
Distributed controller design for a class of sparse

singular systems with privacy constraints

Frederik Deroo ∗ Michael Ulbrich ∗∗ Sandra Hirche ∗

Brian D. O. Anderson ∗∗∗

∗ Institute for Information-Oriented Control, Technische Universität
München, D-80290 München, Germany, fred.deroo@tum.de,

hirche@tum.de

∗∗ Chair of Mathematical Optimization, Department of Mathematics,
Technische Universität München, Boltzmannstr. 3, D-85747 Garching b.

München, Germany, mulbrich@ma.tum.de
∗∗∗ The Australian National University and National ICT Australia,

Canberra ACT 2600 Australia. brian.anderson@anu.edu.au

Abstract: In the current research on distributed control of interconnected large-scale dynamical systems
an often neglected issue is the desire to ensure privacy of subsystems. This gives motivation for the
presented distributed controller design method which requires communication and the exchange of
model data only with direct neighbors. Thus, no global system knowledge is required. An important
property of many large-scale systems is the presence of algebraic conservation constraints, for example
in terms of energy or mass flow. Therefore, the presented controller design takes these constraints
explicitly into account while preserving the sparsity structure of the distributed system necessary for
a distributed design. The computation is based on the simulation of the system states and of adjoint
states. The control objective is represented by the finite horizon linear quadratic cost functional.
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1. INTRODUCTION

Large-scale dynamical systems have moved into the focus of
current research in the control theory community. Applications
that are typically cited include power systems, water distribu-
tion or transportation systems. Centralized control mechanisms
are not applicable to these systems for obvious reasons. The
first ideas to deal with these systems involve decentralized con-
trol (see Siljak (1978)) where no communication between sub-
systems is allowed. Recent research tries to relax this restric-
tion by allowing communication between some – but not all –
subsystems which is then called distributed control. Distributed
control attempts to achieve better performance and robustness
than decentralized control while keeping the communication
complexity low when compared to centralized control.

Most available results on distributed controller synthesis have
in common that they require centralized global knowledge
about the system model, see for example Langbort et al. (2004),
Shah and Parrilo (2010) and Vamsi and Elia (2010). This as-
sumption might not be valid in large-scale systems because of
privacy issues, meaning that the subsystems are not willing to
supply their model data to every other subsystem or to some
centralized entity. In the power system, for example, the intro-
duction of smart-appliances and small power generation units
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on the consumer level introduce more available model data into
the overall system. This raises privacy issues over who has
access to this additional model data, see e.g. Cavoukian et al.
(2010), and a distributed controller design can help to ensure
consumer privacy in this context. Other reasons for a distributed
design are the large system size, or sometimes computational
limitations. Therefore, it is desirable that the computation of a
controller for a large-scale system is done distributedly without
global system knowledge and without the need for every sub-
system to globally share all of its information. Results in this di-
rection can be found in Deroo et al. (2012) and Martensson and
Rantzer (2012). Related research is also presented in Farokhi
et al. (2013) where the authors investigate the difference in per-
formance between a controller with limited model information
and one with full information.

An often neglected point in the distributed control literature is
that most application examples of large-scale interconnected
dynamical systems are subject to some kind of conservation
constraint. For example, the power system needs to satisfy the
Kirchhoff laws. Water or other distribution systems also need
to satisfy mass, energy or current balances. These conserva-
tion laws or other algebraic constraints lead to a differential-
algebraic form for the system equation. The systems are then
called singular or descriptor systems. For an introduction to
singular systems, see Lewis (1986). One method to control this
system class would be to substitute the solution of the alge-
braic constraints into the dynamic equations and then proceed
with standard control design methods. However, this approach
destroys the sparsity structure of the distributed system. This
sparsity structure, however, is necessary when distributed de-
sign methods are required, e.g. in large-scale systems.



Important results regarding LQ-control of singular systems are
given in Cobb (1983) and Bender and Laub (1987). Decentral-
ized control of singular systems is treated in e.g. Chang and
Davison (2001), but to the best of the authors’ knowledge, there
are no results on distributed control with a structured feedback
matrix (the structure reflecting subsystem interaction), let alone
controller design without centralized model knowledge.

The main contribution of this paper is a gradient descent
method to iteratively and distributedly determine an optimal
state feedback controller for singular systems. The algebraic
part of the system equations are taken into account explicitly
during the controller design and the algebraic variables are
also used for feedback. The controller is computed using sim-
ulated state trajectories and trajectories of adjoint states and
does not need any global system model knowledge but only
communication with direct neighbors. This ensures that it does
not have a complexity determined by the global system and
ensures a degree of privacy of the subsystems. The gradient de-
scent method uses a distributedly computed Barzilai-Borwein
step size and checks the Armijo rule distributedly to guarantee
convergence. The performance of the presented approach is
evaluated using numerical simulations. The main difference to
our earlier works, see Deroo et al. (2012), are the additional
algebraic system constraint and a different derivation method
to achieve the result. The addition of the algebraic constraint
makes the presented distributed controller design applicable to
a larger system class, and enables an application to the impor-
tant practical example of the power system.

Research related to the presented paper is done in Zargham
et al. (2012) where a distributed Armijo step size is computed
based on N -hop neighborhood information and minimum con-
sensus, while in this paper a Barzilai-Borwein step size is used
and the Armijo rule is only verified distributedly. A control
problem similar to the presented one is treated in distributed
MPC such as in Giselsson and Rantzer (2010), but the presented
approach here differs in that a time-invariant feedback matrix
is determined before its application instead of a recomputation
of an open-loop input trajectory. The work in Chen and Baras
(2006) can also be seen as related to the presented work, be-
cause they present a scalable distributed control law for network
optimization under constraints.

The remainder of the paper is organized as follows. In Sec-
tion 2, the problem formulation is presented. Section 3 shows
the algorithm to determine a distributed controller for singular
systems. A numerical example is given in Section 4, and the
paper concludes with a summary in Section 5.

Notation.

Given a matrix A ∈ R
m×n with columns ai, we can give a

vectorized version of the matrix by associating the vector

vec(A) =
[

aT1 , · · · , a
T
n

]T
∈ R

nm×1.

The scalar product of two vectors a, b ∈ R
n is denoted by

〈a, b〉. A (block-)diagonal combination of n matrices Mi is
denoted by diag(M1, ...,Mn). The term A • B denotes the
Frobenius inner product of two matrices A,B: trace(ABT ).

2. PROBLEM FORMULATION

In this paper, we consider an interconnected large-scale linear
time-invariant system consisting of N subsystems subject to
linear equality constraints. More specifically, we assume that

the subsystems are not coupled dynamically but only through
the constraints. The dynamics of the ith agent can thus be
written as a semi-explicit DAE of the form

ẋi = Axx,ixi +Axy,iyi +Bx,iui (1a)

0 =

N∑

j=1

Ayx,ijxj +

N∑

j=1

Ayy,ijyj +By,iui, (1b)

where xi ∈ R
nxi , yi ∈ R

nyi , ui ∈ R
mi , Axx,i ∈ R

nxi
×nxi ,

Axy,i ∈ R
nxi

×nyi , Ayx,ij ∈ R
nyi

×nxj , Ayy,ij ∈ R
nyi

×nyj ,
Bx,i ∈ R

nxi
×mi and Bx,i ∈ R

nyi
×mi . More compactly, this is

ẋ = Axxx+Axyy +Bxu, x(0) = x0. (2a)

0 = Ayxx+Ayyy +Byu. (2b)

Here, we denote by x ∈ R
nx the differential variables,

by y ∈ R
ny the algebraic variables and by u ∈ R

m the

input to the system. The dimensions satisfy nx =
∑N

k=1 nxk
,

ny =
∑N

k=1 nyk
, n = nx + ny and m =

∑N
k=1 mk.

Note that y(0) is not specified but it is determined through
the algebraic constraints. This is necessary to ensure that the
whole initial condition of the system is admissible and does
not cause any discontinuous behavior. Furthermore, we assume
that Axx = diag(Axx,i), Axy = diag(Axy,i), i.e. the systems
are not coupled through the dynamic equations.

We make the following assumptions about Ayx and Ayy .

Assumption 1. xxx

• Ayx and Ayy are sparse matrices that signify which sub-
systems are coupled through the algebraic constraints.

• Ayy is invertible.
• Ayy is row diagonally dominant.

The first assumption is reasonable for large-scale systems
where every agent has only few neighbors relative to the total
number of agents. The second assumption ensures that there
is a unique solution to the algebraic constraint, and it makes
the system a DAE of index 1, where the index is the number
of derivations of parts of the system equations with respect
to time necessary to obtain an ODE. The third assumption is
necessary to guarantee that the system can be simulated in a
distributed fashion using a Jacobi algorithm, as will be seen
in Section 3.2. If the third assumption is not met, there are
alternative methods to solve the algebraic part, e.g. BiCGstab
as presented in Van der Vorst (1992). This method can also be
completely distributed (see e.g. Yang and Brent (2002)), when
scalar products are computed using a consensus scheme. These
methods require, however, a higher communication effort.

A typical real world example satisfying these assumptions is (a
linearized version of) the power system (see Iavernaro and La
Scala (1998)), where the dynamic states are the states of each
generator (frequency, mechanical power, etc.) and the algebraic
states are voltages, currents or electrical power flows.

Lemma 1. (from Bender and Laub (1987)) If the matrix Ayy in
system (2) is invertible, the system has no impulsive modes and
the pencil (sE −A) is regular, where

E =

[

Inx×nx 0
0 0

]

, A =

[
Axx Axy

Ayx Ayy

]

.

By Lemma 1 and Assumption 1, the treated system class treated
has the important characteristic of no discontinuous behavior.



Instead of directly treating (2), one could plug the solution
of (2b) into (2a) to obtain an ODE. This yields

ẋ = (Axx −AxyA
−1
yy Ayx)x + (Bx −AxyA

−1
yy By)u.

However, this system description lacks the sparsity structure
of the original system. The structure is important to enable
distributed control design methods with local information ex-
change. Distributed design is helpful for this system class when
privacy of the subsystems is an issue. Furthermore, a controller
designed for the system in this reduced form does not explicitly
incorporate feedback information of the static states. Therefore,
we work with the system in its original form given in (2).

The neighborhood structure will be determined by the coupling
through the algebraic constraints and is thus derived from the
sparsity structure of the matrices Ayx and Ayy . This means
that if systems are coupled in constraints, they are considered
to be neighbors. In order to define the set of neighbors of a
subsystem i, we consider the directed graph G(V , E) associated
with the matrices Ayx and Ayy . The vertex set V is given by the
set of subsystems V = {1, ..., N}, and the edge set E contains
the edge (j, i) ∈ E iff Ayx,ij 6= 0 ∨ Ayy,ij 6= 0. This means
an edge (j, i) ∈ E iff subsystem i is influenced directly by the
states of agent j.

We define the set of neighboring nodes to node i as

Ni = {j|(i, j) ∈ E or (j, i) ∈ E} .

Additionally, we define the set of nodes j influenced by node i
as Nout,i = {j|(i, j) ∈ E} and the set of nodes j influencing
node i as Nin,i = {j|(j, i) ∈ E}.

The goal is to design a structurally constrained constant
linear feedback law u(t) = −[KxKy][x

T (t) yT (t)]T =
−K[xT (t) yT (t)]T minimizing the following cost functional

J(x, u) =

∫ T

0

xT (t)Qxx(t) + yT (t)Qyy(t) + uT (t)Ru(t)dt,

(3)
By Assumption 1 and Lemma 1, the system has no impul-
sive modes, thus guaranteeing that the cost functional (3) ex-
ists. The symmetric, weighting matrices Q ∈ R

n×n (positive
semidefinite) and R ∈ R

m×m (positive definite) are assumed to
be block-diagonal with the block-dimension corresponding to
the respective subsystem size. Under this assumption, the cost
functional is separable for each agent as

J(x, u) =

N∑

i=1

∫ T

0

xT
i (t)Qx,ixi(t) + yTi (t)Qy,iyi(t)

+ uT
i (t)Riui(t)dt.

As a result the optimization problem to find the optimal feed-
back is not coupled in the cost but only in the constraint to sat-
isfy the underlying dynamics. Further, we require the following
assumption to be satisfied.

Assumption 2. The feedback matrix K is constrained to have
a distributed structure where communication between subsys-
tems is only allowed among neighbors, so the blocks Kx,ij 6= 0
and Ky,ij 6= 0 only if j ∈ Ni.

Note that the optimization problem is in general not convex
with respect to the controller parameters

3. CONTROL SYNTHESIS

In this section, we present our main result. The approach fol-
lows an optimal control approach using the Lagrange func-

tion of the optimization problem. From this, we first derive
the adjoint states for the considered class of singular systems,
which themselves also constitute a singular system. The adjoint
states are used to take the dynamic and algebraic constraints
into account. It is then shown that with the adjoint states, the
problem can be distributed among the subsystems, and with the
adjoint states we also determine a gradient descent direction
with respect to the feedback matrix to minimize the cost func-
tional (3). Afterwards, we explain in detail how everything can
be computed distributedly. In the last subsection, we treat the
the problem of the dependency of the approach with respect to
the initial condition of the state x0.

3.1 Adjoint states and gradient descent direction

The distributed computation of the gradient is based on the
simulation of state trajectories. In addition, adjoint states are
needed which we first derive. We will use the following ab-
breviations: AK,xx = (Axx − BxKx), AK,xy = (Axy −
BxKy), AK,yx = (Ayx −ByKx), AK,yy = (Ayy −ByKy).

The Lagrange function for the problem is written as

L =

∫ T

0

(

xTQxx+ yTQyy + xTKT
x RKxx

+ yTKT
y RKyy + 2yTKT

y RKxx

+ λT
x (ẋ −AK,xxx−AK,xyy)

+ λT
y (AK,yxx+AK,yyy)

)

dt

+ µT (x0 − x(0)). (4)

The adjoint equations are obtained by requiring that ∂L
∂x = 0

and ∂L
∂y = 0. To get the first adjoint state we determine 〈∂L∂x , v〉

with v representing a small variation of x as

〈
∂L

∂x
, v〉 =

∫ T

0

2vTQxx+ 2vTKT
x RKxx+ 2vTKT

x RKyy

+ λT
x (v̇ −AK,xxv) + λT

y (AK,yxv)dt

− µT v(0)

=

∫ T

0

vT (2(Qx +KT
x RKx)x+ 2KT

x RKyy − λ̇x

−AT
K,xxλx +AT

K,yxλy)dt− µT v(0) + [λT
x v]

T
0 .

By varying v, we get the first adjoint equation as

λ̇x = −AT
K,xxλx +AT

K,yxλy + 2(Qx +KT
x RKx)x

+ 2KT
x RKyy, λx(T ) = 0, (5a)

µ = −λx(0).

Since µ is not necessary in the following, we disregard it but it
gives us the justification that λx(0) is free while λx(T ) is fixed

to 0. For the second adjoint state we then determine 〈∂L∂y , w〉 as

〈
∂L

∂y
, w〉 =

∫ T

0

2wTQyy + 2wTKT
y RKyy + 2wTKT

y RKxx

− λT
xAK,xyw + λT

y AK,yywdt

=

∫ T

0

wT (2Qyy + 2KT
y RKyy + 2KT

y RKxx

−AT
K,xyλx +AT

K,yyλy)dt.

Analogously, by varying w, the second adjoint equation is
obtained which constitutes the algebraic component of the
adjoint system:



0 =−AT
K,xyλx +AT

K,yyλy + 2(Qy +KT
y RKy)y

+ 2KT
y RKxx. (5b)

Proposition 2. The gradients of the cost functional with respect
to the controller blocks Kxij

and Kyij
are given by

(∇Kx
J)ij =

∫ T

0

−2Riuix
T
j + (BT

x,iλxi
−BT

y,iλyi
)xT

j dt

(6a)

(∇Ky
J)ij =

∫ T

0

−2Riuiy
T
j + (BT

x,iλxi
− BT

y,iλyi
)yTj dt

(6b)

Proof. The gradients are determined from the Lagrange func-
tion. For the feedback matrix for the dynamic states we get

〈
∂L

∂Kx,ij
,Mx,ij〉 =

∫ T

0

2xT
j M

T
x,ijRi

∑

k∈Nin,i

Kx,ikxk

+ 2xT
j M

T
x,ijRi

∑

k∈Nin,i

Ky,ikyk

+ xT
j M

T
x,ijB

T
x,iλxi

− xT
j M

T
x,ijB

T
y,iλyi

dt

=

∫ T

0

2Ri

∑

k∈Nin,i

(Kx,ikxk +Ky,ikyk)x
T
j

+ (BT
x,iλxi

−BT
y,iλyi

)xT
j dt •Mx,ij , (7)

where Mx,ij is a variation in Kx,ij . Then, we use the fact that
∑

k∈Nin,i
(Kx,ikxk + Ky,ikyk) = −ui to achieve the result.

Similarly, for the feedback matrix for the static states we obtain

〈
∂L

∂Ky,ij
,My,ij〉 =

∫ T

0

2yTj M
T
y,ijRi

∑

k∈Nin,i

Ky,ikyk

+ 2yTj M
T
y,ijRi

∑

k∈Nin,i

Kx,ikxk

+ yTj M
T
y,ijB

T
x,iλxi

− yTj M
T
y,ijB

T
y,iλyi

dt

=

∫ T

0

2Ri

∑

k∈Nin,i

(Ky,ikyk +Kx,ikxk)y
T
j

+ (BT
x,iλxi

−BT
y,iλyi

)yTj dt •My,ij . (8)

With similar reasoning, we get the given result from the propo-
sition which concludes the proof.

Using the proposed gradient descent direction, the following
algorithm can be used to find a locally optimal controller.

Algorithm 1. (1) Simulate the states xi(t), yi(t) of system (1)
for the finite horizon T .

(2) Simulate the adjoint states λxi
(t), λyi

(t) for the same
finite horizon T in the backwards direction according to
Eqs. (5).

(3) Every agent calculates the respective entries of the gradi-
ent by the formulas given in Proposition 2.

(4) For each neighboring agent j, update

K
(k+1)
x,ij = K

(k)
x,ij − γk(∇Kx

J)
(k)
ij ,

K
(k+1)
y,ij = K

(k)
y,ij − γk(∇Ky

J)
(k)
ij .

with a suitable scalar step length γk, independent of i, j.

(5) If all ||(∇KJ)
(k)
ij || < ǫ, or if a different stopping criterion

is satisfied, stop. Otherwise, increase k and go back to 1.

As the initializing feedbacks K0
x and K0

y every choice is pos-
sible that satisfies the allowed structure of the controller. An
obvious choice would be the zero matrix of appropriate size.

A possible choice for a step length that shows good perfor-
mance is given in Section 3.3.

Remark 1. Note that unless the resulting controller has entries
such that rows or columns of (Ayy − ByKy) become linearly
dependent, thus making the matrix non-invertible, the controller
does not cause any impulsive modes and the pencil (sE− (A−
BK)) will also be regular.

Remark 2. We should stress that the approach finds a controller
for systems that inherently satisfy the given equality constraints
which are part of the system dynamics of semi-explicit singular
systems by themselves. The problem treated in this paper is not
directly related to controller design for ODE systems that en-
sures satisfaction of equality constraints which we would want
to impose on the system. Whether the presented approach can
be used to find controllers that guarantee constraint satisfaction
for designed constraints, not inherent to the dynamics, remains
to be seen in future work.

As can be expected, the communication effort of the distributed
design is higher than for a centralized design. The reason for
this is the requirement to simulate the system trajectories which
requires neighborhood information. But it should be noted that
the design can be done entirely offline. During the process, only
a state measurement exchange between neighboring nodes is
necessary to compute the control input using the feedback K .

3.2 Distributed computation

In this section, we show how it is possible to simulate the states
and adjoint states using only local and neighborhood informa-
tion and thence how to compute the gradient. One method to
simulate semi-explicit singular systems as considered in this
paper is to solve the algebraic part and to plug in the solution
into the dynamic part.

The closed loop of the dynamic state (1a) is written as

ẋi = Axx,ixi −Bx,i

∑

j∈Nin,i

(Kx,ijxj +Ky,ijyj).

It is easy to see that each agent i can update its dynamic state
by communicating state information with its neighbors, i.e.
knowing xj and yj for all j ∈ Nin,i. As for the algebraic part,
we can rewrite (1b) as

−
∑

j∈Nin,i

AK,yy,ijyj =
∑

j∈Nin,i

AK,yx,ijxj .

Using a simple Jacobi algorithm (see Bertsekas and Tsitsiklis
(1989)), this system of linear equations can be solved for yj
using only information from the neighbors Nin,i following the
iteration

yi = −A−1
K,yy,ii

[ ∑

j∈Nin,i

AK,yy,ijyj +
∑

j∈Nin,i

AK,yx,ijxj

]
.

Similar investigations can be done for the adjoint state. The
dynamic part is component-wise rewritten as

λ̇xi
=−

∑

j∈Nout,i

AT
K,xx,jiλxj

− 2
∑

j∈Nout,i

KT
x,jiRjuj .

+
∑

j∈Nout,i

AT
K,yx,jiλyj

+ 2Qxi
xi



Similarly for the static co-state we obtain

0 =−
∑

j∈Nout,i

AT
K,xy,jiλxj

− 2
∑

j∈Nout,i

KT
y,jiRjuj .

+
∑

j∈Nout,i

AT
K,yy,jiλyj

+ 2Qyi
yi

This can also be solved for λy,j using a Jacobi algorithm using
only information (states, inputs, system model) from neighbors.

As for the gradient, the formulation in Proposition 2 makes it
obvious that the gradients can be computed locally if agent i can
communicate with agent j, and since the controller structure is
restricted to neighborhood information, this is possible.

3.3 Step size selection

For the step size γk, we suggest a Barzilai-Borwein (BB) step
size which is given by Barzilai and Borwein (1988)

γk =
〈∆vec(K),∆vec(K)〉

〈∆vec(K),∆vec(∇KJ)〉
(9)

where ∆vec(K) = vec(K(k)) − vec(K(k−1)) and where

∆vec(∇KJ) = vec((∇KJ)(k))− vec((∇KJ)(k−1)). In order
to guarantee convergence of the gradient method to a stationary
point, the step size γk needs to satisfy the so-called Armijo
rule (Bertsekas, 1999, Section 1.2) which is stated as follows

J(K(k) + γks
(k))− J(K(k)) ≤ αγkvec(∇KJ(K(k)))T s(k)

(10)
where α ∈ (0, 1), γk is initially the BB step size and where

in our case s(k) = −vec(∇K(k)J(K(k))). It can be shown that
this condition is always satisfied for sufficiently small γk. The
BB step size can be computed distributedly in two steps. In the
first step, each agent computes a local estimate of the numerator
and denominator of the BB-step size γk using its own entries of
the feedback and gradient matrix. In a second step, a distributed
consensus algorithm will lead to the mean of all local estimates
which then gives the value of (9). Furthermore, the Armijo rule
can also be tested in a completely distributed fashion. We refer
to Deroo et al. (2012) for more details on the distribution of the
step size computations.

3.4 Averaged initial condition

It can be seen that the result of Algorithm 1 depends not only on
the initial condition K0 related to the decision variables of the
optimization, but also on the state initial condition x0 chosen
for the design process. Usually, during the controller design,
the initial condition of the process is not known so we would
like a controller which performs well for every initial condition.
Additionally, we do not know how to systematically pick one
specific initial condition.

Furthermore, since the approach is model-free (at least from
a global point of view), we require enough excitation of the
system such that the agents can extract model information from
the trajectories. If only one arbitrarily picked initial condition
is used, it might happen that some agents do not receive
information from the whole system, especially if mostly far
away nodes are excited with the initial condition. Of course, the
controller resulting from one specific initial condition will work
well if the design initial condition coincides with the process
initial condition but this is usually not the case.

For these reasons, we would like to overcome the dependency
with respect to the state initial condition and propose an aver-
aging process over the initial condition. Therefore we make the
following assumption about the initial condition of the state.
Note that this assumption is only related to the x0 used in the
trajectory simulations used for the gradient computation lead-
ing to the gains, and not to the actual online process. Therefore,
the original problem is not changed.

Assumption 3. The initial condition x0 is a random variable,
uniformly distributed on the surface of the n-dimensional unit
sphere with expected value E[x0x

T
0 ] = 1

nI , where I is the
identity matrix.

The cost functional (3) has to be changed to the following

J(x, u) = E

[
∫ T

0

xT (t)Qxx(t) + yT (t)Qyy(t)

+ uT (t)Ru(t)dt

]

, (11)

where E represents the expected value with respect to the initial
condition x0. Thus, the cost becomes independent of x0. Using
the solutions for x(t), y(t), λx(t), λy(T ), it can be shown that

all terms in the gradients (6) are linear in the term x0x
T
0 . To do

that, we need to show that all of the trajectories depend linearly
on x0. For x(t) and y(t), this is obvious. The solution for λx(t)
can be given as

λx(t) = 2

∫ ∞

t

e−Aλ(τ−t)Axx(τ)dτ,

where

Aλ =
[

−AT
K,xx +AT

K,yxA
−T
K,yyA

T
K,xy

]

,

Ax =
[

AT
K,yxA

−T
K,yy[−2KT

y RKx

+ 2(Qy +KT
y RKy)A

−1
K,yyAK,yx] + 2(Qx +KT

x RKx)

− 2KT
x RKxA

−1
K,yyAK,yx

]

.

Because of the linear dependence of x(τ) on x0, it follows
that λx(t) also depends linearly on x0, and thus so does λy(t).
Hence, all products in the gradients are linear in x0x

T
0 .

Because of the linearity and in order to average over unit
initial conditions, we define xm(t), ym(t), λx,m(t), λy,m(t) as
the simulated trajectories based on the initial condition em,
where em is the m-th unit base vector (zeros everywhere except
the m-th entry).

Then similarly to Deroo et al. (2012), the algorithm to compute
the gradient is adapted to the following.

Algorithm 2. (1) Simulate the states xi,m(t), yi,m(t) of Sys-
tem (1) for a finite horizonT for every initial condition em
with m = 1, ..., n.

(2) Simulate the adjoint states λxi,m(t), λyi,m(t) for the same
finite horizon T in the backwards direction.

(3) Every agent calculates the respective entries of the gradi-
ents by



(∇Kx
J)ij =

1

n

(
n∑

m=1

∫ T

0

−2Riui,mxT
j,m

+ (BT
x,iλxi,m −BT

y,iλyi,m)xT
j,mdt

)

(12)

(∇Ky
J)ij =

1

n

(
n∑

m=1

∫ T

0

−2Riui,myTj,m

+ (BT
x,iλxi,m −BT

y,iλyi,m)yTj,mdt

)

(13)

(4) For each neighboring agent j, update

K
(k+1)
x,ij = K

(k)
x,ij − γk(∇Kx

J)
(k)
ij ,

K
(k+1)
y,ij = K

(k)
y,ij − γk(∇Ky

J)
(k)
ij .

with a step length γk according to formula (9) that satisfies
the Armijo rule (10).

(5) If all ||(∇KJ)
(k)
ij || < ǫ, or if a different stopping criterion

is satisfied, stop. Otherwise, increase k and go back to 1.

In order to use this algorithm, the agents need to have some
global knowledge about the system (the total number of dy-
namic states nx) because they need to know how often to run
the simulation. Further, a protocol needs to determine which
unit base vector is used at what time as the initial condition.
However, both requirements are quite easy to satisfy. It has
to be noted that this approach does not help to overcome the
non-convexity of the optimization problem with respect to the
decision variables (feedback parameters).

3.5 Discrete event-based trajectory simulation

4. NUMERICAL EXAMPLE

In this section, we present several numerical investigations
to illustrate the contributions of this paper. First, we give a
short illustrative example. Second, we compare the resulting
controllers to a centralized approach. Third, the advantages of
using the averaged initial condition are shown. Last, we show a
practical example of a power system.

4.1 Illustrative example

To illustrate the approach to the reader, we treat an example
system with 4 subsystems, each having only one dynamic state,
one static state and one input.

The corresponding graph G is shown in Figure 1. We also show
the allowed communications which are the undirected version
of the same graph. From this we get that both feedback matrices
Kx andKy have the following form for all the iterations (except
iteration 1 where the feedback matrices are zero)

Kx/y =






∗ 0 ∗ ∗
0 ∗ 0 ∗
∗ 0 ∗ 0
∗ ∗ 0 ∗




 ,

reflecting the desired communication structure. The nonzero
entries are optimized by the distributed algorithm and every
agent only manipulates its own row using information from its
neighbors, e.g. subsystem 1 makes changes to K11,K13 and
K14. In Figure 2, we also show the cost resulting from using
the feedback matrices in every iteration and we see that the cost
is monotonically decreasing, as guaranteed by the Armijo rule.

4.2 Comparison between sparse and non-sparse controller

In order to evaluate the performance of the presented distributed
controller, we compare the performance of the resulting con-
troller of Algorithm 2 with a prescribed sparsity structure with
the resulting controller without the structure (K is a full ma-
trix). As test systems, we randomly construct singular systems
of the form given in Eq. (2). We use systems with N = 4 sub-
systems, each having a random number of dynamic (between 1
and 3) and static states (1 or 2) and each having 1 input. We do
the comparison for 100 randomly created systems for which a
stabilizing feedback is obtained with the gradient method. On
average, the systems have a total number of 12 states (dynamic
and static combined). The weighting matrices Q and R are set
to be identity matrices of appropriate sizes. We choose a finite
horizon of T = 5. With these parameters, the gradient method
needs 27 iterations on average to converge. Convergence is
assumed to be achieved in these simulations when the largest
element of the gradient is smaller than 10−3. It turns out that the
average cost difference is only 0.41% in favor of the non-sparse
controller. The reason for that is that the optimal controller
obtained without demanded sparsity structure still results in a
sparse controller. It should be mentioned that the same is true
for the feedback matrices resulting from the centralized infinite
horizon result from Bender and Laub (1987). Naturally, it is
to be expected that the difference increases with increasing
system size. Nevertheless, only the presented approach is able
to combine the goal of an optimal controller with the desire to
secure privacy of the subsystems.

4.3 Averaged initial condition

In this section, we investigate the difference between Algo-
rithm 1 and Algorithm 2. To do that, we compute the con-
troller matrices with both algorithms and then compare the cost
caused by each controller. We use two different scenarios for
the comparison: First, we use a different initial condition for
the cost simulations than for the controller computations in
Algorithm 1. Second, we use the same initial condition that
was used in the design. We do this test for 100 randomly
generated systems which were created the same way as in the
previous numerical example. In this case, on average, the total
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Σ3

Σ1

Fig. 1. Graph for the example system. Physical coupling: black,
solid. Control communication: red, dashed
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Fig. 2. Cost evolution over the iterations of the algorithm



number of states is also 12. The simulation horizon is T = 1.
As for the simulation effort, the Jacobi algorithm for typical
systems of the used system size needs on average 16 iterations
to converge. When using a different initial condition for the cost
simulations, the resulting controllers with the averaged initial
condition produce a cost that is on average 10.72% smaller
than the cost with one arbitrary initial condition, displaying the
positive effect of the averaging process. In addition, according
to these simulations, Algorithm 2 only needs 20 iterations on
average to converge, while Algorithm 1 needs 42. Granted, the
individual iterations of the averaging process are more costly,
but combined with the cost improvement, Algorithm 2 should
be the preferred option in this scenario.

In the second case, where we use the same initial condition
for the cost calculation that the cost with the controller of
Algorithm 1 is 0.22% lower than the cost with the controller
of Algorithm 2 which can be considered to be negligible. This
illustrates the Algorithm 2 achieves optimality independently
of the initial condition of the process.

4.4 Small power system

As a practical example, we apply the method to a small power
system with ntotal = 8 buses, where we have ng = 5 generator
nodes and 3 load nodes. We consider the following example
of a power system with 8 nodes (see Liu et al. (2011)). The
interconnection graph of the generators and loads is shown
in Figure 3. Each of the 5 generators follows the differential
equation given in Sauer and Pai (1998)







δ̇i
ω̇i

Ṗm,i

ȧi






=












0 1 0 0

0 −
Di

Ji

1

Ji
0

0 0 −
1

Tu,i

1

Tu,i

0 −
1

Tg,i
0 −

Ri

Tg,i












︸ ︷︷ ︸

Axx,i

+








0

−
1

Ji
0
0








︸ ︷︷ ︸

Axy,i

E0,iIq,i +








0
0
0
1

Tg,i








︸ ︷︷ ︸

Bx,i

u, (14)

where δi is the phase angle of the generator, ωi is the angle
velocity, Pm,i is the mechanical power, ai is the valve position,
Di is the damping coefficient, Ji is the inertia constant, Tu,i is a
time constant representing the delay between the control valves
and the turbine nozzles, Tg,i is the time constant of the valve
servomotor, Ri is the permanent speed droop of the turbine
(see Kiani and Annaswamy (2012)). Each generator thus has
the dynamic states xi = [δi, ωi, Pm,i, ai]

T and x of the total
system is the stacked vector of all xi.

Each generator node has the four algebraic variables yG,i =
[Vi, θi, Id,i, Iq,i], each load node has only two algebraic states
yL,i = [Vi, θi], where Vi is the bus voltage magnitude, θi is the
bus voltage angle, Id,i is the d-axis current and Iq,i is the q-axis
current. All algebraic variables need to satisfy the following
algebraic constraints given in Sauer and Pai (1998)

0 = Vie
jθi + (Rs,i + jXd,i)(Id,i + jIq,i)e

jδi−
π
2

− E0,ie
jδi , i = 1, ..., ng (15)

0 = Vie
jθi(Id,i − jIq,i)e

−j(δi−
π
2 ) + PL,i(Vi) + jQL,i(Vi)

−
n∑

k=1

ViVkYike
j(θi−θk−αik), i = 1, ..., ng (16)

0 = PL,i(Vi) + jQL,i(Vi)

−
n∑

k=1

ViVkYike
j(θi−θk−αik), i = ng + 1, ..., ntotal, (17)

where Rs,i and Xd,i are internal resistors and impedances of
the generators, Y is the magnitude of the admittance matrix of
the network and α is the corresponding angle of the admittance
matrix. The loads in this system are assumed to have a linear de-
pendence with respect to the bus voltage, i.e. PL,i(Vi) = kp,iVi

and QL,i(Vi) = kq,iVi. The equations (15)-(17) can be split
into real and imaginary parts and then linearized around op-
erating points δi,0, Vi,0, θi,0, Id,i,0, Iq,i,0. The operating points
result from a loadflow calculation. These linear equations can
then be written in the form 0 = Ayxx + Ayyy, where Ayx is
block-diagonal, because the equations for node i only depend
on xi in the form of δi. Ayy has sparsity structure resembling
that of the admittance matrix Y . The algebraic equations have
no input so By is zero in this case.

The dynamical part can also be written in a form ẋ = Axxx +
Axyy+Bxu, whereAxx andAxy are block-diagonal withAxx,i

and Axy,i on the respective diagonal. Bx is also block-diagonal
with Bx,i on the diagonal. For the considered system size, we

have x ∈ R
20 and y ∈ R

26.

Thus, we obtain a singular system of the considered system
class. We apply Algorithm 2 to the system with a time horizon
T = 10s. The weighting matrices are Q = I46×46 and R =
I5×5 with appropriate units. The algorithm stops after 60 it-
erations when the change in the gradient is considered small
(less than ǫ = 0.02). During these iterations, the nodes only
communicate with their neighbors to simulate the trajectories
which requires (considerable) information exchange but real-
izes privacy.

If we take a closer look at the interconnection graph of the
system, we observe that none of the generators (the dynamic
parts of the system) are directly coupled. This means that during
the design phase, the generators do not communicate directly
with each other but only with the load nodes. In the process
phaseKx is for this reason essentially a decentralized controller
and no dynamic states will be communicated between the
systems. However, the nodes 6-8 which only have static states
are coupled to the generator nodes and they can be used. Thus,
Ky is not decentralized but its coupling structure is based on
the structure of the admittance matrix. In summary, Kx and Ky

1
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5

7

2

3 6

4

Generator 1Generator 3

Generator 2 Generator 4

Generator 5

Load 3

Load 2

Load 1

Fig. 3. 8 bus power system with 5 generators and 3 load nodes
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Fig. 4. Evolution of the phase angles δi of the 5 generators

have the following structures

Kx =








∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗







,Ky =








∗ 0 0 0 0 0 ∗ 0
0 ∗ 0 0 0 0 0 0
0 0 ∗ 0 0 ∗ 0 0
0 0 0 ∗ 0 0 0 ∗
0 0 0 0 ∗ ∗ 0 0








In summary, for this example system, the main difference to
classical decentralized control which is often used in power
systems, is that this controller also makes use of local static
variables (voltages, currents) and additionally static variables
from adjacent load nodes.

For power systems, it is of interest, how the system reacts to
a disturbance. For this reason, we simulate a load increase in
one of the loads by offsetting the corresponding bus voltage
between the time 0.1 and 0.2. The simulated state trajectories
of the phase angles are shown in Figure 4. It can be seen that the
controller from the presented algorithm handles the disturbance
well and stabilizes the system to the equilibrium.

5. CONCLUDING REMARKS

In this paper, we present a distributed gradient descent method
to compute a distributed linear controller for semi-explicit
index 1 singular systems, i.e. systems with linear equality
constraints, present in applications like the power distribution
system. The approach guarantees privacy in the sense that
dynamic models are shared with only a limited number of
agents. The gradient method is guaranteed to converge using a
Barzilai-Borwein step size and a check of the Armijo rule. The
calculation of the descent direction uses simulated trajectories
of the system states and of adjoint states. Averaging over the
state initial condition achieves independence of the specific
initial condition. The effectiveness of the approach is shown
through several numerical simulations.
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