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Abstract 
 

Adaptive control has the potential to improve control performance in presence of 

uncertainties or faults. In contrast to robust control techniques uncertain plant 

parameters are directly identified and compensated instead of trying to find a best 

compromise between performance and robustness. The thesis covers the theory of 

Model Reference Adaptive Control (MRAC) techniques which are well suited to flight 

control applications. Benefits and drawbacks are investigated in depth based on two 

benchmark problems: A linear short period approximation with an unknown pitch-up 

nonlinearity, and a full nonlinear aircraft model where the loss of a scheduling 

parameters due to a fault is considered. 

At first recently suggested modifications of the basic MRAC approach are 

comprehensively analysed and assessed. During the investigation it was seen that 

MRAC with state feedback can reduce the robustness w.r.t. unmatched uncertainties 

in real application cases. In order to address this problem a modification is suggested 

in this thesis. Moreover an adaptation of reference model for a certain domain of 

matched uncertainties is suggested, which reduces the restrictiveness of the 

reference model and allows a certain set of response trajectories instead of only one. 

Additionally, L1 adaptive control, which gained enormous interest in the past years, 

was investigated. It is shown that L1 adaptive control and ordinary MRAC with the 

application of a hedging signal to reference model are extremely similar, and under 

certain conditions they are even mathematically equivalent. During the work the 

effects of different modifications are clearly pointed out, and by application of the 

novel extensions very good results could be achieved with MRAC. L1 piecewise 

constant control is also investigated. This approach is quite different, but leads to 

quite good results in particular for the pitch-up problem. It is a linear control approach, 

and hence, in difference to MRAC, linear assessment methods can be applied. 

Secondly a full nonlinear, large transport aircraft model is used to investigate adaptive 

control techniques in order to compensate the loss of a scheduling parameter. Here 

the objective is to maintain good handling qualities over the complete envelope when 

the scheduling information is lost. In particular the longitudinal response and the loss 

of the calibrated airspeed are considered. The applied methods for the problem are L1 

piecewise constant, MRAC, and an Extended Kalman Filter (EKF) to estimate the air 

speed directly. Though L1 piecewise constant can improve certain handling quality 

requirements it leads to a deterioration of others, and thus requires a trade-off. In 
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difference, for MRAC and the EKF very good results were achieved for all handling 

quality requirements, if enough excitation of the system is given. 
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  Chapter 1
 
Introduction 
 

Current generation aircraft almost exclusively utilize flight control systems that are 

based on linear control theory. The reason for this is the large amount of experience 

together with mathematically proven concepts and methods for linear system analysis 

and controller design. More important, current certification requirements, like stability 

margins (MIL-DTL-9490E), are based on linear system theory. For such approaches, 

the nonlinear dynamics of the plant to be controlled is locally linearized around (quasi-) 

steady operating points based on a model of the real system. Then, the control design 

is performed for the linearized model. The so designed controller is capable of 

performing its task also for the nonlinear system if some conditions are met. The two 

most prominent ones are that 1.) the nonlinear system has to be operated close 

enough to the steady condition where the linearization was performed and that 2.) the 

structure and parameters of the model must be close enough to the real nonlinear 

system. Classical linear control only guarantees that the designed controller fulfills its 

task for the linear system and for the nonlinear system when operated directly in the 

linearization point, if the real dynamics matches the modeled dynamics. How far the 

model may be different from reality and how far the operating point may be left was up 

to heuristics and covered by robustness criteria stated in terms of gain and phase 

margin. These requirements were partially relaxed by the theories developed for so 

called robust control, where deviations between nominal and true dynamics could 

actively be specified in uncertainty models leading to control designs accounting for 

those deviations. 

Adaptive control in contrast to robust control does not assume an interval for the 

unknown plant parameters but treats them as unknown and tries to either determine 

the parameters in order to compute suitable controller gains or to directly estimate 

appropriate control gains. As thus the controller gains are no longer constant but also 

changed dynamically and thus states of the system, the product of a controller gain 

and a measured process variable is a product of two states and as a consequence of 

this a nonlinear operation. Thus even the adaptive control of a first order, scalar linear 

plant leads to a nonlinear system, no longer covered by classical linear theories. 
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The attractiveness of adaptive control is that even in the case of uncertainties and 

failures a desired performance can be maintained. The increase in stability and the 

improvement of fault tolerance is a major selling point and makes the approach in 

particular interesting for flight control. 

In the wide field of adaptive control the concept of Model Reference Adaptive Control 

(MRAC) gained significant attention and can be found in many standard text books on 

nonlinear adaptive control [1] [2] [3] [4] [5] [6]. Although the approach suffered from 

robustness problems, due to the large progress that was made during the last three 

decades the approach gained immense interest from the flight control community. 

Many examples have shown that adaptive control can be superior to robust control in 

the case of large uncertainties or failures. However, it is still controversially discussed 

because many problems have not been resolved yet. 

In the scope of flight control the approach of adaptive control has been used for the 

control of systems with large uncertainties and nonlinearities and for control of aircraft 

in adverse conditions (damage, failure). In both cases the considered system is 

subject to large uncertainties, however, in the first case, uncertainties are usually 

smaller and adaptation can be slower. In difference, the case of damage constitutes a 

far off-nominal flight condition with a large number of effects that deteriorate the 

stability and controllability. This requires for fast adaptation and reconfiguration due to 

the large uncertainties that can render the system unstable. Furthermore, the loss of 

control effectiveness can require for automatically adjusting the control allocation to 

exploit control redundancy in order to preserve controllability. This might also include 

the use of control effectors that are usually not used for flight control, like spoilers or 

engine thrust. However, limited control authority and especially the use of slow 

actuators poses a difficult task due to time scale separation for different actuators, 

and these problems have still not been rigorously addressed. 

Especially in recent years Model Reference Adaptive Control (MRAC) has gained 

enormous attention and popularity in the aerospace community. Successful flight test 

demonstrations, significant advances in the theoretical framework (especially with 

respect to stability and robustness), and the consensus to jointly define certification 

strategies and criteria for adaptive flight controllers are leading to an overwhelming 

multitude of new methods and approaches appearing in publications and 

conferences. As everybody represents the theories and applications in very different 

ways, they often seem to be far apart and different from each other although they are 

close together. The system model used for controller design is often subject to 

parameter uncertainties or the parameters of the system to be controlled might even 

change over time. These uncertainties or changes can lead to performance 

degradation or even instability for the controlled, closed loop system. Adaptive control 

offers an approach for online adaptation to maintain the desired controller 

performance in the presence of parameter uncertainties. 
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 History in Adaptive Flight Control 1.1

The demanding control task arising for newly developed high performance aircraft in 

the beginning of 1950’s fueled research efforts in the field of adaptive control. 

Because these aircraft operate at a wide range of speeds, altitudes and angles of 

attack where the parameter variations are large and nonlinearities become visible such 

that the classic, linear, fixed gain controller design posed a difficult challenge. 

Adaptive control was by definition seen as a solution to the problem: ”A self-adaptive 

system will be defined as one which has the capability of changing its parameters 

through an internal process of measurement, evaluation, and adjustment to adjust to a 

changing environment, either external or internal to the vehicle control” [7]. Thus the 

main idea was to eliminate the need for gain scheduling by using an automatic 

adjustment algorithm for the controller parameters which provides consistent 

performance and handling qualities over the complete flight envelope. 

The first adaptive flight tested adaptive control system was developed by Honeywell 

and based on a self-oscillating adaptive concept, where the gain is kept as high as 

possible [8] [9]. This concept was at first tested on an F-94C and an F-101A aircraft, 

and after further development the MH-96 control system was finally applied and 

tested on the X-15 experimental aircraft. The adaptive flight control system was 

successfully used on 64 flights and also obtained good pilot ratings [10] but a flight 

test in 1967 ended disastrous, whereat the Pilot was killed and the aircraft destroyed. 

The reason for the crash was partly attributed to instability in the adaptive control 

system [11]. After this incident the interest in adaptive control diminished and no 

adaptive flight controller was used on a manned aircraft for over 30 years. But in the 

last decades again attention has been directed towards adaptive flight control due to 

the advancement in nonlinear control theory and the development of robustness 

modifications, where especially the MRAC concept has gained interest. In [12] and 

[13] the X-15 flight test is theoretically revisited by simulation and it is shown that with 

a provably correct adaptive controller design, which is based on a rigorous 

mathematical frame work, the crash could have been prevented. 

The Reconfigurable Control for Tailless Fighter Aircraft Project (RESTORE) was the 

next important project in adaptive flight control with the objective to increase 

survivability in the presence of unknown failures and damages [14]. The applied 

control law was based on dynamic inversion and augmented by a neural network-

based nonlinear adaptive controller that relies on the MRAC principle. This approach 

was manly promoted by the research group of Prof. Calise at the Georgia Institute of 

Technology and it was able to exploit control surface redundancy in adverse 

conditions [15] [16] [17]. Next to piloted simulation the maturity of the control concept 

was also shown in two flight tests on the unmanned Boeing/Nasa X-36 1998, where 

also control surface failure were simulated during the test flights [18]. 
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Together with the research group of Prof. Calise, Boeing also used the same MRAC 

based neural networks approach for its Joint Direct Attack Munition (JDAM). Here it 

could be demonstrated that adaptive control can reduce the dependency on accurate 

modeling and wind tunnel data and thus has the potential to save time and money. An 

adaptive autopilot was designed for use on different variants of JDAM (MK-84, BLU-

109, MK-82), successfully flight tested, and finally Boeing even implemented this 

control technology into its production [19] [20] [21] [22]. 

Wise and Lavretsky also used the MRAC approach for the Boeing X-45 Unmanned 

Combat Air Vehicle (UCAV) and evaluated the performance in simulation studies [23] 

[24]. Moreover, L1 adaptive control was also tested on a simualation of the X-45, 

where actuator faiures have been investigated [25] [26]. 

The application of adaptive control concepts with the objective to improve fault 

tolerance was also investigated by the European Flight Mechanics Action Group FM-

AG(16) form 2004 to 2008 under the auspices of the Group for Aeronautical Research 

and Technology in Europe (GARTEUR) [27]. Next to classic Fault Detection and 

Isolation (FDI) methods and reconfiguration based Fault Tolerant Control (FTC) also 

novel methods like adaptive control were addressed. Based on a Boeing 747 

benchmark simulation model different adaptive approaches like MRAC and 

indemnification based adaptive control were evaluated. Some methods were also 

assessed in piloted simulation in the SIMONA research flight simulator at TU Delft [28]. 

In the Intelligent Flight Control System Project (IFCS) the objective was to develop a 

flight controller that can efficiently optimize aircraft performance in both normal and 

failure conditions [29]. Therefore neural network adaptive control was employed, 

where a highly-modified McDonnell-Douglas NF-15B Eagle was used. After 

Generation I flight tests were performed with a pre-trained neural network open loop 

controller that used an indirect estimation of aerodynamic parameters, in Generation II 

manned flight tests were successfully conducted with a closed loop direct adaptive 

neural network controller in 2005 [30]. For these flight tests the performance was 

evaluated for stabilator failure, and although improvements could be achieved by 

adaptation the control law also increased the pilot induced oscillation (PIO) tendency 

in some cases [31] [32]. The program ended in 2008. 

In DARPA’s (Defense Advanced Research Project Agency) Joint Unmanned Combat 

Air Systems program (J-UCAS) the objective is “to autonomously mitigate the effects 

of physical damage that could potentially occur in an air combat environment. They 

were looking for a technology that would provide a new option for surviving the effects 

of an adversary's attack, allowing the air vehicle to sustain flight and potentially 

continue its mission” [33]. Under contract Rockwell Collins (Athena) developed a flight 

control system with an inner loop MRAC controller. The FCS was tested on subscale, 

unmanned F/A-18 in June 2008, where it was shown that the system can even 

compensate for 60% wing loss and the adaptive controller could reestablish the 
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desired performance, such that the damaged aircraft was able to land autonomously 

[34]. 

Recently the Integrated Resilient Aircraft Control Project (IRAC) ended (2005-2010) 

where the purpose of the project was to provide on board resilience for ensuring safe 

flight in the presence of unforeseen, adverse conditions like faults or damage, with 

focus on current and next generation subsonic civil transport aircraft [35] [36]. The 

focus of IRAC was to investigate the applicability, evaluate, and compare different 

adaptive control methods. In the scope of the project different research groups 

applied their adaptive methods at first to a generic transport model (GTM) developed 

by NASA, which allowed high-fidelity simulation. Afterwards some methods were 

evaluated in pilot in the loop simulation on the Advanced Concept Flight Simulator 

(ACFS) [37] and investigated in flight tests on the NASA AirStar, a model-scale 

transport aircraft which is controlled by a pilot from a ground station [38]. This led to a 

large number of publications, where new problems were discovered and solutions for 

the former were presented [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] 

[53] [54] [55] [56] [57] [58]. Within the project NASA also designed adaptive control 

laws for F/A-18A aircraft, which were at first evaluated in simulation [59] [60] [61]. 

Subsequently three MRAC laws were flight tested at NASA Dryden on a modified F/A-

18A, the NASA Full-Scale Advanced System Testbed (FAST). During these flight test 

failure were simulated and handling qualities were evaluate for different maneuver 

based on Cooper-Harper ratings [62]. In general the funded research provided new 

inside and boosted the advance in adaptive control. 

Although the early problems of adaptive control could be solved, many new 

developments emerged, and a huge amount of successful applications were 

published, however, for adaptive flight control some challenges remain [63]. Especially 

certification poses many open questions that still have to be addressed. For this 

purpose verification and validation metrics have to be developed which can be applied 

to show means of compliance. Therefore, at the moment one the main research 

directions is the development of metrics which can be used to guarantee robust 

stability and robust performance of adaptive flight control systems [64] [52] [65] [66] 

[67] [68]. In this prospect also the development of analysis and validation methods has 

received recent interest [69] [70] [71] [72] [73] [74] [75] [76]. 

 Contribution 1.2

The thesis at hand is a method base work with focus on analyzing adaptive control 

architectures and investigating their applicability to flight control problems. Therefore 

the work aims at increasing the state of the art in adaptive control in general, as well 

as to raise the Technology Readiness Level (TRL) and establish requirements for 

commercial applicability and acceptance. Due to the complexity and limitation (e.g. 

plant has to be minimum phase) of output-feedback based MRAC, these methods 
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have only seldom been suggested for flight control and most publications focus on 

MRAC with assumed state-feedback, and this is also the approach chosen in this 

thesis. Some of the results presented within this work were already published by the 

author in [77] [78] [79].The scientific contribution of the thesis is given by the following 

points: 

 In the available literature the authors often present the theory in a very different 

way such that they seem to be far apart and different from each other although 

they are close together. Likewise, many modifications may seem as something 

radically different representing completely new philosophies. Though they 

undoubtedly are of great value for both science and applications, they can still 

be assigned to various elements of the standard baseline MRAC architectures 

in many cases. The thesis tries to formulate the different MRAC approaches 

and modifications in a consistent manner and allocates the special 

characteristics of the respective method to the elements concerned in the 

standard MRAC architectures [77]. By presenting the different approaches in a 

unified manner, commonalities and links between various variants and 

modifications are particularly highlighted, and similarities and differences can 

be understood much easier. Furthermore, it becomes apparent that many 

different methods are no exclusive alternatives but may well be combined. So 

dependent on the task to be accomplished, different suitable elements from 

the growing field of MRAC can be selected in a target-oriented manner to 

pursue the respective control objective in the most efficient way. Elements to 

be addressed are baseline MRAC architectures, reference dynamics, structure 

of the adaptive elements and update laws. 

 Based on a simple simulation model different methods are applied. However, 

the model is not overly simplified, as it contains higher order dynamics (e.g. 

actuators, structural filters) and time delay, which significantly limit the 

bandwidth. It gets obvious that these input dynamics can be a limiting factor 

for the achievable performance of the MRAC approach, but methods to 

prevent this performance reduction have already been suggested in literature, 

where the approach is referred to as “hedging”. One open problem for hedging 

was that no stability poof was available when it is applied to account for 

additional dynamic. During this work similarities of applying a hedging signal to 

the reference model, used in model reference adaptive control to account for 

dynamic constraints in the input channel, and L1 adaptive control have been 

discovered. In particular it is shown that in the case where the control 

effectiveness is known, both approaches are exactly the same, where the 

contribution of the L1 theory is the mathematically correct framework that 

provides a stability poof/condition which has not been available for the 

hedging approach [78]. Hence L1 adaptive control can be used to provide a 

stability proof for the modified reference model obtained by hedging. This also 
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means that the same performance guarantees as provided by L1 adaptive 

control hold. 

 In difference to most publication, were only very particular uncertainties are 

considered, the robust performance w.r.t. all kinds of possible uncertainties is 

considered. Here it could be observed that standard direct MRAC approaches 

reduce the robust performance w.r.t. unmatched uncertainties in comparison 

to a baseline controller. Therefore a novel method is developed that 

additionally estimates the unmatched parameters and utilizes these estimates 

to adjust the reference model [79]. By means of this modification it is 

guaranteed that the reference trajectories remain achievable and thus the 

robust performance of the baseline controller can be reestablished. Note that 

within this work also an indirect MRAC approach is presented for MIMO 

(Multiple-Input Multiple-Output) systems, which automatically accounts for 

unmatched uncertainties. This is achieved by adjusting the identification 

model. To the authors best knowledge these approaches, designed to account 

for unmatched uncertainties, cannot be found in the MRAC literature. 

During the robustness analysis it was also observed that the robust 

performance w.r.t. certain matched uncertainties can deteriorate compared to 

a baseline controller. This could be attributed to the restrictiveness of the 

reference model, which “allows” only one reference trajectory. In difference the 

performance requirements allow a certain envelope for the response, which 

means that matched plant uncertainties can be tolerated to a certain extent. 

Therefore a solution is suggested, where the control signal is not augmented 

as long as the uncertainties are within a predefined set, and instead the 

reference model is adjusted to follow the plant [79]. 

 Finally the discussed control methods are applied to a full nonlinear model of a 

transport aircraft. Here the objective is to maintain good handling qualities over 

the complete flight envelope for the case when scheduling of the baseline 

controller is no longer possible due to the loss of the airspeed measurement. 

For this problem also the longitudinal response is considered. The applied 

control methods for the problem are L1 piecewise constant, direct MRAC. 

Results are also compared to an estimation of the airspeed by application of 

an Extended Kalman Filter (EKF). 

 Outline 1.3

The dissertation starts in Chapter 2 with a description of the simulations models that 

are used to evaluate the investigated adaptive control algorithms. Here also the 

problems are stated, which should be solved within this thesis by adaptive control. 

In the subsequent Chapter 3 the requirements, which have to be satisfied, are defined. 

Particular interest is drawn to requirements for robust performance, as one of the main 
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claims of adaptive control is the improved performance w.r.t. parametric uncertainties. 

Hence, special focus is directed to the assessment of this property. 

The basic concept and theory of MRAC with state feedback is explained in Chapter 4, 

where the fundamental difference of direct and indirect MRAC is pointed out and the 

parameter update laws and their stability properties are covered. 

Following, different modifications of the reference model dynamics are discussed in 

Chapter 5. These modifications provide methods to account for certain issues that are 

not covered by the basic approaches in Chapter 4, like constraints in the input 

channel, or unmatched uncertainties. 

5.2 shows the most basic robustness modifications, which were suggested in the 

standard literature on adaptive control, with the objective to guarantee robustness in 

the presence of non-parametric uncertainties. 

A selection of update law modifications that should improve certain estimation 

properties like speed, transient characteristics, or long term learning are presented in 

5.3. 

The theory of L1 adaptive control is revisited in Chapter 6. Special interest is drawn to 

highlight the similarities of L1 adaptive control and the application of a hedging signal 

to the reference model. Furthermore the chapter also contains a section on L1 

piecewise constant control, as it was suggested within the framework of L1 adaptive 

control. However, as it is pointed out, it is not an adaptive control approach. 

While in the previous chapter a simple simulation model is used to assess the different 

methods and modifications, Chapter 7 contains the application of adaptive control to 

a full nonlinear model of a transport aircraft. For the particularly considered problem 

some selected adaptive control methods and an EKF are applied and evaluated. 

Concluding this dissertation, Chapter 8 gives a summary of the thesis and provides a 

discussion and assessment of the methods that have been investigated. Moreover, 

future research directions are suggested. 

 
 

 



 

 
 
 

  Chapter 2
 
Model Description and 
Problem Formulation 
 

In the scope of this thesis two different models will be used to investigate the 

capabilities of adaptive control. At first a simple short period model is used as a 

benchmark for the assessment of different adaptive control strategies. The aim is to 

improve the robust performance with respect to a nonlinear uncertainty in the pitch 

dynamics. Here the nonlinearity is dependent on the fast variables of the pitch 

dynamics, i. e. the angle of attack. 

As second application example, some promising techniques are applied to a full 

nonlinear model of a transport aircraft. The problem considered here is the loss of the 

calibrated airspeed measurement, which is used as a scheduling parameter for the 

baseline controller. The augmenting adaptive control law should account for this loss 

by maintaining a homogenous response. As the air speed changes slowly compared 

to the short-period dynamics, in contrast to the previous problem, the augmenting 

control law has to adapt to slow changes of the dynamics. 

 Short Period Pitch-Up Model 2.1

 Plant Dynamics 2.1.1

The following model is based on the linearized short period dynamics of a large 

transport aircraft and includes a nonlinear pitch-up. The linear approximation is valid 

for steady state horizontal flight condition with a true airspeed of                
 

 
 . 

Pitch-up is a phenomenon where the pitch stiffness decreases with increasing angle 

of attack. As a result the assumed linear relation between angle of attack and pitching 

moment no longer holds. Due to the decreasing pitch-stiffness the system becomes 

less stable, which leads to a poor response for the pilot. This simple model is chosen 

for a first assessment of the capabilities of different adaptive control algorithms, with 
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the objective to improve the performance in the presence of the pitch-up 

phenomenon. 

The system equations of the short-period dynamics with pitch-up nonlinearity are 

given by 

  ̇            (  ) 

           , 
(2.1) 

where the states of the system are the angle of attack   in radians and the pith rate   

in radians/second; the state vector is        . The elevator defection   is given in 

radians, and the outputs available for feedback are the load factor    and the pitch 

rate   in radians/second, thus         . In detail Eq.(2.1) becomes 
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(2.2) 

The coefficients of the system matrix    and the input vector    are given in Table 

2.1. Furthermore,       
 

   and                
 

 
. 

 

                  

                                          

Table 2.1: Coefficients of AP and bP 

 

With the parameters from Table 2.1 and by neglecting the nonlinearity  ( ) the 

following transferfunctions for the outputs are obtained 

   ( )

 ( )
 

                         

                  
, (2.3) 

  ( )

 ( )
 

              

                  
, (2.4) 

The pitch up nonlinearity  ( ) is determined by 

 
 ( )  {

 
    (                )      

                    
                    

 (2.5) 

and shown in Figure 2.1. This nonlinearity can also be interpreted as a break in the 

product  ̃ ( )    which is shown in Figure 2.2. 
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Figure 2.1: Pitch-up nonlinearity 

 

 

Figure 2.2: Pitch-up nonlinearity as nonlinearity 

in Mαα 

The aircraft model furthermore contains an actuator model, a model for the computer 

delay, and a model for the dynamics of the structural filters as shown in Figure 2.3. 

 

 

Figure 2.3: Short-period aircraft model with pitch-up nonlinearity 

 

The actuator dynamics are given by a third order transfer function 

     ( )  
           

                      
, (2.6) 

where   is the Laplace variable. 

The dynamics of the structural filters for the outputs    and   are determined by the 

same second order transfer functions 

     ( )  
 

                  
, (2.7) 

and the computer delay is modeled by 

     ( )  
                      

                      
. (2.8) 

Including actuator, filters, and delay, the poles and zeros of the open-loop system, 

without nonlinearity, are shown in Table 2.2 and Figure 2.4. 

By defining that the transfer functions of Eq.(2.6)-(2.8) have the following state-space 

representation  

 
 ( )( )  [

 ( )

 ( )
 |

 ( )

 ( )

]  (2.9) 

the complete open loop system can also be denoted as a state-space system: 
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(2.10) 

Within this thesis also a mixed notation of Laplace domain is used, where {  }  

denotes that the term inside the brackets is transformed from the Laplace domain to 

the time domain and in the following {  }  denotes the reverse transformation. Using 

this notation the system in Eq.(2.10) can be written by 

  ̇ ( )      ( )    {    ( )    ( )    ( )}   (  ( )) 

  ( )  {    ( ){    ( )    {    ( )    ( )    ( )} } } 
, 

(2.11) 

In Appendix A a frequency anylysis of the linear plant dynamics is prvided. In 

particular, in Figure A.1 the bode plots of the plant transfer functions from the input 

     to the filtered outputs        and      are shown. Furthermore, for feedback of the 

filtered outputs        and      the root locus plots are shown in Figure A.2 and Figure 

A.3, and the Nichols plots are shown in Figure A.4 and Figure A.5.  

 

 Poles Damping 
Frequency 

[rad/s] 

Short period           0.70 0.97 

Actuator 
     1 6.42 

        0.68 55.5 

Filter              0.71 12.6 

Filter             0,71 12.6 

Delay          0,87 139.0 

Table 2.2: Poles of the plant 
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Figure 2.4: Open loop poles of the plant 

 

 Baseline Controller 2.1.2

For the nominal plant dynamics a baseline with proportional and integral feedback is 

provided as shown in figure Figure 2.5 and given by 

       
   

          , (2.12) 

where        is the load factor reference command and   
          , with the 

integrated error    ∫(         )  . Furthermore,   
  is the feedback gain vector 

and    is the feedforward gain. The representation of Figure 2.5 is used to highlight 

that the system is augmented by the additional integrator state. However, if the 

controller gains are scheduled, as it is normally done for the real aircraft, then the 

integral gain must be in front of the integrator. 

 

 

Figure 2.5: Baseline controller and plant 
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When the short period dynamics are augmented by the integrator it can be denoted 

by 

  ̇ 
    

   
    

     
     (  ) 

  
    

   
    

 , 
(2.13) 

where the states and the outputs of the system are augmented by the integrator state 

  , and hence the augmented state vector becomes   
        . In detail the 

augmented open loop system can be denoted by 
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(2.14) 

Applying the baseline control law of Eq.(2.12) to the reduced system in Eq.(2.14) (w/o 

actuator, delay, and structural filters) the poles given in Table 2.3 are obtained for the 

closed loop system. 

 

 Poles Damping Frequency [rad/s] 

Short period                     

Integrator              

Table 2.3: Poles of the reduced closed loop system 

 

Including actuator, delay, and structural filters, the baseline control law places the 

eigenvalues of the closed loop nominal dynamics at the poles given in Table 2.4. And 

for the transfer function from the reference command   to the measured load factor 

also the zeros are given in Table 2.4. 

 

Poles Damping Frequency [rad/s] Zeros 

                               

          i                   

                              

                           

          0.71              

              139  

Table 2.4: Poles and zeros of the transfer function from r to nZ,fil plant 
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Table 2.5 summarizes the robust stability metrics of the baseline controller. In 

particular the Gain Margin (GM), the Phase Margin (PM), and Time-Delay Margin (TDM) 

are calculated for the input channel. The GM is defined as the maximum gain, the PM 

is defined as the maximum phase delay, and the TDM is defined as the maximum 

amount of time-delay [64], which the system can sustain before instability occurs. All 

three margins are defined for the input channel. This metric is later used as a measure 

for robust stability of the adaptive systems. 

 

GM PM TDM 

15.7 dB (at 4.95 rad/sec) 70.4 deg (at 1.03 rad/sec) 1.19 sec (at 1.03 rad/sec) 

Table 2.5: Gain, phase, and time-delay margin of baseline controller 

 

The Bode plot of the open loop controlled plant, is shown in Figure 2.6, the Nichols 

plot is displayed in Figure 2.7 and the Nyquist plot is shown in Figure 2.8. 

 

 

Figure 2.6: Bode plot of open loop controlled plant 
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Figure 2.7: Nichols plot of open loop controlled plant 

 

Figure 2.8: Nyquist plot of the open loop controlled plant 
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 Problem formulation 2.1.3

For the nominal system, without nonlinearity, the closed-loop shows the desired 

response. However, in the presence of the nonlinearity the performance largely 

deteriorates with increasing load factor command (see Figure 2.10). This results from 

the destabilizing effect of the nonlinearity in higher  -regimes. 

To obtain an ideal response in the presence of the nonlinearity, it would be necessary 

to cancel the nonlinearity with a feedback signal. Due to the fact that the nonlinearity 

is a function of the angle of attack this is not directly possible, as   is not an available 

feedback signal. However, for the considered case the relationship between   and    

is linear, and so, in close approximation, it can be assumed that    
         

 
    , 

and thus  ( ) can be transformed to   (  ). That means the nonlinearity can be 

canceled in good approximation with the feedback signal    
    

 

  
  (  ). This is 

shown in Figure 2.9. In Figure 2.10 the response with the nonlinear feedback signal is 

shown in comparison to the system response with and without nonlinearity, in the 

presence of the baseline controller. 

 

 

Figure 2.9: Closed loop with ideal, nonlinear feedback 

 

It should be further noted, that the presence of actuators, filters and delay prohibits an 

exact cancelation of the nonlinearity. However, by using the feedback signal     a very 

good response can be achieved, and this response will be used as a benchmark for 

the assessment of the adaptive controllers. Obviously, the nonlinear feedback also 

leads to a new input signal, which in the following is assumed to be the ideal input 

benchmark, and it is shown in Figure 2.11 together with the actuator rate and 

acceleration. 

Form the previous explanation the objective is to augment the baseline controller with 

an adaptive controller that solves the considered problem in a way that the response 
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should be as close to the ideal load factor trajectory as possible. Furthermore, the 

adaptive controllers should not only provide good performance for the considered 

uncertainty, but they should satisfy some general requirements for robust stability and 

performance, which are defined in Section 3.1. Based on the achievable performance 

and the defined requirements different approaches and modifications are compared. 

 

 

Figure 2.10: Plant response with baseline control law and nonlinear feedback 

 

Figure 2.11: Control signal, rate, and acceleration of baseline control law and nonlinear feedback 
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 Full Nonlinear Transport Aircraft Model 2.2

 Plant Dynamics 2.2.1

In the following the model of a large transport aircraft is described. For this model the 

loss of scheduling parameters and the benefit of adaptive control will be investigated. 

As the main influence on the scheduled controller gains stems from the scheduling 

with the calibrated airspeed     , the evaluation also focuses on the loss of the      

measurement for scheduling purpose. 

In Table 2.6 the inputs to the model, which are available for control are summarized, 

with the abbreviations that are used in the course of this thesis. The important input 

variables are elevator deflection     , aileron deflection     , and rudder deflection 

    . Because the model provides auto thrust, the thrust lever is not considered as an 

input variable. 

To give an idea of the flight envelope the feasible trim points for a horizontal wings-

level flight are shown in Figure 2.12. Although the model allows to obtain trim points 

for Mach>1, these solutions are unrealistic and a reasonable upper bound for the 

Mach number can be assumed with            which is the MMO for the aircraft 

considered above 30000 feet. Below the maximum operating speed is not defined by 

the Mach number but by the speed: VMO=330kt. The speed and height limits which 

are enforced by protections are also shown in Figure 2.12 and defined by the black 

contour. 

 

Figure 2.12: Flight envelope 

 

0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5
x 10

4



44  MODEL DESCRIPTION AND PROBLEM FORMULATION 

 
 
 

2.2.1.1 Equations of Motion 

In the following the equations of motions of the rigid body aircraft model are presented 

as they can be found in the standart literature [80] [81] [82]. 

2.2.1.1.1 Force Equations / Principle of Linear Momentum 

The principle of linear momentum denoted in the body-fixed frame is given by 

  ( ̇ 
 )

 

  
 (     

 )  (     
 )

 
 (       

  )
 

 (       
  )

 
 (   )  (  
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, (2.15) 

where (  
 )

 

 
 is the kinematic velocity of the aircraft center of gravity   w.r.t. the Earth-

Certered-Earth-Fixed frame (E-frame), denoted in the body-fixed frame ( -frame) and 

( ̇ 
 )

 

  
 is the time derivative of (  

 )
 

 
 taken in the  -frame. Here a non-rotating flat 

earth is assumed. (   )  is the angular velocity of the aircraft with respect to the 

NED-frame (  -frame). The resulting force consist of an aerodynamic force      
  the 

act on the the aerodynamic center  , the gravitational force      
  that act on  , and 

two propulsive forces which are produce by the left (       
  )

 
 and right (       

  )
 

 

engine, respectively. The propulsive act at the mounting point of the left and right 

engine,    and   , respectively. By denoting the forces in their respective frames we 

obtain 
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. (2.16) 

    is the transformation matrix from the aerodynamic frame (  -frame) to the  -

frame, and     from the  -frame to the  -frame. The aerodynamic force is defined by 

the lift, drag, and side-force coefficients: 

 (     
 )           (    )   ̅               ̅  (2.17) 

The dynamic pressure is denoted by  ̅  
     

 

 
,   is the wing reference area, and the 

aerodynamic coefficients are provided in the Appendix A. 

2.2.1.1.2 Moment Equations/ Principle of Angular Momentum 

The principle of linear momentum denoted in the body-fixed frame is given by 

 (  )  ( ̇  ) 
  (  )  (   )  (  )  (   ) , (2.18) 

where (  )   is the inertia tensor of the aircraft in the  -frame. The aerodynamic 

moment      
  is not directly calculated at  , but at the aerodynamic center  . 

Therefore, for the resulting moment at the center of gravity the aerodynamic forces 

must be taken into account. Furthermore, the propulsive forces also produce a 

moment at the center of gravity, determined by the lever arm between   and the 

mounting point of the left and right engine,    and   , respectively. 
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The aerodynamic moments are determined by the moment coefficients in the form 

 (     
 )  (    )                   , (2.20) 

where   is the reference chord length. The moment coefficients are divided into  

 (    )  (         ) 
 (      )

 

 

  
  

   (      )
 
 , (2.21) 

which are given in the Appendix A.   is the vector of control inputs. 

2.2.1.2 Actuator Models 

All actuators are modeled by first order lags as shown in Figure 2.13, where the time 

constants   are given in Table 2.6. Furthermore, the maximum and minimum rates are 

limited and the limits are also provided in Table 2.6. 

 

 

Figure 2.13: Actuator models 

 

 Symbol                        ̇    [
   

 
]  ̇    [

   

 
]   

Aileron                      

Elevator                     

Rudder                      

Table 2.6: Parameters of the actuator model 

 

 Baseline Pitch Control Law 2.2.2

The inner loop longitudinal control law provides tracking for a commanded load factor. 

      . As the measured load factor             is given at the installation point of the 

Inertial Reference System (IRS) this measurement should track the command. The IRS 

is installed ahead of the center of gravity and near the cockpit. The elevator deflection 

is given by 

                      
       (2.22) 

    is a feedforward signal determined by 
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        (        )         (2.23) 

where the gain    (        ) is scheduled with the estimated calibrated airspeed 

        , which is given in Eq.(2.28), and the gain change is shown in Figure 2.14. 

        provides integral error feedback of the form 

 
        ∫   

(        )  [            (              )]     

 ∫   
(        )     

     

(2.24) 

With         
   ( )

   ( )
 being the necessary acceleration in direction of the z-axis of the 

b-frame to counteract the gravitational force. Here the integral gain    
(        ) is 

only scheduled with the calibrated airspeed as displayed in Figure 2.15. 

      
 provides feedback of the load factor 

       
    

(        )  [                ]  (2.25) 

The feedback gains for the load factor are scheduled with the calibrated airspeed 

   
(        ) as shown in Figure 2.17. 

      provides feedback of the pitch rate, which is realized by means of a washout 

filter on  , whith a time constant of 0.05s. This washout filter provides a  ̇, which is 

zero for a steady state turn where   takes a constant value. 

         (        )     ( )    (2.26) 

where the washout filter is given by 

    ( )  
  

    
. (2.27) 

The feedback gain for the pitch rate is again only scheduled with the calibrated 

airspeed   (        ) and displayed in Figure 2.16 

         is the estimated velocity given by 

 
        ( )        ( )  (         ( )     ( )        ( )

         ( )

         ( )
) (2.28) 

Where    is the acceleration along the trajectory (in direction of the kinematic 

velocity). And       ( ) and       ( ) are stable first order lag transfer functions with 

time constants of 2 seconds and 5 seconds, respectively. 
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Figure 2.14: kFF(VCAS,EST) 

 

 

Figure 2.15: keI(VCAS,EST) 

 

 

Figure 2.16:Kq(VCAS,EST) 

 

 

Figure 2.17: KnZ
(VCAS,EST) 

 

 Problem Formulation 2.2.3

As already mentioned the considered problem for the full nonlinear model is that the 

measurement of the calibrated airspeed is lost, and therefore the main parameter 

         cannot be used anymore to schedule the baseline control law. For the 

conventional control law, it follows, that the loss of measurement has to be detected 

and a robust set of controller gains must be chosen. Here it is considered that the 

gains of the baseline controller are fixed to the values that are obtained when the 

scheduling parameter          equals 320kts. This means, controller gains close to the 

boundary of the envelope are chosen. From Figure 2.14, Figure 2.15, Figure 2.16 and 

Figure 2.17 we can see that these gains are the smallest possible gains of the baseline 

controller. This is rather conservative and provides a more challenging task for the 

adaptive controller. 

With the fixed robust set of gains the control law can only provide the desired 

performance in a certain region of the envelope, but if the airspeed deviates too much 

from this region the handling qualities of the aircraft will deteriorate. So the objective 

of the augmenting adaptive control law will be to maintain the desired performance 

and handling qualities as far as possible for the complete flight envelope. In this case 

the augmenting control law has to adjust to slowly changing parameters, as the 

dynamics change with the variation of airspeed, and the baseline controller does not 

account for this due to the loss of scheduling information. 
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In difference, for the pitch-up problem the augmenting control law has to adjust 

extremely fast to the nonlinearity which is dependent on the angle of attack, and 

hence it depends on a state that has a much faster dynamics than the calibrated 

airspeed. 

 
 

 



 

 
 
 

  Chapter 3
 
Requirements and Evaluation 
 

As a manned aircraft is considered the handling qualities are of utmost importance. 

That means the control laws must not only provide robust stability, but robust 

performance is the key property of the control law to make the aircraft controllable for 

the pilot. The two most important specification documents for flying qualities are MIL-

HDBK-1797A and MIL-F-8785C, and MIL-DTL-9490E “establishes general 

performance, design, development and quality assurance requirements for the flight 

control systems”. Actually these specifications are for military aircraft, however they 

are also used as guidelines for civil aircraft certification. 

To separate different levels of flying qualities the specification in MIL-F-8785C defines 

three different levels as shown in Table 3.1. These different levels of flying qualities are 

directly linked to pilot’s opinion, and thus, to actually obtain a classification, flight tests 

need to be conducted to obtain and evaluate ratings from different pilots. The most 

prominent pilot opinion rating is the Cooper-Harper Rating and the different levels 

actually originate from this scale [83]. 

 

Level 1 Satisfactory Flying qualities clearly adequate for the mission Flight 

Phase 

Level 2 Acceptable Flying qualities adequate to accomplish the mission Flight 
Phase, but some increase in pilot workload or degradation 
in mission effectiveness, or both, exists. 

Level 3 Controllable Flying qualities such that the airplane can be controlled 
safely, but pilot workload is excessive or mission 
effectiveness is inadequate, or both. Category A Flight 
Phases can be terminated safely, and Category B and C 
Flight Phases can be completed. 

Table 3.1: Definition of handling quality levels according to MIL-F-8785C 
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According to MIL-F-8785C here a large and heavy transport aircraft corresponding to 

Class III is considered, where only nonterminal flight phases of category B (e.g. cruise, 

climb, loiter) are investigated. As the assessment of all handling quality requirements 

provided in the certification guidelines would be beyond the scope of this thesis, a set 

of reduced time domain requirements is chosen. Furthermore, many of the 

requirements are frequency domain requirements or defined for linear low order 

equivalent systems. These low order equivalent systems are derived from matching 

the frequency response of a linear higher order system to a system containing only the 

rigid body dynamics, in the frequency domain of interest. If a nonlinear control system 

is used a linear model approximation that is accurate enough over certain domain in 

the state space cannot always be obtained. Hence many of the criteria cannot be 

directly applied when a nonlinear control system is used. Especially during the 

transient phase, where the parameters are adjusted, the system dynamics can vary 

significantly due to the influence of the adaptive controller. Thus, frequency domain 

methods, like the one suggested in [84], where the frequency response is obtained 

experimentally from Bowditch-Lissajous curves, only provide meaningful results when 

it is guaranteed that the adaptation dynamics does not affect the rigid body dynamics. 

In the following the augmenting adaptive control laws are assessed by the chosen 

time domain criteria. Therefore the response w.r.t. a chosen set parametric 

uncertainties is evaluated, as explained in the following section. For adaptive control it 

is in general an open question what kind of performance metrics are feasible for the 

assessment. In [52] and [64] some general performance metrics for adaptive control 

are applied, where in the following some of them are used for the tuning of the 

controller parameters.  

Even though robust performance is most important, the certification also requires a 

proof of robust stability. Because the stability results of adaptive control systems are 

all based on Lyapunov theory, with the attempt to prove global stability, complete 

knowledge of the system would be necessary to assess the robustness properties. As 

complete knowledge of the system dynamic is rarely available, it is more traceable to 

design a control system to satisfy certain robustness margins as in classic control 

theory. The most prominent certification criteria are gain and phase margin, for which 

MIL-DTL-9490E requires under normal conditions for each feedback channel 6dB and 

45deg, respectively. Though the classic certification criteria, like gain and phase 

margin, do not guarantee stability in a mathematical exact sense, but rely on a vast 

amount of experience, they are valuable and traceable margins to account for system 

uncertainties. Since the adaptive system is inherently nonlinear, methods and metrics 

from classic linear control theory like gain and phase margin, Bode plots or Nyquist 

diagrams are not applicable, and reliable stability margins to assess the robustness of 

adaptive control systems in a unified and accepted framework are not available yet. 

Although certification criteria for adaptive flight control systems are not available yet, 

first proposals are on the table. As mentioned above the concept of phase margin and 
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gain margin cannot be applied to the adaptive control system. Actually, the gain 

margin of the adaptive system is infinity because any gain in the plants input channel 

can be contributed to the matched uncertainties, and thus is compensated by the 

adaptive parameters [85] [64]. In difference, the phase margin does not even exist for 

adaptive systems due to the inherent nonlinearity. An approximate phase margin can 

only be calculated if the adaptive parameters have converged to a steady state value 

or if the adaptation is switched off and the adaptive parameters are frozen. This is why 

a time delay margin has been commonly suggested as a replacement for the phase 

margin [66] [86] [69] [73]. Though the time delay margin is a suitable robustness 

metric, the problem is that no analytic method, which can be used in a unified 

framework, is available for computing it. For example a method for estimating the time 

delay margin has been proposed in [66] by means of approximating the time delayed 

system with a Pade approximation. But the theoretically derived lower bounds are 

conservative compared to the time delay margins obtained in simulations. 

Furthermore, a method for the computation of the time delay margin via the 

Razumikhin Method has been proposed in [73]. Even good results for estimating the 

time delay margin could be achieved for scalar systems, the method has not been a 

applied to higher dimensional plants and is not ready to be used in a unified 

framework. So at the moment the best way to compute the time delay margin is by 

simulation, and this is the way it was computed in this thesis. In [65] an interesting 

assessment can be found, where the robustness of the adaptive system w.r.t. time 

delay margin and input gain variation is analyzed by Monte Carlo simulation and 

compared to the analytic results of a linear controller. 

  Requirements for the Short Period Model 3.1

 Performance Metrics 3.1.1

According to the pitch-up problem stated in Section 2.1 the objective of the adaptive 

augmentation will be to improve the response to load factor commands in the 

presence of the nonlinearity. Therefore boundaries for the load factor step response 

are defined based on the following parameters: maximum overshoot, 80% rise time, 

5% settling time, 1% settling time, t1, t2, and t3 as shown in Figure 3.1. The 1% settling 

bound is used, to ensure that no significant limit cycle oscillations are caused by the 

nonlinear control system, although MIL-F-8785 is less restrictive on the requirement 

for sustained residual oscillations, as it only requires the amplitude of the load factor 

to be less than 0.05g in calm air for Level 1 and 2. 
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Figure 3.1: Definition of the load factor response boundaries 

 

Based on these parameters three different boundaries are defined associated with 

three different levels of handling qualities (HQ). These boundaries are shown in Figure 

3.2 and the associated parameters are given in Table 3.2. 

Although the step response can be used to draw conclusions on the responsiveness 

of the control system, it should be noted that this kind of discontinuous input 

characteristics are not the only inputs issued by the pilot. This means the control law 

must be also tested in pilot in the loop simulation, and only by this it can be verified 

whether the results will really agree with pilot opinions [83]. It would be necessary to 

show that performance requirements are met for all expected input signals, but due to 

the lack of analytice performance bounds for nonlinear adaptive control systems this 

can be only shown by methods like Monte-Carlo-Simulation which is beyond the 

scope of this thesis. 

 

HQ Level 1 HQ Level 2 HQ Level 3 

Overshoot < 0.10 
80% Rise time < 4s 

5% Settling time < 6s 
1% Settling time < 10s 

t1=2 
t2=5 
t3=2 

Overshoot < 0.20 
80% Rise time < 6s 

5% Settling time < 8s 
1% Settling time < 12s 

t1=2 
t2=7 

t3=2.2 

Overshoot < 0.30 
80% Rise time < 8s 

5% Settling time < 10s 
1% Settling time < 14s 

t1=2 
t2=9 

t3=2.4 

Table 3.2: Parameters for the load factor response boundaries 
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Figure 3.2: Load factor response boundaries for different HQ levels 

 

 Evaluation 3.1.2

The robust performance of the augmenting control laws will be evaluated based on 

step inputs together with the mentioned requirements for different kinds of 

uncertainties in the linear plant model of Eq.(2.1) without the pitch-up nonlinearity 

  ̇             

             , 
(3.1) 

where   is an assumed uncertainty in the control effectiveness. The results are 

compared to the performance of the baseline control law. In a first step the 

performance is evaluated over a grid of uncertainties in the coefficients determining 

the pitch stiffness    and the pitch damping   , which can be considered as 

matched or affine uncertainties, as the elevator predominantly produces a pitching 

moment and almost negligible lift force. The results for these kinds of uncertainties are 

shown in Figure 3.3, where the blue dot marks the nominal condition for which the 

controller is designed. Furthermore, the performance is evaluated for unmatched 

uncertainties in the coefficient   , where the results for the baseline controller are 

shown in Figure 3.4. Finally the performance is assessed for uncertainties in the 

control effectiveness  , which is equivalent to an uncertain gain in the input channel of 

the plant. The results of the baseline controller are shown in Figure 3.5. 

As the baseline controller is linear, the evaluation is only performed for one input 

signal. Due to the nonlinearity of the adaptive control laws the evaluation will 

performed based on two step inputs with different magnitude: 1g command and 2g 

command. It should be noted that for adaptive controllers, this evaluation addresses 

the worst case, where uncertainties occur abruptly and the transient system response 

is considered. 
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Figure 3.3: Robust performance of baseline controller for uncertain M𝛂 and Mq 

 

 

Figure 3.4: Robust performance of baseline controller for uncertain Zα 

 

 

Figure 3.5: Robust performance of baseline controller for uncertain λ 
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 Requirements for the Full Nonlinear Transport Aircraft 3.2

 Performance Metrics 3.2.1

The following performance requirements roughly reflect the real response requirement 

for the type of considered aircraft which are used as design objectives for the baseline 

controller under nominal conditions. 

 Load factor step response 3.2.1.1

For the full nonlinear model a steady state load factor command cannot be followed 

by the plant for an arbitrary time. Therefore, only a reduced set of the metrics, which 

were defined in Section 3.1, is used and given in Table 3.3. 

 

HQ Level 1 HQ Level 2 HQ Level 3 

Overshoot < 0.10 
80% Rise time < 4s 

Overshoot < 0.20 
80% Rise time < 6s 

Overshoot < 0.30 
80% Rise time < 8s 

Table 3.3: HQ criteria for load factor response 

 

 Pitch rate response 3.2.1.2

The desired response of the pitch rate is determined based on the overshoot, and the 

assessment criteria is shown in Table 3.4 

 

 HQ Level 1 HQ Level 2 HQ Level 3 

Overshoot 
         

   
 Overshoot < 0.3 Overshoot < 0.6 Overshoot < 1 

Table 3.4: HQ criteria for pitch rate overshoot 

 

 Control Anticipation Parameter 3.2.1.3

The Control Anticipation Parameter (   ) is usually defined for a second order 

(equivalent) system. It is an important handling quality parameter, as the pilot predicts 

the resulting steady-state load factor from the initial pitch rate acceleration. Thus     

is defined by the pitch rate acceleration at      divided by the resulting steady-state 

load factor 

     
 ̇( )

  ( )
. (3.2) 
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For a second order equivalent system     can also be defined by 

         
 (      )⁄ , and thus it also provides a frequency specification. The 

denominator (      ) accounts for the effect of the zero    
 in the numerator of the 

pitch response. 

However, as already mentioned     can only be calculated in this way for a second 

order (equivalent) system without time delay, as for example with actuator dynamics 

the initial  ̇( ), following a step input, will always be zero. Therefore, in the following 

    is calculated from maximum pitch rate acceleration 

 
    

 ̇   

  ( )
 (3.3) 

as it is mentioned in MIL-HDBK-1797A and shown in Figure 3.6. 

Regions for    , which are associated with different Levels of flying qualities, are 

provided in MIL-HDBK-1797A and MIL-F-8785C. The specified values are shown 

together with the required damping in Table 3.5. However, the defined     regions for 

different levels are quite large, and     should not only be in the defined regions, but 

should be as homogenous as possible over the flight envelope. 

 

Figure 3.6: Control Anticipation Parameter and Transient Peak Ratio 

 

The damping requirements, which are given for completeness in Table 3.5, can also 

be checked only for an equivalent low order system. Thus, in the following it is 

assumed that the damping requirements are covered by the response criteria’s from 

Table 3.3, and in particular by the defined overshoot requirements. 

 

 Level 1 Level 2 Level 3 

 Min Max Min Max Min Max 

Damping 0.3 2 0.2 2 0.15 - 

CAP 0.085 3.6 0.038 10 0.038 - 

Table 3.5: CAP requirements from MIL-HDBK-1797A for CAT B (nonterminal) 

t1t

   

   
   

 ̇   

    
   

   

 ̇   
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 Transient peak ratio, rise time, effective time delay 3.2.1.4

According to MIL-HDBK-1797A the transient peak ratio, rise time parameter, and 

equivalent time delay are also defined for second order approximations of the pitch 

response. As they are time domain criteria they are also applicable to higher order 

systems as long as a “constant” pitch rate can be identified in the short term 

response. For calculating the parameters the following measurements, defined in MIL-

HDBK-1797A and shown in Figure 3.6 are needed: 

    : Steady state pitch rate 

  ̇    : Maximum pitch rate acceleration 

   : Time difference from the instant of the step input to the time at the 

intersection of the maximum-slope tangent with the time axis. 

   : Time difference form the instant of the step input to the time corresponding 

to the intersection of the maximum-slope tangent with the steady-state line 

    : Maximum pitch rate minus steady state pitch rate 

    : Steady state pitch rate minus value at the first minimum 

 

Equivalent time delay 

Time delay and lag is in general critical in feedback control systems and for the pilot. 

Especially during tasks where precision and high bandwidth is required delay can 

largely deteriorate the pilot’s performance or even lead to pilot induced oscillations. 

The equivalent time delay parameter should provide an indicator for the amount of 

time delay which the pilot experiences and how this delay impacts the flying qualities. 

The assessment criteria from MIL-HDBK-1797A are shown in Table 3.6. 

 

Level Equivalent time delay 

1         

2         

3         

Table 3.6: Equivalent time delay parameter 

 

Transient peak ratio 

The transient peak ratio (   ) provides an indicator for the damping of the system as 

it is defined by the ratio of the first overshoot with respect to the following undershoot 

     
   

   
. (3.4) 

As the defined criteria for the load factor response also implicitly provides boundaries 

for the damping the     is somehow redundant for a system without direct lift control, 
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because feedback control does not modify the pitch rate response independently 

from the load factor response. In Table 3.7 the maximum     values for the different 

HQ Levels provided in MIL-HDBK-1797A are shown. To calculate the    , the steady 

state pitch rate must be known which is difficult to obtain for a nonlinear model. This 

is why the     is not used in the following assessment. 

 

Level    /     

1  0.3 

2  0.6 

3  0.85 

Table 3.7: Transient peak ratio parameter 

 

Rise time parameter 

The rise time parameter provides an indicator for the responsiveness of the system by 

calculating the time difference 

          (3.5) 

and a conclusion on the handling quality level can be drawn from the data provided by 

MIL-HDBK-1797A which is shown in Table 3.8. It should be noted that the rise time 

parameter is redundant to     as shown in MIL-HDBK-1797A. 

 

 
CAT B 

Nonterminal Flight Phases 

CAT C 

Terminal Flight Phases 

Level m  (  ) m  (  ) m  (  ) m  (  ) 

1 
 

    
 

   

    
 

 

    
 

   

    
 

2 
   

    
 

    

    
 

   

    
 

   

    
 

Table 3.8: Rise time parameter (with VTAS in ft/s) 
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 Evaluation 3.2.2

In the following two sections the handling quality criteria of the previous section are 

evaluated for the longitudinal response of the nonlinear model introduced in Section 

2.2. The evaluation is performed over the flight envelope by using a grid in Mach and 

height. Starting from a wings leveled horizontal steady state flight condition the aircraft 

response to 0.1g step command is assessed.  

In Section 3.2.2.1 the scheduled, nominal control law is investigated, and in Figure 3.7 

one can see that the nominal control law provides Level 1 handling qualities over 

almost the complete envelope. In particular, Figure 3.7 shows the evaluation of the 

load factor response metrics from Section 3.2.1.1, the pitch rate response metrics 

from Section 3.2.1.2, the equivalent time delay from Section 3.2.1.4, the rise time 

parameter from Section 3.2.1.4, and the handling qualities for a combination of these 

metrics. Furthermore, also an evaluation of     is provided in Figure 3.7. 

In Figure 3.8 and Figure 3.9 the load factor and the pitch rate response are plotted for 

a few selected points across the envelope. These points are also marked in the 

combined criteria in Figure 3.7. For a height of         the trajectories are additionally 

plotted in a magnified version in Figure 3.10 and Figure 3.11. Here the homogenous 

responses of the scheduled control law can be observed. 

In the second Section 3.2.2.2 a loss of the calibrated airspeed      as scheduling 

parameter is considered. It is assumed that the airspeed measurement is lost at 

             and thus the controller gains are fixed for this airspeed. This gain 

setting is in the following referred to as non-scheduled. As already mentioned, 

normally a robust set of stored gains would be used which provide a good trade of 

between robust performance and robust stability. However, here controller gains close 

to the boundary of the envelope are chosen which is rather conservative and provides 

a more challenging task for the adaptive controller (these gains are the smallest 

possible gains of the baseline controller). From Figure 3.12 we can see that over a 

large envelope domain the handling qualities degrade to level two. This is mainly 

attributed to a slower rise time which results from the non-scheduled gains in 

combination with lower airspeeds. The increase rise time is also obvious in the load 

factor and the pitch rate response shown in Figure 3.13 and Figure 3.14, and in the 

magnified version for           in Figure 3.15 and Figure 3.16. 
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 Scheduled Control Law 3.2.2.1

 

Figure 3.7: HQ assessment of the nominal, scheduled control law 
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Figure 3.8: Load factor response of the scheduled control law at different envelope points 

 

Figure 3.9: Pitch rate response of the scheduled control law at different envelope points 
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Figure 3.10: Load factor response of the scheduled control law at h=30000ft 

 

Figure 3.11: Pitch rate response of the scheduled control law at h=30000ft 
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 Non-Scheduled Control Law 3.2.2.2

 

 

Figure 3.12: HQ assessment of the non-scheduled control law 
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Figure 3.13: Load factor response of the non-scheduled control law at different envelope points 

 

Figure 3.14: Pitch rate response of the non-scheduled control law at different envelope points 
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Figure 3.15: Load factor response of the non-scheduled control law at h=30000ft 

 
Figure 3.16: Pitch rate response of the non-scheduled control law at h=30000ft 
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  Chapter 4
 
Basic Model Reference Adaptive 
Control Approaches 
 

Adaptive control in contrast to robust control does not assume an interval for the 

unknown plant parameters but treats them as unknown and tries to either determine 

the parameters, to then compute suitable controller gains, or to directly estimate 

appropriate control gains. Therefore the controller gains are no longer constant but 

also change dynamically, and hence they become states of the system. The product 

of a controller gain and a measured process variable is a product of two states, and as 

a consequence of this a nonlinear operation. Thus, even the adaptive control of a first 

order, scalar linear plant leads to a nonlinear system, no longer covered by classical 

linear theories. 

In particular in the MRAC approach the desired behavior is specified by a reference 

model, and measured system signals as well as the error between the plant output 

and the output of the reference model are used to update the parameters. The update 

equations are chosen in a way that the error is driven to zero and the transient 

response of the reference model is recovered by the plant. 

In the case of state feedback the assumptions for the plant are less restrictive 

because the available system signals contain more information about the system 

dynamics, whereas for the case of output feedback dynamic compensators in the 

feedback and the feedforward path are necessary in the classical approach [1] [87]. 

In general two main MRAC approaches can be identified, direct and indirect MRAC as 

shown in Figure 4.2 and Figure 4.1. All other MRAC philosophies can be considered 

as extensions, modifications or combinations of these two architectures. 

In the indirect case the plant is parameterized by the parameters  ̂ 
 , these physical 

parameters are labeled by the “hat”, and they are estimated by the adaptation 

process. In the following the real parameters are denoted by an asterisk superscript 

(e.g.  ̂ 
 ) while the estimations have no superscript (e.g.  ̂ ( )). For the estimation an 

identification model is used, which has the same parameterization as the plant, and 
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the parameters  ̂ ( ) are updated in a way such that identification model follows the 

real plant. Based on these estimates the controller parameters   ( ) (controller gains) 

are calculated by an algebraic equation   ( )   ( ̂ ( )), where the control law 

 ( )   (  ( )  ( )   ( )) has to be chosen such that the performance requirements 

would be satisfied if the ideal parameters  ̂ 
  were known. 

 

 

Figure 4.1: Indirect MRAC 

 

For the direct approach only the controller is parameterized in terms of the unknown 

controller gains   ( ) which are directly estimated by the adaptation law. For the 

adaptation the error between the pant and a reference model, which specifies the 

desired performance, is used, and the gains are updated such that the plant follow the 

reference model. The parameterization can also be interpreted as a parameterization 

of the closed loop system, where the control law has to be chosen such that the 

closed loop plant satisfies the performance requirements for the “ideal” parameters 

  
 . Here “ideal” parameters refers to the set   

  that leads to equal dynamics of the 

controlled plant and reference model. It has to be further assured that these ideal 

parameters exist, meaning that equality of the reference model and the pant must be 

achievable. 
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Figure 4.2: Direct MRAC 

 

In both, direct and indirect schemes, if the design is based on the certainty 

equivalence approach, where the idea is that the parameters estimates   ( ) and 

 ̂ ( ), converge to their true values   
  and  ̂ 

 , respectively [2], the control objective 

can be met.  

The two approaches are not necessarily equivalent, although in some cases it was 

shown that with the same amount of prior information about the plant the same results 

can be achieved [88]. 

For the state feedback approach it is considered that the whole state vector is fed 

back. This is not realistic, as in a real physical system not all system states are 

measurable and higher order dynamics are always present. However, if the part of the 

state vector that contains the dynamics within the bandwidth of interest can be 

measured and fed back, full state feedback can be assumed at first. In addition, as 

long as the dynamics of the neglected states are not strongly coupled within the 

frequency domain of interest, i.e. an adequate time scale separation w.r.t. the 

remaining states is given, robustness with respect to the neglected dynamics can be 

achieved by robustness modifications, which are discussed later. In this chapter the 

idealized case is considered, where asymptotic stability and convergence of the 

tracking error to zero can be proven. 

The following presents the multitude of different approaches, that can be attributed to 

the field of MRAC, in a unified and transparent way, illustrates the different 

contributing elements, and highlights the alternative choices available. In short, the 

contributing elements are the plant to be controlled, the MRAC baseline philosophy, 

the parameterization of the adaptive component, the parameter update laws and the 
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reference model or identification model. To give an idea, the different features are 

addressed here in short: 

Plant to be controlled / Plant transformations: 

The plant to be controlled from the MRAC controller point of view does not necessarily 

have to be the unmodified physical plant. So if for example a conventional controller is 

built around the physical plant, the integrated system consisting of plant plus baseline 

controller would be the plant as seen by the MRAC controller. Even more, if the plant 

can be transformed by means of input-output linearization (“dynamic inversion”) [89] 

[90], the combination of plant inverse and physical plant would be the plant as seen 

from the MRAC controller. To sum up, the MRAC theory covers certain classes of 

plants – predominantly linear systems with additional matched nonlinearities. In many 

cases, it is possible to transform the dynamics of the physical plant into a control task 

that fulfills the conditions to be met for the applicability of MRAC. The proper 

preparation or transformation of the plant for the application of MRAC is thus one 

element that already significantly affects the success of all subsequent steps. It also 

may be stated at this point that MRAC and dynamic inversion are in no way 

alternatives as often claimed – dynamic inversion is nothing else than a nonlinear state 

transformation of the plant in order to provide a close to linear input output dynamics. 

However, it should be noted that for this transformation, measurements of the states 

must be used, which are subject to availability, sensor uncertainties, and noise. 

MRAC Baseline Philosophy: 

As already mentioned the number of really fundamental MRAC structures is limited to 

two approaches. The first one is the direct approach, where controller parameters are 

adjusted based on the error between a reference model describing the desired 

dynamics and the closed-loop dynamics of the physical plant with the controller. The 

second one is the indirect approach, where the parameters of the plant are estimated 

by updating them based on the identification error between the measured plant 

outputs / states and those provided by the estimation model. The controller gains are 

then either directly computed from the estimated plant parameters, or updated based 

on them, by update differential equations. 

Many other MRAC philosophies can be considered as extensions, modifications or 

combinations of those two basic architectures. Thus, composite or combined MRAC 

(CMARC) [91] [92] is a combination of both, Predictive MRAC (PMRAC) uses an 

additional state estimator [93] [94]. L1 adaptive control is another approach that has 

proven to bring significant progress and is definitely a very valuable and enabling 

achievement [95] [96] [97] [98] [99]. From its interpretation it may still be considered as 

a modification of MRAC control where the high frequency content is decoupled from 

the physical plant by means of a low pass filter to keep high frequency oscillations 

from the plant while retaining high learning rates. Furthermore, as already mentioned, 

in the course of this thesis the similarity of L1 adaptive control and the application of a 
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so called hedging signal is shown. Of course, the philosophy of L1 goes much further 

as it provides guaranteed transient performance and stability margins [100], but still it 

is encouraging to see that the concept may be interpreted that way as it still remains 

complementary to all the other elements and may arbitrarily be combined with them 

(reference dynamics, approximator structure, update laws, …) 

Parameterization of the Adaptive Component: 

The classical MRAC approach uses a linear combination of the unknown parameters 

and measured variables. However, the basic theory also covers that the adaptive 

control signal/estimated uncertainty may be given by linear combinations between the 

unknown parameters and arbitrary nonlinear functions computed from measurable 

system variables [1]. This for example allows to introduce physical insight on the 

structure of the uncertainties ( e.g. of the aerodynamics of the system, inertia and 

coupling terms, etc. ) into the adaptive system without even leaving the most basic 

MRAC theory. Beyond that, more complex approximator structures are widely used, 

e.g. radial basis functions or neural networks [101] [102]. A neural network with no 

hidden layer and a linear output is still within the basic MRAC framework. The 

successful extension to networks with hidden layers can be generalized as back-

propagating parameter errors and may be accomplished using the chain rule, also for 

other structures than neural networks [103] [104]. Results where the problem may be 

even nonlinear in the unknown parameters were also presented [105] [106] [107], 

although they are not of general nature but limited to certain nonlinearities. Moreover, 

different approaches covering piecewise adaptation using constant or linear local 

values for the unknown parameters have gained recent attention [108]. 

Parameter Update Laws: 

As far as the update laws are concerned, various aspects can be generalized. First, 

the type of update is of interest – do we consider single-point updates at every time 

instant or do we consider a hybrid update scheme, where updates to the parameters 

are performed slower than the actual control process [1]. In the following hybrid 

update laws are not considered. Second, do we include information over a longer 

period in the update process, e.g. by means of integrating or filtering the error 

measurements [4] [92], by approaches like the Q-modification [109] [110] [110] [111] or 

(concurrent learning) [112] [113] [114], where past data is used to update the 

parameters based on stored data points that have to be selected in an adequate way. 

The next item concerning update laws addresses modifications to ensure stability and 

boundedness of parameters. Besides just clipping the values to a certain range or 

projection, classical approaches are the e- and -modification. 

Finally, the basic philosophy behind the update law or parts of it and the resulting 

implementation may be very different and is often motivated by the source it originally 

stems from. As stability is the main objective, most of the time the laws are derived 

from Lyapunov function candidates. However, also gradient based approaches 



72 BASIC MODEL REFERENCE ADAPTIVE CONTROL APPROACHES 

 
 
 

stemming from optimization [2] [4] [92] [109], least square methods [1] [4] [115] [116], 

or Kalman filter based estimaion can be used. It becomes clear that using other 

alternatives than the original approach may offer multiple benefits without sacrificing 

the original boundary conditions like stability constraints. For example, a gradient 

based modification can offer better convergence and transient response, or the filter 

approach can increase the robustness properties due to a variable update gain for the 

robustness modification [117], along with the availability of statistical data to assess 

the quality and speed of adaptation [118] which is very beneficial in building 

confidence for certifying such systems. 

It is important to realize that again these approaches may be well combined based on 

the control problem to be solved and they are in many ways no exclusive alternatives. 

Reference and Identification Models: 

The reference model and the reference dynamics to be selected offer many degrees of 

freedom. Whereas the original concept was to specify a linear transfer function 

matching the relative degree of the control problem, many extensions are available. 

Specifying a nonlinear reference dynamics including models of the known dynamic 

limitations of the plant provides much better control performance than the original 

approach [119] [120]. Here it is not only possible to account for the true dynamic order 

of the system and known hard and soft nonlinearities, but also to actively give priority 

to certain control objectives in the case of saturations [121] [122], or to account for the 

designers complete knowledge on the dynamics of the plant [123]. This may be either 

accomplished in an open loop feedforward manner, i.e. not affecting the stability of 

the system, but relying on pure assumptions, or by means of feedback of estimated 

responses into the reference models which is then affecting the stability of the 

reference dynamics but accounts for the actual performance of the system. The most 

prominent examples for an approach pursuing the latter concept are “training signal 

hedging” [124] [125] and “pseudo-control hedging” [126] [127]. 

Further, an error feedback to the reference model can be used to achieve an observer 

like approach, where the transient response can be improved by reducing the demand 

of the reference model [128] [129] [130]. 

As shown in this thesis the reference model can also be adjusted to account for 

unmatched uncertainties, by using their estimates to update the reference model such 

that the reference trajectories remain achievable for the plant. 

 

In many publications and in many discussions, it appears that the different 

approaches concerning plant transformations, baseline MRAC structure, 

parameterization of the adaptive component, update laws and reference dynamics are 

considered as completely different, mutually excluding concepts and philosophies. 
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This is however not true, and depending on the problem to be addressed, most 

concepts can be arbitrarily combined to solve the problem in a satisfactory way. 

 Problem Formulation 4.1

In the following it is assumed that the plant is linear in the inputs and the input matrix 

   is assumed to be known.  

Let the considered nonlinear system dynamics be given by 

  ̇ ( )      ( )      ( )   (  ( ))   , (4.1) 

where   ( )      is the state vector of the system,  ( )      is the input to the 

system,          is the unknown system matrix,          is the known input 

matrix,         is the diagonal, unknown control effectiveness matrix with known 

sign,  (  ( ))      is an unknown nonlinearity, and        is an unknown, constant 

disturbance. In the nominal case, without uncertainties,   is usually the identity matrix, 

and because the sign of   has to be known, without loss of generality, it is assumed 

that   is positive definite. It should be noted that in [1] an approach is presented 

where    is unknown, but it should be noted that this method cannot guarantee global 

stability. 

The desired behavior for the system, which should be achieved by the controller, is 

usually specified by a linear reference model of the form 

  ̇ ( )      ( )     ( ), (4.2) 

where   ( )      is the desired reference trajectory,  ( )      is the reference 

command,          is the desired, stable system matrix, and          is the 

desired input matrix. 

The following control law is chosen 

  ( )    
 ( )  ( )    

 ( ) (  ( ))    ( )    ( ) . (4.3) 

The adaptive parameters are symbolized by  ( ) and they will be dynamically 

adjusted to compensate for the uncertainties in the system. To improve readability, 

time dependency is not explicitly denoted for most cases, i.e. the argument “( )” is 

dropped.    
        is an unknown parameter to compensate a linear uncertainty in 

  .    
  (  )        is an unknown nonlinearity that can be linearly parameterized 

by    
        and has a known structure  (  )     .         is an unknown 

parameter to compensate input disturbances, and       
    is an unknown 

parameter to compensate the uncertainties in    

Without robustness modification the stability proof requires all uncertainties to be 

matched, that is, they have to be in the span of   . This gets obvious by inserting the 

control law of Eq.(4.3) in the plant dynamics given by Eq.(4.1), and comparing the 

closed loop system to the reference model in Eq.(4.2). Hence, to achieve the desired 
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linear behavior the following matching conditions need to hold, where the ideal 

parameters, marked by the asterisk superscript, need to exist so that the equations 

can be satisfied: 

            
   

        
  

 (  )        
   (  ) 

        
  

(4.4) 

This is physically reasonable because the plant can in general not follow an arbitrary 

reference model, but the space of achievable reference models is limited by the 

available control authority (  ). From Eq.(4.5) it also follows, that in order to cancel the 

nonlinearity exactly its structure has to be known. Note that, the stability properties 

mentioned in this section only hold under these conditions.  

Requiring the matching condition to hold is equal to assuming that the plant can be 

denoted by 

  ̇              (    
       

   (  )    
    

  ). (4.5) 

In the following, similar to [1] and [91] the two basic MRAC architectures are 

presented: Direct MRAC and Indirect MRAC. Here the indirect approach presented for 

the scalar case in [1] and [91] is extended to the more general state feed back case. 

Subsequently, a predictor based approach is shown which is also commonly used. 

The stability properties of the approaches are also discussed and in Appendix C.2 the 

stability definitions used in the scope of this thesis are given. 

As shown for the scalar problem in [91], also Combined MRAC approaches, as a 

mixture between the direct and indirect approach, can be used, and the approach for 

state feedback was presented [77], but it is not revisited here. In the following the 

most basic update laws are derived from Lyapunov theory and the error models are 

dynamic. It must be noted that the term Combined MRAC is also sometimes used for 

update laws that contain a combination of the “normal” Lyapunov based update and 

an update based on parameter identification by means of an algebraic error equation 

(prediction-error-based estimation) [93]. The latter approach is discussed in 5.3. 

 Direct MRAC 4.2

For the direct MRAC approach only the controller is parameterized and the controller 

gains are directly updated based on the error signal between the desired reference 

model and the plant output as shown in Figure 4.3.  

For this approach, let the control error be defined by 

         . (4.6) 

Thus, by subtracting Eq.(4.2) from Eq.(4.5) the following error dynamics are obtained 
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   (  )    
    

  )  

(4.7) 

Inserting the control law from Eq.(4.3) into Eq.(4.7) yields 
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where “tilde” denotes the parameter error. 

By choosing a Lyapunov function candidate of the form 
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(4.9) 

the following update laws can be derived to render the time derivative of the Lyapunov 

function negative semi definite under the idealized assumptions [91] (see also 

Appendix D.1) 
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            is the symmetric, positive definite solution of the Lyapunov equation 

       
      (4.11) 

with             being a symmetric, positive definite (design) matrix, that provides 

a weighting possibility for the system states.         ,         ,        , and 

         are symmetric positive definite design parameters that determine the 

adaption rate (speed of learning).  

The control law of Eq.(4.3), the reference model of Eq.(4.2), and the update law given 

by Eq.(4.10) guarantee global stability (  ,   ,       ) of the closed loop system, and 

Barbalat’s Lemma guarantees that the error converges to zero [1]: 

   m
   

  ( )    (4.12) 

I.e.   ( ) is asymptotically stable, and the trajectory of the parameter errors  ̃ ( ) is 

stable, but not asymptotically stable. The stability proof is shown in the Appendix D.1. 
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Hence, it is in general not guaranteed that the parameters converge to their true 

values. However, this is necessary in order for the transient response of the controlled 

plant to exactly follow the reference model. Parameter convergence to the true values 

will only be guaranteed in the case of a persistently exciting reference input signal   [1] 

[4]. This means that the input signal has to contain sufficient different frequencies to 

excite all dynamic modes of the system, so that the output contains sufficient 

information about the system to identify the true parameters [131]. 

The closed loop structure of considered direct MRAC approach is shown in Figure 

4.3. 

 

 

Figure 4.3: Direct MRAC with state feedback 

 

 Indirect MRAC 4.3

In contrast to the direct approach, indirect MRAC relies on identification of the plant 

parameters. The parameter estimation is based on an identification error between an 

identification model and the plant which is defined by 

     ̂    . (4.13) 

With the dynamics of the identification model given by 
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  ̇̂     ̂  [ ̂    ]      ̂   ̂  (  )   ̂, (4.14) 

where  ̂        is an estimate of the unknown system matrix,  ̂        is an 

estimate of the unknown control effectiveness matrix,  ̂  (  )        is an estimate 

of unknown nonlinearity, and  ̂ is an estimate of the constant disturbance. 

Assume that the nonlinearity in the plant can be linearly parameterized by  (  )  

  
  (  ), then the plant dynamics of Eq. (4.1) can be denoted by 

  ̇             ̂ 
  (  )   . (4.15) 

It should be mentioned that for pure parameter identification based on    the matching 

condition (see Eq.(4.4)) is not required to hold. However, the matching condition must 

still be satisfied to achieve the control objective and make the plant follow the 

reference model. 

By subtracting Eq.(4.15) from Eq.(4.14) we obtain the following identification error 

dynamics 
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(4.16) 

Using Lyapunov analysis, stable update laws for the plant parameters can be derived. 

Based on the estimated plant parameters the controller gains for the control law of 

Eq.(4.3) can either be calculated or updated by additional differential equations. The 

update requires the same amount of prior information as in the direct case, whereat 

for calculation of the controller gains a bound on  ̂ has to be realized to ensure that 

the inverse exists. 

 Calculation of Controller Gains 4.3.1

In Figure 4.4 indirect MRAC with calculation of the controller gains is shown and in the 

following the update laws for this approach are given. 

Choosing the Lyapunov function candidate 
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it can be verified that for the error dynamics of Eq.(4.16) the following adaptation laws 

make the time derivative of the Lyapunov function negative semi definite  
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Hence stable parameter estimation is guaranteed (  ,  ̂ ,  ̂,  ̂ , and  ̂     ).  

To actually control the plant in a desired behavior choose the control law 

   (   ̂)
  

[ [ ̂    ]    ̂  (  )   ̂     ]. (4.19) 

It is obvious that for this control law the inverse of    ̂ has to exist. This is similar to 

the requirement that the uncertainties have to be in the span of    as it was required 

in the direct case, because for the existence of the inverse,    has to be       , and 

thus has to span the complete state space. Inserting the control law of Eq.(4.19) in the 

identification model of Eq.(4.14) we immediately obtain 

  ̇̂     ̂      . (4.20) 

Choosing  ̂ (  )    (  ), it follows that  ̂ ( )    ( )       , and hence the 

predictor dynamics are equal to the dynamics of the reference model. This also means 

that for a stable reference model  ̂  is bounded. 

If     (  )    the left pseudo inverse   
  (  

   )    
  can be used instead of   

  . 

Additionally, it must be guaranteed that the estimation  ̂ is well conditioned and non 

singular, what can be assured by the projection operator. These requirements are 

more restrictive and require more knowledge than in the direct case, but in the next 

section it is shown that this problem can be circumvented by using additional update 

laws for the controller parameters. 

Note that if     (  )    and the pseudo inverse   
  is used, then inserting the 

control law of Eq.(4.19) in the identification model of Eq.(4.14) does not result in the 

stable system given in Eq.(4.20). But rather the identification dynamics which is not in 

the span    is adjusted, because the term [ ̂    ]   in Eq.(4.14) is not completely 

canceled. This means the estimated unmatched uncertainties are used to adjust the 

dynamics of the identification model in a way that it follows the plant. As we will see 

later this can be advantageous for the robustness w.r.t. unmatched uncertainties. In 

Section 5.1.4 it is shown how this relaxation of the matching condition can also be 

achieved for the direct and the predictor based approach, where also a stability proof 

is given. With the modification in Section 5.1.4 the predictor based approach basically 

collapses to the indirect approach, and thus a stability proof is omitted for the indirect 

approach as it would be essentially similar to the proof given in Section 5.1.4.2. 

Previously it was mentioned that in the indirect approach the controller gains are 

usually derived from an algebraic equation, which depends on the estimated plant 
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parameters. In the current case the algebraic equation is given by Eq.(4.19), what can 

be easily seen by rewriting the control law: 
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(4.21) 

This is similar to the controller in the direct case. However, as mentioned the controller 

gains   
 ,   

 ,   , and    are not directly derived from the adaptation laws but from 

algebraic equations, and hence their existence is only guaranteed if the matching 

condition holds: 
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. (4.22) 

As  ̂  and as    are bounded,     ̂     is bounded. Furthermore, by application of 

Barbalat’s Lemma [1] it can be show that 

  m     ( )    m
   

( ̂    )    m
   

(     )   . 

Inserting the control law in the identification model leads to the dynamics of the 

reference model. Thus    is equal to the error between the reference dynamics and the 

plant, and it converges to zero. This is also shown in the stability proof in the 

Appendix D.2.1. 
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Figure 4.4: Indirect MRAC with controller gain calculation and state feedback 

 

 Update of Controller Gains 4.3.2

In Figure 4.5 indirect MRAC with update the controller gains is shown. 

The control law is again given by 

     
      

   (  )         , (4.23) 

However, in difference to Eq.(4.21) the controller gains are not directly calculated from 

the estimated plant parameters but updated from additional differential equations. In 

the following the update laws for this approach are given. 

Using an appropriate Lyapunov function candidate of the form 
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(4.24) 

it can be verified that the following update laws render the time derivative of the 

Lyapunov function negative semi definite [1] [91] under the ideal assumptions. This 

means, the matching condition again needs to hold. 
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For the update laws the definition of the additional errors   ,   ,    and    is 

necessary. Based on the matching condition and the knowledge that it is desired that 

 ̂     ̂  
  converges to   ,    ̂  

  converges to   ̂ ,    ̂   converges to – , 

and    ̂   converges to    (see Eq. (4.4)) the additional closed loop estimation 

errors (matching errors) are defined: 

    [ ̂     ̂  
     ] 

   [   ̂  
   ̂ ] 

   [   ̂    ̂] 

   [   ̂     ] 

(4.25) 

With the update laws for the plant parameters given by 
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     (    
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     ( (  )  
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     [  
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(4.26) 

where          ,         ,         and          are symmetric positive definite 

design parameters that determine the adaption rate, and        provides a weighting 

for the additional errors   in the adaptation law.  

Together with the update laws for the controller parameters given by 

  ̇         
     

 ̇         
    

 ̇ 
         

    

 ̇ 
         

    

(4.27) 

the identification error and the parameters are globally stable (  ,   
 ,   

 ,   ,   ,  ̂ , 

 ̂ ,  ̂ and  ̂    ). By application of Barbalat’s Lemma it can be shown that   ,   ,   , 

   and    converge to zero asymptotically. From this, and by inserting the control law 

Eq.(4.3) in the estimator dynamics Eq.(4.14), it directly follows that the estimator 

dynamics converge to the dynamics of the reference model, and because    

converges to zero it holds that 

       (  ( )    ( ))   . (4.28) 

The stability proof is shown in the Appendix D.2.2. 

In most cases the indirect approach leads to a larger number of adaptive parameters 

than the direct approach because the complete system dynamics is estimated. Due to 

this the convergence speed in the indirect case is usually slower. However, the update 

of the controller parameter has a low pass character and it could be observed that 

better transient response can be achieved compared to direct MRAC. 
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It should be noted that the terminology is often not used in a rigorous way. As 

mentioned in [91] the presented approach could also be interpreted as a combined 

approach because the estimation errors   are used in the update law for the plant 

parameters as well as in the update law for the controller parameters.  

 

 

Figure 4.5: Indirect MRAC with controller gain update and state feedback 

 Predictor based MRAC 4.4

This structure is also commonly used in adaptive control, as for example for the L1 

architecture presented in [23] or the Q-modification presented in [109] [110] [111]. The 

term predictor based MRAC is used here because instead of a reference model a 

state predictor is used. Actually the approach can also be interpreted as an indirect 

approach, where the plant uncertainties are a-priori parameterized in an input affine 

way. This means only matched plant uncertainties are estimated.  

Therefore, the parameterized system dynamics form Eq.(4.5) can be reparameterized 
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(4.29) 

A state predictor is defined in the form of  

  ̇̂     ̂    ( ̂   ̂ 
     ̂ 

  (  )   ̂ ). (4.30) 

This state predictor is very similar to the identification model of the indirect approach, 

with the difference stemming from the input affine parameterization. To see this, 

assume a matched parameterization for the identification model of Eq.(4.14) which 

results in Eq.(4.30) 

  ̇̂     ̂  [ ̂    ]⏟      
   ̂ 

 

      ̂   ̂  (  )⏟      
   ̂ 

 

  ̂⏟
   ̂ 

. 
(4.31) 

As the approach is very similar to the indirect approach we also can apply the two 

previously discussed methods to obtain the controller gains. 

To highlight the idea, considering a simplified problem with    ,  ̂ 
  

  ,  ̂ 
   . 

The philosophy is to identify the difference between the true plant dynamics given by 

         ̂ 
  

   and the assumed plant behavior characterized by   . This 

difference    ̂ 
  

 can also be interpreted as a    and we can choose the input   to 

chancel this mismatch, as shown in Figure 4.6. Of course, for implementation the real 

difference  ̂ 
  

 cannot be used and the estimation  ̂ 
  must be applied instead. 

 

 

Figure 4.6: Philosophy of predictor based MRAC 
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 Calculation of Controller Gains 4.4.1

A similar control law as in Eq.(4.19) can be chosen, which reflects the attempt to 

cancel the uncertainties in the plant dynamics 

    ̂  [ ̂ 
     ̂ 

  (  )   ̂      ], (4.32) 

with the static feedforward gain          . Due to the use of the inverse  ̂  , the 

control effectiveness  ̂ has to be bounded in a way that it cannot become singular. 

This actually requires again more knowledge than the direct structure, however as the 

sign of   has to be known the required bound on  ̂ is reasonable. A benefit of the 

approach compared to direct MRAC is that the plant is parameterized linearly in the 

unknown parameters (see Eq.(4.29)). 

Of course the control law of Eq.(4.32) can be implemented directly as shown in Figure 

4.7, but equally one can also calculate the controller gains used in the control law of 

the direct approach given by Eq.(4.3). Therefore it is obvious by comparing Eq.(4.3) 

and Eq.(4.32) that the following algebraic equations have to apply 

   
   ̂   ̂ 

  

  
   ̂   ̂ 

  

    ̂   ̂  

    ̂      

(4.33) 

Inserting the control law of Eq. (4.32) in the predictor dynamics yields 

  ̇̂     ̂       . (4.34) 

Hence,    has to be chosen such that         in order to make the predictor 

dynamics equal to the reference model. By choosing  ̂ (  )    (  ) it follows that 

 ̂ ( )    ( )       , and hence, the predictor dynamics are equal to the dynamics 

of the reference model. 

Defining the error as the difference between the predictor states and the states of the 

plant 

     ̂     (4.35) 

we obtain the error dynamics in the form 
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(4.36) 

With this error dynamics and the Lyapunov function candidate 
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the following update laws can be derived 
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Again, the update laws render the time derivative of the Lyapunov function in Eq.(4.37) 

negative semi definite and it follows that the control law in Eq.(4.32) and the update 

laws in Eq.(4.38) guarantee stability. Barbalat’s Lemma in turn guarantees that the 

error    converges to zero asymptotically. 

 

 

Figure 4.7: Predictor based MRAC with state feedback 

 

 Update of Controller Gains 4.4.2

The approach is almost the same as in Section 4.3.2. Hence we can choose a similar 

Lyapunov function candidate: 
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(4.39) 

Again the definition of the additional closed loop estimation errors   ,   ,    and    is 

necessary. Based on the matching condition and the knowledge that it is desired that 
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 ̂  
  converges to  ̂ 

 ,  ̂  
  converges to  ̂ 

 ,  ̂   converges to  ̂ , and  ̂   

converges to    (see Eq. (4.22)) the additional closed loop estimation errors are: 
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(4.40) 

With the update laws for the plant parameters given by 
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(4.41) 

where  ̂        ,  ̂       ,  ̂       and          are symmetric positive definite 

design parameters that determine the adaption rate, and        provides a weighting 

for the additional errors   in the adaptation law.  

With the update laws for the controller parameters given by 

  ̇         
  

 ̇         
  

 ̇ 
         

  

 ̇ 
         

   

(4.42) 

it can be verified (is the same way as for the indirect approach) that these update laws 

render the time derivative of the Lyapunov function negative semi definite [1] [91] 

under the idealized assumptions, meaning the matching condition again needs to 

hold. Hence, the closed loop system is globally stable. By application of Barbalat’s 

Lemma it can be shown that   ,   ,   ,    and    converge to zero asymptotically. 

From this, and by inserting the control law Eq.(4.3) in the predictor dynamics of 

Eq.(4.30) it directly follows that the estimator dynamics converge to the dynamics of 

the reference model [1]. Furthermore, as    converges to zero it holds that 

   m   (  ( )    ( ))   . (4.43) 

Here the low pass character of the controller parameter update can easily be seen by 

inserting the closed loop estimation errors of Eq.(4.40) in the update law of Eq.(4.42), 

what leads to 
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 Short Period Example 4.5

The direct MRAC approach is applied in the following to the problem introduced in 

Section 2.1. Based on the example some of the problems of the adaptive control 

theory presented above are illustrated, which are not only present in the direct case 

but also for the indirect approach. 

The baseline control law of Eq.(2.12) is augmented with an adaptive controller as 

shown in Figure 4.8. Thus the elevator input is given by 

             . (4.45) 

The adaptive controller is chosen to employ the same structure as the baseline control 

law. Hence only a linear regressor vector is used, and the adaptive feedback is 

provided by 

       
   

      
              . (4.46) 

From the problem formulation it is clear that using a linear regressor violates the basic 

theory, because there can be no constant parameters which satisfy the matching 

condition for the nonlinear pitch-up uncertainty. When the angle of attack is smaller 

than 1.5 degree the pitch break is not visible and thus the adaptive parameters need 

to be zero. For angles of attack larger than 1.5 degree the adaptive gains would need 

to compensate for the change of sign in the pitch stiffness which is caused by the 

pitch-up nonlinearity. This problem could be solved by a linear parameterization of the 

nonlinearity and this would be theoretically possible. However, the onset of the pitch-

up is in reality not exactly known, and therefore using this knowledge in the controller 

design will provide purely theoretical results. Another approch would be a nonlinear 

regressor vector that provides a set of basis functions which allows the approximation 

of a broad class of nonlinearities. This approach is dicussed in Section 4.6. 

Furthermore, instead of the states    the outputs    are used, and thus the objective 

is that   
  tracks the reference trajectory   

 , which is obtained by implementing the 

desired reference model. This is no problem, if the output matrix   
  has full rank and 

the direct feedthrough    from the input to the output is zero. In this case a state 

transformation from   
  to   

  can be achived by   
 , such that the transformed system 

is given by 

  ̇ 
    

   
   

   
  

    
   

     
   

   (4.47) 

with 

      

    
   

   
   

 

     

    
   

 . 
(4.48) 

Although the feedthrough is small, the second condition (    ) is not satisfied for the 

current example as can be seen in Eq.(2.2). Clearly, effects like these limit the speed 

of adaptation, however, as the effect is very small it is treated as a disturbance here. 
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The error for adaptation is given by 

      
    

 . (4.49) 

For the reference model, the closed loop plant with baseline controller, including 

actuator dynamics, delay, and sensor dynamics, but without the pitch-up nonlinearity, 

is used. This means the reference model is given by the base line control law of 

Eq.(2.12), the augmented plant dynamics of Eq.(2.13), the actuator dynamics in 

Eq.(2.6), the delay in Eq.(2.8), and the filter dynamics in Eq.(2.7): 
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       ( )    ( )    ( )(  
   

     ) 

(4.50) 

 

 

Figure 4.8: Augmentation with direct MRAC controller 

 

Further prerequisities from the theory presented above are already violated by the 

simple example. On the one hand the matching condition can not be satisfied exacly 

with the linear parameterization of the adaptive control law due to the nonlinear 

uncertainty in the moment dynamics. In addition an elevator deflection does not only 

produce a moment but also a small change in the lifting force. Evenso the matching 
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approximtion as the coefficient    is small compared to   . On the other hand the 

assumtion of full state feedback is not satisfied due to the additional dynamics of 

actuators, structural filters and delay. This also causes noncompliance with the 

matching condition as can be seen in Eq.(2.12). However, the main problem results 

from the time delay that is introduced due to the additional dynamics, and this will 

also become obvious from the simulation results. 

According to Eq.(4.10) the following update law for the controller parameters is used 

  ̇       
    

       

 . (4.51) 

The adaptive controller is composed of Eq.(4.46)-(4.51). 

The parameters of the adaptive controller are tuned with the genetic algorithm 

provided by Matlab©, based on the command signal shown in Figure 4.9. For the first 

step input of 2g the pitch-up nonlinearity will be visible and here the adaptive control 

law should improve the performance. In difference, for the second reference 

command of 0.5g the system will remain in an angle of attack region, where it behaves 

linear, what means that the adaptive controller should have no impact on the 

performance provided by the baseline controller. 

For tuning the ideal response signals      , and the ideal control signal     are used, 

which are obtained from the ideal cancelation of the nonlinearity by feedback (see 

Section 2.1.3). 

 

Figure 4.9: Command signal and ideal response for the tuning process 

 

The cost function for the tuning is based on a combination of the performance metrics 

suggested in [64]. As these performance metrics use signal norms they have to be 
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thesis is given in Appendix C.1. 
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In particular the cost function is given by 

            , (4.52) 

where    is the    norm of the tracking error, and hence, a measure for the overshoot 

of the adaptive response relative to the ideal response 
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. (4.53) 

   is the    norm of the tracking error, and hence, a measure for the oscillations in the 

adaptive response relative to the ideal response 
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, (4.54) 

and    is the    norm of the difference between the ideal control signal and the 

adaptive control signal, and thus a measurement for the oscillations in the adaptive 

control signal relative to the ideal control signal 
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. (4.55) 

The tuning minimizes the defined cost function to         and yields the following 

learning rate for the adaptive controller:  

   [
       

       
       

] 

It is already evident that the tuning results in small gains for the adaptive controller, 

and the reasons therefore are the already mentioned violations of the theory, where 

especially the additional dynamics and time delays constitute the main problem. 

In Figure 4.10 the load factor and pitch rate response with the adaptive controller 

(subscript   ) and the response of the reference model (subscript  ) is shown in 

comparison to the response with only the base-line controller (subscript   ). The 

related tracking error is shown in Figure 4.11, the elevator deflection, rate, and 

acceleration is given in Figure 4.12, and the adaptive parameters are shown in Figure 

4.13. It is evident that for the first step the adaptive controller largely reduces the 

overshoot resulting from the destabilizing pitch-up by increasing mainly the pitch 

damping    (see Figure 4.13). 

In Figure 4.14 – Figure 4.19 the robust performance of the adaptive controller is 

evaluated for a 1g and a 2g step command based on the requirements defined in 

Section 3.1. It is obvious that even though the adaptive controller can improve the 

performance in presence of the pitch-up it largely reduces the overall robustness in 

terms of performance. Furthermore, it is obvious that due to the nonlinearity of the 
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adaptive controller the results for the 1g and the 2g command are different, and hence 

the linear scaling is lost. This is also reflected by the time delay margin, where the 

values, obtained by simulation, are 0.55s for the 1g command and 0.27s for 2g 

command. 

 

 

Figure 4.10: Load factor and pitch rate response 

 

 

Figure 4.11: Error in load factor and pitch rate response 
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Figure 4.12: Elevator deflection, rate, and acceleration 

 

 

Figure 4.13: Adaptive controller parameters 
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Figure 4.14: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 4.15: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1  

 

 

Figure 4.16: Robust perfomance w.r.t. λ 
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Figure 4.17: Robust performance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 4.18: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 4.19: Robust perfomance w.r.t. λ 
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The loss of robustness can be easily explained. To achieve a fast compensation of the 

nonlinearity a large adaptive gain is required, however a large integral gain hurts the 

robustness in the presence of the actuator, delay and filter dynamics. In particular for 

the error dynamics the additional dynamics spoils the error dynamics. To see this let 

us assume that there is no nonlinearity in the plant, so that by exploiting the linear 

properties, the structural filter can equivalently be applied in the input channel, instead 

of the output channel, as shown in Figure 4.20. 

 

 

Figure 4.20: Plant withe structural filter in the input channel 

 

The only difference is, that now also the feed-forward signal is passed through the 

filter dynamics. However, this also makes sense because then also the reference 

command cannot excite the structural modes. It is in general very common in flight 

control to apply the structural filters in the input channel. Note, the equality only holds 

with the linear assumptions. Thus, according to Figure 4.20. and Eq.(2.13), and by 

defining  ( )      ( )    ( )    ( ) the augmented plant dynamics can equivalently 

be denoted by 

  ̇ 
    

   
    

 { ( )      ( )}    
  . (4.56) 

Here the notation introduced in Section 2.1.1 is used. 

Using the control law from Eq.(2.12) and Eq.(4.45), and assuming that there is an 

affine uncertainty in   , such that the matching condition holds, gives 
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(4.57) 

The reference model, as specified before, is given by the closed loop plant without 

nonlinearity 
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(4.58) 

Because the error used for adaptation is defined based on the outputs, the system 

dynamic needs to be transformed using the output matrix, and it must be assumed 

that   
   . Applied to Eq.(4.57) yields 
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And transformation of Eq.(4.58) gives 
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Thus with the adaptive control law from Eq.(4.46) and the error defined in Eq.(4.49) we 

obtain for the error dynamics 
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(4.61) 

Here it gets obvious that the additional dynamics  ( ) spoils the error dynamics, as 

this dynamics makes it impossible to cancel the uncertainty   
  

   in transients. This 

means during transients, where the dynamics of  ( ) has not decayed yet, the 

adaptive law will try to adjust to this dynamics, and this is the reason that large 

adaptive gains cause instability. Adding and subtracting      

     the error dynamics 

can also be denoted by 

  ̇       
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 {( ( )   )     ( )} ⏟              
                            

, (4.62) 

where the control deficiency disturbs the error dynamics during transients. In Section 

5.1.1 a modification of the reference model is discussed that allows to resolve the 

problem by accounting for the additional dynamics in the input channel. 

 Nonlinear Regressor 4.6

 Structurally Known Nonlinearity 4.6.1

As we have seen in Chapter 4 the basic theory of MRAC also covers nonlinear 

uncertainties. I.e. nonlinear uncertainties can be adapted and canceled out if they can 

be parameterized in a linear way (linear combination between unknown parameters 

and known arbitrary nonlinear functions computed from measurable system variables), 

are within the span of the input matrix (matched), and are structurally known. This 

allows the introduction of physical insight on the structure of the plant without leaving 

the most basic theory (e.g. the aerodynamics of the system, inertia and coupling terms 

etc.). 

 Linear in the Parameters Neural Network 4.6.2

The assumption on the structural knowledge of the nonlinearity can be relaxed by 

providing a set of basis functions which can approximate a large class of nonlinear 
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functions. This set of basis functions is then contained in the regressor vector  (  ). 

The concept of using a set of basis functions to approximate a nonlinear mapping is 

often referred to as Neural Network (NN) [132], where for adaptive flight control mainly 

Single Hidden Layer (SHL) Feedforward Neural Networks (FNN) are used. However, 

the term neural network might be misleading as in the considered case the approach 

has nothing to do with artificial intelligence, but only has the purpose to approximate a 

nonlinear function. 

For a linear-in-the-parameters feedforward neural network the nonlinear term retains 

the same form as in the case considered above: 

  (̅  )    
  (  ) (4.63) 

In the neural network terminology it is said, that in this case only the output layer 

weights are adapted. This concept is often used in conjunction with radial basis 

functions, but in general a large number of different basis functions is available for the 

nonlinear regressor (e.g. constant, linear, radial, B-splines, sigma-pi etc. [133] [104] 

[134] [135]). Here the distribution of the basis function over state space    has to be 

predetermined.  

In general NNs can provide a universal approximation property, but to approximate 

any nonlinearity arbitrarily close, an infinite number of basis functions is necessary, 

leading to an infinite number of adaptive parameters. As for any practical case the 

number of basis functions is limited, it arises the question: how many basis functions 

are necessary, and how do they have to be distributed to allow a sufficiently close 

approximation of the system nonlinearities? Furthermore, from the limited number of 

basis functions it follows that in reality only a close approximation can be achieved 

and thus, a residual nonlinearity will always remain. It should be mentioned that this 

already causes problems in the stability proof and requires for robustness 

modifications. 

On the one hand, NNs can approximate a large class of nonlinear functions and, 

hence, provide larger flexibility and require less knowledge about the plant, compared 

to case when structural knowledge on the involved nonlinearities is assumed. On the 

other hand, the approach also leads to reduced traceability due to the increased 

number of adaptive parameters. 

 Nonlinear in the Parameters Neural Network 4.6.3

The concept on NNs can also be extended to additional adaptation of the input layer 

weights of the neural network. This type is also referred to as single hidden layer feed-

forward neural networks, where the approximation of the nonlinearity is nonlinear in 

the unknown parameters. The approach can be denoted by 
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, (4.64) 

where    is the matrix of input layer weights, for which an additional update law can 

be derived by backpropagation [126] [136] to obtain 

  ̇     ( ( )    ( )  ̅)      

 ̇      ̅       
   ( ). 

(4.65) 

For this approach the distribution of the basis functions has not to be predetermined, 

but is also adjusted dynamically through the update of the input layer weights  . Here 

most commonly sigmoid- and tanh- basis functions (activation functions) are used.  

On the one hand this approach provides even more flexibility, but on the other hand 

this again largely reduces the physical traceability. By just using a large number of 

basis functions, less knowledge about the system is used and one tries to solve the 

problem by brute force. As mentioned, a large number of basis functions decreases 

the traceability of the approach, and due to the increased complexity it gets difficult to 

validate the correctness of adaptation (especially online). In general it seems to be 

more promising to employ structural knowledge about the system and try to use 

physical insight to parameterize the nonlinearities of the system. Usually this can lead 

to large reduction in the number of parameters.  

 Short Period Example 4.7

In the following example nonlinear regressors are used for the problem stated in 

Section 2.1. Clearly this approach does not solve the problem of additional dynamics 

in the input channel, which was encountered in Section 4.4. In the following the 

application of nonlinear regressors is shown to highlight the general idea and show 

how the approach can be used for a real problem. Thus, no improvement can be 

expected w.r.t. robust performance and so the robustness evaluation is omitted here. 

Instead of using       
   

  as in Section 4.4, the adaptive control signal is given by 

       
  (  ), (4.66) 

where  (  ) is the nonlinear regressor. For the considered problem, it would be 

desirable to cancel the nonlinearity  ( ) with the nonlinear feedback   
  (  ) by 

adjusting   
 . The problem is that   is not an available feedback signal. However, as 

already mentioned, for the considered case    is almost proportional to  , and hence, 

it can be assumed that the nonlinearity  ( ) can be closely approximated by   (  ), 

and therefore a regressor  (  ) is used in the following. In contrast to the previous 

example, if a parameterization   
  (  ) is used that allows to approximate the 
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nonlinearity sufficiently close, then there exist constant (static), ideal parameters that 

cancel the pitch-up nonlinearity by feedback and provide the desired performance. 

 Structurally Known Nonlinearity 4.7.1

Even though, in the problem formulation it is not assumed that the structure of the 

nonlinearity is known, the simplest approach that can be made would be obtained if 

this knowledge is available. This means the parameterization of the nonlinearity could 

be obtained from Eq.(2.5) and given by 

 
   (  )     (  )  {

 

     (
  

     
       )

     
         
         

. (4.67) 

Hence, only the slope has to be adjusted by   . Here the unrealistic assumption is 

used, that the onset of the pitch-up, in terms of the angle   or   , respectively, is 

exactly known. 

To adjust    the update law from Eq.(4.10) is used  

  ̇ 
     (  )    

       

 . (4.68) 

The tuning based on Section 4.4 minimizes the cost function to         and yields 

the following learning rate for the adaptive controller:        . 

In Figure 4.21 - Figure 4.25 the simulation results for this case are shown. In 

comparison to the results obtained in Section 4.4 the response to the first step 

command now shows a larger overshoot. This is due to the fact that previously the 

pitch-rate was an available feedback signal for the adaptive controller, where now only 

the load factor is available. Even though, the nonlinear regressor used now is tailored 

to the problem and a static approximation of the nonlinearity can be achieved, the 

results appear to be worse at first glance. However, it has to be noted that the 

response will improve over time, because if the input is exciting the system further the 

approximation of the nonlinearity improves. Furthermore, the adaptive controller 

cannot deteriorate the performance of the nominal control systems in the region where 

the nonlinearity has no impact on the system dynamics. 
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Figure 4.21: Load factor and pitch rate response 

 

 

Figure 4.22: Error in load factor and pitch rate response 
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Figure 4.23: Elevator deflection, rate, and acceleration 

 

 

Figure 4.24: Adaptive controller parameters 

 

 

Figure 4.25: Approximation of the nonlinearity after 60 seconds 
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 Linear in the Parameters Neural Network 4.7.2

In the following two examples are shown, where no structural knowledge on the 

nonlinearity is assumed. This is achieved by providing a set of basis functions that 

allows the approximation of a large class of nonlinear functions. 

 Radial Basis Functions 4.7.2.1

To approximate   (  ) with   
  (  ) a set of radial basis functions is used for  (  ). 

Here 16 radial basis functions are uniformly distributed over the domain         

as it is shown in Figure 4.26. The nonlinear regressor vector is given by 

  (  )     (  )     (  )       (  ) , (4.69) 

where each radial basis function is defined by 

 
  (  )   

 
(     )

 

   . (4.70) 

   are the uniformly distributed centers on the domain   {         }, and it is 
chosen       . 
 

 

Figure 4.26: Distribution of radial basis functions 

 

Again, the update law from Eq.(4.10) is used  

  ̇     (  )    
    

 . (4.71) 

The tuning based on Section 4.4 minimizes the defined cost function to         and 

yields the following learning rate for the adaptive controller:         

In Figure 4.27 - Figure 4.31 the simulation results are shown, and it can be seen, that 

for the first step, almost no improvement in comparison to the baseline controller can 

be achieved. Moreover, due to the large number of parameters the convergence is 

even slower than in the previous example. This can be seen in Figure 4.31, where it is 

shown that, for the given input, only a poor approximation of the nonlinearity is 

obtained after 60s. 
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Figure 4.27: Load factor and pitch rate response 

 

 

Figure 4.28: Error in load factor and pitch rate response 
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Figure 4.29: Elevator deflection, rate, and acceleration 

 

 

Figure 4.30: Adaptive controller parameters 
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Figure 4.31: Approximation of the nonlinearity after 60 seconds 

 

 Sigmoid Basis Functions 4.7.2.2

In contrast to the previous paragraph only different basis functions are used. To 

approximate   (  ) with   
  (  ) a set of sigmoid basis functions is used for  (  )  

In the following 26 sigmoid basis functions are uniformly distributed over the domain 

          

  (  )     (  )     (  )       (  ) , (4.72) 

where each sigmoid basis function is defined by 

   (  )  
 

    (     )
. (4.73) 

   are the uniformly distributed centers on the domain   {           }, and it is 

chosen     . 

 

 

Figure 4.32: Distribution of sigmoid basis functions 
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Using the update law from Eq.(4.71), the tuning based on Section 4.4 minimizes the 

defined cost function to         and yields the following learning rate for the 

adaptive controller:         . 

From the simulation results in Figure 4.33 - Figure 4.37 it is obvious that the sigmoid 

basis functions are better suited for the considered problem than the radial basis 

functions, as a faster and more accurate approximation is achieved. This becomes 

also obvious from Figure 4.38 and Figure 4.39, where a longer simulation is 

considered. However, it has to be mentioned that the quasi local support of the radial 

basis functions can be an advantage, as their influence is restricted to a local domain. 

 

 

Figure 4.33: Load factor and pitch rate response 

 

 

Figure 4.34: Error in load factor and pitch rate response 
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Figure 4.35: Elevator deflection, rate, and acceleration 

 

 

Figure 4.36: Adaptive controller parameters 
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Figure 4.37: Approximation of the nonlinearity after 60 seconds 

 

 

Figure 4.38: Load factor and pitch rate response 
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Figure 4.39: Magnified section of load factor and pitch rate response form Figure 4.38 

 
 
 
 
 
 
 
 
 
 
 
 

160 165 170 175

0

1

2

 

 

160 165 170 175

-2

0

2

4

6

 

 



 

 
 
 

  Chapter 5
 
Modifications 
 

 Reference Model Modifications 5.1

In this chapter different modifications of the reference model are presented. In general 

the idea behind these modifications is an adjustment of the reference model such that 

the reference trajectories remain achievable by the plant. In Section 4.4 it was for 

example shown that in the presence of additional dynamics in the input channel an 

exact match between reference trajectories and plant is not possible. For this problem 

the concept of hedging was suggested in the adaptive control literature and is 

presented in the following. Additionally, two novel modifications of the reference 

model are presented. The suggested modifications adjust the reference model with 

the objective to allow a larger set of reference trajectories to exist. This is less 

restrictive, and therefore the reference trajectories remain achievable by the plant. The 

first modification allows to relax the restrictiveness w.r.t. matched uncertainties, and 

the second accounts for unmatched uncertainties. Finally, an error feedback 

modification is presented which was commonly suggested in literature. 

 Hedging 5.1.1

Actuator limits pose hard nonlinearities in the input channel of a system. These limits 

arise from physical constraints and are necessary to avoid damages of the system or 

deterioration of the process dynamics (e. g. flow separation). However, these limits 

also limit the available control energy at the system input and consequently the state 

space where the system is controllable is limited as well. Furthermore, actuator 

saturation especially poses difficulties for MRAC-type controllers as it violates some of 

the basic assumptions. For example, when all inputs saturate the plant is open loop 

and the control effectiveness reduces to zero. This means, the sign of control 

effectiveness is indefinite and the uncertainties are not matched anymore. In the 

previous chapters actuator limitations have been neglected, but if the reference model 

does not account for actuator saturation this directly means that the real plant cannot 
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follow the reference model for every command that is issued. As the linear reference 

model assumes unlimited control energy, whereas for the plant this is not available. In 

the case of saturation an error, which cannot be compensated, will result from the 

error dynamics, and as the parameters are adjusted based on integration of this error 

they will increase as long as the input saturates. Obviously this does not make any 

sense. If the reference trajectory is not achievable due to limited control authority then 

increasing the gains will not help either. A simple solution would be to switch of 

adaptation when actuator saturation occurs, however this switching can lead to limit 

cycle oscillations. 

To overcome this problem the use of a hedging signal, which modifies the error 

dynamics, was already suggested in [137]. In the adaptive control literature the word 

hedging is in general used to refer to a modification of certain signals with the 

objective to “hide” certain input characteristics of the plant from the error dynamics. 

This means either the error signals are augmented directly, or indirectly by a 

modification of the reference dynamics. As mentioned, the approach was originally 

suggested to account for saturations and the first stability proof for SISO systems was 

given in [124], and further developed for MIMO systems can be found in [138] and 

[139]. In [140] the problem of rate saturation was considered, where also a stability 

proof is provided. Approaches wich are based on the same principle are also 

suggested in [141], [142], and [143]. Furthermore, it was suggested to use the 

approach in order to account for dynamic constraints in the input channel [126]. 

In the following, at first the problem of hard input saturations is discussed and second 

additional dynamics in the input channel (e.g. actuators) are covered. 

 Hedging for Actuator Saturation 5.1.1.1

 Direct MRAC with Actuator Saturation 5.1.1.1.1

In the following the approach suggested in [124] and [125] is considered, where the 

error dynamics is adjusted such that the effect of actuator saturation on the error 

dynamics is removed. This can also be interpreted as a modification of the reference 

model in a way that its dynamics become achievable by the plant. This means, that 

during saturation the gains and the reference model are adjusted such that the 

reference model follows the plant. It is also an important question whether the control 

effectiveness   is known or not. If the control effectiveness is unknown an additional 

estimation of the control effectiveness is required for the hedging signal, and this 

problem is discussed in the following. If the control effectiveness is known the 

approach remains the same, but the estimation of the control effectiveness can be 

omitted. 

Let’s consider the direct case where the plant without actuator saturation is assumed 

to be given by  
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  ̇              (    
       

  ). (5.1) 

For simplicity nonlinear and constant uncertainties are omitted, but an extension is 

easily possible. Adding a saturation nonlinearity in the input channel of Eq.(5.1) yields 

  ̇              (  ( )    
       

  ), (5.2) 

where   ( ) is the saturation nonlinearity 

 
  ( )  {

 
    

    

                 
              

         

         

. (5.3) 

Denoting the control deficiency by 

      ( )   , (5.4) 

we can write the plant dynamics by 

  ̇              (       
       

  ). (5.5) 

Again, we consider a linear reference model given by 

  ̇          , (5.6) 

and choose the same control law as before 

     
        (5.7) 

If we insert the control law of Eq.(5.7) in the plant in Eq.(5.5) and build the error 

dynamics w.r.t. Eq.(5.6) we obtain 

  ̇          ( ̃ 
     ̃  )        (5.8) 

From Eq.(5.8) it can be seen, that despite the undesirable term       , the error 

dynamics is the same as previously. To remove the effect due to actuator saturation 

from the error dynamics we can define a differential equation of the form 

   ̇           ̂   , (5.9) 

where  ̂ is an additional parameter that will be adapted (remember:   is unknown). To 

remove the undesirable term        we can build the new error          , and 

obtain a new error dynamics of the form 

  ̇          ( ̃ 
     ̃  )   (   ̂)⏟    

 ̃

   

 ̇          ( ̃ 
     ̃  )    ̃  . 

(5.10) 

Appropriate adaptation laws can be derived by choosing the following Lyapunov 

function candidate 
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   ̃  ]  
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  ]  

 

 
  [ ̃  

   ̃ ], (5.11) 

where the time derivative is given by 
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(5.12) 

Applying the trace identity             we can rewrite the following terms 
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(5.13) 

From Eq.(5.13) it is clear that with the following update laws  

  ̇̃          
    

 ̇̃ 
         

    

 ̇̃           
    

 

 ̇          
    

 ̇ 
         

    

 ̇̂          
    

 (5.14) 

the time derivative of the Lyapunov function becomes negative semi definite: 

  ̇   
 

 
  

    . (5.15) 

Thus boundedness of the states can be followed (  ,  ̃   ̃   ̃     ). 

However, this does not guarantee stability, because of the additionally introduced 

dynamics in Eq.(5.9), the additional state     is not guaranteed to be bounded. This 

gets more obvious if we modify the reference model directly instead of introducing the 

additional dynamics of Eq.(5.9): 

  ̇                  ̂   . (5.16) 

This is equal to introducing Eq.(5.9), and it is obvious that this modification can also 

be interpreted as a modification of the reference input in case of actuator saturation. 

Furthermore, it is obvious that the states of the reference model    are not inherently 

bounded, as it was the case without modification. Thus, even though Eq.(5.15) 

guarantees boundedness of                      it does not guarantee 

boundedness of    and     , as they could diverge at the same rate. 

In case the plant is inherently stable, overall stability of the closed loop can still be 

guaranteed, because due to the boundedness of the input   ( ), the plant states    

are bounded. 

For unstable plants, it is obvious that with limited control energy the tracking problem 

cannot be solved globally. That is, it needs to be ensured that the domain in the state 

space where the plant can be stabilized is not left. This is equivalent to restricting the 

reference command   such that the former is satisfied. However, in the case of 
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uncertain systems this is difficult and only feasible as long as the uncertainties are 

small. On the contrary, if uncertainties in the system are small there is no purpose for 

adaptive control. To guarantee stability when the uncertainties are large, the reference 

command   has to be restricted in a conservative way (even for the nominal case), 

which is often inacceptable [144]. However, fixed-gain controllers suffer from the 

same problem. 

For unstable plants, conditions for the initial condition    and the maximum reference 

command     , that guarantee local stability, can in general only be derived when no 

nonlinearities are considered. These conditions are extremely conservative for higher 

order plants and MIMO systems due to the applied matrix norms, and result in 

requirements for the reference command      that are extremely small or even cannot 

be satisfied [144]. Even though the approach might also work when the derived 

condition      is not satisfied, stability is not guaranteed in rigorous mathematical 

sense. 

 Indirect and Predictor Based MRAC with Actuator 5.1.1.1.2

Saturation 

For the indirect and the predictor based approach, actuator saturation can be 

accounted for in a similar way. In both cases it is sufficient to use the constrained 

input signal in the identification/predictor dynamics. Due to the similarity, in the 

following, the approach is only outlined for predictor based MRAC from Section 4.4. 

Omitting nonlinear and constant uncertainties, and including actuator saturation the 

plant form Eq.(4.29) becomes 

  ̇         (   ( )   ̂ 
  

  ). (5.17) 

And similar to Eq.(4.32) the control law is given by 

    ̂  [ ̂ 
        ]. (5.18) 

In difference to the predictor given in Eq.(4.30) we now account for the control 

deficiency and obtain 

  ̇̂     ̂    ( ̂  ( )   ̂ 
   ). (5.19) 

It can be easily verified that this is equal to applying a hedging signal in the following 

form 

  ̇̂     ̂    ( ̂   ̂ 
   )     ̂   . (5.20) 

Thus, for the error dynamics we get form Eq.(5.17) and Eq.(5.19) 

  ̇         ( ̃ 
     ̃  ( )) (5.21) 

Using a Lyapunov function on the basis of Eq.(4.37) the update laws can be derived to 

take the form  



114 MODIFICATIONS 

 
 
 

  ̇̂          
    

  ̇̂      ( )    
    

 (5.22) 

Comparing the update laws in Eq.(5.22) with the update laws from the direct approach 

in Eq.(5.14) it becomes obvious, that for the same problem, the direct approach leads 

to a larger number of adaptive parameter. With hedging, direct MRAC requires the 

estimation of the feedforward gain and the control effectiveness, where for the 

predictor based approach only the control effectiveness must be estimated. From this 

point of view the predictor based approach seems to be favorable. 

 Hedging for Input Dynamics 5.1.1.2

Additional dynamics in the input channel, e.g. actuator dynamics, are often neglected 

for the controller design. However, this is only feasible if the frequency-scale 

separation between pant and actuation dynamics is large enough, i.e. the actuation 

system has to be much faster and decay sufficiently fast in comparison to the plant 

dynamics. Neglecting the additional input dynamics for an adaptive controller also 

results in a perturbation of the error dynamics during transients. In the simulation 

example in Section 4.4 this was already pointed out. This perturbation is similar to the 

saturation effect shown in Eq.(5.8) as it also results from a control deficiency. In the 

following the problem is considered that additional dynamics (e.g. actuator or 

structural filter dynamics) are present in the input channel of the plant, and it is 

assumed that they can be represented by a stable, strictly-proper, linear low pass filter 

 ( ) with DC gain of 1, where   is the Laplace variable. Hence, the system input is 

  ( )   ( )    ( ), (5.23) 

and      is the commanded input. These input constraints are present in any real 

system due to actuator dynamics. Especially in aircraft control it is state of the art to 

further limit the bandwidth of the input channel by introducing structural filters to avoid 

an excitation of the structural modes. 

If we insert the control law Eq.(5.7) in the pant Eq.(5.1) with the input dynamics of 

Eq.(5.23) and build the error dynamics we obtain Eq.(5.8) 

  ̇          ( ̃ 
     ̃  )    ̃  , (5.24) 

where the control deficiency    is now given by   ( )  ( ( )   )    ( ). 

From this it directly follows, that for the case, where we do not only have to consider 

input magnitude saturation, but additional dynamics in the input channel, the problem 

can also be addressed by hedging and the modified reference model is given by 

  ̇                . (5.25) 

The general concept is shown for a linear single input system with known input gain in 

Figure 5.1, where it is assumed that the actuator position is measurable and the 

deficiency can be calculated form the difference between commanded and measured 



MODIFICATIONS 115 

 

actuator deflection. In case of no available measurement an actuator model can be 

used, which must provide a good approximation of the actuator dynamics. From the 

difference between the model and the real actuator a small disturbance on the error 

dynamics will remain, but the impact will still be smaller than in case of neglected 

dynamics. 

 

 

Figure 5.1: Architecture of direct MRAC with hedging 

 

In difference to the saturation problem, no stability proof is available. However, in 

Chapter 6 it is shown that for the case of known input gain matrix   the application of 

a hedging signal can be equivalently realized by an L1 adaptive controller, and hence, 

the stability concepts of L1 adaptive control are applicable. Due to the equivalence 

this also directly recommends the use of an L1 adaptive controller as the frame work 

already provides a closed theory. Moreover, for the case of unknown input gain matrix 

  it will become obvious that the concept of L1 adaptive control is very similar to 

hedging. 

 Short Period Example 5.1.2

The benchmark problem from Section 2.1 is used again and hedging is applied to 

account for the dynamic constraints in the input channel. To also account for the 

dynamics of the structural filters, these are implemented in the input channel as 

shown in Figure 4.20. 

The predictor based approach is applied in the following, as it leads to a reduced 

number of adaptive parameters compared to the direct approach. The reason for this 

is that only the control effectiveness is estimated, but not the feedforward gain. The 

control law is given by 

      
 

 ̂
(       ), (5.26) 
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where     is given by Eq.(2.12) and 

      ̂ 
   

  [ ̂  
 ̂  ̂  

]        . (5.27) 

Uncertainties in the dynamics of the integral error    have not to be expected, and 

hence, for the predictor based approach uncertainties in  ̂  
 are not expected. 

Therefore  ̂  
 is not adapted, what is realized by setting the respective value in    to 

zero. As λ̂ must be bounded away form zero, λ̂ is constrained to λ̂          by 

projection (see Section 5.2.2). 

Furthermore, the predictor is now modified by hedging the control deficiency as 

shown in Eq.(5.16). The control deficiency    is calculated from the actuator and 

sensor dynamics and from the time delay given by Eq.(2.6)-(2.8). This means it is 

assumed that a perfect model of the dynamics in input channel is available. 

Equivalently, we could of course use a measurement of the control deficiency. 

According to Eq.(5.20) the linear predictor is defined, where by inserting the control 

law of Eq.(5.26) the predictor results in the reference model. Hence, the desired 

performance is specified by a linear reference model, given by the augmented plant 

dynamics of Eq.(2.13) without pitch-up nonlinearity, the base line control law of 

Eq.(2.12), and the hedging signal 

 
 ̇̂ 

    
  ̂ 

    
      

     
 λ̂    

 ̂ 
    

  ̂ 
    

    

     
  ̂ 

     , 

(5.28) 

where 

   ( )  (    ( )    ( )    ( )   )      ( ), (5.29) 

From Eq.(4.10) the following update laws for the controller parameters are used 

  ̇̂      
    

       

  

λ̇̂         
       

  
(5.30) 

The adaptive controller is assembled by Eq.(5.26)-Eq.(5.30). 

From the genetic algorithm (see Section 4.4) the controller parameters in Table 5.1 are 

obtained and the cost function yields        . From the adaptive gains it is obvious 

that the hedging allows much larger values, and thus much faster adaptation is 

achieved. The fast adaptation is also apparent from the low value of the cost function 

and the good tracking of the reference response shown in Figure 5.2, and the tracking 

error in Figure 5.3. Furthermore, a fast adjustment of the parameters is observed (see 

Figure 5.5) without any oscillations in the input channel (see Figure 5.4). 
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[
       

      
   

]     

Table 5.1: Controller parameters 

 

Considering robust stability, the time delay margin is shown in Table 5.2, and it can be 

seen that it is highly reduced in comparison to the baseline controller. However, a 

reduction has to be expected as it is a well know trade off in adaptive control [66] [73] 

[145]. 

 

 1g CMD 2g CMD 

TDM  0.08 0.01 

Table 5.2: Time delay margins 

 

In Figure 5.6 - Figure 5.11 the robust performance is evaluated for a 1g, and a 2g 

command, respectively. It can be concluded from Figure 5.6 that the robustness w.r.t. 

matched uncertainties is improved and a good transient response is achieved by the 

adaptive augmentation for a 1g command. In difference for the 2g command the 

robustness in the case of increased plant stability is reduced by the adaptive 

controller as shown in Figure 5.9. This nonlinear behavior is objectionable and it would 

be preferable to attain a linear performance w.r.t. the command signal. In general - 

also for the 1g command - the domains where certain levels of performance are 

achieved change in comparison to the baseline controller, and especially for increased 

pitch damping the adaptive controller shows worse performance. The reason for this 

is that the adaptive controller tries to drive the response of the plant exactly to the 

reference trajectory. This means, in the case of increased pitch damping the response 

might get slower but can still be within the level 1 boundary. However the adaptive 

controller will try to accelerate the response by reducing that damping gain. Without 

additional dynamics in the input channel (e.g. actuator) this works and the desired 

response can be matched perfectly. In presence of the input-channel-dynamics a 

cancelation of the pitch damping uncertainty is still possible and the hedging provides 

a feasible trajectory of the reference model, but it leads to an increased overshoot due 

to the reaction deficit caused by the additional dynamics. A solution for this problem is 

suggested in the next section. The robustness w.r.t. unmatched uncertainties is 

shown in Figure 5.7 and Figure 5.10 and it can be seen, that compared to the baseline 

controller it is reduced in an intolerable manner. In the following section also an 

approach to account for the unmatched uncertainties, by modification of the reference 

model, is suggested. Comparing the robustness w.r.t. uncertainties in the input gain to 
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the baseline controller it is obvious from Figure 5.8 and Figure 5.10 that the 

robustness w.r.t. increased input gain can be reduced by the adaptive augmentation. 

 

 

Figure 5.2: Load factor and pitch rate response 

 

 

Figure 5.3: Error in load factor and pitch rate response 
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Figure 5.4: Elevator deflection and rate 

 

 

 

Figure 5.5: Adaptive controller parameters 
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Figure 5.6: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.7: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1  

 

 

Figure 5.8: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.9: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.10: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.11: Robust perfomance w.r.t. λ 
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 Matched Uncertainties 5.1.3

From the previous simulation results two problems could be identified. At first it could 

be observed that the response w.r.t. certain matched uncertainties can deteriorate 

compared to the baseline controller. The reason for this lies in the restrictive reference 

model, which “allows” only one trajectory for each state. However, from the 

performance requirements a certain envelope for the response can be specified. This 

means there exists a set of reference models, where all models within this set provide 

adequate performance. Vice versa this means that there exists a set of matched plant 

uncertainties, and as long as the plant uncertainties are within this set no 

augmentation of the control is required, because even in presence of the uncertainties 

the performance is still adequate. For simplicity, again no nonlinear and constant 

uncertainties are considered. The suggested modification is shown for direct MRAC 

and predictor based MRAC in the following. 

 Direct MRAC 5.1.3.1

The plant dynamics is assumed to be given by 

  ̇              (    
       

  ), (5.31) 

where nonlinear and constant uncertainties are omitted. In the following it is 

considered that there is a set of matched uncertainties for which the plant dynamics 

show acceptable performance. Let this set of uncertainties be defined by a hypercube 

with the limits         
  and         

 . Hence, if the uncertainties are within the 

hypercube the feedback gain must not be adjusted. 

Therefore, it is suggested to modify the adaptive control signal in a way that it only 

provides a contribution if the estimated parameters    are outside the hypercube: 

   (  
       

 )      , (5.32) 

where the signal       is a limited version of    which is restricted to the hypercube 

 

      {

             
             

 

        
               

 

        
               

 
. (5.33) 

As we are not trying to cancel plant uncertainties within the hypercube we also need 

to modify the reference model, because the adaptive control law is still trying to drive 

the error to zero. To make this possible in the region were    is within the hypercube 

we adjust the reference model in this domain instead of the control signal such that 

  ̇               ̂     
   . (5.34) 

Using the definition of the control error    from Eq.(4.6) we can rewrite 

  ̇  (      ̂     
 )           ̂     

   . (5.35) 
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For stability proof we can build the error dynamics from Eq.(5.31), Eq.(5.32), and 

Eq.(5.34) 

  ̇          ((  
       

 )         
       

  )     ̂     
    

         ( ̃ 
     ̃  )    ̃     

     
(5.36) 

Again it can be seen that    must be Hurwitz. Furthermore, the additional term 

   ̃     
    requires the estimation of  ̂ and to derive adaptation laws which 

guarantee stability the Lyapunov function candidate from Eq.(5.11) can be used 
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   ̃ ], (5.37) 

The time derivative of Eq.(5.37) is given by 
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(5.38) 

From Eq.(5.38) it follows that with the update laws  

  ̇̃          
    

 ̇̃ 
         

    

 ̇̃          
      

    

 

 ̇          
    

 ̇ 
         

    

 ̇̂           
      

    

 (5.39) 

the time derivative of the Lyapunov function becomes negative semi definite, and 

hence   ,  ̃ 
 ,  ̃ , and  ̃ are bounded. Obviously it must be guaranteed that for all 

possible constant values of  ̂ and      , the reference model is stable. This means 

(      ̂     
 ) must be Hurwitz. But for stability considerations, note that the 

adjustment of the reference model leads to a Linear Time Varying (LTV) system, with 

  
 ( )  (      ̂     

 ). This means stability of the reference model can not be 

guaranteed by the eigenvalues of   
 ( ) [89]. A sufficient condition for stability of the 

reference model can for example be given when there exists a symmetric, positive 

definite             such that the Lyapunov equation  

    
 ( )    

  ( )    ( ) (5.40) 

yields a symmetric, positive definite solution  ( )    ( )        for all   
 ( ). 

However this condition is only sufficient and not necessary. It can also be argued that 

as long as the uncertainties are within the hypercube only the reference model is 

adjusted and no adaptive feedback is issued to the plant. Furthermore, as long as the 

real uncertainties are within the hypercube the plant is stable, as the hypercube 

defines the set of desired trajectories, which all should be stable. Hence for this case 

stability is guaranteed. In the case where the uncertainties lie outside the hypercube 

and they lead to an unstable plant, also the estimated parameters must eventually 
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leave the hypercube and in this moment the reference model becomes a stable LTI 

system. 

The fact that the estimations of  ̂ and      
  appear as product makes it difficult to 

guarantee that (      ̂     
 ) provides the desired performance. Furthermore it 

also requires the boundedness of  ̂ to certain limits. Thus it would be beneficial if  ̂ 

would not appear, and as we will see in the next section, this is the case for predictor 

based MRAC.  

 Predictor Based MRAC 5.1.3.2

Nonlinear and constant uncertainties are not considered in the following and 

according to Eq.(4.29) the plant dynamics is given by 

  ̇         (    ̂ 
  

  ). (5.41) 

Again it is assumed that for a set of uncertainties, within a hypercube defined by the 

limits  ̂       
  and  ̂       

 , the plant shows adequate performance. Hence no 

adjustment of the feedback gains is necessary within the hypercube. This is achieved 

by adjusting the control law of Eq.(4.32) to 

    ̂  [( ̂ 
    ̂   

 )       ]. (5.42) 

The signal   ̂    is a limited version of  ̂  which is restricted to the hypercube 

 

  ̂    {

 ̂     ̂       
   ̂   ̂       

 

 ̂       
     ̂   ̂       

 

 ̂       
     ̂   ̂       

 

. (5.43) 

As long as the estimation  ̂  is within the hypercube the predictor from Eq.(4.30) 

should follow the plant dynamic, and for this no modification is necessary: 

  ̇̂     ̂    ( ̂   ̂ 
   ). (5.44) 

Inserting the control law from Eq.(5.42) in the predictor of Eq.(5.44) gives 

  ̇̂     ̂           ̂   
   . (5.45) 

In comparison to the direct approach in the previous Section 5.1.3.1 the additional 

term     ̂   
    does not contain the estimation of  ̂. This makes it easier to 

guarantee that all models in the set (       ̂   
 ) provide the desired performance 

as only reasonable bounds for  ̂       
  and  ̂       

  must be chosen. 

Building the error dynamics from Eq.(5.41) and Eq.(5.44) yields 

  ̇         ( ̃̂ 
     ̃ ) (5.46) 

This is a simplified version of the error dynamics from Section 4.4.1. Thus, the stability 

properties derived in Section 4.4.1 also hold, if the respective update laws (Eq.(4.38)) 

are applied. 
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 Unmatched Uncertainties 5.1.4

The previously presented MRAC approaches all require the matching condition to 

hold. However, a real system might also have uncertainties that are not affine with 

respect to the available inputs, e. g. an aircraft that does not possess any controls to 

produce direct lift but the dependence of lift on the system states contains 

uncertainties. From the previous simulation example we could also see that the 

applied adaptive control approach could lead to reduced robustness with respect to 

unmatched uncertainties. Since the applied approach is explicitly designed with the 

assumption of a matching condition this is not surprising, especially when we consider 

the update law, which tries to reduce the error between the states of the reference 

model and the plant to zero. However, in the case of unmatched uncertainties it is 

obvious that it is not possible for the complete error vector to converge to zero, as not 

all states of the system can be controlled independently. Thus, not all state reference 

trajectories, generated by the reference model, can be followed simultaneously. A 

similar problem occurs in the presence of actuator dynamics. In this case the 

matching condition is a-priori not satisfied, because during transients all uncertainties 

in the plant become unmatched and only with sufficiently fast decaying actuator 

dynamics the assumptions can “approximately” be satisfied. To account for the 

deficiency due to actuator dynamics it was suggested in [44] to additionally estimate 

the system dynamics and modify the reference model with this estimation so that 

exact matching can be achieved. In the following a similar approach is used, however 

the focus will be to account for unmatched uncertainties due to limited control 

authority, rather than due to actuator dynamics. It should be noted that the following 

modification is only necessary for the direct approach and the predictor based 

approach. For the indirect approach, if     (  )    the identification model is 

automatically adjusted based on the estimation of the unmatched uncertainties (see 

Eq.(4.14)). 

For the sake of simplicity in the following only linear uncertainties are considered. By 

taking into account additional unmatched uncertainties  ̂    
 , the plant dynamics 

from Eq.(4.5) can be extended to 

  ̇              (    
  

     
  )        ̂    

  
  , (5.47) 

where          (   ) spans the null space of   
 , this means it holds that 

  
        . This also means       defines an input matrix that is orthogonal to    

and the concatenation spans the complete state space:                 . If the 

plant dynamics are denote in a suitable way for the predictor based approach, 

according to Eq.(4.29) they can be given by 

  ̇         (    ̂ 
  

  )        ̂    
  

  . (5.48) 
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 Direct MRAC 5.1.4.1

To account for the deficiency due to the unmatched uncertainties a similar term, which 

utilizes an estimation of the uncertainties  ̂      is added to the dynamics of the 

reference model, similar to the hedging introduced in the previous section: 

  ̇                 ̂    
    (5.49) 

Using the definition of the control error    from Eq.(4.6) we can rewrite 

  ̇  (         ̂    
 )             ̂    

    (5.50) 

The idea is to adjust the reference model by       ̂    
    such that it follows the 

plant dynamics in the presence of unmatched uncertainties. Due to the adjustment of 

the reference model it becomes a LTV system   
 ( )           ̂    

  and stability 

cannot be guaranteed by the location of the eigenvalues [89]. Although this does not 

guarantee stability it must be obviously satisfied that (         ̂    
 ) is Hurwitz, 

and this can be ensured by constraining  ̂    
  to a convex set (can be achieved by 

projection). Note, that limiting      
  to a set where   

 ( ) is Hurwitz makes sense, as 

the real uncertainties      
  

 should also lie in this set. A sufficient condition for stability 

of the reference model in Eq.(5.50) can for example be given when there exists a 

symmetric, positive definite             such that the Lyapunov equation  

    
 ( )    

  ( )    ( ) (5.51) 

yields a symmetric, positive definite solution  ( )    ( )        for all   
 ( ). 

However this condition is only sufficient and not necessary. In the case when   
 ( ) 

changes with a dynamics that is much slower than the dynamics of    stability can 

also be guaranteed from a time scale separation argument. 

From Eq.(5.47) and (5.52) the following error dynamics results 

  ̇          ( ̃ 
     ̃  )       ( ̂    

     ̂    
  

  ) 

         ( ̃ 
     ̃  )        ̃̂    

    
(5.52) 

By choosing a Lyapunov function candidate of the form 
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   ̃  ]  

 

 
  [ ̃   

   ̃ 
  ]  

 

 
  [ ̃̂    

      
   ̃̂    ] (5.53) 

the following update law for  ̂     can be derived to render the time derivative of the 

Lyapunov function negative semi definite 

  ̇̂                
        (5.54) 

Following from the Lyapunov analysis stability of   ,  ̃ ,  ̃ , and  ̃̂     is also 

guaranteed. 

With the suggested approach the reference model is adjusted such that it follows the 

plant in the presence of unmatched uncertainties. On the one side the restrictive 

matching condition is removed as the reference model remains achievable, but on the 
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other hand the response of the reference model might be changed in a way such that 

it does not satisfy the desired specifications. In particular, if the desired behavior is 

specified in terms of the poles, the desired pole location given by the original 

reference model is not maintained in the presence of the feedback       ̂    
   . 

Therefore, for a single input system, an additional feedback     ( ̂    )     can be 

applied to the reference model based on the estimated unmatched uncertainty that 

maintains the desired pole location. 

  ̇                 ̂    
       ( ̂    )    (5.55) 

For a single input system  ( ̂    ) can be determined as an analytic function of  ̂    , 

which is derived from standard pole placement. 

 Predictor Based MRAC 5.1.4.2

For the predictor based MRAC the approach is very similar to the direct case of the 

prior section. Thus the predictor dynamics is adjusted by the estimated unmatched 

uncertainties 

  ̇̂     ̂    ( ̂   ̂ 
   )        ̂    

   . (5.56) 

where the additional term       ̂    
    is the same as in Eq.(5.48). 

The error dynamics obtained from Eq.(5.48) and Eq.(4.55) is given by 

  ̇         ( ̃̂ 
     ̃ )        ̃̂    

    (5.57) 

Choosing the Lyapunov function candidate 
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   ̃̂    ], (5.58) 

leads to the same adaptation law for  ̃̂     as it was given in Eq.(5.54) 

  ̇̂                
        (5.59) 

 Short Period Example 5.1.5

In the following the adaptive control approach from Section 5.1.2 is used and 

additionally the suggested modifications from Section 5.1.3 and Section 5.1.4 are 

applied. 

For a set of matched uncertainties the baseline controller still provides level 1 

performance, and therefore, according to Section 5.1.3, the adaptive control law is 

adjusted such that within the hypercube defined by  ̂       
  

       and 

 ̂       
  

             no adaptive feedback is generated. This is achieved by 

modification of the adaptive control law of Eq.(5.27) according to Eq.(5.42)  

      ̂ 
   

    ̂   
   

   (5.60) 
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where   ̂    is defined on the basis of Eq.(5.43): 

 

  ̂    {

 ̂     ̂       
   ̂   ̂       
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 ̂       
     ̂   ̂       

 

. (5.61) 

From Eq.(5.45) it follows that that an additional term is added to the predictor 

dynamics when the adaptive control law is inserted in the predictor dynamic. Thus, 

with the control law in Eq.(5.60) the predictor of Eq.(5.28) is modified to 
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 λ̂      
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     , 

(5.62) 

To account for unmatched uncertainties, in the dynamics of the angle of attack, they 

are estimated according to Eq.(5.54)  

  ̇̂             
    

          
 , (5.63) 

and the reference model/predictor is adjusted based on Eq.(5.42). The unmatched 

input direction         
  [

        

 
] is only determined by           which is the 

nullspace of      
 instead of      

 , as unmatched uncertainties in the dynamics of the 

integral error are not possible. To guarantee stability when the estimated unmatched 

parameters are fed back to the predictor, they are bounded by projection (see Section 

5.2.2) with the minimum          
              and the maximum          

  

         . 

Similar to the previous section a hedging signal is used so that the predictor model is 

given by 

  ̇̂ 
    

  ̂ 
    

      
     

  λ̂      
   ̂   

   
       

  ̂    
   

  

 ̂ 
    

  ̂ 
    

    

     
  ̂ 

      

(5.64) 

The adaptive controller is assembled by Eq.(5.26), Eq.(5.60), Eq.(5.61), Eq.(5.64), 

Eq.(5.29), Eq.(5.30), and Eq.(5.63). 

For the tuning, the approach from the previous example (see Section 5.1.2) was 

extended in order to maintain the robust performance of the baseline controller w.r.t. 

matched and unmatched uncertainties. Therefore certain constraints were added in 

the form that the system response w.r.t. a 1g command input has to satisfy level 1 HQ 

in the presence of the selected uncertainties. For the matched uncertainties the four 

point of Table 5.3 are considered, and for the unmatched uncertainties the two points 

in Table 5.4 are used. Furthermore, a constraint on the uncertainties in the control 

effectives that need to be tolerated is used. This constraint requires that for a 1g 
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command input the response satisfies level 2 HQ in the presence of the uncertainties 

given in Table 5.5. 

 

 1 2 3 4 

   -1 -0.4 -0.4 -1.2 

   -0.6 -0.6 -2 0 

Table 5.3: Matched uncertainties for parameter tuning 

 

 1 2 

   -3.5 -0.45 

Table 5.4: Unmatched uncertainties for parameter tuning 

 

 1 2 

  0.4 3.5 

Table 5.5: Input gain uncertainties for parameter tuning 

 

From the genetic algorithm the controller parameters in Table 5.6 are obtained and the 

cost function yields        . Considering performance and robustness, the following 

results shown in Table 5.7 and Figure 5.12 - Figure 5.21 are very similar to the 

previous section. However with the adaptation of the reference model, the robustness 

of the baseline controller w.r.t. unmatched uncertainties can be maintained. Hence, it 

seems that the proposed adaptive controller sufficiently solves the pitch-up problem. 

It must be noted that this improved robustness w.r.t. matched uncertainties has to be 

bought by a robustness reduction w.r.t. time delay (see Table 5.7). Additionally, also 

the robust performance w.r.t. input gain uncertainty is slightly reduced (see Figure 

5.21). 

 

            

[
       

      
   

] 
    

[
      
      
   

] 

Table 5.6: Controller parameter 

 

 1g CMD 2g CMD 

TDM  0.09 0.01 

Table 5.7: Time delay margins 
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Figure 5.12: Load factor and pitch rate response 

 

 

Figure 5.13: Error in load factor and pitch rate response 
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Figure 5.14: Elevator deflection and rate 

 

Figure 5.15: Adaptive controller parameters  
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Figure 5.16: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.17: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.18: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.19: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.20: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.21: Robust perfomance w.r.t. λ 
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 Error Feedback 5.1.6

The feedback of an error signal to the reference model was already suggested in [128], 

and lately the approach was revisited and the properties were further investigated in 

[129], [146], [147], [130], and [148]. Here the approach is motivated by the fact that for 

large uncertainties the initial error between reference model and plant can be large. As 

this error is used for the adaptation process it in turn leads to fast changes in the 

adaptive parameters, and thus also in the control signal. This means the large error 

can result in a very aggressive adaptation, which leads to oscillations in the input 

signal or even instability if the bandwidth of the input channel is restricted by actuator 

dynamics. To reduce the error during transients, the error can be fed back to the 

reference model in the form 

  ̇            (     ), (5.65) 

where      is a positive definite matrix, such that      is Hurwitz. From Eq.(5.65) 

we can see that the reference model with error feedback has the form of a Luenberger 

observer, as it was interpreted in [130]. For large errors, during the transients the 

reference model is driven towards the plant dynamics, and thus the error signal is 

reduced. Furthermore, take for simplification       than with Eq.(4.2) the following 

error dynamics follows 

  ̇  (      )       ̃ 
    (5.66) 

For this error dynamics it is obvious that the error feedback shifts the eigenvalues 

further to left half-plane, and thus leads to a faster error dynamics. This also means 

that it does not affect the stability proof. 

 Short Period Example 5.1.7

 Predictor Based MRAC with Parameter Calculation 5.1.7.1

Here the additional error feedback suggested in the Section 5.1.6 is applied to the 

adaptive controller of Section 5.1.6. Hence, only the reference model changes due to 

the added error feedback. From Eq.(5.64) we obtain 

  ̇̂ 
    

  ̂ 
    

      
     

  λ̂      
   ̂   

   
       

  ̂    
   

       

 ̂ 
    

  ̂ 
    

    

     
  ̂ 

     , 

(5.67) 

where instead of the matrix   from Eq.(5.65) a scalar parameter      is introduced 

for the error feedback. 

The adaptive controller is assembled by Eq.(5.26), Eq.(5.60), Eq.(5.61), Eq.(5.67), 

Eq.(5.29), Eq.(5.30), and Eq.(5.63). 
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For the tuning the approach from Section 4.4 with the constraints form Section 5.1.5 

is used. Additional a constraint is added, which requires a guaranteed time delay 

margin of 0.3 seconds for a step command with          . 

From the genetic algorithm the controller parameters in Table 5.8 are obtained and the 

cost function yields        . The results of the robustness and performance 

evaluation are shown in Table 5.9 and Figure 5.23 - Figure 5.32, respectively. From the 

response in presence of the pitch-up nonlinearity (see Figure 5.23-Figure 5.26) it can 

be concluded that the adaptive controller improves the response. Moreover, it can be 

seen that, as demanded by the constraints, the error feedback leads to a much better 

time delay margin (compare Table 5.9 with Table 5.7). Compared to the results from 

Section 5.1.7.1, also a more homogenous performance for different inputs is achieved 

w.r.t. matched uncertainties (see Figure 5.27 and Figure 5.30) and w.r.t. uncertainties 

in the input gain (see Figure 5.29 and Figure 5.32). Although a reduction of the time 

delay margin has to be accepted the results lead to the conclusion that the adaptive 

controller solves the pitch-up problem and clearly improves the performance w.r.t. 

parametric uncertainties. In Figure 5.33 - Figure 5.38 the system responses for the 

uncertainties considered in Figure 5.27-Figure 5.32 are shown, but only points are 

plotted where the response satisfies at least level 3 HQ. 

 

               

[
       

      
   

] 
    

[
      
     
   

] 
     

Table 5.8: Controller parameter 

 

 1g CMD 2g CMD 

TDM  0.31s 0.28s 

Table 5.9: Time delay margins 

 

Additionally the performance improvement over time is addressed by considering an 

input signal consisting of three consecutive steps as shown in Figure 5.22. For the 

third step of this input signal the performance is evaluated and shown in Figure 5.39 - 

Figure 5.41, and it is obvious that with additional excitation the performance improves 

even further over time. This can be also concluded from the associated system 

responses shown in Figure 5.42 - Figure 5.44, where the improvement over time can 

be clearly seen. 
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Figure 5.22: Three step input signal 

 

 

Figure 5.23: Load factor and pitch rate response 

 

Figure 5.24: Error in load factor and pitch rate response 
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Figure 5.25: Elevator deflection and rate 

 

Figure 5.26: Adaptive controller parameters 
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Figure 5.27: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.28: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.29: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.30: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.31: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.32: Robust perfomance w.r.t. λ 

nZ,CMD=2 
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Figure 5.33: Response w.r.t. uncertain 

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.34: Response w.r.t. uncertain Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.35: Response w.r.t. uncertain λ 

nZ,CMD=1 

 

Figure 5.36: Response w.r.t. uncertain 

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.37: Response w.r.t. uncertain Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.38: Response w.r.t. uncertain λ 

nZ,CMD=2 
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Figure 5.39: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1, 3rd step 

 

 

Figure 5.40: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1, 3rd step 

 

 

Figure 5.41: Robust perfomance w.r.t. λ 

nZ,CMD=1, 3rd step 

 

Figure 5.42: Response w.r.t. uncertain 

M𝛂 and Mq; nZ,CMD=1, 3rd step 

 

 

Figure 5.43: Response w.r.t. uncertain Z𝛂; 

nZ,CMD=1, 3rd step 

 

 

Figure 5.44: Response w.r.t. uncertain λ 

nZ,CMD=1, 3rd step
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 Indirect MRAC with Parameter Update 5.1.7.2

As mentioned, the predictor based approach with calculation of the controller gains, 

as it was implemented in the previous Section 5.1.7.1, is equivalent to the indirect 

approach with calculation of the controller gains. For comparison, in this section, the 

indirect approach with update of the controller gains according to Section 4.3.2 is 

applied. 

The control law is given by 

             , (5.68) 

where    is given by Eq.(2.12) and 

       
   

               
                       . (5.69) 

The controller parameters   
  and    are updated from the estimated plant parameters 

according to Eq.(4.27) 

  ̇         
       

  

 ̇         
      

 , 
(5.70) 

and the plant parameters are estimated similar to Eq.(4.26) 

  ̇̂    

  
    (    

       
 )

λ̇̂     (   
     [  

   
       

 ])     

 
, (5.71) 

Because   
  is used instead of   

  not the original system matrix   
  is estimated, but 

the transformed version      

    
   

   
   

 describing the dynamics in the   
  state 

space. To provide the same parameter freedom as in Section 5.1.7.1, where the 

unmatched and matched uncertainties are estimated with different learning rates, the 

rows of the system matrix  ̇̂    

  

[
 
 
  ̇̂      

  

 ̇̂      
  

 ̇̂      
  

]
 
 
 

 are estimated separately. Furthermore, as 

no uncertainties are expected in the integral dynamics, the last row of  ̂    

  is not 

updated: 

  ̇̂      
  

      (      
         

 )

 ̇̂      
  

      (      
         

 )

 ̇̂      
  

  

λ̇̂     (   
     [  

   
       

 ])     

  

 (5.72) 

The closed loop estimation errors are defined by (see Eq.(4.25)): 

    [ ̂    

       

 λ̂  
        

 ]

   [     

 λ̂        

 ]
 (5.73) 
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To allow certain matched uncertainties, as it was suggested in 5.1.3 the closed loop 

estimation error    is adjusted to 

    [ ̂    

  (  ̂    

   ̂    

 ( ))    
 λ̂  

        

 ]

   [     

 λ̂        

 ]
. (5.74) 

where  ̂    

 ( ) is the initial condition of  ̂    

 , and   ̂    

  is limited version of  ̂    

  

  ̂    

  {

 ̂    

               ̂    

           

         
     ̂    

           
 

         
     ̂    

           
 

 

The limits for   ̂    

  are given by 

 
         

  [
          
           
    

]               
  [

          
           
    

]. (5.75) 

Applying hedging and error feedback to the identification model from Eq.(4.14) we 

obtain 

  ̇̂ 
     ̂ 

    
   

[ ̂    

       

       
   

 ]  
    

        
     

 λ̂         (5.76) 

The complete adaptive controller is given by Eq.(5.69), Eq.(5.70), Eq.(5.72), Eq.(5.74), 

and Eq.(5.76). 

The controller parameters given in Table 5.10 are obtained from the same tuning 

algorithm and the same constraints, that were used in the previous Section 5.1.7.1. 

These parameters yield an objective value of        . 

Numeric values for the time delay margin are provided in Table 5.11. 

 

                        

            
[
       

      
   

] [
       

      
      

] 
               

Table 5.10: Controller parameter 

 

 1g CMD 2g CMD 

TDM  0.32s 0.27s 

Table 5.11: Time delay margins 

 

From Figure 5.45 - Figure 5.48 it is obvious that the approach solves the pitch-up 

problem and good performance is achieved. However, from the robust performance 

assessment in Figure 5.49 - Figure 5.54 it has to be concluded that for the considered 

problem an update of the controller gains cannot achieve an improvement compared 
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to the direct calculation of the controller gains which was applied in form of the 

predictor based approach in the previous Section 5.1.7.1(compare Figure 5.27 - 

Figure 5.32). The reason therefore can be assigned to the additional update of the 

controller parameters. This introduces a low pass filter effect, and thus large 

uncertainties cannot be compensates as fast as with direct calculation of the 

controller gains. Furthermore, the inverse of the control effectiveness is not used 

directly in the control law, and due to this a larger number of parameters need to be 

estimated and updated. 

 

 

Figure 5.45: Load factor and pitch rate response 

 

Figure 5.46: Error in load factor and pitch rate response 
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Figure 5.47: Elevator deflection and rate 

 

 

Figure 5.48: Adaptive controller parameters 
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Figure 5.49: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.50: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.51: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.52: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.53: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.54: Robust perfomance w.r.t. λ 

nZ,CMD=2 

 

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

-4 -3 -2 -1

0 1 2 3 4 5

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

-4 -3 -2 -1

0 1 2 3 4 5



144 MODIFICATIONS 

 
 
 

 Robustness Modifications 5.2

In the previous chapters it was assumed that the complete state vector can be fed 

back and that all uncertainties are structurally known, and can be linearly 

parameterized. Only under these assumptions the uncertainties can be compensated 

exactly and global stability is guaranteed. However, the prerequisites are 

unreasonable for real physical systems because nonparametric uncertainties like time 

varying disturbances (e.g. turbulence), unmodeled dynamics (e.g. actuators, structural 

dynamics), sensor noise, numerical errors, and delays will always be present [4]. It is 

well known that MRAC suffers from robustness problems in the presence of these 

nonparametric uncertainties [149] [150] [151]. The reason therefore can be directly 

seen from the time derivative of the Lyapunov function which contains a sign indefinite 

term in the presence of unmatched and nonparametric uncertainties.  

Taking the plant dynamics of Eq.(4.5) and introducing an unmatched, nonparametric 

uncertainty  (     ) leads to 

  ̇              (    
  

  )   (     ) (5.77) 

Using, for example, the direct MRAC approach (Eq.(4.2), Eq.(4.3) and Eq.(4.10)) and 

the Lyapunov candidate of Eq.(4.9), a sign indefinite term remains in the time 

derivative 

 
 ̇   

 

 
  

       
    (     ) (5.78) 

From this it directly follows that neither boundedness of the parameter errors  ̃ , nor 

convergence of    to zero is guaranteed. Hence, to guarantee stability the 

boundedness of the adaptive parameters must be ensured. 

To establish boundedness for the adaptive parameters   , different robustness 

modifications have been suggested, where the most important ones are shortly 

presented in the following. These are: Dead Zone, Parameter Projection, -

modification, e-modification, and Optimal-modification. Where the last three 

modifications add damping to the adaptation law. 

In general, these modifications are no exclusive methods but can be arbitrarily 

combined. For more detailed information the reader is referred to [1] [2] [4]. Further 

robustifying modification that have been recently suggested, but are not taken into 

account in the following, are a Kalman filter based modification [117], a loop recovery 

method [152], and the K-modification [153]. 

 Dead Zone 5.2.1

The approach relies on a known bound on the nonparametric uncertainties 

‖ (     )‖      . If this bound is known then a region where the time derivative of 
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the Lyapunov function candidate  ̇ is guaranteed to be negative can be derived from 

Eq.(5.78) and is given by 

 ‖  ‖  
     ( )    

    ( )
     , (5.79) 

where     ( ) and     ( ) is the maximum and minimum eigenvalue, respectively. 

The method is simply based on the idea to switch the adaptation off when ‖  ‖  

    , where the transition can be implemented in a discontinuous or a continuous way 

[88] [2]. This means, adaptation is only enforced as long as it is guaranteed that  ̇   . 

From the assumed bound on  (     ) it is clear that the modification requires system 

knowledge in order to be applied appropriately, and the upper bound      has to be a 

chosen conservative. The more conservative this bound is, the larger the error will 

remain. Furthermore, even when  (     )    the error might not converge to zero as 

time goes to infinity. 

 Parameter Projection 5.2.2

The simple idea behind parameter projection is to establish a bound on the adaptive 

parameters and constrain them to a convex set. Thus, boundedness is guaranteed 

and stability can directly be followed, if the set to which the parameters are 

constrained contains the ideal parameters. However, bounding does not solve the 

problem of parameter drift. Thus, for a real system, meaningful boundaries have to be 

known, which can be derived from the expected uncertainties in the system. 

The bounding must not be established in a hard, discontinuous way, and the 

projection operator offers a method based on gradient projection that allows for a 

smooth transition and assures that the time course of the parameters is     [2] [154]. 

 -Modification 5.2.3

The -modification was originally suggested in [155] and is comprised of an additional 

term in the adaptation law which introduces general damping. Taking for example the 

adaptation law from Eq.(4.10) and introducing the -modification, leads to 

  ̇          
          . (5.80) 

From Lyapunov analysis it follows that there exist positive constants           such 

that  ̇    outside a compact set defined by   {(    ̃ ) |‖  ‖    , ‖ ̃ ‖
 

   }, 

where subscript F denotes the Frobenius norm (see Appendix C.1). From this it follows 

that the trajectories of   ( ) and  ̃ ( ) converge to this compact set, and hence   ( ) 

and  ̃ ( ) are bounded [1]. The size of the compact set is determined by the design 

parameter  , which is the gain of the modification term. 

The drawback is, that the parameter error will not converge to zero even when 

 (     )    and the reference input is persistently exciting. 
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Furthermore, the introduced modification term acts as a forgetting factor on the 

adaptive parameters. As long as the error is small it is dominating the adaptation law. 

Hence, it makes the adaptive parameters converge to zero, although these are not the 

correct parameters to follow an arbitrary reference command. This problem mainly 

occurs if the reference command is constant during longer periods of time. 

From the above equations it would follow that no knowledge about the system is 

required and stability is always guaranteed for an arbitrary gain  . This is however not 

true for a real system with actuator and bandwidth constraints. The parameter   

determines the region to which the parameters are confined, and thus it cannot be 

arbitrary small because this would allow arbitrary large parameter drifts. So the design 

problem is how to choose   to guarantee a certain amount of robustness for the 

adaptive system, but no general solution is available for that. 

 e-Modification 5.2.4

The e-modification was suggested in [156] and is quite similar to the -modification, 

with the difference that the damping term is proportional to the norm of the error. If 

exemplarily the update law of Eq.(4.10) is used again, the modified update law is given 

by 

  ̇          
        ‖  ‖   . (5.81) 

The motivation for this modification is to reduce the effect of the forgetting factor 

when the error goes to zero and the system is not excited. It follows that  ̇    outside 

a compact set defined by 

  {(   ̃ )| (
 

 
λ   ( )‖  ‖  λ   ( )‖ (     )‖   ‖ ̃ ‖

 

 
  ‖  

 ‖ 
 )   }  

From this it can be concluded that the trajectories of   ( ) and  ̃( ) converge to this 

compact set [1]. Thus,   ( ) and  ̃ ( ) are bounded. With this modification and when 

 (     )    the origin is an equilibrium point of the closed loop system if the input is 

sufficiently excited. Hence, in difference to the -modification the error   ( ) can 

converge to and remain zero. Moreover, the parameters can converge to their ideal 

values. 

However, the problem of choosing the design parameter   still remains an issue. It 

should be noted that in [117] a Kalman filter based approach was suggested for the e-

modification, where the gain for the e-modification term is adjusted dynamically and it 

is claimed that significant improvement could be achieved. 

 Optimal-Modification 5.2.5

This modification was recently proposed in [157], where the update laws are derived 

from solving the optimal control problem for minimizing the L2 norm of the tracking 

error. The additional term that is occurring in the adaptation law also introduces 
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damping, but in difference to the -modification and e-modification the damping is 

proportional to the amount of persistent excitation of the system 

  ̇          
             

      
    

    . (5.82) 

Due to the term     
  the damping is proportional to the excitation of the system and 

the   
    

     is constant and necessary for the stability proof [157]. 

The modified adaptive law guarantees that  ̇    outside a compact set given by  

  {(   ̃   )| ‖  ‖     ‖ ̃   ‖
 

   }  

where           are positive constants. This means, it is only guaranteed that the 

product  ̃    is bounded, but not the boundedness of  ̃ . Or, boundedness of  ̃  is 

only guaranteed when the system is persistently excited. It was seen that with the 

Optimal-modification fast adaptation can be achieved while oscillations, resulting from 

high adaptation gain, are largely reduced [157]. 

 Short Period Example 5.2.6

To assess the different robustness modifications the benchmark problem from Section 

2.1 is used again with the predictor based adaptive controller from Section 5.1.7.1. 

Because sensor noise is not present in the considered problem the dead-zone is not 

evaluated in the following. Only  - , e-, and optimal modification are applied to the 

update laws used in Section 5.1.7.1, which are given by Eq.(5.30) and Eq.(5.63). 

However, the modifications are only applied to the update laws of the parameters 

which are used for control, because the estimation of the unmatched parameters only 

affects the reference model, and by projection it is guaranteed that this cannot cause 

instability. Thus the update laws are given by 

  ̇̂    (  
    

       

     ) 

λ̇̂     (    
       

     ) 
(5.83) 

  ̇̂                
       

  (5.84) 

where    and    are defined in Table 5.12 for the respective modifications. 

 

  -Mod. e-Mod. Optimal-Mod. 

    ̂  ‖  ‖  ̂       
   ̂       

  
   

       

  

   λ̂ ‖  ‖ λ̂     λ̂       

  
   

       

  

Table 5.12: Modification terms for -, e-, and optimal modification 
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In the following the different modifications are evaluated for certain values of the 

parameter  , which are given in Table 5.13. Note that the remaining parameters of the 

adaptive controller have not been retuned, and the parameters from Table 5.8 are 

used. 

 

  -mod. e-mod. optimal-mod. 

  0.05 1 0.1 

Table 5.13: Simulation parameters for robustness modifications 

 

In Table 5.14 the values for the time delay margin are given. It can be seen that for all 

modification the time delay margin increases with increasing  . The evaluation results, 

regarding robust performance, for the different robustness modifications are shown in 

the following subsections. As expected, the results show that all robustness 

modification deteriorate the performance. Especially the  -modification leads to an 

aggravation, which can be seen in Figure 5.55 - Figure 5.60 . The performance in 

presence of the matched uncertainties becomes strongly discontinuous and is even 

worse than the baseline controller, while the improvement on the time delay margin is 

only small. In difference the e-modification (Figure 5.61 - Figure 5.66) and the optimal 

modification (Figure 5.67 - Figure 5.72) still show good performance and provide a 

better time delay margin. In particular the results indicate that the optimal modification 

yields the best trade-off between robustness and performance. It should be noted that 

better results might be possible if different parameters  are used on each adaptation 

law and if a retuning of all parameter is applied. 

 

 -mod. e-mod. optimal-mod. 

TDM: 1g CMD 0.37 0.39 0.39 

TDM: 2g CMD 0.31 0.35 0.39 

Table 5.14: Time delay margins for different robustness modifications 
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 -Modification 5.2.6.1

 

 

Figure 5.55: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.56: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.57: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.58: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.59: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.60: Robust perfomance w.r.t. λ 

nZ,CMD=2 

 

  

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

-4 -3 -2 -1

0 1 2 3 4 5

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

-4 -3 -2 -1

0 1 2 3 4 5



150 MODIFICATIONS 

 
 
 

 e-Modification 5.2.6.2

 

 

Figure 5.61: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.62: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.63: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.64: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.65: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.66: Robust perfomance w.r.t. λ 

nZ,CMD=2 
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 Optimal-Modification 5.2.6.3

 

 

Figure 5.67: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.68: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.69: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.70: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.71: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.72: Robust perfomance w.r.t. λ 

nZ,CMD=2 
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5.3 Update Law Modifications 

In difference to the robustness modifications the following modifications are mainly 

introduced to increase the speed of parameter convergence while maintaining a 

desired transient response. The modifications rely on additional parameter 

identification based on an algebraic error equation, and are also referred to as 

Composite, Combined or Hybrid MRAC. Here the additional error model is algebraic 

and not dynamic as in the standard direct and indirect approach. The algebraic error 

equations/models are directly derived from the plant dynamics.  

Regarding Chapter 4, there arise two different problems depending on the plant 

parameterization and the resulting error dynamics. This means the applicability of 

different approaches is depending on weather the plant parameterization is bilinear in 

the unknown parameters like in the direct case, or if it is linear in the unknown 

parameters as it is in the indirect or the predictor based approach. 

For the direct approach the following plant parameterization is used (see Eq.(4.5)) 

  ̇              (    
       

   (  )    
    

  ) 

             (    
    ) 

(5.85) 

with   
  [  

    
    

   
 ] and       

  (  )      . It is obvious that the 

parameterization is bilinear in the unknown parameters due to the product    
 . 

In difference, in the indirect and predictor based approach the parameterization is 

linear. Taking the predictor based approach for example, the parameterized plant is 

given by (see Eq.(4.29)) 

  ̇         (    ̂ 
  

    ̂ 
  

 (  )   ̂ 
 ) 

         ̂ 
     

(5.86) 

with  ̂ 
  [ ̂  

  
 ̂ 

  
 ̂ 

  ] and       
  (  )      . 

If the state derivatives  ̇  are available Eq.(5.85) and Eq.(5.86) directly provide 

algebraic equations that have to be satisfied by the unknown parameters. By defining 

    ̇      , (5.87) 

Eq.(5.86) can for example be rewritten by  

      ̂ 
  

  . (5.88) 

With   available from measurement, this poses a standard problem of parameter 

estimation, where gradient algorithms or least square estimation is directly applicable. 

In the following, at first gradient based modifications are discussed for bilinear 

parametric models and linear parametric models, respectively. For simplicity the 

subsequently discussed approaches are only shown for linear parametric models. 

The state derivatives are usually not available and simple numeric differentiation 

schemes can result in amplification of sensor noise. However, better methods have 
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been suggested to approximate them from the state measurements (e.g. fixed point 

smoothing [113] [158] or approximation from spline interpolation [115]). In difference, 

the approaches suggested in [109] [110] [111] [159] [4] [92] do not directly estimate the 

state derivatives. Instead similar algebraic equations as above are derived from 

integration of the plant dynamics over a fixed time window or filtered plant dynamics, 

respectively. However, the purpose of these approaches is basically also to obtain 

smooth derivatives through averaging over a time window or filtering, respectively. 

In the following, these two methods for obtaining an algebraic constraint for the 

parameters, by means of integration or filtering are considered. The Q-modification, 

that relies on integration of the plant dynamics and is referred to Integral Approach in 

the following, was introduced in [109] [110] [111] [159]. In [4] [92] approaches were 

presented that use the filtered system signals, and thus are referred to as Filtered 

Approach in the following. 

 

Integral Approach: 

In the following at first the integral version is considered, which is at first applied to the 

bilinear parameterized plant. Therefore, integrate the system dynamics of Eq.(5.85) 

over a moving time window       ,    , where    ̂ m  (      ), and      is a 

design parameter that determines the length of the integration window 

 ∫  ̇ 
 

  
   ∫ (            (    

    ))
 

  
  . (5.89) 

Actually, under the idealized assumptions the integration could also be carried out 

over the complete time interval      . However, when non-parametric uncertainties are 

present, that cannot be compensated by the control architecture, they will also enter 

in an integrated form. Hence, the time window is usually chosen small. 

Eq.(5.89) can also be denoted by 

   ( )    (    )    ∫   
 

  
     ∫  

 

  
      (∫  

 

  
     

  
∫   

 

  
  ). (5.90) 

By defining 

 
 ̅   (  ( )    (    )    ∫   

 

  

     ∫  
 

  

  ) (5.91) 

 
 ̅  ∫  

 

  

   (5.92) 

  ̅  ∫   
 

  
  , (5.93) 

we obtain 

  ̅     (  
   ̅   ̅). (5.94) 

Hence, the true parameters have to satisfy this algebraic equation which is bilinear in 

the unknown parameters. 
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Using the estimated parameters    and  ̂, an error can be defined in the form 

  ̅ (    ̂)     ̂(  
   ̅   ̅)     (  

    ̅   ̅)=   ̂(  
   ̅   ̅)   ̅. (5.95) 

If the same approach, of integrating the plant dynamics is used for the linear 

parameterized plant of Eq.(5.86), instead of Eq.(5.91) we obtain the algebraic 

constraint 

  ̅     ̂ 
  

  ̅ , (5.96) 

which is linear in the unknown parameters. From this, also an error depending on the 

estimated parameters, can be defined 

  ̅ ( ̂ )     ̂ 
   ̅     ̂ 

  
 ̅     ̂ 

  ̅   ̅. (5.97) 

 

Filtered Approach: 

Instead of integrating the plant dynamics they can be filtered with a stable, proper 

filter. In the following, for simplicity a first order lag filter is considered with the transfer 

function  ( )  
  

    
, where      is the inverse time constant of the filter. This design 

parameter is similar to the integration window length   . Applying this filter to both 

sides of the system dynamics of Eq.(5.85) yields 

   

    
 ̇ ⏟    

 ̇̅ 

 
  

    
(            (    

    )). 
(5.98) 

By defining  ̇̅ ( )  
  

    
 ̇ ( ) and noticing that  ̇̅ ( )    (  ( )   ̅ ( )) we can 

rewrite 
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⏟  
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). (5.99) 

Similar to the previous approach we can define 

  ̅   (λ (    ̅ )     ̅     ̅) (5.100) 

Thus, a similar algebraic equation as in the previous section is obtained (compare 

Eq.(5.94)), which has to be satisfied by the true parameters 

  ̅     (  
   ̅   ̅). (5.101) 

And again an algebraic error model can be defined in the form 

  ̅ (    )     ̂(  
  ̅   ̅)     (  

   ̅   ̅)     ̂(  
  ̅   ̅)   ̅. (5.102) 
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 Gradient Based Modifications 5.3.1

In the previous section it was shown how an algebraic error model for parameter 

identification can be obtained by filtering or integrating the plant dynamics. In the 

following two gradient based update law modifications are considered. The Q-

modification, which relies on integration of the plant dynamics, was introduced in 

Refs. [109] [110] [111] [159] for the predictor based MRAC structure with a linear error 

model. And in [64] an approach was presented that uses the filtered system signals 

and is applicable to the bilinear error model. However, the approaches are similar as 

they use an additional error in from of an algebraic equation that is dependent on the 

estimated parameters, and this algebraic constraint is minimized by applying the 

gradient method. 

 

 Bilinear Error Model: 5.3.1.1

The bilinear nature of the error model in the direct case results from the assumed 

parameterization of the plant Eq.(5.85) and the control law Eq.(4.3).  

Based on the error defined in Eq.(5.95) the cost functional  

 
 (  

   ̂)  
 

 
 ̅ 

  ̅  
 

 
 [   ̂(  

  ̅   ̅)   ̅]
 
[   ̂(  

  ̅   ̅)   ̅]  (5.103) 

is defined, and by application of the gradient method (see [4] [92]) with respect to the 

unknown parameters   
  and  ̂. Calculating the gradients for  (  

   ̂) gives 
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   ̂)
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(5.104) 

and the following update laws can be used 

 
 ̇     

  (  
   ̂)

   
  ̂       ̅  ̅ 

    

 ̇̂     
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   ̂)

  ̂
   (  

  ̅   ̅) ̅ 
     

(5.105) 

Now the standard update law from Eq.(4.10) can be altered by the additional term for 

the update of    and the estimation of the control effectiveness  ̂ from Eq.(5.105) to 

obtain 

  ̇     (    
      ̅  ̅ 

 )   

 ̇̂      (  
  ̅   ̅) ̅ 

     
(5.106) 

where an additional weighting factor    for the term derived from gradient 

minimization can be introduced.  

As shown in [92], these update laws guarantee global asymptotic stability of the 

closed loop error dynamics. In Appendix D only the stability proof for the linear error 
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model (see next section) is shown, but due to similarity the transfer to the bilinear error 

model is easy.  

The errors    and  ̅  converge to zero asymptotically. This can be shown with the 

Lyapunov function candidate: 

   
 

 
  

     
 

 
  [ ̃ 

   
   ̃  ]  

 

 
  [ ̃  

   ̃ ]. (5.107) 

The simple Lyapunov based update law in Eq.(4.10), is subject to a rank one limitation 

because the term     
  results in a rank one matrix, and thus the update of   

  is 

limited to this direction. In difference the additional term in Eq.(5.105) helps to 

overcome this limitation as  ̅  is the integrated or filtered version of    that contains 

information from a previous time interval in averaged from, and has not necessarily the 

same direction as   . Hence, it is likely that     
   and  ̅  ̅ 

  have different directions 

and the sum results in a rank two matrix  

 

 Linear Error Model: 5.3.1.2

If the indirect MRAC structure or the predictor based MRAC structure is used we 

assume a parameterized plant dynamics which is linear in the parameters (compare 

Eq.(4.15) and Eq.(4.29)). In the following similar to [109] [110] [111] the predictor based 

approach is exemplarily used. As mentioned, integration over a moving time window 

as well as filtering can be used to obtain the algebraic error model of Eq.(5.97), which 

is linear in the unknown parameters.  

Considering the following cost function 

  ( ̂ 
 )  
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 [   ̂ 

  ̅   ̅]
 
[   ̂ 

  ̅   ̅], (5.108) 

by application of the gradient method the following update laws for parameter 

identification can be derived 
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        ̅  ̅ 

    (5.109) 

Now the standard update laws from Eq.(4.38) can be altered by the additional term 

from Eq.(5.109) 

  ̇̂     (    
      ̅  ̅ 

 )   (5.110) 

Following the argumentation in [100] it can be shown that the closed loop system is 

globally stable and    and  ̅  converge to zero asymptotically. This can be shown with 

the Lyapunov function candidate: 

 
  

 

 
  

     
 

 
  [ ̃̂ 

   
   ̃̂ ] (5.111) 

The proof is also shown in Appendix D. 
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 Concurrent Learning 5.3.2

The concurrent learning was introduced and evaluated in [112] [113] [160] [161] where 

input output linearization is used to cancel known nonlinearities in the system in 

advance. This makes sense as the desired reference dynamics is usually linear, but it 

is not necessary and for consistency, in the following the approach is presented in a 

more general way. The adaptation laws of MRAC use only instantaneous signals to 

update the parameters and this leads to a rank one limitation of the adaptation laws, 

as explained in Section 5.3.1. The idea of the proposed methods is to additionally use 

stored background data for the adaptation to overcome the rank one limitation and 

achieve faster convergence with global approximation of the system uncertainty. 

Hence, not only one point is used as it was done in the previous Section 5.3.1, where 

a rank two update could be achieved, but additional points are stored and used for 

adaptation to obtain higher ranks in the update matrix. In early publications the 

adaptation based on stored data was designed such that the current learning is not 

affected by it, and concurrent learning only takes place in directions perpendicular to 

current learning direction (in the nullspace of the current learning) [112] [113] [160] 

[161]. This idea however, is no longer pursued in recent publications [162] [163] [164]. 

The approach as it was presented in [112] [113] [160] [161] requires the knowledge of 

the state derivatives, and therefore a smoothing algorithm is used to obtain them from 

the measured states. Once a suitable data point      is selected the smoothing 

algorithm is initiated to obtain the derivative  ̇   . As mentioned before, if the state 

derivatives are available the system dynamics directly provides an algebraic equation 

that is either bilinear or linear in the parameters, dependent on the chosen approach.  

Instead of directly using the state derivatives, it is also possible to use the integrated 

or filtered system dynamics, as shown previously. In the following a linear 

parameterization is assumed which leads to an algebraic constraint according to 

Eq.(5.96), where for a certain stored data point, denoted by index  , we have 

  ̅      
   ̅    (5.112) 

This is equal to the algebraic equation considered in the previous section. This means, 

the adaptation law from Eq.(5.110) is valid for parameter estimation. 

However, the key feature of the method is that multiple, sufficiently different data 

points are selected, stored, and used in the adaptation law to achieve a global 

estimation of the system uncertainty. 

According to Eq.(5.109) a single data point can be taken into account by using 

gradient based minimization 

  ̇̂          ̅    ̅   
    (5.113) 

where the subscript   denotes that this is the update based on recorded data from 

point  . 
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To include the effect of all stored data points  , a summation of  ̇̂      is used and 

Lyapunov based update laws can be altered according to Eq.(5.110) to obtain  

 
 ̇̂     (    

     ∑ ̅    ̅   
 

 

 

)   (5.114) 

If there is enough excitation of the system and the right points are selected, then the 

sum over  ̅    ̅   
  will yield a matrix with full rank. 

Of course, the approach only makes sense if the system contains uncertain 

nonlinearities which should be approximated in a global way, and if the approximation 

term for the nonlinearity provides enough freedom to allow for an approximation over 

the whole domain where data points have been recorded. In this perspective the 

approach is mainly suitable for application in conjunction with neural networks, and in 

[112] [113] [160] [161] the extension to general nonlinear-in-the-parameter neural 

networks is also shown. The remaining issues are governed by the questions: how 

should the data points be selected, and how many data points should be stored? This 

is of course a problem specific question, and the answer depends on the expected 

uncertainties. 

 Recursive Least-Square Modification 5.3.3

Instead of the gradient based modification, recursive least-square estimation with 

adaptive learning gain can be used for the parameter update, as suggested in [4] 

[115]. In the following the method is shown for linearly parameterized error models 

such as Eq.(5.102). The idea of the least-square method is to find the estimate  ̂ ( ) 

that minimizes the square of all errors  ̅ ( ̂ )     ̂ 
 ( ) ̅ ( )   ̅( ) over the time 

interval      . To achieve this, define the integral cost functional 
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The minimum of this cost function has to satisfy 
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Differentiating Eq.(5.116) with respect to time we obtain 
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By defining 

      ∫  ̅ ( ) ̅ 
 ( )

 

 
    , (5.118) 

and applying it to Eq.(5.117) we get 

  ̅ ( ) ̅ 
 ( ) ̂ ( )  

        ̇̂ ( )  
     ̅ ( ) ̅ ( )    . (5.119) 

Furthermore the following identity holds 
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      ̇        ̇    . (5.120) 

By resolving Eq.(5.119) with respect to  ̇̂  and Eq.(5.120) with respect to  ̇ the update 

laws are obtained 

 

 ̇̂ ( )    [ ̅ ( ̅ 
  ̂   

   ̅ )⏟          
 ̅ 
 

  
  ] (5.121) 

  ̇     ̇        ̅  ̅ 
  , (5.122) 

where the left pseudo-inverse   
  (  

   )    
  must exist. 

  is the covariance matrix which is updated from a differential equation: Eq.(5.122). 

Because   is also the learning rate (adaptation gain) for the parameter update in 

Eq.(5.121), this constitutes an adaptation law with adaptive learning rate. From 

Eq.(5.122) it is clear that  ̅  ̅ 
  is positive semi definite, and thus the covariance will 

converge to the origin in presence of persistent excitation. This is behavior is called 

covariance wind-up. On the one hand this characteristic leads to better and more 

robust estimation in the presence of measurement noise. On the other hand the 

reduction of the update gain will lead to problems if the system parameters are not 

constant but change over time. To circumvent the wind-up problem a forgetting factor 

in the update law for the covariance matrix can be used. But then boundedness of   is 

no longer guaranteed without additional modifications like bounding of the covariance 

matrix by means of the projection operator [88] or bounded-gain forgetting [4]. 

To guarantee signal boundedness and convergence of the tracking error, again, a 

combination of Eq.(5.121) and Eq.(5.122) with the Lyapunov based adaptation law in 

Eq.(4.38) can be used: 

  ̇̂    [    
      ̅  ̅ 

   
  ] (5.123) 

  ̇     ̇        ̅  ̅ 
   (5.124) 

It can be shown that the closed loop system is globally stable and    and  ̅  converge 

to zero asymptotically. This can be established with the following Lyapunov function 

candidate: 

 
  

 

 
  

     
 

 
  [ ̃ 

     ̃ ] (5.125) 

To account for the mentioned covariance wind-up a forgetting factor can be added, 

and this yields 

  ̇     ̇        ̅  ̅ 
      (5.126) 

with    . Larger   means better ability to follow time varying parameters, but it also 

implies a shorter averaging time, which means less robustness in the presence of 

measurement noise. 
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 Short Period Example 5.3.4

In the following the recursive least square modification suggested in the previous 

Section 5.3.3 is applied to the predictor based approach used in Section 5.1.7.1. This 

means, following Eq.(5.123) and Eq.(5.124) the modified version of the update laws 

from Eq.(5.30) is given by 

 
 ̇̂  [

 ̇̂ 

λ̇̂
]      [    
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(5.127) 

With  ̅ 
    ̅ 

  ̅ . The update law for the unmatched uncertainties from Eq.(5.63) is 

modified to 
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(5.128) 

To reduce the number of parameters the update laws for the covariance matrices     

and     are modified, such that only the diagonal elements are adjusted. The 

selection of the diagonal elements of a matrix is denoted by      . Additionally the 

parameter    is introduced as weighting factor for the update base on the algebraic 

error. 

In the following the filter approach is applied. Thus, from Eq.(5.100) and by taking into 

account that the modification for unmatched uncertainties form Section 5.1.4 is 

applied we obtain for  ̅  

  ̅   (λ (  
   ̅ 

 )       

  ̅ 
    

  ̅          
  ̂     ̅ 

 ) (5.129) 

Compared to Eq.(5.100), here the system matrix      

  is used instead of the ideal 

system matrix      

  because the control input   contains the feedback of the baseline 

controller, whereat in Section 5.3.1 only an adaptive feedback signal was assumed. 

The filtered signals are given by 

 
 ̅ 

 ( )  
  

    
  

 ( ) 

 ̅( )  
  

    
 ( ) 

 ̅ ( )  
  

    
 ( )  

(5.130) 

and      is selected for the following simulation results. 

The adaptive controller is assembled by Eq.(5.26), Eq.(5.60), Eq.(5.61), Eq.(5.67), 

Eq.(5.29), Eq.(5.127), Eq.(5.128), Eq.(5.129) and (5.130). 

The controller parameters, to which the same tuning and constraints as in Section 

5.1.7.1 were applied, are the initial conditions for of the covariance matrices    ( ) 
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and    ( ), the forgetting factor  , and the error feedback gain   . To assure 

boundedness of     and     projection is used to enforce the upper bounds given 

by the initial conditions,    ( ) and    ( ). Together with a cost function value of 

 =0.465 the parameter values in Table 5.15 are obtained. Again, uncertainties in the 

dynamics of the integrated error    are not expected and the respective entries in 

   ( ) and    ( ) are set to zero. 

 

   ( )    ( )         

[

       
       
    
       

] 
[
      
      
   

] 
               

Table 5.15: Controller parameter 

 

In the following only the time delay margin are calculated and shown in Table 5.16 and 

the robust performance is evaluated in Figure 5.73 - Figure 5.78. It is clear that a 

performance increase should not be expected, because the reduction of the learning 

rate in the presence of excitation will lead to slower parameter adjustment. From 

Figure 5.73 - Figure 5.78 it can be concluded that the performance deteriorates for the 

initial step input.  

 

 1g CMD 2g CMD 

TDM  0.30s 0.25s 

Table 5.16: Time delay margins 

 

From the time delay margins given in Table 5.16 no increase in robustness can be 

seen. However, the performance of the approach is still better than the baseline 

controller and form the theory a robustness increase w.r.t. measurement noise can be 

expected.  
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Figure 5.73: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 5.74: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 5.75: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 5.76: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 5.77: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 5.78: Robust perfomance w.r.t. λ 

nZ,CMD=2 
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Chapter 6  
 
L1 Adaptive Control 
 

In recent years L1 adaptive control was suggested as advancement to standard 

MRAC and its benefits have been controversially discussed. In this chapter the basic 

theory is presented. Furthermore the similarities of applying a hedging signal to the 

reference model, used in model reference adaptive control to account for dynamic 

constraints in the input channel (see Section 5.1.1), and L1 adaptive control are 

discussed. For the sake of simplicity the approach is displayed for single input system 

according to [95] and [165], but the extension to MIMO systems is possible [23], [26], 

[166]. Successful applications of L1 adaptive control can be found in [25] [26] [167] 

[168] [169] [170] [171] [172] [173] [174]. 

In the previous section we could see that fast adaptation is desirable as it allows a fast 

compensation of uncertainties. Therefore, a fast adjustment of the parameters is 

necessary and hence a high adaptation gain must be used. We could also see in the 

previous section that without the hedging only small adaptation gains are possible, 

because large gains lead to oscillations in the parameters which then also occur in the 

input channel. These oscillations in the input channel are undesirable and with 

actuator and structural filter dynamics the high gain can easily lead to instability [86]. 

To solve this drawback the theory of L1 adaptive control was developed [95] [96] [97], 

with the objective to decouple robustness and adaptation, and thus decouple control 

from estimation. The key idea of L1 is to restrict the bandwidth of the control signal by 

using a low-pass filter in the input channel to prevent high frequencies from entering 

the system. But fast adjustment of the parameters is still desirable and therefore the 

influence of fast parameter changes has to be visible in the error signal. This led to 

special architectural choice of L1 adaptive control.  

In the following it is shown how and why this special structure is used for L1 adaptive 

control [165]. As already mentioned, a low-pass filter is used in the input channel as 

shown in Figure 6.1, where the red dot indicates where the filter would have to be 

installed in the direct and in the predictor based structure.  
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Figure 6.1: Effect of the lowpass filter on direct MRAC and predictor based MRAC 

 

Assume we are using the direct approach and apply the low-pass filter in the input 

channel. It becomes clear, that the higher frequencies are filtered out from the 

command signals. Hence, the effect of fast parameter changes would not be visible in 

the error signal. Furthermore, with the additional filter dynamics the plant differs from 

the reference model and thus the reference model cannot be tracked for high 

frequency commands. 

If we are using the predictor based MRAC, we can also implement a low-pass filter in 

the input channel to prevent corruptive frequencies from exciting the plant. In 

difference to the feedforward characteristic of the reference model the predictor uses 

the input signal   as well as the unfiltered estimated parameters. This can be seen 

from the predictor dynamics in Eq.(4.30): 

  ̇̂     ̂    ( ̂          (  )    ). (6.1) 

Even if   is filtered, the high frequency content enters the predictor via the estimated 

parameters. Hence, the influence of fast parameter changes is still visible in the error 

which is used for adaptation. So information contained in the high frequency content 

is not filtered out but is still used for adaptation. This is the reason why the predictor 

based architecture is used for L1 adaptive control [95]. 

As mentioned before, the idea is to choose the adaptation gain as large as possible 

and shifting the design freedom towards the introduced filter. This filter has to be 

chosen appropriately to guarantee the stability of the adaptive system. Recently a 

similar approach was suggested where the design of the filter is based on    control 

design [175] [176]. 

The modification is much more complex than just the insertion of the filter, due to the 

fact that the input to the predictor is also filtered. Thus the predictor is not equal to the 

reference model as it was in Section 4.4 (see Eq.(4.34)), and the Small-Gain-Theorem 

has to be used to proof stability. The new architecture and the claims that are made 

within L1 adaptive control theory raised concerns in the adaptive control community 
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because some researchers think that the claims cannot be met. However, in the 

following it is shown that L1 adaptive control basically provides a method to account 

for dynamic constraints in the input channel of the plant, legitimatized by sound 

mathematical proofs. 

In particular the similarities of applying a hedging signal to the reference model used in 

direct MRAC, to account for dynamic constraints in the input channel, and L1 adaptive 

control are discussed. It is shown that in the case where the control effectiveness is 

known, both approaches are exactly the same, where the contribution of the L1 theory 

is the mathematically correct framework that provides a stability poof/condition which 

has not been available for the hedging approach. In the case of unknown control 

effectiveness the two methods are slightly different and the L1 approach additionally 

adjusts the cutoff frequency of the low pass filter. This difference allows for the 

elegant stability proof given by L1 theory. At the end the two approaches are 

compared based on a simple short period model of a large transport aircraft by 

assessing the robust performance w.r.t. model uncertainties. 

In general the approach is of course also possible with nonlinear regressors, however 

the notion in L1 adaptive control is, to achieve adaptation that is fast enough to make 

nonlinear regressors unnecessary [95]. To point out the main idea, in the following the 

approach is at first shown for a single input system with known high frequency gain 

and constant uncertainties. Then the approach for systems with unknown high 

frequency gain and time varying parameters is shown. 

In the last section of this chapter L1 piecewise constant control is discussed and 

evaluated for the simple short period model. Even though this cannot be considered 

as an adaptive control approach it is presented in this chapter as the idea originated 

from L1 adaptive control. 

 Plant with Known High-Frequency Gain 6.1

Analogously to Eq.(4.29) the plant dynamics for a single input system are given by 

(matching condition holds) 

  ̇         (   ̂ 
  

  ) (6.2) 

 ̂ 
  

       is an unknown parameter vector and it is assumed that a bound on the 

system uncertainties is known such that  ̂ 
  

 belongs to a convex, compact set: 

 ̂ 
  

      . Here no nonlinear and constant uncertainties and no uncertainties in the 

control effectiveness are assumed. 

According to Eq.(4.30) the state predictor is given by 

  ̇̂     ̂    (   ̂ 
   ). (6.3) 
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The error dynamics for the considered case is similar to Eq.(4.35): 

  ̇   ̇̂   ̇          ̃ 
   . (6.4) 

The parameter update law from Lyapunov theory is also used for L1 adaptive control 

and is given by (see Eq.(4.38)) 

  ̇̂        
    . (6.5) 

 Controller Structure 6.1.1

In Figure 6.2 the L1 structure is shown, where the difference to the predictor based 

MRAC is given by the stable, strictly-proper, linear low-pass filter  ( ), with DC gain 

of one, in the input channel of both, the plant and the predictor. For  ( )    the L1 

architecture obviously collapses to the predictor based MRAC. 

According to Eq.(4.32) the MRAC control law is given by 

            ̂ 
   . (6.6) 

The    control law is given by a filtered version of the previous, which can be denoted 

in the Laplace domain by 

    
( )   ( )     ( ) (6.7) 

 

 

Figure 6.2: Basic L1 architecture 

 

Instantly this newly introduced filter raises the question of how does it impact the 

stability. The problem is actually the same that was encountered by taking into 

account additional dynamics in the input channel and applying a hedging signal (see 

Section 5.1.1). Due to the additional dynamics of the filter the normal Lyapunov 

stability proof is not applicable. However, the theory of L1 provides a stability proof 

under compliance with additional requirements [95], which are given in Section 6.1.3. 
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Filter with Constant Cut-off Frequency 

To be a low pass filter,  ( ) must be strictly proper, i.e. its numerator degree must be 

lower than the denominator degree. Additionally, as a prerequisite for overall system 

stability,  ( ) has to be stable, see Section 6.1.2. The general structure of the filter is 

the following 

  ( )  
   ( )

     ( )
, (6.8) 

with  ( ) being any transfer function that leads to a strictly proper and stable  ( ) and 

a DC gain equal to one:  ( )    To obtain a strictly proper  ( ) the relative degree of 

 ( ) must be greater than zero. The filter can be implemented as shown in Figure 6.3. 

For the considered case, where the control effectiveness is know, the low pass filter 

can of course be implemented in a simpler way. However, for the case where the 

control effectiveness is unknown this structure is necessary (see Section 6.2). Thus, 

for consistency the same structure is already used here. 

 

 

Figure 6.3: Filter with constant cut-off frequency 

 

For example, a 1st order filter evolves from  ( )     . This yields ( )  
  

    
 , where 

   is the crossover frequency. From Eq.(6.6) the control law is given by 

 

   
( )  

  

    
       ( )  (6.9) 

Transforming Eq.(6.9) to the time domain we get 

  ̇  
( )     [     ( )     

( )]. (6.10) 

For a 1st order filter, Figure 6.4 gives an overview of the entire    control architecture 

derived in this section. 
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Figure 6.4: Complete L1 control architecture for known high frequency gain (on the basis of [165]) 

 

 Ideal L1 Reference Model 6.1.2

With the optimal parameters  ̂ 
  the ideal control law can be directly written for the in 

the form: 

                ̂ 
  

      . (6.11) 

With the ideal control law the MRAC reference model can be represented as a closed 

loop system consisting of the plant and the ideal input signal          . It was seen 

that for the predictor based MRAC structure the predictor in Eq.(6.3) becomes the 

reference model by inserting the control law given in Eq.(6.6): 

  ̇           ⏟  
  

 . 
(6.12) 

If the low-pass filter is introduced, this is not the case anymore. Actually the ideal 

reference model cannot be seen anymore, in the    structure. For the    architecture 

an ideal reference model can be derived by filtering the ideal control input given in 

Eq.(6.11)  

        ( )   ( )         ( ). (6.13) 

Applying it to the plant results in the ideal   -reference model: 

  ̇   ( )        ( )    [       ( )   ̂ 
  

    ( )] (6.14) 

        ( )   ( )         ( )   ( ) {   ( )   ̂ 
  

    ( )}
 
. (6.15) 

In the Laplace domain Eq.(6.14) can be denoted by 
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The initial condition of the plant states  ( ) is taken into account for completeness as 

it has an effect on the signal bounds that will be derived. Inserting the control law from 

Eq.(6.15) into Eq.(6.16) yields 

     ( )  (     )    [ ( ) (   ( )   ̂ 
  

    ( ))   ̂ 
  

    ( )]  (     )    ( ) 

    ( )  (     )    [ ( )   ( )  ( ( )   ) ̂ 
  

    ( )]  (     )    ( )  
(6.17) 

By defining 

the reference model of Eq.(6.17) can be denoted by 

     ( )   ( ) ( )   ( )   ( ) ̂ 
  

    ( )      ( ). (6.21) 

Due to the low-pass filter the reference dynamics of  ( ) (this is the MRAC reference 

model) can only be tracked for low frequencies, whereas for frequencies above the cut 

of frequency of  ( ) the influence of  ( ) becomes visible. This means the    

reference model is not a “clean” reference system, because the control objective is 

reduced by the filter. However, the filter can account for bandwidth restrictions in the 

input channel and therewith render the control objective feasible. 

Because of the filter it is also not a-priori clear from a stable    whether the reference 

model is stable, even though the system from Eq.(6.14) and Eq.(6.15) is a linear 

feedback system as it only uses the constant ideal parameters. However, by using the 

small gain theorem a condition for Bounded-Input-Bounded-Output stability (BIBO 

stability, see definition in C.1.4) can be derived. BIBO stability means that if the input 

signal is element    (bounded) than the output signal is also element   , and the 

      -induced system norm is the   -norm [95] [89]. This means for a system of the 

form  ( )   ( )  ( ), with  ( )       and impulse response  ( ) it holds that 

‖ ( )‖  
 ‖ ( )‖  

 ‖ ( )‖  
. Here the notation ‖ ( )‖  

 ‖ ( )‖  
 is used, and 

‖ ( )‖  
 m          [∑ ‖   ( )‖  

 
   ]. 

From the BIBO stability analysis it follows that the    ideal reference model is only 

stable, if the   -criterion is fulfilled [95]. 

  ̅ ‖ ( )‖  
  , (6.22) 

where 

 
 ̅  m  

 ̂ 
    

∑| ̂   
 |

 

   

  (6.23) 

     ( )  (     )    [       ( )   ̂ 
  

    ( )]  (     )    ( ), (6.16) 

  ( )  (     )     (6.18) 

  ( )   ( )( ( )   ) (6.19) 

     ( )  (     )    ( ), (6.20) 
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The derivation can be found in [95], but due to the importance it is revisited in the 

following. 

With the       induced system norm applied to Eq.(6.21), one can find an upper 

bound on the states of the reference model by 

 ‖    ‖  
 ‖   ( ) ( )‖  

 ‖ ‖  
 ‖ ( )‖  

‖ ̂ 
  

    ‖
  

 ‖    ‖  
. (6.24) 

To show BIBO-stability we need to resolve w.r.t. ‖    ‖  
 and therefore we need to 

separate ‖ ̂ 
  

    ‖
  

, what can be achieved by the following estimate 

 
‖ ̂ 

  
    ‖

  

 m  
 ̂ 

      

∑| ̂   
 |

 

   

‖    ‖  
  ̅ ‖    ‖  

 (6.25) 

Substituting Eq.(6.25) into Eq.(6.24) yields 

 
‖    ‖  

   ‖ ( ) ( )‖  
 ‖ ‖  

  ̅ ‖ ( )‖  
‖    ‖  

 ‖    ‖  
, 

(6.26) 

And resolved with respect to ‖    ‖  
 gives 

 ‖    ‖  
 

 

   ̅ ‖ ( )‖  

[  ‖ ( ) ( )‖  
 ‖ ‖  

 ‖    ‖  
]. (6.27) 

For      to be bounded, ‖ ( ) ( )‖  
 and ‖ ( )‖  

 must exist, i.e. the transfer 

functions  ( )  (     )        ( )    ( )  (     )     must be stable. This 

is fulfilled, since    is Hurwitz and  ( ) is stable. Additionally, the denominator 

   ̅ ‖ ( )‖  
 must not be zero, which is what the small gain theorem states and this 

leads to the   -criterion in Eq.(6.22). 

Thus, we obtained a condition for  ( ) such that the reference model, defining the 

reduced control objective, is stable. This is already one advantage of the    adaptive 

control framework: it provides a constraint on the uncertainty domain dependent on 

the bandwidth restrictions in the input channel. E.g. if we consider  ( ) to be the 

actuator dynamics we can draw a conclusion on the system uncertainties that can be 

theoretically tolerated without causing instability. Vice versa this means the larger the 

uncertainty  ̂ 
  

 can get, or the less knowledge about the compact set    is available, 

the larger the bandwidth of the input channel must be (higher   ). 

This does not jet guarantee stability of the whole system. Furthermore, the reference 

model is not sufficient to introduce certain specification (overshoot, rise time, settling 

time, etc.). In the following sections, at first stability is show by application of the small 

gain theorem to the predictor dynamics, and then it is shown that performance 

bounds with respect to reference model can be established (depended on the 

adaptive gain) in order to fulfill the specifications.  



L1 ADAPTIVE CONTROL 171 

 

 Stability of the L1 Controller 6.1.3

For the following proof, according to [95], it is necessary to apply the projection 

operator to the adaptive law such that  ̂  is bounded to the assumed uncertainty set 

    

At first it is shown that the prediction error   ( ) is bounded by the normal Lyapunov 

analysis and secondly it is shown that the predictor is stable. 

 Stability of the Error Dynamics 6.1.3.1

Here the error dynamics from Eq.(6.4) is considered: 

  ̇   ̇̂   ̇          ̃ 
   . (6.28) 

Consider the Lyapunov function candidate 

   
 

 
  

     
 

 
 ̃ 

    
   ̃ . (6.29) 

It can be easily verified that with the update law from Eq.(6.5) 

  ̇   
 

 
  

    . (6.30) 

If the initial error   ( )    and all elements of     are equal to  , then Eq.(6.29) implies 

that  

  ( )  
 

 

 

 
 ̃ 

 ( ) ̃ ( )   ( )  
 

 
  

    . (6.31) 

Since the projection operator ensures that  ̂  is bounded to    

  

 

 

 
 ̃ 

 ( ) ̃ ( )  
 

 

 

 
 m  

 ̂      

‖ ̃ ‖ 

 
  

 

 
, (6.32) 

where   m  
 ̂      

‖ ̃ ‖ 

 
. With Eq.(6.32) and the minimum eigenvalue  ( ) from  , an 

upper bound on    is given from Eq.(6.31) 

 ‖  ‖ 
  

  

 ( ) 
. (6.33) 

This bound holds uniformly in time and with ‖ ‖  ‖ ‖  we get 

 
‖  ‖  

 √
  

 ( ) 
 (6.34) 

This ensures that ‖  ‖   m          |    |  √
  

 ( ) 
 and with the triangular relationship 

 
|‖ ̂ ‖  

 ‖  ‖  
|  √

  

 ( ) 
 (6.35) 

we have  
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‖  ‖  

  ‖ ̂ ‖  
 √

  

 ( ) 
  (6.36) 

 Stability of the Predictor 6.1.3.2

Inserting the control law of Eq.(6.7) in the predictor dynamic of Eq.(6.3) we obtain 

  ̇̂ ( )     ̂ ( )    ({ ( )    ( )}   ̂ 
 ( )  ( )), (6.37) 

where     ( )       ( ). Adding and subtracting       yields 

 
 ̇̂ ( )     ̂ ( )    ({ ( )    ( )}   ̂ 

 
( )  ( )       ( )⏟                

     

      ( )). (6.38) 

Or equally 

  ̇̂ ( )     ̂ ( )       ( )    ({( ( )   )    ( )} ). (6.39) 

With the definitions of Eq.(6.18) and Eq.(6.19), and by inserting the control law form 

Eq.(6.6) into Eq.(6.39) we obtain in the frequency domain 

  ̂ ( )   ( ){ ̂ 
 ( ) ̂ ( )}

 
  ( )   ( )   ( )   ( )      ( ). (6.40) 

Thus the following bound holds 

 ‖ ̂ ‖  
 ‖ ( )‖  

‖ ̂ 

 
  ‖

  

 ‖ ( )   ( )‖  
 ‖   ‖  

 ‖    ‖  
. (6.41) 

Due to the projection operator it holds that 

 
‖ ̂ 

   ‖
  

 m  
 ̂      

∑| ̂   |

 

   

‖  ‖  
  ̅ ‖  ‖  

  (6.42) 

Applying Eq.(6.42) and Eq.(6.36) to Eq.(6.41) gives 

 
‖ ̂ ( )‖  

 ‖ ( )‖  
 ̅ (‖ ̂ ( )‖  

 √
  

 ( ) 
)  ‖ ( ) ( )‖  

 ‖   ( )‖  
 ‖    ‖  

  (6.43) 

Resolved with respect to ‖ ̂ ( )‖   we obtain 

 

‖ ̂ ‖  
 

(‖ ( )‖  
 ̅ √

  
 ( ) 

 ‖ ( ) ( )‖  
 ‖   ‖  

 ‖    ‖  
)

   ̅ ‖ ( )‖  

  

(6.44) 

Since all terms in Eq.(6.44) are bounded, and for stability of the reference model it was 

already required in Eq.(6.20) that  ̅ ‖ ( )‖  
  , it follows that ‖ ̂ ‖  

 is finite and 

thus  ̂ ( ) is uniformly bounded. From Eq.(6.35) it follows that ‖  ‖  
 exists and   ( ) 

is uniformly bounded. Furthermore, it follows from the error dynamics that  ̇  is 

bounded, and Barbalat’s Lemma can be applied to show that   m     ( )   . 
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It is furthermore possible to derive transient performance bounds as shown in [95]. 

These performance bounds have the following form: 

 ‖ ̂    ‖
  

    

‖       ‖
  

    

‖         ‖
  

    

(6.45) 

where   ,   , and    are positive constants. It should be noted that these constants depend 

on the    norms of the systems transfer matrix, and therefore the bounds can be conservative 

for higher order systems. 

In Section 6.2, the case of unknown control effectiveness is discussed. For unknown 

control effectiveness the approach is slightly different and thus the stability proof and 

the performance bounds are different, too. 

 Equivalence of Hedging and L1 adaptive control 6.1.4

In this section the equivalence of direct MRAC with hedging and L1 adaptive control 

for the case of known control effectiveness is shown. 

Looking at the predictor dynamics of Eq.(6.39), we can see, that it can be equivalently 

written in a form where a hedging signal is present 

  ̇̂ ( )     ̂ ( )      ⏟  
  

 ( )    ({( ( )   )    ( )} )⏟              
  

. 
(6.46) 

Comparing this with the reference model with hedging of Eq.(5.25) it is directly 

obvious that both approaches are mathematically equivalent. Thus, it is clear that both 

methods have the same properties and provide the same performance. This means, 

the only difference can be found in the structural implementation, what can be seen by 

comparing the L1 architecture shown in Figure 6.5 to the reference model with 

hedging of Figure 5.1, which is repeated for convenience in Figure 6.7. 

 

 

Figure 6.5: Architecture of L1 control 
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Figure 6.6: Repition of Figure 5.1: Architecture of direct MRAC with hedging 

 

However, an important improvement is that the theory of L1 adaptive control provides 

a stability condition for the state predictor, and due to the mathematical equivalence, 
this also guarantees stability for the reference model modified by hedging. Hence, L1 

adaptive control also provides the first stability proof/condition that justifies the 
application of a hedging signal to account for bandwidth limiting dynamics in the input 
channel. Additionally, all performance bounds presented in [95] are also valid for 
hedging if the control effectiveness is known. It has to be noted that in the case of 
unknown control effectiveness the hedging approach and L1 approach are not exactly 

the same. Thus, the stability condition and the performance bounds provided by the 
L1 theory cannot be easily transferred to the hedging approach as shown in the next 

section. 

 Plant with Unknown High-Frequency Gain 6.2

In the following the control effectiveness is assumed to be unknown. Furthermore the 

unknown parameters are assumed to be time varying, as this is allowed in the theory 

of L1 adaptive control, and stability can be shown if a certain bound on the rate of 

change can be given. That is, the plant dynamics are given by (matching condition 

holds) 

  ̇         (    ̂ 
  

( )  ), (6.47) 

where       is the unknown, positive control effectiveness, and  ̂ 
  

( )       is an 

unknown, time varying parameter vector. It is assumed that the following bounds on 

the uncertainties can be established:  ̂ 
  

      , and               with       

      . 

According to Eq.(4.30) the state predictor is given by 

  ̇̂     ̂    ( ̂   ̂ 
   ). (6.48) 

The error dynamics for the considered case yield, similar to Eq.(4.36), 
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  ̇   ̇̂   ̇         ( ̃   ̃ 
   ). (6.49) 

The parameter update law from Lyapunov theory is also used for L1 adaptive control 

and is given by (see Eq.(4.38)) 

  ̇̂ 
         

    

 ̇̂         
    

. (6.50) 

 Controller Structure 6.2.1

As the control effectiveness is unknown the control law is chosen slightly different to 

the previous section. It still holds that similar to the previous section, the MRAC 

control signal is filtered by a low-pass filter, but now an adaptive cut-off frequency is 

used for the filter. The cut-off frequency of the filter will be dependent on the 

estimation of the control effectiveness  ̂. The control law is given by 

    
( )      ( ){ ̂( )   

( )   ̂ 
 ( )  ( )     ( )} 

, (6.51) 

where      and  ( ) is a strictly proper transfer function. Or equivalently this control 

law can be denoted by 

 

   
( )      ( ){ ̂( ) (   

( )  
 

 ̂( )
( ̂ 

 ( )  ( )     ( ))⏟                
     

)}

 

, (6.52) 

      is the input, which is used for the predictor based MRAC (Eq.(4.32)): 

 
      

 

 ̂( )
( ̂ 

 ( )  ( )     ( ))   (6.53) 

Filter with Variable Cut-off Frequency 

If  ̂ would be constant and equal to the true value   this would result in 

 
   

( )  
    ( )

      ( )
{
 

 
( ̂ 

 ( )  ( )     ( ))}
 
 

  ( ) {
 

 
( ̂ 

 ( )  ( )     ( ))}
 
  

(6.54) 

where  ( ) is a stable low pass filter whose cut-off frequency depends on  . This 

means Eq.(6.51) basically implements a low pass filter where the cut-off frequency is 

adjusted by the estimation of  ̂. This also gets obvious in Figure 6.7 where the two 

different implementations of Eq.(6.51) and Eq.(6.52) are shown. It should be noted that 

Eq.(6.51) represents the implementation that is commonly suggested in literature. 

 



176 L1 ADAPTIVE CONTROL 

 
 
 

 

Figure 6.7: Different implementations of the adaptive filter 

 

For example, a 1st order filter evolves from  ( )      and yields for Eq.(6.52) in the 

time domain 

  ̇  
( )     ̂( ) [     ( )     

( )] (6.55) 

where    ̂( )    ( ) can be interpreted as the time varying crossover frequency. 

With Eq.(6.55) and Eq.(6.53) the control law for a filter with variable cut-off frequency is 

obtained. This is shown in Table 6.1, where in comparison the control law for a filter 

with fixed cut-off frequency, as used in the previous section, is shown. The similarity 

to the control law with constant low pass filter can be also seen by comparing Figure 

6.8 with Figure 6.3. 

 

  ( )     ̂( )          

 ̇  
( )   ̂( )   [     ( )     

( )]  ̇  
( )     [     ( )     

( )] 

Table 6.1: L1 control law for 1st order filter with variable and fixed crossover frequency 

 

 

Figure 6.8: Filter with variable cut-off frequency 

 

For a 1st order filter, Figure 6.9 gives an overview of the entire    control architecture 

for systems with unknown high frequency gain, where an adaptive cut-off frequency is 

used in the filter. 
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Figure 6.9: Complete L1 control architecture for unknown high frequency gain (on the basis of [165]) 

 Ideal L1 Reference Model 6.2.2

Similar to the previous section the reference model is obtained by considering an ideal 

input to the plant that renders the plant equal to desired dynamics by using the ideal, 

non-adaptive MRAC control law. 

          ( )  
 

 
[   ( )   ̂ 

  
( )    ( )]. (6.56) 

To obtain the ideal    reference model the same, ideal input is filtered 

        ( )   ( )         ( )  
 

 
 ( ) [   ( )   ̂ 

  
( )    ( )]  (6.57) 

and applied to the plant given by Eq.(6.47) we can obtain the ideal reference system 

     ( )   ( ) { ̂ 
  

( )    ( )}
 
  ( ) ( )   ( )      ( ). (6.58) 

Similar to the previous section the ideal reference dynamics is only stable, if the    

criterion is fulfilled. This condition is derived next. 

 Stability of the L1 Controller 6.2.3

In the following the proof according to [95] is not completely revisited, but only the 

main steps and results are provided. 

As previously it is necessary to apply the projection operator to the adaptive law such 

that  ̂  and  ̂ are bounded to the assumed uncertainty sets:  ̂     and  ̂  

 λ    λ    . At first it is shown that the prediction error   ( ) is bounded by the 

normal Lyapunov analysis and secondly it is shown that the predictor is stable 

PPPMP ubxAx 

T

x

*
θ̂

u



T

xθ̂

1̂


rk
r

PlantL1 -Controller

)(sD

prePPMP ubxAx  ˆ̂
u



T

xθ̂

̂

Predictor

Px

Px̂

̂



k

Filter  ( )

1Lu







178 L1 ADAPTIVE CONTROL 

 
 
 

 Stability of the Error Dynamics 6.2.3.1

In [95] it is shown that with a Lyapunov function of the form 

 
  

 

 
  

     
 

 
 ̃ 

    
   ̃   

 

 
 

 
   ̃

 
 (6.59) 

it can be verified that if the initial error   ( )    and all elements of     and     are 

equal to   the error is bounded by 

 
‖  ‖  

 √
  

 ( ) 
 (6.60) 

where   is now given by  
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 ̂ 
      

‖ ̂ 
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(λ    λ   )  
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 ( )
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  (6.61) 

Here   is again the solution of the Lyapunov Equation:       
     . Now   also 

includes the limits for λ and an upper bound on the maximum rate of change of  ̂ 
  

given by    ‖ ̇̂ 
 ( )‖

 
. The bound on the rate of  ̂ 

  is necessary as itwas assumed 

to be time varying. 

 Stability of the Closed Loop 6.2.3.2

In the previous section, where the control effectiveness was known, the stability of the 

closed loop was established by stability of the predictor. This could be also shown 

here, but due to the time varying  ̂ the transfer functions of  ( ) and ( ( )   ) 

cannot be multiplied in the frequency domain. This leads to a more conservative 

stability condition as we cannot take the   -norm of ‖ ( )‖  
, but instead need to 

take the norms of ‖ ( )‖  
 and ‖( ( )   )‖  

 separately. However, as shown in [95] 

boundedness of    w.r.t.      can be shown in an elegant way, and in addition to 

proofing stability this also directly provides a performance bound. In particular the 

following bound can be derived 

 
‖       ‖  

 
‖ ( )‖  

  ‖ ( )‖   ̅ 
√

  

 ( ) 
. (6.62) 

 Similarities of Hedging and L1 adaptive control 6.2.4

The choice of the low pass filter with adaptive cutoff frequency can be motivated by 

the elegant stability proof and the performance bounds that can be obtained. This is 

the key innovation of L1 adaptive control. It must be noted that in general a filter as 

shown in Figure 6.7 can also be accounted for by hedging, by just applying the control 

deficiency between filter input and output to the reference model dynamics. However, 

if the dynamics in the input channel are already fixed, as for example by an actuator, 
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the control law of Eq.(6.51) cannot be applied because the actuator dynamics cannot 

be adjusted by  ̂ and thus the stability proof and the performance bounds do not hold 

anymore. Therefore, the results are of theoretical nature, but as already mentioned 

before, a more conservative stability condition can be derived for the case when the 

filter dynamics are not adjusted by  ̂. Getting back to the currently considered 

problem where  ̂ is time varying, we again use the control law of Eq.(6.7) and insert it 

in the predictor dynamic of Eq.(6.48) to obtain 

  ̇̂ ( )     ̂ ( )    ( ̂( )  { ( )    ( )}   ̂ 
 ( )  ( )), (6.63) 

where     ( )       ( ) defined by Eq.(6.54). Adding and subtracting       to 

Eq.(6.63) yields 

 
 ̇̂ ( )     ̂ ( )    ( ̂( )  { ( )    ( )}   ̂ 

 ( )  ( )     ( )⏟              
  ̂( )    ( )

    ( )), (6.64) 

or equally 

  ̇̂ ( )     ̂ ( )       ( )    ( ̂( )  {( ( )   )    ( )} )  (6.65) 

With the definitions of Eq.(6.18) and Eq.(6.19), Eq.(6.65) can be denoted in the 

frequency domain by 

  ̂ ( )   ( )( ̂( )   ( ( )   )    ( ) )   ( )   ( )      ( ) 

 ̂ ( )   ( ) ( ̂( )  [( ( )   ) {
 

 ̂( )
( ̂ 

 ( )  ( )     ( ))}
 

])   ( )   ( )      ( ) 
(6.66) 

Here it is obvious, that if we want to obtain a norm bound on  ̂  it will become more 

conservative than the bound of the previous section, because the L1 norm of  ( ) and 

( ( )   ) must be taken separately, due to the time varying λ̂. Appling the    norm to 

Eq.(6.66) we get 
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(6.67) 

Hence, the following bound on  ̂  can be obtained 

 ‖ ̂ ‖  
 

    

    

‖ ( )‖  
‖ ( )   ‖  
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       ‖  

 ‖ ( )‖  
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 (6.68) 

Using Eq.(6.42) and Eq.(6.60) we get 
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(6.69) 
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Resolved w.r.t. ‖ ̂ ( )‖  
 yields 
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‖ ( )   ‖  
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(6.70) 

Similar to Eq.(6.44) the stability condition is directly visible from the denominator and it 

is clear that the condition is more conservative. 

 Short Period Example 6.3

In the following the approach from Section 5.1.7.1 is extended by an additional filter in 

the input channel according to Eq.(6.51). Thus the control law is given by 

        
( )      ( ){ ̂( )(       

     )}
 
 (6.71) 

 
     

 

λ̂
(       ) (6.72) 

For the following results the simple choice of  ( )      is made. 

Irrespective of the control law, the rest of the adaptive controller is the same as in 

Section 5.1.7.1 and it is assembled by Eq.(6.71), Eq.(6.72), Eq.(5.60), Eq.(5.61), 

Eq.(5.67), Eq.(5.29), Eq.(5.30), and Eq.(5.63): 
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(5.65) 

   ( )  (    ( )    ( )    ( )   )      ( ) (5.29) 

  ̇̂      
    

       

  

λ̇̂         
       

  

(5.30) 

  ̇̂             
    

          
  (5.61) 

Furthermore the same tuning as used in Section 5.1.7.1 is applied, where    is an 

additional parameter for the optimization algorithm. This leads to an objective function 
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of         with the controller parameters ginven in Table 6.2. From the smaller 

objective function and the larger time delay margin (see Table 6.3) it seem that the 

additional filter improves the performance and simultaneously also shows better 

robust stability. However the performance improvement is not a general result as can 

be concluded from the performance assessment shown in Figure 6.10 - Figure 6.15. 

Especially for matched uncertainties a robust performance loss can be seen. 

Furthermore, compared to the results from Section 5.1.7.1 the performance seems to 

be less homogenous w.r.t. different step sizes.  

It should be noted that the parameters are tuned for performance maximization, where 

L1 adaptive control was originally suggested to provide a trade-off between 

robustness and performance. This trade-off can be seen here. While the timed delay 

margin increases the performance w.r.t. matched uncertainties deteriorates.  

 

                  

[
       

      
   

] 
    

[
     
      
   

] 
          

Table 6.2: Controller parameter 

 

 1g CMD 2g CMD 

TDM  0.35 0.34 

Table 6.3: Time delay margins 
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Figure 6.10: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=1 

 

 

Figure 6.11: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=1 

 

 

Figure 6.12: Robust perfomance w.r.t. λ 

nZ,CMD=1 

 

Figure 6.13: Robust perfomance w.r.t.  

M𝛂 and Mq; nZ,CMD=2 

 

 

Figure 6.14: Robust perfomance w.r.t. Z𝛂; 

nZ,CMD=2 

 

 

Figure 6.15: Robust perfomance w.r.t. λ 

nZ,CMD=2 
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 L1 Piecewise Constant 6.4

The    piecewise constant control architecture was first introduced in [177] in the 

context of output-feedback. In the first section the theory according to [95] and [177] 

is presented. Here only the main assumptions and the equations necessary for 

implementation are presented, where the proofs can be found in [95]. The approach is 

called piecewise constant as it assumes a discrete control law. It is pointed out in the 

following that the L1 piecewise constant control law can be interpreted as a linear, 

dynamic control law. Whether it is linear time variant or invariant depends on how the 

controller and the predictor are implemented, because the predictor could run with a 

smaller sample time than the rest of the control law [95]. However, as this seems to 

provide no benefit in the following the time invariant implementation is considered. 

Thus, the control law is LTI and it is the authors opinion that the approach should not 

be referred to as adaptive control. The linear character of the control law was also 

pointed out and investigated in [178], Furthermore, in [179] the limiting behavior on the 

control architecture for infinite feedback gain was analyzed, and it was found that for 

the case of output feedback it is equivalent to a disturbance observer (DOB). The L1 

piecewise constant structure is a type of model following control, where the 

proportional feedback gain for the error is determined by the desired dynamics and 

the sample time of the controller. This means the L1 piecewise constant approach 

provides a very easy design for the error feedback gain. However, as it is a linear 

control law also other design methods could result in the same controller. In difference 

to other design approaches, where the resulting dynamic controller is often treated as 

a black box, for the L1 piecewise constant controller the additionally introduced states 

have a physical meaning, as they are the states of the reference model. The 

application of a reference model is the only commonality of L1 piecewise constant and 

adaptive control. However, for L1 piecewise constant, the error is not intregrated to 

estimate parameters, but directly fed back to the plant input, where the multiplication 

of the error with a certain gain is considerd as an “estimation” of the plant disturbance 

in the theory of L1 piecewise constant. However this in no real estimation in the sense 

of adaptive control and therefore the word “estimation” is used in quotes. 

For    piecewise constant control law, the available processor power of the controller 

is of special interest as, due to the design method, the feedback gain for the error is 

direcly dependet on the sample time. Thus, also the disturbance “estimation” is 

directly dependet on the sample time. From this it follows, that the sample time should 

be as small as possible, to achive good performance. However, to a certain extent, 

this holds for most control systems.  

Recently the approach was applied to a multitude of control tasks in different 

aerospace applications, like the inner loop design of the NASA GTM [180] [38], control 

of the Boeing X-48B blended wing body [181], control of flexible aircraft [182] [183], 
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the design [184] and augmentation [185] of missile autopilots, as well as satellite orbit 

stabilization [186]. 

The piecewise constant algorithm can guarantee semi-global uniform performance 

bounds for the system’s inputs and outputs. Furthermore it ensures uniform transient 

response in addition to steady state tracking [95]. The derivations and proofs of the 

control approach can be found in [95] and [187]. However, for the sake of easier 

understanding, the proofs are omitted in the following and only the assumptions and 

properties are mentioned. 

 Problem Formulation 6.4.1

Consider the following system dynamics: 

  ̇             (       )  

 ̇   (       )  

        

     (    ) 

(6.73) 

where       is the measurable state vector of the system, with the initial condition 

assumed to be inside an arbitrary large known set: i.e.         ‖  ( )‖    . 

     is the control input (   ), and       is the controlled output.       is 

the non-measurable state vector of the unmodeled, internal dynamics, and       is 

the output of the internal dynamics that affects the dynamics of   .         is a 

known Hurwitz matrix defining the desired dynamics for the closed-loop system, 

        is a known constant matrix defining the matched input, with (     ) 

controllable.         is a known constant matrix defining the controlled output, with 

(     ) observable.        is the unknown, diagonal system input gain matrix 

(control effectiveness), which is assumed to be inside a known compact convex set 

         . Furthermore, the sign of the control effectiveness    (λ  ) is assumed 

to be known, and the nominal system input gain matrix is equal to the identity matrix. 

The function              is an unknown nonlinear mapping that reflects the 

system uncertainties in the dynamics of the measurable states.              is 

an unknown nonlinear function defining the dynamics of the unmodeled internal 

states, and            is an unknown nonlinear function defining the output of 

the unmodeled internal dynamics. The nonlinearities  ,  , and    satisfy the standard 

assumptions for existence and uniqueness of solutions. 

Assume the unmodeled internal dynamics to be BIBO stable both with respect to the 

initial conditions   ( ) and the input   , i.e. there exists         such that 

   ‖    ‖     ‖  ‖              . (6.74) 

The nonlinear uncertainty  (       ) can be devided in a matched component and an 

unmatched component 
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  (       )      (       )         (       ) 

          ⏟        
 

[
  (       )

  (       )
]  

(6.75) 

Consistent to Section 5.1.4,          (   )  is a constant matrix defining the 

unmatched input space such that it spans the null space of   
 . This means it holds 

that   
        , and            . The function                is an 

unknown nonlinear function contributing to the matched component of the uncertainty 

 (       ), and the mapping             (   ) is an unknown nonlinear 

function contributing to the unmatched component of the uncertainty  (       ). 

Let       
    

   , and with a slight abuse of language let   (    )    (       ), with 

      to streamline the equations. Assume that   (   ) and   (   ) are bounded, i.e. 

there exists       such that  

 ‖  (   )‖                    . (6.76) 

We further assume a semi-global Lipschitz condition that holds uniformly in  : 

       ‖  (    )    (    )‖     
‖     ‖      ‖  ‖ 

                   . (6.77) 

Using (6.75) we can rewrite the system equations given in Eq.(6.73) by 

  ̇         (     (       ))         (       ) 

         

 ̇   (       ) 

     (    ) 

(6.78) 

The control objective is to design a state feedback controller that guarantees the 

tracking of a desired output response. The desired system is defined by the reference 

dynamics in Eq.(4.2) and the output Equation        . In the frequency domain the 

desired transfer characteristics are 

   ( )   ( ) ( ) (6.79) 

  ( )    (     )      , (6.80) 

For the simple choice of     (    
    )  , the diagonal elements of the desired 

transfer matrix  ( ) have DC gain equal to one, while the off-diagonal elements have 

zero DC gain. 

Next, let us define the following transfer matrices which will be applied in the following 

sections: 

     ( )  (     )     (6.81) 

      ( )  (     )        (6.82) 

   ( )         ( )    (     )     (6.83) 

    ( )          ( )    (     )        (6.84) 
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Having defined these transfer matrices, let us further assume that  the transmission 

zeros of   ( ) lie in the open left-half plane. This means, the iversion of   ( ) is 

stable, and this property will be necessary to compensate for unmatched 

uncertainties. 

 L1 Piecewise Constant Control Architecture 6.4.2

 Control Law 6.4.2.1

According to Eq.(6.78) the ideal control law to compensate the uncertainties would be 

       {  (       )    
  ( )   ( )  (       )     ( )} . (6.85) 

However, for the approach with piecewise constant control law, there is no explicit 

online estimation of  . Instead the identity matrix, i.e. the best a-priori available 

estimation of  , replaces the system input gain matrix. As in the previous sections we 

can add a low pass filter  ( ) in the input channel to account for bandwidth 

restrictions. So the actual control law is given by 

  ( )    ( )( ̂ ( )    
  ( )   ( ) ̂ ( )     ( )), (6.86) 

where  ̂ ( )     is the “estimate” of   (       ), and  ̂ ( )        is the “estimate” 

of   (       ). Here it is assumed that the uncertainties in the control effectiveness 

can also be compensated by  ̂ ( ) and  ̂ ( ), but it is obvious that the change in the 

feedforward channel, caused by the uncertain input gain  , cannot be exactly 

compensated. 

 State Predictor  6.4.2.2

A state predictor, as presented in the MRAC chapter, depends on estimations of the 

control effectiveness, the matched, and unmatched uncertainties, but as already 

mentioned, there is no explicit online estimation of   and instead the identity matrix is 

used, resulting in the following predictor 

  ̇̂     ̂    (   ̂ )        ̂  

 ̂     ̂  
(6.87) 

Inserting the control law from Eq.(6.86) into the predictor dynamics in Eq.(6.87) gives 

  ̇̂ ( )     ̂ ( )    { ( )   ( )}    {  ( ) ̂ ( )   ̂ ( )}  

 {   ( )  
  ( )   ( ) ̂ ( )        ̂ ( )}  

(6.88) 

where we can see, that for low frequencies ( ( )   ), the predictor dynamics is equal 

to a reference model. 
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 Update Law 6.4.2.3

Here only the applied “update law” is shown, but the derivation, which also explains 

the idea behind, is shown in Appendix E. Defining the error by 

     ̂    , (6.89) 

an appropriate discrete “update law” shall be defined as 

  ̂( )  [
 ̂ (   )

 ̂ (   )
]          

  (       )            (   ) 

         (  )   (   )        (   )                 
(6.90) 

with 

  (  )    
  (       ) (6.91) 

  (   )         (   ) (6.92) 

   ( )   ̂ ( )    ( ) (6.93) 

Here    is the sample time of the controller. The “update law” is chosen such that the 

propagation of the error    over the interval      (   )    is compensated by the 

input [95] [177]. It should be noted that according to Eq.(6.90) the “adaptation” of  ̂( ) 

is given by multiplying the error    with a constant gain matrix, which is dependent on 

the desired system dynamics   , the input directions of the system  , and the sample 

time   . 

  ̂( )  [
 ̂ (   )

 ̂ (   )
]          

  (       )         ⏟                  
   (       )

    (   ) 

 ̂( )  [
 ̂ (   )

 ̂ (   )
]     (       )     (   )   

(6.94) 

It is also obvious that for            . Furthermore, from linearity of the control 

signal in Eq.(6.86) and linearity of the predictor Eq.(6.87), the complete control law is 

linear. As the system input is basically given by a low pass filtered, proportional 

feedback of the error the control law constitutes a special kind of model following 

control. 

As mentioned, small sample times    will result in a large feedback gain   , and 

usually high feedback gain poses a robustness problem as it reduces the gain and 

phase margin. However, this in not necessarily the case for the    piecewise constant 

architecture, because the gain is only effective in a certain frequency domain, which is 

achieved by the low pass filter. To see this consider that there are no unmatched 

uncertainties, then from Eq.(6.88) the predictor dynamics are 

  ̇̂ ( )     ̂ ( )    { ( )   ( )}    {  ( ) ̂ ( )   ̂ ( )} . (6.95) 

It is obvious from Eq.(6.95) that the feedback of the command signal to the predictor 

has the same effect as a hedging signal. Hence, for large frequencies, which are 

beyond the bandwidth of the  ( ), the predictor dynamics is adjusted such that it 

follows the plant. In difference, for low frequencies the predictor behaves like the 
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reference model. Hence, for large frequencies the effect of the feedback gain    is 

reduced, such that it does not harm the stability properties. 

 Closed-Loop System 6.4.2.4

The complete closed loop architecture according to Eq.(6.86), Eq.(6.87) and Eq.(6.90) 

is shown in Figure 6.16.  

 

 

Figure 6.16: Block diagram of L1 piecewise constant 

 

With the    piecewise constant controller the following bounds can be established [95] 

 ‖  ‖           ̅  

‖ ‖             

‖  ‖    ̅  

‖       ‖        ̅  

‖      ‖      

‖       ‖   ‖  ‖     

(6.96) 

Thereby the variables     ,      and      refer to an ideal reference system, while the 

various  ’s and  ’s on the right hand side are positive constants. The bounds will not 

be derived in the following, as a detailed derivation can be found in [95] and [177]. 

To derive the bounds a sufficiently small sampling time      is required, which can 

be associated with the sampling rate of the available CPU. Furthermore the bounds 

are subject to the   -norm condition  

 
‖  ( )‖  

 ‖   ( )‖  
   

       ‖   ( ) ( )  ‖  
‖ ‖  

    
      

 (6.97) 

To be able to conduct the proofs of stability and derive performance bounds, the 

“choice” of the filter  ( ) has to ensure that, for a given   , there exists a        

Plant
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such that the   -norm condition holds, with the definitions: ‖  ( )‖    ,     

  ‖ (     )  ‖  
, and ‖     ‖  

   . The condition and the stability proofs hold for 

nonlinear systems in the form of Eq.(6.73), but it should be noted, that if the plant is 

considered to be linear, then all linear analysis techniques can be applied. 

 Short-Period Example 6.5

In the following the L1 piecewise constant control law is applied to the short-period 

model with pitch-up nonlinearity.  

However, the approach presented in the previous section is not directly applicable if a 

baseline PI control law is used, and in this case a slightly modified version has to be 

used which is presented subsequently. 

In the case when a PI baseline control law is used, the estimate of the unmatched 

uncertainty is not fed to the actuating variables, as in Eq.(6.86) because   
      

contains integral behavior. However, an integrator is already implemented in the 

baseline controller and therefore it is sufficient to feed the unmatched part to the 

integrator of PI control law. Thus, the integral part of the PI controller is used to 

account for unmatched uncertainties. 

 Application 6.5.1

Control Law 

As already mentioned the piecewise constant control law is now modified. The control 

signal from Eq.(6.86) is split up in matched part          ( ) ̂ ( ) and an 

unmatched part      ( )     ( )  
      ̂ , where the matched part from       is 

still fed to the actuation variable 

                (6.98) 

      ( )     ( ) ̂ ( ). (6.99) 

However, the control signal       resulting from the unmatched part is now fed to the 

integrator of the PI controller 

      ( )     ( )  
      ̂ , (6.100) 

where   ( ) and   ( ) are stable low-pass filters. The modification for       is 

necessary because if we would use   ( ) give by Eq.(6.83) we get for the considered 

problem  

   ( )    
 (     

 )    
  (6.101) 

where   
  is the first row of   

  in Eq.(2.13), which gives the output of the desired 

tracking variable   . As   
  is augmented by the integrator state    the open loop 

transfer function   ( ) contains a zero in the origin. This results in pole in the origin 

for   
     , and thus the transfer function that feeds back the “error”  ̂  ( ̂        ) 
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has integral behavior. However, the system already contains integral error feedback 

and therefore a second integral error feedback should not be added. Therefore       is 

directly fed to the integrator of the PI controller. Due to the different input point of 

     , the transfer function   ( ) is also slightly different. For   ( ),   
  (  

  
 

      ) is used instead of      

 , such that   ( ) gives the transfer characteristics 

from integrator input to tracking output   : 

   ( )    
 (     

 )    
  (6.102) 

    ( )    
 (     

 )       
 . (6.103) 

In terms of numerical values the transferfunctions are given by 

 
  ( )       

(      ) (   )

(      ) (                 )
 (6.104) 

 

   ( )  [
     

 (      )(       )

(      )(                 )

      
  (       )(       )

(      )(                 )

]

 

. (6.105) 

The only design parameters for the adpative control law are given by the choice of the 

filters   ( ) and   ( ). In the following simple first order lag filters are used 

   ( )   
    

      
 (6.106) 

   ( )   
    

      
  (6.107) 

This means the design parameters of the control law are      and     . However, it is 

of course also possible to use higher order filters. 

State-Predictor 

As the piecewise constant control law is modified this also has to be taken into 

account for the predictor. It was mentioned that the “estimate” of the unmatched 

uncertainty will be fed to the integrator of the PI controller. Therefore the piecewise 

constant control signal is split up into two parts. The first part,      , is resulting from 

the matched uncertainties and is fed to the actuating variables, and the second part, 

     , is resulting from the unmatched uncertainties and is fed to the Integrator. Under 

these consideration the predictor is given by 

 
 ̇̂ 

    
  ̂ 

    
      

 (       ̂ )       
  ̂    

         
         

  ̂ 
    

  ̂ 
    

    

     
  ̂ 

     , 

(6.108) 

Where 

   ( )  (    ( )    ( )    ( )   )      ( ), (6.109) 



L1 ADAPTIVE CONTROL 191 

 

accounts for the control deficiency due to the dynamics in the input channel (see 

Eq.(2.6)-(2.8)). An additional error feedback according to Section 5.1.6 is used such 

that    is an additional tuning parameter.  

  
 ,   

 , and   
  are given by Eq.(2.13). As      

  spans the null-space of   
  we obtain 

  
  [

  

   

 

]  [
     
      

 
]                             

  [
        

            
        

] 

L1 Piecewise Constant Feedback 

The L1 piecewise constant error feedback from Eq.(6.94) is implemented and given by 

 
[
 ̂ 

 ̂ 
]     (  )    

    , (6.110) 

where     ̂ 
    

  is transformed to the original error states by   
 . The gain   (  ) 

is only dependent on the sample time, and according to Eq.(6.90) it is given by 

   (  )       [  
  (       )]

  
         (   ). (6.111) 

The complete control architecture is shown in Figure 6.17. 

 

 

Figure 6.17: L1 Piecewise Constant with baseline PI controller 
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 Evaluation 6.5.2

In the following the L1 piecewise constant control law, proposed in the previous 

section is evaluated and for all results a sample time of          seconds is used. At 

first the control law is applied to the pitch-up problem and in the following the 

robustness of the control law w.r.t. the design parameters is evaluated. The design 

parameters are the cut-off frequencies of the low-pass filters      and      from 

Eq.(6.106) and Eq.(6.107) and the error feed-back gain    in the predictor dynamics of 

Eq.(6.108). To assess the robustness, on the one hand classic metrics (e.g. gain and 

phase margin) are calculated, and on the other hand the robust performance w.r.t. 

parameteric uncertainties is evaluated based on simulations similar to the previous 

chapters. 

 Pitch-up nonlinearity 6.5.2.1

For the considered problem of the pitch-up nonlinearity the response for the L1 

piecewise constant control law is shown in Figure 6.18, where         ,      

       and     . It can be seen, that in comparison to baseline control law the 

performance is increased and almost perfect following of the reference model is 

achieved. In Figure 6.19 the time history of the elevator command and rate is shown, 

and in Figure 6.20 the signals  ̂  and  ̂    ̂    ̂      are displayed. 

 

 

Figure 6.18: Response with L1 piecewise constant augmentaion 
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Figure 6.19: Elevator command and rate with L1 piecewise constant augmentation 

 

 

Figure 6.20: Parameter of the L1 piecewise constant controller 
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At first the effect of the parameter      is addressed, whereat      and    are fixed 
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Robust Stability 

As already mentioned the L1 piecewise constant controller resembles a linear control 

law, therefore it is directly possible to calculate gain and phase margin for the closed 

loop. 

0 10 20 30 40 50 60

-5

0

5

 

 

0 10 20 30 40 50 60
-20

0

20

 

 

0 10 20 30 40 50 60
-200

0

200

 

 

0 10 20 30 40 50 60
-4

-2

0

2

 

 



194 L1 ADAPTIVE CONTROL 

 
 
 

In Table 6.4 the gain and phase margins for different cut-off frequencies      of the 

lowpass filters are given. From Table 6.4 it becomes obvious that by increasing the 

cut-off frequency of the filters the gain and the phase margin of the controlled system 

are reduced. The reduced gain margin directly translates to a reduced robustness with 

repect to uncertainties in the input matrix    of the system. 

 

     0.01 0,1 1 10 50 100 

GM [dB] 15.7 15.1 12.1 9.4 10.3 10.7 

PM [deg] 69.8 64.8 46.7 44.2 47.8 48.6 

Table 6.4: Gain and phase margins for the L1 piecewise constant controller for different cut-off 

frequencies  c,1 

 

In Figure 6.21 the Bode plots of the open loop piecewise constant controller controller 

are shown and in Figure 6.22 the Nyquist plots are shown. In both cases the graphs 

are given for the different cut-off frequencies of Table 6.4. 

 

Figure 6.21: Bode plot of the L1 piecewise constant controller for different cut-off frequencies  c,1 
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Figure 6.22: Nyquist plot of the L1 piecewise constant controller for different cut-off frequencies  c,1 

 

Robust Performance 

In the following the robust performance of the L1 piecewise constant controller is 

investigated with respect to the baseline control law. Therefore, according to Section 

3.1 the performance with respect to parameter uncertainties in the system dynamics is 

evaluated. At first simultaneous uncertainties in the coefficients    and    are 

assumed and in Figure 6.23 - Figure 6.28 the handling quality regions of L1 piecewise 

constant controller are shown for                       ,            , 

    , where one can see that the robustness w.r.t. uncertainties in    and    

increases with increasing filter bandwidth. Remember the contour lines refer to the 

baseline performance. Secondly, the robustness with respect to uncertainties in the 

coefficient    is presented in Figure 6.29 - Figure 6.34. It can be seen that the 

robustness with respect to unmatched uncertainties is only affected in a negative way 

when      is small. At last the robustness assessment w.r.t. uncertainty in the input 

gain λ is shown in Figure 6.35 - Figure 6.40 and it can be concluded that with 

increasing      the robust performance in the presence of increasing λ is reduced. 

This is in accordance to the reduction of the gain margin given in Table 6.4. 
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Figure 6.23: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,1=0.01 

 

Figure 6.24: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,1=1 

 

Figure 6.25: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,1=50 

 

Figure 6.26: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,1=0.1 

 

Figure 6.27: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,1=10 

 

Figure 6.28: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,1=100
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Figure 6.29: Robust perfomance w.r.t. Z𝛂; 

 c,1=0.01 

 

Figure 6.30: Robust perfomance w.r.t. Z𝛂; 

 c,1=1 

 

Figure 6.31: Robust perfomance w.r.t. Z𝛂; 

 c,1=50 

 

Figure 6.32: Robust perfomance w.r.t. Z𝛂; 

 c,1=0.1 

 

Figure 6.33: Robust perfomance w.r.t. Z𝛂; 

 c,1=10 

 

Figure 6.34: Robust perfomance w.r.t. Z𝛂; 

 c,1=100 

 

Figure 6.35: Robust perfomance w.r.t. λ 

 c,1=0.01 

 

Figure 6.36: Robust perfomance w.r.t. λ 

 c,1=1 

 

Figure 6.37: Robust perfomance w.r.t. λ 

 c,1=50 

 

Figure 6.38: Robust perfomance w.r.t. λ 

 c,1=0.1 

 

Figure 6.39: Robust perfomance w.r.t. λ 

 c,1=10 

 

Figure 6.40: Robust perfomance w.r.t. λ 

 c,1=100 
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 Assesment w.r.t C,2 6.5.2.3

Here the effect of the parameter      is investigated. Therefore          and      

are fixed. 

Robust Stability 

In Table 6.5 the gain and phase margin of the closed loop are given for different filter 

frequencies                      and it can be seen that both, the gain 

and the phase margin are mentionable reduced with increasing     . In Figure 6.41 

and Figure 6.42 the Bode and the Nyquist plots are shown, respectively. 

 

     0.01 0.1 1 5 10 20 

GM [dB] 10.7 10.7 9.47 4.05 1.96 0.79 

PM [deg] 48.6 48.1 43.8 34.3 31.9 30.8 

Table 6.5: Gain and phase margins for the L1 piecewise constant controller for different cut-off 

frequencies  c,2 

 

 

Figure 6.41:Bode plot of the L1 piecewise constant controller for different for different cut-off frequencies 
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Figure 6.42: Nyquist plot of the L1 piecewise constant controller for different cut-off frequencies  c,2 
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increases at first, but then it deteriorates. In Figure 6.55 - Figure 6.60 it can be seen 

that the robustness w.r.t. changes in the input gain is largely affected by     , and it 

decreases as it was already predicted by the reduction of the gain margin. From this it 

can be concluded that for the considered problem, the feedback of       should not 

be used. 
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Figure 6.43: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,2=0.01 

 

Figure 6.44: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,2=1 

 

Figure 6.45: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,2=10 

 

Figure 6.46: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,2=0.1 

 

Figure 6.47: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,2=5 

 

Figure 6.48: Robust perfomance w.r.t. 

M𝛂 and Mq;  c,2=20
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Figure 6.49: Robust perfomance w.r.t. Z𝛂; 

 c,2=0.01 

 

Figure 6.50: Robust perfomance w.r.t. Z𝛂; 

 c,2=1 

 

Figure 6.51: Robust perfomance w.r.t. Z𝛂; 

 c,2=10 

 

Figure 6.52: Robust perfomance w.r.t. Z𝛂; 

 c,2=0.1 

 

Figure 6.53: Robust perfomance w.r.t. Z𝛂; 

 c,2=5 

 

Figure 6.54: Robust perfomance w.r.t. Z𝛂; 

 c,2=20

 

Figure 6.55: Robust perfomance w.r.t. λ 

 c,2=0.01 

 

Figure 6.56: Robust perfomance w.r.t. λ 

 c,2=1 

 

Figure 6.57: Robust perfomance w.r.t. λ 

 c,2=10 

 

Figure 6.58: Robust perfomance w.r.t. λ 

 c,2=0.1 

 

Figure 6.59: Robust perfomance w.r.t. λ 

 c,2=5 

 

Figure 6.60: Robust perfomance w.r.t. λ 

 c,2=20 
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 Assesment w.r.t ke 6.5.2.4

Finally the effect of the parameter    is addressed, where          and      

       are fixed. As discussed in Chapter 5.1.6, with an error feedback to the 

predictor it takes the form of a Luenberger observer, and the feedback reduces the 

error in particular during transients as it drives the predictor towards the plant 

trajectory. This means, the amount of error feedback from the piecewise constant 

controller is reduced and the intended model following will be less aggressive. 

Robust Stability 

In Table 6.6 the effect of    on the gain and phase margin is shown and it can be seen 

that with increasing                     also the gain and phase 

margin are rising again. Furthermore in Figure 6.61 and Figure 6.62 the Bode and the 

Nyquist plots of the closed loop are shown. 

 

   1 10 50 100 200 300 

GM [dB] 10.2 10.3 10.8 11.4 12.4 13.2 

PM [deg] 48.4 48.8 50.4 52.4 55.9 59.1 

Table 6.6: Gain and phase margins for the L1 piecewise constant controller for different error feedback 

gains ke 

 

 

Figure 6.61: Bode plot of the L1 piecewise constant controller for different error feedback gains ke 
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Figure 6.62: Nyquist plot of the L1 piecewise constant controller for different error feedback gains ke 

 

Robust Performance 

Again the robust performance is addressed for                 . And 

from Figure 6.63 - Figure 6.68 it seems that the robustness w.r.t. matched 

uncertainties is even further increased. For the unmatched uncertainties the 

performance remains constant as shown in Figure 6.69 - Figure 6.74. However, for 

uncertainties in the control effectives it can be clearly stated that the robustness is 

increased by introducing the error feedback and increasing    as shown in Figure 6.75 

- Figure 6.80. 
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Figure 6.63: Robust perfomance w.r.t. 

M𝛂 and Mq; ke=1 

 

Figure 6.64: Robust perfomance w.r.t. 

M𝛂 and Mq; ke=50 

 

Figure 6.65: Robust perfomance w.r.t.  

M𝛂 and Mq; ke=200 

 

Figure 6.66: Robust perfomance w.r.t. 

M𝛂 and Mq; ke=10 

 

Figure 6.67: Robust perfomance w.r.t. 

M𝛂 and Mq; ke=100 

 

Figure 6.68: Robust perfomance w.r.t.  

M𝛂 and Mq; ke=300 
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Figure 6.69: Robust perfomance w.r.t. Z𝛂; 

ke=1 

 

Figure 6.70: Robust perfomance w.r.t. Z𝛂; 

ke=50 

 

Figure 6.71: Robust perfomance w.r.t. Z𝛂; 

ke=200 

 

Figure 6.72: Robust perfomance w.r.t. Z𝛂; 

ke=10 

 

Figure 6.73: Robust perfomance w.r.t. Z𝛂; 

ke=100 

 

Figure 6.74: Robust perfomance w.r.t. Z𝛂; 

ke=300

 

Figure 6.75: Robust perfomance w.r.t. λ 

ke=1 

 

Figure 6.76: Robust perfomance w.r.t. λ 

ke=50 

 

Figure 6.77: Robust perfomance w.r.t. λ 

ke=200 

 

Figure 6.78: Robust perfomance w.r.t. λ 

ke=10 

 

Figure 6.79: Robust perfomance w.r.t. λ 

ke=100 

 

Figure 6.80: Robust perfomance w.r.t. λ 

ke=300 
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Chapter 7  
 
Application to Full Nonlinear 
Model 
 

In the following different control methods are applied to the problem stated for the full 

nonlinear model described in Section 2.2. Remember that the problem formulation is 

different from the pitch-up problem, as now a loss of the calibrated airspeed 

measurement, which is used for gain scheduling of the baseline controller, is 

considered. This means, the augmenting control law has to adjust to slowly changing 

parameters, as the dynamics change with the variation of air speed. The baseline 

controller does not account for this anymore due to the loss of scheduling information. 

It is assumed that the scheduling parameter          is fixed to 320kts as stated in 

Section 2.2.3. 

In the following at first the piecewise constant control law from Section 6.4 is applied 

as this provided very good results for the simple benchmark problem, while it is still a 

linear control law. But as it was already pointed out, for this problem formulation the 

augmenting control law has to adjust to slowly changing. Considering the slow 

dynamic changes, the MRAC approach also seems to be a suitable choice to solve 

the problem and it is applied in Section 7.2. Finally also an Extended Kalman Filter is 

investigated, which directly estimates the air speed, as this seems to be the most 

natural approach. Compared to the online adjustment of controller gains by MRAC the 

missing measurement is directly substituted. The approach and the results for the EKF 

are shown in Section 7.3. 

 L1 Piecewise Constant 7.1

For the following results the L1 piecewise constant approach from Section 6.4 is 

applied. The baseline control law is very similar to the baseline control law that was 

used for the pitch-up problem, in the sense that it is also a linear PI control law, where 

the load factor is the command variable. Therefore, the applied piecewise constant 
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control law is basically the same as the one in Section 6.5. This means, the elevator 

deflection is given by Eq.(6.98) and Eq.(6.99): 

             

     ( )     ( ) ̂ ( ) 
(7.1) 

The control signal       resulting from the unmatched part, which was given by 

Eq.(6.100), is not used here as in the previous assessment no improvement could be 

achieved. 

The first challenge is to define a sufficient reference response by choosing the 

dynamics of the predictor. For the predictor the closed loop, linear short period 

approximation of the plant is used, again. This means the implemented predictor is 

equal to Eq.(6.108) without the unmatched term 

 
 ̇̂ 

    
  ̂ 

    
      

 (       ̂ )   
         

  ̂ 
    

  ̂ 
    

    

     
  ̂ 

     , 

(7.2) 

where the control deficiency 

          , (7.3) 

is the difference between the commanded elevator deflection      and the realized 

deflection  , which is obtained from the actuator model given in Section 2.2.1.2. 

  
      

     
  and    are given by the baseline controller gains at      

      . 

The short period approximation (  
    

    
    

 ) is obtained by linearizing the open loop 

plant. It is assumed that the gains of the baseline control law (  
 ,   ) are fixed to the 

values associated with                . Therefore, for the linearization point, a 

steady state horizontal flight with             and           is chosen. Hence, 

the desired reference response is given by the linearized, closed loop dynamics of the 

short period at            . It should be noted that the height has basically no 

influence on the dynamics of the aircraft as long as             

The parameters, that must be chosen for the piecewise constant control law are the 

filter constants     , and the error feedback gain   . These parameters were 

investigated in Section 6.5.2. The best results were obtained when      is chosen 

large, which means that the filter   ( ) has basically no effect and  ̂ ( ) is directly fed 

to the input. Note that the input was still filtered by the structural filter. In particular, for 

the following results, it is chosen         . The second parameter is the parameter 

  , which can “pull” the predictor towards the plant and thus reduce the 

aggressiveness of the control law. In the following        is used. The results of the 

handling quality assessment are shown in Figure 7.1. Comparing the results with the 
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ones from Section 3.2.2.2 it can be seen that over a large domain of the envelope the 

rise time and the rise time parameter improve. However, simultaneously the equivalent 

time delay that the pilot experiences gets larger and this leads to deteriorated handling 

qualities. Note that the rise time could be further improved by reducing the parameter 

   but this would lead to an even larger equivalent time delay. The reason therefore 

can be seen in Figure 7.2 and Figure 7.3, where the load factor and the pitch rate 

trajectories obtained for the piecewise constant control law are shown in comparison 

to the non-scheduled baseline controller. It is obvious that for small air speeds the rise 

time improves and the response seems to be more homogenous over the envelope. 

But as the piecewise constant control law does not change the feed forward gain the 

initial response can basically not be affected. It follows that a faster rise time requires 

a steeper slope of the response, and this directly leads to a larger equivalent time 

delay. 

At the end it is difficult to judge from a step response whether a pilot will like or dislike 

the response because this can only be evaluated in real flight tests. However, the 

results clearly show that for the piecewise constant control law a trade of between rise 

time improvement and equivalent time delay deterioration must be faced. 

MRAC should be able to tackle this issue, as it is capable of adjusting the feed 

forward gain. Therefore, the MRAC approach is applied in the following section. 
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Figure 7.1: HQ assessment of the piecewise constant control law 
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Figure 7.2: Load factor response of the piecewise constant control law 

 
Figure 7.3: Pitch rate response of the piecewise constant control law 
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 Predictor Based MRAC 7.2

In principle the predictor based approach from Section 4.4 is applied. Additionally 

some of the previously discussed modifications are applied. For the design of the 

adaptive controller it is assumed that only the short period dynamics have to be 

controlled. Furthermore, it is desired that the adaptive controller has the same 

feedback structure as the linear baseline controller. Hence, the design is based on the 

linearized plant dynamics for a steady state wings leveled flight. As we want to control 

the short period dynamics the phygoid dynamics is neglected in the following. This 

means the assumed plant, with integrator state, is the same as the one considered in 

Eq.(2.13), only without the nonlinearity 

  ̇ 
    

   
    

     
   

  
    

   
    

 , 
(7.4) 

where   
 ,   

 ,   
 ,   

  are obtained by linearizing the plant at             and 

         . 

Due to the same premises, the same adaptive control approach, which was already 

used for the simple short period model with pitch-up nonlinearity, is applied (compare 

Eq.(4.23) and Eq.(5.60)). In the following also the modifications suggested in Chapter 5 

are applied. 

With the baseline controller the commanded elevator deflection is given by 

 
     

 

 ̂
(          ) (7.5) 

         ̂ 
   

    ̂   
  ̂ 

   (7.6) 

where   
      

      , and   ̂    is defined on the basis of Eq.(5.43) 
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 ̂     ̂       
   ̂   ̂       

 

 ̂       
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 ̂       
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  (7.7) 

The hypercube within which no adaptive feedback is generated is defined by 

 ̂       
  

         and  ̂       
  

      . These values are chosen to prohibit 

instability by applying to large feedback gains. The maximum gains which are 

necessary to obtain the same performance for low speeds, as for            , 

would lead to instability, because the same performance cannot be achieved due to 

actuator limitations. Therefore, the modification assures that only the amount of 

additional gain can be applied which is necessary to achieve level 1 HQ. 

The integrated error    is calculated from Eq.(2.24) by 

    
 

    (               )
        . (7.8) 
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One particular challenge for this example is the choice of the reference model, as it 

must be suitable for the complete envelope. Of course it is desirable to have a 

homogenous response over the complete envelope, but for the MRAC state feedback 

approach the controller gains are adjusted with the objective to drive the error vector 

to zero and this is not generally possible in the presence of unmatched uncertainties. 

This problem could already be seen in Section 5.1.2, where a loss of robustness with 

respect to changes in the unmatched parameter    of the short-period dynamics was 

observed. Therefore the solution suggested in Section 5.1.4 is used, where 

additionally the unmatched uncertainties are estimated and the reference model is 

adjusted based on these estimates to remain achievable. The predictor dynamics are 

given in similar from as in Eq.(5.58), but in difference to Eq.(5.58) the unmatched 

uncertainties are not only directly fed back. They are also used to calculate the ideal 

feedback gains, which have to be applied in order to maintain the poles of the 

predictor at the original position, even in presence of the input      
  ̂    

  ̂ 
 . This 

means an additional term     
 ( ̂    

 ) ̂
 

  is added to the command of the reference 

baseline controller   : 

  ̇̂ 
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  λ̂      
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     +    
 (     

 ) ̂ 
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(7.9) 

   is the deficiency between the commanded elevator deflection      and the 

realized deflection   which is obtained from the actuator model given in Section 

2.2.1.2 

          , (7.10) 

and   
      

     
  and    are given by the baseline controller gains at      

      . 

The effect of the input      
  ̂    

  ̂ 
  on the predictor dynamics is given by  

       

    
       

  ̂    
 . (7.11) 

This matrix       

  can be transformed to the output domain by 

 

         

    
       

   
   

 [

   
   

  

   
   

   
 

    

]  (7.12) 

Based on the matrix-parameters in Eq.(7.18)(7.12) we can calculate the feedback 

gains which are necessary to maintain the poles of the predictor at the same location 

as the poles of   
    

    
   

  ̂ 
 . If the desired poles are specified by           

and   , than these feedback gains    
      

   
    

   can be calculated by 
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(7.13) 

The increment     
  that is added in Eq.(7.9) is calculated from 

     
     

    
 . (7.14) 

As it was mentioned before the modification suggested in Section 5.1.3 is also 

applied. For the current example this is in particular important, because keeping the 

poles of the predictor at the same location in presence of unmatched uncertainties 

can require large feedback gain. By applying the modification from Section 5.1.3 the 

requirement on the desired response is reduced as a certain portion of the adaptive 

feedback gains is at first used to adjust the reference model, instead of the plant 

dynamics. 

To improve the robustness the recursive least-square update modification from 

Section 5.3.3 is applied. A slightly modified, normalized version of the update laws of 

Section 5.3.4 is used (compare Eq.(5.127) and Eq.(5.128)), where additionally the 

parameters   ,      , and    are introduced 
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with     
  [    

   ]. The update law for the unmatched uncertainties is modified to 

  ̇̂              [    
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(7.16) 

The subscript   denotes that the respective signals are filter by the washout filter 

 
   

  

    
   (7.17) 

where       is used. This washout filter is applied to remove the steady state values 

and the effects of the phygoid mode. 

The chosen values for the initial conditions of the covariance matrices    ( ) and 

   ( ), the forgetting factor  , the weighting factor   , and the filter parameter    are 

given in Table 7.1. To assure boundedness of     and     projection is used to 

enforce the upper bounds, which are defined by the initial conditions,    ( ) and 

   ( ). The remaining controller parameters that have to be selected are given in 

Table 7.2. To prevent instability as a result of too large feedback gains the adaptive 
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parameter λ̂ is bounded by projection. The limits for λ̂ are given by λ̂           . The 

limits for the parameters  ̂ 
  and  ̂     

  are obtained from worst case consideration, 

meaning they are determined from the maiximum possible change in the linearized 

system dynamics that can be cause by an airspeed reduction. From this consideration 

the limits enforced by projection are for  ̂ 
  defined by  ̂     

           and 

 ̂     
                , and for  ̂     the limits are given by  ̂        

  

            and  ̂        
                . 

 

   ( )    ( )         

[

    
    
    
    

] 
[
   
   
   

] 
            

Table 7.1: Parameters of the recursive least-square modification for full model 
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Table 7.2: Adaptive controller parameter for full model 

 

Obviously the assessment of the MRAC controller cannot be performed in the same 

way as for the piecewise constant controller, due to time varying character of the 

adaptive system. The fact that the adaption of controller gains improves the response 

over time requires realistic assessment scenarios. Otherwise we would perform a 

worst case evaluation. As a reasonable evaluation scenario it is assumed that a 

maneuver is performed where the calibrated airspeed is reduced from 320kts to 

200kts and the altitude from 30000ft to 5000ft as shown in Figure 7.4. The maneuver 

ends with a 0.1g step command at 1600s to assess the handling qualities. 

We assume that the airspeed measurement is lost and the gains of the baseline 

control law cannot be scheduled anymore. They remain fixed for            . Due 

to the large changes in the flight envelope the response to pilot inputs changes and 

the handling qualities deteriorate. This was already discussed in Section 3.2.2 and is 

again shown in Figure 7.5 and Figure 7.6, where the load factor and pitch response to 

a 0.1g command at             and          for the non-scheduled and the 

scheduled baseline control laws are shown. The associated parameter for the 

handling qualities are given in Table 7.3. Additionally the response of the adaptive 

controller after the given maneuver is assessed. Two different scenarios are 
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considered. On the one hand only the stated maneuver is performed by the autopilot 

(labeled: “w/o excitation”), and on the other hand an additional excitation in the form 

of low pass filtered white noise with zero mean and a standard deviation of 0.096g is 

added to the commanded load factor (labeled: “w/ excitation”). In Figure 7.5 and 

Figure 7.6 as well as in Table 7.3 it is illustrated that without excitation already a 

noticeable improvement in the rise time can be achieved. The response w/o excitation 

is almost close to the scheduled response. Although, the rise time parameter    is still 

only level 2, in Table 7.3 we can see that compared to the non-scheduled controller it 

is reduced by approximately half and is very close to the rise time parameter of the 

scheduled controller. In the case where an additional excitation is applied it can be 

seen that also the rise time parameter improves to level 1 so that according to the 

chosen parameters the overall performance is of level 1. In difference to the piecewise 

constant control law the time delay increases only slightly, but it is still level one. In 

Figure 7.5 and Figure 7.6 it can be seen that the response is even faster than the 

scheduled control law. This is because the reference dynamics, which the adaptive 

controller is trying to enforce, is the dynamics of the controlled aircraft at      

      . In Figure 7.7 and Figure 7.8 the evolution of the adaptive parameters is shown 

for the maneuver w/ and w/o excitation, respectively. It can be seen that w/o 

additional exaction the information in the measurements is still enough, that the 

estimate of the control effectiveness converges to its lower limit of λ̂     . Though the 

other parameters do not converge, due to the lack of excitation, it could be seen that 

already a good response can be achieved. This is because λ̂ is the most important 

parameter for the considered problem, and a value of     for λ̂ doubles the gains of 

the baseline controller (see Eq.(7.5)). When additional excitation is added during the 

maneuver, it can be seen in Figure 7.8 that also the adaptive feedback gains and the 

estimation of the unmatched uncertainties converge closely to the true values. 
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Figure 7.4: VCAS and height trajectory for the example maneuver 

 

 

 
Overshoot 80% Rise time       

Value Level Value Level Value Level Value Level 

Scheduled 4.75% 1 3.813 1 1.189 1 0.063 1 

Fixed gain 9.47% 1 4.938 2 2.411 2 0.084 1 

MRAC 
w/o excitation 

3.95% 1 3.500 1 1.195 2 0.106 1 

MRAC 
w/ excitation 

1.45% 1 3.125 1 1.110 1 0.112 1 

Table 7.3: HQ parameters for different controllers after maneuver 
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Figure 7.5: Comparison of load factor response after maneuver 

 

Figure 7.6: Comparison of pitch rate response after maneuver 
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Figure 7.7: Evolution of adaptive parameters during maneuver without excitation 

 

Figure 7.8: Evolution of adaptive parameters during maneuver with excitation 
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In Figure 7.10 a worst case assessment is shown to illustrate that the initial and 

transient response will not deteriorate in presence of the adaptive controller. This is 

important because the theory of MRAC provides no guarantees for the transient 

response. Therefore the handling qualities based on the initial response to a step 

command of 0.1g are evaluated. Again the flight envelope is gridded and the 

simulation starts from different trim points. The gains of the baseline controller are for 

all points set to the non-scheduled value of            . This means the adaptive 

controller had no prior time to adjust to the new dynamics. It can be seen in Figure 

7.10 that the adaptive augmentation cannot improve the performance for the first step 

command, and it remains the same as the performance of the baseline controller 

shown in Figure 3.12. This however also shows that during the transient, where the 

parameters are adjusted, the adaptive augmentation does not deteriorate the 

response. 

Finally the performance is evaluated after a sequence of large input commands which 

is shown in Figure 7.9. The assessment is again conducted for 0.1g command, which 

is applied at 130s.  

 

 

Figure 7.9: Input sequence of consecutive steps 

 

Equally to the previous assessment, the evaluation is performed over the envelope 

starting from different trim conditions. The evaluation of the handling quality criteria’s 

is shown in Figure 7.11: HQ assessment of the MRAC control law after consecutive 

step inputs. It can be seen that due to the large excitation the rise time criteria (based 

on (  ) 
    response) is now level 1 over the complete envelope. The rise time 

parameter criteria (based on   response), however is not level 1 over the complete 

envelope. Further, it should be noted that for low initial speeds, where it actually 

became level 1, the improvement is also promoted by an increase of the velocity 
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during the maneuver. However, if the numeric values are examined it could be seen 

that the rise time criteria improves over the complete envelope, even though this is not 

obvious in Figure 7.11: HQ assessment of the MRAC control law after consecutive 

step inputs. Hence, for low velocities the responsiveness improves, and this does not 

lead to a deterioration for the equivalent time delay, as it was seen for the piecewise 

constant control law. It can also be concluded that     becomes more homogenous. 

In Figure 7.12 and Figure 7.13 the response trajectories of (  ) 
    and   are shown for 

certain points, and in Figure 7.14 and Figure 7.15 the magnified trajectories for 

h=30000ft are displayed. Especially here it can be seen that a much more consistent 

load factor response is achieve for different flight speeds. Accordingly, the initial 

response of the pitch rate is more homogenous and the responsiveness for low 

speeds improves.  
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Figure 7.10: Worst case HQ assessment of the MRAC control law 
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Figure 7.11: HQ assessment of the MRAC control law after consecutive step inputs 
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Figure 7.12: Load factor response of MRAC at different envelope points after consecutive step inputs 

 

Figure 7.13: Pitch rate response of MRAC at different envelope points after consecutive step inputs 
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Figure 7.14: Load factor response of MRAC at h=30000ft after consecutive step inputs 

 
Figure 7.15: Pitch rate response of MRAC at h=30000ft after consecutive step inputs 
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 Kalman Filter 7.3

In the previous section it was shown that an augmentation with an adaptive controller 

based on the MRAC approach can improve the response if the excitation of the 

system provides enough information. In the MRAC approach the controller gains are 

directly adjusted, however, as the considered problem results from a loss of the      

measurement a quite intuitive way would be to directly estimate     , as it is the origin 

the problem. Therefore, in the following an Extended Kalman Filter (EKF) is suggested. 

The theory is not covered in the following but only the specific problem is presented. A 

theoretical introduction to Kalman filtering can for example be found in [188] [189] 

[158].The EKF will be based on the nonlinear system dynamics for the angle of attack 

and the airspeed [81] 
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(7.18) 

where it is assumed that   and   are measurable inputs.   is the lift force,   is the 

drag, and    is the propulsion force in direction of the x-axis of the b-frame. It is 

assumed that    is known (measurable). According to Eq.(2.17),   and   can be 

denoted by 

         
       

        
        

(7.19) 

So the dynamics can be written by 
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(7.20) 

where the uncertain aerodynamic parameters are the lift coefficient    and the drag 

coefficient   , as they are nolinear functions of    and   (see Appendix B). The non-

measurable states are the angle of attack   and the true airspeed     . 

The available measurements are the accelerations at the center of gravity, and thus 

the measurement equations for the EKF are given by 
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(7.21) 

For the full nonlinear model    and    are dependent on the angle of attack and the 

Mach number. However, this aerodynamic model would lead to a larger number of 
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unknown parameters if it is used for the Kalman filter. Therefore, the following 

simplified aerodynamic model is used for the EKF 

             

          
   

(7.22) 

The main uncertainties are in     and  , because the uncertainties in     and     can 

be neglected. Hence,     and   are the parameters which are estimated by the 

Kalman filter additionally to the states   and     .     and     are assumed to be 

constant, with            and          . Comparing the aerodynamic model used 

for the EKF with the aerodynamic model of the full nonlinear model, provided in 

Section 2.2 and Appendix B, the simplifications can be seen easily. 

To model the uncertainties a first order Gauss Markov process [158] is assumed for 

    and   

  ̇            

 ̇          
(7.23) 

where   ,    is zero mean Gaussian white noise.         are modeling parameters 

that limit the process variables, and the effect is similar as for the  -modification 

applied in MRAC. By Eq.(7.23) the parameters     and   are modeled as states of the 

system. Thus, the system equations for the observer of the EKF are given by replacing 

the real states in Eq.(7.20), Eq.(7.22), and Eq.(7.23) by the estimated states. This yields 
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where “hat” denotes that these are estimated states.               (   ) is 

the process noise, which is zero mean Gaussian white noise with covariance    

The output-estimation equation is obtained from Eq.(7.21) and Eq.(7.22) 
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where           (   ) is the measurement noise, which is zero mean Gaussian 

white noise with covariance    

To implement the EKF a linearization of the system model Eq.(7.24) and the output 

equation Eq.(7.25) w.r.t. the system states, and the process and measurement noise 

must be obtained. The matrices obtained by this linearization are given in Eq.(7.26): 
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With the previous preparation a continuous time, EKF according to [188] can be 

implemented. 

The observer is given by 

  ̇̂    ( ̂  )         ̂) . (7.27) 

The Kalman gain is given by 

         
  ̃  . (7.28) 

The covariance update is given by 

  ̇           
   ̃      

   ̃      . (7.29) 

The design parameter of the system are the covariance matrices of the process noise 

 ̃ and of the measurement noise  ̃, where  ̃         
  and  ̃         

 . 

Furthermore an initial condition for the covariance  ( ) must be chosen. 

From the observer an estimation of  ,     ,    , and   is obtained. However, for the 

scheduling of the control law the calibrated airspeed      is needed. To calculate  ̂    

from the estimate  ̂    the following equation for an inviscid, compressible flow is 

used 

 

 ̂      √ √[
  

  
([     (

 ̂     

  
)
 

]

 

 

  )   ]

 

 

  . (7.30) 

Hereby the subscript 0 denotes values at sea level based on the International 

Standard Atmosphere (ISA).    is the speed of sound at sea level and    is the static 

preassure at sea level. As    is the static pressure at the current altitude, and it must 

be either measured directly or calculated from a height measurement using the ISA 

model. Hence, either    can be measured or the altitude must be known to calculate 

  . 

For evaluation, in the following a maneuver is performed by the autopilot, where the 

speed command is repeatedly decreasing and increasing. In Figure 7.16 the 

commanded speed profile is shown. The maneuver is performed at a constant height 

of 30000ft.  

In the following three different scenarios are considered: 

• 1) Simulation w/o additional excitation and w/o turbulence 

• 2) Simulation w/ additional excitation and w/o turbulence  

• 3) Simulation w/o additional excitation and w/ turbulence 

For the second case the addition excitation is introduced by an added load factor 

command which is given by low pass filtered white noise with zero mean and a 

standard deviation of 0.096g (same as in Section 7.2). The wind velocity of the 
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turbulence in the third scenario is modeled by zero mean Gaussian white noise with 

variances           ,           , and            in the respective directions of the 

NED-frame. For the following simulation the initial conditions for the states   and      

result from trim, where  ( )           and     ( )     
 

 
 (     ( )        ). The 

initial conditions for the Kalman filter are given in Table 7.4, where for the states  ̂ and 

 ̂    an offset to the real initial condition is assumed and for  ̂  ( ) and  ̂( ) 

reasonable assumptions are made. The design parameters for the EKF which are used 

in the following simulation are given in Table 7.5, where especially the covariance 

matrices of the process and measurement noise affect the estimation. It can be seen 

that the main emphasis is directed to the estimation of the parameters  ̂    and  ̂  , 

as the respective values in the covariance matrices of the process noise  ̃ are chosen 

comparatively large. As the design parameters were obtained by manual tuning further 

room for improvement is given. 
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Table 7.4: Initial condition of the Kalman filter 
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Table 7.5: Parameters of the Kalman filter 

 

In Figure 7.16 and Figure 7.17 the results for the first case are shown, where in Figure 

7.16 the estimation of the angle of attack and the calibrated airspeed is shown, and in 

Figure 7.17 the estimation of the uncertain aerodynamic parameters are displayed in 

from of their change w.r.t. the initial values:   ̂    ̂  ( )  ̂  ( ) and   ̂   ̂( )  

 ̂( ). For the angle of attack it is obvious that part of the initial offset is reduced very 

fast in the beginning, but especially for low speeds an offset remains. This offset is a 

result of the simple aerodynamic model, where     was assumed to be constant, 

however in reality it is a function of    (see B.1.2). Moreover, it can be seen that even 

without additional excitation the airspeed estimation follows the real airspeed. 

Furthermore the initial offset of 42kts between      and  ̂    is reduced quite fast, and 

after 150s the difference does not exceed 6kts. For the second scenario, where 
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additional excitation in added is, the results are shown in Figure 7.18 and Figure 7.19. 

Disregarding the high frequency part for the angle of attack measurement, which is 

introduced by the excitation, it is obvious that the estimation shows the same 

characteristic as in the previous scenario, and an offset to the real value remains. For 

the estimation of  ̂   , still approximately the same time is necessary to reduce the 

initial offset between      and  ̂   . However, after the intial offset decayed, the 

estmation of  ̂    is much more accurate than in the previous example, and after 150s 

the error between      and  ̂    remains less than 3.2kts. The results for the third 

scenario, where turbulence is added to the simulation, are shown in Figure 7.20 and 

Figure 7.21. It can be seen that in the presence of this disturbance the states of the 

Kalman filter remain bounded. Furthermore, the estimation of the airspeed is basically 

still as good as for the case where no disturbances are present.  

An evaluation based on the step response is not conducted here. If the estimation of 

the true air speed is correct and the calibrated air speed can be calculated correctly 

using the height, then using the estimated calibrated airspeed for scheduling the 

control law will yield level one performance. However, further evaluation for different 

scenarios (e.g. initial conditions, maneuvers) would be necessary, as it has to be 

guaranteed, that the performance cannot deteriorate compared to a robust controller 

with fixed gains. It should also be noted that further improvement for the EKF seems 

possible. This could for example be achieved by using a more realistic aerodynamic 

model, although this will introduce further complexity. Or, as already mentioned, more 

effort could be directed towards the choice of the EKF design parameters. Here a 

physically motivated choice of the covariance matrices of the process and 

measurement noise, based on the expected uncertainties and the sensor 

specification, seems promising. 
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Figure 7.16: Estimated states w/o turbulence and w/o excitation 

 

Figure 7.17: Estimated aerodynamic parameter w/o turbulence and w/o excitation 
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Figure 7.18: Estimated states w/o turbulence and w/ excitation 

 

Figure 7.19: Estimated aerodynamic parameter w/o turbulence and w/ excitation 
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Figure 7.20: Estimated states w/ turbulence and w/o excitation 

 

Figure 7.21: Estimated aerodynamic parameter w/ turbulence and w/o excitation 
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Chapter 8  
 
Conclusions and 
Recommendations 
 

 Conclusions 8.1

The main contribution of this thesis was the presentation and comparison of different 

MRAC approaches and modification in a unified framework. From this, important 

conclusions can be drawn about what modifications are necessary to achieve 

robustness improvements compared to standard PI controllers. Here, two novel 

modifications of the reference model are also introduced, which are necessary to 

achieve the desired robust performance requirements in the presence of certain 

matched and unmatched parameter uncertainties. Furthermore, within the thesis it 

was possible to point out the similarities of hedging and L1 adaptive control. From a 

theoretical point of view it was shown that for the case where the control effectiveness 

is known, hedging applied for linear dynamic constraints and L1 adaptive control are 

mathematically equivalent. Thus, the theory of L1 adaptive control can be used to 

provide a stability proof for the modified reference model, which results from the 

application of a hedging signal. This also means that the same performance 

guarantees provided by L1 adaptive control hold. However, for the case were the 

control effectiveness is unknown, the L1 approach differs from MRAC with hedging 

because it is driven by the stability and performance proof and therefore applies a 

filter where the bandwidth is adjusted by the estimated control effectives. Although 

analytic performance bounds might not be available for MRAC, this does not mean 

that the approach provides worse performance. This could also be verified by a 

simulation example where both methods provide approximately the same robust 

performance. 

For the pitch-up problem introduced in Section 2.1, at first MRAC was applied. Here it 

could be seen that in the presence of additional dynamics in the input channel like 

actuators or structural filters, the standard MRAC approach, even though it can 

improve the performance for a particular uncertainty, generally reduces the robust 
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performance. The main reason was the unmodeled dynamics from actuators, sensors 

and computational delay. However, it was shown that the bandwidth limitations and 

time delay in the input channel can either be addressed by modifying the reference 

model with a hedging signal or L1 adaptive control can be applied. 

It was also seen that for the state feedback MRAC approach, the robust performance 

with respect to certain matched uncertainties, unmatched uncertainties and with 

respect to time delay can be reduced. While the loss of time delay margin is a well-

known fact for MRAC and one needs to accept this tradeoff, solutions were suggested 

to overcome the loss of robustness regarding matched and unmatched uncertainties . 

These solutions are also based on a modification of the reference model. In particular, 

for matched uncertainties it was seen that in the presence of bandwidth limitations in 

the input channel (e.g. actuators or structural filters), the desired performance of the 

reference model can be too aggressive in certain cases. Therefore a modification of 

the adaptive control signal and the reference model is suggested, where the adaptive 

controller is not trying to compensate all system uncertainties. Instead, for a selected 

domain of matched uncertainties, the reference model is adjusted such that it follows 

the plant. For unmatched uncertainties, a very similar solution was suggested, 

whereby the unmatched uncertainties are estimated and this estimate is used to 

adjust the reference model in a way that the produced reference trajectories for the 

states remain achievable for the plant. In order that the reference trajectories are not 

only achievable but also maintain the desired characteristics, a simple, analytic, online 

pole placement for the reference model is suggested for the case of single input 

systems. Applying this modification makes the reference model an LTV system. 

Hence, stability can only be guaranteed by constraining the estimated unmatched 

uncertainties to a set that satisfies a stability condition for LTV systems. As the 

stability condition that was given in this thesis is only sufficient, further research could 

be directed toward finding less conservative conditions which are tailored to the 

specific application. Or the adjustment of the reference model needs to be much 

slower than the dynamics of the reference model, such that a time scale separation 

argument is valid. 

Applying the suggested modification, the considered pitch-up problem could be 

solved satisfactorily by MRAC, while providing very good robust performance w.r.t. a 

general set of parametric uncertainties. But as already mentioned, a reduction of the 

time delay margin still has to be accepted. Applying certain robustness modifications, 

like  -, e-, or optimal-modification, can improve the robust stability in terms of time 

delay margin. However, from the pitch-up simulation example it could be seen that 

these modifications concurrently reduce the performance of the adaptive controller, 

where for the considered problem the optimal-modification showed the best results. 

The application of additional update law modifications, which use additional 

information from an algebraic error equation, could achieve no improvement for the 

pitch-up problem. But for other problems, where long term learning is possible and 

desired, these modifications seem to be promising. 
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The recently suggested L1 piecewise constant control law was also tested for the 

pitch-up problem. Although the idea originates from L1 adaptive control, it was 

pointed out that in contrast with adaptive control methods, L1 piecewise constant 

control can be implemented as a linear control law. Therefore, linear assessment 

methods could be applied for the considered problem. Compared to MRAC, very view 

parameters have to be chosen, and for the problem considered, good results could 

also be achieved. This can be attributed to the proportional error feedback in L1 

piecewise constant, whereas MRAC uses an integral feedback to update the controller 

gains. Considering the robust performance analysis of the benchmark problem, L1 

piecewise constant control clearly improves the robustness, but compared to MRAC 

with the suggested modifications, it shows inferior results. Especially if enough 

excitation is given, MRAC clearly outperforms L1 piecewise constant when robust 

performance is considered. On the other hand, it must be noted that for the results 

achieved with L1 piecewise constant, the phase margin and time delay margin are only 

slightly reduced, while for MRAC a larger reduction of the time delay margin was seen. 

In general it can be summarized that in the cases where fast varying uncertainties or 

nonlinearities, which are difficult to parameterize, are present, a model following 

approach like L1 piecewise constant with proportional error feedback seems to 

provide good results. Here L1 piecewise constant control provides some interesting 

novelties considering the choice of the feedback gains and the reference model 

design. Furthermore, due to the implementation of a reference model, the approach is 

physically motivated and easily traceable. 

For the second problem stated, where the loss of scheduling with the calibrated 

airspeed was considered, different approaches are also applied. While it provided a 

good solution for the pitch-up problem, L1 piecewise constant shows some problems 

here, where slow changing dynamics are considered. The reason for this is that L1 

piecewise constant only provides proportional error feedback, but the feed-forward 

gain is not adjusted, and although it can improve the rise time it simultaneously leads 

to a deterioration of the equivalent time delay.  

Contrastingly for MRAC, the feed-forward gain or the control effectiveness are 

adjusted (dependent on the approach), and thus better performance can be achieved. 

However, a certain excitation of the system is necessary for the parameters/gains to 

converge. But even with only a small excitation, good results could be obtained and a 

more homogenous response is achieved. Moreover, a worst case analysis for the 

transient performance was conducted that showed that for the initial response, the 

adaptive controller does not deteriorate the performance of the baseline controller. 

However, the complete proof of compliance for the adaptive controller remains a 

challenge due to the time varying character, and a much more extensive evaluation 

would be necessary. 
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As the missing measurement for the scheduling is actually the calibrated airspeed, it 

also seems physically reasonable to estimate this state directly with an Extended 

Kalman filter. It could be seen that instead of the calibrated air speed, only the true 

airspeed can be estimated and the height has to be available as an additional 

measurement to calculate the calibrated airspeed. Further it must be noted that for the 

Kalman filter, the acceleration measured in the longitudinal direction is also used. If 

these additional measurements can be used, an excellent estimation of the calibrated 

airspeed could be obtained with the Kalman filter. Hence it seems to be a very good 

approach to account for the loss of the air speed measurement. It should also be 

noted that with the Kalman filter, the control signal is not augmented and the 

estimated airspeed is only used for scheduling in replacement of the measurement. As 

with MRAC, the same challenges have to be faced for the proof of compliance. 

Additionally, in contrast to MRAC, even under idealized assumptions, a stability proof 

for the closed loop is not known when the Kalman filter estimate is used to schedule 

the control law. 

 Recommendations 8.2

The results within this thesis are mainly of theoretical nature, because the evaluation 

of the adaptive controller is only simulation based. Although the assessment is 

representative in the sense that time domain criteria are used, which should 

theoretically guarantee good handling qualities, this cannot replace pilot in-the-loop 

assessments. The pilot himself is an adaptive system and therefore his interaction with 

the adaptive controller cannot be easily predicted. It is especially difficult to forecast 

how a pilot will perceive the time varying character of the adaptive controller and until 

today, research on this subject is very limited. 

Although compared to the available literature, a quite extensive assessment of the 

adaptive control law was conducted, the requirements and uncertainties that are 

taken into account are limited to the most important ones in order to obtain a 

traceable comparison of different modifications. However, if an adaptive approach is 

intended for use on a real aircraft, the analysis need to be further extended, where 

especially non parametric uncertainties need to be included. It is suggested that for 

future research, statistically relevant uncertainties should be considered. 

The statistical relevance of the expected uncertainties should already be taken into 

account for the tuning of the adaptive controller. In this thesis, the controller 

parameter design is driven only by the performance increase with respect to a 

particular uncertainty in combination with the constraint that the robust performance 

of the baseline controller should not deteriorate. However, if the probability 

distributions for the expected uncertainties are known, then they should be used to 

tune the adaptive controller in a way that is best fitted to the particular problem. In 

general, the parameter design for adaptive controllers is still an open question, as no 
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analytic methods are available to determine the controller parameters (e.g. adaptive 

learning rates) such that a certain performance and robustness is guaranteed. In this 

work, a genetic algorithm was used to optimize the controller parameter. Although 

very good results were achieved, the algorithm is time consuming as it is based on 

time domain simulation where a large number of parameters must be tested, and thus 

an analytic design method would still be preferable. 

Due to the problem that no analytic metrics are available for adaptive controllers, the 

certification for vehicles operated in non-segregated airspace remains a challenge. 

The core of certification is to prove that the probability of a (catastrophic) failure, loss 

of the vehicle, or severe consequences to its passengers or the environment is below 

a certain threshold. For the flight control system, this means that during its operational 

life, the probability of a loss of function must be below a certain threshold. For 

conventional flight controllers, the computation of gain margin and phase margin has 

been considered to be an acceptable means of compliance to demonstrate the 

stability of the closed-loop dynamic behavior. For novel flight control strategies, it may 

be impossible or hard to follow the given compliance path. Hence, new certification 

and compliance strategies are required to prove that these systems feature at least an 

equivalent level of safety (ELOS) when compared to the classical process. 

There have been many recent research results that address stability and performance 

characteristics of novel flight controllers, and they provide a good theoretical 

foundation. However, even though some of them seem to be very promising, until now 

none of the suggested metrics is accepted as a performance and robustness 

guarantee, which is certification relevant for real applications. Therefore future 

research should be directed towards the development of metrics that ensure an 

Equivalent Level of Safety (ELOS) when compared to the classical approach. 

Past accidents and incidents proved in a dramatic manner that stabilizing a severely 

damaged aircraft is one challenge. Whereas past research demonstrated that this 

issue can successfully be addressed by adaptive control, the remaining but equally 

important challenge of predicting the remaining capabilities and envelope has been 

neglected. Flying out of the envelope where stabilization is possible makes any 

controller fail as a system may never be controlled beyond its physical limits (e.g. El Al 

Cargo LY 1862, Amsterdam 1992). Even more importantly, for UAVs less effort will be 

made for pilot training and no physical feedback is available to the pilot during flight. 

Hence, it is extremely difficult for the pilot to predict the flight envelope constraints in 

nominal as well as damage or failure scenarios. Additionally, in the absence of a 

human pilot, an autonomous onboard reaction is required under adverse conditions. 

Nowadays, envelope protection is a vital and well-established element of electronic 

flight control systems. However, envelope prediction is unavailable in flight control and 

protection is performed based on rigid limits determined during the development 

process based on nominal models and engineering data. Therefore, today’s envelope 

protection may only protect the nominal envelope in case of vehicle integrity, but it 
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cannot adjust to degradations stemming from failure or damage, as no online 

prediction of the current capabilities of the vehicle is available. Furthermore, due to the 

reliance on model data (e.g. aerodynamics), classical envelope protections are often 

rather conservative. They limit the available maneuvering and performance capabilities 

to a subset with significant margins to the physical capabilities of the vehicle. Past 

research in envelope prediction demonstrated the basic possibilities, but with no 

prospect of being available for real-time applications currently. Thus, predicting a safe 

flight envelope under adverse conditions and utilizing it for the planning of safe 

continuation and return trajectories in real-time remains an open challenge. 
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Appendix A  
 
Frequency Domain Analysis 
 

In Figure A.1 the bode plots of the plant transfer functions from the input      to the 

filtered outputs        and      are shown. Furthermore, for feedback of the filtered 

outputs        and      the root locus plots are shown in Figure A.2 and Figure A.3, and 

the Nichols plots are shown in Figure A.4 and Figure A.5. 

 

 

Figure A.1: Open loop bode plot of elevator transfer functions 
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Figure A.2: Root locus from nZ,fil to ηCMD 
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Figure A.3: Root locus from qfil to ηCMD 
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Figure A.4: Nichols plot from ηCMD to nZ,fil 

 

Figure A.5: Nichols plot from ηCMD to qZ,fil 
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Appendix B  
 
Aerodynamic Coefficients 
 

B.1 Force Coefficients 

B.1.1 Drag Coefficient CD 

The drag coefficient is dependent on   and   : 

   (    )           
  (B.1) 

The characteristic of   (    ) is shown in Figure B.1. 

 

 

Figure B.1: Drag coefficient CD(𝛂,Ma) 
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B.1.2 Lift Coefficient CL 

The lift coefficient is dependent on   and   : 

   (    )            (B.2) 

The characteristic of   (    ) is shown in Figure B.2. 

           (  )       (  )    (B.3) 

     is the lift contribution of the horizontal tail and given by: 

 
     

  

 
      (  )   (B.4) 

   is the angle of attack at the horizontal tail: 

 
                

  
  

 (B.5) 

Where    is the distance between 25% of wing chord and 25% of tail chord.    is the 

Euclidian norm of the kinematic velocity, and   is the induced angle of 

attack/downwash. 

 
  

  (  )

    
   (  )  (B.6) 

 

 

Figure B.2: Lift coefficient CL(𝛂,Ma) 

 

B.1.3 Side Force Coefficient CY 

The side force coefficient is dependent on the aerodynamics angles,   and  , the roll 

and picht rate,    and   , and the rudder deflection  . 
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  (            )     ( )       ( )  

 

  

      ( )  
 

  

       
( )    (B.7) 

where   is the length of the reference wing chord. The characteristic of   (           ) 

is shown in Figure B.3 

 

 

Figure B.3: Side force coefficient CY(𝛂,β) 

 

B.2 Moment Coefficients 

B.2.1 Pitch Moment Coefficient Cm 

The pitch moment coefficient is dependent on   and   : 

        (    )        (      (  )(   )) (B.8) 

with    
   

     
. The characteristic of        (    ) is shown in Figure B.4. 

The moment coefficinet that describes the pitch moment induced by agular rates is 

modeled by 

     ( )    
                 

 . (B.9) 

The coefficient that models the pitch moment resulting from control surface 

deflections is given by 

     (    )         (  )           (B.10) 

   (  ) is shown in Figure B.5. 
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Figure B.4: Pitch momemt coefficient Cm,aero(𝛂,Ma) 

  

 

Figure B.5: Cmη(Ma) 

 

B.2.2 Roll Moment Coefficient Cl 

The roll moment coefficient is dependent on   and  : 

        (   )     ( )    (B.11) 

The characteristic of        (   ) is shown in Figure B.6. 

The moment coefficinet that describes the roll moment induced by agular rates is 

modeled by 

     (     )    
       ( )     ( )        

 . (B.12) 
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The coefficient that models the roll moment resulting from control surface deflections 

is given by 

     (     )            ( )         (B.13) 

 

 

Figure B.6: Roll momemt coefficient Cl,aero(𝛂 β)) 

 

B.2.3 Yaw Moment Coefficient CN 

The yaw moment coefficient is dependent on   and  : 

        (   )     ( )    (B.14) 

The characteristic of        (   ) is shown in Figure B.7. 

The moment coefficinet that describes the yaw moment induced by agular rates is 

modeled by 

     (   )    
       ( )           

  (B.15) 

The coefficient that models the yaw moment resulting from control surface deflections 

is given by 

     (   )          ( )         (B.16) 
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Figure B.7: Yaw momemt coefficient Cn,aero(𝛂 β) 



 

 
 
 

Appendix C  
 
Mathematical Definitions 
 

C.1 Norms 

The following definitions for norms and L-stability can also be found in [89] and [95]. 

C.1.1 Vector Norms 

In the scope of this thesis the n-dimensional Euclidean Space denoted    will be used 

predominantly. The Euclidean Space is a normed linear vector space, where the inner 

product of two vectors is defined. 

In general the  -norm with         of a vector is defined by 

 ‖ ‖  (    
         )  ⁄  (C.1) 

and  

 ‖ ‖  m  
 

     (C.2) 

For the Euclidean Space the following properties are satisfied 

(1) ‖ ‖            , with ‖ ‖    if and only if     

(2) ‖   ‖  ‖ ‖  ‖ ‖            

(3)  ‖   ‖      ‖ ‖          and       

In general  -norms can be used equivalently. They are equivalent in the sense that for 

two different norms ‖ ‖  and ‖ ‖  there exist positive constants    and    such that 

    ‖ ‖  ‖ ‖     ‖ ‖   (C.3) 

If no subscript is used, in the course of the thesis, ‖ ‖ can be any p-norm 
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C.1.2 Matrix Norms 

For a matrix        two different kinds of norms exist: direct norms and induced 

norms. 

C.1.2.1 Direct Matrix Norms 

Direct norms are similar to vector norms and provide a “length” of the matrix by 

summation over all elements 

 

‖ ‖  (∑∑|   |
 

 

   

 

   

)

   

  (C.4) 

with          

The most commonly used case is the Frobenius norm for     

 

‖ ‖  ‖ ‖  √(∑∑|   |
 

 

   

 

   

)  √         (C.5) 

where    is the conjugate complex of  , and the trace operator       is defined for a 

square matrix        by the sum over its diagonal elements: 

 
      ∑   

 

   

  (C.6) 

C.1.2.2 Induced Matrix Norms 

If   is considered to be an operator that performs a mapping         between 

two vector spaces  

       (C.7) 

then the induce matrix norm relates the length of an element in the definition range    

to its length in the image range   . The induced matrix norm is defined by 

 
‖ ‖        

   

‖  ‖ 

‖ ‖ 
 m  

‖ ‖   
‖  ‖   (C.8) 

C.1.3 L-Spaces and Norms 

In general the Lp-space is defined as the space of all piece-wise continuous signals 

 ( )     )     such that it holds 
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‖ ‖  
 (∫ ‖ ( )‖   

 

 

)

 
 

                     (C.9) 

and 

 ‖ ‖  
    

   
‖ ( )‖     (C.10) 

where ‖ ( )‖ can be any vector norm. 

L-norms are used to calculate input-output gains, and show input-output stability of 

systems [190]. As signals on the time interval       ) are considered the class of 

signals, which can satisfy Eq.(C.9), to be     , is largely restricted. To allow a larger 

class of signals an extended space      can be defined by 

      {           }, (C.11) 

where    is the truncated signal 

   ( )  {
 ( ) 
  

     
   

. (C.12) 

C.1.4 L-Stability 

If we consider the following input-output relation 

     , (C.13) 

where   is an operator that maps the input       to the output        then input-

output stability can be defined by: 

 

Definition C.1: The mapping         is  -stable if there exists a class   function α, 

defined on     ), and a nonnegative constant β such that 

‖  ‖   (‖ ‖ )    

for all     . It is finite-gain  -stable if there exist nonnegative constants   and   

such that 

‖  ‖   ‖ ‖    

for all     . 

Bounded-Input Bounded-Output stability of system (C.13) is given if Definition B.1 

holds for the   -norm.   

 

Definition C.2: A continuous function       )      ) belongs to class   if it is 

strictly increasing and  ( )   .   
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C.2 Stability Concepts 

According to [1], the following stability concepts are used for system of the form 

  ̇   (   ). (C.14) 

With the equilibrium at the origin  (   )           and with the initial condition 

 (   )    . 

 

Definition C.3: The equilibrium state     of the system is said to be stable if for every 

    and     , there exists a  (    )    such that ‖  ‖    implies that 

‖ (       )‖          . This is shown in Figure C.1.    

 

 

Figure C.1: General stability definition 

 

Definition C.4: The equilibrium state     of the system is said to be attractive if for 

some     and every   and     , there exists a number  (       ) such that 

‖  ‖    implies that ‖ (       )‖            . The concept of an attractive 

equilibrium is displayed in Figure C.2.    

 

 

Figure C.2: Asymptotic stability 

 

Definition C.5: The equilibrium state     of the system is said to be asymptotically 

stable if it is both, stable and attractive.    
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Definition C.6: The equilibrium state     of the system is said to be uniformly stable 

if in Definition 1,   is independent of   .    

 

Definition C.7: The equilibrium state     of the system is uniformly asymptotically 

stable (u.a.s) if it is uniformly stable and for some    and every   , there exists 

 (     )    such that if ‖  ‖    , then ‖ (       )‖             .    

 

Definition C.8: The equilibrium state     of the system is exponentially stable if there 

exist constants     and     such that ‖ (       )‖          (    )         , 

for all    in a certain neighborhood   of the origin.    

 

Lyapunov’s Theoreme for autonomous systems (according to [89]): 

Consider the autonomous system 

  ̇   ( ). (C.15) 

Let     be an equilibrium point of Eq.(C.15) and         be a domain containing 

   . Let        be a continuously differentiable function such that 

  ( )    and  ( )           { } (C.16) 

Then     is stable if 

  ̇           (C.17) 

Moreover,     is asymptotically stable if 

  ̇            { }  (C.18) 

Results in (C.17) and (C.18) hold globally (globally stable, globally asymptotic stable), if 

      and    m‖ ‖   ( )    (   is radially unbounded).   

 

Barbalat’s Lemma (according to [89]): 

Let   :     be a uniformly continuous function on     ). Suppose that 

  m   ∫  ( )
 

 
     exists and is finite. Then, 

 ( )             
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Appendix D  
 
Stability Proofs 
 

D.1 Direct MRAC 

Starting from the Lyapunov function candidate given in Eq.(4.9) 
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  ], (D.1) 

if we take the derivative with respect to time we obtain  
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  ]  (D.2) 

Inserting the error dynamics from Eq.(4.8) yields 
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(D.3) 

         is the symmetric positive definite solution of the Lyapunov equation 

       
     , (D.4) 

where          is a symmetric positive definite matrix and a design parameter for 

the adaptive controller. 

By applying the trace identity             we can rewrite the following terms 
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 (D.5) 

Using these results we can collect terms in Eq.(D.3) 
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(D.6) 
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Obviously, if we now choose the following update laws  

  ̇̃          
    

 ̇̃     (  )    
    

 ̇̃ 
          

    

 ̇̃ 
         

    

      (D.7) 

the sign indefinite terms are canled and the time derivative of the Lyapunov function 

becomes negative semidefinite: 

  ̇   
 

 
  

      (D.8) 

Lyapunov’s Theorem, given in Section C.2, ensures boundedness of the states   ,  ̃  

   ̃ ,   ̃  , and  ̃  for the closed loop adaptive system. As    is bounded it follows 

from boundedness of the reference model that          is bounded. For the 

controller implementation we are actually not interested in the parameter errors  ̃, but 

in the estimated parameters  . As  ̃       , and the ideal parameters    are 

assumed to be constant the adaptation laws for the parameters are given by Eq.(4.10): 

  ̇          
    

 ̇     (  )    
    

 ̇ 
          

    

 ̇ 
         

    

    . (D.9) 

Additionally, from boundedness of the system states (  ,  ̃   ̃    ̃       ̃      ), the 

existence of the integral  

 
∫  ̇

  

  

( )    ( )   (  )    (D.10) 

follows, and thus the error    is square integrable, that is        : 

 
∫   

 ( )   ( )
  

  

     (D.11) 

If the reference command   is bounded (      ), then from the boundedness of 

    ̃   ̃    ̃   ̃  and the error dynamics in Eq.(4.8) it follows that  ̇  is bounded. With 

 ̇      , Barbalat’s Lemma (see Section C.2) can be applied, and it can be shown that 

  m     ( )    m
   

(     )   . 
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D.2 Indirect MRAC 

D.2.1 Calculation of Controller Gains 

We start by using the Lyapunov function candidate 
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Taking the time derivative of the Lyapunov function candidate and inserting the 

identification error dynamics of Eq.(4.16) we obtain 
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(D.13) 

Again the trace identity             has to be applied 
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(D.14) 

By choosing the following adaptation laws 
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         (D.15) 

the Lyapunov function is rendered negative semi definite. Hence, stable parameter 

estimation is guaranteed by Lyapunov’s Theorem (see Section C.2). This means the 

states   ,  ̃   ̃   ̃   and   ̃ are bounded. 

Inserting the control law of Eq.(4.19) in the identification model of Eq.(4.14) we 

immediately obtain 

  ̇̂     ̂      . (D.16) 

Choosing  ̂ (  )    (  ), it follows that  ̂ ( )    ( )       , and hence the 

predictor dynamics are equal to the dynamics of the reference model. This also means 

that for a stable reference model  ̂  is bounded. As    is bounded,     ̂     is 

bounded. Furthermore, by application of Barbalat’s Lemma (see Section C.2) it can be 

shown that 

        ( )    m
   

( ̂    )   . 
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D.2.2 Update of Controller Gains 

To proof stability for the adaptation laws choose the Lyapunov function candidate 

from Eq.(4.24) 
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Taking the time derivative we obtain 
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Inserting the adaptation laws from Eq.(4.26) and Eq.(4.27) leads t 
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Collecting same  ’s we obtain 

  ̇   
 

 
  

     

    [(    ̃ 
     ̃  

   ̃ )    
  ] 

    [(    ̃ 
     ̃  

   ̃ )    
 ] 

    [(    ̃     ̃    ̃)    
 ] 

    [(    ̃     ̃  )    
 ]  

(D.20) 

By canceling same terms in Eq.(D.20) we get  
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For the ideal plant and controller parameters Eq.(4.25) takes the from 
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Inserting these results in Eq.(D.21) yields 
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Simplified, Eq.(D.23) can be written by 
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Hence,  ̇ reduces to 
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Thus the time derivative of the Lyapunov function is negative semi definite. As the 

Lyapunov function is a dependent on the states   ,  ̃ ,  ̃ ,  ̃ ,  ̃ ,  ̃ ,  ̃ ,  ̃ and  ̃, 

the identification error as well as the plant parameters and the controller parameters 

are guaranteed to be bounded by Lyapunov’s Theorem (see Section C.2). 

From boundedness of the system states the existence of 
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follows. Hence, the errors   ,   ,   ,   , and    are square integrable (   ) and 

bounded (   ): 
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Furthermore, from the time derivatives of the closed loop estimation errors are 

bounded 
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Thus, if the matching condition holds, it follows from Barbalat’s Lemma that 
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However, boundedness of   ,  ̂  and   has not jet been established. Therfore, recall 

the dynamics of the identification model from Eq.(4.14) and insert the control law from 

Eq.(4.23) 
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From Lemma 2.2 in [1] and with       and   ,   ,   ,  , and  (  )     it follows 

that  ̂  is bounded. Furthermore, from boundedness of    it follows that    is 

bounded. Boundedness of  ̇  can be concluded from the error dynamics in Eq.(4.16), 

and thus it follows from Barbalat’s Lemma (see Section C.2) that 
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D.3 Gradient Based Modification 

Starting from the Lyapunov function candidate given in Eq.(5.111)  
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if we take the derivative with respect to time we obtain  
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Inserting the error dynamics from Eq.(4.36) yields 
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By applying the trace identity             we can rewrite the following terms 

   
      ̃̂ 

      [ ̃̂ 
      

    ] (D.33) 

Using this result we rewrite Eq.(D.32) 
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Inserting the update law from Eq.(5.110) 
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in Eq. we obtain  
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The trace identity is in general not invariant with respect to permutation, but it is 

invariant under cyclic permutation:                                    . 

Hence we can rewrite Eq.(D.36) 
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From Lyapunov’s Theorem, given in Section C.2, it follows that     ̅   ̃̂      . 

Furthermore, from boundedness of the system states the existence of the integral  
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follows, and thus the errors    and  ̅  are square integrable, that is    and  ̅       : 
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From the boundedness of systems states it follows from the error dynamics that  ̇  

     and by application of Barbalat’s Lemma it can be shown that the error converges 

to zero asymptotically 

  m     ( )    m
   

( ̂    )   . 

To show that also  ̅  converges to zero we need to show that  ̇̅  is bounded in order 

to apply Barbalat‘s Lemma. Taking the time derivative of  ̅ from Eq.(5.97) we get 

  ̇̅ ( )    ( ̇̂ 
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  ̇̅ )   ̇̅. (D.40) 

How to obtain the time derivative of  ̅ and  ̅ is in following exemplarily shown for the 

integral approach. Thus from Eq.(5.93) and Eq. the derivative are given by 
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Inserting the derivatives in Eq.(D.40) gives 
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From the control law it follows that       . Now since    [  
  (  )    ]

 
 is 

bounded it follows from the update law that  ̇̂ 
      . That is,  ̇̅      , and thus 

Barbalat’s Lemma can be applied and the error converges to zero asymptotically 

  m    ̅ ( )   . 

D.4 Recursive Least-Square Modification 

Starting from the Lyapunov function candidate given in Eq.(5.125)  

   
 

 
  

     
 

 
  [ ̃ 

     ̃ ] (D.44) 

if we take the derivative with respect to time we obtain  
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Inserting the error dynamics from Eq.(4.36) yields 
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By applying the trace identity             we can rewrite the following terms 
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Using this result we rewrite Eq.(D.46)  
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Inserting the update law from Eq.(5.123) and Eq.(5.124) 
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In Eq.(D.48) gives 

  ̇   
 

 
  

       [  ̃̂ 
  ̅  ̅ 

   
  ]  

 

 
  [ ̃̂ 

  ̅  ̅ 
  ̃̂ ] (D.51) 

With the definition of  ̅ 
  from Eq.(5.97)  
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From Lyapunov’s Theorem, given in Section C.2, it follows that   ,  ̅ ,  ̂ , and   

     . Furthermore, from boundedness of the system states the existence of the 

integral  
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follows, and thus the errors    and  ̅  are square integrable, that is    and  ̅       : 
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From the boundedness of systems states, it follows from the error dynamics that  ̇  

     and by application of Barbalat’s Lemma it can be shown that the error converges 

to zero asymptotically 

  m     ( )    m
   

( ̂    )   . 

To show that also  ̅  converges to zero we need to show that  ̇̅  is bounded. This was 

already shown in the previous Section D.3 and is not repeated here. 
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Appendix E  
 
Piecewise Constant Update Law 
 

The error dynamics can be derived from Eq.(6.87) and Eq.(6.87) : 
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(E.1) 

Using the sample time    and the fact that  ̂ ( ) and  ̂ ( ) are constant one sample 

interval        (   )    for           we can write Eq.(E.1) in a discrete way 
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With             the error at the next time step   (   )   can be denoted by 
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With the definitions 

 
 ̂  [

 ̂ (   )

 ̂ (   )
] 

 ((   )  )  ∫    (    )  (  ((   ) ( )    ( ))         ( ))   
  

 

 
(E.4) 

We can write Eq.(E.3) as 
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The idea is now to calculate  ̂(   ) such that it compensates for the propagation of the 

prediction error   (   ) over   .That means we are choosing  ̂(   ) such that the first 

two terms in Eq.(E.5) cancel. However, the uncertainties  , stemming form  ,   , and 

   still will introduce an error at   ((   )  )  Hence it is desired that 
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It follows that 
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Resolving w.r.t. to  ̂ we obtain 
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with 
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In this way   ((   )  ) only consists of the error that has culminated within    due 

to the uncertainties and an error in the estimation of the system input gain matrix, i.e. 
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