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Abstract

Ambient vibration tests are output-only tests based on the structural response
recorded under natural excitation, such as wind or traffic loads. In contrast to
forced vibration test, they do not require service interruption and expensive de-
vices to excite the structure. To this aim, we combine the recently proposed
H-fractional spectral moments representation of stationary processes with a mod-
ification of the Kalman filter to the scope of structural parameter identification.
This paper shows that the method is particularly suited to dealing with long-
correlated loads, i.e. stochastic processes with inverse power-law correlation,
where many existing methods are not applicable or insufficiently accurate.

1 Introduction

Forced vibration tests on structures of civil engineering interest are expensive and time con-
suming as they are performed by impact hammers or heavy shakers, needed to excite the
modes of interest with sufficient energy. Moreover, they require temporary out of service state
of the structure which causes increments of costs. Conversely, ambient vibration test can be
conducted continuously in time measuring the structural response for large time intervals,
using the excitation of both natural and/or service loads as wind, traffic or human walk.
Such loads are caused by the superposition of multiple inputs and thus lead to a broad-band
excitation of a significant number of vibration modes [58, 16].

A literature review on ambient vibration tests can be found in [25]. The first use of
the ambient vibration technique for the dynamic characterization of full-scale structures is
reported in the seventies. Since then the technique is extensively used in engineering in the
scope of parameter identification (frequencies, damping ratios and modal shapes) [27, 41, 40,
17, 6, 44, 22], model updating [26, 22] as well as damage detection and health monitoring [20,
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42, 33] of slender structures such as pedestrian bridges, chimneys, long-span frame structures
or high-rise buildings.

Many experimental modal identification methods for output-only measurements are avail-
able if the load process can be modeled as a stochastic white noise process: i) The peak
picking method [2, p. 196-203] in which the eigenfrequencies of the system are determined
from the resonant peaks of the averaged normalized power spectral densities (ANPSDs) of the
system response, is widely used in civil engineering due to its simplicity and computational
efficiency. In case of a broad-band excitation, well separated modes and low damping, the
method provides reliable estimates of the eigenfrequencies [22]. ii) The stochastic subspace
identification method [41, 17] belongs to the most advanced time-domain methods which iden-
tifies the system matrices of a stochastic state space model from which the modal parameters
can be extracted using numerical techniques such as singular value decomposition (SVD) or
QR factorization. The unknown input is introduced as zero-mean white process noise in the
system equation. Hence, if the input contains some dominant frequencies, they cannot be dis-
tinguished from the eigenvalues of the system matrices used for the parameter identification
[44]. iii) The natural excitation technique (NExT) is based on the fact that the theoreti-
cal cross-correlation function between two response output channels from an ambient excited
structure has the same analytical form as the free vibration response of the structure [27].
Hence, classical modal parameter estimation techniques such as Polyreference, LSCE, Eigen-
system Realization Algorithm (ERA) and Ibrahim Time Domain are appropriate to estimate
the modal parameters using the cross-correlation function instead of the impulse response
function as input [40]. A comparative study on these system identification techniques is given
in [17, 40]. In case the power spectral density (PSD) of the excitation is not white, the above
cited methods are not applicable. In this case, the parameter identification problem to be
solved consists of two subparts, namely: i) The digital simulation of the random load; ii) The
estimation of the structural response to the random load using output-only model identifica-
tion techniques. In case that both parts are handled individually, numerous methods for the
system identification as well as for the simulation of stochastic processes are available. To
better motivate the method proposed in this paper we briefly review some methods appeared
in literature to handle both problems.

1.1 Digital simulation of stationary Gaussian processes

A literature review on different simulation techniques of stationary Gaussian processes with
application to wind engineering was proposed in [32]: They are classified in spectral repre-
sentation approaches and digital filter schemes with band-limited white noise input. The first
class is based on the superposition of (a theoretical infinite) series of sine and cosine functions
with random phase either carried out in the time or in the frequency domain using fast Fourier
transform (FFT) [57] and was proposed in the seventies by [50]. It belongs to the most popular
methods for the digital simulation of random processes and allows to generate sample func-
tions with target probabilistic characteristics of stationary/ non-stationary, homogeneous/non-
homogeneous, one-dimensional/multi-dimensional, one-variate/multi-variate as well as Gaus-
sian/ non-Gaussian stochastic processes, fields or waves. Combined with the Monte Carlo
Simulation algorithm, the method can be applied to a variety of engineering problems in
stochastic mechanics such as nonlinear problems or problems related to the stochastic stabil-
ity, parametric excitation, parameter and input uncertainties, risk assessment, etc.. However,
especially if processes with a large number of variates are considered, computational difficulties
arise. The use of the Fast Fourier transform improves the computational efficiency drastically,
but not without the expense of increased demand on computer storage [32]. Even in the
case of one-dimensional univariate stochastic processes the generation of samples might be
extremely expensive from a computational point of view, if the generation is to be performed
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over a long period of time [48]. However, the crucial problem arises from the fact, that the
obtained series representation of the process cannot be written in the required state space form
in order to combine it with the later used system identification technique. A similar problem
occurs if the Karhunen-Loéve decomposition of the random process is used. This is based
on linear superposition of deterministic functions where the combination factors are a set of
uncorrelated random variables [35, p. 27 ff.]. Also in this approach the resulting equations
cannot be written in state space form and hence the method is not appropriate.

In the second class of simulation techniques, the process is modeled as output of a linear
system subjected to white noise represented either by convolution of the input process with
the impulse response function or by integration of a differential equation driven by white noise.
The former is based on the spectral factorization theorem and the latter leads to parametric
time series models such as autoregressive (AR), moving average (MA), and the combined
ARMA models to simulate the time series of the random process. The linear model describing
the load process can then be included in the structural state representation of the system’s
dynamics by state space augmentation to which standard tools based on linear system theory
for the system identification as considered here, but also in the scope of response analysis,
optimization, and design of active control devices, can be applied [9].

Moving average models are widely used for the simulation of random processes character-
ized by an all-zero spectra, i.e. if the estimated PSD has no prominent peaks, in contrast to
autoregressive models which are more suitable for all-pole spectra, i.e. if the PSD is charac-
terized mainly by spectral peaks at distinct frequencies.

Their combination, the ARMA model, yields a PSD with peaks and expressible as ratio of
polynomials [51, 5, 31] suitable for a wide range of spectra with both poles and zeros. While
the coefficients of the AR model can be derived by linear regression, the approximation of the
process by the more general ARMA model leads to a highly non-linear minimization problem.
In [52, 38, 54, 55] the optimization problem is solved by two stage algorithms where first the
process is approximated as high order AR series by autocorrelation matching and then in a
second step a low order ARMA representation of the prior model is derived by matching of
the output autocorrelations and input-output cross-correlations. The methods are verified by
application to spectra encountered in earthquake engineering (Kanai-Tajimi spectrum), wind
engineering (von Kármán velocity spectrum) and ocean engineering (Pierson-Moskowitz (P-
M) spectrum). However, the methods require a repetitive calculation of the AR and ARMA
parameters in order to find the optimal order of these models. At the best of the authors’
knowledge, there are not methods to a priori estimate the number of coefficients to be cal-
culated for the AR and MA parts. In case that the target spectrum exhibits zeros like the
P-M spectrum or a slope discontinuity like the Davenport spectrum, the computation of re-
liable AR approximations need some further tuning of the ARMA model [37]. Zeros in the
target spectrum leads indeed to high frequency fluctuation in the corresponding AR spectrum
whose amplitude decays slowly with increasing system order. The problem is discussed in
detail in scope of the properties of the z-Transform in [52], where a Taylor series expansion
of the P-M spectrum is proposed to reduce the effect of the zero in the spectrum. Instead
of approximating the ARMA representation on basis of a high order AR model in [53] the
problem is solved by a two stage approach, where the first step is to calculate a high order MA
representation being more suited to model zeros is the spectrum. In [37] it is shown that the
rate of convergence of this algorithm can be improved by adding a very small positive value
to the target spectrum so that the zero, causing the numerical problems, is removed. Slope
discontinuities in the spectrum also lead to a slow convergence of the AR model to the target
process, in particular a kink at small frequency leads to a decrease of the converges rate. The
AC function R(τ) of ARMA generated processes converges exponentially as the lag τ → ∞,
and thus are just applicable for the description of short-memory processes. Long-memory
processes are characterized by a much slower decreasing AC function, i.e. R(τ) ∼ Cτd as

3



τ →∞ where C > 0 and −2 < d < 0, and can be described by a modified form, the so-called
fractionally integrated ARMA processes (ARFIMA) proposed in [23] which can be interpreted
as ARMA processes driven by fractionally integrated white noise [4, p. 428–436]. Since the
AC function decays slowly, the estimation of the model parameters, e.g. by applying the max-
imum likelihood procedure, requires the consideration of all autocorrelations including those
with large time lags what makes the method computational demanding. As the state space
representation of an ARFIMA model is of infinite order [8] it is not computationally efficient
when combined to algorithms for system identification. Further literature on techniques for
the generation of time series with power law PSDs such as fractional integration-based meth-
ods, fractional Brownian motion method, Fourier transform based-methods, wavelet-based
methods and methods based on ARMA filters is given in [21].

1.2 Parameter identification for structures under correlated
loads

In case of non-white excitation, the parameter identification problem is more complex and
few techniques appeared in literature. In [19, 18] an operational modal analysis technique on
transmissibility measurements is introduced which allows to identify the modal parameters of
the structure without assumption on the nature of the excitation. In [43] a multi-dimensional
ARMA parameter identification method is derived which allows to consider the excitation by
sinusoidal loads, non-stationary white noise as well as colored noise with a rational spectrum.
The latter property is also used in [34] where the state space model is augmented for corre-
lated process noise using the spectral factorization theorem. It allows to model a wide sense
stationary random process with PSD of rational form as an output of a linear system with
white noise input. This system is then added to the original system by augmenting the state
space representation leading to an overall linear system driven by white noise once again.
The parameter identification is then carried out with the help of the extended Kalman filter
(EKF) [34], a modification of the well-known Kalman filter [30] that is a minimum variance
parameter estimator.

1.3 Motivations and aim of the paper

From the literature review it can be summarized that at the state-of-the-art, the main lim-
itations in the field of parameter identification under correlated loads are: i) if the load is
long-correlated, time series models require an infinite number of coefficients to properly simu-
late the inverse power-law decay; ii) the number of coefficients p and q of time series models,
such as ARMA models, cannot be predicted a priori and, increasing them, requires the recalcu-
lation of the whole set of coefficients; iii) this limitation is more severe from the computational
time point of view in multivariate and multidimensional cases; iv) efficient simulation methods,
based on Karhunen-Loéve or wavelet methods, have not been yet combined to identification
methods.

The problem which is addressed in this paper is the development of a method for the digital
simulation of random forces from the knowledge of the PSD which can be easily combined
with existing identification methods, solving the issues above summarized.

The problem is solved on basis of a recently developed method which allows to represent
PSD and correlation function (AC) in closed form by means of a generalized Taylor expansion
using fractional spectral moments (FSMs) [11]. The concept is used in [15] to derive a linear
fractional differential equation, whose output is a stationary colored Gaussian process with
target PSD, e.g. known from measurements. The method is called ’H-fractional spectral
moments decomposition’ as the coefficients for the noise simulation are calculated from the
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FSMs of the linear transfer function H(ω). In [10, 13] it is applied for the simulation of
univariate/multivariate wind velocity fields, respectively. Based on the H-FSMs decomposition
the new issue presented in this paper is the derivation of a state space representation of
arbitrarily correlated load processes in analytical form which neither require the factorization
of the PSD nor any optimization procedure and which can be easily combined with common
state space model based system identification methods such as the well known and widely
used Kalman filter algorithm.

In the following, the H-FSM method is described and some relevant applications in wind
and ocean engineering are presented. Then, the Kalman filter algorithm is introduced and
modified in order to include time-correlated process noise by state space augmentation. Here
we will follow an approach given in [34] which uses the spectral factorization theorem for this
purpose. The method is introduced for the validation of the developed generalized state space
representation. Finally, the fractional algorithm is applied to a single degree of freedom system
excited by the three load cases in order to estimate the stiffness and damping parameter of
the system.

2 Fractional representation of stationary Gaussian

processes

In the following we present a method to describe a stationary colored Gaussian process as
output of a linear fractional differential equations, recently introduced in [15].

A colored Gaussian noise process F (t) can be represented as output of a linear differential
equation, a so-called linear filter, excited by a Gaussian white noise process {W (t)}. The
input-output relation is characterized in the frequency domain by the transfer function H(ω)
[36]. Many methods exist to find H(ω) given the target PSD of {F (t)}, with the aim of
simulating realizations of the process {F (t)}. Stationary Gaussian processes {X(t)}, which
will be considered in the following, are completely characterized by the second order statistics,
i.e. the first and second order moments, namely the mean µ(t) and AC function R(τ)

µ(t) = E [X(t)] = const.(1a)

RX(τ) =

∫ ∞
−∞

X(t)X(t+ τ)dτ = E [X(t)X(t+ τ)](1b)

where E[ · ] denotes the stochastic average and τ an arbitrary time shift. Alternatively, the
process can be characterized in the frequency domain by its PSD SX(ω), e.g. known from
measurements. The AC and the PSD are related by the Fourier transform pair

RX(τ) = F{SX(ω); t} =

∫ ∞
−∞

SX(ω)eiωτdω(2a)

SX(ω) = F−1{RX(τ);ω} =
1

2π

∫ ∞
−∞

RX(τ)e−iωτdτ(2b)

As shown in [11] both the AC and the PSD function can be reconstructed by fractional
spectral moments (FSMs) defined as

ΛX(γ) =

∫ ∞
−∞
|ω|γSX(ω)dω =

∫ ∞
0

ωγGX(ω)dω(3)

with γ ∈ C chosen such that the integral converge, that is with the real part γ0 < Reγ < γ1.
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For γ ∈ N>0 the FSMs coincide with the classical spectral moments (SMs) of the one-
sided PSD function GX(ω) = 2U(ω)SX(ω) already defined in [56] where U(ω) is the unit
step function. In particular the zero-order SM ΛX(γ = 0) corresponds to the variance of the
process {X(t)} and the second-order SM ΛX(γ = 2) is the variance of its derivative {Ẋ(t)}.
While the classical SMs might diverge if γ increases and thus cannot be used to reconstruct
the PSD of the process, it was proven, in [12], that for γ ∈ C the FSMs ΛX(γ) restore both
the RX(τ) and SX(ω) in the form

RX(τ) =
1

2πi

∫ ρ+i∞

ρ−i∞
ν(γ)ΛX(−γ)|t|−γdγ(4a)

SX(ω) =
1

4πi

∫ ρ+i∞

ρ−i∞
ΛX(−γ)|ω|γ−1dγ(4b)

where ν(γ) = Γ(γ) cos(γπ/2) and γ0 < ρ < γ1. Both integrals are performed along the imagi-
nary axis with fixed real part ρ which belongs to the fundamental strip of the Mellin transform
calculated from Eq.(3). Furthermore in deriving the latter equation it was considered that
the AC, and consequently the PSD, are symmetric and real functions. This representation is
valid for any Fourier pair, originally was proposed for probability density and characteristic
function in [12], and extended to multidimensional random variables [14] and multivariate
processes [10, 13].

In contrast to the methods based on time series, such as the ARMA-based methods, the
coefficients of the model are derived in analytical form and allow to formulate a representation
of both the PSD and AC function in the whole domains ]−∞ < ω <∞[ and ]−∞ < τ <∞[,
respectively. The method can be used for arbitrarily correlated processes with no requirement
to the functional form of the PSD, and thus it allows to model both short- and long-memory
dependencies. Furthermore, it must be noted, that the coefficients are calculated analytically
directly on basis of the target PSD function instead of the AC function like the ARMA-based
approaches which makes the method computational efficient also in case of long correlated
processes. In the second part, it will be shown, that once the coefficients of the process are
calculated, the algorithm can be readily expressed as linear state space form with white noise
input which allows to combine it with the used identification algorithm.

2.1 Reconstruction of the PSD of correlated Gaussian pro-
cesses by H-FSMs decomposition

In the following the main results of the method for the representation of colored Gaussian
processes described in [15] are summarized for clarity’s sake. Three load case scenarios, i.e.
process with exponential AC, von Kármán and Pierson Moskowitz PSD, are examined which
are used throughout the paper for verification of the method.
Using this method the colored load process {F (t)} with assigned PSD SF (ω) is simulated as
output of a linear differential equation excited by Gaussian white noise. This can be expressed
using the linear differential operator L(·) in the form

L(F (t)) = W (t)(5)

where {W (t)} denotes the zero-mean Gaussian white noise process. The corresponding input-
output relation in terms of the PSD are given by

SF (ω) = |H(ω)|2SW (ω)(6)
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where H(ω) is the transfer function and SW (ω) denotes the PSD of the zero-mean Gaussian
white noise process {W (t)} of intensity qW characterized by the Fourier pair

SW (ω) =
qW
2π

R(τ) = E[W (t)W (t+ τ)] = qW δ(τ).(7)

Assuming
Arg[H(ω)] = 0(8)

the filter is defined from the target PSD

H(ω) = |H(ω)| =
√

2π

qW
SF (ω)(9)

In the time domain, the solution of Eq.(5) is given by the Duhamel convolution integral

F (t) =

∫ ∞
−∞

h(t− τ)W (τ)dτ =

∫ ∞
−∞

h(τ)W (t− τ)dτ .(10)

using the time-invariant linear transfer function h(t) = F{H(ω); t}. It must be noted that
the assumption Eq.(8) leads to a non-causal system, i.e. h(t) 6= 0 for t < 0, hence, the generated
time series of the process {F (t)} is not just depending on the realizationsW (t0),W (t−1),W (t−2), ...
of the white noise process {W (t)} for t < 0 but also on future values W (t1),W (t2), ... for t > 0.
Nevertheless, due to the linearity of the underlying differential equation and the statistical
independence of the Gaussian white noise process, the output remains a strict stationary
Gaussian process. In order to reconstruct the transfer function H(ω) and its Fourier trans-
form one can follow the approach derived in the previous section for the AC function and PSD
leading to the H-fractional spectral moments (H-FSM)

ΠH(γ) =

∫ ∞
−∞

H(ω) |ω|γ dω(11)

as shown in [11]. Similar to Eq.(4a), (4b) the transfer function h(t) and its Fourier transform
H(ω) can be represented by

h(t) =
1

2πi

∫ ρ+i∞

ρ−i∞
ν(γ)ΠH(−γ) |t|−γ dγ(12a)

H(ω) =
1

4πi

∫ ρ+i∞

ρ−i∞
ΠH(−γ) |ω|γ−1 dγ(12b)

with ν(γ) = Γ(γ) cos(γπ/2). In some cases these contour integrals cannot be calculated in
analytical form, but as the Gamma function Γ(γ) decays exponentially fast in vertical strips,
i.e. for Imγ →∞, depending on the decay of ΠH(γ), the integrals might be truncated along
the imaginary axis with constant real part Reγ = ρ and approximated by their sums

h(t) ≈ ∆η

2π

m∑
k=−m

ν(γk)ΠH(−γk) |t|−γk(13a)

H(ω) ≈ ∆η

4π

m∑
k=−m

ΠH(−γk) |ω|γk−1(13b)

Defining γk = ρ + ik∆η, the integral is calculated up to a certain value η̄ = ∓m∆η by
discretizing the interval into 2m+ 1 small increments ∆η.
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Figure 1: Exact (continuous) and approximated (dotted) power spectral densities for
the three load cases: exponential AC, von Kármán and P-M PSD

2.1.1 Numerical examples

Three load processes which are widely used in wind and ocean engineering are discussed.

1. Exponentially autocorrelated wind gusts
The most simplest model for the description of along wind turbulences is a process with
exponential AC function R(τ) = σ2e−a|t| and corresponding rational low-frequency power
spectrum SF (ω) given by

SF (ω) =
aσ2

π(a2 + ω2)
(14)

The H-FSMs of the transfer function H(ω) =
√

2πSF (ω)/q in Eq.(9) can be easily calculated
by Mathematica using Eq.(11) and are given by

ΠH(γ) =

(
1

a2

)−γ/2√2aσ2

qπ
Γ
(
−γ

2

)
Γ

(
1 + γ

2

)
; − 1 < Reγ < 0(15)

The PSD SF (ω) of the process is reconstructed by the relation SF (ω) = |H(ω)|2q/(2π). The
approximation of the transfer function H(ω) in Eq.(13b) is calculated choosing a = 0.5 [1/s],
σ = 3 [N] and ρ = 0.6, ∆η = 0.2 for the discretization of the integral involved taking into
account m = 20 FSMs. From the results depicted in Fig.(1) it can be stressed that the
proposed reconstruction leads to a good approximation of the analytic PSD. Moreover, the
quality of the approximation depends solely on the chosen discretization of the integral given
in Eq.(13b).

2. Wind gusts with von Kármán velocity PSD
In general, if the PSD is rational it is not difficult to find a transfer function by spectral
factorization [36, p. 180–195]. However, if the PSD of the process noise is given by a not
rational function, there is no general method available for the analytically derivation of the
transfer function H(s) by spectral factorization and this is in fact a nontrivial task [1]. This
is the case for the widely used von Kármán spectrum of along-wind turbulences given by

SKar(ω) =
σ2L

πūz

1 + 8
3

(
1.339L ω

ūz

)2

[
1 +

(
1.339L ω

ūz

)2
]11/6

(16)

where σ, L is the standard deviation of the fluctuating component of the wind speed at height
z and the integral turbulence scale lengths, respectively, and ūz denotes the mean velocity with
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which the assumed frozen-turbulence field propagates in space (Taylor’s frozen-in turbulence
hypothesis [24]). The PSD of the corresponding wind load is given by

SF (ω) = (ρaCdAūz)
2 |χa(z, ω)|2SKar(ω) χa(z, ω) =

1 +

(
2ω
√
A

ūz

)4/3
−1

(17)

using the aerodynamic admittance χa(z, ω) [46, 47] and where ρa denotes the air density, Cd
the drag coefficient, A the projected area of the structure and ū(z) is the mean wind speed
at height z. Numerical values for the parameters for Germany can be taken e.g. from the
national annexe of the ”Eurocode 1: Actions on structures, Part 1-4: General actions/Wind
actions” (DIN EN 1991-1-4:2010-12). In the example the parameters were chosen arbitrarily:
L = 10 [m], σ = 1 [m/s], z = 3 [m], ūz = 18.25 [m/s], CD = 1 [-], A = 0.1 [m2] and
ρa = 1.25 [kg/m3]. The transfer function H(ω) is calculated by introducing Eq.(17) into
Eq.(9) and the associated H-FSMs follow from Eq.(11) using Mathematica. This leads to

ΠH(γ) = C(γ) +
2∑

k=0

DΓ[5+2ck
12 ]Γ[ −1

6ck
]3F2[1, 2ck+5

24 , 2ck+17
24 ; ck+6

12 , ck+12
12 , −b

2L4

A2 ]ū
3
2

+γ
z

(−1)kb
−1
6ck Ā

2(1+k)
3 L

−ck
3 Γ[ 5

12 ]
(18)

for −1 < Reγ < 7/6 with

C(γ) = −
3iπDĀ−

1+γ
2 e

3iπ(1+γ)
4 (−ie

3iπγ
2 (1− ibL2

Ā
)

5
12 + (1 + ibL2

Ā
)

5
12 )ū

3
2

+γ
z

(1 + e3iπγ)(1 + b2L4

Ā2 )
5
12

(19)

where ck = 1+4k−3γ, b = 70.8, Ā = 4A, D =
√

8πL(ACdσρa)2/q and pFq[a1, ...ap; b1, ...bq; z]
is the generalized hypergeometric function. The analytical form of the H-FSMs leads, also in
this case, to a very efficient application of the method. In Fig.(1) the results are illustrated
having chosen the following parameters: ρ = 0.6, ∆η = 0.15, m = 30.

3. Wind waves with Pierson Moskowitz PSD
In this last example the process noise is generated from a wind wave PSD of fully developed
sea introduced by Pierson and Moskowitz (P-M). It was developed on the basis of 460 spectra
obtained from measurements in the North Atlantic Ocean from 1955 to 1960 and is given by

SPM (ω) =
a

ω5
e−

b
ω4(20)

where a = 0.0081g2, b = 0.74(g/ū19.5)4, g is the acceleration due to gravity and ū19.5 denotes
the mean velocity at height z = 19.5 [m] above the sea surface. Assuming a stationary process
the wave force acting on a vertical pile with diameter D at height z is given by

SF (z, ω) =

(
8

π
σ2
uK

2
d +K2

1ω
2

)(
ω cosh(k(z + h))

sinh(kh)

)2

SPM (ω)(21)

with Kd = 1/2ρwCdD, K1 = ρwCmπD
2/4 and where k is the angular wave number, h the

water depth, ρw is the density of the sea water, Cm is the inertia coefficient and σu is the
standard deviation of the fluid particle velocity [35]. In general Cm ranges between 1.6− 2.5
and for a vertical cylinder Cm = 2.0 can be assumed. The drag coefficient Cd never falls below
0.6 and for a smooth cylinder Cd = 1.0 [39]. Eq.(21) is valid for non-breaking waves and when
the dimension of the structure is small compared to the wave length λ, i.e. when D < 0.2λ. A
detailed description of the derivation of Eq.(21) can be found in [35]. The H-FSMs are given,
also in this case, in analytical form

ΠH(γ) = 2c−2

b
1
8

√
a cosh[k(h+z)]2

Aq sinh[hk]2

(
Ab

γ
4

√
8πΓ[c]2F2

[
−1

4 ,
1
4 ; 1

2 , 1− c,−
bB2

2A2

]
+

+b
5
8
−cB
√
πΓ
[
c− 1

2

]
2F2

[
1
4 ,

3
4 ; 3

2 ,
3
2 − c;−

bB2

2A2

]
+

−2
3
2
−cb

1
8A1−2cB2c Γ

[
2c− 1

2

]
Γ[−2c]2F2

[
c− 1

4 , c+ 1
4 ; c+ 1

2 , c+ 1;− bB2

2A2

])
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for Reγ < −1/2 and c = 1/8 − γ/4, A=8/πσ2
uK

2
d and B = K2

1 . In the example a pile with
diameter D = 0.1 [m], drag coefficient Cd = 0.6 [-] and inertia coefficient Cm = 2 [-] which
is excited by wind-induced (ū19.5 = 20 [m/s], σu = 1 [m/s]) ocean waves with wave length
λ = 20 [m] and water depth h = 15 [m] is assumed. The corresponding PSD of the wave
loads and the approximation using m = 40 FSMs and ρ = 1.6, ∆η = 0.3 for the discretization
of the integral involved is depicted in Fig.(1). Once again a good agreement between the
approximated and the exact PSD is obtained.

2.2 Digital simulation of the load process

The obtained fractional representation of the transfer function H(ω) given in Eq.(12b) can be
now introduced in the input-output relation Fk(ω, T ) = H(ω)Wk(ω, T )

Fk(ω, T ) =
1

4πi

∫ ρ+i∞

ρ−i∞
ΠH(−γ) |ω|γ−1Wk(ω, T )dγ(22)

where 0 < t < T and k denotes the index of the ensemble of the process {F (t)}, {W (t)},
respectively. The truncation of the time interval is needed as the stationary data theoretically
persists forever and thus just the finite-range Fourier transforms exists [3]. We introduce the
definition of the Riesz fractional integral (Iγf) (t)

(Iγf) (t) =
1

2ν(γ)

∞∫
−∞

f (τ)

|t− τ |1−γ
dτ ; Reγ > 0, γ 6= 1, 3, 5, ...(23)

where ν(γ) = Γ(γ) cos(γπ/2). For differentiable functions, it can be shown that the inverse
Fourier transform of the Riesz fractional integral (Iγf) (t) from the time in the frequency
domain is given by

F−1{(Iγf) (t) ;ω} = |ω|−γF−1{f(t);ω} = |ω|−γF (ω)(24)

Rewriting Eq.(22) leads to

Fk(ω, T ) =
1

4πi

∫ ρ+i∞

ρ−i∞
ΠH(−γ)F−1{

(
I1−γWk

)
(t, T ) ;ω}dγ(25)

Applying a finite Fourier transform finally leads to a reconstruction of the correlated noise
process {F (t)} in terms of the H-FSMs given by

F (t) = lim
T→∞

E [Fk(t, T )] =
1

4πi

∫ ρ+i∞

ρ−i∞
ΠH(−γ)(I1−γW )(t)dγ(26)

where E [Fk(t, T )] is the expected value operation over the ensemble index k. In [13] a com-
putational efficient algorithm for the digital simulation of wind loads based on Eq.(26) is
introduced.
In the following, this method is used in order to develop a state space representation of the
colored load process. Using the approximation of the transfer function H(ω) given in Eq.(13b),
the integral representation of the colored load process defined in Eq.(26) can be approximated
by the truncated sum

F (t) ≈ ∆η

4π

m∑
k=−m

ΠH(−γk)(I1−γkW )(t)(27)

Hence, the main difficulty in the simulation of the process lies in the efficient calculation of
the Riesz fractional integral (I1−γkW )(t) of the Gaussian white noise process {W (t)}. It can
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be shown that the Riesz integral form can be expressed in terms of Riemann-Liouville (RL)
fractional integrals

(IγW )(t) =
1

2ν(γ)

[∫ t

−∞

W (τ)

|t− τ |1−γ
dτ +

∫ ∞
t

W (τ)

|τ − t|1−γ
dτ

]
=

(Iγ+W )(t) + (Iγ−W )(t)

2 cos(γπ/2)
(28)

with −∞ < t < ∞ and ν(γ) = Γ(γ) cos(γπ/2) and where (Iγ+W )(t), (Iγ−W )(t) denote the
left-, right-handed RL fractional integral, respectively [49, p. 214]. Assuming that the process
{W (t)} is discretized on a finite interval [0, nτ ], where n ∈ N, τ > 0, and zero elsewhere, the
RL integrals can be calculated numerically using fractional order differences as i.e. shown in
[49, p. 385–388]. This leads to the Grünwald - Letnikov form of the Riesz fractional integral
given by:

(IγW )(jτ) ≈ lim
τ→+0

j∑
k=0

αk(γ)W (jτ − kτ) + lim
τ→+0

n−j∑
k=0

αk(γ)W (jτ + kτ)(29)

where

αk (γ) =
(−1)k τγ−1

2 cos (γπ/2)

(
−γ
k

)
(30)

Eq.(29) can be calculated efficiently in matrix form by Z(γ) = A(γ)W

Z(γ) =


(IγW )(0)
(IγW )(τ)

. . .
(IγW )(nτ)

 ; A(γ) =


2α0 α1 . . . αn
α1 2α0 . . . . . .
. . . . . . . . . α1

αn . . . α1 2α0

 ; W =


W (0)
W (τ)
. . .

W (nτ)

 =


G0

G1

. . .
Gn

(31)

where the discretized white noise process W in the interval [0, nτ ] is described by the realiza-
tions of a zero-mean Gaussian random process G0, G1, . . . , Gn with standard deviation

√
qτ .

The vector of the colored load process F = [F (0), F (τ), . . . , F (nτ)]T is finally obtained by

F =
∆η

4π

m∑
k=−m

ΠH(−γk)Z(1− γk) =
m∑

k=−m
h(γk)W(32)

by means of the matrix transfer function h(γk) = ∆η(4π)−1ΠH(−γk)A(1− γk).

2.2.1 Numerical examples

The result in Eq.(32) is once again verified by means of the three load cases. In Fig.(2) (Bot-
tom) the three generated time series and the corresponding AC functions (Top) are depicted.
It can be stressed that there is a good agreement between the analytic AC function and the
one obtained from the generated time series. The load process are simulated with a time
interval τ = 0.05 [s] using the following parameters:

• Exponentially correlated wind gusts: p = 250, m = 30, ρ = 0.6, ∆η = 0.2

• Wind gusts with von Kármán velocity PSD: p = 400, m = 50, ρ = 0.6, ∆η = 0.15

• Wind waves with P-M PSD: p = 600, m = 100, ρ = 1.6, ∆η = 0.3

where p denotes the number of considered αk(γ) coefficients as explained in the next section.
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Figure 2: Top: Exact (continuous) and approximated (dotted) normalized AC functions,
Bottom: Generated time series for the three load cases: exponential AC, von Kármán
and P-M PSD

2.2.2 Generalized state space representation of colored random processes

Based on the result given in Eq.(32) we will now develop a general state space representation
for colored load processes. It must be stressed that it is valid for arbitrary correlated Gaussian
processes and can be given directly once the H-FSMs in Eq.(11) are calculated.
Due to the Toeplitz form of the coefficient matrix A(γ) the matrix transfer function h(γk) in
Eq.(32) can be calculated easily. Furthermore, if Reγ > −1 is chosen, then the coefficients
αk(γ) decrease with inverse power law behavior as k increases and can be neglected in this
case after a finite number of terms p, which mainly depends on the decay of the correlation
function. It must be noted that for an input vector W of length n, the first and last p samples
of the output F can be regarded as the ’transition states’ whereas the remaining n−2p samples
are the ’steady states’ which are needed in the following for the formulation of a recursive state
space form. The calculation of one steady state realization Fj = F (jτ) of the discrete load
process F, with j = 0, 1, . . . , n is given by

Fj =
∆η

4π

m∑
k=−m

Π(−γk)



αp(1− γk)
αp−1(1− γk)

. . .
2α0(1− γk)

. . .
αp−1(1− γk)
αp(1− γk)



T 

Gj−p
Gj−p+1

. . .
Gj
. . .

Gj+p−1

Gj+p


=



βp
βp−1

. . .
2β0

. . .
βp−1

βp



T 

Gj−p
Gj−p+1

. . .
Gj
. . .

Gj+p−1

Gj+p


(33)
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Figure 3: Steady state realization of the load process: the load Fj+1 of the next time
step is generated by shifting the p-dimensional vector Wj of increments of white noise

where

βp =
∆η

4π

m∑
k=−m

ΠH(−γk)αp(1− γk)(34)

as illustrated in Fig.(3). As one can see from Eq.(33) the actual sample Fj = bWj of
the load process is calculated by the time-invariant vector b = [βp, βp−1, ..., 2β0, ..., βp−1, βp]
including the weights of the (2p + 1) elements of the vector of the white input noise Wj =
[Gj−p, ..., Gj , ..., Gj+p] consisting out of the p previous and past samples of the Gaussian noise
process. This allows to formulate a recursive state space representation, which is needed later
in order to include the colored noise process {F (t)} into the Kalman filter algorithm, by a
forward shift of the white noise process as shown in Fig.(3). This leads to the following state
space form

x′k+1 = Adx
′
k + Bdwk

Fk = Cdx
′
k(35)

where x′k = [Gk−p, Gk−p+1, ..., Gk, ..., Gk+p−1, Gk+p]
T and with time-invariant transfer matri-

ces Ad, Bd and Cd

Ad =



0 1 0 . . . . . . 0 0
. . . 0 1 0 . . . . . . 0
. . . . . . 0 1 0 . . . . . .
. . . . . . . . . 0 · · · . . . . . .
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . 0 1
0 0 . . . . . . . . . 0 0


Bd =



0
0
. . .
. . .
. . .
0
1


Cd =



βp
βp−1

· · ·
2β0

· · ·
βp−1

βp



T

(36)

In the following the subindex d for discrete-time will be omitted for simplicity of notation.
It shall be highlighted that Eq.(35) is a general state space representation of stationary arbi-
trarily colored load processes with known PSD. Once, the H-FSM of the PSD are determined
using Eq.(11) the corresponding state space form is defined by Eq.(35).

3 Kalman filter algorithm for correlated process noise

The Kalman filter (KF) was developed in 1960 by Rudolf Kálmán [30]. It is an optimal
recursive algorithm to estimate the state x ∈ Rn of a linear dynamic system discretized in
the time domain using noisy measurement data z ∈ Rm. The discretized state space model
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Time Update (Prediction) Measurement Update (Correction)

Prior estimate Kalman gain matrix Posterior estimate
x̄k+1 = Txk Kk = Σ̄xx,k+1H

T (Σvv,k + HΣ̄xx,k+1H
T )−1

Prior error covariance: Posterior estimate
Σ̄xx,k+1 = TΣxx,kT

T + SΣww,kS
T xk+1 = x̄k+1 + Kk(zk+1 −Hx̄k+1)

Posterior error covariance
Σxx,k+1 = Σ̄xx,k+1 −KkHΣ̄xx,k+1

Table 1: Kalman filter algorithm

of a system excited by a Gaussian white noise process w is generated by two equations, the
system and measurement equation

xk+1 = Txk + Swk

zk = Hxk + vk(37)

where T ∈ Rn×n, S ∈ Rn×u and H ∈ Rm×n are the transfer matrices and wk ∈ Ru and
vk ∈ Rm are uncorrelated stationary zero-mean white noise processes. The transfer matrix
T relates the actual state at time k to the state at the next time step k + 1. The model
uncertainties or unmeasured disturbances are represented by the added m-dimensional noise
vector wk which is related to the actual state by the matrix S. The KF is based on a
Gaussian noise model, i.e. the measurement error vk ∼ N(0,Σvv,k) as well as the state error
wk ∼ N(0,Σww,k) are modeled as independent, white noises with normal distribution where
Σvv,k ∈ Rm×m, Σww,k ∈ Rn×n denotes the measurement and process noise covariance matrix,
respectively. The algorithm is characterized by an iterative prediction-correction structure
as shown in Tab.(1). In the prediction step a time update of the current state xk and error
covariance matrix Σxx,k is taken in order to obtain a prior estimate of the process state x̄k+1

and its associated error covariance matrix Σ̄x̄x̄,k+1 of the next time step. The time-update of
the current state is calculated from the undisturbed system equation x̄k+1 = Txk where the
prediction error leads to the update of the covariance matrix and where the tilde indicates the
true state

εx̄,k+1 = x̃k+1 − x̄k+1 = T(x̃k − xk) + S(w̃k −wk)

Σx̄x̄,k+1 = E[εTx̄,k+1εx̄,k+1] = TΣxx,kT
T + SΣww,kS

T

In the correction step the measurement equation is used to predict the likeliest measurement
for the given prior state estimate. Once the actual measurement is obtained, the difference
dk = Hx̄k − zk between the predicted measurement and the actual measurement, also known
as innovation or residual, is calculated. The Kalman gain matrix Kk is determined in order
to correct the prior state estimate x̄k+1 in the measurement update. It is the result of the
minimization of the mean-square error of the posterior state estimate xk+1

εx,k+1 = x̃k+1 − xk+1

E[εTx,k+1εx,k+1]→ min.(38)

It leads to the Kalman gain matrix Kk which is used to calculate the optimal estimate xk+1

and its associated posterior error covariance Σxx,k+1 as shown in Tab.(1) [45].
In case that the white noise assumption of the load process wk in Eq.(37) is violated, the

KF equations are no longer valid. However, a modification of the KF algorithm for colored

14



noises based on the spectral factorization theorem has been proposed in [34]. It allows to
relax the white noise assumption and to consider either (i) correlation of measurement and
process noise, (ii) autocorrelated measurement noise or (iii) autocorrelated process noise into
the model. Here, the latter case is discussed. To this aim, a state space representation of the
transfer function H(ω) in the form

ẋ(t) = Ax(t) + Bw(t)

F (t) = Cx(t)(39)

must be found where the input w(t) is a Gaussian white noise process and the output F (t) is
the sought colored load process with target PSD function. State-space equations such as given
in Eq.(39) are non-unique. Among the so-called canonical state space models, the controllable
canonical form is given by setting [29]

A =


−b0 −b1 . . . . . . −bn−1

1 0 . . . 0 0
0 1 . . . . . . . . .
. . . . . . . . . 0 0
0 . . . 0 1 0

 B =


1
0
. . .
. . .
0

 C =



a0

a1

. . .
am−1

. . .
0



T

(40)

assuming that the state x(t) = [x1(t), x2(t), . . . , xn(t)] is of order n. The discretization of
Eq.(39) finally leads to the linear state space representation

x′k+1 = Adx
′
k + Bdwk

Fk = Cdx
′
k(41)

which will be used in the following to extend the KF for colored process noise {F (t)} with
target PSD SF (ω). The state space representation of some fundamental stochastic processes
such as random bias, first- and second-order Markov process, Brownian motion can be found
e.g. in [34]. In [28] the method is applied to introduce a colored process describing the surface
roughness of the road into the Kalman filter in order to estimate the states of the vehicle.
Comparing Eq.(41) with the state space representation in Eq.(35) obtained in the previous
section by H-FSMs decomposition, the strong resemblance of these two representations is
obvious.

3.1 Modification of the Kalman Filter

Following the approach given in [34] the Kalman filter is extended for colored process noise
with given PSD by passing a white noise wk through a linear filter. Augmenting the state
vector xa,k = [xk, x′k]

T where xk are the states of the system and x′k represents additional
states related to the state space representation of the transfer function H(ω) of the load
process derived either by spectral factorization (41) or by H-FSMs decomposition (35), leads
to a state space model

[
xk+1

x′k+1

]
=

[
Td SdCd

0 A′d

] [
xk
x′k

]
+

[
0

Bd

]
wk

za,k =
[

Hd 0
] [ xk

x′k

]
+

[
vk
0

]
(42)

which is once again a linear system excited by white noise. Hence, after rewriting Eq.(42)

xa,k+1 = Taxa,k + Sawk

za,k = Haxa,k + va,k(43)
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the KF algorithm given in Tab.(1) can be run on the augmented state space model (42) using
the modified transfer matrices Ta, Sa and Ha, respectively.
In order to apply the method for identification problems a further modification is needed in
order to estimate the unknown parameters. Following the approach of the extended Kalman
filter (EKF), the state xa,k has to be augmented to include the model parameters pk leading
to a nonlinear system equation of the extended state xext,k = [xa,k,pk]

T

xext,k+1 = f(xext,k) + Sextwext,k

zext,k = h(xext,k) + vext,k(44)

as the system matrices Ta, Ha depend nonlinearly on the estimates of the state xa,k and
the parameters pk known from the previous time step. In case of weak nonlinearities the
identification problem is solved using the EKF which linearizes about the current mean and
covariance by applying a first order Taylor expansion of Eq.(44) near the current state estimate
leading to the time variant extended system matrices Text,k, Hext,k

Text,k =
∂f(xext,k)

∂xext,k

Hext,k =
∂h(xext,k)

∂xext,k
(45)

to be calculated at each time step.
The standard KF algorithm shown in Tab.(1) can be now run on the linearized model:

first the prior estimate is calculated by the nonlinear state space model given in Eq.(44), then
the update of the error covariances and the measurement update is calculated by introducing
the extended system matrices.

4 Numerical application

The proposed method is now applied to a single degree of freedom (SDOF) system excited by
the introduced three load cases in order to estimate the stiffness and damping parameter.

1. Exponentially correlated wind gusts:
The first example is taken from [34] and is used in order to show the consistency of the
introduced algorithm based on the H-FSMs decomposition and the factorization method in-
troduced there. In this example the (long period) longitudinal dynamics of an aircraft are
approximated by the continuous state space model of a harmonic oscillator with natural eigen-
frequency ω =

√
k/m and ratio of critically damping D = c/(2mω)−1 given by

ẋ =

[
0 1
−ω2 −2Dω

]
x +

[
0

1/m

]
wc(46)

where x = [φ, φ̇]T and φ denotes the pitch angle, i.e. the angle between the longitudinal
axis of the aircraft and the horizon. The colored process noise wc represents wind gusts
with exponential AC function R(τ) = σ2e−a|t|. Performing the spectral factorization on the
corresponding PSD in Eq.(14) results in the so-called shaping filter H(s), that is the Laplace
transform counterpart of the transfer function H(ω), of the noise wc(t) in the form

H(s) =
σ

a+ s
(47)

Further details on the spectral factorization can be found in [34, 36]. Using the controllable
canonical state space representation in Eq.(40), the shaping filter H(s), given in Eq.(47)
corresponds in the time domain to the first order Markov model

ẋ′ = −ax′ + w′ wc = x′(48)
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Figure 4: Top: Evaluation of the pitch angle φ(t) for ω =
√

2 [rad/s], D = 0.05 [-],
Bottom: Colored process noise generated by spectral factorization (black), by H-FSMs
(gray) and estimated by the fractional KF (red dotted)

which is excited by a Gaussian white noise w′ with standard deviation σ. It is used in order
to augment the state space model in Eq.(46) leading to

ẋa =

 0 1 0
−ω2 −2Dω 1/m

0 0 −a

xa +

 0
0
1

w′(49)

where xa = [φ, φ̇, x′]T denote the augmented state. After discretization of the augmented
model, e.g. by Euler approximation or by using the matrix exponential function, a linear
model excited by Gaussian white noise in the form of Eq.(43) is obtained. It will be used in
this example for the generation of the ’true’ measurement of the pitch angle φ(t) used in the
KF algorithm.
By means of the approach using fractional calculus the augmented state space model is ob-
tained by the following procedure: (i) the system’s state space representation is formulated,
(ii) the H-FSMs are calculated from the target PSD and the weights βk of the Gaussian white
noise are determined using Eq.(34), (iii) the initial vector x′0 of increments of Gaussian white
noise and the system matrices of the generalized state space model in Eq.(35) are stored and
introduced in Eq.(42) to obtain the augmented state space model. In the following, the KF
algorithm based on this approach will be indicated as ’H-fractional KF’ and the corresponding
noise is denoted as ’H-fractional noise’, respectively.
The evaluation of the pitch angel and the input force is estimated from output-only measure-
ments using the H-fractional KF. Fig.(4) depicts the evaluation and AC of the pitch angle φ(t)
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case in. value id. par. st. dev. id. err.

k̂0 ĉ0 k̂ ĉ σk̂ σĉ εk εc
Exponential 5 0.35 9.93 0.79 0.15 0.12 0.7 11.7
von Karman 5 0.35 10.01 0.82 0.28 0.18 0.1 16.2

Pierson Moskowitz 5 0.35 9.96 0.81 0.20 0.18 0.4 14.6
true values k = 10 N/m, c = 0.707 Ns/m

Table 2: Identification results for the different load cases. k̂0 in [N/m] and ĉ0 in [Ns/m]
are the initial estimate, k̂ and ĉ are the identified parameters, σk in [N/m], σc in [Ns/m]
and ε in [%] are the standard deviation and the identification error, respectively.
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Figure 5: Estimation of the stiffness k [N/m] and damping constant c [Ns/m] of the
SDOF system excited by an exponentially correlated load process by means of H-
fractional EKF (red) and the standard EKF (blue). The dotted lines represent the
corresponding 90 % confidence intervals.

(Top) and the corresponding process noise exciting the system (Bottom). In order to illustrate
that the KF algorithm not just updates the pitch angle φ(t) but also the H-fractional noise,
the load process is depicted in gray for the case without consideration of the measurement
date and in red after applying the KF algorithm.

In order to estimate the system’s stiffness k = 10 [N/m] and damping constant c =
0.707 [Nm/s] (D = 0.05) now the so-called ’H-fractional EKF’ is applied. The state space
model of the H-fractional EKF are obtained by augmenting the state representation of the
H-fractional Kalman filter by the stiffness and damping parameter. The resulting nonlinear
system equations given in Eq.(44) are then linearized with respect to the actual state estimate
using Eq.(45). It is assumed that noisy measurement date of the pitch angle φ(t) and the
velocity φ̇(t) is available taking into account a measurement error of σz = 1 [cm] which
corresponds to 1 % of the maximal deflections. It is assumed that a set of 20 measurements of
a duration of 10 [min.] each are available. The H-fractional EKF as well as the standard EKF
are run on the samples. In the latter case the correlation of the load process is neglected and
modeled as white noise with equivalent standard deviation. The initial values of the stiffness
and damping parameter k̂0, ĉ0 are selected considering an estimation error εk0 = |k̂0 − k|/k,
εc0 = |ĉ0 − c|/c of 50% of the true values. The mean value as well as the corresponding 90%
confidence intervals of the identified model parameters are depicted in Fig.(5).

In case of the H-fractional EKF, the stiffness parameter is estimated with high accuracy
while the identification of the damping parameter leads to an error of 11.7 %. As the damp-
ing parameter of weakly damped systems has no significant effect on the modal frequencies
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Figure 6: Estimation of the stiffness k [N/m] and damping constant c [Ns/m] of the
SDOF system excited by wind loads with von Kármán velocity PSD by means of H-
fractional EKF (red) and the standard EKF (blue). The dotted lines represent the
corresponding 90 % confidence intervals.

and the observed system response of naturally excited systems, the accuracy of the damping
estimation is not very high and even in numerical simulations errors of about 20 % are not
unusual [7]. Neglecting the correlation of the load process leads to poor identification results
as shown by means of the standard EKF which fails to identify both the stiffness and damping
parameter. The results of the parameter identification of the H-fractional EKF are summa-
rized in Tab.(2).

2. Wind gusts with von Kármán velocity PSD
As shown in section 2.1.1 the corresponding H-FSMs are different, but the implementation of
the filter is the same as in the previous example. The results of the parameter identification
for the H-Fractional EKF and the standard EKF are illustrated in Fig.(6). Once again the
standard EKF leads to poor identification results while the introduced method allows to esti-
mate the stiffness parameter with high and the damping parameter with satisfying accuracy.

3. Wind waves with Pierson-Moskowitz PSD
The results of the parameter identification are shown in Fig.(7). The estimated stiffness
and damping parameter correspond to the generalized quantities of the first eigenmode of a
clamped vertical pile which is excited by wind-induced ocean waves. The accuracy of the pa-
rameter identification is comparable to the previous examples and the results are summarized
in Tab.(2). The uncertainties in the damping estimation obtained by the H-fractional EKF
are reflected in the high standard deviation σc of the damping estimate which leads in all
three cases to a relative wide 90% confidence interval. In contrast, the confidence intervals
of the damping estimates obtained by the standard EKF are narrow and thus do not comply
with the actual quality of the identification results.

5 Conclusions

In this paper we introduced the H-fractional extended Kalman filter for the treatment of
arbitrarily autocorrelated load processes in the scope of parameter identification problems.
The system’s input was represented as output of a fractional differential equation with white
noise as input. In contrast to other techniques, such as the spectral factorization method or
ARMA models, the coefficients for the noise simulation are calculated in analytical form from
the fractional spectral moments of the linear transfer function. Three load cases of engineering
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Figure 7: Estimation of the stiffness k [N/m] and damping constant c [Ns/m] of the
SDOF system excited by wind loads with P-M PSD by means of H-fractional EKF
(red) and the standard EKF (blue). The dotted lines represent the corresponding 90 %
confidence intervals.

interest have been studied: a process with (i) exponential autocorrelation function and (ii)
von Kármán power spectral density, which are extensively used in wind engineering in order to
model along wind turbulences, and (iii) with Pierson Moskowitz power spectral density which
is widely used in coastal engineering applications for the description of wind induced waves.
In all three cases, we succeeded to give the coefficients for the generation of the load processes
in analytical form. Furthermore, a generalized state space representation for colored processes
have been developed, which can be given immediately, once the H-fractional spectral moments
of the transfer function are calculated. Augmenting the state space model of the excited system
by the linear model corresponding to the load process, results in an overall linear system driven
by white noise once again to which the extended Kalman filter, a commonly used algorithm
for recursive parameter identification, can be applied. This method, indicated as H-fractional
extended Kalman filter algorithm, is applied to a SDOF system excited by the three load
cases in order to estimate the stiffness and damping parameter using noisy measurement data
of the system response. In all examples the stiffness parameter was estimated with high
accuracy and the damping parameter was identified with satisfying accuracy. Most output-
only identification techniques represent the systems’s input as white noise process. In order
to illustrate the effect of such a rough simplification if the white noise assumption is violated,
the method was compared with the standard extended Kalman filter. It has been shown that
neglecting the autocorrelation of the load process leads to poor identification results for both
the stiffness and the damping parameter.

Summing up the relevant properties of the method are that: i) it is applicable for arbitrarily
correlated loads, i.e. without any restriction to the functional form of the PSD and it is efficient
also in case of long-memory processes; ii) the coefficients of the model for the process are known
in analytical form and their number can be arbitrarily increased to achieve higher accuracy
without recalculation; iii) it is efficiently combined to the Extended Kalman filter; iv) it is
easily extendible to multivariate loads, see [10, 13].
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[30] Rudolf E. Kálmán. A new approach to linear filtering and prediction problems. Journal
of Basic Engineering, pages 35–45, 1960.

[31] Holdger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis, volume 84 of
Cambridge Nonlinear Science Series 7. Cambridge University Press, 2008.

22



[32] Ahsan Kareem. Numerical simulation of wind effects: A probabilistic perspective. Journal
of Wind engineering and Industrial Aerodynamics, 96:1472–1497, 2008.

[33] J. W. Lee, J. D. Kim, C. B. Yun, and J. M. Shim. Health-monitoring method for bridges
under ordinary traffic loadings. Journal of Sound and Vibration, 257(2):247–264, 2002.

[34] Frank L. Lewis, Lihua Xie, and Dan Popa. Optimal and Robust Estimation: With an
Introduction to Stochastic Control Theory. Taylor &Francis Group, 2008.

[35] Jie Li and Jianbing Chen. Stochastic dynamics of structures. Wiley, 2009.

[36] Peter S. Maybeck. Stochastic models, estimation, and control, volume 1 of Mathematics
in Science and Engineering. Academic Press, 1979.

[37] Marc P. Mignolet and Pol D. Spanos. Autoregressive spectral modeling: Difficulties and
remedies. International Journal of Non-Linear Mechanics, 26(6):911 – 930, 1991.

[38] Marcus P. Mignolet and Pol D. Spanos. Recursive simulation of stationary multivariate
random processes - part 1. Journal of Applied Mechanics, ASME, 109:674–680, 1987.

[39] E. J. Norton and D. C. Quarton. Recommendations for design of offshore wind tubines
(RECOFF). Technical report, Garrad Hassan and Partners Ltd, 2003.

[40] Bart Peeters, Guido De Roeck, Luc Hermans, Tom Wauters, Christoph Krämer, and
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