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Prüfer der Dissertation : 1. Hon.-Prof. Dr. G. Rempe
2. Univ.-Prof. Dr. R. Kienberger

Die Dissertation wurde am 12.09.2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Physik am 14.11.2013 angenommen.





Abstract

Ensembles of cold and ultracold molecules promise fascinating applications, from quantum
information to the investigation of fundamental physics. One approach to cool molecules
to the desired temperature is optoelectrical Sisyphus cooling. Here, state-dependent poten-
tials for molecules are produced by spatially varying electric fields in a trap. By optically
pumping molecules from weakly trapped states to strongly trapped states near the center
of the trap and from strongly trapped states to weakly trapped states near the edge of the
trap, the energy of an ensemble of molecules can be reduced.

The work culminating in this thesis spanned the entire developement of opto-electrical
Sisyphus cooling, from the conception of the original idea (preceded by the investigation
of several alternative approaches) to the experimental realization. This thesis focuses
on two aspects of this work. First, a key element in the successful implementation of
optoelectrical cooling was the developement of a novel electric trap for polar molecules.
This trap combines several features. First, molecules can be continuously loaded and
accumulated from an electric quadrupole guide. Second, trap losses are reduced to the
point where trap lifetimes achieved for previous electric traps are exceeded by over an
order of magnitude. Third, homogeneous electric fields are achieved in a large fraction of
the trap volume which is crutial for the targeted manipulation of internal molecular states.
Achieving these features required a highly complex trap design which is described in detail.

The second focus of this thesis is on the original experimental results for optoelectrical
cooling obtained with CH3F molecules in the rotational states |K| = 2, J = 2, 3. This is
in contrast to the results ultimately published which were obtained with molecules in the
rotational states |K| = 3, J = 3, 4. In the second case, several times larger signals were
obtained due to larger Stark shifts, additional rotational sublevels, and a factor of two
higher hyperfine degeneracy. We were nonetheless able to obtain irrefutable evidence for
cooling with molecules in |K| = 2 states. As these results are otherwise likely to remain
unpublished, they are included in this thesis.
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Chapter 1

Introduction

Predicting and controlling the behavior of physical systems lies at the heart of physics. For
this purpose, performing experiments at reduced temperatures has proven to be a highly
versatile technique. Fundamentally, low temperature means that a given change in thermal
energy of a system must be accompanied by a large change in entropy. The most direct
consequence of this is that at lower temperatures, less thermal energy is available. This
results in benefits such as reducing thermal fluctuations or slowing down the velocity of a
thermal beam of particles, allowing it to be observed more precisely.

The greatest benefits of lower temperatures, however, originate from the combination
with quantum mechanics. For a two level system with some energy separation, the increase
in entropy from populating both levels equally compared to populating only one level is a
fixed amount, kB ln 2. As a result, for sufficiently low temperature, the entropy gain from
populating the upper level no longer compensates the thermal energy required to do so,
and the system becomes confined to the lower level. Extended to larger systems, this effect
ensures that any finite system is confined predominantly to the absolute ground state for
a sufficiently low temperature. While this temperature is unobtainably low for sufficiently
large systems, individual degrees of freedom generally become frozen, i.e. confined to
their lowest level, at much higher temperature. Thermal fluctuations for frozen degrees of
freedom are eliminated entirely. Moreover, frozen degrees of freedom no longer play a role
in the dynamics of the system, often leading to simplifications which allow a system to be
understood and controlled in the first place.

The freezing of the degrees of freedom of a system at low temperature not only affects
the internal states but also the translational motion. Thus, for sufficiently low energy,
collisions and chemical reactions between particles can be described as involving a single
partial wave, representing unsurpassable quantum control of the process. Moreover, the
three probably most well known phenomena at low temperatures, superconductivity, su-
perfluidity and Bose-Einstein condensation, are all manifestations of the motion of each of
an ensemble of particles being predominantly confined to a single quantum state.

Exploring low temperatures is taken to the extreme in the field of ultracold atoms, where
temperatures below 1 nK have been reached [1]. Here, techniques such as laser cooling and
optical pumping have resulted in unprecedented quantum control over atomic systems.
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This is of course exemplified by the generation of the first Bose-Einstein condensate in an
ensemble of Rb atoms in 1995 [2], but also, for example, by the isolation in the absolute
motional ground state and a single internal state of individual atomic ions [3], and more
recently, of individual neutral atoms [4, 5].

The extreme control which has been attained over ensembles of atoms has motivated
substantial effort to obtain similar control of other forms of matter. A first example is the
investigation of micromechanical oscillators coupled to electrical or optical devices [6, 7].
Here, a major recent success was the cooling of an optically coupled oscillator to the lowest
vibrational level via sideband cooling [8]. As a second example, the promise of quantum
computing with quantum controlled matter has motivated the development of various types
of ”artificial atoms”, solid state systems allowing coherent manipulation in a discrete set of
quantum levels [9]. In contrast to real atoms, artificial atoms are very flexible concerning
the properties of the quantum levels and might easily be scaled to large systems in analogy
to integrated circuits.

A third example for extending quantum control of matter beyond atoms, which is the
focus of this thesis, is the field of cold and ultracold molecules. In basically all ways but
one, molecules have the same favorable properties that make atoms into such versatile tools
to explore low temperature physics. In particular, molecules are also sufficiently simple to
in principal allow full quantum control over all degrees of freedom. Moreover, molecules
can easily be isolated from the environment and also possess a wide range of internal
states which can be used for their manipulation. Concerning the last point, molecules
in fact substantially exceed atoms, having vibrational and rotational degrees of freedom
which atoms lack. A second advantage compared to atoms is the existence, for polar
molecules, of a strong permanent electric dipole moment. This results in strong long-range
state-dependent interactions between individual molecules as well as strong interactions
with microwave or DC electric fields. As a result of these properties, cold molecules offer
a wide range of fascinating applications, ranging from controlled chemistry to precision
measurements for fundamental physics. This is discussed in detail in the next section.

Compared to atoms, molecules have one key disadvantage, the lack of closed optical
cycling transitions. Such transitions constitute the simplest means to achieve entropy
dissipation for atoms at low temperature, and are the key ingredient for the principal
technique to create cold atoms: laser cooling. With the workhorse method to produce
cold atoms out of the question for all but a select few molecule species with nearly closed
optical transitions [10], a wide variety of alternative techniques to produce cold molecules
have been developed in the past 15 years. An overview of these methods is provided in
section 1.2. In particular, the work performed for this thesis focused on the design and
implementation of one such method, opto-electrical Sisyphus cooling.
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1.1 Applications of cold and ultracold molecules

1.1.1 Cold and ultracold chemistry

Low temperatures provide fascinating opportunities to study chemistry [11, 12]. At warm
temperatures, reactions typically take place via a large number of reaction channels, start-
ing from a large number of internal and motional states. This causes features such as reac-
tion resonances to be smeared out, hindering their observation. In contrast, at low tempera-
ture reaction resonances have been predicted to occur for a number of systems [13, 14, 15].
A further possibility at low temperature is to control chemical reactions using external
fields [16]. This includes manipulating centrifugal barriers to vary reaction rates and shift-
ing reaction resonances.

To date, a number of collision and reaction experiments have been performed with
cold molecules. For example, collisions between Stark decelerated OH with all the noble
gases as well as with D2 and NO have been performed [17, 18]. These experiments are
particularly interesting in that state sensitive detection of the reaction products allows the
onset of various inelastic collision channels to be observed as a function of collision energy.
Sawyer et. al. observed losses of trapped OH molecules from scattering with a beam of He
atoms or D2 molecules [19]. Parazzoli et. al. observed losses of trapped ND3 molecules from
collisions with trapped Rb atoms [20]. Strebel et. al. measured scattering cross sections
of decelerated SF6 with Li atoms in a MOT [21]. Henson et. al. measured resonances in
Penning ionization reactions between beams of metastable He (3S) and H2 [22]. In this
last experiment, extremely high millikelvin energy resolution was achieved by merging the
beam of He atoms with the H2 beam using a magnetic guide.

A variety of cold chemistry experiments have been performed with trapped ions. Due to
the long trapping times which can be achieved for ions, extremely low reaction rates can be
observed. In a first experiment, reactions between trapped Ca+ ions and velocity selected
CH3F molecules were observed by Willitsch et. al. [23]. This was extended to collisions
with CH2F2 and CH3Cl in Gingell et. al. [24]. Hall and Willitsch studied reactions between
N+

2 ions and Rb atoms at millikelvin temperatures [25]. Okada et. al. studied reactions of
Ca+ ions with CH3CN and ND3 molecules as well as reactions of NH+

2 ions with CH3CN
molecules [26].

A third platform to investigate cold chemistry involves the use of associated alkali
dimers. Here particularly low temperatures have been reached. However, due to the
reliance on laser cooled atoms, the variety of available chemical species is very limited.
Ospelkaus et. al. observed a difference in the reaction rate of ultracold KRb molecules in
a single quantum state and in two different quantum states due to the restriction, in the
first case, to p-wave scattering, with s-wave scattering only allowed in the second case [27].
Ni et. al. observed a change in the reaction rate of KRb molecules when applying an electric
field [28]. The reaction rate of KRb was suppressed by Miranda et. al. by confining the
molecules to a 2D geometry [29].

5



1.1.2 Quantum information processing

While a wide variety of systems have been suggested for implementation of quantum infor-
mation processing [9], polar molecules have a number of features which might make them
particularly suitable. Their strong permanent electric dipole moment results in long range
interactions between individual molecules allowing quantum information to be conveniently
exchanged. Moreover, molecules’ rotational degrees of freedom provide long lived states
which can easily be manipulated using microwave radiation.

The beneficial features of polar molecules have resulted in a number of ideas for incor-
porating them in quantum information processing schemes. A particularly direct approach
is to confine a set of molecules in a one-dimensional array, with dipole-dipole interactions
between neighboring molecules allowing qubits stored in individual molecules to interact,
as has been proposed by DeMille [30]. Here, a position dependent electric field allows
the molecules to be individually addressed spectroscopically. One challenge with this ap-
proach is that it requires a regularly spaced array of molecules to be generated. This
might be achieved by allowing the molecules to self-assemble in dipolar crystals, as has
been suggested by Ortner et. al. [31].

Various systems for quantum information processing have different strengths and weak-
nesses. This suggests the approach of hybrid quantum computing, integrating various
systems so as to combine the strengths and eliminate the weaknesses. Here the strong
interaction of molecules with microwave fields strongly suggests their combination with
microwave devices such as resonators or superconducting qubits, as has been proposed by
André et. al. [32]. For the molecules, this results in benefits such as providing a means to
cool them and a means for their non-destructive state-sensitive detection. In addition to
individual molecules [32], ensembles of molecules might be coupled to microwave devices
collectively, resulting in a dramatically increased coupling strength [33]. Alternatively,
molecular ions might also be used [34].

For quantum information processing schemes based on atoms, each atom (or sometimes
an entire ensemble of atoms) encodes one qubit, and coupling individual qubits requires
coupling individual atoms. For molecules with their large number of internal degrees of
freedom, this is not necessarily the case. In fact, Tesch and de Vivie-Riedle have suggested
using a single molecule as an entire quantum computer [35]. Here, the qubits are composed
of individual vibrational degrees of freedom. Qubit operations are implemented via shaped
femtosecond laser pulses. A first step in this direction has been achieved experimentally by
Hosaka et. al. by implementing a classical Fourier transform with a single molecule [36].

For many quantum information schemes, using symmetric top molecules rather than lin-
ear molecules can result in substantial benefits [37]. For example, symmetric top molecules
possess large linear Stark shifts with dipole moments which are nearly field independent
over a wide range in field strength. This is particularly relevant in the context of this
thesis since the method to cool molecules which we describe herein is particularly suited
to symmetric top molecules.
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1.1.3 Precision measurements

The high level of control achieved with ultracold atoms has resulted in measurements of
unsurpassed precision. Thus, atomic clocks with a stability of almost one part in 1018

have been demonstrated [38]. In addition to metrology, a key application of such precise
measurements is to test fundamental physical theories. Here, one example is the search for
an electric dipole moment of the electron (eEDM). Such a dipole moment is only possible
via a violation of time reversal symmetry. While the standard model of particle physics
predicts a value for the eEDM far below the sensitivity of current experiments, various
extensions to the standard model predict substantially higher values [39]. The search for
the eEDM thus allows TeV physics to be investigated at sub-meV energies.

Until recently, the most precise limits on the value of the eEDM were achieved with
atoms [40]. However, for such tests, molecules have a number of intrinsic advantages [41].
In particular, an observable effect of the eEDM in an atom or molecule requires a preferably
large admixture of s and p orbitals [41]. Such an admixture is automatically present in
molecules due to the chemical bonds. A second advantage is that the energy level structure
of molecules allows systematic effects to be more easily controlled [42].

A first measurement of the eEDM using molecules was performed in 2002 [43], and the
best limit on the size of the eEDM is based on measurements using molecules as of 2011,
resulting in a value of |de| . 10−27 e cm [44]. In the near future, improvements should allow
this limit to be further reduced by several orders of magnitude [45, 46]. Measurements of
the eEDM thus complement measurements in the Large Hadron Collider at CERN for
ruling out parameter space for theories beyond the standard model.

1.2 Methods for producing cold and ultracold molecules

The fascinating applications of molecules at low temperatures have motivated the develop-
ment of a variety of techniques to produce ensembles of cold molecules. These techniques
can be divided into two categories, the so-called direct and indirect cooling methods. Di-
rect cooling consists of taking the molecule species of interest and cooling it to the desired
temperature. Indirect cooling consists of taking the constituent atoms of the molecule
species of interest, cooling them to the desired temperature, and then assembling them
into molecules.

1.2.1 Indirect cooling methods

Creating cold molecules from cold atoms is complicated by fundamental physical consid-
erations. Specifically, for a two-particle process, conservation of energy and momentum
forbids the creation of a stable bound state. Creating a bound state therefore typically
involves a third particle to remove the binding energy in the form of kinetic energy. How-
ever, the kinetic energy of the third particle is accompanied by some momentum which is
imparted equally but oppositely on the newly created bound particle. The temperature of
the bound particle is thus increased, contrary to the desire to create cold molecules.
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Eliminating binding energy while keeping heating to a minimum can be achieved by
using photons. This is due to the huge ratio for photons between their kinetic energy and
their momentum. This idea is realized in photoassociation. Here, atoms approaching each
other sufficiently closely are transferred to a bound state on the potential energy surface
of the electronically excited state using a laser. To form stable molecules, this must be
followed by deexcitation to a bound state on the potential energy surface of the electronic
ground state. This is possible either by spontaneous decay or via stimulated emission using
a second laser. Photoassociation was first demonstrated to create cold Cs2 molecules by
Fioretti et. al. [47].

A second approach to create cold molecules is via Feshbach resonances. Here, molecules
are in fact created using a two-body process. While this is unable to create stable bound
states directly, the creation of short-lived unstable bound states is not excluded. Such
short-lived states are populated when their energy precisely corresponds to the collision
energy of the colliding particles, resulting in a so-called Feshbach resonance in the scattering
length. An unstable bound state can be converted into a stable bound state if its energy
can be shifted below the dissociation threshold. This is the case, for example, when the
bound state and the unbound state have different magnetic moments, allowing a magnetic
field to be used.

For both photoassociation and Feshbach association, molecules are created in highly
excited states. For Feshbach association, this is clear from the molecules being created near
the dissociation threshhold. For photoassociation, a sufficient overlap of the wavefunction
for the atoms in the bound state with free atoms must exist. This is only the case for
highly excited bound states. For applications, ensembles of molecules in their absolute
vibrational ground state are often desired. This can be achieved using coherent state
transfer, as was demonstrated by Ni et. al. to achieve a near quantum-degenerate gas of
polar KRb molecules [48]. Ground-state molecules can also be obtained via internal state
cooling. This has demonstrated for Cs2 molecules for both vibrational [49] and rotational
cooling [50].

1.2.2 Direct cooling methods

While indirect production of cold molecules benefits from several decades of experience
in cooling atoms, this is less the case for the direct cooling methods which more directly
make use of properties unique to molecules. For example, the strong interaction of po-
lar molecules with DC electric fields plays a key role in velocity filtering, probably the
simplest technique to create cold molecules. Here, the basic idea is that also at warm
temperatures, the thermal Boltzmann distribution contains a certain fraction of molecules
which are moving slowly. These slow molecules can be separated from the fast molecules
with an electric guide to create an ensemble of cold molecules, as was first demonstrated
by Rangwala et. al. [51].

In theory, velocity filtering can result in huge numbers of cold molecules. Thus,
at standard temperature and pressure, the density of a molecular gas is approximately
3× 1019 cm−3, a fraction of about one in 5000 of which is slow enough to be at a tempera-
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ture below 1 K. This would theoretically allow a density of cold molecules of 6× 1015 cm−3

to be achieved. In practice, the slow molecules must be separated from the fast molecules
on a timescale comparable to the average time between collisions. This requires a substan-
tially lower pressure and is achieved by injecting molecules into an electric guide using a
nozzle operated in the effusive regime. The conditions to achieve optimal signal have been
investigated in Motsch et. al. [52].

A major disadvantage of velocity filtering is that molecules are generated in a large
number of internal rotational states. Thus, the internal state distribution reflects the
temperature of the molecule source with the population of individual states additionally
weighted depending on their Stark shift. This has been investigated in Motsch et. al. [53]
using depletion spectroscopy and by Bertsche et. al. [54] using state-selective detection.

One possibility to obtain internally cold molecules is via buffergas cooling. This was
in fact the first direct cooling technique for molecules to be demonstrated, by Wein-
stein et. al. [55]. The idea of buffergas cooling is to allow molecules to thermalize via
collisions with a gas of Helium atoms in a cryogenic environment. A key requirement for
this to work is to prevent collisions of molecules with the walls of the cryogenic environ-
ment since the molecules stick to the walls and are thereby lost. In the original buffergas
cooling experiment, this was achieved by trapping the molecules magnetically. This works
because for the CaH molecules used, elastic collisions with the helium are much more likely
than inelastic collisions where the molecules end up in untrapped states. Even without a
magnetic trap, however, the helium can substantially reduce collisions with the walls. This
is because the motion of the molecules in the helium becomes diffusive, increasing the time
to travel a given line-of-sight distance.

Creating an aperture in the buffer-gas cell allows molecules to exit, forming a beam
of cold molecules. This allows the molecules to be separated from the helium and allows
the molecules to be extracted from the cryogenic environment. Such a beam source for
molecules was first realized by Maxwell et. al. [56]. Patterson et. al. combined it with a
magnetic guide [57] and van Buuren et. al. combined it with an electric guide [58].

To obtain slow molecules from a buffergas source or via velocity filtering from a warm
source, the source must be operated in a low-density effusive regime. The opposite, high
density regime is also of great interest to produce cold molecules. Here, the large number of
collisions during expansion of a beam from a nozzle into vacuum results in adiabatic cooling,
substantially reducing the internal temperature of the beam. During such a supersonic
expansion, the thermal energy of the gas is converted into forward velocity of the beam,
with forward velocities of many hundreds of meters per second.

To obtain slow molecules using supersonic expansion, a means must be found to de-
celerate the beam. The extremely high densities of cold molecules which can be obtained
with supersonic expansion have motivated the development of a wide variety of decel-
eration techniques. The first technique to be demonstrated was Stark deceleration, by
Bethlem et. al. [59]. Here, the potential energy gradient created for molecules by spatially
varying electric fields is used to decelerate the beam. Since the electric field strengths
which can be created in the laboratory are insufficient to remove the entire kinetic en-
ergy at once, an array of electrodes is switched such that (for low-field seeking states) the
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molecules move towards an increased electric field strength most of the time.
Replacing the electric fields in Stark deceleration with other fields results in a number

of analogous deceleration techniques. For paramagnetic molecules, Zeeman deceleration
using switched magnetic fields is possible [60, 61]. Fulton et. al. have demonstrated
optical deceleration using the intense field in a focused pulsed laser [62]. First results have
been obtained with microwave deceleration [63].

Molecular beams can also be decelerated mechanically. This was first realized via a
counter rotating nozzle by Gupta and Herschbach [64]. Strebel et. al. have combined
a counter rotating nozzle with a static quadrupole guide [65]. An alternate approach to
decelerate molecule mechanically is to use the centrifugal force on a rotating disk. This is
currently being demonstrated by our group [66].

1.2.3 Extending direct cooling to ultracold temperatures

The techniques for direct cooling of molecules presented so far all reach temperatures on
the order of 1 K or slightly below. For many applications of cold molecules, substantially
lower temperatures (< 1 mK) are required. Extending direct cooling to such temperatures
is a very active field of research.

A key element of any dissipative cooling technique is some process to remove entropy.
Entropy exchange is of course possible via collisions between particles. Here, sympathetic
or evaporative cooling to achieve ultracold temperatures with molecules is very appealing
since it could maintain the extreme generality of the techniques developed to reach sub-
Kelvin temperatures. Applying sympathetic or evaporative cooling to molecules has proven
surprisingly difficult. In many cases, inelastic collisions or even chemical reactions lead
to large losses. Despite these challenges, evaporative cooling of OH has recently been
demonstrated by Stuhl et. al. [67].

A particularly elegant technique for the removal of entropy is via the emission of pho-
tons. This is an irreversible process whenever the temperature of the environment is
sufficiently low such that the mode of the electromagnetic field into which the photon is
emitted is not occupied. While using photons to cool atoms has been extremely successful,
applying them to cool molecules has been quite difficult. For example, Doppler cooling re-
quires scattering of a large number of photons, and all molecules eventually spontaneously
decay to rovibrational states which are not coupled to the laser. Direct application of
Doppler cooling is thus completely hopeless for most molecule species. This however by
no means eliminates the possibility of using photons to cool molecules.

Starting from Doppler cooling as a reference, two general strategies seem to exist for
the adaptation of laser cooling to molecules. One approach is to alter, improve or otherwise
manage the spontaneous decay process and the large number of states which are thereby
potentially occupied. Here, one of the earliest suggestions is to simply accept the fact that
the molecules populate a large number of different internal states. Thus, Bahns et. al.

proposed only maintaining control of a molecules rotation while applying a large num-
ber of sidebands to a laser to address all relevant vibrational states during translational
cooling [68]. Weitz and Hänsch suggested using extremely short pulses to address all in-
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ternal states simultaneously while using an interferometry technique to achieve a velocity
dependent force [69]. Vuletić and Chu suggested using an optical resonator to enhance far
off-resonant scattering of light, allowing molecules to be treated as structureless polarizable
particles with the internal state being ignored [70].

Optical resonators can also be used to maintain control of rather than to ignore the
internal state by enhancing a particular spontaneous decay channel. The increase in the
photon scattering rate above the spontaneous decay rate by a resonator might allow slowly
decaying but intrinsically closed pure vibrational transitions to be used [71]. Control of the
internal state might also be maintained by throwing out the spontaneous decay entirely
and applying feedback cooling, a variant of which was proposed for molecules by Averbukh
and Prior [72]. Here, photons remove entropy by providing information about the system.
Finally, for certain molecule species, adding just a small number of repump lasers results in
a transition scheme which is sufficiently closed that direct Doppler cooling is possible [10].
This has allowed Shuman et. al. to substantially reduce the transverse temperature of a
molecular beam [73], and progress is being made on longitudinal cooling as well [74].

A second strategy to adapt laser cooling to molecules is to improve the efficiency of the
energy reduction process (as opposed to the spontaneous emission which reduces entropy)
such that fewer spontaneously emitted photons are required. The potential of this approach
can be appreciated by noting that the weak nature of the photon recoil in Doppler cooling
results in an energy reduction per spontaneously emitted photon which is several orders of
magnitude below what is theoretically possible. One approach to use spontaneous decay
more efficiently than in Doppler cooling has been known for a long time for atoms in the
form of Sisyphus cooling [75]. Here, the idea is to use state dependent potentials combined
with optical pumping such that a particle experiences a strong force when traveling from
the center of a potential well towards the edge, and a weak force when traveling back to
the center.

Surprisingly, the suitability of Sisyphus cooling for cooling of molecules remained unno-
ticed for a long time. Thus, the only mention of Sisyphus cooling in the context of cooling
molecules in the literature before 2009 seems to be by Averbukh and Prior who compare
the time dependent potentials in their feedback cooling to the state dependent potential
in Sisyphus cooling [72]. This was followed by our proposal of optoelectrical cooling [76]
and by a proposal by Robicheaux to apply Sisyphus cooling to OH using a microwave
spontaneous decay [77].

The long disregard of Sisyphus cooling as a means to cool molecules, however, did not
extend to the idea of using spontaneous decay as efficiently as possible. One variation
which does not lead to cooling directly but does increase phase space density is the accu-
mulation of molecules. Here, molecules enter a trap in a state which is not trapped and
are optically pumped to a state which is trapped. Accumulation of NH was proposed by
Meerakker et. al. [78] and realized by Riedel et. al. [79]. A variation of accumulation which
can result in cooling as well is to accumulate molecules from a large trap into a small trap
near the edge of the large trap where the kinetic energy of the molecules is small. This
was proposed as single photon cooling by Narevicius et. al. [80].

Rather than to accumulate molecules in space, molecules might also be accumulated
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in terms of their velocity. Thus, Ooi et. al. suggested transferring a subset of an ensemble
of molecules with similar velocities to a separate internal state and shifting the average
velocity of this set of molecules to zero via a sequence of STIRAP pulses [81]. The process
ends with a single spontaneous decay back to the initial state. This idea, that a sequence
of pulses followed by a single spontaneous decay allows a spontaneous decay to be used
much more efficiently in fact provided the spark for the ideas presented in this thesis.

1.3 Outline of this thesis

Realizing a project as complex as optoelectrical Sisyphus cooling from the first idea to the
experimental realization results in an almost endless supply of ideas about which to write
a thesis. To nonetheless restrict the scope of this thesis to a manageable level, we focus
on those topics which have not been presented elsewhere. Moreover, chapters 2 and 4 rely
on existing texts. Chapter 2 contains the original proposal for optoelectrical Sisyphus
cooling, ref. [76]. This introduces the basic idea for cooling, identifies a set of molecular
energy levels and transitions between them with which cooling can succeed, and provides
a brief description of the microstructured electric trap in which cooling was realized.

The main part of this thesis is chapter 3, presenting the design of the microstructured
trap in detail. A highly complex trap design allowed the combination of a number of
features which were crucial for the success of optoelectrical cooling, as will be discussed.
The chapter also contains an analysis of the possible loss processes in an electric trap as a
well as the derivation of analytic expressions for the electric fields produced by a periodic
microstructure, a key element of the trap.

In chapter 4, we present the original experimental results for cooling. These results
were compiled into a paper and submitted for publication. However, while the paper was
under review, substantially improved cooling results were obtained based on a different
set of molecular states. In the end, only the improved results were published in ref. [82].
Since the original results would otherwise be likely to remain unpublished, we reproduce
the original version of the paper. Chapter 5 concludes with a discussion of ideas for the
future.

Many of the topics left out of this thesis are excellently described elsewhere. Exper-
imental results with the microstructured electric trap and additional information on the
experimental setup are provided in ref. [83] and in the diploma thesis of Manuel Mielenz.
Newer results for cooling are contained in ref. [82] and in the diploma theses of Alexander
Prehn and Martin Ibrügger. Both the trap and the cooling results will be discussed at
length in the doctoral thesis of Barbara Englert.
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Chapter 2

Overview of optoelectrical cooling

In this chapter, the original proposal for optoelectrical Sisyphus cooling (ref. [76]) is pre-
sented as an introduction to the technique. The paper begins with a discussion of the basic
concept of optoelectrical cooling: using state dependent potentials created by DC electric
fields combined with optical pumping to reduce the energy of an ensemble of molecules.
This is illustrated with a simplified version of the cooling scheme involving only three
energy levels. It is argued that the cooling technique is particularly suited for molecules.

A key part of the paper is the proposal of a novel design for an electric trap in which
optoelectrical cooling can take place. This design is motivated in particular by the ability
to load it continuously with molecules from a quadrupole guide and the ability to apply
tunable homogeneous offset fields in a large fraction of the trap volume. Achieving these
features while simultaneously keeping trap losses under control requires a relatively complex
trap design, the details of which will be discussed in chapter 3.

A large part of the paper is concerned with working out additional details for the
experimental realization of optoelectrical cooling. For example, the relevant selection rules
for molecular transitions are summarized and the energy level scheme for cooling is adapted
to actual molecules. A number of molecules are suggested as possible candidates for cooling
along with their most important properties. A rate equation model to describe the cooling
process is developed allowing the time required for cooling to be estimated.

In the last part of the paper (excluding the appendix), various effects which might
prevent the successful realization of optoelectrical cooling are considered. Thus, the cool-
ing as proposed only reduces the velocity of the molecules in one dimension. Full three-
dimensional cooling requires sufficient mixing of the velocity components. Trap loss mech-
anisms and transitions to unwanted states are also discussed.

The cooling scheme presented in this chapter differs from the scheme which has been
experimentally demonstrated in one key respect. In the paper, we assume that transitions
between a certain pair of neighboring rotational sublevels of a rotational state (e.g. between
the states |2, 2,−2〉 and |2, 2,−1〉, using the notation |J,K,M〉 to label rotational states
as discussed in the paper) can be driven without driving transitions between the rest of
the rotational sublevels (e.g. between the states |2, 2,−1〉 and |2, 2, 0〉). In practice, this
is almost impossible since all transitions between neighboring rotational sublevels of a
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rotational state have almost identical differential Stark shifts for intermediate electric field
strengths. One possibility to avoid this problem is to avoid transitions between rotational
sublevels of a given rotational state and to replace them with transitions (for the energy
levels in the paper) between J = 2 and J = 3. A second possibility, which ended up
being realized in the experiment, is to drive the transitions between rotational sublevels
at a slow rate compared to the rate of the spontaneous decay used for optical pumping
(see chapter 4 for details). A major disadvantage of this approach is that it substantially
increases the time required for cooling. However, since the homogeneity of the electric field
in the high-field region is no longer important, the high-field region can be eliminated. This
eliminates the slow down in cooling associated with molecules needing to travel between
the two trap regions and results in three-dimensional rather than one-dimensional cooling
since the high-field transitions can occur anywhere near the edge of the trap.
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Publication: Optoelectrical cooling of polar molecules

M. Zeppenfeld, M. Motsch, P.W.H. Pinkse, and G. Rempe
published in Phys. Rev. A 80, 041401(R) (2009)

We present an opto-electrical cooling scheme for polar molecules based on
a Sisyphus-type cooling cycle in suitably tailored electric trapping fields. Dis-
sipation is provided by spontaneous vibrational decay in a closed level scheme
found in symmetric-top rotors comprising six low-field-seeking rovibrational
states. A generic trap design is presented. Suitable molecules are identified
with vibrational decay rates on the order of 100Hz. A simulation of the cooling
process shows that the molecular temperature can be reduced from 1K to 1 mK
in approximately 10 s. The molecules remain electrically trapped during this
time, indicating that the ultracold regime can be reached in an experimentally
feasible scheme.

The ability to prepare samples of ultracold molecules opens up exciting new possibilities
in physics and chemistry, including ultrahigh-precision molecular spectroscopy and inter-
ferometry [84, 85], investigations of anisotropic collisions in quantum-degenerate gases [86],
steering of chemical reactions [16], tests of fundamental physics such as the search for the
electron dipole moment [43], and novel approaches to quantum computing and quantum
simulations [35, 30, 87]. Reaching ultracold temperatures through laser cooling has the
great advantage that it does not lead to particle loss and that it is a single-particle process
which does not require suitable collision properties or high densities. However, laser cooling
has so far only been demonstrated for atoms and ions with simple energy-level structures,
whereas optical cooling of molecules has proven confoundingly difficult.

Optical cooling of molecules requires a change in paradigm: In contrast to ultracold
atoms, for which efficient cooling was realized early on [88] but trapping proved to be a
challenge due to the shallow optical and magnetic potentials available, electric trapping of
polar molecules is relatively easy [89] and has, in fact, been demonstrated for molecules
without any cooling [90]. Optical cooling of molecules could therefore start with trapped
molecules and exploit the tremendous (∼1 K) energy-level shifts producible by laboratory
electric fields, circumventing the usual requirements of standard laser cooling such as highly
closed transitions, fast decay rates, and significant photon momentum transfer.

Making use of the aforementioned paradigm shift we here present a cooling scheme
for molecules which is conceivable with present technology. Specifically, we replace photon
recoil by an electric-field interaction energy as the means to remove energy from a molecular
ensemble in a configuration reminiscent of Sisyphus cooling and single-photon cooling [75,
91, 92]. Spontaneous emission of photons serves only to remove entropy. As a result,
the number of scattered photons required to achieve substantial cooling is dramatically
reduced. Slowly decaying vibrationally excited states, generally offering stricter selection
rules than electronic transitions, can therefore be used for the spontaneous decay.
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Figure 2.1: Energy-level and state-transition diagram for the cooling scheme. A molecule
in the strong lfs state |s〉 diffuses from the low-field region to the high-field region (1) where
it is driven to the weak lfs state |w〉 (2). After moving back to the low-field region (3), the
molecule is driven to the excited state |e〉 (4) from which it decays spontaneously to |s〉
(5). The irreversible spontaneous decay makes this cycling process unidirectional.

Our cooling scheme is shown in Fig. 2.1. Two neighboring regions in space, each with
a constant but different electric field, are realized by a suitable arrangement of electrodes.
These electrodes also provide a high-electric-field enclosure around these regions to ensure
trapping of molecules in low-field-seeking (lfs) states. Fig. 2.2 shows a possible design for
the electrodes. Trapped molecules experience a potential step when moving from one region
to the other. The magnitude of this potential step depends on the average orientation of
the electric dipole moment of a molecule with respect to the electric field and may vary
significantly for different molecular states. For one strong and one weak lfs molecular state
we obtain a potential as a function of position as depicted by the curves |s〉 and |w〉 in
Fig. 2.1.

Suppose a molecule possesses an excited state |e〉 which decays into the states |w〉 and
|s〉. We induce transitions between |w〉 and |e〉 in the low-field region of the trap and
transitions between |s〉 and |w〉 in the high-field region. Doing so creates a unidirectional
cycling process. During the cycle, the molecule loses a kinetic energy corresponding to
the difference between the potential steps of the strong and the weak lfs state, leading to
overall cooling.

The main advantage of this cooling scheme is the large amount of kinetic energy which
can be removed from a molecule for each spontaneously emitted photon. For a represen-
tative dipole moment del of 1 Debye [D], oriented in an electric field E of 100 kV/cm, one
obtains an interaction energy of del · E = 3

2
kB × 1.61 K. Starting with an ensemble of

molecules with a translational temperature below 1 K, this in principle allows the removal
of all of a molecule’s kinetic energy in a single step. In practice, however, more than one
spontaneous decay is necessary to cool a molecule: When the fields are kept constant, a
molecule will generally end up in state |s〉 in the low-field region with insufficient energy to
move back to the high-field region but with at least the amount of energy obtained when
moving from the high- to the low-field region in the state |w〉. Further cooling to lower
temperatures therefore requires the height of the electric-field step to be slowly ramped
down, allowing the cooling cycle to repeat. Nonetheless, a few dozen spontaneous decays
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Figure 2.2: Design of an electric trap for the cooling scheme. Regions of tunable homoge-
neous fields are achieved using parallel capacitor plates (a). Collisions with the plate surface
are eliminated by alternatingly-charged microstructured surface electrodes [93] (b). Trans-
verse confinement is achieved by a high voltage electrode between the plates around the
perimeter of the trap (a). By interrupting the perimeter electrode, an electric quadrupole
guide can be connected to the trap for the injection and extraction of molecules [90] (c).

are more than enough to cool a molecule to below a mK.
Due to the small number of spontaneous photon emissions, the requirements imposed

on the emission process are much less stringent than for standard laser cooling. Not only is
the branching ratio for decay from the excited state to desired and undesired states much
less critical, but the rate at which such transitions occur may also be much lower. As a
result, the use of vibrational transitions for the spontaneous decay process is possible.

The advantage of vibrational compared to electronic excitations is that except in the
case of strong resonances with other vibrational states, a molecule with one quantum
of excitation in a single vibrational mode will decay primarily back to the vibrational
ground state. Additionally, compared to the deep ultraviolet wavelengths required to excite
electronic states of most simple chemically-stable molecules, many molecules have strong
vibrational transitions in the wavelength range 3−10µm. The coverage of this wavelength
range by tunable narrow-band light sources has been significantly improved in recent years
by the commercial availability of quantum-cascade lasers and optical parametric oscillators,
in addition to, e.g., lead-salt lasers.

Beyond the closed vibrational transition, the rotational transitions must be consid-
ered. The excited vibrational state must not only decay to a manageable number of rota-
tional states, but each of these states must be lfs so that the molecule remains trapped.
Disregarding linear molecules due to their generally weaker quadratic Stark interactions,
symmetric-top molecules have the most stringent selection rules for dipole transitions. De-
scribing the rotational states of a symmetric-top molecule by the quantum numbers for the
total angular momentum J , the angular momentum about the molecule’s symmetry axis
K and the angular momentum about a lab-fixed axis M , the selection rules for a parallel
transition are ∆J = 0,±1, ∆K = 0 and ∆M = 0,±1 [97]. Furthermore, the lowest-order
Stark interaction is EStark = −E ·del = −|E||del| KM

J(J+1)
. Observing that J ≥ 0, |K| ≤ J and

|M | ≤ J [97], we see that an excited state with |K| = J ≥ 2 and M = −K best satisfies
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molecule del fvib γ molecule del fvib γ
[D] [cm−1] [Hz] [D] [cm−1] [Hz]

CFH3 1.85 2964 37 CF3Cl 0.50 1105 73

CF3H 1.65 3036 65 CF3Br 0.65 1089 74

CH3CCH 0.78 3334 87 CF3I 0.92 1080 61

CF3CCH 2.36 3327 79 BH3CO 1.80 2217 274

N(CH3)3 0.61 2933 200

Table 2.1: An overview of symmetric-top molecules with strong parallel vibrational tran-
sitions with permanent dipole moment del [94], transition frequency fvib [95], and sponta-
neous decay rate γ. The italicized values were obtained using the quantum-chemistry pack-
age Gaussian [96]. We have successfully produced a cold sample of each of the molecules on
the left using our quadrupole guide [51]. Note that the large hyperfine splitting in CF3Cl,
CF3Br, and CF3I complicates the straightforward application of the present scheme to
these molecules.

the conditions stated above. Such a state may decay into a total of only five rotational
states, all of which are lfs. These can be repumped using additional lasers or microwave
fields. Note that the condition of few decay channels to purely lfs states can also be sat-
isfied for linear molecules, e.g., in a Σ electronic state using a vibrationally excited state
with M = 0, J ≥ 3 [97].

Use of vibrational excitations for opto-electrical cooling requires molecules with a suf-
ficiently fast vibrational spontaneous decay rate. Table 2.1 lists promising symmetric-top
molecules. Although a decay rate of ∼ 100 Hz is glacial relative to decay rates used for
laser cooling of atoms, it is adequate considering the small number of decays needed for
the scheme presented here. Nonetheless, the spontaneous decay rate raises the question
how fast opto-electrical cooling progresses. This is studied by numerically solving rate
equations for cooling of CF3H. The rate equations and their derivation are included in the
appendix. The first excitation of the C-H stretch mode at 3036 cm−1 in the rotational state
J =K=−M =2 is used as the excited state. The fact that this state spontaneously decays
to five v= 0 states (v being the vibrational quantum number) necessitates a somewhat more
complicated transition scheme than the one shown in Fig. 2.1. Specifically, we simulate
cooling using the transition scheme shown in Fig. 2.3. The IR transition as well as each of
the microwave transitions are driven with a rate of 10 kHz. Assuming a Stark-broadening
of 10 MHz, this would require narrow-linewidth sources with an intensity on the order of
1 mW/cm2 for all the transitions involved. Spontaneous decay from the excited state is
modeled using a rate of 65.2 Hz, partitioned among the states with v= 0 based on rigid-
rotor dipole-transition matrix elements [97]. The volumes of both trap regions are set to
100 mm3, connected by an area of 10 mm2.

At time t = 0, molecules are distributed among the states v= 0 in both trap regions
with a v2 dv velocity distribution up to a cut-off velocity of 11.7 m/s. This is the maximal
trappable velocity of the involved states due to higher-order Stark shifts. The electric-
field-strength difference between the two trap regions is a free parameter which is varied
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Figure 2.3: Transition scheme used to simulate cooling of CF3H. Rotational states are
labeled using the notation |J,K,M〉. MW and ir denotes the induced microwave and
infrared transitions. Γ denotes spontaneous decay to the five states with vibrational exci-
tation v= 0. The energy levels are obtained by diagonalizing the rigid-rotor Hamiltonian
for CF3H at field strengths of 5 kV/cm and 20 kV/cm for the low-field and high-field region,
respectively.

as a function of time to be proportional to the 80th percentile of the kinetic energy of the
molecules. The potential-energy step for each of the molecular states is modeled using the
first-order Stark shift EStark.

The rate of the cooling process is influenced by three effects. Most significantly, the
rate coefficients indicate the time in which 1 − 1/e of molecules perform some process,
whereas the time in which 99% of molecules perform this process takes significantly longer.
Ramping down the electric-field step too rapidly therefore causes the final energy of most
molecules to substantially exceed the field-step energy so that efficient cooling is no longer
possible. Secondly, the fraction of energy removed during each cooling cycle is below unity.
Reducing the temperature by, e.g., a factor of ten requires several cooling cycles. Finally,
spontaneous decay to the states |2, 2,−1〉, |3, 2,−1〉, and |3, 2,−2〉 in the low-field region
of the trap has no net effect, reducing the effective decay rate.

The velocity distribution of the molecules in the low-field region of the trap for various
times after cooling commences is shown in Fig. 2.4. As can be seen, significant cool-
ing occurs in under a second. Note that the cooling rate decreases significantly as time
progresses. For high temperatures, the cooling rate is limited by the decay rate of the
vibrationally excited state, allowing the temperature to decrease exponentially with time.
For low temperatures, the cooling rate is limited by the time it takes for the molecules
to move between the two regions of the trap, with the cooling rate proportional to the
velocity of the molecules. Therefore, at very low temperature the cooling process is no
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Figure 2.4: Velocity distribution in the weak-field region of the trap after cooling for a
time t. Velocities are converted to temperatures according to m

2
v2 = 3

2
kBT . Monitoring the

population in the excited state during the cooling process shows that on average a molecule
spontaneously decays 4.7× during the first second, 17.0× during the first 5 seconds, and
9.0× during the next 5 seconds.

longer efficient, and the molecules must either be moved to a smaller trap or a different
cooling scheme must be applied.

The elementary description of opto-electrical cooling so far glosses over several issues
which must be addressed to ensure the experimental viability of the method. In particular,
achieving required trapping times, sufficient mixing of the individual velocity components,
and validity of approximate selection rules are now discussed.

In addition to collisions with the background gas, Majorana flips and rovibrational
heating by thermal blackbody radiation are the identified loss channels for polar molecules
stored in electric traps [98, 99]. Although rotational heating is a problem for extremely
light molecules [99] and vibrational heating for heavy molecules, neither is the case for the
molecules considered in table 2.1. For example, the heating rates to the lowest vibrational
modes never exceed a few mHz at 300 K for CF3CCH, the heaviest molecule in table 2.1.

Majorana flips are expected to have been a problem in past trap designs with a near-zero
electric field in the central trap region [98]. However, the trap in Fig. 2.2 is specifically
designed to allow a homogeneous offset field throughout the vast majority of the trap
volume. Furthermore, field zeros near the edges of the trap can be reduced to singular
points through clever electrode design, which essentially eliminates Majorana flips.

Opto-electrical cooling only removes energy from a single component of the velocity
vector, making sufficient mixing of the velocity components a necessity. Electric-field
inhomogeneities near the microstructured plate surface allow such mixing on a sufficiently
short timescale. This is demonstrated by trajectory simulations discussed in the appendix.

The zero-field rigid-rotor harmonic-oscillator selection rules used so far imply a closed
six-level system for opto-electrical cooling. These selection rules are modified in several
ways for real molecules. Transitions with ∆K 6= 0 and decay to other excited vibrational
states are generally possible for symmetric top molecules via resonances between near-
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degenerate vibrationally excited states. Due to the few spontaneous emissions needed,
such couplings will at most cause problems for individual molecule species.

For non-zero values of the electric field, J ceases to be a good rotational quantum num-
ber and spontaneous decay with |∆J | ≥ 2 becomes possible. The resulting consequences
were checked by diagonalizing the rigid-rotor Hamiltonian for non-zero electric fields using
molecular constants of CF3H and calculating dipole transition matrix elements between
the new eigenstates. Although the partitioning of spontaneous decay from the state v= 1,
|2, 2,−2〉 to the five states v=0, J = 2 and 3 is significantly changed already at electric
fields of ∼ 50 kV/cm, the spontaneous decay to states with J ≥ 4 remains below 1% for
fields up to 100 kV/cm. This effect on opto-electrical cooling is therefore negligible.

Achieving a temperature below 1 mK through opto-electrical cooling would allow other
cooling schemes, requiring longer interaction times or higher phase-space density, to be im-
plemented. Specifically, opto-electrical cooling can easily be extended to an accumulation
scheme, for example to load molecules into a tightly confining optical dipole trap. The low
temperatures and high densities thus achieved create extremely favorable starting condi-
tions for a number of further cooling schemes such as evaporative cooling, cavity cooling,
or sympathetic cooling with ultracold atoms.

Appendix: Derivation of the Rate Equations

The rate equations used to simulate cooling of CF3H can be derived as follows. The
ensemble of molecules in the trap is represented by the number of molecules p

(i)
a (v, t)dv

with velocity between v and v + dv in the molecular state a in part i = 1, 2 of the trap.
Here, i = 1 denotes the low-field region and i = 2 denotes the high-field region of the trap.

In this description of the molecular ensemble, we ignore the position of the molecules
within each trap region as well as the direction of the velocity vector v with v = |v|,
effectively assuming instantaneous spatial redistribution of the molecules within each trap
region as well as instantaneous redistribution of the direction of v. Whereas the assumed
instantaneous spatial redistribution should at most slightly affect the validity of the results
of the simulation since the molecule’s thermal motion will rapidly redistribute the molecules
through the trap, the assumed mixing of the components of v is less obvious. In fact, in
the case of a potential energy in the trap which is completely separable in Cartesian
coordinates, no mixing of the velocity components would occur at all.

To address this question, molecule trajectory simulations in a trap based on the design
in Fig. 2.2 of the paper were performed and the temporal correlation of the magnitude of
the individual components of v was calculated. The calculated correlation for a particle
with a velocity of 10 m/s in the homogeneous-field region of the trap is shown in Fig. 2.5.
Particularly for large τ , the correlation function for vx and vy can be accurately reproduced
by assuming a ∼ 20 % probability for the velocities to completely mix for each collision
with the microstructured plate surface. This demonstrates that significant mixing of the
velocity components occurs due to the field inhomogeneities near the plate surfaces. Due
to the translational symmetry of the microstructures along the z-direction, this mixing

21



v
x

v
y

v
z

-20 -15 -10 -5 0 5 10 15 20
0

2

4

6

8

10

12

14

16

t (ms)

v
e
lo

c
it

y
c
o

rr
e
la

ti
o

n
x

y

z

Figure 2.5: Temporal correlation 〈(|vi(t)| − |vi(t + τ)|)2〉 of the individual components of
the velocity for a particle in a trap based on the design in Fig. 2.2 of the paper. The inset
shows the orientation of the velocity components relative to the trap.

does not include the z-component of the velocity, leading to significantly slower mixing
for this velocity component. However, by arranging the microstructure plates such that
the structure on the top and bottom plate is rotated by 90 ◦ with respect to the other, all
three velocity components mix on the shorter timescale. The resulting mixing is sufficiently
strong that a major impact on the cooling rate does not occur.

To derive the rate equations for the molecule distributions p
(i)
a (v, t), two processes must

be taken into account. First, transitions between the various internal molecular states may
occur in both regions of the trap. This is modeled by a fixed fraction of molecules in a
given state switching to a different state per unit time interval,

d

dt

∣

∣

∣

∣

trans

p(i)a (v, t) =
6
∑

a′=1

(c
(i)
a′,ap

(i)
a′ (v, t)− c

(i)
a,a′p

(i)
a (v, t)), (2.1)

with appropriate rate coefficients c
(i)
a,a′ .

Second, molecules may diffuse between the two trap regions. For those molecules in
region i with a velocity component vx perpendicular to the interface between the trap
regions, a fraction of vxA/Vi of the molecules attempt to enter the other trap region per
unit time. Here, A is the surface area of the interface between the trap regions and Vi is the
volume of trap region i. For those molecules in region 2 of the trap, all molecules attempting
to enter region 1 succeed, whereas for molecules in region 1, only those molecules with
v2x > 2∆Ea/m succeed, where ∆Ea is the potential energy difference between the two trap
regions for molecules in state a and m is the molecular mass. Finally we need to average
over the possible values of vx. For an isotropic velocity distribution in three dimensions,
a single velocity component is evenly distributed so that the fraction of molecules leaving
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region 2 per unit time is
1

2v

∫ v

0

dvxvx
A

V2

=
v

4

A

V2

, (2.2)

and the fraction of molecules leaving region 1 per unit time is

1

2v

∫ v

√
2∆Ea

m

dvxvx
A

V1

=
v2a,2
4v

A

V1

. (2.3)

Here, va,2 =
√

v2 − 2∆Ea/m is equal to the velocity a molecule in region 1 will have once
it has reached region 2. Note that the integrals are normalized by dividing by 2v since vx
can be both positive and negative but only molecules with (in this case) positive vx can
enter the opposite trap region.

Every molecule which leaves one trap region must enter the opposite region. Nonethe-
less, a complication arises since the velocity of the molecules changes when they move
between the regions. Molecules which enter region 1 in state a with velocity in the range
v to v + dv must have had a velocity in the range va,2 to va,2 + v dv/va,2 in region 2. As a
result, the number of molecules in region 2 which could potentially increase the number of
molecules p

(1)
a (v, t) dv in region 1 with velocity in the range v to v+dv by switching regions

is equal to p
(2)
a (va,2, t) v dv/va,2. Combining this with Eqs. (2.2) and (2.3) one obtains a

diffusion rate
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2∆Ea/m

. (2.4)

Note that the v in Eq. (2.2) is the velocity in region 2 and is therefore replaced by va,2 in
Eq. (2.4). For v2 < 2∆Ea/m, the diffusion rate is zero due to the potential energy step.

For molecules entering region 2 we introduce va,1 =
√

v2 + 2∆Ea/m and the derivation
of the diffusion rate is entirely analogous. One obtains as the final result,
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(2.5)

These rate equations are used for the cooling simulations in the main text.
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Chapter 3

Design of the microstructured
electric trap

3.1 Introduction

A basic outline for the design of an electric trap in which optoelectrical cooling might
be realized was originally provided in Ref. [76], presented in the previous chapter. In
this chapter, we present an in-depth discussion of the final realization of the trap with
a strong emphasis on optimizing the trap electrodes and the electric fields they produce.
Fundamentally, the trap design is based on four conditions: providing a deep confining
potential for the molecules, realizing a maximal region of homogeneous electric field at
the trap center, reducing trap losses to allow for long storage times, and providing an
efficient connection to an electric guide for loading and unloading of molecules. Careful
consideration allows these conditions to be satisfied quite well simultaneously, although for
the current first version of the trap we have to some degree focused on efficient loading and
unloading of molecules and on reducing trap losses at the expense of the field homogeneity.

The chapter is organized as follows. We begin by reviewing the various loss channels
which are potentially relevant in an electric trap in section 3.2. We then present an overview
of the trap design including a discussion of the trap dimensions and how they are chosen
based on achieving the trap criteria in section 3.3. This is followed by a discussion of
the two critical macroscopic components of the trap, the perimeter electrodes to achieve
transverse confinement between the two capacitor plates in section 3.4, as well as the
connection between the capacitor plates plus perimeter electrodes and an electric guide for
loading and unloading of molecules in section 3.5.

The toughest challenges in realizing a successful trap all relate to the microstructure
electrodes constituting the capacitor plate surfaces, considered in section 3.6. In particular,
the most intuitive realization of the microstructures, a regular sequence of uniform strips
of alternating polarity, would result in strong trap losses due to both Majorana transi-
tions and holes in the trap. As we will show, these losses would limit the trap lifetime to
well below one second. After introducing the problems, we first present the mathematical
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techniques used to calculate the electric fields in the vicinity of the microstructures. We
then show how the problems with the microstructures can be solved using a more compli-
cated microstructure design and subsequently present an overview of the microstructure
design in general. Section 3.6 concludes with a consideration of the electric fields from the
combination of the microstructure and the trap perimeter electrode.

The final section of this chapter discusses possible improvements to the design of the
electric trap to further reduce losses and to increase the field homogeneity inside the trap.
Modulating the width of the microstructure electrodes should allow the field gradient in
the remaining electric field zeros in the trap to be increased, thereby reducing losses due
to Majorana transitions. Changes in the microstructure width might also be used to
compensate the electric field induced by the perimeter electrode causing it to drop off at a
faster rate towards the center of the trap. This would allow the homogeneity of the electric
fields in the trap center to be improved without changing the dimensions of the trap.

3.2 Potential loss mechanisms in an electric trap

Minimizing losses for molecules stored in a trap requires understanding what loss channels
are potentially relevant in the first place. For polar molecules in a DC electric trap, a rather
comprehensive list of possible processes is collisions with background gas, holes in the
strong electric fields constituting the walls of the trap, heating mechanisms which increase
the temperature of trapped molecules until they are no longer confined, and transitions
to untrapped states. Moreover, transitions to untrapped states can be subdivided into
transitions due to blackbody radiation, Majorana transitions, and state changing collisions.
We discuss each of these loss channels in turn.

3.2.1 Collisions with background gas

Probably the most well known loss process for particles in a shallow trap (here meaning
a trap depth of less than the ambient temperature) is collisions with the background
gas. Such losses can be particularly troublesome in experiments with a direct line-of-
sight access to a high density source region. In contrast, the guiding techniques used
for the molecule experiments in this thesis provide the ability to guide molecules around
bends and through differential pumping sections away from the source [51, 100]. This
allows the usual base pressures according to standard ultra high vacuum techniques to
be reached, with correspondingly low collision rates with background gas. In fact, for
atomic systems, lifetimes of many hundreds of seconds have been reached [101, 102], and
even longer for experiments in a cryogenic environment [103], demonstrating the degree to
which background gas collisions can be suppressed.

To estimate background gas collision rates we make use of a simple analytic theory by
Bjorkholm [104] based on the long-range interaction potential between trapped particles
and a background gas species. Here, the collision rate is obtained from the maximum im-
pact parameter for a glancing collision which imparts enough energy on a trapped particle
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to eject it from its trap. According to this theory, an ensemble of Na atoms in a trap
with a 1 K depth colliding with a N2 background gas at a pressure of 10−10 mbar should
be lost from the trap with a time constant of 333 s [104]. One might expect the order
of magnitude of this result to be transferable to collisions of polar molecules with a po-
larizable background gas since the dipole-induced-dipole interaction should be of similar
order of magnitude as the induced-dipole-induced-dipole interaction between two polariz-
able particles. Note that this no longer holds for a background gas species which also has
a permanent electric dipole moment, in which case the interaction potential strength and
therefore the collision rate with the background gas at a given pressure should be con-
siderably higher. According to these considerations, background collision induced losses
should be negligible for the present trap experiment considering the background pressure
of well below 10−10 mbar originating mainly from residual H2. One remaining caveat is the
rather confining trap geometry, so that the background pressure inside the trap might be
substantially higher than in the surrounding vacuum chamber.

3.2.2 Holes in the trapping fields

A second possible source of losses for molecules from an electric trap is remaining holes,
i.e. weak spots, in the confining high electric fields constituting the trap walls. In a simple
quadrupole or Ioffe-Pritchard type configuration this may seem like a trivial effect with
the potential in the weakest such hole simply taken to be the trap depth. The situation
is substantially more complicated in an effectively extremely high-order multipole trap as
we have implemented. For such a trap, deep holes in the confining potential by no means
preclude long trapping times of particles with substantially more energy than required to
traverse the hole since thousands of collisions with the trap boundary may be necessary
before a molecule actually finds the exit channel. This necessitates description of such
holes in terms of a loss rate rather than equating the lowest energy required to traverse the
weakest hole with the trap depth. We note that the ability to implement such holes is one
of the principle reasons to choose such a complicated trap design as our own since it allows
direct connection of an input and output guide to continuously load/unload molecules to
and from the trap.

While it may seem like holes in the trapping field will rarely if ever appear inadvertently,
or that it should at least be easy to eliminate them by appropriate electrode design, the
opposite is in fact the case for complicated electrode geometry due to geometric reasons.
An electric trap consists of a set of electrodes surrounding some region of space. For a
given set of voltages applied, each electrode either has a well defined polarity (plus or
minus, based on the sign of the surface-normal electric field), or electric field zeros on the
surface of some of the electrodes will exist (see Fig. 3.1a). While such zeros are generally
surrounded by non-zero fields hindering molecules from colliding with the surface, these
fields are generally lower than the remaining trapping fields and thus constitute weak spots
in the trapping potential. Realizing a trap with maximal depth thus requires a definite
polarity to be assigned to each electrode, providing a constraint on the trap geometry.

A more difficult problem appears whenever more than two electrodes meet on the sur-
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Figure 3.1: Demonstrating the existence of electric field zeros (indicated by the red crosses)
in a region of space surrounded by more than 2 electrodes in 2 dimensions. a. The sign
of the surface-normal electric field must alternate on neighboring electrodes, otherwise the
electric field somewhere on the surface of some electrode must be zero. Note that this also
holds in 3 dimensions and means that an electric field zero is guaranteed to exist on the
surface of some electrode whenever an odd number of electrodes meet. b. For 2n > 2
electrodes of alternating polarity arranged around some region of space, the nonexistence
of local extrema of the electric potential in free space dictates the existence of saddle points
in the potential, i.e. electric field zeros.

face of the trap, as illustrated in Fig. 3.1b. In two dimensions, such a geometry always leads
to an electric field zero somewhere in free space. In three dimensions this corresponds to a
channel of zero field leading out of the trap. The only way to plug such holes is to create
large electric fields along the third dimension, the direction leading out of the trap. How-
ever, making such fields strong enough is again exceedingly challenging, especially when
using microstructure electrodes constrained to two dimensions. We thus either have to
accept such holes, or come up with a trap geometry which avoids more than two electrodes
meeting anywhere on the trap surface. The second possibility can in fact be accomplished
using a ring type trap architecture as was implemented in the first design for a continu-
ously loadable electric trap in our group [90]. However, transferring this approach to a
microstructured trap would require the microstructure to consist of a series of concentric
circles, which poses a problem in terms of contacting.

Considering that holes in the trapping potential appear relatively easily, we calculate
the rate at which losses of molecules through such holes will occur. The result is of course
also useful to determine the rate at which molecules enter the input and output guide
of the trap, which after all are simply (hopefully) the biggest holes in the trap. For an
exit channel with a slow variation of the electrodes along the direction of the channel, the
electric field can be approximated by assuming a two dimensional electrode geometry. In
this case the electric field in the vicinity of the hole is given by a quadrupole or higher
order multipole. We restrict our attention to the idealized quadrupole case, a hole with
a transverse potential profile V (r) = V0r/r0, where V0 is the trapping potential at some
radius r0 from the center of the hole. Moreover, we assume the trap with volume V to be
filled with molecules of mass m and energy E. It is possible to obtain identical results using
either of the following two approaches. First, one can calculate the fraction of molecules
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which enter the hole in the time dt, being near enough to the entrance of the hole and with
a velocity component along the direction of the hole which is large enough to overcome
the potential V0r/r0 of the hole. Second, one can compare the phase space volume of the
trap with the phase space volume emptied through the output hole in time dt. We proceed
with the second approach.

With phase space volume element d3x d3v, the phase space volume of the trap is equal
to

∫

d3v

∫

V

d3x δ
(m

2
v2 − E

)

= V 4π

√
2E

m3/2
. (3.1)

To calculate the phase space volume passing through the output in time dt, we can use the
same integral, except that the potential energy in the hole needs to be taken into account.
Moreover, the spatial volume element depends on the longitudinal velocity vz and is given
by d3x = vz dt d

2xt, where xt is the transverse position. We obtain

∫
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The loss rate Γhole of molecules through the hole is now obtained from the ratio of the two
previous equations. Denoting the maximum radius from the center of the hole at which
molecules can exist based on their energy by rmax = E r0/V0, we obtain

Γhole =

√

2E

m

πr2max

12V (3.3)

We emphasize the strong dependence of the losses on the energy of the molecules, with the
losses being proportional to E5/2.

3.2.3 Heating mechanisms

For shallow atomic traps, a particularly prevalent loss process is the existence of various
heating mechanisms which increase the kinetic energy of atoms until they are no longer
confined. This is especially the case for dipole traps where, in addition to off-resonant scat-
tering from the dipole laser, parametric heating due to power or beam-pointing fluctuations
are possible. Certainly, heating by scattering of photons is a non-issue in our present ex-
periment, and beam-pointing fluctuations, which might translate to mechanical motion of
the trap electrodes, is also extremely unlikely to be relevant. However, we identify several
other mechanisms which might cause heating, and discuss them in the following.

While one might generally think of collisions with a background gas as relatively violent
events which directly expel molecules from a trap, extremely glancing collisions which
provide only a small momentum kick also exist. Such collisions can impart insufficient
kinetic energy on a molecule to expel it from the trap and will then instead result in heating.
Such collision induced heating was already observed many years ago for Cs atoms [105],
and has also been investigated theoretically [106, 107]. Collision induced heating can be a
problem particularly in traps with a substantially larger trap depth than the temperature of
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the trapped particles. In this case, glancing collisions create individual trapped particles
with a substantially higher energy than the rest of the ensemble. Subsequent collisions
between these particles and the rest of the ensemble then transfer this energy to the entire
ensemble. Considering that we have yet to observe collisions between trapped particles in
the present trap, this last mechanism for us is certainly not an issue.

While parametric heating by mechanical oscillations of the trap electrodes hardly needs
to be considered, and the DC nature of the trapping fields in principle results in purely
conservative forces acting on the molecules, heating due to fluctuations of the voltages
applied to the trap electrodes might still be relevant. We estimate the effect of such
fluctuations based on the following simple model. Suppose the fractional rms voltage
fluctuations in the bandwidth equal to the trap frequency f is equal to δ ≪ 1. In this case,
molecules moving from the center of the trap to the peak of their trajectory will experience
a force which on average varies by a fractional amount δ from the force they experience
when moving back to the trap center. During the process, the molecules therefore gain
or lose an amount of energy approximately equal to δ E, where E is their total energy.
Modeling this process as a random walk, a total of approximately δ−2 trap oscillations
are necessary for the energy of the molecules to increase by a factor of two. We therefore
obtain an energy doubling time of approximately (δ2 f)−1. We note that except for a
constant prefactor, this is identical to the result obtained using a quantum calculation by
Savard et. al. [108]. Considering that fractional voltage fluctuations of far below 10−3 can
easily be obtained, we see that parametric heating should not be an issue in our experiment.

A final mechanism which potentially might cause heating in our trap is long-range
interactions of the molecules with the trap electrodes and other surfaces. This has in fact
been investigated in some detail by Henkel and Wilkens for atoms and ions [109]. For
ions, surface induced heating can be quite substantial, with a heating rate on the order of
1 Hz for distances from a surface on the order of 10µm [109]. Based on the trap design
discussed in later parts of this chapter, molecules in our trap will generally have insufficient
kinetic energy to approach the trap surface within 10µm. Combined with the fact that
the interaction of an electric dipole with a surface will be substantially smaller than the
interaction of an ion with a surface, we expect surface induced heating not to play a role
for us.

3.2.4 Losses via untrapped states

Since the trapping potential in an electric trap strongly depends on the internal rotational
state of a molecule, any mechanism causing a change in the molecular state will generally
result in trap losses. Such state changes can occur due to the following mechanisms.

3.2.4.1 Blackbody radiation

Considering the very high frequencies of electronic transitions, far above the Boltzmann
cutoff at room temperature, and the extremely weak nature of magnetic transitions be-
tween hyperfine states, transitions between internal states induced by blackbody radiation
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can be completely ignored for atoms. This situation changes entirely for molecules with
their strong electric dipole transitions between rotational states and the existence of low-
lying vibrational excitations in the tail of the Boltzmann distribution. Blackbody induced
transitions have in fact already been observed for OH molecules in an electric trap [99],
resulting in state lifetimes of only several seconds at room temperature. It turns out, how-
ever, that OH belongs to the relatively special class of molecules with chemical formula
XHn. Here, very light hydrogen nuclei rotate around a single heavier nucleus, leading to
very high rotational constants. The resulting very high frequencies between neighboring
rotational states dramatically increase the rate at which blackbody induced transitions can
occur.

We substantiate the previous by deriving the rate Γbb at which an arbitrary electric
dipole allowed transition between two molecular states is driven by blackbody radiation.
It turns out that the only required molecular parameter is the spontaneous decay rate A
from the more energetic to the less energetic of the two states. For a transition dipole
moment d between the two states and a transition frequency ω, this is given by

A =
ω3|d|2

3πε0~ c3
. (3.4)

According to the principle of detailed balance, the blackbody induced transition rate is now
given by the product A 〈n〉, where 〈n〉 is the average thermal photon occupation number
in a single mode of the electromagnetic field. According to Bose-Einstein statistics, this is
given by

〈n〉 =
1

e~ω/kBT − 1
=

{

kBT
~ω

~ω ≪ kBT
e−~ω/kBT

~ω ≫ kBT
. (3.5)

For transitions between low-lying rotational states at room temperature, the low fre-
quency limit ~ω ≪ kBT always holds, in which case Γbb scales as Γbb ∝ ω2|d|2T . For a
representative transition with a transition dipole moment of |d| = 1 D and a transition
frequency of ω = 2π × 100 GHz at a temperature of T = 293 K, we find A = (86000 s)−1,
〈n〉 = 61, and therefore Γbb = (1400 s)−1. Taking into account the exact transition frequen-
cies and transition dipole moments, we find that blackbody induced transitions between
rotational states should not play a role for any of the experiments performed for this thesis.

For transitions between vibrational states in light and moderately heavy molecules,
the high frequency limit ~ω ≫ kBT generally applies. In this case, transitions with an
appreciable spontaneous decay rate generally have such high transition frequencies that
the low value of 〈n〉 prevents blackbody induced transitions from happening, whereas for
lower-lying vibrational transitions, the dependence of A on ω3 again sufficiently suppresses
Γbb. However, unlike rotational transitions, whose transition dipole moment is given by
the permanent electric dipole moment of the molecule times the relevant Hönl London
factor, the transition strengths for the vibrational modes of a given molecule can vary
independently over a large range, and must therefore be considered individually. In fact,
for CH3F, the lowest lying vibrational C-F stretch mode has a large spontaneous decay
rate of about 13 Hz from the first vibrational excitation to the ground state [110]. Together
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with a value of 〈n〉 = 0.0058 at a transition frequency of 1049 cm−1 at 293 K, this results in
Γbb = 0.075 Hz= (13 s)−1, which is certainly relevant on the timescales of our experiments.

The previous rates for radiative induced transitions between states can be enhanced
by the following two effects. First, electromagnetic noise in the lab can mimic blackbody
radiation but with increased power. Here, the effect can be obtained by comparing the
spectral power density of the electromagnetic noise with that of the blackbody radiation.
For RF noise, the noise spectrum should drop off rapidly above the bandwidth of any
amplifiers used in the lab, and should therefore leave transitions between vibrational states
and transitions between well separated rotational states unaffected. On the other hand,
DC electric fields create Stark splittings between rotational M-sublevels on the order of
1 GHz and transitions between these states can easily be driven by RF fields. However, the
scaling of the rate of blackbody induced transitions with ω2 implies that RF noise needs
to be many orders of magnitude stronger than the blackbody radiation to have an effect.
Avoiding RF induced transitions thus requires ensuring that this is not the case.

A second enhancement for the rate of radiative induced transitions results for molecules
in close proximity to material surfaces [111]. Here, thermal fluctuations of the charges
in the material can cause near fields which are many orders of magnitude larger than
the far-field blackbody radiation. To understand this process, we consider an oscillating
dipole d in free space separated by a distance z0 from a dielectric with dielectric constant
ε. In addition to the usual radiation of light, the oscillating dipole can dissipate energy
electromagnetically via losses in the dielectric. For a molecule in an excited state, this
results in an increase in the spontaneous decay rate to a lower lying state. Here, the
fractional increase is equal to the ratio of the energy dissipated in the dielectric by a dipole
oscillating at the molecular transition frequency and the energy dissipated via radiation by
the same dipole. For thermal excitations in the dielectric and the rest of the environment
at the molecular transition frequency, all processes can also happen in reverse. Detailed
balance then dictates that blackbody induced transitions occur at the modified spontaneous
decay rate times the average occupancy in a single mode of the electromagnetic field.

To estimate the magnitude of the previous effects, we approximate the electric field
induced by the dipole p, placed at the origin, to be equal to that of a dipole in free space,

E(x) =
1

4πε0

[

k2(n̂× p)× n̂
eikr

r
+ (3n̂(n̂ · p)− p)

(

1

r3
− ik

r2

)

eikr
]

, (3.6)

where r = |x|, n̂ = x/r, and k is the wavenumber [112]. The power Prad radiated into
space by the dipole is given by twice (due to an equal contribution by the magnetic field)
the energy density ε0

4
|E|2 of the electric field integrated over a sphere of radius R centered

at the dipole with kR≫ 1, multiplied by the speed of light,

Prad = 2 c

∫

ε0
4
|E|2R2 dΩ = c

∫

k4

32 π2 ε0
|n̂× p|2 dΩ =

c k4 |p|2
12 π ε0

. (3.7)

Note that except for a constant factor, Prad/~ω is the spontaneous decay rate for a tran-
sition with transition dipole moment p, as might be expected.
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To calculate the power dissipated in the dielectric, the dielectric can be described by
a complex dielectric constant ε = εr + i εi, where εr and εi are the real and imaginary
parts of ε, respectively. In this case, the power dissipation per unit volume is equal to
ω εi
2
|E|2 [112]. For an order of magnitude estimate, we approximate the electric field as

E(x) ∼ 1

4 π ε0

p

r3
, (3.8)

thereby only considering the near field and disregarding the anisotropy of the dipole field.
The power dissipated in the dielectric is then given by integrating over the volume z > z0
containing the dielectric,

Pdis ∼
∫
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2

( |p|
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3
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The ratio of power absorbed by the dielectric and the radiated power is therefore given by

Pdis/Prad ∼
εi
ε0

1

(k z0)3
, (3.10)

this being the fractional amount by which blackbody radiation induced transitions are
enhanced. The modification of the transition rate thus increases with the inverse cube of
the molecule-surface separation z0, and, for a somewhat typical value of εi/ε0 of 10−3, is of
similar order of magnitude as the free-space transition rate when z0 is approximately two
orders of magnitude less than the wavelength of light at the transition frequency.

A more comprehensive analysis of the effect of a surface on blackbody radiation induced
transitions has been performed by Buhmann et. al. [111]. In particular, Buhmann et. al.

include the modification of the electromagnetic field by the material surface. In addition to
slightly changing the power absorbed in the dielectric, this can modify the radiated power
via the Purcell effect. In the limit of small z0, Buhmann et. al. find a fractional increase
in the blackbody radiation induced transition rate given by

εiε0
2|ε + ε0|2

1

(k z0)3
. (3.11)

Note that except for a slightly changed dependence on ε, this is identical to the result
derived here.

3.2.4.2 Majorana transitions

Solving the molecule Hamiltonian in an electric field results in molecular eigenstates cor-
responding to specific rotational M-sublevels only for a quantization axis chosen parallel
to the direction of the electric field. However, as a molecule moves, the direction of the
electric field may vary. As a result, a molecular eigenstate for the electric field at one point
in time projected onto the molecular eigenstates for a rotated electric field at a later point
in time results in a contribution from the complete set of rotational M-sublevels. This
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redistribution among states is suppressed for a sufficiently slow rotation of the direction
of the electric field, allowing the molecular states to follow adiabatically. Conversely, for
a fast rotation, molecules in low-field-seeking states can undergo transitions to untrapped
states, resulting in trap losses. Such a fast rotation occurs in particular in the vicinity
of field zeros, where the direction of the field can flip practically instantaneously, causing
these so-called nonadiabatic, spin-flip, or Majorana losses to be a particularly prevalent
loss mechanism in electric or magnetic quadrupole traps for neutral particles. Any other
electric or magnetic trap design with field zeros will of course also suffer from these losses.

Majorana losses have been investigated experimentally for polar molecules in an electric
trap in quite some detail by Kirste et. al. [98]. Specifically, trap losses for various isotopes
of ammonia were determined for both an electric quadrupole as well as for an electric
Ioffe-Pritchard type trap. As might be expected for Majorana losses, the loss rates in the
quadrupole trap were generally larger and strongly isotope dependent. Moreover, double
exponential decays were observed for the quadrupole trap, consistent with a Majorana loss
rate depending on the hyperfine state of the molecule.

We estimate the dependence of the Majorana loss rate on trap and molecule parameters.
Field zeros locally almost always take the shape of a quadrupole potential, with the electric
field increasing linearly away from the zero. Except in the case where hyperfine structure
dominates, in which case Majorana flips may potentially be avoided altogether [98], the
separation ∆V between neighboring rotational M-sublevels generally depends either lin-
early or quadratically on the electric field for electric field strengths at which Majorana
transitions may happen. Thus,

∆V = (cE x)n, (3.12)

where x is the distance of a molecule from the field zero, cE is a coefficient which, among
other things, quantifies the slope of the electric field strength versus position near the zero,
and n = 1 for a linear Stark shift or n = 2 for a quadratic Stark shift. A Majorana
transition is likely to happen if a molecule passes by a field zero such that the minimal
value of ∆V along its trajectory, occuring at a distance b from the zero, is comparable
to or less than the rate of approximately v/b at which the direction of the electric field
changes. Here, v is the velocity of the molecule. As a result, the critical minimal distance
for a molecule to pass by a zero such that a Majorana transition becomes likely to happen
is

b ≈ n+1

√

v

cnE
. (3.13)

The effective ”cross section” for Majorana losses for a total of N identical zeros in a trap
of volume V is then approximately N b2, so that the loss rate is given as

Γ ≈ N b2 v

V ≈







N v2

V cE
n = 1,

N v5/3

V c
4/3
E

n = 2.
(3.14)

For n = 1 and fixed trap volume V, the Majorana loss rate depends linearly on the energy
of the molecules and is inversely proportional to the electric field strength in the vicinity of
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the zeros. Note that Majorana losses will typically be much stronger for molecular states
with quadratic Stark shifts (n = 2), since the energy splitting between neighboring states
then approaches zero much more quickly for low fields.

3.2.4.3 Inelastic collisions

A final process for the internal state of a molecule to change would be via inelastic collisions
between the molecules themselves. Here, not only the change to an untrapped state can
cause trap losses, but also the fact that the conversion of internal energy to kinetic energy
might expel both collision partners from a trap. However, despite the propensity for inelas-
tic collisions to cause unwanted trap losses, at present we would consider the observation
of such collisions between cold molecules to be a definite achievement. The investigation
of such collisions is of great interest to improve the understanding of molecular dynamics,
being one of the often cited reasons to study cold molecules.

3.3 Overview of the trap design

+DV -DV +DV

Perimeter

electrodes

Perimeter

electrodes

Capacitor plates

a. b.

Figure 3.2: Fundamental design for a microstructured trap. a. Molecules are confined
between two capacitor plates with perimeter electrodes in the shaded grey region around
the circumference of the trap providing transverse confinement. b. Collisions with the
capacitor plate surface are avoided by microstructuring it (see text).

The fundamental design for a microstructured capacitor-plate type trap is shown in
Fig. 3.2. The primary goal of the trap design, providing a large region of tunable homo-
geneous fields in the trap center, is achieved by trapping the molecules between a pair of
capacitor plates. Confinement of the molecules, i.e. creating much higher fields everywhere
at the trap periphery, can be simultaneously achieved by microstructuring the plate sur-
face with an array of electrode strips of alternating DC polarity and by surrounding the
circumference of the trap with some arrangement of perimeter electrodes.

The dimensions of the flat rectangular box which approximately describes the trap
volume have a substantial impact on the properties of the trap. Here, establishing the
trap dimensions is closely related to establishing the periodicity of the capacitor plate
microstructure, which we therefore consider concurrently. The choice of trap dimensions
separates quite well into the two individual questions of choosing the ratio between the
various dimensions and choosing their absolute value. In particular, the ratio affects the
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field homogeneity which can be achieved in the trap, the loading and unloading of molecules
to and from the trap, and the ability to suppress Majorana losses. The overall dimensions
again affect the loading and unloading of molecules as well as the size of the molecule
ensemble which can be stored in the trap, and are directly related to technical constraints.

3.3.1 Establishing the ratio of the trap dimensions

Determining the effect of the trap dimensions on the achievable field homogeneity requires
understanding how the high confining electric fields at the trap periphery drop off towards
the inside of the trap. We first consider the fields resulting from the perimeter electrodes.
This is in fact a classic problem in electrodynamics [112]: determining the electric field
in a volume defined by x > 0, 0 < y < a, and translation symmetry in the z direction,
with a constant potential Φ0 and Φ1 on the surfaces y = 0 and y = a, respectively, and an
arbitrary potential on the surface x = 0. Here, the y-direction is the direction between the
capacitor plates with a being the separation between the plates, x is the direction into the
trap, and z is the direction along the perimeter electrodes. The general solution to this
problem is given by [112]

Φ(x, y, z) = Φ0 + (Φ1 − Φ0) y +
∞
∑

n=1

an exp

(−nπ x

a

)

sin
(nπ y

a

)

, (3.15)

where the {an} are expansion coefficients. As can be seen, the electric fields caused by
the perimeter electrodes always decay exponentially towards the center of the trap. The
slowest decaying component is from the term with the a1 coefficient, which decays by a
factor of 10 over a distance of ln 10

π
a. Thus, for each order of magnitude by which the

perimeter electrode fields are to be suppressed, the distance from the center of the trap to
the perimeter electrodes must be increased by 0.733 times the capacitor plate separation.

The electric fields originating from the capacitor plate microstructure strips are sur-
prisingly similar to those from the perimeter electrodes. Let d be the periodicity of the
microstructure, i.e. the distance between consecutive electrodes of equal polarity. Consider
the volume defined by x0 < x < x0 + d/2, y > 0, and translational symmetry along the
microstructure, taken to be oriented along the z direction. Here, x0 is the midpoint above
one of the electrodes, in which case, assuming equal spacing between all the microstructure
electrodes, x0 + d/2 is the midpoint above the neighboring electrode of opposite polarity.
The planes x = x0 and x = x0 + d/2 are reflection planes. The x component of the electric
field therefore vanishes in these planes, i.e. Neumann boundary conditions hold. Except for
the change in the type of boundary condition, we thus have the same problem as before,
with the general solution given by

Φ(x, y, z) = Φ0 + E0 y +

∞
∑

n=1

an exp

(−n 2π y

d

)

cos

(

n 2π (x− x0)

d

)

. (3.16)

Here, E0 is the homogeneous offset field between the two capacitor plates. Note that we
are approximating the opposite capacitor plate at y = a to be an infinite distance away.

35



The term with the a1 coefficient again decays slowest, with a decrease by a factor of 10
over a distance of ln 10

2π
d. The inhomogeneous microstructure field is thus suppressed by a

factor of 10 for each increase in the distance from the microstructure by 0.366 times the
microstructure periodicity.

We next consider the effect of the trap dimensions on loading and unloading of molecules
to and from the trap. According to Eq. 3.3, the rate with which molecules escape through
a hole in the trap scales as Γhole ∼ vA

V
, where v is the velocity of the molecules, A is

the effective area of the hole, and V is the trap volume. For an appropriate value of
A (according to the size of the openings to the input and output guides of the trap),
Γhole describes the rate with which molecules find the trap exit as well as the rate with
which the density of molecules in the trap approaches the density of molecules in the
input guide during loading. In the case where losses through the trap input and output
are the dominant trap loss mechanism, Γhole determines the timescale for loading and
unloading of molecules to and from the trap. In this case a large value of Γhole is useful
since experiments with the trap can be performed at a higher rate. However, the maximal
density which can be obtained in the trap will simply reflect the density in the input guide,
and the number of detected molecules obtained from loading and unloading the trap once
will simply reflect the trap density times the trap volume, independent of Γhole. Obtaining
a large value of Γhole is much more important when other trap losses, occurring at a rate
Γloss, dominate. In this case the maximum obtainable trap density as well as the fraction
of trapped molecules which can be unloaded both scale as Γhole/Γloss, and the total signal
for loading and unloading the trap once scales as (Γhole/Γloss)

2. A large value of Γhole is
then clearly very important.

Determining the scaling of Γhole with the trap dimensions of course depends on how the
input and output guides are attached to the trap, as discussed in detail in section 3.5. Here,
the only viable approach seems to be to interrupt the trap perimeter electrodes at some
point and attach the guide. Considering that all electric guides for molecules which have
been realized to date have had a more or less cylindrical potential for the molecules, both
transverse dimensions of a well matched guide attached to the trap would be proportional
to the separation of the microstructure plates a so that the area of the guide is proportional
to a2. For transverse trap dimensions b and c, resulting in a trap volume V = a · b · c, we
obtain

Γhole ∝
v a

b c
. (3.17)

We see that a large value of Γhole requires a large microstructure plate separation and small
transverse trap dimensions, exactly the opposite of what is needed for homogeneous fields.
Reducing all three trap dimensions by an equal amount also increases Γhole. Finally, we
note that Γhole decreases for colder molecules, which is of particular importance once the
molecules are cooled.

The final effect of the ratio of the trap dimensions relates to the specific approach
which was chosen to suppress Majorana losses in the trap. As discussed in section 3.6.4,
the width of the microstructure strips is tapered to provide on offset field which eliminates
electric field zeros. Here, a minimum degree of tapering is necessary, restricting the ratio
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of the microstructure length to width. We note that increasing the overall trap dimensions
reduces the degree of tapering which is necessary.

In the previous, we have seen that a large ratio between the transverse trap dimen-
sions and the microstructure plate separation as well as between the plate separation and
the microstructure periodicity is necessary to achieve highly homogeneous fields inside the
trap. On the other hand, a large ratio reduces Γhole and can prevent Majorana losses
from being effectively suppressed. Considering that the homogeneity of the electric fields
doesn’t directly affect the ability to trap molecules but ”only” affects the ability to further
experiment with the molecules once trapping has been achieved, a ratio between the trap
dimensions was chosen for the initial trap design which only results in moderately homoge-
neous fields. Specifically, a suppression of the high trap periphery fields at the central point
in the trap by at least four orders of magnitude is obtained by choosing a ratio between
the microstructure plate separation and the microstructure periodicity of at least 2.9 and
by choosing a ratio between the transverse trap dimensions and the plate separation of
at least 5.9. Note that the field homogeneity in, say, the 50 % of the trap volume with
the smallest variation in the electric field strength, will be substantially worse than the
homogeneity near the central point in the trap.

3.3.2 Establishing the overall scale of the trap dimensions

In addition to affecting the rate Γhole for molecules to enter and exit the trap, scaling all
the trap dimensions in particular affects the number of molecules which can be trapped
inside. Here, we consider two scenarios regarding the molecule source for the trap. First,
the trap might be combined with a high-density source where the density in the trap is
limited by the need to avoid losses via inelastic collisions on the timescale needed for the
desired manipulation of the molecules inside the trap. The maximum trap density is then
independent of any trap properties and increasing the trap volume proportionally increases
the number of molecules which can be usefully loaded into the trap.

The second and current scenario is for molecules being loaded into the trap from a
velocity selected source. In the case where losses via the entrance and exit hole dominate,
the density in the trap during loading eventually approaches the density of molecules in
the input guide, and increasing the trap dimensions can again dramatically increase the
number of molecules which can be obtained from the trap. However, increasing the trap
dimensions is no longer beneficial when other trap losses dominate. In this case, doubling
the trap dimensions reduces Γhole by a factor of 2, which, assuming the other trap losses
remain constant, reduces the number of molecules which can be unloaded from the trap by
a factor of 4. Moreover, increasing the dimensions of the input guide and effusive source by
a factor of 2 reduces all molecule densities by an additional factor of 2. This is because the
high pressure in the region directly behind the effusive nozzle which limits the maximum
guide density due to boosting [52] extends over twice the distance. Increasing the trap
dimensions beyond the point where Γhole is approximately equal to other trap losses thus
no longer increases the number of molecules which can be unloaded from the trap, and this
point might thus be taken to define an optimal size for the trap.
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Figure 3.3: Dimensions chosen for the microstructured trap. The solid outer line shows
the inner edge of the perimeter electrodes. The transverse dimensions are 2 cm by 4 cm
with a 3 mm separation between the microstructure plates and a 0.8 mm microstructure
periodicity. The connection to an input and output guide is centered relative to one of the
two independently tunable trap regions.

Before fixing the trap dimensions, two technical points also need to be considered. First,
a large trap size is desirable since it simplifies the manufacturing of the trap components.
Thus, scaling the present design of the trap down to a microstructure plate separation of
less than 1 mm would be quite challenging. Second, increasing the trap dimensions requires
all voltages applied to trap electrodes to be increased proportionally if the electric field
strengths in the trap are to remain constant. Thus, obtaining electric fields on the order of
100 kV/cm for electrodes separated by more than 1 mm requires voltages which are more
and more difficult to handle.

A final criterion for trap dimensions is the desire to provide two independently tunable
regions of homogeneous field inside the trap. In addition to being a requirement for the
original proposal of opto-electrical cooling, this allows for additional manipulation of the
molecules such as confining the molecules to a single half of the trap. Satisfying this
criterion is accomplished by choosing the length of the trap to be twice the width, with
the microstructure on the capacitor plates being configured to allow independent voltages
to be applied to the two halves.

Given the lack of sufficiently accurate a priori knowledge concerning the loss processes
in the trap, choosing the trap size so that Γhole is similar to the rate of other trap losses was
not possible. As an alternative, the trap size in the end was chosen by trying to optimally
match the trap to a quadrupole guide with the standard size for a quadrupole guide in our
group. Specifically, to match a quadrupole guide made of cylindrical electrodes of radius
1 mm with a 1 mm separation between neighboring electrodes, a separation between the
microstructure plates of 3 mm was chosen, as described in section 3.5. The criteria for the
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ratio of the trap dimensions from the previous section were then satisfied by choosing a
microstructure periodicity of 0.8 mm and choosing transverse trap dimension of 2 cm by
4 cm. This results in a top view of the trap as shown in Fig. 3.3.

3.4 Transverse confinement via a perimeter electrode
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+

-

a.
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Figure 3.4: Variations for the design of the perimeter electrode.

With the two microstructure capacitor plates confining the molecules in one dimension,
full three dimensional trapping is achieved by providing additional transverse confinement
around the perimeter of the trap. The perimeter electrode geometry for the transverse con-
finement is basically dictated by the following three considerations. Most importantly, the
perimeter electrodes must ensure a strong uniform trap depth. Second, it must be possible
to interrupt the perimeter electrode to allow efficient loading and unloading molecules to
and from the trap. In our case we aim to connect the trap to a quadrupole guide. Finally,
good optical access from the side of the trap is desirable.

Three possible designs which were considered for the perimeter electrode are shown in
Fig. 3.4. The first design which was considered is shown in Fig. 3.4a. This design has the
advantage of providing optimal optical access. However, both the other criteria are difficult
to satisfy. In particular, the lack of an opposing electrode with the opposite voltage at
the transition between the semicircular electrode and the microstructure plates leads to
weaker confining fields. Moreover, the need to extend the microstructure directly to the
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edge of the microstructure plate posed an uncertain technical challenge. The requirement
to connect the perimeter electrodes to a quadrupole also remains an unsolved challenge for
this geometry since the dipolar symmetry of the edge of the trap is inconsistent with the
quadrupole symmetry of the guide.

By placing the perimeter electrode between the microstructure plates as shown in
Fig. 3.4b, the problems with the first design are completely solved. With sufficient overlap
between the perimeter electrode and the microstructure plates, the electric field between
the two approaches a homogeneous value. By additionally appropriately shaping the cur-
vature at the inner side of the perimeter electrode, we can aim at achieving completely
uniform confining fields on the entire surface of the perimeter electrode. This is discussed in
detail in section 3.4.1. A straightforward connection to a quadrupole guide is also possible
in this configuration. Interrupting the perimeter electrode, we extend the two microstruc-
ture plates to the negative electrodes of the quadrupole and extend the two sides of the gap
in the perimeter electrode to the positive electrodes. This transition is discussed in detail
in section 3.5. Despite the diminished optical access, this design was therefore chosen for
the trap.

The third design which we consider is shown in Fig. 3.4c. Here, the single perimeter
electrode between the two plates is replaced by two identical perimeter electrodes. With
opposite voltages applied to the two microstructure plates, the plane between the two
plates (indicated by a dashed line in Fig. 3.4c) is a reflection plane. We can therefore
imagine an electrode at zero potential located in this plane and we obtain two versions
of the second perimeter design stacked on top of each other. With this design, we retain
direct optical access to the center of the trap. Additionally, due to the reflection symmetry,
the edge fields due to the perimeter electrodes fade out more rapidly towards the center
of the trap than in the second design. A disadvantage of this approach is the smaller
perimeter electrode dimensions for a given plate separation which presents more challeng-
ing construction requirements. Additionally, with an electrode topology identical to the
first design, connection to a quadrupole guide is difficult. However, by interrupting the
perimeter electrodes as in the second design, an efficient connection to a hexapole guide
could probably be realized.

3.4.1 Shape of the perimeter electrode

While the perimeter electrode design in Fig. 3.4b in principle allows a strong uniform trans-
verse trapping field to be achieved, actually achieving this goal requires the edges of the
electrode to be suitably shaped. There plausibly exists a shape for the perimeter electrode
for which the electric field strength is constant on the entire surface of the electrode. Such
a shape could be considered optimal since the confining field strength due to the perimeter
electrode could be ramped infinitesimally close to its breakdown electric field strength.
However, it is completely unclear how to find an exact solution to this problem: we require
a surface shape that satisfies Dirichlet and Neumann boundary conditions simultaneously.
However, the electric field strength at each position on the electrode surface depends on
the position of the surface at all other points of the electrode.

40



-2 -1 0;-90 0 90;0 1 2
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Position on surface

E
le

c
tr

ic
 f

ie
ld

 s
tr

e
n

g
th

 (
T

D
U

)

1
.2

m
m 1mm

3
m

m

a.

0.5

1

b.

0

Figure 3.5: Perimeter electrode realization and resulting electric field strength distribution
in units of trap depth (TDU, see text). a. The electrode consists of a plate with a width of
40 % of the separation between the microstructure plates. The edge of the plate is an ellipse
with a semi-major axis of one third of the microstructure-plate separation. b. Electric field
strength on the surface of the perimeter electrode. On the flat part of the surface, position
is given in mm. On the elliptical part, position is given in terms of the angle from the
ellipses center.

Perhaps more importantly, other considerations are also relevant for the perimeter
electrode design. In particular, an acceptable optical access from the side of the trap
requires a sufficient separation between the microstructure plates and the perimeter elec-
trode. Moreover, keeping the electrode shape simple is advantageous for drafting and
implementation. Last but not least, experience from operating the trap has shown that
the perimeter electrode is far from being the limiting factor in determining the maximum
possible trapping field strength, this instead being the microstructure plates. A weaker
condition for the perimeter electrode shape would therefore be requiring the electric field
strength on the perimeter electrode surface to be everywhere larger than the maximum
electric field strength due to the perimeter electrode on the microstructure plate surface.

The perimeter electrode shape and dimensions chosen for the present trap to satisfy
the previous criteria is shown in Fig. 3.5a. Additionally, Fig. 3.5a shows the electric field
strength distribution resulting from this configuration, with the electric field strength on
the perimeter electrode surface shown in Fig. 3.5b. As can be seen, the field on the perime-
ter electrode surface remains constant to an acceptable degree, with the maximum field
strength being approximately 30 % higher than the trapping field between the perimeter
electrode and the microstructure plates. We note that the maximum field could be reduced
using a slightly flatter front edge of the perimeter electrode. However, this would increase
the field away from the front edge. To reduce the field everywhere relative to the trapping
field would require the distance between the perimeter electrode and the microstructure
plates to be reduced. Finally, we note that the increased field at the edge of the perimeter
electrode is in fact an advantage in two regions of the trap where this field is reduced due
to additional electrode geometry. These are the bends of the perimeter electrode in the
corners of the trap, discussed in section 3.4.2, and the entrance and exit channels of the
trap discussed in section 3.5.
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3.4.1.1 Definition of trap depth units (TDU) to account for scaling of the trap
voltages

Throughout this chapter, we repeatedly show electric field strength distributions resulting
from various trap electrode geometries, as in Fig. 3.5. Here, the absolute scale of the electric
field strength of course not only depends on the electrode geometry, but also on the voltages
applied to the electrodes. Since this scaling is relatively arbitrary, it is useful to define a
consistent scaling for the electric field strength. As a result, we define the nominal trap
depth to be the electric field strength equal to the voltage difference between the perimeter
electrode and the average voltage on the capacitor plate electrodes divided by the 0.9 mm
distance between the perimeter electrode and the capacitor plates. From Fig. 3.5, we see
that the nominal trap depth is equal to the confining electric field strength due to the
trap perimeter electrode. We define trap depth units (TDU) to measure an electric field
strength in units of the nominal trap depth. In section 3.6.2, we define a standard ratio
between the voltage applied to the trap perimeter electrode and the voltages applied to
the trap microstructure. The trap depth units can then also be used for the electric fields
produced by the trap microstructure.

3.4.2 Perimeter electrode at the corners of the trap

The previous description of the electric fields produced by the perimeter electrode assumes
translation symmetry along the perimeter electrode. This of course no longer holds in
the vicinity of the corners of the trap, resulting in modified fields. Here, the bend of the
perimeter electrode to a slight degree shields the front edge of the perimeter electrode from
the capacitor plates, resulting in reduced electric fields. Additionally, the inhomogeneous
perimeter fields are expected to extend further into the trap.

To investigate this situation, we consider the fields produced by a completely circular
perimeter electrode. We then have azimuthal symmetry about a symmetry axis perpendic-
ular to the capacitor plates, allowing the fields produced by an arbitrary arrangement of
(cylindrically symmetric) perimeter electrodes to be expressed using an analytic expression
comparable to Eq. 3.15. Specifically, with translation symmetry along the z axis replaced
by rotation symmetry along an azimuthal φ coordinate and with the x coordinate replaced
by the radius r from the symmetry axis, we obtain

Φ(r, y, φ) = Φ0 + (Φ1 − Φ0) y +
∞
∑

n=1

anJ0

(

i n π r

a

)

sin
(nπ y

a

)

, (3.18)

where J0(z) is the zeroth order Bessel function of the first kind. Along the imaginary axis,

J0(i r) ≈ er√
2 π r

for r ≫ 1. (3.19)

We thus see that for large r, Eq. 3.19 is identical to Eq. 3.15 except for an additional factor
1/
√
r, causing a slightly slower decay of the perimeter field towards the trap center.
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Figure 3.6: Electric field strength at the corners of the trap, if the perimeter electrode
profile were swept over a full circle to provide azimuthal symmetry. The depiction is the
same as in Fig. 3.5.

To investigate the fields in the vicinity of the perimeter electrode, we require the specific
perimeter electrode geometry. This is defined by sweeping the transverse profile in the
straight sections of the perimeter electrode as described in the previous section over a
quarter circle about an axis located 4 mm from the front edge of the perimeter electrode,
as shown in Fig. 3.3. If the curvature of the perimeter electrode is continued over a full
circle, the resulting cylindrical symmetry allows the electric fields to be calculated with
substantially higher accuracy. This gives rise to fields as shown in Fig. 3.6. Note that the
actual fields near the corners of the trap will lie somewhere between those shown in Fig. 3.6
and those shown in Fig. 3.5. As we can see, the field at the front edge of the perimeter
electrode is reduced by approximately 14 %, but remains higher than the maximum field
at the surface of the microstructure plate. The increased fields at the front edge of the
perimeter electrode are thus important at the trap corners and would even allow a slightly
smaller corner bend radius without reducing the trap depth.

3.5 Connecting the trap to a quadrupole guide

The basic principle for attaching a quadrupole guide to our trap for loading and unloading
of molecules is relatively simple. Creating a gap in the trap perimeter electrode at some
point, two opposing electrodes of the quadrupole are attached to the perimeter electrode on
the two sides of the gap, and the other two electrodes are attached to the microstructure
plates. However, achieving an efficient connection requires several details to be worked
out, mainly related to maintaining a sufficient transverse trapping depth and providing
a uniform and preferably large channel of low electric field along the entire trap-guide
transition. These are addressed in the following.

3.5.1 Optimized depth for a connecting guide

A first question one might consider when attaching a guide to the trap is determining the
optimal transverse potential depth of the guide. Naively, one might expect the optimal
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depth to be equal to the potential depth of the trap, but this is not the case: Suppose
the two are equal. In this case a molecule in the guide with a transverse energy equal
to the guide depth must have a longitudinal velocity of zero if it is to be confined in the
trap. Slightly reducing the guide depth will then result in a loss of the transversely hottest
molecules of which only a vanishing fraction might have been trapped, whereas the area of
the guide which can be occupied by all other molecules simultaneously increases. The net
flux of molecules entering the trap will thus increase.

An optimal value for the depth of the quadrupole guide can be derived as follows. Let
VT be the potential depth of the trap. We assume a guide with a perfect quadrupole
potential profile whose transverse depth VG can be varied independent of the trap depth.
In this case, the effective area of the guide for a molecule with a linear Stark shift and with
transverse energy Et is proportional to (Et/VG)2. To obtain the total molecule flux, we
multiply by the molecule velocity distribution and integrate over the velocity. Assuming
a uniform distribution of molecules in phase space, the velocity distribution for the flux of
molecules along the guide is proportional to dEt vl dvl, where vl is the longitudinal velocity.
For VG ≤ VT , the total flux of guided molecules which can be trapped is then proportional
to

Φ =

∫ VG

0

dEt

∫ VT−Et

0

dv2l

(

Et

VG

)2

=
VGVT

3
− V 2

G

4
. (3.20)

Maximizing Φ by varying VG results in a value of VG = 2
3
VT . The potential depth of a

guide for loading molecules into the trap can thus be considerably below the trap depth
without reducing the flux of molecules entering the trap.

The previous derivation is based on several disputable assumptions. First, we have
assumed the dimensions of the guide to be fixed, whereas increasing the guide dimensions
can of course also considerably increase the flux of molecules entering the trap. However,
taking into account the guide dimensions will only increase the optimal value of VG relative
to VT if an increase in the guide dimensions simultaneously results in an increase in the
guide potential depth, and, if anything, the opposite will be the case. A second assumption
is the uniform initial distribution of the molecules in phase space which, for a real-world
source, of course won’t be the case. In particular, for an effusive nozzle, collisions during
beam formation increase the share of molecules with a high forward velocity [52], but this
in fact even further reduces the optimal value of VG. Third, we consider the trap and
the guide as separate entities, whereas assuming both to be part of the same trapping
environment would mean that a lower transverse depth in the guide is equivalent to a
lower trap depth. However, as long as the lower electric fields don’t extend too far into the
guide to trap transition, most molecules only have two opportunities to probe the weaker
confinement in the guide: once on their way in and once on their way out of the trap,
this being the framework on which the present derivation is based. In contrast, a molecule
might have many opportunities to probe the weakest confining field inside the trap, greatly
increasing the probability that a molecule with slightly more energy than the confining field
depth will eventually approach the trap boundary with a sufficiently steep angle to escape
the trap. Finally, we note the reliance of the previous derivation on the assumption of
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a perfect quadrupole potential as well as on the assumption that maximizing the flux of
molecules into the trap is the relevant figure of merit.

So far this discussion has been restricted to loading of molecules into the trap and we
now switch to briefly consider the unloading of molecules as well. In the case where the
trap unloading rate is unimportant, i.e. when molecules exiting the trap through the output
guide is the dominant trap loss process and when achieving a high unloading efficiency
surpasses any other reasons to limit the unloading duration, an optimal potential depth
for the unloading guide is given by the maximum energy of the molecules inside the trap.
Conversely, when a high unloading rate is important, maximizing the flux of molecules in
the guide is again achieved with a potential depth in the unloading guide below the energy
of the hottest molecules in the trap.

3.5.2 Realizing a capacitor-plate-based quadrupole guide

In the transition from the guide to the trap, two of the guide electrodes flatten into the
two capacitor plates whereas the other two electrodes deform into the perimeter electrodes
and bend outward to start their encirclement of the trap volume. Once the perimeter
guide electrodes start to bend outward, the electric field they produce at the surface of the
capacitor plate guide electrodes starts to weaken and eventually approaches zero. To avoid
losses, it is therefore sensible to begin the microstructuring of the plate surface before the
outward bend of the perimeter guide electrodes begins. Considering that the capacitor plate
guide electrodes must be flat before the microstructure can begin, the guide-trap transition
necessarily includes an intermediate two dimensional quadrupole geometry where two of
the electrodes consist of two parallel planes.

The capacitor-plate-based guide is in fact the bottleneck in loading and unloading
molecules to and from the trap. With the capacitor plate separation determined by the
trap dimensions, the shape and separation of the two perimeter guide electrodes are the
only parameters which can be varied. Together with the condition of providing a sufficient
transverse depth, one obtains a tight upper bound for the surface area on which molecules
can be guided.

The dimensions of the capacitor-plate-based guide for our experiment as well as the
resulting electric fields are shown in Fig. 3.7. The front edges of the two perimeter guide
electrodes are 1.2 mm apart and have the same shape as the perimeter electrode in the
trap. This results in an electric field strength at the midpoint of the surface of each of
the four electrodes which is about 30 % less than the trap depth. It is in fact impossible
to maintain an electric field strength on the surface of the electrodes which everywhere is
at least equal to the trap depth since increasing the separation between the plate and the
perimeter electrodes necessarily reduced the electric field on the plate surface. However,
as pointed out in the previous section, realizing a transverse guide depth equal to the trap
depth is by no means desirable, and the transverse depth we achieve is in fact quite close
to the value of two thirds the trap depth which was calculated to be ideal.
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Figure 3.7: Capacitor-plate-based guide for the input and output channel of the trap.
a. Electrode dimensions and simulated electric field strength distribution in trap depth
units. The extensions of the trap perimeter electrodes are on the left and on the right
and the trap capacitor plates are on top and on bottom. The 1.2 mm label on the right
denotes the separation between the front edges of the perimeter electrodes. b. Electric field
strength at the surface of the electrodes. The position on the perimeter guide electrode is
parameterized as in Fig. 3.5.

3.5.3 Transition from the trap to the capacitor-plate-based guide

Starting from the capacitor-plate-based guide, the transition to the trap is completed by
bending the two perimeter electrodes outwards. In terms of providing a sufficient potential
depth, the design of this region is relatively uncritical. Keeping the transverse shape of
the perimeter electrode constant, the electric field on the perimeter electrode surface is
everywhere at least as large as for the capacitor-plate-based guide. Moreover, the outward
bend of the perimeter electrodes helps to rapidly increase this field beyond the trap depth.
Concerning the capacitor plates, the microstructure assumes the role of ensuring a high
electric field at the surface.

The other criterion for the trap-guide transition, maintaining a wide channel of low
electric field, might also seem uncritical considering the increasing separation between the
perimeter electrodes. However, a rapid transition between the trap and the guide will
result in strong electric potential gradients along the guide axis, potentially eliminating
the channel of low electric field altogether. In fact, the electric potential in the center of the
trap is equal to the voltage applied to the capacitor plates whereas the electric potential
on the axis of our capacitor-plate-based guide is calculated to be 0.7893 times the voltage
applied to the perimeter electrode relative to the capacitor plate voltage. Since the path
integral of the electric field along any path from the trap to the guide is equal to the
potential difference at the endpoints, maintaining an electric field zero on the axis of the
guide is impossible.

To achieve a low electric field in the input and output channel of the trap, the trap-
guide transition needs to extend over a sufficient distance. Moreover, for a fixed trap-guide
separation, minimizing the maximum electric field on the guide axis requires a uniform
electric potential gradient along the guide axis to be realized. These are the two key
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Figure 3.8: Connection of the capacitor-plate-based guide to the trap. For the position
relative to the rest of the trap see Fig. 3.3. a. Specification of the line defining the front edge
of the perimeter electrodes. This geometry was chosen to minimize the maximal electric
field strength on the axis of the guide. b. Simulated electric field strength distribution
in trap depth units in the plane midway between the two capacitor plates. c. Simulated
electric field strength on the axis of the guide.

criteria which determine the design of the capacitor-plate-based guide to trap transition
shown in Fig. 3.8a. The design results in an electric field strength distribution in the plane
midway between the capacitor plates and an electric field strength on the axis of the guide
as shown in Figs. 3.8b and c, respectively. We achieve a decent result in terms of uniformly
spreading the change in the electric potential over a large distance, with the electric field
maintained near 11 % of the trap depth over a distance of about 4 mm, corresponding to
about 60 % of the required change in the electric potential. Further decreasing the electric
field on the guide axis would require the length of the trap-guide transition to be further
increased, but this also has disadvantages such as further increasing the required width of
the glass substrate for the microstructure. Note that the maximal electric field strength
on the guide axis of 11.2 % of the trap depth completely prevents molecules with an energy
less than this value from entering or exiting the trap.

3.5.4 Matching a capacitor-plate-based guide to a standard quadrupole

The final element in the trap to guide transition is the transition from the capacitor-plate-
based guide to a normal quadrupole. For equal voltages applied to the electrodes at both
ends of the transition, a necessity if a gap in the electrodes is to be avoided, the change in
the electric potential on the guide axis for this transition is only 0.2893 times the perimeter
electrode to plate electrode voltage difference. Achieving a small electric field along the
guide axis is therefore less difficult than for the transition from the capacitor-plate-based
guide to the trap. However, for equal voltages, simultaneously matching the potential depth
as well as the width of the low-field channel for both quadrupoles is impossible. This is
because for fixed voltages, the product of the potential depth of the guide and the width of
the low field channel which can be occupied by a molecule with a given transverse energy is
more favorable, i.e. larger, for a normal quadrupole than for a capacitor-plate-based guide.

The difficulty in matching the two quadrupole guides can be seen from Fig. 3.9, showing
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Figure 3.9: Simulated electric field strength distribution for both the capacitor-plate-based
guide as well as for a standard quadrupole guide (the latter consisting of electrodes of
radius 1 mm with a 1 mm spacing between neighboring electrodes). The vertical dashed
lines denote the transverse potential depth of the two guides. We assume that the same
voltages are applied to the quadrupole electrodes as are applied to the perimeter and plate
electrodes in the trap.

the two electric field strength distributions for the guides with the dimensions used in the
experiment. Due to the calculated 1.329 times faster increase of the electric fields with
distance from the guide symmetry axis for the capacitor-plate-based guide, the guide area
for low energy molecules is almost 1.8 times smaller than for the standard quadrupole,
despite the fact that the standard quadrupole has a 1.207 times higher potential depth.
Trying to match the width of the low-field channel for the two guides by increasing the
trap dimensions relative to the standard quadrupole dimensions would further increase the
potential depth mismatch and trying to match the potential depths would further increase
the mismatch in the width of the low-field channel. A compromise between the two was
chosen for the experiment, with this match ultimately determining the overall scaling of
the trap dimensions as discussed in section 3.3. Assuming the resulting high fields in the
quadrupole wouldn’t limit the trap voltages, a better choice in retrospect would have been
to focus entirely on matching the width of the low-field channel. While this would further
reduce the fraction of the area of the standard quadrupole containing molecules which can
be loaded into the trap, the molecules confined to this area could be loaded into the trap
with 100% efficiency. Moreover, the design of a molecule source to load the quadrupole
could be optimized taking into account the reduced effective width of the quadrupole.

Concerning the actual connection between the capacitor-plate-based guide and the stan-
dard quadrupole, any interpolation between the two shapes spread out over a sufficient
distance along the guide should serve as an efficient connection. As a result, the exact
shape of the transition was determined by the computer aided design software used to
design the trap.
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3.5.5 An alternative approach to the trap-guide transition

Two problems have been identified with the approach to the trap-guide transition presented
so far. First, the width of the low-field channel for the capacitor-plate-based guide is quite
small compared to the capacitor plate separation. Second, matching both the depth and
the width of the capacitor-plate-based guide to a standard quadrupole is not possible. The
second problem could in principle be solved by interrupting the quadrupole electrodes and
applying a different set of voltages to the standard quadrupole than to the capacitor-plate-
based guide. Here, we briefly sketch an idea based on this theme which might solve the
first problem as well.

The idea would be to abruptly change the transverse shape of the guide at the end of the
capacitor-plate-based guide. If the microstructures could maintain high fields sufficiently
close to the edge of the capacitor plates, then the separation between the two perime-
ter guide electrodes in the capacitor-plate-based guide could be substantially increased,
thereby increasing the width of the channel of low electric field. Once the microstructure
ends, the abrupt change in the shape of the guide electrodes at the end of the capacitor
plates would need to provide sufficiently high fields on the plate guide electrodes to com-
pensate the lack of the microstructure fields. A brief decrease in the field strength at the
plate guide electrode surface would potentially be acceptable, as long as most molecules fly
by without being lost. An abrupt change in the quadrupole shape would of course require
the electric potential on the axis of both guides to be practically identical. Whether all
these challenges with such a design can be solved remains to be seen.

3.6 Design of the trap microstructure

The most important trap element to achieve confinement of molecules is the microstruc-
turing of the surface of the capacitor plates. Here, the goal of an optimal design is again
to provide strong confinement for the molecules but also to ensure that the relatively com-
plicated microstructure fields don’t facilitate any trap loss processes. As we shall see, the
microstructure design for our trap also plays a substantial role in ensuring the homogeneity
of the electric fields near the center of the trap.

An optimal design for a microstructure which is completely isolated in space is quite
simple. Along the lines of Babinet’s principle for optics [112], the electric field strength
distribution above the microstructure remains unchanged if the electrodes and the gaps
between the electrodes are interchanged, assuming reflection symmetry about the plane
of the microstructure, translation symmetry along the microstructure, and electric fields
which approach zero far away from the microstructure. As a result, the most uniform fields
near the microstructure surface are achieved if the width of the microstructure electrodes
of both polarity is equal to the width of the separation between adjacent electrodes. A
microstructure design might then be realized as shown in Fig. 3.10.

The microstructure in the trap is by no means isolated from the rest of the trap, with
the perimeter electrode field in particular strongly altering the electric fields produced by
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Figure 3.10: Elementary design for the trap microstructure. The black and the grey surface
represent the electrodes of opposite polarity.

the microstructure and the offset field between the capacitor plates interfering with the
microstructure fields as well. These field modifications result in severe problems in several
respects. On the one hand, the perimeter electrode field points in the opposite direction
and is therefore simply subtracted from the microstructure field at the surface of those
microstructure electrodes with the same polarity as the perimeter electrode. This reduces
the field strength on these microstructures electrodes by an amount equal to the trap depth.
On the other hand, for an offset field perpendicular to the microstructure which is weaker
than the electric field on the microstructure surface, the decay of the microstructure field
away from the surface assures the existence of a line above every second microstructure
electrode where the microstructure field and the offset field precisely cancel. These electric
field zeros result in Majorana losses inside the trap and their persistence underneath the
perimeter electrode creates holes in the trapping fields.

For the most part, the previous problems can be solved by varying the width of the
individual microstructure electrodes. For this purpose, a detailed knowledge of the electric
fields produced by the trap microstructure is required. We therefore consider how analytic
solutions for the electric fields above the microstructure can be obtained in the next section
and then use the solution in the subsequent sections to help address the challenges in
designing the trap microstructure.

3.6.1 Analytic description of the electric fields above a periodic

microstructure

An analytic solution for the electric potential near a periodic microstructure is in principle
given by Eq. 3.16. However, this is true only as long as the potential coefficients Φ0, E0, and
{an} can be determined based on the boundary conditions at the microstructure surface.
Determining these coefficients analytically is quite challenging but is in fact possible.

We begin by taking a closer look at the boundary conditions for the problem in sec-
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tion 3.6.1.1. In particular, we show how the boundary conditions consisting of an electric
potential being specified at the microstructure electrodes and a continuous electric field
being required everywhere away from the electrodes is identical to mixed boundary con-
ditions where the electric potential is specified at the electrodes and the surface normal
electric field is specified in the plane of the microstructure away from the electrodes. These
boundary conditions are applied to Eq. 3.16 in section 3.6.1.2, resulting in series equations
for the potential coefficients.

In section 3.6.1.3, we show how the series equations for the potential coefficients can in
principle be solved by applying what is essentially an inverse Fourier transform. However,
due to the mixed boundary conditions, this gives rise to an infinite sequence of coupled
linear equations for the potential coefficients. All attempts to solve these equations analyt-
ically were unsuccessful. While a solution is possible by truncating the sequence of linear
equations and inverting them numerically, this procedure converges extremely slowly com-
pared to the required computing resources and leaves open questions regarding convergence
and the validity of the truncation, making this a rather unsatisfactory approach.

A completely analytic solution for the microstructure field is obtained in section 3.6.1.4
by adapting the techniques in Ref. [113] for solving mixed boundary value problems. Specif-
ically, the series equations for the potential coefficients can be converted into integral
equations for the electric potential and surface-normal electric field at the microstructure
surface, which we then solve. This solution is general in that it is applicable for the case
of an arbitrary position-dependent potential on the electrode surfaces and an arbitrary
position-dependent surface-normal electric field between the electrodes. Moreover, we out-
line how the solution can be extended for an arbitrary periodic sequence of electrode strips.

For the special case of a constant potential on each microstructure electrode and a
globally constant surface-normal electric field between the electrodes (the case we are
interested in), a substantially simpler solution for the microstructure fields has been known
in the context of surface acoustic wave interdigital transducers (see, e.g., Refs. [114] and
[115] and references therein). Specifically, complex analytic functions can be used to write
the electric field due to the microstructure directly in closed form. For completeness, this
solution is presented in section 3.6.1.5.

3.6.1.1 Microstructure boundary conditions

The microstructure electrode geometry for which we wish to calculate the electric field is
shown in Fig. 3.11. A periodic array of electrodes with periodicity d is located in the plane
y = 0. A potential V1 is applied to every second electrode of width w1 and a potential V2 is
applied to every other electrode of width w2. The electrodes are equally spaced resulting in
reflection symmetry about each plane centered at and perpendicular to each microstructure
electrode, indicated by the dashed lines. The origin is located at the center of one of the
electrodes of width w1, and the boundary condition for y → ±∞ is a homogeneous electric
field of magnitude E± pointing away from the surface. For the moment we assume the
space on both sides of the microstructure to be filled by an unpolarizable medium. The
required modification for a dielectric medium with an isotropic dielectric constant filling
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Figure 3.11: Boundary conditions for calculating the electric field near the trap microstruc-
ture.

the half-space y < 0 and/or y > 0 is considered below.
Let S1 and S2 be subsets of the real line such that the points y = 0, x ∈ S1 correspond to

the electrodes with potential V1 and the points y = 0, x ∈ S2 correspond to the electrodes
with potential V2. In this case, the boundary conditions for the electric potential Φ(x, y)
are

Φ(x, y)|x∈S1,y=0 = V1

Φ(x, y)|x∈S2,y=0 = V2

lim
y→±∞

∂Φ(x, y)

∂y
±E± = 0.

(3.21)

Moreover, Φ(x, y) satisfies the Laplace equation everywhere except at the electrodes. These
conditions uniquely determine Φ(x, y) [112].

Determining the potential Φ(x, y) would be relatively easy if the potential were specified
everywhere for y = 0. As a result we try to formulate a boundary condition for the non-
electrode part of y = 0. We consider the modified potential Φ(x, y) + E+−E−

2
y consisting

of a constant electric field E−−E+

2
ŷ being superimposed on the desired electric field. The

modified potential satisfies the same boundary conditions on y = 0 as Φ(x, y) but for
|y| → ∞ the boundary conditions are changed for both y > 0 and y < 0 into a constant
electric field of magnitude E++E−

2
pointing away from the surface. The modified potential

is therefore symmetric under reflection about the plane y = 0. The y-component of the
modified electric field, being continuous everywhere except at the electrodes, must therefore
vanish for y = 0, x /∈ S1 ∪ S2,

∂Φ(x, y)

∂y
+

E+ − E−

2

∣

∣

∣

∣

x/∈S1∪S2,y=0

= 0. (3.22)

52



We thus find the boundary condition at y = 0 to be a combination of Dirichlet bound-
ary conditions, with the value of Φ specified at the electrodes, and Neumann boundary
conditions, with the value of ∂Φ

∂y
specified away from the electrodes, such mixed boundary

condition problems being notoriously difficult to solve [112].
We briefly consider the effect of dielectric media with dielectric constant ǫ+ and ǫ−

filling the half-spaces y > 0 and y < 0, respectively. In this case, the electric potential
Φ(x, y) still satisfies the Laplace equation and the boundary conditions in Eq. 3.21, with
the only change being an additional condition at the interface between two dielectric media
given by [112]

n̂ · (ǫ+E+ − ǫ−E−) = 0,

n̂× (E+ −E−) = 0.
(3.23)

Here, E± is the electric field in the limit y → 0± and n̂ = ŷ is the surface normal. Eq. 3.23
is surprisingly simple to satisfy once the solution for ǫ+ = ǫ− is known. According to
Eq. 3.22, the electric potential for ǫ+ = ǫ− satisfies n̂ · E+ = n̂ · E− = E+−E−

2
. As a result,

the solution for ǫ+ = ǫ− with E+ = E− satisfies Eq. 3.23 for arbitrary ǫ+ and ǫ− and is
therefore identical to the solution for ǫ+ 6= ǫ−. To find the general solution for E+ 6= E−,
we require a single specific solution with E+ 6= E− in which case the general solution is
given by a linear combination of the specific solution and a general solution with E+ = E−.
Such a solution is given by

Φs(x, y) =

{

ǫ−y y > 0
ǫ+y y < 0

. (3.24)

Multiplying Φs by E+−E−

ǫ++ǫ−
and adding this to the desired potential results in a modified

potential for which E ′
+ = E ′

− = ǫ+E++ǫ−E−

ǫ++ǫ−
. The overall effect of a dielectric filling the

half-space y < 0 and/or y > 0 is therefore nothing more than to modify Eq. 3.22, the
modified version being

∂Φ(x, y)

∂y

∣

∣

∣

∣

x/∈S1∪S2,y=0±
= −ǫ∓E+ − E−

ǫ+ + ǫ−
. (3.25)

3.6.1.2 Series equations for the potential coefficients

In its most general form, a potential with periodic boundary conditions on the surface
y = 0 approaching a constant electric field E± for y → ±∞ can be written as

Φ(x, y) = Φ0 −E± |y|+
∞
∑

n=1

(

an cos

(

2πn

d
x

)

+ bn sin

(

2πn

d
x

))

exp

(

−2πn

d
|y|
)

, (3.26)

where E+ is used for y > 0 and E− is used for y < 0. This expression automatically
satisfies the Laplace equation ∇2Φ(x, y) = 0 for y 6= 0 as well as the boundary conditions
for |y| → ±∞. The terms sin(2πn

d
x) are important later when we consider arbitrary periodic
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sequences of electrode, but for now, the reflection symmetry about x = 0 results in bn = 0
for all n, leading us back to Eq. 3.16.

We match the coefficients Φ0 and {an} to the boundary conditions at the surface y = 0.
Due to the periodicity and the reflection symmetry we can restrict our attention to the
range 0 ≤ x ≤ d/2. With a bit of algebra, we find that Eqs. 3.21 and 3.25 are identical to







∑∞

n=0 an cos(nx) = V1 0 ≤ x ≤ c1
∑∞

n=0 n an cos(nx) = − d
2π

ǫ+E++ǫ−E−

ǫ++ǫ−
c1 < x < c2

∑∞

n=0 an cos(nx) = V2 c2 ≤ x ≤ π

, (3.27)

with a0 = Φ0, c1 = w1

d
π, and c2 = d−w2

d
π. This set of series equations is the compact

mathematical formulation of the problem which we wish to solve.

3.6.1.3 An unsatisfactory numerical approach

If the factor n on the left hand side of the equation on the second line of Eq. 3.27 were
absent, the left hand side of Eqs. 3.27 would simply be the Fourier expansion of the right
hand side of Eqs. 3.27. The coefficients am could then be obtained by simply taking the
inverse Fourier transform: multiplying by cos(mx) and integrating from 0 to π. A simple
approach to try solving Eq. 3.27 would be to attempt the same procedure. Multiplying
the equation on each line of Eq. 3.27 by cos(mx), integrating over the region where the
respective equation holds and adding the three results, we obtain

∞
∑

n=0

an(Ln,m + Mn,m) = Am + Bm, (3.28)

an infinite sequence of linear equations. Here,

Ln,m =

(
∫ c1

0

+

∫ π

c2

)

cos(nx) cos(mx)dx (3.29)

and

Am =

(

V1

∫ c1

0

+V2

∫ π

c2

)

cos(mx)dx, (3.30)

are the contributions from the electrode part of the microstructure surface and

Mn,m = n

∫ c2

c1

cos(nx) cos(mx)dx, (3.31)

and

Bm = − d

2π

ǫ+E+ + ǫ−E−

ǫ+ + ǫ−

∫ c2

c1

cos(mx)dx. (3.32)

are the contributions from the non-electrode parts of the microstructure surface.
Eqs. 3.28 can in principle be solved by inverting the matrix {Ln,m + Mn,m} and multi-

plying by the vector {Am +Bm}. Here we are thoroughly confronted with the challenge of
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mixed boundary conditions compared to pure Dirichlet or Neumann boundary conditions.
Whereas for both c1 = c2 (Dirichlet boundary conditions) and for c1 = 0, c2 = π (Neu-
mann boundary conditions) the matrix {Ln,m + Mn,m} is diagonal, allowing its inverse to
be found trivially, general values of c1 and c2 result in matrix elements Ln,m +Mn,m which
are messy nonzero linear combinations of trigonometric functions.

All attempts to invert the matrix {Ln,m + Mn,m} analytically were unsuccessful. How-
ever, an approximate solution is possible by truncating the matrix and inverting it numer-
ically. This is in fact the approach which was used to design the microstructure for the
present trap. However, this approach is unsatisfactory in several respects. For one thing,
inverting an N ×N matrix numerically takes O(N3) operations, and with the coefficients
an approaching 0 relatively slowly for large n, obtaining a high accuracy result with this
method seems impossible. Moreover, the approach leaves open a number of fundamental
questions. For example, do the coefficients an even approach a constant value as the num-
ber of included coefficients becomes large, and if so, how? How is the expectation that to
lead order an = O(n−3/2) for n → ∞ due to the singularity at the edge of the electrodes
and thus an → 0 for n → ∞ a consequence of Eqs. 3.28-3.32? Why should the Fourier
coefficients for a function which is zero for c1 < x < c2 automatically be in the null space
of the matrix {Mn,m}? Supporting these assertions numerically is relatively easy, but their
analytic justification based on Eqs. 3.28-3.32 remains completely unclear.

3.6.1.4 General solution via integral equations

We now present a successful analytic approach to solving Eq. 3.27 based on the methods
in Ref. [113]. For convenience, we define the subsets I1 and I2 of the interval 0 ≤ x ≤ π
according to

I1 = {x | 0 ≤ x ≤ c1 or c2 ≤ x ≤ π},
I2 = {x | c1 < x < c2},

(3.33)

these being the electrode and the non-electrode part of the microstructure surface on this
interval, respectively. Eq. 3.27 can then be generalized as

∞
∑

n=0

an cos(nx) =

{

H(x) x ∈ I1
h(x) x ∈ I2

, (3.34)

and
∞
∑

n=0

n an cos(nx) =

{

g(x) x ∈ I1
G(x) x ∈ I2

. (3.35)

Here H(x) and G(x) are known functions defined exclusively on I1 and I2, respectively,
and h(x) and g(x) are unknown functions defined on the intervals I2 and I1. H(x) is
an arbitrary electric potential specified on the microstructure electrode surface, G(x) is
proportional to an arbitrary surface-normal electric field specified on the non-electrode part
of the microstructure surface, h(x) is the resulting electric potential on the non-electrode
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part of the microstructure surface, and g(x) is proportional to the resulting surface-normal
electric field on the microstructure electrode surface.

Determining either h(x) or g(x) in terms of H(x) and G(x) would solve our problem
since the coefficients {an} could then be obtained via an inverse Fourier transform. In fact,

an =
2− δ0,n

π

(
∫

I1

H(t) cos(nt)dt +

∫

I2

h(t) cos(nt)dt

)

, (3.36)

with our focus from here on being determining the function h(x). Inserting this expression
into Eq. 3.35, we obtain

G(x) =

(
∫

I1

H(t) +

∫

I2

h(t)

)

dt

∞
∑

n=0

2− δ0,n
π

n cos(nx) cos(nt) (3.37)

where x ∈ I2. This equation can be simplified considerably by noting that

∞
∑

n=0

2 sin(nx) cos(nt) =
sin(x)

cos(t)− cos(x)
. (3.38)

This equation is true in the sense that we multiply the left hand side by e−εn and take the
limit ε→ 0. Making use of Eq. 3.38 in Eq. 3.37, we find

G(x) =
1

π

d

dx

[
∫

I1

sin(x)H(t)dt

cos(t)− cos(x)
+

∫

I2

sin(x)h(t)dt

cos(t)− cos(x)

]

. (3.39)

Moving the known part of the right hand side of this equation to the left hand side, and
defining this as a new known function G̃(x), we obtain

G̃(x) = G(x)− 1

π

d

dx

∫

I1

sin(x)H(t)dt

cos(t)− cos(x)
=

1

π

d

dx

∫

I2

sin(x)h(t)dt

cos(t)− cos(x)
, (3.40)

where again x ∈ I2. We thus obtain an integral equation for the unknown function h(x)
in terms of the known function G̃(x) exclusively involving the interval I2. This is a big
improvement since we must no longer simultaneously satisfy a second condition involving
the interval I1. To solve Eq. 3.40, we note that

∫ c2

c1

sin(x)dx

(cos(t1)− cos(x))(cos(t2)− cos(x))

√

cos(c1)− cos(x)

cos(x)− cos(c2)
=

π2

√

cos(c1)− cos(t1)

cos(t1)− cos(c2)
δ(cos(t1)− cos(t2))

(3.41)

which holds for arbitrary t1, t2 ∈ I2. To obtain this result, we set u = cos(x), du =
− sin(x)dx, a1 = cos(c1), a2 = cos(c2), b1 = cos(t1), and b2 = cos(t2), in which case the
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integral in Eq. 3.41 can be performed step by step according to
∫ a1

a2

du

(u− b1)(u− b2)

√

a1 − u

u− a2
=

Re
d

db2

∫ ∞

−∞

du
log |b2 − u|
b1 − u

√

a1 − u

u− a2
=

Re
d

db2

∫ ∞+iε

−∞+iε

du
log(u− b2)− iπθ(b2 − u)

b1 − u

√

a1 − u

u− a2
=

Im π
d

db2

∫ b2+iε

−∞+iε

du

b1 − u

√

a1 − u

u− a2
=

π2

√

a1 − b1
b1 − a2

δ(b1 − b2).

(3.42)

Here, we make use of the fact that the integrand on the first line is pure imaginary ev-
erywhere outside the range of integration as well as the fact that a contour integral of a
complex analytic function on a closed path in the complex plain is zero. The iε in the
limits of integration on the third and fourth line denotes the integral being performed for
an infinitesimally positive imaginary value of u.

Obtaining the solution to Eq. 3.40 with use of Eq. 3.41 is straightforward, and results
in

h(t) =
sin(t)

π

∫ c2

c1

dx

cos(t)− cos(x)

√

cos(c1)− cos(t)

cos(c1)− cos(x)

cos(x)− cos(c2)

cos(t)− cos(c2)

∫

x

G̃(x′)dx′. (3.43)

This can be easily checked by inserting Eq. 3.40 for G̃(x) into this equation and applying
Eq. 3.41. The one remaining issue which needs to be addressed is the constant of integration
for the indefinite integral over G̃(x). It would be convenient if the constant of integration
could be chosen arbitrarily, which would be the case if changing the constant of integration
left h(t) unchanged, but this is wrong. The constant of integration must thus have been
defined implicitly somewhere along the way. In fact, Eq. 3.43 only follows from Eq. 3.40 if

∫

x

G̃(x′)dx′ =
1

π

∫

I2

sin(x)h(t)dt

cos(t)− cos(x)
, (3.44)

leaving no room for an arbitrary constant of integration.
To determine the constant of integration non-circularly, i.e. without knowing h(t) in

advance, we note that for arbitrary t ∈ I2,
∫

I2

dx
√

(cos(c1)− cos(x))(cos(x)− cos(c2))

sin(x)

cos(t)− cos(x)
= 0. (3.45)

Multiplying by h(t) and integrating t over I2, we find that
∫

I2

dx
√

(cos(c1)− cos(x))(cos(x)− cos(c2))

∫

x

G̃(x′)dx′ = 0. (3.46)
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However, this only holds if the constant of integration assumes the correct value, and can
therefore be used to determine its value.

So far, the derivation of the electric field above the microstructure has focused exclu-
sively on the electrode geometry shown in Fig. 3.11. However, the approach can easily be
extended to an arbitrary periodic microstructure, and we briefly outline the key changes
this introduces into the derivation.

Let a1, ..., aN and b1, ..., bN be a set of 2N numbers which satisfy 0 < a1 < b1 < a2 <
b2 < ... < aN < bN < 2π. These numbers correspond to a periodic sequence of electrodes
with N electrodes per period in the plane y = 0 where the intervals ai < x < bi correspond
to the gaps between the electrodes. For a reason given below, N must be an even integer.
If the base microstructure period contains an odd number of electrodes, we can simply
double the period length. We again define subsets I1 and I2 of the interval 0 ≤ x ≤ 2π
corresponding to the electrode and non-electrode part of the microstructure period, so that

I2 =
N
⋃

i=1

{x|ai < x < bi} (3.47)

and I1 is equal to the complement to I2 in 0 ≤ x ≤ 2π.
Unlike the specific geometry in Fig. 3.11, a general electrode geometry usually won’t

be symmetric under reflection about a plane perpendicular to the microstructure. As a
result, the expansion of the electric potential above the microstructure surface is given by
the full expression in Eq. 3.26 with both the sine and the cosine terms contributing. The
boundary condition at the microstructure surface is then given by

∞
∑

n=0

an cos(nx) + bn sin(nx) =

{

H(x) x ∈ I1
h(x) x ∈ I2

(3.48)

and
∞
∑

n=0

n(an cos(nx) + bn sin(nx)) =

{

g(x) x ∈ I1
G(x) x ∈ I2

, (3.49)

in analogy to Eqs. 3.34 and 3.35.
Following the same steps as before, we again obtain an integral equation for h(t) in

terms of a known function G̃(x),

G̃(x) = G(x)− 1

2π

d

dx

∫

I1

H(t) cot

(

x− t

2

)

dt =
1

2π

d

dx

∫

I2

h(t) cot

(

x− t

2

)

dt. (3.50)

The integral equation can again be solved, by noting that

∫

I2

dx cot

(

x− t1
2

)

cot

(

x− t2
2

)

[

−
N
∏

i=1

1

sin
(

x−ai
2

)

sin
(

x−bi
2

)

]1/2

=

4π2

[

−
N
∏

i=1

1

sin
(

t1−ai
2

)

sin
(

t1−bi
2

)

]1/2

δ(t1 − t2).

(3.51)

58



with t1, t2 ∈ I2. In order for this equation to hold, we must make sure to evaluate the
square root with the correct sign. In particular, the square root as a function of x or t1
must be extendable to a complex analytic function in the entire upper half of the complex
plane. This is only possible if the square root is alternatingly evaluated as positive and
negative on adjacent intervals in I2. Eq. 3.51 also requires the square root to be evaluated
with opposite sign on the leftmost and rightmost interval in I2. This is inconsistent with
the previous condition unless N is an even integer, as required above.

Using Eq. 3.51, we obtain

h(t) =
1

2π

∫

I2

dx cot

(

x− t

2

)

[

N
∏

i=1

sin
(

t−ai
2

)

sin
(

t−bi
2

)

sin
(

x−ai
2

)

sin
(

x−bi
2

)

]1/2
∫

x

G̃(x′)dx′. (3.52)

The same comments regarding the square root hold as above, with the sign chosen positive
when t and x are in the same interval of I2. Moreover, a total of N constants of integration
must be determined for the indefinite integral over G̃(x), for which equations similar to
the one in Eq. 3.46 can be used.

Eq. 3.52 provides a general solution for the electric potential away from the plane y = 0
for arbitrary periodic mixed boundary conditions specified along the x-direction in the
plane y = 0. Our result could most likely be further generalized to non-periodic boundary
conditions as well. As such, it would be very interesting if our approach could be used
to gain deeper insight into the mathematics of mixed boundary value problems, but this
topic is clearly beyond the scope of this thesis.

3.6.1.5 Specific solution via complex analytic functions

Eq. 3.43 or Eq. 3.52 directly provide the electric potential for all of y = 0 and allow
a number of quantities such as individual Fourier coefficients to be calculated relatively
easily. However, determining the electric potential away from the microstructure surface
requires a sufficiently large number of Fourier coefficients to be calculated and inserted
into Eq. 3.26, a somewhat cumbersome process. It turns out that for a fixed (i.e. x-
independent) potential applied to each microstructure electrode, equivalent to dH

dx
= 0,

and a uniform value of the surface-normal electric field on the entire non-electrode part of
the microstructure surface, equivalent to G(x) = const., a substantially simpler solution
for the electric field in the entire x− y plane exists, and has been known in the context of
surface acoustic wave interdigital transducers [114, 115]. A quite well-written derivation
of this solution has been presented in Ref. [114], but only for a finite (and therefore non-
periodic) set of microstructure electrodes. We show how a similar derivation can be applied
to the periodic case.

We consider the electrode geometry where the non-electrode part of a microstructure
period, corresponding to the interval 0 ≤ x ≤ 2π, is given by I2 defined by Eq. 3.47, with
the electrode part being its complement, I1. An electric potential Vj is applied to the
electrode at bj ≤ x ≤ aj+1 for j = 0, ..., N , where V0 = VN and where we define b0 = 0 and
aN+1 = 2π. Adding a constant electric field perpendicular to the microstructure surface
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leaves the electric potential on the microstructure surface unchanged. We can therefore
assume that the surface-normal electric field on the non-electrode part of the microstructure
surface is zero and that the electric field approaches a constant value of E0ŷ far away from
the surface.

Let E(x, y) = Ex(x, y)x̂+Ey(x, y)ŷ for y > 0 be the electric field corresponding to the
microstructure geometry and boundary conditions just described. It is well known that
any solution to the Laplace equation in two dimensions can be written as the real part of
a complex analytic function defined on the complex plane. As a result, for z = x + iy,
the function E(z) = Ex(Re z, Im z) − iEy(Re z, Im z) is a complex analytic function for
Im z > 0. It turns out that the function E(z) has a surprisingly simple form.

We convert the boundary conditions for the electric potential into conditions imposed
on the function E(z). The boundary condition on the electrode part of the microstructure
surface results in ReE(x)|x∈I1 = 0 and the boundary condition on the non-electrode part
of the microstructure surface is identical to ImE(x)|x∈I2 = 0. The boundary condition for
y → ∞ is identical to E(z) = −iE0 for Im z → ∞. We are thus looking for a function
which is complex analytic in the entire upper half of the complex plane and which is pure
imaginary on parts of the real line and pure imaginary on the rest of the real line. A
simple example for such a function, albeit with the regions where it is real or imaginary
being incorrect, is

√
z. The same is of course true for the function

√
z − a for arbitrary

real values of a as well as for the product of any number of such functions with different
values of a. The final ingredient we need to venture a first guess as to the form of E(z) is
the well known fact that the electric field at the end of an infinitely thin electrode in two
dimensions can be described by 1/

√
z. We thus consider the expression

√

√

√

√−
N
∏

j=1

∞
∏

n=−∞

1

(1− z
ai−2πn

)(1− z
bi−2πn

)
, (3.53)

which automatically satisfies the conditions for E(z) on the real line. This expression is
proportional to

Ẽ(z) =

√

√

√

√−
N
∏

j=1

1

sin
(

z−ai
2

)

sin
(

z−bi
2

) , (3.54)

as can easily be shown using the identity

sin

(

z − a

2

)

= − sin(a/2)
∞
∏

n=−∞

(

1− z

a− 2πn

)

. (3.55)

Ẽ(z) in fact represents the correct solution for the electric field when E0 = 0 and when a
specific set of voltages are applied to the electrodes: the real part of the integral of Ẽ(z)
then satisfies the boundary conditions for the electric potential and is therefore equal to the
electric potential by the uniqueness theorem for potential problems with mixed boundary
conditions [112].
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We consider if Ẽ(z) can be modified to allow for both E0 6= 0 as well as for a general set
of microstructure voltages. We begin by noting that Ẽ(z) = 0 is satisfied nowhere in the
complex plane. Ẽ(z) thus corresponds to a set of voltages applied to the microstructure
electrodes such that no electric field zeros exist. In contrast, general voltages applied to
the microstructures electrodes most certainly can result in electric field zeros. Electric
field zeros can easily be incorporated. Thus, the product (z − a)Ẽ(z) and the product
((z − a)2 + b2)Ẽ(z) for real a and b have zeros at z = a and at z = a ± ib, respectively
while still satisfying the condition for E(z) on the real line. These products, however,
are no longer periodic functions, but this can easily fixed by adding a whole sequence of
zeros spaced by 2π. Using Eq. 3.55 plus some trigonometry in the second case, this is
easily shown to be identical to multiplying by sin( z−a

2
) for zeros on the real line or by

1
2
(cosh(b)− cos(z − a)) for zeros in the complex plane. We thus obtain a solution for E(z)

for general microstructure voltages given by

E(z) = A

∏Nr

j=1 sin
( z−rj

2

)
∏Nc

j=1
1
2
(cosh(sj)− cos(z − tj))

√

−∏N
j=1 sin

(

z−ai
2

)

sin
(

z−bi
2

)

. (3.56)

Here, r1, ..., rNr mod 2π are the real zeros of E(z) and sj ± i tj mod 2π for j = 1, ..., Nc are
the complex zeros of E(z). A is a real constant. The boundary condition for Im z → ∞
provides a constraint for the value of Nr and Nc. We have

lim
z→i∞

E(z) = lim
z→i∞

A

i
exp

[

i

(

Nr
∑

j=1

rj
2

+
Nc
∑

j=1

tj −
N
∑

j=1

ai + bi
4

)]

exp

[

(Nr + 2Nc −N)z

2i

]

.

(3.57)
As a result, for E0 = 0, we require Nr+2Nc < N , and for E0 6= 0, we require Nr+2Nc = N .
Moreover, for E0 6= 0, we require

∑Nr

j=1
rj
2

+
∑Nc

j=1 tj −
∑N

j=1
ai+bi

4
to either be an even

multiple of π, in which case A = E0, or an odd multiple of π, in which case A = −E0.
Note that this choice of sign pins down the sign which the square root in Eq. 3.56 must
take, due to the fact that E(z) is complex analytic and therefore continuous in the entire
upper half of the complex plain. Finally, we see that for E(z) to be a periodic function
with period 2π, N −Nr must be an even integer.

The constraints on the free parameters in Eq. 3.56 result in exactly the number of
degrees of freedom necessary to match N voltages on the microstructure electrodes plus
the value of E0. Thus, for E0 6= 0, we have up to N distinct values of rj , sj , and tj which
must fulfill one constraint, providing N − 1 degrees of freedom. The value of A accounts
for the value of E0, and the integration constant when integrating the electric field to
obtain the potential accounts for final required degree of freedom. For E0 = 0 the maximal
number of distinct values of rj, sj, and tj is reduced by two since N − Nr must be even.
With the value of A no longer bound to the value of E0, we again obtain the required
number of degrees of freedom.

A rigorous proof that the set of solutions defined by Eq. 3.56 accounts for all possible
values of the microstructure electrode voltages plus the value of E0 could now proceed
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as follows. One first needs to show that the set of functions defined by Eq. 3.56 is an
N -dimensional linear space. Together with the integration constant when calculating the
electric potential from the electric field, this space maps linearly to the set of electrode
voltages plus E0. Since this mapping is one-to-one due to the uniqueness theorem for
potential problems with mixed boundary conditions, the equal dimensionality of both
spaces requires the mapping to automatically be onto.

We conclude this section by applying Eq. 3.56 to the original microstructure geometry
shown in Fig. 3.11. Here, N = 2, and we have a1 = c1, b1 = c2, a2 = 2π − c2, and
b2 = 2π − c1. Due to the reflection symmetry about y = 0, Eq. 3.56 can be simplified
considerably and we obtain

E(z) =
A + E0 cos(z)

√

(cos(c1)− cos(z))(cos(z)− cos(c2))
, (3.58)

with the constant A determined by

∫ c2

c1

E(z)dz = V1 − V2. (3.59)

Eq. 3.58 substantially simplifies the calculation of the microstructure fields used in the
following sections.

3.6.2 General microstructure design considerations

Before considering the main specific problems which need to be addressed with the mi-
crostructure design, we briefly discuss several general issues regarding the microstructure
realization. As mentioned in section 3.3, the periodicity chosen for the trap microstructure
is 0.8 mm. For a regular microstructure, with all electrodes of equal width along the lines
of Fig. 3.10, this would result in a width for both the electrodes as well as for the gaps
in between of 0.2 mm. We consider the voltages which would need to be applied to such
a microstructure in the absence of any offset fields to obtain an electric field strength on
the microstructure surface which is everywhere at least equal to the nominal trap depth.
According to the results from the previous section, a voltage of ±Vµ applied to the mi-
crostructure electrodes results in a minimal field strength on the microstructure surface of
5.99 Vµ mm−1. This is equal to the nominal trap depth if a voltage difference of 5.39 Vµ

is applied across the 0.9 mm between the trap perimeter electrode and the capacitor plate
surface. For the actual trap, the optimal voltage applied to the perimeter electrode is, how-
ever, quite a bit lower. This is due to the modifications to the microstructure discussed
in section 3.6.4 which, while essential for reducing trap losses, have the unfortunate side
effect of reducing the minimal field strength on the microstructure surface. Maintaining
the nominal trap depth on the microstructure surface therefore requires the ratio of the
perimeter electrode voltage to the microstructure voltage to be reduced, and the trap is
designed for optimal performance when, for a microstructure voltage of ±Vµ, a voltage of
3 Vµ is applied to the perimeter electrode.
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In addition to ensuring that the electric field strength on the microstructure surface is
everywhere at least equal to the nominal trap depth, it is desirable to limit the maximal
electric fields on the microstructure surface in order to maximize the voltages which can
be applied without breakdown. Purely theoretically, the maximal electric field strength
on the microstructure surface is always infinite, due to the 1/

√
z divergence of the electric

field near the edges of the electrodes. In practice, the maximal electric fields will therefore
to a large part depend on the radii of curvature of the edges of the microstructure elec-
trodes, and we expect the microstructure breakdown voltage to a large part to depend on
the quality of these edges. Nonetheless, the proportionality factor for the 1/

√
z divergence

at the microstructure edge also plays a big role in determining the maximal electric fields
and minimizing this factor for a given set of microstructure voltages is therefore a key goal
for an optimal microstructure design. Determining the proportionality factor for the 1/

√
z

divergence using the theory from the previous section is quite straightforward. However,
while designing the microstructure for the present trap, only the approach for calculating
the microstructure fields from section 3.6.1.3 was available. This approach performs par-
ticularly poorly near the edges of the microstructure electrodes since truncating a Fourier
series acts as a low pass filter. As a result, the microstructure was instead designed so as
to limit the maximal value of the electric field minima at the center of the electrodes and
near center of the gaps between the electrodes on the microstructure surface (see Fig. 3.12
for an example), in the hope that this results in lower electric fields near the edges of the
microstructure electrodes as well.

3.6.3 Maintaining a strong microstructure confinement under

the perimeter electrode

A first problem with a regular microstructure design as shown in Fig. 3.10 is the interaction
of the strong electric field due to the traps’ perimeter electrode with the microstructure field
underneath the perimeter electrode. The perimeter electrode field has the opposite sign
as the microstructure field on the surface of those microstructure electrodes with the same
polarity as the perimeter electrode, reducing the electric field strength and thereby the trap
confinement in the vicinity of these electrodes. At the same time, the electric field strength
near the microstructure electrodes with the opposite polarity as the perimeter electrode
is substantially increased. This can be seen by the dashed curve in Fig. 3.12, showing
the electric field strength on the surface of a regular microstructure with a voltage of
±Vµ applied to the microstructure electrodes and a voltage of 3 Vµ applied to an electrode
(i.e. the perimeter electrode) 0.9 mm above the microstructure surface. As we can see,
the trap depth would be reduced by just over 25 % despite an electric field strength at
the center of the electrodes with opposite polarity as the perimeter electrodes which is
almost three times the trap depth. For a higher perimeter electrode voltage relative to
the microstructure voltage as discussed in the previous section, the problem would be even
worse. Both here and below, we assume a relative dielectric constant ǫ− = 6.2 for the
microstructures dielectric substrate, this being the dielectric constant of the AF45 glass
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Figure 3.12: Expected electric field at the surface of the microstructure plate underneath
the perimeter electrode for both a regular microstructure with w1 = w2 = d/4 as well
as for the actual microstructure. d is the microstructure periodicity. The microstructure
electrodes with the same polarity as the perimeter electrode are located at even multiples of
0.4 mm, those with opposite polarity at odd multiples of 0.4 mm. Modifying the electrode
widths results in an increased trap confinement and a more uniform field strength at the
plate surface.

used for the substrate.
The electric field strength at the surface of a microstructure electrode can be increased

by decreasing the width of that electrode and vice versa. A simple solution to the present
problem is thus to decrease the width of the microstructure electrodes with the same
polarity as the perimeter electrode and to increase the width of the other electrodes. Here,
the key goal is of course to ensure an electric field strength on the microstructure surface
which is everywhere at least equal to the trap depth. This is easy to achieve for a wide
range of values for the widths w1 and w2 of the microstructure electrodes. The remaining
variability in w1 and w2 can be used to minimize the divergences in the electric fields near
the edges of the electrodes, as discussed in the previous section. These conditions can be
used to define optimal values w1(E) and w2(E) for the microstructure electrode widths as
a function of a homogeneous offset field E far away from the microstructure surface. An
optimized microstructure geometry could then be obtained by first calculating the electric
field E(x) on the capacitor plate surfaces in the trap if the microstructure is replaced by
a solid electrode. The widths of the microstructure electrodes as a function of position on
the capacitor plate surface x is then given by w1(E(x)) and w2(E(x)).

For the present trap microstructure, the width of the electrodes underneath the perime-
ter electrode with the same polarity as the perimeter electrodes is reduced to 0.15 mm and
the width of the electrodes with the opposite polarity is increased to 0.3 mm. This re-
sults in an electric field strength on the microstructure surface shown by the solid curve in
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Fig. 3.12. As can be seen, the electric field strength on the surface is now everywhere at
least 45 % above the nominal trap depth. Simultaneously, the electric field strength on the
electrode of opposite polarity to the perimeter electrode has been reduced. Changing the
width of the microstructure electrodes thus allows the traps confining electric field strength
to be maintained under the perimeter electrode without resorting to increased voltages on
the microstructure electrodes.

3.6.4 Minimizing electric field zeros inside the trap

Considering the complex microstructure fields and their interaction with the perimeter
electrode field, it can be expected that avoiding electric field zeros inside the trap will
be somewhere between extremely difficult and impossible. As such, the prevalence of trap
losses due to Majorana transitions is a key issue which needs to be addressed. For identical
voltages applied to the microstructure on both capacitor plates of the trap, the electric field
in the entire central region of the trap for a regular microstructure is vanishingly small,
and molecules will be lost due to Majorana transitions almost instantly. An offset is then
essential for successful trapping of molecules, but this by no means eliminates all electric
field zeros. In fact, with the dominant contributions to the electric potential far away from
the microstructure plate surface according to Eq. 3.16 given by

Φ(x, y, z) = Φ0 + E0 y + a1 exp

(−2π y

d

)

cos

(

2π (x− x0)

d

)

, (3.60)

we see that an electric field zero exists above every second microstructure electrode at
y ≈ d

2π
log(2π a1

dE0
) where the microstructure field and the offset field precisely cancel.

We estimate the rate at which Majorana transitions will occur due to an electric field
zero above every second microstructure electrode based on the approach in section 3.2.4.2.
Linearizing Eq. 3.60 near the zero, we find that the electric field strength at a distance
xz from the zero is |E| = 2π

d
E0xz . Interestingly, this is independent of a1, or equivalently,

of the voltage difference between neighboring microstructure electrodes. For a more or
less typical Stark splitting between neighboring rotational sublevels of 200 MHz/(kV/cm)
and a typical value of E0 in the experiment of 600 V/cm, we find that the constant cE
in Eqs. 3.12 and 3.13 is equal to cE = 940 MHz/mm. As a result, for molecules with a
velocity of 10 m/s, Majorana transitions are likely to occur when they pass by an electric
field zero within a distance of approximately b = 3.3µm. To apply Eq. 3.14 to obtain
the loss rate, we must note a key difference in the situation here from the assumptions
leading to Eq. 3.14. Eq. 3.14 assumes a point-like zero with the electric field increasing in
all directions away from the zero. In contrast, the electric field zeros above every second
microstructure electrode extend the entire length of the trap. As a result, one factor of
b in Eq. 3.14 must be replaced by the width of the trap, i.e. 2 cm. For a total of 100
microstructure electrodes of one polarity on the two capacitor plates along the 4 cm length
of the trap, we obtain a loss rate of

Γ =
100× 2 cm× 3.3µm× 10m/s

2.4 cm3
= 27 Hz. (3.61)
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Thus, even with an offset field between the capacitor plates, Majorana transitions lead to
catastrophic trap losses.

To achieve long trapping times, the electric field zeros above every second microstruc-
ture must be eliminated. From the standpoint of finding a suitable solution to the Laplace
equation for the electric potential, this is relatively easy. Due to the translation symmetry
along the microstructure, the electric fields they produce are confined to the plane per-
pendicular to the translation direction. The electric field zeros are therefore eliminated
in the solution to the Laplace equation where a constant electric field pointing along the
translation direction is added to the microstructure field. Such a field could be rather
weak, with a strength which needs to be only slightly more than the microstructure field
at a distance from the field zeros where Majorana transitions start to become likely. In
the numerical example above, this is 15 V/cm. However, creating such a field configuration
with a realistic set of electrodes is quite difficult. Unlike a magnetic trap, where an offset
field can easily be added with an external set of coils, the trap electrodes act as a Fara-
day cage, shielding the trap volume from any external fields. Thus, even using the trap
perimeter electrode to apply a voltage difference to opposite sides of the trap would create
only a vanishingly small field along the trap microstructure in the center of the trap.

To achieve a component of the electric field along the microstructure electrodes re-
quires a voltage gradient along the electrodes. One possibility would be to fabricate the
microstructure electrodes out of a material with a high electrical resistivity and apply an
electric current along the electrodes. This option was seriously considered while design-
ing the trap and would be very interesting if a suitable material for the microstructure
electrodes could be found. However, in the end a substantially simpler solution from a
microstructure fabrication standpoint was found. As in the previous section, the idea is
to play with the widths of the microstructure electrodes. Viewed from a distance, a mi-
crostructure with wider positive than negative electrodes will appear to have an overall
positive voltage applied and vice versa for wider negative electrodes. This is reflected in
the dependence of the constant Φ0 in, e.g., Eq. 3.60 on the widths of the electrodes even
for constant electrode voltages. As a result, an electric field along the trap microstructure
can be obtained by tapering the widths of the electrodes, with the positive electrodes being
wider on one side of the trap and the negative electrodes being wider on the other side.

Before considering the design of the microstructure taper, we discuss the key issue of
calculating the electric fields which the tapered microstructure produces. Here, the theory
from section 3.6.1 may at first seem inapplicable since the taper eliminates the translation
symmetry along the microstructure. However, one can easily obtain an approximate electric
potential Φ̃(x, y, z) (with z the direction along the microstructure) by solving the Laplace
equation in two dimensions with z fixed for each value of z. Due to the slow variation in the
electrode dimensions along the microstructure, this is an excellent approximation: Let θµt
be the maximal angle between the z-axis and the tangent to the edge of the microstructure.
By scaling the distance over which the microstructure taper occurs, it is relatively easy to
show that the error in Φ̃(x, y, z) is on the order of θ2µt. For the microstructure taper in the
present trap, θµt = 0.0077, and we thus expect the inaccuracy in assuming the electrode
widths to be invariant under translation to calculate the potential at a given position z to
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be on the order of θ2µt = 6× 10−5.

3.6.4.1 Design of the tapered microstructure

In addition to the primary goal of achieving a sufficiently strong electric field along the
microstructure, the choice of electrode widths for the microstructure taper is again guided
by the need to maintain the trap depth and by the desire to limit the maximal electric
field strength on the microstructure surface. Here, a large taper directly conflicts with a
large trap depth since the former requires the electrode widths to deviate from the values
which are optimal for the latter. As a result, the microstructure taper should be as small
as possible to sufficiently suppress Majorana losses. Determining the minimal necessary
microstructure taper requires knowledge of a wide range of parameters concerning the
operation of the trap, including the choice of molecule species and the identity of the
rotational molecular states to be trapped, and additionally requires a much more accurate
model for Majorana losses than the one presented in section 3.2.4.2. These conditions were
hardly fulfilled while designing the trap, and since suppressing Majorana losses is much
more important than maximizing the trap depth, the microstructure taper was chosen to
be substantially larger than it should need to be.
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Figure 3.13: Electric field at the surface of a microstructure without any offset field for
electrode widths as indicated. These widths represent the extreme values for the taper of
the microstructure electrodes across the trap. The choice of these values is discussed in
the text.

The values for the electrode widths w1 and w2 at one end of the microstructure taper
were chosen to satisfy the following two conditions. First, for a voltage of ±Vµ applied
to the microstructure, the mean electric potential of the microstructure surface should be
−Vµ/4. Together with the mean potential at the other end of the microstructure taper,
this determines the strength of the electric field along the trap microstructure, which needs
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to be sufficiently large. Second, the minimal electric field on the surface of the narrower
electrode should be equal to the minimal electric field on the microstructure surface between
the electrodes. This results in electrode widths of w1 = 0.166 mm and w2 = 0.349 mm and
an electric field strength at the surface of the microstructure as shown by the solid line
in Fig. 3.13. The electric field strength Eµ,min at the center of the wider electrode is just
slightly more than the trap depth. This is in fact the weakest electric field strength on
the surface of the entire microstructure. The fact that it is just slightly more than the
trap depth is a matter of definition because the value of 3 Vµ for the voltage applied to the
perimeter electrode is based on this electric field strength. In principle, a slightly higher
voltage could be applied to the perimeter electrode such that the trap depth is equal to
Eµ,min. The value of 3 Vµ was chosen both for simplicity and to allow for slight variations
in the actual microstructure fields compared to the theoretical fields shown in Fig. 3.13.

In the absence of any offset fields perpendicular to the microstructure plates, the elec-
trode widths at the other end of the microstructure taper would best be the same as the
widths at the first end, but with the values for the positive and negative electrode being
interchanged. However, offset fields affect the electric field strength on the opposite polar-
ity electrodes differently, and an asymmetric taper design can be used to allow for large
offset fields without reducing the trap depth. This is particularly relevant since the original
proposal for optoelectrical cooling requires a large offset field to be applied between the
capacitor plates in one half of the trap. As a result, the electrode widths at the second
end of the taper were chosen such that an offset field of approximately Eµ,min/2 can be
applied without reducing the electric field strength at the surface of the microstructure
below Eµ,min. This is translated to the conditions that the minimum electric field strength
on the electrode of width w1 is 50% more than Eµ,min and that the minimum electric field
strength on the electrode of width w2 is 50% of Eµ,min less than the minimal electric field
strength on the surface of the electrode of width w1 at the first end of the taper. These
conditions result in electrode widths of w1 = 0.220 mm and w2 = 0.177 mm and an electric
field strength at the surface of the microstructure shown by the dashed line in Fig. 3.13.
The mean electric potential on the microstructure surface resulting from these widths is
0.0653Vµ, and the electric field strength along the microstructure will thus be 0.3153Vµ

divided by the distance over which the taper occurs.
In order to use the asymmetric microstructure taper to allow for large offset fields

without reducing the trap depth, the polarity of the offset field needs to be such that
it increases the electric field strength on the electrode of width w2 and reduced the field
strength on the electrode of width w1. As a result, to allow for a large offset field between
the capacitor plates, the polarity of the electrodes of width w1 and w2 would need to be
exchanged between the two capacitor plates of the trap. Choosing an opposite preferred
sign for the offset field for the two capacitor plates in this way is problematic because the
perimeter electrode also produces large offset fields perpendicular to the capacitor plate
surface with an equal sign for both plates. In particular, the microstructure taper needs
to extend quite close to the sides of the trap, resulting in offset fields due to the perimeter
electrodes which are as large as 25% of the trap depth (see section 3.6.7 for details).
Since the offset field due to the perimeter electrode needs to be on permanently whereas
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a large offset field between the capacitor plates is optional for basic operation of the trap,
it was decided to have the electrode of width w1 be of the same polarity as the perimeter
electrode for both capacitor plates of the trap. Note that since the perimeter electrode
only creates an offset field of 25% of the trap depth in the region where the microstructure
taper exists, the asymmetry in the microstructure taper is larger than it needs to be, and
would optimally be reduced.

3.6.4.2 Maintaining homogeneous fields with a tapered microstructure
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Figure 3.14: Electrode widths for the microstructure versus average voltage (in units of the
voltage ±Vµ applied to the microstructure electrodes) on the microstructure surface which
the indicated electrode widths produce. Replacing the voltage on the horizontal axis by
position along the microstructure results in the required progression of the electrode widths
along the microstructure taper to achieve a homogeneous field along the microstructure.

So far we have only considered the electrode widths at either end of the microstructure
but not the progression of the widths in between. This is because in terms of the crite-
ria we have discussed so far: achieving a sufficient electric field along the microstructure,
maintaining the trap depth, and limiting the maximal fields, the progression is quite un-
critical, and a linear interpolation between the values at the end of the taper is completely
sufficient. The progression of the electrode widths nonetheless plays a key role for the trap
in that the field along the electrodes, unlike all other electric fields in the trap except for
the offset field between the capacitor plates, extends with undiminished strength to the
center of the trap. Unlike the offset field between the capacitor plates, however, the field
along the microstructure electrodes is by no means automatically homogeneous, and failure
to ensure that it is homogeneous would wipe out a large part of the effort to build a trap
with homogeneous fields in the center!
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Determining the required electrode width progression to achieve homogeneous fields is
(with the help of the theory from section 3.6.1) quite easy. All we need to do is ensure
that the average voltage on the microstructure surface (which is the effective voltage of
the microstructure plate as viewed from a distance) progresses linearly with distance along
the microstructure taper. This is achieved in detail as follows. We linearly interpolate the
electrode widths between the values w1,i and w2,i at one end and w1,ii and w2,ii at the other
end of the taper as defined above as a function of a parameter t according to

w1(t) = w1,i + (w1,ii − w1,i)t
w2(t) = w2,i + (w2,ii − w2,i)t

0 ≤ t ≤ 1. (3.62)

The theory in section 3.6.1 provides the average voltage on the microstructure surface
V (w1, w2) as a function of the electrode widths. Inserting Eq. 3.62 into this function,
we obtain a function V (t). This function is inverted and inserted into Eq. 3.62 to obtain
functions w1(V ) and w2(V ) which are plotted in Fig. 3.14. Replacing V by a linear function
of the position along the microstructure taper, we obtain the desired progression of the
electrode widths.

3.6.5 Eliminating holes between the perimeter electrode and the
microstructure

The lines of near zero electric field above every second microstructure electrode discussed
above by no means end near the perimeter electrode. All that happens is that they move
closer to the surface as the offset field E0 perpendicular to the microstructure increases. For
microstructure electrodes contacted sufficiently close to the edge of the perimeter electrode,
the perimeter electrode will produce sufficiently strong electric fields along these channels of
near zero field to prevent Majorana losses in this region. However, the channels nonetheless
cause a problem in that they lead directly out of the trap volume and thus constitute holes
through which molecules can escape from the trap.

In principle the channels of near zero electric field under the perimeter electrode can
be plugged by applying an electric potential gradient along the channel with a strength
equal to the trap depth. For microstructure electrodes contacted as shown in Fig. 3.10,
corresponding to Fig. 3.15a, this is basically automatically the case on the side of the mi-
crostructure where the microstructure electrodes with the opposite polarity as the perime-
ter electrode (i.e. those above which a low field channel does not exist) are contacted. Here,
a high electric field strength exists everywhere on the microstructure surface, either due
to the offset field from the perimeter electrode, or due to the electric potential difference
between the microstructure electrodes of opposite polarity.

On the side of the microstructure where the microstructure electrodes with the same
polarity as the perimeter electrode are contacted, avoiding holes in the trap is much more
difficult. The surface normal electric field on these electrodes invariably changes sign
between what is the top and the bottom of Fig. 3.15a. This results in a region of zero
electric field on the electrode surface, indicated by the red line in the figure, and the
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a. b. c.

Figure 3.15: Variations for contacting the microstructure electrodes underneath the perime-
ter electrode. a. This simplest variation works fine on the side of the microstructure where
the black electrode has the opposite polarity as the perimeter electrode. However, when
the black electrode has the same polarity as the perimeter electrode, a zero-field region
indicated by the red line exists on the surface of the electrode, resulting in holes in the
electric trap. b. The region of zero electric field on the microstructure surface can be
eliminated by adding an additional electrode with the opposite polarity as the perimeter
electrode above the electrode with the same polarity as the perimeter electrode. However,
the electric field strength is still substantially weakened in the vicinity of the red crosses,
and the holes in the trap thus effectively remain. c. The holes in the trap can be almost
completely eliminated by bending the microstructure electrodes with the same polarity as
the perimeter electrode around and contacting them in a single location at the side of the
trap.

low-field channels thus end in an entire line of zero field on the microstructure electrode
surface. While the zero field can be eliminated by adding an additional electrode as shown
in Fig. 3.15b, the low field channels will still terminate in a point of weak field on the
microstructure surface in the vicinity of the red crosses in the figure.

We estimate the loss rate for molecules through the low-field channels under the perime-
ter electrode. Whereas the absolute loss rate depends on a variety of parameters according
to the description in section 3.2.2, almost all these parameters cancel when comparing
with the loss rate through the entrance and exit quadrupole guide connected to the trap,
and we thus calculate the ratio of these loss rates. In fact, modeling both holes as a
two-dimensional electric quadrupoles, the only relevant parameter is the rate of increase
of the electric field strength with distance from the center of the quadrupole hole. For
the capacitor-plate-based guide shown in Fig. 3.7, this is 0.93 TDU/mm. For the holes
under the perimeter electrode, and approximating the electric field with Eq. 3.60, this
is approximately 2πE0/d = 7.9 TDU/mm, where E0 = 1 TDU and d is the periodicity
of the microstructure. Due to the approximate nature of Eq. 3.60, this second value is
approximately 10% too small.

Since the loss rate through a quadrupole hole in the trap is inversely proportional to
the square of the increase of the electric field strength with distance from the center of the
hole, the loss rate through a single hole under the perimeter electrode is approximately
72 times less than the loss rate through either the input or the output guide of the trap.
However, for microstructure electrodes contacted as shown in Fig. 3.15a or b, one hole
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Figure 3.16: Electric field strength at the surface of the microstructure for microstructure
electrodes contacted as shown in Fig. 3.15c. The edges of the electrodes are indicated by
the white lines. The ends of the electrodes are defined by a sequence of concentric circles.
The electric field strength on the right side of the figure is 1/3 larger than the nominal
trap depth because, for a voltage of ±Vµ applied to the microstructure and a voltage of
3Vµ applied to the perimeter electrode, the voltage difference to the perimeter electrode
in this region is 1/3 larger than the voltage difference between the perimeter electrode
and the average microstructure voltage. This is not the case for the actual microstructure
because the microstructure electrode with opposite polarity as the perimeter electrode is
followed by an electrode which typically has a voltage applied which is equal to the average
microstructure voltage, in a geometry analogous to that in Fig. 3.15b.

exists for each of the 100 microstructure electrodes with the same polarity as the perimeter
electrode on the two capacitor plates of the trap. Moreover, the holes consisting of the
input and output quadrupole can be plugged by applying appropriate voltages between
two consecutive segments of the input and output guide, which is hardly possible with
the holes under the perimeter electrode. For an optimized trap where the dominant loss
process would otherwise be molecules escaping through input and output guide, the holes
under the perimeter electrode thus substantially reduce the number of molecules which can
be loaded into and unloaded from the trap.

By tweaking the design in Fig. 3.15b, for example by reducing the width of the black
electrode across the top of the figure, the electric field strength at the surface of the
black electrode could probably be increased to the point where only the hottest molecules
in the trap can still reach the electrode surface. However, this invariably increases the
maximum electric fields near the edges of the microstructure electrodes as well. A much
more satisfactory approach exists by contacting the microstructure electrodes as shown
in Fig. 3.15c. Here, the microstructure electrode with the same polarity as the perimeter
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electrode meanders back and forth across the surface of the capacitor plates and is only
contacted in a single location at the side of the trap. For the present trap design with two
independent trap regions on both capacitor plates, this reduced the number of holes under
the perimeter electrode to one for each of the four independently contacted microstructure
electrodes with the same polarity as the perimeter electrode. The losses will thus be
negligible compared to the loss rate through the entrance and exit guide of the trap.

To ensure that no weak spots in the trapping fields under the perimeter electrode
remain, we have calculated the electric field strength at the microstructure surface for
electrodes contacted as shown in Fig. 3.15c. The result is shown in Fig. 3.16. Clearly,
the electric field strength is everywhere larger than the trap depth, and the holes in the
trapping field are thus eliminated. Note the particularly large fields at the end of the
electrodes at multiples of 1.6 mm in the figure. These are most probably the regions of
highest electric field on the entire microstructure surface. It would thus be worthwhile
trying to reduce these fields, for example by moving the ends of the electrodes at multiples
of 1.6 mm slightly to the left.

3.6.6 Interface between the two halves of the trap
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Figure 3.17: Realization of the interface between the two halves of the trap with indepen-
dent microstructure voltages. All electrodes of a given polarity on either plate on either
the right or the left side of the dashed line are interconnected. Two distinct configurations
exist regarding the polarity of the last electrode on a given side of the trap, shown in a and
in b. Configuration b allows a much higher offset field between the capacitor plates on one
side of the trap for zero offset on the other side subject to the constraint that the voltage
difference between neighboring electrodes never exceeds 2Vµ. Typical voltages applied are
shown in the center, voltages to achieve a maximal offset field on the right are shown on
the outside of the electrodes.

One final element of the trap microstructure design is worth mentioning before adding
all the design elements together. As mentioned in section 3.3.2, the length of the trap is
chosen to be equal to twice the width with the intent of applying independent voltages to
the capacitor plates in two halves of the trap. This is easily achieved by contacting the set
of microstructure electrodes on either half of the trap independently. However, this leads
to two distinct variations as shown in Fig. 3.17. As explained in the figure, variation b has
the advantage of allowing a much larger difference in offset voltage between the capacitor
plates on the two sides of the trap. For the example in the figure, this is equal to 8Vµ,

73



allowing an offset field of 0.8 TDU on one side of the trap for an offset field of 0 TDU on
the other side. However, applying these voltages severely distorts the trap confinement
near the perimeter electrode. We note that for a microstructure with a smaller periodicity,
the microstructure voltages will be proportionally reduced, and this equally reduces the
maximal difference in offset field between the two halves of trap. To avoid this problem, it
might be necessary to add additional independently contacted electrodes between the two
sides of the capacitor plates.

3.6.7 Overall design of the trap microstructure

12mm 18mm

37.2mm

Figure 3.18: Subdivision of the microstructure surface, as explained in the text. The outer
black line shows the position of the inner edge of the perimeter electrode. The green line
is the set of points where the offset field due to the perimeter electrode on the capacitor
plate surface is half the trap depth, the blue line is the set of points where the offset field
is a quarter of the trap depth.

We are now finally ready to consider the microstructure plates as a whole. The surface
of the microstructure plates can be subdivided into a number of different regions, depending
in particular on which microstructure design elements described above need to be applied.
This subdivision is shown in Fig. 3.18. The inner dark gray region is the central trap region,
where the widths of the microstructure electrodes are determined by the microstructure
taper described in section 3.6.4. The final tapered electrode on all four sides of the two
capacitor plates has the opposite polarity as the perimeter electrode. Since the position
of the positive and negative microstructure electrodes on the two plates are interchanged
according to Fig. 3.17b, this causes the position of the central trap region to be shifted by
0.4 mm between the two capacitor plates. The central trap region ends 1.2 mm from the

74



75



76



Figure 3.19: (previous two pages) Drawing of the two complete microstructure plates,
with overall dimensions of 36 mm×74 mm. The electrodes with the same polarity as the
perimeter electrode are colored red, those with opposite polarity are colored blue. The
black electrodes surrounding the microstructure electrodes are generally grounded.

front edge of the perimeter electrode on one side of the trap and 1.6 mm from the edge on
the other side.

Ending the microstructure taper over a millimeter away from the front edge of the
perimeter electrode on the sides of the trap was probably a big mistake. The electric field
along the microstructure electrodes probably drops off extremely rapidly once the taper
ends and is then no longer sufficient to prevent Majorana flips in the region of low field above
every second microstructure electrode. The four first low-field regions on the four sides
of the two capacitor plates alone are sufficient to limit the trap lifetime to approximately
2 s. However, these losses only occur for molecules which are hot enough to surmount the
electric field barrier of approximately 25% of the trap depth on the way to the low field
region due to the perimeter electrode. Strong evidence for this is seen in the experiment.
It would thus be necessary to continue the microstructure taper further towards the side
of the trap. This is substantially complicated by the need to take into account the strong
offset field due to the perimeter electrode in this region when choosing the electrode widths
along the taper.

In the outer white region of Fig. 3.18, the widths of the microstructure electrodes are
determined by the strength of the offset field due to the perimeter electrode as described in
section 3.6.3. Additionally, the electrodes are of course contacted in this region as described
in section 3.6.5. The contacting starts 2 mm behind the front edge of the perimeter elec-
trode. In the light gray region, the electrode widths are interpolated between the widths
at the edge of the dark gray and the white region.

The microstructure electrodes are surrounded by a final set of electrodes which are
typically grounded. This is motivated by the fear that the outer edges of the capacitor
plate electrodes might be particular sensitive to being opposed by macroscopic electrodes
with a different voltage applied. This is probably not an issue for the present microstructure
with a relatively large periodicity where the microstructure voltages are almost as large
as the perimeter electrode voltage, but it might be relevant for smaller microstructure
periodicity. The ground electrode also ensures that the electric field strength between the
capacitor plates and the perimeter electrode approaches a value equal to the nominal trap
depth, as discussed in Fig. 3.16.

A drawing of the complete microstructure plates is shown in Fig. 3.19. The overall
plate dimensions are 36 mm×74 mm. The microstructure plates are held in place by being
pressed from the back against four supports in the corners of the plates. As a result, the
corners of the plates are kept electrode free. To contact the microstructure electrodes, the
original plan was to continue the electrodes to the back of the plates with silver paint and
contact them there. However, this was completely incompatible with high voltages. As an
alternative, miniature clamps were machined to attach to the edges of the plates. A much
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better solution might be to drill feedthroughs through the plates and contact them from
behind as originally planned. However, this requires tools which are currently unavailable.

3.6.8 Electric fields from the combined perimeter and microstruc-
ture electrodes

As a final part to the section on the trap microstructure, we consider the electric fields re-
sulting from the combination of the microstructure electrodes and the perimeter electrode.
This is particularly useful to determine the existence of remaining electric field zeros in the
trap. Due to the large difference in scale between the microstructure and the overall trap,
an accurate simulation of the fields in the electric trap as a whole has not been performed
to date. However, a relatively good understanding of the overall trap fields can be obtained
by making use of the near periodicity in the center of the trap in the direction along the
capacitor plates perpendicular to the microstructure. As a result, the trap fields can be
simulated by considering a volume of just 0.4 mm×3 mm×24 mm. The 24 mm dimension is
along the microstructure and extends 2 mm past the front edge of the perimeter electrode
in both directions. Due to the near translation symmetry along the trap microstructure,
this dimension can be simulated with a substantially reduced resolution. The contacting of
the microstructure electrodes is not simulated. The 3 mm direction is between the capac-
itor plates. The 0.4 mm dimension ends at the center of two neighboring microstructure
electrodes. As a result, the sides of the simulation volume in this direction are reflection
planes.

Figure 3.20: Direction field for the electric field in the central region of the trap. The im-
ages show a cut of the trap either centered above a microstructure electrode with the same
polarity as the perimeter electrode (top) or a microstructure electrode with the opposite
polarity as the perimeter electrode (bottom). Since both planes shown are approximate
reflection planes near the center of the trap, the electric field component perpendicular
to the planes is approximately zero. Between the planes, the electric field near the mi-
crostructure electrodes rotates from pointing away from the electrodes to pointing towards
the electrodes, with the direction field otherwise remaining constant. We assume a positive
voltage applied to the perimeter electrode. Further explanation is provided in the text.
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To understand the electric field strength distributions obtained from the trap field
simulation, it is instructive to construct an approximate direction field for the electric
field vector in the trap, with the result shown in Fig. 3.20. The electric field is composed
of two strong and two weak components. The strong components are the electric field
pointing away from the perimeter electrode as well as the electric field pointing away
from the positive polarity microstructure electrodes and towards the negative polarity
microstructure electrodes. The weak components are the field between the capacitor plates
due to an offset voltage between the plates and the field along the capacitor plates due to
the microstructure taper.

Electric field zeros in the trap occur in locations where the various electric field compo-
nents point in conflicting directions. Here, the critical areas are the corners of the diagrams
in Fig. 3.20, indicated by the red and orange arrows. In three of the four corners denoted
by the orange arrows, the electric field topology is such that the electric field switches
direction along at most one dimension, but stays the same along the other dimension,
allowing an electric field zero to be avoided. However, in the fourth corner denoted by
the red arrows, the electric field switches direction along both dimensions. Since this is
a topological feature of the electric fields, an electric field zero in the vicinity of the red
arrows cannot be avoided without substantially changing the trap design. We note that in
the plane shown, the electric potential near the electric field zero in the bottom diagram
consists of a saddle point whereas in the top diagram, it consists of a local maximum.
This is not a violation of Earnshaw’s theorem since the electric potential also varies in the
direction perpendicular to the plane.

4
10

-

3
10

-

2
10

-

1
10

-

1

Figure 3.21: Electric field strength distribution in the same cuts of the trap as shown in
Fig. 3.20. Here, voltages of ±Vµ are applied to the microstructure electrodes, a voltage
of 3Vµ is applied to the perimeter electrode, and plate offset voltages of +Vµ/20 and
−Vµ/20 are added to the microstructure voltages on the top and bottom capacitor plate,
respectively.

The analysis of the electric field direction field is confirmed by the trap field simulation,
with the electric field strength distribution for the same cuts of the trap as in Fig. 3.20
shown in Fig. 3.21. The only remaining electric field zeros are at the predicted locations.
The field distribution also nicely shows the large region of homogeneous field in the center
of the trap as well as the channels of low electric field above the electrode with the same
polarity as the perimeter electrode under the perimeter electrode.
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Figure 3.22: Electric field strength distribution for the trap as in Fig. 3.21 except that no
offset voltage between the capacitor plates is applied. Here, a big electric field zero extends
along the full length of one perimeter electrode at the center between the capacitor plates.
The origin of this zero can easily be understood from Fig. 3.20.

A final instructive use of the trap field simulation is to consider the electric fields
in the trap with the offset field between the capacitor plates set to zero. Naively, one
might assume that an offset field between the plates is not necessary since the tapering
of the microstructure already provides an offset field in the center of the trap as required
to prevent Majorana losses. However, as shown by the field distributions in Fig. 3.22,
for zero offset field between the plates the field along the microstructure and the field
from the perimeter electrode will precisely cancel at some point in front of one perimeter
electrode in the center between the capacitor plates. The resulting electric field zero
extends along the full length of the perimeter electrode and is sufficient to reduce the
trap lifetime to approximately 100 ms. Realizing the existence of this zero and adding the
required high voltage supplies such that the voltages on the microstructure electrodes on
the two capacitor plates could be set independently was the key step to establish an initial
satisfactory operation of the trap.

3.7 Possibilities for improving the trap

The highly favorable properties of the trap based on the ideas developed in this chapter is
illustrated by the substantial experimental achievements which have been realized with the
trap [83, 82]. A number of ideas exist to improve the properties of the trap even further.
Possibilities to improve the entrance and exit of the trap have already been explored in
section 3.5.5. Here we discuss two additional ideas concerning a further increase in the
trap lifetime and a further improvement of the homogeneity of the fields in the trap.

For molecules directly loaded into the electric trap, trap lifetimes on the order of 10 s
have been observed [83]. Here, the scaling of the trap losses with the temperature of the
molecules and the voltages applied to the trap electrodes strongly suggests that the losses
are to a large part due to Majorana transitions. As discussed in section 3.6.8, a single
electric field zero remains above every second microstructure electrode on both plates of
the trap. Using the same molecule parameters as in section 3.6.4, a Stark splitting between
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neighboring rotational sublevels of 200 MHz/(kV/cm) and a molecule velocity of 10 m/s,
the simple estimate in section 3.2.4.2 predicts a Majorana loss rate for these zeros of
(20 s)−1. However, the estimate in section 3.2.4.2 probably slightly underestimates the
Majorana loss rate and uncertainties in the estimate easily account for the factor two
difference to the measured trap loss rate. It is thus quite likely that the remaining electric
field zeros above every second microstructure electrode are the main source of losses in the
present trap.

The origin of the electric field zeros above every second microstructure electrode is
basically as follows. In the center of the trap, the microstructure taper provides a field
along the microstructure to plug the low-field channel above every second microstructure.
Near the side of the trap, the perimeter electrode induced a much stronger field along the
microstructure. On the side of the trap where the taper field and the perimeter field point
in opposite directions, the field along the low-field channels must thus switch direction,
and at these points electric field zeros occur. A possibility to increase the gradient of
the electric field strength versus position at the electric field zeros and thereby reduce
Majorana losses thus suggests itself as follows. Extending the microstructure taper closer to
the perimeter electrode and even increasing the degree of taper near the electric field zeros
would shift the zeros closer to the perimeter electrode. If the taper is then abruptly stopped
or even reversed, the electric field along the low-field channels would switch directions much
more quickly, as desired. In principle, a sufficient microstructure taper would shift the
electric field zeros underneath the perimeter electrode, in which case they would essentially
be eliminated entirely. However, considering that the maximum field along the low-field
channel due to the perimeter electrode is approximately 10 times larger than the field along
the low-field channel due to the microstructure taper, the fields which can be produced by
the microstructure taper are clearly not strong enough for this to be possible.

A second point where a substantial improvement in the properties of the trap could
be achieved is in the homogeneity of the fields in the trap center. As pointed out in the
introduction, the current trap was designed with a focus on efficient trap loading and
unloading and on reducing trap losses at the expense of the field homogeneity. Thus,
the homogeneity of the trap fields could easily be improved by increasing the ratio of the
transverse trap dimensions to the capacitor plate separation and the ratio of the capacitor
plate separation to the microstructure periodicity. However, as noted in section 3.3.1, the
former reduces the trap loading and unloading rate whereas the latter reduces the degree
to which the microstructure can be tapered.

Making use of the experience with the present trap, it should be possible to reduce the
microstructure periodicity while maintaining a sufficient microstructure taper to sufficiently
suppress Majorana losses. This should allow the field inhomogeneity in the trap center due
to the microstructure to be reduced to the point where it is negligible. Regarding the
field inhomogeneity due to the perimeter electrode, increasing the ratio of the transverse
trap dimensions to the capacitor plate separation would be unfortunate since the loading
and unloading time of the present trap is already larger than optimal. However, a clever
alternative exists based on modulating the microstructure width. In detail, this works as
follows. Referring to Fig. 3.23, the width of the microstructure electrodes can be used
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Figure 3.23: Sketch to help understand the compensation of the perimeter electrode field
by varying the potential on the capacitor plate surface. The end of the perimeter electrode
is located at x = 0, the capacitor plate surfaces are at y = 0 and at y = a. Φ(x, y) is the
electric potential.

to effectively modulate the potential Φ(x, 0) and Φ(x, a) on the surface of the capacitor
plates. If Φ(x, 0) and Φ(x, a) are constant for x > x0 for some value of x0, then the series
expansion Eq. 3.15 can be used to express Φ(x, y) for x > x0. The values of the coefficients
in the series expansion depend both on the potential from the perimeter electrode as well
as on the variation of the potential on the capacitor plate surface for x < x0. The idea is
then to use the variability in the potential on the capacitor plate surface to reduce the lead
coefficients in the series expansion Eq. 3.15 to zero. The extremely rapid decay to zero of
the remaining higher order terms in Eq. 3.15 would then ensure highly homogeneous fields
for x > x0.

A final point regarding the compensation of the perimeter field is that this may on
first sight seem impossible since the perimeter electrode potential is much larger than the
potential variation that can be achieved on the microstructure surface. However, since
all potentials due to voltages applied on the left of Fig. 3.23 decay exponentially towards
the right of Fig. 3.23, the potential from the perimeter electrode is substantially reduced
at x0 for a sufficiently large value of x0. This allows relatively small voltages on the
microstructure surface near x0 to compensate the much larger perimeter electrode voltage.
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Chapter 4

Experimental results

This chapter consists of the original previously unpublished version of the paper describing
the first experimental results for optoelectrical Sisyphus cooling. After discussing the
context of the results compared to other experiments, a brief description of the cooling
scheme and the experimental setup is given. As noted in chapter 2, the cooling scheme
slightly differs from the one originally proposed.

The main part of the paper discusses two data sets. The first data set consists of the
unloading signal from the trap after cooling. The second data set consists of time of flight
measurements from which velocity distributions for the molecules in the trap are derived.
Comparison of the results with and without the radiation fields required for cooling applied
provides irrefutable evidence for cooling.

The paper concludes with several appendices presenting further data and details of
the experiment. In particular, the dependence of the trap unloading signal on both the
unloading voltages and on the RF power during cooling is shown. These measurements
also demonstrate that cooling takes place.
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Publication: Sisyphus cooling of electrically trapped

polyatomic molecules

M. Zeppenfeld, B.G.U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L.D. van
Buuren, M. Motsch, and G. Rempe

substantially revised version published in Nature 491, 570 (2012)

The rich internal structure and long-range dipole-dipole interactions estab-
lish polar molecules as unique instruments for quantum-controlled applications
and fundamental investigations. Their potential fully unfolds at ultracold tem-
peratures, where a plethora of effects is predicted in many-body physics [116,
87], quantum information science [30, 32], ultracold chemistry [11, 117], and
physics beyond the standard model [41, 44]. These objectives have inspired
the development of a wide range of methods to produce cold molecular ensem-
bles [55, 64, 59, 100, 62, 118]. However, cooling polyatomic molecules to ul-
tracold temperatures has until now seemed intractable. Here we report on the
experimental realization of opto-electrical cooling [76], a paradigm-changing
cooling and accumulation method for polar molecules. Its key attribute is the
removal of a large fraction of a molecule’s kinetic energy in each step of the
cooling cycle via a Sisyphus effect, allowing cooling with only few dissipative
decay processes. We demonstrate its potential by reducing the temperature
of 106 CH3F molecules by a factor of 5, with the phase-space density increased
by a factor of 7, limited exclusively by our present setup. In contrast to other
cooling mechanisms, our scheme proceeds in a trap, cools in all three dimen-
sions, and works for a large variety of polar molecules. With no fundamental
temperature limit anticipated down to the photon-recoil temperature in the
nanokelvin range, our results eliminate the primary hurdle in producing ul-
tracold polyatomic molecules. The low temperatures, large molecule numbers
and long trapping times will allow an interaction-dominated regime to be at-
tained, enabling collision studies and evaporative cooling to a molecular BEC.
Our experiment thus opens up a route to quantum-gas physics with polyatomic
molecules.

The ability to prepare ultracold molecular ensembles has an application potential akin
to that of ultracold atoms some two decades ago. In fact, the association of KRb dimers [48]
as well as the laser cooling of SrF [73] has brought fascinating physics within reach. How-
ever, both approaches are restricted to a highly specialized set of purely diatomic molecule
species. In order to investigate fundamental physics based on relativistic effects near heavy
nuclei or parity violation effects in chiral molecules, or to study molecules of astrophysical,
biological, or chemical interest, a more general approach to preparing ultracold molecular
ensemble is imperative. This holds in particular for the rich chemical variety of carbon-,
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Figure 4.1: Implementation of molecule cooling. a, Radiation couples molecular
states which experience a position-dependent potential energy in an electric trap as indi-
cated. Molecules following the emphasized route lose more kinetic energy when entering
the strong-field edge region of the trap than they regain when returning to the trap cen-
tre in a more weakly trapped state. Together with the unidirectionality of the optical
pumping back to the strongly trapped states, this leads to cooling. b, During cooling the
molecules are confined in a microstructured electric trap, with the IR, MW, and RF fields
applied as indicated. c, Time sequence for loading and unloading of molecules, application
of IR, MW, and RF fields for cooling, and realization of MW depletion for internal-state
discrimination.

nitrogen-, or oxygen-based molecules for which the constituent atoms have not even been
laser cooled. Devising a dissipative process to cool such molecules into the ultracold regime
has been an exceedingly challenging problem. The standard approach for atoms, laser cool-
ing, is impossible for the great majority of molecules due to the lack of suitable cycling
transitions. Creating an artificial cycling transition via cavity cooling [70] has not been
demonstrated despite substantial experimental [119] and theoretical [120, 121, 122] effort.
Likewise, evaporative or sympathetic cooling to ultracold temperatures [123] is presently
out of reach due to losses from inelastic collisions.

A particularly promising general framework to cool molecular ensembles is to replace
the weak photon recoil in laser cooling with sufficiently strong forces to remove the entire
molecule’s kinetic energy in a single step [76, 80]. A first step towards this approach is the
recent achievement of accumulation of NH molecules using a single-photon transition [79].
Here we present a full implementation of opto-electrical cooling [76], featuring accumulation
and cooling. Energy is extracted by allowing molecules to move up and down an electric
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Figure 4.2: Trap unloading signal. We show the signal for the experimental cooling
cycle (top) as well as for the same cycle but with either the IR laser left off (bottom) or
the MW depletion (MWD) applied (middle). Cooling results in an increased signal and a
slower decay. The laser-off signal (as well as the MWD signal) shows the background from
molecules in uncooled rotational states. The shaded region represents the unloading signal
in the states of interest (the state-discriminated unloading signal).

field gradient in different states with differing Stark energies while dissipation to remove
entropy is provided by a spontaneous vibrational decay. The scheme is applicable to all
molecules with strong electric-field interaction and pure ro-vibrational states, and thus
constitutes a general method for cooling molecules to ultracold temperatures.

Reducing the temperature over several orders of magnitude requires the cooling cycle
to be repeated many times, and consequently, control being maintained over the internal
molecular state. This is achieved using the level scheme shown in Fig. 4.1a. An electric trap
with a homogeneous electric field in the trap centre and strongly increasing fields near the
trap boundary leads to a position-dependent potential energy for the relevant molecular
states as shown. We label states with vibrational quantum number v and symmetric-top
rotational quantum numbers J,K,M as |v; J,−K,M〉 [97]. For a parallel vibrational tran-
sition with ∆K = 0, the state |1; 2, 2, 2〉 decays to the four rotational v = 0 states shown,
with decay to the |0; 3, 2, 1〉 state ignored due to the small Clebsch-Gordan coefficient of
1
63

. Coupling the weakly trapped |0; 2, 2, 1〉 and |0; 3, 2, 2〉 states with microwave (MW)
radiation and driving the |0; 2, 2, 1〉 to |1; 2, 2, 2〉 transition with an infrared (IR) laser re-
sults in optical pumping to the strongly trapped |0; 2, 2, 2〉 and |0; 3, 2, 3〉 states. Adding a
radio-frequency (RF) to couple neighbouring M-sublevels in strong electric fields completes
the opto-electrical cooling cycle. Losses to the untrapped M = 0 states are avoided by
coupling the neighbouring M-sublevels with the RF at a slow rate compared to the optical
pumping (see appendix A and C). Note that Stark detuning due to the electric fields plays
a key role in selectively addressing only the desired IR and MW transitions (see appendix
E).

During cooling, molecules are confined in a microstructured electric trap [83] depicted
in Fig. 4.1b. The experimental cycle to prepare and detect a sample of cooled molecules
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RF MW Eunload 〈vz〉 T N N/〈vz〉3
+IR (kV/cm) (m/s) (mK) (cnts) (s3/m3)

No Cooling - - 40 8.1 268 44.9 0.085
Acc. 1 - x 40 9.3 358 98.6 0.121
Acc. 2 - x 10 6.6 176 34.5 0.122
Cooling x x 10 4.3 77 48.2 0.587

Table 4.1: Experimental parameters and derived results for the reference measure-
ment, the two accumulation measurements and the cooling measurement. All variables
are defined in the text. The values in the final column are proportional to the molecule
phase-space density, showing an increase by a factor of 7.

is shown in Fig. 4.1c. After the cooling cycle, we apply a MW depletion (MWD) pulse
to obtain an internal-state-discriminated signal with the quadrupole mass spectrometer
(QMS). Details are provided in the methods section.

As a first result, Fig. 4.2 shows the raw averaged QMS trap unloading signal for three
variations of the experimental cycle. Compared to leaving the laser off, the cooling sequence
increases the integrated unloading signal by almost a factor of three. Considering that only
an estimated 10 % of molecules enter the trap in the states |0; 2, 2,M〉 and |0; 3, 2,M〉 ad-
dressed by the laser, this clearly demonstrates a dissipative process which increases the
molecular phase-space density. Moreover, the laser-off signal decays by half in about 1 s
whereas the difference in signal with and without the MWD (the shaded region, corre-
sponding to molecules in J = 2 and J = 3) decays by half in about 2 s. Considering that
colder molecules have a longer trap lifetime [83], this is first evidence for cooling. Adding
the MWD reduces the unloading signal almost back to the level with the IR laser off. In
addition to illustrating the efficiency of the MWD in eliminating molecules in the states
J = 2 and J = 3, this implies that almost all of the signal increase due to the laser is from
molecules ending up in the rotational states |0; 2, 2, 2〉 and |0; 3, 2, 3〉. The tail of the trap
unloading signal thus represents an almost state-selected source of polar molecules.

For a direct proof of cooling, we analyze the velocity distribution of molecules unloaded
from the trap using time-of-flight measurements. We perform four variations of the ex-
perimental sequence with the varied experimental parameters shown in table 4.1. First,
the experimental cycle is carried out with all IR, MW, and RF fields (except the MWD)
left off as reference measurement without cooling. Here, the molecules experience purely
conservative forces inside the trap. Adding the IR and MW fields results in accumula-
tion of molecules. Molecules entering the trap in the weakly trapped states |0; 2, 2, 1〉 and
|0; 3, 2, 2〉 are pumped to the strongly trapped |0; 2, 2, 2〉 and |0; 3, 2, 3〉 states. Finally, the
RF is added to realize the complete cooling cycle. The unloading electric field strength,
Eunload, is set for optimal unloading signal (see appendix C) for all except the second ac-
cumulation measurement. This ’accumulation 2’ measurement is performed with the same
voltages as for the cooling to account for filtering effects during unloading. A lower unload-
ing potential eliminates hotter molecules and a higher potential inhibits colder molecules
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Figure 4.3: Demonstration of opto-electrical cooling. a, Rising edge of the normal-
ized state-discriminated trap unloading signal for the four variations of the experimental
sequence. b, Molecular velocity distributions derived from the rising-edge signals shown
in (a) taking into account the number of detected molecules. Cooling results in a substan-
tially increased signal below 6 m/s, clearly demonstrating that a dissipative cooling process
has taken place. The shaded regions represent the 1σ statistical error.

from finding the exit hole.
The normalized rising-edge time-of-flight signals for the four measurements are shown

in Fig. 4.3a and the derived velocity distributions, filtered via convolution with a Gaussian,
are shown in Fig. 4.3b. As expected, the two measurements with Eunload = 40 kV/cm show
the hottest molecules, with a peak velocity around 8 m/s. Adding the IR and MW radi-
ation for accumulation results in over twice the molecule signal compared to ’no cooling’.
Interestingly, the average velocity for the molecules for ’no cooling’ is slightly lower. This
most probably occurs since without accumulation molecules remain in the trap in the more
weakly trapped states |0; 2, 2, 1〉 and |0; 3, 2, 2〉. Slow molecules in such states more easily
find the trap exit than in more strongly trapped states. Reducing Eunload to 10 kV/cm for
’accumulation 2’ results in strong velocity filtering of the trapped molecules. Below 5 m/s
the signal even increases since these molecules are no longer restricted from leaving the
trap unlike at higher unloading fields.

Adding the RF for the complete cooling cycle leads to the slowest velocity distribution
with the peak velocity reduced to 4 m/s and with a clear signal increase compared to the
low-Eunload accumulation measurement: the molecules have been cooled. Note that the
only difference to the second accumulation measurement is the presence of the RF, which,
without the optical pumping, causes strong trap losses.

For each time-of-flight measurement, we calculate the mean longitudinal velocity 〈vz〉
and estimate the molecular temperature T via 1

2
kBT = 1

2
m〈vz〉2, with the results shown in

table 4.1. Note that 〈vz〉 is representative of the velocity in all three dimensions in the trap
due to mixing of the velocity components [76, 83]. Compared to the first accumulation
measurement, the cooling results in a reduction in temperature by a factor of 4.6. As
a measure of the trap molecule density, we use the difference N in QMS counts with
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and without the MWD during unloading per experimental cycle, extrapolated from the
plateau value of the time-of-flight measurements. N = 30 corresponds to approximately
106 molecules in the trap. Compared to no cooling, the number of molecules for cooling
even slightly increases. To estimate the increase in phase-space density, we multiply the
number of detected molecules with the inverse of the mean velocity cubed, this quantity
increasing by a total factor of 6.9. Interestingly, the two accumulation measurements show
practically the same value, consistent with a uniform density in velocity-space below the
trap cut-off energy.

Continuing the opto-electrical cooling to lower temperatures requires a number of lim-
iting technical issues to be resolved. Most severely, residual inhomogeneities of the electric
field in the trap, possibly due to surface charges, increasingly perturb the molecule motion
for decreasing temperatures, preventing further cooling. Other issues are the low detector
efficiency and the slow vibrational decay of CH3F (see appendix F).

The present experimental results bring key applications of ultracold polar molecules
within reach. First, the increased molecular phase-space density improves the sensitivity
for high-resolution spectroscopy and collision experiments. Second, the lower temperature
allows loading of molecules into more weakly confining microwave [124] or optical traps
which can hold molecules in their rotational ground state, a prerequisite for achieving
quantum degeneracy. Finally, our chip-like trap and guide architecture facilitates hybrid
quantum systems for quantum information processing with cold molecules [32].

Methods Summary

The initial sample of molecules is generated by velocity filtering [100] from a liquid-nitrogen
cooled source loaded into the electric trap [83] via a quadrupole guide. Molecules are
continuously loaded into the trap for 16 s and stored for an additional 9 s. During the
entire cooling cycle, the IR, MW, and RF fields for cooling are applied and the trap
electric-field depth Etrap is set to 60 kV/cm. For cooling over a wide range in temperature
several RF frequencies are used which are reduced over time. Detection is performed by
guiding the molecules to the QMS via a second quadrupole guide.

For internal-state-discriminating measurement, a MWD pulse consisting of various MW
frequencies near 153 GHz is applied during the last second before trap unloading every 2nd

cooling sequence. This mixes all M-sublevels of the J = 2 and J = 3 states, leaving only
the unaffected background from molecules in other states in the trap. The unloading signal
difference with and without the MWD constitutes the state-discriminated cooling signal
for one experimental cycle.

The selection of CH3F as molecule species is based on favourable properties for trap
loading and detection. Large rotational constants and sufficient vapour pressure down
to almost 100 K allow efficient velocity filtering with an adequate fraction (∼ 10 %) of
molecules in the rotational states used for cooling. Low contributions from other molecules
at the atomic mass 34 of CH3F results in very low background for the QMS detection. For
dissipation, the approximately 15 Hz spontaneous decay rate of the most suited parallel
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vibrational v1 symmetric C-H stretch mode is sufficient. A description of the IR and MW
radiation sources required for CH3F [125] is provided in appendix B.

Appendix A: Detailed Cooling Scheme

The illustration of the opto-electrical cooling cycle in Fig. 4.1a in the main text includes
only the molecular states and transitions directly involved in the cooling scheme. Fig. 4.4
shows an expanded version of the cooling cycle where we consider all the decay channels
from the v = 1 to the v = 0 states as well as transitions to lower M-sublevels driven by
the RF fields. A careful consideration of the additional decay channels and RF transitions
shows that their role in the cooling cycle can be marginalized.
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Figure 4.4: Detailed energy-level diagram. As described in the main text, molecules
are cooled by following the emphasized route. Gray lines indicate various potential loss
channels which are avoided as described in the text.

The selection rules ∆J = 0,±1, ∆K = 0 and ∆M = 0,±1 for a parallel vibra-
tional transition additionally result in spontaneous decay to the |0; 2, 2, 1〉, |0; 3, 2, 2〉, and
|0; 3, 2, 1〉 states. Decay to the first two of these states does not constitute a loss channel
since these states are already coupled to the excited state by the much stronger optical
pumping. Although decay to the |0; 3, 2, 1〉 state leads to losses, the Clebsch-Gordan coef-
ficient for this decay channel is only 1

63
relative to the total decay rate. Due to the small
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number of spontaneous decays required for cooling, this loss channel can be ignored in the
present experiment. Therefore, only the spontaneous decay to the |0; 2, 2, 2〉 and |0; 3, 2, 3〉
states indicated in Fig. 4.1a in the main text is relevant to the cooling scheme.

The other major potential loss channel is the RF field which causes transitions to
lower M-sublevels. These losses can be made arbitrarily small using a sufficiently low RF
coupling rate, as discussed in the following. Suppose the transition rate from the strongly
trapped states (|0; 2, 2, 2〉 and |0; 3, 2, 3〉) to the more weakly trapped states (|0; 2, 2, 1〉 and
|0; 3, 2, 2〉) via the RF is γRF and the rate of optical pumping back to the strongly trapped
states is γIR. For γRF ≪ γIR, the fraction of molecules in the states |1; 2, 2, 2〉, |0; 2, 2, 1〉,
and |0; 3, 2, 2〉 is proportional to γRF/γIR and the transition rate to the (potential) loss
channels |1; 2, 2, 1〉, |0; 2, 2, 0〉, and |0; 3, 2, 1〉 via the RF is proportional to γRF× (γRF/γIR).
This compares to a cooling rate proportional to γRF. Therefore, by choosing a sufficiently
weak RF intensity, the loss rate due to the RF can be made arbitrarily small compared to
the cooling rate.

Appendix B: Details of the Experimental Setup

IR radiation at 2966 cm−1 to drive the J = 2, ∆J = 0 transition of the v1 vibrational band
is produced by a CW optical parametric oscillator locked to a frequency comb. Line assign-
ments and frequency values published in Ref. [125] are verified with saturation spectroscopy
at sub-MHz resolution using a multi-pass Herriot cell and validated via combination differ-
ences between the |v; J,K〉 and |v; J + 1, K〉 states. The 400 mW of IR power illuminates
the trap from the side (as shown in Fig. 4.1b in the main text), driving the |0; 2, 2, 1〉 to
|1; 2, 2, 2〉 transition with an estimated rate on the order of 100 Hz.

To couple the v = 0, J = 2 and J = 3 states, MW radiation at 153.2 GHz is generated
by duodectupling (x12) the output of a frequency synthesizer. On the order of 3 mW MW
power radiate from a MW horn antenna onto the front of the trap. During the cooling
cycle the effective power is reduced by applying the MW with a 2% duty cycle, providing
sufficient MW intensity to drive the narrowband |0; 2, 2, 1〉 to |0; 3, 2, 2〉 transition. For
efficient MW depletion we require the full 100% duty cycle.

RF to couple neighbouring rotational M-sublevels is applied directly to the microstruc-
ture electrode contact leads. Naturally occurring electric resonances are exploited to inject
sufficient RF power.

Appendix C: Optimization of Experimental Parame-

ters

In this section we discuss the methods used to obtain the optimum experimental parameters
for the unloading electric field strength and the intensity of the RF cooling fields.
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Unloading Electric Field Strength

For detection, molecules are extracted from the trap via an electric quadrupole which
guides the molecules to a quadrupole mass spectrometer (see Ref. [83] for details of the
experimental setup). For a molecule with a fixed velocity, the probability of entering
the guide increases with decreasing electric guiding field: higher field strengths produce a
steeper guiding potential resulting in a narrower exit channel. Therefore, slower molecules
are not efficiently extracted from the electric trap at high unloading fields whereas faster
molecules are lost from the experiment at lower unloading fields due to weaker confinement.
Consequently, a single set of unloading voltages is not suitable for unloading different
molecule ensembles with different temperatures; instead, the unloading voltages must be
adjusted to the temperature of the molecules.
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Figure 4.5: Optimization of the unloading electric field strength. The integrated
unloading signal is measured as a function of the unloading electric field strength for no
cooling (red circles), accumulation (cyan triangles), and cooling (blue squares). Circles
indicate the optimum unloading electric fields which were chosen for the time-of-flight
measurements, with the electric field value for “accumulation” and “no cooling” being the
same.

Fig. 4.5 shows scans of the integrated unloading signal as a function of the unloading
electric field strength for the three experimental settings as described in the main text: no
cooling, accumulation, and cooling. Since accumulation only increases the density without
reducing the velocity of the molecules, the shapes of “no cooling” and “accumulation”
are very similar, indicating a similar velocity distribution with only an increased particle
number in the case of “accumulation”. The most significant difference occurs for “cooling”
where a dramatic shift of the maximum is observed. For low unloading fields, the unloading
signal in the case of “cooling” clearly exceeds “accumulation” due to the increased number
of slow molecules. Vice versa, the absence of fast molecules in the case of “cooling”
compared to “accumulation” results in a reduced signal at higher unloading fields. For an
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optimal unloading signal for each experimental variation we chose an unloading electric
field strength above which the signal does not significantly increase, i.e., 40 kV/cm for “no
cooling” and “accumulation”, and 10 kV/cm for “cooling”.

RF Optimization

For efficient cooling, optimization of the power of the RF cooling fields (i.e., the RF fields
driving the Sisyphus cooling transition) is required. On the one hand, if the RF power is
too weak, the cooling cycle is not sufficiently fast and the molecules are not cooled. On the
other hand, if the RF power is too high, trap losses occur due to pumping to untrapped
M = 0 states. To determine the optimum RF power for cooling we have performed power
scans for the different RF frequencies used in the cooling scheme. One representative power
scan showing the characteristics of such a scan is shown in Fig. 4.6. Here, we vary the
power of all RF frequencies simultaneously about the optimum value. To identify the cooled
molecules we apply a strong 1 GHz RF field after the cooling cycle. This RF field serves as
a temperature filter by eliminating molecules with sufficient energy to enter the high-field
trapping regions with a Stark splitting of 1 GHz between neighbouring M-sublevels.

As expected, with all RF frequencies turned off no cooling occurs resulting in strong
depletion by the 1 GHz filter and thus a low signal. For high relative RF powers we see
losses caused by depletion due to the strong RF cooling fields. At the optimum point, the
RF cooling fields are weak enough to not cause depletion but strong enough to efficiently
cool the molecules such that they are not depleted by the 1 GHz filter.
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Figure 4.6: Optimization of the RF power settings. In this representative scan the
RF power of all frequencies is changed simultaneously. The 0 dB point marks the optimum
RF power used for the measurements presented in the main text. Unloading was carried
out at Eunload = 10 kV/cm. The inset shows the succession of RF frequencies applied to
the trap during the cooling cycle. The filled bars indicate a higher RF intensity.
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Appendix D: Signal Enhancement

Due to low detection efficiency, extracting a velocity distribution using a time-of-flight
measurement requires an optimized data acquisition strategy to increase the signal per cy-
cle. This is achieved by reducing the background from high rotational states and exploiting
the full capacity of the unloading signal.

Elimination of High Rotational States

For the reduction of background from molecules in non-contributing uncooled rotational
states we apply a weak 20 MHz RF field during the first 18 s of the cooling sequence.
This radiation couples neighbouring rotational M-sublevels, thereby inducing trap losses
by sequentially reducing the electric-field alignment of the molecules down to M = 0. The
rotational states that participate in the cooling cycle remain practically unaffected, for two
reasons. First, the power of the 20 MHz RF field is chosen such that the optical re-pumping
to higher M states as part of the cooling cycle compensates the RF coupling. Second, for
a symmetric rotor, the Stark splitting between neighbouring M-sublevels decreases with
increasing J . The frequency of the RF field is chosen such that the coupling only occurs in
trap regions with weak electric fields [83]. Therefore, the lower lying (J = 2 and 3) cooled
rotational states are less affected by the 20 MHz RF field than higher rotational J states,
due to the larger Stark splitting.

Improving the Data Acquisition Rate

Instead of using only the first rising edge of the unloading signal, the quadrupole guide
to the QMS is repeatedly switched on and off during each trap unloading. This allows
to record several time-of-flight profiles (rising edges) per experimental cycle which are
summed up. In addition to improving the data acquisition rate, this results in a rising
edge which represents an average over the velocity distribution of molecules leaving the
trap at different times after the unloading process has started.

Appendix E: Choice of Transition Frequency

A key challenge in realizing the cooling scheme is to avoid transitions to states that are not
involved in the cooling cycle. Separation of desired from undesired transitions is nontrivial
due to the Stark broadening in the electric fields. Therefore, the IR and MW frequencies
need to be carefully chosen such that only desired transitions are driven, independent of
the position of the molecules in the trap. Note that the Stark broadening is on the order
of a few 100 MHz, small compared to a trap depth of ∼30 GHz.

The M-sublevels of a given rovibrational |v; J,−K〉 state have very similar Stark shifts
in both the v = 0 and the v = 1 state. In non-zero fields, all ∆M = −1 transitions occur
at a red-detuned frequency compared to the zero-field frequency, the ∆M = 0 transitions
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Figure 4.7: Sketch of the IR spectrum in an inhomogeneous electric field. The
shaded areas indicate the approximate Stark-broadened transitions. The frequency of the
IR laser is set such that it drives the required ∆M = +1 cooling-transition between J = 2
states, but does not drive any transitions between J = 3 states.

occur near the zero-field frequency, and the ∆M = +1 transitions are blue detuned (see
Fig. 4.7). Avoiding the ∆M = −1 and ∆M = 0 transitions is achieved by blue detuning
the IR field from the zero-field frequency.

However, since the transition used in the experiment (|0; 2, 2〉 to |1; 2, 2〉) lies within the
Q-branch of the v1 band, one also has to consider the ∆J = 0 transitions between other
rovibrational states. Specifically, the zero-field frequency of the ∆J = 0 transition from
the rovibrational |0; 3, 2〉 state is only 480 MHz blue detuned from the |0; 2, 2〉 to |1; 2, 2〉
transition, as shown in Fig. 4.7. Driving the |0; 3, 2〉 to |1; 3, 2〉 transition leads to losses
via decay to the J = 4 state. As a solution, we blue detune the IR laser by 20 MHz from
the |0; 3, 2〉 to |1; 3, 2〉 transition and set the offset field in the trap such that the |0; 2, 2, 1〉
to |1; 2, 2, 2〉 transition is Stark shifted by 500 MHz. This avoids unwanted ∆M = 0
transitions since the differential Stark shift between the |0; 3, 2,M〉 and |1; 3, 2,M〉 states
is sufficiently small and also inhibits undesired ∆M = 1 transitions between the J = 3
states since the differential Stark shift between the |0; 3, 2,M〉 and |1; 3, 2,M + 1〉 states in
the offset field of the trap is sufficiently large.

Regarding the MW transition, the fact that the |0; 2, 2, 1〉 and |0; 3, 2, 2〉 states have
the same first-order Stark shift offers an easy solution. All other transitions between states
with J = 2 and J = 3 starting from states involved in the scheme have a non-zero first-
order differential Stark shift. Therefore, by tuning the MW essentially to the zero-field
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frequency of the |0; 2, 2, 1〉 to |0; 3, 2, 2〉 transition, only the desired transition is driven in
the offset fields present almost everywhere in the trap.

Appendix F: Technical Limitations of the Current Setup

Continuing the opto-electrical cooling to lower temperatures requires a number of limit-
ing technical issues to be resolved. Most severely, residual inhomogeneities of the elec-
tric field in the trap, possibly due to surface charges, increasingly perturb the molecule
motion for decreasing temperatures. Evidence for such inhomogeneities comes from the
observation of strong trap losses for microstructure fields below 20 kV/cm. Thus, for the
Eunload = 10 kV/cm measurements, the microstructure electrode voltages are only reduced
to the equivalent of 20 kV/cm and only the trap perimeter-electrode and guide voltages
are ramped down further. Continuation of the cooling cycle to lower temperatures re-
quires more homogeneous fields which can be achieved with improved microstructures. As
a second issue, low detector count rates for the present measurements complicated fur-
ther optimization of the cooling sequence due to poor statistics. This would be solved
by improving the detection efficiency, e.g. with laser-based ionization of the molecules.
Alternatively, using other molecules with faster decaying excited states or other sources of
molecules would boost the signal. Finally, note that the strong Fermi resonance for CH3F
between the v1 and 2v5 vibrational modes leads to additional losses during cooling due to
decay to the first excitation of the v5 mode. Based on the IR intensity of the v5 band [126],
this decay rate is around 1−2 Hz, competing with the 15 Hz spontaneous decay rate to the
vibrational ground state. This clearly is not a general problem for other molecule species.
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Chapter 5

Outlook

In this thesis, we have described the realization of optoelectrical Sisyphus cooling, allowing
us to substantially reduce the temperature of an ensemble of cold methyl fluoride molecules.
Particular emphasis was placed on the design of a microstructured electric trap which was
essential for the cooling to work. This trap can be continuously loaded from a quadrupole
guide, provides a large trap depth, and allowed a record lifetime for trapped molecules
to be achieved. Moreover, tunable homogeneous electric fields can be applied in a large
fraction of the trap volume, allowing transitions between molecular rotational sublevels to
be selectively addressed.

While the temperatures achieved so far – 77 mK for the results presented in chapter 4
and 29 mK for the results presented in ref. [82] – are still relatively high, optoelectrical
cooling provide a clear perspective for reaching sub millikelvin temperatures. In ref. [82],
reaching lower temperatures was mainly limited by relatively strong losses during cooling,
resulting in decreasing signals such that optimizing the cooling process became increasingly
difficult. Here, increasing the trap lifetime would allow more time for cooling, allowing
losses to be reduced. A number of molecules have faster vibrational decay rates than
methyl fluoride, allowing faster cooling.

A variety of possibilities to boost the molecule signal exist as well. Trap voltages could
possibly be increased by a factor two, resulting in four times higher signal. The present
detection efficiency for molecules is on the order of 10−4, providing a big opportunity for
improvement. As discussed in chapter 3, the present trap depth is possibly a factor four
lower than it could be. Fixing this could increase the signal by as much as a factor of 256.
Successfully implementing any one of these improvements should be sufficient to reach sub
millikelvin temperatures.

A substantial increase in the number of trapped molecules can also be obtained by
loading the microstructured trap from a higher-density source of molecules. For this pur-
pose, a buffergas source of molecules has been set up in our lab [58, 118]. In addition to
increasing the number of molecules, this should allow a wider variety of molecule species
to be used.

The flux of molecules from a buffergas source can be substantially increased by operating
it in the hydrodynamic regime [57]. However, this generates a molecular beam with a high
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forward velocity. Loading such a beam into a trap requires the beam to be decelerated.
Deceleration techniques demonstrated in the past discussed in chapter 1 are all pulsed,
eliminating the advantage that our trap can be loaded continuously. This has motivate
us to develop a new continuous deceleration technique for molecules which makes use
of the centrifugal force on a rotating disk. Here, first results have been submitted for
publication [66].

The tunable homogeneous fields in the microstructured trap promise exciting perspec-
tives regarding manipulation and control of the internal molecular state. A first example
is the state-discriminating measurement by driving microwave or infrared transitions to
untrapped states discussed in chapter 4. The frequency dependence of losses induced by
microwave or infrared radiation provides information about the electric field distribution
in the trap. Due to the narrow field distribution, transitions between individual rotational
sublevels can be addressed. This should allow the population in individual rotational sub-
levels to be determined. Moreover, optical pumping into a single rotational sublevel should
be possible.

Optical pumping of molecules into a reduced number of internal states would constitutes
internal state cooling. A template for such a scheme has been provided by the demonstra-
tion of internal state cooling of molecular ions [127, 128]. At first glance, transferring these
results to neutral molecules might seem impossible. Thus, while optical pumping using a
vibrational transition is used just as in our experiments, coupling between rotational levels
relies on blackbody radiation. This results in an extremely slow cooling rate and would
lead to transitions to untrapped states for electrically trapped polar molecules.

The homogeneous fields in our electric trap allow transitions between rotational sub-
levels to be driven individually rather than collectively as is the case for broadband black-
body radiation. Moreover, the transition rate can be orders of magnitudes faster than for
blackbody radiation. By rapidly switching the microwave frequency, a large number of
rotational states can be addressed simultaneously. Thus, in our present experiments, on
the order of 10 transitions have been driven simultaneously, and it should be possible to
drive hundreds of transitions simultaneously. This would allow the molecule population
from hundreds of internal states to be pumped into a single state.

Internal state cooling could lead to a substantial increase in signal for our present
experiments. Moreover, state-pure ensembles of heavier molecules might be generated
despite a large number of internal states being thermally populated initially.
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Promotion.

Wissenschaftlich möchte ich mich an erster Stelle bei meinem Doktorvater Gerhard Rempe
bedanken. Insbesondere dafür, dass er mir riesiges Vertrauen geschenkt hat, neue oft wilde
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bedanken, die mit mir während meiner Promotion auf schönen Touren in den Bergen un-
terwegs waren, und insbesondere bei meinem Tourenpartner Axel Paulczinsky. Ohne die
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[69] M. Weitz and T.W. Hänsch. Frequency-independent laser cooling based on interfer-
ometry. Europhys. Lett., 49:302, 2000.
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[79] J. Riedel, S. Hoekstra, W. Jäger, J.J. Gilijamseand S.Y.T. van de Meerakker, and
G. Meijer. Accumulation of Stark-decelerated NH molecules in a magnetic trap. Eur.
Phys. J. D, 65:161–166, 2011.

108



[80] E. Narevicius, S.T. Bannerman, and M.G. Raizen. Single-photon molecular cooling.
New J. Phys., 11:055046, 2009.

[81] C.H.R. Ooi, K.-P. Marzlin, and J. Audretsch. Laser cooling of molecules via single
spontaneous emission. Eur. Phys. J. D, 22:259–267, 2003.

[82] M. Zeppenfeld, B.G.U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer,
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