carried by a mass spectrum, it is necessary to omit rule #3 while being in the non-

targeted phase of the metabolomics workflow. 

Rules #4 and #5 treat valid ranges of elemental ratios. Elemental ratios are a common tool in 

the analysis of complex mixtures like natural organic matter, which are often thermodynamic 

conversion points in structural chemistry. For this reason marginal elemental ratios are often 

0.5 < H/C < 2 and 0 < O/C < 1. The metabolome, however, constitutes of many exceptions to 

these largely accepted margins. An obvious way to define margins for elemental ratios is to 

investigate large and representative databases of chemical compounds, which is exactly the 

way how rules #4 and #5 were created. However, all valid ranges of elemental ratios must be 

justifiable by the rules of chemical bonding, which makes rule #2 a super rule to elemental 

ratios.   

Rule #2 of the seven golden rules refers to the valency of the elements which make up a 

neutral molecule (m/z values refer to ions, which first have to get neutralized by correcting for 
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1.007276 Da in the case of (de)protonation events). Here the octet rule of LEWIS was 

extended by the rules of SENIOR [Senior, J. K., 1951], which are relatively unknown to 

chemists (despite the fact that they are the mathematical origin of the degree of unsaturation).   

The SENIOR rules as stated in Kind [Kind, T. and Fiehn, O., 2007] and Morikawa 

[Morikawa, T. and Newbold, B. T., 2003] are read as follows: 

1) The sum of valencies is an even number, or the total number of atoms having odd 

valencies is even. 

2) The sum of valencies is greater than or equal to twice the maximum valency. 

3) The sum of valencies is greater than or equal to twice the number of atoms minus 1. 

An inspection of these rules shows that rule 3) is different in that its minimum criterion 

implies an odd sum of valencies, while the other rules state an even sum of valencies to be 

obligatory. Rule 3) also violates the other statements regarding the odd-even parity in 

Morikawa et al. These violations are in fact the result of the verbal formulation of rule 3). 

Rule 3) is better written as “half the sum of valencies is grater than or equal to the number of 

atoms minus 1”. While rule 3) was correctly implemented in the software of Kind and Fiehn, 

the verbal description of Morikawa does not reflect Senior’s original emphasis. Verbal 

descriptions of equations should allways be accompanied by the equation itself in order to 

avoid misunderstandings. Further investigation of the original emphases of SENIOR 1951 

will line out a wider spectrum of applications of his work.    

2.4.2 Senior’s Rules, the Cyclomatic Number and Extended Hybridization 

 

Molecules of interest for metabolomics investigations are composed of the elements CHONS 

and P. The valency of these atoms indicates how many bonds they can form with other atoms.  

The valencies for our elements are: C(4), H(1), O(2), N(3), S(2,4,6) and P(3,5). Now what are 

molecules? Essentially, molecules are networks (or graphs) that are composed of elemental 

atoms (nodes) and covalent bonds (edges) and each element is known to engage in the number 

of bonds that correspond to their valency. The valency is the degree of a node in an atomic 

network. The sum of all valencies in networks is exactly twice the number of edges (bonds).  

An example: Acetic acid has the sum formula C2H4O2 which gives a sum of valencies of 

2*4+4*1+2*2 = 16 which in turn gives 8 covalent bonds. Examining the skeletal structure of 

acetic acid reveals 8 bonds when the C=O double bond in the carboxylic group is counted 

twice. We see that it is possible to treat molecular formulae as a formula that summarizes an 

atomic network. 
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Senior’s aim was to find criteria, which allow for the construction of valid connected graphs 

out of sets of nodes with a given valency. Connected graphs are networks where each node 

available i.e. complete molecules. He defined that a graph G is a subset of a partition P, where 

P is a sorted, non-increasing list of valencies.  

He defined: 

 Z(P)   is the number of distinct graphs for P 

 ZC(P)   is the number of distinct connected graphs for P 

 ZL(P)   is the number of distinct loopless graphs for P 

 ZCL(P) is the number of distinct connected loopless graphs for P 

He stated the following four theorems which are the basis to the statements in Morikawa and 

Kind. 

(i) A necessary and sufficient condition for Z(P) > 0 is that ∑P = 2x, where x is a 

positive integer. (remark: x is the number of edges) 

If Z(P) > 0, then Ft(P) = ∑P/2-(n-1) and Fr(P) = ∑P/2-p1. (p1 is the maximum valency) 

(ii) A necessary and sufficient condition for ZC(P) > 0 is that Ft(P) ≥ 0 

(iii) A necessary and sufficient condition for ZL(P) > 0 is that Fr(P) ≥ 0 

(iv) A necessary and sufficient condition for ZCL(P) > 0 is (ii) and (iii) 

∑P is the sum of all valencies and it is twice as much as the number of integers x (atoms) that 

are associated to the list of valencies. Likewise n = x in the case that P constitutes one 

connected and loopless graph (loopless refers to the non-existence of edges that connect a 

node with itself). For a molecule ∑P = ∑(ni*vj), which is the sum of all valencies.   

Condition (i) is statement 1) in Morikawa and Kind’s rule #2. Condition (iii) is statement 2) in 

Morikawa and Kind’s rule #2. Condition (ii) is the condition for the set of nodes to be one 

connected graph and it is supposed to be statement (iii) in Morikawa and Kind’s rule #2. 

Objectively reading from left to right, this statements says that “The sum of valencies 

(2*∑P/2) is greater than or equal to twice the number of atoms (2*n) minus 1.”, where it 

clearly has to say “The sum of valencies (2*∑P/2) is greater than or equal to twice the number 

of atoms (2*n) minus 2.”.  

While this pitfall in reading Morikawa’s statement may appear to be of minor importance, it 

hinders the following insight that gets apparent on Senior (1951), page 674: 

 Ft(P) is identical to the cyclomatic number µ if P is one connected graph! 

As this is our primary assumption when trying to annotate a formula, it is possible to directly 

use the cyclomatic number µ for filtering (not µ-0.5 as can be mistaken from Morikawa and 
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Kind). The cyclomatic number is the number of independently existing circles (paths that lead 

back to their origin) in a network. Translated into chemistry: µ is the number of double bonds 

and rings in a molecule.  

Why is this knowledge important? It leads us to the first extension of the SENIOR rules: the 

number of cycles in a neutral molecule can never be negative and it can only be an integer. 

That means 2µ, the measure which is actually referred to in Morikawa and Kind, can only be 

even. It changes the nature of the SENIOR rule from being a margin-rule with a continuous 

positive solution to a rule with a quantized solution!  

The following rules result from the cyclomatic number µ: 

Let µ = ∑(ni*vj)/2-n+1, then if: 

(i) If µ ≥ 0 and µ ϵ Z, then the given graph is a neutral, completely connected 

molecule with µ*(double bonds+rings) 

(ii) If µ = 0, then the given graph is an aliphatic molecule.  

(iii) If µ ≥ 0 and µ ⌐ϵ Z, then the given graph is a completely connected ion. 

(iv) If µ < 0 and |µ | ≠ N, then the given graph is an aliphatic ion with ammonium 

functionality; given we investigate neutralized (and neutralizable) molecules, such 

ions are invalid. 

(v) If µ < 0 and |µ | = N, the given molecular formula does not refer to a single 

molecule and is thus invalid 

When annotation of neutral molecules is performed, points (i, iii-v) are exclusion criteria. 

Chemically, the addition of a cycle is equivalent to the loss of H2 and therefore µ is inversely 

proportional to H/C. µ = 0 defines the maximum H/C, however the cyclomatic number cannot 

differentiate between molecules having a C-backbone (organic) or molecules having a 

backbone composed of non-C elements. On the other end, there is no definition for a 

maximum cyclomatic number. Ultimately, large and valid cyclomatic numbers can as well be 

formed under complete exclusion of H. This is because H has valency v = 1, which prevents 

them from participating in rings. Molecules might also be composed of sterically difficult and 

invalid structures such as 3-rings. The intramolecular interaction of functionalities may lead to 

the formation of additional rings, which becomes increasingly problematic when elements 

have variable valencies. As indicated in table 1, P and S pose a problem. The maximum 

number of rings that we can use as a filter has to be corrected for functionality interactions; 

we have to block these interactions. We have to find conventions for: 

1) The interaction of functional groups. And therefore the restriction of ‘molecular 
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backbone formation’ with molecules other than C 

2) The definition of a maximum number of rings given 1) 

3) The definition of a minimum number C’s given the cyclomatic number and given 1)  

 

Solution to problem 1) 

The sum formulae and the valencies themselves are no basis for a specific restriction of 

elemental sequences; for this an adjacency matrix for the molecule would be needed (a list of 

all possible bonds for each elemental pair). Instead, we may abstract the principle of orbital 

hybridization, which allows sulfur and phosphorus to extend their valencies in order to 

remove functionalities from the formula. Removing functionalities is the only way to 

minimize the degrees of freedom for the formation of covalent bonds.  

First we assume that P has valency v = 5 and S has valency S = 6. The most common 

functional groups that support P(5) and S(6) are R-PO4H2 and R-SO4H1. So if the formula 

offers a sufficient amount of O and H, which can be dislocated to one of the two 

functionalities, we can remove either PO(3P+1)HP (3P+1 for mono-, di-, triphosphate) or SO4 

from the formula. Both functionalities leave one H (v=1) left, which can assume the bond of 

the former functionality. We can remove as many poly-P or Poly-S as there are O’s which can 

be abstracted into these functionalities.  

The study of chemical databases implies, that S(2) may replace O in R-PO4H2. For this reason 

we first translocate all O’s and S’s into R-P(O or S)(3P+1)HP. Once there is no P left, the other 

O’s are translocated onto SO4 if possible. Once there are no O’s or S’s to translocate anymore, 

we can assume, that the remaining formula has no S(6) or P(5) left anymore. As S(4) plays a 

minor role and S(2) is more common, we now assume, that any S or P that remains in the 

formula are either S(2) or P(3). This way, we get a maximum removal of valencies that may 

interact, while leaving the C-backbone intact. The remaining formula is now assumed to be 

composed of C(4)H(1)N(3)O(2)S(2)P(3) instead of C(4)H(1)N(3)O(2)S(6or4)P(5), which 

drastically reduces the number of non-C backbone combinations, given C is existent.   

Let us follow the algorithm on the basis of the formula for ATP: C10H16N5O13P3 

The cyclomatic number of C10H16N5O13P(5)3 is  

{[(10*4)+(16*1)+(5*3)+(13*2)+(3*5)]-(2*(10+16+5+13+3))+2}/2 = u = 10. 

Translocating 3P+1 times O and 3P times H onto the number of P’s and removing them from 

the formula results in the formula C10H13N5O3 whose cyclomatic number is  

{[(10*4)+(13*1)+(5*3)+(3*2)]-(2*(10+13+5+3))+2}/2 = u = 7. 
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Exactly the three rings associated to triphosphate are removed and the cyclomatic number 

relates exactly to the number of rings, which relate to ribose = 1 as well as to unsaturations in 

Adenine = 4, 5-ring in adenine = 1 and 6-ring in adenine =1. That makes 7 rings. 

According to Kind and Fiehn, there is no algorithm in existence, which compensates for the 

multiple valencies of S and P. 

 

Solution to problem 2) 

  Given our molecule’s backbones contain only C and N and given all unnecessary rings were 

removed, there can be a conjugated π-system which makes roughly n/2 double bonds with n 

being the number of backbone atoms. In addition, there can be the formation of a six-ring or a 

5-ring every six or five atoms. This adds up to 0.5*C+0.2*C+0.5*N+0.2*N = umax. 

 

Solution to problem 3) 

The number of C atoms must be larger than zero and given a backbone of [X-C-X-C-X…], 

with X being any element of valency v > 1, the minimum number of C’s cannot be smaller 

than X-1. (Kirchhoff’s rule) 

All three remaining rules, the cyclomatic number after the Senior-conditions and elimination 

of functionalities, the maximum cyclomatic number and the minimum amount of C given a 

cyclomatic number of zero are to be tested against the seven golden rules in the subsequent 

section. 

 

Comparison of 7 golden rules versus adapted SENIOR rules. 

We have downloaded a set of 18158 exact masses and their molecular formulae from the 

Pubchem database. We annotated all masses using the in-house written formcalc program, 

which finds all elemental combinations that satisfy a given error tolerance and a minimum 

and maximum elemental count. We have used an error tolerance of ± 0.5 ppm. We have 

applied golden rule #1and allowed elemental counts of 1-70 C, 0-30 O, 0-20 N, 0-10 S and 0-

10 P. Formcalc calculated 770067 possible formulae. The application of rule #2 (Lewis and 

Senior rules as stated in Kind et al) found 250948 acceptable formulae (the correct rule would 

have yielded 263794 acceptable formulae). Rule #3 (isotope matching) was omitted for above 

mentioned reasons. Furthermore we applied the semi-strict forms of rules #4 and #5, which 

pertains to the following elemental ratio filters: 0.1<H/C<6, 0<O/C<3, 0<N/C<4, 0<S/C<3 

and 0<P/C<2. The application of this filter yielded 222894 formulae. We did not apply the 

elemental probability filter and since we did not simulate GC-MS we did not apply rule #7.  
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After application of the relevant filters we obtained 222894 formulae over 18120 true values. 

In consequence 38 true values (0.21%) of true formulae were omitted. 

 

For the filtering using the adapted Senior rules we have run the following script: 

% formulae have the form [H C O N S P] 

formulae = dlmread('MeSHFormCalc.txt','\t'); 
N = size(formulae,1); 
results = [formulae zeros(N,1)]; 
valencies = [1 4 2 3 2 3]; 

  
for x = 1:N 
    formula = formulae(x,:); 
    valency = [formulae(x) 0]; 
    Ores = formula(3); 
    Sres = formula(5); 
    Pres = formula(6); 
    Hres = formula(1); 
    Oct = 0; 
    SOct = 0; 
    Oresct = 0; 
    functionality = 0; 
    if(formulae(6) > 0) 
        for y = 1:formula(6) 
        if(formula(3)>=(3*y+1)) 
            Oct = Oct+1; 
        end 
        end 
        for y = 1:formula(6) 
        if((formula(3)+formula(5))>=(3*y+1)) 
            SOct = SOct+1; 
        end 
        end 
        if(SOct > Oct && Oct >0) 
            Sres = (formula(3)+formula(5))-(SOct*3+1); 
            Ores = 0; 
            Pres = formula(6)-SOct; 
            Hres = formula(1)-(SOct); 
        end 
        if(Oct == SOct && Oct > 0) 
            Sres=formula(5); 
            Ores = formula(3)-(Oct*3+1); 
            Pres = formula(6)-Oct; 
            Hres = formula(1)-(Oct); 
        end 
    end 
    if (Sres > 0) 
        for y = 1:Sres 
        if(Ores >= 4*y) 
            Oresct = Oresct +1; 
        end 
        end 
        if (Oresct > 0) 
            Ores = Ores-(4*Oresct); 
            Sres = Sres-Oresct; 
        end 
    end 
    testform = [Hres formula(2) Ores formula(4) Sres Pres]; 
    a = testform*valencies'; 
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    b = 2*sum(testform); 

    u = (a-b+2); 

    umax = 0.5*formula(2)+0.2*formula(2)+0.5*formula(4); 

    umax = ceil(umax); 

    if(u<0 || u > (2*umax) || mod(u,2)~=0) 

       results(x,:)=0; 

    end 

    if((umax == 0)&& (sum(formula(3:6)==0))) 

        results(x,:)=0; 

    end 

    if ((formula(2)< ((Ores+formula(4)+Sres+Pres)-1)) || (formula(2)==0)) 

        results(x,:)=0; 

    end 

end 

    

The script first transfers all possible, O and S onto P (to form HP+1(O or S)3P+1P. The 

respective elements are eliminated from the formula. Then all remaining O are transferred 

onto S so as to give SO4 and then they are eliminated from the formula. All remaining 

elements are assumed to have the valency that is stated in line 2 of the script. Based on this 

formula, the maximum number of rings (umax) and the minimum allowed number of C are 

calculated.   

The application of the script yielded a formula count of 114804 formulae over 17831 true 

values, which makes a true positive rejection rate of 1.8 %. Relative to the gain in false 

positive rejection that reduces the final output by 50%, this is an acceptable omission rate.   

All the performed annotations were carried out on exact masses with zero error. In this case it 

would be valid to choose the elemental combination with the smallest absolute deviation from 

zero ppm. In praxis, it is a common strategy to choose that isobar, which is the closest to zero 

ppm as being the most likely exact annotation. However, calibration of experimental data can 

only cancel out the systematic error partition but it cannot cancel out the random error (which 

then relates to the true accuracy of the instrument). So if the standard deviation of an 

experimental error distribution is 0.5 ppm, then a measured m/z value can randomly occur 

anywhere within this field without the error being caused by reason. That means, the choice of 

an annotation with minimal error has no logical basis for validity of annotation within a given 

error range. The potential of performing false annotation increases with the number of 

possible isobaric formulae and it increases by mass.  
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Figure 8: Number of isobars per nominal mass under application of the relevant golden rules and under application of the 

adapted Senior rules.  
According to the above plotted data, rates of presence of isobaric annotations per mass range 

are as follows: 

 1.3% between 200 ≤ m/z ≤ 300 

 4.6% between 200 ≤ m/z ≤ 300 

 29.5% between 300 ≤ m/z ≤ 400  

 84.1% between 400 ≤ m/z ≤ 500  

The probability to make a false decision increases with any new valid isobaric combination 

and many of them can potentially be true. The same is true for database annotations. Needless 

to say, the proportion of isobars increases exponentially as error range increases. Unless ultra 

high accuracy mass spectrometers are used, putative annotation on the basis of mass matching 

is invalid with a high probability. In consequence, only isotopologue matching can secure 

correct annotation. As we have deduced above, isotope matching is often no option in non-

targeted metabolomics.  

Netcalc annotation in connection to the senior rules offers a way out of this demise, because 

isotopologue checks are replaced by the chemical context of a spectrum. A dense network of 

non-contradicting stoichiometric relationships supports the probability that a given annotation 

is in fact appropriate. However, given the large number of alternative isobaric annotation for 

features of m/z > 400 allows for the coexistence of multiple non-contradicting optima for 

which reason it is useful to limit the upper m/z margin. Furthermore, an increasing number of 



65 

 

REMDs increases the degrees of freedom for which reason the appropriateness of REMDs has 

to be evaluated for each dataset.  

 

For the Netcalc annotation of the above dataset we used an EFE of 0.5 ppm and did not limit 

the final annotation error. 

 

Figure 9: Error-Mass plot Netcalc annotation of the Pubchem dataset. 

 

The Netcalc algorithm yielded 16731 annotations of which 4% were falsely annotated. In 

consequence there were 15990 of 18158 possible true annotations (88%). Considering an EFE 

of 0.5 ppm and unlimited annotation error, the amount of false annotations is insignificant. 

Typical EFEs in Netcalc annotation range from 0.1ppm to 0.2 ppm which usually is 

equivalent to one to one half error standard deviation. Here, the EFE is infinitely larger than 

the error standard deviation. Compared to the combinatorial technique there is a significant 

improvement of annotation quality. 

 

2.5 Metabolic REMDs 

 

Metabolism occurs at many different sites within a cell. Metabolic reactions can take place in 

cytoplasm or in the plasma of a variety of sequestered cell compartments. These cellular 

organelles are compartmentalized by membranes which consist of lipid double layers. As 

metabolism spans all these compartments, metabolites have either to be transported through 

the lipid double layers in order to meet their next reaction partner or the reaction has to 

happen associated to the lipid membrane itself. In cases – like the TCA cycle and fatty acid 
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synthesis – reactions are performed by enzyme complexes. Here a substrate is shuffled into 

the enzyme complex and is subsequently transformed by a series of chemical reactions 

without the intermediate being released into the cytoplasm at high rates.  

Metabolic pathways are a theoretical sequence of reactions, which lead from a compound A to 

a compound Z and they are formulated to be invariant to cellular structure. No matter how 

few a chemical analyst might be interested into cellular biology, this cellular biology 

determines which nodes in a metabolic pathway can actually be detected contemporarily and 

which not.  

Such “omissions of reaction steps” do not only occur on multi-enzyme complexes, they occur 

on the level of singular enzymes – and in conjunction to coenzymes – as well. An example is 

the synthesis of Sphinganine: A Serine molecule reacts with a CoA bound residual of palmitic 

acid to give the precursor of Sphinganine. In this Pyridoxal-PP mediated process a C-C bond 

between Serine and the palmitic residual are formed [Eliot, A. C & Kirsch, J. F., 2004]. This 

happens under the elimination of CO2 and the formal release of H2O due to its separation 

from CoA. Translating this reaction into an REMD, one has to consider the original – CoA 

unbound – substrate of this reaction, the CoA-mediated loss of H2O and the elimination of 

CO2 from Serine. Stoichiometrically it is a two step reaction. So even if all amino acids and 

all fatty acids were considered given an ordinary condensation, without the definition of the 

proper reaction type, it would be impossible to capture this described reaction. In the present 

thesis this reaction is denoted as “decarboxylative condensation”. Especially in conjunction to 

Pyridoxal-PP (vitamin B6) such multi-step reactions occur.  

Other reactions which are mediated by Pyridoxal-PP are forming C-C bonds among alpha-C 

atoms under de-carboxylation. In this thesis this rather exotic reaction is denoted as 

“decarboxylative addition”. Independently of CoA it may occur between α-keto acids and e.g. 

amino acids.  

Other reactions that can occur in conjunction are hydrogenation and condensation. Glutamate 

and a number of Oxo-acids are involved into such reactions, which given their free substrates 

can be formalized as A + B = C + Oxygen. Here, this reaction is called “condensation on 

hydrogenated carbonyls”.  

Interestingly, Pyridoxal-PP is involved in all reactions which are not regular 

condensations/hydrolyses or oxidations/reductions involving O, PO3 or SO3. Paradoxically, in 

literature Pyridoxal-PP has a negligible role as compared to CoA.  

Pyridoxal-PP, together with NADPH, plays a major role in deamination and transamination. 

Due to the change in ESI-ionizability for potential substrates and products of these reactions, 
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all reactions which pertain to amino acids (majorily condensations) were as well formulated 

keeping their transamination products in mind.  

Needless to say, the discontinuity that fatty acid synthesis might evoke, was compensated by 

listing all reaction types, condensation, ‘condensation on hydrogenized carbonyls’, 

‘decarboxylative condensation’ and ‘decarboxylative addition’ onto any intermediate product 

of the fatty acid synthesis cycle.  

The same was done for amino acids and their respective keto acids. Another class of reactions 

considered encompasses conjunctions with common metabolites or lipid head groups.  

In its entirety, all considered reactions (REMDs) amount to a number of 175 reactions. The 

complete set of REMDs is listed in the supplementary material.  

 

Analytical REMD domains: 

The set of REMDs described above mimics metabolism and eventual stoichiometric gaps. 

Taking ESI-ionizability of different metabolites into account, all above mentioned reactions 

can only be detected within the same domain of ions. 

Netcalc only annotates m/z peaks as a function of the specificities to the starting m/z and the 

REMDs. That means that it does not annotate isotopologues and can conversely be used as a 

de-isotoping tool which ultimately reduces data co-linearity. But inherent to this property, 

Netcalc cannot annotate [M+Na+]+ ions if annotation was started from [M+H+]+ ions unless 

the mass which connects both domains was specified.  

In ESI ionization [M+H+]+ ions and [M+Na+]+ ions dominate the positive ionization mode. 

[M-H+]- and if Cl is present [M+Cl-]- ions dominate the negative ionization mode. That 

means, in order to capture every annotatable metabolite in a sample the following 

transformations have to be added to the metabolomics list: 

 The transfer from H+ to Na+ ions with no change in CHNOSP 

 The transfer from –H+ to Cl- ions  

If annotation outside of this domain of 6 elements and optionally two synthetic elements (|H+-

Na+| and |H++Cl-|) is desired, all new “elements” such as 13C, 2H, 15N, 18O, 34S or 32P need to 

be specified as being new elements. In addition each new element has to be attributed with a 

filter in reference to the other elements.  

In conclusion, the metabolomics REMD list needs to respect both, possible analytical gaps in 

respect to metabolic pathways and analytical gaps in respect to ion types. Interestingly, 

Netcalc also differentiates molecular adducts, such as MeOH or NH4
+ adducts, as long as the 
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change of domain is not specified. The complete list of metabolomic REMDs can be found 

under supplemental information. 

 

2.6 Analysis of Error Sources 

 

2.6.1 Netcalc versus Database Matching 

 

All main annotation strategies – combinatorial, database matching and Netcalc– have their 

inherent advantages and disadvantages. It is important to know all these techniques’ 

properties in order to judge, whether they are used and interpreted in an appropriate manner. 

However, they all have things in common. All techniques are bound to a solution-search 

within an error window, which is assumed to be befitting to the analytical instrument and the 

analytical procedure, and the plausibility of the uniqueness of a given finding depends on the 

respective instrument’s resolving power.  

 

The combinatorial technique 

The combinatorial technique produces solutions of elemental combinations which as close as 

possible match the experimental mass. We have shown above, that the list of solutions for 

different masses is vast and encompasses a large amount of isobars (elemental combinations 

which fit to the same mass in a given tolerance window). The choice of the correct isobar 

depends on the detection of isotopologue peaks whose intensity has to match the expected 

magnitude of a given molecular formula. By experience, however, the fewest users of mass 

spectrometry are aware of the fact, that mass defects of isotopologue peaks, whose difference 

to their most abundant isotopologues is nominally identical differ in mass defect; e.g. 

nominally:13C-12C = 1 Da and 15N-14N = 1 Da but exactly: 13C-12C = 1.003355 Da and 15N-
14N = 0.997035 Da. At m/z = 400 a resolving power of R = 63 291 is needed to resolve this 

case mass spectrometrically. There are various combinations of isotopological isobars which 

cannot be resolved at common resolving powers of R<< 100 000. The worse mass 

spectrometric accuracy, the more combinations which may fit to a given mass can be found 

and the lower the resolution, the worse they can be distinguished. In addition, given that mass 

accuracy and resolving power are sufficient, the mass to be annotated needs to be present at 

an abundance sufficiently high to detect the isotopologues because at m/z < 1 000 and z = 1 

isotopologue peaks can be less abundant than the exact mass peak by two orders of magnitude 
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(and even more). This is problematic in regard to the power law distribution of m/z peak 

intensities. Consequently the molecular formula of only a small amount (< 5%) of m/z peaks 

can be verified at hand of their isotopologue abundances.  

 

The database technique 

The advantage of this technique is that it allows for direct access to the biochemistry, pathway 

affiliation and literature relayed for a given hit. However, the drawback is, that database 

entries – even if there is a hit in the pre-specified error window against which the query was 

run – may result in a ‘best guess in default of a better solution’, since databases do not cover 

the entire combinatorial space of possible annotations. The effect of this ‘best guess in 

default’ mechanism can easily be depicted by observing the error distributions of annotation 

results at different ppm. In chapter five, we perform a Netcalc annotation which results in 

several thousands of hits. We translate the experimental masses into exact masses and 

perform database matching using MassTRIX [Suhre. K. & Schmitt-Kopplin. Ph, 2008] at 0.1 

ppm.  

 

 

Figure 10: Error over mass plot of MassTRIX annotation (0.1 ppm) of theoretical masses derived from previous Netcalc 

annotation. 

 

The resulting 2006 annotations are majorly not spreading beyond 0.01 ppm, which is 10% of 

the assigned tolerance. The given annotations differ by rounding errors and we have 100% of 

formula matching between Netcalc and MassTRIX. Increasing the error margin results in a 

change of this scenario.  
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Figure 11: Error over mass plot of MassTRIX annotation (3 ppm) of theoretical masses derived from previous Netcalc 

annotation. 
 

MassTRIX annotation at 3 ppm error tolerance shows an annotation of isobars throughout all 

ppm-ranges and we found a proportion of false annotations of 27.6%. The picture looks very 

structured because the annotation was performed on theoretical values. Nonetheless, we can 

observe, that the next closest annotation is assigned to the theoretical masses because the 

respective true value is not listed in the database. Applied on experimental datasets the same 

test results in a fuzzier picture because the experimental masses are spread along the y axis. 

Compared to the Netcalc annotation of the Pubchem dataset (infinite error tolerance and EFE 

= 0.5 ppm) the proportion of false annotation is seven times larger in the MassTRIX 

annotation and the absolute number of actual true annotations is eight times smaller.  

In consequence, we can state, that the optimal strategy for the analysis of metabolomics 

datasets is to first perform Netcalc annotation and to then perform database matching on the 

yielded theoretical masses.   

 

The Netcalc technique 

The Netcalc algorithm has the following advantages as compared to the combinatorial 

approach and the database matching approach: 

 The combinatorial space is completely covered, just as in the combinatorial approach, 

but an m/z peak annotation is only then accepted, when all its stoichiometric relations 

to all its adjacent m/z peaks are consistent with the REMDs that connect them. One 

may call it “democratic adjustment” which makes the formula valid 

 It does not need isotopologue peaks since “the community” makes the decision as to 
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which an isobar is the correct annotation 

 Netcalc annotations happen in small steps throughout the m/z range, in error steps that 

are much smaller than the tolerance windows specified for the other two approaches. 

Depending on this step-size and the density of annotatable peaks, Netcalc annotations 

cannot move far away from the original error distribution and therefore give a more 

realistic guess upon an m/z peak’s formula 

 The network character of Netcalc gives rise to a new foundation of pathway analysis 

without being restricted to reference pathway maps. Given that the metabolic REMDs 

cover all possible metabolic reactions, metabolic pathways are guaranteed to be a 

subset of the Netcalc-network for as long as the reactands are detectable 

 

Nonetheless, Netcalc is vulnerable to false annotations as well. Naturally, an increasing 

number of elements that are used for the calculation of a molecular formula increases the 

number of isobaric annotations. In theory, one property of Netcalc is that it cannot annotate an 

m/z value that has no REMD associated to it. In consequence, if annotation is started with a 

protonated mass [M+H+]+ and the transition to sodium adducts (Na+-H+) is not defined, 

Netcalc cannot annotate ions of the form [M+Na+]+. Likewise, if transitions to isotopologues 

are not defined and we start annotation with the exact mass formula, no isotopologue can be 

annotated. However, we have observed that [M+Na+]+ molecules can acquire annotations 

despite the lack of a [Na+-H+]-REMD. For example: Glucose [C6H12O6+Na+]+ can attain the 

annotation [C12H10OS+H+]+ even if [Na+-H+] is not defined. The difference of both 

annotations is 0.48 ppm. The respective ‘mis-annotation’ was observed to take place even at 

an EFE of 0.1 ppm.    
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Figure 12: Mass difference network. Two modules are visible.  One module pertains to [M+H
+
]

+
 ions, the other module 

pertains to [M+Na
+
]

+
. Red edges highlighted by the blue ellipse are [Na

+
- H

+
] REMDs, which allow the transition from 

proton space to sodium space. Black edges highlighted by the red circle are invalid connections between both ion spaces. 
 

Figure 12 shows that connections between ion-spaces exist even though the initial assumption 

underlying Netcalc is that an REMD uniquely addresses one stoichiometric relationship.  

The original conclusion that was drawn from this phenomenon was that non-allowed paths 

between ion-spaces exist because of insufficient mass spectral quality and insufficient 

calibration, which lead to false edge assignments. It was assumed that singular peaks – 

especially close to the noise – have random mass shifts which are strong enough to move into 

the position of another theoretically existing peak. 

This hypothesis was supported by an experiment in which we annotated the same mass 

spectrum at different EFE levels. Then we extracted the respective sparse matrices, and 

counted true positive assignments (TP) and false positive assignments (FP). TPs related to 

mass pairs, whose formula difference matched their incident REMD. FPs related to mass pairs 

whose formula difference did not match their incident REMD.  
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Figure 13: a) Counts of masses involved with false positive mass difference assignments (FP) and true positive mass 

difference (TP) assignments; a1) Greatest distance between TP and FP in metabolomics list; a2) Greatest distance of TP 

assignments between metabolomics and structural list; a3) TP to FP distance is increasing for the structural list as a 

function of networking error; a4) Increasing divergeance between FPs and TPs as a function of networking error in the 

metabolomics list. b) Metabolomics list| 0.5 ppm: Abundance of TP and FP mass difference assignments among 

reference mass difference groups [S = Sulphur Organic; P = Phosphorus Organic; O = Other Organics; KA = Keto Acids; ST = 

Structural; L = Fatty Acids and Isoprene units; DA = Dicarboxylic Acids; AA = Amino Acids]. c) Elemental compositions as a 

function of FPs and TPs. d) Red = Structural| Blue = Metabolomics| error distributions at 0.08 ppm networking error e) 

Red = Structural| Blue = Metabolomics| error distributions at 0.16 ppm networking error. f) Red = Structural| Blue = 

Metabolomics| error distributions at 0.5 ppm networking error   

 

 In addition we had grouped REMDs into different classes in order to find out, whether 

specific REMD classes were especially prone to FPs. We found that mass differences 

containing sulfur (S), phosphorus (P) or amino acids (AA) were almost exclusively involved 

into false positive edges. Lipids and dicarboxylic acid REMDs in turn were especially 

pronounced throughout TPs. In addition, figures 13d, e and f show that the error distributions 

yielded from annotations with the Kendrick REMD list (published by Tziotis in 2011) and the 

metabolomics REMDs (introduced in chapter 2.5) dissociated at different error levels. The 

metabolomics REMD list appeared to be a major source of false annotation at EFEs larger 

than 0.1 ppm.  

The results gained from this experiment supported the assumption that random events as well 

as sulfur and phosphorus containing REMDs were causative for false edge formation. 

Further investigations upon the given problem revealed, a mistake (or an inaccuracy) in the 

filtering function. Given an absolute error tolerance of 1 ppm, the initial filtering function said 

‘If ∆|mexperimental, [M+H+]+| < 1ppm or if ∆|mexperimental, [M+Na+]+| < 1ppm, then accept the 
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formula. This line allowed the algorithm to choose between two possible solutions and 

therefore increased the degrees of freedom of the filtering process. Realizing this mistake, we 

explicitly specified Na as an element for formula calculation. As a consequence the algorithm 

only had one option (false or true) which improved annotation performance tremendously. 

 

Mimicry Mass Moieties 

The final hint as to why non-allowed edge assignments appear, was found by analyzing the 

maximum distances between theoretical masses of the same data set that was used for chapter 

2.4. We produced the respective [M+H+]+ masses and [M+Na+]+ masses, concatenated them 

and sorted them in increasing order. We found that there is a conserved set of elemental 

combinations that – if added onto an REMD – yielded formula differences whose masses are 

so similar to the actual REMD that they cannot be differentiated from the original REMD 

unless 0.05 ppm accuracy is achieved.  

In other words, for almost any REMD there is a naturally occurring equivalent formula of 

positive and negative elemental counts, that sums up to the same mass within an error range 

of << 1 ppm (and even < 0.1 ppm). We can refer to such elemental compositions as ‘mimicry 

moieties’. 

 

Figure 14: 10 different elemental combinations which almost exactly match the mass of [Na
+
-H

+
] – the transition from 

proto  spa e to sodiu  spa e. The o i atio  - C H O P  is loser tha  .  pp  to [Na+
-H

+
] throughout the entire 

mass range. In addition, this mimicry moiety induces minimal changes in the isotopic pattern of higher masses because 

the isotope 
13

C is not abundant enough to induce notable changes in the isotope pattern. 
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Aside of the above displayed sodium-like moieties, there are zero mass moieties, whose 

combination simply adds up to a number that is close to zero. The term ‘zero mass moieties’ 

was introduced by M. Perdue in an oral presentation at Helmholtz Zentrum München in 

2010), Many mimicry moieties are simply the sum of a valid REMD and a zero mass moiety.  

 

Figure 15: 19 elemental combinations, which almost exactly match the zero mass.   

 

Any REMD can potentially be substituted by a mimicry moiety. A closer investigation of the 

mimicry moieties reveals that almost every mimicry moiety has proportions of P and S. The 

reason for this phenomenon lies in the mass defect of each element. H and N have positive 

mass defects (0.007825 and 003074, respectively), while O, S and P have negative mass 

defects (-0.005085, -0.027929 and -0.026238, respectively). A certain number of H and N it is 

necessary to add a sufficient number of O, S or P in order to balance the sum of masses 

around zero. For this reason REMDs which are associated with S or P are typical for ‘false 

positive’ edge assignments. In consequence, any Netcalc approach whose REMDs are 

composed of C, H and N exclusively, cannot contain such mimicry moieties. 

Is it true then, that falsely assigned REMDs indicate false annotation? This is in fact not 

necessarily the case, because we have extracted the mimicry moieties from a mass list of valid 

formulae. Netcalc annotation works by walking along the edges within the mass difference 

network. Two network branches may be correctly annotated but they may contain formulae, 
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whose mass difference is close to that of an actual REMD. That means the formulae may be 

correct, even though another REMD is assigned to them. However, unless we have the 

possibility of isotopologue matching, we cannot prove either of the given scenarios.  

For that reason, we have decided to randomly permute the search directions through the 

network and to count how often an REMD was assigned inappropriately. An inappropriate 

assignment of an REMD causes the deletion of its incident annotations and the algorithm has 

another chance to find a less contradicting solution in the next iteration. However, since 

multiple solutions with minimum contradiction may exist, the algorithm may oscillate ad 

infinitum. For this reason we have decided to list the average annotations of several read outs 

once oscillation has begun, because this way it is possible to devise a set of most likely 

correct annotations.  
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3 Data Analysis 1: Development of appropriate Workflows for Data 
Cleaning 
 

3.1 Data Handling 

 

The search for surrogate markers in metabolomics data is impeded by the complexity of such 

data and by the claim, that such markers are expected to have equal and preferentially better 

performance than known markers. A multitude of challenges arises from this claim, because 

the regime that governs uni-variate and multi-variate statistics is theory-oriented rather than 

empiricism-oriented. In consequence, the majority of approaches try to bend empirical data in 

order to fit theoretical standards and if this is not possible, data is discarded. Metabolomics 

data has properties, which conflict with statistical standards: 

1) the excessive number of missing values, which are replaced by zeros 

2) Occurrence of multi-modal data 

3) Non-normal intensity distributions 

4) Occurrence of co-linearity 

As a consequence of these factors, typical normalization techniques – parametric or non-

parametric – as well as datamining techniques, such as PCA and correlation networks, fail to 

correctly extract and interpret the given data. Therefore, datasets are either discarded – urging 

the experimentalist to repeat his measurements – or more complicated techniques such as 

variations of PLS, random forest clustering, SVMs or SOMs are applied. The drawback of the 

latter is that they might indeed lead to a good data separation, but the cause of this separation 

often is unclear.  

The lack of understanding as to ‘why’ and ‘how’ a variable is important for the differentiation 

of data leads to the impossibility to show this separation in the original data, which ultimately 

induces distrust that a scientist has towards his own results [experience shared with a wide 

circle of colleagues]. In addition, the unawareness of the nature or mechanism as to how a 

variable is significant can induce false interpretations of data.  
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3.2 The Matrix Effect 

 

The analysis of any biological matrix in direct infusion MS is complicated by common 

effects, but each matrix in particular poses specific challenges in addition. In targeted 

analysis, the effect which can confound a target peak is called matrix effect. This term 

describes the interfering action of all other constituents of the analytical matrix, which can be 

controlled by developing a method that removes most compound of non-interest. Further 

sources of complication can be the composition of solvents, dead volumes in the analytical 

system, which may lead to the accumulation of matrix or errors in sample cleanup, which is 

dependent on the experimentalist.  

In non-targeted analytics, however, we analyze the matrix in its entirety; the matrix effect is 

therefore an inevitable phenomenon in metabolomics measurements. Since we cannot control 

the matrix effect by the deletion of “the matrix”, we have to develop data analytical strategies, 

which allow for the integration and interpretation of matrix effect. In fact it is important to 

exactly define which partition of the data relates to the biological matrix and which partition 

relates to impurities, artifacts or contaminations.  

In contrast to other biofluids such as plasma, CSF and urine as well, EBC is characterized by 

a very strong variability of “matrix content” per sample. The matrix – the metabolome – in 

EBC is carried by aerosolic droplets, which derive from the airway lining fluid. Exhaled H2O 

(g) is co-condensed during the sampling process and serves as a solvent for the droplets. The 

amount of exhaled H2O (g) varies strongly as a function of body-hydration and metabolic 

activity. Other than urine, EBC stems from an entirely open system and its analyte 

concentrations are reported to vary more than 5-fold intra-specifically and inter-specifically.  

How varying analyte setup and varying sample dilution – a multi-parametric setup – affects 

the quantitative output of ionization sources and how this output can be handled data 

analytically, is poorly documented. However, this knowledge is indispensible for the 

production and interpretation of results. The traditional mindset of bioanalysts is very much 

focused on univariate measures, such as standard deviation, relative standard deviation 

(RSD), significance testing, confidence intervals and many more. Obviously, the multi-

parametric nature of EBC, and matrix interactions render such measures to be inappropriate 

unless these parameters can be controlled.    

 

 

 



79 

 

3.3 Specifying the Problem 

 

3.3.1 Varying Feature Counts 

 

How do matrix effects and dilution influence traditional data correction? Let us assume that 

the metabolome in a sample type counts 2000 metabolites and that an optimal analytical setup 

will reveal exactly 2000 m/z signals. Let us then assume that another sample of the same 

sample type is diluted in a manner that leads to a detection of the most frequent 1000 

metabolites only. 

 

Figure 16: Hypothetical Intensity-Frequency histogram referring to full ionization of 2000 metabolites (left) and Intensity-

Frequency histogram referring to limited ionization yielding 1000 metabolites. The relative order of intensities in the 

samples is assumed to be constant. The red bar marks the median, green bars mark the first and the third quartile, 

empty bars relate to signals that get lost due to limited ionization. 

 

Let us investigate the effect of different normalizations based on this scenario. If the data is 

normalized on the inter quartile range, then the 3rd quartile in the full ionization scenario will 

become the median in the limited scenario. It is obvious, that metabolites which belong to the 

same intensity bar will get over-estimated in the limited case. The only metabolite that will 

not be affected is the maximum abundance metabolite.  

The scenario for non-robust normalizations such as Manhattan norm, Euclidean norm, 

Maximum norm, normalizations on standard deviation or variance all lead to the same result 

given the above scenario. A technique that is often applied in order to make the intensities of 

features comparable is called scaling – in fact normalization of the independent variables. 

However, different feature counts cause non-random missingness of feature signals 
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throughout the samples. Scaling does not solve the problem, because the different feature 

counts per sample stay. In consequence, there is a dilemma: Whether we normalize first or 

whether we scale first, does not solve the problem.  

 

3.3.2 Power Relationships and Scale-free Relationships 

 

A further problem which pertains to omics data – and to non-targeted metabolomics data in 

particular – is the power distribution or scale-free distribution of metabolite ion abundances, 

which is also enhanced by differential ionizabilities of different compound classes.  

Power relationships describe a scenario, where one measure varies by a power with the 

variation of another measure.  

 

The power law can be written as:   f(x) = axk. 

Scale-freeness has negative values of k: f(x) = ax-k. 

If f(x) is the probability of occurrence: P(x) = ax-k. 

 

The scale-free relationship in words; if we assign the intensities of a mass spectrum into 

intensity bins, the probability to find a peak, which we can assign to the maximum intensity 

bin is by the power of –k smaller than the probability to find peaks that can be assigned to the 

second largest bin [Willinger, W., et al. 2004; Li, L., et al. 2005].   

The power relationship in words: The intensity of the maximum peak is k times larger than 

the second largest peak; the second largest peak is k times larger than the third largest peak 

and so on. 

Intensity distributions in metabolomics data often follow such a relationship. This 

relationship, however, poses large problems for data pre-treatment, because if a norm is 

formulated over non-scaled data, very few peaks can impose the majority of weight onto the 

norm. The scenario becomes intriguing if one of the features with largest intensity is actually 

a univariate marker. Normalization would then impose the inverse pattern on all other 

features; normalization would then ‘fake’ statistical significance. A norm must therefore 

always be tested for independency between sample groups of interest. 

The dilemma deriving from the missingness structure is magnified here, because 

powerdistributions imply scaling prior to normalization.  

The problem faced here, is very specific to non-targeted metabolomics; genomics data and 

targeted metabolomics data are commonly performed using full set analysis, where such 
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problems do not occur. For this reason present literature contains almost no workflows, which 

treat this problem.   

   

3.4 Analysis of Dilution Series 

 

In this section we analyze a dataset, which was specifically composed to address the 

following characteristics: 

 varying dilution 

 sample pre-treatment 

The given dataset consists of technical triplicates of a six-point dilution series of one EBC 

sample, a technical triplicate of another EBC sample and two point dilution series of divers 

SPE treatments. The aim of this experiment is to test existing data analytical strategies for 

their capability to minimize the difference of metabolite levels throughout the triplicates along 

the six-point dilution series. We chose to optimize this parameter, because all these 18 

samples are essentially different versions of one and the same sample. A potent data treatment 

strategy should enable the researcher to identify these samples as being one and the same; 

both, in a uni-variate manner and in a multi-variate manner.   

 

3.4.1 Analysis of the six-point dilution series 

 

At first, we analyze the triplicates of the six-point dilution series and a methanol blank 

(infinite dilution) in order to investigate which different responses analytes can have towards 

dilution. We apply different commonly used data-treatment methods in order to investigate, 

which effect they have on the data, and whether it is possible to cancel out the dilution effect 

solely by the use of this set. 

Prior to the application of any techniques of datamining or statistics, it is useful to get an 

overview over the data. Figure 17 shows a mass defect over m/z plot. Based on the element 

specific nature and number of covalent bonds exact masses of CHONSP metabolites cannot 

exhibit arbitrary mass defects (the digits after the comma). In consequence there are forbidden 

zones whose population would indicate the presence of non-CHONSP molecules.  

Figure 17 demonstrates the absolute mass defect (AMD) distribution in dependency of 

compound mass (or m/z) of 18 159 manually downloaded compounds in comparison to the 

dilution series data. The population of the forbidden zone can usually be attributed to doubly 
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charged ions, salts or random noise. The present data was mined with S/N = 4. Lower S/N 

thresholds usually lead to a population of the forbidden zone. We can see, that the dilution 

data series mostly populates higher AMD allowed regions, which indicates low oxygenation, 

low amounts of salts or chloride adducts. Molecules can be predicted to be mostly consisting 

of CH and N, whereas they need to have at least one O or S in order to be ionizable in 

negative mode.   

 

 

Figure 17: Absolute Mass Defect over m/z plot. Red dots are 18 159 CHONSP compositions downloaded from Pubchem, 

corrected for proton removal; Blue dots are the EBC dilution series data. The orange Triangle indicates the forbidden 

zone. 

 

 

The next test on the raw spectra is used in order to investigate the relationship of neighboring 

m/z peaks. The Fourier transform, which generates the mass spectrum from the frequency 

domain, causes large peaks to show “wrinkles”; the peak “oscillates in” and “oscillates out”. 

These wrinkles are often larger than the given S/N margin and they are usually direct 

neighbors of another. Wrinkles are problematic because they may be falsely annotated, 

thereby leading to false interpretations and – even more importantly – they introduce co-

linearity into the dataset. In multivariate analysis, excess colinearity may polarize the 

correlation structure within the data, thereby “suppressing” information of interest. In 

univariate analysis, using multiple testing they may constitute a set of markers without adding 

relevant information to the marker set. Wrinkles can be extracted by sorting the mass-sample-

intensity matrix for m/z and by correlating any ith entry with its corresponding i+1
th entry. 
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Wrinkles (and double peaks) will exhibit correlation coefficients close to 1.   

Figure 18 shows a neighbor-correlation versus m/z plot. Inspecting the region of r2 ≈1 we can 

see, that the amount of wrinkles and double peaks is fairly small. Overall we can verify good 

mass spectral quality. Strong miss-alignment of mass spectra (poor calibration) can be 

deduced from Pearson correlation coefficient close to -1. This is because a miss-calibrated 

mass shifts into the next adjacent mass-line which yields an alternating zero-non-zero pattern 

over the samples.  

 

Figure 18: Running Pearson correlation coefficient over m/z. The yellow rectangle shows peaks with wrinkles or peaks 

splitting. 

 

The running Pearson correlation plot of our dataset indicates acceptable mass spectral quality 

in terms of calibration and colinearity; the mass-sample-intensity matrix can now be analyzed 

for its response to dilution.  

The initial “naïve” prediction of the response of the analytical matrix towards dilution would 

be that both, peak intensities and peak counts decrease with increasing dilution factor. We test 

this assumption by plotting values representative for the overall intensity distribution of each 

mass spectrum over natural logarithm of their respective dilution factor (D = {3, 5, 10, 20, 50, 

100, ∞}. The dilution series was measured in two batches Da = {5, 20, 100, ∞} and Db = {3, 

10, 50} in order to simulate batch effects. An inspection of figure 19 shows that our initial 

“guess” was wrong. In fact we can see that the cumulative intensities throughout different 

intensity ranges increase as a function of D until D100. The MeOH blank shows lower 



84 

 

intensities than D100. Does the same apply to the peak counts per mass spectrum? In fact, 

figure 20 shows the exact same pattern of peak counts over D which in addition means that 

intensity and peak counts are in a positively correlating relationship.  

  

Figure 19: Intensity percentiles P = {50, 60, 70, 80, 90} over dilution factor D. The 100
th

 percentile was excluded; the 

power distribution common to all mass spectral intensities made it impossible to plot the intensity profiles together. 

 

 

Figure 20: Peak Counts over dilution factor D 
  

This non-intuitive finding raises the question, as to whether a higher peak magnitude in direct 

infusion MS indicates a lower concentration of analytes. It is necessary to test, whether this 

relationship applies to all masses or whether the cumulative values used for its visualization 

mask the true behavior of the data.  
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Co-Intensity Structure of Dilution Series 

 

Finding the answer to the above stated questions necessitates the use of multivariate clustering 

methods because a) this is the exact task of multivariate methods and b) the one-by-one 

inspection of every mass line would prove to be tedious. In the present manuscript we 

predominantly use networks for analysis, because their analysis provides direct visualization 

of clusters and direct access towards important masses. We recapitulate; there are at least two 

different types of networks that can be created upon mass spectrometry data: Mass Difference 

Networks (MDNs) and Co-Intensity Networks (CINs). The term “Co-Intensity Network” was 

first coined in the doctoral thesis of Dimitrios Tziotis and is used to address any network 

pertaining to the quantitative information in the data as opposed to the mass difference 

information. In consequence, CINs include similarity networks and distance networks. In 

order to create CINs, the relationship between any pair of variables has to be listed in a co-

intensity matrix, which is either a similarity matrix, or a distance matrix. Then it is necessary 

to generate a margin where CM entries are either listed as 1 if the relationship of two 

variables is above a threshold or listed as 0 if the relationship between the two variables is 

beneath this threshold. The resulting binary CM is again called adjacency matrix (AM) and it 

is the blueprint of the network. 

The AM for the dilution series was created in the following way: 

 Omit all variables which have less than 4 non-zero elements throughout the dilution 

row 

 Center non-zero entries around their mean 

 Normalize each variable on the p2-norm (Euclidean norm) to gain the normalized 

Matrix N  

 Multiplication of N with itself according to N*NT gives CM 

 We create AM by replacing the non-diagonal entries with cosϕ >= 0.9 by 1 and 

replacing all other entries by 0. 

We then visualize the Network in Gephi (Fig. 21).  
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Figure 21: Co-Intensity network of dilution set. Nodes are the m/z features and edges represent relations that satisfy 

osϕ >= .9. Nodes are olored a ordi g to odules et ork se tio s hi h share ore si ilarity a o g the sel es 
than with the rest of the network). The network regions are characterized by three different themes: Theme A refers to 

468 of 2178 (21.5%) intensity profiles that decrease with increasing dilution. Theme B refers to 53 of 2178 (2.4%) 

intensity profiles that strictly increase with increasing dilution. Theme C) refers to 1657 of 2178 (76.1%) intensity profiles 

that increase with increasing dilution but are barely present in 100% MeOH. 

 

The CIN in figure 21 shows very good modularity. The intensity profiles represented by each 

node can coarsely be grouped into three themes. Theme A refers to profiles, which are either 

strictly decreasing as a function of dilution or to profiles which show a decrease from D3 to 

D5, an increase from D5 to D10 and a strict decrease with dilution afterwards. Theme B refers 

to a small group of profiles which strictly increases with increasing dilution. Theme C refers 

to the majority of profiles, which increase with increasing dilution but are less abundant or 

barely detectable at infinite dilution (100% MeOH).  

Theme A is coherent with our initial “naïve” assumption and can be taken as representatives 
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of the EBC metabolome. In most cases signal intensities decrease at first, but increase at D10. 

We hypothesize, that the proportion of H2O, stemming from EBC at D3 and D5 destabilizes 

the electrospray, which indicates, that 90% MeOH (D10) gives the optimal compromise 

between dilution and sample composition.  Theme B profiles must clearly relate to the solvent 

used for dilution (MeOH). Theme C is the exact same pattern as shown in figure 19 and figure 

20. Its dominance (76.1% of all nodes) explains why the sum of all intensities as well as each 

percentile profile throughout the data reflects theme C. But how can this result be interpreted 

in terms of dilution? The MeOH blanks were measured before, in between and after the 

acquisition of the dilution series and they show tremendously lower or no ion abundances for 

most of the intensity profiles of theme C. In-house we explain this phenomenon by the 

decreasing influences of theme A, i.e. by decreasing suppression due to dilution of theme A 

compounds. We see it as imperative to investigate the optimal sample dilution prior to any 

direct infusion MS experiment in order to maximize the coverage of matrix constituents.  

The bi-directional nature (the mix of theme A and theme C) poses problems for data 

interpretation, as we cannot confidentially say, which of both themes applies to a peak in a 

given analytical scenario.  

Let us recall, that the aim of our investigation was to come up with a strategy of data 

normalization, so that the EBC constituents would reflect similar ion abundances of the 

technical replicates, which are confounded by dilution. At this point we have to conclude, that 

it is not possible to normalize the data in a way, that both, theme A and theme C are corrected, 

because if we correct theme A by normalizing on theme A patterns would confound theme C 

and vice versa. We can further conclude that the use of one single dilution marker is not 

sufficient and that normalization techniques, which are based on representative values of data 

variation cannot be capable of this feat.  

The correct procedure for normalization must therefore be to cluster the data and to then 

normalize the constituents of theme A by their representative value and to do the same for 

theme C constituents.  

A sample set of a metabolomics study, however, is not as ideal as a dilution series. Such a set 

is typically composed of at least two different phenotypic groups, which may alter the 

proportions of theme A constituents and theme B constituents. In addition, a co-intensity 

network may be “confounded” by the experimental emphasis to a degree, that theme A and 

theme B are not immediately clusterable.  
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Co-intensity structure of the dilution series confounded by different pretreatment of samples 

In order to develop the optimal data pre-treatment strategy we have to test, to which extent it 

is possible to differentiate theme A and theme B under confoundedness. We mix the dilution 

series with mass spectra of different SPE sample preparations of EBC. As in the previous 

subsection, we investigate the mass spectrometric quality of the unified dataset and remove 

mass traces which may invoke problems. 

 

Figure 22: Absolute Mass Defect over m/z plot. The ellipsoid indicates the presence of salts. 

 

Figure 22 shows that the addition of SPE pre-treated samples introduced a major proportion 

of contaminations, which are constituted of salts. The presence of salts indicates that the 

washing steps in the SPE preparations were not sufficient even though they were performed 

following the vendors protocols.  
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Figure 23: Running Pearson Correlation Coefficient over m/z plot. 

 

Figure 23 indicates an increased proportion of m/z values which are dependent on their 

neighbors. In addition we can see a very high and non-gaussian densitiy of m/z values which 

are zero or smaller than zero. Figure 24 shows, that these values are associated with a low 

proportion of non-zero entries in the mass-sample intensity matrix.  

 

Figure 24: Running Pearson Correlation Coefficient over frequency of non-zero entries. 
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On the other hand side, figure 24 shows a low proportion of negative correlations which 

indicates acceptable calibration and alignment.  

The manual inspection and filtration of the “faulty” m/z features is tedious and therefore we 

use Netcalc annotation in order to filter the masses. In theory – and also multiply verified in 

house – Netcalc excludes salts and multiple charges from the dataset.  

For Netcalc annotation we use the metabolomics mass difference list, an edge formation error 

of 0.1 ppm and we start annotation at palmitic acid ([C16H32O2-H]- ≈ 255.232954 m/z) and 

glucose ([C6H12O6-H]- ≈ 179.056112 m/z). Figure 25 shows the mass spectral evaluation of 

the 3558 Netcalc annotated m/z values. This amount equals a proportion of annotated masses 

of 18% given the entire dataset. Excluding forbidden-zone compounds, the proportion of 

annotated masses is 30.7 %. The non-annotated remainder commonly pertains to non-

CHONSP compounds and isotopologues.  

 

Figure 25: Characteristics of the Netcalc filtered dataset. A: The Error distribution of Netcalc annotations is well centered 

on zero ppm, which indicates precise and identical calibration throughout all 50 mass spectra in the set. B: In contrast to 

figure 22 the AMD over m/z plot is perfectly clean, which underlines the performance of Netcalc. C and D: The running 

Pearson Correlation Coefficient plots show, that Netcalc excluded co-linearity.  

 

 

Further investigations of intensity profiles are carried out on the basis of the Netcalc 

annotated dataset. As elaborated above, we will use a CIN – prepared in exactly the same 

manner – in order to analyze the correlation structure of the data.  

Other than the network in figure 21, which was one connected component covering 54% of all 
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nodes, the current CIN shows a set of seven disconnected graph components, which altogether 

amount for 59.3% of all connected nodes. Each disconnected graph component addresses a 

different theme or pattern which exists throughout the data. All connected nodes covered 

63.4% of the entire dataset.  

Where the original dilution set was composed of the themes A, B and C, exclusively, the 

present network contained only 103 of the original 2178 features that related to the dilution 

series. In consequence, the entire co-intensity structure of the mixed dataset is dominated by 

the strong differential efficacy and specificity of the used SPE data. The rest of all nodes 

exclusively referred to specificity patterns of sample preparation. 

Two conclusions can be drawn from these results: SPE sample preparation strongly distorts 

the EBC metabolome and strong variations in sample pre-treatment – e.g. unclean laboratory 

praxis (here simulated) – impair data quality to such an extent, that a matrix effect which is 

based on differential dilution cannot be corrected. 

 

Co-intensity structure of the dilution series confounded by non-SPE samples 

In order to test, whether matrix dilution is the major variable that dominates the co-intensity 

structure of data sets generated based on the same sample pre-treatment, we exchanged the 

SPE samples by samples derived from specimen number five of the HuMet study, which will 

be treated in the HuMet chapter. These samples were pre-treated by dilution in methanol only.  

The dataset passed all previously introduced tests and both partitions, the humet partition and 

the dilution partition, were scaled (not centered) separately in order to neutralize differences 

in intensity levels. In fact, even though both sets were measured within one month under the 

exact same experimental settings, the HuMet data exhibited much lower intensities and the 

median peak counts amounted to only 20% of the in house sampled EBCs. There may hence 

be a systematic depletion in metabolites throughout the HuMet set which is treated in the 

HuMet chapter. The 3183 features of the HuMet-Dilution dataset were again scaled on the 

Euclidean norm and non-zero intensities were centered about the mean of the non-zero 

intensities. It is important to center the non-zero intensities only, because otherwise weight is 

transferred to zero values. The resulting co-intensity network contained a connected 

component which encompassed 83.9% of the data, and which could be clustered into seven 

modularity classes. The graph component consisted of 26 modules, five of which (16.7%) 

were fully related to the HuMet set and the dilution set.  

The module-wise sums of the scaled data over the samples revealed distinct patterns, which 

exclusively represented different characteristics of theme C. Themes A and theme B (the 
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MeOH matrix) did not associate with the co-intensity structure of the HuMet set. 

 

Figure 26: CIN of the HuMet-Dilution set. Nodes of the HuMet partition are red. The HuMet modules are well associated 

to the main dilution topic, which is theme C.  

 

The dilution themes of the HuMet-dilution modules are associated with theme C; however, 

different sub-themes are addressed. 
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Figure 27: Different Modules of theme C that clustered in the co-intensity network and representative sum of scaled 

HuMet data.  

 

What differentiates the sub-patterns of theme C is the magnitude by which the respective 

features reacted to dilution. The fine structure of theme C was supported because the 

centering applied prior to network creation was based on the non-zero entries only. Including 

zero entries would have dulled the precision of the picture.  

Even though the patterns appear to be very similar, they express differences. The visual 

similarity of the patterns may imply that normalization on the representative (which is the 

Manhattan norm, Taxi Cab norm or p1-norm) neutralizes the dilution behavior. Principally all 

samples of the dilution series are technical replicates and normalization is finally intended to 

assign the same intensity to all dilution stages (based on a norm which is a representative of 

intrinsic dilution behavior). At this point we have to envision, that theme C implies that higher 
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intensity equals lower concentration! In consequence, non-normalized or incorrectly 

normalized DI-ICR-FT-MS data, which implies statistically significant up-regulation of a 

marker candidate in a phenotype of interest may in reality be a marker of significant down-

regulation. The aim of normalization must therefore either be to neutralize the dilution effect 

(matrix effect) or at least to make sure that a lower intensity really correlates to lower 

concentration.  

What happens, if we normalize the HuMet modules on the representative? 

 

Figure 28: HuMet modules normalized on representative data profile. 

 

We can see that the normalization onto the representative data profile works well for modules 

13 and 7. The other modules are distorted; module 4 shows a trend which is conform to 

sample dilution, but the last quadruple (infinite dilution), is over-estimated. We remember that 

features, which appear at this dilution stage mostly come from carry over, which is why the 

normalization result for module 13 is acceptable. In the rest of the data the dilution response is 
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either distorted (not neutralized) or the infinite dilution/carry over section is over-represented.  

 

In conclusion we can state, that it is possible to define modules of common matrix effect and 

that it is appropriate to normalize the respective data onto ‘personalized’ matrix patterns.  

The definition of modules is mathematical and rather strict. It might be – and the more in 

networks of large degree like the present co-intensity networks – that a specific feature has 49 

connections to theme X and 50 connections to the theme Y and that its normalization is then 

based on theme X exclusively. As we now assume, that the primary impact onto co-intensity 

structure comes from dilution, we can correct the features on their neighbors instead of 

correcting them for their modules. Of course, we have to bear in mind that both, module sizes 

and neighborhood sizes may vary, which gives a different scaling after normalization; so we 

need to rescale the normalized data. 

 

3.4.2 Test of normalization strategy 

 

Based on the previous sections, we developed the following normalization strategy:  

1) Creation of a co-intensity network 

2) Calculation of a ‘taylor made’ norm for a given feature, based on the features which 

are adjacent in the co-intensity network 

We performed this strategy on the dilution set and compared it to the application of the 

Manhattan norm. It is not important, which norm is used in this case, because the data was 

scaled before. Scaling cancels out the power relation of intensities over the mass spectrum. 

Most normalization techniques produce similar results in that one single measure of 

magnitude is used as a norm. Which technique should be used, is largely a matter of 

preference and a matter of centering or not centering prior to normalization. However, it 

should always be born in mind that metabolomics data is often compromised by missingness, 

which makes p-norms the more appropriate measure.   

 

Remark: Data mining tools commonly offer scaling and/or normalization procedures for data 

pre-treatment. However, the reason why these techniques should be applied, which effect they 

have and in which order they should be applied is often left unclear. In principal, data first has 

to be scaled in order to neutralize power structure. Normalization would be confounded if the 

power structure would not be dealt with before. Normalization changes the relative intensities 
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of features throughout the samples. Common normalizations do not require a re-scaling. Our 

CIN based normalization, however, requires re-scaling after normalization, since the 

magnitude of the norm depends on the connectivity of a feature in the network. 

In general, data should first be scaled (not centered) prior to normalization. End of Remark. 

 

Assuming, that normalization diminishes the spread of the data we used the adjusted inter 

quartile ranges (IQRs) in order to compare both normalization strategies. What we call the 

adjusted IQR is the IQR over the non-zero intensities. In order to compare, whether the IQR 

for the CIN normalization is generally lower than the IQR of Manhattan normalization, we 

have to make a plot of the ratio IQRCIN/IQRManhattan.  

 

Figure 29: Zoom into the Ln(IQRCIN/IQRManhattan) percentile plot of the dilution dataset. Different cutoffs at 10%, 30%, 50% 

and 80% non-zero intensity frequency. Y-axis values < 0 indicate a smaller IQRCIN than IQRManhattan and the point of 

interception of the X-axis indicates the per e tage of features for hi h Y ≤  is true.    

 

The CIN normalization approach is superior to the Manhattan norm throughout a wide range 

of non-intensity frequency cutoffs. The higher the frequency cutoff is, the better is the 

normalization. In consequence, there is a relation between missingness and normalization 

result. This outcome is to be expected, since the missingness structure of a dilution dataset is 

given to be systematic. The direct consequence is that sums over samples with high 

missingness, e.g. infinite dilution, D3 or D5 are smaller, which leads to a smaller norm and 

finally to an overestimation of present non-zero entries.  

For this reason it is important to secure ‘missingness at random’ in a given dataset. 
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3.5 Conclusion 

 

We have demonstrated, that features react in different ways upon matrix effects and we have 

drawn the conclusion that normalization on a single norm must fail to normalize every feature 

justly. We have shown that SPE pre-treated EBCs contain a large amount of contamination 

and that SPE patterns are fundamentally different from dilution patterns. This indicates that 

minimal sample pre-treatment is the better strategy for EBC, which has low amounts of 

analytes to begin with.  

We have indicated that the major part of correlation in the data comes from bias. This is not 

necessarily new, since normalization and scaling would be unnecessary if this was not the 

case. In consequence, we could develop a co-intensity network based normalization approach, 

which is more capable to neutralize bias than normalization approaches, which are based on a 

single norm. In addition we found out, that – apart from data cleaning – it is necessary to first 

make sure that the missingness structure in the data is at random, to then scale the data 

(without centering), to then normalize the data and, if necessary, to perform a final scaling 

(with or without centering).   
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4. Data Analysis 2: The Gauting Study 
 

The Gauting Study [Möller, W., et al., 2009] was intended to show that EBC is a proper 

analytical matrix for the diagnosis of chronic obstructive pulmonary disease. EBC was 

sampled from smokers, non-smokers and ex-smokers, which had COPD. The samples were 

collected using the EcoScreen 2 sampler, which separates alveolar and bronchial breath 

streams. Samples were measured using the NanoMate roboter.  

In the present treatment of the Gauting study, COPD samples had to be omitted because they 

were too few (N = 5) and they were cortisol treated, which enforced an emphasis on sterol 

metabolism in early analyses.  

A direct comparison of alveolar and bronchial EBC was intended originally. However, the 

implementation of a ‘pre-annotated’ reference sample for internal calibration has revealed, 

that the error distribution of the bronchial samples were strongly non-linear. Specifically, an 

intense m/z peak cluster at m/z ≈ 400. Marshall et al. demonstrated that the linearity of error 

distributions in ICR-FT-MS depends on peak intensities. Previous analyses of the Gauting set 

(calibrated on solvent impurities) revealed that a main proportion of variables that separated 

the alveolar samples from the bronchial samples were characteristically found at m/z ≈ 400. 

The use of a large calibration list, which was able to properly resolve the error distribution, 

revealed that the largest difference between alveolar error distributions and bronchial error 

distributions was at m/z ≈ 400, which resulted in misalignment of the spectra. In future 

approaches more adaptive regression models like LOWESS [Cleveland, W.S., 1979] in 

conjunction to mass difference networking will be applied outside of Bruker Data Analysis in 

order to overcome such problems. In consequence, no direct comparison of alveolar and 

bronchial samples is performed here.  

After the unification of the alveolar smoker samples (N=12) and non-smoker samples (N=13), 

consequent elimination of m/z values with a frequency < 3 and Netcalc annotation we gained 

a dataset of 3711 m/z values over 25 samples.  

 

 

 

 

4.1 Analysis of data structure 

 

We perform a first analysis of the data structure by using (multivariate) linear algebra. Similar 
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to PCA, we want to use eigenvectors as representatives of data structure. The following steps 

need to be performed: 

1) Create dataset D 

a. Raw dataset 

b. Normalize all rows on their Euclidean norm 

c. Normalize all columns on their Euclidean norm 

2) Create the coincidence matrices of D by calculating CM = D*DT 

3) Calculate the eigenvectors of CM 

4) Select the eigenvectors with the largest eigenvalues (e.g. usually the first three 

eigenvalues) and multiply them with all mass spectra 

5) Plot the Eigenvectors against the frequency 

6) Plot the resulting loadings over the samples 

Plotting the first eigenvectors of the Gauting set versus the m/z signal frequency does not 

allow for visual interpretation, since the eigenvectors reflect the power structure of the data. 

 

Figure 30: Eigenvector entries generated on the raw Gauting dataset plotted over frequency of m/z signals. The 

frequency of the largest positive and negative eigenvector entries is the maximum frequency, which indicates large 

intensities at large frequencies and the presence of different patterns in the data.   

 

Normalization of the rows of the dataset onto their Euclidean results in more readable plots 

because this process cancels out the power distribution over the mass spectra. 
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Figure 31: Eigenvector entries generated after normalization of rows, plotted over frequencies of m/z signals. The power 

distribution is cancelled out. The first eigenvector (E1), covering 43% of all eigenvalues, increases with increasing 

frequency. The other eigenvectors are independent of the frequency. 

 

The first eigenvector shows a behavior that is linearly dependent on frequency. This behavior 

is to be expected, since an m/z value with many entries has a higher chance to coincide with 

other m/z values over the samples than features with fewer entries. If higher eigenvector 

entries were to cause large eigenvector entries, we would expect a strong bias. The other 

Eigenvectors behave entirely independent from m/z frequency. We can assume that the data 

structure does not contain strong binary biases. 

Performing the same sequence onto the column-normalized dataset, results in the same plot as 

performing it on the raw dataset.  

Plotting the sum of sample intensities over the peak count per sample indicates good data 

quality because the peak sum is independent of the peak count. If the sum of intensities would 

correlate with the peak count, a matrix effect would be indicated. In fact, the present scenario 

suggests, that ionization using the Nanomate robot was close to complete.  

The analysis of the data structure indicates an optimal situation for the normalization of the 

data. Since the peak count is very constant, it is possible to perform robust normalizations like 

normalization of the inter-quartile range (IQR) or transforming each sample to equal median. 
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Figure 32: Sum of intensities over peak count. 

The advantage of robust normalizations is that they are not leveraged by outliers. If the 

previous analyses had been dependent on the missingness structure and peak counts would 

have varied strongly, robust measures like the median or the inter quartile range would have 

been biased themselves (this goes for any other normalization technique as well).  

In consequence, we first normalized the mass spectra on their IQR and then normalized the 

m/z values on their IQR. However, because of differential missingness we used a modified 

IQR, which is only performed on the non-zero entries. 

 

4.2 Extraction of potential Surrogate Markers 

 

4.2.1 Univariate analysis 

 

Prior to multivariate data analysis we performed a simple two-sided T-test with the null 

hypothesis, that the intensities in non-smokers and in smokers have equal mean given 

different variance.  

The test revealed 126 m/z values with p < 0.05 which had higher intensities in non-smokers 

and 43 m/z values with p < 0.05 which had higher intensities in non-smokers. Table 2 

summarizes these data. 

Univariate discriminative features pertain to the differential abundances of analytical signals 

over phenotypic groups of interest. They are in the focus of targeted analysis and the 

development of quantitative detection techniques allows for their direct evaluation in raw 
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spectra.  

Univariate discriminative features as they are produced here cannot be guaranteed to be found 

in raw spectra. We recall that the sum of intensities varied independently from the peak count 

and that normalization was necessary. This circumstance highlights the necessity to separate 

targeted and non-targeted metabolomics, because the latter, may find surrogate marker 

candidates and the prior may improve their quantitative detection and identification. 

 

4.2.2 Multivariate Markers 

 

For the extraction of multivariate markers we performed a simple PCA based on the Nth 

dimension (the feature dimension) of the dataset. The resulting principal components (3711 

eigenvectors) were then multiplied with each sample in order to gain their loadings into the 

samples.  

Then we performed a series of t-tests on the eigenvectors in order to extract the eigenvectors, 

which generated significantly differentiating loadings into the smoker and non-smoker 

samples.  

We then extracted the three most differentiating eigenvectors, which caused loadings with the 

following p-values: 

Table 2: Eigenvectors with respective p-values 

Eigenvector 

number 
p-value Group 

Number of associated 

features 
Resulting p-value 

205 0.0002 S 82 0.0009 

608 0.0003 NS 46 0.0001 

625 0.0005 S 20 0.12 

 

The number of the eigenvector indicates its magnitude. The first eigenvector in the table is the 

205th largest eigenvector of 3711 eigenvectors. We see that it is not always the first three 

components that contain the desired differentiation of the data. Afterall, PCA is merely 

optimized to reconstruct the dataset, not to find significant differentiations. 

In order to find out, which masses were responsible for the direction of the eigenvectors, we 

wrote a short algorithm that tested whether the deletion of a variable together with its 

respective eigenvector entry would impair the shape of the eigenvector loadings.  

In results, we gained a set of 82 features that associated strongly with eigenvector 205, 46 

features for eigenvector 608 and 20 features for eigenvector 625. While the selected masses 
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improved the p-value of eigenvector 608, they slightly impaired the p-value of eigenvector 

205 and strongly impaired the p-values for eigenvector 625.  

 

Figure 33: PCA of the Gauting dataset differentiating smokers versus non-smokers over the eigenvector E205 and E608. 

 

An interesting finding is that the single masses, which lead to the given separation, were 

mostly not addressed in the univariate datamining, i.e. they do not differentiate the groups as a 

single feature, but they do as a group. Most of the found markers had no significant t-test 

result. 

 

Figure 34: P-value distribution over the multivariately discriminating features 

 

It is not the significance of a single feature that makes the multivariate marker; it is their mode 

of co-occurrence. The eigenvectors show invariable directions in the data and can be used as a 

model vector. Multiplication of the respective data with the model vector, shows how much 
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aligned the differentiating features are with its direction. By extracting the minimum amount 

of features that is necessary for a good alignment with this direction gives us the respective 

markers. Non-smoker markers co-occur most in the non-smoker samples and smoker markers 

co-occur most in smoker samples.  

To use multivariate techniques for data analysis and yielding a good separation does per se 

not imply differentiating levels of single markers. This fact raises problems for the definition 

of a surrogate marker, since a given device would have to be able to detect all markers of 

interest. However, quantitative measurements in the scope of targeted metabolomics may 

enable the direct extraction of representative geometries among the markers which make up 

the desired pattern. 

 

4.2.3 MassTrix annotation of Markers 

 

Database matching is at some point indispensible for non-targeted metabolomics research, 

because hits in metabolic databases may enable biochemical interpretation of the data. Even 

though there is a large number of isomers for a given exact formula annotation, data that 

supports the existence of a given isomer in a given sample type may indicate the most 

probable feature identity. 

As discussed above, database matching on experimental data is problematic, since there may 

be too many hits that are within a specified error range but that are in no relation to the error 

distribution of the data. For this reason we matched the Netcalc annotations using MassTRIX 

at 0.1 ppm. MassTRIX annotated 431 (11.6%) of the uploaded 3711 Netcalc results. The 

previous data mining approaches yielded 270 marker candidates of which 30 features (11.1 

%) were annotated by MassTRIX.  
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Table 3: MassTRIX annotations of marker candidates for Markers. 

  

 

The smoker marker candidates prostglandin H2 and hexadecanal are known to be produced in 

response to oxidative stress. 4,8-dimethylnonanoyl carnitine and 3-methyltetradecanoic acid 

may be a results of oxidative stress as well. Both marker groups encompass carnitines. The 

involvement of S-formylglutathione into non-smoker biochemistry may indicate a working 

antioxidative mechanism and toluene-4-sulfonate may indicate an intact detoxification 

mechanism. Such detoxification mechanisms are closely linked to systemic metabolism. 

Farnesylcysteine is a mixture of an isoprene and cysteine. Isoprenes were frequently reported 

to be constituents in exhaled breath but a specific role cannot be assigned at this point. 

 

 

Marker Count Name

S 5-propylideneisolongifolane

S Prostaglandin H2

S 3-Hydroxy-9-hexadecenoylcarnitine [cation] ([M+H]+)

S Hexanoylcarnitine

S Xanthan

S Oblongolide ([M+H]+)

S Hexadecenal

S 3-methyl-tetradecanedioic acid [Dicarboxylic acids [FA0117]] ([M+H]+)

S Retinal

S 4,8 dimethylnonanoyl carnitine

NS Isodomedin ([M+H]+)

NS 5-O-Methylembelin ([M+H]+)

NS Nicotianamine ([M+H]+)

NS Hydnocarpic acid ([M+H]+)

NS 4-keto pentadecanoic acid

NS 6-Oxabicyclo[3.1.0]hexane-2-undecanoic acid methyl ester ([M+H]+)

NS O-Decanoyl-L-carnitine ([M+H]+)

NS L-Rhamnose

NS 6-endo-Hydroxycineole ([M+H]+)

NS Toluene-4-sulfonate

NS Heptanoylcarnitine [cation] ([M+H]+)

NS 12-trans-Hydroxy juvenile hormone III ([M+H]+)

NS Butoctamide hydrogen succinate

NS (-)-Menthyl O-beta-D-glucoside ([M+H]+)

NS Valproic acid glucuronide (see KEGG C03033)

NS Farnesylcysteine

NS S-Formylglutathione ([M+H]+)

NS 8-Epiiridotrial glucoside

NS FPL64176

NS Pseudoaconitine ([M+H]+)
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While some annotations comply with literature resources, no larger picture pertaining to the 

differences between non-smokers and smokers can be compiled. This scenario – the under 

annotation of non-targeted marker candidates – is a common problem to non-targeted 

metabolomics; especially if there is limited knowledge about an analytical matrix such as 

EBC. In consequence, it is necessary to apply different approaches for data interpretation    

 
4.3 Development of appropriate Workflows for the extraction and Interpretation of 
Surrogate Markers 

 

Up until this point, it was possible to optimize putative annotation of mass spectral signals 

and to extract relevant information in a rationally understandable manner. The next step in 

metabolome investigations is the interpretation of results.  

There is a plethora of information stored in databases, which store metabolomics, proteomics 

and genomics information of central metabolism, metabolism of specific plant species, 

metabolism in cells, mouse model systems, human plasma and urine, tissue extracts and many 

more. Still, in most data sets only 10% of all features intersect these stored data – in some 

standard model systems more and in some less.  

The intersection of cleaned EBC data with the data stored in the MassTRIX server is at 5% 

and stays below 10% when matching against HMDB. From the biochemical point of view 

EBC is a black box. Consequently – at a pre-targeted stage – interpretation must largely be 

data driven and it is necessary to develop techniques, which lead to an objective, chemical 

circumscription of processes underlying the data. Where missingness of information is an 

uncomfortable scenario for the biochemist of physiologist, it is a common scenario in the 

analysis of natural organic matter (NOM). Having no pathway, protein sequence or gene list 

at hand the NOM analyst routinely uses the following techniques in order to devise a holistic 

description of analytical/experimental scenarios: 

  Analysis of elemental ratios (like O/C or H/C) which are often displayed in a van 

Krevelen plot. 

 Comparison of the density of population of specific van Krevelen regions between 

different samples. 

 Elemental ratio over m/z plots. Elemental ratio over m/z plots give insight into the 

continuity of chemical processes over the m/z range, and well defined structures imply 

the existence of homologous series.  

 Kendrick Mass Defect (KMD) plots [Kendrick, E., 1963]. Here masses are scaled 
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according to the proportion of the nominal mass of a composition over the exact mass 

of a composition. The mass defects of scaled masses plotted over the scaled masses 

themselves reveal homologous series in the data. The continuity and length of 

homologous series in addition to their differences from sample to sample give insight 

into structured chemical processes which are characteristic for the data. 

 Analysis of the aromaticity index (AI) [Koch, B.P. and Dittmar, T., 2006] and double 

bond equivalent (DBE) [Pellegrin, V., 1983] gives information on the redox state of a 

system and on the source of substances (e.g. aromatic systems like humic acids at 

large AI and DBE, aliphatic – mostly anthropological petrol impacts – at low AI and 

DBE). 

Data analysis with these tools at hand enables the observation and interpretation of 

compositional and chemical shifts – elemental fluxes – in mostly stochastic non-steady state 

environments. The main focus of these techniques is on the isolation of homologous series in 

conjunction to differences in abundance observed throughout the data. 

The use of the same tools for metabolome analysis is largely inappropriate, since the 

metabolome is discontinuous in terms of CH2, CO2, N, NH, NH2, O, HSO3, HPO3 series. 

Nonetheless such type of analysis is possible on metabolome data owing to Netcalc and mass 

difference networking in general. 

The concept of Netcalc and the first Netcalc algorithm were laid out and applied for NOM 

analysis. Mass difference networking itself is the multi-dimensional mapping of homologous 

series. Graph theory provides a set of tools and concepts, which can be used for the 

demarcation of important network structures. Most observed and published graphs (networks) 

exhibit a power law structure, sometimes a scale free structure, in terms of connectivity. As 

introduced before, such distributions over a sorted set of events indicate a small probability 

for events to occur at one end of the distribution and a large probability for events to occur 

towards the opposite end of the distribution. In graph theory this concept translates into a low 

probability to find highly connected nodes and a large probability to find poorly connected 

nodes.  

Given such a topology, nodes in a graph are postulated to adhere to different degrees of 

importance, to different roles. Networks of power topology often develop a so called 

community structure which is expressed in the formation of modules. A module is a network 

region that is more densely connected within its elements than to the reset of the network. 

Analogously, members of a module are interpreted as being more similar to one another than 
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to the rest of the graph.  

Based on connectivity and modularity, Guimerá devised a classification of roles which nodes 

can take on. Nodes can be classified into ‘ultra-peripheral’ nodes (low connectivity within the 

module and no connection towards another module), peripheral nodes (nodes with a majority 

of its connections being within their module), non-hub connector nodes (many links to other 

modules), non-hub kinless nodes (nodes with randomly distributed module specificity), 

provincial hubs (strongly connected nodes with most of their connections within their module; 

they are module representatives), connector hubs (largely connected nodes with many links to 

other modules) and kinless hubs (strongly connected nodes, with randomly distributed 

modules specificity) [Guimerà, R., et al. 2005].     

Depending in the context of a network, these roles can be indicative for a node’s importance 

for network structure or representativeness for their module. Other indicators of a node’s 

importance are the clustering coefficient or betweenness centrality. Applying such measures 

on a mass difference network the expectation is, that they allow immediate information on 

metabolic pathways or chemical processes; this was hypothesized by Breitling [Breitling, R., 

et al. 2006]. This, however, is only true for non-random networks. 

The reconstruction of a mass difference network on the theoretical exact masses of all Netcalc 

annotations is inherently “error-free” and therefore represents the entire stoichiometric 

relationships within a given dataset. Analyzing the topology of such networks reveals that 

they do not have the required network topology for network analysis. Instead of a power 

distribution, theoretical mass difference networks have a strong tendency to be random with 

an unusually large amount of highly connected nodes. The following question arises: “Why 

are almost all published networks reported to have power or scaling distributions, but 

theoretical mass difference networks do not?” If an answer to this question can be found, it 

should be possible to correct the network topology so as to give a power distribution which in 

consequence allows for network interpretation. An analysis of commonly applied networks 

versus mass difference networks reveals important differences: commonly published networks 

are correlation networks, interaction networks, social networks, studies on the World Wide 

Web and so on. Their criteria for edge formation are either binary (do genes correlate? Yes or 

no! Do proteins interact? Yes or No!), or they are constructed by man like the metabolic 

pathway as presented by Guimerá or like the World Wide Web. They all have only one 

criterion for edge formation and are supervised.  

The creation of mass difference networks using the above developed metabolic REMD list 

includes 176 criteria overall.  
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Hypothesis: Network topology is power distributed or scale free given a small set of REMDs 

and gradually becomes random as the number of applied REMDs increases. 

Figure 35 shows this relationship based on the smokers dataset. 

 

Figure 35: Log-Log plot of Rank of features sorted for decreasing connectivity (degree) over the degree itself. 100% 

relates to the full REMD set. 90% relates to 90% of the full REMD set (10% removed randomly) and so on. Linearity of the 

Log-Log plot indicates scale-freeness and a curved plot converges to Log-normality. A reduction of REMD number lets the 

degree distribution converge towards scale-freeness. 

 

It is evident that the hypothesis is true, i.e. there are power topologies hidden in the network 

and it is imperative to devise methods of REMD reduction. At hand there are again two ways 

of REMD reduction: a knowledge based strategy and a data driven strategy. 

 

4.3.1 The knowledge based strategy 

 

The ultimate goal of the metabolome analysis – next to the definition of surrogate markers – 

is the definition of metabolic pathways, which are themselves mass difference networks. 

However, they are mass difference networks whose edges were validated over decades of 

experimentation. Conclusively, these validated pathways must have the core set of the 

metabolome embedded in their structure. It should be possible to extract the REMDs which 

differentiate a metabolic pathway from a random stoichiometric network. 

In order to test this hypothesis, all available metabolic maps from KeGG as well as their 
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constituent metabolites were retrieved, all non-CHNOSP molecules and co-enzymes were 

omitted, and the list was concatenated and then networked. A second network with an 

additional rule was reconstructed afterwards: Edges were only allowed to be formed, if the 

nodes to be connected belonged to the same metabolic map. The first network was called 

holo-net and the second network was called inner-net. 

The holo-net was taken to represent the frequency of each REMD over the entire population 

of KeGG metabolites. In analogy to gene set enrichment analysis (GSEA) [Subramanian, A., 

et al., 2005], the inner-net was taken to be a sample population. Consequently each REMD 

could be attributed with a frequency throughout the entire population and a frequency 

throughout the inner sample population that represented the validated pathways.  

Consequently the Fisher exact test was applied in order to test whether an REMD was 

significantly enriched or associated to the inner-net or not. Again in analogy to GSEA, this 

procedure will from here on be called Mass Difference Enrichment Analysis (MDEA).  

The results of this approach, knowledge based MDEA, are listed in the following table.  

 

Table 4: p-values and z-scores for the inner-net; enriched REMDs 

REMD p-value z-score 

(de-)hydroxylation 0 21.76628 

(de-)hydrogenation 0 17.67328 

(de-)phosphorylation 0 17.46306 

(de-)methylation 0 12.48104 

hydrolysis/condensation 0 10.61447 

deamination 0 7.742653 

(de-)carboxylation 0 7.36 

amino-function exchanged by hydroxyl function 0 7.11028 

hydroxymethyl transfer 3.32E-

09 

6.095446 

formyl transfer 1.1E-

08 

5.878452 

 

The found results exhibited strong analogy with the functional REMD list as published by 

Tziotis [Tziotis, D., 2011] and they follow the major classification of Enzymes: 

Oxidoreductases, Transferases, Hydrolases, Lyases, and Ligases. (Isomerases are only 

detectable if the same mass occurs twice in one map, but since such redundancy was filtered 
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out beforehand and because isomers cannot be distinguished by DI-MS, Isomerases were not 

considered to begin with).  

Consequently the resulting REMDs were applied for network reconstruction of the smoker 

set.  

 

Figure 36: Log-Log plot of rank over degree derived from the Gauting network under use of the inner-net in comparison 

to the 5%, 10% and 100% of the full REMD set. The curvature of the inner-net is reduced in comparison to 10% and 100%.  

 

The devised strategy enabled an improvement of network topology, but the approach in 

general is hypothesis driven. As discussed in chapter 1 and chapter 3, hypothesis driven 

research has the drawback of under-fitting the data, i.e. the danger of missing what is truly 

important is inherent. Additionally, it has to be asked, whether it is desirable to limit an 

REMD sets towards theoretical maps of metabolic pathway. As described in chapters 1 and 3, 

participants of one pathway cannot be guaranteed to occur in the same mass spectrum and 

reaction steps which are laid out in a stepwise manner in KeGG might in reality occur on 

enzyme-complexes without release of intermediates. This again nurtures the question as to 

whether metabolic pathway should be exclusively defined in a complete and exact theoretical 

context or whether it would not be beneficial to define more dynamic and data-driven 

pathways that reflect the empirical reality. 

4.3.2 The data-driven strategy 

We know that the reduction of REMDs improves network topology. Here, we complete the 
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picture by means of data driven REMD reduction, which immediately allows for data 

interpretation. 

 

MDEA of the Gauting results 

The univariate analysis of the Gauting study revealed 169 discriminative features, of which 

126 features showed a higher mean of normalized intensities in non-smokers. The 

multivariate analysis yielded two eigenvectors – E205 and E608 – whose directions were 

discriminative for smokers and non-smokers.  

For E205 we extracted 82 features, which were conservative for its discriminative behavior. 

Positive eigenvector entries were indicative for feature co-occurrence in smokers and negative 

eigenvector entries were indicative for feature co-occurrence in non-smokers. Consequently, 

49 features co-occurred in non-smokers and 33 features co-occurred in smokers. For E608 we 

extracted 46 features, which were conservative for discriminative behavior. In E608 positive 

entries were indicative for co-occurrence in non-smokers and negative entries were indicative 

for co-occurrence in smokers. There were 21 markers that co-occurred in non-smokers and 25 

features co-occurred in smokers.  

Up until this point, we did not assign any biochemical meaning to these features: neither did 

we assign metabolite names, nor did we assign metabolic pathways. We will now apply 

MDEA in order to improve network topology and in order to interpret, whether the respective 

enriched REMDs comply with the non-smoker phenotype and the smoker phenotype.  

The REMDs, which were connected to non-smoker features and smoker features were tested 

for enrichment relative to the entire network. An REMD, which is enriched in non-smokers is 

not necessarily depleted in smokers. 
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Figure 37: Log-Log plot of REMD reduction by means of data driven MDEA. All three marker scenarios show a less 

random characteristic than the network based on the entire REMD set. The univariate data suggests less curvature and a 

higher maximum degree than the inner-net, which indicates a higher degree of organization. E205 shows a stronger 

curvature than inner-net but has a lower maximum degree, which indicates more random behavior. E608 has a more flat 

curvature but a lower maximal degree than the inner-net, which indicates more organization.   

 

The Log-Log plot of the data driven MDEA indicates an effective removal of random 

network connectivity, which is on the scale of the knowledge driven approach and more 

structured in the case of E608 and the univariate data. E205 indicates a strong random 

proportion. 

 Now let us use the REMD results for data interpretation. We first create a plot of univariate 

REMD results. Smoker and non-smoker reactions are plotted as bar charts with their 

magnitude being aligned to the enrichment z-scores. 
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Figure 38: Vertical bar chart of z-scores for enrichment in univariate non-smoker (NS) and smoker (S) features and the 

respective REMDs. 

 

The REMDs, which are the most associated to non-smokers, predominantly involve aromatic 

and basic amino acids and their corresponding keto-acids. Glutamate is considered to be the 

major energy source for macrophages in lung tissue and for lung tissue itself. Basic 

aminoacids may derive from blood plasma and may indicate the action of non-specific cation 

transporters, since they are mostly neutral at physiological pH. The REMD for EC 4.1.99.1 

Tryptophanase is particularly interesting, since this enzyme is found in intestinal flora 

exclusively. This, however, is to be taken hypothetically as we have only detected a specific 
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difference in elemental combination. REMDs of aspartic acid, glutamic acid, alanine, glycine 

and adipate are enriched both in non-smokers and smokers. These REMDs must therefore be 

important building blocks for EBC. Of special interest are the lowest six REMDs which are 

specifically associated to smoker markers. All these REMDs contain sulfur and are commonly 

involved in responses to oxidative stress such as methylation and hydrogenation. Cysteine, 

glutamic acid and glycine (all associated to smokers) are the building blocks of glutathione. 

Glutathione [C10H17N3O6S] itself was not detected but the given REMDs indicate significant 

involvement of sulfur compounds in response to cigarette smoking.  

The enrichment analysis for E205 shows a different pattern.    

 

Figure 39: Vertical bar chart of z-scores for enrichment in non-smoker (NS) and smoker (S) features along E205 and the 

respective REMDs. 

The pattern for non-smoker related compounds is enriched in sulfur containing REMDs, oxo-

acids and some fatty acids. The more interesting pattern is again the lowermost part of the list, 

which relates to smoker features. Reductive deamination, hydroxymethyl transfer, 

methylation, hydro-peroxidation and hydrolysis alltogether are results of oxidative stress. 

Hydrolysis of acetic acid with consecutive carboxylation results in the simple addition of C; it 
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may as well indicate double de-hydrogenation. The phosphatidylcholine head group REMD 

may relate to lysis of the epithelial membranes.  

It is interesting that the features to which the enriched REMDs belong are not differentially 

regulated in the univariate sense but that they are ‘merely’ co-occurring in the respective 

phenotypic groups. This fact may be interpreted as follows: The chemical transformations, 

which pertain to these compounds, do not result in a stable end product. Instead, they are 

fastly being inter-converted due to excess of H2O, H2O2 and radicals. This interpretation fits 

to the swiftly occurring redox reactions, which are emphasized by the MDEA smoker results 

and it fits to the stronger curvature of the log-log rank-degree plot of E205.  Projecting this 

interpretation onto the non-smoker end of the given list, would indicate a generally high 

availability of sulfur amino acids, keto-acids, fatty acids and CO in the lung and it would 

indicate that these compounds are undergoing fast conjugation and disjugation with other 

compounds. These results give the impression of the lung being a very active chemical 

reactor, which is supported by the large surface area of the lung, as well as the basic activity 

of catalase and superoxide dismutase which is essential to aerobic metabolism.  

 

The E608 features draw a more general picture of metabolism.    

 

Figure 40: Vertical bar chart of z-scores for enrichment in non-smoker (NS) and smoker (S) features along E608 and the 

respective REMDs. 
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Along E608, aromatic amino acids and keto acids are conjugations that delineate the non-

smokers phenotype. oxo-acids and cyanide conjugatioins are on the side of masses that co-

occur in smokers.  

Throuhgout all three marker classes, decarboxylative condensations are prominent relative to 

normal condensations. Univariate smoker markers show a different pattern. Those REMDs 

pertain to one-step condensations or to condensations after hydrogenation of a carbonyl 

group. This fact is interesting, because in this manuscript formal decarboxylative 

condensations were introduced in order to address pathways such as sphingosine synthesis, 

where serine reacts with palmitic-CoA under loss of CO2 and H2O. Such reactions depend on 

CoA or other thio-esters. The missingness of decarboxylative condensations in the univariate 

smoker-features indicates the absence of metabolism, which supports the common oxidative 

stress hypothesis.    

Both strategies improved network topology in respect to the unfiltered network and they 

enable the data to choose which REMD environment is representative for the experimental 

context. The knowledge based approach does not allow for this freedom.  

In an intersectional approach, we can now overlay a network, which was reconstructed based 

on the MDEA REMDs with correlation information between the features. 

In theory the intersectional approach is bound to result in very small network components, 

since neighbors in metabolic pathways are bound to not-correlate if enzyme concentration 

stays constant. That is because enzymes are typically working under substrate saturation. The 

entire flux through a given pathway is managed by rate limiting enzymes, which means that 

they give a constant output and all enzymes downstream to the rate limiter are therefore 

independent unless regulation of the rate-limiting enzyme occurs. In addition, many 

metabolites have several roles or connections to other pathways, which alters their correlation 

to up-stream metabolites. There are attempts in literature which aim at the extraction of “the 

real” correlation between metabolic partners by means of partial correlation. If this was 

possible the network topology resulting from the intersectional approach would be close to 

equal to the MDEA network.  

  

 

4.3.3 The intersectional approach 

 

In order to create the intersectional Gauting network, we extracted all reactions, which were 

elements of all MDEA results. Then we calculated the Pearson correlations between the 
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reaction pairs and made a cutoff at the 95th percentile of all resulting correlation coefficients. 

We omitted all reaction pairs that did not satisfy the respective correlation coefficient of r2> 

0.83. The network was reduced from 16746 edges to 892 edges. The involved amount of 

nodes (features) was reduced from 3474 to 926 nodes. The number of previously defined 

differentiating masses was reduced from 286 to 54 features.  

The resulting network was composed of 194 components of which only two components 

contained larger amounts of markers. 

 

Figure 41: Intersectional Approach. Two modules with most markers. Module 5 relates to non-smoker markers. Nodes 

pertain to highly oxidized molecules with most REMDs relating to glutamic acid derivatives, pimelic acids and adipic acid. 

Module 0 is composed of sulfur rich nodes and pertains largely to smoker markers. An indicator for an oxidative stress 

response module.  
 

Most compounds in both modules find no match in Chemspider. Module five REMDs relate 

to glutamic acid, pimelic acid and adipic acid. Some Chemspider hits indicate the 

involvement of hexoses. The REMD pattern of module 5 correlates to the univariate non-

smoker enrichment results. The REMD pattern of module 0 is majorly composed of the 

REMDs which were found to be enriched for smokers both in the univariate context and 

E205.  

In conclusion we can state, that random oxidative processes and high sulfur content are 
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characteristic for features related to cigarette smoking. Non-smoker markers are characterized 

by the conversions, which are related to dicarboxylic acids and derivatives of glutamic acid 

and glutaric acids. In addition, respective markers are rich in oxygen and are conform to the 

finding of carnitines in EBC.  

Another interesting fact is that non-smoker compounds are largely on the side of products in 

chemical reactions, while all other features are well balanced. Here, we assign the label 

‘product’ to the larger mass in an REMD pair.  

 

Figure 42: Balance between substrates and products in feature classes.   

 

This finding can be interpreted in two ways: Non-smoker markers are either synthesized in 

EBC or they are constantly introduced into the alveolar lining fluid where they decay. 

Thermodynamically, ‘de-novo synthesis’ of non-smoker markers is improbable, which makes 

the decay scenario more probable. In consequence, we can hypothesize, that there is 

metabolite efflux either from pulmonary epithelium or from the blood system. This indicates 

that EBC may carry soluble markers from systemic metabolism. 

On the other hand, non-smoker markers are either depleted or disorganized in smoking 

individuals, which underlines the effects of cigarette smoking. The balance between substrates 

and products among smoker surrogates as well as the high proportion of sulfur containing 

compounds indicates the prevalence of random, radical processes and a polarization of 

pulmonary metabolism away from primary metabolism and towards anti-oxidative action.  

While it was known, that cigarette smoking and disease involve with oxidative stress, lung 

tissue is exposed to oxidative stress in healthy individuals as well (humans are aerobic 

organisms). While glutathione is involved into the normal response to oxidative stress, an 

extended use of other sulfur containing compounds was not pronounced in literature. A fact 
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that was not presented above is that most common carnitines (15 hits) were annotated in EBC. 

The strong involvement of carnitines and compounds of similar composition in module 5 

indicates that carnitines are strongly involved in normal lung metabolism. Real considerations 

regarding pulmonary energy metabolism and its relation to systemic energy metabolism were 

thus far only addressed in terms of glutamate. The present results contain an interesting set of 

markers for the investigation of pulmonary metabolism. 
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5. The HuMet Study: Links between EBC and Systemic Metabolism 
 

The raw spectra of the HuMet study were calibrated against the rough Netcalc annotation of 

one positive mode HuMet EBC spectrum. The roughly annotated spectrum is not guaranteed 

to have been constituted of correct annotations only. The purpose of its use for calibration is 

to assist the visualization of the spectral error distribution, which is necessary to co-direct the 

error distributions of all 198 spectra. M/z spectra were then exported at S/N ≥ 3 and their 

alignment was intended to be performed at 1ppm error tolerance.  

The attempt to align all 198 spectra into one matrix failed because the number of aligned 

variables by far exceeded the capacity of Microsoft Excel. It was therefore necessary to 

minimize the number of variables prior to alignment. The first filter was naturally based on 

de-isotoping. 

Subsequently, we wrote an automatic filtering algorithm, that removes all m/z values whose 

absolute mass defect is chemically not realizable at charge z = 1 and given that only C, H, O, 

N, S, P and Na+ are allowed. In order to provide a fast filter, which does not compare 

thousands of reference masses to thousands of reference values, we created a binary reference 

table of 1000 rows and 10 columns where each row refers to a down-rounded nominal mass 

and each column refers to a mass defect rounded down to the first digit. Based on a reference 

database of 18159 [M+H+]+ ions and 18159 [M+Na+]+ ions we filled each field of the 

reference map with “1” if it was host for at least three theoretical ions and we filled it with “0” 

otherwise. 

The filtering then is performed by testing, whether the coordinate of an experimental m/z 

variable (nominal mass and down-rounded absolute mass defect are the coordinates) has the 

value “1” (valid) or “0” (invalid). Mass spectra containing 6000 to 10000 variables were 

filtered within one second per mass spectrum and yielded mass spectral read-outs of 40% to 

50% of their original size. This filter ultimately enabled the unification of all 198 spectra into 

one matrix.  

The unified matrix consisted of 62656 variables and 198 samples. Further data reduction was 

performed by means of Netcalc annotation. Netcalc annotation was performed in two stages. 

The data was first networked with a relative edge formation error of 0.1 ppm and a final error 

tolerance of 5 ppm.  

 

Annotation was started at masses corresponding to sodium adducts of glucose and palmitic 

acid. Providing a large error tolerance increases the degrees of freedom; by experience, 
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combinatorial algorithms and database matching techniques tend to randomly fill up the entire 

error space. Providing a large error space is implemented in order to validate whether the edge 

formation error is appropriate or not. If the error over m/z distribution is concise and centered 

after annotation (usually in the range of ± 0.5 ppm for more than 95% of the data), the EFE is 

not “oversampling” the data. If the error distribution ‘leaks out’ to the periphery, the EFE is 

too large and offers too many false edges. 

The Netcalc algorithm used contained a filtering function, which deleted substrate and 

product formulae if a false annotation occurred. After setting these annotations to zero, the 

edge, which led to the false annotation, was getting marked. After an edge was marked five 

times, it was removed from the network. This algorithm extracts all sets of annotatable 

masses, converges to an average amount of annotations and finally oscillates around this 

number of annotations. Since each mass can have multiple isobaric annotations within a range 

of ± 0.5 ppm there are multiple scenarios of annotation which can lead to mass difference 

networks that contain almost no contradiction. The final annotation that Netcalc provides is 

not guaranteed to be the only solution. In order to pinpoint the most probable solutions, we 

printed the annotation results five times and extracted the most common annotations. 

Ultimately, we were able to mine an annotation set of 13124 features size.  

Subsequent to annotation, all non-annotated m/z values were omitted, which is necessary in 

order to minimize co-linearity and in order to improve datamining. 

Prior to datamining, it is necessary to investigate whether the uni-variate and multivariate data 

structures are biased. This investigation starts again with plotting the sample-wise sum of 

intensities over the sample-wise peak count. Figure 44 shows a dependency between both 

variables, which might be related to differential dilution of samples (matrix effect).  

 
5.1 Investigation of data structure 

 

We perform a first analysis of the data structure by using (multivariate) linear algebra. Similar 

to PCA, we want to use eigenvectors as representatives of data structure. The following steps 

need to be performed: 

1) Create dataset D 

a. Raw dataset 

b. Normalize all rows on their Euclidean norm 

c. Normalize all columns on their Euclidean norm 
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2) Create the coincidence matrices of D by calculating CM = D*DT 

3) Calculate the eigenvectors of CM 

4) Select the eigenvectors with the largest eigenvalues (e.g. usually the first three 

eigenvalues) and multiply them with all mass spectra 

5) Plot the Eigenvectors against the frequency 

6) Plot the resulting loadings over the samples 

 

Similar to the analysis of the Gauting dataset, the Eigenvectors of the raw data reflect the 

typical power-structure of the data, for which reason plots versus frequency are not helpful. 

Normalization of the rows of the data matrix on their Euclidean norm results in more readable 

plots. 

 

Figure 43: Plot of the first three eigenvector entries over the frequency of m/z values in the m/z-sample-intensity matrix. 

Large, positive eigenvector entries indicate a large degree of co-occurrence of an m/z with other m/z values throughout 

the samples. Large, negative entries indicate poor co-occurrence with other m/z values, i.e. singularities. 

 

Visual inspection of figure 43: The largest eigenvector (E1) correlates with missingness, as 

expected. Other than in the case of the Gauting study, the second and third eigenvectors (E2 

and E3) are unbalanced towards low frequencies. This is an indicator for the existence of 

feature groups that are rare, but that strongly coincide. In other words, the given coincidence 

structure indicates the presence of bias. Also the peak count versus intensity plot indicates that 



125 

 

samples with larger peak sums contain a larger number of peaks. In addition, it is obvious that 

the peak count varies strongly and that the number of peaks per sample is lower than in the 

Gauting study. This effect is due to the less effective ionization provided by the used Apollo 2 

ESI source. However, since measuring the HuMet study involved the measurement of more 

than 1000 samples both in positive and negative mode, an automated sampling system had to 

be used instead of the NanoMate robot. By experience, the NanoMate robot needs sample 

wise adjustment of ESI pressure and voltage in order to stabilize the pneumatically non-

assisted spray.  

Figure 44 shows the presence of quantitative outliers was well. Other than in the Gauting-

case, additional evaluations of the data quality need to be performed; as normalizations and 

scaling on the original data are potentially introducing or even magnifying bias in the data. 

 

Figure 44: Sum of intensities over peak count. 

  

Another intriguing point is a comparison of the eigenvector loadings against the peak count 

and sum of intensities. The respetive figures 45A) and 45B) show the eigenvector loadings 

and normalized peak sums of the raw spectra and normalized peak counts along the samples.  

Interstingly, the peak counts are similar to the loadings of E1, which had a strong association 

to the frequency of m/z features over the samples. The Pearson correlation coefficient 

between both lists is 0.74. The loadings of E2 have a Pearson correlation coefficient of 0.72 

with the normalized peak sums of the raw data. Let us recall, that E2 was strongly associated 

to bias caused by low frequency m/z features.  

A fact that cannot be seen in this plot is, that the entries of large magnitudes associate with the 

specimen IDs. Since there was only one EBC sampling device, the specimens were sampled 



126 

 

and stored batch-wise. The ICR-FT-MS measurements were performed batch-wise as well, 

since a random rearrangement of the samples may have lead to unwanted thawing of the 

samples.  

The eigenvectors, which caused the loadings presented in figures 45A) and 45B) were 

generated on data whose rows were normalized. Therefore the magnitude structure along the 

mass list is cancelled out and the results mostly refer to the missingness structure and the 

quantitative structure along the samples.  

       

 

Figure 45: A) Plot of the loadings of E1, E2 and E3 along the sample list. B) Plot of peak count and sum of raw intensities, 

both normalized on the maximum norm, along the sample list. 

 

Remark: Typical PCA analysis is said to require data that is centered, i.e. whose mean is set to 

zero. This step leads a) to centered PCA plots, which are esthetically more pleasing and b) to 
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a co-intensity matrix, which is not only a co-occurrence matrix but also a covariance matrix. 

Eigenvectors, which are based on such a matrix always have a positive and a negative 

partition, where positive values stand for co-relation and negative values stand for co-relating 

feature pairs which co-relate but are anti-parallel to the main direction specified by the 

eigenvector (that is they are in anti-relation to the main direction). If such an eigenvector 

actually differentiates between sample groups, respective values can imply univariate up-

regulation or down-regulation if and only if the data is complete. That means, if there are no 

missing values and complete case analysis is performed. However, this is an ideal scenario 

and does not comply with analytical reality. The lack of information upon this fact throughout 

literature sources leads to a systematic misinterpretation of multivariate results.  

Non-centered PCA has its own advantages as we have seen. The first eigenvector of such an 

analysis is always positive and should relate to the missingness of a feature. Any other 

eigenvector should be independent of overall missingness structure but they can of course 

differentiate shifts of co-occurrence over the samples. A further advantage of non-centered 

PCA is that it is specific to co-occurrence. Centered PCA is centered about the sample mean, 

which is set to zero. That means, even if an m/z feature is specifically co-occurring in a group 

of samples, but it does not in another group of samples, its dot product may be negative due to 

the sign in the first group, but zero in the other group due to anti-occurrence. Non-centered 

PCA focuses the magnitude of an eigenvector entry on the amount of co-occurences and its 

sign towards co-or anti-directedness of the entry. End of remark. 
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In order to understand the magnitude by which different batches dominate the data structure 

and by which magnitude they therefore impede the analysis of metabolomics data, one has to 

create eigenvectors on the raw data. 

 

Figure 46: Eigenvector loadings of raw data. The large magnitude blocks relate to specimen 4, early specimen 6, specimen 

7, specimen 10 and 14.    

 

We can see that the magnitudes of coincidence, and of the involved intensities, are specific to 

the sample batch.  

Now we know that the missingness structure is biased and relates to sample batches. We also 

know that magnitude plays a role and that the most varying variable is the peak count (except 

for some outliers pertaining to intensity). 

In conclusion, further data cleaning has to focus on an investigation of batch-wise binary bias. 

 

5.2 Elimination of binary bias 

 

A mechanism by which binary bias can occur is varying sample composition (e.g. 

conductivity, dilution of the sample), which causes a varying ionization efficacy. In the 

previous subsection we found that there is a strong batch-wise bias in the data.  

In order analyze the data, we need to remove the bias. If a dataset is homogenous, has no 

batch effects and no triplicate acquisition of samples, it is difficult to remove such bias. In that 

case, one would have to cluster the data in order to observe, whether strong clusters associate 

with low m/z feature frequency and whether the cluster is independent to the phenotypic 
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classes of interest. If both conditions are true, an m/z value can assumed to be biased. 

In the HuMet set we have a more comfortable situation, as we have proven strong batch 

effects. Removal of such binary bias can simply be performed by the following workflow: 

1) count the frequency of non-zero elements per batch 

2) determine the mean frequency and the relative standard deviation 

3) calculate the z-score relative to the mean frequency for each batch 

4) eliminate all features which contain a z-score > 1.96 

The same can be performed using a Fisher exact test. We also know, that we are not interested 

into m/z features, which are binarily under-represented in all of the HuMet challenges 

(fastening [F], standard liquid diet [SLD], oral glucose tolerance test [OGTT], physical 

activity test [PAT] and oral lipid tolerance test [OLTT]). Assuming (axiomatically) that a 

non-zero frequency minor to 10% is not acceptable, all m/z features that have no acceptable 

frequency can be omitted.  

The application of both filters yielded a dataset, which was reduced down to 2146 features 

(84% data reduction). 

All steps performed up until this point pertained to data cleaning. The next step is 

normalization and we use the normalization algorithm, which was developed in chapter 3.  

Other than the Gauting set, the HuMet set consists of a large amount of samples. Information 

that is not presented here indicates that fewer samples increase the number of correlations. 

Where the CIN based normalization cutoff for the dilution set (22 samples, r2 = 0.9) 

conserved almost all features, the HuMet set had to be normalized at a cutoff of r2 = 0.5 in 

order to conserve 85% of the given features [the omission of features during normalization 

occurs, when features have no correlation partner and can thus not be normalized].  

In order to give an example of the efficacy of the CIN normalization approach, we have 

plotted the scaled intensites of the raw data, the Manhattan normalized data and the CIN 

normalized data (Figure 47). 
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Figure 47: Normalization results over samples. 
 

The CIN approach cancelled out the strong outliers. Manhattan normalization partially 

diminished outlierish peaks but it introduced bias as well.  

 

5.2.1 Multivariate Analysis 

 

We performed data analysis using eigenvector decomposition on non-centered data. Instead of 

creating a co-occurrence matrix over the features (CM = D*DT), we created a co-occurrence 

matrix over the samples by applying CM = DT*D. The resulting Eigenvectors relate directly 

to the samples and they are almost identical to the loadings that can be yielded over CM = 

D*DT. In the case of the Gauting set we did not present eigenvectors over the samples 

because the 25 eigenvectors yielded were not discriminative for smokers and non-smokers. In 

the Gauting set it was more effective to test the loadings into feature eigenvectors for sample 

discrimination.  

In the case of the HuMet study we yielded 198 eigenvectors over the samples. Lacking a 

specific model for possible metabolite profiles, other than the ones published in Faseb, we 

inspected each eigenvector visually for any connection to the HuMet challenges. Since we 

investigate a time series with samples of up to nine different specimens, we smoothed the data 

using a running average over the samples, which were sorted for the challenges. 
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Comparison of eigenvectors with plasma Insulin, Glucose and Lactate 

 

Figure 48: Three eigenvectors with the largest Pearson correlation towards the major clinical parameters determined by 

the HuMet consortium.  
 

The displayed eigenvectors represent the most positive correlations with the insulin, glucose 

and lactate levels determined by the HuMet consortium. The eigenvector with the largest 

Pearson correlation to Insulin marked the maximum glucose correlation as well (r2 = 0.51 and 

r2 = 0.54). The second largest correlation with glucose marked eigenvector 171 (r2 = 0.42). 

Most of the eigenvectors correlated with Lactate, with the maximum correlation being marked 

by eigenvector 24 and r2 = 0.43. The given eigenvectors covered 1.6% of the data. The first 

eigenvector pertained to 21% of the data; the second eigenvector pertained to 2.1% of the 

data; the third eigenvector pertained to 1.6% of the data. The first three eigenvectors showed 

only weak differentiation of the different challenges. Most of the remaining 195 eigenvectors 

showed meaningful profiles like the plots of E4, E5, E6 and E10 (next figure). 
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Figure 49: Eigenvector entries for the eigenvectors E4, E5, E6 and E10. Coloring of profiles according to HuMet challenge.  
 

It is common to only regard to eigenvectors (or principal components) as being important, if 

they pertain to more than 90% of the data. However, this can only be realized if the largest 

amount of the data behaves accordingly. There are five challenges in the HuMet set and 

‘naively’ assuming the possibility of two different states per challenge (1 → up-regulation, -1 

→ downregulation) would give a number of 2^5 (32) combinations. Adding statistical 

insignificance, i.e. orthogonality to the stimuli, there are 3^5 (243) combinations of statistical 

scenarios. Likewise, if all scenarios were equally probable, each eigenvector could only 

pertain to 0.41% of the data. It is clear, that the magnitude of an eigenvector is not of primary 

importance.  

We can therefore interpret the eigenvectors as surrogate markers for a given scenario and we 
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can state that it makes sense to first screen the eigenvectors, and to then extract the features 

which associate to them (load into them). 

All eigenvectors listed are unit vectors. Their sum is necessarily the vector which halves all 

angles and shows the main direction of all main directions.  

 

Figure 50: Eigenvector representative 

 

The Pearson correlation coefficients of insulin, glucose and lactate to the eigenvector 

representative are r2
Insulin = -0.43, r2

Glucose = -0.32 and r2
Lactate = -0.46.  

Interestingly, the general direction of the HuMet dataset is exactly opposite to the most 

common clinical parameters. 

Let us summarize the scenarios displayed by E4, E5, E6 and E10: 

 

E4: Negative entries of E4 pertain to periprandial stages in SLD, OGTT and OLTT. Positive 

entries relate to the late phase of fasting, the post-prandial stages of SLD and OLTT and to the 

PAT challenge. They could therefore relate to the action of glucagon. Features, which are 

positively associated to this eigenvector seem to behave in the opposite sense to insulin.   

 

E5: Postivie entries of E5 specifically react to OGTT and OLTT, while fasting, SLD and PAT 

do not induce a specific reaction. Compounds that relate to this eigenvector might specifically 

stem from the high concentration of hexoses and lipids in blood plasma. 

 

E6: E6 behaves similar to E4, but the post-prandial phase in OLTT is pronounced more 

strongly.  

 

E10: E10 seems to be more specific to the post-parandial phases. We can hypothesize a strong 

involvement of glucagon, which would fit to the PAT profile as well. However, the OLTT 

response is weak. 
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Grouping of Eigenvectors 

We had originally planned to perform experiments, which directly confront nutritional 

challenges against each other (e.g F vs. OGTT, F vs. OLTT, PAT vs. OGTT, PAT vs. OLTT) 

and to extract univariate and multivariate surrogate marker candidates in the same fashion as 

presented in chapter 4. However, we had to discover, that there were not enough samples for 

SLD, OGTT and PAT (at maximum 3 per specimen). We tried to investigate co-intensity 

matrices of such setups and discovered, that the connectivity of the resulting networks was 

dependent on missingness in any scenario that had less than 70 to 80 samples. For this reason 

we decided to extract marker candidates from the eigenvectors of the full dataset, which cover 

a sufficient amount of samples.   

Consequently, we extracted the eigenvectors E4, E5, E6, E8, E10, E24 and E171 and grouped 

them together with all other eigenvectors that correlated to them (a supervised grouping of the 

eigenvectors or principal components). 

Naturally, it is impossible to group eigenvectors, because all eigenvectors are orthogonal to 

each other.  
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Figure 51: Demonstration as to why smoothing enables the clustering of eigenvectors, which by definition are 

orthogonal. The linear equation y = 0.1*x was overlaid once with the trigonometric function y = 10*sin(0.1*x) and once 

with the function y = 10*cos(0.1*x). The pearson correlation coefficient of both functions naturally indicates 

orthogonality. Overlaying them with the linear equating gives a two functions whose oscillation center is monotonically 

increasing and that produce an r
2
 of 0.18. We then performed average soothing. Each average encompassed 100 incident 

x variables. The result is a smoothed function with r
2
 = 0.84.   

 

This however, lies in the ‘microstructure’ of the eigenvectors, i.e. the specific co-behavior and 

anti-behavior of the singular samples. However, if the eigenvectors are smoothed by the 

moving average as we did for the eigenvector profiles above, we can cluster general 

directions.  

We have correlated all smoothed eigenvectors with the smoothed E4, E5, E6, E8, E10, E24 

and E171 and have chosen a correlation cutoff at the 95th percentile of all resulting correlation 

coefficients (r2 = 0.28). We associated each eigenvector block (E-block), calculated their 

average direction and correlated each block representative to the smoothed data. 
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Since the intersection between E4 and E6 was large, the following groups and proportions of 

overall data resulted: E4|E6 (28.9%), E5 (7%), E8 (7.9%), E10 (3.3%), E24 (3.4%) and E171 

(2%). 

 

5.3 Association to smoothed E-Blocks   

 

In order to evaluate, which features would be associated with which E-block, we first had to 

smooth the data as we had done it with the eigenvectors. After smoothing, we correlated each 

feature with each E-block and determined each correlation coefficient r2 > 0.37 to be 

significant (95th percentile). The exceptionally large amount of database matches that we had 

acquired by performing MassTRIX annotation (37%) on the theoretical masses of the Netcalc 

output enabled the association of most E-blocks to specific metabolites.  

For matters of space, we will only present and discuss the three largest E-blocks.        

  

Block E4|E6 

 

Figure 52: Representative magnitudes of the E4|E6 block. There is a strong post-prandial response in SLD and OLTT, as 

well as positive entries in PAT (the positive entries at the begininning of OLTT are an artefact from smoothing). In 

addition, the late fasting phase seems to be co-directed with the other positve phases. 

 

Metabolites associated to the E4|E6 block encompass 10 out of 35 detected carnitines, while 

the respective E-block pertained to 196 of 1822 features (tiglylcarnitine, butenylcarnitine,  

2-methylbutyroylcarnitine, O-propanoylcarnitine, pimelylcarnitine, 5-tetradecenoylcarnitine, 

decadienoylcarnitine, octenoylcarnitine, octanoylcarnitine, 3-hydroxy-5,8-

tetradecadiencarnitine).  

The expected proportion of carnitines covered by this block would have been four carnitines 

given a hypergeometric distribution.  

Another prominent group of compounds was related to arachidonic acid derivatives and 

linoleic acid derivatives: 20-COOH-leukotriene B4, 12-keto-leukotriene B4 and (15S)-15-

hydroxy-5,8,11-cis-13-trans-eicosatetraenoate as well as traumatic acid, 13(S)-
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HPOT;(9Z,11E,14Z)-(13S)-13-hydroperoxyoctadeca-9,11,14-trienoic acid, 12-OPDA and 

(6Z,9Z,12Z)-octadecatrienoic acid. These compounds may very well relate to the PAT test, 

where increased oxidative stress occurs. In addition, the amino acids asparagine, tyrosine, 

phenylalanine as well as hippuric acid are related to the E4|E6 block. Asparagine REMDs 

were already reported in chapter 4 and the other amino acids were recently referenced to play 

a role in the development of diabetes type 2 [Suhre, K., et al., 2010; Würtz, P., et al., 2012; 

Cheng, S., et al., 2012; Wang, T.J., et al., 2011 and Huffmann, K.M., et al., 2009]. Since the 

OGTT profile of the E4|E6 block is clearly under-represented, there might be a connection 

between the E4|E6 block and glucose uptake.  

 

Block E5 

 

Figure 53: Representative magnitudes of the E5 block. Strong positive responses occur almost exclusively in OGTT and 

OLTT. Markers related to this block can therefore be assumed to be markers of high carbohydrate and lipid loadings in 

blood plasma.  

 

The E5 block appears to relate to hyper-glycaemia and hyper-lipidaemia but without relation 

to Insulin. If Insulin action would have been involved, the SLD section would have had to 

show positive entries as well.  

The annotations of the E5 block were almost exclusively composed of lipid variants. Acyl-

lipid related markers encompass: heptadecanoyl carnitine, 2-(9Z-hexadecenoyl)-glycerol, 2-

oxooctadecanoic acid, 2,6,8,12-tetramethyl-2,4-tridecadien-1-ol, hexadecanoic acid, 2,3-

dihydroxycyclopentaneundecanoic acid, pentadecanoic acid, 12-hydroxydodecanoic acid, 2,4-

decadienoic acid and 4,10-undecadiynal. 

Sphingosine related marker candidates encompass: phytosphingosine, C17 sphinganine and 

hexadecasphinganine. 

Other marker candidates were isomers of: oleoyl glycine and N-(3-oxooctanoyl)homoserine 

lactone.   

The given marker candidates show signs of methylation (odd-numbered C count) and 

oxygenation (oxo acids).  
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No carbohydrate was found, for which reason we can assume that E5 exclusively targets lipid 

trafficking. The given compounds indicate that the lung is under constant oxidative stress, 

which is only natural. Since the HuMet study addressed the normal dynamic range of the 

metabolome, it is to be marked that EBC might not be the appropriate analytical matrix for the 

validation of hypotheses, which relate oxidative stress to diabetes mellitus or other 

pathologies belonging to the metabolic syndrome (oxidative stress is the ‘working-horse’ 

throughout almost any disease in the literature-landscape).  

 

Block E8 

 

Figure 54: Representative magnitudes of the E8 block. Strong positive responses occur in the SLD and OGTT sections, 

exclusively. The fasting period, which covers 36 hours oscillates harmonically. 

 

Interestingly, the E8 block oscillates harmonically in the fasting section. This observation 

may relate to the circadian rhythm and it had been a topic of past meetings of the HuMet 

consortium. The profile is specifically attenuated in the SLD and OGTT section, which 

indicates an involvement of amino acids and hexoses. The standard liquid diet used in the 

HuMet study was Fresubin®. According to www.DONG.de Fresubin contains 18.8% of 

carbohydrates, 5.6% of proteins, 5.8% of lipids and several vitamins and trace elements. 

 

The annotaitons of the E8 block are well balanced throughout different compound classes. 

Amino acids and derivatives were represented by methylhistidine, L-serine and L-lysine-1,6-

lactam and the carbohydrate glucose was found. We found the two steroids urocortisone and 

7-dehydrodesmosterol as well as the terpenoid pentalenene. The sphingoid bases 1-deoxy-

tetradecasphinganine and (4E,8E,10E-d18:3)sphingosine and the lipoamino acids 

tridecanoylglycine and pentadecanoylglycine as well as adenine were the major nitrogen 

containing findings. 

The largest amount of annotations pertained to a versatile group of fatty acid derivatives 

ranging from medium chain length to C20: nonane-4,6-dione, linoleic acid, gamma-

undecalactone, ethyl (R)-3-hydroxyhexanoate, pimelic acid, 5-hydroperoxy-7-[3,5-epidioxy-

http://www.dong.de/
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2-(2-octenyl)-cyclopentyl]-6-heptenoic acid, 4,6,11-hexadecatrienal, 3-oxohexadecanoic acid, 

3E,5E-tridecadienoic acid, 2-arachidonyl glycerol ether and 2-amino-9,10-epoxy-8-

oxodecanoic acid. 

This group of fatty acid derivatives underlines the oxidative stress baseline as several 

compounds indicate multiple oxidations. Regarding the presence of L-serine and multiple 

fatty acid derivatives (with cycles and lactones), it may be possible that spontaneous reactions 

produce the N-containing lipids of different chain length. Normally, the synthesis of 

sphingosine precursors requires the presence of pyridoxal phosphate and lipoyl-CoA but a 

presence of 2-oxo acids would enable the same mechanism (decarboxylation and 

condensation).   

 

5.4 MDEA of E-Blocks 

 

Based on the results of the E-block annotations, we expected to find the carnitine 

transformations, different transformations revolving around phenylalanine and tyrosine, as 

well as C2H4 units to be enriched for E4|E6. E5 was expected to show enrichment for C2H4 

units. E8 was expected to be enriched in histidine, serine, lysine and all E-blocks were 

expected to be enriched in transformations that are typical for oxidative stress, i.e. 

methylations, peroxidations, nitrations or oxygenations, hydroxylations and dehydrations. 

MDEA works by comparing the abundances of marker-associated reactions with the 

abundances of reactions throughout the entire population. The enrichment results for the E-

blocks versus the entire population were poor.  

E4|E6 was associated to arginine condensation on hydrogenated carbonyls, to deamination 

after dehydrogenation of hydroxyl functions, to decarboxylative condensation of 2-

ketosuccinate and to C2H4 units (p-values between 0.001 and 0.02). E5 was associated with 

tryptophan condensation on hydrogenated carbonyls (p = 0.015) and E8 was associated with 

condensation of azelaic acid only (p = 0.0002).  

Except for C2H4 units in E4|E6 the results did not match the expectations. In particular, no 

oxidative stress marker was associated with the groups. Initially, this is a surprising result, but 

considering that we compared the E-blocks versus the the entire population, we can interpret 

that oxidative stress and most other reactions simply belong to the normal reactomic spectrum 

associated to the lung.  
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Considering, that there is no differentiation between the entire population of reactions and the 

E-block reactions, we decided to unifiy the E-block reactions into a new reference population. 

This was done under the hypothesis that the effects of smaller differences between the groups 

were buffered by the entire population. Other than expected, there was no change in REMD 

patterns. 

Considering that there are indeed compounds that differentiate between the different 

nutritional states, and considering that there are no changes in lung reaction patterns, the only 

logical deduction would be that the suggested surrogate marker candidates have their origin in 

blood plasma. We could assume an involvement of epithelial cell metabolism, but as we have 

observed above, E5 and E8 have patterns that imply insulin sensitivity. If at all, then E4|E6 

implies Glucagon sensitivity. As we remember, we found strong polarization of REMD usage 

in the Gauting study, where the stimulus directly acted on the lung. But there is no 

polarization in the HuMet study. In consequence, we can state that we have successfully 

established a link between the EBC metabolome and systemic metabolism. 
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6 Summary 
 

EBC is a ‘blank page’ in terms of metabolome analysis. The term ‘deep metabotyping’ was 

therefore chosen in order to underline the development of a workflow, which enables to 

extract a maximum of metabolically relevant information from EBC analyses. This goal 

encompasses feature annotation beyond the boundaries of metabolite databases, 

incorportation and neutralization of matrix effects as well as the extraction of biochemical 

context beyond database knowledge.  

All these tasks are relevant for any analytical matrix, but they are of even greater importance 

once analytically ‘under-described’ matrices, such as EBC, are in the focus of metabolomics 

studies.  

The interpretation of metabolomics data is always closely related to the origin of samples. 

EBC, whose origin is the airway lining fluid of lung epithelium, is complicated to interpret, 

because there are four different routes by which analytes may enter the airway lining fluid: 

a) peri-epithelial transport from blood plasma to ALF 

b) local metabolism of epithelial cells, pathogens or immune cells 

c) immission of environmental chemicals 

d) random (not genetically encoded) perturbation of a), b) and c) due to a highly 

oxidative environment; the presence of catalase, superoxide dismutase and 

cytochrome P-450 enzymes. 

These different effects can normally be cancelled out or controlled in in vitro studies, or when 

other ‘closed system’ biofluids such as blood plasma or urine are analyzed. In traditional 

breath analysis, which focuses on volatile organic compounds, many aspects of the above four 

points can be cancelled out as well. 

This is principally not possible in EBC analysis, and this fact complicates the extraction of 

systemic metabolism markers (as a matter of fact, systemic metabolism was never targeted 

outside of the HuMet study). 

In this manuscript we have introduced Netcalc as a technique for m/z-feature annotation. We 

have introduced REMDs which are specifically designed in order to bypass the discontinuity 

of the metabolic chemical space. We have demonstrated that the safest methodology to 

perform calibration and database matching is to work on a fundament of Netcalc-annotated 

theoretical masses. 

We have introduced routine key-points for the examination of mass spectral quality, both in 

the uni-variate sense and in the multi-variate sense.  
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We have established the hypothesis that the major proportion of variability of EBC metabolite 

abundances is due to dilution/matrix effect, and have shown that there are different classes of 

response to matrix effect. We have therefore deduced that it is not possible to adequately 

normalize data on one single dilution marker and have developed a co-intensity-network 

based technique for data normalization. 

Based on the Gauting study we have demonstrated the nature of uni-variate and multi-variate 

marker candidates, which can be an important point in the definition of surrogate markers. We 

have demonstrated that mass difference enrichment analysis may aid in the assignment of 

biochemical/chemo-mechanistic context to lists of surrogate marker candidates (despite 

lacking database support).   

Using the HuMet study, we have applied all previously introduced techniques and emphasized 

the importance of missingness control. Finally, we were able to extract data eigenvectors 

(principal components) that were clearly associated to the different challenges of the HuMet 

study. Singular eigenvectors were specific to pre-, peri- and post-prandial phases of nutrition. 

Other than commonly assumed, the important information was not carried by the three first 

eigenvectors. Instead, the important information was spread throughout all eigenvectors, 

which is particularily due to the multi-challenge study design. The general direction of the 

data was shown to be anti-directed to insulin action and therefore co-directed to glucagon 

action. This assignment was possible particularily due to the application of moving average 

smoothing, which is a common technique in time series analysis. 

In a next step we managed to cluster eigenvectors into E-blocks, which is originally not 

possible, since eigenvectors are orthogonal by definition. The moving average technique 

smoothed the effect of singular measurements and revealed the general data directions. Where 

the original eigenvectors covered a small part of the data only, the E-blocks covered 

significantly larger proportions and their profiles were more attenuated than the profiles of the 

single vectors (an example of a multivariate marker system). 

A discovery at the side was that it is wrong to focus on the largest eigenvectors (principal 

components) only, because this is possible only if a major proportion of data variability is co-

directed. We have shown that small eigenvectors are equally important in large study setups. 

The rate of database-annotation of the Netcalc-pre-annotated HuMet set was extraordinarily 

high (37%; 10% are typical), which enabled us to assign specific metabolite groups to the E-

blocks. MDEA of the E-blocks did not reveal interpretable patterns, which supports the 

hypothesis that E-block profiles are not of local (pulmonary) but of systemic origin. Found 

metabolite groups were in coherence with the findings of the original HuMet paper (Krug et 



143 

 

al., 2012). Here the novelty laid not in the validation of the HuMet plasma proviles, but in the 

fact, that such profiles were found in exhaled breath condensate. In consequence we managed 

to suppert our hypothesis that EBC is a matrix suitable for the screening of systemic 

metabolism.  

The workflow which results from our investigations is presented in figure 55. 

 

Figure 55: Data analytical workflow for deep metabotyping of EBC. The most important point is full control over, and 

removal of eventual biases. 

 

It is of absolute importance to rather omit more data than too few data because binary bias 

cannot be corrected by any means of normalization. The dataset, which is used for 

multivariate analysis, has to show minimal dependency between the eigenvectors after the 
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first eigenvector and feature frequency. 

Marker candidates can be defined uni-variately and multi-variately. In non-full datasets it is 

not guaranteed for uni-variate manifestations of marker profiles to coincide with multivariate 

results. Instead, blocks of co-occurence may carry the information that was previously found 

in multivariate statistics. 

 

6.1 Outlook 

 

The present thesis exclusively pertains to the explorative stage of metabolomics, commonly 

termed ‘non-targeted’ metabolomics. In order to define surrogate markers, it is necessary to 

advance into the validatory or ‘targeted’ stage of metabolomics. This stage encompasses the 

development of an instrumental methodology of chemical analysis where the marker specific 

sensitivity is optimized and which enables the real identification of the respective surrogate 

marker candidates. 

The development of such techniques can be based on the putative annotations of the pre-

defined marker candidates. Here, we have found that different carnitines play a major role, 

especially in the E4|E6 marker block. This knowledge would indicate the use either of HILIC-

UPLC-MS strategies or specific enrichment with cation exchangers. Such techniques would 

likewise enrich amino acids, which have moved into the field of interest. 

Further marker classes that were found to be important especially in E5 were compounds 

whose stem-structure seemed to be unsaturated fatty acids which were then modified by 

different pulmonary oxidative mechanisms. Such metabolites would be more optimally 

analyzed by different reversed phase LC techniques.  

Given the impact of dilution and matrix effect, future DI-ICR-FT-MS studies should either be 

measured in triplicates or there should be a dilution-quality control. Normal quality controls 

have a constant setup because the original purpose of their use is to validate the 

reproducibility of a workflow. However, if dilution and matrix effect prevails, there is no use 

of a quality control that always shows the same result because it does not address the actual 

bias. A dilution series of a quality control could in turn address this matter (as we have shown 

in chapter 3). Triplicates provide control over missingness but they do not provide control 

over the matrix effect. In consequence future setups should contain an intelligent constellation 

of quality controls and dilution series. It is as well imaginable to combine the triplicate 

measurement with a dilution row. 

Further methodological developments pertain to the sampling strategy. The EBC device used 
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for this thesis was the EcoScreen 2 sampler which uses Teflon bags for condensate 

accumulation. These Teflon bags bear sources of contamination, since the EBC is not 

conveniently to be withdrawn from them. In addition, we have found that too low 

condensation temperatures only increase the amount of H2O vapour co-condensation, which 

ultimately adds up to the analytical problems pertaining to EBC analysis. We assume a 

sampling technique, which maximizes the collection of exhaled aerosolic droplets and 

minimizes the co-condensation of H2O vapor to be more suited for non-invasive breath 

sampling.   

It is to be emphasized that the analyte spectrum of EBC analysis is fundamentally different 

from that of classical breath analysis, which focuses on VOCs. EBC analyses reported in 

literature rarely report information that exceeds the measurement of H2O2 concentration or 

pH. We have demonstrated, that the analyst has a far wider spectrum of analytes at hand. The 

facts that EBC sampling is non-invasive and that it is possible to screen systemic information 

with EBC at hand should encourage its use for clinical studies. 

Further developments in the field of data analysis should focus on raising awareness towards 

the mathematical mechanisms underlying these techniques, since interpretability of results 

should be in focus instead of the maximization of the complexity of applied techniques. 

Softwares provided by vendors of mass spectrometers encourage the use of thechniques 

without understanding their mechanisms.  

In this thesis we could show that even perturbations pertaining to the normal range of 

metabolism can be addressed by EBC analysis. There are good prospects for the detection of 

diseases because they mark abnormal states of metabolic regulation. Special interest should be 

placed at the investigation of trans-epithelial transport processes, since the transport of non-

volatile compounds through airway epithelium is clearly underaddressed. In addition, our 

findings suggest the investigation of the catalytic capacity of the lung. Beyond the datasets 

presented in this manuscript, random perturbation of EBC constitutents seems to be a 

common trait to EBC dynamics.  
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7 Supplementary Information 
 

Methods: 

 

Gauting: 

EBC was sampled using the EcoScreen 2 device (Jäger, Germany). Sampling was performed 

at -20°C for 10 minutes. 

Samples were stored at -80°C. 

Samples were thawd on ice. 

Sample dilution: EBC: MeOH = 1:2. 

NanoMate - ESI: voltage and pressure were adjusted so as to deliver a constant ionization 

current of 10 to 20 nA. 

Samples were acquired in negative mode over 1000 Scans at 1MW. 

 

HuMet: 

EBC was sampled using the EcoScreen 2 device (Jäger, Germany). Sampling was performed 

at -20°C for 10 minutes. 

Samples were stored at -80°C. 

Samples were thawd on ice. 

Sample dilution: EBC: MeOH = 1:10. 

Apollo 2 - ESI: samples were ionized in positive mode at 4500 V 

Samples were acquired in positive mode, 400 Scans at 2 MW. 

 

Table 5: Univariate smoker markers 

Experimental 
m/z 

Theoretical 
m/z 

Formula Ion 
Type 

Erro 
[ppm] 

p-value Cyclomatic 
Number 

445.2108572 445.211152 C21H29N6O3P H+ -0.662 0.0018 12 

368.1742256 368.174618 C16H33NO2S3 H+ -1.066 0.0087 7 

340.143196 340.143318 C14H29NO2S3 H+ -0.359 0.0106 7 

415.098495 415.098339 C16H18N2O11 H+ 0.376 0.0111 9 

569.3010392 569.301215 C28H48N4O2S3 H+ -0.309 0.0147 13 

525.1401016 525.140224 C21H36N2O3S5 H+ -0.233 0.0152 15 

341.0904795 341.090667 C9H23N2O6SP Na+ -0.550 0.0172 3 

296.0801319 296.079851 C10H17NO7S H+ 0.949 0.0185 5 
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455.107196 455.107477 C16H19N6O8P H+ -0.617 0.0206 12 

312.05767 312.057874 C11H21NOS4 H+ -0.654 0.0216 10 

386.1204814 386.120275 C16H23N3O4S2 H+ 0.534 0.0223 11 

402.089332 402.089569 C14H27NO4S4 H+ -0.589 0.0223 10 

436.204796 436.204573 C21H36NO3SP Na+ 0.511 0.0238 8 

345.0948311 345.094513 C11H21O10P H+ 0.922 0.0286 3 

387.205652 387.206053 C17H30N4O4S H+ -1.036 0.0296 7 

375.2102891 375.210075 C21H30N2O2S H+ 0.571 0.0297 10 

430.1206022 430.120869 C16H31NO4S4 H+ -0.620 0.0297 10 

436.298315 436.298192 C18H42N7OSP H+ 0.282 0.0297 5 

342.0856795 342.085331 C11H19NO9S H+ 1.019 0.0301 5 

511.331094 511.331253 C26H46N4O4S H+ -0.311 0.0309 8 

448.1100071 448.110304 C19H29NO3S4 H+ -0.662 0.0388 14 

358.0630636 358.063354 C12H23NO3S4 H+ -0.811 0.0397 10 

375.2085091 375.208557 C12H30N4O9 H+ -0.128 0.0397 0 

385.1169692 385.117164 C15H28O5S3 H+ -0.506 0.0402 8 

277.1110875 277.111289 C13H24S3 H+ -0.727 0.0406 8 

436.3032455 436.303345 C23H43NO5 Na+ -0.228 0.0410 3 

314.061926 314.061893 C11H11N3O8 H+ 0.105 0.0411 8 

386.112025 386.112413 C14H27NO5S3 H+ -1.005 0.0417 8 

531.320655 531.321083 C25H46N4O6S H+ -0.806 0.0423 7 

291.0751144 291.075387 C11H11N6O2P H+ -0.936 0.0429 11 

350.200128 350.200438 C17H35NS3 H+ -0.885 0.0434 7 

375.194317 375.19482 C17H30N2O5S H+ -1.341 0.0442 6 

247.242015 247.242026 C18H30 H+ -0.044 0.0442 4 

487.1858071 487.185713 C20H30N4O8S H+ 0.193 0.0442 10 

377.2120825 377.212087 C20H34O3S Na+ -0.012 0.0456 6 

375.2142468 375.214196 C20H32O5 Na+ 0.136 0.0461 5 

415.10516 415.105351 C20H19N2O6P H+ -0.460 0.0472 14 

436.2958009 436.295853 C27H37N3O2 H+ -0.119 0.0472 11 

419.2430825 419.24312 C19H31N8OP H+ -0.089 0.0474 10 

416.1048304 416.105219 C15H29NO4S4 H+ -0.934 0.0475 10 

228.0179 228.018118 C6H13NO2S3 H+ -0.956 0.0478 7 
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237.043404 237.043604 C9H16OS3 H+ -0.844 0.0480 8 

295.04886 295.049084 C11H18O3S3 H+ -0.759 0.0499 9 

 

Table 6: Univariate non-smoker markers 

ExpMass TheoMass Formula Ion 

Type 

Error 

[ppm] 

p-value Cyclomatic 

Number 

331.1723177 331.172445 C12H22N6O5 H+ -0.384 0.0009 5 

304.1514525 304.151649 C13H17N7O2 H+ -0.646 0.0012 9 

304.1682947 304.168558 C15H22N5P H+ -0.866 0.0019 9 

304.1502971 304.150313 C12H21N3O6 H+ -0.052 0.0034 4 

432.2228764 432.22281 C20H33NO9 H+ 0.154 0.0053 5 

345.1545629 345.154396 C16H24O8 H+ 0.483 0.0057 5 

304.1666778 304.166534 C11H27N3O3S Na+ 0.473 0.0065 2 

306.1911467 306.191115 C14H27NO6 H+ 0.103 0.0067 2 

263.151557 263.151906 C11H23N2O3P H+ -1.326 0.0071 3 

321.2337614 321.23349 C17H34N2S Na+ 0.845 0.0072 4 

299.05351 299.053515 C10H19O4S2P H+ -0.017 0.0076 7 

268.0895675 268.089543 C11H20NOSP Na+ 0.091 0.0079 6 

304.1909377 304.19072 C18H25NO3 H+ 0.716 0.0088 7 

304.1718044 304.171929 C12H26N5SP H+ -0.410 0.0089 6 

463.2649214 463.265009 C21H38N2O9 H+ -0.189 0.0094 4 

463.2592546 463.25935 C21H42N4OS3 H+ -0.206 0.0095 9 

459.1456857 459.145701 C18H35O5S3P H+ -0.033 0.0096 9 

346.1860271 346.18603 C16H27NO7 H+ -0.008 0.0102 4 

304.1730819 304.17306 C12H27NO6 Na+ 0.072 0.0112 0 

380.206765 380.206765 C20H29NO6 H+ 0.000 0.0115 7 

331.179245 331.179457 C16H23N6P H+ -0.640 0.0119 10 

427.1766363 427.176097 C19H32O7S Na+ 1.262 0.0126 6 

511.1378629 511.138095 C22H26N2O10S H+ -0.454 0.0126 13 

360.2015983 360.20168 C17H29NO7 H+ -0.227 0.0127 4 

321.15455 321.154396 C14H24O8 H+ 0.480 0.0128 3 

298.1861867 298.18603 C12H27NO7 H+ 0.525 0.0134 0 

304.1707819 304.170556 C16H27NOS Na+ 0.743 0.0139 6 
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238.1649217 238.1649 C10H23NO5 H+ 0.091 0.0150 0 

321.2204215 321.22064 C15H32N2O3S H+ -0.680 0.0151 3 

331.1864108 331.186364 C15H26N2O6 H+ 0.141 0.0158 4 

380.2643325 380.26428 C18H37NO7 H+ 0.138 0.0163 1 

390.2122117 390.212245 C18H31NO8 H+ -0.085 0.0166 4 

396.2228568 396.22281 C17H33NO9 H+ 0.118 0.0169 2 

348.1499042 348.15004 C11H25NO11 H+ -0.390 0.0172 0 

511.1310827 511.1311 C21H34O6S4 H+ -0.034 0.0173 13 

331.1679871 331.168224 C17H23N4OP H+ -0.715 0.0186 10 

321.2324643 321.232524 C22H28N2 H+ -0.186 0.0186 10 

296.183076 296.18323 C14H27NO4 Na+ -0.520 0.0186 2 

690.3487596 690.348405 C36H51NO12 H+ 0.514 0.0190 12 

265.1028833 265.103029 C9H16N2O7 H+ -0.549 0.0192 3 

439.265715 439.265876 C20H42N2O4S2 H+ -0.367 0.0197 5 

668.2377279 668.238008 C32H45NO8S3 H+ -0.419 0.0202 17 

393.2272714 393.227166 C22H32O6 H+ 0.268 0.0207 7 

171.1379728 171.137956 C10H18O2 H+ 0.098 0.0207 2 

543.2914867 543.291224 C26H42N2O10 H+ 0.483 0.0207 7 

414.1649317 414.165113 C23H28NO2SP H+ -0.438 0.0210 14 

368.2348638 368.234907 C20H34NO3P H+ -0.117 0.0212 6 

374.238333 374.238946 C18H36N3OSP H+ -1.638 0.0215 6 

353.1081938 353.108327 C16H21N2O3SP H+ -0.377 0.0221 11 

304.1825735 304.182477 C18H26NOP H+ 0.317 0.0231 8 

304.1801656 304.180172 C12H25N5O2S H+ -0.021 0.0231 5 

438.2532113 438.253337 C21H35N5O3S H+ -0.287 0.0235 9 

314.0907246 314.090416 C10H19NO8S H+ 0.982 0.0241 4 

317.19577 317.195866 C16H28O6 H+ -0.303 0.0247 3 

481.2106552 481.210782 C18H39N2O7SP Na+ -0.263 0.0250 4 

357.2485391 357.248782 C19H37N2SP H+ -0.680 0.0251 6 

360.2379882 360.238065 C18H33NO6 H+ -0.213 0.0253 3 

362.2172804 362.21733 C17H31NO7 H+ -0.137 0.0258 3 

368.233031 368.233253 C22H29N3O2 H+ -0.603 0.0258 10 

434.2384555 434.23846 C20H35NO9 H+ -0.010 0.0261 4 
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557.2724667 557.272692 C28H40N6O2S2 H+ -0.404 0.0270 16 

352.196501 352.196595 C15H29NO8 H+ -0.267 0.0275 2 

455.155024 455.154791 C21H26O11 H+ 0.512 0.0280 9 

321.2245092 321.224662 C20H32OS H+ -0.476 0.0288 7 

394.3163463 394.316315 C20H43NO6 H+ 0.079 0.0291 0 

246.01071 246.010924 C6H15NOS4 H+ -0.870 0.0295 8 

348.1561829 348.156265 C18H25N3S2 H+ -0.236 0.0301 12 

336.0856088 336.085999 C11H17N3O7S H+ -1.161 0.0311 7 

414.1517829 414.151575 C18H27N3O4S2 H+ 0.502 0.0312 11 

173.026706 173.026692 C7H8O3S H+ 0.081 0.0315 6 

348.1483 348.148403 C16H29NOS3 H+ -0.296 0.0317 9 

371.10478 371.104973 C13H19N6O3SP H+ -0.520 0.0318 11 

348.1970391 348.196771 C18H31NO2S Na+ 0.770 0.0321 6 

305.1726579 305.172331 C16H26O4 Na+ 1.071 0.0324 4 

471.1442269 471.144047 C21H30N2O4S3 H+ 0.382 0.0325 14 

516.2802695 516.280325 C25H41NO10 H+ -0.107 0.0326 6 

561.3310514 561.331648 C26H48N4O7S H+ -1.063 0.0326 7 

569.2422417 569.242082 C25H43N2O7SP Na+ 0.280 0.0327 9 

165.0757804 165.075751 C6H12O5 H+ 0.178 0.0327 1 

525.2993488 525.299285 C27H44N2O6S H+ 0.121 0.0330 9 

330.0682896 330.068439 C11H23NO2S4 H+ -0.453 0.0338 9 

324.2043745 324.20467 C13H30N3O4P H+ -0.911 0.0340 2 

307.1751152 307.175131 C14H26O7 H+ -0.051 0.0352 2 

481.3019638 481.302062 C24H40N4O6 H+ -0.204 0.0363 7 

324.2016724 324.20168 C14H29NO7 H+ -0.023 0.0367 1 

480.2624967 480.262566 C22H41NO8S H+ -0.144 0.0380 5 

388.0775975 388.077543 C17H13N3O8 H+ 0.140 0.0392 13 

478.2644759 478.264675 C22H39NO10 H+ -0.416 0.0398 4 

356.047405 356.047704 C12H21NO3S4 H+ -0.840 0.0400 11 

424.2540555 424.25411 C19H37NO9 H+ -0.129 0.0403 2 

316.211798 316.21185 C16H29NO5 H+ -0.164 0.0406 3 

338.2537388 338.253715 C16H35NO6 H+ 0.070 0.0406 0 

374.290015 374.2901 C20H39NO5 H+ -0.227 0.0407 2 
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308.1703467 308.17038 C13H25NO7 H+ -0.108 0.0410 2 

243.15908 243.159086 C13H22O4 H+ -0.025 0.0421 3 

386.2536904 386.253715 C20H35NO6 H+ -0.064 0.0422 4 

320.1703762 320.17038 C14H25NO7 H+ -0.012 0.0424 3 

478.2437525 478.243545 C25H35NO8 H+ 0.434 0.0427 9 

194.1387075 194.138685 C8H19NO4 H+ 0.116 0.0430 0 

348.1656295 348.165295 C15H25NO8 H+ 0.961 0.0435 4 

648.3800092 648.380586 C31H58N3O7SP H+ -0.890 0.0436 8 

384.222918 384.22281 C16H33NO9 H+ 0.281 0.0436 1 

348.1593393 348.15942 C22H21NO3 H+ -0.232 0.0437 13 

684.1980557 684.198175 C26H37NO20 H+ -0.174 0.0439 9 

456.1543583 456.154747 C18H25N5O7S H+ -0.852 0.0450 11 

319.211525 319.211516 C16H30O6 H+ 0.028 0.0451 2 

666.3905069 666.391151 C31H60N3O8SP H+ -0.967 0.0452 7 

344.243275 344.24315 C18H33NO5 H+ 0.363 0.0455 3 

522.2910491 522.29089 C24H43NO11 H+ 0.305 0.0456 4 

393.2352142 393.235244 C17H36N4O2S2 H+ -0.076 0.0458 6 

428.2490628 428.249025 C18H37NO10 H+ 0.088 0.0458 1 

280.1754183 280.175465 C12H25NO6 H+ -0.167 0.0459 1 

338.2564044 338.256705 C15H36N3O3P H+ -0.889 0.0462 1 

422.29412 422.294338 C22H47NS3 H+ -0.516 0.0462 6 

348.2378264 348.238065 C17H33NO6 H+ -0.685 0.0463 2 

500.26464 500.26428 C28H37NO7 H+ 0.720 0.0465 11 

359.0567954 359.056886 C12H23O4S3P H+ -0.252 0.0465 9 

321.2391138 321.239266 C16H36N2S2 H+ -0.474 0.0469 4 

371.0834154 371.083755 C14H26O3S4 H+ -0.915 0.0480 10 

318.1911432 318.191115 C15H27NO6 H+ 0.089 0.0482 3 

556.2960686 556.29637 C24H45NO13 H+ -0.542 0.0483 3 

348.2315091 348.231539 C16H33N3O3S H+ -0.086 0.0487 4 

404.227804 404.227895 C19H33NO8 H+ -0.225 0.0496 4 

348.1436285 348.143514 C10H25N3O8S H+ 0.329 0.0496 2 

457.152692 457.152986 C16H25N8O4SP H+ -0.643 0.0499 12 

440.2491375 440.249025 C19H37NO10 H+ 0.256 0.0499 2 
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Table 7: Metabolic REMD list. 

Reaction ∆Mass H C O N S P Na+ 

amino-function exchanged by 

hydroxyl function 0.984016 -1 0 1 -1 0 0 0 

deamination 1.031634 3 0 -1 1 0 0 0 

hydrolysis of acetic acid and 

consecutive carboxylation| 

decarboxylative condensation 1.979265 -2 -1 1 0 0 0 0 

(de-)hydrogenation 2.01565 2 0 0 0 0 0 0 

glyoxylic acid| decarboxylative 

condensation 12 0 1 0 0 0 0 0 

glycine| decarboxylative 

condensation 13.031634 3 1 -1 1 0 0 0 

methylation 14.01565 2 1 0 0 0 0 0 

H2N● - H +neutral/reductive 

deamination 15.010899 1 0 0 1 0 0 0 

methylation on tertiary N (like in 

N-trimethyl-lysine) 15.023475 3 1 0 0 0 0 0 

exchange of O with S 15.977156 0 0 -1 0 1 0 0 

(de-)hydroxylation 15.994915 0 0 1 0 0 0 0 

hydrolysis/condensation 
18.010565 2 0 1 0 0 0 0 

Self 0 0 0 0 0 0 0 1 

C=O insertion like in biotin 

synthesis or hydroxymethyl-

transfer 
25.979265 -2 1 1 0 0 0 0 

pyruvic acid| decarboxylative 

condensation 26.01565 2 2 0 0 0 0 0 

butanoic acid| decarboxylative 

condensation 26.052035 6 3 -1 0 0 0 0 

formimino transfer 27.010899 1 1 0 1 0 0 0 
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alanine| decarboxylative 

condensation 27.047284 5 2 -1 1 0 0 0 

formyl transfer 27.994915 0 1 1 0 0 0 0 

C2H4 28.0313 4 2 0 0 0 0 0 

NO● - H +neutral (nitrosylation) 
28.990164 -1 0 1 1 0 0 0 

thio-heteroatom 29.956421 -2 0 0 0 1 0 0 

hydroxymethyl transfer 
30.010565 2 1 1 0 0 0 0 

thiolation 31.972071 0 0 0 0 1 0 0 

hydro-peroxidation 31.98983 0 0 2 0 0 0 0 

hydroxypyruvic acid| 

decarboxylative condensation 42.010565 2 2 1 0 0 0 0 

guanidyl group transfer 
42.021798 2 1 0 2 0 0 0 

carbamoyl or isocyainde transfer| 
43.005814 1 1 1 1 0 0 0 

serine| decarboxylative 

condensation 43.042199 5 2 0 1 0 0 0 

(de-)carboxylation 43.98983 0 1 2 0 0 0 0 

pyruvic acid| decarboxylative 

addition 44.026215 4 2 1 0 0 0 0 

nitration (+NO2 -H) 44.985079 -1 0 2 1 0 0 0 

phospholytic decarboxylation 
35.976502 1 -1 1 0 0 1 0 

proline| decarboxylative 

condensation 53.062934 7 4 -1 1 0 0 0 

α-ketoisovaleric acid| 

decarboxylative condensation 54.04695 6 4 0 0 0 0 0 

hexanoic acid| decarboxylative 

condensation 54.083335 10 5 -1 0 0 0 0 

valine| decarboxylative 

condensation 55.078584 9 4 -1 1 0 0 0 

glyoxylic acid| condensation 
55.98983 0 2 2 0 0 0 0 
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3-hydroxy-2-oxobutanoic acid| 

decarboxylative condensation 
56.026215 4 3 1 0 0 0 0 

glycine| condensations 
57.021464 3 2 1 1 0 0 0 

threonine| decarboxylative 

condensation 57.057849 7 3 0 1 0 0 0 

3-mercaptopyruvate| 

decarboxylative condensation 57.987721 2 2 0 0 1 0 0 

cysteine| decarboxylative 

condensation 59.019355 5 2 -1 1 1 0 0 

glycine| condensations on 

hydrogenated carbonyls 
59.037114 5 2 1 1 0 0 0 

hydroxypyruvic acid| 

decarboxylative addition 60.02113 4 2 2 0 0 0 0 

prenylation 68.0626 8 5 0 0 0 0 0 

4-amino-2,4-dioxobutanoic acid| 

decarboxylative condensation 
69.021464 3 3 1 1 0 0 0 

5-amino-2-oxopentanoic acid| 

decarboxylative condensation 
69.057849 7 4 0 1 0 0 0 

leucine/isoleucine| 

decarboxylative condensation 69.094234 11 5 -1 1 0 0 0 

2-ketosuccinate| decarboxylative 

condensation 70.00548 2 3 2 0 0 0 0 

butanoic acid| | condensation 
70.041865 6 4 1 0 0 0 0 

asparagine| decarboxylative 

condensation 70.053098 6 3 0 2 0 0 0 
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ornithine| decarboxylative 

condensation 70.089483 10 4 -1 2 0 0 0 

alanine| condensations 
71.037114 5 3 1 1 0 0 0 

oxalate| condensation 
71.984745 0 2 3 0 0 0 0 

α-ketoisovaleric acid| 

decarboxylative addition 72.057515 8 4 1 0 0 0 0 

EC 4.1.99.1 Tryptophanase 
73.016379 3 2 2 1 0 0 0 

alanine| condensations on 

hydrogenated carbonyls 
73.052764 7 3 1 1 0 0 0 

3-hydroxy-2-oxobutanoic acid| 

decarboxylative addition 
74.03678 6 3 2 0 0 0 0 

3-mercaptopyruvate| 

decarboxylative addition 75.998286 4 2 1 0 1 0 0 

direct sulfonation and sulfonic 

anhydride (-H2O) 79.956816 0 0 3 0 1 0 0 

(de-)phosphorylation 79.966332 1 0 3 0 0 1 0 

octanoic acid| decarboxylative 

condensation 82.114635 14 7 -1 0 0 0 0 

2-keto-glutaramic acid| 

decarboxylative condensation 83.037114 5 4 1 1 0 0 0 

2-keto-6-aminocaproate| 

decarboxylative condensation 
83.073499 9 5 0 1 0 0 0 

2-ketoglutarate| decarboxylative 

condensation 84.02113 4 4 2 0 0 0 0 

adipate| decarboxylative 

condensation 84.057515 8 5 1 0 0 0 0 
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glutamine| decarboxylative 

condensation 84.068748 8 4 0 2 0 0 0 

lysine| decarboxylative 

condensation 84.105133 12 5 -1 2 0 0 0 

glutamic acid| decarboxylative 

condensation 85.052764 7 4 1 1 0 0 0 

hydroxypyruvic acid| 

condensation 
86.000395 2 3 3 0 0 0 0 

2-oxo-4-methylthiobutanoic acid| 

decarboxylative condensation 
86.019021 6 4 0 0 1 0 0 

2-ketohexanoic acid| 

decarboxylative addition 86.073165 10 5 1 0 0 0 0 

serine| condensations 87.032029 5 3 2 1 0 0 0 

methionine| decarboxylative 

condensation 87.050655 9 4 -1 1 1 0 0 

5-amino-2-oxopentanoic acid| 

decarboxylative addition 
87.068414 9 4 1 1 0 0 0 

2-ketosuccinate| decarboxylative 

addition 88.016045 4 3 3 0 0 0 0 

serine| condensations on 

hydrogenated carbonyls 89.047679 7 3 2 1 0 0 0 

2-oxo-3-(1H-imidazol-4-

yl)propansäure| decarboxylative 

condensation 92.037448 4 5 0 2 0 0 0 

histidine| decarboxylative 

condensation 93.069082 7 5 -1 3 0 0 0 

proline| condensations 
97.052764 7 5 1 1 0 0 0 

α-ketoisovaleric acid| 
98.03678 6 5 2 0 0 0 0 
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condensation 

hexanoic acid| condensation 
98.073165 10 6 1 0 0 0 0 

valine or proline - condensation 

on hydrogenated carbonyls| 

condensations 99.068414 9 5 1 1 0 0 0 

3-hydroxy-2-oxobutanoic acid| 

condensation 100.01605 4 4 3 0 0 0 0 

threonine| condensations 
101.04768 7 4 2 1 0 0 0 

valine| condensations on 

hydrogenated carbonyls 101.08406 11 5 1 1 0 0 0 

3-mercaptopyruvate| 

condensation 
101.97755 2 3 2 0 1 0 0 

2-ketoglutarate| decarboxylative 

addition 102.0317 6 4 3 0 0 0 0 

phenylpyruvic acid| 

decarboxylative condensation 102.04695 6 8 0 0 0 0 0 

cysteine| condensations 
103.00919 5 3 1 1 1 0 0 

threonine| condensations on 

hydrogenated carbonyls 
103.06333 9 4 2 1 0 0 0 

phenylalanine| decarboxylative 

condensation 103.07858 9 8 -1 1 0 0 0 

2-oxo-4-methylthiobutanoic acid| 

decarboxylative addition 
104.02959 8 4 1 0 1 0 0 

cysteine| condensations on 

hydrogenated carbonyls 
105.02484 7 3 1 1 1 0 0 

taurine| condensations 
107.0041 5 2 2 1 1 0 0 
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taurine| condensations on 

hydrogenated carbonyls 
109.01975 7 2 2 1 1 0 0 

2-oxo-3-(1H-imidazol-4-

yl)propansäure| decarboxylative 

addition 110.04801 6 5 1 2 0 0 0 

decanoic acid| decarboxylative 

condensation 110.14594 18 9 -1 0 0 0 0 

2-oxoarginine| decarboxylative 

condensation 111.07965 9 5 0 3 0 0 0 

2-ketohexanoic acid| 

condensation 
112.05243 8 6 2 0 0 0 0 

suberate| decarboxylative 

condensation 112.08882 12 7 1 0 0 0 0 

arginine| decarboxylative 

condensation 112.11128 12 5 -1 4 0 0 0 

4-amino-2,4-dioxobutanoic acid| 

condensation 113.01129 3 4 3 1 0 0 0 

5-amino-2-oxopentanoic acid| 

condensation 113.04768 7 5 2 1 0 0 0 

leucine/Isoleucine| condensations 
113.08406 11 6 1 1 0 0 0 

2-ketosuccinate| condensation 
113.99531 2 4 4 0 0 0 0 

glutarate| condensation 
114.0317 6 5 3 0 0 0 0 

asparagine| condensations 
114.04293 6 4 2 2 0 0 0 

ornithine| condensations 
114.07931 10 5 1 2 0 0 0 

aspartic acid| condensations 
115.02694 5 4 3 1 0 0 0 
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leucine/isoleucine| condensations 

on hydrogenated carbonyls 
115.09971 13 6 1 1 0 0 0 

asparagine| condensations on 

hydrogenated carbonyls 
116.05858 8 4 2 2 0 0 0 

ornithine| condensations on 

hydrogenated carbonyls 
116.09496 12 5 1 2 0 0 0 

aspartic acid| condensations on 

hydrogenated carbonyls 
117.04259 7 4 3 1 0 0 0 

4-hydroxyphenylpyruvic acid| 

decarboxylative condensation 

118.04187 6 8 1 0 0 0 0 

tyrosine| decarboxylative 

condensation 119.0735 9 8 0 1 0 0 0 

phenylpyruvic acid| 

decarboxylative addition 120.05752 8 8 1 0 0 0 0 

phosphoethanolamine 123.00853 6 2 3 1 0 1 0 

octanoic acid| condensation 
126.10447 14 8 1 0 0 0 0 

2-keto-glutaramic acid| 

condensation 
127.02694 5 5 3 1 0 0 0 

2-keto-6-aminocaproate| 

condensation 127.06333 9 6 2 1 0 0 0 

2-ketoglutarate| condensation 
128.01096 4 5 4 0 0 0 0 

adipate| condensation 
128.04735 8 6 3 0 0 0 0 

glutamine| condensations 
128.05858 8 5 2 2 0 0 0 

lysine| condensations 128.09496 12 6 1 2 0 0 0 
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glutamic acid| condensations 
129.04259 7 5 3 1 0 0 0 

2-oxoarginine| decarboxylative 

addition 129.09021 11 5 1 3 0 0 0 

2-oxo-4-methylthiobutanoic acid| 

condensation 130.00885 6 5 2 0 1 0 0 

glutamine| condensations on 

hydrogenated carbonyls 
130.07423 10 5 2 2 0 0 0 

lysine| condensations on 

hydrogenated carbonyls 130.11061 14 6 1 2 0 0 0 

methionine| condensations 
131.04049 9 5 1 1 1 0 0 

glutamic acid| condensations on 

hydrogenated carbonyls 
131.05824 9 5 3 1 0 0 0 

methionine| condensations on 

hydrogenated carbonyls 
133.05614 11 5 1 1 1 0 0 

2-oxo-3-(1H-imidazol-4-

yl)propansäure| condensation 
136.02728 4 6 2 2 0 0 0 

4-hydroxyphenylpyruvic acid| 

decarboxylative addition 

136.05243 8 8 2 0 0 0 0 

di-prenylation 136.1252 16 10 0 0 0 0 0 

histidine| condensations 
137.05891 7 6 1 3 0 0 0 

dodecanoic acid| decarboxylative 

condensation 138.17724 22 11 -1 0 0 0 0 

histidine| condensations on 

hydrogenated carbonyls 
139.07456 9 6 1 3 0 0 0 
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sebacic acid| decarboxylative 

condensation 140.12012 16 9 1 0 0 0 0 

indole pyruvic acid| 

decarboxylative condensation 141.05785 7 10 0 1 0 0 0 

pimelate| condensation 
142.063 10 7 3 0 0 0 0 

tryptophan| decarboxylative 

condensation 142.08948 10 10 -1 2 0 0 0 

phenylpyruvic acid| condensation 
146.03678 6 9 2 0 0 0 0 

phenylalanine| condensations 
147.06841 9 9 1 1 0 0 0 

phenylalanine| condensations on 

hydrogenated carbonyls 
149.08406 11 9 1 1 0 0 0 

glycerol-3-phosphate 
154.00311 7 3 5 0 0 1 0 

decanoic acid| condensation 
154.13577 18 10 1 0 0 0 0 

2-oxoarginine| condensation 
155.06948 9 6 2 3 0 0 0 

suberate| condensation 
156.07865 12 8 3 0 0 0 0 

arginine| condensations 
156.10111 12 6 1 4 0 0 0 

arginine| condensations on 

hydrogenated carbonyls 
158.11676 14 6 1 4 0 0 0 

indole pyruvic acid| 

decarboxylative addition 159.06841 9 10 1 1 0 0 0 

4-hydroxyphenylpyruvic acid| 

condensation 162.0317 6 9 3 0 0 0 0 

glucose 162.05283 10 6 5 0 0 0 0 

tyrosine| condensations 
163.06333 9 9 2 1 0 0 0 
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tyrosine| condensations on 

hydrogenated carbonyls 
165.07898 11 9 2 1 0 0 0 

tetradecanoic acid| 

decarboxylative condensation 166.20854 26 13 -1 0 0 0 0 

phosphatidylserine 166.99836 6 3 5 1 0 1 0 

azelaic acid| condensation 
170.0943 14 9 3 0 0 0 0 

glucuronidation 176.03209 8 6 6 0 0 0 0 

dodecanoic acid| condensation 
182.16707 22 12 1 0 0 0 0 

sebacic acid| condensation 
184.10995 16 10 3 0 0 0 0 

indole pyruvic acid| condensation 
185.04768 7 11 2 1 0 0 0 

tryptophan| condensations 
186.07931 10 11 1 2 0 0 0 

tryptophan| condensations on 

hydrogenated carbonyls 
188.09496 12 11 1 2 0 0 0 

hexadecanoic acid| 

decarboxylative condensation 194.23984 30 15 -1 0 0 0 0 

tri-prenylation 204.1878 24 15 0 0 0 0 0 

tetradecanoic acid| condensation 
210.19837 26 14 1 0 0 0 0 

ribose-5-phosphate 212.00859 9 5 7 0 0 1 0 

hexadecanoic acid| condensation 
238.22967 30 16 1 0 0 0 0 

phosphatidylinositol 242.01916 11 6 8 0 0 1 0 

tetra-prenylation 272.2504 32 20 0 0 0 0 0 

phosphatidylcholine head group 
239.09226 18 8 5 1 0 1 0 

phosphorylcholine 166.06331 13 5 3 1 0 1 0 

self 1E-09 0 0 0 0 0 0 0 
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Table 8: Markers of HuMet Block E4|E6. 

E-Block Exact Mass Formula Cyclomatic 

Number 

MassTRIX 

E4|E6 155.04271 C4H8N2O3 2 L-asparagine 

E4|E6 144.08078 C10H9N 7 2-naphthylamine 

E4|E6 164.97825 C4H7OP3 6 0 

E4|E6 169.12231 C10H16O2 3 6-oxocineole 

E4|E6 171.06519 C8H10O4 4 3,4-dihydroxyphenylethyleneglycol 

([M+H]+) 

E4|E6 174.18524 C10H23NO 0 0 

E4|E6 175.08996 C7H14N2OS 4 0 

E4|E6 197.07843 C8H14O4 2 suberic acid 

E4|E6 178.12264 C11H15NO 5 phenmetrazine ([M+H]+) 

E4|E6 180.06552 C9H9NO3 6 hippurate 

E4|E6 180.13829 C11H17NO 4 mexiletine ([M+H]+) 

E4|E6 205.06826 C6H14O6 0 mannitol 

E4|E6 185.11722 C10H16O3 3 5-exo-hydroxy-1,2-campholide 

([M+H]+) 

E4|E6 187.12635 C9H18N2S 4 0 

E4|E6 189.15975 C9H20N2O2 1 7,8-diaminononanoate ([M+H]+) 

E4|E6 193.15869 C13H20O 4 alpha-ionone ([M+H]+) 

E4|E6 195.13796 C12H18O2 4 4-hexyloxyphenol ([M+H]+) 

E4|E6 197.16484 C11H20N2O 3 0 

E4|E6 198.14886 C11H19NO2 3 0 

E4|E6 199.13287 C11H18O3 3 0 

E4|E6 199.1441 C10H18N2O2 3 0 

E4|E6 200.16451 C11H21NO2 2 0 

E4|E6 201.12337 C9H16N2O3 3 0 

E4|E6 201.12739 C14H16O 7 0 

E4|E6 201.14852 C11H20O3 2 2-hydroxy-10-undecenoic acid [hydroxy 

fatty acids [FA0105]] ([M+H]+) 

E4|E6 223.16685 C12H24O2 1 dodecanoic acid 

E4|E6 208.16959 C13H21NO 4 luciduline ([M+H]+) 

E4|E6 209.11722 C12H16O3 5 benzyl (2R,3S)-2-methyl-3-
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hydroxybutanoate ([M+H]+) 

E4|E6 209.15361 C13H20O2 4 4-heptyloxyphenol 

E4|E6 211.13287 C12H18O3 4 (-)-jasmonic acid 

E4|E6 211.15534 C10H18N4O 4 0 

E4|E6 212.12812 C11H17NO3 4 mescaline ([M+H]+) 

E4|E6 212.16451 C12H21NO2 3 elaeokanine C ([M+H]+) 

E4|E6 214.12264 C14H15NO 8 0 

E4|E6 237.15735 C11H22N2O2 2 0 

E4|E6 216.19581 C12H25NO2 1 12-amino-dodecanoic acid [amino fatty 

acids [FA0110]] ([M+H]+) 

E4|E6 217.10705 C10H16O5 3 0 

E4|E6 239.12538 C11H20O4 2 undecanedioic acid 

E4|E6 218.13869 C10H19NO4 2 O-propanoylcarnitine 

E4|E6 219.17434 C15H22O 5 alpha-sinensal ([M+H]+) 

E4|E6 221.11722 C13H16O3 6 precocene 2 

E4|E6 223.09649 C12H14O4 6 apiole ([M+H]+) 

E4|E6 223.16926 C14H22O2 4 rishitin ([M+H]+) 

E4|E6 225.18491 C14H24O2 3 5,8-tetradecadienoic acid 

E4|E6 226.14377 C12H19NO3 4 terbutaline ([M+H]+) 

E4|E6 229.14344 C12H20O4 3 traumatic acid 

E4|E6 230.13869 C11H19NO4 3 butenylcarnitine [unclassified substance] 

([M+H]+) 

E4|E6 230.17507 C12H23NO3 2 N-decanoylglycine [carboxylic acid] 

([M+H]+) 

E4|E6 231.1227 C11H18O5 3 0 

E4|E6 233.11722 C14H16O3 7 kavapyrone ([M+H]+) 

E4|E6 233.14958 C10H20N2O4 2 spermic acid 2 

E4|E6 239.12779 C13H18O4 5 0 

E4|E6 239.16417 C14H22O3 4 7-oxo-11E,13-tetradecadienoic acid [oxo 

fatty acids [FA0106]] ([M+H]+) 

E4|E6 239.20056 C15H26O2 3 centarol ([M+H]+) 

E4|E6 240.15942 C13H21NO3 4 isoetharine ([M+H]+) 

E4|E6 240.19581 C14H25NO2 3 0 

E4|E6 242.17507 C13H23NO3 3 valeroidine ([M+H]+) 
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E4|E6 244.15434 C12H21NO4 3 tiglylcarnitine [cation] ([M+H]+) 

E4|E6 246.16999 C12H23NO4 2 2-methylbutyroylcarnitine 

E4|E6 271.07883 C10H16O7 3 0 

E4|E6 249.14852 C15H20O3 6 1,2-dihydrosantonin ([M+H]+) 

E4|E6 255.23186 C16H30O2 2 (9Z)-hexadecenoic acid 

E4|E6 256.19072 C14H25NO3 3 0 

E4|E6 256.26349 C16H33NO 1 palmitic amide 

E4|E6 257.16484 C16H20N2O 8 chanoclavine-I ([M+H]+) 

E4|E6 259.19039 C14H26O4 2 2,3,4-trioxycyclopentanone ([M+H]+) 

E4|E6 262.23767 C14H31NO3 0 0 

E4|E6 265.11828 C13H16N2O4 7 alpha-N-phenylacetyl-L-glutamine 

([M+H]+) 

E4|E6 265.17982 C16H24O3 5 dehydrojuvabione ([M+H]+) 

E4|E6 267.23186 C17H30O2 3 7-heptadecynoic acid [Unsaturated fatty 

acids [FA0103]] ([M+H]+) 

E4|E6 268.19072 C15H25NO3 4 metoprolol ([M+H]+) 

E4|E6 269.17474 C15H24O4 4 0 

E4|E6 269.18597 C14H24N2O3 4 0 

E4|E6 269.21112 C16H28O3 3 (1R,2R)-3-oxo-2-pentyl-

cyclopentanehexanoic acid [12-

oxophytodienoic acid metabolites 

[FA0201]] ([M+H]+) 

E4|E6 270.15473 C10H23NO7 0 0 

E4|E6 270.20637 C15H27NO3 3 0 

E4|E6 271.20162 C14H26N2O3 3 0 

E4|E6 271.26316 C17H34O2 1 methyl palmitate ([M+H]+) 

E4|E6 272.20089 C18H25NO 7 dextromethorphan ([M+H]+) 

E4|E6 272.23325 C14H29N3O2 2 0 

E4|E6 272.25841 C16H33NO2 1 2R-aminohexadecanoic acid [amino 

fatty acids [FA0110]] ([M+H]+) 

E4|E6 277.12818 C12H20O7 3 0 

E4|E6 277.21621 C18H28O2 5 R replaced by H in steryl ester 

E4|E6 278.15982 C12H23NO6 2 0 
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E4|E6 279.19547 C17H26O3 5 [6]-paradol 

E4|E6 279.23186 C18H30O2 4 (6Z,9Z,12Z)-octadecatrienoic acid 

E4|E6 280.15434 C15H21NO4 6 metalaxyl ([M+H]+) 

E4|E6 280.26349 C18H33NO 3 linoleamide 

E4|E6 304.18832 C16H27NO3 4 0 

E4|E6 283.21285 C14H26N4O2 4 0 

E4|E6 283.22677 C17H30O3 3 6-oxabicyclo[3.1.0]hexane-2-

undecanoic acid methyl ester ([M+H]+) 

E4|E6 284.17038 C11H25NO7 0 0 

E4|E6 284.22202 C16H29NO3 3 0 

E4|E6 285.16965 C15H24O5 4 0 

E4|E6 285.24242 C17H32O3 2 2-methoxy-5Z-hexadecenoic acid 

E4|E6 286.1649 C14H23NO5 4 0 

E4|E6 286.20129 C15H27NO4 3 2-octenoylcarnitine [cation] ([M+H]+) 

E4|E6 287.14892 C14H22O6 4 0 

E4|E6 288.21694 C15H29NO4 2 L-octanoylcarnitine ([M+H]+) 

E4|E6 293.17474 C17H24O4 6 trichodermin ([M+H]+) 

E4|E6 293.19587 C14H28O6 1 0 

E4|E6 293.21112 C18H28O3 5 12-OPDA 

E4|E6 294.20637 C17H27NO3 5 (+/-)-5-[(tert-butylamino)-2'-

hydroxypropoxy]-1,2,3,4-tetrahydro-1-

naphthol 

E4|E6 296.22202 C17H29NO3 4 0 

E4|E6 319.11521 C15H20O6 6 vomitoxin 

E4|E6 297.27881 C19H36O2 2 oleic acid methyl ester 

E4|E6 298.27406 C18H35NO2 2 3-ketosphingosine ([M+H]+) 

E4|E6 298.34683 C20H43N 0 0 

E4|E6 299.06176 C10H18O6S2 6 0 

E4|E6 301.28495 C17H36N2O2 1 0 

E4|E6 302.1962 C15H27NO5 3 0 

E4|E6 324.94936 C7H12O5S2P2 9 0 

E4|E6 303.23186 C20H30O2 6 abietate 
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E4|E6 304.17547 C14H25NO6 3 pimelylcarnitine [cation] ([M+H]+) 

E4|E6 307.09986 C16H18O4S 10 0 

E4|E6 307.22677 C19H30O3 5 oxandrolone ([M+H]+) 

E4|E6 310.31044 C20H39NO 2 0 

E4|E6 311.22169 C18H30O4 4 13(S)-HPOT 

E4|E6 311.23292 C17H30N2O3 4 0 

E4|E6 311.25807 C19H34O3 3 methoprene 

E4|E6 312.21694 C17H29NO4 4 2-trans,4-cis-decadienoylcarnitine 

[cation] ([M+H]+) 

E4|E6 312.32609 C20H41NO 1 0 

E4|E6 314.1962 C16H27NO5 4 heliotrine 

E4|E6 314.24382 C16H31N3O3 3 0 

E4|E6 318.24276 C20H31NO2 6 17beta-hydroxy-4,17-dimethyl-4-

azaandrost-5-en-3-one ([M+H]+) 

E4|E6 321.24242 C20H32O3 5 (15S)-15-hydroxy-5,8,11-cis-13-trans-

eicosatetraenoate 

E4|E6 321.31519 C22H40O 3 0 

E4|E6 323.25807 C20H34O3 4 2alpha-(hydroxymethyl)-5alpha-

androstane-3beta,17beta-diol ([M+H]+) 

E4|E6 325.11293 C12H20O10 3 bis-D-fructose 2',1:2,1'-dianhydride 

E4|E6 325.27372 C20H36O3 3 alchornoic acid 

E4|E6 328.1966 C13H29NO8 0 0 

E4|E6 328.24824 C18H33NO4 3 10-nitro-9E-octadecenoic acid [nitro 

fatty acids [FA0112]] ([M+H]+) 

E4|E6 331.28429 C19H38O4 1 MG(0:0/16:0/0:0) 

E4|E6 334.31044 C22H39NO 4 0 

E4|E6 335.19819 C16H31O5P 3 0 

E4|E6 335.22169 C20H30O4 6 12-keto-leukotriene B4 

E4|E6 339.28937 C21H38O3 3 0 

E4|E6 339.32576 C22H42O2 2 (13Z)-docosenoic acid 

E4|E6 343.20883 C14H26N6O4 5 0 

E4|E6 348.23807 C17H33NO6 2 0 

E4|E6 349.31011 C23H40O2 4 20:3(5Z,9Z,17Z)(11Me,15Me,19Me) 
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E4|E6 356.35231 C22H45NO2 1 eicosanoyl-EA 

E4|E6 358.2422 C12H27N11O2 5 0 

E4|E6 358.27003 C18H35N3O4 3 leucyl-leucyl-norleucine ([M+H]+) 

E4|E6 363.21997 C18H34O5S 4 0 

E4|E6 363.25195 C16H35N4O3P 3 0 

E4|E6 363.3105 C20H42O5 0 0 

E4|E6 388.18728 C17H28N5O2P 8 0 

E4|E6 366.37304 C24H47NO 2 0 

E4|E6 367.21152 C20H30O6 6 20-COOH-leukotriene B4 

E4|E6 369.35158 C27H44 6 3-deoxyvitamin D3 

E4|E6 370.29519 C21H39NO4 3 cis-5-tetradecenoylcarnitine [cation] 

([M+H]+) 

E4|E6 371.32682 C21H42N2O3 2 0 

E4|E6 372.34722 C22H45NO3 1 0 

E4|E6 376.34214 C21H45NO4 0 0 

E4|E6 382.2588 C21H35NO5 5 0 

E4|E6 384.27445 C21H37NO5 4 3-hydroxy-5, 8-tetradecadiencarnitine 

[cation] ([M+H]+) 

E4|E6 387.08732 C13H23O9SP 6 0 

E4|E6 387.15528 C13H30N4O3S3 7 0 

E4|E6 387.18359 C19H30O6S 7 0 

E4|E6 390.21225 C18H31NO8 4 0 

E4|E6 392.17626 C13H29NO12 0 0 

E4|E6 398.36287 C24H47NO3 2 behenoylglycine [carboxylic acid] 

([M+H]+) 

E4|E6 400.37852 C24H49NO3 1 0 

E4|E6 400.41491 C25H53NO2 0 0 

E4|E6 406.13825 C16H28N3O3S2P 10 0 

E4|E6 409.40401 C27H52O2 2 (+)-C27-phthienoic acid 

E4|E6 413.32615 C24H44O5 3 0 

E4|E6 420.35577 C21H41N9 6 0 
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E4|E6 423.3945 C26H50N2O2 3 0 

E4|E6 433.33124 C27H44O4 6 gitogenin ([M+H]+) 

E4|E6 433.40401 C29H52O2 4 29:3(5Z,9Z,23Z) 

E4|E6 437.43531 C29H56O2 2 mycolipenic acid (C29) 

E4|E6 441.39384 C27H52O4 2 MG(0:0/24:1(15Z)/0:0) 

E4|E6 475.31156 C21H40N8O3 6 0 

E4|E6 453.34353 C24H44N4O4 5 0 

E4|E6 453.366 C22H44N8O2 5 0 

E4|E6 458.32161 C25H48NO2SP 6 0 

E4|E6 459.35141 C19H42N10O3 4 0 

E4|E6 460.1966 C24H29NO8 11 0 

E4|E6 464.37344 C28H49NO4 5 0 

E4|E6 466.42547 C29H55NO3 3 0 

E4|E6 471.3541 C24H46N4O5 4 0 

E4|E6 484.39965 C28H53NO5 3 0 

E4|E6 520.33302 C22H43N9O4 6 0 

E4|E6 500.28226 C21H45N3O6S2 5 0 

E4|E6 566.4276 C30H55N5O5 6 0 

 

 

Table 9: Markers HuMet Block E5. 

E-Block Exact Mass Formula Cyclomatic 

Number 

MassTRIX 

E5 181.07699 C7H14N2S 4 0 

E5 163.07536 C10H10O2 6 cis-1,2-dihydronaphthalene-1,2-

diol 

E5 163.11174 C11H14O 5 4,10-undecadiynal [fatty 

aldehydes [FA06]] ([M+H]+) 

E5 198.18524 C12H23NO 2 0 

E5 199.16926 C12H22O2 2 (-)-menthyl acetate 

E5 217.08489 C7H13N4O2P 5 0 

E5 217.17982 C12H24O3 1 12-hydroxydodecanoic acid 
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E5 221.08421 C9H16O4S 4 0 

E5 223.13287 C13H18O3 5 dehydrovomifoliol 

E5 258.1312 C10H21NO5 1 0 

E5 238.1649 C10H23NO5 0 0 

E5 242.13869 C12H19NO4 4 N-(3-oxooctanoyl)homoserine 

lactone 

E5 249.16141 C12H25O3P 2 0 

E5 251.16417 C15H22O3 5 arbusculin A ([M+H]+) 

E5 251.1853 C12H26O5 0 0 

E5 253.25259 C17H32O 2 2,6,8,12-tetramethyl-2,4-

tridecadien-1-ol [fatty alcohols 

[FA05]] ([M+H]+) 

E5 277.18865 C14H26N2O2 3 0 

E5 257.24751 C16H32O2 1 hexadecanoic acid 

E5 267.1227 C14H18O5 6 0 

E5 273.16965 C14H24O5 3 0 

E5 274.27406 C16H35NO2 0 hexadecasphinganine ([M+H]+) 

E5 287.22169 C16H30O4 2 2,3-dihydroxycyclopentane-

undecanoic acid ([M+H]+) 

E5 288.28971 C17H37NO2 0 C17 sphinganine 

E5 321.24002 C18H34O3 2 2-oxooctadecanoic acid 

E5 304.09445 C12H18NO6P 6 0 

E5 309.21892 C15H33O4P 1 0 

E5 318.30027 C18H39NO3 0 phytosphingosine 

E5 329.26864 C19H36O4 2 MG(0:0/16:1(9Z)/0:0) 

E5 330.99872 C9H16O5S2P

2 

9 0 

E5 332.24315 C17H33NO5 2 0 

E5 333.29994 C19H40O4 0 0 

E5 340.28462 C20H37NO3 3 oleoyl glycine 

E5 356.27954 C20H37NO4 3 0 

E5 357.16965 C21H24O5 10 rutamarin ([M+H]+) 

E5 372.21694 C22H29NO4 9 0 
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E5 372.25669 C20H37NO3S 5 0 

E5 413.26623 C24H38O4 6 bis(2-ethylhexyl)phthalate 

E5 397.33124 C24H44O4 3 0 

E5 398.23259 C24H31NO4 10 0 

E5 405.22448 C19H28N6O4 9 0 

E5 414.35779 C24H47NO4 2 heptadecanoyl carnitine 

E5 425.41015 C26H52N2O2 2 0 

E5 463.14607 C17H33N2O5

S2P 

8 0 

E5 451.4258 C28H54N2O2 3 0 

E5 454.46186 C29H59NO2 1 0 

E5 611.18864 C23H40N4O7

S2P2 

13 0 

 

 

Table 10: Markers HuMet Block E8 

E-Block Exact Mass Formula Cyclomatic 

Number 

MassTRIX 

E8 128.03182 C3H7NO3 1 L-serine 

E8 151.08418 C6H12N2O 2 L-lysine 1,6-lactam 

E8 136.06177 C5H5N5 6 adenine 

E8 165.05222 C7H10O3 3 4-oxocyclohexanecarboxylate 

([M+H]+) 

E8 174.99531 C4H9O2SP 4 0 

E8 157.12231 C9H16O2 2 nonane-4,6-dione ([M+H]+) 

E8 183.06278 C7H12O4 2 6-carboxyhexanoate 

E8 183.09917 C8H16O3 1 ethyl (R)-3-hydroxyhexanoate 

([M+H]+) 

E8 170.0924 C7H11N3O2 4 N(pi)-methyl-L-histidine 

E8 172.09682 C8H13NO3 3 crotanecine ([M+H]+) 

E8 201.0886 C11H14O2 5 eugenol methyl ether 

E8 203.05261 C6H12O6 1 D-glucose 

E8 207.13555 C11H20O2 2 gamma-undecalactone 

E8 202.155 C9H19N3O2 2 0 
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E8 227.17702 C15H24 4 pentalenene ([M+H]+) 

E8 211.16926 C13H22O2 3 3E,5E-tridecadienoic acid 

[unsaturated fatty acids 

[FA0103]] ([M+H]+) 

E8 213.19614 C12H24N2O 2 0 

E8 216.12304 C10H17NO4 3 2-amino-9,10-epoxy-8-

oxodecanoic acid ([M+H]+) 

E8 222.13494 C10H15N5O 6 dihydrozeatin 

E8 223.06347 C8H14O5S 4 2-(3'-methylthio)propylmalic acid 

E8 225.03449 C7H13O4SP 5 0 

E8 225.12337 C11H16N2O3 5 0 

E8 230.24784 C14H31NO 0 xestoaminol C 

E8 231.06282 C6H15O7P 1 0 

E8 256.14203 C13H19N3O 6 0 

E8 235.11762 C10H18O6 2 0 

E8 235.20564 C16H26O 4 4,6,11-hexadecatrienal [fatty 

aldehydes [FA06]] ([M+H]+) 

E8 235.98108 C3H10NO5S2

P 

5 0 

E8 258.11861 C8H13N9 7 0 

E8 236.20089 C15H25NO 4 0 

E8 238.12027 C9H20NO4P 2 0 

E8 240.20704 C13H25N3O 3 0 

E8 258.27914 C16H35NO 0 0 

E8 282.01717 C6H14NO6SP 4 0 

E8 263.07364 C14H14O3S 10 0 

E8 265.13117 C10H21N2O4

P 

3 0 

E8 293.20872 C16H30O3 2 3-oxohexadecanoic acid 

E8 294.20397 C15H29NO3 2 tridecanoylglycine [carboxylic 

acid] ([M+H]+) 

E8 272.99324 C7H14O3S2P

2 

8 0 
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E8 278.17507 C16H23NO3 6 0 

E8 281.24751 C18H32O2 3 linoleate 

E8 285.21727 C15H28N2O3 3 0 

E8 287.00889 C8H16O3S2P

2 

8 0 

E8 293.08421 C15H16O4S 10 0 

E8 294.15473 C12H23NO7 2 0 

E8 318.24035 C18H33NO2 3 (4E,8E,10E-d18:3)sphingosine 

E8 300.25332 C17H33NO3 2 pentadecanoylglycine [carboxylic 

acid] ([M+H]+) 

E8 302.15982 C14H23NO6 4 0 

E8 306.20637 C18H27NO3 6 capsaicin ([M+H]+) 

E8 307.09412 C12H19O7P 5 0 

E8 315.05417 C14H18O2S3 12 0 

E8 339.17646 C13H20N10 9 0 

E8 322.2588 C16H35NO5 0 0 

E8 326.37813 C22H47N 0 0 

E8 331.19039 C20H26O4 8 carnosol ([M+H]+) 

E8 338.25372 C16H35NO6 0 0 

E8 361.19855 C19H30O5 5 shiromodiol diacetate ([M+H]+) 

E8 349.27372 C22H36O3 5 anacardic acid ([M+H]+) 

E8 350.2901 C18H39NO5 0 0 

E8 351.0992 C17H19O6P 10 0 

E8 376.14005 C14H27NO7S 4 0 

E8 377.19346 C19H30O6 5 5-hydroperoxy-7-[3,5-epidioxy-2-

(2-octenyl)-cyclopentyl]-6-

heptenoic acid [hydroperoxy fatty 

acids [FA0104]] ([M+H]+) 

E8 356.20677 C18H29NO6 5 0 

E8 360.15792 C17H30NOS2

P 

9 0 

E8 363.16246 C20H26O4S 10 0 
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E8 365.10534 C18H20O6S 11 0 

E8 387.2142 C21H32O5 6 urocortisone ([M+H]+) 

E8 371.09728 C16H18O10 8 fraxin ([M+H]+) 

E8 378.21524 C16H32N3O5

P 

4 0 

E8 383.33084 C27H42O 7 7-dehydrodesmosterol ([M+H]+) 

E8 388.21185 C22H29NO5 9 0 

E8 396.2592 C18H37NO8 1 0 

E8 400.38975 C23H49N3O2 1 0 

E8 427.06781 C17H24O5S3 12 0 

E8 406.24355 C19H35NO8 3 0 

E8 455.34688 C24H44N6O 6 0 

E8 436.30912 C22H45NO5S 3 0 

E8 441.32961 C20H40N8O3 5 0 

E8 445.28814 C18H36N8O5 5 0 

E8 453.25892 C19H44N4P4 6 0 

E8 454.38909 C27H51NO4 3 0 

E8 463.10385 C18H28N2O4

S2P2 

13 0 

E8 465.12726 C15H28O14S 4 0 

E8 477.3323 C27H44N2O5 7 0 

E8 488.26428 C27H37NO7 10 0 

E8 488.39457 C27H53NO6 2 0 

E8 493.34968 C25H44N6O4 7 0 

E8 559.13129 C21H25N6O9

P 

14 0 

E8 539.16602 C27H26N2O1

0 

16 0 

E8 554.17589 C21H28N7O9

P 

13 0 

E8 583.20684 C25H34N4O1 13 0 
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0S 

E8 629.19381 C22H43N2O1

1S2P 

8 0 
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