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Understanding and managing risks caused by extreme events is one of the most demanding
problems of our society. We consider this topic from a statistical point of view and present
some of the probabilistic and statistical theory, which was developed to model and quantify
extreme events. By the very nature of an extreme event there will never be enough data to
predict a future risk in the classical statistical sense. However, a rather clever probabilistic
theory provides us with model classes relevant for the assessment of extreme events. Moreover,
specific statistical methods allow for the prediction of rare events, even outside the range of
previous observations. We will present the basic theory and relevant examples from climatology
(climate change), insurance (return periods of large claims) and finance (portfolio losses and
Value-at-Risk estimation).

The facts.

• Modern risk measures like Value-at-Risk and Expected Shortfall are defined by high quan-
tiles, such that the probability of a large loss is small.

• Poisson’s classic theorem on rare events (also called the law of small numbers) is the basis
for extreme value statistics, because it says that the Poisson distribution is the limit of
binomial distributions with very small success probabilities.

• The distribution of maxima of large samples can only be a Generalized Extreme Value
(GEV) distribution. This is one of the most fundamental results of extreme value theory.
On this basis methods to estimate far out tails and high quantiles were developed.

• Another method to estimate far out tails and high quantiles is the Peaks-Over-Threshold
(POT) method using the fact that exceedances over high thresholds for large samples
follow a Generalized Pareto distribution (GPD).

• We quantify extreme events for three data examples:

– yearly temperature maxima from 1879-2008;

– claim sizes of a Danish fire insurance;

– daily returns of the Standard and Poors 500 Index.
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1 Introduction

Extreme risks accompany our lives. Although every single person hopes that she does not suffer
any losses, some lose a fortune in a financial crises, some others lose their property in a hurricane,
or they have to leave their homes because of a nuclear accident, another person may even lose
her life in a car accident or because of a terrorist attack. Whereas our ancestors took dangers
and risks as God-given, nowadays we trace the occurrence of most types of risk back to the
actions of men. This implies that risk is precisely calculable (an assumption that is mostly
wrong), and that somebody has to be responsible. This applies to technical risk, where safety
measures are implemented in order to prevent disasters, which still happen occasionally. We
even try to adapt to risk of natural catastrophes, when we develop strategies like, for instance,
building dikes or simply sign an insurance contract.

In a society guided by such believes it is natural to require formulas from Mathematics and
Statistics for risk assessment. It is within this framework that extreme value theory and extreme
value statistics find their natural place. However, the modeling and the assessment of extreme
events is not so simple and cannot be gained with standard methods.

We illustrate the problem with a classical example.

Illustration 1.1 (Determine the height of a dike) In the Netherlands, where substantial
parts of the country are below sealevel, dikes of appropriate height are of vital importance as
protection against floods. The dikes have to be built higher than a wave height, which happens
at most every 10.000 years. How high has the dike at least to be? Or formulated otherwise, how
does one estimate the height of the highest wave in 10.000 years, if one has only measurements
of some hundred years available? The problem is to estimate the probability of an event which
is more extreme than any recorded to date. This requires a special method, which is provided
by statistical methods based on extreme value theory. 2

Extreme value theory is a fundamental mathematical theory, which can be transferred to
statistical methods. It was developed during the last 50 years and is not undebated. Extreme
value theory allows (under appropriate conditions) to predict rare events, which are not included
in the previous observations because of their rareness. Based on extreme data (later they will be
yearly temperature maxima, large insurance claims and large changes in a financial time series) it
is possible to extrapolate the data for the prediction of events, which cause higher temperatures,
insurance claims or financial losses than have ever been observed before. Naturally it is easy to
criticize this extrapolation out of the sample data and it is clear that extrapolation is unreliable
by nature. However, extreme value theory provides a solid mathematical basis, and no other
reliable alternative has been suggested. We cite the following assessment of Professor Richard
Smith (http://www.unc.edu/∼rls/), who has substantially contributed to the development of
extreme value statistics: “There is always going to be an element of doubt, as one is extrapolating
into areas one doesn’t know about. But what extreme value theory is doing is making the best
use of whatever you have about extreme phenomena.”

We emphasize that the statistical treatment of rare events as the far-out tail behavior can only
succeed with specific methods, which implement probabilistic results of extreme value theory
into the estimation procedure and, hence, compensate for the insufficient amount of data. This
will be the topic of Sections 3 and 4. Parts of this chapter have corresponding parts in the book
chapter Fasen and Klüppelberg [27].
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2 Extreme Risks

2.1 Climate risk

Fire, water, air – these three basic elements cause climate or weather-related natural disasters.
They comprise meteorological hazards (such as storm, hail, lightning), hydrological (flooding,
mass movement), and climatological ones (such as extreme temperatures, heat waves, drought,
forest fire). Apart from devastating earthquakes in Chile, Haiti (2010) and Japan, New Zealand
(2011), making 2011 the costliest year ever, the natural catastrophe losses in the last few years
were dominated by weather-related catastrophes, such as devastating floods in Pakistan (2010)
and Thailand (2011), the Winter Storm Xynthia in western Europe (2010), Hurricane Sandy in
the US (2012), wildfires in Russia (2010) and the summer drought in the US (2012) (see also 2.3
Insurance Risks). According to Munich Re data, there is an increasing trend of these natural
disasters in respect to intensities, frequencies, damages and losses. The Intergovernmental Panel
on Climate Change (IPCC) concluded in its last report in 2007 (see IPCC 2007 [6]) that in
past records the dominant signal was significantly increased in the values of exposure at risk.
However climate change has likely altered and will virtually certainly alter also the occurrence
of extreme events dramatically: frequency and magnitude of extreme events are strongly linked
to anthropogenic induced climate change.

The latest IPCC report confirmed a 100-year linear trend (1906-2005) of 0.74◦C, more pre-
cisely, eleven of the last twelve years (1995-2006) ranked among the 12 warmest years in the
instrumental record of global surface temperature since 1850. Most of the observed warming
since the mid-20th century is very likely due to the observed increase in anthropogenic green-
house gas concentrations. Linked to this climate change are marked observed changes in extreme
events, much more intense and longer droughts since the 1970s, particularly in the tropics and
subtropics, higher frequency of heavy precipitation events, or widespread changes in extreme
temperatures. For the latter one, a human contribution to the observed trends is likely. Also
future trends have been assessed by simulation of different scenarios with strong impacts on
extreme events, e.g., increase in intense tropical cyclone activity or incidence of extreme high
sea level are likely at the end of the 21th century. Due to the importance of extreme events
the IPCC published a Special Report Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation (SREX) in 2012.

Figure 1: Illustration of the consequences of an increase of temperature in mean and variance.

Many important research questions are linked to this increase in weather related extreme
events. First of all, is climate becoming more extreme under climate change conditions? This
question has traditionally been answered by fitting Gaussian distributions to temperatures.
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Figure 1 displays how an increase in mean and variance of temperature causes more hot and
more record hot weather. However, Gaussian distributions do not provide a good fit for the
distribution tails of high temperature measurements.

Second, if there are changes in extremes, which vulnerability of humans is to be expected?
Not all extreme events end in disasters. The most recent World Risk Report of 2012, published
by the BündnisEntwicklungshilfe in cooperation with the United Nations University (UNU-EHS)
(http://www.weltrisikobericht.de), summarizes the risk by natural hazards to nations with
different vulnerability, starting with

(1) the likelihood of extremes to occur (exposition),

(2) the vulnerability of societies with respect to infrastructure, housing, food, poverty, econ-
omy,

(3) the coping capacity based on governance, catastrophe precautions, medical situation, social
networks, insurances, and

(4) the adaptation capacity linked to education, environmental protection, projects and in-
vestments.

Similarly, it is a question of tremendous importance how the occurrence of physical extreme
events translates to extreme biological impacts or hazards which threaten the fitness and survival
of ecosystems more than any change in mean conditions (cf. Hegerl, Hanlon, and Beierkuhnlein
[5], Menzel, Seifert, and Estrella [8]). Not all rare climatological events translate into extreme
impacts: the responses in nature may be non-linear, the species may be resilient, resistant, re-
cover fast, or are well adapted by management. Due to this variation in response, always more
and more data on impacts of extreme events are needed. The goal is to bridge the gap between
extreme events and extreme impacts, especially for climatological hazards, such as temperature
extremes, heat waves, cold spells, frost events, drought or fire. They impact primarily agricul-
tural and forest ecosystems, however, as combined, longer lasting events their proper statistical
modeling and assessment is a scientific challenge.

2.2 Financial risks

The Basel Committee for Banking Supervision (http://www.bis.org/bcbs/) recommends for
insurance companies and financial institutions the building of capital reserves to hedge against
unpredictable risks. This is in Germany explicitly required by the regulatory authorities,
the BAFIN (Bundesanstalt für Finanzdienstleistungsaufsicht, http://www.bafin.de/) in the
framework of “Basel II” for banks (http://www.bis.org/publ/) and in the framework of
“Solvency II” for insurance companies (http://ec.europa.eu/internal market/insurance/).
The risk management department of every company is responsible for the respective calcula-
tions of the required capital reserves and their administration, which requires a mathematical-
statistical training.

The focus of Basel II, which was initially published in June 2004, was to manage and measure
credit risks, operational risks and market risks. In this chapter we will only pay attention to
market risk, the risk that a value of a portfolio will change due to movements in the market risk
factors as, e.g., interest rates, foreign exchange rates, equity prices and commodity prices.

In the Basel framework the capital requirement for market risk is based on the so-called
Value-at-Risk, which is the p-quantile of the portfolio risk, and is defined as follows.
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Let X be the financial risk in terms of the daily losses, defined as the negative profit/loss
of the market portfolio. To be precise, if Zt for t = 1, 2, . . . denote the daily market prices
of the portfolio, then the losses Xt represent the daily negative log-returns defined as Xt =
−(logZt− logZt−1) ≈ −(Zt−Zt−1)/Zt−1, approximating the negative relative price changes for
each day.

The distribution function of the daily portfolio loss X is given by F (x) = P(X ≤ x) for
x ∈ R. We define the quantile function of F or Value-at-Risk as

VaRp = F−1(p) = inf{x : F (x) ≥ p}, p ∈ (0, 1). (2.1)

(Note that for strictly increasing F this is simply the analytic inverse.) Hence, VaRp is the
smallest number such that the probability of a loss larger than VaRp does not exceed 1 − p.
Then for a large value of p (usually p = 0.95 or larger) VaRp is a prominent risk measure.

Depending on the specific risk, choices are p = 95% (0.95) or p = 99% (0.99) or even
p = 99.9% (0.999). In the case of market risks p = 99%.

By the perception and experiences gained through the financial crises, which started in 2007,
the Basel Committee on Banking Supervision decided a reformation of Basel II to strengthen the
regulation, supervision and risk management of the banking sector in September 2010. This re-
vision had to be implemented until 31 December 2011 [16] and introduced – as a response to the
crises – a stressed Value-at-Risk requirement taking into account a historic one-year observation
period relating to significant losses, which must be estimated in addition to the classical Value-
at-Risk based on the recent one-year observation period. Basel III [15] now aims at raising the
resilience of the banking sector by strengthening the risk coverage of the capital reserves. It sug-
gests reforms of capital requirements for counterparty credit risk using stressed inputs, addresses
the systemic risk arising from the interconnectedness of banks and other financial institutions,
and supplements the risk-based capital requirement to constrain too high leverage (details to
the changes in market risk can be found in http://www.bis.org/publ/bcbs193.htm). The
implementation of Basel III will start in 2013.

Typical methods to estimate the Value-at-Risk in practice are historical simulations, the
variance-covariance method and Monte Carlo simulation.

The “historical simulation method” simply estimates VaRp by the corresponding empirical
quantile based on the required one year of data. For instance, VaR0.99 is estimated as the largest
1% of daily losses. Alternatively, a weighted estimation scheme is used, which gives higher
weights to those data near to the current date and lower to the more distant data. Criticism
of this method is obvious: reliable estimation of high quantiles like VaR0.99 requires a large
amount of high losses, but 1% of the required one year of data provides no reliable estimator.
Consequently, the estimated VaR0.99 depends very much on the present market situation and
estimates can differ substantially almost from day to day. We shall analyse the Standard and
Poors 500 Index data during 1990-2004, abbreviated as S&P500. Moreover, VaR0.99 is supposed
to predict future high losses, which may be substantially higher than losses of the previous year
and requires extrapolation outside the observations.

For the “variance-covariance method” the risk factors are assumed to be multivariate normal
distributed. Then the distribution function of the portfolio X is a one-dimensional normal
distribution with mean µ ∈ R and variance σ > 0 determined by the portfolio weights, the
means and variances of the components and the pairwise correlations of the components. The
loss distribution F of X is given by

F (x) =
1√
2πσ

∫ x

−∞

e−
(y−µ)2

σ2 dy for x ∈ R. (2.2)
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Then VaR0.99(X) = µ+ σz0.99, where z0.99 is the 0.99-quantile of the standard normal distribu-
tion. It is particularly easy to estimate and to update, when the estimates for µ and σ change
in time. In Figure 2 we see the S&P500 (left) and its losses (right) during 1990-2004.
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Figure 2: The S&P500 (left) and the corresponding losses (right) during 1990-2004.

From this example we see that the normal model is completely inadequate: The histogram
(empirical density) of the daily losses of the S&P500 and the normal density with mean and stan-
dard deviation estimated from the data are depicted in Figure 3. The histogram clearly shows
that the daily losses of the S&P500 have more mass in the tails than the normal distribution;
i.e. for ±0.03 and larger/smaller the histogram exhibits more large/small values than is likely
for the normal distribution. This mismatch leads to an underestimation of the required capital
reserve. The fact that the empirical distribution and the normal distribution differ around 0 is
for risk management based on high quantiles irrelevant. Moreover, financial loss data are usually
negatively skewed and leptokurtic, again properties which can not be captured by a Gaussian
distribution.

The third VaR estimation method is the “Monte Carlo simulation”. Here a more sophisti-
cated parametric distributional model is fitted to the daily losses, its parameters are estimated,
and then large numbers of random samples of arbitrary length are simulated, its VaR estimated
for each sample, and then the average VaR is taken as an estimate. This method can be made
more efficient by variance reduction methods (Glasserman [31], Korn [36]), and estimates VaR
for a given model with arbitrary precision. However, the estimate depends on the chosen model
(as it does for the normal model in the variance-covariance method), so model risk can be
considerable; cf. the chapter by Bannör and Scherer [14] in this book.
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Figure 3: Histogram of the daily losses of the S&P500 in comparison to the density of the normal distribution.
The mean µ and the variance σ2 have been estimated by their empirical versions.

Remark 2.1 (i) In the Basel II market risk framework the calculation of the capital reserves
requires as risk measure the Value-at-Risk for a holding period of 10 days at a confidence level
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0.99%. A standard method in practice to calculate the Value-at-Risk for a holding period of 10
days is to calculate the Value-at-Risk for a holding period of one day and scale it by

√
10. This

scaling factor is based on the scaling property of the normal distribution and can be completely
wrong.
(ii) In the amendments to the Basel II accord, which have been incorporated into Basel III
(Basel Committee on Banking Supervision [15]), the VaR0.99 has been extended to incorporate
so-called stressed periods like the financial crises during 2007/8. Let X denote the loss of a
market risk portfolio (over the next 10 days) and VaR0.99,avg(X) the average of the estimated
VaR values of the preceding 60 business days. Then the new capital requirement has to be
calculated according to

max{VaR0.99(X),mcVaR0.99,avg(X)}+max{SVaR0.99(X),msSVaR0.99,avg(X)} (2.3)

where mc and ms are multiplication factors, which are not smaller than 3 (and are related to
the ex-post performance of the bank’s model). The quantity SVaR is the Value-at-Risk of the
loss portfolio estimated from historical data of a 12-month period of significant financial stress;
e.g the financial crises 2007/8.
(iii) Finally, we argue that the Value-at-Risk is not an appropriate risk measure. It is appro-
priate for the dike height of Illustration 1.1, for financial risk however, the situation is different.
If a flood with waves higher than the dike happens, the dike usually breaks and nothing can
be done for salvation. The land behind the dike disappears under water. For financial risks,
however, it is extremely relevant to know also the amount of resulting losses. This quantity is
taken into account, when using the Average Value-at-Risk as an alternative risk measure, which
describes the expected losses given a loss larger than the Value-at-Risk happens. It is given as

AVarp(X) =
1

1− p

∫ 1

p
VaRγdγ

(cf. the chapter Biagini, Meyer-Brandis, and Svindland [19] for a detailed introduction into
risk measures). If X has continuous distribution function F , then AVarp(X) = E(X | X >
VaRp(X)), which represents exactly the expected losses, given an extreme loss occurs. A second
drawback of the Value-at-Risk is that it is in general not subadditive, i.e. VaRp(X + Y ) ≤
VaRp(X) + VaRp(Y ) may not hold for risks X,Y . Subadditivity reflects the diversification
effect. It is better to have a portfolio of risks than several individual risks. However, if for
example X and Y are independent with distribution F (x) = 1− 1

1+x for x ≥ 0, then VaRp(X +
Y ) > VaRp(X) + VaRp(Y ) and there is no chance for risk diversification. In contrast, the
Average Value-at-Risk is a subadditive risk measure. Although there were serious attempts
to communicate to regulators that the Average Value-at-Risk may be a more appropriate risk
measure (cf. Danielsson, Embrechts, Goodhart, Keating, Muennich, Renault, and Shin [24]),
this academic initiative was not successful. The lobby work of the banks has prevented this: the
capital reserves calculated on the basis of Expected Shortfall would be substantially larger than
the Value-at-Risk.

2.3 Insurance risks

Insurance companies take over the risks of their customers. Typical insurance risks are health
problems, death, accidents, burglary, floods and fire. With the acquisition of an insurance
contract customers transfer their risk to an insurance company, which is then financially liable
to insurance claims. Also the insurance company does not know the risk for a claim to happen
to a customer, but by selling a large number of policies, it subsumes customers with similar
risk in a portfolio and takes advantage of the fact that in a large portfolio with similar and
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independent risks the total claim amount is constant in mean. In probability theory this fact is
proved and is called the Law of Large Numbers. For the insurance company this makes the risk
of a portfolio of similar and independent risks calculable. Random fluctuations in the portfolio
are hedged by reserves. In this context insurance companies have to evaluate the frequency as
well as the severity of risks. To do this they have to suggest appropriate risk models and estimate
the model parameters, they have to analyze the model statistically and test it under extreme
conditions. But they also have to calculate the premiums and reserves. As capital reserves of
insurance companies are substantial, it is also subject to capital regulations like Basel II. Taking
the total insurance business into account, new regulations are being implemented under Solvency
II, following the very same ideas as the Basel framework. We do not want to explain these ideas
in detail, but instead want to present the very traditional concept of the return period, which
is used universally to describe extreme events and serves as a risk measure, in particular, for
abnormally large insurance claims.
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Figure 4: Claim sizes of a Danish fire insurance during 1980-1990 in million Danish Krone (DKK).

Large claims are rare events with very high costs for an insurance company. They include
natural catastrophes like earth quakes, fire, storms or floods, which are typical events where large
claims occur (cf. Figure 4), but also so-called man-made claims from large industrial structures.
In 2010 the earth quake in Chile and the sinking of the drilling rig ,,Deepwater Horizon” were
large claims, in 2011 the event in Fukushima, which combined natural catastrophe with man-
made disaster, and the hurricane Sandy was a major catastrophe in 2012. It is common practice
that an insurance company insures itself against large claims by a contract with a reinsurance
company. To-date the hurricane Katrina in 2005 is the most expensive insurance claim in history
with about 76.25 billion US-Dollar, followed by the earth quake and the tsunami in Japan by 35.7
billion US-Dollar, hurricane Sandy in 2012 with about 35 billion US-Dollar, hurricane Andrew
in 1992 with about 26.1 billion US-Dollar and the terror attack to the World Trade Center in
2001 with about 24.3 billion US-Dollar (the data are going back to http://de.statista.com/).

It is a common feature of large claims that they happen rarely, and hence little data are
available to allow for reliable statistical prediction. But obviously, an insurance company and,
even more so, a reinsurance company has to prepare for extreme events. Certain quantities
can help to assess the frequency and severity of large claims. In the following we denote by
X1,X2, . . . the accumulated claims per year of an insurance or reinsurance company (Xk is the
total claim amount in year k) and we assume that these yearly claim amounts are independently
and identically distributed (shortly i.i.d.) with distribution function F . We further assume that
F (0) = 0 (a claim can only be positive) and that F (x) < 1 for all x ∈ R (claims can be arbitrarily
large, which has been proved over and over by reality). We denote by F (x) = 1−F (x) for x ≥ 0
the so-called tail of F . We want to determine now the distribution of the first year in the future,
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where the yearly total claim exceeds a fixed yearly reserve u for the first time. This year is
determined by

Z(u) = min{k ∈ N : Xk > u}.

Setting

q := P(X > u) = F (u), (2.4)

the random variable Z(u) is geometrically distributed with parameter q, i.e. the probability that
Z(u) takes the value k is given by

P(Z(u) = k) = (1− q)k−1q for k ∈ N

(in k−1 years we experience no excess, but then in year k there is an excess). The return period
is now the mean waiting time until a yearly total claim amount exceeds the threshold u (denoted
by E(Z(u))), where E is the mathematical symbol for expectation or mean. The expectation is
then

E(Z(u)) =

∞∑

k=1

kP(Z(u) = k) = q

∞∑

k=1

k(1 − q)k−1 =
1

q
=

1

P(X > u)
=

1

F (u)
. (2.5)

This provides now a trick to estimate the expectation. The standard way to estimate the
expectation is by the arithmetic mean (the sum of all observation values divided by the number
of all observations). Note however that, in order to do this, one would need many years, where
exceedances have happened. Since the events we are interested in are rare, this classical statis-
tical method can not be applied simply by lack of data. However, estimation via the right hand
side of (2.5) is also not straightforward: the problem has been shifted now to the estimation of
the tail F (u). Also for this tail estimation only few data are available. However, we can now
compensate the lack of data by using clever methods from extreme value theory. We will explain
this in detail in Sections 3 and 4.

But also the inverse problem is of great interest. The insurance company wants to calculate
premiums and reserves such that a yearly total claim amount larger than u should happen with
a probability 0.1 at most every 50 years, which means that P(Z(u) ≤ 50) ≤ 0.1. Since

P(Z(u) ≤ 50) = q

50∑

i=1

(1− q)i−1 = 1− (1− q)50,

we have 1 − (1 − q)50 = 0.1. This implies that q = 0.002105. Hence the return period in this
example is 1/q = 475 years. For the calculation of premiums and reserves we need now also
the threshold u, and this requires the estimation of the quantile of the distribution function F .
With the definition of the p-quantile in (2.1) we conclude with (2.4) that u = x1−q holds. We
come back to this in Section 4.

3 Basic extreme value theory

In the following we present the most important concepts for realistic modeling and quantification
of rare events. The precise mathematical background as well as many application examples can
be found in the books Beirlant, Goegebeur, Segers, Teugels, De Waal, and Ferro [1], Coles [3],
Embrechts, Klüppelberg, and Mikosch [4], McNeil, Frey, and Embrechts [7], Reiss and Thomas
[9]; Stephenson [43] gives an excellent overview on extreme events in climatology.
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Figure 3 presents a rather typical figure in many statistical applications areas. The normal
distribution is often wrongly applied to extreme risk problems. This can only be explained by the
fact that everybody with a basic statistical education has learnt about the normal distribution.
Moreover, the sum of normally distributed random variables is again normally distributed, and
the mean and the standard deviation of this sum are easy to calculate.

There is no doubt that the normal distribution is a very important distribution in probability
theory and statistics: it is the limit distribution for sums. For a sequence of i.i.d. random
variables X1,X2, . . . (under the weak condition of a finite variance), we have

1√
n

n∑

k=1

(Xk − E(Xk))
d−→ N (0, σ2) as n → ∞,

where the random variable on the right hand side is normally distributed with distribution

function as in (2.2). The symbol
d−→ stands for convergence in distribution; i.e. the distribution

functions of the random variables on the left hand side converge to the normal distribution
function with mean 0 and variance σ2. This is the so-called Central Limit Theorem. Because of
this very basic result the normal distribution is an excellent model for random variables, which
can be approximated by a sum of many small random effects. The great German mathematician
Carl Friedrich Gauß (1777-1855) has derived it in his book Gauß [30].

It has long been known that the normal distribution is unrealistic for risk considerations.
But which model is a good model for extreme events? The answer to this question has been
given by the great French mathematician Siméon Poisson [38] (1781-1840), which we formulate
nowadays as follows.

Theorem 3.1 (Poisson Theorem, Poisson [38]) A statistical experiment with possible out-
come En is repeated independently n times. The probability that the event En happens in one of
the n trials is P(En) = pn. If lim

n→∞

npn = τ holds for some 0 < τ < ∞, then

lim
n→∞

P (in exactly m of the n trials we have outcome En)

= lim
n→∞

(
n

m

)
pmn (1− pn)

n−m = e−τ τ
m

m!
for m = 0, 1, 2, . . . , (3.1)

where
(n
m

)
= n!

m!(n−m)! with 0! = 1 and m! = 1 · 2 · · ·m.

In honor of Poisson, the distribution on the right hand side of (3.1) is called Poisson distri-
bution with parameter τ , abbreviated by Poi(τ). The distribution on the left hand side of (3.1)
(before the limit is taken) is the binomial distribution Bin(n, pn), which for large n and small pn
approximates the Poisson distribution. Note that limn→∞ npn = τ > 0 implies obviously that
limn→∞ pn = 0. Hence the events En happen with vanishing probability, when the number of
trials n is getting large. For this reason the Poisson distribution is also called the distribution
of rare events. We want to present some ideas concerning the applicability of the Poisson distri-
bution, which leads to the two essential statistical concepts of extreme value theory. The first
statistical method is called the blocks method, and the second one the Peaks-Over-Thresholds
(POT) method. Which method to use depends on the question posed and on the data at hand.
We will come back to both statistical methods in Section 4.

In the following we present the necessary mathematical results to understand the concepts.
Let X1, . . . ,Xn be a sample of random variables; think for instance of yearly total claim amounts
of an insurance company or losses of a financial asset. We assume that X1, . . . ,Xn are i.i.d.
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Figure 5: Counting density of Bin(5, 1/5)-, Bin(10, 1/10)-, Bin(15, 1/15)-distribution and the Poi(1)-distribution.
Note that for all parameters of the binomial distributions presented np = 1 holds.

having the same distribution function as the random variable X; we denote it again by F (x) =
P(X ≤ x) for x ∈ R.

We show first how to use the Poisson Theorem 3.1 for the description of the behavior of the
maximum of a sample and investigate in a first step the so-called partial maxima

Mn = max(X1, . . . ,Xn) for n ∈ N .

As in real life we assume that risks larger than any we have observed before can continue to
occur. This is formulated mathematically by investigating P(Mn ≤ un), where the sequence un
increases with n (and hence with Mn). Then the following fundamental result holds (which one
can prove by means of the Poisson Theorem 3.1):

lim
n→∞

nP(X1 > un) = τ ⇐⇒ lim
n→∞

P(Mn ≤ un) = e−τ . (3.2)

We want to motivate the implication from the left side to the right side:

Consider a rare event E, for example the event that the loss of a financial asset at a day
is larger than a threshold u for large u. The daily losses of an asset constitute again a sample
X1, . . . ,Xn. Then

p = P(E) = P(X > u) .

Invoking the same argument as Poisson, we find that the probability that the event E within
the sample occurs m times is given by

(
n

m

)
pm(1− p)n−m for m = 0, . . . , n ;

i.e. it is Bin(n, p)-distributed. Now we let u depend on n in the sense that un increases with
the sample size n. Then p becomes pn, which converges to 0, and E becomes En = {X > un}.
When un is chosen such that

lim
n→∞

npn = lim
n→∞

nP(X > un) = τ ∈ (0,∞) ,

then the Poisson Theorem 3.1 implies

lim
n→∞

(
n

m

)
pmn (1− pn)

n−m = e−τ τ
m

m!
for m = 0, 1, 2, . . . .

11



In particular,

lim
n→∞

P(Mn ≤ un) = lim
n→∞

P(En never occurs in the n trials) = lim
n→∞

(
n

0

)
p0n(1− pn)

n = e−τ .

Consequently, we have shown how by the Poisson Theorem 3.1 the right hand side follows from
the left hand side of (3.2). We shall resist to prove the reverse here.

The following result by Fisher and Tippett [29] dating back to 1928 complements the above
result; it describes precisely the possible limit distributions of partial maxima and provides the
relevant tools for the estimation of tails and quantiles. For extreme value theory the Theorem of
Fisher and Tippett is of equal fundamental importance as the Central Limit Theorem. The En-
glish statistician Ronald A. Fisher (1890–1962) has been one of the creators of modern statistics,
working in many diverse areas.

Theorem 3.2 (Fisher-Tippett Theorem, Fisher and Tippett [29]) Let X1,X2, . . . be i.i.d.
random variables, and an > 0 and bn ∈ R appropriate constants. Moreover we assume that

lim
n→∞

P(max(X1, . . . ,Xn) ≤ anx+ bn) = G(x) for x ∈ R (3.3)

holds for a distribution function G. Then G belongs to the class {Gγ,σ,µ : γ, µ ∈ R, σ > 0},
where

Gγ,σ,µ(x) =





e−(1+γ x−µ

σ )
−

1
γ

, if γ ∈ R\{0},
e−e−

x−µ
σ , if γ = 0,



 for

{
1 + γ x−µ

σ > 0, if γ 6= 0,
x ∈ R, if γ = 0.

The class of distributions {Gγ,σ,µ : γ, µ ∈ R, σ > 0} is called generalized extreme value
distribution (GEV). We recall that the support of a distribution function is the set of all x ∈
R, where 0 < F (x) < 1. Since Gγ,σ,µ(x) = Gγ,1,0(

x−µ
σ ), µ is called location parameter and

σ is called scale parameter. The parameter γ is known as shape parameter and defines the
type of distribution: if γ > 0 the distribution Gγ,σ,µ is a Fréchet distribution with support
on [µ− σ/γ,∞); if γ = 0 the distribution G0,σ,µ is a Gumbel distribution with support on
R; if γ < 0 the distribution is a Weibull distribution with support on (−∞, µ− σ/γ]. The
Fisher-Tippett Theorem 3.2 thus states that the limit distribution of maxima are necessarily
generalized extreme value distributions (and the normal distribution does obviously not belong
to this class).

We want to explain the modelling and statistical consequences of the Fisher-Tippett theorem
leading to the so-called blocks method. Recall the classical central limit theorem, which ensures
that the distributions of sums and means of random variables converge to a normal distribution
(for i.i.d. and even weakly dependent variables under the assumption of a finite variance).
This motivates the modelling of random variables, which can be regarded as sums or means
of random quantities by a normal distribution. Similarly, random variables which represent
extreme quantities can be modelled by an extreme value distribution; Section 4.1 discusses the
typical example of yearly maxima. Underlying this example the measurements consist of daily
temperature values, and the maximum over every year is considered. So an extreme value
distribution is an appropriate model for these yearly maxima. Moreover, the assumption of
independence between the different maxima is also realistic as the time between two of such
maxima is several months. We will discuss in Section 4.1, if the assumption of those maxima
being identically distributed is realistic.

12



Under the conditions of the Fisher-Tippett Theorem 3.2 much more holds. We denote the
class {Hγ,σ : γ ∈ R, σ > 0} of distribution functions Generalized Pareto Distribution functions
(GPD), which are defined as

Hγ,σ(x) =

{
1−

(
1 + γ x

σ

)
−

1
γ , if γ ∈ R\{0}

1− e−
x
σ , if γ = 0

}
for

{
x ≥ 0, if γ ≥ 0,
0 ≤ x < −σ/γ, if γ < 0.

Again γ denotes the shape parameter and σ the scale parameter. Indeed the parameter γ here
is the same as in the Fisher and Tippett Theorem 3.2. Then the following theorem holds, which
was proved independently by Pickands [37] and by Balkema and de Haan [13].

Theorem 3.3 (Pickands-Balkema-de Haan Theorem) Assume that the conditions of the
Fisher-Tippett Theorem 3.2 hold and that F is the distribution function of X. Then there exists
a function σ : (0,∞) → (0,∞) and some γ ∈ R such that

lim
u→∞

P

(
X > u+ σ(u)x

∣∣∣X > u
)
= lim

u→∞

F (u+ σ(u)x)

F (u)
= Hγ,1(x) for x in the support of Hγ,1.

It is now important for the Peaks-Over-Threshold (POT) method that for a large threshold
u the following approximation holds by Theorem 3.3, where we set y = σ(u)x and use that
Hγ,1(y/σ(u)) = Hγ,σ(u)(y):

P(X > u+ y | X > u) =
F (u+ y)

F (u)
≈ Hγ,σ(u)(y) for y ≥ 0. (3.4)

Note first that an observation larger than u+ y is only possible, if the observation is larger than
u; this means one needs a so-called exceedance of u. Such an observation has then necessarily a
so-called excess over the threshold u, which is larger than y; cf. Figure 6. If we investigate the
special case that X has distribution Hγ,σ, we already have after some calculations that

P(X > u+ y | X > u) =
Hγ,σ(u+ y)

Hγ,σ(u)
= Hγ,σ+γu(u) (3.5)

and σ(u) = σ + γu.

u

X

X

X

X

X

Y

Y

Y

1

2

3

YNu

2

3

4

5

1

X13

Figure 6: Data X1, . . . , X13 with corresponding excesses Y1, . . . , YNu
.

Let now X1,X2, . . . (as illustrated in in Figure 6) be i.i.d. with distribution Hγ,σ, then (3.5)
means that Y1, Y2, . . ., the exceedances of u, namely, (X − u|X > u), are Hγ,σ+γu distributed.
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In the case γ = 0, where H0,σ is the exponential distribution with parameter σ−1, Y1, Y2, . . . are
again exponentially distributed with parameter σ−1. This phenomena is well known as loss-of-
memory property. In the general context of Theorem 3.3 with X1,X2, . . . i.i.d. with distribution
function F , (3.4) says that Y1, Y2, . . . are asymptotically generalized Pareto distributed.

In contrast to the Fisher-Tippett Theorem 3.2, which models extreme observations directly,
the Pickands-Balkema-de Haan Theorem 3.3 models all large values of a sample, more precisely,
all those which exceed a high threshold. This is, where the acronym “Peaks-Over-Thresholds”
(POT) originates. Compared to the modelling of yearly extremes (the so-called blocks method)
the POT method has a positive and a negative property: on the one hand, taking all exceedances
of a sample usually gives more observations, on the other hand, such exceedances can occur in
clusters, so that the independence property can be violated. We will apply the POT method in
Section 4.3.

4 Fundamental results from extreme value statistics

The books of Beirlant et al. [1], Coles [3], McNeil et al. [7], Reiss and Thomas [9] mentioned at the
beginning of Section 3 provide also their own software package for analyzing extremal events. An
extensive overview on quite a number of R-packages and other extreme statistics software is given
in Stephenson and Gilleland [11]; cf. http://www.ral.ucar.edu/∼ericg/softextreme.php
and http://www.isse.ucar.edu/extremevalues/extreme.html. In particular, we want to
mention the Extremes Toolkit (extRemes) developed in R by Eric Gilleland, which provides a
user friendly graphical interface.

4.1 Fitting the GEV to a sample of extreme data (the blocks method)

The GEV family can be applied as any other parametric family of distributions, whenever the
model is justified by the data. Consequently, the GEV has been used for a sample of i.i.d.
random variables, which result from some experiment and justify such a model.

Assume we have given yearly maxima Y1, . . . , Yn, which can be assumed to be i.i.d. GEV
distributed with distribution function Gγ,σ,µ and density gγ,σ,µ with realizations y1, . . . , yn. This
means that data are block maxima and every year is a block. Then the maximum likelihood
estimator of the parameters is given as

(γ̂, σ̂, µ̂) = argminγ,σ,µ

n∏

t=1

gγ,σ,µ(yt). (4.1)

We will use and slightly extend this concept to assess a possible trend in the location or scale
parameter of the data over time.

The next example is classic in this respect: we will fit a GEV to a sample of yearly temper-
ature maxima.

Illustration 4.1 (Climate risk) Hot days are one of the prominent climatological phenomenon
changing. According to IPCC 2007 (cf. IPCC 2007 [6]), it is very likely that warmer and more
frequent hot days over most land areas have occurred in the late 20th century, a human contri-
bution to this trend is likely, and it is – following their likelihood classification – virtually certain
that this trend will continue for the 21th century. Daily maximum temperatures for example
influence the well-being of humans putting additional stress to the thermal regulation and thus
the cardiovascular system. Temperature maxima are very closely linked to average summer
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temperatures, each degree of warming increasing the maximum temperatures by 1.2◦C in Basel
(Switzerland); see Beniston and Diaz [17]. Other projected impacts of more hot days comprise
decreasing agricultural and forest yields in warmer environments, reduced energy demand for
heating, increased demand for cooling, or declining air quality in cities.

We study long-term changes in daily maximum temperatures recorded at the oldest mountain
climate station in the world, the observatory Hohenpeißenberg (977 m above sealevel, south-west
of Munich), where regular meteorological observations started beginning of 1781. We restrict
our analysis to the period of 1879-2008, because in 1879 observations started being measured
with new instruments under the guidance of the Munich Meteorological Central Station and thus
the time series is homogenous. Due to its location on top of a mountain, summer temperatures
are 2◦C to 3◦C lower than in the surrounding lowlands, whereas winter inversion layers lead to
higher temperatures than in the valleys. The absolute maximum so far was recorded on July
29th in 1947 with 33.8◦C. Figure 7 displays the first (1879-1888) and last decade (1999-2008) of
monthly temperature maxima.
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Figure 7: Two decades of monthly temperature maxima: 1879-1888 and 1999-2008. The red line shows the
estimated seasonality and trend.

It is one of the most demanding problems in environmental statistics to deal with trend
and seasonality in data. When we are interested in the development of extreme events, we
have to specify the event we want to study. In environmental statistics a usual measure of
extremes is the return period as defined in (2.5). We could investigate the return periods of
extremes in each month, January to December. Then we could answer, for instance, whether
extreme temperatures in winter or summer have changed. Alternatively we could investigate
the difference to a long-term mean or some other quantities, which describe extreme events.

In the present paper we will concentrate on a possible long-term trend in high temperatures
at the station Hohenpeißenberg. Consequently, our analysis will be based on yearly maxima,
which we assume to be GEV distributed (in Figure 9 we shall see that this assumption is
justified). Recall, however, that based on the IPCC 2007 report a 130 year temperature time
series cannot be regarded as stationary. Thus, we want to incorporate some time-dependence
into our model, i.e. a linear warming trend, although we know that there was not a uniform
increase in mean temperature, but two periods with particular warming during approximately
1900-1945 and 1975-today.

We will investigate two possibilities to introduce non-stationarity into the model. Recall that
classical time series theory (e.g. Brockwell and Davis [2]) suggests for a time series Y1, Y2, . . .
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Figure 8: Maximum yearly temperature over 130 years of data. The highest temperature has been measured in
1947.

either an arithmetic model of the form Yt = Λt + Xt or a multiplicative model Yt = ΛtXt for
t = 1, 2, . . ., where Λ1,Λ2, . . . models a non-stationary deterministic effect like drift and season-
ality, and X1,X2, . . . is a stationary process. If X1,X2, . . . are identically GEV distributed, then
we see immediately that Λ1,Λ2, . . . affect either the location parameter µ (for the arithmetic
model) or the scaling parameter σ (for the multiplicative model) of the GEV distribution of
Y1, Y2, . . .. But the shape parameter γ remains the same under these deterministic location and
scale changes. For simplicity, we introduce a linear trend into the location and scale parame-
ter of the yearly maximal temperatures; i.e. we assume that the yearly maximal temperature
Y1, . . . , Y130 are an independent sequence with

Yt ∼ Gγ,σ(t),µ(t) for t = 1, . . . , 130,

where µ(t) = µ+ at and σ(t) = σ + bt. Consequently, we will estimate by maximum likelihood
estimation and compare the following models:

(1) Model 1: µ(t) = µ and σ(t) = σ,

(2) Model 2: µ(t) = µ+ at and σ(t) = σ,

(3) Model 3: µ(t) = µ and σ(t) = σ + bt,

(4) Model 4: µ(t) = µ+ at and σ(t) = σ + bt.

Parameters µ a σ b γ − logL

Model 1 27.49671 – 1.84122 – -0.20125 268.9776
(0.17721) (0.12203) (0.05070)

Model 2 26.65174 0.01320 1.76802 – -0.19624 264.3865
(0.32672) (0.00426) (0.11814) (0.05253)

Model 3 27.21659 – 1.70919 0.00199 -0.18065 268.9581
(0.18851) (0.23720) (0.00377) (0.06075)

Model 4 26.65110 0.01321 1.77117 -0.00005 -0.19605 264.3863
(0.32730) (0.00426) (0.22692) (0.00301) (0.05332)

Table 1: Maximum likelihood estimators for µ, a, σ, b, and γ with standard errors in brackets below. The negative
log-likelihood corresponding to the estimated models is given in the right-hand column.
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For a comparison of the four different models, we notice that the negative log-likelihoods
indicate already that Models 2 and 4 are better than Models 1 and 3, respectively. Although
Model 1 is a special case of Model 3, the likelihood of Model 1 is nearly the same as the likelihood
of Model 3. We guess already that the trend in the scale parameter may not be statistically
significant, which is indeed true; the fluctuations do not significantly change over time. We
have applied likelihood ratio tests to all nested pairs of models. Our model pairs are nested,
when some of our parameters (a or b) may be zero or not. For details we refer to Coles [3],
Section 2.6.6.

The tests compare (as we have already done informally) the likelihoods of two models.
Rejection is now determined by asymptotic theory. More precisely, assume two (nested) models,

say (I) and (II), with parameter θ(1) ∈ Rd−k for k < d, in model (I) and θ(2) = (θ
(2)
1 , θ

(2)
2 ) ∈ Rd

(where θ
(2)
1 ∈ Rk, θ

(2)
2 ∈ Rd−k) in model (II) with maximum likelihood estimators θ̂(1) and

θ̂(2). Then, under some regularity conditions for the maximum likelihood functions L1(θ̂
(1))

and L2(θ̂
(2)), it can be shown that the quantity −2(logL1(θ̂

(1))− logL2(θ̂
(2))) is asymptotically

χ2
k-distributed. We present the results of 3 of our tests:

• Model 1 against Model 2: H0 : a = 0 versus H1 : a 6= 0

−2(logL1(µ̂
(1), σ̂(1), γ̂(1))− logL2(µ̂

(2), â(2), σ̂(2), γ̂(2))) = 9.1823 > 3.8415 = χ2
1(0.95),

i.e. we reject H0 (p-value = 0.002444).

• Model 1 against Model 4: H0 : a = b = 0 versus H1 : a 6= 0 or b 6= 0

−2(logL1(µ̂
(1), σ̂(1), γ̂(1))− logL4(µ̂

(4), â(4), σ̂(4), b̂(4), γ̂(4))) = 9.1826 > 5.9915 = χ2
2(0.95),

i.e. we reject H0 (p-value = 0.0104).

• Model 2 against Model 4: H0 : b = 0 versus H1 : b 6= 0

−2(logL2(µ̂
(2), â(2), σ̂(2), γ̂(2))−logL4(µ̂

(4), â(4), σ̂(4), b̂(4), γ̂(4))) = 3·10−4 < 3.8415 = χ2
1(0.95),

i.e. we do not reject H0 (p-value = 0.986983).

The p-value is an indicator of significance: the p-value of 0.002444 as calculated in the first test
ensures that we can reject H0 for all significance levels larger than this value. So the smaller
the p-value, the more justified is a rejection of H0. The comparison shows that a trend in the
location parameter of the GEV model is significant but not the trend in the scale parameter.
Model 4 gives no improvement to Model 2. Hence, again with support by statistical theory we
conclude that the best model is Model 2, and there is no significant difference between Models 2
and 4, justifying the choice for Model 2.

In order to assess the model fit graphically, we will use a Gumbel probability plot (based on
the GEV G0,1,0) (PP -plot) and a Gumbel quantile-quantile plot (QQ-plot) for our transformed
data set. Therefore, we show that any Gγ,σ(t),µ(t) distributed random variable Yt with γ < 0 (the
relevant regime for the temperature example is a Weibull GEV distribution) can be transformed
to a Gumbel random variable as follows. Afterwards we can use standard software for the plots.

We define

Zt =
1

γ
ln

(
1 + γ

(Yt − µ(t))

σ(t)

)
,

and prove below that indeed Zt is standard Gumbel distributed. Note first that the Gumbel
distribution has support on the whole of R, whereas the Weibull distribution Gγ,σ(t),µ(t) has
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Figure 9: The linear location Model 2 transformed to standard Gumbel: PP-plot and QQ-Plot.

support (−∞, µ(t)− σ(t)/γ]; i.e. Gγ,σ(t),µ(t)(x) = 1 for all x > µ(t)− σ(t)/γ. Then 1 + γ(Yt −
µ(t))/σ(t) > 0 and, hence, Zt has full support R. Now we calculate

P(Zt ≤ x) = P

(
1

γ
ln

(
1 + γ

(Yt − µ(t))

σ(t)

)
≤ x

)

= P

(
Yt ≤

σ(t)

γ
(eγx − 1) + µ(t)

)
= e−e−x

for x ∈ R.

This means that, provided Y1, Y2, . . . are independent Weibull distributed random variables, then
Z1, Z2, . . . are independent Gumbel distributed random variables. Consequently, once we have
estimated µ(t), σ(t) and γ, we transform our data Yt to

Ẑt :=
1

γ̂
ln

(
1 + γ̂

(Yt − µ̂(t))

σ̂(t)

)
,

which should be close to a Gumbel distribution, provided the data are indeed Weibull GEV
distributed with the estimated parameters. Figure 9 assesses the distribution fit by a PP -plot
and a QQ-plot for the estimated parameters of Model 2 with linear location parameter. In the
first plot, the PP -plot, the empirical distribution of Ẑ1, . . . , Ẑ130 is plotted against the Gumbel
distribution. In the second plot, the QQ-plot, the quantiles of the Gumbel distribution are
plotted against the empirical quantiles of Ẑ1, . . . , Ẑ130. Both look very convincing, since they
follow a 45◦ line confirming again Model 2.

For Model 2 we estimated the asymptotic 95% confidence interval for γ. Let z1−α/2 be the
1 − α/2-quantile of the normal distribution and ŝγ be the estimated standard deviation of γ̂.
Then by classical likelihood theory (see Smith [10]), at least for γ < 1/2,

(γ̂ − z1−α/2 ŝγ , γ̂ + z1−α/2 ŝγ)

denotes the asymptotic (1 − α) × 100% confidence interval for γ. In Model 2 this results in
the 95% confidence interval (−0.29972,−0.06158) for γ. As mentioned after the Fisher-Tippet
Theorem 3.2 a negative γ indicates a Weibull distribution with finite right endpoint, meaning
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that there should be a limit of extreme maximum temperatures, which is not exceeded. Similarly,
we obtain for a the 95% confidence interval

(â− z1−α/2 ŝa, â+ z1−α/2 ŝa) = (0.0048504, 0.0215496),

which reflects that a is positive; we have a statistically significant increase in the location
parameter and a trend in the extremal temperatures.
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Figure 10: Estimated right endpoint of the GEV distribution of Model 1 (blue line) and the linear trend Model 2
(red line). For Model 1 we estimate the constant right endpoint of 36.645◦C. For Model 2 the right endpoint
starts at 35.674◦C and ends at 37.377◦C.

The right endpoint of the Weibull distribution is given by µ(t) − σ(t)/γ (representing the
maximum yearly temperature), which we can also estimate after having estimated the param-
eters. Figure 10 visualizes the constant endpoints of Model 1, where we have assumed fixed
parameters over the whole time period, and the increase of the endpoint for the linear trend
Model 2 caused by the linearity in the location parameter.
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Figure 11: The red lines show the estimated 100-year return level (which is the 99% quantile), where the straight
line is based on Model 1 and the dashed line on Model 2. Similarly the blue lines show the estimated 50-year
return level based on Model 1 and Model 2, respectively.

From this analysis presented in Figure 11 we see that the return levels of high temperatures
have increased considerably over the last 130 years. This increase is due to an increase of the
location parameter of the extreme temperatures, the levels of the return periods have increased.
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The estimated parameters suggest an increase of at = 0.01320t = 0.01320× 130 = 1.716◦C over
130 years, corresponding to an increase of 1.32◦C over a century. In contrast, simple least square
linear regressions reveal increases in daily mean temperature of 1.472◦C and in daily maximum
temperature of 1.515◦C over 130 years at the climate station Hohenpeißenberg, corresponding
to an increase of of 1.13◦C for the mean and of 1.17◦C for the daily maximum temperature over
a century. Compared to these naive estimators the more realistic assessment by EVT methods
yields a considerably higher prediction for the daily maximum temperatures in the future.

Prediction could now be based on this analysis. If we believe that the linear trend remains
the same over the next 10 years, then we would estimate the value of 37.377+0.132=37.5090
for the maximal yearly temperature in 2018. Note however, that such a fixed number is very
unlikely. A confidence interval would be needed to give some idea about the statistical variability.
By our estimation method we have been able to calculate confidence intervals for every single
parameter estimate. However, for a confidence interval of the prediction we would need the
whole distribution, which involves all three parameters, and their estimates are dependent. So
besides standard errors (based on the estimated variance of the maximum likelihood estimators)
also the asymptotic correlations between parameter estimates enter. Such theory, however, goes
beyond this introductory paper, and gives rather food for thought.

Apart from this statistical discussion, there is also some doubt on the assumption that future
maximum temperatures increase with the same linear drift as the past ones. This also depends
on political measures being taken against the threatening climate change. 2

4.2 The blocks method from scratch

In the previous section we have simply started with maximum yearly temperatures over 130
years, and fitted an extreme value distribution to these data. This model choice was first based
on the Fisher-Tippet Theorem 3.2, and later justified by a PP -plot and a QQ-plot depicted in
Figure 9.

As the name blocks method suggests the idea behind it is to divide the data X1,X2, . . . ,Xnm

into m blocks of roughly the same length n and consider the block maxima, i.e. we define
Mn,j = max(X(j−1)n+1, . . . ,Xjn) for j = 1, . . . ,m. Recall that on the one hand we want to
choose the blocks so small that we get as many block maxima as possible, on the other hand we
have to choose them large enough so that we can assume that block maxima follow an extreme
value distribution and also that they are independent.

Illustration 4.2 (10-year return period for Danish fire data) For the daily losses of the
fire insurance portfolio over m months X1,X2, . . . ,Xnm (i.e., Xk is the loss at the k-th day),
we determine the maximum losses within a month, respectively. These monthly block sizes are
roughly equal, more precisely, n is between 28 and 31 days, and Mn,j is the maximum loss during
the j-th month. As a first ansatz, according to the Fisher-Tippett Theorem 3.2, we exploit the
fact that the distribution of Mn,j can be approximated by a GEV distribution, so that

P(Mn,j ≤ u) ≈ Gγ,θ,ϑ(u),

where γ, θ, ϑ are parameters, which have to be estimated, and the constants an and bn are
integrated in θ and ϑ. We denote by γ̂, θ̂, ϑ̂ the respective estimators. Then we approximate

P(Mn,j ≤ u) ≈ G
γ̂,θ̂,ϑ̂

(u).

The level of the 10-year return period of the largest monthly claim, which happens in mean only
once in 10 years can be estimated by means of (2.5). Since also q = 1/(10 · 12) holds, we obtain

û = x̂1−q = G−1

γ̂,θ̂,ϑ̂
(1− (10 · 12)−1). (4.2)
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For the Danish fire data as depicted in Figure 4 we estimate 195.7 million Danish Krone as level
for extreme monthly claims, which happen in mean every 10 years (see Figure 12).
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Figure 12: The largest claims of a Danish fire insurance per month. The black line is the 10-year return level,
and the dashed red lines indicate the 95%-confidence interval.

4.3 The POT method

It has been argued that applying the blocks method to data has the drawback of disregarding
data, which may contribute information to the statistics of extreme values. Moreover, the blocks
method can easily be applied to yearly, monthly or to other blocks-structured data, but what
to do, if this is not the case. The Peaks-Over-Threshold (POT) method presents a valuable
alternative.

The following section is dedicated to the POT method for a sample X1, . . . ,Xn, where we
assume for the distribution function F that F (x) = P(X ≤ x) < 1 for x > 0. We define further
for a high threshold u

F u(y) := P(X − u > y | X > u) =
F (u+ y)

F (u)
for y ≥ 0 .

Consequently, we obtain

F (u+ y) = F (u)F u(y) for y ≥ 0 . (4.3)

How can we use these identities now to estimate tails and quantiles?

If now Nu denotes the number of all k ∈ {1, . . . , n} satisfying Xk > u given by

Nu = #{k ∈ {1, . . . , n} : Xk > u} ,

then we denote by Y1, . . . , YNu the excesses of X1, . . . ,Xn, i.e. the heights of the exceedances of
u (cf. Figure 6). We obtain an estimator for the tail (for values larger than u) by estimating
both tails on the right hand side of (4.3). We estimate F (u) by the relative frequency

F̂ (u) =
Nu

n
(4.4)
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and approximate F u(y) by the Generalized Pareto Distribution (GPD) of (3.4), where the scale
parameter σ(u) has to be considered. It is integrated as parameter σ(u) into the limit distribution
such that

F u(y) ≈
(
1 + γ

y

σ(u)

)
−1/γ

for y ≥ 0 , (4.5)

where γ and σ(u) have to be estimated by some estimators denoted by γ̂ und σ̂(u). From
(4.3)-(4.5) we obtain a tail estimator of the form

̂F (u+ y) =
Nu

n

(
1 + γ̂

y

σ̂(u)

)
−1/γ̂

for y ≥ 0 . (4.6)

Then for given p ∈ (0, 1) we obtain an estimator x̂p for the p-quantile xp taken from (2.1)
by solving the equation

1− p =
Nu

n

(
1 + γ̂

x̂p − u

σ̂(u)

)
−1/γ̂

.

This gives

x̂p = u+
σ̂(u)

γ̂

((
n

Nu
(1− p)

)
−γ̂

− 1

)
. (4.7)

Illustration 4.3 (Tail and quantile estimation) We apply the POT method to the S&P500
loss data using the tail estimate from (4.6) and, for comparison, we also fitted a normal dis-
tribution to the data by estimating mean and variance by their empirical versions. Figure 13
depicts both tail estimates in logarithmic scale for a threshold u = 0.0212 and y > 1. Moreover,
VaRPOT

0.99 was estimated for the daily losses using the POT estimator (4.7) as well as the normal
estimator VaRnorm

0.99 = µ̂ + σ̂z0.99, where z0.99 is the 0.99-quantile of the normal distribution.
Plotted are again the logarithmic quantities; i.e. log VaRPOT

0.99 = 0.028 and log VaRnorm
0.99 = 0.024,

which correspond to VaRPOT
0.99 = 2.795 and VaRnorm

0.99 = 2.784; the difference of 0.011 does not look
too substantial, but recall that our data are relative losses (i.e. percentage points). Moreover,
the standardized S&P500 portfolio value compares only to a standardized bank portfolio, so has
to be multiplied by millions to obtain a realistic value.
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Figure 13: Estimated tail of the daily losses of the S&P500. The black curve shows the tail estimated by the
POT method with threshold u = 0.0212, γ̂ = 0.193, σ̂ = 0.00575 and the red line shows the distribution tail
estimated under the assumption of a normal distribution for the daily losses. The vertical black line indicates
the logarithmic VaRPOT

0.99 = 0.028 estimated by the POT method and the vertical red line shows the logarithmic
VaRnorm

0.99 = 0.024 estimated from a normal distribution.
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We clearly see that the normal distribution tail is completely inadequate to estimate the tail
of the daily losses of the S&P500. The data are far above its normal tail estimate. Usage of
the normal distribution underestimates the risk considerably and yields a completely inadequate
risk capital. 2

In Illustration 4.3 we have estimated the tail and the VaR0.99 for the S&P500 losses and
depicted in Figure 13. The estimation was based on the assumption that the losses (or at
least the excesses) are i.i.d. However, modelling of financial data goes far beyond marginal
distributions. It has been a relevant research area for decades, and we conclude with some facts
and references.

Remark 4.4 (i) Dependence between portfolio components are in the normal model given by
correlations, which only model linear dependence. Market risk portfolios, however, consist of
such different assets as shares, options, and more complex derivatives, which are known to be
non-linearly dependent. It is of high importance to have a comprehensive understanding of the
influence of the portfolio components to the portfolio loss. Dependence modeling and different
dependence measures are discussed in the chapter Klüppelberg and Stelzer [35].

(ii) Already from the daily losses depicted in the right plot of Figure 2 it is clear that the data
vary considerably in their structure. We see immediately that a period of low volatility is followed
by a period of high volatility (the standard deviation is called volatility in banking jargon). It is
certainly not obvious that all observations can be modelled with the same distribution. Recall
that (2.3) requires daily estimates based on past year’s observations. Figure 14 shows the running
empirical estimates of the volatility σ of the daily losses of the S&P500 based on observations
of the past one year, respectively. This simple window estimate shows clearly the time-varying
volatility, which is typical for most financial time series.
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Figure 14: The empirical standard deviations of the daily losses of the S&P500 during 1991-2004 with estimators
based on the previous 250 days, respectively.
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Figure 15: Sample autocorrelation function of the daily losses (left) and the squared daily losses (right) of the
S&P500.

(iii) Until now we have not touched the important questions of time dependence within the
time series of daily returns. Financial data show an interesting dependence structure; although
most daily returns are uncorrelated, the data do not originate from independent observations. As
seen in Figure 15 the sample autocorrelation function of the daily losses of the S&P500 is almost
0 for all lags, whereas the sample autocorrelation function of the squared returns is substantial,
contradicting the independence assumption. The most prominent financial time series model is
the GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model. Volatility is
modelled as a stochastic process and can capture a dependence structure as seen in Figure 15.
An excellent overview on discrete-time and continuous-time stochastic volatility models in one
and multivariate dimensions is the book edited by Andersen, Davis, Kreiss, and Mikosch [12].

5 Food for thought

Extreme value theory has gone a long way since its beginnings with Fisher and Tippett in 1928.
New applications, unheard-of in the 1920ies have emerged. Climate change, large insurance
claims and extreme financial risk are just three of them. Extreme value theory has found its way
also into the areas of technical safety and reliability theory, as well as the statistical assessment
of environmental quantities like temperatures, floods, droughts, earthquakes and storms.

Concerning the statistical methods we have presented, we want to emphasize the following.
In our statistical analyses we have assumed that data are independent and have the same distri-
bution (perhaps enriched by a linear trend, which can easily be implemented). This assumption
is often unrealistic. As reported in Remark 4.4 financial time series exhibit in general a very
complex dependence structure; for the S&P500 see Figures 14 and 15. Many data, also insur-
ance claims, are affected by seasonal effects or exhibit some clusters of claim events. Such effects
can influence estimation and prediction procedures considerably. Moreover, the one-dimensional
case treated above is rather unrealistic. Portfolios of market risks are composed of many com-
ponents (often several hundreds), and it may be interesting to understand the dependence in
the combination of extreme risks. Moreover, risks are often influenced by some latent variables,
whose influence would have to be assessed as well. Such problems are hot research topics at the
moment and require still a considerable amount of theoretical and practical work.

Extreme value theory has been extended to multivariate data, which is rather demanding,
since there exists no finite parameterizations as in the one-dimensional case as seen in the Fisher-
Tippett Theorem 3.2. The dependence between different components of a vector is modeled by
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an integral with respect to some measure and Poisson random measures provide a very powerful
tool to deal with such problems; cf. Resnick [39].

Moreover, extreme value theory for time series with marginals ranging from Gaussian to
heavy-tailed ones is still a lively research area. The usual picture is that for light-tailed time
series models one can more or less ignore the dependence structure, whereas for heavy-tailed
models the dependence creeps into the extreme tails (events) by leading to clusters of extremes;
cf. Fasen [26], Fasen, Klüppelberg, and Schlather [28].

More recently, also spatial and space-time extreme value models have come into focus in par-
ticular for environmental data like heavy rainfall or storms requiring special statistical methods;
cf. Steinkohl, Davis, and Klüppelberg [41, 42] for details and further references.

For those interested in the state of the art of extreme value theory research, we recommend
to consider the journal “Extremes” (http://www.springer.com/statistics/journal/10687),
which is solely devoted to theory and applications of extreme values.

6 Summary

We hope that we have convinced our readers that extreme value theory and extreme value
statistics offer an important theory and statistical estimation procedures to assess extreme risks
in different applications areas.

We have presented the basic theory and also three estimation procedures to find the distribu-
tion and other quantities describing extreme events. The first one was to fit a GEV to extreme
data, where we also took care of non-stationarity of the data either in the location parameter
(linear trend) or in the scaling parameter (higher fluctuations). The second one was to use the
block-maxima method for a sample where only the blocks maxima were distributed according to
a GEV distribution. And finally, we introduced the POT method, which models high threshold
exceedances.

As a result we obtained for our three examples:

• The climate change data exhibit a higher trend in the yearly maxima over the last cen-
tury than the mean trend at the corresponding station. The Weibull distribution is the
appropriate extreme value distribution, which shows that high temperature is bounded,
although the maxima increase.

• Danish insurance claims, which are from a fire insurance portfolio, are very heavy-tailed
data, and the model suggests that with a (non-negligible) positive probability the insurance
company may experience a claim, which is easily twice as high as they have ever seen before.

• The daily losses of the S&P500 have a 99% Value-at-Risk of 0.028% when estimated by
the POT method, while based on the normal distribution, it is only 0.024%. While these
numbers look small, in banking business one has to multiply them by millions of Euros, so
that the difference becomes substantial. Since capital reserves have to be calculated built
on such numbers, the banks are much happier about the smaller numbers coming from the
Gaussian distribution.
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sures. In C. Klüppelberg, D. Straub, and I. Welpe, editors, Risk - An Interdisciplinary
Introduction, 2013. To appear.
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