
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Bildverarbeitung und Mustererkennung

Efficiency by Sparsity:
Depth-Adaptive Superpixels

and Event-based SLAM

David Weikersdorfer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Darius Burschka

Prüfer der Dissertation: 1. Univ.-Prof. Dr. rer. nat. Daniel Cremers

2. Univ.-Prof. Dr. sc. nat. Jörg Conradt

Die Dissertation wurde am 23. September 2013 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 30. Mai 2014
angenommen.

Abstract

While the automation of many industries is already a reality, most te-
dious tasks in every-day life take place in complex and uncontrollable
environments which require sophisticated models and intelligent rea-
soning. Typical hard problems are the detection of objects or the
navigation in an unknown environment. In this thesis sparse mod-
els are used to develop efficient solutions to both of these problems.
Depth-Adaptive Superpixels are a novel image segmentation tech-
nique for combined colour and depth sensors which creates excellent
oversegmentations and full segmentations for static images or video
streams. Event-based SLAM is a novel event-based simultaneous lo-
calization and mapping algorithm which uses a biologically inspired
dynamic vision sensor to dramatically decrease the computational
complexity and thus enabling applications in small robotic systems.
Both methods do not only have a very high quality but can also be
executed with much less computation power than conventional algo-
rithms.

Zusammenfassung

Während die industrielle Automatisierung bereits weit fortgeschritten
ist entziehen sich viele müselige Aufgaben im täglichen Leben noch
der Automatisierung, da sie in komplexen und unkontrollierbaren
Umgebungen statt finden und so raffinierte Modelle und intelligente
Algorithmen erfordern. Typische Beispiele sind die Erkennung von
Objekten oder die Navigation in einer unbekannten Umgebung. In
dieser Doktorarbeit werden sparse Modelle verwendet um effiziente
Lösungen zu beiden Problemen zu entwicklen. Tiefenadaptive Su-
perpixel sind eine neuartige Methode für die Segmentierung von
kombinierten Farb- und Tiefenbildern, die exzellente Übersegmen-
tierungen und Objektsegmentierungen von statischen Bildern und
Bildsequenzen berechnen. Ereignisbasierter SLAM ist eine neuar-
tige Methode für simultane Lokalisierung und Kartenerstellung die
einen biologisch inspirierten Bildsensor verwendet um die Berech-
nungskomplexität dramatisch zu reduzieren und so eine Anwendung
in kleinen robotischen Systemen ermöglicht. Beide Methoden erzeu-
gen nicht nur qualitativ hochwertige Ergebnisse sondern kommen
gleichzeitig auch mit deutlich weniger Rechenkraft als konventionelle
Algorithmen aus.

CONTENTS

1 Introduction 7
1.1 Depth-Adaptive Superpixels . 8
1.2 Event-Based SLAM . 9
1.3 Publications . 11
1.4 Outline and Contributions . 11

I Depth-Adaptive Superpixels 15

2 Adaptive Superpixels 17
2.1 Superpixels . 18
2.2 Adaptive Superpixels . 24
2.3 Poisson disc sampling . 26
2.4 Density-Adaptive Local Iterative Clustering 34
2.5 Evaluation and examples . 38

3 Depth-Adaptive Superpixels 47
3.1 Computer vision with RGB-D sensors 48
3.2 Depth-Adaptive Superpixels . 54
3.3 Evaluation . 63

4 S-DASP Image Segmentation 67
4.1 Introduction to s-DASP . 68
4.2 Spectral graph theory . 69
4.3 Depth-Adaptive Superpixel Segmentation 74
4.4 Evaluation . 80

5 T-DASP Video Segmentation 85
5.1 Video segmentation . 86
5.2 Temporal-Stable Adaptive Superpixels 89
5.3 Tempo-spatial strands and strand graph 94
5.4 Streaming graph segmentation . 99
5.5 Evaluation . 105

6 Contents

II Event-Based SLAM 109

6 Event-based vision 111
6.1 Event-based vision sensors . 112
6.2 Characteristics of event-based vision 116
6.3 Information integration . 118
6.4 Event-based particle filtering . 123
6.5 Application: Robot self localization (2D) 129

7 Event-based SLAM 135
7.1 Simultaneous Localization and Mapping 136
7.2 Event-based SLAM . 137
7.3 EB-SLAM in 2D . 144
7.4 Autonomous exploration with EB-SLAM 147

8 Event-based 3D SLAM 153
8.1 Introduction . 154
8.2 The D-eDVS sensor . 155
8.3 The Event-based 3D SLAM algorithm 159
8.4 Evaluation . 166

III Conclusion and Appendix 171

9 Conclusions 173

A Partition quality metrics 175
A.1 Quality metrics for superpixels . 175
A.2 Quality metrics for superpoints . 179

B Supplementary Results 181
B.1 Depth-Adaptive Superpixels . 181
B.2 Event-based Particle Filter . 189
B.3 Event-Based SLAM . 192
B.4 Event-Based 3D SLAM . 196

Acknowledgements 201

Bibliography 202

List of Figures 211

List of Tables 214

List of Notations and Abbreviations 217

1 INTRODUCTION

Automation plays a crucial role in current research and development projects:
humanoids shall aid in the care for elderly people, autonomous robots are devel-
oped to scout disaster areas and autonomously driving cars have the potential to
increase safety and make driving more enjoyable. For all these tasks the ability to
analyse the operation environment for people, obstacles, or objects and places of
interest is a fundamental requirement. Additionally autonomous machines must
be able to navigate towards theses points of interest without getting stuck or lost,
and without hurting humans or hitting obstacles. This very basic set of skills has
been mastered by humans and even the smallest animals, but still poses a lot of
questions and open problems for machines.

The scientific field of computer vision tackles theses problems and has made
substantial progress towards solutions in the last decades. Image segmentation
has been an active field of study with extraordinary results and many approaches
have been developed to detect objects in images taken by colour cameras. While
these methods often give very good results, studying pure colour images alone is
limiting, as it is often difficult to extract geometric information from projections of
3D objects. The introduction of combined colour and depth (RGB-D) sensors has
been a major step towards the analysis of complex three dimensional scenarios.

Towards autonomous navigation and exploration, numerous methods have
been proposed for simultaneous localization and mapping (SLAM) or for analysing
and understanding complex three-dimensional environments. While it is a dif-
ficult computational problem to navigate in 3D without any depth information,
the problem can be simplified by using a distance sensors like a laser range finder.
Robust mathematical models have been developed to fuse information into an
environment map and to allow localization within the created map.

In practical applications not only the potential performance of a method in
solving the task at hand is relevant, but also its resource efficiency. Autonomous
robots are limited with respect to size, weight and electrical power consumption
and thus computational resources, like CPU and RAM, have to be used efficiently.
This problems becomes increasingly important for flying exploration vehicles or
embedded applications.

An approach which has the potential to provide not only functional but also
efficient solutions are sparse data models. Sparse models have been used to great
success for example in machine learning [61, 90, 14] or for dimensionality reduc-

8 Chapter 1. Introduction

tion in general [92, 49]. In contrast to dense models which use and represent all
available information, sparse models focus on the salient or relevant information.
This principle allows to concentrate attention to important aspects instead of
trying to understand every piece of information. Sometimes a sparse approach
can also yield additional insight by identifying and extracting hidden patterns in
complex data.

The leading principle of this thesis is ”Efficiency through sparsity”. Efficiency
can be viewed from two sides: an algorithm gets more efficient if it runs faster
while giving the same quality of results, or if it gives better results within the same
runtime. ”Sparsity” can be realized in very different forms and here it will be
mainly used to reduce the dimensionality of the visual sensor input with only
minimal loss of information. This work demonstrates that the intelligent choice
of sparse models actually results in algorithms which are both faster, and at the
same time give a higher quality.

Efficiency through sparsity will be demonstrated within two main topics: su-
perpixels and event-based vision. The first part concentrates on the segmentation
of RGB-D images and video streams by using a sparse image representation called
superpixels. Here similar pixels are grouped into small segments, called ”su-
perpixel”, which results in a much more compact image representation which
can greatly simplify the analysis of images and video streams with subsequent
high-level algorithms. In the second part a different approach to sparse models is
chosen by using an event-based dynamic vision sensor which provides a sparse
representation directly in hardware. Such sensors do not provide a series of dense
images, but a continuous stream of only pixel locations, where pixels are only
reported when a change in illumination in this particular pixel has been regis-
tered. Novel computer vision algorithms have to be developed for this kind of
sensor which work directly on this sparse data stream and benefit from the sparse
representation of dynamic changes.

1.1 Depth-Adaptive Superpixels

Classically an image is represented by a rectangular array where each entry, called
”pixel”, represents one measurement point. Images are captures by CMOS chips
which measure the intensity of red, blue and green light for each pixel and periodi-
cally map a complete measurement of all pixels into computer memory for further
processing. Today the trend goes towards increasingly bigger image resolutions
with high-definition resolutions of 1080 × 1920 pixels being already at the lower
end of the resolution spectrum.

But often a higher image resolution is not required for successfully under-
standing the contents displayed in the image. On the contrary, a high number
of pixels overloads many sophisticated methods which, as a result, often use
down-sampled images with a very low resolution of e.g. only 120 to 160 pixels.
But the blind down-sampling of an image is often not a good choice as important

1.2. Event-Based SLAM 9

Figure 1.1: From left to right: Dense pixel grid, oversegmentation (using false
colours) and boundary-preserving superpixels symbolized with circles at segment
barycentre with segment mean colour.

information like rugged segment edges may be lost, while other redundant regions
of an image are not compressed enough. A very successful method to intelligently
compress the information of an image are image oversegmentation techniques
[5, 48, 63, 64, 68, 72, 81, 88] which have entered the focus of study in the recent
years.

An image oversegmentation clusters pixels into segments, so called ”super-
pixel”, where each superpixel is a good representation of all the pixels it contains
(see fig. 1.1). Oversegmentations do not try to immediatelly fully understand an
image, instead they form a sparse, intermediate layer of information. This sparse
representation preserves segment boundaries and most of the relevant image in-
formation, and can be used by high-level algorithms for example to complete the
image segmentation process or for various other applications like object tracking
or saliency detection.

In the recent years combined colour and depth sensors have been a great suc-
cess as they simplify many applications in computer vision. However up to now
oversegmentation algorithms have focused on pure colour images. In this work
a novel oversegmentation technique, Depth-Adaptive Superpixels, is presented
which extends the principle of superpixels to combined color and depth images.
The method forms the basis of two high-level algorithms, Depth-Adaptive Super-
pixel Segmentation and Temporal Depth-Adaptive Superpixels, which compute
full RGB-D image and RGB-D video segmentations.

1.2 Event-Based SLAM

Many results in computer vision focus on frame-based video cameras which are
essentially just very fast photo cameras producing still images every few millisec-
onds. Typical framerates for normal consumer products are 24 to 60 frames per
seconds at high-definition resolutions. However many motions in every day like a
car moving on the road, a waving hand or a falling object require higher framerates
for reliable object tracking. While professional high speed cameras can provide

10 Chapter 1. Introduction

Events at edges

eDVS sensor

Tracked path

Ceiling

Floor

Events at edges

eDVS sensor

Tracked path

Ceiling

Floor

Planned path

ObstacleBump detection

Figure 1.2: Left: Event-based Simultaneous Localization and Mapping; Middle:
Autonomous Exploration with event-based SLAM; Right: Event-based 3D SLAM.

several thousand frames per seconds, high frame rates imply expensive hardware,
low resolution and an increased noise level. Additionally, all frames need to be
processed by the computer – for example the PrimeSense device has a bandwidth
of 26 MB/s for the colour image alone (see table 6.1 for details). A high bandwidth
requires high computation power, high electrical power and is infeasible for many
embedded realtime applications.

Dynamic vision sensors chose a different approach to encode the dynamic
changes in a scene and only reports data for pixels which actually change their
brightness values. Such an approach provides a completely new view on tracking
and self-localization. Instead of working with full dense images, only a sparse
stream of pixel locations with changed data needs to be processed. However
this new field of event-based computer vision requires a revisiting of established
principles and the development of new ideas to adapt to the nature of dynamic
vision sensors. Dynamic vision sensors have already been used successfully in
several applications and are actively investigated in current research.

Of particular interest in many computer vision applications are object tracking,
self-localization and mapping, but up to know no general tracking or mapping
algorithm for dynamic vision sensor has been proposed. In this work a novel parti-
cle filter algorithm, Event-based Particle Filter, is presented which the framework
of Condensation to dynamic vision sensors. The algorithm is highly efficient and
thus suitable for realtime applications and embedded applications. Event-based
Particle Filter is extended to a simultaneous localization and mapping algorithm –
the Event-Based SLAM algorithm – by using a novel approach to generate environ-
ment maps. Both algorithms demonstrate how the efficient usage of a sparse rep-
resentation of dynamic changes can result in highly efficient tracking algorithms,
compared to state-of-the-art which already often requires GPGPU hardware to
barely run in realtime.

1.3. Publications 11

1.3 Publications

Parts of the material discussed in this thesis was published and presented at
peer-reviewed computer vision and robotics conferences:

• David Weikersdorfer, David Gossow and Michael Beetz: Depth-Adaptive
Superpixels. Proceedings of the International Conference on Pattern Recog-
nition (ICPR), Tokyo, Japan, 2012

• David Weikersdorfer and Jörg Conradt: Event-Based Particle Filtering for
Robot Self-Localization. Proceedings of the International Conference on
Robotics and Biomimetics (ROBIO), Guangzhou, China, 2012

• David Weikersdorfer, Alexander Schick and Daniel Cremers: Depth-Adaptive
Supervoxel for Efficient RGB-D Video Analysis. Proceedings of the Interna-
tional Conference on Image Processing (ICIP), Melbourne, Australia, 2013

• David Weikersdorfer, Raoul Hoffmann and Jörg Conradt: Simultaneous
Localization and Mapping for event-based Vision Systems. Proceedings
of the International Conference on Computer Vision Systems (ICVS), St.
Petersburg, Russia, 2013

• Raoul Hoffmann, David Weikersdorfer and Jörg Conradt: Autonomous In-
door Exploration with an Event-Based Visual SLAM System. Proceedings of
the European Conference on Mobile Robots (ECMR), Barcelona, Spain, 2013

• David Weikersdorfer, David Adrian, Daniel Cremers and Jörg Conradt: Event-
based 3D SLAM with a depth-augmented dynamic vision sensor. SUBMIT-
TED at International Conference on Robotics and Automation (ICRA), Hong
Kong, 2014

1.4 Outline and Contributions

This thesis is structured as follows (see fig. 1.3): This introduction, Depth-Adaptive
Superpixels (part I), Event-based SLAM (part II), and Conclusions and appendix.
Part I and II are self-contained and can be studied in isoloation.

At the beginning of the first part in §2 the Adaptive Superpixels (ASP) overseg-
mentation algorithm is introduced which extends the state-of-the-art algorithm
SLIC to non-constant density functions. In order to run in realtime a fast Poisson
disc sampling algorithm is developed (§2.3) and a density-dependent compact-
ness term is introduced for a local iterative cluster algorithm (§2.4). ASP forms the
basis of the Depth-Adaptive Superpixels (DASP) oversegmentation algorithm for
RGB-D images (§3). DASP transports the concept of uniform and compact super-
pixels from 2D to 3D and can also be viewed as an oversegmentation algorithm

12 Chapter 1. Introduction

for single-view point clouds. For the full segmentation of RGB-D images a new
graph based method is developed which results in the Depth-Adaptive Superpixel
Segmentation (s-DASP) algorithm (§4). It is demonstrated how a local similarity
measure on a graph of superpixels can be globalized with the help of spectral
graph theory to yield good image segments. DASP is additionally extended to the
RGB-D video stream segmentation method Temporal Depth-Adaptive Superpixels
(t-DASP) which uses strands of superpixels and a graph structure on theses strands
to provide very good results for RGB-D video stream analysis (§5).

In the second part, the Event-based Particle Filter (EB-PF) algorithm for dy-
namic vision sensors is introduced (§6). This algorithm is a novel approach to
object tracking and self-localization using only a sparse stream of pixel events.
EB-PF is extended to a novel simultaneous localization and mapping algorithm
– the Event-Based SLAM (EB-SLAM) algorithm – by using an intelligent and sur-
prisingly simple method to represent and generate environment maps (§7). The
algorithm is applied in an autonomous exploration scenario where a small robot in
the style of a vacuum cleaner creates a map of an unknown environment (§7.4). In
§8 the EB-SLAM algorithm is adapted and reformulated for the three-dimensional
case leading to an highly efficient 3D SLAM algorithm (EB-SLAM-3D).

All proposed methods are further introduced and motivated in their respective
chapters. At the end of each chapter a thorough evaluation of the proposed
methods is presented. All evaluations include a comparison to ground truth data
and if applicable a comparision to comparable state-of-the-art methods.

The thesis is concluded in §9 with a revision of the presented methods and
remarks on possible future work. In the appendix a listing of quality metrics for
superpixels (§A) and supplementary evaluation results (§B) can be found.

1.4. Outline and Contributions 13

Figure 1.3: Outline of this thesis

Part I

Depth-Adaptive Superpixels

2 ADAPTIVE SUPERPIXELS

Adaptive Superpixels is an oversegmentation technique which distributes super-
pixels according to an arbitrary, user defined density function. This method forms
the theoretical basis of Depth-Adaptive Superpixels.

Figure 2.1: Top: Input colour image and user density function. Bottom left:
Adaptive Superpixels and superpixel centres. Bottom right: Density actually
realized by superpixels.

18 Chapter 2. Adaptive Superpixels

2.1 Superpixels

2.1.1 Image segmentation

Detecting objects in a camera image or video stream is one of the most important
requirements for many practical applications of computer vision. The problem is
mostly formulated as a labelling task where each pixel in the image is assigned
label indicating that it belongs to a certain semantic group like tree, sky, house,
cow, The semantic is highly dependent on the context, scope and application
and in many scenarios a vast amount of implicit and explicit knowledge is required
to define it sufficiently well to be practical. Example applications are identification
of tumours in medical images, detecting humans on the street or differentiating
objects on a supermarket shelf.

The goal of image segmentation is the division of an image into a set of
non-overlapping segments with certain properties. Following [64] segments shall
fulfil two criteria: intra-segment similarity and inter-segment dissimilarity (see
fig. 2.2).. Intra-segment similarity describes the property that all pixels from one
segment belong to the same semantic group, while inter-segment dissimilarity
indicates that pixels from any two segments belong to different semantic groups

Mathematically, an image segmentation is a partition which is defined as
follows:

Definition 1. LetΩ be a set and P= {S1, . . . ,Sn |Si ⊂Ω} a set of subsets ofΩ.
P is called a partition ofΩ iff.

(i) S1 ∪·· ·∪Sn =Ω – subsets cover the whole set, and
(ii) ∀ i 6= j : Si ∩S j =; – subsets are pair-wise disjunct.

Elements S ∈P are called segments.

Due to the variability of visual appearances, the high ambiguity of colour
information and the complexity of natural occurring scenes, inter-segment dis-
similarity is often an ill-formed problem when no additional models or other
form of prior knowledge is available. On the opposite, intra-region similarity is

Figure 2.2: Left: A partition without special properties. Middle: A partition which
satisfies intra-segment similarity but not inter-segment dissimilarity. Right: A
partition which satisfies both intra-segment similarity and inter-segment dissimi-
larity.

2.1. Superpixels 19

often much easier to establish when no additional information is available. This is
partly due to the fact, that intra-region similarity is a non-exclusive, local property
which can be established by only considering local neighbourhoods of pixels. The
allocation of specific pixels to a segment does influence allocation choices which
happen in another far away region of the image. Inter-region dissimilarity, on the
other hand, is an exclusive, global property which compares every segment to
every other segment to assure that no two segments belong to the same semantic
group.

Intra-region similarity is much easier to achieve and a special kind of image
segmentation which only satisfies intra-region similarity is called oversegmenta-
tion. Oversegmentations are an elegant sparse image representation which can be
used to formulate more efficient computer vision algorithms. In this chapter a new
oversegmentation called Adaptive Superpixels is presented – it will be introduced
in §2.2 after a discussions of benefits and applications of oversegmentations and
the presentation of state-of-the art oversegmentation methods in the rest of this
section. The chapter will then continue with the methodology of ASP in §2.3 and
§2.4. It is concluded with a short evaluation and the presentation of examples
applications in §2.5.

2.1.2 Image Oversegmentation

A segmentation of an image which satisfies intra-region similarity but not neces-
sarily inter-region similarity is called an oversegmentation. The word is chosen
due to the fact that more segments than semantic groups are used to segment the
image and the segmentation job was ”overdone”. Segments of an oversegmenta-
tion are commonly called superpixels.

The central idea of an oversegmentation is the simplification of image seg-
mentation by using less primitives to represent an image. Instead of considering
all pixels of the dense image grid similar pixels are grouped together into su-
perpixels depending on their colour values. Pixels are then represented by the
superpixel and the mean colour over all pixels in the superpixel (see fig. 2.3). Good
superpixels have a low variance in appearance such that the mean colour is a
good representation of individual pixels. This guarantees that only very little
information is lost and that superpixels can be used to represent the full image.

Superpixels can also be viewed as an intelligent downsampling of an image
in the sense that the downsampling is not done over rectangular regions like for
mip maps, but on arbitrarily shaped regions which are chosen depending on
the actual content of the image. This especially abets superpixel which respect
object edges and do not introduce a smoothing effect typical to downsamplings.
Fig. 2.3 compares a possible segmentation from a superpixel algorithm like SLIC
[5] to a naive downsampling of the image. Though the naive downsampling uses
more than double the number of superpixels, it does not represent the image
contents as well as intelligent superpixels. Important borders are not captured

20 Chapter 2. Adaptive Superpixels

Figure 2.3: Top: An intelligent oversegmentation respect edges. Bottom: Classical
down-sampling yields poor oversegmentations.

and colours are smeared out when building the mean over pixels with strongly
different appearance.

When each superpixel remembers the set of pixel locations it is represent-
ing, the underlying image can be reconstructed with very high quality. Fig. 2.4
demonstrates the power of superpixels when representing an image by comparing
superpixel segementations with different number of pixels. In this example the
original image consists of 590000 pixels and is captured well by an oversegmenta-
tion with only 8000 superpixels – this is two magnitudes less. More examples of
superpixel segmentations for different scenarios are shown in fig. 2.5.

The central advantage of superpixels is their ability to reduce the number of
primitives from a high number of pixels to a much lower number of superpixels.
This enables complex algorithms which have high runtime requirements and thus
superpixels have been used with great success in many applications in computer
vision in the recent years: Wang et al. [78] uses a local segmentation into super-
pixels to train an object appearance model and to track the moving object over
time. Cheng et al. [16] uses a superpixel segmentation to compute image saliency
with a global method which would be infeasible when applied directly to the full
pixel grid. Arabelaez et al. [7] use an image oversegmentation to improve the
quality of a local image boundary detector by suppressing noise and by providing
an ultrametric contour map which can be used to smoothly vary the resolution of
an image segmentation. As presented later in §3, superpixels can be extended to
the three-dimensional space to simplify the segmentation of 2.5D point clouds
[81].

2.1. Superpixels 21

Figure 2.4: Top row: Original image and SLIC superpixels [5] with 8000 superpixels.
Bottom row: Close up with 2000, 8000 and 32000 superpixels.

For many applications several properties of superpixels are advantageous:

Compression Pixels have to be represented well by superpixels, thus the variance
in appearance of pixels gathered in one superpixel should be low.

Locality Pixels of one superpixel should not be distributed over the whole image
but concentrate on a small local region.

Conservation of edges Following the principle of inter-region similarity super-
pixels should respect strong edges in the image to increase the probability
that the boundaries between semantic groups are preserved.

Connected Often it is not desired that superpixels are not connected in a graph-theoretical
sense and have small enclaves completely surrounded by pixels from other
superpixels.

Uniform size and coverage This is a stronger property that aims to distribute
superpixels of equal size uniformly over the image.

Compactness An even stronger property that additional requires superpixel to
have spherical shape and retain the minimum possible isoperimetric quo-
tient.

Runtime As superpixels are in most cases only an intermediate step their com-
putation should not be time consuming.

22 Chapter 2. Adaptive Superpixels

Figure 2.5: Several example images and corresponding superpixels computed
with the SLIC algorithm (§2.1.3. The number of superpixels is 2000 for all three
examples.

2.1. Superpixels 23

These properties are often conflictive and can not be satisfied all at once. In
§2.1.3 several state-of-the-art superpixel methods are presented and their goals
with respect to superpixel properties are discussed.

When measuring the quality of superpixels with respect to the presented
qualities one has to carefully consider the implications of a specific metric. For
example, when trying to only minimize the variance in pixel feature values (i.e.
pixel colour), superpixel tend to be extremely distributed over the whole image
without guaranteeing local spatial coherence. On the other side, the quality of an
intra-segment similarity segmentation can be increased by reducing the size of
segments. The smaller segments are the less pixels a segment has to represent, and
thus the smaller the variance of pixel information and the higher the probability
that they belong to the same semantic group. Indeed, the segmentation where
each pixel is a segment on its own is already a segmentation which perfectly
satisfies intra-segment similarity. Common metrics to measure the quality of
segmentations are collected in §A.1.

2.1.3 State-of-the-art superpixel methods

In the recent years many different superpixel algorithms have been proposed [77,
72, 18, 64, 87, 26, 76, 48, 5, 63, 88, 68] which use different mathematical models and
focus on different desirable properties. Here three recent methods are presented
in more details:

TurboPixels

TurboPixels [48] is a superpixel method using geometric flows to compute an
image oversegmentation. The method is designed to provide compact and con-
nected superpixels which are distributed uniformly over the image. Superpixels
are incrementally grown from seed points and boundary growth is slowed down
in the vicinity of edges. The geometric flow is formulated such that it is attracted
to image edges while still producing smooth superpixel boundaries. The number
of superpixels can be controlled explicitly. One of the major disadvantages of
TurboPixels is the high computational costs of the algorithm. Reasonably sized im-
ages required a runtime of several minutes which makes the algorithm unsuitable
for realtime applications.

Homogenous Superpixels from Random Walks

Homogeneous superpixels from random walks [63] uses Markov Clustering (MCL)
to compute compact and connected superpixels. Markov Clustering is a generic
graph clustering method based on stochastic flow circulation. Originally the
method is infeasible for huge graphs like the pixel lattice graph, as it requires
the iterative multiplication of the adjacency matrix. Due to this fact the authors
present an intelligent pruning method which makes the algorithm more efficient

24 Chapter 2. Adaptive Superpixels

while also adding a compactness constraint. However, the algorithm still requires
a runtime of several seconds for small images. Additionally the number of super-
pixels can not be controlled explicitly, only the size can be controlled indirectly be
adapting the pruning method.

Simple Linear Iterative Clustering (SLIC)

SLIC superpixels [5] is a method which produces uniformly distributed and uni-
formly sized superpixels. The method does not enforce compactness and connec-
tivity rigorously. The algorithm is essentially a k-mean algorithms which uses the
spatial distance of pixels as a regularization term to promote compactness. This
compactness term establishes a certain degree of compactness and connectivity
but does not enforce it. The compactness of superpixels can be controlled by the
user with a single parameter. The algorithm can be implemented very efficiently –
the typical runtime is in the order of 100 milliseconds. Like with TurboPixels, the
number of superpixels can be controlled explicitly.

2.2 Adaptive Superpixels

While there are already many superpixel algorithms, none of them allows an
explicit control over the global distribution of superpixels. With some it is possible
to specify the total number of superpixels, but it is not possible to specify regions of
interest which should have a higher density of superpixels and other less important
regions with a lower density. Thus a novel oversegmentation method, Adaptive
Superpixels (ASP), is introduced which generalizes the idea of the SLIC superpixel
algorithm by allowing control not only over the number of superpixels, but also
the global distribution of superpixels. In Adaptive Superpixels the distribution of
superpixels is governed by an user defined density function which indicates the
probability that a superpixel shall be placed at a certain pixel. The SLIC algorithm
corresponds to the case of a constant superpixel density.

The density function can serve many purposes of which some are investigated
in §2.5.2 The important application of Adaptive Superpixels in this context is
the extension to Depth-Adaptive Superpixels in §3, a superpixel algorithm for
RGB-D images which combine colour and depth information. There, the density
function will be used to distribute superpixels uniformly over the 3D surface thus
guaranteeing several desirable properties in 3D. Fig. 2.6 shows two examples
of density functions and corresponding results from the Adaptive Superpixels
algorithm. For now it is assumed that the superpixel density is arbitrary and given
by the user.

The two steps of the Adaptive Superpixels algorithms are as follows:

1. Sample initial superpixel centres from the given density function using
Simplified Poisson Disk Sampling (SPDS) - an efficient Poisson disc sampling
method.

2.2. Adaptive Superpixels 25

Figure 2.6: Top: A closeup to a region of interest, and bottom: distribution of
superpixels according to pixel depth. Original color image (left), user defined
density function (middle) and adaptive superpixels (right) are displayed.

2. Assign pixels to superpixels using Density-Adaptive Local Iterative Clustering
(DALIC) with a density-dependent compactness term in the distance metric.

Poisson disc sampling describes a point distribution where the distance be-
tween points is not arbitrary but a fixed constant. For a 2D plane, this corresponds
to many flat discs arranged such that they fill the plane. Often it is desirable to
use discs with soft edges in order to squeeze them a bit together and get slightly
irregular distributions. Poisson Disc sampling will be investigated in more detail
in §2.3.

Density-Adaptive Local Iterative Clustering is a variation of k-means clustering
with two distance measure where one is used as a regularization term. The other
measure is the local feature distance measure used for computing point-cluster
similarity. The regularization term governs the reach of a cluster point and guar-
antees that points are only assigned to local clusters. This term results in compact
clusters and a highly efficient clustering algorithm with a runtime linear in the
number of pixels and independent of the number of clusters. Details will be
presented in §2.4.

During the first step an approximation to the global positioning of superpixels
is computed by using a simplified multi-layer Poisson Disc sampling method.
The distribution of cluster centers shall follow the given density function and
Poisson disc sampling guarantees that clusters are evenly distributed according to
the desired density. In the context of Adaptive Superpixels, an approximation is
sufficient as superpixel placement will be further influenced during the second
step. Here pixels are iteratively assigned to superpixels by considering only a local
neighbourhood dependent on the local density values. Both steps work hand in
hand to assure that the final positions of superpixel centres are distributed accord-

26 Chapter 2. Adaptive Superpixels

ing to the given density function while assuring that the generated superpixels are
a good representation of the given image.

Using Poisson disc sampling for the initial placement of superpixel seeds is an
important requirement to guarantee a probably correct placement of superpixels
defined by the density function. Additionally the quality of generated superpixels
is not only higher, but it can also be achieved with a notable smaller number of
iterations during DALIC. In fact, the isoperimetric quotient and the uniform distri-
bution error under the given superpixel density (see §A.1) is per definition already
almost perfect for the initial seed points. The density-dependent compactness
term in the distance function ensures that superpixels are globally distributed
corresponding to the density function. Both, initial density-dependent Poisson
distribution of superpixels and density-dependent metric in nearest neighbour
pixel to cluster assignment, assure that the final superpixel distribution corre-
sponds to the given density functions.

For the following sections some basic notations will be used. The Adaptive
Superpixels algorithm will run on a finite domain Ω ⊂ Rn which is essentially
required to be a subset of the n-dimensional Euclidean space. The prominent
example for a domain, which will be used for examples and visualizations in this
chapter, is be the dense, rectangular pixel grid of an image. Another domain used
later in §5 is the 3-dimensional spatio-temporal domain of a video stream. The
user-defined superpixel density is denoted as ρ :Ω→R+ which assignes to each
point in the domain a positive number indicating the probability that a cluster
should be placed there. Additionally each point in the domain is annotated with a
feature vector f :Ω→F . Examples for feature spaces F are a colour space, e.g.
the RGB space, or a combination of colour and depth for combined colour and
depth sensors (RGB-D sensors). Another possibility could be point normals which
are computed from 3D point positions. The features space needs to be equipped
with a metric dF : F ×F →R+ which expresses similarity between feature vectors.
It will also be necessary to compute mean values for feature vectors. For this
purpose we will use an Abelian notation for feature vectors using the

∑
and +

signs. For feature values from a non-linear group, like for example normal vectors,
specific algorithms for the computation of the mean have to be used.

2.3 Poisson disc sampling

2.3.1 Poisson disc point distributions

The Poisson disc distribution describes a point distribution where points are
spaced with a minimal distance between each other. The placement probability
of points under a Poisson disc distributions thus depends on the distance to
neighbouring points. This stands in contrast to a white noise distribution which
distributes points randomly without considering other points. Poisson disc point
sampling had important applications in halftoning where comparable smooth

2.3. Poisson disc sampling 27

Figure 2.7: Examples for halftoning of grayscale images (image courtesy [4, 13])
using Poisson disc point samples generated with Fattal’s method [25].

images had to be converted to point distributions in order to be printable without
visible artifacts using individual dots of ink. Today they are for example used in
image raytracing or other computer graphics applications to reduce the number
of rays or samples which need to be evaluated for artefact-free colour or lighting
computations. Fig. 2.7 shows examples for grayscale images and corresponding
points generated by the Poisson disc sampling method of Fattal [25].

A primitive method to compute a Poisson disc distribution is dart throwing. A
random point is sampled accordingly to the density distribution and placed if it is
not nearer than the required minimal distance to all other points, otherwise it is
rejected. The process is iterated until no more points can be placed. This methods
suffers from critically slowing down towards the end as the probability to reject a
point increases the more points are already placed.

The quality of Poisson point sampling methods can be easily visualized by
computing the power spectrum. The spectrum of a Poisson disc distribution
has a blue noise characteristics. Blue noise distributions have the property that
”low frequencies are adequately captured and high frequencies are scattered into
noise” [25]. Good methods have a power spectrum without low frequencies and
where high frequencies are uniformly distributed. Fig. 2.8 displays various point
distributions and displayes the corresponding power spectra.

28 Chapter 2. Adaptive Superpixels

Figure 2.8: The first row shows point distributions for different methods and the
second row the corresponding spectra. Left: Random (white noise) sampling.
Middle left: Placement of points on a hexagonal grid. Middle right: Point sam-
pling using Llodys method [51]. Right: Point sampling using the method of Fattal
[25].

Several methods have been proposed to sample Poisson disc point distribu-
tions [51, 23, 9, 69, 25], and in this context the method of Fattal [25] is explained
in detail in §2.3.2. He proposed an efficient hierarchical method which produces
slightly noisy samples with excellent spectral properties. However the method
is quite slow as it aims towards high-quality point distributions which is not a
requirement for the purposes of Adaptive Superpixels.

For the Adaptive Superpixels algorithm the notion of a density function is
required. In the language of halftoning the density function corresponds to the
image intensity level: Dark image areas have a high density and require a high
number of points where bright regions have a low density and require only few
points (fig. 2.7). For our purposes the following formal definition of a density
function will be used:

Definition 2. Let Ω ⊂ Rn finite and ρ : Ω→ R a function. ρ is called a density
function of weight N iff.

i) ∀x ∈Ω : ρ(x) > 0,

ii)
∫
Ωρ(x)d x = N and

iii) ρ is sufficiently smooth (e.g. Lipschitz continuous).

Lipschitz continuity is defined over

f is Lipschitz continuous iff. ∃L ∈R+ : ∀x, y : | f (x)− f (y)| ≤ L ‖x − y‖ (2.1)

2.3. Poisson disc sampling 29

and is a stronger assumption than continuity which is defined over

f is continuous iff. ∀x : ∀ε> 0 : ∃δ> 0 : ∀ y : ‖x−y‖ < δ⇒| f (x)− f (y)| < ε . (2.2)

Details are explained in [28].
In the following the state-of-the-art Poisson sampling technique of Fattal will

be reviewed. Afterwards a simplified but highly efficient Poission Disk sampling
method, Simplified Poisson Disk Sampling, is presented which is optimal for the
purposes of Adaptive Superpixels.

2.3.2 Multi-layer sampling and Fattal’s method

Fattal [25] describes an algorithm to draw blue-noise point samples using a
multi-scale sampling scheme. Multi-scale sampling schemes build a pyramid of
increasingly coarse density functions over the original density function. Initially,
few points are distributed on the highest layer using only the lowest frequency of
the density functions. For each layer points are sampled and optimized using the
Langevin method and a Metropolis-Hastings correction. This process is repeated
iteratively for lower levels, i.e. higher frequencies, by using the point configuration
of the previous step as a initial configuration and repeating the optimization step.
The author demonstrates that his method is computationally efficient, however
especially the corrected Langevin step is time-consuming for a large number of
points.

One of the key concepts in Fattal’s method is the approximattion of the den-
sity function with a set of kernel functions positioned at point positions. The
kernel function K is required to be positive, finitely-integrable and monotonically
decaying away from zero [25]. A common choice is the Gaussian kernel :

K :R→R+, x 7→ e−πx2
. (2.3)

Kernel basis functions can be used to create a isotropic ”density blob” for the
domainΩ by setting

KΩ(· |µ,σ) :Ω→R+, u 7→ 1

σD
K

(‖u −µ‖Ω
σ

)
(2.4)

where D is the dimension of the domainΩ, µ is the position of the sample and σ
its scale.

KΩ can be used to approximate an arbitrary density function by using a sum
of such kernel basis functions:

Definition 3. Let ρ be a density function and {ui }N
1=i ⊂ Ω a set of points. The

density approximation function Aρ is defined as

Aρ
(
u | {ui }N

1=i

)
:=

N∑
i=1

KΩ
(
u |ui ,ρ(ui)−D)

. (2.5)

30 Chapter 2. Adaptive Superpixels

The approximation error is computed as the integrated absolute difference be-
tween the approximate density function and the desired density function:

Eρ
(
{ui }N

j=1

)
:=

∫
Ω

∣∣Aρ (
u | {ui }N

1=i

)−ρ(u)
∣∣du . (2.6)

During Fattal’s method, the kernel positions {ui }N
j=1 are optimized by mini-

mizing the error Eρ while preserving a certain desired degree of randomness to
guarantee good blue-noise properties.

Many Poisson disc sampling methods show the phenomena of critically slow-
ing down towards the end of the sampling process. As with the most simple dart
throwing method, it becomes increasingly difficult to add necessary points when
a large share of points is already placed at good positions. Fattal handles this prob-
lem by using a multi-scale sampling scheme. The key advantage of a multi-layer
method is the devision of the problem into sub-problems with respect to the fre-
quencies of the density function. For each sub-problem, i.e. each frequency band,
solutions can be found quickly by using the solution of the previous problem, i.e.
lower frequencies, as a starting point.

For a concrete implementation, so called ”mipmaps” of the density function
are computed where each mipmap is a down-sampled version of the mipmap
from the previous layer. The lowest layer is the original density function and the
highest layer shall have a specified minimal resolution. For each layer, points
are moved to optimize the approximation error for the density function on the
current layer until a convergence criterion is met. Then the points are transferred
to the following layer by possibly splitting them into multiple points depending
on the local point density and optimizing their positions again. The process is
repeated until the lowest layer is reached.

2.3.3 Simplified Poisson Disc Sampling

In the context of ASP, there are noticeable similarities between the Langevin
step for cluster relaxation and Density-Adaptive Local Iterative Clustering. In
Fattal’s method, Langevin relaxation is applied at each layer of the constructed
pyramid of increasingly down-sampled versions of the density function to relax
clusters in a position approximating the density function in an optimal way. In
a similar way, superpixel centres are automatically shifted into a Poisson Disc
cluster configuration during the iterative pixel-to-cluster assignment of DALIC
due to the density-adaptive compactness term (see §2.4). Additionally, DALIC tries
to balance the correct distribution of cluster centres with respect to the density
function against an optimal pixel-to-cluster allocation which minimizes the error
in the chosen metric on pixel feature values.

However like k-means clustering, DALIC does known how and where to create
points, but only how to move them to good positions. Thus a method to initially
distribute points is required. The quality of the initial point distribution plays a

2.3. Poisson disc sampling 31

crucial role in the number of required iterations and the final distribution quality
which can be achieved in a reasonable amount of time. DALIC can only provide
good distributions when the initial point configuration is a good approximation
satisfying the lower frequencies of the density function. The method of Fattal
provides excellent Poisson Disc samplings with excellent spectral properties at
the cost of complex calculations and thus a high algorithm runtime. This quality
is not required for DALIC and a Simplified Poisson Disk Sampling (SPDS) method
is presented which uses the idea of multi-scale sampling but leaves the final
optimization of point positions to the second phase of the Adaptive Superpixels
algorithm.

Simplified Poisson Disk Sampling proceeds by constructing a pyramid of den-
sity functions and a corresponding tree structure on the pyramid. The tree is
processed by checking the remaining density for each node at a given layer: If
it is high enough, the procedure is iterated with the children at the next layer,
otherwise a number of points is placed. Points are placed according to the node
density distribution by using a placement probability proportional to the density
of the layer with the highest resolution. In comparison to [25], point relaxation
is not performed and instead handled later by DALIC. Simplified Poisson Disk
Sampling is outlined as follows:

1. Discretise the density function to a regular rectangular grid.

2. Compute a hierarchical tree of increasingly down-sampled density mipmaps
where each node corresponds to a local region of the grid.

3. Starting with the root node process the whole tree and decide if points need
to be placed. Place points according to the original density function.

In the following it is assumed, that the density function is already discretised

and thus defined on a finite, D-dimensional grid
{
0, . . . ,2Q −1

}D ⊂ZD where, for
simplicity and without loss of generalization, the number of grid points in each
dimension is equal and a power of 2. Starting with the desired density function
ρ0 = ρ a pyramid of down-sampled density functions (ρl)Q

l=0 is computed (see
fig. 2.9):

ρl :
{

0, . . . ,2Q−l −1
}D →R+, z 7→ ∑

e∈{0,1}D

ρl−1(2 z +e) , ∀1 ≤ l ≤Q (2.7)

The tree is constructed by placing a node at each grid cell with position zl for
each layer l and connecting it to its parent node at position b zl−1

2 c in the layer l −1
above. Points are placed by processing the tree using a depth-first or breadth-first
algorithm starting at the root node and carrying out the following operation for
each node:

• If node densityρl (zl) is smaller than or equal to 1: Sample a uniform number
r in [0,1]. If r ≤ ρl (zl) place a point accordingly to eq. 2.8. Ignore all child
nodes.

32 Chapter 2. Adaptive Superpixels

Figure 2.9: From left to right: Pyramid of density functions: ρ1, ρ2, ρ3, ρ4 and ρ5.
Top: Density of ρi , and bottom: Same density ρi , but plotted as normalized to
[0,1].

• Else: Continue to child nodes.

If a point is placed for a node zl at layer l , it is positioned at a random location
inside the node depending on the actual density distribution in ρ0. Specifically,
the tree node zl corresponds to the volume V (zl) := {2l zl + [0,2l −1]D } at the
highest resolution level (l = 0). The probability to select point v ∈V (zl) inside the
volume is chosen to be proportional to ρ0(v). In other words:

Pplace(x|zl) ∝
{
ρ0(x) if x ∈ {2l zl + [0,2l −1]D }

0 otherwise
(2.8)

The method is summarized in alg. 1. To increase efficiency, lower layers can be
omitted as long as the individual density of all nodes of the layer is small enough,
e.g. smaller than 1. In the same way high layers can be omitted as long as the
density of all nodes is greater than 1.

Fig. 2.10 visualizes Simplified Poisson Disk Sampling: To the left, the target
density function ρ0 is shown. In the middle, the multi-layer density tree is visual-
ized by showing nodes which have generated a point during the processing of the
density tree and, to the right, the corresponding sample points are displayed.

The distribution of points can be further optimized by reducing the random-
ness when deciding whether to place a point in a cell or not. Instead of throwing a
dice whenever the node density is smaller than 1 one can employ the following
scheme which tries to regularize the number of placed points:

• If node density is smaller than or equal to 2D : Randomly round the node den-
sity to an integer n using eq. 2.9. Randomly select n child nodes weighted
by child node density and place a point into the child node using eq. 2.8.
Then ignore all further child nodes.

• Else: Continue to child nodes.

2.3. Poisson disc sampling 33

Algorithm 1 Simplified Poisson Disk Sampling

Require: Density function ρ0

. Compute density pyramid
for 1 ≤ l ≤Q do

∀z ∈ {0, ...,2Q−l −1}D : ρl (z) =∑
e∈{0,1}D ρl−1(2 z +e)

end for
. Process tree and create points
Recursively execute the following for each point zl , starting with zQ = 0:
if ρl (zl) ≤ 1 then

.Decide if a point shall be placed
if U (0,1) ≤ ρl (zl) then

Place one point under probability Pplace(x|zl) (see eq. 2.8)
end if

else
Continue with children zl−1 ∈ {2 zl +e |e ∈ {0,1}D } at the next layer

end if

Figure 2.10: Left: Density function ρ0. Middle: Excerpt of the pyramid density
tree. Each rectangle represents a node which has generated a point. Right: Corre-
sponding point samples generated with Simplified Poisson Disk Sampling.

34 Chapter 2. Adaptive Superpixels

Random rounding is done as follows:

randomround(x) :=
{

ceil(x) if U (0,1) ≤ x −floor(x)
floor(x) otherwise

(2.9)

where U (0,1) is a random sample from a uniform distribution over [0,1].
The algorithm for the improved version of SPDS is listed in alg. 2.

Algorithm 2 Simplified Poisson Disk Sampling (improved)

Require: Density function ρ0

. Compute density pyramid like in alg. 1

. Process tree and create points
Recursively execute the following for each point zl , starting with zQ = 0:
C = {2 zl +e |e ∈ {0,1}D }
if ρl (zl) ≤ 2D then

∀c ∈C : wc = ρl−1(c)
n = randomround(ρl (zl))
Randomly select n child nodes by weights wc

Place one point for each selected child c under probability Pplace(x|c)
else

Continue with children zl−1 ∈C at the next layer
end if

2.4 Density-Adaptive Local Iterative Clustering

k-means clustering [52] is a well known algorithm which iteratively assigns points
to the best cluster a(u) by comparison point features f (u) with cluster features
(fi)

∀u ∈Ω : a(u) := argmin
1≤i≤k

dF (f (u), fi)

and updates cluster features vectors with the mean of assigned points

∀1 ≤ i ≤ k : fi = mean({u ∈Ω|a(u) = i }) .

Assignment and update are repeated iteratively until convergence of the assign-
ment function a or other stopping criteria are fulfilled. Initial placement of clus-
ters can be problematic and most often random distribution in the feature space
are chosen. Additionally k-means clustering has several disadvantages when
computing superpixels:

• It does not produce spatially compact clusters as pixels with similar feature
vectors may be located in completely different image regions and often are
not necessarily part of the same segment.

2.4. Density-Adaptive Local Iterative Clustering 35

• It has a runtime of O (k |Ω|), thus ifΩ is a pixel grid the runtime is linear in
the number of pixels times the number of clusters.

• The spacial distribution of cluster over the image can not be controlled.

In the following Density-Adaptive Local Iterative Clustering (DALIC) is pre-
sented which will tackle theses problems. Foremost, DALIC directly uses a pro-
vided density function to control cluster distribution. The density-function is
additionally used in a density-adaptive compactness term to encourage the cre-
ation of compact superpixels. Moreover by exploiting several properties of Poisson
disc sampling and density functions it can be demonstrate that the algorithm
runtime can be reduced to only be linear in the number of pixels and independent
from the number of clusters.

An important quantity in the following will be the radius Rn of an n-dimensional
ball which can be derived by considering the volume of an n-dimensional unit
ball [79].

Definition 4. Rn(V) is defined as the radius of an n-dimensional ball of volume
V ∈R+.

Basic cases are well known mathematically facts:

R2(V) =
√

V

π
(2.10)

R3(V) =
(

3V

4π

) 1
3

(2.11)

The radius of a n-dimensional ball will be especially interesting in combination
with a density function:

Definition 5. Let ρ be a density function over Ω ⊂ Rn . The density dependent
radius is defined as:

Rρ :Ω→R+, u 7→ Rn

(
1

ρ(u)

)
The density-dependent radius Rρ(u) is exactly the radius of a ball of volume

1
ρ(u) which corresponds to the volume in which a perfect Poisson disc sampling
technique would in average place exactly one point. Examples are:

dim(Ω) = 2 ⇒ Rρ(u) = 1√
πρ(u)

(2.12)

dim(Ω) = 3 ⇒ Rρ(u) =
(

4π

3
ρ(u)

)− 1
3

. (2.13)

The density function can be understood as a local distortion of the domainΩ.
Such a distortion can also be described by using a local distance function.

36 Chapter 2. Adaptive Superpixels

Definition 6. Let u0 ∈Ω. We define:

dρ(· |u0) : Ω→R+, dρ(u|u0) := ‖u −u0‖
Rρ(u0)

The fact that this local distance function describes the density-adaptive distor-
tion ofΩ is described in the following proposition.

Lemma 1. Let ρ be a density function over Ω with weight N . Let u ∈Ω, then the
local distance function dρ(· |u) assures that in a unit ball B(u) := {x ∈Ω |dρ(x|u) ≤
1} around any u there is in average exactly one Poisson disc sampled point.

Proof. A density of ρ(u) indicates that there is in average one point in a volume
of V (u), thus ρ(u) = 1

V (u) . As Rρ(u) is constant for a given u, the radius of the ball
B(u) is exactly Rρ(u). We can conclude, that a Poisson disc sampling algorithm
should in average sample exactly one point in the ball B(u).

Thus instead of an unweighted compactness term ‖u −u0‖ for achieving uni-
form, equally sized clusters corresponding to a constant density, the distorted,
local compactness term

√
πρ(u0)‖u −u0‖ (dim(Ω) = 2) derived from the density

function is used. Note that for a constant density the distorted, local compactness
term is constant overΩ and thus identical to the standard compactness term. The
density-adaptive feature metric used in the Adaptive Superpixels algorithms is
thus defined as follows:

Definition 7. Let F be a metric space with metric dF : F ×F → R+. Let u0 ∈Ω
and f0 ∈F a corresponding feature vector. Let u ∈Ω. The local density-adaptive
metric dDA is defined as

dDA :Ω→R+, dDA(u |u0, f0) := dF (f (u), f0)+dρ(u|u0) (2.14)

The density-adaptive compactness term dρ assures that a point u ∈Ω is only
assigned to a spatially near cluster. The feature distance term dF on the other
hand is responsible for assigning a point to a cluster which can represent its
feature value f (u).

The density-adaptive compactness dρ term is also responsible for the better
runtime behaviour of DALIC. When dF is bounded over F , each cluster point has
a maximum reach which is defined by the density-adaptive term dDA and directly
depends on the local density. Thus during the assignment step, for each point
only clusters which can reach this point have to be considered.

This formulation can be reversed by stating that for each cluster only points
which are in its reach have to be tested for possible assignment. This simplifies
the process as points are normally dense but clusters are not. Thus efficiently
testing all points around a cluster corresponds to testing a local neighbourhood
which can be simplified to a rectangular region for dense pixel grids. Whereas
testing all clusters around each point would require a spatial index method for an
efficient access to the nearest clusters. Alg. 3 shows a possible implementation of
the Density-Adaptive Local Iterative Clustering algorithm.

2.4. Density-Adaptive Local Iterative Clustering 37

Algorithm 3 Density-Adaptive Local Iterative Clustering (DALIC)

Require: Density function ρ :Ω→R+ over a finite domainΩ
Require: Feature map f :Ω→F and feature metric dF

Require: Initial cluster centers {ui } and feature vectors fi ,1 ≤ i ≤ N
Require: Parameters: Maximal cluster reach C and number of iterations K

for k = 1 → K do
. Initialize minimal distance and cluster assignment
∀u ∈Ω : D(u) =∞, A(u) = 0
. Assign elements to clusters
for i = 1 → n do

. Iterate over pixels in search range
for {u ∈Ω |‖u −ui‖ ≤C Rρ(ui)} do

. Assign pixel to nearest cluster
di u = dF (f(u), fi)+ ‖u−ui ‖

Rρ(u)

if di u < D(u) then
D(u) = di u

A(u) = i
end if

end for
end for
.Update clusters
for i = 1 → n do

fi = mean{f(u) |u ∈Ω, A(u) = i }
end for

end for

38 Chapter 2. Adaptive Superpixels

2.5 Evaluation and examples

2.5.1 Evaluation

The Adaptive Superpixels algorithm consists of two main parts: Simplified Poisson
Disk Sampling of initial superpixel centres (see §2.3.3) and Density-Adaptive Local
Iterative Clustering (see §2.4). As described in §2.2 both methods work together
by distributing superpixel centres according to the desired density function. It
is important to notice that DALIC tries to balance two properties of superpixels:
global distribution demanded by the density function and optimal pixel-to-cluster
allocation. On the one hand, superpixel centres shall be distributed accordingly
to the user defined density function which also guarantees a certain degree of
superpixel compactness as cluster have a maximal possible reach. On the other
hand, superpixels shall represent the image feature data and thus pixel should
be assigned to clusters which can represent the pixel feature vector well with the
superpixel mean feature vector. The evaluation in the following will concentrate
on the first property. The second property will be thoroughly investigated in the
context of Depth-Adaptive Superpixels in chapter 3.

An adequate method of measuring the capability of SPDS and DALIC to repre-
sent the desired density function is the total relative density error:

E rel
ρ :=

∫
Ω |Eρ|∫
Ωρ

. (2.15)

The total relative density error E rel
ρ over the number of iterations for DALIC is

plotted in figure fig. 2.11 by using the mean result for a set of exemplary density

rnd

spds

fattal

0 2 4 6 8

0.1

0.2

0.3

0.4

0.5

Figure 2.11: Relative density error E rel
ρ averaged over all test density functions

against number of iterations of Density-Adaptive Local Iterative Clustering when
using different Poisson Disc sampling methods for the initial placement of super-
pixel centres.

2.5. Evaluation and examples 39

rnd

spds

fattal

0 2 4 6 8

20

40

60

80

100
spds, k=3

spds, k=5

spds, k=10

0 1 2 3 4

0

5

10

15

20

Figure 2.12: Left: Total runtime as frames per seconds plotted against the number
of DALIC iterations. Right: Total runtime as frames per seconds plotted against
the image size in Megapixel for SPDS with different number of iterations.

function (see fig. 2.13). The initial distribution of points are provided by one of
the following Poisson disc sampling methods: Primitive random sampling (RND),
Simplified Poisson Disk Sampling (SPDS) (§2.3.3) and Fattal’s method (see §2.3.2).
Primitive random sampling compares for each location the local density against
a uniform random number between 0 and

∫
Ωρ and places a point if the test is

successful.

Fig. 2.12 compares the algorithm runtime of Adaptive Superpixels with varying
Poisson disc sampling methods. The figure shows the number of processed images
per seconds and demonstrates that DALIC is capable of running in realtime. In
total it demonstrates that SPDS provides a quality comparable to Fattal’s method
while being approximatelly 200 times faster. Error and runtime was measured on
a single core of an Intel i7-3517U 1.90GHz CPU for an image size of 256 times 256
pixels and with 500 superpixels if not stated otherwise. The error and performance
measurements where executed on selected density functions depicted in fig. 2.13.

Results show that SPDS provides a similar quality as Fattal’s methods when
using it together with few iterations of DALIC. The initial distribution error is also
reduced for the primitive approach, but in the long run remains much higher.
This shows that SPDS already provides a good global distribution which not yet
optimal locally. But the local shortcomings are removed by the optimization of
DALIC. For an algorithm like primitive random sampling which does not care for
the global distribution this is not possible in the same way.

Fig. 2.14 shows an example of initial point samples computed with the different
sampling techniques for one of the density functions. This is the raw output of the
Poisson disc methods without running DALIC. The figure shows sampled points,
the corresponding approximation Aρ represented by the sampled points after
eq. 2.5, and the error of the density approximation to the actual density function
after eq. 2.6 for each of the three methods.

The evolution of point samples over an increasing number of DALIC iterations
for one of the test functions is depicted in fig. 2.15. It is apparent, that the quality

40 Chapter 2. Adaptive Superpixels

Figure 2.13: The ten density functions used for evaluating the performance of
Adaptive Superpixels. Dark blue to yellow indicates increasing density.

Figure 2.14: Left to right each row: Given density function ρ, sampled points, den-
sity function Aρ represented by point samples (see eq. 2.5) and error Eρ (blue to
red: negative to positive). Rows top to bottom: Pure random sampling, Simplified
Poisson Disk Sampling and Fattal’s method.

2.5. Evaluation and examples 41

Figure 2.15: Left to right each row: Point samples (black points) and density error
Eρ for an increasing number of iterations (0,1,3,5,7 iterations) of DALIC. Rows top
to bottom: Pure random sampling, Simplified Poisson Disk Sampling and Fattal’s
method.

of point distribution increases over time for RND and SPDS, but if the initial
distribution is too far away from a good distribution DALIC can not optimize the
distributions fast and well enough.

42 Chapter 2. Adaptive Superpixels

2.5.2 Example applications

Superpixel distribution by saliency

Visual saliency is an important concept in computer vision where distinct and
remarkable regions in an image should be identified. The detected regions of inter-
est may be further used in a feature detector or can form the basis of subsequent
image processing operations. Saliency detection has important applications in
image and video compression [38], for detecting cancer cells in medical image
segmentation [33] or for detecting traffic signs and pedestrians in autonomous
vehicles [39].

The salient region detection method from Cheng [16] is a recent example of a
saliency detector which creates a saliency map for a colour input image. Saliency
is computed by first segmenting the image into superpixels and then computing
saliency for each superpixel using a spatially weighted contrast function:

saliency(Sk) :=
n∑

i=1
exp

(
−‖pi −pk‖

σ2

)
‖ci − ck‖LAB (2.16)

Figure 2.16: Top left: Input color image (image courtesy [1]). Top right: Image
saliency computed after Cheng [16] on superpixels (ASP with a constant density).
Bottom left: Desired superpixel density from saliency map. Bottom right: Final
superpixels distributed after the saliency map computed with ASP.

2.5. Evaluation and examples 43

For this demonstration, the superpixel saliency map is smoothed using a
Gaussian filtering kernel-radius equal to the superpixel radius and normalized
to retreive a salience density map. Now this density map is used in a second run
of Adaptive Superpixels to compute superpixels distributed accordingly to image
saliency. Fig. 2.16 demonstrates the process and shows the saliency map, the
derived superpixel density function and final superpixels. It is well visible how
superpixels are much denser in possible regions of interest, e.g. for the pedastrians
and the car on the road, while in less interesting regions, e.g. the road or buildings,
superpixels are sparsely distributed. However, saliency computation is difficult
and Cheng’s method also marks apparently uninteresting areas as salient. For
example the sky would be of little interest in this image but is marked as salient
due to is extreme brightness.

Biological inspired superpixel distribution

For biological systems it is crucial to analyse a complex environment for potential
dangers like a predator or hazardous terrain, or rewards like food resources or a
conspecific wanting to mate. Visual cues often play an important role and the

Figure 2.17: Top left: Input colour image (image courtesy [31]). Top right: Ap-
proximate distribution of cones on the human retina are used as density function.
Bottom left: ASP simulating visual acuity of the human eye. Bottom right: Super-
pixel cluster centres.

44 Chapter 2. Adaptive Superpixels

human eye has adapted to provide both a wide viewing angle for quickly getting
an overview, and a focused perception with a very high resolution but limited size
for accurate identifications. Visual acuity of the human eye is directly related to
the density of cones, one of the two photo receptors on the retina [70]. Cones
have a very high density around the fovea which covers only an opening angle of
several degrees.

In this demonstration the approximate distribution of cones on the retina is
used to mimic the capability of the human eye to capture the projection of a dense
visual input. Figure fig. 2.17 demonstrates how density-adaptive superpixels could
represent an image in a similar way as it would appear to the human brain when
the measurement capabilities of the human eye are considered. Note that the scale
plays an important role here: The effective number of cones in the human eye is
around 4.5 million and of course much higher than the number of superpixels
used in this example (1000). However so is the ”resolution” of a natural image
when a reasonable light intensity is considered.

Figure 2.18: Top: Input color and depth image from Microsoft Kinect. Bottom left:
Final superpixels superimposed with superpixel edges and superpixel centres.
Bottom right: Superpixel density from depth.

2.5. Evaluation and examples 45

Depth-adaptive superpixel distribution

Novel RGB-D sensors provide for each pixel, in addition to colour, a depth value
indicating the orthogonal distance of the pixel to the camera plane. Adaptive
Superpixels will be adapted and specialized to RGB-D image in more detail in the
following chapter §3. Here a quick demonstration shows how depth information
could be used to steer the distribution of superpixels. Sometimes it is desired
that object which are near to the camera should be investigated in greater detail
than objects which are far away. This can be formalized by setting the desired
superpixel density to

ρ(u) ∝ 1

D(u)
(2.17)

where D(u) is the depth and thus pixels near to the camera are assigned a higher
density than those further away. Results are demonstrated in fig. 2.18: It is well
visible that Adaptive Superpixels distributes more superpixels to areas which are
near to the observer.

However, this distribution of superpixels has several disadvantages. The
Depth-Adaptive Superpixels algorithm will employ a more sophisticated model for
using depth by distributing superpixels uniformly over the 3D geometry. Such a
uniform distribution in 3D is more natural and has many advantages but requires
an adaptive distribution of superpixels over the image plane which is only possible
with Adaptive Superpixels.

3 DEPTH-ADAPTIVE SUPERPIXELS

Depth-Adaptive Superpixels is an oversegmentation technique for RGB-D images
which distributes superpixels uniformly over the 3D geometry. This stands in
contrast to state-of-the-art methods which do not consider depth information
and thus have poorer segmentation and distribution qualities.

Figure 3.1: Top: Input colour and depth image, Bottom: Depth-Adaptive Super-
pixels represent colour information very well and are uniformly distributed in
3D.

48 Chapter 3. Depth-Adaptive Superpixels

3.1 Computer vision with RGB-D sensors

3.1.1 3D perception and applications

Computer vision has developed many astonishing results for colour camera im-
ages, but unfortunately three-dimensional perception has turned out to be a
tough problem. To solve it, new visual sensors have been developed which pro-
vide a depth image in addition to the colour image. In such an RGB-D image each
pixel is annotated with a colour value and additionally a depth value indicating
the orthogonal distance of the pixel to the camera plane (see fig. 3.1, top). The
most prominent examples for RGB-D sensors are based on the PrimeSense sen-
sor, notably the Microsoft Kinect and Asus Xtion. These sensors are comparably
inexpensive with a price around $100 and have seen widespread use. They enable
many applications (see fig. 3.2) which could not be solved efficiently up to now
using only camera images. The depth information adds valuable additional cues
which can be used to solve ambiguous situations.

For example in [73] an RGB-D sensor is used for realtime full body motion
tracking. Using a large dataset with example poses and corresponding depth
images, a randomized decision forest was trained which can label body parts in
a depth image using only relative depth differences. While training the forest is
a huge computational task, using it to infer body part labels can be executed in
realtime. This algorithm is the basis of the Microsoft Kinect which can be used
together with the Microsoft Xbox gaming console to control games with full-body
human motion gestures.

RGB-D sensor can even be used to track the fingers of a human hand. This is a
more complex problem than full-body tracking of arms and legs, as the human
hand has many degrees of freedom and its appearance can be quite complex. Ar-
gyros et al. [58, 59, 60] presented methods which reliably track the pose of one or
even two hands interacting with each other or manipulating simple geometric ob-
jects. The approach is model-based and the optimal pose in the high-dimensional
state space is found using a particle filter or a black box optimization algorithm
like particle swarm optimization [41].

Another core application where RGB-D sensors have led to a huge step for-
ward is environment mapping, especially simultaneous localization and mapping
(SLAM). The KinectFusion algorithm [56] presented by Newcombe et al. uses the
depth information to build an highly detailed 3D model of the environment. The
algorithm fuses the depth information into an implicit surface model by using a
camera pose estimated using an iterative closest point algorithm [10]. With the
aid of GPU hardware KinectFusion can run in realtime.

While the depth information is useful to solve hard computer vision problems,
it actually almost doubles the required bandwidth. Like the colour image, the
depth information is provided as a dense pixel grid and for each pixel 5 bytes of
information are stored for the colour and depth information. However normally

3.1. Computer vision with RGB-D sensors 49

Figure 3.2: Example applications for 3D perception. From left to right: Full body
tracking by Shotton et al. [73], hand/object tracking by Oikonomidis et al. [59] and
KinectFusion by Newcombe et al. [56]. Image copyright by the respective authors.

most of this information is redundant not essentially required for successfully
analysing an image, and the question arises how the dense colour and depth
information can be represented more compactly.

To solve this problem, the same idea as for colour images is applied: image
oversegmentation with superpixels. In the following I will present the Depth-Adaptive
Superpixels (DASP) [81] algorithm. DASP is a novel superpixel algorithm for RGB-D
images which uses depth information to distribute superpixels uniformly in 3D
with the aid of the Adaptive Superpixels algorithm. Depth-adaptive superpixels
approximately have equal area, a circular shape and are flat in the 3D space. This
essentially provides a solution for the problem of point cloud segmentation for
2.5D point clouds, i.e. point clouds from a single viewpoint.

The rest of this chapter is outlined as follows: First the introduction is con-
cluded with a discussion of 3D point cloud segmentation and special properties of
the PrimeSense RGB-D sensors. In §3.2 the Depth-Adaptive Superpixels algorithm
is presented and in the last section §3.3 an evaluation of DASP using an annotated
RGB-D dataset and various segmentation properties is reported.

3.1.2 Point cloud segmentation and superpoints

The question arises why depth information can not simply be used together with
colour information in any of the classic superpixel algorithms. RGB-D images
could be treated like RGB images by extending the colour space to the direct
product of the colour and depth space. A metric on the colour space would be
extended to a linear combination of a colour metric and a depth metric, e.g. the
Euclidean distance. However, such a naive approach gives poor results and the
combination of two completely different kinds of information is clumsy and hides
more profound concepts.

Fig. 3.3 (top row) shows a normal colour image and the corresponding 3D
point cloud computed by using depth information to compute 3D points for
each pixel. An image oversegmentation on base of colour information computed
with the SLIC algorithm yields a set of superpixels which also forms a segmen-

50 Chapter 3. Depth-Adaptive Superpixels

tation of the 3D point cloud into ”superpoints”. A superpoint is a flat disc in
the three-dimensional space which consists of a 3D position, a 3D normal and a
radius. Additionally each superpoint is assigned a mean feature value, in this case
a RGB colour value.

The transformation from 2D superpixels to 3D superpoints is done with the
help of the measured depth information. The position and colour of the super-
point is computed as the mean position and mean colour of all points belonging
to the superpixel. The normal is computed using a principal component analysis
of the points and using the eigenvector with the smallest eigenvalue as the normal.
The radius is simply the mean of the square roots of the remaining two eigenval-
ues multiplied with a scale factor to assure that the superpoint is big enough to
probabilistically cover a certain percentage of points.

However as can be seen in fig. 3.3 (middle row) the superpoint segmentation
is poor due to several reasons. Depth borders are not respected which results in
very large superpoints which try to combine points which are close in the image
plane but far away in 3D space. Additionally superpoints do not have uniform
size and are not uniformly distributed over the geometry surface. This is due to
perspective distortions of the geometry surface when projected onto the image
plane.

The DASP algorithm presented in this chapter solves both of theses problems.
It computes superpixels which are uniformly distributed by using the ASP algo-
rithm with a depth-adaptive density function. Geometry borders are represented
by incorporating the depth information in the feature metric. Additionally, sharp
borders at corners are enforced by using point cloud normal information. Details
are explained in the next section §3.2. The bottom row in fig. 3.3 shows superpixel
and superpoints computed with the DASP algorithm. It is clearly visible how the
quality of superpoints are increased over a naive approach.

Depth-Adaptive Superpixels computes an oversegmentation P= {S1, . . . ,Sn} of
a single-view point cloud which satisfy the following properties:

• P is a partition of the point cloud.

• The variance over point feature values which are combined into one of the
segments Si ∈ P is low.

• Segments Si ∈P are compact, i.e. the isoperimetric quotient is close to 1.

• Segments Si ∈P are distributed uniformly over the 3D surface.

• Segments Si ∈P have equal radius R ∈R+.

• The computation of P can be executed in realtime.

The main advantage of superpixels which are uniformly distributed in 3D is
the fact that a superpixel segmentation is invariant under rotation and transla-
tion. A specific piece of geometry always gets the same number of superpixels

3.1. Computer vision with RGB-D sensors 51

Figure 3.3: Top: Original colour image and corresponding 3D point cloud. Middle:
ASP/SLIC superpixels with constant density and corresponding 3D superpoints
computed from point positions. Bottom: DASP superpixels with depth-adpative
density and corresponding 3D superpoints. Black pixels at the border and at some
object edges indicate missing depth data.

52 Chapter 3. Depth-Adaptive Superpixels

Figure 3.4: PrimeSense devices: left: Microsoft Kinect for Xbox 360 and right: Asus
Xtion

independent from its orientation or distance to the camera. The only remaining
indefiniteness is the placement of centre points which can vary locally due to the
many possible configurations allowed by the density function. When the viewing
angle changes or objects are moved, re-identification of superpixels is easy as
the relative configuration of superpixels stays the same. This property is espe-
cially advantageous for tracking or navigation and is exploited for the Temporal
Depth-Adaptive Superpixels algorithm presented later in §5.

It is important to note the difference between an arbitrary ”full 3D” point cloud
and a ”2.5D” point cloud captured from a single viewpoint. In the latter case the
pixel lattice graph can be used as parametrization of the 3D geometry. This is an
important requirement of the Depth-Adaptive Superpixels algorithm as it requires
a parametrization of the point clouds and can thus only be run in the presented
form on single view point clouds. In general, mapping a point cloud is a hard
problem for the most simple three-dimensional geometric bodies [74]. As the
Depth-Adaptive Superpixels algorithm will exploit the fact that the pixel lattice
can be used as a parameterization, we will continue to speak of superpixels and
will not use the word superpoint anymore.

3.1.3 Properties of the PrimeSense RGB-D sensor

The PrimSense sensor is a combined colour and depth sensors which has been
used in consumer products like the Microsoft Kinect and the Asus Xtion (fig. 3.4).
It provides two images, colour and depth, at a resolution of 640x480 pixels at a
framerate of 30 frames per second. Depending on the concrete camera type, other
video modes may also be available. In the following, the provided colour and
depth information is discussed in more detail.

Colour information

PrimeSense measures colour values using the RGB colour space where colours are
represented as a triple of the primary colours red, green and blue. In the literature
various colour spaces and corresponding metrics are investigated and used. Most
notable examples are:

3.1. Computer vision with RGB-D sensors 53

RGB An additive colour space where three numbers represent the amount of
red, green and blue light [35]. Mostly used with the Euclidean distance as a
metric.

HSV A colour is represented by a triple of values describing colour hue, saturation
and brightness. Well-founded metrics are difficult to define and thus a
metric is often chosen arbitrarily.

CIELAB The CIELAB colour space [36] and the associated∆03 metric are designed
to mimic the colour perception of the human eye.

In general the choice of the colour metric does not influences segmentation results
fundamentally, so in the following simply the RGB colour space will be used.

The PrimeSense device provides colour components with an accurracy of
8 bit per colour channel, but in the following it is assumed that colour values
are mapped to the continuous unit interval [0|1]. This has the additional ad-
vantage that no time-consuming colour space transformation is required as
the Depth-Adaptive Superpixels algorithm can directly use the raw sensor data.
Colours values for each pixel u ∈Ωwill be denoted with fc (u).

fc :Ω→ [0|1]3, u 7→ fc (u) (3.1)

The Euclidean metric is used as a metric for the colour space:

dc : [0|1]3 × [0|1]3 →R+, (c1,c2) 7→ ‖c1 − c2‖ . (3.2)

Depth information

The main contribution of the PrimeSense RGB-D sensor are the explicitly mea-
sured depth values. The sensor is an active sensor in the sense that it does not
only rely on natural occurring light, but has an illumination source on its own
to measure depth information. It uses an infrared light source to project an ir-
regular pattern onto the scene geometry which is invisible to the human eye but
can be measured with an infrared light sensor. The pattern is distorted naturally
depending on the inclination and distance of a surface to the camera. Based on
the amount and direction of distortion it is possible to compute quite accurate
depth estimates.

The reported pixel depth value directly represents the orthogonal distance
of the measured point to the camera position. Depth values are represented by
a positive unsigned integer, in the case of the PrimeSense sensor it is an 11 bit
unsigned integer. The raw depth values are per default not given in metric units,
but can be transformed easily. It will be assumed that depth values are already
converted to meters and are given as a real number.

D :Ω→R+, u 7→ D(u) (3.3)

54 Chapter 3. Depth-Adaptive Superpixels

Figure 3.5: From left to right: A selection of unfavourable conditions under which
the PrimeSense sensor fails to measure depth values: too close, too shiny, too
steep, transparency, missing depth information due to the sensor baseline and
a non-constant time-offset between colour and depth frames noticable for fast
motions.

If the sensor is not able to produce a valid depth measurement, the returned
depth value is 0 and for all following considerations such pixels are completely
ignored unless stated otherwise. In figures and images theses pixels are painted
black.

It has to be noted that depth measurements are subject to several restrictions
(see fig. 3.5). Depth values are only available in a range between approximatelly
0.7 and 10.0 meters. The error and noise in measured depth increases with the
distance to the sensor and limits the usable range to about 4 meters. Due to the
feature size used in the infrared pattern the minimal size of objects visible to the
sensor is about 1cm. Additionally, completely black objects are often not visible as
black surfaces do not reflect infrared light well. Transparent objects are not visible
as the depth estimation is not designed for translucent surfaces. Metal objects or
other surfaces with high specular reflection are often not visible as the sharply
reflected infrared light irritates depth estimation. Direct sunlight is too strong
compared to the infrared emitter making the projected pattern invisible and thus
limiting the application to indoor scenarios. Finally due to the positioning of
the infrared laser projector and the colour camera towards the infrared sensor,
the infrared pattern necessary for measurements can not be projected onto the
complete surface visible by the colour and infrared sensor. This results in vertical
areas parallel to object borders where no depth information is available. Another
issues is a discrepancy between colour and depth measurement when objects are
moving fast as the frame readout of the two sensors is not synchronized.

3.2 Depth-Adaptive Superpixels

3.2.1 From 2D to 3D: Point positions and point normals

The main advantage of RGB-D sensors is the simple fact that the pinhole camera
projection can be reversed to compute 3D point positions for every pixel. Addi-

3.2. Depth-Adaptive Superpixels 55

tionally, it is possible to derive local surface properties where in this context only
surface normals will be used.

3D pixel positions

Given the depth value 0 < D(u) ∈ R+ for a pixel u ∈Ω a corresponding 3D point
fv (u) in camera coordinates can be computed using the pinhole camera model:

fv :Ω→R3, u 7→ D(u)

f

(
ux − cx , uy − cy , f

)T
, (3.4)

where f is the camera focal length parameter and (cx ,cy) is the camera projection
center. Camera parameters can be determined using a calibration procedure
[30, 89]. The distance of two points in 3D space is measured using the Euclidean
norm:

dv :R3 ×R3 →R+, (v1, v2) 7→ ‖v1 − v2‖ (3.5)

Pixel depth gradient and 3D normals

Surface normals for a point can be computed using a local nearest neighbour
search [66]. However, this method is quite slow as the local nearest neighbour
search has a runtime of O (log(n)) in the number of pixels when using a spatial
indexing data structure. A faster method with constant runtime is the computation
of the normal by approximating the local depth gradient using finite difference:

∂xD(u) ≈ D(u +h ex)−D(u −h ex)

2h
(3.6)

∂y D(u) ≈ D(u +h ey)−D(u −h ey)

2h
(3.7)

where ex = (1,0)T and ey = (0,1)T are unit vectors and h is a chosen step width. The
approximation can be improved by using additional sample points and checking
the second derivative to properly handle border cases. Using the estimated depth
gradient ∇D = (∂xD,∂y D)T the point normal can be computed as:

fn :Ω→ S2
0,u 7→ 1√

∂2
xD(u)+∂2

y D(u)+1

 ∂xD(u)
∂y D(u)

±1

 (3.8)

S2
0 is the three-dimensional unit sphere indicating that normals have length 1. The

sign of the last element is ambiguous as it may point inwards or outwards and
it is not defined locally which side is outside. In the context of depth-adaptive
superpixels, normals are flipped such that they always point towards the camera,
i.e.

fv (u)◦ fn(u) < 0 (3.9)

56 Chapter 3. Depth-Adaptive Superpixels

Figure 3.6: Left: Depth gradient ∇D (colour indicates direction). Right: Absolute
value of the normal z coordinate after eq. 3.10 (brighter indicates less inclination
towards the camera plane).

This is a reasonable choice as the camera does not see the backside of a surface.
Note that from 3.8 it follows that

|fn(u)z | = 1√
‖∇D(u)‖2 +1

. (3.10)

This quantity measures the inclination of the surface towards the camera and
will be used later on to model the depth-adaptive density. Fig. 3.6 visualizes the
pixel-wise depth gradient and the corresponding surface inclination.

A reasonable distance measure for normals is the angle between the normals:

dn : S2
0 ×S2

0 →R+, (n1,n2) 7→ cos−1 (n1 ◦n2) (3.11)

which can be approximated linearly using

dn(n1,n2) ≈ π

2
(1−n1 ◦n2) . (3.12)

dn should be handled with care when applied to SO3 instead of S3
0 or SO(3) as

sulfure trioxide will cause serious burns on both inhalation and ingestion since it
is highly corrosive and hygroscopic in nature [20].

3.2.2 Depth-adaptive superpixel density

§3.1.2 demonstrated that a naive application of superpixel methods to 3D does
not transport the principals of superpixels well into the three-dimensional space.
Depth-Adaptive Superpixels is an application and an extension of Adaptive Su-
perpixels which gives an elegant solution to this problem. The key observation is
as follows: 3D points which are uniformly distributed over a three-dimensional
surface materializes as a non-uniform point distribution when projected onto

3.2. Depth-Adaptive Superpixels 57

Figure 3.7: Left: Simple scene with 3D geometry. Middle: The geometry surface is
covered uniformly with 3D points. Right: The density of the projected points on
the image plane is not uniform.

the image plane of a camera (see fig. 3.7). This is due to different distances to the
camera and different inclinations towards the camera plane.

When depth values and surface normals are known the density of the projected
3D points on the image plane can be computed directly. The point density is di-
rectly proportional to the superpixel density as more superpoints are required in
areas which are far away or have a high inclination. In Depth-Adaptive Superpixels
this point density is used to correctly distribute initial superpixel such that super-
points are uniformly distributed on the surface of the 3D geometry. Additionally,
the correct distribution is maintained during the pixel to cluster assignment step
with the help of an modified 3D compactness term in the feature density function.

The density of superpixel seeds at pixel u ∈Ω can be computed by considering
a disc with radius R whose center point is at depth D(u) and which is projected
onto pixel u on the image sensor [47]. If the disc is parallel to the camera projection
plane its projected radius is computed as

rp (u) := R
f

D(u)
. (3.13)

For the general case where the disc is not parallel to the camera projection plane,
one has to compute the perspective distortion. This is complicated and for sim-
plicity a local approximation with an affine transformation is used by considering
the local depth gradient ∇D(u). This gives the projected area of the disc as

Ap (u) = rp (u)2π√∥∥∇D(u)
∥∥2 +1

. (3.14)

The density of superpixels is thus computed as

ρ(u) = 1

Ap (u)
= 1

π

(
D(u)

f R

)2 √∥∥∇D(u)
∥∥2 +1. (3.15)

In other words:

ρ(u) ∝ D(u)2

|n(u)z |
. (3.16)

58 Chapter 3. Depth-Adaptive Superpixels

Figure 3.8: Left: Depth contribution D(u) to depth-adaptive superpixel den-
sity. Middle: Gradient contribution |n(u)z | to depth-adaptive superpixel density.
Right: Final depth-adaptive superpixel density ρ(u) (see eq. 3.16).

Fig. 3.8 shows superpixel density for an example depth image recorded with
the Microsoft Kinect. The bumpy pattern in the gradient results from non-white
noise in the depth measurements which is especially strong further away from
the camera. One can clearly see the two influences on the depth-adaptive density
functions: Distance of points to the camera and inclination of the local surface
towards the camera sensor plane.

Sometimes it is advantageous to specify the desired total number of super-
pixels instead of the superpixel 3D radius. For example to limit the runtime of
subsequent high-level algorithms the number of superpixels should be kept at a
constant value to assure a desired runtime performance. Another example is the
fair comparison to other superpixel methods as the performance of superpixel
algorithms is often directly related to the number of superpixels. As the density
function in eq. 3.15 is a multiple of the superpixel 3D radius, the total number of
generated superpixels n can be easily changed while still representing the relative
superpixel distribution by introducing an appropriate scale factor:

ρn(u) := ρ(u)
n∫

Ωρ(x)dx
(3.17)

Specifing the total number of superpixels instead of the 3D superpixel radius how-
ever has the disadvantage that depth-adaptive superpixels from the same scene
under different viewing angles produces superpixels of different size. This make
a direct comparison more difficult as scale effects have to be considered which
basically negates one of the main advantages of Depth-Adaptive Superpixels.

The Adaptive Superpixels algorithm uses a density-adaptive compactness term
to ensure compactness and uniformity of superpixels. Using eq. 3.15 this term for
the density-adaptive metric is computed as

dρ(u|u0) : = ‖u −u0‖
Rρ(u0)

=√
πρ(u0)‖u −u0‖

= D(u)

f R

(∥∥∇D(u)
∥∥2 +1

) 1
4 ‖u −u0‖

(3.18)

3.2. Depth-Adaptive Superpixels 59

This compactness term has the disadvantage that it does not capture rotational
dependent distortions resulting from different surface orientations. A more accu-
rate and even simpler compactness term can be constructed by considering the
distance of pixel 3D points derived from depth information using eq. 3.4:

d3D(u|u0) := ‖fv (u)− fv (u0)‖
R

. (3.19)

With d3D instead of dρ as a compactness term (see def. 7) the density-adaptive
metric for Depth-Adaptive Superpixels can be formulated as a linear combination
of metrics on the factors of the feature space:

dDA : FDA ×FDA →R+, (f, f′) 7→ ∑
◦=c,n,v

µ◦ d◦(f◦, f◦′) . (3.20)

where the feature space FDA consists of colour, pixel 3D normals and pixel 3D
positions:

FDA := [0 |1]3 ×S2
0 ×R3 . (3.21)

Here dc is the chosen RGB colour metric (e.g. Euclidean distance) as explained
in §3.1.3, dn the normal metric from §3.2.1 and dv the Euclidean distance. µc ,
µn and µv are weighting factors which can be adapted as required by a specific
application.

Although the superpixel density is not required anymore for the evaluation
of the feature space distance metric dDA, it is still crucial to initially distribute
superpixels correctly during Simplified Poisson Disk Sampling. Additionally the
density is used during Density-Adaptive Local Iterative Clustering to compute the
superpixel cluster reach to guarantee linear runtime of pixel to cluster assignment.

3.2.3 The Depth-Adaptive Superpixels algorithm

With Simplified Poisson Disk Sampling, Density-Adaptive Local Iterative Clus-
tering and the depth-adaptive superpixel density at hand, the Depth-Adaptive
Superpixels algorithm can finally be formulated:

1. Pixels are annotated with feature vectors f= (fc , fn , fv) ∈FDA, i.e. 3D points
and normals are computed.

2. Initial superpixel cluster centres are generated using the depth-adaptive
density function from eq. 3.15 in a Poisson disc sampling process. For
optimal performance Simplified Poisson Disk Sampling (see §2.3.3) is used.

3. Density-Adaptive Local Iterative Clustering 2.4 with the metric dDA after
eq. 3.19 is used to cluster pixels into superpixels. The combination of SPDS
and DALIC performs especially well in this scenario.

4. During each step of DALIC superpixel mean features for colour, normal and
3D position are updated using Euclidean mean for colour and 3D position
values and plane fitting for the mean normal.

60 Chapter 3. Depth-Adaptive Superpixels

Figure 3.9: Top left: input depth image and top right: corresponding depth-
-adaptive superpixel density. Bottom left: initial superpixel centres from Sim-
plified Poisson Disk Sampling. Bottom right: superpixel cluster centres after 20
iterations of Density-Adaptive Local Iterative Clustering.

During the second step, initial superpixel centres are distributed over the im-
age using a Poisson disc sampling process. The depth-adaptive density function
guarantees that superpixels are uniformly distributed on the 3D surface. This
works hand in hand with Density-Adaptive Local Iterative Clustering in the third
step to guarantee uniformity. While the sampling process can not consider rota-
tional dependent density functions, which would be necessary due to superpixel
deformation through perspective or even affine projections, the clustering pro-
cess does consider this with the aid of the spatial metric d3D. For the purpose of
Depth-Adaptive Superpixels an approximative Poisson disc sampling process like
SPDS is sufficient as the final superpixel distribution, and thus uniformity, is not
only influenced by the initial distribution after the sampling process, but also by
the clustering process itself. An example for the clustering process during DASP
can be seen in fig. 3.9.

Similar to Adaptive Superpixels, the runtime of DASP superpixel clustering is
linear in the number of pixels and independent from the number of superpixels.
In fact, the process is faster for more and smaller superpixels than for fewer and
bigger superpixels because the overlap of the cluster search windows during
DALIC increases when superpixels get bigger.

3.2. Depth-Adaptive Superpixels 61

Figure 3.10: Top left: µv = 1,µc = 2,µn = 3, the default parameter choice. Top
right: µv = 8,µc = 2,µn = 3, more compact superpixels with poorer border quality.
Bottom left: µv = 0.125,µc = 2,µn = 3, superpixels which adapt to features but are
less compact. Bottom right: µv = 1,µc = 2,µn = 0, ignoring normals.

The weighting factors in the feature space metric dDA have an influence on the
clustering result and the final shape and compactness of superpixels. They express
a trade-off between fitting superpixels well to pixel feature values, i.e. colour and
normal values, and generating compact superpixels, i.e. minimizing the spatial
distance to the centre point.

Fig. 3.10 shows four different sets of weighting factors. Differences can be
seen especially at the lower border of the box to the right and generally at object
geometry edges. For example, if the weight for superpixel compactness is too
high, colour and normal borders of spatially near pixels are not represented very
well. This effect can be seen on the black marking on the box (colour) and also
on the lower edge where the box meets the floor (normals). On the other hand if
the weight on compactness is too low, superpixel tend to overfit feature values.
The normal part of the feature space does not seem to contribute much, but at
geometry edges normals are very useful – especially if the colour information
is ambiguous in theses areas. Due to these effects weight values depend on the
concrete application. The present results in the evaluation where computed with
the default weight parameters µv = 1, µc = 2 and µn = 3.

62 Chapter 3. Depth-Adaptive Superpixels

Figure 3.11: Left: Close-up of 3D point cloud computed from depth (see eq. 3.4)
viewed from a viewpoint different to the viewpoint used for recording the RGB-D
image. Middle: 3D superpoints computed with the Depth-Adaptive Superpixels
method. Right: Corresponding superpoint normals.

For the update of superpixel centres the mean of feature values, i.e. colour
and normal, and the centre of the superpixel is required. The computation is
straightforward for colour and position where one can simply use the barycentre
of values, but for normals a different approach has to be taken. One possibility
would be to use an iterative algorithm [62] to compute the mean of normals.
However it has turned out that computing the normal directly by fitting a plane
through all points of the superpixel is more reliable, easier and faster. Thus for
each superpixel S the eigenvalues of the matrix∑

f∈S

(fv −sv)(fv −sv)T , with sv = 1

|S|
∑
f∈S

fv (3.22)

are computed and the eigenvector for the smallest eigenvalue gives the desired
normal. For a very small number of pixels in a superpixel this problem may not
be well-defined, thus a minimal number of pixels per superpixel is enforced. Su-
perpixels which are too small are deleted during the iterations of DALIC. Fig. 3.11
shows a selected part of a 3D point clouds and corresponding superpoints and
superpoint normals computed by plane fitting.

Additionally, these eigenvalues give raise to some interesting 3D properties of
superpixels. When ordering eigenvalues wi from smallest to largest and translat-
ing to a 2-σmultiplied standard deviation we define: (d ,b, a) = 2(

p
w1,

p
w2,

p
w3).

This defines an ellipsoid with ”thickness” 2d and major axes a and b which proba-
bly contains 95.4% of all points of the superpixel. The following properties give
information about the three-dimensional shape of superpixels:

• Superpixel (eigenvalue) thickness: ThicknessEV = 2d

• Superpixel (eigenvalue) eccentricity: EccentricityEV =
√

1− b2

a2

• Superpixel (eigenvalue) flatness: FlatnessEV =
√

1− d 2

a2

3.3. Evaluation 63

• Superpixel (eigenvalue) area: AreaEV =πa b

Theses properties are evaluated in §3.3.
The complete algorithm of Depth-Adaptive Superpixels is summarized in

pseudo-code in alg. 4. The sub-modules for SPDS and DALIC are not detailed
further and are described in alg. 1 and alg. 3.

Algorithm 4 Depth-Adaptive Superpixels (DASP)

Require: RGB-D image I ⊂Z2 with colour fc : I → [0|1]3 and depth D : I →R+
Require: Desired superpixel radius R
Require: Camera pinhole parameters (i.e. focal length f)
. Annotate each pixel with colour, 3D normal and 3D position (eq. 3.4 and eq. 3.8)
∀u ∈ I : f(u) = (fc (u), fv (u), fn(u))
. Compute depth-adaptive superpixel density (eq. 3.15)

∀u ∈ I : ρDA(u) = 1
π

(
D(u)

f R

)2 √∥∥∇D(u)
∥∥2 +1

. Annotate pixels with the local search radius (definition 5)

∀u ∈ I : Rρ(u) = (√
πρDA(u)

)−1

. Run SPDS (alg. 1) to get initial cluster centre positions si

{si }1≤i≤n = SPDS(ρDA)
. Initialize superpixel centers feature values si

for i = 1 → n do
.Use small neighbourhood around center point si

si = mean({f(u) |‖u − si‖ ≤λRρ(si))})
end for
. Run DALIC (alg. 3) with feature space FDA (eq. 3.21) and metric dDA (eq. 3.20)
return DALIC(ρDA, f, {si }, {si })

3.3 Evaluation

For a first impression on the performance of Depth-Adaptive Superpixels fig. 3.12
shows an example for input colour and depth images, and superpixels computed
with DASP. More examples can be found in the appendix in fig. B.1 and fig. B.2.
These results were obtained using 1000 superpixels and 5 iterations for DALIC.

For a quantitative evaluation of DASP a supervised dataset of manually anno-
tated RGB-D images was created to evaluate quality measures which need ground
truth segmentations. Ground truth annotations have been created using a toolset
described in [7].

In this evaluation three methods are compared:

• The SLIC algorithm [5] – a state-of-the-art superpixel method. This cor-
responds to Adaptive Superpixels with a constant density functions and a
metric which only considers colour values (ASPRGB). The SLIC algorithm

64 Chapter 3. Depth-Adaptive Superpixels

Figure 3.12: Example of Depth-Adaptive Superpixels

was thoroughly evaluated in [5] and shows similar qualities than other su-
perpixel algorithms.

• ASPRGBD: Adaptive Superpixels with a constant density function and a met-
ric which considers depth and colours. This corresponds to a naive exten-
sion of the SLIC superpixel method to RGB-D images.

• DASP: The Depth-Adaptive Superpixels algorithm which makes full use of
the depth information and produces uniform superpoint distributions.

The quality of superpixel segmentations can be evaluated using various mea-
sures. Mathematical details of the used metrics are explained in detail in §A.1 in
the appendix. The most important metrics for superpixels are undersegmentation
error, boundary recall and explained variation resp. compression error. Figure
fig. 3.13 shows results for theses four metrics and the remaining figures with more
detailed results can be found in the appendix in §B.1.

Undersegmentation error and boundary recall measure how well superpixel
boundaries respect segment boundary from a manual annotation by a human.
This is a key requirement for a good oversegmentation as superpixels should not
merge pixels from different semantic objects. Results for boundary recall measure
BR (see def. 13) and the undersegmentation error USE (see def. 14) are shown
in fig. B.3. The DASP algorithm has a notably higher performance in recalling
boundaries which is mainly due to the intelligent use of depth values and normals.
A naive approach which only uses depth information only has a slightly better
performance.

Explained variation is presented in more detail in def. 21. It describes how
well superpixels can explain the variation of information throughout an image.
Results are reported for the feature values colour, depth, position and normals
fig. B.6). Due to the high variety of depth and position information, the explained
variation metric shows very high values for all metrics. For normal information the
explained variation is bigger than 1 which is due to the fact that the raw normals

3.3. Evaluation 65

æ SLIC à ASPRGBD ì DASP

æ

æ
æ

æ
æ

à

à
à

à
à

ì
ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Boundary Recall @D

æ

æ
æ æ æ

à

à
à à à

ì
ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Undersegmentation Error @D

æ

æ

æ
æ æà

à à à àì ì ì ì ì

200 600 1000 1400 1800

0.85

0.90

0.95

1.00

Explained Variation HDepthL @D
æ

æ

æ
æ

æ
à

à
à à à

ì

ì
ì ì ì

200 600 1000 1400 1800

0.02

0.04

0.06

0.08

0.10

Compression Error HDepthL @mD

Figure 3.13: Results for boundary recall, undersegmentation error, explained
variation (depth) and compression error (depth) for DASP and two reference
methods plotted over the number of superpixels used.

computed from the depth information are generally very noisy. Results show that
the DASP algorithm is especially good in explaining depth information which is
not surprising as the depth information is not available to the SLIC algorithm,
however DASP also performs better than a naive Adaptive Superpixels on RGB-D
images.

The compression error is a more suitable measure to show how well superpixel
maintain the image feature information and is explained in detail in def. 20. In
fig. B.7 the compression error CE for colour, depth, position and normal infor-
mation is evaluated. Compression error shows similar results than explained
variation, but is more informative as it measures local deviation instead of global
deviation.

Further results for the isoperimetric quotient and other eigenvalue are re-
ported. Fig. B.4 shows the classic isoperimetric quotient IPQ (see def. 18) and
the 3D isoperimetric quotient IPQ3D (see eq. A.13). Properties derived from su-
perpixel ellipsoid matching are visualized in fig. B.5. This includes ThicknessEV ,
EccentricityEV , FlatnessEV and AreaEV .

Evaluation results show that Depth-Adaptive Superpixels performs better than

66 Chapter 3. Depth-Adaptive Superpixels

a pure colour based approach like SLIC. This is not surprising as the depth values
carries additional information which is not available to classical approaches, but
it underlines the benefit of depth measurements for image segmentation. Most
important however, DASP also performs better than a naive approach where depth
information is used in addition to colour in form of a primitive direct product
of feature space and feature metric. This highlights the fact that the intelligent
approach of Depth-Adaptive Superpixels is a valuable contribution to fully unlock
the potential of depth information for RGB-D image segmentation.

4 S-DASP IMAGE SEGMENTATION

s-DASP is a novel segmentation technique for RGB-D images which generates
excellent segments by using both colour and depth information. s-DASP is highly
efficient as it uses the sparse image representation provided by Depth-Adaptive
Superpixels.

Figure 4.1: Top: Input RGB-D image (only colour is shown) and depth-adaptive
superpixels. Bottom: Ultrametric contour graph indicating boundary strength
and final segments.

68 Chapter 4. S-DASP Image Segmentation

4.1 Introduction to s-DASP

As already introduced in §2.1.2, image segmentation aims towards dividing an
image into a set of segments which shall fulfil two criteria: intra-segment simi-
larity and inter-segment dissimilarity [64]. In the previous chapter, the overseg-
mentation technique Depth-Adaptive Superpixels for RGB-D images has been
introduced which provides a solution to the problem of inter-segment similarity
(see §3.1). DASP divides an image into segments of similar pixels, but differ-
ent superpixels may be still similar to each other and in general do not satisfy
inter-segment dissimilarity. In this chapter, the novel image segmentation tech-
nique Depth-Adaptive Superpixel Segmentation (s-DASP) [81] for RGB-D images is
presented. s-DASP combines DASP superpixels into segments which in addition
to inter-region similarity also satisfy inter-segment dissimilarity (see fig. 4.2).

Merging superpixels into larger segments is not a straight forward task as local
cues alone are often ambiguous. Global methods try to solve this problem by
considering the global ensemble of segments in order to make well-informed
decisions about how to merge segments. An important group of methods for
global segmentation is spectral graph theory [15, 27, 21, 6, 11, 17]. In the past,
many methods have been proposed which make use of spectral techniques [7,
45, 46, 72, 75] for segmentation or matching problems. However, spectral graph
analysis requires the computation of eigenvalues and eigenvectors of a matrix
which is slower than quadratic in the number of vertices, thus in the number of
pixels when operated on the full pixel lattice graph. This severely limits the size of
images and imposes high computational costs even when using down-sampled
images.

s-DASP tackles this problem by using spectral graph theory on the sparse
image representation provided by superpixels through DASP instead of using the
full image directly (see fig. 4.3). A simple example demonstrates the impact of

Figure 4.2: Left: Colour image of a possible manual ground truth annotation.
Right: s-DASP image segmentation (colours) using depth-adaptive superpixels
(white lines).

4.2. Spectral graph theory 69

Figure 4.3: From left to right: Dense pixel grid, oversegmentation (using false
colours), superpixels with superpixel graph and superpixel segments.

using superpixels instead of pixels: The resolution provided by the PrimeSense
RGB-D sensor is 640x480 pixels. Using 1200 depth-adaptive superpixels yields
an excellent approximation to the real image preserving most of its information
content (§3.3). However, downsampling this image to 1200 pixels yields an image
of size 40x30, loosing most of the image information. Even using 160x120 pixels, a
common image size for image segmentation databases, would still yield 16 times
more pixels than superpixels and thus a spectral algorithm would be theoretically
several magnitudes slower when assuming a theoretic runtime of O(n2.5) for
sparse eigenvalue computation.

The following list presents a short overview over the Depth-Adaptive Superpixel
Segmentation algorithm; details are explained in §4.3.

1. Compute superpixels with the Depth-Adaptive Superpixels algorithm.

2. Define a weighted graph structure on superpixels expressing local similarity
of neighbouring superpixels.

3. Use spectral graph theory to build an ultrametric contour graph (UCG) over
the superpixel graph.

4. Compute a segmentation of the original image with the help of the UCG.

The remainder of this chapter is outlined as follows: In §4.2 spectral graph the-
ory and several related state-of-the-art methods are introduced. The Depth-Adaptive
Superpixel Segmentation algorithm is presented in detail in §4.3 and a thorough
evaluation and comparison to state-of-the-art algorithm is reported in §4.4.

4.2 Spectral graph theory

This section gives a short introduction to spectral graph theory: First some general
graph theoretic notations (§4.2.1) are introduced and then the Laplacian of a
graph and its relation to connected components of a graph is presented (§4.2.2).
Two important state-of-the-art segmentation techniques using spectral graph
theory are presented at the end of the section in §4.2.3 and §4.2.4.

70 Chapter 4. S-DASP Image Segmentation

4.2.1 General notations for graphs

In the following G = (V ,E) will denote an undirected, weighted graph. Here V are
the graph vertices, n := |V | the number of vertices, and E the set of undirected
and weighted edges. In the following we assume that edges are not directed, edge
weights are always greater than zero, two vertices are at most connected by one
edge and that no vertices is connected to itself. This includes the cases of a regular
graphs, like the image pixel lattice graph, or a more general graph resulting for
example from a superpixel segmentation by connecting neighbouring superpixels.

To indicate that two vertices v,u ∈V are connected by an edge the notation
v ∼ u will be used. The weight of an edge e ∈ E is noted with w(e) and the weight
of an edge between two connected vertices u ∼ v ∈V with w(u, v) ∈R+. If graph
edges are not weighted explicitly, edges are assumed to have an equal weight of 1.
The weight of edges connected to vertex is called the degree of the vertex.

The edge connectivity can also be expressed by using an adjacency matrix
W ∈ Rn×n+ , where Wi j is the weight of the edge between nodes i and j or 0 if
theses nodes are not connected. The adjacency matrix is symmetric as the graph
is assumed to be undirected.

A sequence of vertices v1 ∼ ·· · ∼ vn , vi ∈V , which are pairwise connected by
an edge are called a path. The length of a path p = v1 ∼ ·· · ∼ vn is defined as as
the sum of weights of all its edges:

len(p) :=
n−1∑
i=1

w(vi , vi+1) . (4.1)

The length of the shortest path between two vertices v,u ∈ V is donated with
Lmi n(v,u). For unweighted graphs, Lmi n(v,u)+1 denotes the number of passed
nodes when walking from node u to node v . The length of the shortest path
between a vertex v ∈V and a subset U ⊂V is defined in a straight forward way as
Lmi n(v,U) := minu∈U Lmi n(v,u).

The boundary of a segment is the number of vertices which have a neighbour
which is not part of the segment.

Definition 8. Let G = (V ,E) be a graph, P a partition of the graph nodes V and
S ∈P a segment. The boundary BG (S) of S is defined as

BG (S) := {v ∈ S |∃q ∈V \ S : v ∼ q} . (4.2)

The boundary BG (S) is the subset of vertices of a segment S which are con-
nected to at least one vertex which is not in S itself. The notion of boundary can
be directly extended to partitions.

Definition 9. Let P be a partition. The boundary of the partition is defined as

BG (P) := ⋃
S∈P

BG (S) (4.3)

4.2. Spectral graph theory 71

4.2.2 The Laplacian matrix of a graph

The Laplacian matrix [17] is a construct in graph theory which gives information
about the structure of a graph. We will see in the following, that the number of
eigenvalues of the Laplacian matrix L(G) of a graph G which are 0 is equal to the
number of connected components of G . As seen in the following sections, these
results can be generalized to compute optimal cuts for a connected graph, thus
making the Laplacian a valuable tool in graph segmentation.

Definition 10. The degree matrix D(G) ∈ Rn×n+ of the graph G with adjacency
matrix W ∈Rn×n+ is the diagonal matrix defined as

(
D(G)

)
i i := deg(vi) :=

n∑
j=1

Wi j . (4.4)

Definition 11. The Laplacian matrix L(G) ∈Rn×n of the graph G with adjacency
matrix W ∈Rn×n+ is defined as

L(G) := D(G)−W . (4.5)

Fig. 4.4 shows an example of a simple graph and its Laplacian matrix. All edge
weights are 1 and the numbers indicate node labels and thus row/colum index.

1

23

54

6

2 −1 0 0 −1 0
−1 3 −1 0 −1 0

0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 −1 0 −1 3 0
0 0 0 −1 0 1

Figure 4.4: A simple graph [2] and its Laplacian matrix.

Lemma 2. The Laplacian matrix L(G) is positive-semidefinite.

Proof. Consider an edge e = (e1,e2) ∈ E of G with weight we := We1e2 > 0. We
define the edge Laplacian matrix

(
L(e)

)
i j :=

+we if i = j = e1 or i = j = e2

−we if i = e1 and j = e2 or i = e2 and j = e1

0 otherwise

The edge Laplacian matrix is positive semi-definite as

∀x ∈Rn : xT L(e) x = we (xe1 −xe2)2 ≥ 0

72 Chapter 4. S-DASP Image Segmentation

The Laplacian matrix L(G) can be written as the sum of it’s edge Laplacian matrices:
L(G) =∑

e∈E L(e). Thus we have

xT L(G) x = ∑
e∈E

xT L(e) x = ∑
e∈E

we (xe1 −xe2)2 ≥ 0 (4.6)

As L(G) is symmetric and positive-semidefinite, all its eigenvalues are real and
positive or zero.

Lemma 3. The smallest eigenvalue of the Laplacian matrix L(G) is always 0. The
corresponding eigenvector is (1, . . . ,1)T ∈Rn .

Proof. W (1, . . . ,1)T = (
∑n

j=1 Wi j)i , thus L(G)(1, . . . ,1)T = 0, and thus (1, . . . ,1)T is
an eigenvector of L(G) with eigenvalue 0.

Proposition 1. The Laplacian matrix L(G) has an eigenvalue 0 for each connected
component of G.

Proof. Let I 6= ; be the set of indices of the nodes of one of the connected compo-
nents. Define v ∈Rn as

vi :=
{

1 i ∈ I
0 i 6∈ I

We have L(G) v = 0 for the same reason as in the proof of lemma 3, as edges
with weight greater than 0 are only formed between vertices of the conneted
component. Thus v is an eigenvector with eigenvalue 0. Eigenvectors constructed
in this way are pair-wise orthogonal, thus follows the assertion.

Lemma 4. If the graph G is connected, only the smallest eigenvalue is 0.

Proof. Let x ∈Rn such that L(G) x = 0. By eq. 4.6 we have

0 = xT L(G) x = ∑
e∈E

we (xe1 −xe2)2 ,

which implies xe1 = xe2 for all e = (e1,e2) ∈ E . As the graph G is connected, there is
a path from each vertex to each other vertex, thus all values of x must be equal.
This implies that x is a multiple of the eigenvector (1, . . . ,1)T ∈Rn .

For a connected graph, the second smallest eigenvalue λ2 is called the Fiedler
vector [27] and gives interesting information about how well a graph can be cut
into two segments in terms of minimizing the weight of cut edges.

Definition 12. Let A∩B =V a partition of the graph G = (V ,E). The cut of a the
partition is defined as

cut(A,B) := ∑
a∈A,b∈B

w(a,b) (4.7)

4.2. Spectral graph theory 73

The cut of a two-element partition represents the total weight of edges which
have to be cut to disconnect the two segments. It is 0 if the segments are discon-
nected and small for segments which are only connected by few edges with low
weights.

The minimal possible cut can be estimated using the Fiedler vector:

Proposition 2 (Cheeger’s Inequality). Let Wi j ∈ {0,1} and d be the maximial degree
of all vertices. Define

h∗ := min
A∩B⊂V

cut(A,B)

min(|A|, |B |) ,

then
h2∗
2d

≤λ2 ≤ h∗ . (4.8)

Proof. See [15, 17, 46].

Thus the Fielder vector indicates how well a graph can be partitioned into
two segments in the means of cutting as few edges as possible. These results can
be extended to a better behaving cut measure resulting in the normalized cuts
algorithm explained in the next section.

4.2.3 The normalized cuts algorithm

The normalized cuts algorithm by Shi et al. [72] presents a new measure for the
cut of a graph and provides an algorithm for finding the minimal cut under this
measure based on the Fiedler vector of a generalized eigenvalue problem. In con-
trast to the classical cut measure [84], the normalized cut measure is normalized
with respect to the total possible connectivity of a subset of the graph vertices to
itself. This has the advantage that it does not extensively prefer to cut of small
segments.

The normalized cut measure of a partition A∩B =V is defined as

Ncut(A) := cut(A,B)

cut(A,V)
+ cut(A,B)

cut(B ,V)
. (4.9)

Finding the minimal cut is an NP-hard problem, but approximate solutions can
be found by embedding the problem in the domain of real numbers. Representing
a subset of V by its indicator vector z ∈ {0,1}|V |, it can be shown that the minimal
normalized cut is found by solving

min
z

Ncut(z) = min
x

xT L(G) x

xT D(G) x
(4.10)

under some additional constraints on x. Moreover one can see that the second-smallest
eigenvector of the generalized eigenvalue problem

L(G) x =λD(G) x . (4.11)

74 Chapter 4. S-DASP Image Segmentation

is an approximative solution to eq. 4.10. For details see [72].
If G is connected, the degree matrix D(G) has only non-zero, positive entries.

In this case the generalized eigenvalue problem eq. 4.11 can be transformed into
a standard symmetric eigenvalue problem:

D(G)−
1
2 L(G)D(G)−

1
2 y =λ y . (4.12)

Eigenvectors for the original problem can be computed from the transformed

problem with x = D(G)−
1
2 y . For a diagonal matrix D = (di)i one defines D− 1

2 =
(d

− 1
2

i)i .
On can observer that additional eigenvectors to eigenvalues after the sec-

ond smallest provide further partitions. The Meila-Shi algorithm [53] uses this
observations to find image segmentations without the need of iterative cutting.

4.2.4 Globalization of a local boundary detector

Arbelaéz et al. [7] presented a spectral pixel boundary detector sPb for normal
colour images which uses spectral graph theory to enhance a local multi-scale
boundary detector (mPb) with global image information. For this method the
complete pixel lattice graph is used as the graph G = (V ,E), and the weight of an
edge connecting two pixels i , j is defined as

Wi j := exp

(
− 1

ρ
max
p∈i j

mPb(p)

)
(4.13)

if the distance between pixels i and j is smaller than a fixed radius R and 0
otherwise. i j is the line connecting pixels i and j . Wi j defines pixel similarity
be separating pixels which lie on opposing sides of a strong boundary. For this
graph the k smallest eigenvalues λi and eigenvectors vi of eq. 4.11 are computed
and the observation is made that eigenvectors carry contour information. Thus a
Gaussian directional gradient filter is applied for varying orientations resulting in
the orientation dependent, global boundary detector sPb:

sPb(p,θ) :=
k∑

i=2

1√
λi

∇θ vi (p) . (4.14)

Finally a linear combination between local and global boundary detectors is used
to compute a globalized boundary propability for each pixel.

4.3 Depth-Adaptive Superpixel Segmentation

In the following the Depth-Adaptive Superpixel Segmentation (s-DASP) algorithm
for RGB-D images is presented in detail. s-DASP uses a similar idea as sPb from

4.3. Depth-Adaptive Superpixel Segmentation 75

§4.2.4 and promotes a local boundary detector to a global detector by using spec-
tral graph theory. However s-DASP does not work directly on the dense pixel grid
but on a sparse representation – the set of superpixels provided by DASP. This
demonstrates how a complex theoretical theory like spectral graph segmentation
can be applied in realtime by using an efficient sparse representation like superpix-
els instead of the dense pixel grid. To make it possible, some new ideas have to be
introduced to transport the idea of globalization from regular to arbitrary graphs.
However it will turn out that this generalization is actually a simplification. In ad-
dition s-DASP works with RGB-D images which results in a fundamentally better
segmentation quality due to the additional consideration of depth information.

§4.3.1 describes how a superpixel neighbourhood graph is built on top of
Depth-Adaptive Superpixels. In §4.3.2 this neighbourhood graph is transformed
into an ultrametric contour graph (UCG) using spectral graph theory. The UCG is
used to compute a graph segmentation and thus the final image segmentation in
§4.3.3.

4.3.1 Superpixel neighbourhood graph

The starting point of the Depth-Adaptive Superpixel Segmentation algorithm is
an oversegmentation of an RGB-D image into a set of superpixels computed with
DASP. This superpixel partition P consists of a set of depth-adaptive superpixels,
where each superpixel S ∈P is annotated with a feature vector s ∈ [0|1]3 ×S2

0 ×R3.
The components of the feature vectors are the mean colour sc , mean position sv

and mean normal sn of the corresponding pixels.
s-DASP starts by defining a graph structure G(P) = (P,E(P)) on the set of su-

perpixels by connecting all neighbouring superpixels with edges. Two superpixels
are neighbours, if the superpixel as sets of pixels share a common border on the
pixel grid:

(i , j) ∈ E(P) iff. 1 ≤ i 6= j ≤ n ∧∃p ∈ Si , q ∈ S j : p ∼ q . (4.15)

Due to noisy superpixel boundaries it is beneficial to require that the common
boundary has a minimal length:

(i , j) ∈ E(P) iff. 1 ≤ i 6= j ≤ n ∧|{(p, q) ∈ Si ×S j |p ∼ q}| >Θ . (4.16)

In other words, the superpixel neighbourhood graph connects two superpixels
Si 6= S j if cut(Si ,S j) > Θ with respect to the pixel lattice graph. The superpixel
neighbourhood graph for depth-adaptive superpixels has a well behaving regular
almost hexagonal structure due to the uniform distribution of superpixels. Fig. 4.5
shows the superpixel graph for an example image.

Superpixel feature values si can be used to further improve the superpixel
neighbourhood graph by weighting each edge according to the similarity of the
connected superpixels. Similar superpixels have similar colour, are spatially close
and have normals which point in the same direction. Here a similarity measure
on a superpixel partition is defined by using a distance function dS on superpixel

76 Chapter 4. S-DASP Image Segmentation

Figure 4.5: Left: Depth-adaptive superpixels for an RGB-D image. Right: Neigh-
bourhood graph defined on superpixels.

Figure 4.6: Left: Unweighted depth-adaptive superpixel neighbourhood graph.
Right: Depth-adaptive superpixel similarity graph weighted with Ws (blue to red
to white indicates low to high similarity).

features. The metric dS is a linear combination of metrics defined over superpixel
positions, normals and colour:

dS(s,s′) := ∑
◦=v,n,c

λ◦ dS,◦(s◦,s′◦) (4.17)

The distance value is translated into a similarity value using an exponential func-
tion:

Ws(i , j) :=
{

e−dS(si ,s j) if (i , j) ∈ E(P)
0 otherwise

(4.18)

Edge weights are ranging from 1 for similar superpixels to almost 0 for completely
dissimilar superpixels. Fig. 4.6 shows the weighted superpixel graph for an exam-
ple image.

The individual metrics dS,◦ are chosen as follows:

4.3. Depth-Adaptive Superpixel Segmentation 77

Colour superpixel metric Basically, this can be any colour metric. For simplicity
the Euclidean distance of RGB colour values like in DASP is chosen.

dS,c (c1,c2) := ‖c1 − c2‖ (4.19)

Position superpixel metric As depth-adaptive superpixels are uniformly distributed
in 3D space and have equal radius of R, the expected distance between two
neighbouring superpixels is 2R. Thus for spatial distance a metric is used
which tolerates the expected distance:

dS,v (v1, v2) := max(0,‖v1 − v2‖−2R)

2R
(4.20)

The Euclidean distance between superpixel centres is additionally normal-
ized by the estimated distance of 2R to be independent of the size of super-
pixels.

Normal superpixel metric Normal distance could be measured by the angle be-
tween the normals. However, for three dimensional objects there is a fun-
damental difference between concave and convex geometry edges. While
concave edges often represent an object boundary, convex edges almost al-
ways do not indicate a segment boundary. Thus here a metric is used which
only considers the normal distance for superpixels which form a concave
edge and yields 0 for superpixels which form a convex edge:

dS,n(n1,n2) := max

(
0,(n1 −n2)◦ v1 − v2

‖v1 − v2‖
)

(4.21)

Here v1 and v2 are the corresponding 3D point positions.

4.3.2 A global segment boundary detector for superpixels

For the third step of the algorithm, spectral graph theory from §4.2 is used to com-
pute an ultrametric contour graph (UCG) on the superpixel similarity graph. An
UCG is the generalization of an ultrametric contour map (UCM) [8] for non-regular
graphs. This approach is motivated by the boundary detector sPb presented in
§4.2.4 which considers the full pixel lattice graph and improves a local boundary
detector by computing eigenvalues of the Laplacian. However, eigenvalue com-
putation has a runtime of approximately O(n2.5), thus the performance of sPb is
severely impacted by the size of the graph. The size of the Laplacian is quadratic
in the number of image pixels, and even if a sparse matrix representation is used
this is still a huge number of elements. In this section a more elegant boundary
computation algorithm is presented which uses a non-regular superpixel graph
instead of the dense pixel lattice graph. This does not change the theoretic, asymp-
totic runtime behaviour, but a number of vertices which is 1000 times smaller has
a huge practical impact.

The three steps of the s-DASP global segmentation step are as follows:

78 Chapter 4. S-DASP Image Segmentation

Figure 4.7: Left: Ultrametric contour graph on a DASP neighbourhood graph.
Right: Derived ultrametric contour map on the full image.

1. Compute the graph Laplacian of the superpixel similarity graph

2. Compute k smallest eigenvalues and corresponding eigenvectors

3. Compute the superpixel ultrametric contour graph

The notion ultrametric contour graph is motivated by the concept of an ultra-
metric contour map. An UCM is a function into the positive real numbers defined
on the pixels of an image which indicates the likelihood that a pixel is part of
a segment boundary. In contrast an ultrametric contour graph is defined on a
non-regular graph of an oversegmentation – here the neighbourhood graph of
depth-adaptive superpixels. Each vertex represents a set of pixels in the image
and each edge represents the pixel boundary between the connected superpixels.
The edge weight indicates the likelihood that this pixel boundary piece is part of
segment boundary. Thus an UCG is the sparse analogy of an UCM. It represents a
set of similar boundary pixels, i.e. the boundary of two superpixels, by a single
data point, i.e. the edge weight. An UCG can be converted into an UCM: for each
edge in the graph, the edge weight value is assigned to all segment boundary
image pixels represented by the edge (see fig. 4.7).

Given a connected superpixel graph G with adjacency matrix W ∈Rn×n+ , the
k smallest eigenvalues λt of the generalized eigenvalue problem in eq. 4.12 and
corresponding eigenvectors vt are computed. The first eigenvalue with value 0 is
not used as it does not provide any information as explained in lemma 3. Each
eigenvector assigns a real number to each superpixel. If the absolute difference
of values of adjacent nodes is small this indicates a similar labeling, if it is large a
different label is indicated. The smaller the corresponding eigenvalue, the stronger
the similarity. With this observations, new edge weights on the superpixel graph
structure are defined by the adjacency matrix W g l obal as follows:

W global
i j :=

{ ∑k
t=1

1p
λt
|vt i − vt j | if (i , j) ∈ E

0 otherwise
(4.22)

4.3. Depth-Adaptive Superpixel Segmentation 79

Figure 4.8: s-DASP image segmentations for varying edge cut thresholds.

For the superpixel graph this much simpler approach using local difference
is sufficient as boundary values are not defined on graph nodes but between
nodes on the edges. Thus W g l obal defines an ultrametric contour graph on the
superpixel neighbourhood graph. This implies a ultrametric contour map on the
full image by transferring the boundary strength of an graph edge to all pixels
which form the pixel boundary between superpixels connected by the edge.

4.3.3 Segmentation of the ultrametric contour graph

A segmentation can be performed on an UCG by thresholding edge weights and
computing connected components. This process can also be seen in the gen-
eral context of the UCM as iteratively increasing the cut threshold and merging
one edge after another starting with edges with the lowest weight. At each step
superpixels which are connected by the pruned edge are merged into the same
semantic group. This process creates a continuous transition from the partition
where each superpixel is a segment on its own to the partition of one segment
which contains all superpixels. Several steps in such a transition are shown in
fig. 4.8.

As weights in the UCG depend on many parameters and especially on the
topology of the superpixel neighbourhood graph, it is not easy to derive the

80 Chapter 4. S-DASP Image Segmentation

optimal cut threshold. Instead the parameter is used as a free parameter which
can be adapted to the requirements of a specific applications.

The segmentation on the UCG graph is directly transformed into a segmen-
tation of the underlying pixel grid by assigning to each pixel the segment ID of
its corresponding superpixel. During this process one of the advantages of using
superpixels like Depth-Adaptive Superpixels as the underlying elements become
apparent: the segmentation on the sparse graph generates pixel-accurate image
segments for the full dense pixel grid. This is not possible if a down-sampled
version of the image would have been used.

4.4 Evaluation

Precision and recall are well-known measures from information retrieval which
are widely used to evaluate the quality of a binary classifier:

precision(A|G) = |G ∩ A|
|A| (4.23)

recall(A|G) = |G ∩ A|
|G| (4.24)

Here G is the set of ”relevant” elements which should have been detected and A
is the set of ”retrieved” element which were actually detected by the classifier. It
is important to always consider both quantities together. A detector which only
marks elements as detected if it is very sure can still have a high precision value,
and a detector which marks almost everything as detected can have a high recall
value. As precision and recall formulate different goals which in most cases are
opposite to each other, the combined measure F1-score is used to measure the
overall accuracy of a detector:

F1 := 2
precision · recall

precision+ recall
(4.25)

In the context of image segmentation, segmentations computed by computer
algorithms are often compared against manual ground truth annotations from
humans. As it is difficult to provide a measure to identify segments, a common
method is to compare the boundary of the computed partition P against the
ground truth partition X. Thus precision, recall and F1 score are defined as

precision(P|X) = |B(P)∩B(X)|
|B(P)| (4.26)

recall(P|X) = |B(P)∩B(X)|
|B(X)| (4.27)

F1(P|X) = 2
|B(P)∩B(X)|
|B(P)|+ |B(X)| (4.28)

4.4. Evaluation 81

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Recall

[F=0.59] sSLIC

[F=0.70] gPb−owt−ucm

[F=0.76] sDASP

Figure 4.9: Precision/recall for varying cut threshold for s-DASP, s-SLIC and
gPb-owt-ucm.

In the case of Depth-Adaptive Superpixel Segmentation the quality of com-
puted segmentations is compared against manual ground truth on the supervised
dataset from §3. The segmentation uses a threshold parameter when concrete seg-
ments are computed from the ultrametric contour graph. The higher the threshold
the more segments are merged, the smaller the boundary of the finale partition,
and thus the higher is precision. On the contrary a low threshold leads to more
segments and thus to a low precision and a high recall. Thus the behaviour of
s-DASP is analysed by plotting a curve in a precision/recall coordinate system
and computing the maximal possible F1 score. Fig. 4.9 shows results for precision,
recall and F1 for three algorithms:

• s-DASP: the presented segmentation algorithm which uses DASP superpix-
els and makes full use of the depth information.

• s-SLIC: Like s-DASP but SLIC is used instead of DASP to compute superpix-
els. No depth information is used.

• As a comparison to state-of-the-art algorithms, the dense boundary detector
gPb-owt-ucm (see §4.2.4 and [7]) is used. No depth information is used.

For a fair comparison, all three algorithm have been parametrised to approxi-
mately give the same total number of segments for the final segmentation. Results
for s-DASP and s-SLIC are performed with 1000 superpixels and 5 iterations and
default values for metric weighting parameters. gPb-owt-ucm also uses a su-

82 Chapter 4. S-DASP Image Segmentation

perpixel technique but does not allow an explicit control over the number of
superpixels.

Results demonstrate the superiority of s-DASP to classical image segmentation
algorithms which do not use depth information. The maximial F1 score of 0.76 is
actually already quite near to a typical human F1 score of around 0.8 [7]. Humans
do not achieve a perfect F1 score of 1 when compared to each other due to different
understandings about the definition of a good segment.

In terms of runtime performance, s-DASP and the preprocessing step DASP
together require in average 250ms on a standard single core CPU. This lies in stark
contrast to the runtime of gPb-owt-ucm, which was in average 210 seconds - a
difference of three magnitudes.

Fig. 4.10 shows several segmentation results for images from the ground truth
data set. All images have been computed with identical parameters and the opti-
mal cut threshold after fig. 4.9 was used. s-DASP is capable of merging large planer
surfaces into one segment while at the same time preserving small segments
with only few superpixels. It is also apparent how the depth information is used
to distinguish ambiguous situations where objects with similar appearance are
spatially close to each other. Sometimes at narrow ridges singular superpixels are
split off, which is due to the shortcomings of spectral graph theory.

4.4. Evaluation 83

Figure 4.10: Top to bottom: Four examples for s-DASP segmentations. Left to
right: Colour image, DASP superpixels and s-DASP segments (false colours indi-
cating segments).

5 T-DASP VIDEO SEGMENTATION

t-DASP is a novel streaming video analysis technique for RGB-D video streams
which generates temporal and spatial coherent image segmentations. t-DASP
is highly efficient as it builds upon the sparse image representation provided by
Depth-Adaptive Superpixels.

Figure 5.1: Top: Extract of an RGB-D video stream (colour and depth). Bottom:
Temporal-stable depth-adaptive superpixels and t-DASP video segmentation.

86 Chapter 5. T-DASP Video Segmentation

5.1 Video segmentation

5.1.1 Introduction

Video segmentation is the extension of image segmentation to a temporal se-
quence of images. Ideally the sequence consists of similar images varying only
slightly over time as the camera pose or objects in the scenery change. While the
diversity in appearance is already high for static scenes due to occlusions and
varying shapes, the extension to the temporal domain adds an additional layer
of complexity. Temporal changes include change of perspective due to camera
movement or rotation, relative change of positions or orientation of objects, ar-
ticulations of hierarchical objects like the limbs of a human body, deformation
of soft bodies like squeezing a sponge, or physical phenomena like smoke or the
flow of water. Additionally the rate of change may vary dramatically. Sometimes
almost none or only well-behaved and easy to follow incremental changes happen,
sometimes the rate of change exceeds the framerate of the camera resulting in
motion blur. In moderated video streams, like TV broadcast or films, cuts are
introduced which abruptly change the viewpoint or context from one frame to
the next.

Formally, a video is an extension of a spatial image domainΩ by a temporal
component, resulting in a spatio-temporal domain Ω×R+. For the sake of sim-
plicity, only discrete domains will be considered in this context. Additionally it is
assumed that each image in the video, so called video frame, has the same spatial
resolution, and that the video framerate, i.e. the number of images per second,
is constant. Thus the spatial domain is a two-dimensional finite lattice-graph GI

(the pixel grid) which is extended by a discretised temporal componentN to form
a three-dimensional spatio-temporal finite lattice-graph GV =GI ×N. Between
pixels in consecutive frames there is a temporal connection, thus each pixel has
26 neighbours: nine spatio-temporal neighbours each to pixels in the previous
and next frame, and eight spatial neighbours to pixels in the current frame. In the
following elements in GV will be called spatio-temporal pixels, or simply voxels .

Regarding the length of the video, an important differentiation has to be made:
When speaking of a video, we assume that the video has a finite length and that all
video frames are recorded and known before starting the video segmentation. On
the other side, for a video stream the video is still in the process of being recorded
and only frames up to now are known. This differentiation is relevant, because
online processing of a video streams implies that only frames from the past up to
now are available. Only offline video processing has access to the whole relevant
video sequence and can consider both the past and the future when analysing
a specific video frame. In video segmentation memory is a crucial resource as
already small videos have a huge footprint: For example, an uncompressed RGB
video with resolution 640x480 and a framerate of 30 Hz already requires 1.5 GB
per minute. Thus the number of frames which can be considered for analysis is

5.1. Video segmentation 87

Figure 5.2: Two examples of RGB-D video streams recorded with PrimeSense.
Each shows the colour stream and the depth stream (colour encoding depth).

limited for video processing. Later the context of a video stream will be reduced
by only considering the recent past and not even the full history of frames. This
additionally allows a much more efficient resource usage as only recent frames
have to be kept in memory.

As the structure of videos has been fixed, the crucial information is carried by
a feature annotation, i.e. a mapping for each voxel into a feature space F . For
each time step k a different mapping I(k) : GI →F into the image feature space F

is provided and the mapping of the whole video sequence into the feature space is
noted with V : GV →F , thus V = (I(1),I(2), . . .). Classically the feature space is an
RGB colour space, e.g. F = [0 |1]3, but in the following especially RGB-D video
streams, e.g. F = [0 |1]3 ×R+, will be considered. Fig. 5.2 shows examples of an
RGB-D video stream recorded with a PrimeSense sensor.

The principles of image segmentation can be transferred to sequences of
images in basically two ways. On the one hand, image segmentation techniques
can be extended from a two-dimensional lattice graph to the spatio-temporal
three-dimensional lattice graph GV , essentially treating temporal connections
equal to spatial connections. While this may sound counter-intuitive, one has to
keep in mind that spatial neighbours in an image are already not equal among
each other. The fact that neighbouring pixels are close in the image domain does
not imply that they are semantically related to each other, i.e. close in 3D space
or belonging to the same object. On the other hand video segmentation can
be viewed as a two-phase process: first, segmentations of individual frames are
computed, and second, these segmentations are matched between each other to
establish temporal coherence.

Temporal Depth-Adaptive Superpixels (t-DASP) [83] is a novel video stream
segmentation method which uses a mixed approach to combine spatial and tem-

88 Chapter 5. T-DASP Video Segmentation

Figure 5.3: Depth-Adaptive Superpixels are formed into Temporal Depth-Adaptive
Superpixels. From left to right: dense voxel grid, oversegmentations (using false
colours), superpixels strands, and strand graph with superpixel strand segments.

poral segmentations. First, an enhanced version of Depth-Adaptive Superpixels
is used to compute a temporal-stable oversegmentation for each video frame.
Between theses frames, superpixels are connected to form temporal ”strands”
of superpixels. A strand of superpixels is simply a temporal sequence of super-
pixels which represent the same piece of surface over time. The corresponding
superpixel strand graph is built using the superpixel graph, and used in a spectral
graph segmentation process similar to s-DASP to compute a video segmentation.
Fig. 5.3 illustrates the Temporal Depth-Adaptive Superpixels video segmentation
algorithm.

In the following a state-of-the-art streaming video segmentation framework is
presented (see §5.1.2) which uses a hierarchical segmentation approach. Then
the temporal-stable modification for DASP is discussed in §5.2. Later the t-DASP
algorithm is discussed by presenting the method to create superpixel strands (§5.3)
and the strand graph segmentation process (§5.4). The chapter is concluded with
an evaluation of t-DASP in §5.5.

5.1.2 Streaming Hierarchical Video Segmentation

Xu et al. [85] proposed a method which segments the video stream V into a hier-
archical tree of partitions H= {H0,H1, . . . ,HL}. Here each layer Hl is a partition of
the whole video V and layers form a tree in the sense that each segment S ∈Hl has
exactly one parent in the layer Hl+1 above. The first layer H0 is the full partition
where every spatio-temporal voxel is a segment on its own. The tree can have
several roots as the top partition HL is not required to only have one element. Xu
asks the question how the best partition under a objective function or criterion
E(·|·) can be found by minimizing

H∗ = argmin
H

E(H|V) (5.1)

At this point the Markov assumption is employed to make the optimization
problem traceable. Towards this goal the video is divided into a sequences of

5.2. Temporal-Stable Adaptive Superpixels 89

non-overlapping subsequences, V = (V1,V2, . . . ,Vm), and partitions are computed
for each subsequence, H= (H1,H2, . . . ,Hm). Thus it is assumed, that the partition
of a subsequence Hi does only depend on the last partition Hi−1 and the current
and last video sequence Vi and Vi−1. This allows to decompose the problem:

E(H|V) = E ′′(H1|V1)+
m∑

i=2
E ′(Hi |Vi ,Vi−1,Hi−1) . (5.2)

where E ′ is a sequential segmentation model and E ′′ is the initial segmentation
model. The Markov assumption has two advantages: On the one hand, only the
current and last video sequence have to be stored and considered by the algorithm,
thus saving storage and computation resources. On the other hand, the method
works for video streams where the whole sequence is not known in advance.

In order to estimate E ′(Hi |Vi ,Vi−1,Hi−1) a similar assumption is made by
assuming that the segmentation of a partition layer Hi

l ∈Hi only depends on the

underlying partition layer Hi
l−1, the corresponding layers in the last timeslot Hi−1

l
and Hi−1

l−1, and the current video sequence. Thus

E ′(Hi
l |Vi ,Vi−1,Hi−1) = E ′(Hi

l |Vi ,Vi−1,Hi−1
l ,Hi

l−1,Hi−1
l−1) (5.3)

In order to find the best partition Hi
l which optimizes the objective E ′, a gen-

eral semi-supervised grouping method is developed which builds on top of an
unsupervised, iteratively grouping method. The unsupervised grouping method
is required to construct segmentation results by merging segments of the pre-
vious layer, Hi

l−1 and Hi−1
l−1, into larger segments for the current layer Hi

l . The
semi-supervised extension supervises this grouping process by additionally using
the segmentation information from the previous sequence Hi−1

l−1 as supervised
information. This supervision is realized by an additional merging criteria, which
checks if two small segments belong to different supervised segments in the previ-
ous time slot, and in this case rejects the merging. This additional merging criteria
is explained in more detail in [85].

5.2 Temporal-Stable Adaptive Superpixels

5.2.1 Boundary instability in Adaptive Superpixels

Adaptive Superpixels and Depth-Adaptive Superpixels partition an image into
uniformly distributed superpixels which contain pixels with similar feature val-
ues. Superpixel borders respect image borders by considering the feature map
I : GI →F on the pixel lattice GI (see def. 7). However as superpixels are an over-
segmentation of the image, superpixel borders also occur naturally in regions of
the image where feature values are similar. Here, the shape of superpixels are
close to a Voronoi-Diagram as the feature dependent term in the density-adaptive
metric is small compared to the compactness term. Thus superpixel boundaries

90 Chapter 5. T-DASP Video Segmentation

Figure 5.4: Top left: Colour part of the RGB-D input image. Top right: Mean
image of border images for 12 possible DASP superpixel oversegmentations. Bot-
tom: Detail of the full colour image and a set of different but equally likely DASP
oversegmentations.

are mostly random and depend only on the superpixel centre position. Theses po-
sitions are mainly influenced by initial superpixel seeds computed by the Poisson
disc sampling process, and change only during Density-Adaptive Local Iterative
Clustering to form an uniform distribution. Fig. 5.4 shows this behaviour by dis-
playing equivalent but different superpixel segmentations for the same input
image. Additionally a mean image of superpixel borders is shown which demon-
strates that only the actual image boundaries are stable throughout repeated
oversegmentation of the same image.

For static images there is no need to further influence the choice of theses
boundaries. This changes however when the algorithm is applied on consecutive
frames of a video stream. For a sequence of images which change only slightly
over time, it is desirable to fix segments to a certain local region as long as there
is no change in the superpixel distribution. This has the advantage, that it is
much easier to match individual superpixel from one frame to the next. When
superpixel placement would change for each frame, the matching would be in
general a many-to-many matching. For stable superpixels however the temporal
matching is in most cases one-to-one.

Towards the goal of stable superpixels, I present an extension of Adaptive
Superpixels: Temporal-Stable Adaptive Superpixels (Stable ASP) . Stable ASP uses a
given superpixel oversegmentation to compute a new superpixel segmentation
for an image with similar feature values. To allow as much freedom as necessary
for the superpixel segmentation, the only step which is changed in Stable ASP

5.2. Temporal-Stable Adaptive Superpixels 91

with respect to ASP is the initial clustering of superpixels. Instead of a purely ran-
dom Poisson disc sampling, a conditioned Poisson disc sampling method called
Delta Density Sampling (DDS) is introduced, which builds upon an already given
Poisson disc point distribution and only changes points if the density function
changes. DDS uses the previously introduced Simplified Poisson Disk Sampling
method to compute a stable Poisson disc point distribution. As Depth-Adaptive
Superpixels is an instance of Adaptive Superpixels, the same technique can be
applied directly to Depth-Adaptive Superpixels.

5.2.2 Delta Density Sampling

Delta Density Sampling tries to stabilize the sampling process by using an existing
point sampling {ui

(k−1)} for the density function ρ(k−1) from the previous timestep
to satisfy the target density ρ(k) for the current timestep. The resulting point
sampling {ui

(k)} should have similar properties as if sampled directly from the
current target density while additionally being as close as possible to the point
sampling {ui

(k−1)} from the previous frame. In other words, DDS tries to exploit
the freedom of choice for Poisson disc point sampling to stabilize the sampling
process.

First the delta density∆ρ is computed as the required change in density which
is necessary to satisfy the new density function:

∆ρ = ρ(k) − Aρ(k) (· | {ui
(k−1)}) . (5.4)

Here the density actually realized by the provided point samples after eq. 2.5 is
used as the source density as it represents the density which is currently realized.
The delta density ∆ρ is in general both positive and negative and can not be used
for sampling directly. Thus∆ρ is separated into its positive part ρ+ and its negative
part ρ− computed as

ρ+ = 1

2

(|∆ρ|+∆ρ)
(5.5)

ρ− = 1

2

(|∆ρ|−∆ρ)
(5.6)

ρ+ and ρ− satisfy
∆ρ = ρ+−ρ− and ρ+,ρ− > 0. (5.7)

and can thus be used in a sampling process. ρ+ indicates that points need to be
added as the density is increasing and ρ− indicates the points need to be removed
as the density is decreasing.

These two components are handled by DDS independently as follows (see
fig. 5.5): First, ρ− is used in a normal Simplified Poisson Disk Sampling process to
sample a set of locations where the number of points shall be reduced. For each
sampled point, the original point set is searched and the spatially nearest point
is removed. Second, ρ+ is used in a second SPDS process to sample a new set of

92 Chapter 5. T-DASP Video Segmentation

Figure 5.5: Top from left to right: Point density Aρ(· | {ui }) from previous frame,
components ρ− and ρ+ of the delta density ∆ρ, and target density ρ. Bottom
from left to right: Point samples in subsequent stages of Delta Density Sampling.
Blue points are removed and red points are added.

points for areas where the point density has increased. Theses points are simply
added to the original and reduced point set. The complete algorithm is given in
alg. 5.

The processes of adding and removing points are additive with respect to
the original sampling and thus do not preserve the Poisson disc property of the
sampling as the concrete placement of the original points is not considered. This
can for example result in points being placed to close to already placed points.
However this issue is not investigated further in this context, as normally only few
points are remove or added and DALIC further improves the distribution quality.

5.2.3 Streaming Adaptive Superpixel

Delta Density Sampling can be used in Adaptive Superpixels or Depth-Adaptive
Superpixels to provide temporal-stable superpixels, and thus a streaming super-
pixel computation for a stream of image feature annotation I(k) and a stream of
superpixel densities ρ(k). The procedure is straightforward and summarized in
alg. 6.

For the first timestep Simplified Poisson Disk Sampling (see §2.3.3) is used
to sample a set of initial superpixel clusters U0

(1) from the corresponding initial
density function ρ(1). Then Density-Adaptive Local Iterative Clustering (see §2.4)
assigns pixel to superpixels. For the following timesteps, the set of final superpixels
centres U∗(k−1) after DALIC from the previous timestep t − 1 are used to seed
the sampling of superpixel clusters for the next timestep t using Delta Density
Sampling. Here, SPDS is used again as the underlying sampling method for DDS.

5.2. Temporal-Stable Adaptive Superpixels 93

Algorithm 5 Delta Density Sampling (DDS)

Require: Target density ρ
Require: Set of points U
Require: Poisson Disc Sampling Process PDS, e.g. SPDS
. Compute delta density
∆ρ = ρ− Aρ(· |U)
ρ− = 1

2

(|∆ρ|−∆ρ)
ρ+ = 1

2

(|∆ρ|+∆ρ)
. Remove points
U− = PDS(ρ−)
U ′ =U
for u ∈U− do

U ′ =U ′− {argmin
x∈U

‖x −u‖}

end for
. Add points
U+ = PDS(ρ+)
return U ′∪U+

As for the first timestep, DALIC is used to compute superpixels and thus the final
locations of superpixel centres.

Algorithm 6 Streaming Adaptive Superpixel (Stream-ASP)

Require: Video stream I(1),I(2), . . . and stream of density functions ρ(1),ρ(2), . . .
U0

(1) = SPDS(ρ(1))
U∗(1) = DALIC(ρ(1),I(1),U0

(1))
for t = 2, . . . do

U0
(k) = DDS(ρ(k),U∗(k−1),SPDS)

U∗(k) = DALIC(ρ(k),I(k),U0
(k))

end for

As Delta Density Sampling is a probabilistic process, the benefits are analysed
quantitatively over a full video stream. For each cluster the minimal distance in
screen coordinates to clusters from the previous frame is computed and normal-
ized with respect to the cluster radius. The measured distances are shown in a
histogram for all clusters from all frames in fig. 5.6. The difference between nor-
mal SPDS sampling, which does not consider the distribution from the previous
frame, and DDS which does consider it, are clearly visible. DDS shows a much
higher probability that clusters move only for a small distance. Note that due to
movements in the scene and the probabilistic nature of DDS it is unlikely that
clusters do not move at all.

94 Chapter 5. T-DASP Video Segmentation

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Normalized Cluster Distance @D

F
re

q
u

en
cy

Simplified Poisson Disc Sampling

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Normalized Cluster Distance @D

F
re

q
u

en
cy

Delta Density Sampling

Figure 5.6: Distribution of minimal cluster distance from frame to frame for a
test sequence. Distance is measured in screen coordinates and normalized with
respect to the cluster radius.

5.3 Tempo-spatial strands and strand graph

5.3.1 Spatio-temporal supervoxels

The temporal domain can be used in different ways in video segmentation. A
primitive approach would be the segmentation of each frame independently from
the previous frames. Temporal connections would be established afterwards be-
tween finished segments. While this approach is simple and allows to immediately
use existing image segmentation techniques, it yields poor results as the segmen-
tations are not smooth and the assignment of superpixels between frames is a
difficult or even impossible problem. Another example would be to consider a
video stream as a set of spatio-temporal voxels and try to build spatio-temporal
supervoxels. Here temporal connections are treated like spatial connections and
segmentation techniques could be employed on the full voxel grid. However this
approach uses time the same way as space, which may be a debatable assump-
tion, and is not followed further in this context. An approach which was already
introduced in §5.1.2 segments each frame individually, but uses the segmentation
from the previous timestep as a supervision guideline.

Temporal Depth-Adaptive Superpixels presented in this chapter uses a hybrid
approach which has the advantage of using several frames for the segmentation
process as well as using temporal connections during segmentation for supervi-
sion. t-DASP consists of three steps:

1. Oversegmentations for each RGB-D frame from the video stream are com-
puted using the Temporal-stable Depth-Adaptive Superpixel algorithm from
§5.2.

2. Temporal connections between superpixels are established to form tempo-
ral strands of superpixels. At the same time a weighted graph structure on

5.3. Tempo-spatial strands and strand graph 95

the strands is constructed and updated which represents similarity between
strands.

3. Superpixels strands are grouped into segments using spectral graph theory.

In order to build spatio-temporal strands of superpixels, temporal connections
between the superpixels from the previous frame and the current frame have to be
established. Ideally the connections should be formed only between superpixels
which represent the exact same piece of surface. In general this is not possible
for a dynamically changing environment: As the camera or objects move, parts of
the surface geometry may become occluded or move outside of the field of view.
Additionally objects are not necessary rigid and can thus change their geometric
shape. Due to the complexity of the problem, in this scope, only an approximate
solution will be developed where temporal connections are only formed locally
and additionally tested for plausibility using a simple check. The presented model
does not use any semantic knowledge about scene geometry and does not require
prior 3D models for the scene geometry. This has the disadvantage that the
choice of temporal connections is only performed locally and may not capture
all subtleties. However as models are not required, the method does not required
training, is simple to set up and will work in completely unknown and unrestricted
environments.

5.3.2 Temporal superpixel strands

The streaming superpixels algorithm from §5.2 provides good preconditions to
establish such temporal connectivity between superpixels efficiently. Due to the
gained stability of superpixel positions from frame to frame, it is much easier to
find a direct assignment. When superpixels are sampled independently for each
frame without a stabilizing procedure, the assignment problem is a many-to-many
assignment problem which is often a hard or ill-posed problem. Due to the
stabilization of superpixel positions, this problem can be reduced to an easier
almost one-to-one problem.

Delta Density Sampling (see alg. 5) computes superpixel seed points for the
current frame from superpixel centres from the previous frame by considering the
change in superpixel density. During this process some seed points are deleted,
many seed points are preserved and some new seed points are added. If the
absolute delta density is low, there is a high probability that most seed points are
preserved from frame to frame. For a changing density however seed points are
added and removed accordingly. The correspondence between cluster centres
and seed points induces a direct connectivity on superpixels. Here three cases
are directly derived from the behaviour of Delta Density Sampling: a cluster does
not have a predecessor, a cluster has exactly one predecessor or a cluster from the
previous frame is not continued.

96 Chapter 5. T-DASP Video Segmentation

?

?

?

Figure 5.7: A simplified example with 1-dimensional superpixels from two con-
secutive frames (vertical stripes) connected with each other with temporal con-
nections (black). Blue indicates background, and yellow a vertically moving fore-
ground object. Left: Superpixels with SPDS yield a bad assignment with a typical
greedy approach. Middle: Stable superpixels with DDS give a much better assign-
ment. However some connections may not be correct (red) as they connect objects
from different semantic groups. Right: Stable DDS superpixels with pruning of
incorrect assignments.

Let superpixel partitions from the last and current frame be noted as D(t−1)

and D(t). Each partition is a set of superpixels which is expressed as

D(t) :=
{
s(t)

j |1 ≤ j ≤ n(t)
}

. (5.8)

The connectivity correspondence from Delta Density Sampling is noted as a
mathematical relation as follows:

C (t)
DDS :=

{
(i , j) |seed of superpixel s(t)

j was created from centre of superpixel s(t−1)
i

}
(5.9)

As noted before this relation is almost one-to-one in the sense that for each i there
is at most one j such that (i , j) ∈C (t)

DDS and for each j there is at most one i such

that (i , j) ∈C (t)
DDS.

If the scene is more or less static and thus density, geometry and appearance
are not changing much, there is a high change that superpixels are preserved, not
moving much and still represent the same surface piece. In this case the relation
C (t)

DDS induced from Delta Density Sampling connects the correct superpixels.
However in dynamic scenes, several cases can occur which require a revision of
the initial mapping:

Superpixel movement During Density-Adaptive Local Iterative Clustering super-
pixels can sometimes move quite a large distance depending on the number
of iterations and values in the local feature space.

5.3. Tempo-spatial strands and strand graph 97

Superpixel reassignment When geometry moves quickly in parallel to the image
plane while the superpixel pixel position stays constant, a superpixel can be
reassigned to a new object which is not related to the object to which the
superpixel was assigned before (see fig. 5.7).

To purge erroneous connections an additional test is executed on superpixel
frame-to-frame connections in C (t)

DDS. If a connection (i , j) ∈ C (t)
DDS fails the test,

it is removed from the mapping set (fig. 5.7). In practice a simple threshold on
the change in superpixel position and feature values (i.e. color and normal) has
proven to be sufficient:

If d◦
(
s(t)

j ,◦,s(t−1)
i ,◦

)
≥ θ◦ for any ◦ ∈ {c,n, v} remove (i , j) from C (t)

DDS . (5.10)

The proposed method to establish almost one-to-one connections emerges
directly from superpixels sampling and requires only a simple test on superpixel
feature values. This provides a direct and fast method to solve the general problem
of superpixel correspondence. However more advanced methods can easily be
integrated into the general framework of Temporal Depth-Adaptive Superpixels by
replacing the mapping C (t)

DDS accordingly.
By consecutively connecting new superpixels to superpixels from the previ-

ous frame strands of superpixels Tk are formed. Depending on the superpixel
mapping new strands are created, strands are continued or old strands are not
continued. Superpixel strands may vary in length depending on the dynamic of
the scene. The length of a superpixel strand Tk , i.e. the number of superpixels
which are chained up, is noted with lk . The starting time of a superpixel strand
Tk , i.e. the frame index of its first superpixel, is noted with tk . Thus the frame index
of the last superpixel is tk + lk −1. Additionally as strands which are continued
for one frame are never picked up again, there may be many inactive superpixel
strands, i.e. strands which do not contain a superpixel from the current frame.
Thus a strand Tk is still active if tk + lk −1 equals to the current frame index t .

LetD(t) = {s(t)
j |1 ≤ j ≤ m} be the current set of superpixels. For each superpixel

s(t)
j there is a corresponding superpixel strand Tk . If the sample point correspond-

ing to the superpixel was added during Delta Density Sampling, the corresponding
strand was just added and has length 1, otherwise the strand already has a length
greater than 1. In general each strand Tk consists of a sequence of superpixels:

Tk =
(
s(tk)

j1
, . . . ,s(tk+lk−1)

jlk

)
(5.11)

Where tk is the starting frame of the strand and lk the length of the strand. The
indices j1, . . . , jlk indicate the superpixel index with respect to the correspond-
ing frame. Fig. 5.8 shows a schematic drawing of superpixel strands. For a
clearer presentation 1-dimensional superpixels are displayed instead of the nor-
mal two-dimensional superpixels. Strands are broken when temporal connections
are pruned due to eq. 5.10 or when superpixel are deleted during Delta Density
Sampling (not displayed).

98 Chapter 5. T-DASP Video Segmentation

Figure 5.8: 1-dimensional superpixels from consecutive frames (vertical stripes)
are connected with each other with temporal connections (black lines). Red
crosses mark pruned connections. Blue indicates background, and yellow a verti-
cally moving foreground object. Fat lines overlayed in Grey indicate superpixel
strands which connect many superpixels over time.

Note that the mapping from superpixels to strands is not surjective as strands
are ”closed” when the corresponding superpixel point is removed during Delta
Density Sampling or if the strand can not be continued with respect to eq. 5.10.
This correspondence mapping from superpixel to strands is noted as µ(t)

sT . Thus

T
µ(t)
sT(j) is the strand corresponding to superpixel s(t)

j and regarding the indices in

equation eq. 5.11 we have µ(tk+q)
sT (jq) = k.

5.3.3 Superpixel strand graph

Superpixel strands form a partition of the spatio-temporal graph GV : Each super-
pixel is assigned to exactly one strand and superpixels themselves are a spatial
partition for each frame. In this section a graph structure on superpixel strands
will be constructed which can then be used for segmentation. The superpixel
strand graph GT consists of a set of vertices V (GT) which is formed by the su-
perpixel strands Tk constructed from depth-adaptive superpixels as explained in
the previous section. Edges E(GT) in the graph are derived from the frame-wise
superpixel graphs as explained in the following.

Remember that a superpixel neighbourhood graph structure G (t)
S can be build

on superpixels D(t) by connecting superpixels which are adjacent in the pixel
grid as explained in §4.3.1. Weights Ws for graph edges in the superpixel neigh-
bourhood graph can be computed using a similarity measure like in eq. 4.18.
To derive a graph structure on the superpixel strand graph GT, the connectivity
and similarity measure from these superpixel graphs G (t)

S should be taken into
account.

The straight-forward way to derive edge connectivity is to connect two strands
if there are two superpixels in the same time slice t which are connected in the

5.4. Streaming graph segmentation 99

superpixel graph G (t)
S . The weight of an edge between two superpixel strands is

then computed by averaging the weight of all superpixel edge connections. This
gives the following equation for edge weights WT(p, q) between two superpixel
strands Tp and Tq :

Ws(p, q) =
{

1
|tpq |

∑
t∈tpq W (t)

s

(
µ(t)
sT

−1
(p),µ(t)

sT
−1

(q)
)

if (p, q) ∈ E(GT)

0 otherwise
(5.12)

Here tpq = [
max(tp , tq) | min(tp + lp , tq + lq)−1

]
is the time interval where both

strands have a superpixel. tpq is simply the intersection of the time frame intervals[
tp , tp + lp −1

]
and

[
tq , tq + lq −1

]
of the two superpixel strands.

Note that the computation of edge weights WT after eq. 5.12 already takes into
account the maximal possible number of connections |tpq | due to the overlap of

the superpixel strand time intervals. The corresponding superpixels µ(t)
sT

−1
(p) and

µ(t)
sT

−1
(q) at a given time index t ∈ tpq in the common time interval tpq are not

necessarily connected in GS . It may well be the case that superpixel connections
only exists for some frames, but due to the definition of the set of edges E (GT) this
must be the case for at least one frame. If no such connections exists for a given
time frame it is assumed that the contribution to WT is 0, which is also reflected in
the definition of superpixel edge weights Ws (see eq. 4.18).

Due to the varying length of superpixel strands, the length of the common
time interval |tpq | may vary. This has the effect that edge weights for edges based
on a short common time interval have a lower confidence than those where the
common time interval is longer. For simplicity no further measure is taken to
balance this effect.

The superpixel strand graph is an temporal-spatial augmentation of the spatial
superpixel graphs which in addition to spatial relations also captures temporal
relation. However for superpixel strands temporal relations are modeled in a
different way than spatial relations. Instead of treating time equal to space as it
would be the case for generic supervoxels, a kind of local tracking is employed
where each superpixel tries to track itself over time. The combination of many
such local tracking results are collected in the superpixel strand graph. In the
following section the superpixel strand graph is segmented with the usual spectral
graph segmentation framework to collect superpixel strands into segments and
compute and assign temporal-stable labels to segments.

5.4 Streaming graph segmentation

The superpixel strand graph GT is a segmentation of the spatio-temporal video
stream voxel graph GV which already greatly reduces the number of vertices by
grouping similar voxels into superpixel strands. But in analogy to the segmenta-
tion of the superpixel graph into high-level superpixel segments in §4, a high-level

100 Chapter 5. T-DASP Video Segmentation

segmentation of the superpixel strand graph into high-level superpixel strand
segments is required for further analysis. In this section the methods of spectral
graph theory (see §4.2) will be used again to compute high-level partitions of the
superpixel strand graph. In general, any graph segmentation framework which
can handle non-regular graphs could be used for computing superpixel strand
partitions.

Previously in §4, the superpixel graph GS was computed for one static RGB-D
image at a time. In contrast to this one-time segmentation of the superpixel graph,
the segmentation of the superpixel strand graph G (t)

T needs to be repeated for
each new timestep t as the strand graph is extended with each new frame from
the video stream. An important differentiation has to be made: One can consider
a finite video where all frames are known at the time of analysis. In this case the
superpixel strand graph need to be constructed only once from superpixels of all
frames, superpixel strands are computed only once and the segmentation of the
superpixel strand graph is computed once. On the other side, one can consider
a video stream where only frames in the past are known and it is unknown how
and for how long the video will continue. In this case the superpixel strand graph
is continuously extended with each new frame and segmentations need to be
computed for each new frame.

The computation of superpixel strand segments for video streams poses three
problems which are discussed in the following:

1. Limiting the size of the superpixel strand graph by focusing on recent frames
to avoid huge memory requirements.

2. Using global methods to improve detection of spatio-temporal segment
boundaries.

3. Continuous segment labels from one frame to the next.

5.4.1 Adaptive reduction of the strand graph

First, the size of the superpixel strand graph needs to be reduced to focus on
recent frames to follow the spirit of stream segmentation and to avoid huge
memory consumption. Additionally, a downside of spectral graph theory is the
time-consuming computation of eigenvalues and eigenvectors. Although only
the lowest eigenvalues are required, the process still has a theoretical runtime

of O(n
4
3). For superpixel segmentation the number of superpixels could be con-

trolled directly and a reasonable number of superpixels around 1000 is enough
for most image analysis and segmentation purposes. However in the case of
spatio-temporal superpixel strands the number of strands grows with time. For
the used dataset experiments have shown that the average length of superpixel
strands varies from 10 to 40 superpixels, i.e. frames. This indicates that the num-
ber of superpixel strands increases very fast over time: Using 1000 superpixels and

5.4. Streaming graph segmentation 101

assuming an average strand length of 30, after one minute of video there would be
already 60000 strands in the graph which would exceed a reasonable number of
nodes for spectral graph theory to run in realtime applications.

To solve this issue an approximate solution was chosen where old strands
are deleted from the superpixel graph GT to produce a ”reduced” superpixel
strand graph G∗

T . This procedure highlights the fact that a realtime video stream
segmentation should put the most interest on the current time frame. Information
from past time frames is used in the sense of improving the segmentation of
the current timeframe. Strands are deleted from the strand graph in a simple
procedure where strands with the lowest ”end time”, i.e. ll + tl −1 are deleted until
only a predefined number of maximal strands are left. The maximal number of
strands must be greater than the number of superpixels to guarantee that each
superpixel is represented by a strand.

For a low number of strands only superpixels which are connected via a strand
to the current superpixels are considered, and depending on the dynamic of the
scene, and thus the average length of superpixels, strands may be short. In this
case, the tempo-spatial strand segmentation will have a very short ”memory” and
will be similar to a non-temporal segmentation which considers only the current
superpixel graph. When more strands are considered or the strand length is longer
in average, the tempo-spatial segmentation can include more and more informa-
tion in the segmentation process. This can be essential to resolve occlusions or to
guarantee a more stable segmentation in ambiguous situations.

5.4.2 Globalization of strand graph weights

Edge weights WT express local similarity of superpixel strands. As explained in §4,
local boundary detectors suffer from a couple of issues, and in general, provide
poor performance for the detection of high-level segments. Here the globalization
method described in §4.3.2 on the superpixel graph is re-used and employed
on the superpixel strand graph. Due to the reduction explained in the previous
section, the superpixel strand graph G∗

T is sufficiently small to be analysed with
spectral graph theory.

Using the reduced superpixel strand graph G∗
T with weight matrix W ∗

T the
generalized eigenvalue problem eq. 4.11 is solved:

L(G∗
T) x =λD(G∗

T) x (5.13)

with the diagonal matrix

D(G∗
T)i =

∑
j

W ∗
T (i , j) (5.14)

after eq. 4.4 and the Laplacian

L(G∗
T) = D(G∗

T)−W ∗
T (5.15)

102 Chapter 5. T-DASP Video Segmentation

after eq. 4.5. As explained in §4.2.3 the generalized eigenvalue problem can be
transformed into a standard eigenvalue problem under certain conditions. For
the sake of spectral graph theory only smallest eigenvalues and corresponding
eigenvectors are required, which simplifies the algorithmic computation task as
specialized and thus faster solvers can be chosen.

In analogy to eq. 4.22, new graph weights are derived from eigenvalues λk and
eigenvectors vk :

W global
T (i , j) :=

∑

k
1p
λk

|vki − vk j | if (i , j) ∈ E(G∗
T)

0 otherwise
(5.16)

These new graph weights take into account global information over the whole
graph. They form a globalization of the local boundary descriptor which only
takes into account direct strand-to-strand similarity.

The next step to compute a segmentation on the superpixel strand graph is to

derive segments using the global weights W global
T . In analogy to §4, the weights

W global
T induce an ultrametric contour graph (see §4.3.2) on the superpixel strand

graph. The graph is formed by using superpixel pixel boundaries to compute su-
perpixel strand voxel boundaries. Spatial voxel boundaries can be copied directly
from frame superpixel boundaries. Temporal voxel boundaries are established be-
tween superpixels of adjacent frames if they do not belong to the same superpixel
strand.

5.4.3 Label propagation

The superpixel strand graph could be segmented in analogy to the static case

by thresholding the ultrametric contour graph derived from the weights W global
T .

However at this point an issues arises, because such an independent segmentation
does not consider the segmentation of the previous timestep and thus does not
provide stable segments. Theoretically, a segmentation of the previous strand
graph G (t−1)

T could be quite different from a segmentation of the graph G (t)
T which

additionally considers the current video frame and which may have forgotten
some strands in the past. This can be due to the appearance or disappearance
of geometry from the field of view, due to the change of occlusions or other
phenomena.

StreamGBH [85] solves this problem by adapting the process in which seg-
ments are computed from a ultrametric contour graph. A semi-supervised method
is used where a segmentation from the previous timestep supervises the segmen-
tation of the current timestep (see §5.1.2). For the segmentation of superpixel
strands a similar semi-supervised method can be used. To show the analogy to
StreamGBH, the current segmentation process can be interpreted as a three layer
segmentation: The base layer H0 is the layer of tempo-spatial voxels where each
voxel is in its own segment. The first segmentation layer H1 is the segmentation of

5.4. Streaming graph segmentation 103

voxels into superpixel strands as explained in the previous chapter. The second
layer H2 is a segmentation of superpixel strands which is of interest here and dis-
cussed in the following. Later in this section the segmentation process is adapted
to the special properties of Temporal Depth-Adaptive Superpixels.

5.4.4 Semi-supervised labelling for t-DASP

For simplicity a different notation for segmentations will be used now: Let Γ :
GT →N be a function which assigns an integer as a label to each superpixel strand.
Thus for a superpixel strand T ∈GT the integer Γ(T) indicates the segment to which
the strand is assigned. By defining that two strands are in the same segment if and
only if they are assigned the same label, Γ directly fulfils the requirements for a
partition.

In contrast to StreamGBH, superpixel strands are mostly consistent over sev-
eral timesteps, thus segmentation labels Γ(t−1) for G (t−1)

T can be directly trans-

ferred to G (t)
T . Each superpixel strand T ∈G (t−1)

T ∩G (t)
T which has been continued

from the previous timestep, has been labelled in the previous timestep with a label
Γ(t−1)(T) indicating to which superpixel strand segment the superpixel strand was
assigned previously. This strand labelling Γ(t−1) is considered to be information
which is used to supervise the strand labelling Γ(t) of the current frame. If a strand
has only been added in this timestep, or if no prior labelling exists, as it is the
case for the first timestep, the strand is assigned a new label. Theses strands are
considered to be not supervised. It is important to keep track which labels are
supervised and which are not: Let

U (t) := max({Γ(t−1)(T) |T ∈G (t−1)
T ∩G (t)

T }) (5.17)

the maximal label integer for all supervised strands. The transfer of information
between timesteps is indicated by forming an initial labelling of superpixel strands
Γ(t)

0 defined as:

Γ(t)
0 : G (t)

T →N, T 7→
{
Γ(t−1)(T) if T ∈G (t−1)

T ∩G (t−1)
T (supervised)

a new integer >U (t) otherwise (not supervised)
(5.18)

The semi-supervised segmentation method now iteratively joins segments
depending on edge weight and labels and thus builds a tree of segmentations Γ(t)

i .

The method proceeds as follows: Edges in the graph G (t)
T are sorted by globalized

edge weight W global
T (see eq. 5.16) and processed in ascending order. Weights

W global
T represent a distance measure, so edges which connect the most similar

segments are processed first. We assume a edge has been picked which connects
the superpixel strands Tp and Tq and the corresponding segment labels are thus

ap := Γ(t)
i (Tp) and aq := Γ(t)

i (Tq). Based on ap and aq , labels are either joined or
not joined:

labels ap and aq are joined iff. ap >U (t) ∨aq >U (t) , (5.19)

104 Chapter 5. T-DASP Video Segmentation

The joining rule prevents the merging of supervised labels which should not be
allowed as supervised information shall not be altered. If labels are joined, a new
labelling Γ(t)

i+1 is constructed by replacing all occurrences of the bigger label index
with the smaller label index. This guarantees that the supervised label is preserved
in the case that a supervised and an unsupervised label are joined.

5.4.5 Hysteresis based label propagation

The proposed labelling method so far has been a direct adaption of the semi-
-supervised segmentation method presented in StreamGBH. In the context of
streaming segmentation the method was originally also responsible for establish-
ing temporal connections between frames. For Temporal Depth-Adaptive Super-
pixels this task is already taken over in a more direct way by building superpixel
strands which greatly simplifies the problem of label continuation. Experimental
evaluation has shown that for Temporal Depth-Adaptive Superpixels the label
joining mechanism is too restrictive and can be further improved. The main
segmentation process has already been carried out by spectral graph theory and

is expressed in the globalized edge weights W global
T . The only task remaining is a

reasonable continuation of labels and the assignment of new superpixel strands.
Especially for the latter it is problematic if short strands are assigned to a segment
without the possibility to revoke that decision once more information is available,
i.e. the strand has grown longer. In general due to the Markov assumption made
by StreamGBH, the process has a very short ”memory” which does not allow to
change poor labelling decisions made in the past. Superpixel strands provide
a kind of mid-term memory, as the information of several frames are used to
compute segmentations. In this scenario it is beneficial to allow that labels are
changed based on new information.

Towards this goal, Semi-Supervised Hysteresis Segmentation is presented: A
hysteresis mechanism is added into the labelling method where the weight used to
decide if segments should be joined is based on their current label. Additionally it
is allowed to join supervised segments when the connecting weight is low enough
or to split them if no further connections are present. Semi-Supervised Hysteresis
Segmentation proceeds as follows:

1. Start with a graph G with nodes from G (t)
T and no edges.

2. Sort edges in G (t)
T by weight w , process all edges in ascending order and

apply the following rules:

• ”Forced merge”: Add edge to G if w ≤ tforce.

• Normal merge: Add edge to G if w ≤ tnormal and if not both strand
labels are supervised (eq. 5.19).

• ”Granted merge”: Add edge to G if w ≤ tgrant and both labels are super-
vised and identical.

5.5. Evaluation 105

3. Compute connected components of G .

4. Label components sorted by size in descending order:

• Count how often each label appears in the component and find the
most frequent label

• If the label has not been assigned to a component yet assign it to the
component,

• else create a new label for the component.

For the joining process, Semi-Supervised Hysteresis Segmentation uses three
thresholds tforce < tnormal < tgrant when merging edges which are used depend-
ing on the level of confidence that labels represent the same segment based on
supervised information. The three levels of confidence are:

1. Both labels are supervised and have different labels (low level of confidence)

2. One or both labels are not supervised (medium level of confidence)

3. Both labels are supervised and have the same label (high level of confidence)

5.5 Evaluation

Video segmentation algorithms are not easy to evaluate as most metrics require
ground truth annotations for every video frame which requires a tremendous
amount of work to get significant results. Thus for this evaluation three metrics
are measured which do not require ground truth annotations: explained colour
variation, explained depth variation and segment compactness. In addition, a
qualitative comparison to the method of Xu et al. [85] is presented.

Explained variation (see §A.1) measures how much of the deviation of individ-
ual pixels is explained by the mean value of the whole segment and compactness
(see §A.1) measures if segments are shaped like a disk or elongated and scattered
over the whole image. As t-DASP consists of a two-layer segmentation process,
metrics can be evaluated for both the superpixel and the superpixel segment label.
Here superpixels and superpxiel segments are evaluated individually for every
frame of the video sequence.

As the size of segments plays a crucial role in the quality of superpixels as it is
much easier for small superpixels to give good results, it is expected that the quality
of superpixel segments is lower than the quality of superpixels. Fig. 5.9 shows
results as the mean of the respective metric over a dataset of video sequences.
The figure shows results for a varying number of superpixels of 800, 1000 and
1200 (red line) and it is visible how the quality of superpixels increase with smaller
superpixels. The blue line indicates results for superpixel segments for a varying

106 Chapter 5. T-DASP Video Segmentation

100 400 700 1000 1300
0.0

0.2

0.4

0.6

0.8

1.0

Explained color variation

100 400 700 1000 1300
0.0

0.2

0.4

0.6

0.8

1.0

Explained depth variation

100 400 700 1000 1300
0.0

0.1

0.2

0.3

0.4

0.5

Compactness

Figure 5.9: Evaluation of three metrics for StreamGBH (black) and T-DASP (red:
DASP superpixels, blue: final segments) against the average number of clusters
used per video frame. Left: Explained variation for colour values. Middle: Ex-
plained variation for depth values. Right: Compactness of segments measured
with the isoperimetric quotient.

threshold for cutting the ultrametric contour graph on superpixel strands. A lower
threshold gives more segments and thus again better results.

As a comparison towards state-of-the-art, additional results are reported for
the StreamGBH video segmentation method of Xu et al. which does not use depth
information. This method generates a hierarchy of segmentations with increasing
number of segments towards the leaves of the tree and fig. 5.9 shows results
for all of theses layers (black line). It can be seen that StreamGBH gives better
results for explained colour variation, but much poorer results for explained depth
variation. Additionally segments are much less compact than segments produced
by t-DASP. This highlights the fact that StreamGBH overfits on the available colour
information at the expense of preserving 3D geometry edges. t-DASP which
additionally considers depth information can find a much better balance between
satisfying colour and depth constraints while producing segments with a more
compact shape.

Fig. 5.10 shows this fact quantitatively by comparing a segmentation com-
puted with t-DASP to a segmentation computed with StreamGBH. StreamGBH
segments respect colour information very well but have problems with noise,
shadows and invisible geometry edges. Fig. 5.11 displays a temporal sequence
of segmentations for both t-DASP and StreamGBH. It is visible that both meth-
ods compute sequences with similar temporal coherence, but t-DASP segments
respect 3D geometry edges better.

5.5. Evaluation 107

Figure 5.10: A close-up comparison of segments computed by t-DASP (middle)
and StreamGBH (right). The colour image (left) is provided for reference.

Figure 5.11: Results for two example scenarios - each shows input colour im-
ages (first row), t-DASP segmentation results (second row) and a comparison to
StreamGBH (third row).

Part II

Event-Based SLAM

6 EVENT-BASED VISION

A dynamic vision sensor consists of independently and asynchronously operating
pixels. When a pixel notes a change in illumination it reports its pixel location,
resulting in a sparse stream of pixel events. This stands in contrast to classic
cameras which provide dense images at a fixed framerate and opens a new field of
computer vision – event-based vision.

Events at edges

eDVS sensor

Tracked path

Ceiling

Floor

Figure 6.1: Top: Comparison of a frame-based video stream and pixel events
representing only dynamic changes. Bottom: Processing such a sparse stream of
pixel events requires novel algorithms like Event-based Particle Filter (left) and
enables real-time applications for embedded systems (right).

112 Chapter 6. Event-based vision

6.1 Event-based vision sensors

In the first part of this thesis a sparse data model was computed based on dense
sensor input. While high-level algorithms like s-DASP (§4) and t-DASP (§5) can
work efficiently with DASP (§3), still considerable effort has to be made to convert
the dense sensor data into the sparse representation. In this part of the thesis
another approach to efficient sparse models will be taken, by considering dynamic
vision sensors which directly produce sparse data streams in hardware.

The family of dynamic vision sensors [50, 19] produces a stream of pixel events
which represents only dynamic changes in the perceived brightness. Each pixel
operates asynchronously and independent from all other pixels, and continuously
integrates the measured pixel brightness. When the change in brightness exceeds
a certain dynamically adapted threshold, the pixel fires an event consisting of its
pixel location, a timestamp, and a parity flag indicating if brightness increased
or decreased. This stands in contrast to classic camera sensors which produce
a sequence of still images. All pixels integrate illumination over a fixed time
span defined by the framerate and shutter speed, and for each frame complete
measurements of the whole pixel grid are reported. In the following the word
event will always indicate a pixel event which carries the information when and
where on the pixel grid it occurred.

This main difference between a frame-based and an event-based sensor is
highlighted in fig. 6.2. In vision sensors pixels measure a continuously changing
function value like lighting intensity or red, green and blue intensity for colour
perception. A frame-based sensor samples the function at fixed time-intervals
and reports the current value. The actual change in measured values from one
sample to the next can vary greatly dependent on the rate of change. i.e. the slope,
of the underlying function. On the contrary, an event-based sensor continuously
observes the change of the measured function and reports only if the difference
with respect to the last time a value was reported lies over a given threshold. Here,
the defining quantity is no longer the value itself but the time difference since the

time

quantity

time

quantity

Figure 6.2: Measuring a quantity with a sensor taking samples at fixed time
steps (left) and with an event-based sensor that only fires when the quantity
has changed for a specific amount (right).

6.1. Event-based vision sensors 113

Figure 6.3: Demonstrating the advantages of dynamic vision sensors by com-
paring event images to corresponding color images in three scenarios: cluttered
background (top), high contrast (middle), and fast motions (bottom).

last time an event was reported.

An impression of the data produced from an event-based dynamic vision
sensor is given in fig. 6.3. Here, a classic image sensor is compared to the data
stream generated by a dynamic vision sensor. For the classic image sensor some
of the fixed frames are displayed, which is the normal way to show a video stream
in print. For the visualization of pixel events, a number of consecutive events is
collected, and theses events are display together in form of an image. The colour
of an event pixel indicates if this pixel has reported an increase or decrease in
lighting: white indicates increased lighting, black decreased lighting, and grey that
no event has been reported for this pixel. It is important to note that even though
events are displayed together in images, they actually occur one after another with
continuous timesteps. The ”integrated” visualization in form of frames serves
only as demonstration.

Dynamic vision sensors have four main advantages over classic, frame-based
image sensors. First, the amount of data generated by the sensor is much smaller
as only changes are transmitted and static, redundant information is omitted. This
is especially advantageous for embedded real-time systems. Second, event-generation
has sub-millisecond time resolution making it suitable for high-speed control
applications. A similar framerate may be achieved with conventional high-speed
camera at a much higher financial and computation costs. Third, the automatic

114 Chapter 6. Event-based vision

threshold used for event generation is chosen by every pixel itself. Thus pixels can
reliable detect illumination changes even in the presence of very high contrast
changes within one image. Finally, the sensor implicitly provides pre-processing
for tracking applications which often rely on detecting changes in the image. De-
tecting changes in conventional image streams, using for example background
subtraction [44, 91], requires a high bandwith and is computational expensive.
Of course, dynamic vision sensors have the obvious disadvantage that they can
not see static objects, thus limiting it’s capabilities to detect objects when neither
moving the sensor or the objects. This disadvantage can be alleviated by com-
bining the dynamic vision sensor with a conventional image sensor or even a
combined colour and depth sensor. For example in §8 an event-based sensor will
be combined with a PrimeSense active depth sensor to produce an stream of 3D
point events.

The reduced bandwidth is one of the main issues which lead to a much higher
computational efficiency of algorithms working with dynamic vision sensors.
Table 6.1 lists the specifications of some common video formats and compares
their bandwidth. The amount of data produced by a the embedded dynamic
vision sensor (eDVS) is two magnitudes lower than the bandwidth of a classic
camera sensor. Even a depth-augmented dynamic vision sensor as presented in
§8 only marginally increases the bandwidth. Bandwidth computation assumes
uncompressed data and three 8 bit integers per pixel for red, green and blue colour
value each. For the PrimeSense device (RGB-D) an additional 16 bit integer is used
for the depth information.

Two examples for dynamic vision sensors are the Dynamic Vision Sensor (DVS)
[19] and the Embedded Dynamic Vision Sensor [50] (eDVS) (see fig. 6.4). The DVS
is a commercially available product with excellent optics and can handle up to
one million events per second. The eDVS is a small embedded version of the DVS,
which consumes a marginal amount of power and can handle up to 100,000 events
per second. This is sufficient for most practical applications and in the following
only the eDVS will be used. Table 6.2 shows detailed specifications of the eDVS
and compares them to a classic colour camera sensor.

Dynamic vision sensors have been successfully used in various applications. In
[19], it is used to track the pose of a pencil and balance it in realtime on the tip of a

Name Resolution Framerate Pixel data Bandwidth
PAL 576 x 432 25 Hz RGB / 24 bit 18 MB/s

PrimeSense 640 x 480 30 Hz RGB-D / 40 bit 44 MB/s
HD-TV 1920 x 1080 30 Hz RGB / 24 bit 178 MB/s

FASTCAM SA-X2 640 x 468 40000 Hz RGB / 12 bit 17140 MB/s
eDVS 128 x 128 event-based XY-P / 16 bit 0.2 MB/s

D-eDVS 128 x 128 event-based D-XY-P / 32 bit 0.4 MB/s

Table 6.1: Video stream bandwidth for a selection of video formats

6.1. Event-based vision sensors 115

Figure 6.4: eDVS sensor and various accessories like lens mount, WiFi-module
and eDVS mount.

small actuated robotic arm. In another application, a real-time 3D visual tracking
system was developed [55]. The authors used several high-speed LEDs blinking at
different frequencies as active markers which are detected by an eDVS sensor and a
high-speed 2D tracking algorithm was proposed to identified LEDs and track them
over time. Other research [71, 65] tries to estimate depth information from a stereo
DVS setup. The event-based paradigm is also relevant in a completely different
context. In [67] a method is proposed for detecting the location of natural disasters
using messages from the social media Twitter, so called ”tweets”, as events. They
propose an event-based tracking algorithm which enforces a synchronized timing
and does not consider the asynchronous nature of events.

In this chapter, an event-based particle filter algorithm [80] will be presented

Point Grey Flea 3 eDVS

Dimensions
29 x 29 x 30 mm
(without optics)

23 x 52 x 5 mm
(without optics)

Specification
FL3-U3-13S3C-CS

Sony IMX035 CMOS
1/3”, 3.63 µm

4M 2P 0.25 µm
6 mm x 6.3 mm

Connection USB 3.0 Serial / USB 2.0
Pixel resolution 1328 × 1048 128 × 128

Time resolution
120 fps

(= 1 frame every 8.3 ms)
reaction time ca. 10 µs

deadtime time ca. 100 µs
Bandwidth 1274 MBit/s 4 MBit/s (max.)

Price ca. USD 600 ca. USD 50

Table 6.2: Comparison of a classic image sensor and an Embedded Dynamic Vision
Sensor

116 Chapter 6. Event-based vision

which uses only the sparse stream of pixel events to continuously track the state
of an observed system. The algorithm is very highly efficient and produces a state
estimate for every event, thus working with very high temporal accuracy. The
capabilities of the algorithm are demonstrated in a robot self-localization scenario,
where a robot moves on the ground and observes features on the ceiling.

This chapter is continued with an investigation into the characteristics of
event-based vision in §6.2 and some remarks to the integration of event-based
sensor information in §6.3. In §6.4 the event-based particle filter will be presented
and in §6.5 it will be applied exemplary to a 2D self-localization scenario.

6.2 Characteristics of event-based vision

6.2.1 Sensor model

For this thesis the eDVS sensor is used as an event-based vision sensor. While
many of the following considerations are true for general dynamic vision sensors,
concrete specifications or examples are always given for the eDVS. The eDVS
consists of an S ×S pixel grid, here S = 128, and follows a regular pinhole camera
model. The pinhole camera model states that a point p = (px , py , pz) ∈ R3 is
projected into the pixel location e = (ex ,ey) ∈R following the equation

e =
(

f
px

pz
+ cx , f

py

pz
+ cy

)
, (6.1)

where c = (cx ,cy) ∈R is the optical centre of the projection in pixel coordinates
and f is the pixel focal length parameter. R = [0 |S]2 ⊂R2 is the possible space of
pixel events. f can be computed from the opening angle αfov with

f = S

tan
(1

2αfov
) . (6.2)

Due to limitation of optical lenses, especially small ones, the projection is addi-
tionally distorted. A simple distortion model like

R →R, e 7→ c + (e − c)
(
1+κ1‖e − c‖+κ2‖e − c‖2) (6.3)

proves to be sufficient. In the following it is assumed, that the camera parameters
c and f are known and that event coordinates are already distorted.

6.2.2 Event generation model

The main difference of an event-based image sensor in comparison with a classical
image sensor is the way sensor readings depend on observations. In order to better
understand the nature of event generation, let’s make a thought experiment for
a very simple scenario. Assume the camera is positioned in front of a uniformly

6.2. Characteristics of event-based vision 117

coloured piece of cloth at a fixed distance D . On the piece of cloth there are several
singular points with a high contrast with respect to the colour of the cloth. The
size SW of such a ”feature point” should be very small, such that it always hits
exactly one pixel when projected onto the pixel grid. Remember, for a pinhole
projection the size Spx of such a point on the pixel grid can be computed with

Spx = SW
f

D
. (6.4)

Event generation is influenced by two factors: On the one hand, an event is
generated whenever the projection of a feature point moves from one pixel on the
sensor screen to a neighbouring pixel. If the point moves parallel to the sensor at
distance D this happens in average when the point has moved a world distance of

Wtrig = D

f
(6.5)

(from eq. 6.4 with Spx = 1). On the other hand, the number of generated events
depends directly on the number of feature points G0. Here we assume, that the
sensor generates exactly one event when a feature point traverses from one pixel
to the next. In reality, the effective number of feature points is related to the
contrast and several events may be generated, but this effect can be compensated
with a linear factor and for simplicity is ignored for now.

If there are G0 effective feature points which moved together for a distance of
x, e.g. due to a linear motion of the sensor, the expected number of generated
events is

Ex = x
G0

Wtrig
= x

f G0

D
. (6.6)

For rotations of the sensor about its projection centre c a similar consideration
can be made. A point which is projected into a pixel with distance ri from the
sensor centre c travels a distance of θ ri pixels when the sensor rotates for an angle
of θ (angles are measured in radians). This quantity is directly equal to the number
of generated events.

Eθ =
G0∑
i=1

θ ri (6.7)

Assuming that feature points are uniformly distributed over a disc with radius S
2

around the pixel centre, then the expected number of generated events can be
averaged with

Eθ ≈ θ
S G0

3
(6.8)

The approximation in eq. 6.8 is not fully correct as the disc does not cover the full
rectangular pixel grid. A more accurate approximation computed empirically is
Eθ ≈ 0.38247θS G0.

The expected quantities Ex and Eθ express the number of generated events
when the sensor has moved for a given distance x or rotated around its axis for

118 Chapter 6. Event-based vision

a given angle θ. Conversely the expected movement ∆x and rotation ∆θ can be
computed when a given number of events have occurred. As the equations are
linear, the expected movement is expressed with respect to exactly one event: The
average distance moved for one event is

∆x = D

f G0
. (6.9)

and the average rotation per event is

∆θ =
3

S G0
. (6.10)

For a dynamic model of event generation one sees directly from eq. 6.6 and
eq. 6.8 that

Ex ∝ x and Eθ ∝ θ . (6.11)

This highlights the fact that for a static environment the number of generated
events depends only on the amount of movement or rotation of the image sensor,
and not on its linear and angular velocity. For a fixed distance a slow motion will
generate the same events as a fast motion, only the rate at which events occur will
differ. The velocity of the sensor has only an influence on the speed with which
events are generated, i.e. the event rate is proportional to the sensor velocity. In
practice this property may not be entirely true due to practical limitations of the
eDVS.

6.3 Information integration

Event-based vision sensors provide a stream of singular pixel events where each
pixel event on its own carries only little information. Only a batch of many events
carries enough information to track objects or to compute ego-motion. Thus
when working with a stream of events a crucial question is how to collect and
process, i.e. ”integrate”, knowledge of individual events to form high-level models.

A primitive mechanism to integrate individual events is ”windowing”. Window-
ing collects events for a fixed time interval and processes them at once as a batch.
However this approach is undesirable as it neglects several of the advantages of
event-based vision. The time windows has to be big enough to capture enough
information and events have to be memorized until evaluation which effectively
returns to a frame-based approach. Additionally waiting some time for enough
events can not provide a realtime answer and annihilates the chance to operate
with a high temporal precision. In the following a more suitable event integration
mechanism is presented which works on individual events.

We consider a stream of pixel events (e1, . . . ,en) where each event ei ∈R is a
pixel coordinate. For the following analysis we assume that the function which
extracts information from the event stream is of additive nature. This means that

6.3. Information integration 119

a function f which is defined on a arbitrary set of events E ⊂ R can be also be
evaluated by applying it to all events individually and summing up the results:

f ({e1, . . . ,en}) =
n∑

i=1
f (ei) (6.12)

In computer vision many simple object detection or tracking algorithms are of
additive nature and check for each pixel of an image how well it satisfies a given
model.

The crucial point which shall be analysed here is the temporal influence of
pixel events on the whole measurement. Each event ei is annotated with a times-
tamp ti ∈ R+, thus the index i does not indicate the time of an event but an
continuously incremented unique index. The current time is given by tn , where n
is the number of events observed so far. This extends the simple additive model
from eq. 6.12 to a weighted additive model

f ({e1, . . . ,en}) =
∑n

i=1 w(tn − ti) f (ei)∑n
i=1 w(tn − ti)

(6.13)

where w(tn − ti) is the weight given to an event depending on the elapsed time
since the event happened. Events from a long time ago, i.e. tn − ti is big, should
have less influence on the current evaluation of the system state. For simplicity
we define ri := f (ei) and sn := f ({e1, . . . ,en}), thus

sn =
∑n

i=1 w(tn − ti)ri∑n
i=1 w(tn − ti)

. (6.14)

On the model from eq. 6.14 various possible models for temporal weighting
can be analysed. The simple approach of windowing is realized with

wwin(∆t |T) :=
{

1 ∆t < T

0 else
(6.15)

weighting all events in the given time interval with 1 and ignoring all other events.

6.3.1 Exponential decay

In this context, an approach is investigated where the temporal weight function is
continuous and monotonic, i.e. continuously decreasing. We would like to have a
weight which guarantees

w(x) > w(y) iff x > y and w(x) = w(y) ⇒ x = y . (6.16)

This guarantees that as time proceeds recent partial scores are to some degree
more relevant to the total score. A possible model is exponential decay

wexp(x |λ) := e−λx (6.17)

120 Chapter 6. Event-based vision

with a decay constant 0 <λ ∈R. This model clearly provides monotonic decreasing
weights with increasing time difference.

For computation of an additive information function the exponential model is
especially interesting as it allows to simplify eq. 6.14 by computing the total score
sn by only using the previous total score sn−1 and the current partial score rn in a
linear equation:

sn = (1−α) sn−1 +αrn (6.18)

Such an iterative model has minimal memory footprint as only one variable need
to be memorized at all times and it is computational efficient as the integration of
a new event only requires a simple linear computation.

Proposition 3. For the exponential decay model w(x) = e−λx the total quantity sn

can be computed iteratively as

sn = (1−αn) sn−1 +αn rn , s0 = 0 (6.19)

where αn ∈R+ are constants which only depend on the event timestamps and can
be computed iteratively as

αn = αn−1

αn−1 +e−λ(tn−tn−1)
, α1 = 1. (6.20)

Proof. For simplicity define qi , j := e−λ(ti−t j). The trivial facts qi ,i = 1 and qi ,k qk, j =
qi , j follow directly. Additionally define

An :=
n∑

j=1
e−λ(tn−t j) =

n∑
j=1

qn, j .

Again the trivial facts A1 = 1 and An+1 = 1+qn+1,n An follow directly by inspection.
Eq. 6.14 can be transformed to

sn =
∑n

i=1 e−λ(tn−ti) ri∑n
j=1 e−λ(tn−t j)

=
∑n

i=1 qn,i ri

An
. (6.21)

The proof continues by induction. First check n = 1: From eq. 6.19 we have
s1 = (1−α1) s0 +α1 r1 = r1 which corresponds to s1 = r1 from eq. 6.21.

Now for the induction n → n +1 assume that the assumption is true for sn .
From eq. 6.21 we have:

sn+1 = 1

An+1

n+1∑
i=1

qn+1,i ri = 1

An+1

n+1∑
i=1

qn+1,n qn,i ri =
qn+1,n

An+1

n+1∑
i=1

qn,i ri

= qn+1,n

An+1

(
n∑

i=1
qn,i ri +qn,n+1 rn+1

)
= qn+1,n

An+1

n∑
i=1

qn,i ri + 1

An+1
rn+1

6.3. Information integration 121

= qn+1,n An

An+1
sn + 1

An+1
rn+1 =

(
1− 1

An+1

)
sn + 1

An+1
rn+1 .

The last line follows with the assumption about sn and the iterative rule for An+1.
It remains to be shown that αn+1 = 1

An+1
can be computed by the iterative

formula eq. 6.20. This can be deduced by another induction were the essential
part is the computation

αn

αn +qn,n−1
=

1
An

1
An

+qn,n−1
= 1

1+qn,n−1 An
= 1

An+1
=αn+1 .

Note that αn can also be expressed as

αn = L
(
λ(tn − tn−1)+ lnαn−1

)
(6.22)

where L is the logistic function

L(x) := 1

1+e−x
(6.23)

While the iterative computation of sn with eq. 6.19 seems simple, the compu-
tation of the factor αn after equation eq. 6.20 is daunting. For illustration some
special cases are presented:

1. All events happen at the same time: ti = t ∀i ⇒ An = n and αn = 1
n . Thus

the whole process iteratively computes the mean of all samples. Note that
the influence of the last sample rn gets smaller over time as the constant αn

decreases with the number of samples already recorded.

2. Events happen in fixed time intervals: ti = c + ti−1, t1 = 0, c ∈R+. Let λ> 0
and µ := e−λc , then An = 1+µAn−1, A1 = 1, so An = 1+µ+µ2 + . . .+µn =
1−µn+1

1−µ andαn = 1−µ
1−µn+1 . As µ< 1, we have limn→∞αn = 1−µ. This illustrates

that a constant rate of events requires a constant rate of decay and thus a
constant ”forgetting” of all information.

3. µ= 1
2 in the case above. This gives αn = 1

2− 1
2n

≈ 1
2 and thus sn ≈ 1

2 (sn−1 + rn).

6.3.2 Decay constant for dynamic vision sensors

The decay constant λ in the exponential decay function models how fast infor-
mation is forgotten from one event to the next based on the time since the last
event. This has a direct application for a system in which the state is changing
slowly over time and events occur at random timestamps which are not related
any further to how the system state changes. However in case of dynamic vision

122 Chapter 6. Event-based vision

sensors the number of generated events is directly related to the total movement
of the sensor if the environment is static (see §6.2.2).

From equations eq. 6.11 it follows that the rate of events is proportional to the
velocity of the sensor. This has a strong implication when the state, i.e. position
and rotation, of the dynamic vision sensor should be estimated. When the time
difference between events is large the previous state should not be forgotten as
fast as when the time difference is small. Large time differences indicate that the
sensor has moved only little and that the previous state estimate is still quite valid.
Thus for a dynamic vision sensor it is reasonable to choose the decay constant
based on the velocity which itself is proportional to the event rate:

λ(t) ∝‖∂t x(t)‖+|∂t θ(t)|∝ ∂t E(t) (6.24)

Proposition 4. If the decay constant λ(t) is proportional to the rate of events ∂t E (t)
the weight function w in the exponential decay model (see eq. 6.17) is constant.

Proof. The time between events ∆T is directly related to the event rate:

∆T (t) ∝ (
∂t E(t)

)−1

We get

λ(t) ∝ ∂t E(t) ∝ (
∆T (t)

)−1

which gives w(∆T (t)) = e−λ(t)∆T (t) ∝ 1.

We see that for information integration with a dynamic vision sensor all events
are weighted equally and independently from their timesteps. With eq. 6.20 this
results in

αn = αn−1

αn−1 +C
(6.25)

for the iterative update model in proposition 3 with a constant 0 <C < 1. Addi-
tionally:

lim
n→∞αn = 1−C = const. (6.26)

as seen previously in the examples in §6.3.1.
The choice of the constant C and thus the decay constant α is more or less a

free variable. A low decay introduces a smoothing effect while a high decay may
be prone to noise. The decay constant can be transformed to a quantity which has
an intuitive explanation by requiring that the last G0 events have a total relative
influence on the total score of β. By inspections one sees that this results in

α= 1− G0

√
1−β . (6.27)

As an example: For a choice of β= 0.95 and G0 = 250 this gives α≈ 0.012.

6.4. Event-based particle filtering 123

6.4 Event-based particle filtering

As seen previously in §6.2 and §6.3 dynamic vision sensors introduce a new prin-
ciple of visual processing. The implications and benefits are further investigated
here by adapting the classic particle filter algorithm [37] to the characteristics of
dynamic vision sensors. The resulting Event-based Particle Filter (EB-PF) algo-
rithm [80] is a novel particle filter algorithm suitable for ego-motion or object
tracking.

In the following, a general introduction into temporal Bayesian networks and
the classical particle filter algorithm is given in §6.4.1. Afterwards the Event-based
Particle Filter algorithm is presented in §6.4.2.

6.4.1 Dynamic Bayesian networks and Condensation

A Bayesian network is a probabilistic graphical model for representing random
variables and their conditional dependencies. In contrast to other networks like
a Markov network, a Bayesian network explicitly requires that dependencies be-
tween its random variables are describes as a directed acyclic graph. This limita-
tion simplifies inference and learning of Bayesian networks.

A dynamic Bayesian network models the temporal relation of random vari-
ables which change in discrete steps over time. For a dynamic Bayesian network
a Markov assumption is used which states that variables only depend on other
variables from the same timestep or on variables from the previous timestep. Un-
der a Markov assumption random variables may not depend on random variables
which lie more than one timestep in the past or even in the future.

For this thesis the visual tracking of a system state is investigated. The systems
state is denoted with X t where the subscript t indicates the discrete timestep. For
the estimation of ego-motion or tracking of an object the system state would be
the position and the orientation of the sensor or object. The system state shall be
deduced with the help of an observation Zt which was made at the same timestep
t . The series of all observations until now is denoted with Zt = (Z1, . . . , Zt). The
corresponding dynamic temporal network is depicted in fig. 6.5.

Since the system state shall be deduced from the set of observations one is
interested in P (X t |Zt), which indicates the probability of a state given a specific
sequence of observations. As explained in [37] the Markov assumption can be
used to transform this into

P (X t |Zt) ∝ P (Zt |X t)
∫

P (X t |X t−1)P (X t−1|Zt−1)d X t−1 . (6.28)

This equation expresses an iterative model to compute the desired probability
using an estimate from the previous timestep and probabilistic models describing
the system.

The motion model P (X t |X t−1) of the system describes how the system devel-
ops naturally from one timestep to the next. For example, when computing the

124 Chapter 6. Event-based vision

Z(t)

X(t)

Z(t-1)

X(t-1)X(t-2) X(t+1)

Z(t-2) Z(t+1)

Figure 6.5: A temporal Bayesian network for tracking purposes. The blue arrow
corresponds to the motion model P (X t |X t−1) and the red arrow to the sensor
model P (Zt |X t).

pose of a moving robot this would be an estimate on the dynamics of the robot,
i.e. the estimated or maximum possible distance the robot can move between two
timesteps. P (X t−1|Zt−1) is the sensor model which expresses the probability that
a measurement occurs given a specific system state. For the example of a moving
robot, the sensor model would describe how likely the current measured image
from the visual sensor is, given that the robot is at a hypothetical pose. Theses two
models correspond directly to the highlighted conditional probabilities in fig. 6.5.

For an algorithm which computes concrete probabilities for the state estimate,
one has to decide on a feasible method to represent probability distributions
over a possibly high-dimensional state space. One possible way is to represent a
probability distribution by a weighted set of sample points. The corresponding
computational framework is a particle filter which has been used in the Conden-
sation algorithm for tracking articulated objects [37].

The Condensation algorithm represents a probability distribution over the
state spaceΩ by a set of samples {p1, . . . , pn} ⊂Ω. Each sample pi is weighted by
a sample weight wi ∈R+. The combination of sample and weight in the context
of particle filters is often called particle. Here two representations are possible.
The direct way is expressing the probability P (x) of a specific subset U ∈ Ω by
representing it by one sample and setting the weight proportional to the inte-
grated probability

∫
U P (x) over this subset. Another way is using equally weighted

samples which are distributed over the domain Ω such that each sample point
represents a subset of equal integrated probability. The Condensation algorithm
alternates between theses two representations.

The Condensation particle filter algorithm proceeds as follows:

1. Resampling: New samples {p(t)
1 , . . . , p(t)

n } are drawn from the probability

distribution represented by particle samples {p(t−1)
1 , . . . , p(t−1)

n } and particle

weights {w (t−1)
1 , . . . , w (t−1)

n } from the previous timestep. For the very first

6.4. Event-based particle filtering 125

timestep an random distribution is chosen or an initial guess is provided
manually.

2. Motion model: Each sample p(t)
i is propagated according to the given mo-

tion model P (X t |X t−1). A simple form of a motion model which can be
sufficient for many applications is white noise: p(t)

i =N (p(t)
i ,Σ).

3. Sensor model: Sample weights are updated to adjust the current belief using
the information gained from the current observation Zt : w (t)

i = P (Zt |p(t)
i).

Afterwards the weights are normalized.

The representation of the state space probability distribution by a set of parti-
cles has the main advantage that multi-modal distributions can be represented
easily and that the distributions focuses on regions in the state space which have
a high probability. Particle filters are also strikingly easy to implement – one ”for
loop” is enough. Moreover it has been shown that particle filters give optimal
solutions when the number of particles goes towards infinity.

However for a high-dimensional state space, also a large number of particles is
required, and when the number of dimensions increases the number of particles
basically has to increases exponentially. The problems gets worse when poor
motion models or ambiguous sensor models are used. When the function of the
motion model is neglected the problem of tracking in a high-dimensional state
space is basically a search problem. To find the optimum solution all possibilities
have to be checked and to find a solution which is optimal up to some error the
state space has to be covered sufficiently dense. With particle filters, this problem
can be reduced with factored sampling, but this requires additional knowledge or
additional constraints limiting the generality.

6.4.2 The event-based particle filter algorithm

A typical application of a particle filter is tracking an object which is observed by a
camera. For each new frame the last state estimate is updated using the motion
model and the current image is used in the sensor model to update particle
scores accordingly. The particle filter algorithm provides a new state estimate
for every new measurement. Particle filters can work with ambiguous sensor
information, e.g. partial occlusion or ambiguous sensor information, but in a
classical application for most frames fairly accurate conclusions about the system
state are possible.

This procedure could be translated to dynamic vision sensors by using indi-
vidual events as measurements and running one iteration of the Condensation
algorithm for each new event. Due to two main reasons this is disadvantageous.
For an event based sensor an individual measurement consists of only one pixel
event. The information from one individual pixel is highly ambiguous and ad-
ditionally may be misleading due to sensor noise. Thus if sample weights are
computed based on only one event, this may have very strong and undesired

126 Chapter 6. Event-based vision

Initial distribution Motion model

Sensor modelResampling

Figure 6.6: The process of the Event-based Particle Filter algorithm. Motion model
and sensor model are applied for every new observation, i.e. retina pixel event.
Particle score updates due to observations are smoothed by using an exponential
decay model. Resampling is only executed periodically when a certain amount of
new information, i.e. a certain number of new events, has been gathered.

implications on the reselection of particles. The second disadvantage is that the
resampling step is executed for every event. For a classic application the com-
putational overhead of the Condensation algorithm compared to the complexity
of the motion model and especially the sensor model is very low. For an event
based sensor only one pixel needs to be evaluated with the sensor model which
normally has negligible runtime and thus constant resampling is a waste of time.

In the following the Event-based Particle Filter (EB-PF) algorithm [80] is pre-
sented which adapts the classic particle filter algorithm to yield an efficient com-
putational model for an event-based stream of pixel events. EB-PF changes the
classic Condensation algorithm at two key points. First, the sample weight uses
the method of information integration derived for event-based sensors in §6.3.
Second, the resampling step is delayed until a specific number of events has been
observed. Fig. 6.6 visualizes the procedure of the EB-PF algorithm and details are
explained in the following.

As explained earlier exponential decay provides a reasonable and easy way
to evaluate a separable evaluation function over a set of events where individual
contributions are weighted based on the elapsed time since the event happened.
For the computation of sample weights the exponential decay model is used to

6.4. Event-based particle filtering 127

provide a smooth update rule for sample weights:

s(t)
i = (1−α) s(t−1)

i +αP (et |X t = p(t)
i) , s(0)

i = 1. (6.29)

Here et is the current event, i.e. observation, which is used to update sample
weights.

The decay constant α models how large the influence of recent changes in
the state should be in comparison to the past. As observed earlier in §6.3.2, the
decay constant α is (almost) constant and independent of event timesteps for
dynamic vision sensors. It can be computed for example by specifying how big the
relative influence of the recent events on the total score should be (see eq. 6.27).
It is important to note that the decay model from eq. 6.29 is executed per event,
and not in fixed time intervals, and thus the rate of change in particle scores is
proportional to the number of events and thus the amount of change perceived by
the sensor. For a fast motion many events are generated in a short time interval,
thus particle scores quickly adapt to the new state over time. For slower motions,
when only few events happen in a longer time interval, particle scores are only
changing slowly.

The resampling step basically transforms between the two representations of
probability distributions mentioned earlier. The transformation is necessary to
optimize the representation of the probability distribution by moving samples
to areas with high probability. However as individual events carry only little
information, this optimization step is only required after a sufficient amount of
information has been gained. When assuming that the information content of
each event is similar, which is indeed a good assumption as events are produced
due to changes in the scene, it is reasonable to execute resampling only every n-th
event.

The motion model step is similar to the classic particle filter, but with an
interesting twist. For dynamic vision sensors the event rate depends on the linear
and angular velocity of the tracked entity. As explained in §6.2.2, the amount of
change in position and rotation can be estimated for an individual event. For an
application where the pose of the sensor or a static object is tracked and for a
constant depth D or a small depth-range, this allows to express the motion model
independently from the concrete dynamics, e.g. from the maximum possible
velocity. This is a major simplification as the dynamics of an object are in general
difficult to estimate and may vary greatly.

The Event-based Particle Filter algorithm is summarized in alg. 7. The algo-
rithm can be formulated with very few lines of codes due to the fact that most of the
application specific complexity is represented in the motion model MM(· |pi) and
the sensor model P (ek |pi). A suitable choice for the sensor model when the un-
derlying dynamics are too complex is random diffusion: MM(· |pi) :=N (· |pi ,Σ).
The resampling step which is executed only every K -th event is not further speci-
fied in the algorithm. By using binary search it has a straight forward implemen-
tation with runtime O(log(n)). Other implementations like a resampling wheel

128 Chapter 6. Event-based vision

are even faster but give only approximative results. The algorithm can report a
state estimate for every event by choosing for example the currently best particle.
Different strategies like the weighted mean of the best particles are also possi-
ble. It would be best if the probability distribution could be used directly by the
encapsulating application which further processes the state estimates.

In order to increase runtime performance particles are collected in small
batches of size B and the event loop in algorithm alg. 7 is execute per batch.
Motion model and decay constant have to be adapted accordingly. For a diffusion
motion model using a normal distribution this change is simple. The distribution
variance of the sum of several normally distributed random variables can be found
as the sum of the individual variances. The score update also has to be changed
as several events are processed together as one bit of information:

si = (1−α)B si + 1− (1−α)B

B

B−1∑
j=0

P (ek+ j |pi) (6.30)

Eq. 6.30 follows by inspection when assuming that all events in the batch happen
at the same time. Batching is solely used as a performance measure and a does
not alter the nature of the EB-PF algorithm.

Algorithm 7 Event-based Particle Filter (EB-PF)

Require: N number of particles
Require: K number of events to wait until resampling
Require: pstart initial state estimate

for i = 1 → N do
pi = pstart

si = 1
end for
for each event ek do

if k ≡ 0 mod K then
resample({pi }, {si })

end if
for i = 1 → N do

Sample new pi from MM(· |pi)
si = (1−α) si +αP (ek |pi)

end for
i∗ = argmin1≤i≤N si

report pi∗ as current estimate
end for

6.5. Application: Robot self localization (2D) 129

6.5 Application: Robot self localization (2D)

For a first example how the Event-based Particle Filter algorithm can be used
in an embedded robotic system, EB-PF is used in a 2D robot self-localization
scenario with a pre-build fixed map. A small robot with an Embedded Dynamic
Vision Sensor mounted on top drives on a flat floor and observes features on the
ceiling (see fig. 6.7). Due to the general uniform appearance of office ceilings,
additional artificial features were attached onto the ceiling to provide enough
tracking evidence for this experiment. The Event-based Particle Filter algorithm
itself is not able to create a model of the object it is tracking, i.e. a map of the
environment in this case. This drawback is addressed later in §7 and for now
a pre-build map has to be provided manually. The ceiling map is taken as a
photograph from the ground and converted into a black and white edge map
suitable to the sensor model of the eDVS (see fig. 6.8).

As the robot is limited to driving on the ground, the system stateΩ is the pose
space of a two-dimensional object:

Ω := SE(2) =R2 ×SO(2) . (6.31)

In general SE(n) is the special Euclidean group which describes orientation pre-
serving isometries of the n-dimensional space, i.e. exactly the possible mo-
tions of a rigid n-dimensional object. SO(n) is the special orthogonal group
which describes orientation preserving rotations in n-dimensional space. For
the two-dimensional case, SO(2) can be represented simply by an angle θ ∈ R
with the additional constraint that the angle ”wraps” after one full turn, i.e. θ
and θ+2π represent the same rotation. Thus a pose p ∈Ω can be represented
as p = (x, y,θ) ∈ R3 where (x, y) ∈ R2 is the position and θ ∈ R the rotation of the
robotic entity driving on the ground.

In the following the two models used by the particle filter are discussed: The
sensor model in §6.5.1 and the motion model in §6.5.2. Afterwards the sys-
tem is evaluated in §6.5.3 using a simulation and ground truth data from an
overhead-tracking system.

6.5.1 The sensor model

For a retina event e = (eu ,ev) ∈ R and a pose p = (px , py ,θ) ∈ SE(2) one can
compute a ray in world coordinates which starts at the sensor’s optical centre and
goes through the sensor pixel location e. Using eq. 6.1, the ray direction in camera
coordinates for event e is:

gaze(e) :=
 eu − cu

ev − cv

f

 (6.32)

130 Chapter 6. Event-based vision

Events at edges

eDVS sensor

Tracked path

Ceiling

Floor

Figure 6.7: Application scenario for the Event-based Particle Filter algorithm. A
robot drives on the floor and observes features on the ceiling. It localizes itself by
using only the sparse event stream from the eDVS sensor.

The robot pose p defines the affine transformation from camera to world coordi-
nates as:

Tp (v) :=
 px

py

0

+Rz(θ) v (6.33)

where Rz ∈R3×3 is the rotation matrix which rotates around the z-axis.

Rz(θ) :=
 cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

 (6.34)

Together this yields the ray in world coordinates as

ray(e, p) := {
Tp (λgaze(e)) |λ ∈R+

}
. (6.35)

To evaluate how well an event e explains a hypothetical pose p, the minimal
distance from ray(e, p) to all features on the map M is computed:

fdi st (e, p) := min
s∈M

d
(
ray(e, p), s

)
. (6.36)

For this application the map M is realized as a dense grid which contains the
manually provided map data – see fig. 6.8 for an example. As the map is in general
only sparsely populated a more condensed representation as a set of lines or a
sparse spatial data structure like an quadtree could be chosen.

With the distance objective function fdi st , the final sensor model function
P (e |p) is defined as

P (e |p) ∝ exp

(
−1

2

(
fdi st

(
e, p

)
γWtrig

)2)
. (6.37)

6.5. Application: Robot self localization (2D) 131

Figure 6.8: Left: Actual colour photo from the ceiling. Right: Corresponding
edge map after Canny edge detector used as a ceiling map for event-based robot
self-localization.

The normalization factor for the distance fdi st is expressed as a multiple of the
distance Wtrig corresponding to the size of one pixel of the retina projected onto
the ceiling (see eq. 6.5). We chose γ= 0.5 to represent the fact that pixel events
are accurate up to half a pixel. The use of the Gaussian function in eq. 6.37 is
a common choice to model pixel discretization errors and a certain amount of
measurement uncertainty.

As the retina sensor is pointed at the ceiling, is is reasonable to assume that
all events occure only due to edges on the ceiling. We assume that the ceiling is
flat, parallel to the ground and at a fixed height D above ground. All edges on
the ceiling are known and carthographed in the grid map. In this scenario, the
computation process can be simplified by caching the distance function fdi st and
thus the sensor model function. The intersection of camera rays ray(e, p) with
the ceiling plane are found at λ= D

f . Thus the value of P (e |p) can be computed
directly with just a simple lookup in the cached grid map.

6.5.2 The motion model

It is difficult to derive an accurate motion model for dynamic vision sensors as
individual events may be due to rotation or translation and no prior assumption
about the relative occurrence of translation and rotation can be made in general.
A typical choice in such an ambiguous scenario with imperfect information is a
random diffusion model. Here, a normal distribution N (· |0,Σ) with zero mean
and covariance matrix Σ is used to form the motion model and to distribute new
particles around the existing particle positions:

MM(· |p) :=N (· |p,Σ) with Σ=
 ∆2

x 0 0
0 ∆2

x 0
0 0 ∆2

θ

 . (6.38)

132 Chapter 6. Event-based vision

∆x is the moved distance (see eq. 6.9) and∆θ the rotated angle (see eq. 6.10) which
happens in average for one singular event.

Note that the motion model does not depend on the elapsed time. For dy-
namic vision sensors the amount of movement is proportional to the number
of generated events. Thus in a 2D scenario it is possible to directly estimate the
possible movement due to one event.

The motion model MMB for the optimized batch version can be derived as

MMB (p) =N (p,B Σ) (6.39)

This is due to the well known fact that the variance of the sum of two normal
distributed variables is the sum of the two individual variances:

N (µ1,σ2
1)+N (µ2,σ2

2) =N (µ1 +µ2,σ2
1 +σ2

2) . (6.40)

Odometry is not used to estimate the pose of the robot based on informa-
tion from rotational encoders in the robot wheels. While odometry can be used
successfully, it requires a thorough calibration of sensors and is prone to many
errors like varying friction coefficients depending on the nature of the ground or
even wheel slip, and noise and integration errors in general. Additionally it is not
straight forward to provide good movement estimates from odometry for singular
events as the time difference between events is in general very small and varies
greatly depending on the actual speed of the robot.

6.5.3 Evaluation

The proposed Event-based Particle Filter algorithm is evaluated in two ways:
with artificial simulated events for a manually given path and map, and with
experimental data from the real sensor using ground truth data for evaluation.
In both cases we assume that a robot is driving on the floor, that the sensor is
mounted to point directly to the ceiling, which is D = 2.59 meters over the sensor,
and that all event generating features are on the ceiling. Tracking was performed
with a batch size of 3, a particle count of 50 and resampling after 100 events if not
mentioned otherwise.

Fig. 6.9 (right) shows an example result from experimental data. In this figure
the black dots corresponds to individual pose estimates after each resampling
step. Using all pose estimates after each event is infeasible to plot as there are
millions of events. The figure demonstrated that individual pose estimates are
distributed along the path with a low mean deviation. This random deviation
can be explained perfectly by the coarse resolution of the sensor. One pixel on
the sensor corresponds to a distance of approximately 3 cm on the ceiling, i.e.
Wtrig = 0.03 (given the fixed distance of D = 2.59 m). Due to the randomness in the
computed path, a mean filter is used to smooth the path which is shown as a blue
line. The ground truth path, which was either given for simulation or tracked with

6.5. Application: Robot self localization (2D) 133

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

-1.0 -0.5 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 6.9: Driving robot with a marker at different positions along its path (left),
captured ground truth data (middle), and tracking results of EB-SLAM-2D (right).
Here black dots are path results for individual events.

an external marker-based tracking system, is plotted in red. Results show that the
smoothed path is very close to the original path for results from simulation.

For the simulation a random map was generated consisting of several ran-
domly placed lines and circles. Several paths were created manually and used to
simulate event generation for the robot driving along the path. Event generation
was performed by simulating each pixel independently and observing the change
in illumination projected into the pixel using a model similar to the sensor model
from eq. 6.37. Afterwards the tracker was executed using map and events to per-
form the event-based tracking without any knowledge about the original path.
Fig. B.8 shows results for several different paths using a random map, artificially
generated path and sensor simulation. For theses scenarios the average root mean
square error in position was 0.6 cm.

To proof the very good quality of the Event-based Particle Filter in practical
applications, experimental data is collected by driving a real robot manually
over the ground and recording the actual movement with an overhead tracking
system. The robot used in the experiments is a small wheeled robot (see fig. 6.7)
controlled remotely by a human using a gamepad. In order to capture ground
truth data from the moving robot a marker was installed on it and tracked using
the ARToolKit [40]. Fig. 6.9 depicts the path of the robot driving on the floor and
tracked ground truth data together with tracking results. An artificial line pattern
was attached on the ceiling and a map was generated during a pre-processing
step (see fig. 6.8). This map was used during particle evaluation in the objective
function (see eq. 6.37). The special planar structure allowed an efficient caching
of the objective for higher tracking performance. Fig. B.9 shows tracking results
for experimental data. The conditions are similar to the simulation environment
as the parameters for simulation have been chosen to match the real scenario
as close as possible. For theses scenarios the average root mean square error in
position was 5.4 cm.

In table 6.3 the mean runtime of the Event-based Particle Filter algorithm are
reported for varying parameters. Results were measured on a normal single-core
2.53 GHz CPU. The event-based sensor normally produces less than 40000 events

134 Chapter 6. Event-based vision

per second, thus even an unoptimized implementation with overhead for de-
bugging and visualization can easily run in realtime. Additionally the memory
requirements of EB-PF itself are very low: for each particle a state estimate and a
weight needs to be memorized. This makes EB-PF well suitable for direct imple-
mentation on an embedded platform.

Table 6.3: Algorithm runtime for selected parameters

Batch Size Particle Count Speed [events/s]

1
50 34400

100 18100
250 7500

3
50 74800

100 40400
250 17200

7 EVENT-BASED SLAM

EB-SLAM is a novel simultaneous localization and mapping algorithm for dynamic
vision sensors like the eDVS. The algorithm works completely event-based and
makes efficient use of the sparsity of the event-based data stream.

Pose Estimate

Map

Events at edges

eDVS sensor

Tracked path

Ceiling

Floor

Planned path

ObstacleBump detection

Figure 7.1: Left: Simultaneous localization and mapping is a chicken and egg
problem which is fundamental to most robotic applications. Middle: Pixel events
are enough for EB-SLAM to generate a sparse grid map and to track the robot
trajectory in realtime. Right: EB-SLAM is suitable for embedded applications like
autonomous exploration.

136 Chapter 7. Event-based SLAM

7.1 Simultaneous Localization and Mapping

The Event-based Particle Filter algorithm from §6.4 can be used for robot self-loca-
lization as demonstrated in §6.5 for a 2D scenario. However the localization
within an environment is only possible if an adequate map of the environment is
available. While in the previous chapter a pre-build map was used to demonstrate
the capabilities of the Event-based Particle Filter, here the full problem of creating
a map of an unknown environment while simultaneously tracking the pose, i.e.
position and rotation, is considered.

Simultaneous localization and mapping (SLAM) is a hard problem due to
several factors. On the one hand, sensor measurement errors limit the accuracy of
pose estimates and in general a probabilistic approach is beneficial. Much worse,
even small local errors can sum up globally and result in large deviations when the
global structure of the map or the path is compared to ground truth. This problem
can already be observed even on small scale, when the robotic system is driving in
a circle and is only capable of observing a part of the whole environment at once –
hence the name ”loop-closure” problem. Other challenges arise on the question
how to efficiently represent a complex three-dimensional environment, and how
to find methods which run fast enough with minimal resource requirements.

In the past SLAM systems used 2D laser scanners relying on laser distance
measurement to create 2D maps of the environment. A typical example is the
SICK Laser Measurement Sensor (SICK LMS) which has a very long measurement
range and a wide field of view. The choice of laser scanners avoids the difficulty
of estimating depth values from stereo camera setups and safes computation
resources as distance measurements are directly available in hardware. With these
sensors 2D ”bird view” maps of the environment were created which are suitable
for navigating a robot on the ground.

This section will focus on the case of 2D SLAM where a robotic entity is driving
on the floor while it tries to localize itself and detects obstacles in the environment.
However the EB-SLAM algorithm is formulated in a general way which allows
generalization to 3D. The case of full 3D SLAM, where the robot creates a map of
the full 3D environment and in addition to driving on the ground can also move
in all six degrees of freedom like a flying drone, is considered in the next chapter
(§8).

In the following, two state-of-the-art algorithms for 2D SLAM are presented:
FastSLAM [54] and ”Grid mapping with Rao-Blackwellized Particle Filters” [29].
The next section §7.2 will present the novel Event-Based SLAM (EB-SLAM) al-
gorithm which uses only the sparse data stream from the eDVS sensor. This
novel event-based approach requires the adaption of classical SLAM concepts to
event-based vision, but also brings with it several key advantages like increased
performance and the general benefits discussed earlier in §6.

7.2. Event-based SLAM 137

FastSLAM

FastSLAM by Montemerlo, Thrun, Koller and Wegbreit [54] is a SLAM algorithm
which uses an extended Kalman filter (EKF) to exactly model the probability dis-
tributions between the robot poses as a function of robot controls and landmark
observations. The covariance matrix used by the EKF has a number of elements
quadratic in the number of landmarks resulting in a high computational complex-
ity which is one of the key limitations of an EKF. FastSLAM tackles this problem
by recursively estimating the full posterior distribution over the robot pose and
landmark locations by using an exact factorization of the posterior into a product
of conditional distributions for landmark position and the robot path. It uses a
tree structure for efficient representation of landmark estimations and individual
Rao-Blackwellized particle filters (see next part) for the EKF. This decomposition
yields a very efficient SLAM algorithm capable of handling as many as 50000
landmarks.

Grid mapping with Rao-Blackwellized Particle Filters

Grisetti, Stachniss and Burgard presented a method which uses a Rao-Blackwellized
particle filter to solve the SLAM problem [29]. Particles filters [37] are a powerful
sampling-based tool to solve Dynamic Baysian Networks which in comparison
to a Kalman filter or HMM filter are also feasible for non-linear, non-Gaussian
models. The Rao-Blackwellised particle filter [22] uses importance sampling to
improve particle spread and is an improvement over the classic particle filter.
When using particle filters in SLAM a probability distribution over the joint pose
and map space has to be estimated. By applying the idea of factorization, the
problem can be split into first estimating the pose based on a fixed map, and
then in a second step estimating the map based on a fixed pose. This ”chicken
and egg” approach to SLAM is one of the key methods used in SLAM today. In
[29] this technique is used to efficiently map a large outdoor environment using
laser distance measurement sensors. Additionally the odometry of the robot, i.e.
information about actual wheel rotation and commands sent to the robot, are
used in factored resampling to further reduce the number of particles and improve
tracking results.

7.2 Event-based SLAM

7.2.1 Event-based simultaenous localization and mapping

Simultaneous localization and mapping is a coupled problem where a state esti-
mate needs to be build over the joint space of possible poses and possible maps.
The problem of mapping the environment is additionally complicated by the fact,
that a dynamic vision sensor has very special properties which have not been
considered in SLAM before:

138 Chapter 7. Event-based SLAM

Events from sensor

Event-based
Localization

Event-based
Mapping

State estimate
(particles)

Map

Figure 7.2: Event-based Simultaneous Localization and Mapping for dynamic
vision sensors uses the Event-based Particle Filter for localization and a novel
event-based mapping method.

• Information is delivered as a sparse data stream in the form of singular pixel
events. This information has to be integrated correctly in order to construct
a meaningful environment map.

• Pixel events are only generated through movement. This implies that mea-
surements about the environment can not be repeated without changing
the pose of the sensor.

• Individual events have a µs time resolution. The SLAM method should
be suitable for fast moving systems like flying robots. Ideally all computa-
tions should be executed per event to allow low latency while additionally
guaranteeing low computational requirements.

In the following a novel SLAM algorithm for dynamic vision sensors like the
eDVS – Event-Based SLAM (EB-SLAM) – is presented which will provide solutions
for all three problems. EB-SLAM creates a map which describes event generation
probability, works on individual events and runs several times faster than realtime
on a desktop computer. The method has been presented at a peer-reviewed
robotics conference by the author [82].

EB-SLAM computes localization estimates and map updates alternately for
each incoming event (see fig. 7.2). For each event, the EB-PF algorithm uses
the last environment map to update a probability distribution for the robot pose
represented by a set of weighted particles. Theses particles can be used to compute
an actual pose estimate. Particles and the pose estimate are used in a second step
to incrementally build an environment map which represents the probability that
a mapped location generates an event under movement.

7.2. Event-based SLAM 139

EB-SLAM is formulated in an general mathematical way which applies to
2D and 3D scenarios. However due to the complexity of three-dimensional en-
vironments several questions regarding 3D SLAM are postponed until §8. To
demonstrate the capabilities and robustness of Event-Based SLAM, in §7.3 the
method is applied in the two-dimensional scenario from §6.5. Results for cre-
ated pose trajectories and maps are reported for several scenarios and compared
against ground truth data. In §7.4, Event-Based SLAM is used for autonomous ex-
ploration and where it produces accurate and robust results over a long timespan
of 10 to 30 minutes.

7.2.2 State space, map space and projection

For self-localization the state space is the special Euclidean group which describes
the linear and rotational motions of a rigid body, i.e. Ω = SE(n). The two inter-
esting cases are n = 2 and n = 3. The two-dimensional scenario has already be
explored in §6 and consists of a robot driving on a flat ground and observing
features on the ceiling above it. The three-dimensional scenario could be the
case of a flying robot which can move freely in three-dimensional space and thus
has to map the complete 3D space while trying to track its own path. Of course
mixed scenarios exist, most notably the ”2.5D” case where a robot drives on a
flat ground but explores a three-dimensional world, or even simpler when only a
specific heigh ”slice” is used for mapping. The latter scenario is the most widely
application of SLAM and is often realized with a laser range finder.

The mapped space Γ can be two-dimensional as in §6.5 where a map of the flat
ceiling is created. A flat surface can be easily parametrised and is thus represented
by Γ=R2. For computations, the map can be represented by a discretisation of
all possible positions in a region of interest. The resolution of the discretisation
defines the maximal possible accuracy of results. But depending on the resolution
of the sensor, there is a reasonable lower bound of grid cell dimensions. For the
three-dimensional space, i.e. Γ=R3, the same principals apply. The realization for
concrete computations is a three-dimensional grid of voxels. However the required
memory is already proportional to the number of grid cells in one direction to the
power of three. Even a coarse grids with 2563 voxels already uses 64 MB.

A crucial component in visual SLAM is the projection of a feature point at
a specific position in the world onto the two-dimensional image plane of the
vision sensor. While in the two-dimensional case as investigated in §6.5 this
”projection” was just a translation and scaling, for the general three-dimensional
case a projection looses the depth information.

A point in camera coordinates is projected by using the pinhole camera model
in eq. 6.1 together with several camera parameters which are assumed to be known.
The transformation from world to camera parameters is defined by the pose of
the vision sensor p ∈Ω. In the following the function µ will be used to describe

140 Chapter 7. Event-based SLAM

the projections of a position u ∈ Γ in the map space onto a pixel coordinate on the
image sensor:

µ : Γ×Ω→R, (u, p) 7→µ(u, p) (7.1)

µ consists of a transformation of u from world into camera coordinates followed
by a projection.

For a particle filter algorithm the sensor model describes the probability that
a given measurement has occurred given the current system state. In the case
of SLAM for dynamic vision sensors, this is the probability that a given event
e ∈ R occurs given a robot pose p ∈Ω. This probability has to be computed by
”back-projecting” the event into the world and checking the corresponding map
location µ−1(e |p):

P (e |p) ∝M (µ−1(e |p)) . (7.2)

Here a huge problem arises due to the nature of projections. While the projection
µ itself is well-defined, in general, it looses information. Thus the back-projection
µ−1 is not a well-defined problem any more, as one specific event could be due to
several possible locations in the map:

µ−1 : R×Ω→ Pow(Γ), (e, p) 7→µ−1(e, p) . (7.3)

Here Pow(Γ) is the power set of Γ and indicates that µ−1 in general returns a subset
of Γ. This set of possible locations is meant by µ−1(e |p), and a concrete definition
of µ has to scope with the problem of evaluating the map for a set of points instead
of a singular point.

A possible approach would be to marginalize over all points in the set:

M (µ−1(e |p)) :=
∫
µ−1(e |p)

M (v) dv . (7.4)

Another approach will be investigated in §8.

7.2.3 Event-based mapping

The Event-based Particle Filter algorithm can be used for robot self-localization by
providing an adequate method to model the environment. For the sensor model
in eq. 7.2 the probability that a specific location could have generated an event is
required. This poses the question when points in the map generate events. Due to
the nature of dynamic vision sensors, events are generated when the illumination
of a pixel increases or decreases over a specific threshold. For a static environment,
this happens when the sensor observes areas of different intensity while moving.
Whenever the back-projection of a pixel moves from a light area to a dark area,
or the other way around, it generates an event. This is most often the case at
geometry edges or distinguished texture features.

At this point it is important to investigate several issues of such a simple
event generation model. First, the event generation probability depends on the

7.2. Event-based SLAM 141

Figure 7.3: From left to right: The occurrence map (see eq. 7.6), the normalization
map (see eq. 7.7) and the final map (see eq. 7.5).

direction into which the sensor is moving. For example if the sensor moves
in parallel to a very long line, it would create almost no events as each pixel
repeatedly either hits the line or does not hit it, no matter how far the sensor has
moved into this direction. If on the opposite the sensor would move orthogonal
to a line feature, many events would be generated as all pixels traverses the line
in parallel. Another issue which arises in three-dimensional environments is
occlusion. Due to different relative object positions, features are visible from one
viewpoint but not from another. These phenomena complicate the modelling of
the environment map and have to be considered accordingly in the sensor model
and the update rules for the map. The three-dimensional case will be further
investigated in §8.

The value M (u) stored in the map should indicate the probability that a loca-
tion u ∈ Γ creates an event. Here a very important property of event generation
comes into play. There are no measurements which indicate that a specific loca-
tion should not generate events. Thus if a pixel location has generated an event
once this does not mean it always creates an event and the corresponding proba-
bility should be 1. Additionally, one needs to consider how often the pixel could
have generated an event. The first quantity, how often a location has actually
generated an event, is stored in the occurrence map O . The second quantity, how
often a location could have generated an event, is stored in the normalization
map Z . Together this gives the required event generation probability for the map
M :

M (u) = # of occurred events for u

of possible obervations for u
=:

O (u)

Z (u)
(7.5)

Fig. 7.3 depicts an example for occurrence and normalization map and the re-
sulting final map probability. It can be seen how regions with few events are
normalized to get equally likely map probabilities for the whole map space.

For the computation of the occurrence map O each event is back-projected
into the corresponding location µ−1(e|p) by using the current position estimates
pi ∈Ω provided by the particle filter. To model a certain degree of measurement
uncertainty a Gaussian model is used to diffuse the current event e(k) ∈ R over

142 Chapter 7. Event-based SLAM

nearby locations in the map. The occurrence map can be computed iteratively as:

O (k)(u) =O (k−1)(u)+
n∑

i=1
si

(k) N
(
u

∣∣∣µ−1(e(k) | pi
(k)),σ

)
, O (0) = 0. (7.6)

Here the standard deviation σ is a multiple of the size Wtrig of a sensor pixel when
back-projected into the map. As the occurrence map uses back-projection it has
to scope with the problem that the inverse µ−1 of the projection function µ may
not be well-defined and create a whole set of points in the map space.

The particle weights si used to model the probability distribution over the
state space are used to weight the contributions of individual particles based on
their confidence. In equation eq. 7.6 all particles are used to update the map but
as normally done in SLAM algorithms, it may be beneficial to only use the top 10%
of particles or a mean of the best particles.

The number of possible observations for the normalization map Z can be
computed by considering again the special properties of the event-based sensor.
Assuming a strong edge in the perceived light intensity, the sensor will generate
one event for every pixel which passes over this edge. Thus the fractional num-
ber of possible generated events for a map location u ∈ Γ is proportional to the
length of its path on the sensor in pixel coordinates. Given a state estimate x ∈Ω,
the corresponding fractional pixel position on the sensor using the projection
function µ is computed. Note that this position does not necessarily lie inside the
sensor boundaries as not all areas of the map are visible by the sensor at all times.
If a map point is not visible by the sensor under the current or previous state
estimate the normalization map is not updated at this map location. Otherwise
the normalization map is computed as

Z (k)(u) =Z (k−1)(u)+‖µ(u |p∗(k))−µ(u |p∗(k−1))‖, Z (0) = 0. (7.7)

p∗ denotes the expected state which is computed as the weighted mean of the
whole particle set provided by EB-PF . Due to noise in the expected state and the
high rate at which events are generated by the sensor, it is sensible to update the
normalization map only periodically and not for every event.

7.2.4 The EB-SLAM algorithm

The EB-SLAM algorithm is summarized in alg. 8. It starts by initializing the envi-
ronment maps O , Z and M for the desired region of interest. Maps are set to 0 as
no prior knowledge is available and required. In a concrete implementation, the
maps can be easily realized as dense grid-maps with a fixed resolution. For a 2D
map a reasonable choice for the resolution is in the order of Wtrig. One can also
chose an optimized spatial data structure like a quadtree or a kd-tree to optimize
the memory footprint. While this is beneficial for 3D maps, for a 2D map a dense
grid map provides better performance as it has constant read and write access

7.2. Event-based SLAM 143

Algorithm 8 Event-Based SLAM (EB-SLAM)

. Initialize
∀u ∈ Γ : O (u) = 0,Z (u) = 0,M (u) = 0
∀1 ≤ i ≤ N : pi = 0, si = 1, p∗ = 0
. Run
for each new event e do

.Update particles
for i = 1 → N do

pi = MM(pi)
si = (1−α) si +αM (µ−1(e |pi))

end for
Resample if necessary
. Compute current pose estimate
p∗∗ = p∗
p∗ =

∑N
i=1 si pi∑N

i=1 si

.Update map
∀u ∈ Γ : O (u) =O (u)+N

(
u |µ−1(e |pi),σ

)
∀u ∈ Γ : Z (u) =Z (u)+∥∥µ(u |p∗)−µ(u |p∗∗)

∥∥
∀u ∈ Γ : M (u) =

{
O (u)
Z (u) Z (u) > 0

0 otherwise
end for

compared to spatial data structures which have a logarithmic runtime based on
the size of the map.

As no prior knowledge is provided to the algorithm, no special coordinate
system is given. During the first steps, EB-SLAM chooses an arbitrary coordinate
system for the map space Γ. This implies that the initial particles can all be set
to 0 which indicates the origin of the coordinate system chosen by the algorithm.
It may be advantageous to provide a small amount of noise to the initial state
estimates. Particle weights are initialized to 1 to start information integration (see
§6.3).

After initialization, the two steps of localization and mapping are iterated
for each incoming event. First the particle set is updated accordingly to EB-PF
explained in §6.4. The motion model is executed for each particle state estimate –
here it is simply a random diffusion – and the sensor model is used to update the
particle weight. The second step uses the particle set to update the three maps
required for mapping.

Theoretically, updating the occurrence map O and the normalization map Z

requires an update of every grid cell in the map. In practice this can be optimized
in two ways. For the occurrence map, the shape of the Gaussian functions allows
to update only a small region within reach of the Gaussian kernel. The kernel
itself is identical for all events and can thus be precomputed. In comparison,

144 Chapter 7. Event-based SLAM

the update of the normalization map does not have a local character. However,
here the defining factor is the length of the path described by sensor pixels in the
map. This path is very short for only one individual events thus the computation
can be delayed until a sufficient number of events have occurred. Moreover the
normalization map only needs to be updated for the part of the map which is
currently visible. The update of the final map M can be optimized accordingly.

A final remark should be made about the interaction between localization and
mapping. The computation of the motion model diffusion to update localization
estimates depends on the number of effective ”feature” points G0 which are cur-
rently visible (see eq. 6.9, eq. 6.10 and eq. 6.38). G0 can be estimated from the
map by integrating over the map M as the map exactly described the probability
of event generation. A low number for G0 leads to a higher diffusion, which in
turn leads to higher values for the normalization map. This results in low values
for M which decreases G0 further. This can lead to a self-reinforcing loop which
provides very poor location estimates. The problem can be avoided by choosing a
good starting value for G0 and reducing the influence of M on it, however further
investigation is required to tackle this problem.

7.3 EB-SLAM in 2D

The EB-SLAM method is applied to the two-dimensional scenario which was
introduced in §6.5 as an application for the EB-PF algorithm (see fig. 7.4). A small
embedded robot (see fig. 6.7) drives on the flat floor and has an eDVS sensor
mounted on top which observes features on the ceiling. In comparison to §6.5
where the map was pre-build manually and provided to the algorithm as is, now
the map is initially empty, and created and refined autonomously by EB-SLAM .
The map is build while the robot is driving around only by using the sparse data
stream of pixel events provided by the Embedded Dynamic Vision Sensor sensor.

As the robot does not have any high-level reasoning for selecting targets or
planning paths it was manuall controlled by a human using a gamepad – an
application in autonomous exploration is presented in §7.4. The robot trajectory
was tracked externally by the marker-based motion capture system OptiTrack
V100:R2. Simultaneously the events generated by the Embedded Dynamic Vision
Sensor sensor were transmitted over WiFi to a host computed and stored for
further processing. The method was tested for various paths and a dataset of
40 trials was recorded. The EB-SLAM algorithm was executed afterwards on the
recorded data, and the tracked trajectory and the created map was recorded over
time. Fig. 7.7 shows the development of trajectory and map for one example from
the dataset.

To evaluate the quality of the EB-SLAM algorithm, the tracked trajectory was
compared against ground truth data. As the coordinate systems is chosen ran-
domly by the mapper and does not correspond to the coordinate system used
by the external tracker, the tracked path and the ground truth path needs to be

7.3. EB-SLAM in 2D 145

Events at edges

eDVS sensor

Tracked path

Ceiling

Floor

Figure 7.4: Individual events are processed one after another to track the robot
while simultaneously creating a map of the environment.

aligned. The alignment was done automatically be minimizing the root mean
square error between temporal corresponding points from the two paths. As the
path from the ground truth system has a much lower resolution, linear interpo-
lation was used to compute corresponding points for the ground truth path. In
addition to a spatial alignment, the data also needs to be aligned in time as the
external tracker and event generation could not be started simultaneously with
sufficient accuracy. This was achieved by introducing and optimizing a simple
constant time offset between paths.

The spatial-temporal alignment process does not weaken the significance of
the evaluation. To required a shift in translation, rotation and time is perfectly
reasonable as the corresponding coordinate systems can be chosen arbitrarily.
The important point is not the global correspondence between the two trajecto-
ries but the correct relative consistency of their points. Errors in mapping and
localization manifest as sudden turns in the path, a relative shift over time, or
general disorientation. For ill chosen parameters, especially when the particle
count is too low, all theses phenomena can be observed. Theses errors can not
be compensated by a global trajectory alignment. For reasonable parameters
the method provides very good results and the final root mean square error after
alignment is in the order of several centimetres.

Fig. 7.5 shows an example path from the dataset and more results can be seen
in fig. B.10 and fig. B.11. To the left the final map M and the corresponding path
are displayed. The middle column shows a comparison of the tracked path and
ground truth after alignment. The absolute error in translation and orientation is
reported over time, i.e. over the number of events, in the right column. Results
show, that the error is comparable to Wtrig which was 0.05m in this scenario.

146 Chapter 7. Event-based SLAM

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 2000 4000 6000 8000 10000 12000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 2000 4000 6000 8000 10000 12000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

Figure 7.5: Left: Map and path as created by our method. Middle: Trajectories
resulting from our method (red) and the external tracking system (blue). The
trajectory starting point is marked with a X. Right: Positional and rotational error
over number of resamples.

Table 7.1 shows an overview over the root mean square error in position and
rotation over the whole dataset for several parameters. Additionally the failure rate
is reported, i.e. the number of times the algorithm could not successfully create a
reasonable path and diverged tremendously from the actual path. The processing
speed is denoted in events per second (e/s) which gives the number of events
EB-SLAM can process per second on a normal single-core desktop computer. For
more than 10 particles the RMSE is very good overall and the number of failures
is under 10%. A closer inspection reveals that most failures are due to invalid
assumptions about G0 and the amplification problem explained previously in
§7.2.4.

In addition to the path the generated map should be evaluated as well. Fig. 7.6
shows a manual photo from the ceiling and the map generated by EB-SLAM . This
side-by-side comparison demonstrates that both maps coincides and that the
created map captures the intensity edges of features on the ceiling. The overlay
shown to the right in fig. 7.6 strengthens this impression. Note that the maps
where aligned manually, as again, the coordinate system origins are arbitrary.

The examples shown so far visualize only the final results of map and trajectory
at the end of the movement. To demonstrate how the map is created over time,

Table 7.1: Positional and rotational root-mean-square error (RMSE), failure rate
and processing speed for a varying number of particles.

Particles RMSE pos. RMSE rot. Failure rate Runtime

5 35.4 cm 51.2◦ 18/40 87800 e/s
10 5.9 cm 5.5◦ 5/40 80700 e/s
25 6.0 cm 5.5◦ 4/40 65600 e/s
75 6.0 cm 5.4◦ 3/40 38800 e/s

7.4. Autonomous exploration with EB-SLAM 147

Figure 7.6: Left: Photo of the ceiling. Middle: Resulting map from our method.
Darker spots indicating a higher likelihood of events. The green scale bar indicates
the size of the field of view of the sensor on the ceiling (ca. 2 meters). Right:
Overlay of our map (magenta) and the edge map of the ceiling photo (blue).

Figure 7.7: Example for map and path generation over time. In this scenario the
robot moved on its own while exploring the environment. The wiggly parts of the
trajectory indicate that the robot hit an environment obstacle on the ground.

fig. 7.7, fig. B.12 and fig. B.13 show a time series of maps and corresponding
trajectories. The examples are taken from an application of Event-Based SLAM in
autonomous exploration which is presented in more detail in §7.4.

7.4 Autonomous exploration with EB-SLAM

To demonstrate the capabilities and accuracy of the EB-SLAM algorithm, it was
applied in an autonomous exploration scenario [32] depicted in fig. 7.8. Here
the path is no longer given by a human operator, but chosen automatically and
autonomously by the robot itself. It has to be emphasized that no external tracking
was used and that self-localization was completely provided by Event-Based SLAM
which observes features on the ceiling. To detect objects on the ground a ”bump
sensor” is used. The robot is surrounded with a 360 degree ring of contact sensors
which detects if the robot is touching an object. In this scenario it is not possible to
detect objects with the eDVS sensor as no three-dimensional reasoning is available.

The governing principal for path selection is the maximization of knowledge
over the environment. For successful exploration the robot has to gather two
kinds of information. On the one hand, it has to observe features on the ceiling
to achieve good self-localization. The normalization map Z (see eq. 7.7) is a

148 Chapter 7. Event-based SLAM

Events at edges

eDVS sensor

Tracked path

Ceiling

Floor

Planned path

ObstacleBump detection

Figure 7.8: The autonomous exploration scenario used to demonstrate the capa-
bilities of EB-SLAM . The robot localizes itself using features on the ceiling while
detecting obstacles using a simple bump sensor.

suitable measure which indicates how much visual cues have been gathered for a
given area. To avoid confusion, Z is called ”localization exploration map” for this
section. On the other hand, the robot needs to find obstacles to be able to plan
efficient paths. As a contact sensor is used to detect objects, the robot has to drive
to each position in the world to determine if it is passable or not. This information
is gathered in the ”obstacle exploration map” E .

To simplify the computation of the optimal path, all maps are discretised to a
hexagonal grid. Each grid node has six neighbours and the robot plans its path by
computing a list of neighbouring grid nodes. The hexagonal grid is preferred over
a rectangular grid as all neighbours of a node have equal distance in a hexagonal
grid.

The exploration map E is computed over time and updated each time the
robot moves to a new grid cell. The grid cells which are currently covered by the
robot are computed and the corresponding values in the obstacle exploration map
are incremented to indicate that theses cells have been explored. Thus the higher
the value in E , the more often a node was already explored and marked as passable
terrain. If the robot bumps into an object, it stops and marks the grid cells located
in driving direction as impassable. To avoid excessive bumping, additionally
neighbouring cells in a small cone-shaped corridor in driving direction are marked
as impassable.

The aim of exploration is the maximization of knowledge over the environment,
thus the maximization of the localization exploration map Z and the obstacle
exploration map E . To fuse theses two kinds of information, each map is first
normalized to distinguish between areas which are explored above average and

7.4. Autonomous exploration with EB-SLAM 149

Figure 7.9: Ground truth room layout (black lines), actual robot path (red) and
planned robot path (magenta). Left: Nodes are coloured based on the localization
exploration map Z (darker means higher). Middle: Nodes are coloured based
on the obstacle exploration map E (darker means higher) and blocked nodes are
marked in blue. The detected bumps are marked in orange. Right: Nodes are
coloured based on the expected information gain G (darker means higher).

those which are explored below average. The normalization M0 of a map M is
chosen as:

M0(v) := M(v)−mean(M)

max(M)−min(M)
(7.8)

here max(M) := maxu∈ΩM(u) is the maximum of M , min(M) := minu∈ΩM(u) is
the minimum of M and mean(M) := 1

|Ω|
∑

u∈ΩM(u) the mean value of M over the
complete domain Ω. The normalization provides a scale invariant measure for
the gained information which additionally does not required a target goal value to
indicate the end of the exploration process. Instead the exploration continuously
increases the knowledge over the environment.

The information of the localization and the obstacle exploration maps are
fused into the ”information gain” map G using the normalization from eq. 7.8 as
follows:

G (v) := wZ Lα(−Z0(v))+wE Lα(−E0(v)) (7.9)

where Lα is the logistic function defined as

Lα(x) := 1

1+e−αx
(7.10)

and wZ , wE ∈R+ are weighting factors. The slope factor α specifies how much ar-
eas with poor exploration are preferred over areas with above-average exploration.
The higher α the harder the distinction between the two classes which results in a
more aggressive behaviour to move to unexplored areas. For the experiments the
values wZ = wE = 1 and α= 10 were chosen.

The path is planed by the robot by trying to maximize the gain G over a path
which is as short as possible. Additionally the path should not lead through nodes
which are marked as impassable. To plan an optimal path a breadth first algorithm

150 Chapter 7. Event-based SLAM

Figure 7.10: Chosen trajectory (red), bumbs (orange), impassable nodes (blue)
overlayed with a manually created room layout (black) for three different room
layouts.

with a search heuristic similar to A∗ is used. The node at the current robot position
is expanded and nodes with a high value of gain per path length are explored first.
Here the relative gain value plays the role of the heuristic which in A∗ leads to the
desired goal. As no goal is given, the path is searched for a given amount of time
or until a maximum number of nodes have been visited.

The computation of G is visualized in fig. 7.9. The two exploration maps are
shown together with the robot path. The expected gain is visualized to the right,
and it is visible how already explored nodes or nodes which are marked as blocked
are assigned a lower value than areas which are unexplored. The corresponding
path chosen by the robot is marked in magenta and leads out into the unknown
as fast as possible.

The proposed exploration method was used in several indoor room scenarios
of which three are shown in fig. 7.10. The robot has successfully found the room
boundary and created a map of the room. The red path tries to cover as much
of the room as possible to rule out the possibility of additional objects scattered
throughout the room.

Fig. 7.11 shows how the robot explores a previously unknown room over time.
The selected path tries to lead the robot into unknown areas to maximize the gain
of information over the environment while avoiding obstacles.

In opposite to §7.3, the EB-SLAM algorithm was executed in realtime to pro-
vide realtime localization and mapping capabilities for the robot. All computations
were executed on a normal desktop computer and the stream of pixel events and
control commands were send from and to the robot over a wireless connection.
The software used for tracking has a rich graphical user interface for debugging
and observing the behaviour of the robot. However as EB-SLAM runs several
times faster than realtime on a desktop computer and the code for autonomous
exploration only adds simple tasks like maintaining the obstacle exploration map
and replanning a path if a bump occurs it should be possible to implement the
algorithm on an embedded, low-cost computation platform.

An example platform which should be able to handle the computations could

7.4. Autonomous exploration with EB-SLAM 151

Figure 7.11: Top row: Images from an external camera for demonstration of the
general scenario. Other rows top to bottom: Development over time of the feature
map M , the localization normalization map Z and the obstacle exploration map
E . In each image the chosen trajectory (red), the planned path (magenta), bumps
(orange), impassable nodes (blue) and an overlayed manually created room layout
(black) are displayed.

152 Chapter 7. Event-based SLAM

be a Mini-PCs like the Rikomagic MK802IV. This Mini-PC can be set up with a
Linux operating system and has astonishing specifications: a Rockchip RK3188
1.8GHz quad-core Cortex-A9 with 2 GB RAM in a small casing with dimensions
90×40×13 mm weighting less than 40 gram in total. The power consumption
is less than 5 Watts (5 Volt) which allows operation with a small lithium polymer
battery pack. A 2000 mAh two cell pack (7.4 Volt) which has approximative the
same size as the Mini-PC and weights 100 gram would last for more than four
hours.

8 EVENT-BASED 3D SLAM

In this chapter a dynamic vision sensor will be combined with an active depth-sensor
to form the D-eDVS sensor which provides a stream of 3D point events. This sparse
stream of 3D points will be used in the novel Event-Based 3D SLAM algorithm
which has a very low computational footprint while at the same time provides
very good results.

Figure 8.1: The camera trajectory (red) and the sparse 3D map (shades of grey) are
created simultaneously in realtime using only a sparse stream of 3D point events
(green).

154 Chapter 8. Event-based 3D SLAM

8.1 Introduction

In this chapter the previously developed Event-Based SLAM algorithm is extended
to a full 3D SLAM algorithm. In contrast to 2D SLAM, a 3D SLAM algorithm creates
a map of the three-dimensional environment which is suitable for tracking all six
degrees of freedoms of three-dimensional motions. 3D algorithms are much more
powerful than their 2D counterparts, for example especially allowing flying robots,
but also have a much higher theoretical and computational complexity.

Recent 3D SLAM algorithms [12, 24, 34, 42, 43, 56] almost exclusively use a
3D sensor like PrimeSense (see §3.1.3) to get depth measurements. Such sensors
provide depth measurements in a range of 1-10 meters at an accuracy of 1-20
cm at a framerate of 30 or 60 frames per second. Additionally, a colour image is
provided which may be an essential part in the SLAM algorithm or simply be used
to augment the environment map.

KinectFusion [56] demonstrated how dense surface mapping and tracking
can be accomplished with a Microsoft Kinect combined colour and depth sensor
in realtime using GPU accelerated hardware. The algorithm proceeds in four
steps. First a mesh, i.e. surface vertices and surface normals, of the currently
observed surface is reconstructed from the measured depth values. This current
measurement is compared towards the constructed scene model, and an iterated
closest point (ICP) algorithm is used to align the mesh towards the model in
order to derive the current camera pose in a global coordinate system. This pose
estimate is used to integrate the current surface measurement into the scene
model which is represented by a truncated volumetric signed distance function.
This procedure is an example of an iterative approach to SLAM where the current
map is used to compute a pose estimate and the new pose estimate is used
to update the map. An evaluation of KinectFusion showed that it can produce
detailed and drift-free environment models and that it can run in realtime if
supported by GPU hardware.

Endres et al. [24] present a different method which matches frames based on
image feature points from SIFT or SURF, and uses a RANSAC algorithm to compute
possible transformations which are further optimized globally using a pose graph
optimization like g 2o. Kerl et al. [43] try to optimize the frame-to-frame change
in pose based on a warped representation of colour and depth image space by
analytically deriving an optimizing procedure over the lie algebra se(3). Bylow et
al. [12] use a similar optimization over se(3) to improve frame-to-frame matching
using a similar signed distance function like in KinectFusion.

State-of-the-art algorithms have been quite successful in generating detailed
dense environment maps, but still required a high amount of computation power
– in many cases in form of dedicated GPU hardware. In this chapter the benefits
of dynamic vision sensors will be exploited to develop an event-based 3D SLAM
algorithm which builds a highly efficient sparse environment map fig. 8.2 and has
the same robustness and quality than dense 3D algorithms. While event-based

8.2. The D-eDVS sensor 155

Figure 8.2: Comparison of sparse event-based map (middle) against a mesh cre-
ated by the dense mapping algorithm KinectFusion (right). The color image (left)
is provided for reference.

vision is a novel approach to design efficient algorithms for embedded systems, it
has the same fundamental problems as classic computer vision with respect to
estimating depth information. In classic computer vision this problem was solved
for now by ignoring it and using active depth sensors. For the Event-Based 3D
SLAM (EB-SLAM-3D) algorithm the same approach will be used, and the eDVS is
combined with a PrimeSense active depth sensor to provide depth information
for events.

Towards this goal an eDVS sensor is mounted on top of a standard Prime-
Sense sensor to form a depth-augmented dynamic vision sensor, the D-eDVS.
Both sensors are calibrated such that for each individual event of the eDVS the
corresponding depth can be computed using the depth stream from PrimeSense.
Thus the EB-SLAM-3D algorithm directly works on a sparse stream of 3D point
events – compared to the EB-SLAM-2D algorithm which works on a stream of 2D
pixel events. This especially solves the problem of map back-projection stated in
§7.2.2.

Due to the complexity of 3D environments and the memory consumption of
dense grid maps, the EB-SLAM-3D algorithm will use an optimized data structure
for the map and other simplifications over EB-SLAM-2D to assure realtime perfor-
mance. In the end the algorithm presents itself in a strikingly simple formulation
which can easily be implemented with only a few lines of source code.

This chapter will be continued with a presentation of the construction and
calibration of the D-eDVS sensor in §8.2. After a presentation and discussion of
the EB-SLAM-3D algorithm in §8.3, the chapter is concluded with an thorough
comparison of the proposed EB-SLAM-3D algorithm towards ground truth of an
external tracking system and the state-of-the-art algorithm KinectFusion in §8.4.

8.2 The D-eDVS sensor

To build the D-eDVS, an eDVS and a Asus Xtion camera using the PrimeSense
sensor are combined physically by designing and constructing a small camera
mount with the aid of a laser cutter (see fig. 8.3). The whole construction is

156 Chapter 8. Event-based 3D SLAM

Figure 8.3: The D-eDVS: The eDVS is mounted on to of an Asus Xtion using a
laser cutted casing (left) and for ground truth recordings an additional mount for
markers can be added on top (right).

fastened onto the aluminium casing of the Asus Xtion and is quite robust to
external forces. For evaluation purposes an additional modular mount for markers
used by the external camera tracker is built. The lens for the eDVS sensor was
chosen to match the vertical field of view of the depth sensor. This implies that
the horizontal field of view of PrimeSense is not fully covered by the eDVS as the
aspect ratio of the eDVS and the depth sensor are different.

In general a pinhole camera model is defined by the following equation eq. 8.1
which describes the projection of a 3D point p ∈R3 onto the image sensor.

µ
(
p | f ,c,κ1,κ2

)
:= L (‖s‖|κ1,κ2)−1 s + c with s = f

pz

(
px

py

)
(8.1)

The camera model has several parameters: f the focal length parameter, c the
optical centre of the projection and κ1,κ2 for a simple but sufficient lens distortion
model:

L(r |κ1,κ2) := 1+κ1 r +κ2 r 2 (8.2)

When depth values for pixel coordinates are available, the projection can be
undone by inverting the projection:

µ−1 (
u,D | f ,c,κ1,κ2

)
:= D

f

sx

sy

f

 with s = L (‖u − c‖|κ1,κ2) (u − c) (8.3)

When a PrimeSense and an eDVS sensor are combined one can take a pixel
coordinate u on the depth sensor with corresponding depth value D and compute
the corresponding pixel coordinate v on the eDVS sensor by combining equations
eq. 8.1 and eq. 8.3:

v = f (u,D |R, t ,PPS,PeDVS) :=µ(
Rµ−1 (u,D |PPS)+ t |PeDVS

)
(8.4)

8.2. The D-eDVS sensor 157

Figure 8.4: Left: The corners of a calibration plate are tracked with OpenCV (light
blue) and the position of the diode blue is computed. Middle: The calibration
plate viewed by the eDVS. Right: Events after frequency filtering and the computed
position of the diode (red).

Here PPS resp. PeDVS are the set of camera parameters of the PrimeSense resp.
eDVS sensors and R ∈R3×3 and t ∈R3 are the spatial transformation between the
two sensors.

The camera parameters and the transformation can be found by numerical
optimization of the non-linear least-square problem

min
R,t ,PPS,PeDVS

n∑
i=1

∥∥vi − f (ui ,Di |R, t ,PPS,PeDVS)
∥∥2 (8.5)

for a set of measured data points (ui ,Di , vi)1≤i≤n over the parameters R, t ,PPS,PeDVS.
It has to be noted that the two focal length parameters are coupled together and
it only makes sense to optimize them with respect to each other. Thus the focal
length parameter for the PrimeSense sensor was fixed to the reference value of
520.

As the two cameras are very close together and approximately point into
the same direction, the identity transformation is a good initial guess for the
transformation parameters R and t . Initial values for the focal length projection
parameters can be estimated from the opening angle and initial values for the bar-
rel distortion are chosen as 0. The projection centre parameters can be initialized
well by choosing the optical centre. This results in the initial parameters

R0 = I , t0 = 0, PPS,0 = (520,(320,240),0,0), PeDVS,0 = (160,(64,64),0,0) (8.6)

Data points for the least square problem are captured using a calibration plate
and a diode emitting a pulsed stream of light. Classic camera calibration methods
use a calibration plate, however it is not straight-forward to track a calibration
plate in a dynamic vision sensor and up to now no standard algorithms or software
libraries are available. Dynamic vision sensors can be handled much easier by
using a temporally changing signal like a pulsed diode. Thus a combined approach
is used where a single calibration point is tracked in the PrimeSense image using
a standard calibration plate. In the calibration plate a pulsed diode was inserted

158 Chapter 8. Event-based 3D SLAM

Dmin Dmax

Di

di

Figure 8.5: Left: An event pixel ray (cyan) from the eDVS sensor (blue) crosses
several pixels from the PrimeSense depth sensor (black). The correct event depth
value (red) is computed by intersecting the event ray with the measured depth
surface (gray). Right: Close up.

which can be easily detected and tracked with a dynamic vision sensor (fig. 8.4).
Here we exploit the fact that the pulse frequency is known and filter out all events
which do not correspond to the fixed pulse frequency. This method reliably filters
out all events which are due to the movement of the calibration plate and only
preserves events from the diode (fig. 8.4).

With sufficient training points and due to the small deviation from the initial
parameters a local optimization is sufficient for optimizing the camera parameters
up to a root mean square error of 0.9 pixels in eDVS coordinates – the minimal
possible error being 0.25 pixels due to rounding errors.

The optimized camera parameters can be used to compute an eDVS pixel
coordinate for a given PrimeSense pixel coordinate with corresponding depth
value. However to annotate eDVS pixel events with depth values the opposite di-
rection is required. An eDVS pixel coordinate ray manifest as a short line segment
when back-projected onto the PrimeSense sensor. The desired depth value lies
on this line, but the correct value has to be computed. Fig. 8.5 shows a top-down
schematic view of this problem. An eDVS event ray (blue) hits several PrimeSense
pixel rays (black) and the correct intersection with the measured depth surface
(grey) needs to be found. This problem is solved by pre-generating a look-up table
where for each possible event ray pre-computed pixel coordinates together with
depth values di (blue dots in figure) are stored. For each event during execution,
these are compared to actual depth values Di (black dots in figure) to find inter-
sections, i.e. an index which satisfies di ≤ Di ≤ Di+1 ≤ di+1. In case of multiple
intersection, the nearest has to be taken. As the line segment intersection takes
place between singular pixels, the desired depth is computed by simply averaging
the selected neighbouring depth values: Dfinal = 1

2 (Di +Di+1).

eDVS pixel coordinates and depth values can be used to compute correspond-
ing 3D points in camera coordinates using again eq. 8.3. The result of calibration
and event depth computation is an event-based dynamic vision sensor which

8.3. The Event-based 3D SLAM algorithm 159

Figure 8.6: Stream of eDVS pixel events annotated with depth values (colour red to
blue encodes distance near to far). Each images shows 1500 events and between
images 30000 events are skipped.

generates a stream of 3D point events. Fig. 8.6 shows an example stream of
depth-annotated events where the depth is encoded by colour. It is clearly visible
how depth values further increase the information content of the event-stream.

8.3 The Event-based 3D SLAM algorithm

The event-based SLAM algorithm described in §7 builds a map based on the
relative occurrence of events in specific map locations and uses a particle filter
to continuously update an estimate of the camera pose. While the algorithm was
only applied in the 2D case so far (see §7.3 and §7.4), it is formulated in a general
way which in theory allows a direct application to the 2.5D or 3D case. The main
challenge lies in the fact that the mapping between map locations and image
coordinates is no longer a one-to-one mapping, but a ray through an image pixel
hits a multitude of possible map locations. While the occurrence based approach
could theoretically still be realized by using the whole pixel event ray and updating
all corresponding pixels in the map which are hit by the ray, this approach is not
investigated further here due to its slow runtime and possible instability. Instead
the D-eDVS sensor which directly generates a stream of 3D point events is used to
solve the event unprojection problem.

Following the notation from §7.2.2, we have Ω = SE(3) for the state space
and Γ = R3 for the map space. Remember that the state space denotes the set
of possible camera poses which is now a 3D rotation and a 3D position – thus
described by the special Euclidean group – and the map space is space over
which the map is built. By using the D-eDVS sensor, each 2D pixel events has a

160 Chapter 8. Event-based 3D SLAM

corresponding 3D point – denoted with RD :=R3. However pixel coordinates are
not required in the following, thus RD will be used as event space. The projection
function µ can be simplified to

µ : Γ×Ω→RD , µ(u |p) = p u := pR u +pt (8.7)

where p is treated as an Euclidean transformation defined by rotation pR ∈ SO(3)
and translation pt ∈R3. Now the inverse of µ is well defined as

µ−1 : RD ×Ω→ Γ, µ−1(e |p) = p−1 e = p−1
R (e −pt) (8.8)

The EB-SLAM algorithm is using three maps: The occurrence map O , the
normalization map Z and the final map M . With the projection function eq. 8.8,
the occurrence map from eq. 7.6 can directly be extended to 3D:

O (k)(u) =O (k−1)(u)+
n∑

i=1
si

(k) N
(
u

∣∣∣ (pi
(k))−1e(k),σ

)
, O (0) = 0. (8.9)

For the 2D occurrence map pixel events where integrate in a 2D grid and now for
the 3D occurrence map 3D point events are integrate in a 3D grid – also called
voxel grid.

The standard deviationσ in eq. 8.9 can be derived from the distance D(e) of an
event e ∈RD to the camera and the pixel focal length of the event-based sensor as

σ(e) := D(e)

2λ f
(8.10)

λ scales the normal distribution such that a given percentage of samples would
be projected within one pixel on the eDVS sensor. A value of λ= 2 would indicate
”2σ” thus 95%. Using a normal distribution is not an exact sensor model but a
reasonable good approximation and values of λ= 1.5 have proven to be a good
choice.

Fig. 8.7 shows an example run of the algorithm and demonstrates how path
and map are created over time for an example scenario. The map itself is a sparse
representation of the environment which unlike a mesh provided by dense meth-
ods is not necessarily directly accessible to the human eye. On closer inspection
however it is visible how especially geometry borders and texture edges are repre-
sented in the event-based map. As another example, fig. 8.8 shows a bigger map for
an office environment in comparison with colour photos. It is important to note
that the map is not generated for direct visual processing by humans, but serves
only the purpose of self-localization in the environment with the Event-Based 3D
SLAM algorithm.

The final algorithm is listed in pseudo-code in alg. 9. Event-Based 3D SLAM
can be implemented with only a few lines of code which is very short for a 3D
SLAM algorithm, additionally no massively parallel operations are necessary. One
can see, that the normalization from EB-SLAM-2D is not performed and the main

8.3. The Event-based 3D SLAM algorithm 161

Figure 8.7: Computation of sparse 3D map (shades of grey) and path (red) over
time for an example scenario. Current events are displayed as green dots.

Figure 8.8: Sparse 3D map created by Event-Based 3D SLAM and photos of the
same scenario from a different viewpoint. Corresponding key features are con-
nected with lines for orientation.

162 Chapter 8. Event-based 3D SLAM

reason is, that the normalization map is computational very intensive, can lead to
instabilities and is actually quite smooth so it does not have the same impact as the
occurrence map. More details are explained in the following considerations. The
motion model is again realized as a diffusion process using a covariance matrix
which models the possible movement for one event. Funnily enough, the particle
resampling is actually the most complex operation. In the following several topics
related to the Event-Based 3D SLAM algorithm are investigated in more detail.

Algorithm 9 Event-Based 3D SLAM (EB-SLAM-3D)

∀u ∈ Γ : O (u) = 0
∀1 ≤ i ≤ N : pi = 0, si = 1, p∗ = 0
for each new point event e do

for i = 1 → N do
Sample pi from NSE(3)(pi ,Σ)
si = (1−α) si +αO (p−1

i e)
end for
for i = 1 → N do

O =O +N
(· |p−1

i e,σ
)

end for
if every K-th event then

p∗ =
∑N

i=1 si pi∑N
i=1 si

execute particle resampling
end if

end for

Map normalization

The normalization map requires a continuous update of visible voxels to provide
a relative measurement of how often a voxel has actually generated an event given
the number of possibilities (see eq. 7.5). For a three-dimensional map this requires
to update all voxels which are in the current view frustum. To avoid extensive
visibility computations for individual voxels, the normalization map could be
subsampled and the values for individual voxels could be computed using linear
interpolation. However as already apparent in fig. 7.3, the normalization map is
much smoother than the occurrence map. The occurrence map capture thin edges,
singular points and other filigree features, and can thus change its value rapidly
over a distance of only a few voxels. On the contrary, the normalization map
captures if a voxel is visible, and as the frustum is normally quite wide in number
of voxels the value of the normalization map as a function of space changes only
slowly. This results in the important observation that for a given event and several
similar particle poses the occurrence map has a much higher influence on the
relative difference between particle scores than the normalization map. This is

8.3. The Event-based 3D SLAM algorithm 163

in general not true for a given pose and different events, but in a particle filter
particles are only evaluated and selected relative to each other with respect to
one measurement after another. If for the current event the local values in the
occurrence map are generally low compared to other regions which have been
observed longer, scores will be low for all particles and all particles will be subject
to the same selection pressure. On the opposite if the values in the occurrence
map are generally high because a lot of information has already been gathered,
all particles will have this benefit and again all particles have the same chance to
increase their score if they align well with the map.

Parametrization

The algorithm can be parametrized in several ways which will be explained in the
following. In §8.4 an evaluation of theses parameters is presented and their impact
on the tracking quality and the performance of the algorithm are qualitatively
evaluated.

Particle count N : The number of particles used in the particle filter has a strong
impact on the quality of the result path but also a direct negative impact on
the runtime.

Events until resampling K : Resampling after every event has a huge impact on
performance and yields much worse results. This parameter delays the
resampling step after enough information has been gathered.

Exponential decay factor α: This constant can be computed conveniently with
eq. 6.27. The constant G0 is chosen to be K in the following – this has a
reasonable interpretation and gives good results.

Batch size B : Batching as explained in §6.4.2 can be used also for Event-Based 3D
SLAM . This parameter has a huge impact on performance for small values
of B . A good choice is B = 3.

Event share: An additional trick to reduce runtime is to not use all events, but
only a random subset. This directly increased performance but if too many
events are discarded tracking quality suffers.

Diffusion: As Event-Based 3D SLAM uses random diffusion as a motion model
and the movement per event is much more difficult to compute, the stan-
dard deviation for position and rotation diffusion should be chosen wisely.
Evaluation will show that a range of values works well for a broad selection
of scenarios.

164 Chapter 8. Event-based 3D SLAM

Voxel map

As the map space is three-dimensional, a three-dimensional grid map of voxels
has to be maintained for the occurrence map. The data structure for the voxel
grid has to be chosen with care to avoid exessive memory consumption and slow
access times. On the one hand a fast access mechanism is crucial to the runtime
of the EB-SLAM algorithm as the map has to be updated for all events and several
particles. On the other hand dense voxel grids require a huge amount of memory.
A voxel grid which stores a 4 byte floating point value at each voxel and with has a
side length of 512 voxels already requires 512 MB system memory – compare to a
2D grid with 5122 pixels which only requires 1 MB.

A typical data structure for efficiently storing voxels is an octree. An octree
covers a rectangular region of space by recursively splitting it into eight equally
sized and axis aligned boxes down to the level of individual voxels. Only nodes
which actually contain a non-zero voxel are created, thus saving memory for all
voxels which are not used. Octrees have the disadvantage, that the covered space
has to be known in advance and that access time is logarithmic in the side length
of the covering box. For a box with side length of 10 meters and a resolution of
1 cm, this constant is already 10. Additionally as space is partitioned down to
individual voxels and new nodes are created on-the-fly, memory access is not
streamlined. Here a two-level approach similar to [3] is used, where the octree is
only divided up to a specific size and dense ”chunks”, i.e. voxel grids of size 323,
are used as leaf nodes instead of individual voxels. Fig. 8.9 shows an example of
such a chunk voxel grid. In this example there are only 316 out of 1664 chunks
filled with voxels saving 80% of memory. This ratio usually gets much higher the
longer the SLAM process is running.

Diffusion

The diffusion model NSE(3)(p,Σ) for a 3D pose p ∈ SE(3) can actually be a bit tricky.
It requires to diffuse a three-dimensional position t ∈R3 and a three-dimensional
rotation R ∈ SO(3). For the position this is straight forward and realized as(

x, y, z
)← (

N (x,σx),N (y,σy),N (z,σz)
)

(8.11)

where N is a Gaussian normal distribution.
However, for a rotation the diffusion process is by no means straight forward

[57]. A two-dimensional rotation has only one degree of freedom, the angle of
rotation, and one could think of taking a normally distributed angle to create a
normally distributed rotation matrix:

R ← R2(N (0,σθ))R (8.12)

where R2(θ) is the 2D rotation matrix of angle θ. As SO(2) can be parametrized
by R/[0,2π[, it is identical to θ←N (θ,σθ). This approach has the issue that the

8.3. The Event-based 3D SLAM algorithm 165

Figure 8.9: Visualization of voxel grid ”chunks”. Spheres coloured blue to red
indicate centre position of chunks which contain at least one voxel. Chunks
with a significant amount of voxels are rendered as grey boxes. The large box
indicates the area covered by the whole voxel grid. Additionally the estimated
path (red/orange), current events (green) and the current map (shades of grey)
are displayed.

two tails of the normal distribution wrap around at an angle of π which may be
desired or not. But for EB-SLAM this is not much of an issue as σθ is usually very
small.

For three-dimensional rotations there are two additional degrees of freedom
for the direction of rotation. A possible representation is axis/angle where a
rotation is given by an unit vector for the axis of rotation and an angle. A normally
distributed rotation can be sampled by sampling a random, uniformly distributed
point on the 2-sphere as the axis and a half-normally distributed angle of rotation.
The axis/angle representation can then be transformed to a rotation matrix. A
random point on a 2-sphere can for example be samples with

a ←
(
x, y, z

)√
x2 + y2 + z2

(8.13)

where x, y, z are sampled from a standard normal distribution N (0,1). Given a
uniformly distributed axis a ∈R3 and a normally distributed angle θ←N (θ,σθ),
a normally distributed quaternion can be computed as(

cos θ2 , sin θ
2 ax , sin θ

2 ay , sin θ
2 az

)
(8.14)

and for small angles this can be approximated with:(
1− θ2

4 , θ2 ax , θ2 ay , θ2 az

)
(8.15)

166 Chapter 8. Event-based 3D SLAM

8.4 Evaluation

In order to compare paths from different trackers, theses paths first needs to be
aligned towards each other. This step is necessary as most tracking algorithms
choose an arbitrary global coordinate system for map and path and thus a trans-
formation between the two systems need to be computed. A path is a sequence of
tuples u = (t , p, q) ∈R×R3 ×SO(3) =: U , where p ∈R3 indicates the current posi-
tion, q ∈ SO(3) the current rotation represented by a quaternion, and t ∈R+ the
corresponding timestamp of the pose. Timestamps greatly simplify the alignment
process as a point on one path only needs to be matched against the temporal
nearest point on the other path. Thus the root-mean-square error function (RMSE)
of two paths (ui) and (u′

j) is defined as:

E
(
(ui), (u′

i) |a
)

:=
√

1
n

n∑
i=0

(
e(A(ui , a),u′

µ(j)
)2 (8.16)

where the matching function µ : N → N is defined as µ(i) := argmin j |ti − t ′ j |.
Other matching mechanisms are possible, in particular it may be advantageous
to reject points at the ends of the paths when the minimal temporal difference
is too high. Here the concrete error function e measures the Euclidean distance
between the tracked path point and the ground truth path point:

e(u,u′) := ‖p −p ′‖ (8.17)

The alignment function A : U×U →U applies the transformation of the parameter
set a on a point on the path and is defined as

A
(
(t , p, q), (ta , pa , qa)

)
:= (t + ta , qa p +pa , qa q) (8.18)

The alignment includes a temporal offset ta as the two data streams can be started
at slightly different times. The optimal alignment

a∗ = argmin
a∈U

E
(
(ui), (u′

i) |a
)

(8.19)

can be found by a mathematical optimization. Possible methods are gradient
descent or Particle Swarm Optimization (PSO) [41], or if the temporal offset is
neglected a principal component analysis can be used. For the evaluation in this
section accelerate particle swarm optimization [86] was used which could find
very good alignments in a matter of seconds.

Additionally it is possible to consider the rotational alignment error

erot(u,u′) := |2cos−1 (
(q−1 q ′)w

) | (8.20)

This definition of eq is due to the fact that the w component of a unit quaternion
directly encodes the amount of rotation. The rotational error additionally requires

8.4. Evaluation 167

Figure 8.10: Colour images for some of the scenarios used in this evaluation. From
left to right: Scenarios ”Table 1”, ”Room” and ”People”.

the alignment of the orientation as the coordinate frame chosen by for example
an overhead tracker is not necessarily identical to the implicit camera coordinate
frame where the x- and y-axis define the image plane and the z-axis points into
the world.

For evaluation a dataset of 26 ”takes”, i.e. paths, in five different scenarios and
the length of individual takes was 20 to 40 seconds. Fig. 8.10 shows colour images
for an impression of several scenarios. To compare the tracking results against
ground truth the pose of the camera was tracked with the marker-based overhead
tracking system OptiTrack V100:R2. Due to the limitations of the PrimeSense
depth sensor and the fact that the overhead tracker is immovable, room scenarios
are limited to one room indoor settings. For this dataset, the depth information
was computed from the high-resolution depth stream with a spatial resolution
of 640x480 and a framerate of 30 Hz, with the exception of the scenario ”Table 1”
which was recorded with a resolution of 320x240 and a framerate of 60 Hz. While
the spatial resolution does not have an impact on the results of Event-Based 3D
SLAM as it is downsampled to the eDVS sensor resolution of 128x128 pixels, the
framerate has a large impact. With a framerate of 60 Hz the PrimeSense sensor
provides reliable depth information only in a range up to approximately 1.5 m as it
uses a low-resolution infrared image to compute depth. With the lower framerate
of 30 Hz depth measurement are accurate up to 2.5 m.

The EB-SLAM-3D algorithm was executed with two sets of parameters: The
”default” set uses a reasonable choice of parameters which achieves very good
tracking results and the ”fast” parameter set uses parameters which focus on very
fast execution speed with only small impact on the RMSE. Table 8.1 shows an
overview of the RMSE and the processing speed for the different scenarios. The
RMSE is excellent when considering the complexity of the 3D matching problem
and the low resolution of the eDVS sensor. The processing speed is measured as
the ”relative realtime factor” which is the quotient between recording time and
computation time. This is necessary as the rate at which events are generated
depends on movement speed and visual complexity of the scene. However all
takes are recorded with more or less constant movement and normal velocities
with no particular breaks to improve tracking performance.

Fig. 8.11 shows two examples for paths tracked with EB-SLAM-3D compared

168 Chapter 8. Event-based 3D SLAM

against ground truth from an overhead tracking system. Six more examples are
shown in the appendix in fig. B.14. The plots demonstrates the very good results
which can be achieved with EB-SLAM-3D.

To give an insight into the influence of parameters of the Event-Based 3D SLAM
algorithm, RMSE and runtime performance were measured for a variety of differ-
ent parameter choices. Fig. 8.12 shows the RMSE and relative speed of for varying
number of particles N and varying number of events until resampling K averaged
over the whole dataset. Results for additional parameters are shown in the ap-
pendix in fig. B.15 and fig. B.16. For this evaluation, values for the non-modified
parameters were chosen equal to the ”default” parameter set: N = 100, K = 100,
B = 3, 100% used events, voxel size 0.01 cm and standard deviation for position
and rotation diffusion equal to 0.008.

Table 8.1: Memory consumption, positional root-mean-square error (RMSE) and
runtime performance for EB-SLAM-3D for the different scenarios.

Scenario Takes
EB-SLAM EB-SLAM (default) EB-SLAM (fast)

RAM RMSE Speed RMSE Speed

1: ”Table 1” 2 25 MB 3.1 cm 2.0 x 4.0 cm 20 x
2: ”Sideboard” 4 14 MB 4.0 cm 2.2 x 5.2 cm 23 x
3: ”Table 2” 8 27 MB 4.9 cm 1.4 x 9.1 cm 16 x
4: ”Room” 8 21 MB 13.4 cm 2.5 x 13.3 cm 27 x
5: ”People” 4 15 MB 6.1 cm 2.2 x 7.0 cm 24 x

8.4. Evaluation 169

Figure 8.11: Two examples trajectories generated by EB-SLAM-3D (red) compared
to ground truth (blue) from an overhead tracking system. The left path is from
scenario 1 and the right path from scenario 2.

1
0 2
5

4
0 5
0

6
5

7
5

1
0

0

1
5

0

3
0

0

0.0

0.1

0.2

0.3

0.4

Particle count

R
M

S
E

@m
D

1
0 2
5

4
0 5
0

6
5

7
5

1
0

0

1
5

0

3
0

0

0

5

10

15

20

Particle count

R
el

at
iv

e
S

p
ee

d
@D

1 3 1
0

1
0

0

1
0

0
0

0.0

0.1

0.2

0.3

0.4

Reample K

R
M

S
E

@m
D

1 3 1
0

1
0

0

1
0

0
0

0

1

2

3

4

5

Reample K

R
el

at
iv

e
S

p
ee

d
@D

Figure 8.12: RMSE in position and execution time relative to take duration plotted
for the following parameters: Number of particles N (top) and number of events
until resampling K (bottom).

Part III

Conclusion and Appendix

9 CONCLUSIONS

The technological advance has increased our possibilities to collect huge amounts
of data – but more data does not necessarily answer more questions or give deeper
insight into problems. Up to now the skill to extract valuable and non-trivial
information has only been truely mastered by biological systems. In the field of
computer vision, images with a higher resolution or videos with a higher framerate
do not necessarily simplify the analysis. On the opposite, the blind increase of the
number of frames taken per second or the number of pixels in an image requires
more computation power to deal with even more redundant information.

The two main topics presented in this thesis, depth-adpative superpixels and
event-based SLAM, are examples of computer vision methods which work on a
sparse representation of vision data which intelligently reduces the amount of
data processed by the computer. Superpixels form an intermediate layer on top of
the full image which condenses the redundant information of many similar pixels
into only few clusters. Event-based SLAM uses an dynamic vision sensor which
provides an intelligent, continuous representation of the dynamic changes in a
scene. Both algorithm do not blindly reduce the resolution of the input data or try
to compress data with complex mathematical models to take up less memory or
disk space, but focus on the relevant aspects which are required to solve a specific
task.

Both methods use different principals to decide which information is relevant.
While superpixels mainly focus on the spatial redundancy in an image, with an
excursion to possible application to temporal redundancy in form of the t-DASP
algorithm, the work on dynamic vision sensors focuses on the temporal redun-
dancy in a dynamic scene. These two topics have been treated separately, but
of course the techniques could be combined to make the most use of both. An
interesting future work could be the extension of the EB-SLAM-3D algorithm with
superpixels to further enhance tracking qualities and to create a map which can
be used for collision reasoning. Such a method could directly use the D-eDVS
sensor as it already provides both event-based changes and frame-based RGB-D
images.

Superpixels on their own can be used with normal colour cameras and the algo-
rithm presented here for combined colour and depth sensors can be used in a wide
variety of applications, for example robotics, computer games, or human-machine
interfaces in general, if the PrimeSense sensor is available. The DASP, s-DASP

174 Chapter 9. Conclusions

and t-DASP algorithm can be downloaded and used by anyone as all software has
been released to the public as open source. At the moment the necessary depth
information must be provided by an active sensor which has a limited use case
scenario and can for example not be used outside or in multitude as the active
sensing interferes with the sun and with each other. However these algorithms
give an insight in what can be possible in the near future when depth information
will be easier to acquire.

One could critique that event-based vision requires an additional non-standard
sensor which makes applications less feasible than algorithms which require only
classic frame based vision. However compared to active depth sensors, dynamic
vision sensors are passive sensors which work basically everywhere when light is
available. Actually they can be used in even more scenarios as they are adapted
better to strong differences in contrast, changing lighting conditions and fast
movements. The main reason for the widespread use of frame-based cameras
could be attributed to the fact that they are a natural development from the still
photo, and that they are widely used today, thus cheap and a well-known tech-
nology. While classic frame-based computer vision has gone a long way, there
is actually no reason that frame-based vision is the best choice in the long term.
Quite the contrary, the only systems which have successfully solved computer
vision problems are humans and animals which most probably do not work in
the sense that they process one image snapshot after the next one. Evidence
of biologists and neurologist hints in the general direction of a much more dy-
namic and event-based style of processing in biological systems. An opening of
computer vision to new kinds of biologically inspired sensors and biologically
inspired processing of sensor data could prove to be a fruitful exchange of ideas
from different points of view.

The EB-SLAM-3D algorithm is a good example to highlight how a combina-
tion of different principles can lead to a superior, novel approach. Simultaneous
localization and mapping has been investigated for a long time in robotics as it
is a fundamental requirement to navigate in unknown environments. A creative
adaption of established SLAM principles to event-based data streams of dynamic
vision sensors results in an extremely easy and at the same time high-performing
algorithm. Evaluation in several scenarios and comparison to state-of-the-art algo-
rithms demonstrate how the intelligent reduction of the processed data yields very
good results in minimal time. EB-SLAM-3D requires weaker assumptions about
the movement speed, as the event-based model is superior to the frame-based
model when measuring relative change of information. At the same time the
algorithm does not require special processing hardware like a GPU and can run
many times faster than realtime on average computer systems making it an ideal
candidate for small or flying robots or embedded devices.

A PARTITION QUALITY METRICS

A.1 Quality metrics for superpixels

Superpixel properties can be divided in two groups of metric: supervised and
unsupervised. Supervised metrics compare a superpixel segmentation against
manually created ground truth. This includes the boundary recall measure (see
def. 13) and the undersegmentation error (see def. 14). Unsupervised metrics
measures intrinsic properties of superpixels and do not require manual ground
truth. In this section are the following metrics: isoperimetric quotient (see def. 18),
superpixel connectivity quotient (see def. 16), explained variation (see def. 21)
and compression error (see def. 20).

In the following it is assumed that P is a partition of a finite undirected graph.
∂S indicates the boundary of a segment S ∈P in the sense of eq. 8 and eq. 9. |∂S|
denotes the length of the boundary, i.e. the number of vertices on the boundary
of the segment S ∈P, and |S| the area of the segment, i.e. the number of vertices
belonging to the S. The graph structure can for example be the regular pixel lattice
graph or the irregular neighbourhood graph of superpixels.

Boundary Recall

Boundary recall measures how well the boundary of a partition matches the
segment boundary of a given reference partition. It indicates how much of the
boundary is superfluous or missing with respect to the reference.

Definition 13. LetP, X be partitions. The boundary recall (BR) of P with respect
to X and a maximum reach δ ∈R+ is defined as

BRδ(P|X) := 1

|∂P|
∑

v∈∂P
1B(min

x∈∂X
‖v −x‖ < δ) (A.1)

The Boolean indicator function 1B is defined as:

1B : {True,False} → {0,1}, 1B(x) :=
{

1 if x = True,

0 if x = False.
(A.2)

The parameter δ controls how close the boundaries of the two partition must
be to one another. For example, a value of 1 pixel indicates that every pixel of a

176 Appendix A. Partition quality metrics

partition border must be adjacent to a border pixel of the reference partition. The
boundary recall value lies between 0 (worst) and 1 (best) and normally increases
with the number of segments.

Undersegmentation Error

The undersegmentation error [5] measures how well segments from a reference
partition are matched by segments from a given partition. For each reference
segment all overlapping segments from the given partition are found and the area
of theses segments are compared to the size of the reference segment. The smaller
the difference, the better a partition represents the reference partition.

Definition 14. Let P,X be partitions and γ ∈ [0,1] a parameter. The underseg-
mentation error (USE) is defined as

USEγ(P|X) := 1

|P|
∑

T∈X

∑
S∈P

Area(S)1B

[|S ∩T |
|S| > γ

]
−1 (A.3)

The parameter γ accounts for small errors in the boundary computation, a
typical value is γ= 0.05. The undersegmentation error lies between 0 (best) and 1
(worst) and normally decreases with the number of segments.

Connectivity

For a lot of applications it is advantageous that superpixels are connected in the
normal graph theoretic sense.

Definition 15. A segment S ∈P is called connected if for each two vertices u, v ∈ S
there is a path from u to v which lies completely in S. A partition P is called
connected if every segment S ∈P is connected.

Connectivity is sometimes a very strong assumption, as it forbids small, noisy
enclaves. On the other side, often the criterion is too weak as it does not forbid
stretched and widely distributed segments with narrow transitions.

In the following we will use a measure which compares the area of all con-
nected components except the largest against the area of the segment.

Definition 16. Let S ∈P a segment and {ci } ⊂ S its connected components. The
connectivity quotient (CQ) of a segment S ∈P is defined as

CQ(S) := 1− maxi |ci |
|S| (A.4)

Using the area weighted mean this definition can be extended to the whole
partition:

A.1. Quality metrics for superpixels 177

Definition 17. Let P be a partition of a graph G = (V ,E). The connectivity quo-
tient (CQ) of a partition is defined as

CQ(P) := 1

|P|
∑

S∈P
|S|CQ(S) (A.5)

In the best case, where all segments are fully connected, the connectivity
quotient is 0.

Isoperimetric quotient

Superpixels can have many shapes, but a local compact shape is benefitial for
many applications. An easy method to compute the ”compactness” of superpixels
is the isoperimetric quotient.

In a classic, geometric sense, the isoperimetric quotient compares the area of
a shape to its perimeter. The isoperimetric quotient is motivated from Euclidean
geometry where it expresses similarity with a circle.

Definition 18. The isoperimetric quotient (IPQ) of a segment S is defined as

IPQ(S) := 4π |S|
|∂S|2 (A.6)

The tessellation of the plane with spheres is of course not possible. There
exist three regular, homogeneous - so called Platonic - tessellations: triangles,

rectangles, and hexagons. The isoperimetric quotient of a triangle is π
p

3
9 ≈ 0.6046,

for a sphere it’s π
4 ≈ 0.7854 and for a hexagon π

p
3

6 ≈ 0.9069.
In the classical case the isoperimetric quotient lies between 0 and 1, where the

circle itself reaches the maximal value of 1. For lattice graphs, area and perimeter
of segments are an approximation to the classical geometric definitions. Here the
isoperimetric quotient can be bigger than 1, as boundaries have a finite thickness
in contrast to spaces which allow infinitesimal thin boundaries.

The isoperimetric quotient of a partition is defined as the weighted mean of
the isoperimetric quotient of its segments [68]:

Definition 19. The isoperimetric quotient of a partition P is defined as

IPQ(P) := 1

|P|
∑

S∈P
|S|IPQ(S) (A.7)

Compression Error

A good superpixel partition creates segments which represent individual elements
well. For example, the compression quality of a superpixel partition can be mea-
sured by comparing segment mean values against individual pixel values. Here
the root mean square error is used to compare the original image against the
partitioned image where each pixel is assigned the value of the corresponding
superpixel.

178 Appendix A. Partition quality metrics

Definition 20. Let f : Ω→ F be a feature annotation into a feature space F

equipped with a metric ‖ · ‖F . Let fS be the selected segment feature for each
segment S ∈P in the partition. The compression error (CE) is defined as

CE(P, f , (fS)S∈P) :=
√

1

|P|
∑

S∈P

∑
x∈S

‖ f (x)− fS‖2
F

(A.8)

The smaller the compression error, the better a superpixel segmentation is
able to represent the original image data. It is limited by the feature variation in
the image and stands in direct competition to superpixel compactness.

Explained Variation

Another metric for the compression quality of a superpixel partition is the ex-
plained variation metric.

Definition 21. Let f : V → F be a feature annotation into a feature space F

equipped with a metric ‖ · ‖F and a mechanism to compute mean values. Let
fS be selected segment features for each segment S ∈ P in the partition and
f := meanx∈P f (x) the mean feature over the whole partition. The explained
variation of the selected features (fS)S∈P is defined as

EV(P, f , (fS)S∈P) :=
∑

S∈P |S|‖fS − f‖2
F∑

x∈P ‖ f (x)− f‖2
F

(A.9)

The better segment features represent all pixels in the segment, the smaller the
explained variation measure. The metric may have little information content and
yield values near to 1 if the overall mean value lies to far away from the majority of
individual feature values. For example if pixel feature values would be 3D positions
on a sphere, the overall mean would be the centre of the sphere. Then the local
distance between pixel features and segment features may be much smaller than
the distance between segment features and the overall mean feature.

Uniform distribution

Another desired property of superpixels is a uniform distribution over the given
supporting structure. In the following we build a segment density function over
a graph by placing Gaussian kernels at the centre of each segment. This density
function is then compared against the uniform distribution over the vertices.

Definition 22. Let Q ⊂ Ω be a finite set of points and k kernel function. The
density with respect to Q is defined as

ρQ (v) := ∑
q∈Q

k(‖v −q‖) . (A.10)

A.2. Quality metrics for superpoints 179

A typical two-dimensional density kernel is given by the multivariate normal
distribution

kσ(x) := 1

2πσ2
e− 1

2
x2

σ2 (A.11)

The optimal uniform distribution would result in a constant density of ρ0 := |Q|
|Ω| for

all vertices. Assuming that G is a lattice graph, the optimal kernel parameter σ∗ is

chosen such that kσ∗(0) = ρ0. This gives σ∗ =
√

|V |
2π|Ω| for the standard deviation of

the Gaussian kernel.
The centres of segments of a partition define a density over the graph. The

centre of a segment is simply the mean position of all points in the segment. The
closer this density is to the constant density, the more uniform segments are
distributed.

Definition 23. Let C be the set of centre points of the partition P. The uniform
distribution error (UDE) of a partition is defined as

UDE(P) :=
√√√√ ∑

v∈P

(
ρC (v)− |C |

|P|
)2

(A.12)

A.2 Quality metrics for superpoints

To measure the quality of 3D superpixels some additional superpixel properties
are introduced. The 3D isoperimetric quotient, which is similar to the normal
isoperimetric quotient defined in image space, measures superpixel area and
perimeter in 3D. The 3D isoperimetric quotient for a segment is computed as in
def. 18:

IPQ3D(S) := 4πArea3D(S)

Perimeter3D(S)2
(A.13)

with the 3D pixel area computes as

Area3D(S) := 1

f 2

∑
u∈S

D(u)2

n(u)z
(A.14)

and the 3D pixel boundary computed as

Perimeter3D(S) := 1

f

∑
u∈∂S

D(u)

n(u)z
. (A.15)

with f the camera focal length, D(u) point depth and n(u) point normal. Using
the z component of the point normal one can approximate surface projection
distortion, as seen in eq. 3.8 and eq. 3.14.

B SUPPLEMENTARY RESULTS

B.1 Depth-Adaptive Superpixels

The following figures show more evaluation results for the Depth-Adaptive Super-
pixels algorithm from section §3.

• Fig. B.1 and fig. B.1 show superpixels for a set of input colour images (depth
images are not shown)

• Fig. B.3 compares DASP against reference methods using the boundary
recall and undersegmentation error metrics. In these and the following
figures the diagrams in the left column display the measure for a varying
number of superpixels and a the number of iterations for DALIC fixed to 5.
The diagrams in the right column display the measure for a varying number
of DALIC iterations and a fixed number of superpixels of 1000. Values are
the mean over the whole dataset.

• Fig. B.4: evaluation of isoperimetric quotient

• Fig. B.5: evaluation of properties from eigenvalues

• Fig. B.6: evaluation of explained variation

• Fig. B.7: evaluation of compression error

182 Appendix B. Supplementary Results

Figure B.1: Examples for Depth-Adaptive Superpixels

B.1. Depth-Adaptive Superpixels 183

Figure B.2: Examples for Depth-Adaptive Superpixels (cont.)

184 Appendix B. Supplementary Results

æ SLIC à ASPRGBD ì DASP

æ

æ
æ

æ
æ

à

à
à

à
à

ì
ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Boundary Recall @D

æ æ æ æ æ æà à à à à à

ììì ì ì ì

1 2 3 5 10 20

0.2

0.4

0.6

0.8

1.0

Boundary Recall @D

æ

æ
æ æ æ

à

à
à à à

ì
ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Undersegmentation Error @D

æ æ æ æ æ æà à à à à àììì ì ì ì

1 2 3 5 10 20

0.2

0.4

0.6

0.8

1.0

Undersegmentation Error @D

Figure B.3: Top to bottom: Boundary recall and undersegmentation error. Left:
Results for varying number of superpixels. Right: Results for varying number of
iterations for DALIC.

B.1. Depth-Adaptive Superpixels 185

æ SLIC à ASPRGBD ì DASP

æ

æ æ æ æ
à

à à à à

ì
ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Isoperimetric Quotient @D

æ
æ æ æ æ æ

à
à à à à à

ì

ìì ì ì ì

1 2 3 5 10 20

0.2

0.4

0.6

0.8

1.0

Isoperimetric Quotient @D

æ

æ
æ

æ
æ

à

à
à

à
à

ì

ì
ì

ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Isoperimetric Quotient 3D @D
æ

æ æ æ æ æ

à
à à à à à

ì

ìì ì ì ì

1 2 3 5 10 20

0.2

0.4

0.6

0.8

1.0

Isoperimetric Quotient 3D @D

Figure B.4: Top to bottom: Isoperimetric quotient (2D) and isoperimetric quotient
(3D). Left: Results for varying number of superpixels. Right: Results for varying
number of iterations for DALIC.

186 Appendix B. Supplementary Results

æ SLIC à ASPRGBD ì DASP

æ

æ

æ
æ

æ

à

à

à
à à

ì

ì
ì ì ì

200 600 1000 1400 1800

0.01

0.02

0.03

0.04

0.05

Eigenvalue Thickness @mD

æ æ æ æ æ æà à à à à àììì ì ì ì

1 2 3 5 10 20

0.01

0.02

0.03

0.04

0.05

Eigenvalue Thickness @mD

æ æ æ æ æà à à à à

ì ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Eigenvalue Eccentricity @D

æ
æ æ æ æ æ

à
à à à à à

ì
ì

ì
ì ì ì

1 2 3 5 10 20

0.2

0.4

0.6

0.8

1.0

Eigenvalue Eccentricity @D

æ æ æ æ æà à à à àì ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Eigenvalue Flatness @D
æ æ æ æ æ æà à à à à àììì ì ì ì

1 2 3 5 10 20

0.2

0.4

0.6

0.8

1.0

Eigenvalue Flatness @D

æ

æ

æ
æ æ

à

à
à à à

ì

ì
ì ì ì

200 600 1000 1400 1800

0.01

0.02

0.03

0.04

0.05

Eigenvalue Area @D

æ æ æ æ æ æà à à à à àììì ì ì ì

1 2 3 5 10 20

0.01

0.02

0.03

0.04

0.05

Eigenvalue Area @D

Figure B.5: Top to bottom: metrics computed from superpixel eigenvalue analysis:
Thickness, Eccentricity, Flatness and Area. Left: Results for varying number of
superpixels. Right: Results for varying number of iterations for DALIC.

B.1. Depth-Adaptive Superpixels 187

æ SLIC à ASPRGBD ì DASP

æ
æ æ æ æ

à
à à à à

ì
ì ì ì ì

200 600 1000 1400 1800

0.2

0.4

0.6

0.8

1.0

Explained Variation HColorL @D
æ æ æ æ æ æ
à à à à à à
ììì ì ì ì

1 2 3 5 10 20

0.2

0.4

0.6

0.8

1.0

Explained Variation HColorL @D

æ

æ

æ
æ æà

à à à àì ì ì ì ì

200 600 1000 1400 1800

0.85

0.90

0.95

1.00

Explained Variation HDepthL @D

æ æ æ æ æ æ
à

à à à à àììì ì ì ì

1 2 3 5 10 20

0.85

0.90

0.95

1.00

Explained Variation HDepthL @D

æ

æ æ æ æà
à à à àì ì ì ì ì

200 600 1000 1400 1800

0.85

0.90

0.95

1.00

Explained Variation HPositionL @D
æ æ æ æ æ æà à à à à àììì ì ì ì

1 2 3 5 10 20

0.85

0.90

0.95

1.00

Explained Variation HPositionL @D

æ
æ

æ æ æ

à à à à à

ì ì ì ì ì

200 600 1000 1400 1800

1

2

3

4

Explained Variation HNormalL @D

æ æ æ æ æ æ
à

à à à à à

ì
ì ì ì ì ì

1 2 3 5 10 20

1

2

3

4

Explained Variation HNormalL @D

Figure B.6: Top to bottom: Expected variation for colour, depth and 3D position.
Left: Results for varying number of superpixels. Right: Results for varying number
of iterations for DALIC.

188 Appendix B. Supplementary Results

æ SLIC à ASPRGBD ì DASP

æ
æ

æ æ æ

à
à

à à à

ì
ì ì ì ì

200 600 1000 1400 1800

0.1

0.2

0.3

0.4

0.5

Compression Error HColorL @D

æ æ æ æ æ æ
à à à à à à
ììì ì ì ì

1 2 3 5 10 20

0.1

0.2

0.3

0.4

0.5

Compression Error HColorL @D

æ

æ

æ
æ

æ
à

à
à à à

ì

ì
ì ì ì

200 600 1000 1400 1800

0.02

0.04

0.06

0.08

0.10

Compression Error HDepthL @mD

æ
æ æ

æ
æ æ

à

à
à

à à à
ì

ìì ì ì ì

1 2 3 5 10 20

0.02

0.04

0.06

0.08

0.10

Compression Error HDepthL @mD

æ

æ

æ
æ

æ

à

à

à à
à

ì

ì
ì ì ì

200 600 1000 1400 1800

0.02

0.04

0.06

0.08

0.10

Compression Error HPositionL @mD

æ
æ æ

æ
æ æ

à

à
à

à à à
ì

ìì ì ì ì

1 2 3 5 10 20

0.02

0.04

0.06

0.08

0.10

Compression Error HPositionL @mD

æ

æ
æ æ æ

à

à
à à à

ì
ì ì ì ì

200 600 1000 1400 1800

10

20

30

40

50

Compression Error HNormalL @degD

æ æ æ æ æ æà à à à à à

ì
ìì ì ì ì

1 2 3 5 10 20

10

20

30

40

50

Compression Error HNormalL @degD

Figure B.7: Top to bottom: Compression error for colour, depth, 3D position and
3D normal. Left: Results for varying number of superpixels. Right: Results for
varying number of iterations for DALIC.

B.2. Event-based Particle Filter 189

B.2 Event-based Particle Filter

The following figures show more results for the Event-based Particle Filter algo-
rithm from section §6.

• Fig. B.8 shows a comparison of tracked path an actual path in the simulated
robot self-localization scenario from §6.5

• Fig. B.9 shows a comparison of tracked path an ground truth in the experi-
mental robot self-localization scenario from §6.5

190 Appendix B. Supplementary Results

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.4

-0.2

0.2

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.4

-0.2

0.2

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.4

-0.2

0.2

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.4

-0.2

0.2

Figure B.8: Tracking results from simulation for four scenarios. Depicted are raw
tracking results (black), smoothed tracking results using a mean filter (blue) and
ground truth (red). Axes units are in meters.

B.2. Event-based Particle Filter 191

-1.0 -0.5 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

-1.0 -0.5 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

-1.0 -0.5 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

-1.0 -0.5 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure B.9: Experimental tracking results for four scenarios compared to ground
truth from an overhead tracking system. Depicted are raw tracking results (black),
smoothed tracking results using a mean filter (blue) and ground truth (red). Axes
units are in meters.

192 Appendix B. Supplementary Results

B.3 Event-Based SLAM

The following figures show more results for the Event-Based SLAM algorithm from
section §7.

• Fig. B.10 and fig. B.11 compare the tracked path against ground truth

• Fig. B.12 and fig. B.13 show the development of path and map over time.

B.3. Event-Based SLAM 193

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 500 1000 1500 2000 2500 3000 3500 4000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 500 1000 1500 2000 2500 3000 3500 4000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 2000 4000 6000 8000 10000 12000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 2000 4000 6000 8000 10000 12000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 500 1000 1500 2000 2500 3000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 500 1000 1500 2000 2500 3000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 1000 2000 3000 4000 5000 6000 7000 8000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 1000 2000 3000 4000 5000 6000 7000 8000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

Figure B.10: Top to bottom: Three examples out of a total of 40 from the dataset.
Left: Map and path as created by our method. Middle: Trajectories resulting from
our method (red) and the external tracking system (blue). The trajectory starting
point is marked with X. Right: Positional and rotational error over event time.

194 Appendix B. Supplementary Results

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 2000 4000 6000 8000 10000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 2000 4000 6000 8000 10000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
events

0.0

0.1

0.2

0.3

0.4

0.5

m
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

events
0.0

0.1

0.2

0.3

0.4

0.5

ra
d

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 2000 4000 6000 8000 10000 12000 14000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 2000 4000 6000 8000 10000 12000 14000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

1.5 1.0 0.5 0.0 0.5 1.0 1.5
m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m 0 2000 4000 6000 8000 10000 12000 14000
events

0.0

0.1

0.2

0.3

0.4

0.5

m

0 2000 4000 6000 8000 10000 12000 14000
events

0.0

0.1

0.2

0.3

0.4

0.5

ra
d

Figure B.11: Top to bottom: Three more examples out of a total of 40 from the
dataset. Left: Map and path as created by our method. Middle: Trajectories
resulting from our method (red) and the external tracking system (blue). The
trajectory starting point is marked with a X. Right: Positional and rotational error
over event time.

B.3. Event-Based SLAM 195

Figure B.12: Example for map and path generation over time. Displayed is a time
series of map and path at fixed time intervals. In this scenario the robot moved
on its own while exploring the environment. The wiggly parts of the trajectory
indicate that the robot hit an environment obstacle on the ground.

Figure B.13: A second example like in fig. B.12.

196 Appendix B. Supplementary Results

B.4 Event-Based 3D SLAM

The following figures show more results for the Event-Based 3D SLAM algorithm
from section §8.

• Fig. B.14 compares tracked paths against ground truth

• Fig. B.15 shows parameter sweeps and results for the positional root-mean-square
error and the runtime performance

• Fig. B.16 shows more parameter sweeps and results for the positional root-mean-square
error and the runtime performance

B.4. Event-Based 3D SLAM 197

Figure B.14: 6 examples for trajectories tracked with Event-Based 3D SLAM (red)
compared against grount truth (blue) from an overhead tracking system.

198 Appendix B. Supplementary Results

1 3 5 7 1
0 1
5

3
0 5
0

1
0

0

0.0

0.1

0.2

0.3

0.4

Mini Batch Size

R
M

S
E

@m
D

1 3 5 7 1
0 1
5

3
0 5
0

1
0

0

0

1

2

3

4

5

6

Mini Batch Size
R

el
at

iv
e

S
p

ee
d

@D

1
0

2
0

3
0

4
0 5
0

6
0

7
0

8
0

9
0

1
0

0

0.0

0.1

0.2

0.3

0.4

Percentage of events @%D

R
M

S
E

@m
D

1
0

2
0

3
0

4
0 5
0

6
0

7
0

8
0

9
0

1
0

0

0

5

10

15

20

Percentage of events @%D

R
el

at
iv

e
S

p
ee

d
@D

0
.0

0
5

0
.0

1

0
.0

1
5

0
.0

2

0
.0

3
5

0
.0

5

0.0

0.1

0.2

0.3

0.4

Map voxel size @mD

R
M

S
E

@m
D

0
.0

0
5

0
.0

1

0
.0

1
5

0
.0

2

0
.0

3
5

0
.0

5

0

1

2

3

4

5

6

7

Map voxel size @mD

R
el

at
iv

e
S

p
ee

d
@D

Figure B.15: RMSE and execution time relative to take duration plotted for the
following parameters: Mini-batch size B (top), percentage of processed events
(middle) and voxel size (bottom).

B.4. Event-Based 3D SLAM 199

0
.0

0
0

2

0
.0

0
0

4

0
.0

0
0

8

0
.0

0
1

5

0
.0

0
2

5

0
.0

0
5

0.0

0.1

0.2

0.3

0.4

Position Std. Dev.

R
M

S
E

@m
D

0
.0

0
0

2

0
.0

0
0

4

0
.0

0
0

8

0
.0

0
1

5

0
.0

0
2

5

0
.0

0
5

0

1

2

3

4

Position Std. Dev.

R
el

at
iv

e
S

p
ee

d
@D

0
.0

0
0

2

0
.0

0
0

4

0
.0

0
0

8

0
.0

0
1

5

0
.0

0
2

5

0
.0

0
5

0.0

0.1

0.2

0.3

0.4

Rotation Std. Dev.

R
M

S
E

@m
D

0
.0

0
0

2

0
.0

0
0

4

0
.0

0
0

8

0
.0

0
1

5

0
.0

0
2

5

0
.0

0
5

0

1

2

3

4

Rotation Std. Dev.

R
el

at
iv

e
S

p
ee

d
@D

Figure B.16: RMSE and execution time relative to take duration plotted for the
following parameters: Standard deviation for position diffusion (top) and angular
standard deviation for rotation diffusion (bottom).

ACKNOWLEDGEMENTS

I would like to thank Prof. Jörg Conradt for introducing me to the world of dynamic
vision sensors, for the keen eye he had over my research, and especially for his
support during the last year of my PhD. It is an honor for me to have Prof. Daniel
Cremers as an supervisor and I would like to thank him for his time and his
valuable scientific advice. Additionally, I would like to thank Prof. Michael Beetz
for his financial support and guidance during my time in his research group.

I am indebted to my many colleagues to support me and I would like to thank
especially David Gossow for helping me with my first scientific publication. I
would like to thank Magnus Eberle, Nicolai Waniek, Daniel Nyga, Ulrich Klank,
Karinne Ramirez and Alexander Schick for many fruitful scientific discussions and
the successfull collaboration. Additionally, I would like to show my gratitude to
my students Raoul Hoffmann and David Adrian, thanks to them the recording of
evaluation and ground truth data was much less exasperating.

Last but not least my special thanks go to Franziska Löhrer for the many hours
she had to listen to stories about all the strange bugs living in my computer.

BIBLIOGRAPHY

[1] https://commons.wikimedia.org/wiki/File:New_Bond_Street_1_db.

jpg, Authors of the Wikimedia Commons. This file is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license.

[2] https://en.wikipedia.org/wiki/File:6n-graf.svg, Wikimedia Com-
mons.

[3] Openvdb. http://www.openvdb.org/.

[4] The spirit of ’43. https://commons.wikimedia.org/wiki/File:

The_Spirit_of_43-Donald_Duck,_cropped_version.jpg, Public
domain due the fact that it was created for the US Government.

[5] Achanta, R., A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk: Slic super-
pixels. Technical report, EPFL, 2010.

[6] Alon, Noga: Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[7] Arbeláez, P., M. Maire, C. Fowlkes, and J. Malik: Contour detection and hi-
erarchical image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2011, ISSN 1939-3539.

[8] Arbeláez, Pablo: Boundary extraction in natural images using ultrametric
contour maps. IEEE Computer Society Workshop on Perceptual Organization
in Computer Vision (POCV), 2006.

[9] Balzer, M., T. Schlömer, and O. Deussen: Capacity-constrained point distri-
butions: a variant of Lloyd’s method, volume 28. ACM, 2009.

[10] Besl, Paul J and Neil D McKay: Method for registration of 3-d shapes. In
Robotics-DL tentative, pages 586–606. International Society for Optics and
Photonics, 1992.

[11] Boppana, Ravi B: Eigenvalues and graph bisection: An average-case analy-
sis. In 28th Annual Symposium on Foundations of Computer Science, pages
280–285, 1987.

204 Bibliography

[12] Bylow, E., J. Sturm, C. Kerl, F. Kahl, and D. Cremers: Real-time camera tracking
and 3d reconstruction using signed distance functions. In Robotics: Science
and Systems Conference (RSS), June 2013.

[13] Cézanne, Paul: Les joueurs de cartes. https://commons.wikimedia.org/
wiki/File:Cezanne_The_Card_Players_Barnes.jpg, This is a faithful
photographic reproduction of an original two-dimensional work of art which
is in the public domain as the author is dead for more than 107 years.

[14] Chan, Antoni B, Nuno Vasconcelos, and Gert RG Lanckriet: Direct convex re-
laxations of sparse svm. In 24th international conference on Machine learning,
pages 145–153, 2007.

[15] Cheeger, Jeff: A lower bound for the smallest eigenvalue of the laplacian.
Problems in analysis, 625:195–199, 1970.

[16] Cheng, Ming Ming, Guo Xin Zhang, Niloy J Mitra, Xiaolei Huang, and Shi
Min Hu: Global contrast based salient region detection. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 409–416, 2011.

[17] Chung, F. R. K.: Spectral Graph Theory. Providence, RI:. American Mathemati-
cal Society, 1997.

[18] Comaniciu, D and P Meer: Mean shift: a robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(5):603–619, 2002, ISSN 01628828.

[19] Conradt, Jorg, Raphael Berner, Matthew Cook, and Tobi Delbruck: An em-
bedded aer dynamic vision sensor for low-latency pole balancing. In IEEE
Workshop on Embedded Computer Vision, 2009.

[20] Cotton, Frank Albert, Geoffrey Wilkinson, Carlos A Murillo, and Manfred
Bochmann: Advanced inorganic chemistry, volume 5. Wiley New York, 1988.

[21] Donath, William E and Alan J Hoffman: Lower bounds for the partitioning of
graphs. IBM Journal of Research and Development, 17(5):420–425, 1973.

[22] Doucet, A., J.F.G. de Freitas, K. Murphy, and S. Russel: Rao-blackwellized
partcile filtering for dynamic bayesian networks. In Conference on Uncertainty
in Artificial Intelligence (UAI), pages 176–183, 2000.

[23] Dunbar, Daniel and Greg Humphreys: Using scalloped sectors to generate
poisson-disk sampling patterns. Technical report, Tech. Rep. CS-2006-08,
University of Virginia, 2006.

[24] Endres, F., J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard: An
evaluation of the RGB-D SLAM system. In IEEE International Conference on
Robotics and Automation (ICRA), St. Paul, MA, USA, May 2012.

Bibliography 205

[25] Fattal, R.: Blue-noise point sampling using kernel density model. ACM Trans-
actions on Graphics (SIGGRAPH), 2011, ISSN 07300301.

[26] Felzenszwalb, Pedro F. and Daniel P. Huttenlocher: Efficient graph-based im-
age segmentation. International Journal of Computer Vision, 59(2):167–181,
2004, ISSN 0920-5691.

[27] Fiedler, Miroslav: A property of eigenvectors of nonnegative symmetric matri-
ces and its application to graph theory. Czechoslovak Mathematical Journal,
25(4):619–633, 1975.

[28] Forster, Otto: Analysis 2. vieweg, 1977.

[29] Grisetti, G., C. Stachniss, and Burgard Wolfgang: Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transactions on
Robotics, 23:34–46, 2007.

[30] Hartley, Richard and Andrew Zisserman: Multiple view geometry in computer
vision, volume 2. Cambridge Univ Press, 2000.

[31] Heyde, Manfred. https://commons.wikimedia.org/wiki/File:

UsseSchloss.jpg, This file is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license.

[32] Hoffmann, Raoul, David Weikersdorfer, and Jörg Conradt: Autonomous in-
door exploration with an event-based visual slam system. European Confer-
ence on Mobile Robots, 2013.

[33] Hong, Byung Woo and Michael Brady: A topographic representation for mam-
mogram segmentation. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pages 730–737. 2003.

[34] Huhle, Benjamin, Timo Schairer, Sebastian Herholz, Andreas Schilling, and
Wolfgang Straßer: Sparse registration-3d reconstruction from pairs of 2d line
scans. 2013.

[35] Hunt, Robert William Gainer: The reproduction of colour. Wiley, 2005.

[36] Hunter, Richard S: Photoelectric color difference meter. Josa, 48(12):985–993,
1958.

[37] Isard, M and A Blake: Condensation conditional density propagation for visual
tracking. International journal of computer vision, 29(1):5–28, 1998.

[38] Itti, Laurent: Automatic foveation for video compression using a neurobio-
logical model of visual attention. Image Processing, IEEE Transactions on,
13(10):1304–1318, 2004.

206 Bibliography

[39] Itti, Laurent and Christof Koch: A saliency-based search mechanism for overt
and covert shifts of visual attention. Vision research, 40(10-12):1489–1506,
2000.

[40] Kato, H., M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana: Virtual
object manipulation on a table-top ar environment. In ACM International
Symposium on Augmented Reality (ISAR 2000), pages 111–119. Ieee, 2000,
ISBN 0-7695-0846-4.

[41] Kennedy, J. and R. Eberhart: Particle swarm optimization. In IEEE Interna-
tional Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

[42] Kerl, Christian, Jürgen Sturm, and Daniel Cremers: Dense visual slam for
rgb-d cameras. In International Conference on Intelligent Robot Systems
(IROS), 2013.

[43] Kerl, Christian, Jürgen Sturm, and Daniel Cremers: Robust odometry estima-
tion for rgb-d cameras. In IEEE International Conference on Robotics and
Automation (ICRA), 2013.

[44] Kim, K, T H Chalidabhongse, D Harwood, and L Davis: Background modeling
and subtraction by codebook construction. In International Conference on
Image Processing, pages 3061–3064, 2004.

[45] Knossow, D., A. Sharma, D. Mateus, and R. Horaud: Inexact matching of large
and sparse graphs using laplacian eigenvectors. Graph-Based Representations
in Pattern Recognition, pages 144–153, 2009.

[46] Krzemiński, Michal. and Justyna Signersak: Properties of graphs in relation to
their spectra.

[47] Lagae, Ares and Philip Dutré: A comparison of methods for generating poisson
disk distributions. Computer Graphics Forum, 2008, ISSN 0167-7055.

[48] Levinshtein, A., A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Sid-
diqi: Turbopixels: Fast superpixels using geometric flows. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2009, ISSN 1939-3539.

[49] Li, Yuanqing, Andrzej Cichocki, Shun ichi Amari, Sergei Shishkin, Jianting
Cao, and Fanji Gu: Sparse representation and its applications in blind source
separation. Advances in neural information processing systems, 16:241, 2004.

[50] Lichtsteiner, Patrick, Christoph Posch, and Tobi Delbruck: A 128x128 120db
15us latency asynchronous temporal contrast vision sensor. IEEE Journal of
Solid State Circuits, 43(2):566–576, 2007.

[51] Lloyd, Stuart: Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

Bibliography 207

[52] MacQueen, James et al.: Some methods for classification and analysis of mul-
tivariate observations. In 5th Berkeley symposium on mathematical statistics
and probability, volume 1, page 14, 1967.

[53] MeilPa, Marina and Jianbo Shi: Learning segmentation by random walks.
2001.

[54] Montemerlo, Michael, Sebastian Thrun, Daphne Koller, and Ben Wegbreit:
Fastslam: A factored solution to the simultaneous localization and mapping
problem. In AAAI/IAAI, pages 593–598, 2002.

[55] Müller, Georg and Jörg Conradt: A miniature low-power sensor system for real
time 2d visual tracking of led markers. In IEEE International Conference on
Robotics and Biomimetics, 2011.

[56] Newcombe, Richard A, David Molyneaux, David Kim, Andrew J Davi-
son, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon: Kinectfusion:
Real-time dense surface mapping and tracking. In 10th IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pages 127–136, 2011.

[57] Nikolayev, Dmitry and Tatjana Savyolova: Normal distribution on the rotation
group so (3). Textures and Microstructures, 29(3):201–234, 1997.

[58] Oikonomidis, I., N. Kyriazis, and A. Argyros: Efficient model-based 3d tracking
of hand articulations using kinect. 2011.

[59] Oikonomidis, Iasonas, Nikolaos Kyriazis, and Antonis A Argyros: Full dof
tracking of a hand interacting with an object by modeling occlusions and
physical constraints. In IEEE International Conference on Computer Vision,
pages 2088–2095, 2011.

[60] Oikonomidis, Iasonas, Nikolaos Kyriazis, and Antonis A Argyros: Tracking the
articulated motion of two strongly interacting hands. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1862–1869, 2012.

[61] Park, Mee Young and Trevor Hastie: L1-regularization path algorithm for
generalized linear models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 69(4):659–677, 2007.

[62] Pennec, Xavier: Computing the mean of geometric features application to the
mean rotation. 1998.

[63] Perbet, F. and A. Maki: Homogeneous superpixels from random walks. In IAPR
Conference on Machine Vision Applications, 2011.

[64] Ren, Xiaofeng and Jitendra Malik: Learning a classification model for segmen-
tation. IEEE International Conference on Computer Vision, 2003.

208 Bibliography

[65] Rogister, Paul, Ryad Benosman, Sio Hoi Ieng, Patrick Lichtsteiner, and Tobi
Delbruck: Asynchronous event-based binocular stereo matching. IEEE Trans-
actions on Neural Networks and Learning Systems, 23(2):347–353, 2012.

[66] Rusu, Radu Bogdan: Semantic 3D Object Maps for Everyday Manipulation in
Human Living Environments. PhD thesis, Computer Science department,
Technische Universitaet Muenchen, Germany, October 2009.

[67] Sakaki, Takeshi: Earthquake shakes twitter users : Real-time event detection
by social sensors. pages 851–860, 2010.

[68] Schick, A., M. Fischer, and R. Stiefelhagen: Measuring and evaluating the com-
pactness of superpixels. In International Conference on Pattern Recognition,
2012.

[69] Schmaltz, C., P. Gwosdek, A. Bruhn, and J. Weickert: Electrostatic halftoning.
In Computer Graphics Forum, volume 29, pages 2313–2327, 2010.

[70] Schmidt, F. and H. G. Schaible: Neuro- und Sinnesphysiologie. Springer, 1993.

[71] Schraml, S., A. N. Belbachir, N. Milosevic, and P. Schön: Dynamic stereo vision
system for real-time tracking. In IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1409–1412, 2010.

[72] Shi, J. and J. Malik: Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2000.

[73] Shotton, J, A Fitzgibbon, M Cook, T Sharp, M Finocchio, R Moore, A Kipman,
and A Blake: Real-time human pose recognition in parts from single depth
images. IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[74] Snyder, John Parr and Philip M Voxland: An album of map projections. 1989.

[75] Umeyama, S.: An eigendecomposition approach to weighted graph matching
problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(5):695–703, 1988.

[76] Vedaldi, Andrea and Stefano Soatto: Quick shift and kernel methods for
mode seeking. In European Conference on Computer Vision, pages 705–718.
Springer, 2008.

[77] Vincent, Luc and Pierre Soille: Watersheds in digital spaces: an efficient al-
gorithm based on immersion simulations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(6):583–598, 1991.

[78] Wang, Shu, Huchuan Lu, Fan Yang, and Ming hsuan Yang: Superpixel tracking.
Electrical Engineering, page 2011, 2011.

Bibliography 209

[79] Wang, Xianfu: Volumes of generalized unit balls. Mathematics Magazine,
78/5:390–395, 2005.

[80] Weikersdorfer, David and Jörg Conradt: Event-based particle filtering for
robot self-localization. In IEEE International Conference on Robotics and
Biomimetics, pages 866 – 870, 2012.

[81] Weikersdorfer, David, David Gossow, and Michael Beetz: Depth-adaptive
superpixels. In 21st International Conference on Pattern Recognition, pages
2087 – 2090, 2012.

[82] Weikersdorfer, David, Raoul Hoffmann, and Jörg Conradt: Simultaneous
localization and mapping for event-based vision systems. In International
Conference on Computer Vision Systems, 2013.

[83] Weikersdorfer, David, Alexander Schick, and Daniel Cremers: Depth-adaptive
supervoxel for efficient rgb-d video analysis. In IEEE International Conference
on Image Processing, 2013.

[84] Wu, Zhenyu and Richard Leahy: An optimal graph theoretic approach to
data clustering: Theory and its application to image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(11):1101–1113,
1993.

[85] Xu, C., C. Xiong, and J.J. Corso: Streaming hierarchical video segmentation.
In European Conference on Computer Vision, 2012.

[86] Yang, X.S., S. Deb, and S. Fong: Accelerated particle swarm optimization and
support vector machine for business optimization and applications. Net-
worked Digital Technologies, pages 53–66, 2011.

[87] Yu, Stella X and Jianbo Shi: Multiclass spectral clustering. In 9th IEEE Interna-
tional Conference on Computer Vision, pages 313–319, 2003.

[88] Zeng, G., P. Wang, J. Wang, R. Gan, and H. Zha: Structure-sensitive superpixels
via geodesic distance. In IEEE International Conference on Computer Vision,
pages 447–454, 2011.

[89] Zhang, Zhengyou: A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334,
2000.

[90] Zhu, Ji, Saharon Rosset, Trevor Hastie, and Rob Tibshirani: 1-norm sup-
port vector machines. Advances in neural information processing systems,
16(1):49–56, 2004.

210 Bibliography

[91] Zivkovic, Z: Improved adaptive gaussian mixture model for background sub-
traction. In 17th International Conference on Pattern Recognition, volume 2,
pages 28–31, 2004.

[92] Zou, Hui, Trevor Hastie, and Robert Tibshirani: Sparse principal component
analysis. Journal of computational and graphical statistics, 15(2):265–286,
2006.

LIST OF FIGURES

1.1 From superpixels to superpixel segmentation 9
1.2 Applications for Event-based Vision 10
1.3 Thesis outline . 13

2.1 Adaptive Superpixels overview . 17
2.2 Intra-region similarity and inter-region dissimilarity 18
2.3 Oversegmentation vs down-sampling 20
2.4 Superpixel image compression . 21
2.5 Examples for superpixels . 22
2.6 Examples for Adaptive Superpixels 25
2.7 Halftoning of a greyscale image . 27
2.8 Power spectra for various Poisson disc methods 28
2.9 Mulit-layer pyramid for a density function 32
2.10 Simplified Poisson Disk Sampling . 33
2.11 Comparison of quality for Poisson disc sampling methods 38
2.12 Comparison of runtime for Poisson disc sampling methods 39
2.13 Example density function for evaluation of ASP 40
2.14 Comparison of several Poisson disc sampling methods 40
2.15 DALIC with various Poisson disc sampling methods 41
2.16 Adaptive Superpixels and saliency analysis 42
2.17 ASP and distribution of cones on the human retina 43
2.18 Using depth information with ASP 44

3.1 Depth-Adaptive Superpixels overview 47
3.2 Applications for RGB-S sensors . 49
3.3 ASP superpixels in 3D . 51
3.4 Microsoft Kinect and Asus Xtion . 52
3.5 PrimeSense depth measurement failures 54
3.6 Depth gradient and normals for an RGB-D image 56
3.7 Density of uniform 3D points after projection 57
3.8 The depth-adaptive superpixel density 58
3.9 Depth-Adaptive Superpixels clustering 60
3.10 Comparison of metric weights for DASP 61
3.11 3D points, superpixels and point normals 62

212 List of Figures

3.12 Example of Depth-Adaptive Superpixels 64
3.13 DASP evaluation . 65

4.1 s-DASP overview . 67
4.2 Example for RGB-D image segmentation 68
4.3 Depth-Adaptive Superpixels Segmentation 69
4.4 A simple graph and its Laplacian . 71
4.5 Superpixel neighbourhood graph . 76
4.6 Weighted superpixel neigbhourhood graph 76
4.7 Superpixel ultrametric contour graph 78
4.8 s-DASP graph labeling . 79
4.9 Precision and recall for s-DASP and state-of-the-art 81
4.10 Examples for s-DASP . 83

5.1 t-DASP teaser . 85
5.2 RGB-D video stream examples . 87
5.3 Temporal Depth-Adaptive Superpixels 88
5.4 Variation in DASP oversegmentation 90
5.5 Delta Density Sampling . 92
5.6 SPDS vs DDS cluster movement . 94
5.7 Temporal superpixel association . 96
5.8 Superpixel strand graph (schematic) 98
5.9 Evaluation of t-DASP . 106
5.10 Close up comparison of t-DASP and StreamGBH 107
5.11 Results fro t-DASP and StreamGBH 107

6.1 Event-based vision overview . 111
6.2 Event-based vs. frame-based . 112
6.3 Advantages of dynamic vision sensors 113
6.4 eDVS and accessory . 115
6.5 Temporal Bayesian network for tracking 124
6.6 The Event-based Particle Filter algorithm 126
6.7 2D application scenario of EB-PF . 130
6.8 Actual ceiling and created map . 131
6.9 Robot with marker, ground truth and results 133

7.1 Event-Based SLAM overview . 135
7.2 The process of event-based SLAM . 138
7.3 The three maps of event-based SLAM 141
7.4 Event-Based 2D SLAM scenario . 145
7.5 Results for Event-Based 2D SLAM . 146
7.6 Comparison of EB-SLAM-2D map against ground truth 147
7.7 EB-SLAM-2D map and path generation over time 147
7.8 Autonomous exploration scenario for EB-SLAM-2D 148

List of Figures 213

7.9 Path planning with information gain optimization 149
7.10 Final results for autonomous exploration 150
7.11 Map and path over time for autonmous exploration 151

8.1 Event-Based 3D SLAM overview . 153
8.2 Sparse map vs dense map . 155
8.3 The D-eDVS sensor . 156
8.4 D-eDVS calibration . 157
8.5 Event pixel rays and depth computation 158
8.6 Example of D-eDVS stream . 159
8.7 EB-SLAM-3D map and path over time 161
8.8 EB-SLAM-3D map and path over time 161
8.9 Chunk voxel grid . 165
8.10 The scenarios for this evaluation . 167
8.11 Path comparison for EB-SLAM-3D 169
8.12 RMSE and runtime for EB-SLAM-3D 169

B.1 Examples for Depth-Adaptive Superpixels 182
B.2 Examples for Depth-Adaptive Superpixels (cont.) 183
B.3 DASP evaluation of boundary recall and undersegmentation error 184
B.4 DASP evaluation of isoperimetric quotient 185
B.5 DASP evaluation of properties from eigenvalues 186
B.6 DASP evaluation of explained variation 187
B.7 DASP evaluation of compression error 188
B.8 EB-PF tracking results (simulation) 190
B.9 EB-PF tracking results (ground truth) 191
B.10 EB-SLAM-2D results . 193
B.11 EB-SLAM-2D results (cont.) . 194
B.12 Map and path generation over time (example 1) 195
B.13 Map and path generation over time (example 2) 195
B.14 Trajectories from Event-Based 3D SLAM against ground truth . . . 197
B.15 RMSE and runtime for EB-SLAM-3D (1) 198
B.16 RMSE and runtime for EB-SLAM-3D (2) 199

LIST OF TABLES

6.1 Video stream bandwidth for a selection of video formats 114
6.2 eDVS vs Point Grey Flea 3 . 115
6.3 Algorithm runtime for selected parameters 134

7.1 RMSE for Event-Based 2D SLAM . 146

8.1 Memory consumption, RMSE and speed for Event-Based 3D SLAM 168

LIST OF NOTATIONS AND ABBREVIATIONS

L Logistic function Lα(x) := 1
1+e−αx

P (X) Probability of X

N Random sample from a Gaussian normal distribution

U Random sample from a uniform distribution

N Natural numbers (integers)

Z Positive integers (including 0)

R Real numbers

R+ Positive real numbers (including 0)

SE(n) Special Euclidean Group which describes orientation preserving isometries
of an n-dimensional rigid bodies

SO(n) Special Orthogonal Group which describes orientation preserving symme-
tries of an n-dimensional rigid bodies

Area Area of a 2D segment

D Set of superpixels

F Image feature space

f Feature of a pixel / element

s Mean feature for a superpixel or segment

G General graph

GI Two-dimensional finite lattice graph (for images or video frames)

GS Superpixel graph

GV Three-dimensional finite lattice graph (for videos)

218 List of Tables

I Mapping GI →F

P Partition of a set

X Ground truth / reference partition of a set

H Hierarchical tree of partitions

Ω A domain in general

V Mapping GV →F

∂P Boundary of a partition

∂S Boundary of a segment

ρ Density function

Vol Volume of a 3D segment

Aρ(· ,U) Kernel density approximation of a set of points U

E Set of edges of a graph

Eρ(U) Error of kernel density approximation of a set of points U

S Segment of a partition

V Set of nodes of a graph

Ws Edge weights of superpixel graph

WT Edge weights of superpixel strand graph

GT Graph of spatio-temporal superpixel strands

T Spatio-temporal superpixel strand

MM Motion model for particle filter algorithm

MMB Motion model for Event-based Particle Filter which processes B events at
once

R Pixel coordinate space for event-based sensors, i.e. R = [0,127]2

Ω Base domain for the system state used in EB-PF .

G Gain map used in autonomous exploration with EB-SLAM

Γ Base domain over which to build the map used in EB-SLAM .

E Exploration map used in autonomous exploration with EB-SLAM

List of Tables 219

M A map used for mapping the environment in a SLAM method.

O Occurrence map used in EB-SLAM

Z Normalization map used in EB-SLAM

D-eDVS Combination of eDVS and PrimeSense depth sensor

RD Space for events from a D-eDVS sensor

ASP (Density-)Adaptive Superpixel

DALIC Density-Adaptive Local Iterative Clustering

DASP Depth-Adaptive Superpixels

DDS Delta Density Sampling

PDS Poisson Disc Sampling

RGB-D Refers to an RGB colour space in combination with depth information

RGB Refers to an RGB colour space

S-DASP Depth-Adaptive Superpixel Segmentation

SPDS Simplified Poisson Disc Sampling

T-DASP Temporal Depth-Adaptive Superpixel

TS-ASP Temporal-Stable (Density-)Adaptive Superpixel

UCG Ultrametric contour graph

UCM Ultrametric contour map

