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W compound parameter matrix - 

  



 
Symbols   

xvi 

Latin letters 

symbol meaning unit 

a semi-major axis of reference ellipsoid m 

a(ζ,η) state dependent nonlinearity of external dynamics - 

b semi-minor axis of reference ellipsoid m 

bi ultimate bounds - 

b wing span m 

c  mean aerodynamic chord m 

c filtered uncertainty for MMQ modification - 

ĉ filtered estimated uncertainty for MMQ modification - 

c~  filtered uncertainty estimation error for MMQ 
modification 

- 

d external disturbances - 

e excentricity of reference ellipsoid 1 

e lower bound on maximum tracking error - 

e tacking error, prediction-tracking error - 

ê prediction error - 

f excentricity 1 

f(x) state dependent nonlinear function of feedback 
linearizable system 

- 

g(ζ,η,uN,d) nonaffine control map - 

h geodetic altitude m 

h(x) nonlinear output function of feedback linearizable 
system 

- 

p
�

 linear momentum N·s 

q(ζ,η) state dependent nonlinearity of internal dynamics - 

qx, qN, qL filtered regressors for MMQ modification - 

qδ filtered unmatched uncertainty - 

p air pressure N/m
2
 

ps air pressure as MSL N/m
2
 

p roll rate rad/s 

p
*
 normalized roll rate 1 

q pitch rate rad/s 

q
*
 normalized pitch rate 1 



 
  Symbols 

xvii 

Latin letters 

symbol meaning unit 

q  dynamic pressure N/m
2 
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1

0

q

q

q

q

q  unit quaternion 1 

r yaw rate rad/s 

r
*
 normalized yaw rate 1 
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z
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r
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 position vector from point A to point B,  
components written in frame C 

m 

u input vector of a dynamic system - 

uN nonaffine controls - 

w (w
*
) (desired) effect of nonaffine controls - 

x state vector of a dynamic system - 

y output vector of a dynamic system - 

 

  



 
Symbols   

xviii 

Greek letters 

symbol meaning unit 

α, αA, αK, αT, αc 
(aerodynamic, kinematic, total, included)  

angle of attack  
rad 

( )⋅iα  
class K function establishing  

lower bound on Lyapunov function 
- 

β, βA, βK, βT 
(aerodynamic, kinematic, total) aerodynamic angle 

of side-slip 
rad 

( )⋅iβ  
class K function establishing  

upper bound on Lyapunov function 
- 

Γx, ΓN, ΓL symmetric positive definite weighting matrices - 

γx, γN, γL learning rates - 

LNx
γγγ ,,  lower bounds on learning rates - 

( )⋅iγ  
class K function establishing  

upper bound on Lyapunov function derivative 
- 

δl, δr (left, right) flap deflection rad 

δi initial condition bound  - 

ζ rudder deflection rad 
ζ relative damping of second order LTI system 1 

ζ external states of Byrnes-Isidori normal form - 

ζR states of reference model - 

ζ̂  states of state predictor - 

η internal states of Byrnes-Isidori normal form - 

ηl, ηr (left, right) elevator deflection rad 
ηc,l, ηc,r (left, right) canard deflection rad 

Θ  Euler pitch angle rad 

θi,j 
set of Euler angles, describing attitude of propulsion 
systems relative to body-fixed frame (i=1,2,3, j=l,r,b) 

rad 

θx, θN, θL upper bounds on true parameters - 

θx,max, θN,max , θL,max bounds, imposed by projection operator - 

κb back thrust vector azimuth angle rad 

κ gain for MMQ modification - 

λ 
eigenvalue of a matrix;  

λ : greatest eigenvalue; λ : smallest eigenvalue 
- 

Λ control effectiveness - 

λ geodetic longitude rad 

µ, µA, µK (aerodynamic, kinematic) bank angle rad 

ν pseudo control - 

νA adaptive augmentation - 

νE error feedback - 

νR reference pseudo control - 

Rν̂  predictor based pseudo control - 

ξl, ξr (left, right) aileron deflection rad 

σ 
singular value of a matrix 

σ : greatest singular value; σ : smallest eigenvalue 
- 



 
  Symbols 

xix 

Greek letters 

symbol meaning unit 

ρ air density kg/m
3
 

ρs air density at MSL kg/m
3
 

ρi initial condition bound for ultimate boundedness - 

σl, σr, σb, (left, right, back) thrust vector inclination angle rad 

σx, σN, σL, gains of switching σ-modification - 

Φ Euler bank angle rad 

Φ(x), Φζ(x), Φη(x) 
nonlinear state transformations for Byrnes-Isidori 

normal form 
- 

φ geodetic latitude rad 

( )ηζφ ,x  state dependent regressor - 

( )duηζω ,,, NN  

( )duηζφ ,,, NN  
nonaffine control regressor - 

Ψ Euler azimuth  rad 

ωM,l, ωM,r, ωM,b (left, right, back) propeller rotation speed rad/s 

ω0 natural frequency of first or second order LTI system rad/s 

( )
( )
( )
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 angular rate of frame B relative to frame A,  
components written in frame C 
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Symbols   

xx 

abbreviations 

symbol meaning 

AHRS attitude heading reference system 

AoA angle of attack 

AoS angle of side-slip 

a.s. asymptotically stable 

BLDC brushless DC electric motor 

c.g. center of gravity 

DC direct current 

EMC electromagnetic compatibility 

EOM equation of motion 

l.h.c.p. left half of complex plane 

LTI linear time invariant 

LTV linear time variant 

ISA international standard atmosphere 

MEMS micromechanical systems 

MIMO multi input multi output  

MMQ multi model Q (modification introduced in section 4.4) 

MRAC model reference adaptive control 

MSL mean see level 

NDI nonlinear dynamic inversion 

ODE ordinary differential equation 

PSD power spectral density 

RBF radial basis function neutral network 

RD relative degree 

r.h.c.p. right half of complex plane 

SISO single input single output 

SP singular perturbation 

SV singular value 

UAS unmanned aerial system 

UAV unmanned aerial vehicle 

 



 

Chapter 1 

Introduction 

In the 20th century, the presence of a pilot on board of an aircraft has been inevitable, 

however, since beginning of the millennium a rapid development of unmanned aerial 

systems (UAS) initiated, not at least due to the availability of computers, whose 

computational speed increased tremendously. Taking a look into history, military 

interests, unfortunately, were often the main impetus for technological progress as is 

also the case for UAS. The absence of a pilot opened new capabilities allowing full 

exploitation of physical aircraft limits, but also generated new requirements. 

Particularly autonomous accomplishment of complete missions became an important 

topic, which requires for a system that is failure tolerant and the latter requirement is 

largely affected by the flight control system. 

Simultaneously, adaptive flight control gained more and more interest. The first 

adaptive flight control systems were in fact investigated since the beginning second 

half of the 20th century. In these days, the adaptation laws were rather designed on an 

empirical basis, than on exact mathematical considerations, which lead to a fatal crash 

of the X15A in 1967, since the control system became instable. As a result, awareness 

has grown that a rigorous consideration of the closed loop stability, including the 

adaptation, is a critical point. Since the 1980s, various adaptive control concepts have 

been published, but now with explicit consideration of stability ( [Nar80] ), mainly based 

on Lyapunov’s methods. 

Several basic adaptive control structures have emerged over the years such as 

adaptive backstepping, L1 adaptive control ( [Hov10] ) or model reference adaptive 

control (MRAC) and there are various references available, which are considered as 

standard work in the field of nonlinear system analysis and adaptive control such as 

[Ioa06], [Isi95], [Kha02], [Tao03], [Nar05], [Slo90] and [Hov10]. 

Adaptive control is a promising concept to account for failure tolerance as well as safe 

flight operation in case of uncertain environmental conditions. Nevertheless, it is a 

particular challenge to design an adaptive controller for an airborne system, since it 

needs to be certified by the official authorities. They require for guarantees, that the 

control system operates the aircraft safely in any flight condition, the aircraft is 

designed for. Robustness of classical linear controllers is analyzed by phase and gain 

margin, which are accepted metrics for the certification authorities. Although, it is 

possible to consider robustness of the inherently nonlinear adaptive control systems, 



 
Contribution  

2 

there is currently no method that is accepted, which renders this issue a main 

challenge for current research on adaptive fight control. 

Today Lyapunov’s methods are an effective tool for stability and robustness analysis of 

adaptive systems. However, often the results are quite conservative, meaning that 

guaranteed bounds are too large, lying beyond a physically relevant range, or even no 

bounds are computed at all, but it is merely stated that bounds exist. This is, of course, 

not sufficient for certification. 

1.1 Contribution 

Aim of the thesis is the design and implementation of a nonlinear and adaptive control 

system for the FSD Extreme Star, a small scale unmanned aircraft that serves as 

testbed for modern flight control systems. As failure tolerance is an important issue for 

UAS, a focus is put on concepts that account for actuator failures. Besides application, 

also a rigorous derivation of the algorithms and analysis of the closed loop system 

stability is accomplished. 

Certainly, the theory on nonlinear adaptive control and the associated Lyapunov based 

stability considerations are quite involved and it is commonly difficult to understand 

derivations, if the reader is not a particular specialist on this topic. Nevertheless, the 

thesis at hand is intended to be such comprehensive, by providing all the necessary 

background that a common graduate level engineer has a chance to follow the 

presented derivations and arguments. 

Particularly Appendix B provides mathematical background, which is important in the 

field of nonlinear and adaptive control, but which is commonly not known in detail. As 

Lyapunov’s methods form the central tool for analysis of stability and boundedness of 

the nonlinear dynamic systems, a comprehensive introduction is given in Appendix C. 

The following approaches are original contributions of this thesis. 

 

Novel Formulation of Ultimate Boundedness Theorem 

A recurrent theme of the thesis is the explicit computation of guaranteed values within 

the stability proofs of the control systems. In fact, there are many publications on 

adaptive flight control, which present innovative and sophisticated concepts, however, 

many of them suffer from the fact that no explicit values on stability conditions are 

computed. For real aircraft applications, asymptotic stability of the system cannot be 

proved due to unmodeled dynamics or unmatched uncertainties. At least boundedness 

of the system states can be proved under certain conditions. These proofs are often 

based on the respective theorem for ultimate boundedness in [Kha02]. A central 

contribution of this work is a novel formulation of the ultimate boundedness theorem, 

where explicit values are computed for bounds, ultimate bounds and the time, after 
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which the ultimate bound is reached. Moreover, the theorem is tailored to MRAC 

systems where the whole system state is usually partitioned into a tracking error and a 

parameter-estimation-error. Accounting for the special structure of MRAC systems 

within the theorem potentially provides less conservative bounds. 

 

Novel Multi Model Q Modification 

A known drawback of MRAC systems is the limited adaptation performance. Although 

high gains increase adaptation speed to a certain extent, they should not be chosen 

too high, since this leads to high frequency oscillations. In order to improve adaptation 

performance, various modifications to the update law have been proposed ( [Cho102], 

[Cho10], [Cho101], [Cho09], [Joh04], [Ngu08], [Vol09], [Vol06] [Vol061], [Yuc09], 

[Yuc091] ), amongst others q modification and concurrent learning. Both approaches 

aim to overcome the rank-1 condition of the update law, which has been identified as a 

reason for poor adaptation performance. Both approaches utilize the plant dynamics to 

gain an expression for the true uncertainty, by separating the known from the unknown 

part. The particular challenge thereby is that also state derivatives have to be known, 

which usually cannot be measured without a considerable effort. 

On the one hand, concurrent learning provides a solution to that challenge by 

estimation of the state derivative. This is possible, since it constitutes a matrix, whose 

columns contain recorded uncertainties from past time instants (also referred to as 

“history stack”) and the state derivative is obtained by e.g. a fixed-point smoother. The 

additional term within the update law is derived from the gradient of a quadratic cost 

function involving the uncertainty estimation error. A special advantage of concurrent 

learning is that even exponential stability of tracking error and parameter-estimation-

error can be shown, if the history stack has a sufficient number of linearly independent 

columns. Once the data are recorded, the columns of the history stack are fixed, if no 

additional algorithm exchanges the recorded data and hence concurrent learning 

cannot react to sudden configuration changes such as failures. 

On the other hand, q modification uses a stable LTI filter, in order to gain a filtered 

state derivative from measured states and the additional term within the update law is 

derived from the gradient of a quadratic cost function of the filtered uncertainty 

estimation error. The use of a filter, instead of a stack of fixed recorded data provides 

the advantage that changes in configuration are accounted for, since old values are 

continuously washed out by the filter. Unfortunately, q modification does not provide 

the chance for exponential stability, since only a single filter is used, which adds a 

second direction to the update law, but never reaches the sufficient number of linearly 

independent columns. 

Therefore, a novel multi model Q (MMQ) modification is proposed and derived in the 

thesis. It intends to combine the advantages of both existing approaches and is a 
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completely new method. Instead of sending the known part of the plant dynamics 

through a single filter, it is sent through multiple filters, where the results are stacked 

into columns of a matrix, as is done in concurrent learning. If the number of filters is 

sufficiently large, there is at least the change to have, at least temporarily, a number of 

linearly independent columns, sufficiently large for exponential stability. However, 

contrary to the concurrent learning approach where the matrix is constant, linear 

independence of a sufficient number of columns cannot be guaranteed uniformly in 

time for MMQ modification, since the filtered uncertainties change over time and 

depend on the excitation. Yet MMQ modification provides the chance for exponential 

convergence of the system states AND reacts to a sudden change of the aircraft 

configuration. 

 

Contributions to Incorporation of Nonaffine Controls into the Control Loop 

The non-adaptive part of the proposed controller is based on nonlinear dynamic 

inversion (NDI), a concept that transforms a nonlinear dynamic system into a linear 

decoupled one ( [Isi95], [Kha02], [Slo90] ) without using any approximation. In its basic 

form, NDI is developed for systems that are affine in their controls. However, the 

considered aircraft also comprises thrust vectoring, which enter the dynamics 

nonlinearly, due to trigonometric functions of the thrust vector angles. In recent years, 

a novel method, referred to as “nonlinear-in-control design” (NIC) has been published 

that allows the incorporation on nonaffine controls into the loop without explicit 

knowledge of the inverse of the nonlinear control map ( [Lav08], [Lav07b], [Lav07a] ). 

The algorithm does not require an explicit knowledge of the inverse but, of course, it 

has to exist. Within publications on NIC, sufficient conditions for existence are derived, 

which are based on an integral expression, involving the control map Jacobian. 

Theorem 4.5 in section 4.5 of the thesis summarizes the results so far, but adds 

another sufficient condition, which is potentially easier to verify, since it considers the 

map Jacobian directly without integration. In order to incorporate this concept into the 

NDI framework, an extension to the nonaffine case – particularly a generalized 

definition of relative degree for nonaffine-in-control systems – had to be defined first. 

Basically, NDI for nonaffine SISO systems has already been derived within the field of 

chemical engineering ( [Hen90], [Hen96] ), but an extension to the MIMO case has not 

been published yet, as far as is known to the author. 

 

Novel Update of Control Effectiveness Based on Singular Value Decomposition 

In MRAC schemes, adaptive compensation of state dependent uncertainties follows a 

quite straightforward procedure. More challenging is the compensation of uncertainties 

in the control channel and several solutions have been published. Narendra proposed 

a solution within a direct MRAC scheme by estimation of the inverted control 
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effectiveness in [Nar05], however, the result is only a local one. Other approaches, 

such as predictor based MRAC ( [Bie10] ) use the inverted control effectiveness 

estimate in the control law while the control effectiveness itself is updated. This, 

however, requires that the estimated control effectiveness does not become singular. 

The NDI based approach, which is pursued here, also uses the inverse of the 

estimated control effectiveness within the linearizing state feedback. In order to 

prevent the control effectiveness from becoming singular, it is usually constrained to 

diagonal matrices with positive diagonal entries. This, however, considerably restricts 

the cases, adaptation can compensate for. Therefore, a novel concept is introduced, 

which reformulates the control effectiveness update law in terms of its singular value 

decomposition. It allows preventing the matrix from becoming singular by limitation of 

the singular values from below by a positive constant, while simultaneously the 

diagonal constraint is released. 

1.2 Outline 

The thesis is organized as follows. The subsequent section 1.3 introduces 

nomenclature and basic mathematical results that are used throughout the thesis. 

Chapter 2 presents a comprehensive derivation of the aircraft equations of motions, 

which are used for simulation and as basis for control system design.  

Chapter 3 provides the novel formulation of the ultimate boundedness theorem 

including explicit bounds, ultimate bounds and time after which ultimate bounds are 

reached.  

Chapter 4 contains theoretical derivations, needed for control system design. Section 

4.1 presents an introduction to NDI, starting with the established and well-known facts, 

but also contains extensions to the basic framework, such as incorporation of 

redundant affine controls, nonaffine controls and disturbances. The rest of Chapter 4 is 

dedicated to adaptive control. After a short introduction in section 4.2, the first variant 

of two adaptive flight control algorithms, including a stability analysis, is introduced in 

section 4.3. It does not use the nonaffine controls (respectively thrust vectoring) within 

the linearizing state feedback, contrary to the second variant, presented in section 4.6. 

Section 4.4 motivates MMQ modification and derives the necessary equations and 

section 4.5 provides the necessary results for setup of the NIC algorithm. The singular 

value decomposition based update of the control effectiveness is derived in section 

4.7. 

Chapter 5 presents simulation examples that show effectiveness of MMQ modification 

and singular value update algorithm in sections 5.1 and 5.2, while section 5.3 contains 

a detailed description of a concrete implementation of the control structure, derived in 

section 4.3 for the aircraft testbed, including a comprehensive simulation study. 

Section 5.3.5 should be particularly mentioned, since it contains a procedure for the 
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design of adaptive gains, including a discussion on certification aspects. Finally, 

Chapter 6 draws conclusions and provides perspectives on future research topics. 

1.3 Important Mathematical Preliminaries 

This section contains some notations and basic mathematical results used throughout 

the thesis. If z denotes a complex number, then z  denotes the conjugate complex and 

|z| denotes its magnitude. Generally, small italic letters are used for scalars (x), small 

bold letters are used for vectors (x), capital bold letters are used for matrices (A) and I 

denotes the identity matrix of appropriate dimension.  

In the following, basic nomenclature, properties and definitions, related to vector 

spaces and matrices are stated. There are many textbooks available on this topic. For 

more information, refer to [Lüt96] and references therein. 

The ith element of a vector is denoted as xi. A single element of a matrix mn×∈�A  in row i 

and column j is denoted as ija , the transpose of a matrix is denoted as A
T and the 

Hermitian (conjugate complex and transpose) is denoted as AH. λi, A ,σi,A denote the ith 

eigenvalue and singular value of A respectively and 
AAAA σσλλ ,,,  denote the 

minimum/maximum eigenvalue/singular value.  

Vectors in �n or �n are elements of a linear space, which is primarily a mathematical 

construct. For engineers it is an advantageous tool to gain conclusions that go beyond 

the ones obtained from an intuitive engineering view. Especially in nonlinear system 

theory and control as well as Lyapunov stability analysis, detailed knowledge about 

terms such as “Banach space”, “compact”, “closed and open” ” or the difference 

between a pointwise continuous and uniformly continuous functions, are often used in 

the proofs, which are defined in the context of linear spaces and its advanced topics. 

Examples therefore are the proof of existence and uniqueness of a solution to a system 

of nonlinear ordinary differential equations that fulfill the Lipschitz condition ( [Kha02] ), 

La Salle’s invariance principle ( [Kha02] ), or the Lyapunov-Krasovskii stability theorem  

( [GuK03], [Hal93] ). Particularly the latter is concerned with abstract Banach spaces, 

whose elements are time domain signals on a compact interval. It provides sufficient 

conditions on stability of functional differential equations such as time-delay systems. 

By mathematical abstraction, terms that are intuitively clear in Euclidean space, such 

as “distance” or “convergence”, can be transferred to any abstract linear space. Those 

concepts are hence a useful tool to draw conclusions, which are indeed clear in 

Euclidean space but could never be gained without mathematical abstraction. Due to 

its importance for nonlinear and adaptive control and since those rather abstract 

mathematical topics are sometimes treated stepmotherly in engineering science, an 

introduction to linear spaces and some other related facts are given in Appendix B.1 

and are henceforth assumed to be known. 
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For a subspace n�⊂S , the dimension, denoted as ( )Sdim , is defined as the maximum 

number of linearly independent vectors in S. The kernel (or null space) of mn×∈�A  is 

defined as the set of all vectors x, which satisfy Ax=0. 

( ) { }0xAxA =⋅∈= m�ker  

As the kernel of a matrix is a linear subspace, it also can be attributed with a 

dimension, denoted as ( )( )Akerdim . 

The column rank of A, ( )ACrank  is defined as the number linearly independent 

columns, the row rank of a matrix, ( )ARrank  is defined as the number of linearly 

independent rows. As shown in Theorem B.14, ( ) ( )AA RrankrankC =  and therefore we write 

( ) ( ) ( )AAA RC rankrankrank == . 

The image of A is defined as the set of all n�∈z  that can be generated by A·x for any 
m�∈x : 

( ) { }mn �� ∈⋅=∈= xxAzzA ,image  

( )Aimage  is a subspace of �n that is spanned by the columns of A. Hence it can also 

be attributed with a dimension and note that  

( )( ) ( )AA rankimagedim = . 

The determinant of a real valued quadratic matrix mm×∈�P  is denoted as ( )Pdet . For 

mm×∈�Q , the trace (sum of its diagonal elements) is 

( ) ∑ =
=

n

i iiq
1

tr Q . 

Some important properties, pertaining to trace operator that are extensively used 

throughout the thesis are stated in the following. Let matrices 
mnnppmmn ×××× ∈∈∈∈ ���� DCBA ,,, , vectors m�∈yx,  and scalars �∈βα, , then the following 

properties hold: 

• linearity [ ] [ ] [ ]DADA trtrtr βαβα +=+  

• invariance w.r.t. transposition: ( ) ( )TQQ trtr =  

• cyclic property: ( ) ( ) ( )CABBCAABC trtrtr ==  

• dyadic product: ( ) yxxy TT =tr  

The p-norm of a vector is defined as  

( )pp

m

p

p
xx

1

1 …+=x  

for [ )∞= ,1p . Particularly p=2 denotes the classical Euclidean vector norm. Further, the 

∞-norm is defined as: 
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( )i
mi

x
,,1

max
…=∞

=x  

For matrices, the induced p-norms provide a relation between p-norms of vectors that 

are related to each other by that matrix. Let z=A·x, then the matrix induced p-norm is 

defined as: 

ppp
pp

AxzA
xx 11

supsup
==

==  

The matrix induced norms are hence a least upper bound for the elongation of z, 

relative to x. For the prominent cases ∞= ,2,1p  explicit values can be computed. 

∑∑ ==∞==
===

m

j ij
ni

A

n

i ij
mj

aa
1,,121,,11

max,,max
……

AAA σ
 (1.1) 

An important property of matrix induced norms is given by the following inequality. 

ppp
BAAB ≤  (1.2) 

In order to show this, let some x∈�p (Caution: Do not mix it up with p of the norm!), 

Bxz =1
, 

12 Azz = . On the one hand 

pppppp
xBAzAz ≤≤ 12  

and, on the other hand 

ppp
xABz ≤2 . 

Since 
p

AB  is the least upper bound, that fulfills the latter inequality, the former 

inequality implies (1.2). Besides induced norms, a direct norm can be assigned to a 

matrix, of which we will only use the Frobenius norm. 

( )2

1

1 1

2

∑ ∑= =
=

n

i

m

j ijF
aA  

It is easily verified, that the Frobenius norm can also be written in terms of trace 

operator. 

( ) ( )HH

F
AAAAA trtr ==  

Let σ1,A,…, σ r,A, be the singular values for A, where r=min(n,m). The Frobenius norm 

evaluates to (refer e.g. to [Lüt96]) 

∑ =
=

r

i AiF 1

2

,σΑ  

(1.3) 

This result, together with equation (1.1), particularly implies that the matrix induced 2-

norm is not bigger than the Frobenius norm. 

F
AA ≤

2
 (1.4) 
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If the columns of A are all stacked into one column vector, denoted by vec(A), the 

Frobenius norm could also be written as 

( ) ( )AAA vecvec
H

F
= . (1.5) 

It is hence a natural extension of Euclidean vector norm to matrices and obviously, if 

the matrix collapses to a vector x∈�m, its Frobenius norm is equal to the Euclidean 

vector norm. 

2
xx =

F
 (1.6) 

There is also a matrix analog for scalar product of vectors. 

( ) ( ) ( )DADA vecvectr
HH =  

In this context, it can be shown that the following inequalities hold 

( )
FF

H DADA ≤tr  (1.7) 

FFF

H DADA ≤  (1.8) 

which is a generalization of the Cauchy-Schwartz inequality for vectors. 

22
yxyx ≤H  

Cauchy-Schwartz is in turn a special case of Hölder’s inequality. Let some 1, ≥qp  such 

that 111 =+ qp , then 

qp

T yxyx ≤ . 

Vector p-norms as well as matrix induced p-norms are equivalent, meaning that, for 

any x, y of the same vector space S, there are constants 0<c1≤c2 such that  

aba
cc xxx 21 ≤≤ . 

Therefore the norm index is dropped, if some vector or matrix induced p-norm is meant 

and it is no matter, which p-norm to take. 

Frequently used throughout the thesis are expressions of the form vTΓv, also referred 

to as quadratic forms, where v∈�n, Γ∈�n
˟

n symmetric and positive definite. An 

important inequality pertaining to quadratic forms is given in Theorem B.20. 

2

2

2

2
vΓvvv ΓΓ ≤≤ λλ T

 
(1.9) 

A generalization of quadratic forms to matrices is given by ( )ΓΘΘTtr , where Θ∈�n
˟

m. 

Theorem B.21 shows that the following inequality holds. 

( ) 22
tr

F

T

F
ΘΓΘΘΘ ΓΓ ≤≤ λλ  

(1.10) 
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Quadratic forms such as (1.9) fulfill the axioms of a norm, assigned to a linear space 

(refer to section B.1.1). It is therefore appropriate to define a weighted Euclidean norm 

on �m 

vΓvv 1−

Γ
= T

 
(1.11) 

where the weighting matrix Γ∈�n
˟

n is symmetric and positive definite. Let w∈�n, then a 

weighted analogue of the Cauchy-Schwartz inequality is 

ΓΓ

− ≤ wvwΓv 1T
 (1.12) 

which can be shown, using the Cauchy-Schwartz inequality in its original form. Since 

Γ−1 is also symmetric and positive definite, it has a Cholescy factorization ( [Gol85] ), 

i.e. there is a lower triangular matrix S∈�n
˟

n with positive diagonal entries, such that 

SS
T
=Γ−1. Let vs=S

T
v, ws=S

T
w, then 

ΓΓ

− ==≤= wvwSSwvSSvwvwvwΓv TTTT

sss

T

s

T
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1 . 

This concept can also be generalized to matrices Θ∈�n
˟

m, by defining the weighted 

Frobenius norm. 

( )ΘΓΘΘ 1tr −

Γ
= T

 

(1.13) 

Notice that the weighting matrix is a square matrix whose size equals the number rows 

of Θ and  

( )TT ΘΘΓΘ 1tr −

Γ
=  

(1.14) 

is different from (1.13) while the size of Γ equals the column dimension of Θ. From 

Theorem B.17, Theorem B.21 in Appendix B, one can conclude the following 

relationship between Frobenius norm and weighted Frobenius norm. 

2121

FF
ΘΘΘ

Γ

−

Γ
−
Γ ≤≤ λλ  

(1.15) 

There is also a generalization of the Cauchy-Schwartz inequality to weighed Frobenius 

norms. 

( )
ΓΓ

− ≤ **1tr ΘΘΘΓΘT
 (1.16) 

for Θ∗∈�n
˟

m. In order to show this, let *
, ii θθ  be the columns of Θ and Θ∗ respectively. 

The left hand side of (1.16) evaluates to 

( ) *1*

1

1

1

*1
tr m

T

m

TT θΓθθΓθΘΓΘ −−− ++= … . (1.17) 

With θis=S
Tθi and ���

∗ =S
T��
∗, where S is the Cholesky factorization of Γ-1, we get 

( ) **

11

*1
tr ms

T

mss

T

s

T θθθθΘΓΘ ++=− …  
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and if all θis and ���
∗  are stacked into a column vector, such that ( )T

ms

T

s

T

s θθθ ⋯1= , 

( )T

ms

T

s

T

s

**

1

* θθθ ⋯= , we obtain 

( ) **1
tr s

T

s

T θθΘΓΘ =− . 

Now Cauchy-Schwartz inequality can be applied. 

( ) ***

1

*

111

***1tr ms

T

mss

T

sms

T

mss

T

ss

T

ss

T

s

T θθθθθθθθθθθθΘΓΘ ++++=≤− ……  

Using Γ-1
=SS

T and transforming the expression back to trace notation, analogous to 

(1.17) yields (1.16). 

( )

( ) ( )
ΓΓ

−−

−−−−−

==

++++≤

**1*1

*1**

1

1*

1

1

1

1

1

*1

trtr

tr

ΘΘΘΓΘΘΓΘ

θΓθθΓθθΓθθΓθΘΓΘ

TT

m

T

m

T

m

T

m

TT ……
 

Weighted Euclidean norm can also be interpreted graphically. While, for classical 

Euclidean norm, the contour lines of constant norm are balls, in the weighted case, 

they are ellipsoids as depicted in Figure 1.1. 

 

Figure 1.1 Weighted Euclidean Norm 

For a real valued vector field f(x), x
T
=(x1,…,xn), f

T
(x) =(f1(x),…,fm(x)), the Jacobian is 

defined as 
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For scalar fields �� →n
f : , the Jacobian is a row vector. However, the gradient is 

defined as a column vector, which is obtained by taking the transpose of the Jacobian. 
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Chapter 2 

Aircraft Modeling 

2.1 Flying Testbed – The FSD Extreme Star 

The FSD Extreme Star is a small UAV and has been developed at the Institute of Flight 

System Dynamics (FSD) in cooperation with AkaModell, a student group that 

constructs and operates remotely piloted aircraft, but also dedicate themselves to 

fundamental research on low Reynolds numbers ( [Aka12] ). Both institutions are 

affiliated to Technische Universität München (TUM). 

 

Technical Data 

Figure 2.1 shows the aircraft which is in fact a modified version of the commercial 

“Twin Star” developed and produced by Multiplex ( [Mul12] ). It is intended to serve as 

an institute’s testbed for classical linear, nonlinear and adaptive flight controllers as 

well as control allocation algorithms. Particularly for the latter, it is desirable to have as 

many control surfaces as possible, as control allocation is concerned with full 

exploitation of redundancies in the control channel in order to optimize secondary 

objectives or to provide fault-tolerant systems in case of actuator failure. 

 

Figure 2.1 FSD Extreme Star with Modifications, [Bau10] 

The following modifications were applied to the FSD Extreme Star  

• additional separately controlled canards 
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• elongation of fuselage to provide space for payload (particularly flight control 

computer, sensors, receiver) 

• additional separately controlled flaps at the inner part of the wing 

• 2 main engines, fixed on the left and right hand wing, including pitch-axis thrust 

vectoring 

• 1 auxiliary engine, mounted at the tail, including pitch-yaw-axis thrust vectoring  

• split elevator control surfaces, where the both parts are controlled separately 

Overall, there are 16 controls available, which render the actuation highly redundant. 

Table 2.1 presents an overview of all control surfaces and Table 2.2 lists the main 

technical data. 

Table 2.1 Extreme Star Controls 

control symbol unit 

left/right canard deflection  
lc,η  / rc,η  ° 

left/right aileron deflection lξ  / 
rξ  ° 

left/right flap deflection lδ  / rδ  ° 

left/right elevator deflection lη  / rη  ° 

rudder deflection ζ  ° 

left/right main propeller rotation speed lM,ω  / rM,ω  °/s 

back auxiliary propeller rotation speed bM,ω  °/s 

left/right main engine thrust vector elevation angle lσ  / 
rσ  ° 

back auxiliary engine thrust vector elevation angle bσ  ° 

back auxiliary engine thrust vector azimuth angle bκ  ° 

Table 2.2 FSD Extreme Star: Main Technical Data 

parameter value 

total mass 3,2 kg 

wing 

span 1400 mm 

mean aerodynamic chord 223 mm 

reference area 0.3014 m
2
 

airfoil CLARK Y 

canard 

span 580 mm 

mean aerodynamic chord 170 mm 

reference area 0.0747 m
2
 

airfoil NACA 0013 

horizontal 
tail 

span 420 mm 

mean aerodynamic chord 170 mm 

reference area 0.0693 m
2
 

fuselage length 1350 mm 

propulsion 
power left/right main engine 500 W 

power back auxiliary engine 75 W 
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Numeric Simulation 

For development of flight control systems, it is inevitable to have a mathematical 

model, representing the dynamics. It serves as a basis for design of the control 

algorithm and tuning of the associated parameters. It is thereby desirable for the model 

to be as accurate as possible. However, also the modeling effort increases with the 

level of detail and hence a trade-off between accuracy and modeling effort has to be 

found. 

In [Bau10] a simulation model has been developed and implemented in 

MATLAB/SIMULINK comprising a high level of detail. It includes the rigid body 

dynamics, which are derived from the principles of linear, and angular momentum and 

kinematic considerations that propagate aircraft attitude and position. It additionally 

comprises dynamics of subsystems such as actuator and sensor. Commonly such 

subsystem dynamics are much faster than the rigid body dynamics, but the 

incorporation of the former in the design of flight control systems plays an important 

role, since neglect of them usually results in too high gains for the flight control system 

and even might lead to instability, when the controller is applied to the real system. 

Aerodynamics as well as propulsive forces and moments, acting onto the vehicle, 

depend on model parameters, which can be obtained by various methods. One option 

is the identification of the model parameters by flight experiments using methods of 

flight system identification ( [Jat06], [Kle06] ). Another possibility is given by wind tunnel 

tests. In our case, however, the aerodynamic and propulsive parameters were obtained 

by a MATLAB tool, developed in cooperation of FSD and Bauhaus Luftfahrt  

( [Bau12] ). It allows for the computation of aerodynamic coefficients and derivatives of 

a geometric composition of lifting surfaces and rotors, accounting for interaction 

between the elements. It uses methods based on potential flow theory for lifting 

surfaces and momentum and vortex theory for computation of the induced flow of 

propellers. Inputs to the tool are geometric data as well as 2D-profile data of the lifting 

surfaces. Clearly, the parameters thus obtained are subjected to uncertainties. 

Nevertheless the parameters should be sufficiently accurate, which is particularly 

legitimate since adaptive controllers have the inherent property to compensate for 

uncertainties. 

2.2 Rigid Body Equations of Motion 

In this section, the rigid body differential equations, describing the aircraft motion in 

Euclidean space, are derived. The rigid body states are reasonably divided into four 

groups for description of translational and rotational motions, attitude as well as 

position. 

The translation and rotation equations of motion (EOM) are derived from the linear and 

angular momentum principle according to Newton’s second law. In a first step all 
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forces and moments, acting onto the aircraft, are collected and applied to the 

momentum principles as a whole and a further specification of aerodynamic, 

propulsion and gravitational forces and moments, which depend on the rigid body 

states, is presented in section 2.3. While translation and rotation dynamics highly 

dependent on model parameters, the differential equations for attitude and position are 

obtained by pure kinematic considerations. 

As the aircraft motion is quite complex, it involves various coordinate frames which 

move relative to each other translational and rotational. It is well-known that Newton’s 

second law only holds w.r.t. frames that are not accelerated (inertial). For aircraft 

applications, the “earth centered inertial” frame (ECI), which has its origin at the earth 

center and does not rotate with the earth, is considered as inertial frame. Other frames, 

import for the derivations are the “earth centered earth fixed” frame (ECEF) which, 

contrary to ECI frame, rotates with the earth. The “north-east-down” frame (NED) is a 

local frame, with its origin at an aircraft-fixed reference point and whose x- and y-axes 

are aligned with north and east direction, while the z-axis points downwards, vertically 

to the local tangent plane of the earth surface. The body-fixed frame, has its origin and 

axis fixed with the aircraft. Descriptions of the utilized frames as well as angles that 

define the rotation between different frames are contained in Appendix A.  

The subsequent equations naturally involve Euclidean vectors in various frames. In 

order not to lose track, a very well-arranged and comprehensive notation has been 

developed at the FSD, which will be introduced briefly.  

A position vector r
�

 from point G to R, where the components are written in a frame B, 

is written as 

( )
( )
( )
( ) 
















=

B

GR

B

GR

B

GR

B

GR

z

y

x

r
�

 

In presence of different frames that rotate relative to each other, we have angular rates 

that specify that relative motions. Let us assume that frame B rotates relative to some 

frame O. The angular rate of B relative to O, whose components are given in B frame, is 

written as  

( )
( )
( )
( ) 
















=

B

OB

z

B

OB

y

B

OB

x

B

OB

ω

ω

ω

ω
�

. 

If a position vector is derived w.r.t. time, the frame of reference has to be specified. 

Hence, if the position vector above is derived w.r.t to B frame, we write 

( )B

B

GRrɺ
�
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and the same holds for the time derivative of angular rates. 

( )B

B

OBωɺ
�

 

If the vector is to be derived w.r.t. to the O frame, this cannot be done directly since its 

components are written in B, but by help Euler’s differentiation rule. 

( ) ( ) ( ) ( )B

GR

B

OBB

B

GRO

B

GR rωrr
��ɺ�ɺ� ×+= . 

Further, as EOMs intensively use velocities, a short notation for the first time derivative 

of the position vector is given by 

( ) ( )
( )
( )
( ) 


















==
O
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GR

O

B

GR

O

B

GR

O

B

GRO

B

GR

w

v

u

rV ɺ�
�

. 

The time derivative of the velocity vector can be taken w.r.t. different reference frames, 

too and hence, if we derive the velocity once more w.r.t B frame, we obtain 

( )OB

B

GRV
ɺ�

. 

As wind plays an important role in aircraft dynamics, aerodynamic and kinematic 

velocities have to be distinguished. 

kinematic: ( )B

B

GR

KV
�

 , aerodynamic: ( )B

B

GR

AV
�

 , wind: ( )B

B

GR

WV
�

 

A similar notation is introduced for forces and moments, e.g. 

( )
( )
( )
( ) 
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R
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X

Pr

Pr
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 , ( )
( )
( )
( ) 
















=

B

R

B

R

B

R

B

R

N

M

L

Pr

Pr

Pr

PrM
�

 

denote propulsive forces and moments relative to aircraft reference point R with 

components written in aircraft-fixed frame B frame. Also of great importance in this 

framework are transformation matrices between different frames, e.g. a transformation 

matrix from O to B is written as 

BOM  

and, since transformation matrices are orthonormal, the inverse operation is simply 

obtained by taking the transpose. 

T

BOOB MM =  

Moreover, the following simplifications are declared.  

• Since point 0, the origin of ECI frame, is the inertial reference point, it is 

dropped.  
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• If the frame of notation does not play a role, it is dropped. 

As the ECI frame is considered inertial, the equations incorporate effects due to earth 

rotation such as centrifugal and Coriolis forces. Nevertheless, the following 

simplifications are assumed: 

• The earth rotation rate is considered constant: ( ) 0ω =
E

IEɺ�  

• The vehicle is considered as a rigid body, i.e. motion of mass elements relative 

to each other is excluded: ( ) 0=
B

RPrɺ
�

, where R is the aircraft reference point and 

P is some arbitrary aircraft-fixed point. 

The aircraft reference point (index R) is defined geometrically and therefore aircraft-

fixed. Generally, it deviates from the center of gravity (index G) which G could move 

due to different payloads and hence the EOMs are derived w.r.t R. Moreover, it has to 

be mentioned that the derivation of EOMs subsequently is accomplished 

independently of a frame of notation. 

Generally, the choice of the rigid body states is not unique and hence the states that 

will be used are introduced in the following. 

 

Translation  

Translation is appropriately described by the kinematic velocity of some aircraft-fixed 

reference point (index R) relative to the earth surface, which complies with ECEF frame 

(index E), where the components are given in the aircraft-fixed frame (index B): 

( )
( )
( )
( ) 


















=
E

B

R

K

E

B

R

K

E

B

R

K
E

B

R

K

w

v

u

V
�

 (2.1) 

Equivalently, the translation states can also be described in terms of  

absolute kinematic velocity: ( )E

B

R

KV  

kinematic angle of attack: ( )E

B

R

Kα  

kinematic angle of side-slip: ( )E

B

R

Kβ . 

Notice that 
Kα  is defined in the range [ ]ππ ,−  and 

Kβ  is defined in the range 

[ ]ππ 5.0,5.0− .  
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Rotation 

The aircraft’s rotation is described by the angular velocity of the aircraft-fixed frame 

relative to the ECI frame with components written in aircraft-fixed frame. 

( )
















=

r

q

p

B

IBω
�

(2.2) 

Attitude 

The attitude is described relative to the local tangent plane onto the earth surface, in 

fact by the angles between NED and body-fixed frame. In aviation the Euler angles, 

that describe the rotation of the aircraft-fixed frame relative to the NED frame, the used 

as attitude parameterization (Appendix A). 

















Φ

Θ

Ψ

=Ψ

Alternatively, the rotation from NED to aircraft-fixed frame is described by quaternions 

which avoid the singularity of the Euler angle parameterization at π5.0±=Θ  (refer to 

B.6). 

( )3210 qqqq
T

=q

Position  

On a global scale, the aircraft position is commonly described by WGS-84 coordinates 

( [EUR98] ). 

geodetic longitude: λ  

geodetic latitude: φ  

altitude above reference ellipsoid: h

Alternatively, also Cartesian ECEF coordinates could be used. 

( )
( )
( )
( ) 
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2.2.1 Translation and Rotation Dynamics 

Translation Dynamics 

The ECI frame is considered as inertial frame and consequently its origin (index 0) is an 

inertial point and therefore qualifies for formulation of the principles of linear and 

angular momentum. With R, some aircraft-fixed reference point, G the center of gravity 

and P, some arbitrary point of the aircraft (Figure 2.2), the position of P relative to earth 

center is  

( ) ( ) ( ) ( )GPRGRP rrrr
����

++=  (2.3) 

 

Figure 2.2 Aircraft Reference Point 

Using Euler’s differentiation rule, the velocity is derived as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )IGP

K

IRG

K

IR
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GPIBRGIBRIEER
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GPRGIBBRPRIEER

K

IRPIRIP
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VVV

rωrωrωV

rrωrrωVrrV

���

����	
��

����	
��

��� ���� �	
���

���
��	

ɺ����
ɺ�ɺ�

�

++

×+×+×+=

+×++×+=+=

=0

 (2.4) 

The center of gravity (c.g.) of a rigid body is defined such that 

( ) 0r =⋅∫
m

GP
dm

�
 (2.5) 

Further the linear momentum of a mass element of mass dm  at some point P is 

( )

( ) ( ) ( ) ( )[ ] dmdm

dmd

GPRGIBIR

K

IP

K

⋅+×+⋅=

⋅=

rrωV

Vp

����

��

 
(2.6) 

where (2.4) has been utilized. The aircraft linear momentum is obtained by integrating 

(2.6) over all mass elements 
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( ) ( ) ( ) ( ) ( )
����	

������

0

rωrωVpp

=

∫∫∫∫ ⋅×+⋅×+⋅==
m

GPIB

m

RGIB

m

IR

K

m

dmdmdmd  

( ) ( ) ( ) mm
RGIBIR ⋅×+⋅= rωVp
����

 

(2.7) 

Thereby, the c.g. condition (2.5) has been used and expressions that are constant over 

the aircraft body are written outside of the respective integrals. The principle of linear 

momentum says that the inertial time derivative of linear momentum equals the sum of 

all external forces. Therefore, derive (2.7) once w.r.t. the ECI frame. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) m
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(2.8) 

Note that we have applied the Euler differentiation rule to ( )I
IBωɺ
�

: 

( ) ( ) ( ) ( ) ( )BIBIBIBBIBIIB ωωωωω ɺ�
�
���
��ɺ�ɺ� =×+=

=0

 

(2.9) 

It is left to derive an expression for ( )IIR

KV
ɺ�

. Note that we are seeking for an expression 

in terms of the velocity relative to the earth surface ( )ER

KV
�

since the rigid body states are 

defined accordingly. Deriving once w.r.t. ECI frame we obtain, using (2.4): 
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Note that some terms appear to be prominent in mechanics: 

• ( ) ( )ER

K

IE Vω
��

×⋅2 : Coriolis acceleration of reference point due to earth rotation 

• ( ) ( ) ( )[ ]ER

K

IEIE Vωω
���

×× :  centripetal acceleration of reference point  

 due to earth rotation 

Since the components of our translational states are written in body-fixed frame, the 

state derivative w.r.t. the body fixed frame is preferred in the formulation and thus we 

further derive 
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where ( )EOω
�

 is denoted as transport rate and ( )OBω
�

 describes the rotation of the 

aircraft w.r.t. the local earth surface. We obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]RIEIEER
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IEER

K

EB
EB

R

K

II
R

K rωωVωVωVV
�������ɺ�ɺ�

××+×+×+= 2  

(2.10) 

The derivations so far have been done without specification of any frame of notation. 

But in order to obtain differential equations of the Cartesian translation states as 

defined above, we choose the aircraft-fixed frame. Applying the expressions, derived in 

(2.4), (2.10) to the principle of linear momentum (2.8) and solving for the state 

derivatives yields. 
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(2.11) 

where ( )E

B

R

KV
�

 is defined in (2.1). 

 

Rotation Dynamics 

The angular momentum of a mass element relative to the inertial earth center is defined 

as 

( ) ( ) ( ) dmd
IP

K

P VrH
���

×=0
 

(2.12) 

using (2.3) and (2.4), we obtain 
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Integration over the body yields the aircraft angular momentum. 
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(2.13) 

Note that the term containing ( )GPr
�

 has canceled out due to the c.g. condition (2.5). The 

last term in (2.13) has to be resolved further. Therefore, define the vector ( )RPr
�

 

component wise as  

( )
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and use the fact that the cross product can also be written as matrix-vector product 

involving a skew-symmetric matrix 
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( ) xRxr
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for some 3�∈x , where 
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Employing the anti commutativity property of the cross product, the integral term is 
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The matrix product within the integral can be further expanded. 
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(2.15) 

RI  is the mass moment of inertia w.r.t. R. Further, note that the expression in curly 

brackets in (2.13) equals the linear momentum defined in (2.7). With this insight and the 

definition of moment of inertia, the angular momentum reads quite compact 
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(2.16) 

The principal of angular momentum says that the inertial time derivative of the angular 

momentum equals the sum of all moments, relative to the inertial earth center 
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(2.17) 

Hence (2.16) has to be derived once w.r.t. the ECI frame. 
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 (2.18) 

The last term is further specified using Euler’s differentiation rule 
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Then, since the aircraft is assumed to be a rigid body, the inertia tensor is constant 

w.r.t. the body-fixed frame and hence 
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By a shift of reference point, the moment w.r.t. to earth center is equivalently written as  
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where the principle of linear momentum in (2.8) has been used. On the other hand 

(2.18) contains the same lever arm correction term and hence it can be canceled out in 

the principal of angular momentum (2.17). 
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Note that also (2.19) and the definition of linear momentum (2.8) have been inserted. It 

reveals that the term ( ) ( )IR

K

IR

K VV
��

×  results to 0. Using the definition of ( )IRG
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 in (2.4) we 

further get 
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and, due to anti commutativity of cross product, also the term  
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cancels out and we have left 
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With (2.7), we get 
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The equations have been derived without specification a frame of notation but due to 

the chosen rotation states, the equation are appropriately written in body-fixed axes. 

Finally, solving the latest equation for the state derivatives yields the rotation dynamics 
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where ( )B

IBω
�

 is defined in (2.2). 
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Coupled Solution of Translation and Rotation Dynamics 

Taking a look to (2.11) and (2.21), it reveals that translation and rotation dynamics 

cannot be solved separately, since each equation contains both state derivatives. 

However using the alternative notation of cross product of (2.14), the coupled 

translation and rotation dynamics are: 
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where 
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and I denotes the identity matrix. Note further that the generalized mass matrix 
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is regular since, using the determinant formula for 2x2 block matrices (see e.g. [Lüt96]), 

its determinant is,  
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mm IRRIM det
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where GI  is the moment of inertia w.r.t the center of gravity and Steiner’s Theorem has 

been used. Finally ( ) 0det >⋅⋅= G

z

G

y

G

x

G
IIII and hence, M is invertible and the coupled 

translation/rotation dynamics can be solved for the state derivatives: 
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 (2.22) 

2.2.2 Attitude Dynamics 

Euler Angles 

In aviation, the aircraft attitude is usually described by the Euler angles. These are Ψ  

(azimuth), Θ  (pitch) and Φ  (bank) (refer to Appendix A). The first time derivative of 

these quantities is related to the aircraft’s angular rate relative to the NED frame by  
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which is derived from kinematic considerations ( [Hol12] ). Thereby 
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 (2.24) 

is the angular rate of the aircraft-fixed frame relative to the NED frame. The dynamics 

(2.24) obviously become singular for 2
π±=Θ , i.e. if the aircraft nose is perpendicularly 

pointing upwards or downwards. This is also physically meaningful, since no well-

defined azimuth can be assigned to this attitude and hence also its first time derivative 

is not defined. This is a well-known drawback of Euler angles. A possible remedy is the 

use of quaternions instead. 

 

Quaternions 

With the definitions and derivations, given in B.6, let 
BO

q  be the quaternion of the 

rotation of the NED frame to the body-fixed frame. The kinematic quaternion 

differential equation, according to (B.58) in B.6, is 

( )
B

OBT

qBO
ωEq
�

ɺ ⋅⋅=
_

2

1
 

(2.25) 

The exact solution of this differential equation preserves unity length property of qBO. 

However due to numerical errors, the unity length will be corrupted as time evolves. 

Therefore a numerical correction term has to be introduced, which “pulls” the 

quaternion back to unity length in case of deviations. 
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 (2.26) 

where λ  is some positive constant. 

2.2.3 Position Dynamics 

The aircraft position is described by use of the WGS-84 model ( [EUR98] ), where the 

earth is modeled as a rotationally symmetric ellipsoid, which is oblate in north-south 

direction. The position on the earth is described by geodetic longitude λ , geodetic 

latitude φ  and altitude h, which are also referred to as WGS-84 coordinates. Table 2.3 

lists the parameters associated with the ellipsoidal shape of the WGS-84 model. For 

further information, the reader is referred to [Wen07]. 
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Table 2.3 Parameters WGS-84  

description symbol value 

semi-major axis a 6378137.0m 

semi-minor axis b a(1-f) 

flattening f 
257223563.298

1
=

−

a

ba  

excentricity e ( )ff −2  

normal curvature radius ( )φN  ( )φ22 sin1 e

a

−
 

meridian curvature radius ( )φM  
( )

( )( )322

2

sin1

1

φe

ea

−

−  

The differential equation for the WGS-84 is obtained from the strap down equations 

using the kinematic velocity w.r.t. to the earth surface, where the components are 

written in NED frame. These are obtained by a coordinate transformation of the 

translational states. 
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where we abbreviated ( )E

O

R

KN uV =   ,  ( )E

O

R

KE vV =   ,  ( )E

O

R

KD wV = . The position differential 

equations are ( [Wen07] ) 
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Alternatively, the position is given in Cartesian ECEF coordinates. In this case, the 

position differential equations read as 
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ɺ� ⋅ΨΘΦ⋅= ,,,φλ . (2.29) 

2.2.4 Kinematics 

The EOMs derived so far require the definition of forces and moments consisting of 

aerodynamic, propulsion and gravity. These quantities generally are not specified 

directly dependent on the chosen rigid body states, but on quantities that can be 

computed from the latter, which is described in the following. 

 

Kinematic Flow Angles 

The kinematic flow angles describe the direction of the kinematic velocity w.r.t. the 

body-fixed frame (Appendix A). They are related to the Cartesian components by  
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and the inverse transformation is  

KkKK Vu αβ coscos=  , KKK Vv βsin=  , KkKK Vw αβ sincos= . (2.30) 

Thereby for readability, we have abbreviated: 
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Aerodynamic Flow Angles and Wind 

Wind is modeled by a constant wind velocity defined relative to the earth surface. Wind 

fields that vary with position and turbulence are not modeled. 
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Here the following abbreviations are used: ( )E

OWW uu =   ,  ( )E

OWW vv =   ,  ( )E

OWW ww = . The 

aerodynamic velocity is 
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Analogous to the kinematic case, the aerodynamic velocity is equivalently represented 

by absolute value 
AV , aerodynamic angle of attack 

Aα  and aerodynamic angle of side-

slip 
Aβ , where the transformation from and to Cartesian coordinates is computed 

accordingly. 

 

Angular Rates 

The equations of motions only deliver the rotation of the aircraft w.r.t. the ECI frame. In 

the computations however various angular rates w.r.t. to other reference frames are 

necessary. The translation and rotation equations of motion require the earth rotation 

rate as input, which is assumed constant and approximately 360° per 24h, hence 
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Further, the transport rate ( )EOω
�

 is the rotation that is induced by constraint that the 

NED axes remain aligned with north-east-down direction, when the aircraft moves 

along the earth surface. It is needed for the computation of the body-fixed angular 

rates ( )OBω
�

, which are in turn necessary for the attitude dynamics (2.23) 
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The transport rate is computed with help of the position differential equations  

( [Wen07] ). 
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Alternative Descriptions 

In some cases, it is convenient to describe the aircraft translation by means of absolute 

velocity, flight path and course angle, which are obtained from the Cartesian velocity 

components in NED frame (2.27). 
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where 2atan  uses the information of numerator and denominator separately in order to 

obtain a unique course angle in the range -180° to +180°. 

2.3 External Forces and Moments 

The equations of motions have been derived, based on the principle of linear and 

angular momentum. The forces and moments acting onto the vehicle have not been 

specified but simply were applied to the equations as a general expression. The 

following sections therefore specify forces and moments further. These consist of an 

aerodynamic, a propulsive and a gravitational part. 
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2.3.1 Aerodynamic Configuration 

The aerodynamic forces and moments are stored in multidimensional data tables, 

which were computed numerically from geometry and profile data, based on potential 

flow, blade element and vortex theory using the institute’s own tool ( [Ste] ). 
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The aerodynamic forces and moments are computed w.r.t. to an aerodynamic 

reference point (index A), which in general differs from the aircraft reference point 

(index R). The force components are given in aerodynamic frame (index A) and moment 

components are given in body-fixed frame (index B). 
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Thereby 

• S: wing reference area,

• 2
2

1
AVq ρ= : dynamics pressure, ρ : air density, AV : aerodyn. velocity 

• b: wing span

• c : mean aerodynamic chord

• CD, CQ, CL: drag-, side force-, lift coefficient

• Cl, Cm, Cn: roll-, pitch-, yaw moment coefficient

The force and moment coefficients are dimensionless and contain all modeling 

information. The structural dependencies of the respective coefficients are given by the 

so-called application rule. In [Bau10] the main dependencies of the control surfaces 

onto each other were identified and minor influence were neglected in order to reduce 

the amount of data. The dependent variables, used for the aerodynamic table data are 

given in Table 2.4. It came out, that the main engines have an essential influence on 

the aerodynamic, as one would intuitively suspect. The back engine however only has 

a minor influence, which is owed to the comparatively small power and the fact that 

there is no lifting surface in its slipstream. Moreover, many influences are allowed to be 

modeled symmetrical w.r.t.to the body-fixed xz-plane. Therefore, the single summands 

are split up into a left (index l) and a right hand side (index r). The summands 

incorporate contributions of the aircraft itself, depending on velocity, angle of attack, 

angle of side-slip, propeller rotation speed and thrust vector inclination angle, which 

are labeled with an index 0, increments ∆  that stem from the control surface 

deflections and a damping part. In detail the coefficients are given by 
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where i is replaced by D, Q, L, l, m or n. The damping part enters the equation linearly 

by means of camping derivatives.  
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are the dimensionless body-fixed angular rates w.r.t. NED frame. 

Table 2.4 Dependent Variables in Aerodynamic Dataset 

dependent variable symbol unit min max 
number of 

breakpoints 

angle of attack Aα  ° -27,5 27,5 14 

angle of side-slip Aβ  ° -15 15 7 

aerodynamic velocity AV  s
m  5 20 3 

aileron deflection 
lξ / rξ  ° -20 25 10 

elevator deflection lη /
rη  ° -20 20 9 

canard deflection lc,η / rc,η  ° -25 25 11 

rudder deflection ζ  ° -30 30 13 

flap deflection lδ /
rδ  ° -20 25 10 

main engine thrust 
vector inclination angle lσ / rσ  ° -25 25 9 

main engine rotation 
speed lM ,ω / rM,ω  RPM -13500 13500 7 

In order to fit into the dynamic equations (2.22) the aerodynamic forces and moments 

have to be transformed into the body-fixed frame and the moments have to be shifted 

to the aircraft reference point. 
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2.3.2 Propulsion System 

The description of forces and moments, produced by the propellers require the 

definition of coordinate frames that are fixed at the respective engine shaft ( 

frame/origin index 
iPr , l: left, r: right, b: back). Thereby, the attitude of the propulsion 

systems is described relative to the body-fixed frame and is divided into 2 parts. The 

first part describes the attitude due to the installation of the respective engines w.r.t. 

the aircraft and is described by a set of Euler angles i,1θ  to i,3θ , beginning with the z-

axis when rotating from body-fixed to propulsion frame. Table 2.5 lists the installation 

angles for all 3 engines. 

Table 2.5 Installation Angle Propulsion System 

angle COSY axis left engine right engine back engine 

i,1θ  x 3° -3° 0° 

i,2θ  y 0° 0 0° 

i,3θ  z 0° 0° 0° 

The second part describes the additional rotation, stemming from thrust vectoring and 

is parameterized by 2 angles, an angle σ  about the y-axis and an angle κ  about the z-

axis, as illustrated in Figure 2.3. The two main engines are only tiltable in the y-axis 

while the back engine is tiltable in both. 

 

Figure 2.3 Propulsion Coordinate Frames 

Table 2.6 lists the thrust vectoring angles including their range. 
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Table 2.6 Thrust Vectoring Angles 

dependent variable symbol unit min max 

main engine thrust 
vector inclination angle 

/  ° -25 25 

back engine thrust 
vector inclination angle 

 ° -15 15 

back engine thrust 
vector azimuth angle 

 ° -25 25 

The transformation matrix from body-fixed to propulsion system is given by 

 
(2.42) 

where 

 

 

and i is replaced by l (left), r (right) or b (back). The forces and moments, produced by 

the propellers, are stored in multidimensional look-up tables and depend on 

• total angle of attack iT ,α  

• total angle of side-slip iT ,β  

• aerodynamic velocity AV  

• propeller rotation speed iM ,ω  
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Total angle of attack and angle of side-slip are obtained from the direction of the 

aerodynamic velocity w.r.t. the respective propulsion frame that is in fact the first 

column of AiPrM , the transformation matrix from aerodynamic to the respective 

propulsive frame. 
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With this insight, the total aerodynamic angles w.r.t. to the propulsion system are 
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where [ ·  ]j denotes the jth vector element and the 2atan  function computes a unique 

angle in the range -180° to +180° due to the separate evaluation of numerator and 

denominator. Accounting for angles that vanish according to Table 2.5 we obtain 

( )
( ) 











+−

−−
=

rlAArlAArlArl

rlAArlArlrlAA

rlT

//,1/,1/

/,1/,1//

2/,
coscoscoscossincossinsinsin

cossincossinsincossincoscos
atan

σβαθαβθβσ

θαβθβσσβα
α

 

(2.47) 
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( )( )bAbAAbbT σακββκβ +−= cossincossincosasin, . (2.50) 

In order to be applied to the EOMs, the respective reference points have to be shifted 

to R and forces and moments have to be transformed to the body-fixed frame. 
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 (2.52) 

 

BLDC Motor 

The FSD Extreme Star is powered by three brushless DC electric motors (BLDC) with a 

nominal voltage of 12V. Nevertheless BLDCs have similar characteristics as brushed 

DC electric permanent magnet motors ( [Röß12] ), described by the following well-

known equations (e.g. [Dör08]). 

The whole motor circuit is modeled as shown in Figure 2.4. The outer circuit consists 

of a motor controller and cables, modeled as ohmic resistances RCtrl, RCable and the 

motor. The motor itself consists of the armature circuit with resistance RA, inductivity LA 
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and an induced electromagnetic voltage EMU , induced by the exciting magnetic field 

and the rotation speed of the motor ω M. 

 

Figure 2.4 Modeling of DC Motor 

Using Kirchhoff’s mesh rule, one obtains for the outer motor circuit 

( ) MCableCtrl UIRRU +⋅+=0  (2.53) 

and similarly for the armature circuit 

ILUIRU AEMAM
ɺ⋅++⋅=  (2.54) 

where UEM=KE·ωΜ  with the machine specific constant KE. The moment MEM , induced 

to the shaft by the magnetic field is further given by MEM=KE·I and the loss of moment 

ML due to friction and other dissipative effects is assumed to be proportional to the 

rotation speed with a factor KL: ML=KL·ω. The total moment onto the shaft is Mtot=MS-

ML-MLoad, where Mload is the load moment, in our case the moment, induced by the 

propeller drag. With the moment of inertia of shaft and propeller about the shaft  axis JS 

and JPr, the equation of motion for the rotation speed becomes 

( ) LoadMLEMS MKIKJJ −−=+ ωωɺPr  (2.55) 

Combining equations (2.53) to (2.56) and writing in LTI form yields 
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where PrJJJ ST +=  is the total moment of inertia and ACableCtrlT RRRR ++=  is the total 

resistance. 

 

Steady State Conditions 

For flight performance analysis, steady state conditions of the motor system are of 

interest. Therefore, the time derivatives in (2.56) are set to zero, which yields 

Load
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E
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Two interesting quantities, which are usually found in data sheets, can be extracted 

from (2.57) and (2.58) by setting the load moment to zero: 

1. Idle rotation speed: 
( ) 0

12 UKRKK LTEEIdle

−
+=ω

 

2. No-load current: 
( ) 0

12 UKRKKI LTELIdle

−
+=

  

 

Effective Power 

The effective power of the motor is defined as PMot=MLoadωs. Solving (2.57) for Mload and 

inserting into the power definition yields: 
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Motor Controller 

The BLDC motors are actuated by motor controllers, which receive pulse width 

modulated signals as commands. In the context of the motor modeling, described 

recently, the pulse width is translated into an input voltage U0 to the respective motor. 

Commonly actuator commands are modeled as normed values, in this case ranging 

from 0 to 1 which are linearly assigned to the input voltage, where 0 represents U0=0V 

and 1 represents U0=12V. 

 

Motor Propeller Interaction 

A change in the input voltage effects a change in the shaft moment and which in turn 

effects a rotational acceleration until the steady state conditions (2.57) are met again. 

Thereby, the load moment is the x-component of the propeller moment in (2.44). Thus, 

the resulting propeller rotational speed is obtained by intersection of propeller 

characteristic (2.44) and motor characteristic (2.57) 
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2.3.3 Gravity 

The third group of forces, acting onto the aircraft is the gravity. Since the considered 

aircraft is rather small, operating locally and in low altitudes, the gravity is modeled as a 

constant force. Decreasing of gravity with altitude and variations dependent on global 

position, as e.g. provided by the Earth Gravitational Model 2008 (EGM2008) published 
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by the Geospatial Intelligence Agency, are not taken into account. The gravitational 

force is assumed to act perpendicular to the local tangential plane of the WGS-84 

reference ellipsoid, i.e. it is aligned with the z-axis of the NED frame. As it is well-

known, the gravitational force, which is actually a volume force, acting onto every mass 

element of a body, can be lumped into the center of gravity, thus: 

( ) gm
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where 280665.9
s

mg =  is the standard gravity and m is the total aircraft mass. 

Transformed to the body-fixed frame, the gravity is 
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Since the equations of motion are formulated w.r.t. to R, which is generally different 

from the c.g., the gravitational force also induces a moment. 
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2.4 Subsystems 

The rigid body equations of motions derived so far represent the main part of the 

aircraft dynamic. However also further dynamic elements, such as actuators and 

sensors that are located within the control loop effect the closed-loop behavior. These 

subsystem dynamics are relatively fast compared to the rigid body dynamics and for 

low gain control systems it should be sufficient to neglect these fast dynamics. 

However, if it is an ambition to fully exploit the aircraft capabilities, leading typically to 

high gain control systems, the actuator and sensor dynamics have to be taken into 

account very well. 

2.4.1 Actuators 

All control surfaces as well as the thrust vectoring angles are actuated by off-the-shelf 

electrical servos as they are typically utilized for model airplanes. The servos are 

controlled by pulse-width-modulated signals and are operated at a nominal voltage 

between 4V and 6V.  

The servos consist of an electric motor and a gear box, which is loaded by the actuator 

hinge moments. In section 2.3.2 the electric motor is modeled as a second order 

system. Usually the rotation dynamic (2.55) is dominating while the current dynamic, 

given by (2.54) is comparatively fast and hence it is neglected here. Thus, we have a 

first order dynamics from input voltage to rotation speed. Since the quantity of interest 
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is the actuator position, the preceding discussion motivates a linear second order 

dynamics for the actuators given by the transfer function. 

( ) ( )
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2 ωωζ
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sssU

sU
sG

C

A  (2.63) 

where 
0ω  is the natural frequency and ζ  is the relative damping. Figure 2.5 shows the 

actuator model block diagram. 

 

Figure 2.5 Actuator Model 

While the output of the right integrator is the actuator position itself, the output of the 

left integrator is the actuator velocity. The following parameters are chosen for the 

actuators. 

s

rad
300 =ω

    ,    7.0=ζ  (2.64) 

which could be considered as a worst case as the real natural frequency is expected to 

be higher. However, these parameters form a reasonable basis for control design. 

Moreover, the outputs of the integrators of the actuator model are limited. The right 

integrator limits the actuator position, which is necessary due to the subcritical 

damping, since even if the actuator command remains within its limits a transient 

overshoot might occur due oscillations. The limit of the left integrator represents the 

maximum actuator velocity, which complies with reality since the rotation speed of the 

electric motor of the servo is subjected to constraints as well. Rate limit of the 

actuators also have a distinctive effect on the closed loop dynamic, particularly in case 

of high amplitudes. In these cases, the rate limit could lead to instability at high 

amplitude maneuvers, while small amplitude maneuvers can be stabilized very well. It 

has to be mentioned that such a behavior is a nonlinear and the transfer function, 

except for small amplitudes, does not fully represent the actuator model depicted in 

Figure 2.5. The actuator parameters, position and rate limits have been determined in a 

series of measurements in [Bau10] and the main results are presented in Table 2.7. 
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Table 2.7 Actuator Data 

 0ω  ζ  

symbols rate Limit position limit 

Cu  uɺ  u  

maxuɺ  
minuɺ  

maxu  
minu  

s

deg  deg 

canard  
left 

s
rad30  7.0  Clc ,,η  

lc ,ηɺ  
lc ,η  

545 -545 
25 -24 

right Crc ,,η  
rc,ηɺ  

rc,η  19 -30 

flaps 
left 

s
rad30  7.0  Cl ,δ  

lδɺ  
lδ  

500 -500 
25 -22 

right Cr ,δ  
rδɺ  

rδ  28 -20 

elevator 
left 

s
rad30  7.0  Cl ,η  

lηɺ  
lη  

545 -545 
20 -19 

right Cr ,η  
rηɺ  

rη  15 -19 

rudder s
rad30  7.0  Cζ  ζɺ  ζ  545 -545 35 -31 

aileron 
left 

s
rad30  7.0  Cl ,ξ  

lξɺ  
lξ  

500 -500 
23 -19 

right Cr ,ξ  
rξɺ  

rξ  30 -20 

main motor 
left 

s
rad30  7.0  Cl ,σ  

lσɺ  
lσ  

222 -222 
30 -26 

right Cr,σ  
rσɺ  

rσ  25 -26 

back motor 
σ  

s
rad30  7.0  Cb,σ  

bσɺ  
bσ  545 -545 15 -15 

κ  Cb,κ  
bκɺ  

bκ  545 545 25 -25 

2.4.2 Sensors 

The FSD Extreme Star is equipped with an Xsens MTi-G unit, which is an integrated 

GPS and inertial measurement unit ( [Xse09] ). It comprises MEMS inertial sensors, 

measuring specific external forces and angular rates and a miniature GPS receiver as 

well as additional sensors such as 3D magnetometer and static pressure sensor. The 

Xsens offers a complete navigation solution, computed by an internal Kalman Filter. 

The navigation solution consists of position in WGS-84 coordinates, kinematic velocity 

in NED components, aircraft attitude as a set of Euler angles, angular rate, inertial 

acceleration as well as static pressure. The attitude is also alternatively specified as 

unit quaternion in order to avoid the known Euler angle singularity. 

The specific forces and rotational rate as well as static pressure are delivered as 

calibrated raw data, that are partially compensated for various sensor inherent errors 

such as temperature drift, scaling errors and bias, however the position and velocity 

data as well as attitude are processed data from the Kalman Filter. Although different 

sensors run at different sample rates – e.g. the GPS receiver delivers position and 

velocity information at a rate of 4Hz – the data are processed internally such that all 

sensor information are delivered at a higher update that can be chosen by the user. 

Generally, the sensor data are subjected to various inaccuracies even though the 

Kalman Filter tries to minimize the stochastic errors (noise) as much as possible. 

Subsequently, dynamics equations used for flight control design are formulated w.r.t. 

the c.g. In reality, the placement of the sensor is subjected to constraints that avoid the 

exact placement of the sensor unit at the c.g. such as EMC issues, visibility of satellites 

for the GPS antenna low-vibration mounting etc... Moreover, the c.g. position is not 
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known exactly. In the subsequent equations, the vector from aircraft c.g. to the sensor 

point is employed for this purpose. 

( )
B

GSr
�

 

(2.65) 

Another source of inaccuracy is the installation of the sensors; thus the sensor unit 

does not measure the diverse quantities in body-fixed components, but in a deviated 

sensor system, which will be denoted with an index S for the remainder. The 

transformation matrix is parameterized by a set of Euler angles zyx θθθ ,,  with sequence 

z-y-x when rotating from body-fixed to sensor system. 

















−+

+−

−

=

yxzxzyxzxzyx

yxzxzyxzxzyx

yzyzy

SB

θθθθθθθθθθθθ

θθθθθθθθθθθθ

θθθθθ

coscoscossinsinsincossinsincossincos

cossincoscossinsinsinsincoscossinsin

sinsincoscoscos

M  (2.66) 

Additionally the raw data, delivered by the MEMS sensors, are corrupted by scaling 

and bias errors. As the various sensor errors have an influence on the performance of 

the control systems, the significant deviations, which are incorporated within the 

simulation model, are described separately for each sensor group. 

 

Accelerometer 

The accelerometer measures all accelerations induced by surface forces. This implies 

that, for aircraft applications, only aerodynamic and propulsion forces are measured 

but not gravitational forces since it is a volume force. This fact as well as the 

positioning of the accelerometer at some aircraft-fixed point deviated from the c.g. is 

accounted for in the sensor model. 

At first, the acceleration at the sensor point is computed by means of a lever arm 

correction term. From the simulation model, we know the total forces acting onto the 

aircraft.  

( )∑ B

GF
�

 

Applying successively Euler’s differentiation rule, we get the acceleration at the sensor 

point. 
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with the vector from the aircraft c.g. to the sensor point ( )B

GS
r
�

 and the total aircraft 

mass m. This is the total acceleration at S, which consists of a part stemming from 

surface forces and another part from gravity, which is not measured by the sensor. 

Hence the acceleration, measured by the sensor, is 
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( ) ( ) ( )[ ]
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where 
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denotes the gravitational acceleration in body-fixed components with standard gravity 

constant 281665,90 s
mg = . So far, the clean measurements without sensor inherent 

corruptions have been computed. In order to simulate a realistic sensor behavior, the 

clean measurements are charged with scaling and orientation errors, bias as well as 

noise disturbance. The raw sensor measurements are 

( ) ( ) ( ) ffS

S

ccscS

S

MEAS nbfMMIf
����

++⋅++=  (2.70) 
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 (2.71) 

represents the scaling error and 
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M  (2.72) 

represents the cross coupling of the axes due to non-orthogonality of the sensor axes, 

fb
�

 is some 3-dimensional bias vector and fn
�

 is some Gaussian distributed sequence 

with standard deviation σx, σy, σz, representing sensor noise. Table 2.8 presents the 

data, used for the acceleration sensor model, which are compliant with the data sheet 

of the sensor unit. The noise standard deviation is dependent on the sample time of the 

sensor Ts. This is because noise is assumed to be a continuous time white noise with a 

constant power spectral density in the data sheet, which is approximated as discrete 

time Gaussian distributed zero mean sequence. The standard deviation of the discrete 

sequence decreases with the square root of the sample time, roughly spoken, due to 

averaging effects. For further information on this topic, refer to literature about statistic 

processes, e.g. [Ben10]. 
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Table 2.8 Sensor Errors for Accelerometer 

 x-axis : (��
	)	 y-axis : (��

	)	  z-axis : (��
	)	  

scaling isc 0003.0  0003.0  0003.0  

cross coupling    

 δix  - 
180

1.0
π

 
180

1.0
π

 

 δiy  
180

1.0
π

 - 
180

1.0
π

 

 δiz  
180

1.0
π

 
180

1.0
π

 - 

noise std. dev. σi[m/s
2
] 1

02.0

−⋅ sTs

 
1

02.0

−⋅ sTs

 
1

02.0

−⋅ sTs

 

 

Gyroscope 

Since the aircraft is assumed to be a rigid body, the rotation rate is invariant with 

changes in reference point. Therefore, only the deviated orientation of the sensors axes 

relative to the aircraft-fixed frame has to be taken into account. 

( ) ( )B

IB

SBS

IS ωMω
��

⋅=  (2.73) 

Additional scaling, cross coupling, bias and noise errors are added according to 

( ) ( ) ( ) ωω nbωMMIω
����

++⋅++= S

IB

ccscS

IS

MEAS  

(2.74) 

where Msc and Mcc are defined in (2.71), (2.72). Table 2.9 lists the specific values for the 

gyroscope inherent errors. 

Table 2.9 Sensor Errors for Gyroscope 

 x-axis (p
IS

)S y-axis : (q
IS

)S z-axis : (r
IS

)S 

scaling isc 0  0  0  

cross coupling    

 δix  - 
180

1.0
π

 
180

1.0
π

 

 δiy  
180

1.0
π  - 

180
1.0

π
 

 δiz  
180

1.0
π

 
180

1.0
π

 - 

noise std. dev. σi[°/s] 1

05.0

−⋅ sTs

 
1

05.0

−⋅ sTs

 
1

05.0

−⋅ sTs

 

 

First Order Gauss Markov Process 

Statistical errors with limited bandwidth, occurring in the respective sensor data, are 

suitably modeled by a first order Gauss Markov process. Such a band limited statistical 

process can e.g. be used as approximation for the output of the Kalman filter 

estimation error, since the Kalman filter error equation is in fact a strictly proper (i.e. 

without direct feed through) dynamic system which is excited by white noise and, as is 
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well-known, such systems transmit signals only up to a limited bandwidth. A 1st order 

Gauss Markov process is defined by  

( )uxfx +−⋅⋅= 02πɺ
 (2.75) 

where f0 is the bandwidth in Hz and u is a continuous time white noise with a power 

spectral density (PSD) of Qu. I.e. its autocorrelation is 

( ) ( ) ( ) ( )τδτττ ⋅=⋅⋅+⋅= ∫−∞→
u

T

TT
u Qdutu

T
tR

2

1
lim

 

(2.76) 

and its power spectrum is 

( ) ( ) u

f

uu QdeRfS =⋅= ∫
∞

∞−

− ττ τπ 02
 (2.77) 

where ( )τδ  denotes Dirac’s distribution. In the data sheets, statistical sensor errors are 

typically specified as standard deviation of a stochastic process, which is in our case 

the output of the Gauss Markov process. For implementation, the question to be 

clarified is, how to choose the PSD of u such that the output of the Gauss Markov 

process has the desired standard deviation. Due to [Ben10], the power spectral density 

of the system output x is related to the PSD of the input by 

( ) ( ) ( )fSfGfS ux ⋅=
2

 

(2.78) 

where G(f) is the transfer function of (2.75). Therefore, we get 

( )
( ) 1

2

0
+

=
f

f

u
x

Q
fS  (2.79) 

Due to Parseval’s theorem, the time averaged standard deviation of x amounts to the 

following expression. 
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(2.80) 

Since the simulation is in discrete time, it is necessary to have a discrete time 

approximation of the continuous time white noise signal u, which is, according to 

[Sim06], given by a zero mean Gaussian distributed sequence with a standard 

deviation of 

s

u
u

T

Q
=2σ

 (2.81) 

where sT  denotes the simulation sample time. Note that the white noise approximation 

is valid if the bandwidth of the Gauss Markov process is comparatively low to the 
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Nyquist frequency fNy=1/(2Ts). Applying the white noise approximation to (2.80) and 

solving for uσ  yields. 

π

σ
σ

⋅⋅
=

0fTs

x
u  (2.82) 

Thus, we have obtained a relationship between the standard deviation of system input 

and output. The discrete implementation is depicted in Figure 2.6. Input and output 

signal are sequences, sampled with Ts and the continuous time integrator is replaced 

by the forward Euler discretization.  

 

Figure 2.6 Discrete Approximation of a first Order Gauss Markov Process 

 

Attitude 

The aircraft attitude cannot be measured directly with gyroscope and accelerometer. 

However, the attitude can be computed by integration of the body-fixed rotation rates 

and correct the integration errors by a reference pitch and bank attitude, computed 

from the vertical gravity force, which is measured by the accelerometer and the 

heading, measured by the magnetometer. Such algorithms are denoted as attitude 

heading reference systems (AHRS) and are typically used in aviation applications. The 

Xsens unit however fuses all available sensors into a Kalman filter, which amongst 

others also estimates the attitude. As no detailed data about the estimation error are 

provided by the manufacturer, these quantities will be modeled in a rather 

phenomenological manner. For the sensor unit, we assume a deviated orientation 

relative to the body-fixed frame, given by the transformation matrix (2.66). 
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Euler angles of the deviated sensor system are obtained from MSO by consideration of 

the Euler angle parameterization of ΜBO. 
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 (2.84) 
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Since the attitude is the output of a Kalman filter, a dynamic bias is added to the clean 

measurements in form of a Gauss Markov process such that raw Euler measurements 

are  

Φ

Θ

Ψ

+Φ=Φ

+Θ=Θ

+Ψ=Ψ

m

m

m

MEAS

MEAS

MEAS

 (2.85) 

where Ψm , Θm , Φm  represent the output of the Gauss Markov process. Alternatively, 

the sensor unit also offers a quaternion attitude representation, which is obtained from 

the Euler angles by equation (B.54) in the Appendix. 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )222222,2

222222,1

222222,0

sincossincossincos

sinsincoscoscossin

sinsinsincoscoscos

MEASMEASMEASMEASMEASMEAS

MEASMEASMEASMEASMEASMEAS

MEASMEASMEASMEASMEASMEAS

MEAS

MEAS

MEAS

q

q

q

ΨΘΦΨΘΦ

ΨΘΦΨΘΦ

ΨΘΦΨΘΦ

+=

−=

+=

 (2.86) 

Table 2.10 presents the parameters, used for the attitude sensor model. 

Table 2.10 Sensor Errors for AHRS 

static bias [°] dynamic bias [°] 
bandwidth [Hz] 

xθ  
yθ  

zθ  
Ψm  Θm  

Φm  

0.5 0.5 1.0 1.0 1.0 2.0 0.1 

 

Kinematic Velocity 

The kinematic velocity is measured in ECEF components. Also, the velocity 

measurement is subjected to errors due to sensor positions, deviating from the c.g.. 

Hence, the velocity at the aircraft reference point is corrupted by a lever arm term. 
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The kinematic velocity is estimated by the Kalman filter and as such, similar statistical 

errors are added as done for the attitude. Thus, the raw velocity measurements will be 

modeled by 
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(2.88) 

where Vm
�

 is a 3 dimensional vector of Gauss Markov processes. Table 2.11 lists the 

parameters, used for the sensor model. 

Table 2.11 Sensor Errors for Velocity 

dynamic bias [m/s] 
bandwidth [Hz] 

x-axis y-axis z-axis 

0.5 0.5 0.5 0.1 
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Position 

As the position is also as state of the Kalman filter, the sensor is modeled similarly as is 

done for attitude and velocity. The magnitude of position uncertainty is typically large 

compared to the scale of the aircraft and hence errors due to the deviated positioning 

of the GPS antenna are neglected. All errors are assumed to be incorporated within a 

Gauss Markov process rm , whose data are presented in Table 2.12. 

( ) ( ) rE
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MEAS mrr
���

+=  (2.89) 

Table 2.12 Sensor Errors for Position 

dynamic bias [m] 
bandwidth[Hz] 

x-axis y-axis z-axis 

2.5 2.5 2.5 0.1 

As the sensor unit delivers the position information in WGS-84 coordinates the 

measurements in (2.89) have to be transformed. However a transformation from 

Cartesian ECEF to WGS-84 coordinates is not trivial due to the nonlinearity of the 

relationship, but solutions to the problem can e.g. be found in [Far99], [Hei82], [Kap96] 

and [Wen07]. 

2.5 Atmosphere 

In aviation applications, the International Standard Atmosphere (ISA), which has been 

defined in 1975 and is established in DIN ISO 2533 is commonly utilized. It essentially 

describes an idealized dependence of the atmosphere states (air pressure, air density, 

air temperature) on the altitude. The ISA is divided in three parts 

• troposphere: -2km to 11km 
• lower stratosphere: 11km to 20km 
• upper stratosphere: 20km to 32km 

which basically differ in the temperature-altitude-gradient. The troposphere has a 

constant negative temperature gradient, the lower stratosphere has a constant 

temperature and the upper stratosphere has a constant positive temperature gradient. 

Integration of Euler’s hydrostatic law, using the ideal gas law as well as the assumed 

temperature gradients yields the following equations for the ISA troposphere with 

assumed constant gravity constant. 
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(2.90) 

where: 

• m
K3105.6 −⋅−=γ : temperature gradient 

• KTs 15.188=  air temperature at mean sea level (MSL) 

• 201325.1
m

N
sp =  air pressure at MSL 

• 3225.1
m

kg
s =ρ : air density at MSL 
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• 235.1=n : polytropic exponent 

Since the considered aircraft usually operates only in a low altitude range, the 

troposphere equations are sufficient for the simulation model and the assumption of 

constant gravity is valid. 





 

Chapter 3 

Novel Formulation of the Ultimate 

Boundedness Theorem 

The Lyapunov stability framework is a central tool for design and analysis of adaptive 

control systems. Particularly in the last three decades, Lyapunov methods aroused 

interest of the adaptive control research community. Although it is state of the 

technology in these days, a comprehensive introduction to the fundamentals of 

Lyapunov stability is given in Appendix C. The proof that the states of a nonlinear 

dynamic system remain bounded is often based on a specific Lyapunov based 

theorem, referred to as “ultimate boundedness theorem” ( [Kha02] ). The current 

Chapter 3 is dedicated to a novel formulation of the ultimate boundedness theorem 

and the need for a reformulation is motivated in the following. 

Khalil’s book ( [Kha02] ) became a standard work in the field of nonlinear system 

design and analysis and is frequently cited in various publications, amongst others, for 

its stability theorems. It is a fact that systems, for which asymptotic stability can be 

proofed, are – especially in aviation – of rather academical interest. In real aircraft 

control applications, there will always be some unmodeled dynamics or uncertainties 

that cannot be compensated by adaptation, which inhibits a proof of asymptotical 

stability. However it is still possible to proof boundedness of the system states under 

certain conditions. In [Kha02], the according theorem is formulated such that it allows 

the conclusion that there are conditions under which the system states are bounded. 

But quantitative values for the conditions and upper bounds on the system states are 

not computed explicitly. 

Moreover, the theorems in [Kha02] are formulated for a generic nonlinear dynamic 

system with a single system state vector. Yet model reference adaptive control (MRAC) 

systems have a special structure where the whole state is usually partitioned into 

tracking and parameter error respectively.  

In the following, the theorem for boundedness in [Kha02] is presented in a novel 

formulation as it is tailored to the special structure of MRAC systems, accounting for 

partitioning of the system states. Beside an explicit specification of the set of allowable 

initial conditions, such that boundedness of the system states is guaranteed, the 

theorem additionally provides explicit values for bounds, ultimate bounds (refer to 
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Definition C.4) and the time, at which the ultimate bound is reached. Hopefully, due to 

provision for the special MRAC structure, the bounds are less conservative than a 

generic formulation. 

Particularly the latter feature is quite important for the design of flight control systems 

since explicit and tight bounds have to be guaranteed to certification authorities. This 

chapter is thus a central part of this work. 

Theorem 3.1 Ultimate Boundedness 

Consider the dynamic system  ,  

where [ ) n�→∞× ,0:Df  is locally Lipschitz in x and piecewise continuous in t , 

n�⊂D  is some region that contains the origin. Let  

• the state vector be partitioned:  
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Proof 

At first note that, for the admissible initial values, by condition 1, we have 

( ) ( ) ( )221100 , ρβρβ +≤tV x . 

Hence, by the definition of ρ1, ρ2: 

( ) utV ≤00 ,x  (3.1) 

The set 

( ){ }utV
n

tu ≤∈=Ω ,, xx �  

is contained in  since condition 1 of the theorem implies that 

 and . Furthermore, tu,Ω  is an 

invariant set (i.e. if once the trajectory has entered or started within this set, it will 

remain there for all future time), since on the boundary of  which is defined by 

( ){ }utV
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tu =∈=Ω∂ ,, xx �  

we have by condition 1 of the theorem that at least 
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Hence tu,Ω∂  is contained in  where 0<Vɺ  according to condition 2. This implies 

that, if a trajectory, which starts within tu,Ω  (which is fulfilled for admissible initial 

conditions), hits the boundary at some time instant then 0<Vɺ  and hence the 

trajectory cannot leave the set, rendering tu,Ω  invariant. Consequently, a trajectory, 

starting within tu,Ω  also remains within , since rtu B⊂Ω , . Further, since ( ) utxV ≤, , 

condition 1 of the theorem implies 

( ) u≤11 xα  and ( ) u≤22 xα  

which establishes the first bound of the theorem. 
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is also an invariant set since, by condition 1 of the theorem and the definition of , we 

have, on the boundary  that, at least 

•  or 

• . 

This implies that rtv B(, ⊂Ω∂ \ µB ) and, for the same reasons as stated recently, the set 

is rendered an invariant set. Figure 3.1 depicts the Lyapunov function over state for the 

case of only 1 vector partition while Figure 3.2 illustrates the Lyapunov level sets for 

the case of 2 vector partitions. 

 

Figure 3.1 Lyapunov Function for 1 State Vector Partition 
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Figure 3.2 Lyapunov Level Sets in Case of 2 Vector Partitions 

Next, it is shown by contradiction that any trajectory with allowable initial condition 

enters  in some finite time. Therefore note that, by Lemma C.2, there are class K 

functions γ1( ·  ) and γ2( ·  ) such that  

 and  (3.2) 

for ||x1||≤r1 and ||x2||≤r2 . Now, let’s restrict the initial conditions such that ||x1,0||≤δ1 and 

||x2,0||≤δ2 for some δ1∈[0,ρ1] and δ2∈[0,ρ2] and assume x(t) remains in the set 
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(3.3) 

for t∈[t0,t1] (also consider Figure 3.2 which shows that rtv B⊂Ω ,
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Integration of the Lyapunov function, on inspection of (3.3) and (3.4) yields 
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Then for  

 

we have V(x(t1),t1)≤ν which is a contradiction and hence x(t) enters  within . 

Moreover condition 1 of the theorem implies that. 

 
and  (3.5) 

if . Hence for ||x1,0||≤δ1 and ||x2,0||≤δ2 for some 0≤δ1≤ρ1 and 0≤δ2≤ρ2 it can be 

concluded that  

 and  
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So far we have shown a somehow “coupled” ultimate boundedness” meaning that, for 

a pair of initial conditions  we obtain a pair of ultimate bounds , which are 

both reached within the same elapsed time . But ultimate boundedness is only 

defined in an uncoupled way in Definition C.4. In order to comply with this definition, 

ultimate boundedness has to be established for each partial vector separately. 

Therefore we need triples  and  which are independent 

of each other. Therefore we have to find separate times 1T  and 2T  which only depend 

on δ1 and δ2 respectively. In order to obtain some 1T  for the first partition, independent 

of , we simple set the initial condition of the second part to the worst case value in 

(3.6), i.e. δ2=ρ2. In an analogous manner we obtain 2T  and result in the following 

ultimate boundedness statements: 
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Note that we used the definition of ρ1, ρ2 which implies  and 1T , 2T  

are, of course, limited from below by zero, since for sufficiently small initial conditions, 

the state trajectory starts within the invariant set tv,Ω  (Figure 3.2) and hence ||x1,0||≤b1 

and ||x2,0||≤b2 are fulfilled at once. 

□ 

Theorem 3.1 only delivers ultimate bounds bi but there is no statement about the time T 

in which the bound is reached. But this of particular interest in the field of flight control, 

since it is a matter of performance, how fast transient dynamics will decay and 

performance guarantees in turn are an essential criterion for certification of flight 

control systems. Nevertheless, the proof to Theorem 3.1 contains some expression for 

Ti if the Lyapunov function derivative is bounded by some class K function as 

introduced in (3.2), which is summarized in the next corollary. 
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Corollary 3.1 Ultimate Boundedness with Explicit Convergence Rate 

Consider the dynamic system  ,  

where [ ) n�→∞× ,0:Df  is locally Lipschitz in x and piecewise continuous in t  

n�⊂D  is some region that contains the origin. Let  
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So far we have restricted ourselves to the case of 2 partitions of the state vector. 

However, it can also be extended to a general case, where the state vector is divided 

into an arbitrary number of partitions. 

Corollary 3.2 Ultimate Boundedness for Arbitrary Number of State Vector Partitions 

Consider the dynamic system  ,  

where [ ) n�→∞× ,0:Df  is locally Lipschitz in x and piecewise continuous in t  

n�⊂D  is some region that contains the origin. Let  

• the state vector be partitioned:  
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Chapter 4 

Background on Control Theory 

This Chapter presents the theoretical background, needed for design of the flight 

control system. Thereby, it is intended to develop a control algorithm that accounts for 

the nonlinearities of the aircraft dynamics, on the one hand, which allows a full 

exploitation of the physical aircraft capabilities. Contrary, to linear control concepts, 

which merely allow the system to be controlled in a vicinity of a set-point, a nonlinear 

control strategy is globally valid within the whole flight envelope. Therefore, the control 

strategy that is chosen for a baseline controller is a reference model based nonlinear 

dynamic inversion (NDI) controller, whose basics are presented in section 4.1 

On the other hand, particular focus is put onto tolerance against actuator failures, since 

this significantly increases survivability, which is particularly interesting for unmanned 

aerial systems, which should be capable of autonomous mission accomplishment. 

Hence the nonlinear baseline controller is augmented by an adaptive part that 

compensates for model uncertainties and sudden configuration changes which occur 

e.g. due to actuator failures and partial loss of the aircraft structure. The FSD Extreme 

Star is particularly suitable for test of such failure scenarios due to its highly redundant 

actuation.  

In sections 4.2 and 4.3, the basic adaptive element is introduced, including a Lyapunov 

stability analysis. Section 4.4 presents a novel modification of the learning law that 

improves adaptation performance. It is in fact an enhancement of the q modification 

term ( [Vol06] [Vol061] ). Section 4.5 gives a short introduction to a method that allows 

the incorporation of actuators into the control algorithm, which enter the dynamics 

nonlinearly, using an online gradient minimization approach. The thrust vector controls 

are e.g. nonaffine, due to trigonometric functions. Most of the results, presented here 

are published ( [Lav08], [Lav07b], [Lav09], [Lav07a] ), but some minor extensions and 

generalizations are added. The incorporation of the introduced nonaffine-in-control 

algorithm into the whole flight control framework is derived in section 4.6. Finally, 

section 4.7 introduces a novel way for integration of the adaptive parameters in terms 

of its singular value decomposition, which provides the possibility to avoid singular 

matrices during integration. This is particularly interesting for the adaptive estimate of 

the control effectiveness, since has to be inverted within the NDI algorithm. 
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Notice that the Lyapunov stability analysis is based on the novel formulation of the 

ultimate boundedness theorem in Chapter 3, providing explicit values for bounds on 

the tracking and parameter errors as well as times when the bounds are reached. 

4.1 Nonlinear Dynamic Inversion 

Aim of NDI is finding a linearizing state feedback, such that the dynamic relationship 

between a newly defined pseudo control and the output is a linear one. Therefore, the 

dynamic system has to be transformed into Byrnes-Isidori normal form ( [Mic90] ) by 

means of a nonlinear state transformation, which is obtained by repeatedly deriving 

each output w.r.t. time until the input appears in the equations. NDI is a widespread 

concept in flight control and has a well-developed theory, which amongst others can 

be found in [Isi95], [Kha02], [Slo90] , [Hol04]. Nevertheless important facts on NDI are 

developed in the following. 

4.1.1 Nonlinear State Transformation 

Consider the following class of dynamical systems: 

( ) ( )( ) ( )( ) ( )
( ) ( )( )tt

tttt

xhy

uxGxfx

=

⋅+=ɺ
 

(4.1) 

with initial condition ( ) 00 xx =t . Thereby ( ) ( ) ( )( ) n

n

T txtxt �∈= ⋯1x
 is the state vector, 

( ) ( ) ( )( ) m

m

T
tutut �∈= ⋯1u  is an external input consisting of piecewise continuous 

signals, ( ) ( ) ( )( ) m

m

T
tytyt �∈= ⋯1y  is the output vector and 

n�→D:f ,  

( ) ( )[ ]xgxgG m⋯1= , 
n

i �→D:g , mi ,,1…= , 
m�→D:h  are smooth (continuously 

differentiable up to any degree) vector fields on the open set 
n�⊂D . Note that the 

class of systems is restricted to the case with the same number m of inputs and 

outputs. Further (4.1) has some stationary point D∈sx  such that ( ) 0xf =s . Without 

loss of generality, it is assumed that ( ) 0xh =S  since, if ( ) 0yxh ≠= SS , then another 

output is easily defined by ( ) Syxhy −= , which fulfills the assumption. In order to find 

the nonlinear state transformation that transforms the system to normal form, each 

output iy , pi ,,1…=  has to be derived w.r.t. time. 

( ) ( ) ( )( )uxGxf
x

+⋅
∂

∂
= i

i

h
tyɺ

 

(4.2) 

Using the Lie derivatives of Definition B.31, equation (4.2) is 

( ) ( ) ( )uxx Gf ��	
ɺ

0=

+= iii hLhLty . 
(4.3) 

If ( ) 0xG =ihL , (4.3) is derived once more w.r.t. time. 
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( ) ( ) ( )( )uxx fGf ����	
ɺɺ

0

2

=

+= iii hLLhLty  

(4.4) 

This procedure is repeated until the control vector appears, let us say in the th

ir  

derivative.  
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(4.5) 

Doing so for every ( )tyi  yields 

( )

( )

( ) ( ) ( ) ( )tt

y

y

mr

p

r

uxBxa +=
















⋮

1

1

 (4.6) 

where 

( )
( )

( )
( )

( )

( )

( )( )

( )( )
( )

1
1

1

11 1

1

1
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m
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r T r
m m m

L L hL h

r r

L h L L h

−

×
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= ∈ = = ∈ =    
    

     

G ff

f G f

xx b x

a x B x r

x b x x

⋮ ⋮ ⋮ ⋯� �  (4.7) 

and r is called vector relative degree of the system at 0x , according to the following 

definition. 

Definition 4.1 Vector Relative Degree 

The system (4.1) is said to have a (vector) relative degree ( )m

T rr ⋯1=r , at x0 if 

• ( ) T

i

khLL 0xfG =  in a vicinity of x0 for mirk i ,,1,2,,0 ⋯… =−=  

• The decoupling matrix ( )xB  is regular at x0 

The existence of a vector relative degree essentially guarantees the regularity of the 

decoupling matrix, which is preliminary to the existence of a linearizing state feedback 

as will be shown later. If, however, the decoupling matrix is singular, the concept of 

dynamic extension could serve as a method to gain a well-defined relative degree. For 

a detailed discussion see [Isi95].  

If the system has a well-defined relative degree at some x0, we observe that, for 

1,,0 −= irk … , the kth derivative of the ith output is independent of the input 

( ) ( )xf i

kk

i hLy =  (4.8) 

which motivates the following local nonlinear transformation 
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( )xΦζ ζ=
 

(4.9) 

where 
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and 
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Clearly 1,, += kiki ζζɺ  for 1,,,1 −= irk … , which can be observed by the following 

derivation. 

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) 1,
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11
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 (4.12) 

and for irk = : 

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )uxx
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fGf

ff
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r
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(4.13) 

Hence, with (4.12) and (4.13) we get the following differential equations for the 

transformed states (4.9). 

( ) ( ) ( ) ( )uxxuxx fGffGf m
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=

=
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=
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ɺ

⋮
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 (4.14) 

which is conveniently written in matrix vector notation  

( ) ( )[ ]uxBxaHζJζ ⋅++⋅=ɺ
 

(4.15) 

where 
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 (4.16) 

and ( )xa , ( )xB  according to (4.7). Due to their special structure, matrices H and J have 

some properties that appear to be useful. The following identity for H can be easily 

verified. 

IHH =T
. (4.17) 

This in turn implies that its largest singular value 1=Hσ  and hence the matrix induced 

2-norm evaluates to 

1
2

=H . (4.18) 

Moreover, it can be easily verified that 









=

I0

0
JJ

T

i

T

i

0
 (4.19) 

i.e. the expression equals the identity matrix, with the 1,1 element set to 0. Therefore 

1−ir  singular values evaluate to 1 and one singular value evaluates to 0 and hence. 

1
2

=J
 (4.20) 

Obviously equations (4.6) and (4.15) are related to each other in a way that (4.15) is the 

first order state space representation of the higher order system of differential 

equations (4.6). Since the linearizing state feedback is conducted based on the 

transformed system, it is necessary that the transformation is uniquely defined and 

hence also the inverse of the nonlinear state transformation (4.10) has to exist. This is 

the case, if ( )xΦζ  is a diffeomorphism according to Definition B.38. 

Remarks: 

If f: X→Y, X,Y⊂�n ,is not uniquely invertible for the whole set Y, it is still possible 

that it is, at least, a local diffeomorphism. I.e. for some X∈0x  there is a vicinity U 

of 0x  with ( ) VU =f  such that VU→:f  is a bijection. This practically means that f 

is a local diffeomorphism at x0 if: 

• f is continuous at 0x  
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• The Jacobian 
x

f

∂

∂
 is regular at x0. 

If X=Y=�n, f is said to be a global diffeomorphism. In case r=n, the transformation (4.9) 

already is a local diffeomorphism at x0. This is because the vector fields of (4.1) are 

assumed to be sufficiently smooth, and the linear independence of the rows of xΦ ∂∂ ζ  

is assured by the existence of a vector relative degree as shown in the following 

theorem. 

Theorem 4.1 Linear Independence of dΦ 

If the system (4.1) has a well-defined vector relative degree ( )m

T rr ⋯1=r
 
at x0,  

the rows of 
x

Φ

∂

∂ ζ  with ( )xΦζ  defined in (4.9) are linearly independent in a vicinity of x0. 

The proof is presented in Appendix F.1. In case nr < , the mapping (4.9) is not a 

bijection. So, additional n-r nonlinear mappings ( ) ( ) ( )( )xxxΦ rn

T

−ΦΦ= ,1, ηηη …  have to 

be found such that 

( )
( )
( )










=

xΦ

xΦ
xΦ

η

ζ
 (4.21) 

is a local diffeomorphism at x0. Then 

( )xΦz =
 

(4.22) 

with ( ) ( )rn

TTTT

−== ηη ⋯1, ηηζz  is locally invertible at x0 and, using dynamics (4.1) 

and transformation (4.22), the system can be transformed to Byrnes-Isidori normal 

form 

( ) ( )[ ]
( ) ( ) uηζPηζqη

uηζBηζaHζJζ

⋅+=

⋅++⋅=

,,

,,

ɺ

ɺ
 (4.23) 

where, using definitions (4.7): 
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For reasons, explained later, ζ is called external states, while η is referred to as internal 

states. The naturally arising question is, whether additional mappings ηΦ  exist such 

that Φ  is a local diffeomorphism and, under which condition can it be guaranteed. 

Theorem 4.2 Existence of an Input-Normalized Byrnes-Isidori Normal-Form 

If the system (4.1) has a well-defined vector relative degree ( )mrr ⋯1=r , at x0,  

it is always possible to find n-r mappings ( ) ( ) ( )( )xxxΦ rn

T

−ΦΦ= ,1, ηηη ⋯   

such that the mapping 

( )
( )
( )






=

xΦ

xΦ
xΦ

η

ζ

 

with ( )xΦζ  defined in (4.9) 

has a regular Jacobian and is hence a local diffeomorphism. 

If additionally the distribution ( ) { }mG ggx ⋯1span=  is involutive  

in a vicinity of x0, then ( )xΦη  can be chosen such that

 
( ) 0, =Φ xg ji

L η  in a vicinity of x0, for mi ,,1…= , rnj −= ,,1…  and in this case the 

transformed system is called input-normalized Byrnes-Isidori normal form 

The proof is presented in Appendix F.2, and the important facts about distributions are 

presented in Appendix B.3. 

Remark 

In the SISO case, it is always possible to find a transformation to input-

normalized Byrnes-Isidori normal form, since a 1 dimensional distribution is 

always involutive from the fact, that the Lie product of the only base vector with 

itself equals zero and therefore belongs to the distribution. 

Following Theorem 4.2, if the distribution ( ) ( ) ( ){ }xgxgx mG ⋯1span=  is involutive then 

(4.23) becomes 

( ) ( )[ ]
( ).zqη

uzBzaHJζζ

=

⋅++=

ɺ

ɺ
 (4.25) 

The internal dynamics are independent of the input and the system is therefore also 

called input normalized Byrnes-Isidori normal form. 

Remark 

As system (4.1) has a steady state point Sx , some conclusions could be made 

about the steady state point of the transformed system (4.23). 
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1. Φζ(xS)=0, since these mappings are of the form 
( ) ( )xf

x

xf ⋅
∂

∂ i

k hL
 and ( ) 0xf =S  

2. Φη(x)=0 can always be chosen such that Φη(xS)=0 since, if one has found 

such mappings where ( )
SS ηxΦ =η , then ( ) ( ) SηxΦxΦ −= ηη  is also a valid 

mapping. 

These 2 facts basically imply that the transformed system can always be chosen 

such that 0z =  is a stationary point. 

4.1.2 Linearizing State Feedback 

So far preparatory work was done for the actual goal of NDI, namely forcing the 

nonlinear and coupled system (4.1) to behave like a set of linear and decoupled SISO 

systems. Therefore new virtual inputs – so-called “pseudo controls”, denoted with 

( ) ( ) ( )( )ttt m

T νν ⋯1=ν - are introduced. Notice that the number of pseudo controls 

equals the number of outputs m, and it is intended that the i
th output is exclusively 

influenced by the ith pseudo control. The following feedback law 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ηζaνηζBxaνxBu ,,11 −=−= −−
ttt

 

(4.26) 

transforms system (4.23) into 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )[ ]( )ηζaνηζBηζPηζqη

νHζJζ

,,,, 1 −⋅⋅+=

⋅+⋅=
−

tt

tt

ɺ

ɺ
 (4.27) 

or, if the system is in form (4.25) of an input-normalizes Byrnes-Isidori normal form 

( )ηζqη

νHζJζ

,=

⋅+⋅=

ɺ

ɺ
 (4.28) 

Due to the structure of J and H it is observed that the coupled nonlinear input/output 

dynamics, as desired, are transformed into m linear decoupled ones with each ri poles 

in the origin. The structure of the resulting system is appropriately analyzed by a scalar 

expansion of the differential equation. 
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 (4.29) 

Obviously the states ζi,j, j=1,…,ri  form a chain of integrators, while the last state ζi,ri is 

exclusively influenced by iν . Keeping in mind that ζi,j equal to the ith output including its 

ri-1 time derivatives, it reveals that the th

ir  time derivative of the ith output is exclusively 

influenced by the i
th pseudo control. The output itself is consequently gained by ri 

integrations of the corresponding pseudo control. Due to the fact that ζ represents the 

system outputs and their respective time derivatives, it is nearby to call them external 
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states. Obviously η, the second part of the feedback linearized system (4.27) / (4.28) 

becomes unobservable from the outputs for which reason the associated states are 

called internal states. The input/output relationship of (4.6), after feedback linearization, 

reads as 

( )( )

( )( )

( )

( )
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(4.30) 

which again highlights the chain of integrators for each output and the collapse of the 

nonlinear coupled system into a set of linear decoupled SISO systems. The linearity of 

the resulting system also allows for a notation in Laplace domain. 
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(4.31) 

It follows from (4.31) that the external dynamics of the feedback linearized system are 

marginally stable, since the dynamics are linear with poles in the origin of the complex 

plane. However they can easily be stabilized by feedback of the respective part of the 

external state ζi or rather of the respective output iy  including its time derivatives up to 

degree ri-1 as will be shown later. [Hol04] developed a nice interpretation the linearizing 

state feedback as shown in Figure 4.1. There F(x,u) abstractly represents the system 

dynamics while F
-1

(x,u) represents the inverse dynamics, which is actually the 

linearizing feedback (4.26). System dynamics in series with the inverse system 

dynamics result in an identity transfer behavior indicated by “1”. The output of this 

serial connection equal the th

ir  time derivative ( )ir

iy  and in order to obtain ( )tyi , ( )ir

iy  has 

to be sent through a chain of ri integrators. 

 

Figure 4.1 Graphical Interpretation of the Feedback Linearized System [Hol04] 
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In order to apply feedback linearization to real systems successfully, also the internal 

dynamics have to be stable since, otherwise, the feedback law (4.26) might grow 

unbounded. For this reason a closer look is taken at the internal dynamics in the 

following. 

4.1.3 Stabilization and Internal Dynamics 

The last section introduced the linearizing state feedback such that the dynamics of 

the external states collapse to set of m marginally stable integrator chains, which can 

be stabilized without difficulty. The dynamics of the internal states, however, are 

irremediable once the linearizing feedback is applied. But for success of the control 

task of real physical systems with limited control capacity it is inevitable that the states 

of the internal dynamics are at least bounded, since otherwise boundedness of the 

linearizing feedback (4.26) cannot be guaranteed, which lets the actuators of a real 

physical system run in saturation. At first, there is an interesting interpretation of the 

internal dynamics. Therefore consider the internal dynamics of (4.28) and the linearizing 

feedback (4.26) as dynamic system  

( ) ( )
( ) ( ) ( ) ( )[ ]ηζaνηζBu

ηζqη

,,

,

1 −=

=
− tt

tɺ
 (4.32) 

where ζ(t) is the input, η(t) is the state and u(t) is the output. Then, since ζ and u 

represent the output including its time derivatives and input of the original system (4.1) 

respectively, (4.32) in a certain sense “inverts” the dynamic as output and input are 

interchanged. Therefore, (4.32) is also called inverse dynamic. In other words, if the 

external states are forced to follow some reference signal ζR (t)  
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the internal dynamics provides the required plant input to achieve this objective. In 

order for the objective to be feasible at all, the following postulates have to be fulfilled. 

1. The initial conditions have to be compliant, i.e. ζ(0)= ζR(0) whereas η(0) can be 

chosen arbitrarily. 

2. Each pseudo control equals to the th

ir  time derivative of the respective output, 

i.e. ( ) ( )tt Rνν =  where ( ) ( )( ) ( )( )( )tytyt mr

m

rT

R ⋯1

1=ν  

If the conditions are fulfilled, the unique plant input that achieves ζ( t)= ζR(t) is given by 

the following differential equations. 

( ) ( )

( ) ( ) ( ) ( )[ ]RRRRR

RRR

tt

t

ηζaνηζBu

ηζqη

,,

,

1 −=

=
−

ɺ
 (4.34) 
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A special case for the inverse dynamic is given when the output should remain zero for 

all times. The resulting dynamics which computes the plant input that achieves the 

goal, provided the initial conditions are compliant, is also called zero dynamics. 

( ) ( )00 ,η0qη =tɺ
 (4.35) 

The zero dynamics play an important role in stability proofs for the internal dynamics. 

In order to understand the progressive arguments, it is helpful to keep in mind the 

analogy of internal dynamics to linear systems, as developed in [Isi95]. Let us consider 

a linear SISO system that is described by a transfer function. 
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An associated state space representation in controllable canonical form is obtained by 
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Note that the relative degree of the transfer function, namely the difference in the 

degree of denominator and numerator polynomial is r. Conducting the transformation, 

described in the foregoing section, the external states are 
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The internal states are appropriately chosen to 
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and render the map 
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a diffeomorphism, as the absolute value of the determinant of the involved matrix 

evaluates to 1, which can easily be verified by applying Laplace’s formula for 

computation of the determinant, starting with the very right column. 

Consider the dynamics of the external states 
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which reads in matrix-vector notation as (* indicates a not further specified number) 
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Considering the special structure of A and the transformation rule for ζ1, the internal 

dynamics become 
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In matrix vector notation the internal dynamics become 
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It reveals that the internal dynamics are in controllable canonical form and the 

coefficients in the last row of the system matrix are hence the coefficients of the 

characteristic polynomial. On the other hand, these coefficients are the same as in the 

numerator polynomial of the transfer function of the original system. 



 Chapter 4 
Background on Control Theory 

71 

Summing up so far, in the linear case the internal dynamics are stable if the system is 

minimum phase, i.e. the associated transfer function has stable zeros. It is thus 

manifest to extend the concept of minimum phase to nonlinear systems according to 

the following definition ( [Byr91], [Sva06]). 

Definition 4.2 Minimum Phase System 

If the system (4.1) has a well-defined vector relative degree, it is said to be a 

minimum phase system, if the equilibrium 00 =η  of its zero dynamics (4.35) is locally 

asymptotically stable. 

Remark 

The term minimum phase system was first introduced by Byrnes and Isidori 

[Byr91] in a different statement that involves results from differential geometry. 

The original definition deals with a so-called zero dynamics submanifold, which 

is basically the set of original coordinates x such that the external states are 

zero, ( ){ }0xΦx =∈ ζ
n�  (which equivalently means that the output variables 

including their time derivatives are zero). Following the definition of [Byr91] 

(spoken in differential geometric language), if the system is minimum phase then 

there is some static feedback u
*
(x) such that, if x(t) is on the zero dynamics 

submanifold then ẋ(t), i.e.  f(x)+G(x)u
*
(x), is tangent to it and u

*
(x) renders the 

closed loop dynamics 

( ) ( ) ( ) ( )xuxGxfx *+=tɺ  

asymptotically stable. Roughly spoken there is some static feedback u*
(x) such 

that the closed loop system has a zero output y(t)=0 for t≥t0 and is 

asymptotically stable (for both external and internal states). The tangent property 

for ẋ(t) thereby simply means that x(t) remains on the zero dynamics manifold 

just as some trajectory on a surface. If the motion of some particle is tangent to 

a surface (imagine e.g. a sphere) then it will stay on the surface in the future. The 

definition in here is, however, taken from [Sva06]. But it turns out that the 

definition used here is implied by one given by Byrnes, since the existence of a 

relative degree assures the existence of an input, which forces the external 

states to remain at zero. If, additionally, the internal dynamics asymptotically 

approaches its equilibrium, the system in original coordinates also approaches 

its equilibrium xS(t). 

Minimum phase systems guarantee stability of the zero dynamics. It guarantees thus 

the stability of the overall system in the case where the output is identically kept at 

zero. But for a general external state, still no statement about the stability for the 

overall system can be made. The sticking point henceforth is to determine conditions 

under which the internal dynamics and with it the overall dynamics are stable. 



 
Nonlinear Dynamic Inversion  

72 

Before the overall dynamics (4.28) have a chance to become stable, it is necessary that 

the external dynamics are stable. These can be stabilized by defining for the pseudo 

controls 

iiii ririririiii ccc ,1,,1,2,,1,0, ζζζν ⋅−⋅−−⋅−= −−−…  (4.36) 

such that, for mi ,,1…=  the polynomials 

0,1,

1

1, ii

r

ri

r
cscscs i

i

i +++ −
− …  

have its roots in the open left half complex plane (l.h.c.p.). The dynamics (4.28) are 

( )
( )ηζqη

ζHCJζ

,=

⋅−=

ɺ

ɺ T

 (4.37) 

where C is a matrix that has the coefficients of the i
th polynomial stacked into the i

th 

row: 
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c00
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00c
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⋮⋱

⋯
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1

 (4.38) 

where ( )1,0, −=
irii

T

i cc ⋯c . Moreover the dynamics of ζi – see (4.11) – are still 

decoupled from each other for mi ,,1…=  and read as  





















⋅
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− iii
ri

i

i

riiiri

i

i

ccc ,

2,

1,

1,1,0,,

2,

1,

100

10

ζ

ζ

ζ

ζ

ζ

ζ

⋮

⋯

⋯

⋱⋱⋮

ɺ

⋮

ɺ

ɺ 0

 (4.39) 

Equation (4.39) is obviously in controllable canonical form and the scalars of ci are the 

coefficients of the characteristic polynomial, which was chosen to be stable. Hence the 

external dynamics is asymptotically stable. With the external dynamics stabilized, 

[Kha02] gives a lemma for stability of internal dynamics, which states that the internal 

dynamics are locally stable if the system is minimum phase. The proof is presented in 

Appendix F.3. 

Lemma 4.1 Stability of Internal Dynamics 

Assume that system (4.28) 

( ) ( ) ( )
( ) ( ) ( )( )ttt

tt T

ηζqη

ζHCJζ

,=

⋅−=

ɺ

ɺ
 

where ( ) ( ) ( ) ( ) ( )( )ttttt
TTTrnr ηζzηζ =∈∈ − ,, ��  

has an equilibrium at ,0z = , THCJ −  is Hurwitz and ( )ηζq ,  is continuously 
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differentiable on { }rn

r ≤∈= zz �B  for some r>0. 

The equilibrium is (locally) asymptotically stable,  

if the associated zero dynamics (4.35)  

( )00 ,η0qη =ɺ  

are asymptotically stable 

4.1.4 Plant-Model Deviations 

Model Uncertainty 

For the algorithm, derived so far, it is assumed that the plant dynamics are known 

exactly. This, however, is not the case for most applications. Particularly in flight 

control, identification of model parameters is a very time-consuming procedure 

nonetheless it is not possible to determine the dynamic model exactly. In some cases, 

the linearizing state feedback is simplified even consciously e.g. by neglecting some 

minor influences depending on parameters which could only be identified with high 

effort. Further sources of uncertainties are disturbances such as wind gust or inexact 

and noisy measurements. All these uncertainties are incorporated into analysis by 

defining assumed dynamics, marked with a “^” 

( ) ( ) ( )

( ) ( )xhy

uxGxfx

ˆ

ˆˆ

=

+=

t

tɺ
 

(4.40) 

which differ from the real dynamics (4.1) and which are used for feedback linearization. 

Conducting the nonlinear state transformation derived in section 4.1.1, we arrive at the 

Byrnes-Isidori normal form for the assumed system 

( ) ( ) ( )[ ]
( ) ( ) ( )uηζPηζqη

uηζBηζaHζJζ

,ˆ,ˆ

,ˆ,ˆ

+=

⋅+⋅+⋅=

t

t

ɺ

ɺ
 

(4.41) 

where ( ) ( ) ( ) ( )ηζPηζqηζBηζa ,ˆ,,ˆ,,ˆ,,ˆ  are defined analogously to (4.24). 

 

Actuators 

Another source of uncertainty that occurs in reality is unmodeled dynamics. These are 

incorporated into the analysis by defining 

( )ηζuGu ,,cA=
 (4.42) 

where uc is the command, obtained from the linearizing state feedback (4.26) and u is 

the actuator state, acting onto the plant. GA(uc,ζ,η) is thereby an abstract 

representation for some static (e.g. saturation) or dynamic relationship, which could be 

linear or nonlinear. 
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We assumed that the actuator dynamics also depend on the rigid body states. In 

aircraft application, of course, the aerodynamic forces and moments influence the 

actuator dynamics due to loads, imposed on the control surfaces. Taking into account 

model uncertainties as well as actuator dynamics, the linearizing state feedback (4.26) 

changes to: 

( ) ( )( )ηζaνηζBu ,ˆ,ˆ 1 −= −
c  

(4.43) 

Applying the linearizing state feedback (4.43) to the real dynamics yields 

( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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ηζBηζauν �� 
�� ���� 
�� ���
������ 
��� ��

ɺ
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The modeling error is defined as 

( ) ( ) ( )uηζBηζauηζF ,
~

,~,,
~

+=  

(4.44) 

and the control deficiency is 

uuu −=∆ C  

With linearizing state feedback (4.43) and internal dynamics of (4.27) we arrive at 

( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) uηζPηζaνηζBηζPηζqη

uηζBuηζFνHJζζ

∆−−+=

∆−−+=

− ,,ˆ,ˆ,,

,ˆ,,
~

1ɺ

ɺ
 (4.45) 

Obviously, the internal dynamics (if not input-normalized) are excited by the linearizing 

state feedback and the control deficiency. The resulting external dynamics can be 

interpreted graphically ( [Hol04] ) as depicted in Figure 4.2. There are m decoupled 

systems, where each pseudo control is sent through a chain of ri integrators, which is 

represented by J in (4.45). Additionally, the pseudo controls are disturbed by the 

augmented disturbance, defined as 

( ) ( ) ( )uηζFuηζBuuηζ∆ ,,
~

,ˆ,,, +∆⋅=∆  

(4.46) 

Although the system is in fact intended to be decoupled by the linearizing feedback, 

these disturbances again couple the system, since each ( )uuηζ ∆∆ ,,,i  is dependent on 

the whole state vector. 
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Figure 4.2 Feedback Linearized System with Augmented Disturbance [Hol04] 

 

4.1.5 Tracking Control 

For real life applications it is desirable that the output of the system y(t) tracks a 

reference trajectory. As indicated in (4.33), it is necessary that, for each scalar output 

yi(t), the time derivatives up to degree ri exist and are known.  

There are various ways to generate a sufficiently smooth trajectory including their time 

derivatives up to degree ri. E.g. in case of controlling the flight path trajectory of an 

aircraft, the variable to be controlled is the position in space given by 3 independent 

coordinates. The trajectory usually is generated by some a flight management system, 

which delivers a trajectory e.g. in form of splines. In this case the time derivatives are 

obtained by analytical differentiation of the splines and generally the resulting 

dynamics are nonlinear for which reason it is called a nonlinear reference model. In 

other cases however it is sufficient to define a linear reference model given by a linear 

time invariant differential equation of order ri. 

( ) ( )
ciiRiiRii

r

Riri

r

Ri yayayayay i

i

i

,0,,0,,1,

1

,1,, ⋅+⋅−⋅−−⋅−= −
−

ɺ…
 

(4.47) 

where yi,R(t) is the reference variable for the i
th system output and yi,c(t) the external 

command. Linear reference models are preferable since their dynamic behavior is 

easily predictable, scalable for inputs of different amplitudes and there are 

miscellaneous tools available for analysis of linear systems. Figure 4.3 illustrates, how 

to implement linear reference models and how to obtain the time derivatives up to 

degree ri. Of course the ai,k, k=1,…ri-1, have to be chosen such that the reference 

dynamics are stable, i.e. the roots of the polynomial 
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0,1,

1

1, ii

r

ri

r
asasas i

i

i +⋅++⋅+ −
− …  

lie in the open l.h.c.p.. Note also that the coefficient of yi,c is chosen to be ai,0 for steady 

state accuracy. 

 

Figure 4.3 Linear Reference Model [Hol08] 

Equation (4.47) is a linear ordinary differential equation of order ri and can equivalently 

be written as state space model of ri first order differential equations (e.g. [Wol74]) by 

defining the states 
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and the state vector 
( )( )1

,,,,

−= ir

RiRiRi

T

Ri yyy ⋯ɺζ . Then the reference dynamics are 
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ɺ
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ɺ

ɺ
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ζ 0

 (4.48) 

The system matrix has a similar structure as Ji, defined in (4.16). By defining 

( )1,1,0, −=
iriii

T

i aaa ⋯k  

the state space model is also written as  

( ) ciRi

T

iiiRi ya ⋅+⋅−= hζkhJζ 0,,
ɺ  
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where hi is defined in (4.16). Collecting all reference states into a single state space 

model yields 





















⋅



















⋅



















+





















⋅









































⋅



















−



















=





















cm

c

c

mm

Rm

R

R

T

m

T

T

mmRm

R

R

y

y

y

a

a

a

,

,2

,1

0,

0,2

0,1

2

1

,

,2

,1

2

1

2

1

2

1

,

,2

,1

00

0

0

00

⋮

⋯

⋱⋮

⋮⋱

⋯

⋯

⋱⋮

⋮⋱

⋯

⋮

⋯

⋱⋱⋮

⋮⋱

⋯

⋯

⋱⋮

⋮⋱

⋯

⋯

⋱⋱⋮

⋮⋱

⋯

ɺ

ɺ

ɺ

h00

0

h0

00h

ζ

ζ

ζ

k00

0

k0

00k

h00

0

h0

00h

J00

0

J0

00J

ζ

ζ

ζ

 

With definition of 

( )0,0,10

2

1

,,diag m

T

m

T

T

T aa …

⋯

⋱⋱⋮
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⋯

=





















= A

k00

0

k0

00k

K  

H and J in (4.16), the state space model, containing the reference dynamics of all 

outputs, is conveniently written in the compact form 

( ) cR

T

R yAHζKHJζ ⋅⋅+⋅⋅−= 0
ɺ

 

(4.49) 

where  

( )T

Rm

T

R

T

R ,,1 ζζζ ⋯=   ,  ( )cmc

T

c yy ,,1 ⋯=y  

are denoted as reference state vector and reference command vector respectively. As 

explained in section 4.1.3, in order to track a desired reference trajectory - in case that 

the assumed model perfectly matches reality, there are no neglected dynamics and 

initial conditions are compliant – it is sufficient to apply the th

ir  derivative of each 

reference trajectory to the associated pseudo control. However, due to various 

deviations introduced in 4.1.4, the suggested tracking algorithm will fail and results in 

an error between reference model and plant. In order to stabilize the error dynamics, 

additionally the errors between reference model and system output including their time 

derivatives up to degree ri-1 

( ) ( ) ( )
1,1,,, ++ −=−= kikRi

k

i

k

Ri

k

i yye ζζ
 

(4.50) 

k=0,1,…,ri-1 have to be fed back to the pseudo control. In case of tracking, each 

pseudo control is of the following form 

EiRii ,, ννν +=  (4.51) 

where 
( )

i

i

ri

r

RiRi y ,,, : ζν ɺ==  is the reference pseudo control and  
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( )
ii

r

irEi ececec i

i
⋅+⋅++⋅= −

− 01

1

1,
ɺ…ν

 

(4.52) 

is the stabilizing error feedback. It will be shown in a few lines that the coefficients ci,k 

can be chosen such that the error dynamics are stable. In order to derive the error 

dynamics, at first, define the error vectors associated with a single system output yi as
 

( )( )1−= ir

iii

T

i eee ⋯ɺe  

and a compound error that stacks all errors into a vector: 

( )1

T T T

m R
= = −e e e ζ ζ⋯  

The pseudo control vector becomes according to (4.51) 
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ν

ν

ν

ν

⋮⋮⋮
 (4.53) 

where the stabilizing error feedback Eν , by consideration of (4.52), is 

eCν ⋅= T

E  

(4.54) 

and C is defined in (4.38). Moreover, νi,R  can also be written in terms of the reference 

state vector Rζ . Therefore, note that the last line in (4.48) equals νi,R and hence 

ciiRi

T

iRi ya ,0,,, +⋅−= ζkν . 

The whole vector is 

cR

T

R yAζKν 0+⋅−=  (4.55) 

and allows for an alternative notation of the reference dynamics (4.49). 

RRR HνJζζ +=ɺ
 

(4.56) 

Applying the pseudo control (4.53) under consideration of (4.54) to the external 

dynamics (4.45) yields 

( )[ ]uuηζ∆eCνHζJζ ∆−⋅+⋅+⋅= ,,,T

R
ɺ

 

(4.57) 

With the definition of the control error (4.49) and (4.56), (4.57) the error dynamics 

become 

( )[ ]uuηζ∆eCνHJζHνJζ

ζζe

∆−+−−+=

−=

,,,T

RRR

R
ɺɺɺ

 

 ( ) ( )uuηζ∆HeHCJe ∆⋅+⋅−= ,,,Tɺ  (4.58) 

and the internal dynamics are 
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( ) ( ) ( ) ( )[ ] ( ) uηeζPηeζaeCνηeζBηeζPηeζqη ∆+−+−+++++= −
,,ˆ,ˆ,,

1

RR

T

RRRR
ɺ . (4.59) 

In order to render the error dynamics stable, the coefficients in C have to be chosen 

such that the polynomials 

0,1,

1

1, ii

r

ri

r
cscscs i

i

i ++++ −
− …

 

(4.60) 

have its roots in the open l.h.c.p., since then THCJ −  has block diagonal structure, 

where the diagonal blocks are in controllable canonical form 





















−−−

=⋅−

−1,1,0,

100

10

iriii

T

iii

ccc ⋯

⋯

⋱⋱⋮

0

chJ  

and it is well-known, that the characteristic polynomial of such a matrix is given by 

(4.60). Hence the error dynamics consists of m decoupled subsystems of order ri, each 

of which is in controllable canonical form ( [Wol74] ). If (4.60) has roots in the open 

l.h.c.p., also the eigenvalues of the system matrix are stable and with it the error 

dynamics (4.58). Figure 4.4 shows the block diagram of the whole tracking control 

system. 

 

Figure 4.4 Tracking Control System [Hol04] 

Furthermore, (4.58) highlights, that the error dynamics are excited by the augmented 

disturbance ∆(ζ,η,∆u,u), defined in (4.46). In section 4.3, an adaptive term will be added 

to the pseudo control (4.53) that partially compensates for these disturbances. 

The question that now arises is, whether the tracking system – including internal 

dynamics – is stable, at least in absence of model uncertainties. Since the reference 

states are designed to be stable, it is admissible to consider the error dynamics (4.58). 

But also the internal dynamics are part of the whole system state and hence in 

absence of model uncertainties and disturbances, we get 

( ) ( ) ( )
( )( ) ( ) ( ) ( )( )ttttt

tt
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T

ηeζqη

eHCJe

,+=

⋅−=

ɺ

ɺ
 (4.61) 

where we substituted ζ=ζR+e. Lemma 4.1 implies that (4.61) is locally asymptotically 

stable in the case of zero reference state ζR(t)≡0. But it is still left to show that it also 

holds for nonzero reference state. However, one can conjecture that ζR is not allowed 
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to grow arbitrarily large in order not to violate stability of the overall system, which is 

stated next. 

Theorem 4.3 Boundedness of Exactly Feedback Linearized Tracking System 

Assume that the system 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) 00

00

,,

,

ηηηeζqη

eeeHCJe

=+=

=⋅−=

ttttt

ttt

R

T

ɺ

ɺ
 

where ( ) ( ) ( ) ( ) ( ) ( ) 







=+=∈∈ −

η

ζ
zeζζηeζ ,,,, tttttt R

rnr

R ��  

has an equilibrium at 0z = , THCJ −  is Hurwitz, ( )ηζq ,  is continuously differentiable 

on { }ηζ rrn

r ≤≤∈=
22

,
0

ζζz �B  for some 0, >ηζ rr  

and the zero dynamics ( )η0qη ,=ɺ  are asymptotically stable. 

Then the system is uniformly ultimately bounded if ( ) ζ≤tRζ  for some sufficiently 

small 0>ζ  

The proof is presented in Appendix F.4. 

Unfortunately it is not possible to specify the rate of convergence, since we do not 

know the class K functions 1α  to 4α  which bound the Lyapunov function of the zero 

dynamics. If they were known, the rate of convergence could be specified. The result 

of this discussion is summarized in the following corollary. 

Corollary 4.1 Boundedness of Exactly Feedback Linearized Tracking System  
with Rate of Convergence 

Consider Theorem 4.3 and assume additionally that 

• a symmetric positive definite matrix P solves ( ) ( ) IHCJPPHCJ −=−+− TTT , 

where Pλ , Pλ  denote the maximum and minimum eigenvalue of P. 

• there are known class K functions ( ) ( ) ( ) ( )xxxx 4321 ,,, αααα , defined on 

[ ]ρ,0∈x , ηρ r<<0  and a positive definite function ( )η0V  such that 

( ) ( ) ( )1 0 22 2
Vα α≤ ≤η η η   ,  

( ) ( )
23

2

0 η
η
η

α≤
∂

∂V
  ,  

( ) ( ) ( )
24

0 , ηη0q
η
η

α−≤
∂

∂V
 

• ( ) ζ≤
2

tRζ  such that 
( )ρα

αα

ζ
3

1

24
2

0
⋅


















<<

−

M

u

, where ( ) ( )( )ραζλ ζ 1,min −⋅= ru
P  

• 
( )

M≤
∂

∂

2

,

η
ηζq

on 
0r

B  for some known M>0 
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4.1.6 Pseudo Control Hedging 

Reminiscent to (4.58), the tracking error dynamics are excited by two different sources. 

While the modeling error ( )uηζF ,,
~

 will be cancelled by an adaptive element, this 

cannot be done for the control deficiency. The control deficiency occurs, since 

capabilities of the actuators are physically limited, be it dynamics, rate- or position 

saturation. In other words, this term occurs, since the controller charges a reaction, the 

plant cannot follow. 

But this particular term causes problems in the Lyapunov stability of the adaptive 

closed-loop system. The standard argument in literature is that the actuators are fast 

compared to the controlled dynamics – also referred to as time scale separation and, if 

the closed-loop dynamics are designed such that saturation will not become effective, 

the actuator dynamics and constraints can be neglected. 

At the beginning of the 21st century, Johnson presented a new approach, which allows 

explicit consideration of the control deficiency term by modification of the reference 

model dynamics. Since references with detailed discussions are available for this 

approach ( [Joh00a], [Joh00b], [Joh01] and [Hol04] ), which is also referred to as 

pseudo control hedging (PCH) merely the crucial aspects will be pointed out here. 

The main idea of PCH is to slow down the reference dynamics by the expected 

reaction deficit. Equation (4.56) could be considered as the desired reference 
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dynamics. But, since it is already expected, that the plant could not follow due to the 

actuator delay, the dynamics is slowed down by exactly this amount. 

( )( )uηζBνHJζζ ∆−+= ,ˆ
RRR

ɺ
 

(4.62) 

The last term in (4.62) is also referred to as expected reaction deficit, since it is 

computed from the assumed decoupling matrix ( )ηζB ,ˆ , which differs from the real one. 

Computing the tracking error dynamics of the newly defined reference model and the 

external states in (4.45), obviously the term ( ) uηζB ∆,ˆ  is cancelled out, or one could say 

that the reaction deficit is “hidden” from the tracking error dynamics.  

( ) ( )uηζFHeHCJe ,,
~

⋅+⋅−= Tɺ
 

(4.63) 

This is particularly beneficial, since the update of the adaptive parameters is based on 

the tracking error. Since the adaptive part cannot compensate for the control 

deficiency anyway, as stated above, it is reasonable that the error dynamics are not 

excited by this part. Figure 4.5 illustrates a tracking control system including the 

additional PCH part. 

It is important to notice that PCH allows a Lyapunov stability analysis of the closed-

loop adaptive system with explicit consideration of actuator dynamics and limitations, 

which assures boundedness of the tracking error. But, although the reference 

dynamics is designed as s stable system, PHC introduces an additional feedback from 

the plant and thus the reference model states cannot be considered stable a priori. 

Thus also the plant state can also grow unbounded even if the tracking error stays 

bounded. The stability proof of MRAC systems with PCH is still an open item and not 

solved for the general case until now. However there is a minor result ( [Bie13] ) that 

proves stability using results from L1 adaptive control ( [Hov10] ), if the actuator 

dynamics are described by a pure LTI system. 

 

Figure 4.5 Tracking Control System with Pseudo Control Hedging 
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4.1.7 Model Extensions 

Redundant Input Channels 

So far, we considered the case of equal number of input and output channels. In this 

section, the whole algorithm is extended for the case that there are more inputs than 

output channels. Since the whole procedure of dynamic inversion has been presented 

in the last sections, this section will only highlight the differences to the case of equal 

number on input and output channels. Again, consider system (4.1),  

( ) ( )( ) ( )( ) ( )
( ) ( )( )tt

tttt

xhy

uxGxfx

=

⋅+=ɺ
 

(4.64) 

but now the input vector has more entries than the output vector, i.e. uT
=(u1(t),…,up(t)) 

and p>m. Applying the same procedure of differentiating each output until the input 

appears in the equation and, on this basis, defining the nonlinear state transformation 

accordingly, yields 

( ) ( )[ ]
( ) ( ) uηζPηζqη

uηζBηζaHζJζ

⋅+=

⋅++⋅=

,,

,,

ɺ

ɺ
 (4.65) 

with the difference that the decoupling matrix ( ) pm×∈�ηζB ,  is not quadratic anymore. 

This difference asks for a modified definition of relative degree. 

Definition 4.3 Vector Relative Degree for Non-Quadratic Systems 

The system (4.64) is said to have a (vector) relative degree ( )m

T rr ⋯1=r , at x0 if 

• ( )( ) T

i

khLL 0xfG =  in a vicinity of x0 for mirk i ,,1,2,,0 ⋯… =−=  

• The decoupling matrix ( )0xB  has full row rank x0 

We observe that the regularity condition of the decoupling matrix is changed into a full 

row rank condition. It is hence assured that the linearizing state feedback condition 

( ) ( ) νuxBxa =+  

can still be solved, particularly there is an infinite number of u, that solve the equation. 

If, however, the decoupling matrix does not have full row rank, then there is no solution 

of the above equation, if ( )xaν−  points out of the image space of ( )xB . 

In the quadratic case, the linearizing state feedback (4.26) involves the inverse of the 

decoupling matrix, which does not exist in the current situation. In order of obtain a 

modified linearizing state feedback, recall the intention of dynamic inversion. One has 

to find a static feedback u(ν,x) such that the external dynamics reduce to  

νHζJζ ⋅+⋅=ɺ . (4.66) 
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The existence of a relative degree assures that ( )xB  has full row rank and we can 

employ the Moore-Penrose pseudoinverse instead of the matrix inverse, since the 

matrix ( ) ( ) mmT ×∈⋅ �xBxB  is quadratic and regular. Due to model uncertainties, the 

linearizing state feedback is designed, based on an assumed model (indicated by ^) 

and the linearizing state feedback is 

( ) ( ) ( )[ ] ( )[ ]

( ) ( )[ ]ηζaνηζB

ηζaνηζBηζBηζBu

,ˆ,ˆ

,ˆ,ˆ,ˆ,ˆ
1

−⋅=

−⋅⋅⋅=

+

−
TT

C
 (4.67) 

where the upper case “+” denotes the pseudoinverse. Of course, also more 

sophisticated control allocation methods, such as cascaded pseudoinverse, could be 

used here. However, incorporation of such iterative methods into the Lyapunov 

stability analysis of the closed loop system is quite involved and an appropriate 

method is not known to the author. 

In case of redundant actuators, we arrive at dynamics (4.45) where the inverse is 

replaced by the pseudoinverse 

( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) uηζPηζaνηζBηζPηζqη

uηζBuηζFνHJζζ

∆−−+=

∆−−+=

+ ,,ˆ,ˆ,,

,ˆ,,
~

ɺ

ɺ
 

(4.68) 

It is also well-known that the control input, computed by (4.67) is the one with the 

smallest vector 2-norm of all control inputs that feedback linearize the system (e.g. 

[Gel01]). Finally the tracking error dynamics (4.58) remain unchanged beside the fact 

that the internal dynamics contain the pseudoinverse of the decoupling matrix instead 

of the ordinary matrix inverse. 

( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) uηeζPηeζaeCνηeζBηeζPeζqη

uηeζBuηeζFHeHCJe

∆+−+−+++++=

∆++++−=

+
,,ˆ,ˆ,

,ˆ,,
~

RR

T

RRRR

RR

T

ɺ

ɺ
 (4.69) 

Remark 

Often physical systems comprise actuators with different authority. In this case 

it could be reasonable to use a weighted pseudoinverse, which accounts for the 

different actuator authorities. Let B∈�mxp, y∈�m and a symmetric positive definite 

matrix R of appropriate dimension. Then yBu ⋅= +
R  simultaneously solves the 

linear equation Bu=y and minimizes J=u
T
R

-1
u where 

( ) 1−+ ⋅= RBBRBB T

R  

(4.70) 

is the weighted pseudoinverse. 
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Nonaffine-in-Control Systems 

Beside the aerodynamic control surfaces, which enter the dynamics linearly, the 

Extreme Star also comprises thrust vector control that enters the dynamics in a 

nonlinear manner. The dynamic inversion framework can also be extended to that 

case, by making the state dependent nonlinearity in (4.64) also dependent on the 

nonaffine controls. 

( ) ( ) ( )
( )xhy

uxGuxfx

=

+= Nt ,ɺ
 (4.71) 

where uN∈U⊂ ℝ�� is a vector of nonaffine controls and f: D×U→�n is a nonlinear 

smooth map that describes the effect of the nonlinear controls onto the dynamics. For 

computation of relative degree we differentiate the ith output. 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )uxux

uxG
x

x
uxf

x

x
x

x

x

Gf iNi

i
N

ii
i

hLhL

hhh
ty

+=

∂

∂
+

∂

∂
=

∂

∂
=

,

,ɺɺ
 

For the affine part, we assumed that LGhi=0
T, i.e. the expression does not depend on 

the input. For a nonlinear analog, we assume, that the expression Lfhi(x,uN) does not 

depend on uN, which can be expressed mathematically. 

( )
0

u

uxf =
∂

∂

N

NihL ,
 

Note that one can also write Lfhi(x), i.e. the expression only depends on the state 

vector. If the assumptions hold, the output is differentiated once more. 

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )uxux

uxGuxf
x

x

x

fGf

f

f

iNi

N
i

i

ii

hLLhL

hL
ty

hLty

+=

+








∂

∂
=

=

,

,

2

ɺɺ

ɺ

 

and the procedure is repeated until, let’s say until the th

ir  derivative, either 

• ( ) T

i

r
hLL i 0xfG ≠−1  or 

• ( )[ ] T

Ni

r

N

hL i 0ux
u

f ≠
∂

∂
,  

and we obtain 

( )( ) ( ) ( )uxux fGf i

r

Ni

rr

i hLLhLry iii 1
,

−+=  

Repeating this procedure for each output yields following expression 
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( )

( )

( ) ( )uxBuxa +=
















N

r

m

r

m

i

y

y

,

1

⋮  (4.72) 

where ( )xB  is defined in (4.7) and  

( )
( )

( )















=

Nm

r

N

r

N

hL

hL

m ux

ux

uxa

f

f

,

,

,

1
1

⋮  (4.73) 

which motivates the definition of relative degree for nonaffine-in-control systems. 

Definition 4.4 Vector Relative Degree for Nonaffine Systems 

The system (4.71) is said to have a (vector) relative degree ( )m

T rr ⋯1=r , at x0 if 

• ( ) T

Ni

k
hLL 0uxfG =,  and ( ) T

Ni

k

N

hL 0ux
u

f =
∂

∂ + ,1
 

in a vicinity of x0 and U∈Nu , for mirk i ,,1,2,,0 ⋯… =−=  

• The decoupling matrix ( ) ( ) ( )








∂

∂
= N

N

N uxa
u

xBuxΓ ,,   

has full row rank at x0. 

References on relative degree for nonaffine systems are quite rare. However, in the 

field of chemical engineering, a definition of relative degree for nonaffine SISO systems 

is available ( [Hen90], [Hen96] ).  

Definition 4.4 is a new extension of this definition to the MIMO case. 

The existence of a relative degree requires the partial derivative of ( )Ni

k
hL uxf ,

1+  w.r.t. uN 

to vanish in a vicinity of x0. It is not sufficient that the derivative has a zero at x0, but a 

variation of Nu  is required not to have an effect onto the dynamics (locally) at all. This 

requirement can be considered as a generalization of the affine case, where the 

analogous requirement ( )k T

i
L L h =G f x 0  could also be written as 

( )( )k T

i
L L h

∂
=

∂
G f x u 0

u
 

in a vicinity of x0. Particularly for k=ri-2, in the nonaffine case the condition reads as 

( )( ) T

Ni

r

N

hL i 0ux
u

f =
∂

∂ −
,

1
 

which implies that 
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( ) ( ) ( )xG
x

x
x f

fG
∂

∂
=

−
− i

r

i

r hL
hLL

i

i

1
1  

is locally independent of Nu  and so is ( )xB . Thus, if a relative degree exists, one can 

define a local nonlinear state transformation, analogously to the affine case (4.9), (4.10) 

and due to the conditions for the existence of a relative degree, ( )xΦζ  is independent 

of Nu  although the map ( )Nuxf ,  is not. Considerations, analogous to the affine case, 

result in the dynamics for the transformed system. 

( ) ( )[ ]xBuxaHJζζ ++= N,ɺ
 (4.74) 

with J and H defined in (4.16). The linear independence of the rows of ζΦd  is assured 

by Theorem 4.1, however in case that relative degree r<n, additional n-r maps ( )xΦη  

have to be found such that the Jacobian of 

( )
( )
( )










==








=

xΦ

xΦ
xΦ

η

ζ
z

η

ζ
 

is regular at x0, rendering the map a local diffeomorphism such that the inverse  

x=Φ-1
(z) exists uniquely in a vicinity of x0. Theorem 4.2 assures the existence of such a 

( )xΦη  and hence the dynamics of the Byrnes-Isidori normal-form are 

( ) ( )[ ]
( ) ( )uηζPuηζqη

uηζBuηζaHJζζ

,,,

,,,

+=

++=

N

N

ɺ

ɺ
 (4.75) 

where ( )ηζB , , ( )ηζP ,  are defined in (4.24) and 

( )
( )

( )
( )( )

N

Nm

N

N

a

a

uηζΦa

uηζ

uηζ

uηζa ,,

,,

,,

,, 1

1

−=
















= ⋮  (4.76) 
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( )
( )( )

( )( )















Φ

Φ

=⋅
∂

∂
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x

xΦ
uηζq

f

f

ηζΦx ,

,

,,,,
1

,

1

1,

,1

rn

NN

L

L

η

η

η ⋮ . (4.77) 

In the affine case, a well-defined relative degree assures the existence of a linearizing 

state feedback due to the linear character of the equation to be inverted. 

( ) ( ) νuηζBηζa =+ ,,  

If ( )ηζB ,  has full row rank, there is always some u that satisfies the equation above. In 

the nonaffine case, the existence of a relative degree is not sufficient. In order to clarify 

this, assume that the system does not have any affine controls. Then, if the equation 

( ) νuηζa =N,,  (4.78) 
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is solvable for the nonaffine controls uN, the system is feedback linearizable. This, 

however, is not necessarily the case for a general nonlinear map. Assume that the 

system has a relative degree at x0 and define ζ0
=Φζ(x0), η

0
=Φη(x0). If, for some ν0∈�m, 

there exists u0∈U that solves (4.78) at (ζ0
, η0

), it is shown in Corollary B.2 that (4.78) 

can also be solved for uN in a vicinity of (ζ0
, η0

, ν0
). 

Taking all recent arguments into account, it can be stated that the existence of a 

relative degree assures global feedback linearizability for affine systems while, in the 

nonaffine case, feedback linearizability is only assured locally, if it has a relative degree 

at x0 and, additionally, equation (4.78) is solved for some (ζ0
, η0

,  u0
,  ν0

)  

Now we switch back to the full system with affine as well as nonaffine controls. For the 

considered aircraft, it is possible to separate a pure state dependent part and a part 

that depends on Nu . 

( ) ( ) ( )NxN uηζgηζauηζa ,,,,, +=
 (4.79) 

If the pure affine part of the decoupling matrix already has full row rank, then the 

system is feedback linearizable anyway, since the equation 

( ) ( ) ( ) νuηζBuηζgηζa =++ ,,,, Nx  (4.80) 

can always be fulfilled for some (u, uN), e.g. by fixing uN and solving for u, using the 

pseudoinverse. Moreover, for redundant input channels, there is an infinite number of 

controls that solve (4.80) if the affine part of the decoupling matrix has full row rank. 

Therefore, in section 4.1.8, two concepts for incorporation of redundant affine and 

nonaffine controls into the control channel will be presented. 

 

Incorporation of Disturbances 

Real physical systems are also often subjected to external disturbances, such as wind 

in case of aircraft. In the equations derived so far, disturbances can be incorporated 

easily into the framework. Assume that the state nonlinearity of system (4.1) 

additionally depends on some constant external disturbance vector d�∈d . 

( ) ( ) ( )
( )xhy

uxGdxfx

=

+= ,tɺ
 

(4.81) 

The procedure of determining the relative degree takes a very similar form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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x
Gf ii

iii
i hLhL

hhh
ty  

If the last term vanishes, the output is differentiated once more 
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Again, if the last term is zero again, necessarily the disturbance dependent term also 

has to vanish, which is the case if 

( ) TihL
0

d

dxf =
∂

∂ ,
. (4.82) 

Note that this implies that Lfhi(x,d) is independent of the disturbance, i.e. it is justified 

to write Lfhi(x). Provided the influence of the disturbance vanishes in the subsequent 

derivatives, the output is derived w.r.t. time until the input appears. 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )uxdxuxG
x

x
dxf

x

x
fGf

ff

����	
0

1
11

,,

≠

−
−−

+=
∂

∂
+

∂

∂
= ii

ii

i r

i

ri

r

i

r
r

i LLhL
hLhL

ty  

It is hence necessary that the derivatives of the output that are not influenced by the 

control be not influenced by the disturbance, too. For existence of a relative degree we 

additionally require 

( )
1,,1, −==

∂

∂
i

Ti

k

rk
hL

…0
d

xf . (4.83) 

However, it is allowed that 

( ) Ti

r
hL i

0
d

xf ≠
∂

∂
. (4.84) 

Remark 

Conditions (4.83) and (4.84) are associated with a relative degree of the system 

with external disturbances. Particularly, if (4.83) holds and the disturbance can 

be measured, a feedback linearization can be designed, that rejects the 

disturbance. It can hence be stated that a system is feedback linearizable, if the 

relative degree w.r.t. to the disturbance is equal or higher than the relative 

degree w.r.t. the controls. More information on this topic can be found in [Isi95], 

[Nij90], [Hen90]. 

In a similar manner, as without disturbance, the system can be transformed to Byrnes-

Isidori normal form 

( ) ( ) ( )[ ]
( ) ( ) ( )uηζPdηζqη

uηζBdηζaHζJζ

,,,

,,,

+=

⋅+⋅+⋅=

t

t

ɺ

ɺ
 (4.85) 

where the state dependent nonlinearities ( )dηζa ,,  and ( )dηζq ,,  now additionally 

depend on the disturbance. If the disturbance can be measured, the linearizing state 

feedback is easily obtained. 

( ) ( )[ ]dηζaνηζBu ,,ˆ,ˆ −= +
C  

(4.86) 

The linearizing state feedback is, of course, performed with an assumed model, that 

differs from the real plant and, accounting for actuators, as has been done in the 

preceding sections, the feedback linearized plant dynamics read as 
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( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) uηζPηζaνηζBηζPdηζqη

uηζBduηζFνHJζζ

∆−−+=

∆−−+=

− ,,ˆ,ˆ,,,

,ˆ,,,
~

1ɺ

ɺ
 (4.87) 

and, consequently, the modeling error becomes dependent on the disturbance. 

( ) ( ) ( )

( ) ( ) ( )

ˆ, , , , , ,

, , , , ,

= −

= +

a ζ η d a ζ η d a ζ η d

F ζ η d a ζ η d B ζ η u

ɶ

ɶ ɶɶ
 (4.88) 

4.1.8 Propositions for Feedback Linearization of Nonaffine Systems 

In this section, we will consider systems that comprise all extensions, introduced in 

section 4.1.7, namely redundant affine as well as nonaffine input channels and external 

disturbances. 

( ) ( )uxGduxfx += ,, N
ɺ

 (4.89) 

If it is transformed to Byrnes-Isidori normal form, we obtain 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( )uηζPduηζqη

uηζBduηζgηζaHζJζ

,,,,

,,,,,

+=

⋅++⋅+⋅=

N

Nx

t

t

ɺ

ɺ
 (4.90) 

where we have separated a pure state dependent nonlinearity according to (4.79) and 

we assume that d  is available for measurement. In the following, two strategies are 

proposed for feedback linearization of such systems. 

 

Nonaffine Controls Used for Linearizing State Feedback 

At first, introduce a virtual control, which equals the actual effect of the nonaffine 

controls onto the dynamics. 

( )duηζgw ,,, N=
 (4.91) 

The external dynamics also read as 

( ) ( )[ ] 















++=

w

u
IηζBηζaHJζζ ,,x

ɺ
 (4.92) 

and, in order to compute the linearizing state feedback, we use the pseudoinverse of 

the new augmented decoupling matrix ( )[ ]IηζB , . 

( ) ( ) ( )[ ] ( )[ ]ηζaνIηζBηζB
I

ηζB

w

u
,ˆ,ˆ,ˆ,ˆ 1

x

T
T

C

C
−+








=






 −

 

(4.93) 

and CN,u  will be henceforth denoted as the control that satisfies 

( )duηζgw ,,,ˆ
,CNC = . 
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Notice that the linearizing state feedback is designed, based on the assumed model 

(indicated by “^”). Then, accounting for actuators, the external dynamics become 

( ) ( )[ ]
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( ) ( )[ ]wuηζBuuηζFνHJζζ ∆+∆−−+= ,ˆ,,,
~

N
ɺ

 

(4.94) 

where we have defined 

( ) ( ) ( )ηζaηζaηζa ,,ˆ,~
xxx −=

 
(4.95) 

( ) ( ) ( )ηζBηζBηζB ,,ˆ,
~

−=  

(4.96) 

( ) ( ) ( )duηζgduηζgduηζg ,,,,,,ˆ,,,~
NNN −=

 
(4.97) 

uuu −=∆ C   ,  ( ) ( )duηζgduηζgw ,,,ˆ,,,ˆ
, NCN −=∆ . (4.98) 

Thereby 

( ) ( ) ( ) ( )uηζBduηζgηζaduuηζF ,
~

,,,~,~,,,,
~

++= NxN  

(4.99) 

is the model deviation and  

( ) wuηζB ∆+∆,ˆ
 

(4.100) 

is the expected reaction deficit due to actuators. However, this approach leaves an 

open question. Is there some uN,C that produces the demanded wC? The in-depth 
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discussion of this issue is postponed to section 4.5. To this end, some crude 

arguments on the design process of control systems are discussed in the following. 

In the theoretical handling of control-affine dynamic inversion, there is typically no 

consideration of actuator saturation at first, but it is assumed that u can be arbitrarily 

large. This, however, does not hold in reality, since every actuator is saturated at some 

point. PCH includes this fact into analysis to a certain extent, though this point remains 

somehow unclean. For real systems, the bandwidth of the reference models and gains 

of the error feedback are decreased to such an extent that actuators will not run into 

saturation in any flight condition. 

This also motivates an analogous assumption for nonaffine systems. Of course, for 

physical systems, the set of achievable virtual controls is bounded (in our case the 

virtual controls will be the moments, produced by the propulsion system). For the real 

system, the nonlinear map ( )Nuηg ,ζ,  is actually restricted to Np

N �⊂∈Uu  and also the 

set m�⊂V  of achievable virtual controls w is bounded. For stability analysis, we 

virtually extend the set of admissible uN  to �pn such that every m�∈w can be achieved. 

Then, using Lyapunov stability analysis, the controller is designed such that the 

controller only demands virtual controls, the real system can produce, i.e. Nu  is 

restricted to U. Then, the controller is applied to the real system but, since the 

controller is designed such that Nu  never leaves U, the real plant will react exactly the 

same way as the plant, assumed for stability analysis (Figure 4.6). 

 

Figure 4.6 System Design Procedure in Case of Nonlinear-in-Control Systems 

A further desirable property is that, to any virtual control m�∈w  there is a unique Nu , 

i.e. the inverse ( )wηζgu ,,
1−=N  exists. However, this is only possible, if Nu  and w  

have the same dimensionality, i.e. mpN = . However, this is not sufficient for the 

existence of an inverse and additional conditions have to be fulfilled. Even if the inverse 
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exists, it is often the case that an explicit expression for it is unknown. A solution to this 

issue is presented in section 4.5, where a novel approach tunes the desired control in 

an online algorithm, using a time scale separated gradient minimization approach. 

 

Nonaffine Controls Excluded from Linearizing State Feedback 

In some cases, the nonaffine controls are not suitable for control, since they do not 

provide a minimum control effectiveness uniformly over the whole operated state 

space. This is e.g. the case for trust vector controls using propeller engine. Since the 

trust, produced by the propellers, decreases with aerodynamic velocity, the trust 

vanishes at some velocity for a fixed thrust lever position. In this case, the propeller 

cannot produce any moments relative to the aircraft c.g. and hence cannot contribute 

to the aircraft control. However, turbo jet engines approximately provide constant 

thrust over the flight envelope and are more suitable for thrust vector control, providing 

a minimum control authority, uniformly over the whole flight envelope. As the Extreme 

Star uses propellers, thrust vectoring will not be used for linearizing state feedback. 

Instead, the nonaffine controls are prescribed from extern, i.e. we demand 

( )
CCN wuηζg =,,,ˆ

 (4.101) 

for some external wC. An algorithm that finds uN,C that produces wC, such as introduced 

in section 4.5, has to be implemented separately. Figure 4.7 shows block diagrams of 

both approaches. 

 

Figure 4.7 Propositions for Linearizing State Feedback of Nonaffine-in-Control Systems 

Alternatively, uN,C could also be prescribed directly. Since the nonaffine controls are not 

used for control, their effect onto the dynamics has to be canalled out by the linearizing 

state feedback. 
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The external wC could be used to optimize some secondary objectives. One possible 

option is the use of the nonaffine controls to zero (4.79), i.e. 

( )ηζaw ,ˆ
xC −= . (4.103) 

For an ideal feedback linearized plant (without model deviations and actuators), the 

linearizing state feedback reduces to 

( ) ( ) ( )[ ] νηζBηζBηζBu
1

,,,
−

= TT
. 

I.e. if the idealized plant is forced to remain at the stationary point 0ζ = , which implies 

for the pseudo control 0ν = , no control action of the affine controls is needed. 

Transferred to the aircraft, this means that the nonaffine controls, namely the thrust 

vectoring, is used to produce trim moments such that the aircraft remains in steady 

state flight condition without any action of the control surfaces necessary.  

Applying (4.102) to the plant (4.90), the external dynamics adopt a form similar to (4.94) 

( ) ( )[ ]uηζBduuηζFνHJζζ ∆−−+= ,ˆ,,,,
~

N
ɺ

 

(4.104) 

with the model deviation defined in (4.99). 

4.2 Model Reference Adaptive Control 

A conventional NDI algorithm has been developed so far. However, the derived 

equations are highly dependent on the dynamic model. Particularly in aviation, it takes 

plenty of effort to identify the model parameters, and if identified, they are still 

subjected to uncertainty. The equations, derived in section 4.1 already incorporate 

model uncertainties by distinguishing the real dynamics from the assumed dynamics, 

used for dynamic inversion. As result, the error dynamics (4.58) / (4.69) are excited by 

the augmented modeling error ∆. 

In order to cancel parts of the modeling error and thereby improve performance, an 

adaptive part will be added to the algorithm. The method of choice is “Model 

Reference Adaptive Control” (MRAC). 

4.2.1 Historical Note and MRAC Architectures 

Investigations on adaptive systems started in the beginning second half of the 20th 

century, as there was need of fast and accurate control even in uncertain and changing 

environmental conditions. At first, different areas of engineering independently 

developed their own adaptive algorithms and own terminology, but the various 

approaches were unified in the following decades. 

First flight experiments with adaptive control systems were accomplished in the 1960s, 

however, without thorough analysis of closed loop stability. This lead to a fatal crash of 

the X15A in 1967 and, as a consequence, adaptive flight control systems were shifted 
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out of focus for some years. This crash, however, lead to the insight that an exact 

mathematical stability analysis of the closed loop system is indispensable. In 1980, the 

research community refocused on adaptive flight control after Narendra provided a 

mathematical stability proof for MRAC systems( [Nar80] ). Important results pertaining 

to MRAC were consecutively summarized by Narendra and Annaswamy in 1989 

[Nar05] and in the following decades, emphasis was put on performance and 

robustness of adaptive systems in presence of unmatched uncertainties and 

unmodeled dynamics, which bore various modifications of the parameter update 

equations. Today MRAC in its diverse occurrences and their stability analysis, using 

Lyapunov methods, could be considered as state of the technology and there are 

several, quite comprehensive references available, such as [Kha02], [Slo90], [Nar05]. In 

order to keep those readers, not familiar with MRAC, on track, a brief overview about 

the main ideas of MRAC is presented. 

The standard MRAC approach is based on plants described by linear state space 

models, whose matrices are assumed unknown and the controller is designed with 

estimates of the unknown ideal controller parameters. In order to have a measure for 

the performance of the closed loop system, the plant states are compared to a 

reference model, and the error is used to update the parameter estimates. Figure 4.8 

shows a block diagram of a standard MRAC architecture where the system matrix A is 

assumed unknown. The system, illustrated here, is also referred to as direct MRAC, 

since the controller parameters are update directly. Contrary to this, the indirect MRAC 

approach estimates the plant parameters and computes controller gains on these 

estimates in a second step. 

 

Figure 4.8 Standard MRAC 

The reference model has to be designed such that AM is, of course, stable and fulfills 

the so-called matching condition for all possible system matrices A, i.e. there exists an 

ideal controller parameter Θx such that  

T

xM BΘAA +=  

and the feed-forward gain has to be chosen, such that  
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RM BKB = . 

If these conditions are fulfilled, update laws can be designed using Lyapunov’s theory. 

There are also approaches for the case, when the input matrix B is not known exactly, 

however some information about the structure of B has to be known. 

In our case, the MRAC structure is slightly different, since the adaptive part is set up on 

an NDI baseline controller. In section 4.1.5 the non-adaptive tracking controller has 

been introduced, whose block diagram is depicted in Figure 4.4. In review of equation 

(4.45), plant and dynamic inversion controller could also be drawn as in Figure 4.9 

where the linearized and decoupled dynamic of the ideal dynamic inversion algorithm 

is disturbed by the modeling error ( )uηζF ,,
~

 and the control deficiency ( ) uηζB ∆,ˆ . 

 

Figure 4.9 Dynamic Inversion Based MRAC 

In order to make the whole scheme adaptive, an addition signal Aν  is added to the 

pseudo control, and the update of the adaptive parameters is accomplished, using the 

same tracking error, as is used for the stabilizing error feedback in the conventional 

part of the controller. However, as stated in section 4.1.6, the explicit consideration of 

actuator causes problems in the stability proof, so in the remainder, we will neglect 

actuators in the stability proof, assuming that they are sufficiently fast. According to 

(4.58), the tracking error dynamics take the following form: 

( ) ( ) ( )uηζBηζaeHCJe ,
~

,~ ++−= Tɺ
 

(4.105) 

where ( )ηζa ,~  denote the state dependent uncertainty and ( )ηζB ,
~

 is the input 

dependent uncertainty. This equation will be the basis for adaptive control algorithm, 

developed subsequently. 
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4.2.2 Parameterization and Adaptive Compensation 

Purpose of the adaptive part is the partial cancellation of the modeling error that 

excites the tracking error dynamics (4.58). In order to achieve this, the model 

deviations have to be parameterized. There are several strategies available.  

If there isn’t any information about the structure of the of the uncertainty available, 

neural networks are usually employed, since they comprise the property to 

approximate any smooth map arbitrarily close, provided the number of neurons is 

sufficiently large ( [Fun89], [Hor89] ). Successful flight experiments were accomplished 

with neural network based adaptive flight control systems in the 1990s ( [Bri01], [Bri98], 

[Joh00a], [Joh00c]). However, this approach suffers from the fact, that the number of 

adaptive parameter is quite large, if the unmatched approximation error is needed to 

be kept small, which results in a slow adaptation rate in general. This is, though, the 

price to be paid for universal approximation of any uncertainty. 

If there is some knowledge on the structure of the uncertainty that e.g. evolves from 

physical modeling, it is strongly recommended to employ this knowledge and keeping 

the number of adaptive parameters small. In MRAC systems, it is common practice to 

model uncertainties linearly in the parameters by some expression of the form 

( ) ( )xφΘx∆ T=  

where ( ) m�∈x∆  is a state dependent uncertainty, ms×∈�Θ  is a matrix of unknown, 

constant parameters and ( ) s�∈xφ  is a vector of known state dependent nonlinear 

functions also referred to as regressors. 

For further considerations, we assume the dynamics to comprise all extensions 

introduced in section 4.1.7, namely redundant affine controls p�∈u , mp ≥ , nonaffine 

controls Np

N �∈u  and an external disturbance d�∈d . Influences of actuators are 

neglected, since they cannot be canalled out by the adaptive part, assuming that they 

are fast enough. We arrive at the following external dynamics regardless whether we 

use the nonaffine controls for the linearizing state feedback or not (refer to equations 

(4.94), (4.104)). 

( ) ( ) ( )[ ]uηζBduηζgηζaνHJζζ ,
~

,,,~,~ −−−+= Nx
ɺ

 

(4.106) 

Alternatively PCH could hide the influence of actuators from the error dynamics 

(section 4.1.6), but then, the reference dynamics cannot be considered stable a priori, 

which causes problems to the stability proof, too. 

 

State Dependent Uncertainty 

The state dependent uncertainty is modeled linearly in the parameters. For the 

linearizing state feedback, we use 
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( ) ( )ηζφKηζa ,ˆ,ˆ T

xx =
 

(4.107) 

where 
ms

x
x×∈�K̂  is a matrix of known constant parameters, ( ) xs�∈ηζφ ,  is a column 

vector of known state dependent regressors. xK̂  is a guess for the true and unknown 

parameter matrix xK  such that 

( ) ( )ηζφKηζa ,,
T

xx =  (4.108) 

Then 

xxx KKΘ ˆ−= , (4.109) 

is the deviation between assumed and true state nonlinearity and the model 

uncertainty in (4.106) is 

( ) ( )ηζφΘηζa ,,~ T

xx −=  (4.110) 

 

Affine Control Effectiveness 

Adaptive cancellation of uncertainties in the input channel is not as straight forward as 

for state dependent uncertainty since the linearizing state feedback requires the 

existence of the pseudoinverse of the estimated decoupling matrix ( )ηζB ,ˆ ( [Lav09], 

[Bie10] ). As the estimate is adapted by a dynamic equation, measures have to be 

taken that avoid the adaptive estimate to become singular. Therefore, in the following 

two parameterizations are introduced. 

 

Absolute Scaling 

In the first approach, the decoupling matrices of true and assumed models are related 

to each other by. 

( ) ( ) ( ) ( ) LLLL ΛηζBηζBΛηζBηζB ˆ,,ˆ,, ==  

(4.111) 

where ( )ηζB ,L  is some known state dependent matrix of the same dimension as 

( ) ( )ηζBηζB ,ˆ,, . LΛ  is an unknown quadratic control effectiveness matrix, associated 

with the true decoupling matrix and LΛ̂  in an adaptive estimation of LΛ . With 

LLL ΛΛΛ −= ˆ~
 

(4.112) 

the affine modeling error is  

( ) ( ) LL ΛηζBηζB
~

,,
~

= . (4.113) 

The adaptive update of the estimated control effectiveness has to be restricted such 

that the matrix product ( ) LΛηζB ˆ,  results in 
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• a regular matrix for equal number of controls and outputs to be controlled 

(square decoupling matrix) 

• a matrix with full row rank for larger number of controls than outputs 

(rectangular decoupling matrix with more columns than rows) 

Provided that ( )ηζB ,L  fulfills the rank condition, in adaptive control the conditions 

above are typically fulfilled by restricting LΛ̂  be a diagonal matrix with positive 

diagonal entries, which implies a considerable limitation of uncertainties in the control 

channel, that can be compensated for. 

Interpreted physically, the diagonal entries of LΛ  determine the effectiveness of the 

single control surfaces. In order to clarify this, recall that the columns of LB  represent 

the effective direction of the single control surfaces. (Note that the dependent variables 

( )ηζ,  are dropped for readability.) 

[ ]LpLL bbB ⋯1=  

For a diagonal control effectiveness matrix ( )11 ,,diag LLL λλ ⋯=Λ , we arrive at: 

[ ]LpLpLLLL bbΛB λλ ⋯11=  

Hence, the columns of BL are scaled by the respective Liλ . With this diagonal 

constraint it is however not possible that some control surface changes its effective 

direction. As aerodynamic models are usually subjected to uncertainties, the assumed 

effective direction of control surface might differ from the true one. E.g. aileron and 

rudder deflection both effect aerodynamic moments in both roll and yaw axis, where 

the ratio between roll and yaw axis has some distinct value. Now, the identified model 

could result in a slightly different ratio for the respective control surfaces and as a 

result, a diagonal control effectiveness matrix could not map the true control 

effectiveness (Figure 4.10). 

 

Figure 4.10 Deviation between True and Assumed Control Effectiveness Direction 
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However, a linear combination of assumed aileron and rudder effectiveness could map 

the true effective directions, which requires that the diagonal constraint is dropped. 

In order to overcome this diagonal constraint, a novel algorithm for the adaptation of 

the control effectiveness is introduced in section 4.7, where the update of LΛ̂  itself is 

transformed into an update of its singular value decomposition (SVD) while the singular 

values are limited away from zero avoiding singularity. The SVD update approach could 

even include cases where the effective direction of some control is inverted.  

 

Relative Scaling 

In nominal configuration and in case of exact system identification, one could omit LΛ  

and choose ( ) ( )ηζBηζB ,, L= . This motivates a relative scaling where the adaptive 

parameter only contains the deviation from the nominal case. 

( ) ( ) [ ]LL ΛIηζBηζB +⋅= ,, ( ) ( ) [ ]LL ΛIηζBηζB ˆ,,ˆ +⋅=  (4.114) 

For absolute scaling the case 0Λ =L  causes problems since, the inverse of the 

decoupling matrix does not exist. For relative scaling, there is no problem at this point, 

since ( )[ ]LL ΛIηζB +,  can be inverted, if ( )ηζB ,L  fulfills the rank condition. By Theorem 

B.22, LΛI ˆ+  is a regular matrix, if ( ) 1ˆ <LΛσ . Thus, if the adaptive LΛ̂  is restricted such 

that the condition holds, the control effectiveness matrix will not become singular. 

However, this restriction excludes the case that a control changes its effective 

direction. This becomes obvious if we consider scalar control effectiveness with 

relative scaling  

( )
LLbb λ̂1ˆ +=   ,  ( )

LLbb λ+= 1  

If the true effectiveness b  is the inverted nominal one, i.e. Lbb −= , then we have 

2−=Lλ . This implies ( ) 2=Lλσ  and hence the adaptive estimate cannot converge to the 

true value due to its restriction. For relative scaling, the modeling error ( )ηζB ,
~

 takes the 

same form as for absolute scaling (4.112), (4.113). 

 

Nonaffine Controls 

Beside aerodynamic control surfaces, which approximately enter the dynamics linearly, 

the Extreme Star also provides thrust vectoring which enter the dynamics in a 

nonlinear manner, as it involves trigonometric functions of the thrust vectoring angles. 

The nonlinear map ( )duηζg ,,, N  that describes the effect of the nonlinear controls onto 

the external dynamics is assumed to be linearized parameterized 

( ) ( ) ( )duηζδduηζωKduηζg ,,,,,,,,, NN

T

NN +=  (4.115) 
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where Nsm

N

×∈�K  is a matrix of unknown constant parameters; ( ) Ns

N �∈duηζω ,,,  is a 

vector of known regressors and δ(ζ,η,uN,d) is a term, collecting all unmatched 

contributions, i.e. contributions that cannot be mapped by the chosen regressors. The 

assumed nonlinear map is defined accordingly. 

( ) ( ) ( )duηζωΘKduηζg ,,,ˆˆ,,,ˆ
N

T

N

T

NN +=
 

(4.116) 

with the assumed and known parameter matrix NK̂ , and NΘ̂  is an adaptive estimation 

for the unknown deviation between assumed and real parameters. 

NNN KKΘ ˆ−=
 

(4.117) 

According to (4.115) – (4.117), the nonaffine modeling error is 

( ) ( ) ( ) ( )duηζδduηζωKΘKduηζg ,,,,,,ˆˆ,,,~
NN

T

N

T

N

T

NN −−+=  

( ) ( ) ( )duηζδduηζωΘduηζg ,,,,,,
~

,,,~
NN

T

NN −= . (4.118) 

where  

NNN ΘΘΘ −= ˆ~
 (4.119) 

is the parameter-estimation-error.  

 

External Dynamics 

The adaptive parameters NΘ̂ , LΛ̂  have already been included into the linearizing state 

feedback (refer to linearizing state feedback (4.102) and parameterizations (4.111), 

(4.116)) and hence the control dependent uncertainties are cancelled out, if the 

adaptive parameters converge to the true values. Using uncertainty parameterizations 

(4.110), (4.113), (4.117)-(4.119), the external states dynamics (4.106) are 

( ) ( ) ( ) ( )[ ]duηζδuΛηζBduηζωΘηζφΘνHJζζ ,,,
~

,,,,
~

, NLLN

T

N

T

x +−−++=ɺ . (4.120) 

In order to cancel the state dependent term, we choose for the pseudo control 

AER νννν ++=
 

(4.121) 

where Eν  is the error feedback, defined in (4.54), Rν  is the reference pseudo control, 

defined in (4.55) and 

( )ηζφΘν ,ˆ T

xA −=
 

(4.122) 

is the adaptive term and xΘ̂  is an adaptive estimation for xΘ . With pseudo control 

(4.121), the external dynamics read as 

( ) ( ) ( ) ( )[ ]duηζδuΛηζBduηζωΘηζφΘννHJζζ ,,,
~

,,,,
~

,
~

NLLN

T

N

T

xER +−−−++=ɺ
 

(4.123) 
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where 

xxx ΘΘΘ −= ˆ~
. (4.124) 

4.3 Variant 1: Nonaffine Controls Excluded from Linearizing 
State Feedback 

In this section, the whole adaptive controller structure is developed and a stability 

analysis is presented. Thereby, we use the approach, introduced in section 4.1.8, 

where the nonaffine controls are not used for linearizing state feedback but they are 

prescribed from extern (equations (4.102), (4.103) and Figure 4.7). 

4.3.1 Tracking Error Dynamics 

We start with the transformed system (4.90) and apply linearizing state feedback 

(4.102) which reads as  

( ) ( ) ( )[ ] ( ) ( )( )duηζgηζaνηζBηζBηζBu ,,,ˆ,ˆ,ˆ,ˆ,ˆ
1

Nx

TT −−=
−

. (4.125) 

With parameterizations of section 4.2.2, we obtain dynamics (4.123) of the feedback 

linearized plant. The reference dynamics are given by (4.55), (4.56). With the tracking 

error 

ζζe −= R
 (4.126) 

we get 

( ) ( ) ( )[ ]duηζδuΛBduηζωΘηζφΘννHJζHνJζe ,,,
~

,,,
~

,
~

NLLN

T

N

T

xERRR +−−−+−−+=ɺ  

( ) ( ) ( ) ( )[ ]duηζδuΛηζBduηζωΘηζφΘeCHJee ,,,
~

,,,,
~

,
~

NLLN

T

N

T

x

T +−−−−=ɺ  

( ) ( ) ( ) ( )[ ]duηζδuΛηζBduηζωΘηζφΘHeAe ,,,
~

,,,,
~

,
~

NLLN

T

N

T

xE −+++=ɺ
 

(4.127) 

where AE=J-HC
T is the system matrix of the tracking error dynamics and C is chosen 

such that AE is stable. 

4.3.2 Lyapunov Stability Analysis 

By Lemma C.4, there is a positive symmetric definite matrix PE that satisfies the 

Lyapunov equation 

EEEE

T

E QAPPA −=+  
(4.128) 

where QE is any symmetric positive definite matrix. The tracking error e as well as the 

adaptive parameter-estimation-errors xΘ
~

, NΘ
~

 and LΛ
~

 are states of the system and a 

Lyapunov function candidate is  
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( ) [ ]T

LLLLNNN

T

Nxxx

T

xE

T

LNxV ΛΓΛΘΓΘΘΓΘePeΛΘΘe
~~~~~~

tr
~

,
~

,
~

, 111111 −−−−−− +++= γγγ
 

(4.129) 

where γx, γN and γL are positive scalars, denoted as learning rates and Γx, ΓN  and ΓL are 

symmetric positive definite matrices of appropriate dimension. As will be explained 

later, these matrices take the role of a weighting for the Frobenius norm of the 

parameter-estimation-errors. This potentially gives room for reduction of 

conservativeness in the stability analysis. The time derivative along the trajectory is: 





 ++



 ++



 ++

+=

−−−−−−−−−−−− T

LLLL

T

LLLLNNN

T

NNNN

T

Nxxx

T

xxxx

T

x

E

T

E

T
V

ΛΓΛΛΓΛΘΓΘΘΓΘΘΓΘΘΓΘ

ePeePe

ɺɺɺɺɺɺ

ɺɺɺ

~~~~
tr

~~~~
tr

~~~~
tr 111111111111 γγγγγγ

 

( ) ( ) ( ) ( )[ ]{ }

( ) ( ) ( ) ( )[ ]{ }





 ++



 ++



 ++

−++++

−+++=

−−−−−−−−−−−− T

LLLL

T

LLLLNNN

T

NNNN

T

Nxxx

T

xxxx

T

x

NLLN

T

N

T

xEE

T

E

T

NLLN

T

N

T

xE

T

V

ΛΓΛΛΓΛΘΓΘΘΓΘΘΓΘΘΓΘ

duηζδuΛηζBduηζωΘηζφΘHeAPe

ePduηζδuΛηζBduηζωΘηζφΘHeA

e

e

ɺɺɺɺɺɺ

������������� 
������������� ��

������������� 
������������� ��
ɺ

ɺ

ɺ

~~~~
tr

~~~~
tr

~~~~
tr

,,,
~

,,,,
~

,
~

,,,
~

,,,,
~

,
~

111111111111 γγγγγγ

 

( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]





 ++



 ++



 ++

−+++

−++++=

−−−−−−−−−−−−

−

T

LLLL

T

LLLLNNN

T

NNNN

T

Nxxx

T

xxxx

T

x

NLLN

T

N

T

xE

T

E

T

N

T

L

T

L

T

NN

T

x

T

EEE

T

E

T

E

V

ΛΓΛΛΓΛΘΓΘΘΓΘΘΓΘΘΓΘ

duηζδuΛηζBduηζωΘηζφΘHPe

ePHduηζδηζBΛuΘduηζωΘηζφeAPPAe

Q

ɺɺɺɺɺɺ

�� 
�� ��
ɺ

~~~~
tr

~~~~
tr

~~~~
tr

,,,
~

,,,,
~

,
~

,,,,
~~

,,,
~

,

111111111111 γγγγγγ

Since the expressions in dashed lines are scalars, they are equal to its transpose and 
also the trace of a matrix is equal to the trace of its transpose and hence 
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Clearly, PHeT  is a row vector and the term in square brackets is a column vector. 

Using the dyadic product property of the trace operator, we obtain: 
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(4.130) 

For the parameter update, we choose the standard update law with parameter 

projection (refer to Appendix D.1) 
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 (4.131) 

where Mx, MN, ML are modification terms to be specified. Further, we assume bounds 

on the true parameters. 

Assumption A: Bound on true parameters 

L

T

LNNxx
LNx

λθθ ≤≤≤
ΓΓΓ

ΛΘΘ  (4.132) 

for some 0,, >LNx λθθ  and symmetric positive definite matrices LNx ΓΓΓ ,,  

Notice that the bounds are formulated in terms of the weighed rather than the classical 

Frobenius norm. The following values are chosen for the projection parameters. 

xxxx εθθε +=> 120 max,  
(4.133) 

NNNN εθθε +=> 120 max,  (4.134) 

,max
0 2 1

L L L N
ε λ λ ε> = +  (4.135) 

i.e. the projection is only activated, if the weighted Frobenius norm of the respective 

parameter estimate exceeds the double of bounds (4.132) on the weighted Frobenius 

norms of the ideal parameters (refer to Appendix D.1). Therefore, an upper bound on 

the ideal parameter has to be known. The use of weighted Frobenius norm in the 

projection operator allows a customization of the set to which the adaptive parameters 

are restricted by the projection operator. This is a chance to construct less 

conservative parameter bounds than it can be done in case of classical Frobenius 

norm.  

This fact can be intuitively explained for 2�∈Θ . Of course, the true parameter is 

unknown, but one might have an idea about some region, where the true parameter is 

located, as depicted in Figure 4.11. 

 

Figure 4.11 Weighted Frobenius Norm 
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Without weight, the lines of constant norm are circles and a parameter bound, using 

classical Frobenius norm would be 2≤
F

Θ . As the true parameters are supposed to 

be located in a certain direction, a weighting matrix could buckle the lines of constant 

norm in that direction, leading to a smaller bound for the true parameters. For the 

remainder, the indices, associated with projection operator are dropped for readability. 

Moreover, we also have to assume bounds on the unmatched uncertainty. 

Assumption B: Boundedness of unmatched uncertainty 

( ) DN ≤
2

,,, duηζδ
 

(4.136) 

for some 0≥D  in a set 

( ) DUDB ×××∈ ηζ
duηζ ,,, N  (4.137) 

Thereby { }ζ
ζ

≤∈=
2
ζζ r�B  for some 0>ζ , ηD  is a set, where the internal 

states can be restricted to, U is a convex set containing the origin and D is a 

set where d can be restricted to. 

The Lyapunov analysis will prove boundedness of the tracking error e. However, 

assumption B requires a bound for the plant state ζ , which is connected to the 

tracking error by 

eζζ −= R . (4.138) 

Since the reference model is stable, we can assure that  

( ) 02
     allfor      ttt RR ≥≤ζζ

 
(4.139) 

for sufficiently small exogenous inputs and initial conditions and some 0>Rζ . Hence 

constraints on ζ in assumption B is fulfilled, if the Lyapunov analysis assures 

( ) 02
      allfor      ttrt e ≥≤e

 (4.140) 

where er  satisfies 

ζζ ≤+ Rer . (4.141) 

Since we do not use the nonaffine controls for feedback linearization, but prescribe 

values from extern, it is easy to confine those to the valid set U. The external 

disturbances cannot be influenced in general. However, restriction of disturbances to a 

bounded set is achieved by defining operating conditions under which the controlled 

system is operated. As wind and gusts are a main contribution to external disturbances 

for aircraft, a limit on d is assured, if the operation of the system is only allowed for 

appropriate wind conditions. The restriction of the internal states is the most 

problematic one. However, some remarks and potential solutions on this problem are 

given by remark 2 at the end of this section.  We define: 
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With property (D.5) of the projection operator, derived in Appendix D, we arrive at 
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(4.142) 

In order to make the adaptation robust w.r.t unmatched uncertainties, we choose 

switching σ-modification (refer to Appendix D.2). 
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 (4.143) 

Applying σ-modification to (4.142) yields. 
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 (4.144) 

where the indices of ( )⋅f  and arguments of δ  have been dropped for readability. In 

order to proof boundedness, we have to find an upper bound on Vɺ . The first term is 

negative definite since QE is a positive definite matrix. However, the second term, 

induced by the unmatched uncertainty, is indefinite why stability cannot be concluded. 

However, at least, the system states are bounded if Vɺ  is negative definite outside of a 

bounded set according to Corollary 3.2. Therefore, using (4.112), (4.119), (4.124), 

matrix induced norms, Cauchy-Schwartz inequality, Theorem B.20, assumption A with 

equation (4.133) – (4.135) and assumption B, we obtain an upper bound on Vɺ . 
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(4.145) 

Note that, for the term involving the unmatched uncertainty, we used Cauchy-Schwartz 

inequality and matrix induced 2-norm. 

22222
δHPeHδPeHδPe EEE

T ≤≤  
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Since PE is symmetric and positive definite, we have 
EPE λ=

2
P ; by inequality (1.2) and 

(4.18) we obtain 

EPEE λ≤≤
222

HPHP . (4.146) 

The Lyapunov function can be divided into four parts each of which only depends on 

one variable. 
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(4.147) 

All of them are concave parabolas and hence can be bounded from above. The bound 

is obtained by some lines of simple computations. 
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(4.148) 

With these limits, one can construct four functions, each of which only depends on the 

norm of one part of the whole state and which establish an upper bound on Vɺ . The 

functions are obtained by taking the respective function of (4.147) and the worst-case 

bounds in (4.148) for the remaining functions. 
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 (4.149) 

Using notation of Corollary 3.2, the Lyapunov function time derivative is bounded from 

above by 

( ) 
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2

γγγγɺ . (4.150) 

Further re, rx, rN, rL in Corollary 3.2, have to be found, i.e. the radii of the balls  
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in which the Lyapunov function is enclosed by class K functions 
iα  and 

iβ . According 

to (4.141) we require 

Rer ζζ −≤ . (4.151) 

There is no restriction for the radii of the parameter-estimation-errors and hence we set 

∞=LNx rrr ,, . (4.152) 

In order to find the class K functions, which establish lower and upper bounds for the 

Lyapunov function candidate 
iα  and 

iβ  according to Corollary 3.2, recall (4.129). With 

calculus of norms, we obtain 
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Furthermore, according to Corollary 3.2, we define 

( ) ( ) ( ) ( )[ ] 2,,,min ePLLNNxxee rrrrru
E

λαααα == . (4.154) 

Notice that αx(rx)=αN(rN)=αL(rL)=∞ (refer to (4.152), (4.153)) and hence ( )ee rα  is the 

relevant value (4.154). Moreover, the radii, determining the sets of admissible initial 

conditions are 
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we have 
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where we have abbreviated 
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Thus, the functions (4.157) are rendered negative if the respective argument is 

sufficiently large, let us say  
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with µe, µx, µN, µL, according to Corollary 3.2. These are obtained, by choosing some 

small K0>0  and determining µi such that 

( ) ( ) ( ) ( ) 0000 KKKK LLNNxxee ==== µγµγµγµγ . (4.159) 

Then, γi( · ) are class K functions within the set 
rB \ µB  (

rB , µB  according to notation of 

Corollary 3.2) and hence Vɺ  is rendered negative definite in 
rB \ µB  according to (4.150); 

µi evaluate to: 
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Note that µx, µN and µL were computed under assumption (4.156) and (4.160) is only 

valid if this assumption is true in the whole set 
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But, since µx>θx,max, µN>θN,max and µL>λL,max (according to (4.160)), this requirement is 

fulfilled by definition of θx,max, θN,max, λL,max in equations (4.133) - (4.135). According to 

Corollary 3.2, sufficient condition for ultimate boundedness is that µi <ρi, i=e,x,N,L. 

Hence, for µe <ρe, we obtain 
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I.e., since Ve+K0>0 but can be chosen arbitrarily small by appropriate choice of σx, σx , 

σx, K0>0, it is necessary and sufficient for the existence of a solution to (4.161) that 

ke(re)>0. This results in a lower bound for re. 
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and, if we substitute eV in (4.161), we gain a condition for the σ-modification gains. 
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As the modification gains are restricted to positive values, (4.163) has a solution, only if 

condition (4.162) is fulfilled, since this implies ke(re)>0. In a similar way, consider the 

second condition µx <ρx,  
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which reads, after taking squares 
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Now, K0>0 and Vx>0 can be made arbitrarily small by choosing the σ-modification 

gains appropriately. However VD>0  is determined by the uncertainty bound D, which is 

considered to be fixed. Nevertheless, the left hand side of (4.164) can be made 

arbitrarily small by choosing σx sufficiently large. Hence the inequality is solved if 

kx(re,γx)>0, which is in turn fulfilled, if γx is chosen sufficiently large 
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Moreover, if we substitute Vx in (4.164), we obtain a second condition for the σ-

modification gains and K0. 
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Analogously, for the remaining conditions, we require 
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which can be fulfilled if kN(re)>0, kL(re)>0, which in turn requires 
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max,
:

4

N
Pe

N

N

E
r

γ
λ

θ
γ =>  (4.169) 

( )0

2

2

max,
:

4

L
Pe

L

L

E
r

γ
λ

λ
γ =>  (4.170) 

and, by substituting VN,VL in (4.167), (4.168), we obtain further conditions for the σ-

modification parameters and K0. 

( ) DLLNNeNxx VKrk 22,2 0

2

max,

2

max, −<++− σλσγσθ
 

(4.171) 

( ) DLLeLNNxx VKrk 22,2 0

2

max,

2

max, −<+−+ σγσλσθ
 

(4.172) 

Summing up so far, if re, γx,, γN, γL simultaneously fulfill (4.162), (4.165), (4.169), (4.170), 

then ke(re)>0, kx(re,γx)>0, kN(re,γN)>0 and kL(re,γL)>0 which is necessary that the system of 

inequalities 

( )
( )

( )
( ) DLLeLNNxx

DLLNNeNxx

DLLNNxxex

eeLLNNxx

VKrk

VKrk

VKrk

rkK
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2
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2
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−<+⋅+⋅+⋅−

<+⋅+⋅+⋅

σγσθσθ

σλσγσθ

σλσθσγ

σλσθσθ

 (4.173) 

is solved for some σx, σN, σL, Κ0>0. However, ke(re) ki(re,γi)>0, i=x,N,L, is only a 

necessary condition. For sufficiency, we potentially need, that ke(re) ki(re,γi) adopt 

positive values away from zero. However, if (4.173) has a solution for some 
**

, ie kk , then 

it has also a solution for **
, iiee kkkk ≥≥ , which can be easily verified, if we rewrite 

(4.173).  

( )
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xxxDLLNNxx

eeeLLNNxx

kkVKk

kkVKk

kkVKk

kkkK

σσσθσθ
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*
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The left hand side and the first expressions of the right hand side solve (4.173) and 

since the second expressions of the right hand side are non-negative, the claim is 

obviously true. Consequently, with 0,
** >ie kk , we obtain increased lower bounds on re 

and γx, γN, γL, from (4.161), (4.164), (4.167), (4.168) 
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Finally (4.173) is solved for some σx, σN, σL, K0>0, if 

ere ≥   ,  
xx γγ ≥   ,  

NN γγ ≥   ,  
LL γγ ≥  (4.178) 

and the system states are uniformly ultimately bounded. This result is summarized in 

the following. 

Theorem 4.4 MRAC Variant 1 – Ultimate Boundedness 

Consider: 
• stable reference dynamics (4.56) 
• plant dynamics in Byrnes-Isidori normal form (4.90), subjected to linearizing state 

feedback (4.125) with pseudo control (4.121), adaptive term (4.122), error feedback (4.54) 
and reference pseudo control (4.55) 

• parameterizations (4.107) – (4.110) for state dependent uncertainty, (4.111) or (4.114) and 
for affine control effectiveness, (4.115) – (4.117) for nonaffine control effectiveness 

• parameter-estimation-errors xΘ
~

, NΘ
~

, 
LΛ

~
, defined in (4.124), (4.119), (4.112) 

• update law (4.131) using  
o symmetric positive definite solution PE of Lyapunov equation (4.128) for some 

symmetric positive definite QE 
o positive learning rates γx, γN, γL 
o projection operator with parameters εx, εN, εL,>0, θx,max, θN,max, λL,max>0 symmetric 

positive definite weighting matrices Γx, ΓN, ΓL and  
o switching σ-modification (4.143) with modification gains σx, σN, σL >0 

• Sets: dprnr N ���� ⊂⊂⊂⊂ − DUDB ,, ηζ
 for some 0>ζ  

The tracking error (4.126) and xΘ
~

, NΘ
~

, 
LΛ

~
 are uniformly ultimately bounded, if 

• assumption A is fulfilled for some θx, θN, λL >0 and θx,max, θN,max, λL,max are defined by (4.133) 
– (4.135) 

• assumption B is fulfilled for some, 0≥D  

• (η,uN,d)	∈Dη×U×D for all t≥t0 

• the reference model state is bounded according to (4.139) for some 0>Rζ  

• re simultaneously satisfies 
ee er ≥  according to (4.178) and 

Rer ζζ −≤  according to 

(4.151) where 
ee  is defined in (4.174) with **** ,,, LNxe kkkk  such that inequalities (4.173) are 

solved for σx, σN, σL, K0>0 

• the learning rates are chosen such that 
LLNNxx γγγγγγ ≥≥≥ ,,  according to (4.178) 

where 
LNx

γγγ ,,  are defined in (4.175) - (4.177) 
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• initial conditions: ( ) et δ≤
20e , ( ) xx

x

t δ≤
Γ

Θ 0

~ , ( ) NN
N

t δ≤
Γ

Θ 0

~ , ( ) L

T

L
L

t δ≤
Γ

Λ 0

~  

o [ ] [ ] [ ] [ ]LLNNxxee ρδρδρδρδ ,0,,0,,0,,0 ∈∈∈∈  

o 
LNxe ρρρρ ,,,  defined in (4.155) 

such that 

• ( ) 02
   allfor    ttrt e ≥≤e  and ( ) ( )eeee bTttbt δ,   allfor    02

+≥≤e  

• ( ) ( ) ( ) 0   allfor    
~

,
~

,
~

ttrtrtrt ePL

T

LePNNePxx E
L

E
N

E
x

≥≤≤≤ λγλγλγ
ΓΓΓ

ΛΘΘ  

• ( ) ( )xxxxx bTttbt
x

δ,   allfor    
~

0 +≥≤
Γ

Θ  , ( ) ( )NNNNN bTttbt
N

δ,   allfor    
~

0 +≥≤
Γ

Θ  

( ) ( )LLLL

T

L bTttbt
L

δ,   allfor    
~

0 +≥≤
Γ

Λ  

where 

• 21212121
,,,, LLNNxxePLLNNxxPe EE

bbbb µγµγµγµλννγνγνγνλ −−−−
+++=====  

LNxe µµµµ ,,, defined in (4.158), (4.160) 

• ( ) ( )[ ]νλδλδ −⋅+= − 221

0 43,0max, ePePeee rKbT
EE

  ,   ( ) ( )[ ]νλδδ −⋅+= − 221

0 43,0max, ePxxxx rKbT
E

 

( ) ( )[ ]νλδδ −⋅+= − 221

0 43,0max, ePNNNN rKbT
E

  ,  ( ) ( )[ ]νλδδ −⋅+= − 221

0 43,0max, ePLLLL rKbT
E

 

4.3.3 Conclusions 

If the conditions of Theorem 4.4 are satisfied, particularly if there are re, D such that 

(4.136) is fulfilled and (4.173) is solved for some σx, σN, σL >0, then the system states 

are uniformly ultimately bounded and it is assured that ||e||2≤re. I.e. the a priori 

assumptions (4.136), (4.137) are shown to be fulfilled for initial the conditions of 

Theorem 4.4. Potentially, even more restrictive bounds on the parameter-estimation-

errors, as obtained from Theorem 4.4, can be established since the projection operator 

itself (Appendix D.1) restricts the parameter estimates to 

max,
ˆ

xx
x

θ≤
Γ

Θ  , max,
ˆ

NN
N

θ≤
Γ

Θ  , max,
ˆ

L

T

L
L

λ≤
Γ

Λ  

and the ideal parameters are bounded by assumption A. Hence, by triangle inequality, 

we obtain 

xxx
x

θθ +≤ max,

~

Γ
Θ  , NNN

N

θθ +≤ max,

~

Γ
Θ  , LL

T

L
L

λλ +≤ max,

~

Γ
Λ . (4.179) 

Remark 1 

If (4.173) cannot be solved for some fixed re, obviously constants ke(re), kx(re,γx), 

kN(re,γN) and kL(re,γL) are too small. While kx(re,γx), kN(re,γN), kL(re,γL) can be 

increased by increasing the learning rates, ke(re) is fixed by the parameter 

bounds θx,max, θN,max, λL,max and VD (which primarily depends on D), ke(re) can be 

increased by enlargement of re – the radius which defines the bound on the 

tracking error e. This might be undesirable, since the maximum tracking error is 

a quality feature for control systems, or even impossible if this leads to 

ζζ >+ Rer  (refer to equations (4.136), (4.137), (4.139), (4.151)). Then, 

enlargement of the maximum tracking error re is potentially for the cost of a 
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larger ζ  which, in turn, increases D according to assumption B as sketched in 

Figure 4.12. 

 

Figure 4.12 Relationship between Tracking Error and Magnitude of Unmatched Uncertainty 

If it is not possible to increase the tracking error bound, other measures have to 

be taken. Referring to inequalities (4.173), smaller parameter bounds 

θx,max, θN,max, λL,max potentially lead to a smaller *

ek  and to smaller ee, according to 

equation (4.174). Referring to section 4.2.2, since the unknown parameters are 

in fact the deviation between real dynamics and the model, used for the 

linearizing state feedback, a more accurate model could reduce the parameter 

bounds. Besides cancellation of model deviations, an adaptive controller should 

also be able to compensate for damages and failure cases. This however 

requires higher bounds on the parameters, which depend on the failure cases, 

the adaptive scheme should compensate for.  

Summing up, if we require the adaptive control system to have a minimum 

quality (w.r.t. the maximum tracking error that can occur) it is a matter of making 

only such demands on the adaptive scheme – i.e. to which extend should it be 

able to compensate for model deviations as well as for failure cases – it can 

fulfill. In descriptive words, if boundedness cannot be shown for the required 

tracking accuracy, expectations on the adaptive scheme have to be scaled 

down by reducing θx,max, θN,max, λL,max, D such that (4.173) has a solution. 

Remark 2 

Theorem 4.4 assures ultimate boundedness of the tracking error with an ultimate 

bound be<re and ||e||2≤re for all t≥t0, i.e. it will not leave the valid set where 

assumption B is valid, if the initial conditions are chosen appropriately. 

Additionally, the nonlinear controls uN and external disturbances d have to be 

restricted to their valid domains. As proposed in section 4.1.7 the nonaffine 

controls are not used for the linearizing state feedback, but they are set to an 

external value. It is hence no problem to choose the external value such that 

uN∈U. The external disturbances, of course, cannot be prescribed but it is a 

matter of environmental conditions, under which the system is operated.  

The most disputable condition is the restriction of the internal state in (4.90) to 

Dη. The internal dynamics are excited by the external states and, if not input-

er
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normalized, by the controls. For minimum phase systems, it is assured, that the 

internal dynamics are at least locally stable, but the there is no explicit statement 

on what “local” means, i.e. how far is the system is allowed to depart from 

equilibrium such that it is still stable. This remains an open point, but possibly, 

considerations of input-to state stability (for a definition refer to [Kha02]) for the 

internal dynamics could provide a solution to this point. However, this is left for 

future work. Nevertheless, if the system does not have internal states at all, this 

condition is trivially fulfilled and can be dropped. 

Particularly in the flight control algorithms, proposed subsequently, the 

controlled variables, i.e. the external state, are the body-fixed angular rates. In 

this case, the internal states are 

• velocity V 

• angle of attack α 

• angle of side-slip β  

• bank angle: Φ 

• pitch angle Θ  

The most unproblematic one is the aircraft attitude, since the attitude is 

bounded anyway due to its cyclic character. Either a pilot or an additional speed 

controller could prevent the aircraft from leaving the valid velocity range. More 

problematic are α and β, since their dynamic bandwidth is in the same region as 

the controlled variables. However, an additional control cascade for α and β, 

including a limitation could restrict the variables to the valid domain. Yet, this not 

a rigorous argumentation and a mathematical proof remains an open item. 

4.4 Multi Model Q Modification 

A common problem in MRAC architectures, using the standard learning law is poor 

adaptation performance. Higher learning rates accelerate adaptation to a certain extent 

but it is known that high gains result in high frequency oscillation and reduced 

robustness. This fact initiated plenty of publications since beginning of the millennium 

that are concerned with improvement of adaptation performance. Most of them utilize 

modifications of the learning law ( [Ngu08], [Yuc09], [Yuc091] ). Referring to (4.131), the 

learning laws take the form of a dyadic product, i.e. they are composed by a column 

vector ( φΓx ) and a row vector (eT
PH). This is also known as the rank-1 property of the 

standard learning law, i.e. the parameter update only takes place into the direction of 

φΓx . Modifications that should improve performance aim to increase the rank of the 

update law; a promising one is q-modification ( [Vol061], [Vol06] [Yuc092], [Vol09] ).  
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4.4.1 Recapitulation on Single Model q Modification 

In classical q-modification, the dynamic equations are utilized to gain a filtered version 

of the model uncertainty. With external dynamics (4.120), we obtain 

( ) ( )( )
( ) ( ) ( ) ( )( )duηζδuΛηζBduηζωΘηζφΘH

uΛηζBduηζωΘνHJζζ

,,,,,,,,

ˆ,,,,ˆ

NLLN

T

N

T

x

LLN

T

N

+++=

++−+−ɺ
 

(4.180) 

where the left hand side of the equation only contains quantities that either are known 

or can be measured, while the right hand side contains the unknown parametric 

uncertainty. Problematic in our case is ζɺ , since sensors for measurements of angular 

acceleration are rather expensive. Nevertheless if it can be measured or estimated 

( ) ( )( )uΛηζBduηζωΘνHJζζc LLN

T

N
ˆ,,,,ˆ:0 ++−+−= ɺ

 

(4.181) 

provides an expression for the unknown uncertainty. If it cannot be measured or 

estimated, at least a filtered version of (4.181), using a filter described by a strictly 

proper and stable transfer function, could be gained. 

( )
01

1

1

01

asasas

bsbsb
sG

n

n

n

m

m

+++

+++
=

−
− …

…
 (4.182) 

Thereby m<n and then the filtered uncertainty is obtained by  

( ) ( )( ) ( ) ( ) ( ) ( )[ ]( ) ( )[ ]( )[ ]ssssGsssGs LLN

T

N uΛηζBduηζωΘνHζJIc ˆ,,,,ˆ: ++−+−= . (4.183) 

Note that m<n implies that G(s)(sI-J) is a proper transfer function (m≤n). In order to keep 

expressions readable, we will, in a slight abuse of notation, switch between time- and 

frequency domain notation. Before continuing, an additional assumption has to be 

imposed, namely ( )ηζB ,L  is split up into a constant matrix part BL and a scalar state 

dependent part ( )ηζ,b .  

( ) ( )
LL b BηζηζB ,, =

 
(4.184) 

This special structure is also physically justified for aircraft, since effectiveness of all 

aerodynamic control surfaces are mainly dependent on dynamic pressure and thus the 

introduced parameterization describes the physics with b(ζ,η)=ρV
2 (ρ: air density, V: 

aerodynamic velocity). If this assumption holds and, in view of the right hand side of 

(4.180), we obtain 

( ) ( ) ( )[ ]( ) ( )[ ]( ) ( )[ ]( ) ( )[ ]( )( )
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x

NLLN

T
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x

duηζδuηζΛBduηζωΘηζφΘH

duηζδuΛBηζduηζωΘηζφΘHc

,,,,,,,,

,,,,,,,,

+++=

+++=
 

( ) ( ) ( ) ( ) ( )( )sssss LLLN

T

Nx

T

x δqqΛBqΘqΘHc +++=  

(4.185) 

where  
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( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ]( )
( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ]( )ssGssbsGs

ssGsssGs

NL

NNx

duηζδquηζq

duηζωqηζφq

,,,,

,,,,

==

==

δ

 (4.186) 

are the filtered versions of regressors and unmatched uncertainty. Notice that we have 

made use of the fact that transfer functions are linear operators such that constants 

can be posed in front of the transfer function. For a compact notation, we further 

define  

( ) ( ) ( ) ( )( )ssss
T

L

T

N

T

x

T
qqqq =  and ( )LL

T

N

T

x

T ΛBΘΘW =  (4.187) 

and (4.185) also reads as  

( ) ( ) ( )( )ttt
T

δqqWHc +=  

(4.188) 

On the other hand, an analog of the filtered estimated uncertainty can be computed 

since the regressors and in turn, its filtered versions are known 

( ) ( ) ( )ttt
T qWHc ˆˆ =  (4.189) 

where ( )tŴ  denotes the estimated compound parameter analogous to (4.187). Using 

(4.188), (4.189) we obtain the filtered uncertainty estimation error. 

( ) ( ) ( ) ( ) ( ) ( )( )tttttt
T

δqqWHccc −=−=
~

ˆ:~
 

(4.190) 

where ( ) ( ) WWW −= tt ˆ~
 is the compound parameter-estimation-error. q-modification 

uses this additional information to improve adaptation performance. Therefore, we try 

to minimize a quadratic cost function that evaluates the quality of the parameter 

estimation. 

( )

δδδ HqHqqWHHqqWHHWq

ccW

TTTTTTTT
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1~~~
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( ) δδδ qqqWqqWWqW TTTTT
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1~~~

2

1~
+−=

 

(4.191) 

Here we have used IHH =T . In order to minimize J we compute the Jacobians w.r.t. 

xΘ , NΘ , LΛ . 

( ) ( ) ( )
ˆ ˆ ˆ

T T T T T

x N L L

x N L

J J J∂ ∂ ∂
= = =

∂ ∂ ∂

W W W
q c H q c H B H cq

Θ Θ Λ

ɶ ɶ ɶ
ɶ ɶ ɶ

 

(4.192) 

Auxiliary Calculation 

The computation of the Jacobians is done, using tensor notation, i.e. a matrix is 

a second order tensor, written as ijθ=Θ , Einstein’s notation, i.e. if some index 

appears twice in an expression means the sum is taken over that index: 
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∑=
j

jijjij qq θθ  

Cronecker delta, a second order tensor, such that 



 =

=
else   0

 if   1 ji
ijδ  

and the fact that a matrix, derived w.r.t. to a matrix yields a forth order tensor of 

the form 

jqip

pq

ij δδ
θ

θ
=

∂

∂
. 

Then, exemplarily, we compute the first Jacobian. 

, , ,
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cJ J J
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θ θ θ
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Inserting icɶ  yields: 
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The negative Jacobians point into the directions, the respective parameter should 

change such that J is minimized. This motivates the incorporation of these terms into 

the learning laws. Additionally to the σ-modification term (4.143), which introduces 

robustness, q-modification is added to the learning law (4.131) for improved 

performance. 
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(4.193) 

where κ is the modification gain. The q-modification terms introduces an additional 

direction to the standard update law, which is aligned with the respective filtered 

regressor. Hence q-modification renders the parameter update rank 2, if the 

directions of standard- and q-modification law are linearly independent. Let’s take a 

look on the Lyapunov analysis. Using (4.193), (4.144) becomes 

[ ]
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~~~~~~
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σσσ

κɺ
 

where the expression in dashed lines appears due to q-modification. Using (4.113), 

(4.119), (4.124), (4.190) and cyclic property of trace operator, we further obtain: 
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Using matrix induced norms, bounds on quadratic forms (Theorem B.20), assumption 

A with equations (4.133) – (4.135), as well as Cauchy-Schwartz inequality, we obtain 

an upper bound on Vɺ . 
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Remark 1 

It reveals that, in case of perfectly matched uncertainty, i.e. ||qδ||=0, the q-

modification term introduces an additional negative definite term -2κ(||W͂T
q||2)

2 

which indicates that the adaptation is accelerated. This is considered as the key 

advantage of q-modification. However in presence of unmatched uncertainty, 

the bound on Vɺ  is even increased by the positive term 2κ(||W͂T
q||2||qδ||2), i.e. 

adaptation performance could even be deteriorated if the unmatched 

uncertainty is dominant. Explained physically, the dynamic equation (4.180), only 
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allows the computation of matched and unmatched uncertainty at once, and 

there is no possibility to distinguish between matched an unmatched part (refer 

to (4.190)). Hence, the cost function (4.191) tries to minimize a combination of 

both; however, adaptation only can compensate for the matched part, which 

leads to a contradiction. 

Remark 2 

It is also evident that potentially W͂T
q=0 even if W͂≠0, which is the case, if q is in 

the null space of W
~

. I.e., even if parameters have not converged, q-modification 

does not guarantee an additional negative definite term in V̇. Considering the 

associated expression in (4.194), this is the case, since qq
T is a rank one matrix 

and hence only positive semi-definite. If this matrix is positive definite, we would 

at minimum have a an additional negative term 
2~

2
F

T Wqqλκ− , which suffices to 

show exponential stability in absence of unmatched uncertainties ( [Vol06] ), 

while in presence of unmatched uncertainties, exponential convergence of the 

system states to a bounded set could be shown. The background learning / 

concurrent learning approach ( [Cho10], [Cho09], [Joh04] ) utilizes this fact. 

4.4.2 Recapitulation on Concurrent Learning 

In 2010, Chowdhary developed a modification to adaptive schemes that guarantee 

convergence of parameters even if the system is not persistently excited ( [Cho102] ). It 

has been developed for single hidden layer neural network based adaptation schemes, 

but also for linearly parameterized uncertainties ( [Joh04], [Cho09], [Cho10], [Cho101] ). 

Similarly to q-modification, the concurrent learning approach also utilizes the system 

equation (4.120) to obtain an expression for the uncertainty. Contrary to q-

modification, they are not computed online, using a filter but, by using a stack of 

recorded data. For past time instances ti, i=1,…,N, c0(ti) is computed according to 

(4.181). Thereby the state derivative is either measured, or estimated.  

( ) ( ) ( )( )
iiLiiLiiNii

T

iNiiiit uΛηζBduηζωΘνHJζζc ,,,0
ˆ,,,,ˆ: ++−+−= ɺ  (4.196) 

Analogously to (4.189) and (4.292) 
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 (4.198) 

where we abbreviated ζ(ti) =ζi,… for a compact notation. Note that ( )it0ĉ  is computed 

with the current parameter estimates Θx(t),… while the regressors ϕ(ζi,ηi),… are taken 

at the respective recorded time instant ti. It can hence be interpreted as estimated 

uncertainty, if the plant is in a state, it was at time ti, but evaluated with the current 
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parameter estimates. With definition of the compound parameter W in (4.187), and the 

compound regressor 

( ) ( ) ( ) ( )( )T

N

TT

N

T
b uηζδuηζωηζφduηζσ ,,,,,,, =  (4.199) 

we arrive at 

( ) ( )ii

T

it δσWHc −=
~~

0 . (4.200) 

If we add the Jacobi of a cost function, similarly to (4.191), to the update law (4.131), 

we obtain 
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(4.201) 

where we have also applied the switching σ-modification term for robustification. If we 

define matrices, where the regressors, associated with respective time instances are 

stacked into their columns, i.e. 

( ) ( )[ ]Ntt φφΦ ⋯1=  , ( ) ( )[ ]Ntt ωωΩ ⋯1=  , ( ) ( ) ( ) ( )[ ]NN ttbttb uuU ⋯11=  (4.202) 

and a matrix whose columns contain ( )it0
~c  

( ) ( )[ ]Ntt 0100
~~~
ccC ⋯=

 (4.203) 

(4.201) can also be written in compact matrix-vector notation. 
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 (4.204) 

Comparing to q-modification (4.193), concurrent learning seems to be very similar. The 

filtered regressor vector is replaced by a matrix, whose columns contain the unfiltered 

recorded regressors Φ ,… and the filtered estimation error is replaced by a matrix 

whose columns contain the unfiltered recorded estimation errors 0

~
C . Lyapunov 

analysis continues along similar. Equation (4.194) becomes 
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 (4.205) 

where 
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[ ]TTTT UΩΦΣ =  

(4.206) 

( ) ( )[ ]Ntt δδ∆ ⋯1= . (4.207) 

Considering (4.205), the quadratic term of W
~

 has changed, compared to q-

modification, such that TΣΣ  is no longer subjected to a rank-1 condition. Actually, if 

the history stack contains more recorded time instances than the total number of 

regressors, i.e. pssN Nx ++≥  and if the time instances ti are chosen such that Σ 

contains at least sx+xN+p linearly independent columns, then TΣΣ  is positive definite, 

whose smallest eigenvalue equals 0
2

>= ΣΣ σλ . Then, by Theorem B.21  

( ) 22 ~~~
tr

F

TT WWΣΣW Σ≥σ  

i.e. contrary to q-modification, in this case the trace expression does not vanish, if 

0W ≠
~

 and is bounded from below by a quadratic expression. An upper bound on V̇ is 

obtained similarly to the q-modification case. 
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(4.208) 

Remark 3 

It is proved in various publications that, in absence of unmatched uncertainties, 

concurrent learning assures even exponential convergence of the tracking error 

and parameter-estimation-errors to zero ( [Cho10], [Cho101] ). Actually, it effects 

an additional negative definite term in V̇, depending on the parameter-

estimation-errors, which indicates an accelerated convergence. However, if 

unmatched uncertainties are present, merely ultimate boundedness of the 

system states can be concluded. Nevertheless, concurrent learning assures 

boundedness of the system states in presence of unmatched uncertainties 

without any further modification and can hence serve as a robustness 

modification ( [Cho102] ). 

A drawback of this approach is a lack of flexibility in case of a sudden damage. 

The history stack contains data from some fixed time instances in the past. 

Although algorithms have been developed, that replace old records by new 

ones, it takes some time until the whole history stack is renewed. Then, if 

configuration of the plant changes, e.g. due to damage, the old history stack 
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does not fit the new configuration and hence, concurrent learning will drive the 

parameters into the wrong direction. Particularly for unmanned aircraft, fast 

recover of control performance in failure cases is of special importance. 

4.4.3 The MMQ Approach 

Both, q-modification and concurrent learning are quite similar and both have 

advantages as well as disadvantages. Motivation for MMQ modification is the 

combination of the advantages of both approaches. While concurrent learning provides 

a full rank matrix Σ of recorded regressors which even guarantees exponential stability 

in absence of unmatched uncertainty, the filtered regressor in q-modification also 

responds to changes in the plant configuration within the bandwidth of the filter, the 

regressors are sent through. The basic idea is the usage of multiple filters Gi(s), 

i=1,…,N according to (4.182) to obtain multiple filtered uncertainty estimation errors 

according to (4.190). 
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where 
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i ,,, qqqq = . (4.211) 

The gradient-based terms (4.192) of the N filtered expressions are added to (4.193) 
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with modification gain κ>0. If we stack filtered regressor and uncertainty estimation 

error into matrices 

( ) ( ) ( )[ ]ttt Nxxx ,1, qqQ ⋯=  , ( ) ( ) ( )[ ]ttt NNNN ,1, qqQ ⋯=  ,  

( ) ( ) ( )[ ]ttt NLLL ,1, qqQ ⋯=  , ( ) ( ) ( )[ ]ttt N,1, δδδ qqQ ⋯=  

(4.213) 

( ) ( ) ( )[ ]ttt NccC ~~~
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(4.214) 

(4.212) can also be written in compact matrix-vector notation. 
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Also 
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( ) ( ) ( ) ( )( )tttt
T

δQQWHC −=
~~

 

(4.216) 

where  

[ ]T
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T

N

T

x

T
QQQQ = . (4.217) 

With these definitions, it is straightforward to see that now (4.194) takes the following 

form. 
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 (4.218) 

Comparing this result with the Lyapunov function derivative for concurrent learning 

(4.205), it reveals that it both are almost equal, except for the difference that the matrix 

of recorded regressors Σ is replaced by the matrix of filtered regressors Q. 

In concurrent learning, the history stack is constructed such that Σ has full rank, but 

the history stack is fixed then, as explained above. The MMQ modification overcomes 

this drawback, however, for the prize that full rank condition cannot be guaranteed. 

Nevertheless, the more filters are used, the higher the chance that Q has a large 

number of linearly independent columns. Hence MMQ modification provides potential 

to overcome the rank-1 condition of the standard update law and even to have a full 

rank in Q in case of sufficient excitation, effecting a “boost” in parameter adaptation. 

An upper for V̇  is obtained analogously to (4.195). 
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 (4.219) 

In order to progress, we have to take a closer look at the filtered unmatched 

uncertainty. If assumption B holds, an upper bound on Qδ  can be found, using 

induced transfer function norms as explained in the following. 

 

Bound on Qδ – Preliminary Consideration 

From assumption B, ||δ2||≤D for all t≥t0, but for (4.219) we need also a bound on ||Qδ||F, 

whose columns contain the unmatched uncertainty, which is filtered by an LTI system, 
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described by transfer function (4.182). Transfer function induced norms provide a 

measure to obtain a relationship between the L∞ norms of input and output signal of an 

LTI system. 

In order to establish this relationship, the L∞-norm of a time domain signal is defined 

first. For a scalar signal u:[0,∞)→�, we have 

           ( ) ( )tutu
t 0

sup
≥

=
∞L

. (4.220) 

I.e. the L∞-norm is the least upper bound of all absolute values of a signal, taken at any 

time instant. A least upper bound for a signal, obtained from the output of an LTI 

system ( ) ( ) ( )susGsy =  is given by the induced transfer function L1-norm ( [Hov10] ). 
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1

 

Due to this definition, also the following inequality holds. 

( ) ( ) ( )
∞∞

≤
LLL

tusGty
1

 (4.221) 

In order to compute the induced transfer function L1-norm, let ( )tg  be the impulse 

response of ( )sG , then 

( ) ( )∫
∞

=
01

dttgsG
L

 

i.e. it equals the area enclosed by the absolute value of the impulse response and the 

time axis. For a vector time domain signal u:[0,∞)→�n, where each component is sent 

through the same LTI system, i.e. ( ) ( ) ( )susGsy ii = , or equivalently 

( ) ( ) ( )ssGs uy =  

a bound on the output signal of the form 

( )( ) ( )
2

0
2

0

supsup tKt
tt

uy
≥≥

≤  (4.222) 

can be derived for some constant K, using transfer function induced L1-norm.  

 

Interim consideration 1 

In the subsequent derivations, we use the fact that 

( )( ) ( )
2

0

2

0

supsup 





=

≥≥

tutu
tt

. (4.223) 

Expressed in words, if D is the least upper bound of |u(t)| then D2 is the least upper 

bound of |u(t)|
2. For the subsequent derivation, it is important to notice that D  is a least 
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upper bound, if and only if |u(t)|≤D for all t≥0 and, additionally, for every ε>0, there is 

some t0 such that  

( ) ε−> Dtu 0 . (4.224) 

It is easily verified that |u(t)|
2
≤D

2
 for all t≥0 and it is left to show that, for every ε >0, 

there is some t0 such that |u(t0)|
2
>D

2
- ε . Therefore, we use (4.224) and obtain 

( ) ( ) ( )εεε +−=−> DDDtu 2
222

0 . 

Choosing ( )εεε += D2  proves the claim. 

 

Interim Consideration 2 

For some time domain signals u1(t), u2(t), the following identity holds. 

( ) ( )( )[ ] ( ) ( )
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21
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 (4.225) 

i.e. max and supoperators are allowed to be exchanged. Let  

( ) 11
0

sup Dtu
t

=
≥

 and ( ) 22
0

sup Dtu
t

=
≥

, ( )21,max DDD =  

then we have for the right hand side of (4.225): 

( ) ( ) Dtutu
tt
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2

0
1
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sup,supmax
 (4.226) 

Moreover, on the one hand 

( ) 11 Dtu ≤  and ( ) 22 Dtu ≤  for all 0≥t . (4.227) 

On the other hand, since D1 and D2 are the respective least upper bounds for u1 and u2, 

there are some time instances 21,tt  for any 0>ε  such that 

( )1 1 1u t D ε> −  and ( ) ε−> 222 Dtu . (4.228) 

Inequalities (4.227) imply 

( ) ( )( ) ( ) DDDtutu =≤ 2121 ,max,max  for all 0≥t   

and in turn 

( ) ( )( )[ ] Dtutu
t

≤
≥

21
0

,maxsup . (4.229) 

whereat inequalities (4.228) imply 

( ) ( )( ) ε−> 11211 ,max Dtutu  and ( ) ( )( ) ε−> 22221 ,max Dtutu . 
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Since the least upper bound (supremum) is certainly equal or greater than the 

respective values |u1(t1)| and |u2(t2)| and since there are such values 1D ε−  and 2D ε−  

for any 0ε > we have 

( ) ( )( )[ ] 121
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,maxsup Dtutu
t

≥
≥
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and consequently 
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Finally, (4.226), (4.229) and (4.230) establish equation (4.225). 

Now we continue to establish result (4.222). By (4.223), we have 
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With help of induced transfer function L1-norm, we obtain 
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and since its argument is a constant, the supremum operator can be dropped and the transfer 

function norm can be set in front of the sum. 
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The sum, in turn, is bounded from above by 
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where we exchanged max and sup  operators according to equation (4.225). Using this 

bound, we obtain 
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Finally, taking square roots on both sides, we obtain (4.222). 
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 (4.231) 
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Bound on Qδ 

The columns of Qδ equal the unmatched uncertainty, sent through different LTI filters. 

( ) ( ) ( )ssGs ii δq =,δ  

In order to find a bound on Qδ, let us assume that the induced transfer function L1-

norm of all filters is bounded by some L>0. 

Assumption C: Boundedness of L1-norm of MMQ Filters 

( ) LsGi ≤
1L

 for Ni ,,1…=  
(4.232) 

Further, it is known, that the Frobenius norm can be expressed in terms of trace 

operator, which is equivalent to the sum of scalar products of its columns. Using 

assumptions A, B and result (4.231) we obtain 
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NmLD
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Lyapunov Stability Analysis 

Using assumption B and inequality (4.233) an upper bound on (4.218) is given by: 
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(4.234) 

As in section 4.3, the upper bound is divided into the partial functions (4.147), where an 

additional partial function appears due to MMQ modification 

( ) 




 −−=

F

T

F

T

F

T

q NmLDh QWQWQW
~~

2
~ 2

κ  (4.235) 

which is a concave parabola and hence adopts some maximum. 

( )
2

2

max,

NmLD
hq κ=  

(4.236) 

Now, four functions are constructed, each of which depends on only one part of the 

whole state vector and whose negative values are an upper bound on V̇. It is obtained, 

by taking the respective partial function of (4.147) and using the respective worst-case 

bounds (4.148) and (4.236) of the other parts. 
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(4.237) 

From now on, the stability analysis follows similar lines as in section 4.3, with the single 

difference that there is an additional term κ(mLD)
2 due to MMQ modification. Equation 

(4.150) holds with γi defined in (4.237). Further, re, rx, rN, rL, defined in (4.151), (4.152), 

and class K functions αi, βi, defined in (4.153), providing a lower and upper bound on 

the Lyapunov function candidate remain unchanged and with it u, ρe, ρx, ρN and  ρL, 

defined in (4.154), (4.155). If condition (4.156) holds, (4.237) are convex parabolas 
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(4.238) 

with Ve, Vx, VN, VL, VD, according to (4.158). Comparing to (4.157), an additional positive 

constant 

( ) NmLDVQ
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(4.239) 

appears in (4.238) due to MMQ modification. Continuing along arguments of section 

4.3, (4.238) are rendered positive, if eµ≥
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 (4.240) 

for some K0>0 and γi are class K functions on rB\ µB  (according to Corollary 3.2). 

Moreover, for ultimate boundedness, we need µe<ρe which yields the following 

inequality. 
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After taking squares, we obtain. 
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( )
eeQe rkKVV <++ 0  (4.241) 

where ke(re) remains unchanged w.r.t. the case without MMQ modification and is 

defined in (4.161). Since σx, σN, σL, κ, Κ0>0 and with it Ve+VQ+K0>0 can be chosen 

arbitrarily small, a necessary and sufficient condition for the existence of a solution to 

(4.241) is ke(re)>0which imposes a minimum value on re, given by (4.162). Analogously, 

the remaining conditions on ultimate boundedness, µx<ρx, µN<ρN, µL<ρL, yield the 

following inequalities 

( )xex

x

QxD
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KVVV
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σ
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+++

 (4.242) 

where kx(re,γx), kN(re,γN), kL(re,γL) also remain unchanged w.r.t. the case without MMQ 

modification and are defined in (4.164), (4.167), (4.168). Each left hand side of 

inequalities (4.242) is positive but arbitrarily small for sufficiently large σx, σN, σL. Hence 

necessary and sufficient condition for the existence of a solution σx, σN, σL, κ, K0>0 to a 

single inequality of (4.242) is given by kx(re,γx) >0, kN(re,γN) >0, kL(re,γL)>0 which impose 

minimum values for the learning rates, given by (4.165), (4.169), (4.170). 

Summing up, all conditions on re, γx, γN and γL together, namely (4.162), (4.165), (4.169), 

(4.170), are a necessary condition for the existence of a solution to the following 

system of inequalities 
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 (4.243) 

which is obtained by inserting definitions (4.158), (4.239) into inequalities (4.241), 

(4.242). Thereby, we have defined 

( ) NmLDkQ

2
= . (4.244) 

For sufficiency, however, we potentially need that ke(re), ki(re,γi), i=x,N,L, are positive 

and bounded away from zero. Therefore, assume that inequalities (4.243) have a 

solution for some 0,
** >ie kk . Then, they also have a solution for **

, iiee kkkk ≥≥ , which 

can be easily verified by similar arguments as used in section 4.3.  

Moreover, for given 0,
** >ie kk , we obtain the lower bounds on re, γx, γN and γL as in 

section 4.3 , given by equations (4.174) – (4.177). If r simultaneously satisfies (4.151), 

such that (4.243) has a solution, then the system states are uniformly ultimately 

bounded according to Corollary 3.2. 
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Corollary 4.2 MRAC Variant 1, MMQ Modification – Ultimate Boundedness 
Consider: 

• stable reference dynamics (4.56) 
• plant dynamics in Byrnes-Isidori normal form (4.90), subjected to linearizing state 

feedback (4.125) with pseudo control (4.121), adaptive term (4.122), error feedback (4.54) 
and reference pseudo control (4.55) 

• parameterizations (4.107) – (4.110) for state dependent uncertainty, (4.111) or (4.114) for 
affine control effectiveness together with (4.184) and (4.115) – (4.117) for nonaffine control 
effectiveness 

• parameter-estimation-errors xΘ
~

, NΘ
~

, 
LΛ

~
, defined in (4.124), (4.119), (4.112)  

• update law (4.131) using  
o symmetric positive definite solution PE of Lyapunov equation (4.128) for some 

symmetric positive definite QE 
o positive learning rates γx, γN, γL 
o projection operator with parameters εx, εN, εL,>0, θx,max, θN,max, λL,max>0 and 

symmetric positive definite weighting matrices Γx, ΓN, ΓL 
o switching σ-modification with modification gains σx, σN, σL >0 and MMQ 

modification with modification gain κ>0 and N filters according to (4.215) 

• Sets: dprnr N ���� ⊂⊂⊂⊂ − DUDB ,, ηζ
 for some 0>ζ  

The tracking error (4.126) and xΘ
~

, NΘ
~

, 
LΛ

~
are uniformly ultimately bounded, if 

• assumption A is fulfilled for some θx, θN, λL >0 and θx,max, θN,max, λL,max are defined by (4.133) 
– (4.135) 

• assumption B is fulfilled for some D≥0 

• (η,uN,d)	∈Dη×U×D for all t≥t0  

• assumption C on the L1 bound of the MMQ filters is fulfilled for some L>0 

• the reference model state is bounded according to (4.139) for some 0>Rζ  

• re simultaneously satisfies re> ee according to (4.178) and Rer ζζ −≤  according to (4.151) 

where 
ee  is defined in (4.174) with **** ,,, LNxe kkkk  such that inequalities (4.173) are solved 

for σx, σN, σL,κ, K0>0 
• the learning rates are chosen such that 

LLNNxx γγγγγγ ≥≥≥ ,,  according to (4.178) 

where 
LNx

γγγ ,,  are defined in (4.175) - (4.177). 

• initial conditions: ( ) et δ≤
20e , ( ) xx

x

t δ≤
Γ

Θ 0

~ , ( ) NN
N

t δ≤
Γ

Θ 0

~ , ( ) LL
L

t δ≤
Γ

Λ 0

~  

o [ ] [ ] [ ] [ ]LLNNxxee ρδρδρδρδ ,0,,0,,0,,0 ∈∈∈∈  

o 
LNxe ρρρρ ,,,  defined in (4.155) 

such that 

• ( ) 02
   allfor    ttrt e ≥≤e  and ( ) ( )eeee bTttbt δ,   allfor    02
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where 

• 21212121
,,,, LLNNxxePLLNNxxPe EE

bbbb µγµγµγµλννγνγνγνλ −−−−
+++=====  

LNxe µµµµ ,,,  defined in (4.158), (4.239), (4.240)  

• ( ) ( )[ ]νλδλδ −⋅+= − 221

0 43,0max, ePePeee rKbT
EE

  ,   ( ) ( )[ ]νλδδ −⋅+= − 221

0 43,0max, ePxxxx rKbT
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  ,  ( ) ( )[ ]νλδδ −⋅+= − 221
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Remark 4 

As explained in remarks 1 and 3 of this section, MMQ modification introduces 

an additional negative semi definite term -2κ (||W͂T
Q||F)

2 to the upper bound on V̇ 

– equation (4.234) – if unmatched uncertainties are absent, leading to a faster 

convergence of the parameter-estimation-errors. In case of sufficient excitation, 

such that the matrix of filtered regressors Q has full rank, even exponential 

convergence of W͂ can be shown by analogous arguments as used for 

concurrent learning ( [Cho102] ). However, in presence of unmatched 

uncertainty, the terms that occur due to MMQ modification in the upper bound 

on V̇ are 






 +−

F

T

F

T
NmLD QWQW

~~
2

2

κ  

i.e. there is a negative quadratic term and a positive linear term. For small values 

of ||·||F, the linear term is dominating, which increases the upper bound on V̇. 

Hence, it is desirable to minimize the linear term. Usually m, the number of 

components of the unmatched uncertainty vector is fixed given by the system 

and cannot be varied. Also, the uncertainty bound D is a fixed value. Evidently, 

the dominance of the linear term can be influenced by the control system 

designer by a proper choice of filters, comprising a small L1-norm bound L and 

the number of employed filters N. Fortunately, N merely enters the linear term as 

square root.  

4.5 Nonlinear-in-Control Design 

The control system, derived in section 4.3 does not utilize the nonaffine controls for 

feedback linearization of the system, but their values are specified separately and their 

influence on the dynamics is cancelled by feedback linearization using the affine 

controls (second part of Figure 4.7). However, if the inverse of the nonlinear map 

g(ζ,η,uN,d), that describes the effect of the nonaffine controls onto the dynamics, is not 

known (refer to equation (4.91)), the algorithm introduced in this section provides a 

method to obtain the desired value for uN in an online gradient minimization approach. 

In recent publications, this concept has been as introduced as “nonlinear-in-control” 

(NIC) design, using singular perturbation theory ( [Lav07b], [Lav07a], [Hov06] ). The 

algorithms, presented there have to be tailored for our purpose, however, initially the 

basic results of these publications are stated. 

4.5.1 Singular Perturbation and Gradient Systems 

NIC design uses the so-called singular perturbation (SP) theory. Although a detailed 

description can be found in [Kha02], the main ideas are briefly introduced. SP 

considers systems of the form 
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( )
( )εε

ε

,,,

,,,

uxgu

uxfx

t

t

=

=

ɺ

ɺ
 

(4.245) 

where the first equation is referred to the slow dynamics while the second represents 

the fast dynamics. Such a division of a system into slow and fast dynamics often 

occurs in real physical systems, e.g. referring to aircraft, the slow dynamics could be 

associated with the rigid body states, while the actuator state are the fast dynamics. ε 

thereby is a small positive parameter, that determines the speed of the fast dynamics 

compared to the slow dynamics and for ε=0 the fast dynamics degenerate to an 

algebraic equation which corresponds to an infinite fast dynamics such that the 

equilibrium state u – the solution of the algebraic equation – is reached 

instantaneously.  

In order for an equilibrium to exist, it has to be assumed that g(t,x,u,0) has an isolated 

root for each fixed t and x, such that u=h(t,x) implies that g(t,x, h(t,x),0)=0. If we insert 

the isolated root into the slow dynamics, and set 0=ε , we obtain the so-called 

reduced dynamics 

( )( )0,,,, xhxfx tt=ɺ
 

(4.246) 

which, referring to aircraft, is the dynamics of the rigid body states in case of infinite 

fast actuators. For stability analysis within the SP framework, the fast dynamics are 

transformed into the fast timescale τ which is related to the slow timescale by t=ετ. 

Applying the chain rule 

τε d

d

dt

d uu
u ⋅==

1
ɺ  

and setting ε=0 yields the boundary layer dynamics 

( )0,,, uxg
u

t
d

d
=

τ
 (4.247) 

which could be interpreted as actuator dynamics in the fast timescale, such fast that 

the rigid body states x as well as the normal time scale t are frozen. 

The central theorem in singular perturbation theory “Thikonov’s Theorem” states that – 

under various continuity conditions on the nonlinear maps, involved into the dynamics, 

are well as its partial derivatives – if the boundary layer dynamics as well as the 

reduced dynamics are exponentially stable, then there is some ε*
>0 such that the 

states of the full system (4.245) are bounded and in a vicinity of the states of reduced 

and boundary layer system, for all ε<ε*. Unfortunately the theorem does not provide an 

explicit value ε*, but just states that it exists. This is due to the general nonlinear 

structure of f and g. As will be shown in section 4.6, if we use the NIC design within the 

MRAC controller, the dynamics adopt a special form 
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( ) ( )[ ]ewuegHeAe ,,,
*

tt −−=ɺ  

(4.248) 

( ) ( ) ( )[ ]ewuegueJu ,,,,, *
ttt

T

g −−=ɺε
 

(4.249) 

where e∈�r is the tracking error, e∈�r, rr×∈�A  is the system matrix with eigenvalues in 

the open l.h.c.p., H is defined in (4.16), w=g(t,e,u)∈�m is the nonlinear map that 

describes the effect of the nonaffine controls Np�∈u  onto the rigid body dynamics, Jg 

is the Jacobian of g w.r.t. u, w* is the desired virtual control, originating either from the 

linearizing state feedback (equation (4.93)) or is prescribed from extern. The desired 

virtual control is produced by some ideal u* such that 

( ) **,, wueg =t . (4.250) 

Notice that u* is different from u which is the state of differential equation (4.249), but it 

is desired that (4.249) approximately generates u=u*. g is assumed to be known and 

the inverse u=g
-1

(t,e,w) exists but is unknown. Existence of a (unique) inverse in turn 

requires that the number of controls equals the number of nonlinear maps, i.e. pN=m. 

Additionally, the desired virtual control w* has to be achievable by some u*. 

Assumption: Existence of an Inverse to the Nonlinear Control Map 

• The number of controls and nonlinear maps are equal: ( ) m
t �∈ueg ,, , m�∈u  

• the inverse ( )wegu ,,1
t

−=  exists (uniquely) but is unknown 

• there is always a *u  such that ( ) ( )ewueg ,,, **
tt =  

Remark 

As stated before, Thikonov’s theorem does not provide an explicit value ε* that 

guarantees stability of the NIC algorithm (4.248), (4.249). Particularly in aircraft 

applications, an explicit value is very important, since certification authorities 

require guaranties that the implemented controller operates the aircraft safely. If 

an explicit value is not known, a controller has to be implemented based on a 

guess for ε*, for which reason there is no guaranty on stability of the system. In 

the subsequent derivations in section 4.6, we will utilize the special structure 

(4.248), (4.249) to obtain a specific value for ε*. 

In order to approximate u≈u
* such that g(t,e,u)≈w

*, the fast dynamics should “tune” u 

and they should be such fast, that they could be neglected w.r.t. to the slow dynamics. 

An online tuning system of the form (4.249) is also referred to a gradient system. It 

inherits the role of the fast dynamics within the SP framework. 

As Thikonov’s theorem requires that the boundary layer system is exponentially stable, 

the next section will investigate, under which conditions on g, the boundary layer 

system is exponentially stable. 
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4.5.2 Exponential Stability for Autonomous Gradient Systems 

For stability analysis, the fast dynamics (4.249) are appropriately transformed such that 

the equilibrium is shifted to the origin. Defining the error state *~ uuu −= , the fast 

dynamics read as 

( ) ( ) ( )[ ] ( )
dt

td
tttT

g

eu
ewuuegeJu

,
,~,,,~

*
** εε −−+−=ɺ  

(4.251) 

and consequently, we obtain the boundary layer dynamics by switching to the fast 

timescale and setting 0=ε . 

( ) ( ) ( )[ ]ewuuegeJ
u

,~,,,
~

**
ttt

d

d T

g −+−=
τ

 

(4.252) 

where t and e are now considered as frozen parameters while the dynamics of u are 

described in context of the fast timescale τ . The boundary layer dynamics could thus 

be considered as autonomous system, which depends on the parameters t and e. 

Before continuing with the derivations, we will introduce a reduced notation for 

readability: 

• ux ~:=  

• ( ) ( ) ( )* *
: , , ,t t= + −f x g e x u w e  

• ( )
( )

( )*: , ,
f g

t
∂

= = +
∂

f x
J x J e x u

x
 

It is tacitly assumed that f(x) depends on parameters t and e and the subsequent 

conditions hold uniformly in the parameters. Note that f(0)=0, which is a consequence 

of (4.250). The dynamics of the boundary layer system can be derived from the 

gradient of a cost function as explained in the following. Therefore, we define the 

quadratic cost function 

( ) ( ) ( )xfxfx ⋅= T
V

2

1
 

whose gradient is  

( ) ( ) ( ) ( ) ( ) ( )xfxJxf
x

xf

x

x
x T

f

TT
V

V =⋅








∂

∂
=









∂

∂
=∇  

If V should be minimized in an online model, it is nearby to set the right hand side of 

the differential equation equal to the negative gradient of V. 

( ) ( )xfxJx ⋅−= T

f
ɺ

 
(4.253) 

The question that arises is, under which conditions on f the equilibrium of such 

gradient systems is (asymptotically or even exponentially) stable, such that V is actually 

minimized by (4.253). Theorem 4.5 in the following provides sufficient conditions for 
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exponential stability of the gradient system. It additionally assures that the nonlinear 

mapping is a C1 diffeomorphism, i.e. it is continuously differentiable and the inverse of 

f(x) exists uniquely and is continuously differentiable, too. This fact is necessary for 

NIC design, where it is preliminary that the inverse exists, even if there is no analytical 

expression available. Notice that the theorem explicitly provides the exponential rate of 

convergence as well as a region of admissible initial values. 

Theorem 4.5 Exponential Stability of Gradient Systems 

For an open convex set m�⊂X , containing the origin such that  

the closed ball XB ⊂
0r

 for some 00 >r , let a continuously differentiable map 

( ) m�⊂=YXf  with ( ) 00f = . For X∈21,, xxx , let 

( ) ( )
x

xf
xJ

∂

∂
=f , ( ) ( ) ( )[ ]xJxJxJ T

ffsf +=
2

1
, , ( ) ( )[ ]∫ −+=

1

0
12121, dssf xxxJxxP , 

Jσ : minimum singular value of ( )xJ f , ( )[ ]xJ sfi ,λ : ith eigenvalue of ( )xJ sf ,  

PP σσ , : minimum/ maximum singular value of ( )21,xxP . 

Then, f is a C1 diffeomorphism on Y, if 

1. for some 00 >k , 0kJ ≥σ  and 

2. for some 01 >k , either 

a. 1kP ≥σ  or 

b. ( )xJ sf ,  positive or negative definite such that either 

( )[ ] 1, ksfi ≥xJλ  or ( )[ ] 1, ksfi −≤xJλ  respectively for mi ,,1…= . If additionally, 

3. for some 12 kk ≥ : 2kP ≤σ , 

then the origin of the gradient system 

( ) ( ) ( )xfxJx ⋅−= T

ftɺ ,     ( ) 0xx =t  

is the unique exponentially stable equilibrium such that 

( ) ( ) ( )













−








−⋅⋅≤ 0

2

2

10

1

2

202 2

1
exp tt

k

kk

k

k
tt xx    if   ( ) 0

2

1

20 r
k

k
t <x  

Proof 

The first condition implies that the Jacobian is nonsingular, i.e. 

( )[ ] 0det ≠xJ f  

(4.254) 
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for X∈x . This fact together with condition 2 of the theorem implies that f is a C1 

diffeomorphism on Y by Corollary B.1. Lemma B.4 in connection with condition 2, 

implies  

( )
212

xxf ⋅≥ k , (4.255) 

hence x=0 is the unique equilibrium of the system and it is left to show that it is 

exponentially stable. Therefore, consider the Lyapunov function candidate 

( ) ( ) ( ) ( ) 2

22

1

2

1
xfxfxfx =⋅= T

V
 

(4.256) 

which is a continuously differentiable positive definite function since f is continuously 

differentiable and f(x)≠0 if x≠0. The time derivative along the trajectories of the gradient 

system is 

( ) ( ) ( ) ( ) ( )xfxJxJxfx T

ff

T
V −=ɺ . (4.257) 

From condition 1, the matrix ( ) ( ) ( )xJxJxQ T

ff=  is symmetric and positive definite and 

its smallest eigenvalue equals 
2

JQ σλ = . By use of condition 1 in connection with 

Theorem B.20 and inequality (4.255) we arrive at 

( ) ( ) ( )
2 2 22

0 1 22JV k kσ≤ − ≤ − ⋅x f x xɺ . (4.258) 

Also, the Lyapunov function candidate itself can be bounded in a similar way, using 

result (4.255) for the lower bound and conditions 3 of the theorem as well as mean 

value theorem (B.19) within Appendix B.4 in connection with Theorem B.18 for the 

upper bound. 

( ) 2

2

2

22

2

2

1

22
xxx

k
V

k
≤≤  

(4.259) 

Then all pre-conditions of Theorem C.2 (Lyapunov exponential stability) are fulfilled and 

hence the equilibrium is exponentially stable such that  

( ) ( ) ( )













−








−⋅⋅≤ 0

2

2

10

1

2
02 2

1
exp tt

k

kk

k

k
tt xx    if    ( ) 0

2

1

20 r
k

k
t <x  (4.260) 

□ 

Normalization of Gradient Systems 

Considering (4.260), the exponential convergence rate is, among others, dependent on 

k0, the lower bound on the singular value of the map Jacobian. Since this lower bound 

has to hold uniformly for the whole flight conditions, it is potentially quite small, leading 

to a low convergence rate. By a small modification of the gradient system, the effect of 

a small k0 is cancelled out which increases the convergence rate of the gradient 
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system. Therefore, assume that the singular value decomposition of the map Jacobian 

is given by  

( ) ( ) ( ) ( )xUxΣxVxJ T

f = . 

In the gradient system (4.253), we replace the Jacobian by 

( ) ( ) ( ) ( )xfxUxΣxUx T1−−=ɺ  (4.261) 

which modifies the Lyapunov function derivative (4.257) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )xfxUxVxfx

xfxUxΣxΣxVxf

xfxUxΣxUxUxΣxVxf

xfxUxΣxUxJxfx

I

I

TT

TT

TTT

T

f

T

V

V

−=

−=

−=

−=

−

−

−

ɺ

����	

����	

ɺ

1

1

1

 

Now, since the ( )xV  and ( )xU  are orthonormal matrices, their singular values equal to 

1 and hence, together with inequality (4.255) and Theorem B.20, we have 

2

2

2

1 xkV ≤ɺ  

(4.262) 

This equals to (4.258) with k0=1 and hence, with bounds (4.359) on the Lyapunov 

function derivative, we conclude exponential stability according to Theorem C.2. 

independent of k0. 

( ) ( ) ( )













−








−⋅⋅≤ 0

2

2

1

1

2
02 2

1
exp tt

k

k

k

k
tt xx    if    ( ) 0

2

1

20 r
k

k
t <x . (4.263) 

4.6 Variant 2: Nonaffine Controls used for Linearizing State 
Feedback 

In this section nonaffine thrust vector controls are included into the linearizing state 

feedback as proposed in section 4.1.7, while the nonaffine controls are tuned by the 

algorithm , introduced in section 4.5. A comprehensive stability analysis of the closed 

loop adaptive system, including the NIC algorithm is presented, where switching σ as 

well as MMQ modification is incorporated into the algorithm. Contrary to variant 1, the 

nonaffine control map  

( )duηζgw ,,,ˆˆ
N=  

(4.264) 

is not adaptively estimated. In order to account for model uncertainties, the map 

ĝ(ζ,η,uN,d), which is used for feedback linearization, is assumed to deviate from the real 

map by some δ(ζ,η,uN,d), which takes the role of the unmatched uncertainty. 
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( ) ( ) ( )duηζδduηζgduηζgw ,,,,,,ˆ,,, NNN +== . (4.265) 

Hence, external dynamics (4.92) become  

( ) ( )[ ]
( )

( )







+







++= duηζδ

duηζg

u
IηζBηζaHJζζ ,,,

,,,ˆ
,, N

N

Lx
ɺ . (4.266) 

Internal dynamics are of the form (4.90) and with neglect of actuators, the linearizing 

state feedback (4.93) is 

( ) ( ) ( )[ ] ( )[ ]ηζaνIηζBηζB
I

ηζB

w

u
,ˆ,ˆ,ˆ,ˆ 1

* x

T
T

−+







=







 −
 (4.267) 

where the estimated decoupling matrix is parameterized according to (4.111) or 

(4.114). Notice that, in compliance with notation of section 4.5, now the desired virtual 

control is marked with an “*” and, according to (4.250), there is *

Nu  such that 

( )duηζgw ,,,ˆ **

N= . (4.268) 

The inverse w.r.t. uN 

( )dwηζgu ,,,ˆ 1−=N  (4.269) 

is assumed to exist, however, unknown. Hence also *

Nu  is unknown. On sufficient 

conditions for existence of a unique inverse, refer to Theorem 4.5. 

Recall that we want to employ the algorithm, proposed in section 4.5. Therefore we 

need to distinguish between the ideal virtual control w* and the actual virtual control, 

which is assumed to be achieved by the current uN of the NIC algorithm according to 

equation (4.264). We obtain the following external dynamics, if we apply the linearizing 

state feedback (4.267) to (4.266). 

( ) ( )[ ]
( )

( )







+







++= duηζδ

duηζg

u
IηζBηζaHJζζ ,,,

,,,ˆ
,, N

N

x
ɺ  

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]
( )

( )







+







++

















+−
















++=

−+

duηζδ
duηζg

u
IηζBηζaH

w

u
IηζBηζaH

w

u
IηζBηζaHJζζ

,,,
,,,ˆ

,,

,ˆ,ˆ,ˆ,ˆ
**

N

N

x

xx
ɺ

 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )[ ]duηζδwduηζguηζBηζBηζaηζaHHνJζζ ,,,,,,ˆ,,ˆ,,ˆ *

NNxx +−+−−−−++=ɺ
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( ) ( ) ( )( ) ( )[ ]duηζδwuηζguηζBηζaνHJζζ ,,,,,ˆ,
~

,~ *

NNx +−+−−+=ɺ
 

(4.270) 

Thereby ( )ηζa ,~
x  and ( )ηζB ,

~
 are defined in (4.95), (4.96). Comparing this result to (4.94), 

it reveals that, beside the fact that there is no reaction deficit due to actuators and no 

model deviation of the nonaffine control effectiveness according to the recent 

assumptions, there is an additional term g(ζ,η,uN,d)-w
* due to the deviation between 

virtual control, required by the linearizing state feedback, and the assumed actual 

virtual control. achieved by the NIC algorithm. Using (4.110), (4.113) and (4.184), the 

external dynamics are 

( ) ( ) ( )( ) ( )[ ]duηζδwduηζguΛBηζηζφΘνHJζζ ,,,,,,ˆ
~

,, *

NNLL

T

x b +−+−++=ɺ . (4.271) 

4.6.1 Reference Model, State Predictor and Error Dynamics 

State Predictor and Prediction-Tracking Error 

Since an additional term occurs in the external dynamics (4.271) due to the NIC 

algorithm, it appears to be useful for the subsequent stability analysis to add an 

according term to the reference dynamics (4.56). 

( )[ ]*
,,,ˆˆˆˆ wduηζgνHζJζ −++= NR

ɺ
 

(4.272) 

The additional term renders the system rather a state predictor ( [Lav07a] ) than a 

reference model for reasons, stated in a few lines. According to (4.55), the reference 

pseudo control Rν  is changed to a predictor based pseudo control. 

C

T

R yAζKν 0
ˆˆ +−=

 

(4.273) 

System (4.272) is denoted as a state predictor since, if (4.273) is applied to the pseudo 

control of the external dynamics (4.270), then (4.272) actually predicts the external 

states if model deviations are absent. 

Notice that the predictor contains feedback from the plant such that we cannot 

assume a priori that the predictor dynamics are stable. However, boundedness of the 

predictor states will be shown by investigation of Lyapunov stability of the prediction-

tracking error between predictor and reference model (4.49) 

Rζζe −= ˆ
 

(4.274) 

and the fact that the reference dynamics are stable. With (4.272), (4.273), (4.49), and 

(4.55), the tracking error dynamics read as 
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( ) ( )

( ) ( ) ( )

( ) ( )

ˆ

*

0 0

*

*

ˆ ˆ ˆ , , ,

ˆ ˆ ˆ , , ,

ˆ , , ,

R

T T

C N R R C

T

R R N

T

N

   = + − + + − − + − +  

 = − − − + − 

 = − + − 

ζζ

e Jζ H K ζ A y g ζ η u d w Jζ H K ζ A y

J ζ ζ HK ζ ζ H g ζ η u d w

J HK e H g ζ η u d w

ɺ ɺ
������������������
 ������������


ɺ

 

( )[ ]*,,,ˆ wduηζgHeAe −+= NR
ɺ  

(4.275) 

where AR=J-HK
T is stable. 

 

Prediction Error 

Since boundedness of the predictor states is shown separately, using the prediction-

tracking error dynamics, the proof of ultimate boundedness for the parameter-

estimation-errors and the plant states is shown similarly to section 4.3, however, in this 

case the prediction error is used instead of the tracking error. 

ζζe −= ˆˆ . (4.276) 

In order to cancel the state dependent uncertainty in the external dynamics (4.271), we 

choose for the pseudo control 

AER νννν ++= ˆ . (4.277) 

Comparing with pseudo control in section 4.3 – equation (4.121) – the reference 

pseudo control νR is replaced is by the predictor based pseudo control (4.273) while 

the adaptive term νA remains the same as defined in (4.122) and the error feedback 

term νE is now computed with the prediction error instead of the tracking error. 

eCν ˆT

E =  
(4.278) 

Hence, if pseudo control (4.277) is applied to the external dynamics (4.271), we obtain 

( ) ( ) ( )( ) ( )[ ]duηζδwuηζguΛBηζηζφΘeCνHJζζ ,,,,,
~

,,
~

ˆˆ *

NNLL

T

x

T

R b +−+−−++=ɺ
 

(4.279) 

where xxx ΘΘΘ −= ˆ~
. With definition of predictor (4.272), the prediction error dynamics 

are 

( )[ ]
( ) ( ) ( )( ) ( )[ ]duηζδwduηζguΛBηζηζφΘeCνHJζ

wduηζgνHζJe

,,,,,,ˆ
~

,,
~

ˆˆ

,,,ˆˆˆˆ

*

*

NNLL

T

x

T

R

NR

b +−+−−+−−

−++=ɺ
 

 

( ) ( ) ( ) ( )[ ]duηζδuΛBηζηζφΘHeHCζζJe ,,,
~

,,
~

ˆˆˆ
NLL

T

x

T b −++−−=ɺ  

( ) ( ) ( )[ ]duηζδuΛBηζηζφΘHeAe ,,,
~

,,
~

ˆˆ
NLL

T

xE b −++=ɺ
 

(4.280) 

where AE=J-HC
T is stable. 
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4.6.2 Lyapunov Stability Analysis 

Beside the common states, involved into an MRAC system, namely 

• prediction error: ê  

• parameter-estimation-errors: xΘ
~

, LΛ
~

 

due to the NIC design we additionally have 

• prediction-tracking error e 

• command of the NIC tuning algorithm uN. 

Therefore, the Lyapunov analysis is divided into two parts. In the first part, we will use 

the prediction error dynamics to design the updates for the parameter estimates and 

show boundedness of ê , xΘ
~

 and LΛ
~

. In a second step, the prediction-tracking error 

dynamics are used to design the online gradient minimization system and to show 

boundedness of e, uN. Finally, from boundedness of ê , e one can conclude 

boundedness of predictor ζ̂  and plant ζ , using relations 

eζζ += R
ˆ

 
(4.281) 

eeζζ ˆ−+= R
 (4.282) 

and the fact that the reference model states ζR are bounded a priori. One might hope 

that the two parts of the stability analysis are independent of each other, however this 

is not true. For Lyapunov analysis, we have to impose upper bounds on unmatched 

uncertainty ( )duηδ ,,, Nζ  and the nonlinear map ( )duηζg ,,, N , which depend on the plant 

state ζ. These bounds, among others, depend on the set of admissible plant states, let 

us say ζ≤
2
ζ  for some 0>ζ . Each single part of the stability analysis considers 

boundedness of ê  and e respectively (assuming that the assumptions hold). Hence, 

the bounds on the error states cannot be set decoupled from each other, but, by 

(4.282), have to fulfill 

2222
êeζζ ++≤ R . (4.283) 

Further, since the reference model is stable, it satisfies 

( ) 02
ttt RR ≥≤        all for     ζζ

 (4.284) 

for some 0>Rζ  if the exogenous input satisfies 

( ) 02
ttytc ≥≤        all for     y

 (4.285) 

for a sufficiently small 0>y , provided initial conditions are appropriate. Consequently, 

if both parts prove 

( ) ( ) 02ˆ2
ˆ ttrtrt ee ≥≤≤      all for      ee

 (4.286) 
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for some 0,ˆ >ee rr  then ζ  remains within the admissible set if 

ζζ ≤++ Ree rrˆ . (4.287) 

Take a look at Figure 4.13 with part 1, the classical MRAC Lyapunov analysis, proving 

boundedness of prediction error ê  and parameter-estimation-errors xΘ
~

, LΛ
~

 and part 

2, proving boundedness of NIC design state uN and prediction-tracking error e. In order 

to fulfill coupling condition (4.287), part 1 requires an upper bound on e a priori, which 

is established by part 2. Part 2 in turn requires an upper bound on ê  a priori, which is 

established by part 1. Proving crosswise boundedness of one part by assuming 

boundedness of the respective other part, while and the bounds fulfill (4.287), 

establishes boundedness of the whole system since the considered error state can 

only escape from its bounded set if the respective other error state has escaped before 

and hence both error states restrict each other to their respective sets. 

An additional assumption, needed for the first part, is the restriction of the nonaffine 

controls to their valid set, however, this is assured by part 2. 

 

Figure 4.13 Lyapunov Analysis for MRAC with NIC Design 

 

Part 1: Classical MRAC Stability Analysis 

For part 1, bounds on the ideal parameters as well as unmatched uncertainty have to 

be imposed, analogously to assumptions A and B of section 4.3.  

Assumption D: Bounds on ideal parameters and unmatched uncertainty 

L

T

Lxx
Lx

λθ ≤≤
ΓΓ

ΛΘ  (4.288) 
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for some 0, >Lx λθ  and symmetric positive definite matrices Lx ΓΓ , . Additionally 

( ) DN ≤
2

,,, duηζδ
 (4.289) 

 for some 0≥D  in a set  

( ) DUDB ×××∈ ηζ
duηζ ,,, N . (4.290) 

Thereby { }ζ
ζ

≤∈=
2
ζζ r�B  for some 0>ζ , ηD  is a set, where the internal 

states can be restricted, U is a convex set containing the origin and D  is a set, 

where d can be restricted to. 

As Lyapunov function candidate, we choose 

( ) [ ] [ ]T

LLLLxxx

T

xE

T

LxV ΛΓΛΘΓΘePeΛΘe
~~

tr
~~

trˆˆ
~

,
~

,ˆ 1111

1

−−−− ++= γγ  

(4.291) 

where γx, and γL positive scalars, denoted as learning rates and Γx, ΓL  are symmetric 

positive definite matrices of appropriate dimension, which adopt the role of a weighting 

matrix. PE is the symmetric positive definite solution of the Lyapunov equation 

EEEE

T

E QAPPA −=+
 

(4.292) 

for some symmetric positive definite QE. The following arguments are very similar those 

in sections 4.3 and 4.4 and hence we will only state the key results in this case. Taking 

the time derivative of V1, we arrive at an expression analogous to (4.130). 

( )

( )( )[ ] ( )( )[ ]LE

T

L

T

LxLLE

T

xxxx

T

x

NE

T

E

T

b

V

HBPeuηζΓΛΓΛHPeηζφΓΘΓΘ

duηζHδPeeQe

ˆ,
~~

tr2ˆ,
~~

tr2

,,,ˆ2ˆˆ

1111

1

++++

−−=

−−−− ɺɺ

ɺ

γγ
 (4.293) 

For update of the parameter estimates we choose 

( )[ ]
( )[ ]

LLL

xxx

T

LLE

T

L

T

LL

T

L

xE

T

xxxx

b Γ

Γ

MHBPeuηζΓΛΛ

MHPeηζφΓΘΘ

,,

,,

max,

max,

ˆ,,ˆProjˆ

ˆ,,ˆProjˆ

λε

θε

γ

γ

−−=

−−=

ɺ

ɺ

 

(4.294) 

with projection operator (Appendix D.1), εx, εL, θx,max, λL,max defined in (4.133), (4.135) 

and modifications Mx, ML, which will be defined in a few lines. We obtain 

( ) [ ] [ ]T

LLLxx

T

xNE

T

E

TV MΓΛMΓΘduηζHδPeeQe 11 ~
tr2

~
tr2,,,ˆ2ˆˆ −− −−−−≤ɺ . (4.295) 

Now we apply switching σ- and MMQ modification 

( )

( )
L

T

LTT

LL

T

LLL

Tx
xxxxx

LLL

xxx

f

f

Γ
Q

CHBΛΛM

HC
Q

ΓΘΘM

Γ

Γ

ξ
κσ

ξ
κσ

λε

θε

~ˆˆ

~ˆˆ

,,

,,

+=

+=

 
(4.296) 

where 
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=

L

x

Q

Q
Q . (4.297) 

and Qx, , QL are matrices whose columns are filtered versions of regressors as defined 

in (4.210), (4.211) and (4.213),  σx, σL,>0 are the gains of switching σ-modification, κ,>0 

is the gain of MMQ modification, ( )⋅
xxx

f Γ,,θε , ( )⋅
LLL

f Γ,,λε  are the switching functions, 

defined in equations (D.1), (D.12) in Appendix D and 

2
1

F
Q+=ξ  

(4.298) 

is a normalizing factor. C
~

 is the filtered uncertainty estimation error, which is computed 

based on external dynamics (4.270). We define, by slight abuse in notation in time and 

frequency domain, 

( ) ( )( ) ( ) ( ) ( ) ( )[ ]( ) ( )[ ]( )[ ]ssbssGsssGs NLLiii

*
,,ˆ, wuηζguΛBηζνHζJIc −−+−+−=  

(4.299) 

with strictly proper and stable transfer functions Gi(s), i=1,…,N, as defined in (4.182). 

According to external dynamics (4.270), equation (4.299) equals the filtered true 

uncertainty 

( ) ( ) ( )( )sss i

T

i δqqWHc +=  (4.300) 

where 

[ ]LL

T

x

T ΛBΘW =
 

(4.301) 

is the compound ideal parameter and 

( ) ( ) ( )( )sss
T

iL

T

ix

T

i ,, qqq =
 (4.302) 

is the compound filtered regressor, where qx,i(s), qL,i(s) are defined according to (4.210). 

Analogously, the filtered estimated uncertainty is 

( ) ( )tt i

T

i qWHc ˆˆ =
 (4.303) 

where Ŵ  is the adaptive estimate for (4.301) and the filtered uncertainty estimation 

error reads as  

( ) ( ) ( ) ( ) ( ) ( )( )tttttt ii

T

iii ,

~
ˆ:~

δqqWHccc −=−= . (4.304) 

If we stack the N vectors into a matrix, we finally get 

( ) ( ) ( )[ ] ( ) ( ) ( )( )tttttt
T

N δQQWHccC −==
~~~:

~
1 ⋯ . (4.305) 

where Qδ is defined in (4.213). Inserting modifications (4.296) into (4.295), we obtain. 
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 (4.306) 

Then, an upper bound is given by  

( ) ( ) 
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 −−
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2
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(4.307) 

where we have used assumption C in section 4.4.3 and assumption D together with 

(4.133), (4.135). The upper bound (4.307) is further divided into partial functions, each 

of which depends on only one variable, according to(4.147) and  

( ) 




 +−=

F

T

F

T

F

T

q NmLDh QWQWQW
~~

2
~ 2

ξ

κ
 

(4.308) 

(4.235). These are all concave parabolas and have upper bounds according to (4.148), 

(4.236), where we have used ξ≥1. Moreover, we obtain three functions by taking the 

negative value of one partial function and the worst case bounds of the respective 

others, analogously to (4.237). 
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(4.309) 

Thereby, we have defined 

( )

( )
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D
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 (4.310) 

and obtain 

( ) ( ) ( )[ ]
222ˆ1

~
,

~
,ˆmax LLxxeV ΘΘe γγγ−≤ɺ . (4.311) 

Further, class K functions αi, βi, according to Corollary 3.2, that enclose the Lyapunov 

candidate (4.291) are given by 

( ) ( ) 2
1

2
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== γβαγβαλβλα  (4.312) 
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In compliance with the introductory remarks on the procedure of the whole proof 

(Figure 4.13), we use er , erˆ  that satisfy (4.287) and assume, a priori that er≤e  and use 

erˆ  according to Corollary 3.2. Moreover ∞== Lx rr  analogously to (4.152) and hence we 

obtain 

( ) ( ) ( )[ ] 2

ˆˆˆ ,,min ePLLxxee rrrru
E

λααα == . (4.313) 

Moreover, the radii that define the sets of admissible initial conditions evaluate to 
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ρ = . (4.314) 

µi, according to Corollary 3.2, are obtained by requiring γi(µi)=K0 for some K0>0. 

L

QLDLL

L

x

QxDxx

x

Q

Qe

Q

P

Q

P

e

KVVV

KVVVKVVDD

EE

E

E

E

σ

λλ
µ

σ

θθ
µ

λλ

λ

λ

λ
µ

222

222

0

2

max,max,

0

2

max,max,0ˆ

2

ˆ

+++
+








+=

+++
+








+=

++
+














+=

 (4.315) 

Finally, conditions on ultimate boundedness µi <ρI result in inequalities 

( )
eeQe rkKVV ˆˆ0 <++  , ( )xex

x

QxD
rk

KVVV
γ

σ
,ˆ

0 <
+++

 , ( )LeL

L
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rk

KVVV
γ

σ
,ˆ

0 <
+++

 (4.316) 

where 
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P
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ee Drrrk
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E
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3

4

3
: λλ

λ

λλ
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( ) exPxePxxex rrrk
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3

2
:, λλγλγγ −=  

(4.317) 

and, inserting (4.310) into (4.316) results in a set of inequalities for the gains of 

switching σ- and MMQ modification 
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(4.318) 

where 

( ) NmLDkQ

2
:= . (4.319) 
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Note that, analogously to section 4.3, (4.318) has a solution σx, σL, κ, Κ0 >0 only if 

( ) *

ˆˆˆ eee krk ≥ , ( ) *

ˆ xex krk ≥ , ( ) *

ˆ LeL krk ≥  for some sufficiently large 0,,
***

ˆ >Lxe kkk . Hence, by 

solving equations (4.317), we obtain a lower bound on erˆ  and learning rates 
Lx γγ ,  

ere
ˆ

ˆ ≥   ,  
xx γγ ≥   ,  

LL γγ ≥  (4.320) 

where 

EE

E

E

E

E

E

E

E

E

E

PQ

eP

P

P

Q

P

P

P

Q

P k
DDe

λλ

λ

λ

λ

λ

λ

λ

λ

λ

λ *

ˆ

2

333
ˆ +














+=  

2

*
2

max,max,2

ˆ 2

3

4

3

4

31

















+













+=

EEE P

x
x

P

x

Pe
x

k

r λ
θ

λ
θ

λ
γ  

2

*
2

max,max,2

ˆ 2

3

4

3

4

31

















+













+=

EEE P

L
L

P

L

Pe
L

k

r λ
λ

λ
λ

λ
γ  

(4.321) 

and the system states are ultimately bounded if erˆ  simultaneously fulfills (4.320) and 

(4.287) for an assumed er  and the learning rates are chosen sufficiently large. The 

result of part 1 is summarized in the following.  
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Lemma 4.2 MRAC Variant 2 – Part 1 

Consider: 
• stable reference dynamics (4.56) and state predictor (4.272) 
• plant dynamics in Byrnes-Isidori normal form (4.266), subjected to linearizing state 

feedback (4.267) with pseudo control (4.277), adaptive term (4.122), error feedback 
(4.278) and predictor based pseudo control (4.273) 

• parameterizations (4.107) – (4.110) for state dependent uncertainty, (4.111) or (4.114) for 
affine control effectiveness together with (4.184) 

• parameter-estimation-errors xΘ
~

, 
LΛ

~
, defined in (4.124), (4.112) 

• update law (4.294) using  
o symm. pos. def. solution PE of (4.292) for some symm. pos. def. QE 

o positive learning rates γx, γL  

o projection operator with parameters εx, εL>0, θx,max, λL,max>0 and symmetric 

positive definite weighting matrices Γx, ΓL 

o switching σ-modification with modification gains σx,σx>0 and MMQ modification 

with modification gain κ>0 and N filters according to (4.296) 

• Sets: 
drnr ��� ∈∈∈ − DDB ,, ηζ  for some 0>ζ  

The prediction error (4.276) and xΘ
~

, 
LΛ

~
 are uniformly ultimately bounded, if 

• assumption D is fulfilled for some θx, λL, D >0 and θx,max, λL,max defined by (4.133), (4.135) 

• (η,uN,d)∈Dη×U×D for all t≥t0 

• assumption C is fulfilled for some L>0  

• the reference model state is bounded according to (4.284) for some 0>Rζ  

• 
erˆ

 simultaneously satisfies  

o ere
ˆ

ˆ ≥ , according to (4.320) where ê  is defined in (4.321) with ***
ˆ ,, Lxe kkk  such that 

inequalities (4.318) are solved for 0,,, 0 >KLx κσσ , and 

o ζζ ≤++ Ree rrˆ  according to (4.287)  – for some re>0 such that er≤
2

e  holds 

for the prediction-tracking error (4.274)  
• the learning rates are chosen such that 

LLxx γγγγ ≥≥ ,  according to (4.320) where 
Lx

γγ ,  

are defined in (4.321) 

• initial conditions: ( ) et ˆ20
ˆ δ≤e , ( ) xx

x

t δ≤
Γ

Θ 0

~
, ( ) L

T

L
L

t δ≤
Γ

Λ 0

~
 

o [ ] [ ] [ ]LLxxee ρδρδρδ ,0,,0,,0 ˆˆ ∈∈∈  

o Lxe ρρρ ,,ˆ  defined in (4.314) 

such that 

• ( ) 0ˆ2
ˆ ttrt e ≥≤    all for   e  and ( ) ( )eeee bTttbt ˆˆˆ0ˆ2

,ˆ δ+≥≤    all  for   e  

• ( ) ( ) 0ˆˆ

~
,

~
ttrtrt ePLLePxx E

L
E

x

≥≤≤    all  for   λγλγ
ΓΓ

ΛΘ  

• ( ) ( )xxxxx bTttbt
x

δ,
~

0 +≥≤    all  for   
Γ

Θ  , ( ) ( )LLLL

T

L bTttbt
L

δ,
~

0 +≥≤    all  for   
Γ

Λ  

where 

• 21212

ˆ1111

1

ˆ ,,, LLxxePLLxxPe EE
bbb µγµγµλννγνγνλ −−−

++====  , 
Lxe µµµ ,,ˆ

 defined in (4.315) 
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Part 2: Nonlinear-in-Control Analysis 

In the second part, we will prove boundedness of the prediction-tracking error, 

subjected to (4.275) and the state of the NIC algorithm. Using results of section 4.5, the 

NIC algorithm is designed as a gradient system. Therefore recall that we want to 

minimize  

( ) *
,,ˆ:ˆ wuηζgg −=∆ N  (4.322) 

by variation of Nu , where 

( ) ( )[ ] ( )[ ]ηζφKνIηζBηζBw ,ˆ,ˆ,ˆ
1

* T

x

T −+=
−

 

(4.323) 

is the desired virtual control, obtained from linearizing state feedback (4.267) and 

written in terms of parameterization (4.107). According to equation (4.249) in section 

4.5, the NIC algorithm is designed as a gradient system of the form 

( ) ( ) ( )[ ]ηζνwduηζguηζJu ,,,,,ˆ,, *−−= NN

T

uN
ɺε

 

(4.324) 

where ε>0 is a small parameter, determining the tuning speed of the NIC design and  

Ju( · ) denotes the map Jacobian w.r.t. uN. . 

It is intuitively clear that we have to require a minimum control authority that is 

achieved by the nonaffine controls for the NIC algorithm to work properly. Therefore, 

let U be the set of achievable nonaffine controls, uN∈U. Then, by ĝ(ζ,η,uN,d), we obtain 

a set of attainable virtual controls ŵ (equation (4.264)). Moreover, for any fixed ( )iii dηζ ,,

, we obtain a different set of virtual controls Vi, attainable for uN∈U. Assuming that 

plant states and external disturbances are restricted to bounded sets, 

( ) DDB ××∈ ηζ
dηζ ,, . Then we obtain a minimum achievable virtual control set, which 

actually equals the intersection  

∩
i

iVV =  

for any ( ) DDB ××∈ ηζiii dηζ ,, . In other words, for every ( ) DDB ××∈ ηζ
dηζ ,, , and 

every ŵ∈V, there is some uN∈U such that ĝ(ζ,η,uN,d)=w. It is further desirable that the 

origin is contained in V since we want to be able that the nonaffine controls do not 

have any effect onto the dynamic and a minimum control authority of the virtual 

controls means that there is a closed ball vB  around the origin with a sufficiently small 

radius 0>v  which is contained in V. Moreover, notice that the NIC algorithm 

approximates uN, which implies that there is a deviation between the ideal value *

Nu  

and uN. Therefore, if we have our desired virtual controls restricted to vB  it is necessary 

that a ball around *

Nu  with a sufficiently small radius still u  belongs to U such that also 
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uN belongs to U for small deviations. These considerations are summarized in the 

following. 

Assumption E: Minimum authority of nonaffine controls 

Consider the nonlinear control map (4.264) m�→××× DUDB ηζ:ĝ , where 

• m�⊂U , 
rn−⊂ �ηD , d�⊂D . 

• m

v �⊂B (closed ball around the origin with radius 0>ν ) 

• r�⊂
ζ

B (closed ball around the origin with radius 0>ζ ),  

Then, for every vB∈ŵ  and ( ) DDB ××∈ ηζ
dηζ ,, , there exists U∈Nu  and a closed 

ball ( )Nru uB  around uN with radius ru (uniformly for all uN) such that 

• ĝ(ζ,η,uN,d)=w 

• ( ) UB ⊂Nru u  

For the NIC algorithm, the inverse of ĝ(ζ,η,uN,d) w.r.t. uN in (4.269) has to exists, i.e. a 

unique uN∈U satisfies (4.264) for every w∈V and ( ) DDB ××∈ ηζ
dηζ ,, . As explained in 

the introduction to section 4.5, the gradient system (4.324) together with dynamics of 

prediction-tracking error (4.275) are in the form a SP model, where (4.324) inherits the 

role of the fast dynamics. Thikonov’s theorem requires exponential stability of the 

boundary layer dynamics and Theorem 4.5 provides sufficient conditions for existence 

of a unique inverse and exponential stability of the boundary layer dynamics. Thus, 

according to Theorem 4.5, the following will be assumed for the nonlinear control map 

(4.91). 

Assumption F:  Sufficient conditions for existence of an inverse of the nonlinear 

control map and exponential stability of the SP boundary layer 

system 

Consider the nonlinear control map (4.264). Further, for ( ) DDB ××∈ ηζ
dηζ ,, , 

U∈2,1, ,, NNN uuu , U convex, let 

• ( ) ( )

N

N
Nu

u

duηζg
duηζJ

∂

∂
=

,,,ˆ
,,,  

• ( ) ( ) ( )( )duηζJduηζJduηζJ ,,,,,,21,,,, N

T

uNuNsu +=  

• ( ) ( )( )∫ −+=
1

0
1,2,1,2,1, ,,,,,, dss NNNuNN uuuηζJduuηζP  

The following holds: 

1. : 0k
uJ ≥σ  for all , , ,Nζ η u d  and some 00 >k  

2. either 

a. 1kP ≥σ  or 
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b. ( )duηζJ ,,,, Nsu  positive or negative definite, such that  

( )[ ] 1, ,,, kNsui ≥duηζJλ  or ( )[ ] 1, ,,, kNsui −≤duηζJλ  

respectively for all  mi ,,1…=  

for all , , ,Nζ η u d  and some 01 >k  

3. 2kP ≤σ  for all , , ,Nζ η u d  and some 12 kk ≥ : 

Summing up, due to assumptions E and F, we have a minimum authority for the virtual 

controls, the nonlinear control map is uniquely invertible and the boundary layer 

system is exponentially stable. Before starting Lyapunov analysis, we transform (4.324) 

to an error equation, the error in the nonaffine controls is defined as 

*~
NNN uuu −= . (4.325) 

and we obtain the error dynamics for the nonaffine controls from (4.324). 

( ) ( ) ( )[ ] *** ,,,~,,,,~
NNNN

T

uN uηζνwduuηζguηζJu ɺɺ εε −−+−=
 

(4.326) 

A Lyapunov function candidate is given by  

( ) ( )[ ] ( )[ ]****

2 ,~,,ˆ,~,,ˆ~, wduuηζgwduuηζgePeue −+−++= NN

T

NNR

T

NV  (4.327) 

where PR is the symmetric positive definite solution of  

RRRR

T

R QAPPA −=+  (4.328) 

for symmetric positive definite QR. Note that the second term in (4.327) is indeed 

positive for 0~ ≠Nu  if assumption F holds. The time derivative is 

( )[ ] ( )[ ]****

2 ,~,,ˆ,~,,ˆ2 wduuηζgwduuηζgePeePe −+−+++= NN

T

NNR

T

R

T

dt

d
V ɺɺɺ . 

Before continuing, take a closer look the time derivative of the nonlinear control map. It 

depends on the external, internal plant states, the nonaffine controls and the external 

disturbances. If we assume constant disturbances, we obtain 

( )[ ]

( ) ( ) ( ) ****

**

,~,,,~,,,~,,

,~,,ˆ

wuduuηζJηduuηζJζduuηζJ

wduuηζg

ɺɺɺɺ −+++++

=−+

NNNuNNNN

NN
dt

d

ηζ

 

(4.329) 

where  

( ) ( )
ζ

duηζg
duηζJ

∂

∂
=

,,,ˆ
,,, N

Nζ
   ,   ( ) ( )

η
duηζg

duηζJ
∂

∂
=

,,,ˆ
,,, N

Nη
 (4.330) 

denote the Jacobians of the nonlinear control map w.r.t. external and internal states. If 

we insert (4.275) and (4.324), we obtain the time derivative along the system 

trajectories. 
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 (4.331) 

Notice that we have dropped the dependencies on ζ, η, d for readability and the 

indefinite part has been abbreviated as  

( ) ( )[ ] ( ) ( )[ ]******* ~~~ˆ2,,,,~,, wηuuJζuuJePHwuugwηζduuηζ ɺɺɺɺɺɺ −++++−+=+ NNNNR

TT

NNNNp ηζ  
(4.332) 

The remaining terms are quadratic and negative definite. Using Theorem B.20 for the 

first quadratic term, Theorem B.18 and assumption F for the second quadratic term, 

we obtain an upper bound on (4.331).  

( ) ( ) 2

2

**
2

0**2

22
~ˆ

2
,,,,~,, wuugwηζduuηζe −+−++−≤ NNNNQ

k
pV

R ε
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(4.333) 

In a next step, we have to find an upper bound on the indefinite term. At first, by 

application of Cauchy-Schwartz and triangle inequality, we get 

( )
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NNNNR
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NNp
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(4.334) 

As computation of an upper bound on (4.334) is quite elaborate, it is shifted to 

Appendix F.5. However, in order to successfully establish an upper bound on (4.334), 

we need to impose upper bounds on the nonlinear control map ĝ(ζ,η,uN,d) (equation 
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(4.264)), the scalar control effectiveness b(ζ,η) (equation (4.184)) and the state 

dependent regressor  ϕ(ζ,η) (equation (4.107)) as well as on their partial derivatives. 

Assumption G: Upper bound on control map Jacobians of w.r.t. plant states 

Consider the nonlinear control map (4.264). For ( ) DDB ××∈ ηζ
dηζ ,, , U∈Nu , 

U convex, let 

• Jacobi matrix w.r.t. ζ : ( ) ( )
ζ

duηζg
duηζJ

∂

∂
=

,,,ˆ
,,, N

Nζ  

• Jacobi matrix w.r.t. η : ( ) ( )
η

duηζg
duηζJ

∂

∂
=

,,,ˆ
,,, N

Nη
 

The following bounds hold for some 0, >ηζ MM  

• ( ) ζζ MN ≤
2

,,, duηζJ  

• ( ) ηη MN ≤
2

,,, duηζJ  

 

Assumption H: Upper bound on the state dependent regressor 

For ( ) ηζ DB ×∈ηζ, , the state dependent regressor ( )ηζφ ,  and its Jacobians are 

bounded by some 0,, >ηζ FFF  such that 

( ) F≤
2

,ηζφ . (4.335) 

( )
ζF≤

∂

∂

2

,

ζ

ηζφ
   ,   

( )
ηF≤

∂

∂

2

,

η

ηζφ
. (4.336) 

 

Assumption I: Upper bound on the control effectiveness factor and its Jacobians 

For every ( ) ηζ DB ×∈ηζ, , the control effectiveness factor ( )ηζ,b  and its 

Jacobians are bounded by some 0,, >ηζ bbb  such that 

( ) bb ≤ηζ, . (4.337) 

( )
ζb

b
≤

∂

∂

2

,

ζ

ηζ
   ,   

( )
ηb

b
≤

∂

∂

2

,

η

ηζ
 (4.338) 

Additionally, we also need to assume bounds on the internal dynamics (4.90). 

 

Assumption J: Upper bound on ηɺ  

Consider the internal dynamics 

( ) ( ) ( )uηζPduηζqη ,,,, += Ntɺ . 

For every ( ) DDB ××∈ ηζdηζ ,, , U∈Nu   and some 0, >qp  

( ) pN ≤
2

,,, duηζP    ,   ( ) qN ≤
2

,,, duηζq  (4.339) 

  



 Chapter 4 
Background on Control Theory 

155 

With results (F.41), (F.42), (F.57), (F.60), (F.93) of Appendix F.5, an upper bound on 

(4.334) is given by 

( )

( )
( )[ ] .~ˆˆˆ2
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,,,,~,,

2000
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2ˆ

2
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32 Neeeee
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k

p

R

ueee

ue

ue

wηζduuηζ

ηζηζ

ζ

λ

++++++++

+++

≤+ ɺɺɺ

 (4.340) 

where the constants Ci, Yi, Zi, k4 are defined in equations (F.53), (F.56), (F.59), (F.94), in 

Appendix F.5. We also have used ζ , which defines the valid domain ζ
B  for the 

external plant states in assumptions D – I and a bound on the time derivative of the 

exogenous input Cyɺ  in (F.82). Note that the terms with equal power of 
2

e  and 
2

~
Nu  

have been sorted together while terms that contain 
2

ê  are collected into constants in 

front of the respective factors, since the current part 2 is concerned with proof of 

boundedness for e and Nu~  while boundedness of ê  is proved in part 1 and is assumed 

a priory for part 2, as explained in the introductory remarks to this section (Figure 4.13). 

Hence, we assume erˆ2
ˆ ≤e , such that inequality (4.287) is satisfied. Moreover, using erˆ , 

we obtain a bound on (4.340).  
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Using results (4.341) and (F.41) in the Lyapunov function derivative (4.333) yields 
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(4.343) 

As ε can be chosen arbitrarily small, the coefficient in front of 
2

2Nu  is rendered positive 

by choosing 

( )
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2
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kk
u

=−
ε

 

(4.344) 

for some a1>0, which implies 

( )
.

2
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u
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kk

+
=ε

 (4.345) 

Then, we obtain for (4.343) 

2

2

21222

2

22
~~~2 NuNNPQ DakV

RR
uuuee +−+−≤ λλɺ . (4.346) 
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Next, we split up the quadratic term in ||e||2 into two parts, using a parameter ηe>0. 
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If we complete squares, we get rid of the mixed term. 
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Further, choosing 1a  such that  

( ) 2

2
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1
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R
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P
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− λ
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η
, (4.347) 

for some a2>0, we obtain 
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ɺ . (4.348) 

Analogously, we split up the quadratic term in Nu~  into two parts, using some ηu>0. 

2

2

2

22

2

22

22
~~

1

~

11
NuN

u

N

u

u

e

Q
D

a

b

a
V R uuue +

+
−

+
−

+
−≤

η

η

η

λ
ɺ  

Completing squares twice, we also get rid of the linear term. 
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By assumption E, the nonaffine controls uN belong to U, if the error of the NIC 

algorithm satisfies 

uN r≤
2

~u
 (4.350) 

and the desired virtual controls satisfy 

v≤
2

*w . (4.351) 

Equation (F.96) in F.5 provides an upper bound on *w , which depends on the 

prediction error ê . However, if we assume that erˆ2
ˆ ≤e  holds (Figure 4.13), we obtain 

( ) ( )Fyrw xxe x 2
max,202ˆ22

*

2

* ˆ: KAKCKw +++++=≤ Γλθζ . (4.352) 

From (4.349) two functions can be constructed which depend on only one of the states 

e, Nu~  respectively and whose negative values establish an upper bound on (4.349). 
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(4.353) 

Hence, we have 

( )[ ]
222

~,max NeV ueγ−≤ɺ . (4.354) 

According to notation of Corollary 3.1, the class K functions that bound the Lyapunov 

function candidate (4.327) from below and above, are  
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λβλα
 (4.355) 

where αu, βu  are obtained from assumption F and Lemma B.4. Then, re>0 is chosen 

such that (4.287) is satisfied and, according to Corollary 3.1, 

( ) ( )[ ]uuee rru αα ,min=  (4.356) 

and the radii, determining the sets of admissible initial conditions are  
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=   ,  
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u =ρ . (4.357) 

Then, we need to find µe, µu>0, such that γe, γu are class K functions in the set 
rB \ µB  

(according to Corollary 3.1). These are obtained by setting 

( ) 1Kee =µγ   ,  ( ) 1Kuu =µγ  

for some small K1>0 and solving for µe, µu. 
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Sufficient conditions for ultimate boundedness, according to Corollary 3.1, are µe <ρe 

and µu <ρu, which results in  
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. (4.359) 

Now, we want to fulfill these conditions by choosing a2 sufficiently large. However, 

necessary for existence for such a2, in view of the first condition, is that 

( ) 11 :
12

K
u

K
eP
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R

R =
+

<
ηλ

λ
. (4.360) 

By choosing ε sufficiently small (according to equations (4.344), (4.345), (4.347)), we 

obtain some a2 which fulfills conditions (4.359). The infimum for 2a  is obtained by 
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(4.362) 

Notice that ( )0

2a   depends on the parameters ηe, ηu, K1 and hence there is room for 

optimization. Preferably, we want find the supremum of all ε  that stabilize the system. 

Therefore, insert (4.361) and (4.347) into (4.345) 
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(4.363) 
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and for each ηe, ηu>0 and K1>0  that satisfies (4.360), we obtain some ( )0ε  such that 

the system states are ultimately bounded for all ( )( )1

0
,, Kue ηηεε <  

Moreover, by numerical optimization, (4.364) can be maximized. Let *ε  denote that 

maximal ( )0ε  and *

1

**
,, Kue ηη  the set of optimal parameters, then the system states are 

ultimately bounded for all 

( )( )*

1

**0*
,, Kee ηηεεε =< . (4.364) 

Thereby, the optimization problem is summarized as follows: 

• maximize (4.363) by variation of  
1,, Kue ηη  

• subjected to ηe, ηu>0, 0<K1< 1K   

The results for part 2 are summarized in the following. 

Lemma 4.3 MRAC Variant 2 – Part 2 

Consider: 
• stable reference dynamics (4.56) and state predictor (4.272) 

• nonaffine control map ĝ(ζ,η,uN,d) in (4.264) 

• parameterizations (4.107) – (4.110), (4.124) for state dependent uncertainty, (4.111) or (4.114) 
for affine control effectiveness together with (4.184) 

• desired virtual control w
*
 in (4.323) with pseudo control (4.277) consisting of adaptive term 

(4.122), error feedback (4.278) and predictor based pseudo control (4.273) and the associated 

nonaffine control 
*

Nu  according to (4.268). 

• update law (4.294) using  
o symm. pos. def. solution PE of (4.292) for some symm. pos. def. QE 

o positive learning rates γx, γL 

o projection operator with parameters εx, εL>0, θx,max, θL,max>0 and symmetric positive 

definite weighting matrices Γx, ΓL  

o switching σ-modification with modification gains σx, σL>0 and MMQ modification with 

modification gain κ>0 and N filters according to (4.296) 

• symm. pos. def. solution PR of (4.328) for some symm. pos. def. QR 

• nonlinear-in-control update (4.324) using time scale separating parameter ε 

• Sets: drnr ��� ∈∈∈ − DDB ,, ηζ
 for some 0>ζ  

The prediction-tracking error e in (4.275) and nonaffine control tuning error 
Nu~  in (4.325) are uniformly 

ultimately bounded, if 

• assumption C on the L1 bound of the MMQ filters is fulfilled for some L>0 

• assumption D is fulfilled for some θx, θL, D>0  and θx,max, θL,max are defined by (4.133), (4.135) 

• (η,d)∈ Dη×D for all t≥t0 

• assumption E is fulfilled for some minimum nonaffine control effectiveness for 0>v , ru>0 

• assumption F on the Jacobian of (4.264) w.r.t. to uN is fulfilled for some k0, k1>0 and k2≥k1 

• assumption G on the Jacobians of (4.91) w.r.t. to external and internal plant states is fulfilled 

for some Mζ, Mη>0 

• assumption H on ϕ(ζ,η) is fulfilled for some F, Fζ, Fη>0  

• assumption I on b(ζ,η) is fulfilled for some b, bζ, bη>0  

• assumption J for bounds on internal dynamics is fulfilled for some 0, >qp  

• the reference model state is bounded according to (4.284) for some 0>Rζ  

• the exogenous input and its time derivative are bounded according to (4.285) and (F.82) by 
some 0, >dyy  
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• re>0 fulfills (4.287): ζζ ≤++ Ree rrˆ
 – for some 0ˆ >er  such that 

erˆ2
ˆ ≤e  holds for the prediction 

error (4.276) 

• w
*
<ν  according to (4.352) and (4.351) 

• ε in (4.324) satisfies (4.363), ηe, ηu>0 0<K1< 1K according to (4.360) 

• initial conditions: ( ) et δ≤
20e , ( ) uN t δ≤

20
~u   

where [ ] [ ]uuee ρδρδ ,0,,0 ∈∈   ,  ρe, ρu defined in (4.357) 

such that 

• ( ) 02
   allfor    ttrt e ≥≤e  and ( ) ( )eeee bTttbt δ,   allfor    02

+≥≤e  

• ( ) 02
   allfor    ~ ttrt uN ≥≤u  and ( ) ( )uuuuN bTttbt δ,   allfor    ~

02
+≥≤u  

where 

• 2

2

2

22

1

12

1
,, uePuPe kkbb

RR
µµλνννλ +=== −−   ,  

ue µµ ,  defined in (4.358) 

• ( ) ( ) ( )[ ]2

21

1 21,0max, νδλδ −⋅+=
−

uKbT ePeee R

  ,  ( ) ( ) ( )[ ]2

2

2

1

1 21,0max, νδδ −⋅+=
−

ukKbT uuuu
 

4.6.3 Conclusions 

Lemma 4.2 assures boundedness of the prediction error er̂2
ˆ ≤e  where erˆ  has a lower 

bound ê , defined by (4.320). Additionally erˆ  has to fulfill (4.287) which imposes an 

upper bound, which has to be large enough such that the lower bound is fulfilled 

simultaneously. This requires, besides a sufficiently large ζ  and sufficiently small 
Rζ , a 

sufficiently small 
er . Fortunately, Lemma 4.3 does not require a lower bound on re but 

can be made arbitrarily small by a sufficiently small ε. Hence, if ê  in (4.320) satisfies 

ζζ <+ Rê
 (4.365) 

then, according to (4.320), we choose ere
ˆ

ˆ =  and there is always a re>0 that fulfills 

(4.287). 

If the bound w* on the desired virtual control satisfies (4.351), according to assumption 

E, then uN belongs to U, if uN r≤
2

~u , which is satisfied for a sufficiently small ε. 

Summarizing the results so far, the crucial conditions of the complete adaptive system 

are that 

• ê  of equation (4.320) satisfies (4.365) and  

• *
w  of equation (4.352) satisfies (4.351).  

If this is the case, there are re, ru>0 that guarantee ultimate boundedness of all system 

states. The result is summarized in the following. 
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Theorem 4.6 MRAC Variant 2 

Consider: 

• stable reference dynamics (4.56) and state predictor (4.272) 

• nonaffine control map ĝ(ζ,η,uN,d) in (4.264) 

• parameterizations (4.107) – (4.110) for state dependent uncertainty, (4.111) or (4.114) for affine 
control effectiveness together with (4.184) 

• plant dynamics in Byrnes-Isidori normal form (4.266), subjected to linearizing state feedback 
(4.267) with pseudo control (4.277), adaptive term (4.122), error feedback (4.278) and 
predictor based pseudo control (4.273). 

• parameter-estimation-errors xΘ
~

, 
LΛ

~
, defined in (4.124), (4.112) 

• update law (4.294) using  
o symm. pos. def. solution PE of (4.292) for some symm. pos. def. QE 

o positive learning rates γx, γL 

o projection operator with parameters εx,εL>0, θx,max, θL,max>0 and symmetric positive 

definite weighting matrices Γx, ΓL 

o switching σ-modification with modification gains σx,σL>0 and MMQ modification with 

modification gain κ>0 and N filters according to (4.296) 

• nonlinear-in-control update (4.324) using time scale separating parameter ε 
• solution PR of (4.328) for some positive definite symmetric QR, 

• Sets: drnr ��� ∈∈∈ − DDB ,, ηζ
 for some 0>ζ  

The prediction-tracking error e in (4.275), prediction error ê  in (4.276), parameter-estimation-errors 

xΘ
~

, 
LΛ

~
 and NIC tuning error Nu~  in (4.325) are uniformly ultimately bounded, if 

• assumption C on the L1 bound of the MMQ filters is fulfilled for some L>0 

• assumption D is fulfilled for some θx, θL, D>0 and θx,max, θL,max are defined by (4.133), (4.135) 

• (η,d)∈ Dη×D for all t≥t0 

• assumption E is fulfilled for some minimum nonaffine control effectiveness for 0>v , ru>0 

• assumption F on the Jacobian of (4.264) w.r.t. to uN is fulfilled for some k0, k1>0 and k2≥k1 

• assumption G on the Jacobians of (4.91) w.r.t. to external and internal plant states is fulfilled 

for some Mζ, Mη>0 

• assumption H on ϕ(ζ,η) is fulfilled for some F, Fζ, Fη>0  

• assumption I on b(ζ,η) is fulfilled for some b, bζ, bη>0  

• assumption J for bounds on internal dynamics is fulfilled for some 0, >qp  

• the reference model state is bounded according to (4.284) for some 0>Rζ  

• the exogenous input and its time derivative are bounded according to (4.285) and (F.82) by 
some 0, >dyy  

• 0,ˆ >ee rr  satisfy ζζ ≤++ Ree rrˆ
 according to (4.287) and 

erˆ
 additionally satisfies ere

ˆ
ˆ ≥  

according to (4.320) – where  ê  is defined in (4.321) and ***
ˆ ,, Lxe kkk  such that inequalities 

(4.318) are solved for σx,σL,κ, Κ0>0 

• the learning rates are chosen such that 
LLxx γγγγ ≥≥ ,  according to (4.320) where 

Lx
γγ ,  

are defined is (4.321) 

• w
*
<ν  according to (4.352) and (4.351) 

• ε in (4.324) satisfies (4.363), ηe, ηu>0, 0<K1< 1K according to (4.360) 

• initial conditions: ( ) et δ≤
20e , ( ) et ˆ20

ˆ δ≤e , ( ) xx
x

t δ≤
Γ

Θ 0

~ , ( ) LL
L

t δ≤
Γ

Λ 0

~ ( ) uN t δ≤
20

~u   

o [ ] [ ] [ ] [ ] [ ]uuLLxxeeee ρδρδρδρδρδ ,0,,0,,0,,0,,0 ˆˆ ∈∈∈∈∈  
uLxee ρρρρρ ,,,, ˆ

 defined in (4.314), (4.357) 
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such that 

• ( ) 02
ttrt e ≥≤    all  for   e  and ( ) ( )eeee bTttbt δ,02

+≥≤    all  for   e  

• ( ) 0ˆ2
ˆ ttrt e ≥≤    all  for   e  and ( ) ( )eeee bTttbt ˆˆˆ0ˆ2

,ˆ δ+≥≤    all  for   e  

• ( ) ( ) 0ˆ 
~

,
~

ttrtt ePLx E
Lx

≥≤    all  for   λ
ΓΓ

ΛΘ  

• ( ) ( )xxxxx bTttbt
x

δ,
~

0 +≥≤    all  for   
Γ

Θ  , ( ) ( )LLLLL bTttbt
L

δ,
~

0 +≥≤    all  for   
Γ

Λ  

• ( ) 02

~ ttrt uN ≥≤    all  for   u  and ( ) ( )uuuuN bTttbt δ,~
02

+≥≤    all  for   u  

where 

• 
2
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1111

1
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1
,,,, ννγνγνλνλ −−−

===== kbbbbb uLLxxPePe ER
 

• 2

2

2

2

21212

ˆ1 , uePLLxxeP k
RE

µµλνµγµγµλν +=++= −−  

• ,,,,, ˆ uLxee µµµµµ  defined in (4.315), (4.358) 

• ( ) ( ) ( )[ ]2

21

1 21,0max, νδλδ −⋅+=
−

uKbT ePeee R

  ,  ( ) ( )[ ]1

2
ˆ

2
ˆ

1

0ˆˆˆ 43,0max, νλδλδ −⋅+= −
ePePeee rKbT

EE

 

( ) ( )[ ]1

2

ˆ

21

0 43,0max, νλδδ −⋅+= −
ePxxxx rKbT

E

  ,  ( ) ( )[ ]1
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ˆ

21

0 43,0max, νλδδ −⋅+= −
ePLLLL rKbT

E
 

( ) ( ) ( )[ ]2

2

2

1

1 21,0max, νδδ −⋅+=
−

ukKbT uuuu
 

4.7 Singular Value Update Algorithm 

The absolute scaling for the decoupling matrix in equation (4.111) requires a restriction 

of the adaptive mm

L

×∈�Λ̂  such that the pseudoinverse of the estimated decoupling 

matrix ( )ηζB ,ˆ  exists. In adaptive control, this is commonly assured by restricting LΛ̂  to 

diagonal matrices with positive diagonal entries, although this implies a considerable 

limitation of the adaptation capabilities as explained in section 4.2.2. Within the MRAC 

scheme, adaptation of LΛ̂  is accomplished via a differential equation of the form 

( )tL FΛ =
ɺ̂

 

(4.366) 

where F(t) is obtained from the update law, e.g. (4.131). The diagonal constraint can be 

easily achieved by an appropriate choice of initial conditions, setting the off-diagonal 

elements of F(t) to zero and limiting the diagonal entries of ( )tLΛ̂  to positive values. 

However, if we drop the diagonal constraint, there no such straightforward way to 

prevent LΛ̂  from becoming singular, but requires for consideration of its singular value 

decomposition. 

4.7.1 Algorithm Description 

The algorithm, introduced in the following, transforms the update (4.366) to an update 

in terms of its singular value decomposition (SVD), which offers the possibility to limit 

the singular values away from zero, avoiding singularity. Therefore let 

T

L UΣVΛ =ˆ
 

(4.366) 
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be the SVD, where mm×∈�U , mm×∈�V  are orthonormal matrices, i.e. its columns are 

pairwise orthogonal and of Euclidean unity length, which is equivalent to the condition 

IVVVV == TT   ,  IUUUU == TT , (4.367) 

and  

[ ]σσ ⋯diag=Σ  

is a diagonal matrix containing the singular values. The orthonormal columns of V, U  

are denoted as vi and ui respectively. Of course, all terms depend on time, but the 

dependent variable is dropped for readability. Using product rule, the time derivative of 

(4.366) is  

TTT

L UΣVUΣVUΣVΛ ɺɺɺɺ
++=ˆ  

and with (4.366) we obtain 

UUΣΣVVYΣ TT ɺɺɺ −−=  (4.368) 

where we have defined 

FUVY T= . (4.369) 

Since the columns of both, V and U are an orthogonal basis of the whole m�  

respectively, the time derivatives V̇ and U̇ can be parameterized in terms of the former 

VVCV =ɺ   ,  uUCU =ɺ  (4.370) 

for some mm

uV

×∈�CC ,  whose values will be determined in the following. The time 

derivatives of V and U have to preserve orthogonality constraint (4.367). Therefore 

( ) ( ) ( ) 0VVVVVVIVV =+=⇔== ɺɺ TTTT

dt

d
consttt  

( ) ( ) ( ) 0UUUUUUIUU =+=⇔== ɺɺ TTTT

dt

d
consttt  

(4.371) 

and with (4.367), (4.370), we obtain 

00 =+=+ U

TTT

UV

TTT

V UCUUUCVCVVVC  

U

T

UV

T

V CCCC −=−=  (4.372) 

i.e. the orthogonality constraint is preserved, if CV and CU are skew symmetric. Hence, 

for each, CV and CU, we have ( )121 −mm  parameters to be determined. Therefore, we 

insert parameterization (4.370) and result (4.372) into (4.368). 

UUCΣΣVCVYΣ TT

UV

T −−=ɺ  

T

UV CΣΣCYΣ −−=ɺ  (4.373) 

Notice that orthogonal property (4.367) has been used. Now, since Σ  is a diagonal 

matrix by definition, all in all ( )1−mm  independent parameters rcVc , , rcUc ,  in row r and 
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column c of 
VC  and 

UC  are determined uniquely by the constraint that the off-diagonal 

elements of Σɺ  are set to zero. Therefore, evaluating elements (r,c) and (c,r) in (4.373), 

we get 

crrcUccrVrrccrUrrcVc yccycc =+=+ ,,,, σσσσ . 

Moreover, from (4.372), we have crCrcV cc ,, −= , rcUcrU cc ,, −=  and hence 

crrcUcrcVrrcrcUrrcVc yccycc =+−=− ,,,, σσσσ  

which is conveniently written in matrix-vector notation 









=







⋅

cr

rc

rcU

rcV

rc
y

y

c

c

,

,
A

 (4.374) 

where 










−

−
=

cr

rc

rc σσ

σσ
A

 

(4.375) 

and, according to (4.369), 

c

T

rrcy Fuv=   ,  r

T

ccry Fuv= . (4.376) 

Hence evaluation of elements (r,c) and (c,r) in (4.373) results in a coupled 2x2 system of 

equations for the elements cV,rc and cU,rc  which has a unique solution if σr≠ σc. 

Therefore, all parameters are uniquely determined if all singular values are pairwise 

different and the singular value decomposition update is given by (4.370), (4.373). 

However, if σr=σc=σ, the matrix (4.375) is singular 










−

−
=

11

11
σrcA  (4.377) 

and (4.374) has a solution only if its right hand side is in the column span of 
rcA , i.e. 

yrc=-ycr or, using (4.376),  

0=+ c

TT

rc

T

r vFuFuv . (4.378) 

Moreover, if there is a group of more than two equal singular values, equation (4.378) 

has to be fulfilled for all SVs of that group. Assume that the thg  of those groups 

contains gN  SVs, ggg
gN

σσσ ~
1

===… , then (4.378) has to hold for every set vj ,vk ,uj, uk, 

j,k=1,…,Ng, j≠k. If we stack the output- and input directions, associated with that group 

into matrices 

[ ]
gNg gg vvV ⋯

1
~ =σ   ,  [ ]

gNg gg uuU ⋯
1

~ =σ , 

equation (4.378) can also be written in matrix-vector notation. 
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[ ]
gNgggg gg

TTT σσσσσσ ɺ⋯ɺ
1

diag
!

~~~~ =+ VFUFUV  
(4.379) 

Thereby the off-diagonal elements are associated with the case j≠k and should thus 

evaluate to zero, while the diagonal element are associated with j=k  which are allowed 

to have some arbitrary values. 

Since F is fixed, the only possibility for a solution to (4.379) lies in a suitable choice for 

output- and input directions 
gσ~V , 

gσ~U . Fortunately, for the case of equal singular 

values, the input and output directions are not unique as will be explained in the 

following. 

Interim Consideration 

We will explain, at first, the non-uniqueness of input/output directions in case of 

equal singular values intuitively for 2x2 matrices. It is well-known that SVD 

decomposes the output and input space of a matrix into orthogonal directions, 

where each input direction [ ]21 uu  is mapped to the associated output direction 

[ ]21 vv  and the length of the input vector is scaled by the associated singular 

value (Figure 4.14a). Hence a circle in the input space is mapped to an ellipse, 

whose major and minor semiaxes coincide with the orthogonal output 

directions. For equal singular values, the ellipse regenerates to a circle (Figure 

4.14b) and hence there are no distinct orthogonal directions for the semiaxes.  

 

Figure 4.14 Ambiguity of Output- and Input Directions for Equal Singular Values 

In fact, if the orthogonal input directions are rotated about some angle φ , also 

the output directions are rotated about the same angle and thus, also the 

rotated vectors serve as valid input and output directions of the SVD. The new 

output-/input directions are obtained by post-multiplication of the matrix, 

containing the original output-/input directions by a rotation matrix 
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[ ] [ ] 






 −
=

φφ

φφ

cossin

sincos
2121 vvvv   ,  [ ] [ ] 







 −
=

φφ

φφ

cossin

sincos
2121 uuuu  

which is in fact an orthonormal matrix. 

This intuitive result can be generalized to m�  namely if, in case of equal singular 

values, the associated output- and input directions are subjected to a number of 

rotations and/or reflections, then the resulting vectors are still valid output- and 

input directions. A characteristic of SVD is that the matrices of output- and input 

directions V, U are orthonormal. I.e. if we can find another pair of orthonormal 

matrices UV ,  that decompose LΛ̂  in the form of (4.366), then  

T

L UΣVΛ =ˆ
 

(4.380) 

is also a valid SVD. To that end assume, without loss of generality, that the first 

N singular values of LΛ̂  are equal, σ1=…= σN=σ. The associated output- and 

input directions are stacked into matrices 

[ ]NvvV ⋯1=σ   ,  [ ]NuuU ⋯1=σ , (4.381) 

as well as the remaining m-N output- and input directions 

[ ]mN vvV ⋯1

~
+=   ,  [ ]mN uuU ⋯1

~
+= . (4.382) 

Since v1,…,vm and u1,…,um are of unity length and orthogonal to each other, we 

consequently have 

IVV =σσ
T

  ,  IVV =
~~T

  ,  IUU =σσ
T

  ,  IUU =
~~T

 

0VV =
~T

σ   ,  0UU =
~T

σ . 
(4.383) 

With these definitions, the SVD also reads as 

[ ] TT

T

T

L UΣVUV
U

U

Σ0

0I
VVΛ

~~~
~~

~ˆ +=















= σσ

σ
σ σ

σ
 

(4.384) 

where 

[ ]mN σσ ⋯1diag
~

+=Σ . (4.385) 

Moreover, an orthonormal matrix in m�  represents a number of rotations and/or 

reflections ( [Tre09] ). Therefore, let NN ×∈�Q  be an orthonormal matrix, i.e. 

IQQQQ == TT , and rotate/reflect the columns of Vσ, Uσ by Q. 

QVV σσ =   ,  QUU σσ =  (4.386) 

Then, we define modified output- and input direction matrices, which contain 

the rotated/reflected columns 
ii uv , , Ni ,,1…=  of σσ UV ,  instead of Nvv ,,1 … , 

Nuu …,1 . 
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[ ]VVV
~

σ=   ,  [ ]UUU
~

σ=  (4.387) 

The columns of UV ,  are still of unity length and orthogonal to each other. This 

will be shown exemplarily for V  by computing 

[ ] [ ] 







=








=








=








=

I0

0I

VVQVV

VVQQVVQ
VQV

V

VQ
VV

V

V
VV ~~~

~
~

~
~

~ TT

TTTT

T

TT

T

T

T

σ

σσσ
σ

σ
σ

σ  

where we have used (4.383) and the orthonormal property of Q. 

Further, by (4.384), we get 

�
TTTTTT

L UΣVUΣVUVUΣVUQQVΛ
I

=+=+=
~~~~~~ˆ

σσσσ σσ  

and hence, the modified output- and input directions (4.387) are suitable for an 

SVD according to (4.380). 

Using the recent consideration, the output and input direction matrices in (4.379) are 

replaced by modified ones, according to (4.386) and we obtain 

( )
gNgggg

T

g σσ ɺ⋯ɺ
1

diag=QΩQ  
(4.388) 

where we have abbreviated 

gggg

TTT

g σσσσ ~~~~ VFUFUVΩ += . (4.389) 

Ωg is clearly a symmetric matrix and it is well-known, that it has a full system of 

orthogonal eigenvectors forming a complete basis. It is further diagonalizable by a 

similarity transformation of the form (4.388) where the columns of Qg are the orthogonal 

eigenvectors of Ωg. Therefore, in fact (4.379) can be modified by means orthonormal 

transformation of the output- and input direction matrices according to (4.386) such 

that  

( )
gNgggg gg

TTT σσσσσσ ɺ⋯ɺ
1

diag~~~~ =+ VFUUFV . (4.390) 

Consequently (4.378) is satisfied for every pair of output-/input directions 
rr uv ,  and 

cc uv ,  that belong the same singular value and, using columns of 
gσ~V , 

gσ~U , (4.376) is 

now 

c

T

rrcy uFv=   ,  r

T

ccry uFv=  (4.391) 

and 

rccrrc byy :=−= . (4.392) 

Now equation (4.374), using matrix (4.377), 
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−
=
















−

−

1

1

11

11~

,

,

rc

rcU

rcV

g b
c

c
σ  

has an infinite number of solutions, but a good choice is the one, obtained from the 

pseudoinverse, minimizing the Euclidean norm. 

rc

grcU

rcV
b

c

c










−








−

−
=








1

1

11

11

~4

1

,

,

σ
 










−
=








1

1
~2,

,

g

rc

rcU

rcV b

c

c

σ
 

(4.393) 

4.7.2 Implementation Aspects 

Numerical Issue 

The singular values, of course, are functions of time and if two of them approach some 

common value, the matrix (4.377) gets ill conditioned, leading to large values for cV,rc, 

cU,rc. This, in turn, leads to large values for the time derivatives (4.370), (4.373) which 

potentially causes problems to numeric integration. Assume that singular values only 

have a difference of a small ε, σr=σ, σc=σ+ε, then the inverse of (4.377) is 

( ) 








+

+

+

−
=−

σεσ

εσσ

σεε 2

11

rcA  

and hence grows unbounded as ε  goes to zero. In order to circumvent unbounded 

time derivatives, a minimum difference ε  has to be specified such that singular values 

are considered equal if  

εσσ ≤− cr  

(4.394) 

and the solution for cV,rc, cU,rc is obtained from (4.393), after a possible 

rotation/reflection of the associated output- and input directions. This, on the one 

hand, prevents the SVD time derivatives from growing unbounded for bounded F(t) 

but, on the other hand, introduces an artificial error to the algorithm, which deteriorates 

accuracy. 

 

Real-time Capability 

After the matrices CV and CU have been computed, updates for Σ, V, U are obtained for 

the next time step, using some discrete time integration method for (4.370) and (4.373). 

These are, overall, 2
3m  integration steps. Additionally computation of (4.370) requires 

3
2m  multiplications and ( ) 212 mm −  additions, while computation of (4.373) requires 

3
2m  multiplications and ( ) 212 mm −  additions for the computation of Y and extra 2

2m  

additions for summation of the matrices. Overall, we have 
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• 3m
2 integration steps 

• 4m
3
 multiplications 

• (4m-2)m
2 additions 

Fortunately, the off-diagonal entries of Σ  are zero and hence only its m  diagonal 

entries have to be updated. Moreover, due to skew symmetric property of 
VC , 

UC  and 

diagonal property of Σ  the number of computation steps can be further reduced. The 

steps for computation of (4.370) can be reduced to ( ) 212 mm −  multiplications and 

( ) 222 mm −  additions. Further, the diagonal elements of T

UV CΣΣC +  vanish and for 

(4.373), we only have to compute the diagonal entries of Y  which requires ( ) 21 mm +  

multiplications and ( )mm 12 −  additions. Hence, the computational effort can be 

reduced to  

• (2m+1)m integration steps 
• (m-1)m

2 multiplications 
• (3m-4)m

2
-m additions 

A weak point concerning real-time capability is the fact that an eigenvalue 

decomposition of Ω  (equation (4.389)) is needed in case of equal singular values. For 

Ng=2 and Ng=3, there are analytic solutions available, using quadratic or Cardano’s 

formula for solution of the characteristic polynomial. However for Ng>3, the 

eigenvectors have to be computed numerically using QR algorithm ( [Gol85] ) which is 

an iterative algorithm and hence no maximum number of steps (and with it no 

maximum time effort) for computation of the eigenvectors can be guaranteed. 

However, for fixed-wing aircraft application, where the primary – moment producing – 

controls are elevator, aileron and rudder, the real-time problem could be solved using 

Cardano’s formula. 

 

Numerical Correction for Enforcement of Orthonormality  

The orthonormality property is preserved over time if 
UC CC ,  are skew symmetric. 

However, by discrete time integration, small numerical errors would accumulate over 

time, destroying orthonormality. It is therefore necessary to add a numerical correction 

term to V̇ and U̇, which dynamically “pulls” the matrices back to an orthonormal state. 

Therefore, a measure is needed for the deviation from orthogonal property. For 

orthonormal matrices V, U, the expressions 

VVN
T

V =:   ,  UUN
T

U =:  (4.395) 

equal the identity matrix according to (4.367). Hence, every deviation from identity is an 

indication that V is not orthonormal. Therefore take a closer look on a single element 

(i,j) of NV. There we have 
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[ ]
j

T

iijV
vvN = . 

For a perfect orthonormal matrix, we have 1=j

T

i vv  for ji =  since the columns are of 

unity length and 0=i

T

i vv  for ji ≠  since the columns are pairwise orthogonal. Now, if 

some column i  is too long, we have 1>i

T

i vv  and 1<i

T

i vv  if it is too short. 

Furthermore, if vector i  points into direction of vector j , we have 0>j

T

i vv  and if it 

points in the opposite direction, we have 0<j

T

i vv . This motivates a correction of the 

following form 

( )[ ]INCVV −−= VVV kɺ   ,  ( )[ ]INCUU −−= UUU kɺ  (4.396) 

for some 0, >UV kk . Due to the properties discussed recently, the additional expression 

modifies the time derivatives in a way that too short columns get longer, too long 

columns get shorter and vectors that are not orthogonal and point into the direction of 

some other column are rotated such that they become orthogonal again. 

 

Structural Program Flowchart 

For implementation on a computer, the continuous-time algorithm as described above 

has to be discretized and the algorithm is evaluated only at discrete time instants 
kt , 

⋯,1,0=k . As the off-diagonal elements of Σ  are zero anyway, a vector 

( ) ( ) ( )( )kmkk

T
ttt σσ ⋯1=σ  containing the SVs instead of the full matrix will be used. 

Further ( ) ( ) ( )[ ]kmkk ttt vvV ⋯1= , the matrix of output directions and 

( ) ( ) ( )[ ]kmkk ttt uuU ⋯1= , the matrix of input directions are introduced as states. As 

depicted in Figure 4.15, the whole algorithm is divided into an integration that updates 

the state and a step function that computes the time derivatives. Notice that discrete 

time integration methods without direct feed through – such as backward Euler 

integration – should be used, since an algebraic loop occurs otherwise, which has to 

be solved iteratively. 

It is known from the derivation of the continuous-time algorithm that, in case of equal 

SVs, the matrices of output/-input directions have to be such that they satisfy condition 

(4.378). This requires some special mechanism for reset of the states as will be 

explained in the following. Assume that, there are equal SVs and columns in ( )ktV , 

( )ktU  at some time instant 
kt  that have to be rotated/reflected. Then, the states need 

to be reset to the transformed output-/input directions at the current time instant 
kt . 

Classical discrete time integrators (Figure 4.15a) store the latest state internally and 

use them for computation of the subsequent time instant. This eliminates the 

possibility to reset the (stored) state in the current time instant, since it results in an 
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algebraic loop (marked with red dashed lines). The modified algorithm, depicted in 

Figure 4.15b, does not store the state internally, but receives it from extern. This 

enables the SVD step function to reset the states immediately, by setting some reset 

flag r , which routes the rotated output/-input directions ( )ktV , ( )ktU  of the SVD step 

function to the integration algorithm that, now, computes the subsequent time step 

based on the rotated states. 

 

Figure 4.15 SVD Integration 

The program structure of the SVD step function is shown in Table 4.1. It receives the 

SV vector, output-/ input matrices and the desired time derivative ( )ktF  of the current 

time instant 
kt  and additional parameters ε , σ , on the one hand, the limit distance for 

a pair of SVs such that they are considered equal according to (4.394) and, on the 

other hand, a lower bound the SVs are not allowed to underrun. Besides state 

derivatives and rotated output-/input directions, the SVD step function also provides a 

modified SV vector ( )kM tσ , which is necessary for the limitation of the SVs to their 

lower bound σ  and a flag r , which triggers a state reset according to Figure 4.15b. 

The step function itself contains three main subroutines (Table 4.2, Table 4.4, Table 

4.5), the actual computation of the time derivatives and the limitation of the SVs to their 

lower bound. In order to conduct the rotation/reflection of the output/-input directions 

in a well-ordered manner, it is suitable to identify groups of equal SVs and sort the 

SVD, such that equal SVs are grouped together. This is done by subroutine 1. In 

subroutine 2, on the one hand, the transformation of output-/input directions is applied 

to those groups that contain at least two SVs and, on the other hand, the SVD 

grouping of subroutine 1 is reversed. Subroutine 3 computes the matrices 
VC , 

UC  

which enables the computation of the state derivative. Finally, the SVs that underrun σ  

during integration are corrected to the lower bound and the associated state 

derivatives ( )ktσɺ  are limited to positive values.  
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Subroutine 1 reorders the SVs ( )ki tσ , and the output-/input directions ( )ki tv , ( )ki tu  

within ( )ktV , ( )ktU  such that equal SVs are grouped together in ascending order. The 

minimum of the remaining SVs that have not been assigned to a group is determined 

by subroutine 1a (Table 4.3) in each iteration. Additionally subroutine 1 computes the 

number of identified groups G  and a vector M
T
=(M1,…,Mm) that contains the 

accumulated numbers of SVs in each group (the gth element contains the accumulated 

number of SVs from the first up to the gth group and Mg=0 for g>G). The sorted SVD is 

of the following form 

( )GSS

T

S ,1,diag σσσ ⋯= .

( ) ( ) ( )[ ]kkkS ttt
Gσσ ~~

1
VVV ⋯= , ( ) ( ) ( )[ ]kkkS ttt

Gσσ ~~
1

UUU ⋯= (4.397) 

Thereby 

( ) ( ) ( )1,ones~
gkgkg Ntt σ=σ

is a subpart that contains the SVs of group g 

( ) ( ) ( )[ ]kgkgk ttt
gNg

vvV ⋯
1

~ =σ  , ( ) ( ) ( )[ ]kgkgk ttt
gNg

uuU ⋯
1

~ =σ
(4.398) 

are matrices whose columns are stacked with output-/input directions associated with 

the current group and 





=−

=
=

− GgMM

gM
N

gg

g ,,2for 

1for 

1

1

…

is the number of SVs in the respective group. Finally the subroutine provides a vector 

p
T
=(p1,…,pm) that contains the indices of the unsorted positions, which is needed if the 

grouping is to be reversed. 

Subroutine 2 rotates/reflects the sorted output-/input directions (4.398) of those groups 

that contain more than one SV. Therefore,  

( ) ( ) ( )ttt
gg kk

T

g σσ ~~ UFVY =  , 
T

ggg YYΩ +=

is computed for each group according to (4.389) and, according to (4.386), ( )ktgσ~V , 

( )ktgσ~U are transformed by a matrix gQ  whose columns are the orthogonal 

eigenvectors of Ωg. The transformed output-/input directions are reintegrated into the 

respective full matrices (4.398) and finally the grouping is reversed using the vector p of 

original indices. 

Subroutine 3 computes the skew symmetric matrices CV, CU. According to (4.369), we 

compute 

( ) ( ) ( ) ( )kkk

T

k tttt UFVY =
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where we have used the rotated output-/input directions of subroutine 2. Since CV, CU 

are skew symmetric, it is sufficient to compute the lower left half of each matrix. Then, 

for each row r and column c, it is checked, whether the involved SVs are equal 

according to (4.394). If this is the case, cV,rc, cU,rc are computed according to (4.393), 

where the mean values of the SVs and the right hand side values brc are taken to 

account for potential numerical deviations. In case of different SVs, the associated cV,rc, 

cU,rc are computed by solving (4.374).  
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Table 4.1 SVD Step Algorithm 

SVD Step 

Input: 

1. ( ) ( ) ( )( )kmkk

T ttt σσ ⋯1=σ : Vector with SVs at current time step 
kt  

2. ( ) ( ) ( )[ ]kmkk ttt vvV ⋯1=  , ( ) ( ) ( )[ ]kmkk ttt uuU ⋯1= :  

Matrix of output-/input directions at time step tk 

3. F(tk): Desired time derivative at time step tk 

4. ε : Minimum distance of SVs to be considered equal 

5. σ : Lower limit of SVs 

Output: 

1. ( ) ( ) ( )( )kmkk

T ttt σσ ɺ⋯ɺɺ
1=σ : Time derivative of SVs at time step 

kt  

2. ( ) ( ) ( )( )kmkk ttt vvV ɺ⋯ɺɺ
1=  , ( ) ( ) ( )( )kmkk ttt uuU ɺ⋯ɺɺ

1=  

Time derivative of output-/input direction matrix at time step 
kt  

3. 0=r  [bool]: Flag, indicating whether reset is necessary 

4. ( ) ( ) ( )( )kmMkMk

T

M ttt ,1, σσ ⋯=σ : modified SVs 

5. ( ) ( ) ( )( )kmkk ttt vvV ⋯1=  , ( ) ( ) ( )( )kmkk ttt uuU ⋯1=  

Matrix with rotated output-/input directions 

 Subroutine 1) Group equal SVs together 

Description: Groups of equal SVs are identified and SVs, output-/input  

direction matrices are sorted such that equal SVs are 

grouped together in ascending order. 

Input: ( )ktσ  , ( )ktV  , ( )ktU  

Output:  

1. ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
kmSkSkSkmSkSkSkmSkSk

T

S ttttttttt ,1,,1,,1, ,, uuUvvVσ ⋯⋯⋯ === σσ  

Sorted SVs, output-/ input direction matrices 

2. G: Numbers of identified groups 

3. M=(M1,…,Mm): Accumulated numbers of SVs in each group  

(zero indicates, that group is not assigned) 

4. pT=(p1,…,pm):  
Indices of unsorted positions (enable reverse of grouping) 

 

 

 

 Subroutine 2) Rotate/reflect output-/input directions and reverse sorting 

Input: M  , p  , G  , ( )kS tσ  , ( )kS tV  , ( )kS tU  

Output: 

1. ( ) ( ) ( )( )kmMkMk

T

M ttt ,1, σσ ⋯=σ : SVs in original order (limited) 

2. ( ) ( ) ( )[ ]kmkk ttt vvV ⋯1=  , ( ) ( ) ( )[ ]kmkk ttt uuU ⋯1= : 

Rotated/reflected output-/input directions matrices in original order 
 

 

 

Y-matrix, computed with rotated output/-input directions: ( ) ( ) ( ) ( )kkk

T

k tttt UFVY =  

 Subroutine 3) Compute 
VC  , 

UC  

Input: 

1. ( )ktY : Y-matrix, computed with rotated output/-input directions 

Output: 

1. mm

UV

×∈�CC ,  , 
UC : Matrices for computation of time derivatives of  

      output-/input directions 
 

 

 

Time derivatives of thi  SV: ( ) ( ) ( ) ( )kikk

T

iki tttt uFv=σɺ  

for mi ,,1…=  

Description: Limit current SV if it has hit lower bound 

 

Current SV hits lower bound 

( ) σσ ≤ki t  

yes no

Limit time derivative of current SV: ( ) ( )( )kiki tt σσ ɺɺ ,0max=  

Set current SV to minimum value ( ) σσ =kiM t,
 

Trigger “reset” due to limitation of current SV: 1=r  
 

 

 
 

 

Time derivatives of output-/input directions:  

( ) ( )( )VVVkk ktt NCVV −=ɺ  , ( ) ( )( )UUUkk ktt NCUU −=ɺ  , ( ) ( )kk

T

V tt VVN =  , ( ) ( )kk

T

U tt UUN =  
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Table 4.2 SVD Step – Subroutine 1 

Subroutine 1) Group equal SVs together 

Description: Groups of equal SVs are identified and SV, output-/input 

direction matrices are sorted such that equal SV are  

grouped together in ascending order. 

Input:  

1. ( ) ( ) ( )( )kmkk

T ttt σσ ⋯1=σ : Vector with SVs at current time step 
kt  

2. ( ) ( ) ( )[ ]kmkk ttt vvV ⋯1=  , ( ) ( ) ( )[ ]kmkk ttt uuU ⋯1= : Matrix of output-/input directions 

at time step 
kt  

Output:  

1. ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
kmSkSkSkmSkSkSkmSkSk

T

S ttttttttt ,1,,1,,1, ,, uuUvvVσ ⋯⋯⋯ === σσ : 
Sorted SVs, output-/ input direction matrices 

2. G=0: Number of identified groups  

3. MT=(M1,…,Mm): Accumulated numbers of SVs in each group  

    (zero indicates, that group is not assigned) 

4. pT=(p1,…,pm): Indices of unsorted positions (enable reverse of sorting) 

Variable: ( )mrem ,1ones=σ  

Description: Positions of SV that are not yet assigned to some group 

Variable: 0=c  

Description: Counter for sorted positions 

while ( ) 0sum >remσ  

Description: Not all singular values are assigned to some group 

 

Increase number of identified groups: ++G  

 Subroutine 1a) Find minimum of remaining SVs 

Input: ( )krem tσσ ,  

Output: 
minσ : Minimum of SVs that are not assigned to some group yet 

 

 

 

for mi ,,1…=  

Description: Parse remaining SVs whether they belong to the current group. 

 

SV belongs to current group  

( ) minσεσ +≤ki t  & 1, =iremσ  

yes no

Increase counter: ++c  

Increase accumulated member count of current group cMG =  

Store original position of SV: ipc =  

Mark current SV as assigned to a group 0, =iremσ  

Assign sorted variables  

( ) ( )kikcS tt vv =:,
 , ( ) ( )

kikcS tt uu =:,
 , ( ) ( )

kikcS tt σσ =:,
 

 

 

 
 

 
 

 

 

Table 4.3 SVD Step – Subroutine 1a 

Subroutine 1a) Find minimum of remaining SV 

Input: 

1. ( ) ( ) ( )( )kmkk

T ttt σσ ⋯1=σ : Vector with SVs at current time step 
kt  

2. ( )mremremrem ,1, σσ ⋯=σ : Positions of SV that are not yet assigned to some group 

Output: 

1. 0:min =σ : Minimum of SVs that are not assigned to some group yet 

for mi ,,1…=  

 

Current SV smaller than 
minσ  and not assigned to some group 

( ) minσσ <ki t  & 1, =iremσ  

yes no

Assign new minimum SV: ( )ki tσσ =:min
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Table 4.4 SVD Step – Subroutine 2 

Subroutine 2) Rotate/reflect output-/input directions and reverse sorting 

Input: 

1. M: Accumulated numbers of SV in each group  

     (zero indicates, that group is not assigned) 
2. pT=(p1,…,pm): Indices of unsorted positions (enable reverse of sorting 

3. ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]kmSkSkSkmSkSkSkmSkSk

T

S ttttttttt ,1,,1,,1, ,, uuUvvVσ ⋯⋯⋯ === σσ : 
Sorted SVs, output- and input direction matrices 

Output: 

1. ( ) ( ) ( )( )kmMkMk

T

M ttt ,1, σσ ⋯=σ : Modified SVs in original order (limited) 

2. ( ) ( ) ( )[ ]kmkk ttt vvV ⋯1=  , ( ) ( ) ( )[ ]kmkk ttt uuU ⋯1= :  

Rotated/reflected output-/input direction matrices in original order 

Variable: ( ) ( ) ( )[ ]
kmSkSkS ttt ,1, vvV ⋯=  , ( ) ( ) ( )[ ]

kmSkSkS ttt ,1, uuU ⋯=  

Description: Sorted and rotated output-/input direction matrices 

for Gg ,,1…=  

Description: Loop over all groups 

 

Current group is first group: 1=i  

Yes no 

Number of SV in current group 

gMN =:  

Begin index of current group: 1:0 =N  
 

Number of SV in current group 

1: −−= gg MMN  

Begin index of current group: 1: 10 += −iMN  
 

Output-/input directions of current group 

( ) ( )[ ]kNNSkNS tt 1,,~
00

: −+= vvV ⋯σ
 , ( ) ( )[ ]kNNSkNS tt 1,,~

00
: −+= uuU ⋯σ

 

More than 1 SV in current group: 1>N  

yes no 

Interim result: ( ) σσσ ~~~ : UFVY k

T t=  , T

σσσ ~~~ : YYΩ +=  

Eigenvector matrix of 
σ~Ω : 

σ~Q  

Rotate/reflect output-/input directions: 
σσσ ~~~ QVV =  , 

σσσ ~~~ QUU =  

Trigger “reset” due to rotated output-/input directions: 1=r  
 

Do not 

rotate/reflect 

output-/input 

directions:  

σσ ~~ VV =  , 
σσ ~~ UU =  

 

Reintegrate o-/i directions: [ ]( ) σ~1,, :
00

VV =−+ kNNNS t  , [ ]( ) σ~1,, :
00

UU =−+ kNNNS t  
 

 

for mi ,,1…=  

Description: Reverse sorting 

 ( ) ( )
kiSkpM tt

i ,, σσ =  , ( ) ( )
kiSkp tt

i ,vv =  , ( ) ( )
kiSkp tt

i ,uu =  
 

 

Table 4.5 SVD Step – Subroutine 3 

Subroutine 3) Compute 
VC  , 

UC  

Input: ( ) ( ) ( ) ( )kkk

T

k tttt UFVY = : Y-matrix, computed with rotated output/-input directions 

Output: mm

UV

×∈�CC , :  

Matrices for computation of time derivatives of output-/input directions 

for mr ,,2…=  

Description: Loop over all rows 

 

for 1,,1 −= rc …  

Description: Loop over relevant columns of current row 

 

Difference of current SV pair is smaller than limit: ( ) ( ) εσσ ≤− kckr tt  

Yes no

Mean SV: ( ) ( )( )kckrrc tt σσσ += 5.0  

Mean left hand side: [ ] [ ]( )crrcrcb YY −= 5.0  

Compute 
VC  , 

UC  using pseudoinverse:  

( )
rcrcrcV bc σ2, =   , 

rcVcrV cc ,, −=  

( )
rcrcrcU bc σ2, −=  , 

rcUcrU cc ,, −=  
 

System matrix: ( ) ( )
( ) ( ) 







−

−
=

kckr

krkc

rc
tt

tt

σσ

σσ
A

 

Compute 
VC  , 

UC :  

( )[ ]
( )[ ] 








=






 −

crk

rck

rc

rcU

rcV

t

t

c

c

Y

Y
A 1

,

,   
( )[ ]
( )[ ] 








−=







 −

crk

rck

rc

crU

crV

t

t

c

c

Y

Y
A 1

,

,  
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4.7.3 Open Topics 

The SVD update algorithm provides a measure to overcome the diagonal constraint for 

the adaptive estimate of the control effectiveness matrix while it prevents the matrix 

from becoming singular. However, the developed algorithm is not necessarily restricted 

to applications in adaptive control, but could be useful in any case where some matrix, 

that should not become singular, is updated by a differential equation. Nevertheless, if 

applied to MRAC schemes, there are still some open topics and weaknesses that have 

to be discussed. 

Commonly, limitation of adaptive parameters in MRAC is implemented via projection 

operator (Appendix D.1), which allows the restriction of the adaptive parameter to a 

convex set. The special structure of the projection operator using a convex function 

allows the incorporation of the projection operator into Lyapunov analysis (particularly 

due to inequality (D.5) in Appendix D.1). The SVD update algorithm restricts the 

adaptive parameters to those matrices whose SVs do not underrun some positive limit 

which is not necessarily a convex set. Hence, one could not hope to obtain a result 

similar to the projection operator and a proof of stability for the SVD update algorithm 

applied to an MRAC scheme remains unsolved. 

Another issue is a proper choice for ε , the minimum distance for two SVs that are 

considered as different values according to (4.394). On the one hand ε  has to be 

sufficiently small such that the error that is made by setting different SVs to the same 

value is sufficiently small. On the other hand, the elements of CV, CU grow unbounded, 

if the SVs approach some common value as explained in section 4.7.2. This implies 

that also the time derivatives of V and U grow unbounded, which causes numerical 

problems to the discrete time integration. Hence ε  has to be chosen sufficiently large. 

As an illustrative example, recall that the input and output directions have to fulfill the 

constraint to remain a unity length vector. Hence, the time derivative is perpendicular 

to its respective direction, which is a direct result of equation (4.371). Figure 4.16 

illustrates the situation. Obviously, the vector vi remains approximately unity length, if 

the time derivative is sufficiently small (left picture), while the unit length condition is 

severely violated, if the time derivative is comparatively large (left picture). 

 

Figure 4.16 Integration of Output-/Input Directions for large Time Derivatives 
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The decision for a proper bound for ε  has to consider this issue namely, for a 

bounded set of allowable desired time derivatives F(t), what is the smallest ε  such 

that all time derivatives are sufficiently small. This, of course, at first, requires a 

definition of a “sufficiently small time derivative”. A first guess is obtained from Figure 

4.16. Usually, the algorithm is executed with some constant sample time t∆  and the 

length of the dashed vector in Figure 4.16 is ( ) ttki ∆
2

vɺ . Now, if this vector is 

considerably smaller than 1, then the length is approximately preserved and hence we 

require 

t
i

∆
<<

1
2

vɺ . 

Another issue of this algorithm occurs, if two singular have reached equal values At 

some time instant. In this case, it could occur that these singular values stick together, 

if their difference in the subsequent time step is still below the limit. 

Further parameters that have to be chosen are gains kV, kU  for dynamic enforcement of 

orthogonal property (4.396). On the one hand they have to be sufficiently large such 

that they compensate for numerical errors (the magnitude of numerical error also 

depends on the choice of ε   – Figure 4.16) and, on the other hand, not too large such 

that they increase the time derivatives of V, U too much by themselves, since this 

might also result in numerical problems. 

So far, the SVD update algorithm has been derived for quadratic matrices, but it can 

also be extended to the rectangular case. This, however, is not considered here and 

left for future. 

 



 

Chapter 5 

Application and Simulation 

In this chapter, the capabilities of the control algorithms, developed in Chapter 4, will 

be demonstrated. In sections 5.1 and 5.2, the effectiveness of MMQ modification as 

well as SVD update algorithm is shown for simple linear state space models and in 

section 5.3 a high fidelity implementation of an MRAC angular rate command system 

for the FSD Extreme Star is presented. Thereby we will restrict ourselves to variant 1, 

including MMQ modification (sections 4.3 and 4.4) as the thrust vector controls are not 

suitable for a use within the linearizing state feedback. This is due to the fact that 

thrust, produced by the propellers decays with increasing velocity and, there are 

conditions within the flight envelope, where the propellers do not produce any thrust at 

all. This in turn implies that moments, induced by the lever arm of the thrust relative to 

the c.g., are not produced, too. Hence, a minimum control authority over the whole 

flight enveloped cannot be guaranteed as required by assumption E. 

Particularly, the incorporation of redundant control channels to the dynamic inversion 

framework in section 4.1.7 allows for an airborne system, tolerant w.r.t. to actuator 

failures, as functionality of failed actuators is resumed by the remaining ones.  

5.1 MMQ Modification 

Multi model Q modification has been introduced in order to improve adaptation 

performance. This section shows the capabilities of the approach and its superiority 

over single model q-modification, by means of a linear approximation of the Extreme 

Star’s lateral dynamics with uncertain control effectiveness. 

The states of the lateral dynamics are velocity, roll rate, yaw rate and bank angle, i.e. 

( )Φ∆= rpV
Tx . Notice that velocity state is in fact the deviation from the trimmed 

value smV 200 = , while the trim values of the other states are zero anyway. Lateral 

controls are aileron and rudder deflection relative to the trim values, i.e. ( )ζξ ∆∆=Tu . 

The linear state space approximation of the lateral motions is  

uΛBxAx +=ɺ  

where 
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5

104023.402618.01105683.1

10569.32777.190184.01792.1

102392.1592.375.19664.3

7696.9005.205454.12186.0

A     



















−−

−
=

00

478.30858.13

947.1174.432

6367.3653.23

B . 

Λ is the unknown control effectiveness that has to be estimated adaptively. The output 

y to be controlled are bank angle and yaw rate, i.e. 

Cxy =    ,   







=

0100

1000
C  

The control law is 

( )HrKxΛu +−= −1ˆ  

with Λ̂ , an adaptive estimate for Λ . The feedback and feed forward matrices of the 

control law are designed, based on decoupling control of Falb/Wolovich (refer to 

Appendix E), which achieves a dynamically decoupled control of bank angle and yaw 

rate. 

310
1607.4807.1288.12015.42

1288.91288.8751.363070.7
−⋅









−

−−
=K    310

431.321508.4

83480.01288.9
−⋅









−

−
=H  

The reference dynamics are  

rBxAx MMMM +=ɺ  

where AM=A-BK, BM=BH. In frequency domain, decoupling of the input/output 

relationship is specifically visible. 

( ) ( ) ( )



















+

+=−=

1

1
0

0
2

4.4
2

s

sss MMM BAICG  

Using the above definitions, the closed loop dynamics read as 

uΛBrBxAx
~

−+= MM
ɺ . (5.1) 

Thereby ΛΛΛ −= ˆ~
is the parameter-estimation-error. With definition of the tracking 

error e=xM-x, we obtain 

uΛBeAe
~

+= M
ɺ . 

The update laws for the parameter estimates are derived from the following Lyapunov 

function candidate  

( ) [ ]TT
V ΛΓΛPeeΛe

~~
tr

~
, 1−+=  

where the symmetric positive definite P solves 
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QPAPA −=+ M

T

M  

for some symmetric positive definite Q. The resulting update law is 

( )TTT MPBueΓΛ +−=
ɺ̂

 

with symmetric positive definite learning rate Γ and MMQ modification term M which is 

designed, based on equation (5.1). We compute 

( ) ( ) ( ) ( ) ( ) [ ]( )( )sssssGs Mii uΛBrBAxxc ˆ+−−= ɺ  

with stable linear filters Gi(s) which, equals the filtered version of the true parameters 

ci(s)=Gi(s)BΛu(s). Moreover, the filtered estimated uncertainty is 

( ) ( ) ( )ttt ii qΛBc ˆˆ =  

with the filtered regressor qi(s)=Gi(s)u(s). Using N filters, the modification terms is 

TT QCBM
~

κ=  

where [ ]NccC ~~~
1 ⋯= , iii ccc −= ˆ~ , [ ]NqqQ ⋯1= .  lists the implemented controller 

parameters and Figure 5.1 shows a block diagram of the control system setup. 

Table 5.1 Controller Parameters MMQ Modification Example 

Lyapunov 
equation 

[ ]31.131828.32828.3204.0diag10

85.104235.12093.1867354.0

235.12344.43341.33589.1

093.18341.36537.81716.0

67354.03589.11716.0084781.0

3 =⋅



















−

−−−

−

−

= −
EE QP

 

learning 
rate 

[ ]02278.029991.0diag=Γ  

MMQ 
modification 

number of filters  3=N  

filter 1 
0

0
1

ω

ω

+
=

s
G  

filter 2 ( )
2

11

2

1
2

2

2

ωζω

ζω

++
=

s

s
sG  

filter 3 ( )
2

22

2

2
3

2

2

ωζω

ζω

++
=

s

s
sG  

filter parameter 
43807.0

248.11,8061.4,607.61 210

=

===

ζ

ωωω s
rad

s
rad

s
rad

 

MMQ gain 3.0=κ  
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Figure 5.1 MMQ Modification Example 

Three simulation runs with a length of 60s are presented. The first one shows 

adaptation performance with the pure Lyapunov based update law without any 

modification, while the second and third runs show performance with single model q 

(only filter 1) and MMQ modification (all 3 filters) respectively. In all simulation 

scenarios, the effectiveness of the aileron reduces to 50% of the nominal value after 5s, 

i.e. [ ]15.0diag=Λ . Since the true parameters are known, we are in the fortune 

situation to know the value of the Lyapunov function and its time derivative. Figure 5.2 

shows the Lyapunov function and its derivative, if merely the standard update law is 

used. The Lyapunov function needs about 20s to reduce to zero after degradation of 

aileron effectiveness. Figure 5.3 shows true and estimated control effectiveness, which 

needs about 20s to adapt to the new situation, too. Notice that some algorithm has to 

be implemented that prevents Λ̂  from becoming singular, which is classically done by 

restricting the estimated control effectiveness to diagonal matrices with positive 

diagonal entries. In this case, the SVD update algorithm, introduced in section 4.7, has 

been used to overcome the diagonal property constraint (Figure 5.3). Figure 5.4 shows 

the plant command and the effective control surface deflection, which differs from the 

commanded values due to the degraded Λ. Finally, Figure 5.5 shows tracking 

performance of the lateral states, which confirms a duration of about 20s until the 

system has adapted. 

Cxy

uBΛAxx

=

+=ɺ

Plant

x

K

H
r

rBxAx MMMM +=ɺ

Model
Mx

u

e

M

1ˆ −Λ

( ) ( ) ( ) ( ) ( ) [ ]( )( )sssssGs Mii uΛBrBAxxc ˆ−++−= ɺ

Modification

( ) ( ) ( )ttt ii qΛBc ˆˆ = ( ) ( ) ( )ssGs ii uq =( ) ( ) ( )ttt iii ccc −= ˆ~

TT QCBM
~

κ= [ ]NccC ~~~
1 ⋯= [ ]NqqQ ⋯1=

( )TT MPBueΓΛ +−=
ɺ̂

Adaptation Λ̂
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Figure 5.2 Standard Update Law – Lyapunov 

 

Figure 5.3 Standard Update Law – Control Effectiveness 

 

Figure 5.4 Standard Update Law – Actuator Command and Actuator Position 

 

Figure 5.5 Standard Update Law – Tracking Performance 
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If single model q modification is applied, the time that is needed for adaptation reduces 

to about 5s, as can be seen in Figure 5.6, Figure 5.7 and Figure 5.8. But, if MMQ 

modification is used, adaptation performance is tremendously improved further and is 

finished after less than 1s, which is specifically seen in the Lyapunov plot in Figure 5.9. 

Figure 5.11 also shows that a deterioration of tracking performance is almost not 

noticeable. 

Admittedly, the presented example does not contain any unmatched uncertainty, 

which makes MMQ modification such effective. However, if unmatched uncertainty is 

present, then classical q as well as MMQ modification are rather counterproductive as 

has already been stated in section 4.4. 

 

 

 

 

Figure 5.6 Single Model q Modification – Lyapunov 

 

 

 

 

Figure 5.7 Single Model q Modification – Control Effectiveness 
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Figure 5.8 Single Model q Modification – Tracking Performance 

 

 

Figure 5.9 MMQ Modification – Lyapunov 

 

 

Figure 5.10 MMQ Modification – Control Effectiveness 
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Figure 5.11 MMQ Modification – Tracking Performance 

5.2 SVD Update Algorithm 

The advantage of updating the control effectiveness matrix in terms of its singular 

value decomposition (section 4.7) is the fact, that it allows excluding singular matrices 

without the diagonal property constraint that is commonly used instead. 

The control system setup of the following example is the same as in section 5.1 but 

without MMQ modification. In order to testify advantage of the proposed concept, the 

control effectiveness degrades to a nondiagonal matrix at 5s. 








 −
=

9848.01736.0

1736.09848.0
Λ  

Hence, effectiveness of both controls is not merely scaled down, but also changes its 

effective direction. In the first simulation run, the control effectiveness is tried to be 

updated by means of classical integration with diagonal constraint. Figure 5.12 reveals 

that tracking performance significantly deteriorates at 5s and Figure 5.13 shows that 

the reason therefore is that the off-diagonal of the estimated control effectiveness 

elements cannot converge to the true values due to limitation. 

In simulation run 2 the SVD update algorithm is implemented instead. Table 5.2 lists 

the parameters that are used for the simulation example. 

Table 5.2 Parameters of SVD Update Algorithm 

numeric correction gains for enforcement of orthogonality (equation (4.396))  

minimum distance of singular values to be considered equal (equation (4.394))  

lower bound on singular values  
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Figure 5.12 Adaptation with Diagonal Constraint – Tracking Performance 

 

 

 

Figure 5.13 Adaptation with Diagonal Constraint – Control Effectiveness 

 

Figure 5.14 reveals that tracking performance is strongly improved compared to the 

first simulation run. Of course, the reason therefore is that the estimated control 

effectiveness is allowed to converge to the true value as is depicted in Figure 5.15. 

Beside the 4 entries of the control effectiveness matrix, the 5th  and 6th diagrams of 

Figure 5.15 show singular values of Λ̂  and the reset signal respectively that is triggered 

by the SVD algorithm if input and output directions have to be rotated due to equal 

singular values. Obviously, no reset is necessary, thanks to the small value that is 

chosen for ε . 
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Figure 5.14 Adaptation with SVD Update Algorithm – Tracking Performance 

 

Figure 5.15 Adaptation with SVD Update Algorithm – Control Effectiveness 

5.3 Application of Variant 1 

5.3.1 Basic Equations 

In Chapter 2, differential equations have been derived as they are used for the high 

fidelity simulation model. It is desirable for simulation to represent the real dynamics as 

realistic as possible since it is used as testbed for the developed flight control system. 

However, many of the considered effects have a minor influence and, as the equation 

have to be inverted for linearizing state feedback, it is desirable to have manageable 

terms as basis for the control algorithms. It is therefore appropriate to neglect parts of 

secondary importance. 
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Simplified Translation and Rotation Dynamics 

For controller design, we use simplified dynamic equations, which are subjected to  the 

following assumptions. 

• the earth is flat and non-rotating, i.e. 

o no earth rotation: ( ) 0ω ≡IE�  

o no transport rate: ( ) 0ω =EO�  

o which implies: ( ) ( )OBIB ωω
��

=  

o ECEF frame is considered inertial, and also the NED is nonrotating, 

therefore  

� ( ) ( ) ( )OR

K

ER

K

IR

K VVV
���

==  

� ( ) ( ) ( )OO
R

K

EO
R

K

II
R

K VVV
ɺ�ɺ�ɺ�

==  

• the dynamics are formulated w.r.t. center of gravity:  

o ( ) 0r =RG�  

o GR II =  

• wind is neglected 

o kinematic velocity equals aerodynamic velocity: ( ) ( ) ( )OGOG

A

OG

K VVV
���

:==  

o kinematic AoA equals aerodynamic AoA: ααα :== AK  

o kinematic AoS equals aerodynamic AoS: βββ :== AK  

o kinematic bank angle equals aerodynamic bank angle: µµµ :== AK  

A direct consequence of neglect of wind is that the K -frame (the kinematic frame, 

rotated about the kinematic bank angle µK, refer to Appendix A) equals the 

aerodynamic frame (Index A). The shift of the reference point to the c.g. is in fact no 

simplifying assumption, though it essentially reduces the complexity of the translation 

and rotation equations (2.22), which can be solved decoupled of each other. 

( ) ( ) ( ) ( )
m

B

G
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B

G

KB

OB
OB
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G ∑
=×+

F
VωV

�
��ɺ�

 

(5.2) 

( ) ( ) ( ) ( ) ( ) ( )[ ]{ }B
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OB ωIωMIω
���

ɺ� ⋅×−⋅= ∑
−1

 
(5.3) 

 

Choice of Internal states 

The control theory, developed in Chapter 4, is applied to a rate command system and 

hence the angular momentum equations, which are excited by the external moments, 

form the external dynamics. However, as the aerodynamic moments also depend on 

aerodynamic flow angles and velocity, these states also have to be considered and are 

part of the internal dynamics. The dynamics of velocity and flow angles, in turn, 

depend on the external forces, which contain the gravity force whose direction relative 
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to the aircraft depends on the attitude for which reason the attitude is part of the 

internal dynamics, too. 

In order to obtain the differential equation for velocity V , angle of attack α  and angle 

of side-slip β  we rewrite the time derivative of (5.2) in terms of the K . 

( ) ( ) ( ) ( )O
K

G

K

KB
KO

K

G
OB

K

G VωVV
��ɺ�ɺ�

×+=  (5.4) 

Since the x-axis of K  points in the direction of the velocity per definition, we obviously 

have 

( )
















=

0

0

V
O

K

GV
�

 and ( )
















=

0

0

V
KO

K

G

ɺ

ɺ�
V . 

Further, by kinematic considerations and definition of α , β  ,we get 
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The cross product term in (5.4) adopts a special form. 
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Hence (5.2),  written in kinematic frame and solved for the state derivatives reads as 

( )

( ) [ ]
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(5.5) 

For description of the attitude, we use Euler angles, whose dynamics are given by 

(2.23). Notice that the azimuth dynamics are decoupled and hence, are not necessarily 

part of the internal dynamics. 

rq

rqp

Φ−Φ=Θ

ΦΘ+ΦΘ+=Φ

sincos

costansintan

ɺ

ɺ
 (5.6) 
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5.3.2 Radial Basis Function Neural Networks 

The dependence of propulsive forces and moments on states and controls are 

inherently nonlinear and thrust vectoring introduces additional nonlinearities due to 

trigonometric functions of the thrust vectoring angles. A simple parameterization, using 

linear regressors in states and control is thus not appropriate.  

In adaptive control, arbitrary continuous nonlinear functions are commonly modeled by 

neutral networks ( [Joh01], [Joh04], [Joh00c], [Shi05] ), which allow an arbitrary close 

approximation of the considered functions over a compact domain, provided the 

number of neurons is sufficiently large ( [Fun89] ). 

Two types of neural networks are commonly utilized in MRAC, single hidden layer 

neural networks (SHL), using sigmoid activation functions and radial basis function 

neural networks (RBF). Both types have their advantages for adaptive control 

applications as discussed in [And09]. While the SHL requires quite complex update 

laws because it is nonlinear in its parameters, the RBF is linearly parameterized such 

that a standard update of the weights, as developed in Chapter 4, results in a stable 

closed loop system. Hence, the RBF approach is chosen for adaptive approximation of 

nonlinear functions. The radial basis functions are of the form 

( ) ( ) ( )0
1

0 xxQxx
x

−−− −

=
T

eφ
 

(5.7) 

where q�∈x  is a vector of independent variables, x0 is the center and Q is a 

symmetric positive definite matrix that scales the width of the function in the principle 

axes of Q. Figure 5.16 shows a radial basis function with center in the origin and 

( )25diag=Q . Note that it achieves a maximum of 1 in the center while it decays to 

1−e  in distance 5  from the center in 1x  direction and in distance 2  from the center in 

2x  direction. For a general positive symmetric Q, the principle axes are the orthogonal 

eigenvectors and the scaling factors are the associated eigenvalues. 

 

Figure 5.16 Radial Basis Function 

Particularly the nonlinear-in-control design requires for the partial derivatives of the 

radial basis function w.r.t. its independent variables; the partial derivative of (5.7) w.r.t 

its independent variable is given by 
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( ) ( ) ( ) ( )0
1

01

0

xxQxx
Qxx

x

x −−−− −

−−=
∂

∂ T

e
Tφ

. (5.8) 

For the RBF, the centers of the regressors are equally spaced over the valid domain for 

x as depicted in Figure 5.17, where 3 regressors were placed in each dimension. 

 

Figure 5.17 Radial Basis Functions with Equally Spaced Centers 

The neural network is composed by stacking all regressors into a vector ( )xφ , si ,,1⋯=  

and multiplication with a parameter matrix ms×∈�Θ  

( )xφΘy T=  
(5.9) 

where m is the dimension of the output space. Figure 5.18 shows a schematic of a 

RBF. While Θ adopts the role of an adaptive parameter within the MRAC scheme, the 

weighing as well as the center locations are fixed a priori, but they leave room for 

further optimization. If some knowledge about the structure of the nonlinearity is 

available, one could use narrow functions with dense spacing in regions of high 

curvature and wide functions, placed with low density in regions of low curvature.  

 

Figure 5.18 Radial Basis Function Neural Network 

5.3.3 Parameterizations of Forces and Moments 

The external forces and moments within the simulation model are composed of an 

aerodynamic, propulsive and a gravitational part, according to (2.33), (2.34) and 

comprise a high level of detail with highly nonlinear characteristic. For the controller, a 

simplified model will be used as described in the following. 
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Aerodynamics 

The moment coefficients are modeled linearly in states and controls. 
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(5.10) 

where ( )⋅ALδ , ( ).AMδ , ( )⋅ANδ  denote the unmatched uncertainties and 
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* =   ,  
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* =   ,  
V
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r

2

* =  

are the nondimensional angular rates where b and c  are half wing span and mean 

aerodynamics chord respectively. Finally, aerodynamic forces and moments in body-

fixed frame are 

( ) ( )
( )
( )
( )

( ) Sq

C

C

C

Z

Y

X

L

Q

D

KB

K

G

A

K

G

A

K

G

A

KBB

G

A

















−

−

=
















= βαβα ,, MMF
�

     ( )
















⋅

⋅

⋅

⋅⋅=

n
b

m

l
b

B

A

A

C

Cc

C

Sq

2

2

M
�

. 

 

Propulsion 

For adaptation, it is advantageous to model uncertainties with a preferably small 

number of parameters since this increases adaptation performance. As forces and 

moments, produced by propellers, act mainly in x-direction of the propulsion system 

(Figure 2.3), the number of adaptive parameters is, at first, significantly reduced by 

setting the other axes to zero. 
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As explained in section 2.3.2, the propulsive forces and moments depend on the total 

AoA and AoS, which describe in fact the direction of the aerodynamic velocity relative 

to the respective propulsion frame. Since we only consider the x-axis direction, the 

dependence of forces and moments on the total aerodynamic flow angles is 

rotationally symmetric. In missile kinematics, the concept of included angle of attack is 

commonly used ( [Nie60] ). We will take advantage of this concept in a slight modified 

version in order to reduce the number of independent variables for the propulsive 

forces and moments by exploiting the rotational symmetry. 
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AoA and AoS describe the rotation from the body-fixed to the aerodynamic frame, by 

the rotation sequence y-axis – z-axis and actually determine the direction of the 

velocity vector relative to the body-fixed frame. The relative direction can also be 

parameterized by an alternative set of angles. Consider Figure 5.19, at first the body-

fixed frame (respectively propulsion frame) is rotated about the x-axis until the velocity 

vector is aligned within the x-z-plane, where the associated angle φ is denoted as 

azimuth. Then, the resulting frame is rotated about the y-axis until the x-axis is aligned 

with the velocity. The associated angle αc is denoted as included angle of attack. 

 

Figure 5.19 Included Angle of Attack 

The relationship between total AoA, AoS and the velocity components in propulsion 

axes is, according to (2.30) 

TTVu αβ coscos=  , TVv βsin=  , TTVw αβ sincos= . 

where  αT, βT denote the total AoA and AoS of the respective propulsion according to 

(2.46) – (2.49). On the other hand, from Figure 5.19, we derive 

cVu αcos=   ,  φα sinsin cVv =   ,  φα cossin cVw =  

and by comparison, finally 

( )TTc αβα coscosarccos=  (5.11) 

.
sin

tan
arctan 








=

T

T

α

β
φ  

Then, due to rotation symmetry, the propulsive thrust and torque are independent of 

the azimuth and, according to equations (2.43), (2.44) depend on included AoA αc, 

velocity V and propeller rotation speed ωM.  

( ) ( )McX VfX ωα ,,
Pr

Pr

Pr =   ,  ( ) ( )McL VfL ωα ,,
Pr

Pr

Pr =  (5.12) 

It is important to notice that the equation for included AoA (5.11) is free of singularities, 

while the azimuth is not. However, this does not cause any problem since the azimuth 

is not a dependent variable. 
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The motor rotation speed cannot be measured and therefore we would rather like to 

have thrust and torque dependent on the input voltage, which could be measured 

easily or is at least known, as it is an exogenous input. The propeller is powered by a 

brushless DC motor and, according to equation (2.60), the steady state motor rotation 

speed is related to the input voltage and the load moment, which equals the propeller 

moment. Consequently, by equating (2.60) and (5.11), we obtain 

( )McLM

T

LTE

T

e Vf
R

KRK
U

R

K
ωαω ,,

2

0 =
+

−  

and, for fixed U0, αc, V, the equation can be uniquely solved for ωM  if ( )⋅Lf  is 

monotonic in ωM, which is the case in normal operation conditions, since we could 

expect that the torque is monotonic increasing with rotation speed. Let the solution of 

the above equation be  

( )0,, UVg cM αω =  (5.13) 

then, by insertion of (5.13) into (5.12), thrust and torque are dependent on U0. 

( ) ( )( ) ( )ocXoccX UVfUVgVfX ,,:,,,,
Pr

Pr

Pr ααα ==  (5.14) 

( ) ( )( ) ( )00Pr

Pr

Pr ,,:,,,, UVfUVgVfL cLccL ααα ==  (5.15) 

Figure 5.20 – Figure 5.27 show results of numerical computations of thrust and torque 

characteristic for a single main and back engine respectively. These nonlinear functions 

are approximated by RBF as introduced in section 5.3.2. For each engine we choose 

( ) ( ) ( )ioiciPXiiciX

T

iX UVUVX
i

i

i ,,,,0,,,Pr

Pr

Pr ,,,, αδα += φp  

( ) ( ) ( )ioiciPLiiciL

T

iL UVUVL
i

i

i ,,,,0,,,Pr

Pr

Pr ,,,, αδα += φp  
(5.16) 

where i is replaced by l (left engine), r (right engine) or b (back engine), the included 

AoAs are computed for the respective engines according to (2.46) – (2.49) and (5.11) 

and δPX,i( · ) and δPL,i( · ) are the unmatched uncertainties. Moreover pX,i and, pL,i denote 

the parameter vectors for thrust and torque respectively and ϕX,i(V,αc,i,U0,i), 

ϕL,i(V,αc,i,U0,i) are regressor vectors, whose elements contain radial basis functions 

according to (5.7). The scalar expansion of the regressor vectors reads as 

( ) ( ) ( )( )iicsiXiiciXiic

T

iX UVUVUV
Xi ,0,,,,0,1,,,0,, ,,,,,, αφαφα ⋯=φ

 
(5.17) 

( ) ( ) ( )( )iicsiLiiciLiic

T

iL UVUVUV
Li ,0,,,,0,1,,,0,, ,,,,,, αφαφα ⋯=φ

 
(5.18) 

where sXi, sLi denote the length of the respective regressors and 
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Thereby 
( ) ( ) ( ) ( ) ( ) ( )jijijijijiji L
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UUVV ,,,,,,

,0,0,, ,,,,, αα  denote the center location of the respective 

radial basis function and ( ) ( ) ( ) ( ) ( ) ( )iiiiii L

U

LL

V

X

U

XX

V qqqqqq ,,,,, αα  are the scaling factors in the 

respective direction. Accordingly, the scalar expansion of the parameter vectors read 

as 

( )
XisiXiX

T

iX pp ,,1,,, ⋯=p   ,  ( )
LisiLiL

T

iL pp ,,1,,, ⋯=p . 

Finally, for insertion of the parameterized forces and moments into the EOMs, the 

reference point has to be shifted to c.g. and the notation frame has to be transformed 

appropriately. 
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 (5.21) 

 

Figure 5.20 Main Engine Thrust– Input Voltage, Aerodynamic Velocity 
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Figure 5.21 Main Engine Thrust– Aerodynamic Velocity, Included AoA 

 

 

Figure 5.22 Main Engine Torque– Input Voltage, Aerodynamic Velocity 

 



 
Application of Variant 1  

198 

 

Figure 5.23 Main Engine Torque – Aerodynamic Velocity, Included AoA 

 

 

Figure 5.24 Back Engine Thrust – Input Voltage, Aerodynamic Velocity 
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Figure 5.25 Back Engine Thrust – Aerodynamic Velocity, Included AoA 

 

 

Figure 5.26 Back Engine Torque – Input Voltage, Aerodynamic Velocity 
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Figure 5.27 Back Engine Torque – Aerodynamic Velocity, Included AoA 

5.3.4 Control System Implementation 

As a rate command system is implemented, the linearizing state feedback is governed 

by moment equation (5.3). Using parameterizations (5.10) and (5.16) for aerodynamic 

and propulsive moments, we obtain differential equations with a structure, compliant 

with (4.90), comprising a pure state dependent part, a part that depends on the 

nonaffine thrust vector controls and a control affine part. It revealed that the radial 

basis function regressors in (5.16) for approximation of thrust and torque can be 

chosen to be equal without significant loss of accuracy, i.e. 

( ) ( ) ( )
iiciiiciLiiciX UVUVUV ,0,,0,,,0,, ,,:,,,, ααα φφφ == . 

Notice that the controller requires measurements of AoA and AoS. Currently, there are 

no sensors available at the aircraft that measure aerodynamic angles, however, the 

hardware platform is prepared for incorporation of an air data system (ADS) in the 

future. For simulation results, we will assume that an ADS is presently available. Using 

the simplified notation ( )B

B

OBωω ɺ�ɺ =  and inserting parameterizations into the moment 

equations (5.3),yields 
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uBφKφKω

+

++=ɺ
 (5.22) 

where the single terms are defined on the subsequent pages. Thereby, the state 

dependent regressor ( )⋅φ  contain terms that describe the aerodynamic moments, as 

well as the terms that occur due to inertia coupling (cross product term in equation 

(5.3)), ( )⋅Nφ  contains all terms due to propulsion moments – basically the radial basis 
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functions –  and BL describes the influences due to control surfaces. Notice that BL is a 

constant matrix while the state dependency is collected in ( )Vb  as is required for MMQ 

modification in (4.184). In the subsequent expression, the following quantities have 

been used. 

• Position vectors from c.g. to the origin of the respective propulsion frame (Figure 

2.3) 
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• Inertia tensor relative to c.g. in body- fixed components 
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The parameters Kx and KN  are, of course, subjected to model uncertainties as well as 

BL. In section 4.3 the uncertainty in the decoupling matrix has been modeled by means 

of a control effectiveness matrix ΛL using two different parameterizations. For this 

application, we will utilize the relative parameterization according to (4.114). The true 

decoupling matrix is 

( )
LL ΛIB +  

with an unknown matrix ΛL. Overall, the number of uncertain parameters is: 

• Kx: 11·3=33 

• KN: 2(sl+sr)+3sb 

• ΛL: 9·9=81 

According to section 4.3, the linearizing state feedback is 

( ) ( ) ( )[ ] ( )[ ]
N

T

N

T

Nx

T

x

TT
VVV φΘKφKνBBBu ˆˆˆˆˆˆ

1

+−−=
−

 

(5.23) 

where  

( ) ( ) ( )
LLVbV ΛIBB ˆˆ += , 

xK̂ , NK̂  are nonadaptive values, assumed for Kx, KN and NΘ̂  is an adaptive estimate 

for the deviation between NΚ̂  and KN according to (4.117), (4.119) and LΛ̂  is an 

adaptive estimate for LΛ . Note that the independent variables of the regressors have 

been dropped for readability. Hence, the feedback linearized moment dynamics are 

δuΛBφΘφΘνω +−−+= LLN

T

Nx

T

x b
~~

ɺ  

with parameter-estimation-errors LΛ
~

, NΘ
~

, according to (4.112), (4.119) and Θx 

according to (4.109). Further, the reference dynamics are designed as a first order lag. 

( )T

R R C
= − +ω K ω ωɺ  

Thereby 
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with time constants Tp, Tq, Tr>0, reference angular rates ( )RRR

T

R rqp=ω  and angular 

rates command ( )CCC

T

C rqp=ω . The pseudo control contains feed forward 

reference command, error feedback and an adaptive part 

AER νννν ++=  

( )CR

T

R ωωKν +−=   ,  eCν T

E =   ,  x

T

xA φΘν ˆ−=  
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where xΘ̂  is an adaptive estimate for 
xΘ , 

ωωe −= Rω  

is the tracking error and 
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q

p

k

k

k

00

00

00

C  

contains the error feedback gains kp, kq, kr>0. According to (4.127) tracking error 

dynamics are 

δΛBφΘφΘeCe −+++−= LLN

T

Nx

T

x

T
b

~~~
ωωɺ  

with xΘ
~

 according to (4.124) and, according to Corollary 4.2, the updates of the 

parameter estimates are 
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where PE is the symmetric positive definite solution of the Lyapunov equation 

EEE

T QCPPC −=−−  

for some symmetric positive definite QE. With stable filters ( )sG i
, Ni ,,1…=  we 

compute for MMQ modification 

• the filtered uncertainty according to (4.181)

( ) ( ) ( ) ( ) ( ) [ ]( ) [ ]( )[ ]sbsssGsssGs LLN

T

Niii uΛBφΘνωc ˆˆ ++−+=  

• the filtered regressor according to (4.186) 

( ) ( ) ( )ssGs xiix φq =,   ,  ( ) ( ) ( )ssGs NiiN φq =,   ,  ( ) ( )[ ]( )sbsGs iiL uq =,  

• filtered estimated uncertainty according to (4.189)

( )
iLLLiN

T

Nix

T

xi s ,,,
ˆˆˆˆ qΛBqΘqΘc ++=  

• filtered uncertainty estimation error according to (4.190) ( ) ( ) ( )ss iii ccsc −= ˆ~  

and stack the filtered quantities into matrices. 

( ) ( ) ( )[ ]sss Nxxx ,1, qqQ ⋯=   ,  ( ) ( ) ( )[ ]sss NNNN ,1, qqQ ⋯=   ,  ( ) ( ) ( )[ ]sss NLLL ,1, qqQ ⋯=  

( ) ( ) ( )[ ]sss NccC ~~
1 ⋯=  

Still an open topic is the design of the filters and a possible design will be presented in 

the following. 
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Design of MMQ Filters 

It is desirable that the single MMQ filters provide different information, since this 

increases the chance that columns of the matrix of filtered regressors contain a 

maximum number of linearly independent columns. This in turn leads to increased 

adaptation performance as has been explained in section 4.4. Therefore, we will use 

frequency separating filters, with a low-pass that covers the low frequencies and N-1 

band-pass filters, which separate the relevant frequency band up to a certain 

maximum frequency. The low-pass filter is of the form 

0

0

ω

ω

+
=

s
GL  

with natural frequency ω0 and the band-passes are of the form 

( )
2

00

2

0

2

2

ωζω

ζω

++
=

ss

s
sGB  

with a damping ratio ζ . Before designing the frequency separation, at first, recall some 

basic facts on low-pass and band-pass. The amplitude response of low-pass and 

band-pass is depicted in Figure 5.28. The low-pass has a constant amplification gain 

up to the natural frequency and then it decays with 20dB per decade. The band-pass 

only transmits frequencies between some low frequency Lω  and a high frequency Hω , 

which evaluate to 

( )12

0 ++−= ζζωωL   ,  ( )12

0 ++= ζζωωH  

and outside the transmission band the amplitude response decays with 20dB per 

decade. The maximum amplitude is achieved at ω0, but it does not lie in the middle of 

the transmission band whose bandwidth evaluates to 

02ζωωω =−= LHB . (5.24) 

 

Figure 5.28 Amplitude Response Low-pass and Band-pass 

Now, we want to design as set of N frequency separating filters that transmit 

frequencies up to some maximum Ω . The low pass filter  
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( )
0

0

Ω+

Ω
=

s
sGL

 

thereby covers the low frequencies up to some Ω<Ω0 , and the remaining N-1 filters 

are designed as band-passes  

( )
2

,0,0

2

,0

,
2

2

ii

i

iB
ss

s
sG

ωζω

ζω

++
=  

such that each filter covers a separate frequency band without overlap, as depicted in 

Figure 5.29. The low frequency of the first band-pass equals the bandwidth of the low-

pass ωL1=Ω0 and its high frequency equals the low frequency of the second band pass 

ωL2=ωH1. This procedure is repeated until the high frequency of the Nth filter equals the 

maximum frequency NH ,ω=Ω . As physical systems, such as aircraft typically have a 

limited bandwidth, it is expectable that the information content of the time response 

reduces with increased frequency. Therefore, it is nearby to widen the bandwidth of the 

filters with increasing frequency.  

It follows from the definition of the bandwidth (5.24) that this could be achieved by 

setting ζ constant for all filters, while the position of the transmission band is shifted by 

the natural frequency ω0. 

 

Figure 5.29 Frequency Separation 

Se we need to find the constant damping ratio ζ  and natural frequencies ω0,i such that 

the frequency band from Ω0 to Ω  is divided into N-1 separate parts. To this end, 

consider the relationship between natural and low frequency of the ith filter. 
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1
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22
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22

2

,

2

,

,0
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=

++++−
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ζζ

ζζω

ζζζζ

ζζω

ζζ

ω
ω iLiLiL

i  

( )12

,,0 ++= ζζωω iLi
 

(5.25) 

Further, using the bandwidth, the high frequency is 

( )122 2

,,,0,,, +++=+=+= ζζζωωζωωωω iLiLiiLiLiH B  

( )1221 22

,, +++= ζζζωω iLiH . (5.26) 

We set ωH,i=ωL,i+1 and obtain a recursive definition for the respective low frequencies. 



 Chapter 5 
Application and Simulation 

211 

( )1221 22

,1, +++=+ ζζζωω iLiL . (5.27) 

Further, since ωL,1=Ω0 we get. by successive application of (5.27) 

( ) 1
22

0, 1221
−

+++Ω=
i

iL ζζζω  (5.28) 

and by (5.26) 

( )i

iH 1221 22

0, +++Ω= ζζζω . 

For the (N-1)
th band-pass, we have  

( ) Ω=+++Ω=
−

− :1221
1

22

01,

N

NH ζζζω  

(5.29) 

which is a condition for ζ. In order to solve the equation, as an interim step, we define 

1221 22 +++= ζζζC . (5.30) 

By (5.29) we obtain 

1

1

0

−










Ω

Ω
=

N

C  

(5.31) 

and finally, (5.30) can be solved for C. 

( ) ( )22
2

2
2112 ζζζ −−=+ C  

( ) ( ) 42224 414144 ζζζζ +−−−=+ CC  

( )
C

C

2

1−
=ζ  (5.32) 

Using this result, the natural frequencies are obtained by insertion of (5.28) into (5.25). 

( ) ( )11221 2
1

22

0,0 +++++Ω=
−

ζζζζζω
i

i
 

(5.33) 

 

L1-norms of MMQ filters 

The impulse response of a low-pass is 

( ) t

L etg 0ω−=  

and the L1-norm is the integral over the absolute value of impulse response 

( ) ( )∫
∞

=
01

dttgsG LL L
 

( )
0

1

1 ω
=

L
sGL  (5.34) 

For weakly damped band-passes ( 1<ζ ), the impulse response is obtained by 

completing squares of the denominator of the transfer function  
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( )
( ) ( ) 2

0

22

0

0

1

2

ωζζω

ζω

−++
=

s

s
sGB

. 

and the associated time domain signal is obtained from tables available in the 

literature. 
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Direct integration of the magnitude of this signal is not even solved by symbolic 

mathematics software tools such as Wolfram MATHEMATICA and Mathwork’s MUPAD 

but, using some smaller reformulations, the L1-norm can be computed analytically. At 

first, using addition theorems for trigonometric functions, the impulse response also 

reads as 
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Moreover, the signal has a constant sign within the intervals [ ]kk TT ,1−
 where 
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 −
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k
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for �∈k  and, using symbolic mathematics software, the integral of ( )tgB  over the kth 

interval evaluates to 
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The integral of ( )tgB  equals the infinite sum of kI  which results in a geometric series. 
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and hence 
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For the strongly damped case ( 1>ζ ), the transfer function is reformulated by means of 

partial fraction decomposition, which yields 
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Hence the impulse response is 
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which can also be written in terms of hyperbolic functions 
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By use of addition theorems, we obtain 
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Moreover, the impulse response function is positive in the interval [ ]0,0 T  and negative in 

the interval [ ]∞,0T  where 
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For the critically damped case ( 1=ζ ), the partial fraction decomposition of the transfer 

function is  
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in the time domain. Clearly the impulse response is positive for 1
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Summing up, 
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Thrust Vector Control 

The nonaffine controls (the thrust vector angles, Table 2.6) are not used within the 

linearizing state feedback but their effect is compensated for, using the affine controls, 

according to equation (5.23). As explained in remark 2 of section 4.3.3, the external 

controls are allowed to adopt any value within the set U without destroying the proof 

of ultimate boundedness of tracking- and parameter-estimation-error according to 

Theorem 4.4. It is hence reasonable to tune the nonaffine controls within a nonaffine-

in-control framework, as introduced in section 4.5, while it is assured that the nonaffine 

controls do not leave U. 

The estimated effect of the thrust vectoring angles is described by a nonlinear map 

( )
brlbbrlbcclc UUUV

r 000,, ,,,,,,,,,,ˆ κσσσαααgw =  (5.38) 



 Chapter 5 
Application and Simulation 

215 

where the map is linearly parameterized according to equation (5.23) 

( ) ( ) ( )brlbbrlbcclcN

T

N

T

N UUUV
r 000,, ,,,,,,,,,,ˆˆˆ κσσσαααφΘKg +=⋅ , 

with assumed parameters NK̂  and adaptive estimate NΘ̂ . The nonaffine controls are, 

of course, the 4 thrust vectoring angles 

( )T

N l r b b
σ σ σ κ=u . (5.39) 

The motor input voltages are free to be prescribed from extern and could be used for 

speed control in the next outer loop. Hence, from the considered inner loop, they are 

considered as external and known disturbance. Additionally, the input voltages to all 3 

engines will be equal, such that 
0000 :UUUU brl ===  and hence, in compliance with 

notation of section 4.1.8, the external disturbance is 
0Ud = . 

The remaining quantities, namely the aerodynamic velocity, AoA and AoS form the 

state dependent part of the regressors. 

( )βαVT =x  

However, the regressors have been designed, using the concept of included AoA. But, 

they depend on aerodynamic as well as thrust vectoring angles according to equations 

(2.47) – (2.50), (5.11). 

( )
llclc σβααα ,,,, =   ,  ( )

rrcrc σβααα ,,,, =   ,  ( )
bbbcbc κσβααα ,,,,, =  

Hence, the effect of thrust vector angle onto the dynamics is compactly written as 

( ) ( ) ( )dd NN

T

N

T

NN ,,ˆˆ,,ˆ uxφΘKuxgw +== . (5.40) 

 

Partitioning of Nonaffine Controls 

Obviously, the output dimension of the nonaffine control map (5.40) is 3, while there 

are 4 thrust vectoring angles available for control. However (5.40) needs to be 

diffeomorphism w.r.t. the controls in order for the nonlinear-in-control algorithm to be 

exponentially stable, according to Theorem 4.5. This in turn requires that input and 

output dimensions are equal. In order to comply with this requirement, the nonaffine 

controls are restructured, based on their primary physical effects. 

At first, consider the main engines. As illustrated in Figure 5.30 the main engine thrust 

only produces negative pitch moments due to their location relative to the aircraft c.g.. 

Also, yaw moments cannot be produced effectively, since the input voltages to both 

engines are chosen to be equal. Hence, the roll axis is the only one that can effectively 

be controlled by the main engines, using an antimetric deflection of left and right thrust 

vector inclination angle. We will therefore introduced a virtual thrust vector angle for 
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the main engines σm that effects a positive angle of the left engine and a negative angle 

of the right engine. 

ml σσ =   ,  mr σσ −=  (5.41) 

 

Figure 5.30 Main Propulsion Geometry 

The back engine, however, effectively produces moments about pitch and yaw axes, 

not yet about the roll axis. Moreover, since the nondiagonal entry of the inertia tensor 

xzI  is small compared to Ix, Iy, Iz, the moments along the body-fixed axes 

approximately produce a time derivative of the respective body-fixed angular rate. We 

will hence use σm  for production of roll moments and the backward thrust vectoring 

angles σb, κb to produce pitch and yaw moments. To this end, the nonaffine control 

map (5.23) is split up into a main engine part and a back engine part 

( ) ( )0,,,,, ,,,,,ˆˆˆ UV rlrclcmN

T

mN

T

mNm σσααφΘKg +=
 

(5.42) 

( ) ( )0,,,, ,,,,ˆˆˆ UV bbbcbN

T

bN

T

bNb κσαφΘKg +=
 

(5.43) 

with the main engine regressor  

( ) ( ) ( )( )0,,0,,, ,,,,,, UVUV rrc

T

rNllc

T

lN

T

mN σασα φφφ =⋅ , 

their associated parameters  

[ ]T

R

T

l

T

m KKK ˆˆˆ =   ,  [ ]T

r

T

l

T

mN ΘΘΘ ˆˆˆ
, = . 

and their analogs for the back engine 
bN ,φ , bN ,K̂ , bN ,Θ̂ . Hence, the first component of 

the virtual control w, according to (5.38), is controlled by the main engines, while the 

remaining components are controlled by the back engine. 

Now the thrust vector controls are partitioned as depicted in Figure 5.31. The desired 

virtual control w
* is separated into a roll axis part *

1w  and into a pitch-yaw axis part 

( )
*

3,2w . The virtual thrust vectoring angle σm  of the main engine is used to produce the 

desired roll axis control, while the back engine thrust vectoring angles σb, κb are used 

to produce the desired pitch and yaw axis control. Nevertheless, both, main and back 

engines produce moments in all 3 axes and hence the part that has been produced 

undesirably by one part is compensated for by the respective other part (dashed lines). 
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The deviation in the respective control effectiveness is finally tuned by the gradient 

based algorithm as introduced in section 4.5. 

 

Figure 5.31 Partitioning of Thrust Vector Controls 

 

Trim Value Assignment 

The main reason, why variant 2 (section 4.6) is not suitable for the considered aircraft is 

the fact that the effectiveness of thrust vectoring is quite nonuniform across the flight 

envelope, particularly since thrust is decaying with increased aerodynamic velocity. 

Moreover, due to the disadvantageous positioning of the main engines relative to the 

aircraft c.g., the main engine cannot produce a pitch moment effectively. Furthermore, 

the thrust, produced by the back engine, is considerably smaller than the main engine 

thrust. Simulations discovered that the back engine thrust vanishes or even becomes 

negative in normal cruise flight conditions due to its insufficient power. 

It is hence inappropriate to demand the aircraft to be trimmed by the thrust vector 

controls as proposed in section 4.1.8. The best, one can expect is that the propellers 

(at least partially) compensate for the moments that are produced by them, by setting 

w
*
=0.  

 

Computation of Control Map Jacobian 

The computation of the Jacobians of (5.42) (5.43) need application of the chain rule, 

since the propulsion regressors are designed by use of the included AoA which 

implicitly depends on the thrust vector controls. According to (5.42), we have 
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However, for the algorithm, illustrated in Figure 5.31, we need the derivative w.r.t. the 

virtual thrust vector inclination angle σm. 
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According to (5.43), the Jacobian for the back engine is 
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The included AoA αc,l, αc,r, αc,b directly depend on the respective total AoA αT,l, αT,r, αT,b 

and AoS βT,l, βT,r, βT,b  according to (5.11) which in turn depend on the thrust vectoring 

angles by (2.47) – (2.50). Hence, the derivatives of the regressors w.r.t. thrust vector 

angles evaluate to 
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Thereby, the expressions, involved in the main propulsion regressors evaluate to  
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Notice that the index i is replaced by l (left engine) or r (right engine). For the back 

engine regressor, we have 
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The partial derivatives of radial basis functions φi,j are computed according to (5.8). In 

normal flight conditions, AoA and AoS do not adopt values beyond 60° magnitude and, 

with regard to the maximum thrust vector angle deflections in Table 2.6, the following 

conditions are obviously fulfilled. 
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2

π
σα <+ l

 , 
2

π
σα <+ r

 , 
2

π
σα <+ b

 , 
2

π
κβ <− b

 , 
2

π
α <  , 

2

π
β < . (5.57) 

It can be shown that the expressions, derived recently, are free of singularities or, at 

least, can be extended continuously. To this end, take a closer look to expressions 

(5.53) – (5.56) which have singularities if the denominator has a zero. The common 

denominator of equations (5.53) and (5.55) contains two squared summands. The only 

zero of the first term is α+σb=0, however, the second summand is greater than zero 

under this condition, since by application of addition theorems, the expression equals 

( ) ( ) ( ) 0coscoscossinsin >−=+ bbb κβκβκβ . 

For an analogous consideration of the denominators of equations (5.54) and (5.56), we 

apply addition theorems to the trigonometric functions and take the absolute value. 

( )

( ) ( )( )[ ]
bbbbb

bbb

κσαβκσακ

σακββκ

tancosarctansinsincoscos

cossincossincos

222 +−++=

+−
. 

Then, since 0≤cos(α+σb)≤1 we have 

( ) 1sincossincoscos 22222 =+≤++ bbbbb κκκσακ . 

which implies 

( ) ( )( )[ ]bbbbb κσαβσακββκ tancosarctansincossincossincos +−≤+−  

Moreover, since 0≤cos(α+σb)≤1, we have 

( )( ) 0for    tancosarctan0 ≥≤+≤ bbbb κκκσα  

( )( ) 0for    tancosarctan0 ≤≥+≥ bbbb κκκσα . 

This result, together with 

( )( )[ ]
2

tancosarctansin
2

π
βκσαβκβ

π
<≤+−≤−<− bbb  for 0≥bκ  

( )( )[ ]
2

tancosarctansin
2

π
κβκσαββ

π
<−≤+−≤<− bbb  for 0≤bκ  

we have 

( )( )
2

tancosarctan
π

κσαβ <+− bb
. 

and consequently 

( ) ( )( )[ ] 1tancosarctansincossincossincos <+−≤+− bbbbb κσαβσακββκ  

and hence, expressions (5.54) and (5.56) are free of singularities. 
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Expressions (5.51), (5.52) actually have a singularity for 0,, == iTiT βα , but it can be 

shown, by L’Hospital’s rule that 

1
coscos1

cossin
lim

,

2

,

2

,,

0

0

,

,

=














−→
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,,
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0
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and hence, these expressions can be continuously extended by 









==

≠≠
−=

.1or    1  if1

1  and  1  if
coscos1

cossin

,,

,,

,

2

,

2

,,

,

iTiT

iTiT

iTiT

iTiT

ic

βα

βα
βα

βα

α  (5.58) 

5.3.5 Adaptive Gain Design 

For design of the baseline controller, namely reference- and error dynamics, any 

classical design method could be utilized and is considered state of the technology. 

Therefore, this section will focus on the design of the adaptive controller parameters. 

These are learning rates γx, γN, γL, gains of switching σ-modification σx, σN, σL  and 

MMQ gain κ. 

 

Gain Design Procedure 

As derived in section 4.4.3, inequalities (4.243) have to be satisfied for ultimate 

boundedness. Assuming that the bounds on true parameters θx,max, θN,max  and λL,max  as 

well as the bound on the unmatched uncertainty D are known, there are some minimal 

values 0,,, **** >LNxe kkkk  (subsequently denoted as *

ik , LNxei ,,,= ) such that (4.243) has 

a solution for all *

ii kk ≥ . In order to find the minimum values, we divide the problem into 

two parts. For the first part, we assume that 
kii kk ,=  are fixed in the kth iteration step, 

while the independent variables of (4.243) , σx, σN, σL, κ, K0, are considered as 

optimization variables. 

Optimization 1 

minimize: ( ) xxx T
f =1  

( )κσσσ 0KLNx

T =x  

subjected to the nonlinear constraint 
( ) ( )

0
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This is clearly a convex optimization problem, since both, objective function and 

inequality constraint, are convex functions and hence, if the problem is feasible, it has 

a unique local minimum, which is also the global minimum. Such convex optimization 

problems can efficiently be solved numerically, using various algorithms available in 

literature ( [Boy09], [Smi10], [Rao09] ).  

So far, by convex optimization, we find whether inequalities (4.243) have a solution for 

some fixed kp . In a second step, we apply the bisection method ( [Pre07] ) to find the 

minimum values *p  that render the optimization problem feasible. Bisection is actually 

a method to find zeros of a function within some interval. By a slight abuse, we will use 

bisection to find – instead of a zero –  the limit value *p  between feasibility and non-

feasibility of optimization 1. Therefore, we start with some ke,0, kx,0, kN,0, kL,0,>0, 

sufficiently large such that optimization 1 is feasible. Moreover, since the minima *

ik  are 

independent of each other, the minimization of a single entry in p  can be done 

independently of the others. Therefore, the procedure is explained exemplarily for *

ek . 

In the initial iteration, it is known that *

ek  lies in the interval 

[ ]0,,0,,0 HeLe kkI =  where 00,, =Lek , 
0,0,, eHe kk = . 

In order to confine the interval, optimization 1 is tested in the middle of the interval. 

2

0,,0,

0,,

LeeH

Me

kk
k

+
=  

If it is feasible at this point, *

ek  lies in the left part of the interval, and we choose for the 

next iteration step [ ]0,,0,,1 MeLe kkI = , otherwise [ ]0,,0,,1 HeMe kkI = . This procedure is 

repeated until the interval is sufficiently small. Hence, for the k
th iteration step, we 

choose 

• [ ]kMekLek kkI ,,,,1 =+  if optimization 1 is feasible at 
kMek ,,
 and  

• [ ]kHekMek kkI ,,,,1 =+  otherwise. 

Hence, in each iteration step, the interval that brackets *

ek  is bisected as depicted in 

Figure 5.32. Finally, in the last – let us say the N
th – iteration, we choose NHee kk ,,

* = . 

Now, if we have found *p , the minimum tracking error ee  is obtained by equation 

(4.174). Now, if possible, we choose some er  that simultaneously fulfills (4.151) and 

(4.178), i.e. 

Ree re ζζ −≤≤  (5.59) 
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which allows computation of the minimum learning rates 
x

γ , 
N

γ , 
L

γ  according to 

equations (4.175) – (4.177). 

 

Figure 5.32 Bisection Method 

With the lower bound on the maximum tracking error, we can now compute the 

learning rates as well as modification gains that optimize a suitable objective. From a 

control system point of view, it is desirable that the transient phase is as short as 

possible and the ultimate bound is as small as possible. Thereby the behavior of the 

parameter-estimation-errors is of secondary interest since control performance is tied 

to the tracking error. Referring to Corollary 4.2, we want to minimize time and ultimate 

bound of the tracking error Te and be. Notice that Te depends on the initial condition 

bound δe but, in order to get a worst case bound, we insert the maximum allowable 

bound ρe (equation (4.155)) instead. The optimization problem is summarized on the 

subsequent page. The objective function  is chosen to be a linear combination of 

transient time Te and ultimate bound be, weighted with a1, a2>0. The choice of the 

weights, of course, allows to emphasis either of the objectives. Notice that γx, γN, γL are 

additionally bounded from above by some γx,max, γN,max, γL,max. This is necessary since 

high learning rates are suitable to reduce the objective function, however, it is well-

known that high gain adaptation results in high frequency oscillation and also could 

cause problems due to the discretization error that always occur in a digital control 

systems. In practice, the upper bounds are either set to some fixed values or to a 

multiple of the minimum learning rates, i.e. 

xxx c γγ =max,    ,   
NNN c γγ =max,    ,   

LLL c γγ =max,
 with constants 1,, ≥LNx bbb . 

Contrary to optimization 1, this is a general nonlinear optimization problem with 

potentially several local minima. Since we do not have an initial guess for the 

parameters, a classical gradient based optimization algorithm potentially only finds a 

local minimum but not the global. Therefore, it is recommendable to use rather modern 

optimization algorithms that are able to find the global minimum disregarded the initial 

guess. For the gain design a genetic algorithm (e.g. [Rao09] ) has been chosen. Despite 

the statistical character of the genetic algorithm, the computations produced quite 

repeatable results for the adaptive gains. Figure 5.33 illustrates the whole design 

procedure for the adaptive gains. 
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Optimization 2 

minimize: ( ) ( ) ( )yxyxyx ,,, 212 ee baTaf +=  
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Figure 5.33 Design Procedure for Adaptive Gains 

 

Discussion on Practical Issues 

Table 5.3 shows some numeric examples of the gain design procedure that highlight 

its general behavior as discussed in the following.  

It reveals that the lower bound on the tracking error ee  is mainly dependent on 

unmatched uncertainty, rather not on the parameter bounds. This is not surprising 

since the unmatched uncertainty cannot be cancelled by the adaptation and hence the 

unmatched uncertainty still remains when adaptation already has taken place and 

excites the error dynamics (refer to equation (4.127)). Furthermore, large parameter 

bounds imply a large parameter space, the adaptation should be able to compensate 

for. Initially, one could think that larger parameter bounds should increase ee  since it 

takes more effort to cross a larger parameter space. However, this effect can be 

compensated by larger learning rates. This also explains why the minimum learning 

rates are increased with the parameter bounds.  
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Table 5.3 Gain Design Numeric Examples 

fixed parameters:  

555

2743.1123

/4011025.61025.1

max,max,max,

32

===

===

°==⋅=⋅= −−

LNx

eQPP

LNm

sr
EEE

γγγ

λλλ

 

example1:  21,01.0,01.0,01.0 max,max,max, s
rad

LNx D ==== λθθ  

e
e  5.04°/s  κ  2.2204*10

-11
 

x
γ  0.33281 xγ  5 xσ  32.839 

N
γ  0.42373 Nγ  5 Nσ  32.840 

L
γ  0.44442 

Lγ  5 
Lσ  32.836 

eT  47.5s eb  13.51°/s  

example 2:  21,02.0,02.0,02.0 max,max,max, s
rad

LNx D ==== λθθ  

e
e  5.78°/s  κ  2.2204*10

-11
 

x
γ  1.1512 xγ  5 xσ  17.214 

N
γ  1.3380 Nγ  5 Nσ  17.214 

L
γ  1.3398 

Lγ  5 
Lσ  17.214 

eT  46.40s eb  20.94°/s  

example 3:  22,01.0,01.0,01.0 max,max,max, s
rad

LNx D ==== λθθ  

e
e  9.19°/s  κ  2.2204*10

-11
 

x
γ  0.50308 xγ  5 xσ  32.554 

N
γ  0.50882 Nγ  5 Nσ  32.564 

L
γ  0.71295 

Lγ  5 
Lσ  32.557 

eT  47.4s eb  14.49°/s  

example 4:  22,02.0,02.0,02.0 max,max,max, s
rad

LNx D ==== λθθ  

e
e  10.09°/s  κ  2.2204*10

-11
 

x
γ  1.3339 xγ  5 xσ  17.181 

N
γ  1.5195 Nγ  5 Nσ  17.181 

L
γ  2.0343 

Lγ  5 
Lσ  17.181 

eT  46.1s eb  21.74°/s  

example 5:  20,01.0,01.0,01.0 max,max,max, s
rad

LNx D ==== λθθ  

e
e  0.70°/s  κ  16.933 

x
γ  0.24022 xγ  5 xσ  34.626 

N
γ  0.24022 Nγ  5 Nσ  34.623 

L
γ  0.26471 

Lγ  5 
Lσ  34.623 

eT  47.1s eb  12.80°/s  
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Since learning rates should not become too large for the reasons, stated recently, large 

parameter bounds are somehow critical in the design procedure. Moreover, the 

ultimate bound be is increasing with the parameter bounds, while the σ-modification 

gains are decreasing. In order to interpret this behavior, recall that σ-modification 

deteriorates performance since it pulls the parameter estimates back to zero (refer to 

Appendix D.2 and equation (D.9)) and this effect grows with increasing distance from 

the origin. Now, larger parameter bounds potentially imply a larger distance of the true 

parameter from zero and the parameter estimate has to “battle” against a stronger σ-

modification effect in order to converge to the true parameter. This deteriorating effect 

explains, why the σ-modification gains are reduced by the design procedure if the 

parameter bounds are increased. It is important to notice that we use switching σ-

modification, which does not have this negative effect, since it is disabled if the 

parameter estimates reside within some predefined set, which contains the true 

parameters. However, in stability analysis, this improvement is not considered, since 

the upper bounds on the Lyapunov function derivatives (in fact the γ -functions, 

according to Corollary 3.2) are obtained under the assumption that σ-modification is 

active (refer to equation (4.156)). However, despite reduction of σ-modification gains, 

the ultimate bound is increased. Notice that learning rates in optimization 2 are 

bounded from above by a fixed value for all examples. Further computations showed 

that the ultimate bound is not considerably increased, if the upper bounds are defined 

as a multiple of the minimum learning rates. 

Finally it is observed that MMQ modification is counterproductive in presence of 

unmatched uncertainty which results in κ=0 in optimization 2. This also complies with 

remark 4 of section 4.4.3. In absence of unmatched uncertainties, however, the gain 

design procedure results in a finite κ>0 (example 5). 

 

Gain Design Philosophy – Accounting for Certification Aspects 

In classical linear flight control systems, robustness of the closed loop system is 

analyzed by means of gain and phase margin while the specific values have evolved 

historical on an empirical basis, but not on resilient analytical considerations, however, 

these are accepted as robustness evidence. It is a today’s challenge to provide the 

certification authorities with robustness metrics for nonlinear adaptive control systems 

that provide the same level of confidence as gain and phase margin do for linear 

systems. Although it is in no way claimed to be the ultimate solution, the following 

proposition might be useful towards that end. 

It is a known drawback, that Lyapunov based stability analysis for MRAC systems 

result in rather conservative stability bounds and also the proposed gain design 

procedure results in unacceptably high lower bounds on the tracking error ee  (several 

hundred °/s) and unacceptably high minimum learning rates if the bounds on the true 
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parameters incorporate failure cases. Classical linear flight control systems are 

commonly designed for the nominal aircraft configuration and are disabled as soon as 

failure cases occur, nevertheless it is often still possible to operate and land the aircraft 

safely. 

This consideration is incorporated in the adaptive control design by reducing the 

parameter bounds such that they can cancel model uncertainties in the nominal case 

but cannot recover performance in case of failures. This restriction results in 

acceptable values for ee  and 
x

γ , 
N

γ , 
L

γ . This gain design procedure guarantees – by 

Lyapunov’s theorems – that the aircraft is operated stably in nominal configuration and 

in presence of a certain amount of unmatched uncertainties. In any emergency case – 

when linear control systems are disengaged anyway – the parameter bounds are 

enlarged by the operator or pilot such that the adaptation is able to recover a safe 

aircraft operation. I.e. in the emergency case, the parameter bounds are set to 

max,max,, xxEx d θθ ⋅=    
max,max,, NNEN d θθ ⋅=    

max,max,, LLEL d λλ ⋅=  (5.60) 

for some dx, dx, dx>1.  

For argumentation towards certification authorities it can be stated that the flight 

control system is guaranteed to operate the aircraft safely in the nominal case but, 

additionally, provides the chance to recover performance in emergency cases, which is 

not provided by classical control systems. Thus, beside equivalent reliability in the 

nominal case, adaptive systems provide additional safety in failure cases. 

The author is aware of the fact that consideration of unmatched uncertainty does not 

incorporate unmodeled dynamics. In recent years, research has intensively focused on 

robustness considerations of adaptive systems against unmodeled dynamics; a 

promising approach so far is the consideration of time delay margin. This, however, 

requires an in-depth discussion on the theoretical fundamentals and would go beyond 

the scope of the thesis. At least the proposed gain design procedure provides an 

explicit and resilient robustness margins against unmatched uncertainties. 

 

Estimates for Bounds on Parameters and Unmatched Uncertainty 

As explained recently, in order get acceptable ee  and 
LNx

γγγ ,, , the parameter bounds 

have to be reduced such that adaptation capabilities are sufficient for compensation of 

model uncertainties. If this still does not produce satisfactory results, the parameter 

bounds can even be reduced further such that model uncertainties can only partially be 

compensated, of course, for the price of an increased unmatched part. 

A remaining challenge is the determination of an appropriate value for the unmatched 

uncertainty bound. This could be accomplished numerically by variation of uncertain 

parameters and computation of the maximum unmatched uncertainty that occurs 
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within the flight envelope, but for demonstration purposes, we will utilize a physical 

approach in order to get imagination for the magnitude of the uncertainty bound. By 

equation (5.22), the unmatched uncertainty is an angular acceleration caused by 

unmatched moments.  

Referring to Figure 5.20, Figure 5.21 the main engine maximum thrust is about 

XPr,max=10N while the torque is about LPr,max=0.2Nm. The nominal position vectors from 

aircraft c.g. to the left and right main propulsion are 
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and a worst case estimate for the total propulsive moments Mtot (i.e. the Euclidean 

norm of the moment vector) relative to the c.g. (if the back engine is assumed not to 

contribute to the moments considerably) is given by the distance of the respective 

engine to the c.g., multiplied with the maximum thrust. 

( ) ( )( )Pr Pr

Pr,max Pr,max
22

5.35l rG G
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BB

M L X Nm= + + =r r
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. 

Now, 10% of the maximal moment should be a very conservative approximation for 

the unmatched moment. Moreover the inertia tensor relative to c.g. is 

( ) 2310

392017

02760

170129

kgm
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=I  

and, since inertia about the roll axis is the smallest one, the worst case is a unmatched 

moment about the roll axis and hence 

3 2 2

0.1 0.1 5.35 deg
237.622

129 10

tot

x

M Nm
D

I kgm s
−

⋅ ⋅
= = =

⋅
. (5.61) 

At this point, it has to be noticed that this procedure does not provide less confidence 

than gain and phase margins provide for linear system, since values for these 

robustness margins are based on experience but not on hard mathematical facts. The 

main difference is the lack of empirical values for D, but they could be gained by 

numerical variation of parameters in the mathematical model such as inertia sensor, 

mass or c.g., however those investigations are left for the future and we will rely on the 

conservative bound in equation (5.61). 

 

Valid Domain for External States  

The bound on the external states ζ  is chosen, based on the gyroscope sensors, which 

have a range from s
deg200−  to s

deg200  in each axis. Hence, the admissible set of the 
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external states is a cube of edge length s
deg400  around the origin. The set of external 

states that is defined by equation (4.137), is a ball of radius ζ . Hence, if we choose 

s
deg200=ζ  (5.62) 

the ball is completely covered by the cube. 

5.3.6 Controller Parameter Assignment 

Baseline Controller 

The following parameters have been chosen for the reference model time constants 

and the error feedback gains. 

Table 5.4 Parameters Baseline Controller 

axis reference model time constant error controller gain 

roll axis Tp 0.15s kp 80/s 

pitch axis Tq 0.12s kq 40/s 

yaw axis Tr 0.2s kr 40/s 

In order to find re that satisfies the right hand side of (5.59) the reference model 

commands and states have to be limited. 

Table 5.5 Reference Model Limitation 

axis reference model limitation 

roll axis pmax 130°/s 

pitch axis qmax 80°/s 

yaw axis rmax 20°/s 

Hence, we obtain for the reference model bound 

ssR
degdeg222 95.1532080130 =++=ζ . (5.63) 

 

Adaptive Element 

In view of equations (5.62) and (5.63), the tracking error shall be not be bigger than 

ser
deg45= . (5.64) 

This choice assures that the plant state will not exceed the limit of 
deg

200
s

given by 

the measurement range of the sensors. Table 5.6 lists the parameters that have been 

chosen for the adaptation algorithm. The first part contains values that are defined a 

priori while the second part contains results of the gain design procedure, described in 

section 5.3.5. 

In order to achieve the bound on the tracking error of equation (5.59), the parameter 

bounds have been reduced to an extent such that they only partially cancel the model 

uncertainties for the undamaged nominal aircraft. As will be shown in simulation 

results, the parameter estimates operate at their respective boundaries even in the 

nominal case, nevertheless tracking performance is acceptable. 
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Table 5.6 Parameters of Adaptive Element 

fixed parameters:  

Lyapunov equation 
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Number of filters  12=N  
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gain design 
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/45311025.61025.1 32 °===⋅=⋅= −− λλλ  

e
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x
γ  4.2344 xγ  4.6579 xσ  10.616 

N
γ  26.066 Nγ  28.673 Nσ  1.5154 

L
γ  4.7615 

Lγ  5.2376 
Lσ  12.963 

eT  44.63s eb  39.32°/s  

 

Nonlinear-in-Control Design 

Since a minimum control authority of the nonaffine controls cannot be guaranteed, as 

stated in the introductory remark at the beginning of the chapter, convergence of the 

NIC algorithm to the desired value is not assured. However, since thrust vectoring is 

not used for control within the linearizing state feedback, but only for trimming, while 

the remaining effect is cancelled by the linear controls, it is not necessary for the thrust 

vector controls to converge. Nevertheless, it has to be assured that the thrust vector 

angles do not exceed their maximum deflection, however, this can be easily assured 

by limitation of the integrators of the gradient minimization algorithm. 

The nonlinear-in-control algorithm is implemented as normalized gradient system 

according to equation (4.261). Thereby singular values of the control map Jacobian 
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could get zero due to insufficient control authority, which requires for a limitation of the 

singular values from below by some small positive value, since otherwise differential 

equation (4.261) becomes singular. Notice that the time scale separating parameters 

have been chosen quite large, since they are only used for trimming, which does not 

require for high dynamics. Moreover, slower commands preserve the thrust vector 

actuators. 

Table 5.7 Nonlinear-in-Control Parameters 

main engine 

time scale separation 5.2=ε  

minimum SV of control map Jacobian 01.0=σ  

back engine 

time scale separation 5.2=ε  

minimum SV of control map Jacobian 01.0=σ  

5.3.7 Simulation Results 

The section presents simulation results that show the performance of the control 

system, including the dynamic inversion baseline controller, the adaptive part as well 

as the nonlinear-in-control design for the thrust vector angles.  

The simulation will show the nominal performance of the baseline controller and 

improved performance, if adaptation is activated. Additionally, capabilities of the 

adaptive system to recover the aircraft in case of actuator failures will be presented. 

Compliant with the gain design philosophy, as introduced in section 5.3.4, bounds on 

the parameter estimates are restricted such that the adaptation can only compensate 

for model uncertainties of the undamaged aircraft. In emergency cases, the parameter 

bounds are enlarged according to equation (5.60), which is denoted as “emergency 

button” subsequently. 

 

Damage Scenarios 

Besides, for nominal performance, the flight control system will also be tested for its 

capabilities to handle severe aircraft damages. Therefore, three damage scenarios are 

defined. In all scenarios, the simulation begins with an undamaged aircraft and, in each 

case, after 5s, different severe failures occur, depending on the scenario according to 

Table 5.8. 
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Table 5.8 Damage Scenarios 

scenario 1 scenario 2 scenario 3 

left canard missing left canard missing 50% of left wing missing 

left aileron missing right canard missing 30% of right wing missing 

right flap missing left aileron missing 
 

right elevator missing right aileron missing 

 

Simulation Setup 

The simulation is set up with the high fidelity simulation model, comprising rigid body 

and actuator dynamics as described in Chapter 2. Additionally, sensor models are 

implemented which comprise measurement insufficiencies such as inaccurate 

mounting, bias and noise. The simulation is run at a fixed sample rate of 500Hz and an 

additional time delay of one sample is introduced to the sensor channel to account for 

digital delays. In order to compare the capabilities of baseline controller and adaptive 

system for the undamaged and damaged case, the following simulation scenarios are 

defined. 

Table 5.9 Simulation Scenarios 

no. description 
damage 
scenario 

adaptation emergency 

1 nominal performance, baseline controller no no no 

2 nominal performance, with adaptation no yes no 

3 nominal performance, emergency button no yes yes 

4 damage scenario 1, with adaptation 1 yes no 

5 damage scenario 1, emergency button 1 yes yes 

6 damage scenario 2, emergency button 2 yes yes 

7 damage scenario 3, emergency button 3 yes yes 

 

Nominal Performance 

Simulation scenario 1 shows performance of the baseline controller (without 

adaptation) for the nominal aircraft configuration. Figure 5.34 presents the tracking 

error of roll, pitch and yaw axis as well as Euclidean norm of the tracking error. 

Obviously, the model, assumed for linearizing state feedback does not match reality 

perfectly, which results in a finite deviation between reference model and plant of 

about 10deg/s mean Euclidean norm. 

Figure 5.35 shows the internal states, namely velocity, angle of attack (AoA), angle of 

side-slip (AoS), bank angle and pitch angle. It reveals that, particularly AoA and AoS 

remain within an acceptable range. (notice that boundedness of the internal states has 
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not been shown but was assumed a priori). Also, the aircraft attitude shows an 

acceptable behavior, although it is not actively controlled. However, it has to be 

admitted that the attitude behavior has been achieved by an offset to the external 

command hat compensates for the steady state tacking error. 

Figure 5.36 shows the control surface commands, where the dashed lines indicate the 

maximum deflection of the respective controls. It reveals that there is still sufficient 

control authority left. Figure 5.37 presents the thrust vector angle commands. The main 

engine thrust vector angles are deflected antisymmetrically and compensate for the roll 

moment, produced by the propeller torque. The range of the back engine thrust vector 

angles is obviously not sufficient to compensate for pitch and yaw moment, which 

results in saturated commands. On the one hand, the back engine has negligible 

power compared to the main engines, which effects that the back engine thrust is very 

low at the current velocity or even changes sign. The sign changes also explain why 

the back engine thrust vector angle commands run from one saturation to the other. 

On the other hand, the pitch moment that is produced by the main engines has to be 

compensated by the back engine inclination angle as explained section 5.3.4. 

However, due to lack of power the back engine compensation is insufficient. The 

behavior is certainly not satisfying, however, this is not a problem of control but of the 

aircraft design. 

Figure 5.38 and Figure 5.39 show the nonlinear-in-control error as well as the singular 

values of the nonlinear control map Jacobian (refer to Figure 5.31). Thereby the main 

engine has one channel since it only compensates for the roll axis using the virtual 

thrust vector angle σm according to equation (5.41), while the back engine has two 

channels, compensating for pitch and yaw axes, using back engine thrust vector 

inclination and azimuth angle. In Figure 5.38 it is observed that the main engine 

nonlinear-in-control error (about the roll axis) is compensated while Figure 5.39 

discovers that pitch and yaw axes cannot be compensated by the back engine. This 

complies with saturated thrust vector angles in Figure 5.37. 

Figure 5.42 shows the tracking error of simulation scenario 2. It reveals that the 

tracking error is decreased compared to scenario 1. But there is still a smaller deviation 

left which occurs from the parameter bounds that are restricted to values such that the 

adaptive part can only partially compensate for model uncertainties, which is observed 

in Figure 5.41. It displays the weighted Frobenius norms of the adaptive parameters 

and, obviously, the parameters quickly run into saturation, which is defined by the 

projection operator. Accordingly Figure 5.43 – Figure 5.45 show the scalar entries of 

the adaptive parameter matrices. Particularly in Figure 5.44 and Figure 5.45, it is well 

observed that ΛL and QN are saturated.  

The parameter bounds are enlarged in simulation scenario 3 (“emergency button”) 

which effects that the tracking error is further reduced as can be seen in Figure 5.46. 
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Figure 5.47 and Figure 5.48 – Figure 5.50 show the weighted Frobenius norms and the 

adaptive parameters itself which are, now, not restricted by limitation and evolve freely. 

Simulation Scenario1: Nominal Performance, Baseline Controller 

 

Figure 5.34 Simulation 1 – Tracking Error 

 

 

Figure 5.35 Simulation 1 – Internal States 
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Figure 5.36 Simulation 1 – Control Surface Commands 

 

 

 

 

 

Figure 5.37 Simulation 1 – Thrust Vector Commands 
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Figure 5.38 Simulation 1 – Nonlinear-in-Control Error, Main Engine 

 

 

 

 

 

 

Figure 5.39 Simulation 1 – Nonlinear-in-Control Error, Back Engine 
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Simulation Scenario 2: Nominal Performance, with Adaptation 

Figure 5.40 Simulation 2 – Internal States 

Figure 5.41 Simulation 2 – Weighted Frobenius Norms of Adaptive Parameters 

Figure 5.42 Simulation 2 – Tacking Error 
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Simulation Scenario 3: Nominal Performance, Emergency Button 

 

 

 

Figure 5.46 Simulation 3 – Tracking Error 

 

 

 

 

Figure 5.47 Simulation 3 – Weighted Frobenius Norm of Adaptive Parameter 
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Performance in Case of Severe Damage 

Simulation scenario 4 considers damage scenario 1 with adaptation activated, but with 

disabled emergency button. Figure 5.54, shows that the adaptive parameters 

immediately run into saturation and cannot compensate for further changes in the 

aircraft configuration. As seen in Figure 5.51, tracking performance degrades 

immediately when the damage occurs at 5s. This is particularly visible in Figure 5.52 

where the aircraft attitude is running away very fast, leading to inverted flight. Figure 

5.53 shows that, despite 4 missing control surfaces, the control surfaces still have 

substantial distance to actuator saturation. 

If the emergency button is activated, the adaptation recovers nominal tracking 

performance as can be observed in Figure 5.55, Figure 5.60 and Figure 5.63. Likewise 

the aircraft attitude does not diverge, although not controlled, according to Figure 5.56, 

Figure 5.59, Figure 5.64, which highlights the excellent tracking performance even in 

case of severe damage. In all three damage scenarios, the control surface commands 

do not run into saturation as depicted in Figure 5.57, Figure 5.61, and Figure 5.65. 

 

Simulation Scenario 4: Damage Scenario 1, with Adaptation 

 

Figure 5.51 Simulation 4 – Tracking Error 
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Figure 5.52 Simulation 4 – Internal States 

 

 

Figure 5.53 Simulation 4 – Control Surface Command 

 

 

Figure 5.54 Simulation 4 – Weighted Frobenius Norms of Adaptive Parameters 
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Simulation Scenario 5: Damage Scenario 1, Emergency Button 

 

 

Figure 5.55 Simulation 5 – Tracking Error 

 

 

 

Figure 5.56 Simulation 5 – Internal States 
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Figure 5.57 Simulation 5 – Control Surface Commands 

 

 

 

 

 

Figure 5.58 Simulation 5 – Weighted Frobenius Norms of Adaptive Parameters 
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Simulation Scenario 6: Damage Scenario 2, Emergency Button 

 

 

Figure 5.59 Simulation 6 – Internal States 

 

 

 

 

Figure 5.60 Simulation 6 – Tracking Error 
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Figure 5.61 Simulation 6 – Control Surface Commands 

 

 

 

 

 

Figure 5.62 Simulation 6 – Weighted Frobenius Norms of Adaptive Parameters 
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Simulation Scenario 7: Damage Scenario 3, Emergency Button 

 

 

Figure 5.63 Simulation 7 – Tracking Error 

 

 

 

Figure 5.64 Simulation 7 – Internal States 
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Figure 5.65 Simulation 7 – Control Surface Commands 

 

 

 

 

 

Figure 5.66 Simulation 7 – Weighted Frobenius Norms of Adaptive Parameters 
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Chapter 6 

Conclusion and Outlook 

In the context of the dissertation an MRAC system with an NDI baseline controller has 

been designed and implemented for a small scale unmanned aircraft testbed and the 

effectiveness of the developed control systems and algorithms have been shown by 

simulation scenarios where several actuator failures and even partial loss of the wing 

occurred during controlled flight. As it is indispensable to provide guaranteed bounds 

for the system states, if a flight control system is to be certified by the official 

authorities, a main emphasis throughout this work is the computation of explicit values 

within stability considerations, since it is felt by the author that this aspect is quite often 

neglected, if novel adaptive control concepts are developed. 

 

Control System Design 

The control system is designed, based on a detailed derivation of the involved 

equations of motion. After an introduction of the basic form of NDI, some extensions 

are derived, which are problem specific for the aircraft testbed, such as redundant 

control surfaces and the incorporation of nonaffine controls. Two variants for the 

utilization of the nonaffine controls are proposed, which are both augmented by an 

adaptive MRAC scheme. In the first variant, the nonaffine controls are rather 

considered as disturbance, which is cancelled by the linearizing state feedback and in 

the second variant, the nonaffine controls are used for feedback linearization of the 

plant dynamics, using nonlinear-in-control (NIC) design. Unfortunately, simulation 

revealed that the latter approach is not suitable for the aircraft, since a minimum 

control authority of the nonaffine thrust vector controls cannot be guaranteed uniformly 

within the whole flight envelope, but this is not necessarily the case for all types of 

aircraft. Nevertheless, the necessary equations have been derived, based on a precise 

statement on the preconditions for the system to work properly and a proof of ultimate 

boundedness in presence of unmatched uncertainties has been presented. The state 

of the technology for the NIC scheme has been cited but, moreover, an additional 

condition on the existence of the control map inverse, which is easier to verify in 

practice, has been derived. Up to now, stability analysis of the NIC scheme has been 

done, invoking the results of Thikonov’s theorem. Yet, the latter does not provide an 

explicit value for the time scale separating factor ε of the gradient based online tuning 

algorithm, since the theorem is formulated for a generic SP model. The proof, 
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presented within the thesis, takes advantage of the special structure of the NIC 

equations to compute an explicit upper bound on ε, using the reformulated ultimate 

boundedness theorem in Chapter 3. 

The internal dynamics have not been incorporated into the stability consideration, but 

were assumed to be bounded a priori. In case of the aircraft testbed, the assumption is 

justified, since the aircraft configuration is stable and AoA, AoS stay bounded for 

bounded inputs. Although some facts on stability of internal dynamics are cited, which 

are derived from the assumption of the system to be minimum phase, the results are 

rather of theoretic interest, since they do not provide explicit bounds. Theorem 4.3, 

which is based on the reformulated boundedness theorem, delivers explicit bounds, for 

the NDI tracking system, however, is does not incorporate the adaptive part. Summing 

up, an incorporation of the internal dynamics into stability analysis of the adaptive 

closed loop system remains an open item for future work. 

Also, the actuators have not been considered within the stability analysis. PCH is an 

existing measure to account for actuator dynamics implicitly by a feedback of the 

expected reaction deficit to the reference model, which hides the influence of actuators 

from the tracking error. However, PCH destroys the a priori stability of the reference 

model and in turn, the arguments of the boundedness proof, and an alternative stability 

analysis does currently not exist. Hence, incorporation of actuators into the proofs 

remains open. 

 

Achievement: Reduction of Conservativeness 

Lyapunov stability analysis for MRAC systems suffer from the fact that the results are 

rather conservative, leading to bounds on the system states that are too large to be 

considered relevant within a physically meaningful range. Hence, reduction in 

conservativeness is challenging in adaptive control and several approaches have been 

derived within the thesis. It is physically clear that one cannot demand an infinite 

adaptation capability of the adaptive system. In descriptive words, a control system, 

designed for an aircraft cannot adapt to the dynamics of a stone while keeping the 

tracking error within tight bounds. Consequently, the more capabilities are demanded 

from the adaptive scheme, the larger the bounds. In our case, the linearizing state 

feedback cancels the known part of the dynamics, while the remaining uncertainties 

are cancelled by the adaptive part. A more accurate model allows reduction of the 

bound on the adaptive parameters – which indeed reduces the demand on the 

adaptive system – such that the bound on the tracking error, at least, reaches a 

physically relevant value. Nevertheless, this is not the end of the story. In fact, it is 

necessary to reduce bounds further. 

The projection operator that is described in Appendix D, is actually an extension of the 

one, presented in [Hov10], but here it is formulated for parameter matrices rather than 
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for vectors and it allows the incorporation of a weighting matrix for computation of the 

Frobenius norms of the parameter matrices. This enables a scaling (deformation) of the 

allowable parameter space and hence a reduction of the parameter bounds. In the 

simulation examples, the weighting matrices have been set before design of the 

adaptive gains and computation of the bound on the tracking error. Hence, a possible 

measure to reduce the bounds further is an incorporation of the weighting matrices 

into the gain design procedure. 

Particularly in case of the body-fixed angular rates controller, the maximum rotation 

speed depends on the respective axes, where roll axis is the fastest and yaw axis is 

the slowest. Now, the bound on the tracking error is computed in terms of the 

Euclidean vector norm, leading to a ball in �3 of allowable tracking errors. In other 

words, all three axes have the same amplitude. A weighting, analogously to the 

parameters could fit the allowable set to practical requirements, leading to less 

conservative results. 

Another possibility for reduction of conservativeness is given by Theorem 3.1 for 

ultimate boundedness. Therein, upper bounds on the initial conditions are computed 

by the constants ρ1, ρ2>0, which have to fulfill 

( ) ( ) u≤+ 2211 ρβρβ  

and the available “capacity” is distributed equally on both partitions, i.e. 









= −

2

1

11

u
βρ    ,   








= −

2

1

22

u
βρ . 

Potentially, the state vector partitions reside in different scales, which motivates 

tailoring the distribution specifically to the demands of the state vector partitions by 

taking k1, k2 such that k1+k2=1 and defining 

( )uk1

1

11

−= βρ    ,   ( )uk2

1

22

−= βρ . 

 

Novelty: MMQ Modification 

A novel modification term for the adaptive laws, referred to as multi model Q 

modification, has been derived. It is actually an extension of q modification, which 

gains an expression for the uncertainty by utilizing the known terms within the plant 

dynamics. Effectiveness of q modification has already been proved in various 

publications, but simulations revealed that MMQ modification achieves an additional 

boost in adaptation performance, which is, of course, not guaranteed as for concurrent 

learning, but the probability increases with the number of employed filters. 

Unfortunately, MMQ modification is only effective in absence of unmatched 

uncertainties. The latter inhibits an exact identification of the matched uncertainty, 

using the plant equations, since it is not possible to distinguish between matched and 
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unmatched part. Hence, the modification term tries to compensate for matched and 

unmatched uncertainty simultaneously, which effects a contradiction, since the 

adaptive parameters can only compensate for the matched part. 

 

Novelty: SVD Update Algorithm 

The development of the SVD update algorithm is motivated by the constraint of the 

control effectiveness estimate to diagonal matrices with positive diagonal entries in 

predictor based MRAC systems. Although, this goal has been achieved, there are still 

some open questions to be clarified. At first, the SVD update needs computation of the 

eigenvectors of a matrix, which requires for an algorithm involving QR iteration. 

Although QR iteration is very efficient, an upper bound on number of computation 

steps cannot be guaranteed which renders the real-time capability of the algorithm 

problematic. However, the good news is that eigenvectors can, of course, be 

computed analytically, for small matrices up to dimension 3, which is sufficient for 

standard aircraft configuration with three primary controls – elevator, aileron, and 

rudder.  

Another critical point is the numerical handling for the case of equal singular values 

(SV). If SVs approach each other, the time derivatives grow unbounded, which causes 

numerical problems. The open topic is a specification of the minimum distance for 

singular values that are considered equal. This distance should not be too large, since 

this increases the systematic error and it should also nut bee too small, since this leads 

to large time derivatives and, in consequence, to numerical problems using discrete 

time integration. Hence, further investigations are necessary to obtain a trade-off 

between the conflictive requirements. The last topic is the incorporation of the SVD 

update into the stability analysis. Contrary to projection operator, which can be 

included into stability analysis due to its convexity and the related properties, derived 

in Appendix D.1, an analog for the SVD update has to be established. 

 

Perspectives towards Certifiable Adaptive Flight Control Systems 

The reformulation of the ultimate boundedness theorem, which allows explicit 

computation of the bounds, is a main contribution of the thesis. The motivation behind 

is the hope to gain guaranteed results which are accepted by certification authorities. 

Although it is tailored to MRAC systems, its formulation is such generic, that is could 

also be used for analysis of other dynamic systems, which comprise a partition of the 

state vector. Nevertheless, the MRAC specific formulation is intended to reduce 

conservativeness of Lyapunov proofs within MRAC systems.  

The main challenge towards certifiable adaptive flight control systems is finding 

robustness metrics that provide equivalent confidence for nonlinear systems as phase 
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and gain margin provide for linear systems. On the one hand, adaptive systems have to 

be robust against unmatched uncertainties and the ultimate boundedness theorem, 

stated here, is suitable to account for this. Within the proposed flight control systems, 

it provides guaranteed bounds, if the unmatched uncertainty does not exceed the 

assumed upper bound. On the other hand, the adaptive system also has to be robust 

against unmodeled dynamics. Such as phase margin accounts for unmodeled 

dynamics for linear system, time delay margin is an analog metric for nonlinear 

systems. In order to analyze time delay margins of nonlinear systems, an extension of 

Lyapunov’s methods to functional differential equations (i.e. differential equations, 

whose time derivative does not only depend on the current but also on past states), 

also referred to as Lyapunov-Krasovskii ( [GuK03]) functional, is a suitable tool. In 

[GuK09] a theorem for asymptotic stability, based on a Lyapunov-Krasovskii functional 

for a type of systems, referred to as “coupled differential difference equations”, is 

presented. The considered system promises to fit the structure of adaptive control 

systems with time delay. It is a conjecture that the theorem therein only allows 

consideration of time-delay but not time-delay and unmatched uncertainty 

simultaneously for reasons, stated in the following. The theorem in [GuK09] guarantees 

asymptotic stability, if the time derivative of the Lyapunov Krasovskii functional is 

negative. It appears to be the analog to Lyapunov’s direct method for asymptotic 

stability. However, in presence of unmatched uncertainties, negative definiteness of the 

Lyapunov function derivative is only assured outside a bounded set, which allows 

concluding boundedness of the system states as done in Theorem 3.1. Necessary for 

the simultaneous consideration of unmatched uncertainty and time-delay is the analog 

of the Lyapunov ultimate boundedness theorem for Lyapunov-Krasovskii functionals. If 

such a theorem exists, adaptive control systems could be analyzed for simultaneous 

robustness against unmatched uncertainty and time-delay and those two metrics could 

be established as a nonlinear analog for gain and phase margin. 
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Appendix A 

Frames and Transformations 

In the following, coordinate frames, relevant for aircraft modeling and control, are 

introduced. The nomenclature the one that is commonly used at the Institute of Flight 

System Dynamics but analogous frames can be found in corresponding aviation norms 

such as LN 9300. Every frame is associated with an index that is used throughout the 

thesis for nomenclature of vectors and transformation matrices. Additionally, if 

applicable, rotations between different frames are listed, too. E.g. rotation from frame I1 

to I2, is denoted as I1�I2. Rotations are defined by a set of elementary rotations about 

coordinate axes, by some angle. Each rotation is associated with a positive or negative 

direction, indicating whether the rotation is done in a right hand (positive) of heft hand 

(negative) sense. The complete rotation is specified as a sequence of the elementary 

rotations. 

The pictures within this chapter are taken from internal documents by courtesy of 

Institute of Flight System Dynamics. 
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Earth Centered Inertial (ECI) frame 

frame index I 

origin earth’s center 

origin index 0 

x-Axis in equatorial plane, pointing to vernal equinox 

y-Axis in equatorial plane, completing an orthogonal right hand system 

z-Axis earth rotation axis 

 

 

 

Earth Centered Earth Fixed (ECEF) frame 

frame index E 

origin earth’s center 

origin index 0 

x-axis in equatorial plane, pointing to Greenwich meridian 

y-axis in equatorial plane, completing an orthogonal right hand system 

z-axis earth rotation axis 
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North-East-Down (NED) frame 

frame index O 

origin aircraft reference point 

origin index R 

x-axis parallel to local geoid surface, pointing to geographic north pole 

y-axis parallel to local geoid surface, pointing eastward 

z-axis pointing downwards, perpendicular to local geoid surface 

rotation: E�O 

angle symbol axis of rotation direction 

90° - y-axis positive 

geodetic longitude λ  x-axis positive 

geodetic latitude φ  y-axis negative 

sequence 90°- λ  - φ  

 

body-fixed frame 

frame index B 

origin aircraft reference point 

origin index R 

x-axis points to aircraft nose with in xz-symmetry plane 

y-axis points to right wing, completing an orthogonal right hand system 

z-axis 
points downwards within symmetry plane of aircraft,  
perpendicular to x and y axes 

rotation: O�B 

angle symbol axis of rotation direction 

Euler azimuth Ψ  z-axis positive 

Euler pitch angle Θ  y-axis positive 

Euler bank angle Φ  x-axis positive 

sequence Ψ  - Θ  - Φ  
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kinematic Frame 

frame index K 

origin aircraft reference point 

origin index R 

x-axis pointing in direction of kinematic velocity 

y-axis 
pointing to the right, perpendicular to x and x axes,  
completing an orthogonal right hand system 

z-axis 
points downwards, parallel to projection of the local surface normal of 
the WGS-84 reference ellipsoid into the plane, perpendicular to the x-
axis 

rotation: O�K 

angle symbol axis of rotation direction 

kinematic course angle Kχ  z-axis positive 

kinematic inclination angle Kγ  y-axis positive 

sequence Kχ  - Kγ  

rotation: K�B 

angle symbol axis of rotation direction 

kinematic bank angle Kµ  z-axis positive 

kinematic angle of side-slip Kβ  y-axis negative 

kinematic angle of attack Kα  x-axis positive 

sequence Kµ  - Kβ  - Kα  

 

 

 

modified kinematic frame 

frame index K  

origin aircraft reference point 

origin index R 

orientation equal to kinematic frame, but rotated about kinematic bank angle Kµ  
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aerodynamic frame 

frame index A 

origin aircraft reference point 

origin index A 

x-axis pointing in direction of aerodynamic velocity 

y-axis pointing to the right, completing an orthogonal right hand system 

z-axis 
points downwards within the symmetry plane of the aircraft, 
perpendicular to x and y axes 

rotation: A�B 

angle symbol axis of rotation direction 

aerodynamic angle of side-slip (AoS) Aβ  z-axis negative 

aerodynamic angle of attack (AoA) Aα  y-axis positive 

sequence Aβ  - Aα  

rotation: O�A 

angle symbol axis of rotation direction 

aerodynamic course angle Aχ  z-axis positive 

aerodynamic inclination angle Aγ  y-axis positive 

aerodynamic bank angle Aµ  x-axis positive 

sequence Aχ  - Aγ  - Aµ  

 

 

 





 

Appendix B 

Mathematics 

B.1 Analysis Basics 

This section gives an overview over some basic facts from functional analysis, which 

might not be known by an engineer in-depth. Often such facts are often rather 

anticipated on an intuitive manner or simply they are simply read over. Many topics, 

pertaining to design and analysis of nonlinear systems, are mathematically quite 

involved as they e.g. consider abstract Banach spaces of functions and an in-depth 

understanding of the fundamentals, presented in the following, helps for a better 

understanding of the conclusions that are drawn there. 

The ideas are taken from [Has10]. The formulations are kept as mathematically exact 

as necessary, but if it supports understanding, intuitive formulations are preferred. 

B.1.1 Linear Spaces 

Definition B.1 Linear Space 

A set X is a linear space over the a field � if, for X∈zyx ,, , �∈βα,  

1. Addition: X∈+yx  is defined with following properties 

a. commutativity: xyyx +=+  

b. associativity: ( ) ( )zyxzyx ++=++  

c. there is a neutral element X∈  such that: x0x =+  

d. for every x  there is an inverse element ( )x−  such that ( ) 0xx =−+  

2. Scalar Multiplication: X∈⋅ xα  is defined with the following properties 

a. associativity: ( )x⋅⋅ βα  

b. for the neutral element 1 of the field � : xx =⋅1  

c. X  distributes over � ( ) xxx ⋅+⋅=⋅+ βαβα  

d. �  distributes over X : ( ) yxyx ⋅+⋅=+ ααα  
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Definition B.2 Topological Space 

A set X called a topological space, if a collection of subsets S  on X  is defined, 

which has the following properties. Let S∈is : 

1. Basic and empty set belong to S : SX ∈∅,  

2. The intersection of a finite collection of sets is  belongs to S : ( )∩
N

i

is
1=

∈S  

3. The union of any collection of sets in S belongs to S. 

The elements of the set S  are sets by themselves, and are called open sets (by 

definition). S  is called topology on X . 

Remark 

The important fact is that an intersection of an only finite number of open sets is again 

an open set, while the union of an infinite number of open sets in again an open set.  

If we intersect an infinite number of open sets, then the result is possibly not an open 

set. The definition of open sets for a topological space conforms to our intuition for 

open sets. Let e.g. for the linear space of real numbers �=X , if we define the 

topology S  as set of all open intervals 

( ){ }babaa,b <∈= ,, �S
 

Then it fulfills properties 1-3. The next example gives an illustrative understanding, why 

the definition of “open set” (which is supposed to be a generalization of our intuitive 

open set) for a topological space is reasonable. 

Example 

• Let an open interval: 
( )

( )







 +

+
=

i

i

i

i
si

12
,

12
, �∈i  

• If we intersect a finite number of is , lets’ say Ni ,,1…= , then the result is: 
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clearly an open set 

• If we unite all is , ∞= ,,1…i , then the result is: 
( )

( )
∪
∞

=

∈







=






 +

+1

4,
4

112
,

12i i

i

i

i
S  an 

open interval 

• If we, however intersect an infinite number of is , ∞= ,,1…i , then the result is:

( )
( )
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i
 NOT an open interval. 
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Definition B.3  Topological Linear Space 

A set linear space X is a topological linear space, if a topology S  is defined on X  

 

Definition B.4 Metric 

A metric or distance function is defined on a topological space X  and represents 

the distance of two elements X∈yx, . 

The distance function ( ) �→×XX:,yxd  has to fulfill the following properties.  

Let X∈zyx ,, : 

1. positivity: ( ) ∞<≤ yx,0 d , ( ) yxyx =⇔= 0,d  

2. symmetry ( ) ( )xyyx ,, dd =  

3. triangle inequality: ( ) ( ) ( )yzzxyx ,,, ddd +≤  

 

Definition B.5 Metric Space 

A metric space is a topological linear space X  where a metric ( )⋅⋅ ,d  is defined on it 

and the topology is induced by the metric such that the open sets are formed by 

open balls of some X∈0x with radius 0>r . 

( ){ } 0,, 00 >∈= rr XBS xx  

Remarks 

Since the topology is induced by the metric, the rather abstract topological definition of 

an open subset substantiates to, what one intuitively associates with an open set: 

• In a metric space, a subset M  is open if and only if, for every M∈x , a 

sufficiently small open ball ( )xεB  entirely lies in M . An open subset thus 

consists only of interior points (see Definition B.14). 

• All open balls ( )xrB  (refer to Definition B.6) are open sets in the topological 

definition, since intersection of a finite number and unity of any open balls is 

again an open set, that does not have any boundary points. 

 

Definition B.6 Open Ball 

For a metric space X  and some X∈0x , an open ball around x0 with radius r>0   

is defined as: ( ) ( ){ }rdr <∈= 00 ,xxxx XB  
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Definition B.7 Closed Ball 

For a metric space X  and some X∈0x , a closed ball around x0 with radius r>0   

is defined as: ( ) ( ){ }rdr ≤∈= 00 ,xxxx XB  

 

Definition B.8 Norm 

A norm is defined on a topological linear space X  and represents the length of its 

elements X∈x . It is a function �→X:x  and has to fulfill the following properties.  

Let X∈yx, , �∈α  

1. positivity: ∞<≤ x0 , 0xx =⇔=0  

2. homogeneity: xx ⋅=⋅ αα  

3. triangle inequality: yxyx +≤+  

Remark: An indirect result of the triangle inequality is: yxyx −≥+  

Definition B.9 Normed Space 

A normed space is a topological vector space X , where a norm ⋅  is defined on it 

Remark 

• A normed space is also a metric space, where the metric is induced by the norm 

such that: ( ) yxyx −=,d  

• As in the metric space: 

o  The open sets consists of open balls ( )xrB , where r>0 and X∈x . 

o A subset M is open if and only if, for every M∈x  for a sufficiently small 

ε, there is an open ball ( ) MB ⊂xε  and thus consists only of interior 

points (see Definition B.14). 

Example 

For 
2�=X , a disc with radius r around the origin without its boundary is an open 

subset: { }r<∈= xx XM  

Definition B.10 Banach Space 

Let X be a normed linear space. Then X  is a Banach space, if it is complete. 
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Remarks 

• Completeness is defined in Definition B.20 

• Thus in a Banach space, all Cauchy sequences converge by definition, but this 

is not necessarily true for normed spaces. 

The following picture is inspired by [Has10] and illustrates the relation between the 

spaces, introduced so far. 

 

Figure B.1 Relationships between Spaces 

B.1.2 Subsets of Spaces 

DefinitionB.11 Complement 

Let M  be a subset of a space X  then the complement of M is defined as: 

XMc = \M 
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Definition B.12 Bounded Subset 

A subset M of a metric space X  is bounded,  

if for some 0>k  and some X∈0x : ( ) kd ≤0,xx  for all M∈x  

 

Definition B.13 Totally Bounded Subset 

A subset M of a metric space X  is totally bounded, if for every 0>ε , there is a 

finite collection of open balls ( ){ }
iixεB , Ni ,,1…= , �∈N , X∈ix , that completely 

covers M. 

Remark 

The difference between bounded and totally bounded is secondary for our 

purposes. Important to know is, that in a Banach space of finite dimension, 

boundedness and total boundedness are equivalent. 

Definition B.14 Interior and Boundary 

Let M be a subset of a metric space X . Some X∈x  is 

1. interior point of M , ( ) MB ⊂xr  for some r>0 

2. boundary point of M , if every ( )xrB  has elements inside and outside of M  

Remark 

An inner point of a set M always belongs to M, while a boundary point does not 

necessarily belong to M. 

Definition B.15 Closed Subset 

A subset M of a topological space X  is closed,  

if and only if its complement M  is open. 

Remark 
Since X and ∅  are both open sets, in the sense of the topological definition, 

both sets are closed as well by Definition B.15. In literature, such sets are 
denoted as “clopen”. 

B.1.3 Sequences and Convergence 

Considering sequences, their behavior as n  tends to ∞ is of special interest and the 

question whether the sequence converges or not. In order to talk about convergence 

of sequences, we need at least a metric space, since convergence is defined by means 

of the distance of the sequence elements { }nx  and its limit point 0x . Of course, 

convergence is also meaningful for a normed space since it is also a metric space.  
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Definitions 

Definition B.16 Sequence 

Given set X : 

An unlimited ordered subset set{ }nx
 in X  is called sequence, where the indices 

�∈n  determine the order. 

 

Definition B.17 Convergent Sequence 

For a metric space X : 

 A sequence { }nx  in X  is convergent with limit X∈y  if, for every 0>ε , there is an 

�∈N  such that ( ) ε<yx ,nd  for all Nn ≥  

If the limit element y is unknown, the definition of convergence can also be done 

without y, which leads to the definition of Cauchy sequence (Definition B.19). 

Definition B.18 Subsequence 

Let { }nx , �∈n  be a sequence in a set . Then a subsequence is obtained by 

choosing an infinite number of elements ni , �∈i  from  without changing the 

order.  

 

Definition B.19 Cauchy Sequence 

A sequence { }nx  in  is said to be a Cauchy sequence, if for every , there is a 

�∈N , such that ( ) ε<mnd xx ,   for all Nmn ≥, . 

Remark 

Every convergent sequence is a Cauchy sequence, but not every Cauchy sequence is 

convergent. The reason is, that the limit element y is potentially not an element of the 

basic set . 

{ }nx  convergent⇒ { }nx  Cauchy sequence 

The question that naturally arises is the following. Under which conditions do all 

Cauchy sequences converge? Another issue is the convergence of Cauchy sequences 

in a subset. The following definition gives a part of the answer. 

  

X

{ }
nx

X 0>ε

X
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Definition B.20 Completeness 

A metric space  is said to be complete,  

if every Cauchy sequence  in  is convergent. 

Remark 

The completeness property can also be applied to subsets of metric spaces. A 

Subset  to a metric space is said to be complete, if every Cauchy 

sequence in  converges in . 

Definition B.21 Accumulation point 

For a subset  of a metric space , an element  is said to be an 

accumulation point of , if every open ball of : with r>0 

contains at least one element in M except for  

Remark: If M∉x , it must be on the boundary of M to be an accumulation point. 

DefinitionB.22 Closure 

Let  be a subset of a metric space. The closure of the subset, denoted as  is 

defined as the union of M with all its accumulation points. 

 

Definition B.23 Dense Subset 

Let  and be subsets of a metric space.  is a dense subset of  if, 

for every , there is a sequence in N, { } �∈nn ,y , such that . 

Example 

The rational numbers � are a dense subset of �. E.g. for  which is in � but 

not in �, there is a sequence in �, which converges to . 

Definition B.24 Compact Subset 

Let  be a subset of a metric space.  is compact if every sequence , �∈n  

in  has a subsequence , { } { }nm ⊂  that converges to an element in  

  

X

{ }
nx X

M X

M M

M X X∈0x

M 0x ( )0xrB

0x

M M

M MN ⊂ N M

M∈x ( ) xy =
∞→

n
n
lim

2

2

M M { }nx

M { }
mx M
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Theorems 

Theorem B.1 Accumulation Point and Convergence 

Let M be a subset of a normed space.  

Then x is an accumulation point of M,  

if and only if there is a sequence  in M which converges to x. 

Proof: 

SUFFICIENT PART: If  then  is an accumulation point 

Suppose there is a sequence in  that converges to x, then for every  there is 

an ( ) �∈εN  such that ε<− xxN . Therefore, every open ball ( )xεB  contains an 

element . Thus  is an accumulation point. 

 

NECESSARY PART: If  is an accumulation point, then there is a sequence in  that 

converges to . 

Suppose that  is an accumulation point of . Then every open ball ( )xn1B  contains 

an element xn in M, which also lies in ( )xn1B . Thus we have constructed a sequence 

 in  which converges to . 

□ 

Theorem B.2 Closed Subset and Convergence 

Let M be a subset of a metric space X 

M is closed if and only if 

every sequence  in M, that converges in X, also converges in M. 

Proof: 

SUFFICIENT PART: If every convergent sequence  in  has a limit  then 

 is a closed subset. 

The proof is done by contradiction. If  is not closed, then  is not open. 

Therefore there is an element  such that every open ball ( )xn1B , �∈n , contains 

at least one element in  (see remark to Definition B.5). So the sequence  

converges to  which is a contradiction and thus  is a closed subset. 

 

{ }
nx

( ) xx =
∞→

n
n
lim x

M 0>ε

M∈Nx x

x M

x

x M

{ }
nx M x

{ }nx

{ }nx M M∈x

M

M
cM

cM∈x

M∈nx { }
nx

M∉x M
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NECESSARY PART: If  is a closed set then every sequence in  converges 

in  

If  is closed then  is open by definition. Thus, if there is a sequence  in 

that converges to , then there is an  such that the open ball ( )xεB : lies 

entirely in . This implies that  for all �∈n  which contradicts  

and thus  converges in . 

□ 

Theorem B.3 Closure and Closed Subset 

Let M be a subset of a metric space X  

The closure  is always a closed subset. 

Proof 

The proof is done by contradiction. If  is not closed, then  is not open. Thus 

there is a point , such that every open ball ( )xn1B , �∈n , has at least one 

element M∈nx  (see remark to Definition B.5). Thus, the sequence  in M 

converges to x. This implies that x is an accumulation point of M (Theorem B.1) and 

thus belongs to M by definition. This contradicts the  and therefore is 

closed. 

□ 

Theorem B.4 Closed and Complete Subset 

Let M be a subset of a complete metric space X. 

Then M is complete, if and only if M is closed. 

Remark 

For the subset M of a general metric space X, the property of being complete is 

not equivalent to the property of being closed. Nevertheless, a complete subset 

is closed, but not vice versa.  

In a closed subset M, every convergent sequence with elements in M 

converges to some  (Theorem B.2). However even in a closed subset M 

there could be a Cauchy sequence, which does not even converge in X (hence 

it is not convergent), if X is not complete. Consequently, this sequence does not 

M { }
nx M

M

M
cM { }nx M

cM∈x 0>ε

cM ε≥− nxx ( ) xx =
∞→

n
n
lim

{ }
nx M

M

M cM
cM∈x

{ }nx

cM∈x M

M∈x
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converge in M, too. Completeness requires that every Cauchy sequence in M 

converges in M. Thus, M is not complete. 

Proof 

Since X is complete, a sequence is convergent if and only if it is a Cauchy sequence 

(Definition B.20), i.e. Cauchy and convergent sequence in X are equivalent terms. 

 

NECESSARY PART: If M is closed then M is complete. 

If  is not complete, there is a Cauchy sequence in  that converges to some 

X∈x  which does not lie in  (Definition B.20). This however contradicts the 

assumption that  is closed (Theorem B.2). Hence  is complete. 

 

SUFFICIENT PART: If M is complete, then M is closed. 

Since M is compete, every Cauchy sequence in M converges in M (Definition B.20). 

Since Cauchy and convergent sequences are equivalent terms in X, every convergent 

sequence with elements in M, converges in M. Therefore, M is closed. 

□ 

Theorem B.5 Convergence of Subsequences 

Let  be a metric space.  

Further let  be a sequence that converges to some  

Then also every subsequence converges to x. 

Proof 

Since  is convergent, for every  there is some �∈N  such that ( ) ε<xx ,nd  for 

all Nn ≥ . Hence for every subsequence { }mx , there is some �∈M  such that 

( ) ε<xx ,md  for all Mm ≥  and the subsequence also converges to .  

□ 

Theorem B.6 Equivalence of Compactness and Closed / Boundedness 

Let  be a subset of a finite dimensional Banach space .  

 is compact if and only if it is closed and bounded. 

Remark 

The necessary part: “If  is compact, then it is closed and bounded” is also 

true for the wider class of metric spaces, while the sufficient part needs the 

M M

M

M M

X

{ }
nx X∈x

{ }
nx 0>ε

x

M X

M

M
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properties of a finite dimensional Banach space such as real vector spaces �n. 

Contrary, the normed (metric) space of time domain signals with convergent L1-

norm has an infinite dimension. 

Proof 

NECESSARY PART: If M is compact, then it is closed and bounded. 

 IS CLOSED: 

For every M∈x  there is a sequence  in M which converges to x (Definition B.21, 

DefinitionB.22). Hence, also every subsequence { }mx  converges to x (Theorem B.5). 

But, as  is compact,  (Definition B.24). Since the argument holds for any 

M∈x , we have  and thus  is closed (Theorem B.3). 

 IS BOUNDED: 

The proof is done by contradiction. If  is unbounded, then there is a sequence , 

such that  and there is no subsequence that converges in . This 

contradicts the assumption of M being compact (Definition B.24), thus  is 

bounded. 

 

So far, we only employed properties of a general metric space. The following part 

however needs the properties of a finite dimensional Banach space. 

 

SUFFICIENT PART: If M is closed and bounded, then it is compact. 

Since M is a closed subset of a complete space, it is also complete (Theorem B.4). 

Moreover, since M is a bounded subset of a finite dimensional Banach space, it is also 

totally bounded (remark to Definition B.13). 

For compactness, it has to be shown, that every sequence  in M has a 

subsequence that converges in M. To this end notice that, since M is totally bounded, 

there is a finite collection of open unit balls ( )( )1

1 myB , ( ) X∈1

my , 
1,,1 Mm …=  which 

completely covers M. Since  has an infinite number of elements and there is only 

a finite number of unit balls, consequently there is at least one ( )my1B , let us say 

( )( )1

1 1µyB , that contains an infinite number of { }nx  and hence there is a subsequence { }1nx  

whose elements lie in 
( )( ) MB ∩1

1 1µy . 

Analogously, there is finite collection of 
( )( )2

21 myB , ( ) X∈2

my
2,,1 Mm …= , that covers M. 

Furthermore, a sub collection of it pairwise intersects with and completely covers 

M

{ }
nx

M M∈x

MM= M

M

M { }
nx

( ) nd nn ≥+ xx ,1 M

M

{ }
nx

{ }nx
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( ) MB ∩11 µ . The sub collection of 
( )( )2

21 myB  is finite and there is an infinite number of 

elements of { }1nx  in ( ) MB ∩11 µ . For this reason, there is at least one 
( )( )2

21 2µyB  that 

contains an infinite number of elements of { }1nx  and hence there is a subsequence 

{ }2nx  whose elements lie in 
( )( ) ( )( ) MBB ∩∩ 1

1

2

21 12 µµ yy . This procedure is repeated infinite 

times and for the kth iteration step, we arrive at a subsequence { }nkx , whose elements 

lie in 
( )( ) ( )( ) M
k

k k
∩∩∩ 1

11 1µµ yy BB … . 

Now, out of every subsequence, we chose an element 
Kνx  such that kk νν >+1  and we 

obtain a sequence{ }kνx . This sequence is a subsequence of { }nx  and a Cauchy 

sequence since, for every �∈K , all kνx  lie within 
( )( )K

K Kµy1B  for all Kk ≥  (Definition 

B.19). Since the Banach space X is complete and M is closed, M it is also complete 

(Theorem B.4) and hence the Cauchy sequence converges to some element in M 

(Definition B.20). 

Summing up, to an arbitrary sequence, whose elements are in M, we have 

constructed a subsequence that converges in M, hence M is compact (Definition 

B.24). 

□ 

Figure B.2 gives an overview for the relationships between the terms “complete”, 

“closed” and “compact” of subsets that reside in different spaces. There are two 

interesting results of the figure: 

1. In a complete metric space “closed” and “complete” are equivalent properties 

for subsets 

2. In a finite dimensional Banach space, “compact” and “closed and bounded” are 

equivalent properties for subsets. 
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Figure B.2 Relationships between the Terms “Complete”, “Closed”, “Compact” and “Bounded” 

So in the well-known Euclidean vector space �n, the terms “compact” and “closed and 

bounded” can be used equivalently. This is not necessarily true for Banach spaces, 

whose elements are real valued functions (as e.g. the Lp spaces). These are infinite 

dimensional and thus a subset is possibly closed and bounded but not compact. 

The next theorem is useful for the proof of Lyapunov’s asymptotic stability and is 

restricted to the Banach space of real numbers � whose norm is given by the absolute 

value. 

Theorem B.7 Convergence of Monotone Sequence 

Let { }nx  be some sequence in � 

Let further nn xx ≤+1  and cxn ≥ , �∈n  and some �∈c  

Then  converges to some , i.e. 

 

Proof 

The proof is done by contradiction. Assume that  does not converge to x0. Then 

 is not a Cauchy sequence by Definition B.20 since � is complete. Moreover, there 

exists some  such that, for every �∈N , there are some integers nN and mN such 

that 

ε≥−
NN nm xx  

{ }
nx cx ≥0

( ) 0lim xxn
n

=
∞→

{ }
nx

{ }nx

0>ε
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Assume without loss of generality that . Then , since  is monotonically 

decreasing, we have 

ε−≤
NN nm xx . 

From these considerations, a subsequence is constructed as described in the 

following. For the first pair of the sequence, we choose N1=1 and obtain some 1Nn  and 

1Nm  such that ε−≤
11 NN nm xx . In the second iteration step, N2 is chosen such that 

12 NN mn >  which implies that 
12 NN mn xx ≤  since the { }nx  monotonically decreasing. 

Consequently, for the kth iteration step, we chose Nk such that nNk>mNk-1 and obtain the 

k
th pair of sequence elements such that ε−≤

NkNk nm xx  and 
1−

≤
NkNk mn xx . Summing up, the 

subsequence reads as 

{ } { }…,,,,
2211 NNNN mnmnk xxxxy = , �∈k , 

its elements are monotonically decreasing and fulfill the inequality ε−≤+ kk yy 2 , which 

implies ( ) −∞=
∞→

k
k

ylim  which, in turn, contradicts the assumption that { }nx  is bounded 

from below by some c. Therefore { }nx  converges to x0.  

□ 

B.1.4 Functions and Continuity 

Definitions 

Definition B.25 Function 

Given some sets ,  and a subset . 

Then a function  allocates to every  an element : 

 

 

Definition B.26 Pointwise Continuous Function 

Given some metric spaces and  with metrics  and  

and a subset . 

Then a function  is pointwise continuous on ,  

if for every  and every  there is a   

such that  if  

where ,  and  

NN nm > { }
nx

X Y XA ⊂

YA→:T A∈x Y∈y

( )xy T=

X Y ( )⋅⋅,xd ( )⋅⋅,yd

XA ⊂

YA→:f A

A∈0x 0>ε ( ) 0, 0 >xεδ

( ) ε<0,yyyd ( ) δ<0,xxxd

X∈x ( )xy f= ( )00 xy f=
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Definition B.27 Uniform Continuous Function 

Given some metric spaces and  with metrics  and  

and a subset . 

Then a function  is uniformly continuous on ,  

if for every  there is a   

such that  if  

where ,  and  

 

Remarks 

• While in pointwise continuity, every  that has to be found for some  might be 

different for different , in uniform continuity,  is equal for all . 

• Uniformly continuous is a stronger condition than pointwise continuous, i.e. 
every uniformly continuous function is pointwise continuous but not vice versa.  

 

Theorems 

Theorem B.8 Continuity and Compact Set 

Let  and  be metric spaces,  a compact subspace. 

Let there be further a pointwise continuous function . 

Then  is also compact. 

Remark 

If X=�n and Y=�m with some respective p-norm defined on it, he theorem 

implies that a function f that is continuous on a compact set (which is equivalent 

to being closed and bounded - see Theorem B.6, e.g. a closed ball ( )0rB  of 

radius r>0) has an image that is closed and particularly bounded, i.e.  

on  for some . For scalar real valued continuous functions, this 

particularly excludes the case that it has a vertical asymptote at the boundaries 

of a compact set. 

  

X Y ( )⋅⋅,xd ( )⋅⋅,yd

XA ⊂

YA→:f A

0>ε ( ) 0>εδ

( ) ε<0,yyyd ( ) δ<0,xxxd

A∈0,xx ( )xy f= ( )00 xy f=

δ ε

0x δ A∈0x

( )
xdX, ( )

yd,Y XA ⊂

YA →:f

( )AB f=

( ) M≤xf

rB 0≥M
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Proof 

For every sequence  in B there is a sequence  in A, such that . 

Since A is compact, there is a sub-sequence { }mx , which converges to some  

(Definition B.24). Thus for every δ>0, there is an ( ) �∈δM  such that δ<− xxm  for all 

Mm ≥ . Further, we define { } ( ){ }mm f xy = , in fact a subsequence of { }ny  and ( )xy f= , 

the image of the limit point. Since f is continuous, for every 0>ε  there is a ( )x,εδ  such 

that ε<− yym  for all ( )( )x,εδMm ≥ . Thus, every sequence in B has a subsequence, 

which converges in B, and thus B is compact.  

□ 

Theorem B.9 Uniform Continuity and Compact Set 

Let  and  some metric spaces, 

 a compact subspace. 

Every function , that is continuous, is uniformly continuous. 

Proof 

Assume that f is not uniformly continuous. Then, for some ε0>0 and every δ>0, there 

exists a pair A∈βα ,  with ( ) δβα <,xd  such that ( ) ( )( ) 0, εβα ≥ffd y (refer to Definition 

B.27). Therefore we can construct sequences { }nα  and { }nβ  in A, such that 

( ) nd nnx 1, <βα  , ( ) ( )( ) 0, εβα ≥nny ffd  for all �∈n . 

Since A is compact, there is a subsequence { }niα , �∈i  which converges to some 

A∈c . It follows that the analog subsequence { }niβ  converges to c, too. To this end 

notice that, for every δ>0, there exists some  

( ) �∈δ1I  such that ( ) 2, δα <cd nix  for ( )δ1Ii ≥ . 

Moreover, there is some 

( ) �∈δ2I  such that 21

2
δ<−

In  which implies that ( ) 2, δαβ <ninixd  for ( )δ2Ii ≥ . 

From the triangle inequality, we get 

( ) ( ) ( ) δααββ <+≤ cddcd nixninixnix ,,,  for all ( ) ( ) ( )( )δδδβ 21 ,max: IIIi =≥ . (B.1) 

On the other hand, since { }niα  converges to c, there exists an �∈αI  such that  

( ) δα <cd nix ,  for all ( )δαIi ≥ . (B.2) 

 Since { }niα  and { }niβ  are subsequences of { }nα  and { }nβ  respectively, we have 

( ) ( )( ) 0, εβα ≥niniy ffd  (B.3) 

{ }
ny { }

nx ( )
nn f xy =

A∈x

( )xd,X ( )
yd,Y

XA⊆

YA →:f
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for all �∈i . However, since f is pointwise continuous and by equations (B.1) and (B.2), 

for every ε>0, there are some ( )εδ , ( )δαI  and ( )δβI  such that 

( ) ( )( ) ( ) ( )( ) 2,,2, εβεα << cffdcffd niyniy  for ( ) ( ) ( )( )δδδ βα IIIi ,max:0 =≥ . 

By application of triangle inequality, we get 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) εβαβα <+< cffdcffdffd niyniyniniy ,,,  for ( )δ0Ii ≥  

which contradicts (B.3) if 0εε ≤ . Hence, f is uniformly continuous.  

□ 

B.1.5 Limits 

This section defines some special limits that are useful in stability analysis of adaptive 

control systems. The ordinary limit is assumed to be known to the reader, but these 

special definitions are often not known precisely. The exact knowledge of these 

definitions, however, helps to understand the stability proves for adaptive systems in 

detail.  

Definition B.28 Limit Superior 

Let { }nx  be a sequence in �. Then the limit superior is defined as 

( ) ( )n
n

n
n

sx
∞→∞→

= limsuplim  where { }nkxs kn ≥= sup  

 

Definition B.29 Limit Inferior 

Let  be a sequence in �. Then the limit inferior is defined as 

( ) ( )n
n

n
n

sx
∞→∞→

= liminflim  where { }nkxs kn ≥= inf  

Remarks 

• In this case lim sup and lim inf are defined for sequences in the real numbers.  
• A sequence in the real numbers that has convergent lim sup or lim inf, does not 

necessarily have a convergent . 

• However, ( )n
n

x
∞→

suplim  and ( )n
n

x
∞→

lim  converge to the same value c if and only if 

( )n
n

x
∞→

lim  converges to c. 

 

 

 

{ }
nx

( )n
n

x
∞→

lim
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Convergence properties for lim sup and lim inf 

Without loss of generality consider limit superior. Cleary, the sequence { }ns  is 

monotonically decreasing. Hence, there are only two possibilities for its behavior for 

large n. Either { }ns  is bounded from below by some constant c and, by Theorem B.7, 

converges 

( ) ( )nn
n

scs =
∞→

lim  

or it strives to  if it is not bounded from below. To this end, assume that , 

then for every  there is some �∈0N  such that . Since { }ns  is 

monotonically decreasing, also  for all , which shows convergence of 

{ }ns  to c. If it is not bounded from below, then for every �∈d  there is some  such 

that  and since { }ns  is monotonically decreasing  for all  and 

hence . Intuitively, the reason for restrictive behavior of monotonic 

sequences is the fact that oscillating sequences such as  are excluded. 

 

Example 

Consider the sequence:  

 

Figure B.3 Example limit superior and limit inferior 

Figure B.3 shows that the sequence has no limit, as . However lim sup and lim 

inf have a limit very well, namely 

( ) csn
n

=
∞→

lim

∞− ( )nsc inf=

0>ε ε+< csN0

ε+< csN 0NN ≥

0M

dsM <
0

dsM <
0MM ≥

( ) −∞=
∞→

n
n

slim

( )nxn ⋅= πsin

( )nex

n

n ⋅⋅









+=

−

π026.0sin1 500

∞→n
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•  

•  

Dini’s Derivatives 

An application of limit superior and limit inferior is given in a generalized definition for 

derivatives. For scalar real valued functions , it is well known that the derivative is 

defined as the limit of the difference quotient 

 

Thereby h can go to zero from the left AND the right side and the limit exist, only if it 

also exists for every sequence { }nh  that fulfills ( ) 0lim =
∞→

n
n

h . In some cases it might occur 

that the derivative as commonly defined does not exist but, if h is restricted to be 

strictly positive (or strictly negative) the limit still could exist. A prominent example is 

the absolute value function ( ) ttf = . At point t=0, the derivative in the conventional 

sense does not exist, but if one restricts h to strictly positive (strictly negative) values, 

the derivative evaluates to +1 or -1 respectively. For such cases, Dini’s derivatives 

[McS47] generalize the common definition of derivative. 

Definition B.30 Dini’s Derivatives 

Let  be defined on an interval  and t0 some point within the interval. Then 

• The upper derivative of  at t0 is  

• The lower derivative of  at t0 is  

• The upper right derivative of  at t0 is  

• The lower right derivative of  at t0 is  

• The upper left derivative of  at t0 is  

• The lower left derivative of  at t0 is  

B.2 Lie Derivative and Lie Product 

The section presents an introduction to Lie derivative and Lie product, which are 

important within the derivation of the nonlinear dynamic inversion (NDI) algorithm. For 

more details, the reader is referred to [Isi95] and [Had08]. 

( ) 1suplim =
∞→

n
n

x

( ) 1inflim −=
∞→

n
n

x

( )tf

( ) ( ) ( )







 −+
=

→ h

tfhtf
tf

h 0
limɺ

( )tf [ ]βα ,

( )tf ( ) ( ) ( )
h

tfhtf
tfD

h

00

0
0 suplim

−+
=

→

( )tf ( ) ( ) ( )
h

tfhtf
tfD

h

00

0
0 inflim

−+
=

→

( )tf ( ) ( ) ( )
h

tfhtf
tfD

h

00

0
0 suplim

−+
=

+→

+

( )tf ( ) ( ) ( )
h

tfhtf
tfD

h

00

0
0 inflim

−+
=

+→
+

( )tf ( ) ( ) ( )
h

tfhtf
tfD

h

00

0
0 suplim

−+
=

−→

−

( )tf ( ) ( ) ( )
h

tfhtf
tfD

h

00

0
0 inflim

−+
=

−→
−
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Definition B.31 Lie Derivative [Isi95] 

Let U be an open subspace of �n, a real valued function �→U:h  and a real valued 

vector field n�→U:f . 

The Lie derivative of h along f at some �∈x  is defined as: 

 

Remarks: 

1. Note that  is the Jacobi matrix of a scalar function and thus a row vector 

2. Iterated application of the Lie derivative is defined as 

 (B.4) 

with  

3. If the vector field is replaced by a matrix , where each 

columns n

i �→U:g  is a smooth vector field, the Lie derivative is defined 

accordingly: 

 

(B.5) 

Definition B.32 Lie Product [Isi95] 

Let U be an open subspace of �n 

and two real valued vector fields n�→U:f , n�→U:g . 

The Lie bracket at some  is defined as  

 

Remark: Repeated application of the Lie product is defined recursively 

 
(B.6) 

with:  

The Lie product has some basic properties, which appear to be useful and are easy to 

proof [Isi95].  

 

Basic Properties 

1. bilinear over �, i.e. if f1, f2, g1, g2 are vector fields and r1, r2 are real numbers, then 

( ) ( ) ( )xf
x

x
xf ⋅

∂

∂
=

h
hL

x∂∂h

( ) ( )( ) ( ) ( )xf
x

x
xx f

fff ⋅
∂

∂
==

−
−

1
1

k
kk L

LLhL

( ) ( )xxf hhL =0

( ) ( ) ( )[ ]xgxgxG n⋯1=

[ ]hLhLhL
nggG ⋯

1
=

U∈x

[ ]( ) ( ) ( ) ( ) ( )xg
x

xf
xf

x

xg
xgf

∂

∂
−

∂

∂
=,

( ) [ ]( )xgfxg ff

1adad −= kk

( ) ( )xgxgf =0ad
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 (B.7) 

2. skew commutative, i.e. 

[ ]( ) [ ]( )xfgxgf ,, −=  (B.8) 

3. satisfies the Jacobi identity, i.e. if f, g, p are vector fields, then 

[ ][ ] [ ][ ] [ ][ ] 0fpggfppgf =++ ,,,,,,
 

(B.9) 

4. Let  be some scalar real valued functions and smooth vector fields, 

then 

[ ] [ ] ( ) ( ) fggfgf gf ⋅⋅−⋅⋅+= βααββαβα LL,,
 

(B.10) 

5. Let f, g, be vector fields and h a real valued function, then 

 

(B.11) 

 

Proof 

Expanding the left hand side (B.11) of yields  

h h
L L h L L h

∂ ∂ ∂ ∂   
− = ⋅ ⋅ − ⋅ ⋅   

∂ ∂ ∂ ∂   
g f f g f g g f

x x x x
 

f
x

g

x
f

x
gg

x

f

x
g

x
fgffg ⋅

∂

∂
⋅

∂

∂
−⋅

∂

∂
⋅−⋅

∂

∂
⋅

∂

∂
+⋅

∂

∂
⋅=−

hhhh
hLLhLL

TT

2

2

2

2

 

Note that  is the Hessian matrix and therefore symmetric. Hence the first and 

third summand cancel each other and  

[ ]hL
h

hLLhLL gfgffg f
x

g
g

x

f

x
,=








⋅

∂

∂
−⋅

∂

∂
⋅

∂

∂
=− . 

□ 

Identity (B.11) can further be extended to the following expression. 

hLLhLLhL kkk gffgg fff adadad
−=

 

(B.12) 

The proof follows along the same lines as for (B.11). Successive application of (B.12) 

yields the following identity. 

  

[ ] [ ] [ ]
[ ] [ ] [ ]21211122111

12211112211

,,,

,,,

gfgfggf

gfgfgff

rrrr

rrrr

+=+

+=+

βα, gf ,

[ ] hLLhLLhL gffggf −=,

22 xh ∂∂



Appendix B 
Mathematics 

297 

Lemma B.1 Lie Identity 1 [Isi95] 

Let U be an open subset of �n, and let �→U:h  be a real valued function and 
n�→U:f , n�→U:g  vector fields. Let further be integers 0, ≥rk . Then 

( )∑ =

−⋅







⋅−=+

r

i

iini
hLLL

i

n
hL krk

0 adad
1 fgfg ff

 

Proof: 

Applying (B.12) to the right hand side of Lemma B.1 successively yields (note that the 

coefficients comply with Pascal’s triangle): 

 

□ 

The next lemma plays an important role in the proof for the existence of a local 

transformation to Byrnes- Isidori normal form. 

Lemma B.2 Lie Identity 2 [Isi95] 

Let U be an open subset of �n, and let �→U:h  be a smooth function, n�→U:f , 
n�→U:g  smooth vector fields. Let further k,n,r be integers .  

Then the conditions 

02210 ===== −
hLLhLLhLLhLL

r

fgfgfgfg …  and 01 ≠−r
LL fg  imply 

1. 02210 adadadad
==== − hLhLhLhL r gggg ffff

… and ( ) 01 11

ad 1 ≠−= −−
− hLLhL rr

r fggf
  

2. 0
ad

=hLL n
k fgf

 for k+n<r-1 and 01adad
≠= − hLhLL rk

n

gfg ff
 for k+n=r-1 

  

( ) ( ) ( ) ( ) hLLL
r

r
hLLL

r

r
hLLL

r
hLLL

r

hLLLhLLLhLLLhLLL

hLLLhLLLhLLL

hLLLhLLL
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Proof: 

FIRST PART 

The first part of is proved by induction. For j=0, the statement  implies 

 is obviously true. Now assume that the statement is true for some j<r-

2, it can be shown that . To that end, employ Lemma B.2 and set k=0. 

 

Since, by assumption , clearly also .  If however j=r-2, 

we get 

 

which proves the first part. 

 

SECOND PART 

For the second part, again Lemma B.1 is employed, while n is set to 1 and k is chosen 

such that k+1<r-1. 

 

Therefore one can conclude that 0
ad

=hLL k f
f

, since it was shown in the first part that

. Applying Lemma B.1 with n=2 and assuming that k+2<r-1, one 

obtains. 

 

Again, part 1 assures that 0
adad 2 ==+ hLhL kk gg ff

, and the first iteration of part 2 assures 

that  from which can be concluded that . Repeating the 

procedure successively until n (still under the proposition that k+n<r-1) yields 

 

00 == hLhLL gfg
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Hence it can be concluded that  for n+k<r-1. If n+k=r-1, we have 

and obviously  which completes the proof.  

□ 

B.3 Distributions 

Definition B.33 Distribution [Isi95] 

Let U be an open subset of �n, vector fields n

i �→U:f ,   

(composed of column vectors).  

A distribution  is defined as an assignment of a subspace of �n, spanned by the 

vector fields , to every , i.e. 

 

Remarks: 

• At each point , a distribution is a subspace of �n
. 

• A vector field  is said to belong to the distribution , if  for every 

. This implies basically that  can be expressed as linear combination 

of 

:  

where are real valued scalar functions on U. 

• The matrix-function  is associated with the distribution such 

that the distribution is spanned by the columns of F. Note that bold notation F is 

used for the matrix representation while an italic capital letter F is used if the 

distribution itself is addressed. 

• If the vector fields  are smooth (partial derivatives of any order are 

continuous), the distribution is said to be smooth. 

• The dimension of a distribution  at some point  is defined as the 

dimension of the subspace of the distribution at x and is denoted as ( )( )xFdim . 
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adad 1 ≠−== −−
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rk fggfg ff
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( )xF

( )xfi U∈x

( ) ( ) ( ){ }xfxfx dF ,,span 1 …=

U∈0x

( )xτ F ( ) ( )xxτ F∈

U∈x ( )xτ
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( ) ( ) ( )∑ =
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d

i iic
1

xfxxτ

( )xic

( ) ( )[ ]xfxfF d⋯1=
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F U∈x
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There are two bivalent operations, defined for distributions 

Sum 

For two distributions  and , the sum is defined pointwise as the sum of the 

subspaces of both distributions at some point x, preconditioned both 

distributions are defined at the considered point 

( ) ( ) ( ) ( ){ }xτxστσzzxx 2121 ,, FFFF
n ∈∈+=∈=+ �

 

Intersection 

For two distributions F1 and F2, the intersection is defined pointwise for each , 

preconditioned both distributions are defined at the considered point. 

( ) ( ) ( ) ( ){ }xzxzzxx 2121 FFFF
n ∈∧∈∈=∩ �  

Considering its dimension, another property can be assigned to a distribution. 

Nonsingular Distribution 

A distribution is called nonsingular, if ( )( ) constdim =xF  for all . Otherwise, 

it is a distribution of variable dimension. 

Regular point 

A point  is a regular point of the distribution, if there is a neighborhood 

U0 of x0, such that F is nonsingular on U0. A point, which is not regular, is said 

to be a point of singularity.  

The following definition plays an important role in the derivation of NDI. 

Definition B.34 Involutive Distribution [Isi95] 

A distribution F is involutive, if the Lie bracket  of any pair of vector fields 

and , belonging to F, is a vector field which belongs to F: 

[ ] FFF ∈→∈∈ 2121 ,, ττττ  

In order to test, whether a distribution is involutive or not, the following lemma is useful 

Lemma B.3 Condition for Involutive Distributions [Isi95] 

Let a distribution , n�⊂∈Ux . 

 is involutive if and only if  for all  

 

  

1F 2F

x

U∈x

U∈0x

[ ]21 ,ττ 1τ

2τ

( ) ( ) ( ){ }xfxfx dF ,,span 1 …=

( )xF ( ) ( )[ ] ( )xxfxf Fji ∈, dji ,,1, …=
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Proof: 

NECESSARY PART: If F is involutive, then ( ) ( )[ ] ( )xxfxf Fji ∈, . 

The necessary part is a direct consequence of Definition B.34, since ( )xfi  and ( )xf j  are 

vector fields in . 

 

SUFFICIENT PART: If ( ) ( )[ ] ( )xxfxf Fji ∈, , then F is involutive. 

Suppose vector fields  

 and  

where  are real valued scalar functions. With basic property 4 in Appendix 

B.2, we get (the argument x is dropped for readability) 

[ ] [ ] ( ) ( ) ijijij

d

j

d

i jiji dcLcdLdc
ji

ffffττ ff ⋅⋅−⋅⋅+⋅⋅=∑ ∑= =1 121 ,,  

In order for the distribution to be involutive, the right hand side of the above equation 

has to belong to F. The first term belongs to F by assumption, the second and third 

terms also belong to F, since it points into the directions fi and fj. Hence, F is 

involutive. 

□ 

Associated with the vector space �n is a so-called dual space, which is defined as the 

set of all linear maps from �n to �. It is well-known that linear maps on a vector 

 have the common form ( ) nnxyxyz …+= 11x , where yi are some real 

constants. By defining , we also write . It is therefore 

reasonable to associate each linear map on �n with a real row vector y, also referred to 

as covector, where y
T is considered as an element of the dual space. Based on the 

definition of dual space and covectors, it is nearby to define codistributions 

accordingly. 

Definition B.35 Codistribution [Isi95] 

Let U be an open subset of �n, covector fields ( )*; nT

i �→Ug ,   

(composed of row vectors).  

A codistribution  is defined as the assignment of a subspace of ( )*n� , spanned 

by the covector fields , to every , i.e. 

( ) ( ) ( ){ }xgxgx
T

d

T
G ,,span 1 …=  
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i U∈x
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Remarks: 

• At each point , a codistribution is a subspace of ( )*n� . 

• A covector field  is said to belong to the codistribution G, if  for 

every . This implies that  can be expressed as linear combination of

: 

 

where are real valued scalar functions on U. 

• A matrix-function  

  

• can be associated with a codistribution in a way that the codistribution is 

spanned by the rows of G
T. Note that bold notation G is used for the matrix 

representation while an italic capital letter G is used if the distribution itself is 

addressed. 

• The smoothness property, the terms “dimension”, “nonsingular distribution” as 

well as “regular points” are defined analogously for codistributions. 

• The operations of addition and intersection are defined analogously to 

distributions 

The following definition introduces a relationship between a distribution (codistribution) 

and an associated codistribution (distribution), called annihilator. 

Definition B.36 Annihilator [Isi95] 

Let U be an open subset of �n and F a distribution (codistribution) on U. The 

annihilator of F, denoted as F^, is defined as the codistribution (distribution) whose 

elements annihilate every element of F, i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }U∈∀∈∀=∈= xxxσxσxτxτx ,0
*

FF
TnT �^  

( ( ) ( ) ( ) ( ) ( ) ( ){ }U∈∀∈∀=∈= xxxτxσxτxσx ,0 FF
TTn�^ ) 

Remarks 

There are some useful properties concerning the relationship between a distribution 

(codistribution) and its annihilator 

1. Let a distribution (codistribution) F and its annihilator F^ be defined on a subset 

of �n, then 

U∈0x

( )xσT ( ) ( )xxσ GT ∈

U∈x ( )xσT

( )xgT

i

( ) ( ) ( )∑ =
=

d

i

T

ii

T
c

1
xgxxσ

( )xic

















=
T

d

T

T

g

g

G ⋮

1
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( ) ( ) nFF =+ ^
dimdim  

Let F1 and F2 be distributions or codistributions, defined on a subset of �, then 

2. the annihilator of an intersection of distributions (codistributions) is equal to the 

sum of the annihilators of the separate distributions (codistributions) 

 

3. the annihilator of a sum of distributions (codistributions) is equal to the 

intersection of the annihilators of the separate distributions (codistributions) 

 

Proofs: 

The proofs are presented for the case that F, F1, F2 are distributions. Analogous proofs 

for codistribution F, F1, F2 follow analogous arguments. 

 

FIRST PART 

The first part is proved by using the matrix notation of distributions. Let, for U∈x , F 

have dimension d. Then, there are vector fields di
n

i ,,1, …=∈�f , which are linearly 

independent. Therefore the associated matrix in dn×� , [ ]dffF ⋯1= , has rank d and 

an element of F is obtained by , where  and ci 

are real scalar fields.  

All covectors  annihilate all vectors  and therefore satisfy 0=⋅⋅ cFσT  for 

any d�∈c . This, however, is possible if and only, if 0=σFT . This equation is satisfied 

exactly by the kernel of TF , whose dimension is n-d, which follows from 

( ) ( ) d
T == FF rankrank  (Corollary B.3) and Theorem B.15. Hence, one can find an n-d 

dimensional subspace of ( )*n�  which annihilates any . Therefore , 

which proves the claim.  

 

SECOND PART 

With 21 FFF ∩=
⌢

, let ( ) 11dim dF = , ( ) 22dim dF =  and ( ) dF =
⌢

dim , for . Moreover, 

there are matrices 1

1

dn×∈�F  and 2

2

dn×= �F , associated with F1 and F2 respectively, 

whose columns are linearly independent and span the subspaces of F1 and F2. 

Consequently, some element , belonging to the intersection  has to fulfill 

simultaneously cFτ ⋅= 1
 and dFτ ⋅= 2

 for some 1d�∈c  and 2d�∈d . This is equivalently 

expressed as. 

[ ] 0
d

c
FF =








− 21  (B.13) 

( ) ^^^

2121 FFFF +=∩

( ) ^^^

2121 FFFF ∩=+

cFffτ ⋅=++= ddcc …11 ( )
d

T
cc ⋯1=c

^FT ∈σ F∈τ

F∈τ ( ) dnF −=^dim

U∈x

τ F
⌢
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Then, ( ) dF =
⌢

dim  if and only if exactly d linearly independent vectors iii dFcFf ⋅=⋅= 21

⌢
 

are obtained where the compound vectors ( )T

i

T

i dc  solve (B.13). To this end, it will be 

shown next that the existence of exactly d linearly independent if
⌢

 is tied to the 

condition that the kernel of [ ]21 FF −  has dimension d. 

For the sufficient part, assume that [ ]( )21ker FF −  has dimension d. Then, there are 

exactly d linearly independent compound vectors ( )T

i

T

i dc , which fulfill (B.13) and the 

single vectors  and  are linearly independent on its own, which is shown in the 

following. Linear independence of the compound vectors implies that 

 

(B.14) 

where [ ]dccC ⋯1= , [ ]dddD ⋯1= , d�∈α  

if and only if 0α = . Assume, without loss of generality that  are linearly dependent. 

Then, there is some  such that  and (B.14) implies that 0dDα ≠= α . 

Applying this result to (B.13), we get 

. (B.15) 

Since the columns of F2 are linearly independent and , consequently  

which is a contradiction to (B.13). Therefore, the single vectors  and  are linearly 

independent. Furthermore, linear independence of the if
⌢

 implies that 

0βCF =⋅⋅ 11
  ,  0βDF =⋅⋅ 22

 

where d�∈21 ,ββ  

if and only if 0ββ == 21
. However, 0ββ == 21

 follows from the fact that F1, F2, C, D 

have full columns rank and Theorem B.15 (the dimension of the kernel is zero in each 

case). 

The necessary part is done by contradiction. Assume that [ ]( )( ) dd ≠=− *

21kerdim FF . 

Then, there exist d
* linearly independent compound vectors ( )ii dc  which satisfy 

(B.13). Following the arguments of the sufficient part, there are d* linearly independent 

vectors if
⌢

. This contradicts the assumed existence of exactly d linearly independent if
⌢

, 

satisfying (B.13). 

Summing up the last section, it can be stated that ( ) dF =
⌢

dim  if and only if 

[ ]( )( ) d=− 21kerdim FF . 

ic id









=⋅









0

0
α

D

C

ic

0α ≠ 0αC =⋅

[ ] αdFα
D

C
FF 221 −=








⋅−

0d ≠α 0dF ≠α2

ic id
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On the one hand, from the proof of part 1, there are matrices ( ) ndnT ×−∈ 1

1 �G  and 

( ) ndnT ×−∈ 2

2 �G , each with linearly independent rows (hence ( ) 11rank dn −=G  and 

( ) 22rank dn −=G ) and associated with ,  which satisfy  

 and . (B.16) 

On the other hand, from proof of part 1, there is a matrix ( ) ndn ×−∈�G
⌢

, associated with 

 which has n-d linearly independent rows (hence ( ) dn −=G
⌢

rank ) and fulfills 

0fG =i

T
⌢⌢

 for di ,,1…=  or, equivalently 

0FG =⋅
⌢⌢

T
 

(B.17) 

where [ ] DFCFffF 211 === d

⌢
⋯

⌢⌢
. 

Conversely, if another matrix T*G
⌢

 fulfills (B.17), the subspace that is spanned by its 

rows belongs to . By equations (B.16), such a matrix is given by 









=

T

T

T

2

1*

G

G
G
⌢

 (B.18) 

since 0CFGFG == 111

TT
⌢

 and 0DFGFG == 222

TT
⌢

. 

As intermediate result, note that some vector h, which is not in the span of F1 (F2), is 

not in ( )T

1ker G  ( ( )T

2ker G ). On the one hand, since ( ) 11rank dn −=G , ( ( ) 22rank dn
T −=G ), we 

have ( )( ) 11kerdim d
T =G  ( ( )( ) 22kerdim d

T =G ) by Theorem B.15. On the other hand F1 (F2) 

has d1 (d2) linearly independent columns which consequently, in light of equation (B.16), 

span the whole kernel of T

1G  ( T

2G ). Hence h is not in ( )T

1ker G  ( ( )T

2ker G ) and 

consequently 0hG ≠T

1  ( 0hG ≠T

2 ). 

Furthermore, a vector belongs to ( )T*ker G
⌢

, if it is in the span of both, F1 and F2, i.e. in 

the intersection of the subspaces, spanned by F1 and F2. This, however, is exactly the 

subspace that is spanned by F
⌢

. By the intermediate consideration stated recently, if 

some vector h is not in the intersection of the subspaces, spanned by F1 and F2, it is 

not in ( )T*ker G
⌢

 since then, either 0hG ≠T

1  or 0hG ≠T

2 . Consequently F
⌢

 spans the whole 

kernel of T*G
⌢

 and has dimension d. Hence ( )( ) d
T =*kerdim G
⌢

 and, by Theorem B.15, we 

have ( ) dn
T −=*rank G
⌢

. 

Overall, it has been shown that the rows of T*G
⌢

 belong to  and span a subspace of 

dimension n-d, which is exactly the dimension of the subspace of G
⌢

. Hence, the rows 

of T*G
⌢

 span G
⌢

 on the one hand. On the other hand, the rows of T*G
⌢

 also span 
21 GG + . 

Therefore the rows of T*G
⌢

 and TG
⌢

 span the same subspace, which finally proves that 

. 

^

11 FG = ^

22 FG =

0FG =11

T 0FG =22

T

^
FG
⌢⌢

=

G
⌢

G
⌢

GGG
⌢

=+ 21
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The proof for the third part is done along similar lines as the second part and is 

therefore dropped. 

□ 

The next theorem is central in the theory of distributions and plays an important role in 

the proof for the existence of a transformation to input-normalized Byrnes-Isidori 

normal form. The detailed proof is presented in [Isi95]. 

 

Theorem B.10 Frobenius [Isi95] 

Let F be a smooth distribution on U, an open subset of �n.  

Let further F be nonsingular and  

Then there exist n-d functions �→U:iλ , , such that 

 

if and only if 

F
^ is involutive 

B.4 Some Facts on Nonlinear Maps 

Proper Map and Ck Diffeomorphism 

Amongst others, Chapter 4 is concerned with nonaffine-in-control dynamical systems. 

It plays an important role for nonlinear-in-control design in section 4.1.7 under which 

conditions a nonlinear map has a unique inverse. Therefore nonlinear maps YX →:f , 

m�⊂YX , , i.e. vector fields in �m are investigated. 

It is a well-known fact that in �, a continuously differentiable function is uniquely 

invertible if it is monotonic or, equivalently, if its derivative does not have any zeros on 

the whole definition space. Therefore, one could conjecture, that this condition can be 

transferred to �m, such that f is invertible if its Jacobian is regular. 

( )
X∈∀≠









∂

∂
x

x

xf
0det  

However it turns out that this condition is not sufficient in �m, m>1. Additionally the 

map has to owe the property of being proper ( [San80] ). 

  

( ) dF =dim

dni −= ,,1…

( ) ( )
U∈∀









∂

∂

∂

∂
= − x

x

x

x

x dnF
λλ

⋯1span
^
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Definition B.37 Proper Map 

Let a map ( ) YX =f , 
m�⊂YX ,  

The mapping f is said to be proper, if the preimage of any compact subset Y⊂U : 

( ) ( ){ }UUV ∈∈== − xfxf X1
 is compact 

Remark 

Note that Theorem B.8 assures for continuous functions that the image of any 

compact set in the definition space is compact, i.e. exactly the other way round 

as required for a proper map. If we assume X∈V  is compact, then ( )VU f=  is 

compact for a continuous mapping. However, for a proper map, we assume that 

U is compact and we require that V compact. Hence, continuity is not sufficient 

for a map to be proper. 

Next, we define a C
k diffeomorphism, which is a map, k times continuously 

differentiable, that can be uniquely inverted and whose inverse map is k times 

continuously differentiable as well. 

Definition B.38 C
k
 Diffeomorphism 

Let ( ) YX =f , YX ,  open subsets of m� . f is a Ck diffeomorphism of X onto Y, if 

• k
C∈f  (k times continuously differentiable) 

• f is a bijection 

• k
C∈−1f  exists 

The next theorem of Hadamard plays an important role as it provides necessary and 

sufficient conditions for a mapping to be a C
k diffeomorphism. A proof is given in 

[WuF72]. 

Theorem B.11 Hadamard 

Let ( ) YX =f , YX ,  open subsets of �m
, 

k
C∈f  

f is a Ck-Diffeomorphism if and only if 

0det ≠








∂

∂

x

f
 for all X∈x and f is proper 

In practice, the verification of a nonsingular Jacobian is straightforward. Potentially 

more complicated will be the verification of the rather abstract quality of being proper. 

Though, Lemma B.5 presents a verifiable condition for proper maps. It is motivated by 

the corresponding lemma in [Lav08] but it uses a slightly modified condition involving 

the integral of the Jacobian.  
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In [Lav08] there is a little imprecision. The lemma is claimed to hold for any subset of 

�m, however the proof only allows to consider the lemma to be true for a map on the 

whole �m as it requires the map to be radially unbounded, which can only be fulfilled, if 

the map is defined on the whole �m. The modified condition in Lemma B.5, however, 

allows at least an extension for maps that exist on open convex subsets of �m. But 

before, a fact is presented that appears to be useful in the proof of Lemma B.5. 

Lemma B.4 Minimum and Maximum Distance for Nonlinear Maps 

Let X be an open convex set in �m, 

a continuously differentiable map ( ) m�⊂=YXf  and X∈xxx ,, 21 . Further 

( ) ( )
x

xf
xJ

∂

∂
=  , ( ) ( ) ( )[ ]xJxJxJ T

s +=
2

1
 , ( ) ( )[ ]∫ −+=

1

0
12121, dss xxxJxxP , 

PP σσ , : minimum singular value of ( )21,xxP  , ( )[ ]xJsiλ : ith eigenvalue of ( )xJ s  

If, for some 01 >k  either 

1. 1kP ≥σ  or 

2. ( )xJ s  positive or negative definite such that  

either ( )[ ] 1ksi ≥xJλ  or ( )[ ] 1ksi −≤xJλ  respectively for mi ,,1…=   

then ( ) ( )
2121212 xxxfxf −≥− k . 

If, for some 02 >k  

3. 2kP ≤σ  then ( ) ( )
2122212 xxxfxf −≤− k  

Proof 

At first note that X has to be convex since it is necessary that the straight line 

connecting x1 and x2 has to belong to X such that ( )21 , xxP  exists. From the mean 

value theorem, the difference between 2 function values is obtained by integrating the 

Jacobian along a curve connecting x1 and x2 

( ) ( ) ( )∫ ⋅=−
γ

γγJxfxf d12  

where γ  denotes a straight line, connecting x1 and x2. A possible parameterization is 

( ) ( )ss 121 xxxγ −+=  

where [ ]1,0∈s  is the curve parameter. Thus the mean value theorem is 

( ) ( ) ( )[ ] ( ) ( )[ ] ( )12

1

0
12112 xxxxxJ

γ
γJxfxf

γ
−⋅⋅−+=⋅⋅=− ∫∫ dssds

ds

sd
s  

and thus 
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( ) ( ) ( ) ( )122112 , xxxxPxfxf −⋅=−
 

(B.19) 

Taking the 2-norm on both sides, we obtain by application of Theorem B.18 

( ) ( )
212212212 xxxfxfxx −⋅≤−≤−⋅ PP σσ . 

and conditions 1 and 3 yield 

( ) ( )
21222122121 xxxfxfxx −⋅≤−≤−⋅ kk . (B.20) 

Further, consider the following Cauchy-Schwartz inequality. 

( ) ( ) ( ) ( ) ( )( )1212212212 xfxfxxxfxfxx −−≥−−
T

. (B.21) 

Then from result of Theorem B.19 and equation (B.19) we get 

( ) ( ) ( )( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( )∫

∫

⋅−⋅−+−=

⋅−⋅−+−=−−

1

0
1212112

1

0
12121121212

dss

dss

s

T

TT

xxxxxJxx

xxxxxJxxxfxfxx

 

and application of condition 2 in connection with Theorem B.20 and equation (B.21) 

yields the left inequality of (B.20). 

□ 

 

Lemma B.5 Verifiable Conditions for Proper Maps 

Let X be an open convex set in �m, a continuously differentiable map  

( ) m�⊂=YXf  and X∈xxx ,, 21 . Further 

( ) ( )
x

xf
xJ

∂

∂
= , ( ) ( ) ( )[ ]xJxJxJ T

s +=
2

1
 and ( ) ( )[ ] dss∫ ⋅+⋅−=

1

0
11221, xxxJxxP  

Pσ  minimum singular value of ( )21 , xxP  

( )[ ]xJ siλ : ith eigenvalue of ( )xJ s  

If either of the conditions is fulfilled for some 0>k  

1. kP ≥σ  

2. ( )xJs  is either positive or negative definite 

such that either ( )[ ] ksi ≥xJλ  or ( )[ ] ksi −≤xJλ  

for mi ,,1…=  respectively  

then f is proper. 
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Proof 

By Lemma B.4 in connection with condition 2, we have 

( ) ( )
212212 xxxfxf −⋅≥− k

 (B.22) 

Then, Definition B.24 says that compactness of a set U is tied to the property that 

every sequence with elements in U has a subsequence that converges in U. 

Therefore, let some set XV ⊂ , such that ( )VU f=  is compact. Then, take a sequence 

{ }iv  such that V∈iv , �∈i . Then the sequence ( )ii vfu =  has its elements in U. 

Further, since U is compact by assumption, { }iu  has a subsequence { }iu  that 

converges to some U∈0u . 

To { }iv , define a subsequence { }iv , such that ( ) ii uvf =  and V∈0v  such that 

( ) 00 uvf = . Since { }iu  converges to u0, for every 0>uε  there is some ( ) �∈uN ε  such that  

ui ε<− 0uu  

for all ( )uNi ε≥ . Then, with (B.22) one can conclude, that 

v
ui

i
kk

ε
ε

:
0

0 =<
−

≤−
uu

vv  

Hence for every 0>vε , we have vi ε<− 0vv  for all ( )vkNi ε⋅≥ , in other words, we have 

constructed a subsequence { }iv  that converges in V. This procedure is possible for 

any sequence in V, hence V is compact (by Definition B.24) and consequently f is a 

proper mapping. 

□ 

The following corollary is a direct consequence of Lemma B.5 Hadamard’s Theorem 

(Theorem B.11). 

Corollary B.1 C
k
 Diffeomorphism 

Let X be an open convex set in �m, a Ck map ( ) m�⊂=YXf  and X∈xxx ,, 21 . Further 

( ) ( )
x

xf
xJ

∂

∂
= , ( ) ( ) ( )[ ]xJxJxJ T

s +=
2

1
 and ( ) ( )[ ] dss∫ ⋅+⋅−=

1

0
11221, xxxJxxP  

Pσ : minimum singular value of ( )21,xxP  

( )[ ]xJ siλ : ith eigenvalue of ( )xJ s  
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Then f is a Ck diffeomorphism of X onto Y,  

if ( )[ ] 0det ≠xJ  and either of the conditions is fulfilled for some 0>k  

1. kP ≥σ  

2. ( )xJ s  is positive or negative definite, such that  

either ( )[ ] ksi ≥xJλ  or ( )[ ] ksi −≤xJλ  for ni ,,1…=   

 

Local Solvability of Systems of Nonlinear Equations 

From section 4.1.2 it is known that control affine systems that have a relative degree 

can be solved for the controls globally, i.e. one can always find a control u such that  

( ) ( ) νuηζBηζa =+ ,,  

for any m�∈ν . Global feedback linearizability of nonaffine dynamic systems with a 

relative degree as introduced in section 4.1.7 is not given a priori but only local 

solvability can be assured. In the latter case, the equation to be solved for the controls 

is given by 

( ) νuηζa =N,, . (B.23) 

For the remainder, we will consider the state ηζ,  as some fixed parameter, while Nu  is 

the variable to be solved for. As one can expect, the equation cannot be solved for any 

ν  in general. However, if one can find some 00
,νuN  that solve (B.23), it can be shown, 

under certain conditions, that it has a solution in a vicinity of 0ν , too. Towards this end 

recall the implicit function theorem, which is well-known in literature and a proof is e.g. 

presented in [Oli13]. 

Theorem B.12  Implicit Function 

Let 
nm �� ⊂⊂ YX , a Ck map: 

m�→×YX:f  

Assume, for some ( ) YX ×∈00,yx , ( ) 0yxf =00,  

If 
( )
x

yxf

∂

∂ ,
is regular at ( )00,yx  

Then, there are vicinities X⊂U  of x0 and Y⊂V  of y0  

and a Ck map VU →:g  such that 

( )( ) 0xgxf =,  for all U∈x  

Using the Implicit Function Theorem, the following fact can be shown. 
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Corollary B.2 Local Feedback Linearizability of Nonaffine Systems 

Let Nprnr ��� ⊂⊂⊂ − UDD ,, ηζ   

and a continuously differentiable map 
m�→×× UDD ηζ:a , nrm ≤≤ , mpN ≥  

Suppose that there are UDD ∈∈∈ 000 ,, Nuηζ ηζ  and m�∈0ν   

such that ( ) 0000
,, νuηζa =N . 

Then, there are vicinities V of 0ν , Z of 
0ζ  Y of 

0η  and U of 0

Nu  

such that, for any VYZ ∈∈∈ νζζ ,, , ( ) νuηζa =N,,  is solved for some UN ∈u   

if 
( )

N

N

u

uηζa

∂

∂ ,,
 has full row rank at ( )000

,, Nuηζ  

Proof 

At first, denote 

( ) ( ) ( )[ ] ( )

N

N
NpNN N u

uηζa
uηζjuηζjuηζJ

∂

∂
==

,,
:,,,,:,, 1 ⋯  

where ( ) m

Ni �∈uηζj ,, . The full rank condition implies that ( )000
,, NuηζJ  has m linearly 

independent columns (Theorem B.14). Without loss of generality, assume that the first 

m columns are linearly independent. If it is not the case, resort the elements of Nu . 

Then, split the control vector 











=








=

0

2

0

10

2

1
,

N

N

N

N

N

N
u

u
u

u

u
u  

where 1Nu  contains the first m elements, and 2Nu  the remaining elements of Nu . 

Further, define: 

• The regular quadratic matrix ( ) ( ) ( ) ( )[ ]NmN

N

N
N uηζjuηζj

u

uηζa
uηζJ ,,,,

,,
,, 1

1

⋯=
∂

∂
=  

• vectors 1Nux = , ( )TTTT

N

T νηζuy 2=  

• the map ( ) ( ) νuηζayxf −= N,,,  

Then  

( ) ( )NuηζJ
x

yxf
,,

,
=

∂

∂
  

is regular at 0

10 Nux = , ( ) ( )0000

2

0 νηζuy N

T
=  and hence by Theorem B.12 there are 

vicinities U1 of 0

1Nu  and VYZ ×××2U  of ( )0000

2 vηζuN  and a C1 map 
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VYZ ×××→ 21: UUg  

such that ( )( ) 0xgxf =, . Transferring back to original notation, and splitting up g 

( )
( )
( )
( )

( )1

1

1

1

12

N

N

N

N

NuN

ug

ug

ug

ug

ug

ν

η

ζ

u

=





















=



















ν

η

ζ  

we arrive at  

( ) ( )[ ] ( ) 0ugugugua =− 111 ,, NNNN νηζ  

for 11 UN ∈u  and  

( )








=

1

1

Nu

N

N
ug

u
u . 

Hence, the equation of the corollary is also solved in a vicinity 
21 UUU ×=  of 0

Nu ,. 

□ 

B.5 Matrix Properties 

Subsequently some properties, pertaining to matrices that appear to be useful 

throughout the thesis are presented. The proofs are quite easy and most of them can 

be found in any appropriate mathematical textbook, however, for better understanding 

they are included here. 

Theorem B.13  Hermitian Matrix - Inverse 

For a regular matrix nn×∈�A , the following equation is valid. 

 

Proof 

 

□ 

Theorem B.14  Row Rank – Column Rank 

Let a matrix mn×∈�A  . Let further p and q be the number of linearly independent 

rows and columns in A respectively.  

Then p=q and p=q is denoted as  

( ) ( ) 11 −− = HH

AA

( ) ( ) ( ) ( ) 1111 −−−− =⇒=⇒= HHHHH
AAIAAIAA

( )Arank
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Proof 

Let a scalar expansion of A be given by 

















=

nmn

m

aa

aa

⋯

⋮⋮

⋯

1

111

A , 

the ith row is denoted as ( )imi

T

i aa ⋯1=a . 

Then, since there are p linearly independent rows, they span a subspace of dimension 

p. Let a basis of the subspace be given by 

( )m

T
bb 1111 ⋯=b    … ( )

pmp

T

p bb ⋯1=b , 

and the ith row of A can be composed as a linear combination of the basis vectors, i.e. 

T

pip

T

i

T

i kk bba ++= …11 . 

and the whole matrix, in terms of the basis vectors reads as 

[ ]
















=
T

p

T

p

b

b

kkA ⋮⋯

1

1  

where ( )nkk

T

k kk ⋯1=k , pk ,,1…= . Obviously, each column of A is a linear 

combination of the column vectors pkk …1  which implies that there are, at maximum, p 

linearly independent columns and hence pq ≤ . An analog consideration, starting with 

the q linearly independent columns, results in qp ≤  which, finally, implies p=q. 

□ 

Corollary B.3 Rank of A and AT 

Given a matrix mn×∈�A . Then  

Proof 

The proof follows directly from Theorem B.14. 

□ 

Theorem B.15  Rank and Kernel 

Let a matrix mn×∈�A  with ( )( ) k=Akerdim .  

Then  such that mkr =+  

 

( ) ( )TAA rankrank =

( ) r=Arank



Appendix B 
Mathematics 

315 

Proof 

Let the columns of , m

i �∈v  be a basis for . Let further 

 complete a basis in �m. Since , it needs to be 

shown that . To this end notice that a vector x produces a 

nonzero output by application of A, if and only if it is composed from a nontrivial linear 

combination of the columns of U. In other words, if 

cUx ⋅=  

for some km−∈�c , then 

( ) 0UcAxA =⋅=⋅  if and only if 0c = . 

This implies that columns of the matrix  

( )kmn

U

−×∈= �AUA  

are linearly independent. Hence, the space that is spanned by cAU  has dimension m-k 

and is equal to the space that is spanned by Ax . Thus ( )( ) km −=Aimagedim . 

□ 

Theorem B.16  Kernel A and AT 

Let a matrix mn×∈�A  with ( ) r=Arank , ( )( ) 1kerdim k=A  and ( )( ) 2kerdim k
T =A .  

Then rmk −=1
 and rnk −=2

 

Proof 

The proof follows from the fact that column and row rank of a matrix are equal 

(Theorem B.14) and by application of Theorem B.15 to A and AT. 

□ 

Theorem B.17  Symmetric Positive Definite Matrices, Eigenvalues, Singular Values, Inverse 

Let nn×∈�Γ  be symmetric positive semi-definite. Then, for ni ,,1…= , 

• Eigenvalues equal singular values ( )Γii ,, ΓΓ =σλ  

• It exists, the eigenvalues of 1−Γ equal the inverse of the eigenvalues of Γ : 

( ) ( )ΓΓ 11 −− = ii λλ  

Proof 

The singular values of Γ are computed from the square-roots of the eigenvalues of  

ΓΓT . Therefore, let 

TQΛQΓ =
 (B.24) 

[ ]kvvV ⋯1= ( )Aker

[ ]km−= uuU ⋯1 ( ) ( )( )AA imagedimrank =

( )( ) km −=Aimagedim
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be an eigenvalue decomposition of Γ , where Q is an orthonormal matrix (i.e. 

IQQQQ == TT
) with eigenvectors in its columns and 

( )n,1, ,,diag ΓΓ= λλ …Λ  

a diagonal matrix containing the nonnegative eigenvalues. Then 

TT QΛQΓΓ 2=  , ( )2

,

2

1,

2 ,,diag nΓΓ= λλ …Λ  

and 2

iλ  are the eigenvalues of ΓΓT . Since iλ  are nonnegative and singular values of Γ

equal the square-roots of the eigenvalues of ΓΓT , the first part is proved. For the 

second part, notice that  

TQQΛΓ 11 −− =
 

(B.25) 

which is obtained from (B.24), and computation of ΓΓ 1− . Thereby 1−Λ  is a diagonal 

matrix with eigenvalues of 1−Γ  on its diagonal. It evaluates to 

( )1

,

1

1,

1 ,,diag −
Γ

−
Γ

− = nλλ …Λ  

which proves the second part. 

□ 

Theorem B.18  Singular Value Bounds for the 2-Norm of Linear Maps 

For a matrix mn×∈�A , mn ≥ , and any m�∈x  

222
xxAx ⋅≤⋅≤⋅ AA σσ  

if n=m and A regular 

AA σσ
2

2

12
x

xA
x

≤⋅≤ −  

Proof 

The singular value decomposition (SVD) of A is given by TUΣVA ⋅⋅=  where 
mmnn ×× ∈∈ �� UV ,  are orthonormal matrices and mn×∈�Σ  is a diagonal type matrix 

containing the singular values. Then, with TTT ΣUUΣAA = , where 

[ ]22diag AA

T σσ ⋯=ΣΣ  

And hence 

( ) ( )xUΣΣxUAxAxAx TTTTTT ==
2

2
 

Since orthonormal matrices preserve the 2-norm of vectors ( [Lüt96] ), we also have: 
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22
xUx T=  

With definition xUy T= , we get 

222

1

22

2 mAA

TT
yy σσ ++== …ΣyΣyAx  

which implies that 

22222
xyΣyΣyAxyx AA

TT

AA σσσσ =≤=≤=  

and the first claim is proved. Further, if A is regular, it can be easily verified (by 

computation of AA 1− ) that the SVD of the matrix inverse is 

TVΣUA ⋅⋅= −− 11  

where 1−Σ  is of diagonal form and the diagonal elements are the inverses of the 

singular values of A. This implies 

A

A

A

A σ
σ

σ
σ

1
,

1
11 == −− . 

which proves the second claim. 

□ 

Theorem B.19 Quadratic Forms for Non-Symmetric Matrices 

For a quadratic matrix nn×∈�B , and any n�∈x : 

0=AxxT  and SxxBxx TT =  

where ( )BBS += T

2

1
 is the symmetric part of B 

           and  ( )TBBA −=
2

1
 is the skew-symmetric part of B 

Proof 

Every quadratic matrix can be separated into a symmetric and skew-symmetric part, 

such that 

SAB +=  

where TSS =  and TAA −= . For the skew-symmetric part, consider the quadratic form

AxxT . Since it is a scalar, it is equal to its transpose and hence 

AxxxAxAxx TTTT −==  

which requires that 0=AxxT . This proves the first part. Further 

( ) ��	
0=

+=+= AxxSxxxASxBxx TTTT  
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proves the second part. 

□ 

Theorem B.20  Bounds on Quadratic Forms 

Let n�∈yx,  and nn×∈�Γ  symmetric and positive definite.  

Then 
22

yxΓxy Γ≤ λT  and 
2

2

2

2
xΓxxx ΓΓ ≤≤ λλ T  

where ΓΓ λλ ,  denote the minimum and maximum eigenvalues of Γ . 

Proof 

Since Γ  is symmetric and positive definite, it has a full system of orthogonal 

eigenvectors, such that 

TQΛQΓ =  

where [ ]nqqQ ⋯1=  contains the orthogonal eigenvectors and 

















=

Γ

Γ

λ

λ

0

0

Λ ⋱  

contains the eigenvalues on its main diagonal in descending order. Further, it is known 

that multiplication of a vector by an orthonormal matrix preserves its Euclidean norm ( 

[Lüt96] ). Hence, we define xQx T

q =  , yQy T

q =  and obtain: 

first inequality: 

( )( )

2222

1111

yxyxyx

ΛyxΓyx

ΓΓΓ

ΓΓΓ

=≤=

++≤++==

λλλ

λλλ

qqq

T

q

qnqnqqqnqnqqq

T

q

T yxyxxyxyx ……
 

second inequality: 

( )
2

2

2

2

22

1

2

2

2

1

xxxx

ΛxxΓxx

ΓΓΓ

ΓΓΓ

===

++≤++==

λλλ

λλλ

qq

T

q

qnqqqq

T

q

T
xxxx ……

 

( )
2

2

2

2

22

1

2

2

2

1

xxxx

ΛxxΓxx

ΓΓΓ

ΓΓΓ

===

++≥++==

λλλ

λλλ

qq

T

q

qnqqqq

T

q

T
xxxx ……

 

□ 
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Theorem B.21  Bound on Symmetric Trace Expression 

Let mn×∈�Θ , nn×∈�Γ  symmetric and positive definite. 

Then ( ) 22
tr

F

T

F
ΘΓΘΘΘ ΓΓ ≤≤ λλ  

where ΓΓ λλ , : minimum and maximum eigenvalues of Γ  

Proof 

Since Γ  is symmetric and positive definite, it has a full system of orthogonal 

eigenvectors, such that 

TQΛQΓ =  

where [ ]nqqQ ⋯1=  contains the orthogonal eigenvectors and  

















=

Γ

Γ

λ

λ

0

0

Λ ⋱  

contains the eigenvalues on its main diagonal in descending order. Let the columns of 

Θ be denoted with iθ , mi ,,1…=  and define 

[ ] [ ]
m

TT

m θQθQθθΘ ⋯⋯ 11
ˆˆˆ == . 

Then 

( ) ( ) m

T

m

TTT θθθθΘΛΘΓΘΘ ˆˆˆˆˆˆtrtr 11 ΓΓ ++== λλ …  

and an upper and lower for this expression is given by 

( ) ( ) ( )
��� ���� �	

…
��� ���� �	

…

*

11

*

11
ˆˆˆˆtrˆˆˆˆ

m

T

m

TT

m

T

m

T θθθθΓΘΘθθθθ ++≤≤++ ΓΓ λλ . 
(B.26) 

The term in brackets (*) is the sum of squares of all elements of Θ̂  and hence equal to 

the square of the Frobenius norm. 

( ) ( )ΘΘΘθθθθ ˆˆtrˆˆˆˆˆ
2

11

T

F
m

T

m

T ==++…  

Back substitution and the fact that IQQ =T  yields 

( ) ( ) ( ) 2
trtrˆˆtr

F

TTTT ΘΘΘΘQQΘΘΘ ===  

and using this result in (B.26) finally proves the claim. 

□ 
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Theorem B.22  Regularity of Sum of Matrices 

Let some matrices nn×∈�A , and nxn�∈B  and  

Aσ : maximum singular value of A 

Bσ  minimum singular values of B. 

If 
BA σσ < , then 

BA +  is regular 

Proof 

If BAC +=  is singular, then it has a non-trivial null space, i.e. there is some n�∈x  

such that 0Cx =  and its quadratic form 0=CxxT . If it can be shown, that there is no 

such x, then matrix is regular. FromTheorem B.18 we have 

22
xAx Aσ≤  and 

22
xBx Bσ≥  

which implies 

( ) 0
222

>−=−≥+= xxxBxxAxxCxx ABAB

TTT σσσσ  

and the proof is complete. 

□ 

B.6 Introduction to Quaternions 

The drawback of a description of the aircraft attitude by means of 3 Euler angles is the 

singularity for pitch angle . A method to circumvent this is the utilization of 

quaternions, which were first introduced by W.R. Hamilton in the 19th century( [Ste03] ). 

A comprehensive introduction to quaternions is given in [Ste03].  

B.6.1 Mathematical Point of View 

Quaternions are a generalization of the complex numbers where the imaginary part is 

extended to 3 dimensions. So a quaternion is typically of the form 

kjiq ⋅+⋅+⋅+= 3210 qqqq  

where i,j,k are unit vectors for the 3 dimensional imaginary part and  

 (B.27) 

q0 is the scalar part and ( )321 qqq
T =q  is referred to as vector part of the quaternion. 

A quaternion is also compactly written as vector in �4. 

2
π±=Θ

jkiikijkkjkijji

kjikji

=⋅−=⋅=⋅−=⋅=⋅−=⋅

−=⋅⋅===

,,

,1
222



Appendix B 
Mathematics 

321 

 

As complex numbers, also a quaternion has a conjugate element:  

 

While quaternion summation is equal to addition of vectors, the quaternion 

multiplication obeys some special principles. 

 

Norm of a Quaternion 

The norm of a quaternion is defined as 

 (B.28) 

where the quaternion norm is not to be mixed up with the 2-norm of an ordinary vector 

in �4. It is in fact the square of the 2-norm. 

 

Quaternion Multiplication 

Multiplication of quaternions is carried out by accounting for properties (B.27). Let p, q 

be quaternions, then 

 (B.29) 

where “ ” denotes quaternion multiplication and “ ” denotes the vector (cross) 

product in �3. 

 

Neutral Element 

Considering (B.29), the neutral element w.r.t. quaternion multiplication is  

 (B.30) 

Inverse Element 

In light of (B.29) and (B.30) inverse element  is obtained by 

 (B.31) 
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Quaternion Properties 

Let 

 

be quaternions. Then the following properties, concerning the quaternion product, 

hold. 

Non Commutativity  

 

Associativity 

 

Norm 

 

Inverse 

 

B.6.2 Some Useful Syntax 

Some notations were introduced [Jac92], which allow a compact and well-arranged 

presentation of operations involving quaternions. In a slight modified version, notations 

that appeared to be useful are stated here.  

To a quaternion 

    ,     

we define 










+

−
=

+

qIq

q
Q ~

0

0

q

q
T

    ,     (B.32) 

where 

 









=








=








=

r
r

q
q

p
p

000
,,

rqp










×⋅
=∗−∗

qp
pqqp

2

0

( ) ( ) rqprqp ∗∗=∗∗

qpqp ⋅=∗

( ) 111 −−−
∗=∗ pqqp









=

q
q

0q

















=

3

2

1

q

q

q

q










−

−
=

qIq

q
Q ~

0

0
_

q

q
T

















−

−

−

=

0

0

0
~

12

13

23

qq

qq

qq

q
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is the skew symmetric cross product matrix associated with the vector part and I 

denotes the identity matrix in �3. The respective matrices to the conjugate quaternion 

is defined accordingly 










−−
=

+

qIq

q
Q ~

0

0*

q

q
T

    ,    








+−
=

qIq

q
Q ~

0

0
_

*

q

q
T

 (B.33) 

and it follows that 

++

= TQQ*     ,    
__

* TQQ =  
(B.34) 

It also reveals that  and  as well as their conjugates are orthonormal matrices if  

is a unit quaternion. This can be verified by computation of 

. (B.35) 

With these definitions, the quaternion product can be written as matrix vector product. 

Let  be another quaternion and ,  according to (B.32), then 

    ,     (B.36) 

and the non-commutativity of quaternion product is simply resolved by changing the 

sign of . We further define matrices 

    ,     (B.37) 

and their conjugate associates 

    ,     (B.38) 

Then (B.32) also reads as 














=












=

+

*

_

*
_

q

T

T

q

E

q
EqQ     ,     (B.39) 

Note that orthonormal property of , , , and (B.39) imply that in each case 

the rows of , ,  and  are orthogonal to each other. Additionally  is 

orthogonal to each row of  and  and  is orthogonal to each row of  and . 

Particularly, the following equations hold: 

+

Q
_

Q q

( )
( ) ( )( )

�









=








⋅=









+−+−+−

++⋅−⋅+
=⋅

=
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I0
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0
q
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qIqqqq
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TT
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TT

T

qqqq

qqq 11
~~~

~ 1

0000

00

2

0

p
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P
_

P

qPqp ⋅=∗
+

qPpq ⋅=∗
_

p~

[ ]qIqE ~
0 +−=

+

qq [ ]qIqE ~
0

_

−−= qq

[ ]qIqE ~
0

* −=
+

qq [ ]qIqE ~
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* += qq
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EqQ
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+

Q q
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Q *
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+
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+
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+
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qE q
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+

E q

_
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+
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    ,     
(B.40) 

    ,     
(B.41) 

    ,     
(B.42) 

    ,     (B.43) 

B.6.3 Quaternions and Rotations in Euclidean Space 

In the field of engineering, quaternions are often utilized for representation of vector 

rotations in Euclidean space, where the quaternion vector part represents the direction 

of the rotation axis while scalar part represents the angle of rotation.  

Starting with Goldstein’s formula for vector rotation in Euclidean space ( [Gol01] ), the 

resulting expression is compared with a certain type of quaternion product and it will 

be seen, that both are equal. 

 

Rotation of a Vector 

Figure B.4 sketches a left hand rotation of the vector onto the vector  by some 

angle . Thereby  is a unit length vector pointing into the direction of the rotation 

axis and the disc E indicates the plane of rotation, perpendicular to . Then, from 

Figure B.4, we derive the Goldstein’s rotation Formula 

 

Figure B.4 Left Hand Vector Rotation 

 

( ) ( ) µµ sincos ununnuunn

zyxv
���������

���

×−⋅⋅−+⋅⋅=

++=
TT

 

                     ( ) ( ) µµµ sincoscos1 ⋅×−⋅+⋅⋅⋅−= unuunnv
������� T  (B.44) 
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With knowledge of rotation axis and rotation angle, some arbitrary vector  is rotated 

in a left hand sense by (B.44). 

 

Quaternion Rotation 

Vector rotations can also be described by means of unit quaternion 

 

which is a quaternion of unity length, i.e. . 

In order to show, how a vector  is rotate, utilizing quaternion products, we at first 

have to embed  into quaternion context. This is done by defining 

 (B.45) 

i.e. the associated quaternion is obtained by inserting  into the vector part of the 

quaternion and setting the scalar quaternion part to 0. The following quaternion 

product 

( )
( ) ( )











×+⋅×−×+⋅⋅+⋅⋅

×+⋅⋅+⋅⋅−
=∗∗

−

quuqquuquq

quuqqu
quq �����

���

000

001

qqq

qq
T

TT

 

reduces to 

( ) 








×⋅−⋅−⋅+⋅⋅
=∗∗

−

uqqquuqq
quq ��

0

2

0

1

22

0

qq TT  

(B.46) 

where Grassmann’s identity has been used for the double cross-product term. 

Comparing (B.44) and (B.46), it can be concluded that  

 and  (B.47) 

make both expressions equal. This becomes clear by recalling the double angle 

formulas 

 and  

and inserting the latter into the vector part of (B.46): 

u
�
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q
q

0q

1=q

u
�

u
�









=

u
u �

0

u
�

( )2sin µ⋅= nq
� ( )20 cos µ=q

( ) ( )µµ cos1
2

1
sin 2 −= ( ) ( )µµ cos1

2

1
cos 2 +=
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and obviously, the resulting expression equals (B.44). Summing up a quaternion, 
describing a left hand rotation around axis  and angle ,is of the form 

 (B.48) 

where  has unity length and hence also . It is worth to be 

noticed that  and  describe the same rotation, which is clear from (B.46). 

 

Vector Rotation and Coordinate Transformation 

As we have seen, Goldstein’s rotation formula (B.44) as well as the quaternion product 

(B.46) represent a left-handed rotation of  onto . This also can be interpreted 

equivalently as a right-handed rotation of the coordinate frame. Let the original system 

be denoted with index 0, the rotated coordinate frame with index B and a rotation 

matrix from 0 to B frame . Then it is well-known that a coordinate transformation 

 is obtained by  

 (B.49) 

By the results, derived so far, there is an associated quaternion that represents the 

same coordinate transformation, which will henceforth be denoted as . 

 
(B.50) 

where ,  are the quaternions associated with the vectors ,  according to 

(B.45). This operation is of course also invertible by solving (B.50) for . 

 

and the quaternion, associated with the inverse coordinate transformation, is 

. (B.51) 

If  is further transformed to a frame C with a quaternion , the associated 

operation is  
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and consequently, the quaternion for an iterated transformation  is  

 (B.52) 

Using definitions of section B.6.2,the quaternion rotation operation (B.50) can also be 

written in a compact matrix vector notation. With (B.34), (B.36) and (B.39), we obtain 









⋅











=








⋅







⋅













=









⋅⋅=∗∗=









+−

+

−

−+
−

O
T

qq

T

O

T

qBO

q

T

BO

O

q

T

qBOABO
B

BO
BO

BO

BO

BOBO

uEE0

0

u
Eq

E

q

u
QQquq

u

010

00 1

 

The scalar part automatically results to zero while we obtain for the vector part: 

A

T

qqB BO
BO

uEEu ⋅⋅=
+−

 

(B.53) 

 

Euler’s Rotation Theorem 

It is intuitively clear and affirmed by Euler’s rotation theorem ( [Ste03] ), if a rigid body is 

arbitrarily rotated about some fixed point, the change of attitude can also be obtained 

by a rotation about a single axis. This statement is compliant with the fact that rotation 

matrices in �3 have exactly one invariant direction - the axis of rotation. This is clear by 

the well-known fact that nontrivial rotation matrices in �3 have exactly one eigenvalue 

that equals to 1 (representing the rotation axis) and pair of conjugate complex 

eigenvalues (representing the rotation)( [Ste03] ). This implies that the rotation axis 

vector  of a quaternion , representing a coordinate transformation  is 

equal in both frames. 

Another consequence of Euler’s theorem is, that a change in attitude, obtained by 

consecutive rotations about coordinate frame axes (as is e.g. the case using Euler 

angles) is equivalently obtained by a rotation about a single rotation axis (which is in 

fact the quaternion vector part or the eigenvector to eigenvalue 1 of the associated 

transformation matrix). 

 

Quaternion and Euler Angles 

The aircraft attitude relative to the earth surface (NED-frame) is described by 3 

consecutive rotations of the Euler angles: z-axis: , y-axis: , x-axis  (refer to 

Appendix A). Each elementary rotation is  associated with a quaternion 

CBBOOBOCBCBBCBC qquqqququ ∗∗∗∗=∗∗=
−−− 111

CBO →→

CBBOCO
qqq ∗=

n
�

BO
q B→0

Ψ Θ Φ



 
Introduction to Quaternions  

328 

    ,        ,     

and the whole rotation obtained by 

 

which leads the following relation between Euler angles and associated quaternions: 

 (B.54) 

The  sign is justified since  and  describe the same rotation. 

 

Quaternion and Transformation Matrix 

A coordinate transformation between frames O and B is equivalently represented by a 

unit quaternion BOq  and a transformation matrix BOM . In order to derive the 

relationship between the two equivalent representations, consider the quaternion 

rotation operation in matrix vector notation (B.53), which reads, when expanded 
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and we obtain the following relationship by further scalar expansion of the quaternion. 
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Let 
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be a scalar expansion of the rotation matrix. Then a transformation from rotation matrix 

to unit quaternion is obtained, by solving the 4 equations 
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which are obtained from the 3 diagonal entries of the rotation matrix and the unit 

quaternion condition, for the quaternion. 
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 (B.56) 

 

Quaternion Kinematic 

In aircraft kinematic, the body-fixed frame (index B) is rotated w.r.t. the NED frame 

(index O) and the relative rotation rate is prescribed by the angular rate  whose 

components are given in body-fixed coordinates. The associated attitude is described 

by some quaternion ( )tBOq  that depends on time t. It is therefore desired to have a 

differential equation that describes that change of the quaternion with time, dependent 

on the prescribed angular rate. Therefore, the angular rate is written in terms of a unity 

length direction vector ( ) ( )tBn
�

 and an absolute value : 

 

It follows that, within some infinitesimal time interval  the B-frame is rotating around 

the rotation axis  about a small angle, which amounts, in a first order 

approximation, to  and the quaternion describing this rotation is given by 

 

where (B.48) and the small angle approximation has been used. Hence the quaternion, 

describing the transformation  at  is, in light of (B.52) 
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 (B.57) 

Using the definitions of section B.6.2, the quaternion kinematic equation (B.57) is 

compactly written in matrix vector notation: 

 

(B.58) 

It can be concluded from properties (B.41) and (B.42), that the quaternion differential 

equation automatically preserves a unit quaternion as time evolves. This becomes 

reasonable by computing the time derivative of the quaternion norm and utilizing (B.36) 

and (B.39) 
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and with properties (B.40) - (B.43) we finally get 

( ) 0q =
dt

d
 

and hence, the length of a quaternion, subjected to (B.58) is preserved. 
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Appendix C 

Fundamentals on Lyapunov Stability 

In classical linear control, stability of dynamic systems is analyzed by consideration of 

eigenvalues. If all eigenvalues lie in the open left half complex plane, the system is 

asymptotically stable, if at least one eigenvalue lies on the imaginary axis, the system is 

stable and if at least one eigenvalue lies in the open right half complex plane, the 

system is unstable. 

In adaptive control systems, even if it is the imaginable simplest one, the closed loop 

dynamic is per se nonlinear. Since, due to adaptation, controller gains are dynamic 

states of the system and the control law generally is a product of plant state and 

controller parameter – thus a multiplication of states – the system is rendered 

nonlinear. For this reason, there is need for stability concepts suitable for nonlinear 

systems of the form 

 (C.1) 

with state vector ( ) D∈tx  and a mapping n�� →× +
0:Df  locally Lipschitz in x and 

piecewise continuous in t, where n�⊂D  is an open connected set containing the 

origin. Due to the explicit dependence on t, the system is called non-autonomous. 

Further, in some cases it is required that  is an equilibrium, i.e. ( ) 00f =t,  for all 

0tt ≥ . The question on stability of the equilibrium that arises is the following. How does 

a trajectory, starting near x=0, behave relative to the equilibrium. 

In the 19th century, the Russian mathematician Aleksandr Mikhailovich Lyapunov 

developed a stability theory for systems of nonlinear ordinary differential equations 

without explicit knowledge of its solution. The basic idea thereby is the fact, that 

mechanical systems, commonly described by differential equations, have a total 

energy, consisting of kinetic and potential energy, which depends on the system 

states. If the system is dissipative, meaning that energy gets lost as time progresses, 

the system intuitively approaches some equilibrium of minimum total energy. 

This insight was generalized by Lyapunov by introducing a state dependent 

generalized energy function, which is also denoted as Lyapunov function candidate. 

The system is dissipative if the time derivative of the Lyapunov function candidate is 

smaller than zero, in this case, it is called a Lyapunov function. Hence it can be 

concluded, that the system is stable, i.e. the states will not grow unbounded, since this 

meant that the generalized energy grew unbounded. 

( ) ( ) ( ) 00,, xxxfx == tttɺ

0x =
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The Lyapunov stability framework is presented in a rigorous mathematical manner, 

focus is put on a detailed derivation. However, in order not to overstretch the chapter, 

some basics facts about existence and uniqueness of solutions to the aforementioned 

system, which are tied to the Lipschitz condition for ( )t,xf , are assumed to be known. 

These facts are though comprehensively presented in [Kha02]. At first, we start with 

various definitions of stability, used in the remainder of the chapter. 

C.1 Stability Definitions 

Stability 

Definition C.1 Stability 

The equilibrium of (C.1) is said to be stable,  

if for each  and  one can find a   

such that ( )00 ,tεδ<x  implies that  for all  

Remarks 

A state trajectory is stable, if it is possible to force a trajectory to reside in an 

arbitrarily small ball around the equilibrium for all , i.e. , if the initial 

state is sufficiently close to the equilibrium, i.e. . To a given  and t0, one 

can find infinitely many  because, if some  is found to some  and t0 

then also every ( )12 ,0 δδ ∈  is also a valid one. The supremum of all  will be 

denoted as , i.e. 

 

(C.2) 

But even as , ( )0,tεδ  does not necessarily grow unbounded but, for some 

: 

( )( ) ( ) ∞<= ∞
∞→

00,lim tt δεδ
ε

 
(C.3) 

The following specifications can be attributed to stability 

1. Stability is attributed to be uniform, if  can be chosen independent of t0. 

2. Stability is attributed to be global, if  can be chosen to be arbitrarily 

large for a sufficiently large , i.e.
 

. 

  

0>ε 00 ≥t ( ) 0, 0 >tεδ

( ) ε<tx 0tt ≥

0tt ≥ ( ) ε<tx

δ<0x ε

( )0,tεδ 1δ ε

( )
0,tεδ

( )0,tεδ

( ) ( )( )00 ,sup, tt εδεδ =

∞→ε

( ) 00 >∞ tδ

δ

δ

ε ( )( ) 0,,lim 00 ≥∀∞=
∞→

ttεδ
ε
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Asymptotic Stability 

Definition C.2 Asymptotic Stability 

The equilibrium of (C.1) is said to be asymptotically stable, if it is stable and 

additionally there is a ( )0tρ  such that for any  there is a  such that 

( )00 tρ<x  implies that  for all . 

Remarks 

Asymptotic stability additionally requires that the state trajectory approaches the 

equilibrium as time goes to infinity. The rate of convergence thereby depends on 

initial time and initial condition. 

Again, the following specifications can be attributed to asymptotic stability 

1. Asymptotic stability is attributed to be uniform, if the equilibrium is 

uniformly stable and  is independent of t0, x0 and ρ is independent of t0. 

T merely depends on some ( ]ρδ ,0∈  i.e. ( )δη ,T  such that  for all 

( )δη,0 Ttt +≥  and δ<0x . 

2. Asymptotic stability is attributed to be global, if the equilibrium is globally 

stable and additionally ( ) ∞=0tρ  for all t0. 

 

Exponential Stability 

The weak point of asymptotic stability is, that it does not provide any statement about 

the rate of convergence. It is merely assures that the trajectory approaches the 

equilibrium, but the time that is needed therefore could be arbitrarily large. A remedy is 

the definition of exponential stability. 

Definition C.3 Exponential Stability 

The equilibrium of (C.1) is said to be exponentially stable, if there are constants 

 such that  if  

If  ∞=x  the equilibrium is globally exponentially stable. 

λ  is denoted as convergence rate. 

 

Boundedness and Ultimate Boundedness 

The various definitions of stability require that the system has an isolated equilibrium. 

This, however, is not true in any case. Particularly when analyzing systems, subjected 

to time variant disturbances, there is potentially no equilibrium at all. This essentially 

0>η ( )00,, xtT η

( ) η<tx Ttt +≥ 0

T

( ) η<tx

0,, >λkc
( )0

0

tt
ek

−−≤ λ
xx c<0x
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means that f(0,t)=0 is not fulfilled for all . In such cases the best, one can hope is 

that, a state trajectory is bounded. 

Definition C.4 Boundedness and Ultimate Boundedness 

Consider a solution of (C.1) x(t) for t≥t0 and x(t0)=x0  

where x=0 is not necessarily an equilibrium. Then x(t) is said to be  

1. uniformly bounded 

if, for every [ ]ρδ ,0∈  and some  there is a  such that 

 implies  for all . 

2. globally uniformly bounded 

if an  is found for any . 

3. uniformly ultimately bounded with ultimate bound b 

if, for every [ ]ρδ ,0∈  and some , 

there is a  for some such that 

 implies  for all  

4. globally uniformly ultimately bounded with ultimate bound b 

if  exists for every . 

Remark 

The boundedness is uniform since the  to be found is independent of the 

initial time t0. Further uniform boundedness seems to be similar to the definition 

of stability. In fact stability requires to find a  for a given ε  while uniform 

boundedness is defined the other way round, i.e.to find an ε  for a given . In 

other words, stability assures that the trajectory remains in an arbitrarily small 

ball around the equilibrium if only the initial value is sufficiently close the 

equilibrium whereas boundedness start with a bound on the initial condition and 

requires finding a bound, the trajectory does not leave for 0tt ≥ . 

C.2 Positive Definite Functions 

Lyapunov functions have to fulfill the property, that they accept a minimum in the 

equilibrium, which is clear from the fact, that a stable equilibrium is the point with 

lowest energy. This property is precisely defined next. 

Definition C.5 Positive (Semi-) Definite Function 

Let n�⊂D  be an open connected set containing the origin,  

let further +→ 0: �DV  be a continuously differentiable function. 

Then V is said to be positive (semi-) definite if  
 and  ( ) for all  

0tt ≥

0>ρ ( )δε

δ≤0x ( ) ( )δε≤tx 0tt ≥

( )δε 0>δ

0>ρ

( )bT ,δ 0>b

δ≤0x ( ) bt ≤x ( )bTtt ,0 δ+≥

( )bT ,δ 0>δ

( )δε

δ

δ

( ) 0=0V ( ) 0>xV ( ) 0≥xV 0x \D∈
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Remark 

A positive (semi-) definite function V is said to be radially unbounded, if 

. 

C.3 Comparison Principles 

In the non-autonomous case, Lyapunov functions generally depend explicitly on time. 

In order to establish uniform stability by the methods of Lyapunov, it is necessary, that 

the time variant Lyapunov function is enclosed between two comparison functions that 

do not depend explicitly on time. A comprehensive introduction to comparison 

functions is given in [Kha02]. 

 

Class K function 

Definition C.6 Class K Function 

A continuous function [ ) +→ 0,0: �aα  is said to belong to class K, if it is strictly 

increasing and . 

It is said to belong to class , if  and  

 

Class KL function 

Definition C.7 Class KL Function 

A continuous function [ ) [ ) +→∞× 0,0,0: �aβ  is said to belong to class KL if,  

for a fixed t0, the function  is a class K function with respect to x  

and, for each fixed x0, the function  is nonincreasing with respect to t and  

 

Remarks 

Let  

•  be some class K functions on ,  

•  class  functions,  

• β(x,t) a class KL function on [0,a)  

• ( ) +→�af ,0:  be a positive nondecreasing function, not necessarily 

continuous 

( )( ) ∞=
∞→

x
x

Vlim

( ) 00 =α

∞K ∞=a ( )( ) ∞=
∞→

x
x

αlim

( )0,txβ

( )tx ,0β

( ) 0,lim 0 =
∞→

tx
t

β

( ) ( )xx 21 , αα [ )a,0

( ) ( )xx 43 ,αα ∞K
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• [ ) +→ 0,0: �ag  be a continuous, nondecreasing function where g(0)=0 and 

 for 0<x<a. 

Then the following properties can be easily verified: 

1. The inverse  belongs to K. 

2. The inverse  belongs to K
∞
. 

3.  belongs to K. 

4.  belongs to . 

5.  belongs to KL. 

6. There is a class K function [ ) +→ 0,0: �aα  such that  on 

 

7. There are class K functions β1(x) and β2(x) on x∈[0,a) such that 

β1(x)< g(x)< β2(x) for x∈(0,a) 

It is sometimes convenient to express stability in the sense of Lyapunov in terms of 

class K and KL functions, according to the following lemma. 

Lemma C.1 Stability and Class K, KL Functions 

The equilibrium of (C.1) is  

1. uniformly stable 

if and only if there exists a class K function ( )xα  and a positive constant ρ

independent of t0, such that  

 for all  and ρ<0x  

2. uniformly asymptotically stable 

if and only if there exists a class KL function ( )tx,β  and a positive constant 

, such that 

 for all  and  

3. globally uniformly asymptotically stable 

if and only the inequality for uniform asymptotical stability 

 holds for all  and all n�∈0x  

Proof Part 1 

NECESSARY PART: 

“If there is a class K function such that ||x(t)||≤α (||x0||) for all t≥t0 and ||x0||<ρ, then the 

equilibrium is uniformly stable.” 

For a given , choose 

( ) 0>xg

1

1

−α
1

3

−α

( )( )x21 αα

( )( )x43 αα ∞K

( ) ( )( )( )txtx ,, 21 αβασ =

( ) ( )xfx <α

( )ax ,0∈

( ) ( )0xx α≤t 0tt ≥

ρ

( ) ( )00 , ttt −≤ xx β 0tt ≥ ρ<0x

( ) ( )00 , ttt −≤ xx β 0tt ≥

ε
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( )
( )

( )x
x

αα
αερ

αεεα
εδ

ρ −→

−

=




≥

<
= lim

  if

  if1

 where

 

Hence (ε) is independent of  which implies uniform stability.  

 

SUFFICIENT PART 

“If the equilibrium is uniformly stable, then there exists a class K function α(x)  

such that ||x(t)||≤α(||x0||) for all t≥t0 and ||x0||<ρ.” 

Uniform stability means that, for every , there is a δ (ε ) such that ||x0||<δ  implies 

||x(t)||<ε  for all  t≥t0  and δ(ε) can be chosen to be nondecreasing. In order to accept 

this fact, note that, for some ε1 and the associated  δ (ε1), we have ||x(t)||<ε1  if  

||x0||<δ (ε1). If we require ||x(t)||<ε2  for some ε2 > ε1, it is surely fulfilled if ||x0||<δ (ε1). 

Hence we can, at least, choose  δ (ε2)=δ (ε1), possibly also δ (ε2)>δ(ε1). Hence  δ (ε ) is a 

positive, nondecreasing function and, by property 6, there exists some class K 

function  β (ε )<δ (ε ) for ε >0. Further, define  

. 

It follows that, if ||x0||<β (ε ), then ||x(t)||<ε. Then  

 
(C.4) 

is a class K function on [0,ρ) and we have ||x(t)||≤α (||x0||) if ||x0||<ρ. 

□ 

Proof Part 2 

NECESSARY PART 

“If there is a class KL function β (x,t) such that ||x(t)||≤ β (||x0||,t-t0)  for  t≥t0  and  ||x0||<ρ, 

then the equilibrium is uniformly asymptotically stable.” 

For a given ε choose 

( )
( )0,lim

  if

  if0,1

x
x

ββ
βερ

βεεβ
δ

ρ −→

−

=




≥

<
=  where

 

(C.5) 

where β -1(·,·) denotes the inverse w.r.t. to the first argument. Therefore ||x(t) ||<ε, if 

||x0||<δ  which proves uniform stability, as δ is independent of t0. Further, let  

( )
( )

( )





=−

<≤−
=−

−→
ρβ

ρβ
β

ρ
xttx

xttx
ttx

x

   for

 for

0

0

0 ,lim

0,
,

 

δ 0t

ε

( )( ) ρεβ
ε

=
∞→

lim

( ) ( )xx
1−= βα
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(If the limit does not exist, it is ∞ such that every real number is smaller.) Then, for every 

η>0  and ( ]ρδ ,0∈  there is some ( )δη ,T  such that ( ) ηδβ <T,  and hence ||x(t)||<η for 

all t≥t0+T(η,δ), if ||x0||<δ, which shows uniform asymptotic stability. 

 

SUFFICIENT PART 

“If the equilibrium is uniformly asymptotically stable, then there exists some class KL 

function such that  ||x(t)|| ≤β(||x0||,t-t0) for all t≥t0  and  ||x0||<ρ.” 

Since uniform asymptotic stability also includes uniform stability, from the first part, 

there exists some class K function α (x)  such that  

( ) ( )0xx α≤t
 (C.6) 

for  and αρ<0x . Further, let 

( )
( )

( )( )





=

<<
=

∞→
.  for

  for

α

α

ρα

ρα
α

xx

xx
x

x
lim

0

 

(C.7) 

(If the limit does not exist, it is ∞ such that every real number is smaller.) By uniform 

asymptotic stability, there exist ( )δη ,T  for any  and δ∈(0, ρβ], ρβ>0, such that,  

( ) η<tx  if t≥t0+T(η,δ ) and ||x0||<δ . In the following, we choose ρ=min(ρα ,ρβ). It will be 

shown next that T(η,δ) can be chosen such that, for η>0 and δ	∈(0,ρ], 

• T(η,δ)=0 for η≥α�(δ) 

• T(η,δ) is nonnegative,  

• T(η,δ) is nonincreasing in η and  

• T(η,δ) is nondecreasing in δ 

as will be shown in the following. 

The first property directly follows from (C.6) and (C.7). Non-negativity of T is clear from 

the fact that we merely consider times t≥t0. Moreover, consider some η1>0, η2>η1 and 

its associated T(η1,δ), T(η2,δ). By definition, ( )tx  falls below 
1η  at least at T(η1,δ). Since 

η2>η1  it is also below η2 at the same time, or even earlier. Hence T(η2,δ) ≤ T(η1,δ). 

Analogously, consider some δ1>0, δ2>δ1 and its associated T(η,δ1), T(η,δ2). If ||x0||<δ2 

then ||x(t) ||<η  at t0+T(η,δ2). Furthermore, if  ||x0||<δ1 then ||x0||<δ2, too and it is assured 

that ||x(t) ||<η at the same time, or even earlier. Hence T(η,δ1) ≤ T(η,δ2).  

Next we define, for (δ,η) ∈(0,ρ] ×(0,2α�(δ)]  

( ) ( )
( )δαη

ξδξ
η

η
η

ηδ
2

11
,

2ˆ
2

−+= ∫ dTT

 

(C.8) 

which has the following properties. 

0tt ≥

0>η
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1. T̂δ (η) is nonnegative 

2. T̂δ (η) is continuous w.r.t. η 

3. T̂δ (η) is strictly decreasing w.r.t. η 

4. T̂δ (η) has the following behavior at the boundaries of the definition space: 

( )( ) 02 =δαδT
 , 

( )( ) ∞=
+→

ηδ
η

T
0

lim
 

5. T̂δ (η) is strictly increasing w.r.t.δ 

6. T̂δ (η)≥ T (η,δ ) 

Remarks 

1: T̂δ (η) is nonnegative since T (η,δ ) is nonnegative and ( )( ) 0211 ≥− δαη  in the 

definition space. 

2: Consider, at fixed , ( ) ( )00
ˆˆ ηη δδ ThT −+  for a sufficiently small h such that 

[ ] ( )( ]δαηη 2,0, 02
0 ⊂++ hh . Note that T (η,δ )≤M on the interval [ ]hh ++ 02 ,0 ηη  for 

some M>0. Then 
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and for every ε >0, one can find a δ >0 such that ( ) ( ) εηη δδ <−+ 00
ˆˆ ThT  if δ<h  

which shows continuity. 

3:Let η2>η1>0, and η2=k·η1, k>1. Using a change of variables , we get 
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Since T (ξ,δ ) is nonincreasing with respect to ξ, we have T (kξ,δ )≤ T (ξ,δ ) and 

therefore 

( ) ( )
( )

( )
( )

( )1

121121

2
ˆ

2

11
,

2

2

11
,

2ˆ 1

1

1

1
η

δαη
ξδξ

ηδαη
ξδξ

η
η δ

η

η

η

ηδ TdT
k

dkTT =−+<−+= ∫∫
 

4: The asymptotic behavior at the boundary of the definition set is due to the 

additional term ( )( )δαη 211 −  and the fact that the integral vanishes for η ≥ 

2α� (δ ), where α�(δ )≤α�(ρ ) . 

0η

ξξ k=
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5: Let δ1>0, δ2 > δ1>0 and some fixed η0>0. The fact that T(ξ ,δ) is nondecreasing 

with respect to δ, yields 

( ) ( )
( )

( )
( )

( )0

102

1

0202

2

0

0 1

0

0

0

02

ˆ
2

11
,

2

2

11
,

2ˆ η
δαη

ξδξ
ηδαη

ξδξ
η

η δ

η

η

η

ηδ TdTdTT =−+>−+= ∫∫
 

6:       Since T (ξ,δ ) is nonincreasing w.r.t. , we have 

( ) ( ) ( )δηξδη
η

ξδξ
η

η

η

η

η ,,
2

,
2

22

TdTdT =⋅⋅≥ ∫∫  

Further, ( )( ) 0211 ≥− δαη  in the definition space yields T̂δ (η)≥ T (η,δ ) 

Since T̂δ (η) is strictly decreasing w.r.t. η, the inverse  

( ) ( )ττη δδ
1ˆˆ −=T

 

(C.9) 

exists for τ ∈ [0,∞) for each allowed δ and η ̂δ(τ) has the following properties 

1. η ̂δ(τ) is continuous, positive and strictly decreasing inτ (from properties 1-3 of T̂δ (η)) 

2. η ̂δ(τ) is positive and strictly increasing in δ (from property 5 of T̂δ (η)) 

3. η ̂δ(0)=2��(�) (from property 4 of T̂δ (η)) 

4.  ( )( ) 0ˆlim =
∞→

τηδ
τ

 (from property 4 of T̂δ (η)) 

Then – from property 6  – for a fixed , we have 

( )( ) ( )( ) 000
ˆˆ,ˆ TTTTT =< δδδ ηδη . 

Since ||x(t)|| <η ̂δ (Τ0 ) is fulfilled for all t ≥ t0+T(η ̂δ (Τ0 ),δ), it is also fulfilled for t ≥ t0+T0. 

Consequently  

( ) ( )0
ˆ ttt −< δηx

 (C.10) 

for all t-t0≥0 and δ<0x . By (C.6) and (C.10), we have ||x(t)||2 ≤α(||x0||)·η ̂δ (t-t0 ) and finally 

 for all  and  ||x0||<ρ (C.11) 

where ( ) ( ) ( )0000
ˆ, tttt −⋅=− ρηαβ xx  is a class KL function. 

□ 

Proof Part 3 

NECESSARY PART 

“If there exists a class KL function β(x,t) such that ||x(t)||≤β(||x0||,t-t0 ) for all  and 

x0∈�
n, then the equilibrium is globally asymptotically stable.” 

Since β(x,t) is a class K function, defined on [0,∞) for every fixed t, there is also a class 

KL function β∞(x,t)≥ β (x,t), that belongs to class K∞ for fixed t. Hence, we also have 

ξ

00 >T

( ) ( )( )00 , ttt −≤ xx β 0tt ≥

0tt ≥
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( ) ( )00 , ttt −≤ ∞ xx β  

for all t≥t0 and x0∈�
n. Analogously to (C.5), we choose 

( ) ( )0,
1 εβεδ −

∞=  

and we have δ →  ∞ as ε →  ∞, which proves global uniform stability. Moreover, for every 

η,δ>0, there exists a T(η,δ) such that β(δ,T)<η and hence ||x(t) ||<η for all t≥t0+T(η,δ) if 

||x0||<δ which shows global uniform asymptotic stability. 

 

SUFFICIENT PART 

“If the equilibrium is globally asymptotically stable, then there exists a class KL 

function β(x,t) such that ||x(t) || ≤β(||x0||,t-t0 ) for all  and x0∈�
n.” 

Since global uniform asymptotical stability implies global uniform stability δ(ε) can be 

chosen such that  

( ) ∞=
∞→

εδ
ε
lim  

Therefore, α(x) in (C.4) can be chosen to belong to class K∞ and (C.4) holds for all 

t≥t0 and x0	∈	�
n. Moreover, also T̂δ , η ̂δ  exist and (C.10) holds for all for all δ>0 and 

( ) ( )00 , ttt −Ψ≤ xx
 (C.12) 

where 

( ) ( ) ( )( )τηατ 1
ˆ,min, +=Ψ xxx  

Unfortunately Ψ(x,t) does not necessarily belong to class KL, since η̂x+1(τ),is not 

necessarily continuous in x. Let us define 

 

which has the following properties 

1. Y(x,t) is continuous in both arguments 

2. Y(x,t) is strictly increasing  w.r.t. x 

3. Y(x,t) is strictly decreasing w.r.t.  and  

4. Y(x,t) ≥Ψ(x,t) 

1: Continuity in x follows from similar considerations as done for property 2 of 

. Continuity in  follows from continuity of the second term and continuity of 

Ψ(x,t) in τ. 

0tt ≥

( ) ( )
( )( )11

,,
1

++
+Ψ= ∫

+

τ
ξτξτ

x

x
dxY

x

x

τ ( )( ) 0,lim =
∞→

τ
τ

xY

( )ηrT̂

τ
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2: Y(x,t) is strictly increasing in x because, on the one hand, Ψ(x,t) is strictly 

increasing in x, which, in turn, follows from the fact that σ (x), and ηx+1(τ) are 

strictly increasing in x. On the other hand, the second term in Y is strictly 

increasing in x. Following similar arguments as used for property 5 of  the 

claim is proved. 

3: Y(x,t) is strictly decreasing in  because, on the one hand, Ψ(x,t) is strictly 

decreasing in τ which, in turn follows from the fact that ηx+1(τ) strictly decreasing 

in τ. On the other hand, the second term is strictly decreasing in . Following 

similar arguments as used for property 3 of  the claim is proved. 

 follows from  

( ) 0ˆlim =
∞→

τηδ
τ

 (property 4) which implies  

and from the fact that the second term in Y goes to 0 as τ→ . 

4: Y(x,t) ≥Ψ(x,t) follows from similar arguments as used for property 6 of . 

With (C.12) and property 4, we get 

 

(C.13) 

for all  and n�∈0x . Moreover, properties 1-3 assure that  

( ) ( ) ( )ταβ ,, xYxtx ⋅=  

belongs to class KL and, analogously to (C.11), we obtain 

 

for all x0 ∈�
n and t≥t0. 

□ 

Positive definition functions can be enclosed by class K functions, which appear to be 

useful in Lyapunov stability theorems. 

Lemma C.2 Positive Definite Function and Class K Functions [Kha02] 

Let +→ 0: �DW  a positive definite function, n�∈D  an open connected set 

containing the origin. Let, for some r>0 

{ }r
n

r <∈= xx �B  and r sufficiently small such that . 

Then there exist class K functions α1(x), α2(x) on [0,r) such that  

 for all  

If D=�n and W(x)  is radially unbounded, r can be chosen to be   

and α1(x), α2(x) can be chosen to belong to class K∞ 

( )ηrT̂

τ

τ

( )ηrT̂

( )( ) 0,lim =
∞→

τ
τ

xY

( )( ) 0,lim =Ψ
∞→

τ
τ

x

∞

( )ηrT̂

( ) ( )00 , ttYt −≤ xx

0tt ≥

( ) ( )00 , ttt −≤ xx β

DB ⊂r

( ) ( ) ( )xxx 21 αα ≤≤W rB∈x

∞
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Proof 

Define functions on [0,r): 

( ) ( )x
x

Wx
rx <≤

= infψ        ( ) ( )x
x

Wx
x≤

= supφ  

Both functions are  

• continuous, since W is continuous 

• nondecreasing 

• positive for x>0 since W(x)>0 for x≠0 

• 0 for x=0, since W(0)=0 

and satisfy the following inequality 

 

Due to the properties of , there are class K functions α1(x) and α2(x) such that  

 and  (C.14) 

(property 7 of class K functions) and hence 

 

If D=�n and if W(x) is radially unbounded, we choose and obtain 

 

and therefore  in (C.14) can be chosen such that  

 

α2(x) can be chosen to go to infinity anyway, as  goes to infinity, since  

and hence α1(x), α2(x) can be chosen to belong to class K∞. 

□ 

The next lemma plays an important role in the proof of exponential stability. 

  

( ) ( ) ( )xxx φψ ≤≤W

( ) ( )xx φψ ,

( ) ( )xx ψα ≤1 ( ) ( )xx 2αφ ≤

( ) ( ) ( )xxx 21 αα ≤≤W

∞=r

( )( ) ∞=
∞→

x
x

ψlim

( )x1α

( )( ) ∞=
∞→

x
x

1lim α

x ( ) ( )xx φα ≥2
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Lemma C.3 Comparison Lemma [Kha02] 

Consider the scalar differential equation , , 

where  is locally Lipschitz in u, uniformly in t in some domain �⊂D . Let [t0,T) 

be the maximal interval of existence for the solution  and  for all t∈[t0,T). 

Let  be a function whose upper right Dini derivative satisfies 

, and  for all t∈[t0,T),  

then  for all t∈[t0,T) 

Proof 

For a definition of Dini’s derivatives, refer to Definition B.30. 

PART 1 

It will be at first shown that some auxiliary function  that satisfies the differential 

equation 

,  (C.15) 

with some small positive constant  lies arbitrarily close to  in some interval [t0, t1], 

i.e. 

 

for some , if  for some . First note that the solutions of  and  

satisfy 

 

. 

Further, since  is compact and  is a continuous function of time, it follows that 

 is bounded on . Define some tube around the nominal solution 

( )( ) [ ] ( ) ( ){ }εε ≤−×∈= tutzttttzU 10,, D
. 

This tube is clearly compact, as it is closed and bounded and therefore  is 

Lipschitz on  with the same constant L that holds for all elements in . Subtracting 

( )tufu ,=ɺ ( )
00 utu =

( )tuf ,

( )tu ( ) D∈tu

( )tv

( ) ( )( )ttvftvD ,≤+ ( ) 00 utv ≤ ( ) D∈tv

( ) ( )tutv ≤

( )λ,tz

( ) ( )( ) λ+= ttzftz ,ɺ ( ) 00 utz =

λ ( )tu

( ) ( ) ελ <− tutz ,

0>ε δλ ≤ 0>δ ( )λ,tz ( )tu

( ) ( )( )∫+=
t

t
dufutu

0

,0 τττ

( ) ( )( ) ( )∫ −++=
t

t
ttdzfutz

0
00 ,, λτττλ

[ ]10 , tt ( )tu

( )tu [ ]10 , tt

( )tzf ,

εU εU
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the two solutions under the assumption that  and accounting for the 

Lipschitz conditions yields an upper bound for its absolute value: 

 

Application of Bellman-Gronwall Lemma (see e.g. [Tao03]) yields 

 

Integrating the right hand side by parts further results in 

 

If we choose , we have 

 

which shows that  does not leave  within the interval . Therefore, the 

assumption of  being Lipschitz with constant L is fulfilled. 

 

PART 2 

Next, it will be shown that  in  for . 

To this end, assume that, in some interval , where ,  and 

. This in turn implies that 
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for all . This particularly means that for every sequence  – k∈� and 

 – such that  and , we have 

 

Since  for all k∈� it can be easily concluded that  

 

if the respective limits exist. The left limit exists from the assumption of the theorem, 

since . Further since the time derivative  exists (since in 

obeys the differential equation), we also have 

 

which implies that  

 

which contradicts the assumption . 

 

PART 3 

Using the results of parts 1 and 2 it can be shown that  for all . 

Therefore, assume that at some , we have  

 

for some . Then for some sufficiently small  and , we have 

 

from part 1. Then taking the difference yields 

 

which contradicts part 2 of the proof, and hence  for all . 

□ 
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C.4 Lyapunov’s Direct Method 

Lyapunov’s direct method is considered as the main theorem in Lyapunov stability 

analysis and is intensively employed in the field of adaptive control. The theorem 

including its proof is presented in the following. 

Theorem C.1 Lyapunov’s Direct Method 

Consider system (C.1). 

Let ++ →× 00: ��DV  be a continuously differentiable function in all arguments such 

that 

1.  

2.  

where are W1(x), W2(x) are positive definite functions on D. 

The equilibrium of (C.1) is  

1. uniformly stable if W3(x) is positive semi-definite on D. 

2. uniformly asymptotically stable if W3(x) is positive definite on D. 

If D=�n and  , the above statements hold globally. 

Remark 

It is actually sufficient that V is the continuously differentiable on D\0. As will be 

shown in the proof it is merely required that V is continuous at x=0. It is therefore 

also allowed that  

( )
x

x

∂

∂ tV ,

 , 

( )
t

tV

∂

∂ ,x

 

do not exist for  at all and the second condition is weakened to 

( ) ( ) ( ) ( ) 0xxxf
x

xx
\ ,

,,
3 D∈−≤

∂

∂
+

∂

∂
  on Wt

tV

t

tV

 

Proof 

Uniform Stability 

For the case that x(t1) equals 0 for some t1≥t0, x(t) will remain 0 for all t≥t1 since x=0 is 

an equilibrium. Hence in the remainder we consider the case, where x≠0 for all . 

Choose some �̅� >0, sufficiently small such that the ball ℬ�̅�(0) (see. Definition B.6) 

completely lies in D. For readability, the argument in ℬ�̅�(0) is dropped in the following. 

( ) ( ) ( )xxx 21 , WtVW ≤≤

( ) ( )xxf
x

3, Wt
V

t

V

dt

dV
−≤⋅

∂

∂
+

∂

∂
=

( )( ) ∞=
∞→

x
x

1lim W

0x =

0tt ≥
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By Lemma C.2 there are class K functions α1(x), α2(x) on [0,r̅0) such that 

α1(||x||)≤W1(||x||) and W2(||x||)≤ α2(||x||). Then 

( ) ( ) ( )xxx 21 , αα ≤≤ tV . (C.16) 

For r∈(0,r0], �� < �̅�, choose some constant 

( )r1αβ = (C.17) 

and the following set 

( ){ }ββ <∈=Ω tVrt ,, xx B

resides in the interior of ℬ�� (does not hit the boundary) and contains the origin. This is 

clear since, on the boundary, we have V(x,t)≥α1(r)=β but on Ωβ,t, we have V(x,t)<β. 

Further V(0,t)=0<β and thus . Hence, Ωβ,t can be thought of as a time varying 

region, which is residing inside ℬ��. The situation is depicted in Figure C.1. The region 

( ){ }βαβ <∈=Θ xx 2rB
 

(C.18) 

is not time varying and part of  at any time instant since, if α2(||x||)<β then also 

V(x,t)<β from inequality (C.16). βΘ  is in fact an open ball around the origin of radius, 

( ) ( ) ( )( )rr 1

1

2

1

2 ααβαδ −− == (C.19) 

i.e. δβ B=Θ . Further Ωβ,t is an invariant set meaning that, if x0 is in Ωβ,t then x(t) will stay

in Ωβ,t for all times. Since, if t,0 βΩ∈x , then V(x0,t0)<β, and V̇(x,t)≤0 on t,βΩ \0 implies that 

the trajectory can never hit the boundary of  Ωβ,t since then V(x,t)=β. (Note that case 

x=0 has been treated separately). 

Moreover, if ||x0||<δ then the trajectory starts within the time invariant set  which in 

turn lies within the time varying set . From the fact that  Ωβ,t lies in the interior of ℬ��, 

it follows that ||x(t)||<ε for all t≥t0 and for any ε≥r, which proves uniform stability. 

So far, we found a δ  for a fixed r or ε . Of practical interest is, how far we can start 

away from the equilibrium such that the system states remain stable. In other words, 

what is the maximum δ  such that the trajectories remain bounded. We have found δ  

for r≤r0, however, the stability definition requires a δ  for every 0>ε . In order to 

achieve this, we define 

( ) ( )0,min rr εε = (C.20) 

In view of equation (C.19), we obtain ( ) ( )( )( )εβαεδ r
1

1

−= , and 

t,βΩ∈0

t,βΩ

βΘ

t,βΩ
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( )( ) ( )( ) ( )001

1

2lim: rr δααεδδ
ε

=== −

∞→
∞  (C.21) 

Spoken descriptive, as long as ||x0||<δ∞ it is guaranteed that ||x(t) ||<r0 for all t≥t0. ∞δ  is 

in fact the stability limit that is obtained from these considerations and δ(ε)= δ∞ for all 

ε≥r0. Note also that necessarily δ∞≤r0 since otherwise it might occur that  which 

undoes all previous arguments. 

 

Figure C.1 Domains used in Lyapunov Stability Proof 

Uniform Asymptotic Stability 

For the case that x(t1) equals 0 for some t1≥t0, x(t) will remain 0 for all t≥t1 since x=0 is 

an equilibrium. Hence, in the remainder we consider the case, where x(t)≠0 for all t≥t0. 

For ||x0||<δ∞, x(t) will stay in ℬ��� ⊂D and hence V̇(x(t),t)≤W3(x)≤0 for all t≥t0. 

Consequently V(x(t),t) is decreasing with t, and is bounded from below by 0. This 

implies that V has a limit 0≥c  as t goes to infinity as will be shown next. 

For ! ∈�, define a sequence of time instances tk=t0+k and a sequence  

xk=V(x(tk),tk). This sequence is bounded from below by 0 and decreasing. Therefore, it 

converges to some c≥0 by Theorem B.7. This implies that for every ε>0 there is some N 

such that  

 

Since V(x(t),t) is nonincreasing it follows that also 

 

for all . On the other hand, also  

 

D∉0x

D

rB

t,βΩ

βΘ

δ

( )( ) ε+<= cxttV NNN ,x

( )( ) ε+< cttV ,x

Ntt ≥

( )( ) cttV ≥,x
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for all t≥t0 since, assume that there is a  such that V(x(t),t)<c  then, as V(x(t),t) is 

nonincreasing, there is some M and tM of the sequence defined recently with tM≥τ such 

that xM=V(x(tM),tM)<c which is a contradiction, since all . Hence for every ε>0, 

there exists an N such that 

 

for all  and hence 

 

Next it is shown by contradiction that c=0. Therefore assume c>0. Then V(x,t)≥c, in light 

of (C.16), implies that 

( ) ( )ct
1

2

−≥αx
 

(C.22) 

Employing Lemma C.2 there is a class K function  such that  

( ) ( )xx 33 W≤α  

For ||x0||∈[0,r0] and , by(C.22) we arrive at 

( ) ( )( ) ( )ccW γαα :
1

233 =≥ −
x  (C.23) 

where γ  is also a class K function and hence ( ) 0>cγ  if c>0. Then, (C.23) implies 

( )( ) ( )cttV γ−≤,xɺ . 

If V(x,t)≥c, integration of V̇ yields 

( )( ) ( ) ( )( ) ( )( )000 ,,, ttcdVtVttV
t

t0

−−≤=− ∫ γτττxxx ɺ  

Furthermore by (C.16), V(x(t0),t0)≤α2(||x0||) and hence 

( )( ) ( )( ) ( )( )002, ttctttV −−≤ γα xx
 (C.24) 

and, for some t1≥t0+γ -1α2(||x0||) we have V(x(t1),t1)≤0 which contradicts the assumption 

c>0 and hence c=0. In order to find a T(η,δ), introduced in the definition of asymptotic 

stability (Definition C.2), we first restrict the initial condition  

( )rδ<0x
 (C.25) 

where δ is defined in equation (C.19) for ( ]0,0 rr∈  and ρ=δ(r0)= δ∞. Figure C.2 depicts 

the situation. 

τ

cxk ≥

( )( ) ε<− cttV ,x

Ntt ≥

( )( )( ) 0,lim ≥=
∞→

cttV
t

x

( )x3α
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Figure C.2 Lyapunov Asymptotic Stability 

It is clear from first part of this proof, that ||x(t)||<r for all t≥t0, if ||x0||<δ(r). Next, it will be 

shown that, for any d>0 and δ(r), there is a T̂(d,δ) such that V(x(t),t)<d for all t≥t0+T̂(d,δ) 

and ||x0||<δ. Therefore note that T̂(d,δ)=0 for d≥α2(δ) (=α1(r)) since, by constraint (C.25) 

and inequality (C.16), it is clear that V(x0,t0)<α2(δ) and V̇(x(t),t)≤0 implies that 

V(x,t)<α2(δ) for all t≥t0. It is left to investigate the case d<α2(d). In this case, for some 

t1≥t0, there is an interval [t0,t1) such that V(x(t),t)≥d. By (C.24) and condition (C.25), we 
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If V(x(t),t)<d then (C.16) implies that ||x(t)||<η(d) ,where 
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for any ( ]r,0∈η  such that ||x(t)||<η  for all t≥t0+T(η,δ). For η=r and α1(r)= α 2(δ) we 

obtain  

( ) ( ) ( )
( )( )( ) 0,

1

1

23

11 =
−

=
−

r

rr
rT

ααα

αα
δ  

 

Which is clear from the first part of the proof, since δ(r) is chosen such that ||x(t)||<r for 

all t≥t0 and thus for η>r we choose ( ) 0, =δηT . Summing up 

• for 0<η ≤r: T(η,δ) according to (C.27) 

• for η >r: T(η,δ)=0 

for every ( ]ρδ ,0∈ and uniform asymptotic stability is proved. 

 

Global Uniform Asymptotic Stability 

If D=�n then r0=∞ and r∈(0,∞). Consequently, from (C.20)  for all r>0 and 
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If further W1(x) is radially unbounded then α1( ·  ) can be chosen to belong to class K∞, 

( )rβ as defined in (C.17) becomes arbitrarily large for a sufficiently large r, in other 

words: 

 
(C.29) 

Also W2(x) is radially unbounded from condition 1 of the theorem. For (C.16) and 
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which proves global uniform stability. 

□ 

Lyapunov’s direct method, as presented so far, only guarantees stability and 

asymptotic stability respectively. But there is no statement on how fast the equilibrium 

will be approached. It is an accepted opinion that Lyapunov asymptotic stability only 

guarantees that the trajectory will converge to the equilibrium, but not how fast this will 
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trajectory by introducing class K functions that bound the Lyapunov function as well 

as its time derivative. This result will be summarized in the subsequent corollary. 

Global uniform asymptotic stability follows from the fact that ρ=δ∞=∞ and the 

derivations for uniform asymptotic stability are valid for al δ∈(0,∞). 

□ 

Theorem C.1 does not specify explicit values on the rate of convergence, i.e. explicit 

values for T(η,δ). However, the recent proof reveals that, explicit bounds can be 

computed, if the Lyapunov function and its time derivative are enclosed by class K 

functions, which is summarized in the following. 

Corollary C.1 Lyapunov’s Direct Method with Explicit Bounds 
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If the class K functions are monomials, even exponential stability can be shown. 

Theorem C.2 Lyapunov Exponential Stability [Kha02] 
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C.5 Lyapunov’s Indirect Method 

It is common to analyze the stability of a setpoint of a nonlinear system by investigation 

of a substitute system that is linearized at the setpoint. We restrict ourselves the 

autonomous case of the form. 

 

(C.31) 

Where x(t)∈D⊂�n, f:D→�n is a continuously differentiable function, and x=0  is an 

equilibrium, i.e. f(0)=0. The substituted linearized system is 

 

(C.32) 

where 

 

The reason why it is justified to conclude local stability of the nonlinear system from 

asymptotic stability of the substituted linearized system is known as Lyapunov’s 

indirect method. Before establishing this, a preliminary lemma is necessary. 

Lemma C.4 Existence of a Solution to the Lyapunov Equation [Kha02] 

Consider system (C.32). 
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Further, note that  
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This however is possible if and only if for all eigenvalues  of A,  which 

proves the claim. 

 

NECESSARY PART 

“If A is Hurwitz, the Lyapunov equation has a positive definite solution.” 

Consider therefore the following integral 

 

(C.33) 

Clearly, P, if it exists, is symmetric. It has to be shown that P exists and is positive 
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Hence the integral definition of P is 

. (C.34) 

 

Since Re(λi)<0, one can conclude that the integral is finite and hence P exists. Further, 

define 
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Obviously 

 

for all t. Inserting  and  finally yields 0PP =−
~

 which proves uniqueness of P. 

□ 

Now preparation for Lyapunov’s indirect method has been done. 

Theorem C.3 Lyapunov’s Indirect Method [Kha02] 

The equilibrium of (C.31) is locally asymptotically stable, if the matrix A of the 

linearized substitute (C.32) is Hurwitz. 

Proof 

A Lyapunov function candidate is given by 
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where  is the induced matrix 2-norm. An upper bound for V̇ is given by 
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Since f(x) is assumed to be continuously differentiable, we have  
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for a sufficiently small r>0. Therefore, V̇(x) is bounded from above by a negative 

definite function on some set 
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and Theorem C.1 assures local asymptotic stability of (C.31). 

□ 

C.6 Converse Theorem 

Lyapunov’s direct method guarantees (uniform asymptotic) stability from the existence 

of a Lyapunov function. In nonlinear control, it is sometimes known, that parts of the 

whole system are asymptotically stable. In order to proof stability of the overall system, 

it is necessary to know about the existence of a Lyapunov function for the partial 

system. Such theorems are known as converse theorems [Kha02], as it assures the 
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dynamic system. The proof is done by construction of such Lyapunov functions, but in 

the general, it is not possible to specify the Lyapunov function explicitly. 
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3.  

where { }ρρ <∈= xx n�B  for some ρ>0 
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for all τ≥t  and ||x||<ρ where ρ is chosen such that β(x,0)≤r for x<ρ. In the remainder of 
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where we choose, in the notation of Lemma C.5 u(τ)=β(||x||,τ) and g(τ)=β(||x||+ε,τ), for 

some sufficiently small ε>0 such that ||x||+ε<ρ. Therefore  can be chosen such 

that the integral is bounded, but dependent on : 

 

 is clearly a class K function since it is continuous and, from the definition of 
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Note that the derivative w.r.t. t is taken in a similar manner as done for (C.51). We know 

from Lemma C.7 that the term in curly bracket equals zero and hence 

 

Since  is a class K function the 2nd inequality is proved. 

 

Inequality 3 
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where we substituted #̅=t-t. In terms of Lemma C.5, where we already defined g(τ), we 

now define  

( ) ττ L
enh = .

The lemma assures that  can be chosen such that the integral 

is bounded, while the bound depends on  and  is a class K function for the 

same reasons as used for . 

Autonomous Systems 

If the system is autonomous, the solution only depends on  than explicitly on  

and t and (C.37) becomes 

By changing the variable , the integral becomes independent of t and hence 
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The proof is done by construction of such a function f(t). Choose a sequence {tn}, 

, such that 

. 

Such a sequence exists since g(t) is continuous and strictly decreasing. Using that 
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•  

•  is linear between tn and tn+1,  

• for ,  

The function is continuous, strictly decreasing and g(t)<η(t). Since η(t) is strictly 

decreasing, the inverse  exists, is continuous, strictly decreasing and 

 (C.40) 

For  we have the following order  
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And, since  is strictly decreasing, we have 
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It follows from the definition of  that  

•  which implies that  is continuous on . 

•  is strictly increasing 

Hence, f ́(t) and f(t) belong to class K. In order to show the first inequality of the lemma 

note that, for , we have  and . Hence, with (C.41) 
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The first integral is bounded, since it is an integral of a bounded function over a 

bounded interval, let us say  for . The second integral can be 

computed explicitly and hence 

 

The second inequality is proved by using (C.42) and noting that exp( ·  ) is strictly 

decreasing and h( ·  ) is nondecreasing. Therefore 
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Again the integral is bounded, since  on  for some M>0 and 

therefore 

. 

□ 

Lemma C.6 Exponentially Growing Systems [Kha02] 

Assume that ( )t,xf  in (C.1) is Lipschitz on D  

uniformly in t, i.e. ||f(x,t)||2≤L·||x||2 for all x∈D and t∈[0,∞), 

then the solution x(t) that belongs to D for all t≥t0 is bounded by 

 

Remark 

In case of a linear time invariant matrix differential equations of the form 

 

where mn×∈�X  and  for all  one can conclude exponential 

bounds. Let xi(t) denote the columns of X (t), i=1,…,m, then the matrix 

differential equation collapses to m vector differential equations of the form 

 

where . Using the matrix induced norm, we get 

 

and Lemma C.6 delivers exponential bounds  
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Applying this result to the exponential bounds yields and inequality in terms of 

the Frobenius norm 

 

(C.46) 

From the matrix norm inequalities (see e.g. [Lüt96]), 

 

we also obtain the following inequalities in terms of matrix induced 2-norm 

 

(C.47) 

Proof 

With 

 

we get 

 

Using the Lipschitz condition 

 

we arrive at a separable differential inequality 

 

which reads explicitly 

. 

Separation of variables and integration yields 

 

Finally back substitution  and solving for  yields 

 

and the proof is complete. 
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Lemma C.7 Differential Equation of Sensitivity Functions 

Assume that  in (C.1)  

is continuously differentiable in its arguments on . 

Let x(t,x0,t0) be the solution of (C.1) with initial value x0 and initial time t0,  

observed at time t which resides in some compact set W for all  and . 

Then  for all  

Proof 

(C.1) satisfies the following integral equation 

 (C.48) 

Then deriving x(t,x0,t0) w.r.t. x0 yields 

 (C.49) 

where I denotes the identity matrix of appropriate dimension. If we derive (C.49) w.r.t. 

t, yields a matrix differential equation 

 

(C.50) 

with initial condition . Since  remains in the compact set W for 

all times and the Jacobian of f(x,t) is continuous on W, we have 
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for some L>0. Further let ,  be the columns of Xx0(t,x0,t0), then we 

obtain n vector differential equations 

 

The function on the right hand side is globally Lipschitz with constant L and therefore 

existence and uniqueness of Xx0(t,x0,t0) is assured for all t≥t0 (see Theorem 3.2 in 

[Kha02]). The derivative of (C.48) w.r.t. to t0 is not so straight forward, since t0 appears 

in the integrand as well as in the integration bound. In order to make the derivative 

plausible, we start with the definition of the derivative by its differential quotient 
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Since f(x,t) is continuously differentiable w.r.t. x, we have 

 

and  

 

while the first limit converges to 

 

for the second term denote the antiderivative of f(t,x0,t0) w.r.t.  as F(t,x0,t0), then  
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With (C.50) and (C.51), we get 

 (C.52) 

The derivation of (C.52) w.r.t. t,  satisfies the 

following differential equation. 

 (C.53) 

where the initial condition is  in light of (C.52). Obviously  is an 

equilibrium and hence 

 

for all t≥t0 which completes the proof. 
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Appendix D 

Robustness Modifications 

D.1 Projection Operator 

In adaptive systems, unmatched uncertainties cause problems in stability analysis, 

when the standard law is used for the parameter update. The specific problem is that 

parameters could drift and hence grow unbounded, if no measure for robustification is 

taken. 

A possible remedy is a simple limitation of the parameters, by stopping integration 

when the parameter estimate hits a predefined boundary. Drawback of this method is 

that the time derivative of the adaptive parameters is discontinuous at time instances, 

the bound is hit. A more sophisticated concept is given by the projection operator ( 

[Hov10], [Ioa06] ). It confines the parameter matrix to a convex set by reducing the very 

component of the time derivative, pointing normal to the bound when the parameter 

estimate is approaching the boundary. On the boundary itself, the normal component 

is completely faded out and only the tangential component is used, forcing the 

parameter to stride along the boundary. The following explanations are inspired the 

ones given in [Hov10], however the definitions and propositions, which are given for 

vectors are extended to the matrix case. Additionally to [Hov10], the framework allows 

the incorporation of the weighted Frobenius norm, which allows a customization of the 

convex set such that it fits better to the set where the ideal weights are located, 

leading to potentially less conservative bounds in the stability analysis of the adaptive 

system. 

Definition D.1 Convex Set on �
nxm

 

A set mn×⊂ �U  is said to be convex if, for any U∈yx, , 

also ( ) ( ) U∈−+= yxz λλλ 1  for all [ ]1,0∈λ . 

Remark 

A set is convex, if the straight line, connecting two arbitrary points in U, 

completely lies within U. In �2 a convex set has to be such that is does not have 

any dint (Figure D.1). 
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Figure D.1 Convex Set 

Definition D.2 Convex Function 

Let mn×⊂ �U  be convex. Then a function �→U:f  is said to be convex if,  

for any U∈yx, : 

( )[ ] [ ]( ) [ ]yxyx fff λλλλ −≤−+ 11  for all [ ]1,0∈λ  

Remark 

A function is convex, if a straight line, connecting two arbitrary points in the 

image space lies above the function itself. For a scalar function, i.e. �⊂U , 

Figure D.2 illustrates a convex function. Hence a convex function must not have 

any dint. 

 

Figure D.2 Convex Function 

The next lemma states an important property of convex functions, namely that level 

sets of convex functions define convex sets. 

Lemma D.1 Convex Function Level Set 

Let �→U:f , mn×⊂ �U  be a convex function.  

Then any level set ( ){ }δδ ≤∈=Ω xx fU , �∈δ , is convex 

Now getting precise, the projection operator employs the following convex function 

( )
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where ( )1,0∈ε  and 0max >θ , mn×⊂∈ �UΘ  and 
Γ

⋅  denotes the weighted Frobenius 

norm with a positive definite weighting matrix nn×∈�Γ  (refer to section 1.3 for more 

information). Further the gradient of (D.1) is defined as: 
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In the following, the indices Γ,, maxθε  will be dropped for readability, where appropriate. 

For convexity of (D.1), it has to be shown that  
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Since 0, max >θε , we can equivalently investigate 
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Then, if we employ the trace notation of weighted Frobenius norm, we obtain: 
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Applying Cauchy-Schwartz inequality to  the mixed term, further yields 
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and since 10 ≤≤ λ , we obtain ( ) 0,, 21 ≤ΘΘλg . 
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(Without loss of generality, the analog case ( )22
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done along similar lines.) 
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Since 0, max >θε , we can equivalently investigate 
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The, using trace notation and applying Cauchy-Schwartz inequality to the mixed term 

yields 
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and since 10 ≤≤ λ , one can conclude, that ( ) 0,, 21 ≤ΘΘλg  
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This case is trivial, since then ( ) ( ) ( )( ) 01 2121 =−+== ΘΘΘΘ λλfff . 

 

The next lemma is needed in the Lyapunov stability proof, to obtain bounds for the 

projection operator 

Lemma D.2 Bound on Convex Function 

Let the function ( )ΘΓ,, maxθεf  with its gradient ( )ΘΓ∇ ,, maxθεf , defined in (D.1) and (D.2),  
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Then, by applying Cauchy-Schwartz inequality: 
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Then, from the definition of Θ and *Θ , the following inequality can be concluded. 
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□ 

Using the results so far, the projection operator can now be defined. 

Definition D.3 Projection Operator 

Let some 
mn×∈�YΘ,  and ( )ΘΓ,, maxθεf , ( )ΘΓ,, maxθεf∇  as defined in (D.1), (D.2). 

The projection operator is defined as 
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Remark 1 

The projection operator projects Y dependent on Θ. If ( ) 0=Θf , i.e. 

1

2

max2

+
<

Γ ε

θ
Θ  

and ( )[ ][ ]  0tr <∇ YΘ T
f  the projection operator leaves Y unchanged. Otherwise the 

projection operator is activated. In order to explain functionality, we at first 

assume that the projection operator is applied to column vectors n�∈θ , 
n�∈y  

and the norm weighting equals identity matrix. 

( ) ( )θ
θ

yθ

θ

θ
yyθ f

T

22

,Proj −=  

yθT
 is the standard scalar product. It is well-known that the second term in the 

expression above defines the projection of y onto θ , scaled by ( )θf . If 

( ) 1=θf , with corresponds to max2
θ=θ , the projection is completely 

subtracted from y and only the perpendicular part is left and if θ  moves along a 

trajectory, i.e. ( )yθθ ,Proj=ɺ , θ  remains at constant Euclidean length, as can be 

shown, by computing: 
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For matrices Y and Θ, the projection operator reads as 

( ) ( ) ( )Θ
Θ
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Θ
Θ
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T

Γ
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Γ

−=
1tr

,Proj  

and analogously, if ( ) 1=Θf , corresponding to maxθ=
Γ

Θ , it can be shown that 

Γ
Θ  is cannot exceed maxθ , if it moves on a trajectory prescribed by ( )YΘ,Proj . 

To this end, assume ( )YΘΘ ,Proj=ɺ , maxθ=
Γ

Θ  and compute 

( ) ( )[ ]YΘΓΘΘΓΘΘ ,Projtr2tr2 112 −−
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Obviously, if ( ) 0tr 1 <− YΓΘ T , the projection operator is inactive and we have 
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It reveals that the time derivative of 
2

Γ
Θ  is not greater than zero and hence 

maxθ≤
Γ

Θ . Taking into account the argument so far, if Θ is moving in the 

direction of ( )YΘ ,Proj , it cannot leave the level set  

( ){ }11 ≤∈=Ω × ΘΘ fmn�  (D.3) 

which corresponds to maxθ≤
Γ

Θ . Figure D.3 illustrates the projection operator 

for 
2, �∈ΘY  and identity norm weighting matrix. It also illustrates why the 

projection operator is inactive if ( )[ ][ ] 0tr <∇ YΘ T
f . It corresponds to the case 

where Y points inbound the contour lines of ( )Θf  and hence does not leave 1Ω  

anyway. 
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Figure D.3 Projection Operator 

Remark 2 

The Frobenius norm of the projection can be bounded from above by the 

Frobenius norm of its argument, if 1Ω∈Θ . 

( )
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 (D.4) 

I.e. the projection operator does not increase the Frobenius norm of Y. In order 

to show this, we only have to investigate the case ( ) 0≥Θf , [ ] 0tr 1 ≥− YΓΘT . 
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Separating the summands, we get 
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where the second term is positive, since Θ is restricted such that ( ) 10 ≤≤ Θf  

and hence (D.4) is proved. 

 

Remark 3 

For some *Θ  within the level set  

( ){ }0**
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the following inequality holds and appears to be useful in the stability analysis or 

adaptive systems, using projection operator. 
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( ) [ ]( )[ ] 0,Projtr
1* ≤−− − YYΘΓΘΘ
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(D.5) 

In order to show this, only the case 

( )[ ][ ] 0tr ≥∇ YΘ T
f  and ( ) 0≥Θf  (D.6) 

has to be considered since, otherwise (D.5) evaluates to zero (refer to Definition 

D.3). Then 
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and, using assumption (D.6) and Lemma D.2, we obtain (D.5). 

D.2 Switching σ-Modification 

In the idealized situation of purely matched uncertainties, the MRAC approach with 

standard update law is sufficient to proof stability. However in presence of unmatched 

uncertainty, an indefinite terms remains in the time derivative of the Lyapunov function 

candidate. There are several modifications available for the update law, that render the 

system robust against limited unmatched uncertainty and at least boundedness of the 

system states can be concluded. σ  and e modification are commonly known as 

robustness modification but they have a drawback that they deteriorate the 

performance of adaptation. Besides these, which are often the first choice, in order to 

make the adaptive system robust against unmatched uncertainties, there are also 

several others such as “dead zone”, bound for parameter estimates, or parameter 

projection. The problem of unmatched uncertainties in Lyapunov stability analysis is 

briefly recapitulated in the following. 

In the standard MRAC approach with unmatched uncertainties, the error dynamics 

typically takes the following form (refer to equation (4.127)) 

( ) ( )[ ]tt
T

,,
~

e∆eφΘBAee ++=ɺ
 

(D.7) 

where A is a stable matrix, ΘΘΘ −= ˆ~  parameter-estimation-error and ( )t,e∆  is the 

unmatched uncertainty. For stability analysis, consider the following Lyapunov function 

candidate 

( ) [ ]ΘΓΘPeeΘe
~~

tr
~

, 1−+= TTV  

where P is the symmetric positive definite solution to the Lyapunov equation 

QPAPA −=+T  
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for some symmetric positive definite Q and Γ  is a symmetric positive definite matrix. 

Then, the time derivative along the system trajectories is, after a few lines of 

computation 

( ) ( ) 



 +++−= − PBeeφΘΘΓΘePB∆eQee TTTTT

ttV ,
~~~

tr2,2
1 ɺɺ . 

The standard update law 

( ) PBeeΓφΘ T
t,ˆ −=

ɺ
 

(D.8) 

fails to render the Lyapunov time derivative negative definite. 

( )tV
TT ,2 ePB∆eQee +−=ɺ  

The problem thereby is that Vɺ  remains indefinite even if Θ~  grows unbounded, if the 

error is small enough. In order to see this, an upper bound on Vɺ  is 

22

2

2
2 ePBe DV Q +−≤ λɺ  

where Qλ  denotes the minimum eigenvalues of Q and we assumed that the unmatched 

uncertainty is bounded by some 0>D . 

( ) Dt ≤
2

,e∆  

Therefore 0<Vɺ  can only be concluded, if  
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D

λ
2

2
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e >  

This in turn implies, that Vɺ  is indefinite in the set 
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≤=Ω
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D

λ
2

2

2~
,
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eΘe

 

Figure D.4 illustrates the situation. Hence the set, where Vɺ  is indefinite cannot be 

encapsulated by some bounded set, but this is preliminary to the proof of ultimate 

boundedness (Theorem 3.1). 
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Figure D.4 Lyapunov Stability Situation without Robustness Modifications 

Robustness modifications pursue the same intention, to render Ω , i.e. the set where Vɺ  

is indefinite, a bounded set. The σ–modification adds a feedback of the form 

( ) ΘPBeeΓφΘ ˆ,ˆ σ−−= T
t

ɺ
 

(D.9) 

while the Lyapunov function derivative is changed to the following expression. 

( ) [ ]ΘΓΘePB∆eQee ˆ~
tr2,2 1−−+−= TTT tV σɺ  

With ΘΘΘ +=
~ˆ  and using Cauchy Schwartz inequality, an upper bound on Vɺ  is given 

by 
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(D.10) 
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Now, the Lyapunov function derivative bound consists of two parts. 
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Both are inverted parabolas and hence, are bounded from above. 
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Hence the set of indefinite Vɺ  is now 

( ){ }002
,

~
, θ<<=Ω

Γ
ΘeΘe e  

which is clearly bounded. 

The σ-modification term unfortunately deteriorates the adaptation process. Suppose 

that there is no unmatched uncertainty in the error dynamics (D.7) and the estimated 

parameter converged to the true one, . Then the error dynamic reduces to a 

homogeneous stable system and thus  for large times. This in turn implies that, 

using update (D.8), the estimated parameters remain at their ideal value. If σ-

modification is enabled, equation (D.9), the estimated parameter is pulled back to zero 

and hence away from the ideal parameter. 

F
Θ
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2
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Figure D.5 Lyapunov Stability Situation with σ-Modification 

In order to circumvent the drawback, imposed by σ-modification Ioannou introduced a 

modification called switching σ-modification ( [Ioa06] ). If there is any knowledge about 

the set, where the true parameters lie, is it reasonable to fade out the feedback term 

associated with σ-modification, if the parameter is moving within that set. Only, if it is 

imminent to run out of bound, the feedback term is activated and will pull the 

estimated parameter back to the admissible set. Hence parameter update with 

switching σ-modification is 
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(D.11) 

where 
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(D.12) 

and ( )Θ̂
max,θεf  is defined in (D.1). Then, the time derivative of the Lyapunov function 

candidate becomes 

( ) ( ) [ ]ΘΓΘΘePB∆eQee 1~
trˆ2,2 −−+−= TTT ftV σɺ  

where we have dropped the indices max,θε . The σ-modification feedback is hence 

faded in if 
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and, of course maxθ  has to be chosen, such that ( ) 2
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Θ . Hence, if max

ˆ θ≥
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Θ  

the Lyapunov function time derivative can be bounded from above by (D.10) and hence 

0<Vɺ , if 

02
e>e  and [ ]0max,max θθ>

F
Θ . 

Thus switching σ-modification preserves the property that Ω  is compact and, 

additionally, it does not deteriorate adaptation performance if the estimated parameter 

is within the admissible set. 
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Appendix E 

Decoupling Control of Falb/Wolovich 

Decoupling Control is a well-known control concept and thus described briefly here. 

More information can be found in [Wol74]. 

Consider a linear state space model. 

 (E.1) 

with nn×∈�A  , mn×∈�B , nm×∈�C . 

The aim of the control algorithm is the decoupling of the MIMO system into m SISO 

systems. This approach is in fact a special case of feedback linearization, applied to 

linear systems. Therefore the relative degree is determined by differentiating each 

output until the input vector appears for the first time. 

 (E.2) 

where  is the relative degree of the ith output, . 

Hence we get the following input-output relationship: 

 

(E.3) 

where 

 (E.4) 

The matrix  is called decoupling matrix and the system can be decoupled, if  is 

regular. If the decoupling control law is defined as  
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where  is the pseudo control vector of same dimension as , the input output 

dynamic reduces to m decoupled SISO integrator chains.  

 

(E.6) 

If the reference command to  is defined as , , a desired steady 

state accurate transfer behavior of order  is achieved for each SISO system, by 

defining the pseudo control as  

 (E.7) 

and the decoupled input-output dynamics becomes: 

 (E.8) 

By inserting (E.2) into (E.7) the pseudo control can be written in terms of the state 

vector: 
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and thus written as state feedback and prefilter, the control law becomes: 
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Appendix F 

Proofs and Bounds 

F.1 Proof of Theorem 4.1 

The proof is a little lengthy and therefore split up into two parts. In the first part it is 

shown that the rows of a specially constructed matrix are independent. Then the 

second part proves, that this special matrix can be written as product of two matrices, 

where one matrix consist of the rows of the Jacobi matrix of , from which the claim 

of Theorem 4.1 is proved. 

 

PART 1 

Initially we define the following block-structured matrix (dropping the argument x) 
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Here we assume without loss of generality that . For clarity note, that the 

index i is associated with hi, the mapping from the states to the i
th output, while the 

index j is associated with the Lie product of order j-1 in the argument of the left Lie 

derivative in each expression. While the order of the right Lie derivative in the 

expressions increases with the rows in Mi,j, each column is thereby associated with an 

input vector gk. Therefore each 
mr

ji
i×∈�,M . Consequently the composed matrix M has 

dimension 1rmr ⋅× , where mrrr ++= …1 . In the following if the argument x is omitted it 

is meant that x=x0. If the system (4.1) has a relative degree, the matrix B  has full rank 

by definition. I.e. each row has at least one nonzero entry, which means, that for each 

output i, there is at least one input which has relative degree ri, when the respective 

input/output pair is considered as SISO system. All other inputs have a relative degree 
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 w.r.t. to the considered output. This in turn implies that 0
2 =−

i

r
hLL i

k fg  for all 

mk ,,1…=  and 0
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i

r
hLL i

k fg  for at least one k. 

The first part of Lemma B.2 shows that, in this case , for n<ri-1-( j-1)=ri-j 

for all k and further, the second part implies  (which differs 

from 0 for at least one k) 

Therefore 
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row of , which is, for better readability, written as 
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which equals to the smallest number of the relative degree vector. The upper  

block of  looks like 

 

I.e. we have a block diagonal structure, in which the diagonal blocks equal to  which 

is non-singular by assumption of the existence of a vector relative degree. 

The rest of M is resorted in a similar manner, with the difference that now the block 

diagonal element consist only of parts of . Summing up, the result is a block 

diagonal matrix whose block diagonal elements consist of rows of the decoupling 

matrix . 
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The non-singularity of  implies that its rows are linearly independent. Since the 

reordering of the rows of a matrix does not change its rank and noting that  is a 

block triangular matrix whose block diagonal elements consists of rows of the 

decoupling matrix  clearly has full row rank r. 

 

PART 2 

The composed matrix M can also be written as a product of matrices QPM = , where 
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This is due to the fact that 

( )
k
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n

i

n hL
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k
j g

x
f

f
fgf

1

ad
ad1

−⋅
∂

∂
=− . 

Since, from the first part, ( ) r=Mrank , necessarily the matrix 
nr×∈�Q  also has rank r, 

which implies that its rows are linearly independent. By considering Q in further detail, 

it reveals that its rows obviously equal to the rows of  and hence its rows are 

linearly independent at x0. Continuity of implies that the rows of its Jacobian are 

linearly independent also in a vicinity of x0, which completes the proof. 

□ 

F.2 Proof of Theorem 4.2 

It is first shown that  exists. Therefore note that the rows of 

 

are linearly independent by Theorem 4.1. Since  it is always possible to find 

additional n

i
∈u � ,  such that  

 

forms a basis of �n. For  a possible choice for the additional 

mappings making  regular is 

 

which proves the first claim of Theorem 4.2. 

For the second claim note that  are linearly independent in a vicinity of x0, 

which can be concluded from the non-singularity of : 

From the smoothness of the involved functions one can also conclude the non-

singularity of  on U (which is implied by the existence of a relative degree). 

Moreover  also can be written as a product of matrices 
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which highlights that necessarily G(x) is nonsingular on U. 

Therefore also the distribution G is nonsingular with constant dimension m. If 

additionally G is involutive Theorem B.10 suggests that there exist n-m mappings 

, such that 

 
(F.1) 

Consider now the codistribution spanned by the row vectors of . 

 (F.2) 

which has dimension r by Theorem 4.1. Defining a codistribution 
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it is assured that one can find n linearly independent row vectors in. 
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Using the relations between annihilators stated in the remarks after Definition B.36, it 

suffices to show that 
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since . Expressing (F.5) in words, there is no vector except 

the zero vector in  which annihilates all covectors in . In order to show this, 

consider a vector belonging to  
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(F.6) 

Since however the existence of a relative degree implies the non-singularity of , 

 is the only solution and consequently . Therefore (F.5) and 

(F.4) are true. 

It has hence been shown that in  there are n-r mappings (note that 

) - without loss of generality assume that these are the first n-r  - such that  

 

is nonsingular and  

 

since  belong to  and the proof is complete.  

□ 

  

( )

( )
( )

( )

( )
( ) ( )[ ]

( )

( )

( ) ( )

( ) ( )
( )

( )

( )















⋅

















=

















⋅





















∂

∂

∂

∂

=

=⋅





















∂

∂

∂

∂

−−

−−

−

−

−

−

x

x

xx

xx

x

x

xgxg

x

x

x

x

0xg

x

x

x

x

xB

fgfg

fgfg

f

f

f

f

mm

r

m

r

rr

m

m

m

r

r

m

r

r

c

c

hLLhLL

hLLhLL

c

c

hL

hL

hL

hL

m

m

m

m

m

m

⋮

������ ������� �	
⋯

⋮⋮

⋯

⋮⋯⋮

⋮

1

11

1

1

1

1

1

1
1

1

1

1

1

1

1

11

1

1

1

( )xB

( ) ( ) 01 === xx mcc … ( ) 0xg =

( ) ( )xx mn−λλ ,,1 …

mr ≥ ( )xiλ

( )

( )

( )

( )
























∂

∂

∂

∂
∂

∂

=
∂

∂

−

x

x

x

x
x

xΦ

x

xΦ

rnλ

λ

ζ

1

( ) ( ) 0=⋅
∂

∂
xg

x

x
k

iλ

( ) xx ∂∂ iλ ^G



Appendix F 
Proofs and Bounds 

389 

F.3 Proof of Lemma 4.1 

Remark 

The theorem is formulated for the case, when system (4.1) is transformed to 

input-normalized Byrnes-Isidori normal form. In case this is not possible, the 

internal dynamics of (4.27) have to be taken instead. Using the stabilizing 

feedback (4.36), the internal dynamics is  

( ) ( ) ( ) ( ) ( )[ ]( )ηζaζCηζBηζPηζqη ,,,, 1 +⋅⋅⋅−= −
tɺ  

and the proof can be done along the same lines. 

 

Proof 

Since the zero dynamics are assumed to be asymptotically stable, they are also 

uniformly asymptotically stable since the system is autonomous and by Theorem C.4 

there is a continuously differentiable Lyapunov function ( )η0V  and class K functions  

α1( · ) and α2( · ) such that  

( ) ( )
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2

0 η
η
η

α≤
∂

∂V
 (F.7) 

( ) ( ) ( )
22

0 , ηη0q
η
η

α−≤⋅
∂

∂V
 (F.8) 

for ρ<
2

η . Further, since J-HC
T is Hurwitz, by Lemma C.4 there is a symmetric 

positive definite matrix P, that satisfies the Lyapunov equation 

( ) ( ) IHCJPPHCJ −=−+− TTT . 

Consider the Lyapunov function candidate 

( ) ( ) Pζζηηζ TkVV += 0,
 

where k>0 is determined later. The time derivative long the system trajectories is 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ζζ
Pζζ
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η
η
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∂
=ɺ

 
Remark 

Note that Vɺ  is not defined on ζ=0. Therefore this case has to be considered 

separately. Since the dynamics of ζ(t) is a linear one, there are only 2 

possibilities: 

• 0ζ ≠0 , then ( ) 0ζ ≠t  for all 0tt ≥  

• 0ζ =0  then ( ) 0ζ ≡t  for all 0tt ≥  

In the second case, the internal dynamics reduce to the zero dynamics, which 

are asymptotically stable by assumption. Therefore also  
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( )( ) 0η =
∞→

t
t
lim

 
and for the remainder we assume that ||ζ(t)||>0 for all t≥t0. 

Since q(ζ,η) is continuously differentiable on the compact set rB , Theorem B.8 implies 

that  

( )
M≤

∂

∂

2

,

ζ
ηζq

 

on rB  for some M>0. Since rB  is convex, it is shown by Lemma 3.1 in [Kha02] that 

( ) ( ) ζη0qηζq ⋅≤− M,,
 

(F.9) 

on rB . With bounds (F.7) and (F.9) the Lyapunov function derivative is bounded from 

above by 

( ) ( )
222122 ζζηη ⋅−⋅⋅+−≤

P

k
MV

λ
ααɺ . 

Moreover, on the compact set 

{ }ρρ ≤∈=Ω −

2
ηη rn�  

for some ρρ <<0 , ( ) ( )ραα 121 ≤η  and hence 

( ) ( )
2122 ζη ⋅














⋅−−−≤ ρα

λ
α M

k
V

P

ɺ  

on ρΩ . If we choose  

( )( )11 kMk P +⋅= ραλ  

for some k1>0, then 

( )
2122 ζη kV −−≤ αɺ  

and the conditions of Theorem C.1 are fulfilled with the positive definite functions 

( ) ( )
201 , ζλ ⋅+= PVW ηηζ  

( ) ( )
202 , ζλ ⋅+=

P
VW ηηζ  

( ) ( )
21223 , ζηζ kW +=α  

Hence the system is (locally asymptotically stable. 

□ 
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F.4 Proof of Theorem 4.3 

The set 
0r

B  is defined in terms of the vector ( )TTT ηζz =  but the proof will employ an 

equivalent set in terms of the error vector ( )TTT

e ηez = , which is defined as  
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η

eζ
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η

e
z �  

This set is time varying since it depends on the current value of the reference state 

ζR(t). Since q(ζ,η) continuously differentiable on the compact set 0rB , its Jacobian 

adopts some maximum (Theorem B.8), i.e. 

( )
M≤

∂

∂

2

,

η

ηζq
 (F.10) 

for some M>0. As q(0,η)is asymptotically stable, by Theorem C.4 there is a 

continuously differentiable Lyapunov function ( )η0V  and class K functions  

α1( · ), α2( · ), α3( · ) and α4( · ) such that  

( ) ( ) ( )
22021 ηηη αα ≤≤V

 

(F.11) 

( ) ( )
23

2

0 η
η

η
α≤

∂

∂V
 (F.12) 

( ) ( ) ( )
24

0 , ηη0q
η
η

α−≤⋅
∂

∂V
 (F.13) 

for ||η||2<ρ� and some ρ ∈ (0,rη]. Moreover, since THCJ −  is Hurwitz, by Lemma C.4 

there is a symmetric positive definite matrix P, that satisfies the Lyapunov equation 

( ) ( ) IHCJPPHCJ −=−+− TTT
 

(F.14) 

where I is the identity matrix. Then consider the Lyapunov function candidate for the 

whole system 

( ) ( ) Peeηηe TkVV += 0,  

(F.15) 

where k>0 is determined later. Note that, by (F.11), ( )ηζ,V  is bounded by 

( ) ( ) ( )
222221 , eηηeeη ⋅+≤≤⋅+ PP

V λαλα  

(F.16) 

if ||η||2≤ρ for some ρ<ρ� and all r�∈e  where P
λ  and Pλ  denote the minimum and 

maximum eigenvalue of P respectively. The time derivative along the system 

trajectories is 
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which is well-defined on a set of vectors tr

T

e ,0
Ω∈z  such that ||η||2<ρ  since V0 is defined 

for ||η||2≤ρ  and q( , ) is defined on tr ,0
Ω . 
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: η
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Remark 

Note that Vɺ  is not defined on e=0. Therefore this case has to be considered

separately. Since the dynamics of e(t) is a linear one, there are only 2 

possibilities: 

• 0e ≠0 , then ( ) 0e ≠t  for all 0tt ≥

• 0e =0 then ( ) 0e ≡t  for all 0tt ≥

In the second case the internal dynamics can be considered separately by using 

( )η0V . But we will postpone this case and at first assume that ||e||2>0  for all

t≥t0. 

By (F.10) and mean value theorem, we get 

( ) ( )
2222

,, eζζη0qηζq ⋅+⋅≤⋅≤− MMM R (F.17) 

on t,ρΩ and with bounds (F.12), (F.13) and (F.17) the Lyapunov function derivative 

becomes 
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22322324
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⋅−−⋅⋅+−≤ α
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k
MV
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R
ɺ (F.18) 

on t,ρΩ . Moreover, if the reference states are bounded such that ||ζR||2≤ζ̅ for some 

ζζ r< (F.19) 

then te ,ρΩ∈z , if ||e||2 ≤ rζ-ζ ̅ and ||η||2≤ρ, independent of ζR(t). Figure F.1 illustrates the 

situation. 
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Figure F.1 Situation Lyapunov Function 

I.e. the set 
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(F.20) 

is time invariant and lies within t,ρΩ  for all t≥t0. On ρΩ , a more conservative bound on V̇ 

is given by 
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 (F.21) 

and the last term is negative definite if we choose 

( )( )ραλ 312 ⋅+⋅= Mkk P  

(F.22) 

for some k1>0 and we arrive at 

( ) ( )
21324 eη ⋅−⋅⋅+−≤ kMV ζρααɺ

 (F.23) 

Furthermore, if 
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for some 02 >k , then 
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In other words, (F.25) holds, if ze is in µρ ΩΩ \ , where 
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Switching to the nomenclature of Corollary 3.1, we define class K functions: 
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(which are continuous by the definition of eµ  and ηµ ) and get 

( ) ( ) ( )( )
22

,max, eηx etV γγη−≤ɺ
 

(F.28) 

on the set µρ ΩΩ \  (respect (F.23) and Figure F.2).  

 

Figure F.2 Class K Bounds on Lyapunov Function Derivative 

In light of (F.16) and by considering Corollary 3.1, for ultimate boundedness we need to 

fulfill 
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where  

( ) ( )( )ραζλ ζ 1,min −⋅= ru P  

By definition of (F.24), we obtain the following inequality constraints: 
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The first inequality can be easily fulfilled by setting k1 sufficiently large 
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(F.30) 

while the second inequality is fulfilled if 
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(F.31) 

and 
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Notice that (F.31) is an implicit inequality since the definition of u  also contains ζ . 

With condition (F.32), the constraint on k1 in (F.30) is fulfilled independently of k2, if we 

choose 
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Summing up so far, if (F.31) holds then we can choose: 
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such that (F.29) is fulfilled and Corollary 3.1 guarantees uniform ultimate boundedness 

such that  
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ηµµ ,e  defined in (F.24) and  
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(F.36) 

Note that we used max(γ1(µ1), γ2(µ2))=k2 (see Figure F.2) for computation of Te and Tη.  

It is left to analyze the case e(t)=0 for all t≥t0 . Then the system reduces to η̇(t)=q(ζR,η) 

and we can use V0(η) as Lyapunov function whose time derivative is, according to 

(F.21), bounded by,  

( ) ( ) ζραα ⋅⋅+−≤ 3240 MV ηɺ  

provided ( ) ζ≤tRζ  for some ζζ r< . Then if  
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 (F.37) 

for some k2>0, then 2kV −≤ɺ  and we can employ class K function (F.26) such that  

( )
20 ηηγ−≤Vɺ  

for µη≤ ||η||2≤ρ. By (F.11) and in light of Corollary 3.2, ||η(t)||2 is uniformly ultimately 

bounded if  

( )( )ρααµη 1

1

2

−< . (F.38) 

If  

( )( )( )
( )ρα

ρααα
ζ

3

1

1

24

M

−

<  (F.39) 

we can choose a k2>0 such that 
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 (F.40) 

and (F.38) is fulfilled. Note that (F.39) and (F.40) are fulfilled if (F.31) and (F.32) are 

fulfilled, which means that the case ( ) 0e =t  does not impose any stronger conditions 

on ultimate boundedness. Then, by Corollary 3.2: 

( ) ηbt ≤
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Finally remark that ηη bb ≤0, , ηb  defined in (F.34), since 0≥eµ . Also ηη TT ≤0, , ηT  defined 

in (F.36), since (F.29) implies that 02 ≥⋅− eP
u µλ . In other words, the case e(t)=0 

assures a lower ultimate bound in a shorter ultimate time than the case e(t)≠0 and 

hence the former case is incorporated in the latter one. 
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Although Theorem 4.3 only proves ultimate boundedness for ( )te  and ( )tη  it is known

from linear system theory that  

( )( ) 0lim
2

=
→∞

t
t

e

since THCJ −  is Hurwitz (provided the solution ( )tez ) exists for all 0tt ≥  which is

assured by ultimate boundedness). Moreover, Lemma C.4 even implies that ( )te  is

exponentially stable such that  

( ) ( )







−⋅−≤ 0202 2

1
exp ttt

PP

P

λλ

λ
ee

where P solves (F.14). 

□ 

F.5 Bounds for Lyapunov Analysis of Variant 2 Part 2 

Bound on Indefinite Term p 

This section is concerned with computation of an upper bound on the indefinite term 

(4.334) in section 4.6.2. It consists of 5 expressions, on which upper bounds are 

computed in the following. 

Upper bound on expression 1 

By application of Lemma B.4 and assumption F, we obtain 

( )
22

2

** ~~
NNN k uwuug ≤−+ . (F.41) 

Upper bound on expression 2 

Analogous considerations, as for equation (4.146), yield 

22
eePH

RPR

T λ≤ (F.42) 

Upper bound on expression 3 

An upper bound on ζɺ  is obtained from equation (4.271). 

( ) ( ) ( ) ( )[ ]
22

*

2222222222
,,,,,,ˆ

~
,, duηζδwduηζguΛBηζηζφΘνHζJζ NNLLx b +−++++≤ɺ

Then, by equations (4.18), (4.20), (4.112), assumption D, I, J, equation (F.41) and if the 

plant states ζ  are restricted to their valid domain ζ
B  we obtain 
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( ) DkbF NLLLx ++++++≤
222222222

~ˆ uuBΛΛΘνζ ζɺ .
．
 (F.43) 

Next, we have to find upper bounds on ν and u. With (4.122), (4.273), (4.277), (4.278), 

(4.281), (4.282), we get  

( )

( ) ( ) .,ˆˆˆ

,ˆˆˆ

ˆ

2222220222

2222220
22

2222

ηζφΘeCyAeζK

ηζφΘeCyAζK

νννν

xC

xC

AER

++++≤

+++≤

++≤

 

According to assumption H for the upper bound on the state dependent regressor, 

bound on the exogenous input Cy  in equation (4.285) and if the plant states ζ  are 

restricted to their valid domain ζ
B , we get 

( ) Fy x
22022222

ˆˆ ΘAKeCKν ++++≤ ζ . (F.44) 

Further, by definition of weighted Frobenius norm (1.13), and relation (1.15), we have 

[ ] 222
1

2
1 ˆˆˆˆˆtrˆ

x
x

x
x x

F
xxxx

T

x
F

x
Γ

Γ
Γ

−−
Γ ≤⇔=≤ ΘΘΘΘΓΘΘ λλ  

with (1.4) and bound (4.133), imposed by the projection operator, we obtain 

max,
2

ˆˆˆ
xx

F
xx x

x
x

θλλ Γ
Γ

Γ ≤≤≤ ΘΘΘ . (F.45) 

An analogous consideration, together with assumption D yields 

xxFxx xxx
θλλ ΓΓΓ ≤≤≤ ΘΘΘ

2
. (F.46) 

Using (F.45) for (F.44) yields 

( ) Fy
xx Γ++++≤ λθζ max,2022222

ˆ AKeCKν . (F.47) 

In order to find an upper bound on u, take 2-norm of (4.267) and use assumption I. 

( ) ( ) ( )[ ] [ ]Fx

T

22
2

1

22

ˆ,ˆ,ˆ,ˆ KνIηζBηζBηζBu ++≤
−

 

(F.48) 

Now, since ( ) ( )ηζBηζB ,ˆ,ˆ T  is symmetric positive definite, we have for its minimum 

eigenvalue ( [Lüt96] p.153-6) 

( ) ( )[ ] 1,ˆ,ˆ ≥+ IηζBηζB Tλ  

which renders ( ) ( ) IηζBηζB +,ˆ,ˆ T  a positive definite symmetric matrix. Further, since 

singular values and eigenvalues of symmetric positive definite matrices are equal 

(Theorem B.17), we have, by [Lüt96] p.79-4,  



Appendix F 
Proofs and Bounds 

399 

( ) ( )[ ] ( ) ( )[ ]
1

1

,ˆ,ˆ,ˆ,ˆ
−

−









+=





 + IηζBηζBIηζBηζB TT λσ . 

and hence the following inequality holds for the matrix induced 2-norm. 

( ) ( )[ ] 1,ˆ,ˆ
2

1

≤+
−

IηζBηζB T
 (F.49) 

For computation of an upper bound on ( )ηζB ,ˆ , we have to insert either of absolute 

scaling (4.111) or relative scaling (4.114), dependent on which one is implemented. 

Together with (4.184), we have 

( ) ( ) LLb ΛBηζηζB ˆ,,ˆ =    ,   ( ) ( ) ( )LLb ΛIBηζηζB ˆ,,ˆ += . 

Further, by analogous considerations, as for inequalities (F.45), (F.46), we get 

max,
2

ˆˆˆ
LL

F
LL L

L
L

λλλ Γ
Γ

Γ ≤≤≤ ΛΛΛ  (F.50) 

LLFLL LLL
λλλ ΓΓΓ ≤≤≤ ΛΛΛ

2
 (F.51) 

where max,Lλ , defined in (4.135), is the bound, imposed by projection operator and Lλ  is 

an upper bound on the ideal parameter in assumption D. With (1.4) and assumption I 

for a bound on ( )ηζ,b , we get 

( ) max,22
,ˆ

LL L
b λλΓ≤ BηζB    ,   ( ) ( )max,22

1,ˆ
LL L

b λλΓ+≤ BηζB . (F.52) 

Defining constants  

max,4 LL
k λλΓ=  or 

max,4 1 LL
k λλΓ+=  (F.53) 

dependent on, whether absolute or relative scaling has been used, and using results 

(F.47), (F.49), and (F.52), we obtain for (F.48) 

( ) ( )[ ]Fykb xxL x 2
max,202222422

ˆˆ KAKeCKBu Γ +++++≤ λθζ . (F.54) 

Applying results (F.46), (F.47), (F.50), (F.51), (F.54) and assumptions H, I to (F.43) yields 

0222ˆ
2

~ˆ ZkZ Ne ++≤ ueζɺ . (F.55) 

Thereby: 

( ) ( )( )( )

( ) ( )

( ) ( ) ( )( )Fykb

DFyZ

kbZ

xxLLL

xx

LLLe

xL

x

L

2
max,2024

2

2max,

max,2020

224

2

2max,ˆ

ˆ

1

1

KAKB

AK

CKB

Γ +++++

+++++=

+++=

Γ

Γ

Γ

λθζλλλ

θθλζ

λλλ

 

(F.56) 

Finally, with assumption H, we get for expression 3 
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( ) 0222ˆ
2

* ~ˆ~ ZMkMZM NeNN ζζζζ ++≤+ ueζuuJ ɺ . (F.57) 

 

Upper bound on expression 4 

With bound on u, (F.55) and assumption J, an upper bound on the internal dynamics is 

02ˆ2
ˆ YYe +≤ eηɺ

 (F.58) 

where 

( )
( )( ) .ˆ

2
max,202420

2242ˆ

qFykbpY

kbpY

xxL

Le

x
++++=

+=

KAKB

CKB

Γλθζ
 (F.59) 

By assumption G, we obtain 

( ) 02ˆ
2

ˆ,,, YMYM eN ηηη +≤ eηduηζJ ɺ . (F.60) 

 

Upper bound on expression 5 

For this expression, (4.323) has to be derived w.r.t. time. 

( ) ( )[ ] ( )[ ]

( ) ( )[ ] ( ) ( )









∂

∂
−

∂

∂
−++

−




 +=

−

−

η
η
ηζφ

Kζ
ζ
ηζφ

KνIηζBηζB

ηζφKνIηζBηζBw

ɺɺɺ

ɺ

,ˆ,ˆ,ˆ,ˆ

,ˆ,ˆ,ˆ

1

1
*

xx

T

x

T

dt

d

 (F.61) 

An upper bound is obtained using matrix induced 2-norms. 

( ) ( )[ ] ( )[ ]

( ) ( )[ ]
� ( ) ( )





























∂

∂
+

∂

∂
+++

+




 +≤

−

−

η
η

ηζφ
ζ

ζ

ηζφ
KνIηζBηζB

ηζφKνIηζBηζBw

ɺɺɺ

����� 
����� ��

ɺ

2
2

2
2

5

2
2

1

222

5

2

1

2

*

,,ˆ,ˆ,ˆ

,ˆ,ˆ,ˆ

x

b

T

x

a

T

dt

d

 (F.62) 

Computation of bounds on expressions 5a and 5b is quite involved and hence will be 

accomplished before within auxiliary computations. 

 

Auxiliary Computation 5a 

The time derivative of the inverse of the decoupling matrix is obtained by derivation of 

the identity matrix. 

( ) ( ) ( )[ ] ( ) ( )[ ]( ) 0IηζBηζBIηζBηζB
I

=++=
−

,ˆ,ˆ,ˆ,ˆ
1

TT

dt

d

dt

d  
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( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] 0IηζBηζBIηζBηζBIηζBηζBIηζBηζB =




 +⋅+++⋅





 +

−−

,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ
11

TTTT

dt

d

dt

d  

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] 111

,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ
−−−

+




 ++−=





 + IηζBηζBIηζBηζBIηζBηζBIηζBηζB TTTT

dt

d

dt

d
 

An upper bound on the matrix induced 2-norm is obtained by (1.2) and inequality 

(F.49).  

( ) ( )[ ] ( ) ( )[ ]
22

1

,ˆ,ˆ,ˆ,ˆ 




 +≤





 +

−

IηζBηζBIηζBηζB TT

dt

d

dt

d
 (F.63) 

Further, with absolute or relative scaling ((4.111), (4.114)) together with (4.184) the 

decoupling matrix reads 

( ) ( )[ ] ( ) ( )( ) ( ) ( )[ ]IBΛΛBηζIηζBηζB +=+ T

L

T

LLL

T
ttttb ˆˆ,,ˆ,ˆ 2

 

(F.64) 

( ) ( )[ ] ( ) ( )( ) ( )( ) ( )( )




 +++=+ IBIΛIΛBηζIηζBηζB T

L

T

LLL

T
ttttb ˆˆ,,ˆ,ˆ 2

 (F.65) 

All dependencies on time have been highlighted. The time derivative evaluates to 

( ) ( )[ ]

( )[ ] ( ) ( ) ( )




 +⋅+









∂

∂
+

∂

∂
⋅+

=+

T

L

T

LLL

T

L

T

LLL

T

L

T

LLL

T

b
bb

b

dt

d

BΛΛBBΛΛBηζη
η
ηζ

ζ
ζ
ηζ

IBΛΛBηζ

IηζBηζB

ɺɺ
ɺɺ ˆˆˆˆ,

,,ˆˆ,2

,ˆ,ˆ
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(F.66) 

( ) ( )[ ]

( ) ( )( ) ( ) ( ) ( )




 +⋅+
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∂
+

∂

∂
⋅




 +++⋅

=+

T

L

T

LLL

T

L

T

LLL

T

L

T

LLL

T

b
bb

b

dt

d

BΛΛBBΛΛBηζη
η
ηζ

ζ
ζ
ηζ

IBIΛIΛBηζ

IηζBηζB

ɺɺ
ɺɺ ˆˆˆˆ,

,,ˆˆ,2

,ˆ,ˆ

2

 

(F.67) 

and with (F.50), (F.52), assumption I and definition of 4k  in (F.53), we obtain. 

( ) ( )[ ]

[ ]( )
2

max,

2

2

2

22

2

2

2

4

2

ˆ212

,ˆ,ˆ

LLLL

T

L
bbbkb

dt

d

ΛBηζB

IηζBηζB

ɺ
ɺɺ λληζ Γ+++

≤+

 

(F.68) 

Next, we have to establish a bound on LΛ
ɺ̂

. Considering update law (4.294) with 

modification (4.296) 

( )

( )
LLL

LLL L

T

LTT

L

T

L

T

LL

LE

T

L

T

L

T

L
f

b

Γ

Γ Γ
Q

CHBΛΛ

HBPeuηζΓΛ
Λ

,,

,,

max,

~ˆˆ

ˆ,,ˆ

Projˆ

λε

λε ξ
κσ 
















−−

−

=
ɺ

 

(F.69) 
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From (D.4) in Appendix D.1 and inequalities (1.4), (1.15), we have 

( ) ( )
L

LLLL L

T

LTT

L

T

L

T

LLLE

T

L

T

L fb

Γ

−−−≤ Γ
Q

CHBΛΛHBPeuηζΓΛ ΓΓ
ξ

κσλ λε

~ˆˆˆ,ˆ
,,

2

ɺ
. 

Then, with triangle inequality, bound (4.135), imposed by projection operator, definition 

of switching function ( )⋅
LLL

f Γ,,λε  in equation (D.12) and assumption I, we get 

L

LL
L

L L

T

LTT

LLLLE

T

LL b

Γ
Γ

++≤ Γ
Q

CHBHBPeuΓΛ ΓΓΓ
ξ

λκλλσλ
~

ˆˆ
max,

2

ɺ
. 

According to (1.15), the weighted Frobenius norms are replaced by their respective 

Frobenius norms, we insert the definition of C
~

 from (4.305) and cancel the term HHT  

according to (4.17). 

( )
F

L

T

LTT

LLL
F

LE

T

LL

L

L

L

L

L b Γ
Q

QQWBHBPeuΓΛ
ξλ

λ
κλλσ

λ

λ
δ−++≤

Γ

Γ

Γ

Γ

Γ ~
ˆˆ

max,
2

ɺ  

By help of (1.8), we split up the single matrices, while we account for the fact that, for 

vectors, Frobenius norm and Euclidean vector norm are equal according to (1.6). 

FL
FLFFLF

FFL

LLLE

T
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L
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L b

Γ
QQQQ
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λ
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max,

22
2

ɺ

 (F.70) 

Now we need relations, involving some terms within this expression. 

1. Relation between filtered regressors 

[ ] ( ) 2222
trtr
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T

Lx

T
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xF
QQQQQQQ
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QQQ ≥+=+=
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FFL QQ ≤
 

(F.71) 

2. Normed expression 1 
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1
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F
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Q
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+
==
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( )
( )

( ) ( )( )
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1
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( )
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1
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=

F
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F
f

Q

Q
Q  (F.72) 

3. Normed expression 2 
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( ) 1
1

:
2
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==
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ξ
 (F.73) 

4. Bound on W
~
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With (F.45), (F.46), (F.50), (F.51), we get 

( ) ( ) 22

max,

22

max,

2

:
~

wLLFLxx
F Lx

=+++≤ ΓΓ λλλθθλ BW .
．
 (F.74) 

5. Bound on 
2

uΓL  

According to (1.1) and Theorem B.17, the matrix induced 2-norm of the 

symmetric positive definite matrix LΓ  evaluates to 
LL ΓΓ λ=

2
 and hence 

22
uuΓ

LL Γ≤λ
 

(F.75) 

6. Bound on 
2

ˆ
LE

T HBPe  

Analogously to (F.42), we obtain 

2222
ˆˆ eHPBHBPe ELLE

T ≤  

222
ˆˆ eBHBPe LPLE

T

E
λ≤  (F.76) 

With relations 1 – 6, bound on u – equation (F.54) – and assumption C together with 

(4.233) – we obtain for (F.70) 

02ˆ

2

2ˆ
2

ˆˆˆ
2 Λ+Λ+Λ≤ eeΛ eeL

ɺ
 (F.77) 

where 
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( ) ( )

( ) ( )( )
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(F.78) 

Inserting bounds on ζɺ , ηɺ  and LΛ
ɺ̂

 in (F.55), (F.58) and (F.77) and inequality (F.68) into 

(F.63) yields 
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(F.79) 

where 
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 (F.80) 

 

Auxiliary computation 5b 

For time derivative of pseudo control, consider (4.277) with (4.122), (4.273), (4.278), 

(4.281), (4.282). Taking the time derivative yields 

( ) ( ) ( ) ( )
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∂
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∂
−−+++−= η
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ηζφ
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T

x

T

xC . (F.81) 

Additionally to assumption in section 4.6.2, the time derivative of the exogenous 

command Cyɺ  has to be bounded such that  

( ) dC yt ≤
2

yɺ  for all 0tt ≥  (F.82) 

for some 0>dy . With assumption H, inequality (F.45), an upper bound for (F.81) is 

( ) ( )
2max,

222220
2

max,22

ˆˆ ηΘeCKAζKν ɺ
ɺɺɺɺ

ηζ θλθλ FFyF xxdx xx ΓΓ ++++++≤  (F.83) 

Next, we compute an upper bound on 
xΘ
ɺ̂

. Therefore consider update law (4.294) with 

modification (4.296). 
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By analogous considerations as in auxiliary computation 5a, we arrive at an 

expression, similar to (F.70). 
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With the analog to (F.71)  

FFx QQ ≤
 

(F.86) 

analogues to inequalities (F.72), (F.73), inequality (F.74), the analog to (F.75) 

( ) F
xx Γ≤ληζφΓ ,

 

(F.87) 

where we have used assumption H, inequality (F.76) and assumption C together with 

(4.233) we obtain for (F.85) 
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 (F.88) 

Further, a bound on eɺ̂  is obtained from (4.280) by use of matrix induced 2-norm, (4.18) 

and (4.20) 

( ) ( ) ( ) ( ) ( ) ( )
22222222222

,,,ˆ,,ˆˆ1ˆ duηζδuΛΛBηζηζφΘΘeCe NLLLxx b ++++++=ɺ . 

With bounds (F.45), (F.46), (F.50), (F.51), assumptions D, I, J, and bound on u in (F.54), 

we get 
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Insertion of results (F.55), (F.58), (F.88), (F.89) into (F.83) yields 

022ˆ2

~ˆ AAA Nue ++≤ ueνɺ
 

(F.91) 

where 
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Using results (F.47), (F.49), (F.55), (F.58), (F.79), (F.91), assumption H in (F.62) yields 
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Bound on w* 

From linearizing state feedback (4.323), we get 
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Using results (F.47), (F.49) and assumption H yields 
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