
New Convergence and Exact Performance Results for Linear Consensus
Algorithms Using Relative Entropy and Lossless Passivity Properties

Herbert Mangesius

Abstract— Despite the importance of the linear consensus
algorithm for networked systems, yet, there is no agreementon
the intrinsic mathematical structure that supports the observed
exponential averaging behavior amongn agents for any initial
condition. Here we add to this discussion in linear consensus
theory by introducing relative entropy as a novel Lyapunov
function. We show that the configuration space of consensus
systems is isometrically embedded into a statistical manifold.
On projective n-1-space relative entropy is a common time-
invariant Lyapunov function along solutions of the time-varying
algorithm. For cases of scaled symmetry of the update law, we
expose a gradient flow structure underlying the dynamics that
evolve relative entropy in a steepest descent gradient scheme.
On that basis we provide exact performance rates and upper
bounds based on spectral properties of the update law governing
the behavior on the statistical manifold. The condition of scaled
symmetry allows to exhibit gradient flow structures for cases
where the original update law is neither doubly stochastic,nor
self-adjoint. The results related to the gradient flow structure
are obtained by exploiting lossless passivity properties.We show
that lossless passivity of a dynamical system implies a gradient
flow structure on a manifold and vice versa. Exploiting lossless
passivity amounts to constructing the combination of dissipation
(pseudo)metric with Lyapunov function.

I. I NTRODUCTION

In recent years it has been seen that the linear consensus
algorithm is a core element in the theory of interconnected
systems. Applications range from distributed computation,
and information diffusion, to the analysis of chemical re-
action networks, and novel methods for the analysis of
electric power system dynamics. Despite its prominent role
in networked systems theory and applications, yet, there is
no agreement on the intrinsic mathematical structure that
produces the observed averaging behavior amongn scalar
subsystems.

With this paper we contribute to ongoing discussions
by using a geometric and information theoretic approach
to linear consensus systems as contraction mappings. This
highlights the nonlinear aspects despite the linearity of the
dynamics. We show that a natural configuration space for
linear consensus algorithms is a statistical manifold up to
a constant scaling that depends on the initial condition. By
relating lossless passivity with gradient flows on a manifold,
we establish a gradient flow property for linear consen-
sus systems evolving on the space of discrete probability
densities, based on relative entropy as Lyapunov function.
This Lyapunov function bears the intuitive notion of each
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subsystem forgetting its specific initial condition over time.
Moreover, on projectiven-1-space relative entropy provides
a common, time-invariant Lyapunov function for the time-
varying algorithm.

Our results are novel contributions to linear consensus the-
ory as follows. First, relative entropy is established as time-
varying, and common time-invariant Lyapunov function. In
its second role it is a dissipation measure that bases on
the information of alln state values, rather than the two
extremal state values used in the most general Lyapunov
function known so far, which is set up by the diameter of
the convex hull of all states. Second, we establish a gradient
flow property for situations where the linear update law of
consensus algorithm is not a doubly stochastic or symmetric
matrix, and for that situation we give novel convergence
bounds. This yields a direct extension of a Theorem given
in [1] on the convergence under time-varying communication
structures. Third, we verify a conjecture given in [2] that the
underlying state space may be not linear. In this context we
build relations to Markov chains.

Notation: The notationgrad denotes gradient, and it
corresponds to∇, (containing partial derivatives), only in
Euclidean space.

II. L INEAR CONSENSUSSYSTEMS - BASICS & SETTING

A. Representation and General Stability Result

The classical linear consensus algorithm is a time-
varying system of n agents embedded in a directed
graphG(t) = (V , E(t)) with t ≥ 0 denoting time. The em-
bedding is such that each nodei ∈ V = {1, . . . , n} indexes
one agent, and whenever an ordered pair(i, j) is an element
of the set of edgesE(t) ⊆ V × V there is a communication
link from agentj to agenti at time t.

The algorithm is initialized by assigning a real scalar
to each agent’s statexi(t = 0). Then, the system evolves
by communicating scalar state valuesxj(t) to agentsi,
whenever(i, j) ∈ E(t), and performing the update

xi(t+ 1) =
n
∑

j=1

aij(t)xj(t), i = 1, . . . , n, (1)

where aij(t) ≥ α > 0, (α some threshold value),
if (i, j) ∈ E(t) and

∑n

j=1 aij = 1, ∀j ∈ V ; else,
if (i, j) /∈ E(t) we have aij(t) = 0. The local update
law (1) yields the time-varying systemx(t+1) = A(t)x(t),
with x(t) = (x1(t), · · · , xn(t))

′
∈ R

n, and A(t) being a
(right-) stochastic matrix of dimensionn× n.



It is well-known that linear consensus algorithms converge
under the mild assumption of uniform connectedness, see for
instance [3], [4].

Definition 1 (Uniform connectedness):For a given time
interval [t1, t1 + t2], t1 ∈ [0,∞), t1 ≤ t2 < ∞,
consider the matrixĀ :=

∑t1+t2
t=t1

A(t) with associ-
ated graphG[t1,t1+t2] := (V ,∪t∈[t1,t1+t2]E(t)). The time-
varying graphG(t) is said to be uniformly connected over
bounded intercommunication intervals, if for anyt1 there
exists a bounded interval[t1, t1 + t2] and at least one
node k ∈ V such thatG[t1,t1+t2] contains a directed path
satisfyingāij > α from k to any other nodei ∈ V .

Theorem 1 (General convergence result [3], [4]):
Consider the linear time-varying system (1). The consensus
set C := {c∞1, c∞ ∈ R} is uniformly exponentially stable
if and only if G(t) is uniformly connected. In particular,
for any initial conditionx(t = 0) ∈ R

n, solutions of (1)
asymptotically convergence to a common consensus
valuec∞ = x1(t → ∞) = · · · = xn(t → ∞).

This observation relies on the fact that over sufficiently
large intercommunication intervals the product of matri-
cesΦ := A(t1 + t2) ◦ · · · ◦A(t1) is again a stochastic ma-
trix and a contraction map, see [3], [4]; that is, for
anyx,y ∈ U ⊆ R

n, U 6⊆ C application ofΦ yields

d(Φx,Φy) ≤ λd(x,y), λ < 1 (2)

whered(·, ·) is a metric function onU , see [5] Ch. 1.
Associated to the discrete-time algorithm (1) is the differ-

ential algorithm in continuous time

d

dt
x(t) = −L(t)x(t), with A ≡ e−L. (3)

The negative semidefinitn × n matrix −L(G(t)) gen-
erates A(G(t)) infinitesimally, and has the property
of vanishing row sums, i.e.

∑

j∈V lij = 0, in particu-
lar, lii +

∑

j 6=i lij = 0, i ∈ V . In accordance to (1) a similar
threshold value needs to be assumed for the weightslij .

B. Lyapunov Functions & Performance (In-)Equalities

Uniform convergence of algorithm (1) is classically estab-
lished by means of the time-invariant Lyapunov function

VT := max
i∈V

xi(t)−min
i∈V

xi(t), (4)

which is nonincreasing along solutions of (1) and strictly
decreasing, (i.e. it is a Lyapunov function), over sufficiently
large, finite time intervals satisfying uniform connectedness.
This observation has been made in [6], and in [4] this
set-valued Lyapunov function is related to the contracting
diameter of the convex hullco{x1(t), · · · , xn(t)} .

Despite its generality, convergence analysis using (4)
suffers from the fact that it provides overly conservative
estimates for the convergence speed, as stated for instance
in [7]. Alternatively, it is well-known from linear systems
theory, that the existence of a (common) quadratic Lyapunov
function yields exponential convergence speed, with constant
rate usually being related to spectral properties of the system.

Theorem 2 (Quadratic behavior, [1]):Consider the sys-
tem (1) under the assumption thatG(t) is strongly
connected and balanced at each time instant. De-
fine e(t) := x(t)− c∞1, c∞ = 1

′x(t = 0). The quadratic
function VQ := 1

2 ||e(t)||
2 is a common Lyapunov function.

It satisfies the inequality

d

dt
VQ = −e(t)′

(

L(t) +L′(t)
)

(G(t))e(t) ≤ −κQVQ, (5)

where the rate−κQ denotes the second-largest eigenvalue
that is smallest within all second-largest eigenvalues corre-
sponding to matrices−

(

L(G(t)) +L′(G(t))
)

, t ≥ 0.
Clearly, in this situation we have exponential convergence

with VQ(x(t2)) ≤ VQ(x(t1))e
−κQ(t2−t1), 0 ≤ t1 < t2. The

result relies on the fact that eachL(t) has1 as valid left
eigenvector associated to the zero eigenvalue, and by that
one can show thatc∞ remains invariant along solutions.

For situations whereL(t) is symmetric, the Lyapunov
functionVπ := 1

2x
TL(t)x is a time-varying potential and (3)

evolves as gradient-descent algorithm in this scalar potential
field according to

d

dt
x(t) = −∇Vπ(x; t) (6)

Recently, in [8], the Lyapunov function (4) has been
derived in logarithmic coordinates. The authors proposed the
Lyapunov function, (over sufficiently large time intervals),

VB := max
i∈V

log xi(t)−min
i∈V

log xi(t) = log
maxi xi(t)

mini xi(t)
, (7)

on the basis of G. Birkhoff’s work [9] on positive map-
pings that are contractions on the interior of the positive
orthantK+ = {x ∈ R

n, xi > 0, ∀i ∈ V} relative to the pro-
jective Hilbert metric. In the context of (2),VB measures
the projective distance between rays[x] := {cx, c > 0}
to the ray of consensus states[1] := {c1, c > 0}, what
we denote by writingVB(x||1). Thus, while (7) defined
on K+ is a pseudometric, it is a metric on the projec-
tive n-1-spacePn−1

+ := K+/ ∼, where∼ defines the equiv-
alence classes of rays[ · ]. The functionVB also measures
the diameter ofco {x1(t), · · · , xn(t)}, see [8]. Furthermore,
using [9], a performance measure is given in [8] in terms of
the contraction ratio

κB : = inf
{

κ : VB(Φx||1) ≤ κVB(x||1), ∀x ∈ K+
}

= tanh

(

1

4
∆(Φ)

)

, (8)

where∆(Φ) is the projective diameter ofΦ; it is defined as

∆(Φ) : = sup
{

VB(Φx||1), x ∈ K+
}

= sup

{

log

(

ϕijϕpq

ϕiqϕpj

)

, i, j, p, q ∈ V

}

. (9)

A performance measure for the convergence speed based
on (8) can only be given when the projective diameter (9)
takes finite values. This however requires irreducibility of Φ,
cf. [10], otherwise∆(Φ) = ∞ and κB = 1. Thus, a finite
diameter is only a sufficient condition to prove strict decay
of VB over finite time intervals and does not support the
generality in Th. 1.



III. C ONTRACTION BEHAVIOR & L OSSLESSPASSIVITY -
NOVEL METHODOLOGY

In the following we propose a method that allows to
exploit passivity properties of lossless dissipative dynamical
system by choice of a storage function, (that serves as
Lyapunov function), and by construction of an appropriate
(pseudo)metric that renders the autonomous system lossless.
Such systems exhibit exponential convergence and evolve as
gradient flow.

Our starting point is the dissipation inequality in integral
and differential form

V (x(t1)) +

∫ t2

t1

w(τ)dτ ≥ V (x(t2)) ⇔ V̇ (x(t)) ≤ w(t)

(10)
with 0 ≤ t1 < t2, as presented in the framework of
dissipative dynamical systems established in the work [11].
The sufficiently smooth functionV : X → R

+
0 , X ⊆ R

n the
state space, is called storage, and the locally integrable
function w, depending on external inputs and outputs, is
called supply rate.

Remark 1:Here, as in [11], we share the general under-
standing of a dynamical system as being a semigroup. Hence,
we do not restrict to a special class of dynamical systems.

A dynamical system for which a storage and supply can
be found such that inequality (10) holds is called dissipative.
Instances of dissipativeness are losslessness and passivity.

Definition 2 (Lossless passivity, [11], [12] Ch. 2):A
dissipative dynamical system is called lossless if for
all 0 ≤ t1 < t2 the equality

V (x(t1)) +

∫ t2

t1

w(τ)dτ = V (x(t2)), (11)

holds along any possible solution. A dissipative dynamical
system is said to be passive if it has bilinear supply rate. If
a dissipative dynamical system is both lossless and passive
we say it has the property of lossless passivity.

In [11] it is already stated that any dissipative dynamical
system with inputs and outputs can be made lossless w.r.t. an
appropriate supply rate taking the form̃w(t) = w(t)− d(t),
whered is a nonnegative (internal) dissipation (rate) function.
Appropriate means, that the internal dissipation functionis
known exactly.

Remark 2:While in [11] the choicew̃(t) = w(t) + d(t)
is made, here we subtract the dissipation rate, because inter-
nally dissipated energy is removed from the stored energy.

In the following we consider dissipative dynamical sys-
tems in the sense of its definition as autonomous systems.
Hence, we havew(t) = 0, ∀t, (because external inputs and
outputs are not present), and the remaining part of the
supply ratew̃ relates to the internal dissipation. The original
inequality together with the corresponding differential form
become

V (x(t2))− V (x(t1)) ≤ −

∫ t2

t1

d(τ)dτ ⇔ V̇ (t) ≤ −d(t),

(12)

with equality whenever the system is lossless. Clearly,
nonnegativity of the dissipation rate implies dissipativeness
and positivity implies asymptotic stability withV being a
Lyapunov function.

Lemma 1 (Gradient flows and lossless passivity):A dis-
sipative dynamical system evolving onX has the prop-
erty of lossless passivity if and only if there is at
least a pseudometric given by an inner product func-
tion g : TxX × TxX → R

+
0 such that the state dynamics

and the storage have the gradient flow property

ẋ = −gradV (x) and V̇ (x) = −g(∇V (x),∇V (x)) (13)

for any possible configurationx ∈ X .
Proof: [(13) ⇒ Lossless passivity]: The

choice d(t) = g(∇V (x),∇V (x)) yields relations (12)
with equality, and hence losslessness by Def. 2. The
gradient of V (x), (on a possibly nonlinear space), is
defined as the element in the tangent spaceTxX given
by G−1

x ∇V (x), where Gx = {gij(x)}, i, j ∈ V , is a
symmetric, positive semidefinit matrix valued function with
inner products as elements, see for instance [13] Ch. 3 and
[14]. We denote its inverse elements byg−1

ij . Using this
fact and the component inner product functions we can
rewrite (13) such that

V̇ =− g(∇V,∇V ) = −||∇V ||2
G

−1

x

= −∇V ′G−1
x ∇V

=−
n
∑

i=1

n
∑

j=1

g−1
ij (x)

∂V

∂xi

∂V

∂xj

= −
n
∑

i=1

n
∑

j=1

gij(x)ẋiẋj .

(14)

The last equality comes from substitution using the iden-
tities

∑

j g
−1
ij ∇xj

V = ẋi and ∇xi
V =

∑

j gij ẋj . By that,
the dissipation rated = ||∇V ||2

G
−1

x

is a metric having the
bilinear form dd =

∑

i

∑

j gij(x)dxidxj , and hence pas-
sivity holds, cf. [5] Ch. 1. We only require a pseudometric,
since any two solutions that are equivalent in the sense of
having identical dynamics should be indistinguishable when
measured in this metric.
[lossless passivity⇒ (13)]: follows from taking the reverse
arguments: Passivity requires a bilinear form and lossless-
ness a steepest descent gradient structure to obtain equality
in (12). Thus, the dissipation rate needs to take the bilinear
form dd being at least a pseudometric.

Theorem 3 (Performance and lossless passivity):
Consider a dissipative dynamical system onX that satisfies
lossless passivity, and a storageV : x 7→ R

+
0 , x ∈ X with

appropriate dissipation rated : TxX × TxX → R
+
0 . For

anyx ∈ X and0 ≤ t1 < t2, the equality

V (x(t2)) = e−d(t2−t1)V (x(t1)) (15)

holds. Denote byΓ the set of all possible solutions starting
in a configurationx(t1) ∈ X , and terminating inx(t2) ∈ X .
The dissipation rated has the variational characterization

∫ t2

t1

d(τ)dτ = sup
Γ

{V (x(t1))− V (x(t2))} , (16)

and−d = inf
Γ

{

κ : V (x(t2)) ≤ eκ(t2−t1)V (x(t1))
}

, (17)



and the square root of (16) is a (directed) distance (to steady
state).

Proof: It is well-known that gradient flows have ex-
ponential convergence to equilibrium for any configuration,
see for instance [5] Ch. 1. Then, the connection of lossless
passivity with gradient flows as in Lem. 1 leads to (15).
The variational characterization ofd is also an imme-
diate consequence of the gradient flow property, see for
instance [13] Ch. 3, because (16) corresponds to the
squared length of the geodesic connectingx(t1) andx(t2).
Then, (17) follows from noting that the dynamics evolve
as differential steepest gradient descent algorithm of the
storageV . The length of a geodesic is a distance, see for
instance [13] Ch. 3, and the square root of the integral (16)
is a directed distance, because the flow is directed in time.

Remark 3:The variational characterization in Thm. 3 is
identical with the infimum characterization (8) when going
to discrete time. The dissipation rated being a constant
according to (17) implies that the system evolves as constant
speed geodesic, cf. [5] Ch. 5 and [14] Ch. 2 .

A method that exploits lossless passivity properties is
to construct the combination of storage and dissipation
“metric”, e.g. by fixing a storage and trying to find, (for
instance by reverse engineering), a suitable inner productg
that brings forth the appropriate dissipation rate, (and bythat
a gradient flow structure).

IV. D ISSIPATION IN L INEAR CONSENSUSALGORITHMS -
STATEMENT OF MAIN RESULTS

The main result establishes isometric and equivalence re-
lations between the linear consensus algorithm (1), resp. (3),
and the associated (time-varying) Markov chain with same
update law, hereby denoted byΣM . In this context we
consider the space of positive probability vectors

P :=

{

p = (p1, · · · , pn)
′ ∈ (0, 1)n :

∑

i∈V

pi = 1

}

. (18)

The evolution of anyp ∈ P underΣM is governed by the
update lawp′(t+ 1) = p′(t)A(t). A weaker representation
of the state and its evolution can be accomplished in terms of
probability density vectors. We define the space of positive
probability densities as

M :=

{

ρ = (ρ1, · · · , ρn)
′ ∈ K+ :

∑

i∈V

νiρi = 1

}

. (19)

where ν : i ∈ V 7→ [0, 1] is a reference probability
function. A Lyapunov function forΣM is the relative entropy
(Kullback-Leibler divergence) ofp w.r.t. the the asymptotic
probability vectorq, (this probability state is only reached
when the update law does not switch, else it is time-varying),
where q is the left Perron vector ofA(t). The relative
entropy ofp w.r.t q is defined as

VP (p||q) :=
∑

i∈V

pi log
pi
qi
. (20)

We consider linear consensus algorithms and make the
following hypotheses:

(H1) Each graphG(t) is strongly connected.
(H2) The storage function is of strictly additive form such

that V (x(t)) =
∑

i∈V Vi(xi).
(H3) The algorithm is defined onX = K+.

Remark 4:Under (H1), (irreducibility ofA), uniqueness
and positivity ofq is guaranteed.

Remark 5:Within the context of interconnected, phys-
ical, and process systems (H2) is standard, see for in-
stance [11], [15] Ch. 1, or [16] Ch 3.

Remark 6:Without loss of generality we can set (H3).
That is, we can always find a constantc ∈ R such that the
shifted statex(t)− c1 remains inK+ for all time. This does
not alter the dynamics, becausec1 lies in the right kernel
of L, i.e. d

dt (x− c1) = −Lx+ cL1 = −Lx = d
dtx.

Theorem 4 (Relative entropy & lossless passivity):
Under (H1)-(H3), the following statements are true :

(i) The function

VH(x) :=
∑

i∈V

qixi log xi, (21)

is a Lyapunov function along solutions of (1). De-
finexs(t) := 1

c∞(t)x(t), c
∞(t) := q′(t)x(t). Then, for

all t inbetween two switching timesxs(t) ∈ M.
(ii) The space of solutions{x(t)}0<t<∞ of (1) is

isometrically embedded into the space of solu-
tions {ρ(t)}0<t<∞ of ΣM . The isometric embedding
is time-varying, and given byΠM : X → M(X ),
with x 7→ ΠM(x) = x/c∞(t). In particular,
on P

n−1
+ , the relative entropy VP is given

by VH(x(t)||c∞(t)1) = VM (ρ(t)||1), and it is
a time-invariant common Lyapunov function for
all t ∈ [0,∞).

(iii) Within two switching times, if the time-
invariant update law−L, is scaled symmetric so
that qilij = qj lji, ∀i, j ∈ V , then VH(x(t)), together
with VM (xs(t)) and VP (p(t)) are gradient flows.
In particular, we have the proportional evolu-
tion VH = c∞VM , and d

dtx
s = d

dtp = G−1
x ∇VP (p).

The matrices G−1
x define a pseudometric, and

components are given by

g−1
ij :=







lij
xs
j−xs

i

log xs
j
−log xs

i

, if i 6= j

−
∑

(i,j)∈E(t) lijqi
xs
j−xs

i

log xs
j
−log xs

i

, if i = j

(22)
Definees(t) := xs−1. The functionV s

Q := 1
2 ||e

s(t)||2

is a Lyapunov function, convergence is exponential, and

d

dt
V s
Q(t) = −〈xs,QLxs〉 ≤ λ2(−QL)V s

Q. (23)
Remark 7:The result in part (iii) provides an immediate

extension to Thm. 2 by allowing balanced weighted matrices
that are scaled symmetric, so that the left-eigenvector differs
from 1. Further, part (iii) provides an extension to the known
gradient flow property in Euclidean space usingVπ. All
results can be relaxed to cases whereG(t) is not always



strongly connected, but over sufficiently large time intervals.
Then,Φ replacesA(t).

Remark 8:While VT and VB are measures of only two
extremal state values, the functionVH uses all n state
values. Observe that the logarithmic mean ing−1

ij provides a
means to convert betweenVT andVB . It is well-known that
contraction rates for (relative) entropy measures are related
to contractions of phase space volume, see for instance [17].

V. PROOF OFTHEOREM 4

A. Proof of Part(i)

The following Lemma bases on the work [18].
Lemma 2 (Extensive storage):Let I ⊆ R be an interval,

andf : I → R be a convex function. Consider the function

V (x) =

n
∑

i=1

Vi(xi) =

n
∑

i=1

ϑif(xi), ϑi ≥ 0, (24)

The function (24) is nonincreasing and a storage along
solutions of (1), if an only if

n
∑

i=1

ϑiaij(t) = ϑj , j ∈ V . (25)

Proof: [V is storage ⇒ (25)]: Define the out-
put y := A(t)x,x ∈ X . Then, dissipativity im-
plies V (y) =

∑n

i=1 ϑif(yi) ≤
∑n

i=1 ϑif(xi) = V (x). This
is the case, because

n
∑

i=1

ϑif(yi) =

n
∑

i=1

ϑif(

n
∑

j=1

aij(t)xj)

≤

n
∑

i=1

n
∑

j=1

ϑiaij(t)f(xj)
(25)
=

n
∑

j=1

ϑjf(xj). (26)

Here we used Jensen’s inequality for convex functions on
convex sets. Also, as a consequence of Jensen’s theorem,
the inequality (26) is strict, whenf is strictly convex.
[V is storage⇒ (25)]: follows from taking any norm as
extrem case of a convex function. Then, only equality can
be obtained and this implies (25).

Corollary 1: Under (H1) and (H3) the
functionV =

∑n

i=1 qixi log xi is a Lyapunov function.
Proof: Condition (25) yields in vector matrix nota-

tionϑ′A(t) = ϑ′, which is precisely the definition of the first
left eigenvector of the stochastic matrixA, (that corresponds
to the eigenvalueλ = 1). Since the left Perron vector is given
asq , ϑ, ||ϑ||1 = 1, it is sufficient to setϑi = qi, i ∈ V . The
function f(xi) = xi log xi is strictly convex on the positive
real line, and withx ∈ K+, Lem. 2 implies Cor. 1.

Proposition 1: Under the assmptions and definitions made
in Thm. 4,c∞(t) > 0, and 1

c∞(t)

∑

i∈V qixi = 1.
Proof: The quantity

∑

i∈V qixi(t) = q′x(t) is a system
invariant along dynamics with time-invariant update law, i.e.

const. = q′x(t+ 1) = q′A(t)x(t) = q′x(t) , c∞(t).
(27)

By definition and using (H1) we haveqi, xi > 0, ∀i ∈ V, cf.
Rem. 4. This impliesc∞(t) > 0. A scaling ofx(t) with the
inverse ofc∞(t) results in 1

c∞(t)q
′x(t) = 1.

Clearly, xs = 1/c∞(t)x ∈ M by definition of M. The
scaling with 1/c∞(t) remains constant when the update
law is time-invariant, due to the invariance ofc∞(t) along
consensus dynamics. This completes the proof of part (i).�

B. Proof of Part(ii)

Given two metric spaces(S2, dS2
), (S1, dS1

), and a
function s : S1 → S2, such that for allx,y ∈ S1, the
relation dS2

(s(x), s(y)) = dS1
(x,y)) holds, thens is an

isometry fromS1 to S2.
Proposition 2: Define VM (ρ||1) :=

∑

i∈V qiρi log ρi.
ThenVP = VM , and along a trajectory produced by a time-
invariant update law, the relative entropyVM is a distance
from ρ to the stationary density1.

Proof: From definitions of M and P observe
that pi = ρiqi. Substitution into relative entropy yields

VP (p||q) =
∑

i∈V

pi log
pi
qi

=
∑

i∈V

qiρi log ρi = VM (ρ||1).

It is well-known that along a solution, the Kullback-Leibler
divergence is positive, strictly decreasing and it vanishes if
and only if p = q, or ρ = 1. Thus, it induces a partial
ordering among points lying on a trajectory along time, and
this allows to useVM (ρ||1) as a distance to equilibrium
along a trajectory.
From Thm. 4 part (i) we know that any solu-
tionx(t), 0 ≤ t < ∞ is related to a density solution via time-
varying scaling asρ(t) = x(t)

c∞(t) , 0 ≤ t < ∞.
Lemma 3:The time-varying functionΠM as in Thm. 4

part (ii) is an isometric embedding fromX to M.
Proof: Set (S2, dS2

) = (M, VM ), and fix y = 1.
According to Prop. 2, we can useVM (ρ||1)
as distance to equilibrium along a solution.
Then, VH(x(t)||c∞(t)1) = VM (Π(x),Π(c∞(t)1), which
is identical toVM (ρ||1).

It remains to show that onPn−1
+ , VM is equivalent toVH ,

and relative entropy becomes a common, time-invariant
Lyapunov function.

By definition of Pn−1
+ , x ∼ 1

c∞(t)x = ρ, and they
are members of the ray[x] = {βx, β > 0}. Accord-
ingly, c∞(t)1 ∼ 1 belong to the same equivalence class
(ray) [1] = {β1, β > 0}. Thus, on projectiven-1-space,
functions VM (xs) and VH(x) are indistinguishable and
therefore equivalent, since they are related by constant scal-
ing of their arguments.

Lemma 4:Consider two reference vectorsq1, q2 ∈ P ,
with associated density vectorsρ1,ρ2 ∈ M. Then, there
exists a real scalarβ > 0, such that

∑

i∈V q2i ρ
2
i =

∑

i∈V q2i βρ
1
i = 1, andVM (ρ1)|q1 = VM (ρ1β)|q2 .

Proof: Set
∑

i∈V q2i ρ
1
i = β−1. Then, globally total

probability must be preserved, i.e.q(t)′ρ(t) = 1 is an
invariant, and the choiceρ2 = βρ1 satisfies this conservation
law. Further, because

∑

i∈V q1i ρ
1
i log ρ

1 =
∑

i∈V q2i ρ
2
i log ρ

2

the replacementρ2i = ρ1iβ yieldsVM (ρ1)|q1 = VM (ρ1β)|q2 .

While VP (p(t)||q(t)) is time-varying in both arguments,
the functionVM (ρ(t)||1) is time-varying only in the first



argument, and according to Lem. 4, this time-variance can
be captured by scalings with a positive real number, without
altering the value of the relative entropy in the system.
Because a positively scaled density can always be chosen
such that it belongs to the same equivalence class (ray) as
the state, the relative entropy measured onP

n−1
+ is a time-

invariant quantity. This completes the proof of part (ii).�

C. Proof of Part(iii)

Remember thatxs
i = ρi = pi/qi. Further, componentwise

we have∇pi
VP (p) = log pi

qi
+ pi

qi
pi

1
qi

= log pi

qi
+ 1. Denote

by LMij the logarithmic mean betweenxs
j andxs

i . Then, we
can writeG−1

x ∇VP (p) in the i-th component as
∑

j∈V

g−1
ij ∇pj

VP =
∑

j∈V

lijqiLMij(log x
s
j + 1)

=−
∑

j∈V

j 6=i

lijqiLMij(log x
s
i + 1) +

∑

j∈V

j 6=i

lijqiLMij(log x
s
j + 1)

=
∑

j∈V,j 6=i

lijqi
xs
j − xs

i

log xs
j − log xs

i

(log xs
j − log xs

i )

=
∑

j∈V,j 6=i

lijqi(x
s
j − xs

i ) (28)

Hence, we obtain in vector matrix form

d

dt
xs = −QLxs = −LQxs = −Lp =

d

dt
p. (29)

The matrixG−1
x is symmetric and positive semidefinite,

because the logarithmic mean is positive and symmetric,
andQL is symmetric. By that,G−1

x defines a pseudometric.
From Thm. 4 part (i) and (ii) we know that trajecto-

ries x(t) evolve proportional toxs(t) and VP = VM for
all t. Clearly, p and VP evolve as gradient flow,VM is
identical toVP , andVH evolves proportional toVM because
it is related via constant scalingVH = c∞VM , cf. Lem. 4.
Sincexs corresponds to a density and is a gradient flow
of relative entropy, it converges exponentially fast to1, and
thus,V s

Q is a Lyapunov function. The dynamics are governed
by the symmetric differential update law−QL, which is a
negative semidefinit matrix, and hence, the convergence rate
is upper bounded by the second-largest eigenvalue of−QL.
This completes the proof of part (iii). �

VI. CONCLUSION

In this paper we show that under the assumption of strong
connectedness the relative entropy of the associated time-
varying Markov chain is a Lyapunov function for the time-
varying consensus system. On projectiven-1-space relative
entropy is a common time-invariant Lyapunov function. We
show that the configuration space of the linear consensus
system is isometrically embedded into a statistical manifold.
Moreover, under the assumption of scaled symmetry, the
consensus system evolves isometrically to the gradient flow
of relative entropy associated to the corresponding Markov
chain. Scaled symmetry includes cases where the update law
is not doubly stochastic or symmetric. Exact exponential
convergence rates are given for the evolution of the consensus

system considered on the statistical manifold. The resultsre-
lated to the gradient flow structure base on lossless passivity
properties inherent to the consensus system. We show that
lossless passivity implies a gradient flow structure on some
nonlinear space and vice versa, and we provide a method to
exploit this property by constructing the combination of a
Lyapunov function with associated dissipation metric.

An upcoming work is in progress where we generalize the
convergence results to classes of combinations that consist
of storage functions with dissipation (pseudo)metrics.
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