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Abstract— Despite the importance of the linear consensus subsystem forgetting its specific initial condition ovenéd.
algorithm for networked systems, yet, there is no agreementn  Moreover, on projective:-1-space relative entropy provides

the intrinsic mathematical structure that supports the obsrved 5 o mmon, time-invariant Lyapunov function for the time-
exponential averaging behavior among» agents for any initial . .
varying algorithm.

condition. Here we add to this discussion in linear consensu o )
theory by introducing relative entropy as a novel Lyapunov Our results are novel contributions to linear consensus the

function. We show that the configuration space of consensus ory as follows. First, relative entropy is established aseti
systems is isometrically embedded into a statistical marafd. varying, and common time-invariant Lyapunov function. In

On projective n-1-space relative entropy is a common fime- o ‘second role it is a dissipation measure that bases on
invariant Lyapunov function along solutions of the time-varying

algorithm. For cases of scaled symmetry of the update law, we the information of alln state values, rather than the two
expose a gradient flow structure underlying the dynamics tha ~ €xtremal state values used in the most general Lyapunov
evolve relative entropy in a steepest descent gradient same. function known so far, which is set up by the diameter of
b0n ﬂz:latbbaSi?i we PrO\{idle exaCttPerf?ftrRanced r?tels and upper the convex hull of all states. Second, we establish a gradien
e oo o s 10W propert for siuations where the inear update aw o
symmetry allows to exhibit gradient flow structures for cass ~ CONSeNsus algorithm is not a doubly stochastic or symmetric
where the original update law is neither doubly stochasticnor ~ matrix, and for that situation we give novel convergence
self-adjoint. The results related to the gradient flow stru¢ure  bounds. This yields a direct extension of a Theorem given
are obtained by exploiting lossless passivity propertiesVe show i [1] on the convergence under time-varying communication
that lossless passivity of a dynamical system implies a gréht g4\, res. Third, we verify a conjecture given in [2] thae t
flow structure on a manifold and vice versa. Exploiting losstss . . .
passivity amounts to constructing the combination of disgiation ~ Underlying state space may be not linear. In this context we
(pseudo)metric with Lyapunov function. build relations to Markov chains.
Notation: The notationgrad denotes gradient, and it
corresponds tdv, (containing partial derivatives), only in
In recent years it has been seen that the linear consengsclidean space.
algorithm is a core element in the theory of interconnected
systems. Applications range from distributed computationll. LINEAR CONSENSUSSYSTEMS - BASICS & SETTING
and information diffusion, to the analysis of chemical re- . .
action networks, and novel methodsyfor the analysis é?' Representation and General Stability Result
electric power system dynamics. Despite its prominent role The classical linear consensus algorithm is a time-
in networked systems theory and applications, yet, there ¥&rying system ofn agents embedded in a directed
no agreement on the intrinsic mathematical structure thgraphg(t) = (V,£(t)) with ¢t > 0 denoting time. The em-
produces the observed averaging behavior amorsgalar bedding is such that each node V = {1,...,n} indexes
subsystems. one agent, and whenever an ordered paif) is an element
With this paper we contribute to ongoing discussionsf the set of edge§(t) C 'V x V there is a communication
by using a geometric and information theoretic approadink from agent;j to agent: at timet.
to linear consensus systems as contraction mappings. ThisThe algorithm is initialized by assigning a real scalar
highlights the nonlinear aspects despite the linearityhef t to each agent’s state;(¢ = 0). Then, the system evolves
dynamics. We show that a natural configuration space fétwyy communicating scalar state values(t) to agentsi,
linear consensus algorithms is a statistical manifold up tehenever(i, j) € £(t), and performing the update
a constant scaling that depends on the initial condition. By n
relating Iogsless pass_|V|ty with gradient flows on a maudifol zi(t+1) = Z aij(H)z;(t), i=1,....n, 1)
we establish a gradient flow property for linear consen- =
sus systems evolving on the space of discrete probability
densities, based on relative entropy as Lyapunov functiowhere a;;(t) > a > 0, (a some threshold value),
This Lyapunov function bears the intuitive notion of eachf (i,j) € &(t) and -7 ,a;; = 1,¥j € V; else,
if (i,7) ¢ £(t) we havea;;(t) = 0. The local update
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It is well-known that linear consensus algorithms converge Theorem 2 (Quadratic behavior, [1])Consider the sys-
under the mild assumption of uniform connectedness, see fiam (1) under the assumption thai(¢) is strongly
instance [3], [4]. connected and balanced at each time instant. De-

Definition 1 (Uniform connectednessfor a given time fine e(t) := x(t) — ¢>®1, ¢ = 1'z(¢t = 0). The quadratic
interval [ti,t + t2], t1 € [0,00), t1 < t» < oo, functionVg := 1|le(t)||* is a common Lyapunov function.
consider the matrixA := ;7' A(t) with associ- It satisfies the inequality
ated graph@y, +,+1,) = (V, Uiepty 1, +1,]€ (). The time- d
varying grapr[lg(t) is] said to be[ unifor]mly connected over ;'@ = —e(t) (L(t) + L'(1)) (G(t)e(t) < —rqVa, (5)
bounded intercommunication intervals, if for any there \yhere the rate—r, denotes the second-largest eigenvalue
exists a bounded intervaliy, ¢y +1,] and at least one hat is smallest within all second-largest eigenvaluesesor
n0(_je k €V such that9, ;, 4.,) contains a directed path sponding to matrices- (L(G(¢)) + L'(G(t))) , ¢ > 0.
satisfyinga,; > a from £ to any other node € V. Clearly, in this situation we have exponential convergence

Theorem 1 (General convergence result [3], [4]): with Vo (z(t2)) < Vo(z(ty))e "et2=1) 0 < t; < ty. The
Consider the linear time-varying system (1). The consensygsult relies on the fact that eadi(t) has1 as valid left
setC:= {c>1,¢> € R} is uniformly exponentially stable ejgenvector associated to the zero eigenvalue, and by that
if and only if G(t) is uniformly connected. In particular, one can show that™® remains invariant along solutions.
for any initial conditionz(¢ = 0) € R", solutions of (1)  For situations whereL(t) is symmetric, the Lyapunov
asymptotically convergence to a common consensygnctionV, := iz L(t)x is a time-varying potential and (3)

valuec™ =z (t — 00) = -+ =z, (t = 00). evolves as gradient-descent algorithm in this scalar piaten
This observation relies on the fact that over sufficientlfield according to

large intercommunication intervals the product of matri-
ces® := A(t; +t2) o---0 A(ty) is again a stochastic ma-
trix and a contraction map, see [3], [4]; that is, for
anyxz,y € U CR"™, U < C application of® yields

Em(t) = —VV,(x;t) (6)

Recently, in [8], the Lyapunov function (4) has been
derived in logarithmic coordinates. The authors propobked t

d(®x, ®y) < Md(z,y), A<1 (2) Lyapunov function, (over sufficiently large time intervals
. . . . . B max; ;(t)
whered(-,-) is a metric function ori/, see [5] Ch. 1. Vi := maxlog z(t) min log z;(t) = log T (7)

Associated to the discrete-time algorithm (1) is the differ

ential algorithm in continuous time on the basis of G. Birkhoff’s work [9] on positive map-

pings that are contractions on the interior of the positive

im(t) — _L(t)z(t), with A=eL. 3) orthantK, = {x € R", x; > 0,Vi € V} relative to the pro-

dt ’ jective Hilbert metric. In the context of (2)yz measures
The negative semidefini x n matrix —L(G(¢)) gen- the projective distance between rajs| := {cz,c > 0}
erates A(G(t)) infinitesimally, and has the propertyto the ray of consensus statg := {c1,c> 0}, what

of vanishing row sums, i.ey> ., 1;; =0, in particu- We denote by writingV(z|[1). Thus, while (7) defined

lar, l; + 2, 1i; = 0, i € V. In accordance to (1) a similar 0N K+ 1S a pseuldometnc, it is a metric on the projec-

threshold value needs to be assumed for the weights ~ tive n-1-spaceP’} ™" := K, / ~, where~ defines the equiv-
alence classes of rays]. The functionVz also measures

B. Lyapunov Functions & Performance (In-)Equalities the diameter oto {z1(t), - ,z,(t)}, see [8]. Furthermore,

Uniform convergence of algorithm (1) is classically estabtSing [9], a performance measure is given in [8] in terms of
lished by means of the time-invariant Lyapunov function the contraction ratio

kg =inf {k: Vp(®x[|1) < kVp(z|[1), Vo € K1}

1

= tanh | -A(® 8
which is nonincreasing along solutions of (1) and strictly a <4 ( )>’ ®)
decreasing, (i.e. it is a Lyapunov function), over suffithen \hereA(®) is the projective diameter ab; it is defined as
large, finite time intervals satisfying uniform connectegs N
This observation has been made in [6], and in [4] this A(®) : = sup {Vp(®x[[1), z € KT}
set-valued Lyapunov function is related to the contracting . ] PijPpq . 9
diameter of the convex hutlo{z:(t), - ,z,(t)} . i CigPpi ) bipacVe. ©)

Despite its generality, convergence analysis using (4 performance measure for the convergence speed based
suf_fers from the fact that it provides overly conseryatwem (8) can only be given when the projective diameter (9)
estimates for the convergence speed, as stated for instafgges finite values. This however requires irreducibilityfg
in [7]. Alternatively, it is well-known from linear systems cf, [10], otherwiseA(®) = oo and kg = 1. Thus, a finite
theory, that the existence of a (common) quadratic Lyapun@jameter is only a sufficient condition to prove strict decay

function yields exponential convergence speed, with @mst of V; over finite time intervals and does not support the
rate usually being related to spectral properties of theesys generality in Th. 1.

= it— i it, 4
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[1l. CONTRACTION BEHAVIOR & L OSSLESSPASSIVITY -  with equality whenever the system is lossless. Clearly,
NOVEL METHODOLOGY nonnegativity of the dissipation rate implies dissipatiess

In the following we propose a method that allows ta and positivity implies asymptotic stability witly” being a

exploit passivity properties of lossless dissipative dyital Lyapunov fUI’ICtIOI’]- . .
. . Lemma 1 (Gradient flows and lossless passivi#y):dis-
system by choice of a storage function, (that serves as
Sipative dynamical system evolving o has the prop-
Lyapunov function), and by construction of an appropnate
rty of lossless passivity if and only if there is at
(pseudo)metric that renders the autonomous system Iesslq
Such systems exhibit exponential convergence and evolve a east a pseudometric given by an inner product func-
Y P 9 tlon : TeX x Ty X — R such that the state dynamics
gradient flow. X
. o o L and the storage have the gradient flow property
Our starting point is the dissipation inequality in intdgra )
and differential form @ = —gradV(z) and V(z) = —g(VV(x), VV(z)) (13)
t2 . for any possible configuration € X.
V(fﬂ(tl))‘f‘/ w(r)dr > V(z(t2)) & V(x(t) < w(?) Proof: [(13) = Lossless passivity]: The
h (10) choice d(t) = g(VV(z),VV(z)) yields relations (12)
with 0 < t; < t,, as presented in the framework Ofwith.equality, and hence Ios;lessness_ by Def. 2. The
dissipative dynamical systems established in the work.[11gradient of V(z), (on a possibly nonlinear space), is
The sufficiently smooth functiol’ : X — R}, X C R" the deﬁned as the element in the tangent spdget’ given
state space, is called storage, and the locally integrad®¥ G, VV(z), where G, = {g;;(z)}, i,j € V, is a
function w, depend|ng on external |nput5 and Outputs |§ymmetr|C pOSItive semidefinit matrix valued function hwit
called supply rate. inner products as elements, see for instance [13] Ch. 3 and
Remark 1:Here, as in [11], we share the general undef14]. We denote its inverse elements ky'. Using this
standing of a dynamical system as being a semigroup. Hena¢t and the component inner product functions we can
we do not restrict to a special class of dynamical systemsfewrite (13) such that

A dynamical system for which a storage and supply cany — — g(VV,VV) _||VV||G L =-VV'G,'VV

be found such that inequality (10) holds is called dissygati n n n o n

Instances of dissipativeness are losslessness and passivi - _ Z Z (g 8V 8‘/ - _ Z Z gij (T)diii;.
Definition 2 (Lossless passivity, [11], [12] Ch. 2A 1 i 555 555 i1 j=1

dissipative dynamical system is called lossless if for (14)

all 0 < i1 <ty the equality The last equality comes from substitution using the iden-

t2 tities 3" g, V.,V =i; and V,,V = >, 9ij;. By that,
V(x(t1)) +/ w(r)dr = V(z(t2)), (11)  the d|SS|pat|on ratel = [|[VV|[%,_, is a metric having the
h bilinear formdd = }_, Z 9ij( ccm)dazldxj, and hence pas-
holds along any possible solution. A dissipative dynamicalivity holds, cf. [5] Ch. 1. ‘We only require a pseudometric,
system is said to be passive if it has bilinear supply rate. Hince any two solutions that are equivalent in the sense of
a dissipative dynamical system is both lossless and passigving identical dynamics should be indistinguishable nvhe
we say it has the property of lossless passivity. measured in this metric.

In [11] it is already stated that any dissipative dynamicdflossless passivity> (13)]: follows from taking the reverse
system with inputs and outputs can be made lossless w.r.t. afyuments: Passivity requires a bilinear form and lossless
appropriate supply rate taking the forir(t) = w(t) — d(t), ness a steepest descent gradient structure to obtain tgquali
whered is a nonnegative (internal) dissipation (rate) functionin (12). Thus, the dissipation rate needs to take the bilinea
Appropriate means, that the internal dissipation funci®n form dd being at least a pseudometric. ]
known exactly. Theorem 3 (Performance and lossless passivity):

Remark 2:While in [11] the choicew(t) = w(t) + d(t) Consider a dissipative dynamical system &rthat satisfies
is made, here we subtract the dissipation rate, because intessless passivity, and a storaffe: = — R, € X with
nally dissipated energy is removed from the stored energyappropriate dissipation ratel : T,X x T,X — RJ. For

In the following we consider dissipative dynamical sysanyx € X and0 < t; < t2, the equality
tems in the sense of its definition as autonomous systems. L d(ta—ty
Hence, we haves(t) = 0,Vt, (because external inputs and V(a(t) = eIV (@(t)) (15)
outputs are not present), and the remaining part of tHlds. Denote by the set of all possible solutions starting
supply ratew relates to the internal dissipation. The originalin a configuratione(t,) € &, and terminating ine(t2) € X'
inequality together with the corresponding differentiairh  The dissipation rate has the variational characterization

b to
o " [ dwyr =swp (V@) - View)),  @9)

V(z(t) - Viet) < — | dr)dr < V(i) < —d(1), L
/tl 1z and-d =i {k:V@(t2) < V(@) |, A7)



and the square root of (16) is a (directed) distance (to gtead We consider linear consensus algorithms and make the
state). following hypotheses:

Proof: It is well-known that gradient flows have ex{H1) Each graplg(t) is strongly connected.

ponential convergence to equilibrium for any configuratiop42) The storage function is of strictly additive form such
see for instance [5] Ch. 1. Then, the connection of lossless that V(x(t) = Ziev Vi(xz;).

passivity with gradient flows as in Lem. 1 leads to (15). (H3) The algorithm is defined oA’ = K.

T_he variational characterlzatlon. of is also an imme- Remark 4:Under (H1), (irreducibility ofA), uniqueness
diate consequence of the gradient flow property, see f%rnd positivity ofg is guaranteed.

instance [13] Ch. 3, because (16) corresponds to the gemark 5:Within the context of interconnected, phys-
squared length of the geodesic connectiri¢y) andx(f2). jca) and process systems (H2) is standard, see for in-
Then, (17) follows from noting that the dynamics evolveg,nce [11], [15] Ch. 1, or [16] Ch 3.

as differential steepest gradient descent algorithm of the Remark é:Without I(;ss of generality we can set (H3).

storageV’. The length of a geodesic is a distance, see fof ., is, we can always find a constant R such that the

instance [13] Ch. 3, and the square root of the integral (1&}iseq stater(t) — c1 remains inK., for all time. This does

is a directed distance, because the flow is directed in timﬁOt alter the dynamics, because lies in the right kernel

_ o S u _of L, i.e.%(m—cl):—Lm—i—cLl:—Lw:%m.
Remark 3:The variational characterization in Thm. 3 is Theorem 4 (Relative entropy & lossless passivity):

identical with the infimum characterization (8) when going,qer (H1)-(H3), the following statements are true -

to discrete time. The dissipation rate being a constant . .

according to (17) implies that the system evolves as cohstan(') The function

speed geodesic, cf. [5] Ch. 5 and [14] Ch. 2 . Vi (x) == qu log ;, (21)
A method that exploits lossless passivity properties is Y

to construct the combination of storage and dissipation

“metric”, e.g. by fixing a storage and trying to find, (for

instance by reverse engineering), a suitable inner progluct

that brings forth the appropriate dissipation rate, (anthiay

a gradient flow structure).

is a Lyapunov function along solutions of (1). De-
finexs(t) := c@%(t)fc(t), c®(t) := ¢'(t)=(t). Then, for

all ¢ inbetween two switching times*(t) € M.

(i) The space of solutions{x(t)},.,.., of (1) is
isometrically embedded into the space of solu-

IV. DISSIPATION INLINEAR CONSENSUSALGORITHMS - tions {p(1)}o<;<o Of Xar. The isometric embedding
STATEMENT OF MAIN RESULTS is time-varying, and given byIT(: X — M(X),
with @ — () =x/c>*(t). In  particular,

The main result establishes isometric and equivalence re-
lations between the linear consensus algorithm (1), ré&3p. (
and the associated (time-varying) Markov. chain with same a time-invariant common Lyapunov function for
update law, hereby denoted by,,. In this context we all t € [0, 00)

consider the space of positive probability vectors (i) Within two switching times, if the time-

invariant update law—L, is scaled symmetric so
Pi={p=(p,-,pn) €0, 1)":) pi=1p. (18) that ¢;1;; = q;l,i, Vi, 7 € V, then Vg(x(t)), together
% with Vy(x°(¢)) and Vp(p(t)) are gradient flows.

The evolution of anyp € P underX), is governed by the In particular, we have the proportional evolu-
update lawp/(t + 1) = p/(t)A(t). A weaker representation ~ tion Vi = c>Vyr, and gz° = gp = G, VVp(p).

of the state and its evolution can be accomplished in terms of The matrices G' define a pseudometric, and
probability density vectors. We define the space of positive =~ COmponents are given by

probability densities as x5

on ]P”fjl, the relative entropy Vp is given
by Vu(x(t)|[c>*(#)1) = Vu(p(®)||1), and it is

gl = lij Togwt—Tog 77 * if i

> v mwl

M = {p = (p1,--- ,pn)’ e Kt Vip; = 1} . (19 - Z(i,j)eg(t) lijQiW, if i =
= 22)

Definee’(t) := x* — 1. The functionV;; := 3 |[e*(t)|?

where v : i € V +» [0,1] is a reference probability is a Lyapunov function, convergence is exponential, and

function. A Lyapunov function fok,, is the relative entropy
(Kullback-Leibler divergence) op w.r.t. the the asymptotic d V(1) = —(@*, QLa*) < M(—QL)VS.  (23)

probability vectorq, (this probability state is only reached Remaﬁ<_t
when the update law does not switch, else it is time-varying%xtension ‘
where g is the left Perron vector ofA(¢). The relative

entropy ofp w.r.t q is defined as

7:The result in part (iii) provides an immediate
o Thm. 2 by allowing balanced weighted matrices
that are scaled symmetric, so that the left-eigenvectéerdif
from 1. Further, part (iii) provides an extension to the known
Vp(pllg) = Zpi log&. (20) gradient flow property in Euclidean space usibg. All

iy 4i results can be relaxed to cases whéi) is not always



strongly connected, but over sufficiently large time inggsv  Clearly, z° = 1/c¢*(t)x € M by definition of M. The

Then, ® replacesA(t). scaling with 1/¢>°(¢) remains constant when the update
Remark 8:While Vi and Vg are measures of only two law is time-invariant, due to the invariance &® (t) along

extremal state values, the functioriy uses alln state consensus dynamics. This completes the proof of parli(i).

values. Observe that the logarithmic mearyzi_ﬂ provides a .

means to convert betwedsr and V3. It is well-known that B. Proof of Part(ii)

contraction rates for (relative) entropy measures ardagla Given two metric spacegSs,ds,), (S1,ds,), and a

to contractions of phase space volume, see for instance [1fgnction s : S; — S, such that for allz,y € Sy, the

relation dg, (s(x), s(y)) = ds, (x,y)) holds, thens is an
isometry fromS; to Ss.

A. Proof of Part(i) Proposition 2: Define Vi (pl|1) = 3,y qipilog pi.
The following Lemma bases on the work [18]. ThenVp = Vi, and along a trajectory produced by a time-
Lemma 2 (Extensive storagelet I C R be an interval, invariant update law, the relative entropf, is a distance

and f : I — R be a convex function. Consider the functionfrom p to the stationary density.

Proof:  From definitons of M and P observe

V(z) = Z Vi(xi) = Zl%f(xi), 9; >0, (24) thatp; = p;q;. Substitution into relative entropy yields
i=1 i=1

Di
. . . . Vr(pllg) = Zpi log— = Z%’Pi log pi = Vi (pl[1).
The function (24) is nonincreasing and a storage along pyesy! (R

solutions of (1), if an only if

V. PROOF OFTHEOREM4

It is well-known that along a solution, the Kullback-Leible

n _ divergence is positive, strictly decreasing and it varssifie
Zﬁiaij(t) =V, JEV. (25)  and only if p = q, or p = 1. Thus, it induces a partial
Proof: [VZZlis storage = (25)]: Define the out- ordering among points lying on a trajectory along time, and
put y = A(t)z,x € X. Then, dissipativity im- this allows to useVy,(p||1) as a distance to equilibrium
plies V(y) = >0 9if(yi) < Sory 9if(z;) = V(). This along a trajectory. _ m
is the case, because From Thm. 4 part (i) we know that any solu-
" n " tionx(t),0 <t < oo is related to a density solution via time-
i i 10
9; f(ys) = 9 f ai; (t)z; varying scaling ap(t) = =y 0 <t < oo
; ( ; (; s (0)5) Lemma 3:The time-varying functionlT , as in Thm. 4

n n 25y part (ii) is an isometric embedding fror to M.
< szaij(t)f(xj) 2 Zﬁjf(a;j), (26) Proof: Set (Ss,ds,) = (M, V), and fix y =1.
j=1 According to Prop. 2, we can useVy(p|l1)
Here we used Jensen's inequality for convex functions o  distance OEO equilibrium alongo a_ solution.
convex sets. Also, as a consequence of Jensen’s theorgieN: Vi (x(1)[[c> (1)1) = Vi (I (), II(¢>(t)1), which
the inequality (26) is strict, whelfi is strictly convex. Is identical toViy (pl[1). . , _ u
[V is storage= (25)]: follows from taking any norm as |t remains to show that of’;"", V), is equivalent toVy,

extrem case of a convex function. Then, only equality cafi"d relative entropy becomes a common, time-invariant
Lyapunov function.

i=1 j=1

be obtained and this implies (25). u - 1 1
Corollary 1: Under  (H1) and (H3) the By definion of Pi™, @ ~ =ma = p, and they
functionV = 327" | gix; loga; is a Lyapunov function. are members of the rayz] = {fz, 5> 0}. Accord-

Proof: Condition (25) yields in vector matrix nota- iNgly, ¢>(t)1 ~ 1 belong to the same equivalence class
tion 9’ A(t) = ¥', which is precisely the definition of the first (ray) [1] = {#1,5>0}. Thus, on projectiven-1-space,
left eigenvector of the stochastic matik, (that corresponds functions Vi (z®) and Vi (z) are indistinguishable and
to the eigenvalug = 1). Since the left Perron vector is given therefore equivalent, since they are related by constait sc
asq 2 9, ||9||, = 1, itis sufficient to se¥; = ¢;,i € V. The Ing of their arguments.
function f(z;) = z; log z; is strictly convex on the positive ~L-emma 4:Consider two reference vectorg,q* € P,

real line, and withz € K., Lem. 2 implies Cor. 1. m With associated density vectogs', p> € M. Then, there
Proposition 1: Under the assmptions and definitions mad&XISts 2a riaal scalag > 10' such thalt Diev @ip =
in Thm. 4,¢>(t) > 0, andcoo#(t) Y iy @it = 1. Diev @ Bpi =1, and Vi (p')|gr = Vi (p' B)]g2-

Proof: Set)"..,, ¢?p; = B~'. Then, globally total
probability must be preserved, i.g(t)'p(t) = 1 is an
invariant, and the choicg? = 8p' satisfies this conservation

Proof: The quantity) *,,, ¢;z;(t) = ¢'x(t) is a system
invariant along dynamics with time-invariant update law, i

const. = q'z(t +1) = ¢ A()x(t) = g’z (t) = c>(t). law. Further, becaus¥ .., ¢} pi log p* = >,y 42 p? log p?
(27)  the replacement? = p; 3 yields Vi (p')]| g1 = Var(p'B)] 42-
By definition and using (H1) we havg, z; > 0,Vi € V, cf. ]

Rem. 4. This impliesc™(t) > 0. A scaling ofx(t) with the While Vp(p(t)||q(t)) is time-varying in both arguments,
inverse ofc>(t) results in=yq'z(t) = 1. B the functionVy;(p(t)||1) is time-varying only in the first




argument, and according to Lem. 4, this time-variance caystem considered on the statistical manifold. The reseits

be captured by scalings with a positive real number, withouated to the gradient flow structure base on lossless passivi

altering the value of the relative entropy in the systenproperties inherent to the consensus system. We show that

Because a positively scaled density can always be chosissless passivity implies a gradient flow structure on some

such that it belongs to the same equivalence class (ray) @asnlinear space and vice versa, and we provide a method to

the state, the relative entropy measuredIPtirT1 is a time- exploit this property by constructing the combination of a

invariant quantity. This completes the proof of part (il Lyapunov function with associated dissipation metric.

C. Proof of Part(ii) An upcoming work is in progress wherg we generalize thg

convergence results to classes of combinations that ¢onsis

Remember that; = p; = p;/q;. Further, componentwise of storage functions with dissipation (pseudo)metrics.

we haveV,, Ve (p) = log & + p; & - = log £ + 1. Denote

by LM;; the logarithmic mean betweerj andz;. Then, we

can write G, ' VVp(p) in the i-th component as

ZgiEIij Vp = Z lijQiLMij (1og x; + 1)
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