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Summary

Essentially, all models are wrong, but some are useful.
—George E. P. Box

The ability to measure and predict the structure in which an RNA molecule will fold
is crucial to our understanding of biological processes in a cell. Recently, many new
functions of RNA, which are performed owing to specific conformation of particular
RNAs, have been discovered. At the same time, ongoing nucleotide substitutions
may influence the ability of an RNA molecule to fold in a proper structure and may
cause both negative and positive impacts on the organism. Hence, such mutations
are of great interest for biologists, virologists, drug designers, etc. The present work
contributes to our understanding of sequence-structure relationships in messenger
RNAs, which recently demonstrated having other regulatory functions in addition

to encoding protein sequences.

To begin, we performed the first comprehensive analysis of sequence-structure rela-
tionships in the coding regions of yeast mRNAs. This work was done by analyzing
the experimentally measured data produced by the first high-throughput approach
for genome-wide probing of RNA structures termed PARS. Our results demonstrated
that only those pairs of sequences which have a very high level of sequence identity
(greater than 85-90%) have similar PARS profiles. However, the structures of pairs
of sequences with lower sequence identities seem to be completely unrelated to each
other. The latter fact was also demonstrated with theoretically predicted probabili-

ties of nucleotides to be in a double-stranded conformation for orthologous mRNAs.

Arguably, the most efficient anti-influenza vaccines ever used have been cold-adapted
(ca), temperature-sensitive (ts) live attenuated influenza vaccines (LAIV). The ca/ts

phenotype leads to impaired growth at an elevated temperature of approximately



Summary

39°C, while permitting viral growth at lower temperatures. Thus, cold-adapted,
temperature-sensitive (ca/ts) strains can be produced at the factory, but cannot
cause significant harm to a patient. For more than fifty years, scientists were trying
to understand why ca/ts mutants of the influenza virus used as vaccines possessed
temperature sensitivity different from their wild type counterparts. Despite sig-
nificant effort devoted to explaining temperature sensitivity, the molecular mecha-
nism(s) causing the ca/ts phenotype in influenza A viruses remain unclear. We have
demonstrated that influenza mRNAs of ca/ts vaccine strains contain clusters of nu-
cleotides, which would undergo temperature-induced structural perturbations differ-
ently than corresponding non-vaccine strains. Thus, ca/ts phenomena can have the
temperature-induced change of RNA structures as an underlining mechanism. These
conclusions are further supported by the fact that clusters of temperature-sensitive
positions specific for ca/ts strains do appear in response to mutations causing ca/ts
phenotype, but not in sets of computer-generated RNA sequences containing the
same number of random mutations. To the best of our knowledge, our approach is
the first attempt to explain ca/ts phenomena through perturbations of RNA struc-

tures.

Based on the algorithm used in solving the ca/ts phenomena, the web server RNAtips.org
has been implemented. Before this server, there had been no convenient way for a
researcher to investigate how mutations in RNA (both coding and non-coding) may
cause changes in RNA folding upon temperature elevation. It is the first widely
available tool for such analysis which may be of interest to scientists studying tem-

perature effects on different organisms.

Finally, we demonstrated that mutations disrupting mRNA secondary structure
might be filtered out in the course of bacterial evolution. To test this hypothesis,
the influence of single nucleotide polymorphisms (occurring during the “long-term
evolution experiment” organized by Richard Lenski) on the changes in minimum
free energy values were analyzed. Nucleotide substitutions occurring between the
first and the 40,000"" generations were investigated; and, changes in folding energies
resulting from the mutations between essential and nonessential genes were com-
pared. The statistical tests that were performed clearly indicated that preservation
of the secondary structure of messenger RNAs might serve as a previously unknown

mechanism of bacterial evolution.



Zusammenfassung

Die Fahigkeit, die Struktur eines RNA Molekiils zu bestimmen und vorherzusagen,
ist entscheidend fiir unser Verstandnis von biologischen Prozessen in der Zelle. In
jungster Vergangenheit wurden viele neue Funktionen von RNA entdeckt, die durch
spezifische Konformationen dieser Molekiile ermoglicht werden. Zugleich kénnen
Nukleotidsubstitutionen die Fahigkeit eines RNA-Molekiils, sich korrekt zu falten,
beeinflussen und damit sowohl negative als auch positive Effekte auf den Organis-
mus haben. Daher sind diese Mutationen von grofiem Interesse fiir Biologen, Virolo-
gen, Wirkstoff-Entwickler, etc. Die vorliegende Arbeit ist ein Beitrag zu unserem
Versténdnis von Sequenz-Struktur-Beziehungen in messenger RNA | die, wie kiirzlich
gezeigt wurde, zusatzliche regulatorische Funktionen besitzt, die iber die Kodierung

von Proteinsequenzen hinausgehen.

Zunachst wurde die erste umfassende Untersuchung von Sequenz-Struktur-Beziehungen
in den kodierenden Regionen der Hefe mRNA durchgefithrt. Dazu wurden ex-
perimentelle Daten genutzt, die durch die erste Hochdurchsatz-Methode fiir die
genomweite Analyse von RNA-Struktur (PARS) gewonnen wurden. Unsere Ergeb-
nisse zeigen, dass nur Sequenzpaare mit einem sehr hohen Grad an Sequenzéhnlichkeit
(mehr als 85-90%) vergleichbare PARS-Profile aufweisen. Die Strukturen von Se-
quenzpaaren mit geringerer Sequenzahnlichkeit hingegen, schienen véllig verschieden
zu sein. Diese letzte Beobachtung wurde zuséatzlich durch theoretisch vorherge-
sagte Wahrscheinlichkeiten fiir das Vorliegen von Nukleotiden in einer Doppelstrang-

Konformation in orthologen mRNAs bestétigt.

Die bislang wirksamsten Impfstoffe gegen Influenza sind Praparate mit kélteadaptierten
(ca), temperatursensitiven (ts) attenuierten Influenza Lebendimpfstoffen (live atten-
uated influenza vaccines, LAIV). Der ca/ts Phanotyp fiihrt zu einer Verminderung
des viralen Wachstums bei erhéhten Temperaturen von etwa 39°C, wahrend virales

Wachstum bei niedrigeren Temperaturen ermoglicht wird. So kénnen kalteadaptierte
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temperatursensitive (ca/ts) Stamme industriell hergestellt werden, ohne wesentlichen
Schaden in den Patienten zu verursachen. Seit mehr als 50 Jahren versuchen Wis-
senschaftler zu verstehen, warum die ca/ts Mutanten, die fiir Impfungen verwen-
det werden, eine andere Temperatursensitivitat aufweisen als der zugehdrige Wild-
typ. Obwohl grofler Arbeitsaufwand in die Erklarung der Temperatursensitivitat
investiert wurde, sind die molekularen Mechanismen, die den ca/ts Phénotyp von
Influenza A Viren verursachen, bislang unklar. Wir haben gezeigt, dass die mR-
NAs der ca/ts Impfstdmme Nukleotid-Cluster enthalten, welche andere tempera-
turinduzierten Strukturperturbationen durchlaufen als mRNAs entsprechender Wildtyp-
Stamme. Es kann daher vermutet werden, dass diese temperaturinduzierten Anderungen
der RNA-Struktur grundlegender Mechanismus des ca/ts Phanomens ist. Diese
Schlussfolgerung wird zudem durch die Tatsache gestiitzt, dass Cluster von tem-
peratursensitiven Positionen, die spezifisch fiir ca/ts-Stdmme sind, als Reaktion
auf ca/ts-Phénotyp verursachende Mutationen auftreten, jedoch nicht in comput-
ergenerierten RNA Sequenzen, welche die gleiche Anzahl an zufalligen Mutationen
enthalten. Nach unserem Kenntnisstand ist unsere Herangehensweise der erste Ver-

such, den ca/ts Phénotyp durch Verdnderungen in der RNA Struktur zu erkléren.

Basierend auf dem Algorithmus fiir die Losung des ca/ts Phanomens wurde der Web-
server RNAtips.org entwickelt. Bisher gab es fiir Wissenschaftler keine geeignete
Moglichkeit zu untersuchen, in welcher Weise RNA Mutationen (sowohl in kodieren-
den als auch in nicht-kodierenden Regionen) zu Anderungen der RNA-Faltung in
Folge von Temperaturerhohung fiihren. Es handelt sich hierbei um das erste weit
verfiighare Tool fiir diese Art von Analysen, welche fiir Forscher, die Einfliisse von

Temperatur auf verschiedene Organismen untersuchen, relevant sein diirften.

Zuletzt haben wir gezeigt, dass Mutationen, welche die Sekundarstruktur von mRNA
zerstoren, im Verlauf der bakteriellen Evolution herausgefiltert werden. Um diese
Hypothese zu testen, wurde der Effekt von single nucleotide polymorphisms (aufge-
treten wahrend des “long-term evolution experiment” von Richard Lenski) auf die
Anderungen der minimalen freien Energie untersucht. Nukleotidsubstitutionen, die
zwischen der ersten und 40.000sten Generation auftraten, wurden analysiert und
Anderungen der Faltungsenergie in Folge von Mutationen wurden zwischen essen-
tiellen und nicht-essentiellen Genen verglichen. Die durchgefiihrten statistischen

Tests zeigten deutlich, dass die Erhaltung der Sekundéarstruktur von mRNA ein
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bislang unbekannter Mechanismus in der bakteriellen Evolution sein kann.

10



Chapter 1

Introduction

After the discovery of RNA, it was assumed that in all organisms, except RNA
viruses, RNA was solely a mediator between DNA and protein (Crick, 1958; Crick
et al., 1970). Then, transfer RNA (tRNA) was discovered (Crick, 1962); and later in
1960°, it was suggested that, at the early stage of evolution, RNA could both be ge-
netic material and play a catalyst role that promotes its own replication (Crick, 1968;
Orgel, 1968; Woese, 1967). The later idea obtained support only after experimen-
tal discoveries of RNA with catalytic activity (Kruger et al., 1982; Guerrier-Takada
et al., 1983; Cech, 1986), which led to Nobel laureate Walter Gilbert in 1986 intro-
ducing the concept RNA World to emphasize a world of free-living RNA molecules
(Gilbert, 1986). The main feature of the RNA World is existence of a molecule
functioning as an RNA-dependent RNA polymerase that is able to produce comple-
mentary RNAs from itself or copies of itself, and subsequently, produce additional
copies of itself from the complementary RNAs produced during the previous step
(Robertson and Joyce, 2012).

Problems of the origin of the RNA World and the early evolution of life are still far
from being solved. It is also difficult to say how the first RNA replicase ribozyme
arose (Robertson and Joyce, 2012). Nonetheless, the discovery of catalytic RNA
clearly demonstrated that RNA might have a lot of different unknown functions.
Since then, many new classes of functional non-coding RNAs, as well as other func-
tions of messenger RNA apart from encoding amino acid sequence, have become
known. We now know of many roles that RNA plays inside a cell which scientists

did not even think about several decades ago; yet, there is still much to be discovered
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Chapter 1. Introduction

about RNA functions.

Similar to proteins, the functional roles of RNA are determined by the structure
it folds. Hence, the necessity to understand those functions leads to the need to
investigate what conformation the RNA molecule folds, what relationships between
a structure and a sequence is, what evolutionary constraints on the structure are,
and so on. These questions do not have univocal answers. Instead, they have to
be considered from the different angles; this work presents some of the potential

answers.

1.1 RNA Structure

A ribonucleic acid, or RNA, is a single-stranded polymer composed of four nucleotide
subunits: adenine (A), cytosine (C), guanine (G), and uracil (U). The length of the
RNA molecules, observed in nature, lies in a wide range from about 20 to thousands
of nucleotides (Bevilacqua and Blose, 2008). Each nucleotide consists of a base, a
ribose, and a phosphate (Tinoco and Bustamante, 1999). Similar to DNA (deoxyri-
bonucleic acid), nucleotides in RNA may form hydrogen bonds with each other. The
standard or canonical base pairs, similar to those discovered by Watson and Crick in
DNAs (Watson and Crick, 1953a,b), are G-C and A-U based on three hydrogen and
two hydrogen bonds respectively. As G-C pairs are based on three hydrogen bonds,
they are more energetically stable than A-U base pairs. Non-canonical interactions
are also possible (the most common is G-U), but such base pairs are highly unstable
and hence occur very rarely. Therefore, hereinafter only canonical base pairs will
be considered and non-canonical pairs are not discussed. A set of such interactions
between nucleotides determines the structure in which an RNA molecule folds. De-
spite the fact that RNA and DNA are very similar, the structure of RNA is very
different from those of DNA. DNA contains two complementary sequences, which
form a famous double helix. The RNA molecule is usually presented as a single

strand and folds to itself forming intra-molecular short helices (Higgs, 2000).

One can divide an RNA structure into four different levels: primary, secondary,
tertiary, and quaternary. The primary structure of an RNA molecule is just its
sequence of nucleotides describing the RNA molecule (Figure 1.1a). A secondary

structure of RNA can be thought of as a two-dimensional folding containing a set

12



1.1. RNA Structure

a) GCCCGGAUAGCUCAGUCGGUAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUUCCGAGUCCGGGCACCA
b)

A

Figure 1.1: RNA structure of phenylalanine tRNA from Escherichia coli. a)
Primary structure. b) Secondary structure (created by VARNA wvisualization tool (Darty

et al., 2009)). ¢) Tertiary structure (created by RNA structure 3D modeling server RNA-
Composer (Popenda et al., 2012)).

13



Chapter 1. Introduction

of base pairs that are formed (Figure 1.1b). The tertiary structure is what form the
molecule has in a three-dimensional space with a description of the location of every
atom. Figure 1.1c shows the tertiary structure for a phenylalanine transfer RNA
(tRNA) of Escherichia coli. Quaternary structure is generally considered as a set of

complex interactions of the folded nucleic acid with other molecules.

The diverse roles of RNA are mainly determined via its spatial structures that bind
small regulatory RNAs, large protein ligands, or with machineries responsible for
translation initiation and splice site selection (Weeks, 2010). However, due to its
complexity, the RNA tertiary structure is a less studied subject compared to the
secondary structure. Therefore, hereinafter we consider only secondary structures

of RNAs if another is not directly indicated.

Due to the ability of RNA molecules to fold into a native conformation in very
short periods of time, it is thought that RNA folding is a hierarchical process (Pyle
and Green, 1995; Brion and Westhof, 1997; Tinoco and Bustamante, 1999). For a
long RNA, the number of potential conformations is large. Thus, it would require
a lot of time to search through all of the states for a native structure, addition-
ally, some intermediate organization should exist to lead the folding pathway (Brion
and Westhof, 1997). The hierarchical nature of RNA folding means that secondary
structural elements are determined completely by primary sequence, independently
of tertiary structure, and are likely to form before tertiary interactions, which do
not change secondary structure significantly (Pyle and Green, 1995). Furthermore,
it is accepted that energies of secondary interactions are much larger than those of
tertiary ones; hence, secondary conformations are more stable than tertiary folding.
It is obvious that the assumption of hierarchy in RNA folding is only a simplification
of the real processes going on in the cell. In some cases in which a complex pseu-
doknot (Figure 1.2) has to form, organizations of secondary and tertiary structures
are not separable from each other (Gluick and Draper, 1994). However, in other
cases, hierarchical folding was even observed experimentally (Greenleaf et al., 2008).
Therefore, it is generally believed that in most cases this model describes the folding
process well enough and can be applied to investigate functions of RNA (Tinoco and
Bustamante, 1999).

A complex secondary structure of any RNA can be considered as a set of different

14



1.1. RNA Structure

£ H €2 {E

d) f)
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Figure 1.2: Secondary structural motifs in RNA. The RNA backbone is blue,
and both unpaired and paired bases are red. a) Single-stranded RNA. b) Double-
stranded RNA heliz. ¢) Hairpin consisting of stem and loop. d) Bulge loop. e) Interior
loop. f) Multiloop (junction). g) Pseudoknot.

smaller elements interconnected with each other, as depicted in Figure 1.2. Those
elements are single stranded region, base-paired double helical segment, loops (hair-
pin loop, bulge loop, internal loop, multiloop or junction), and pseudoknot. Thus,
secondary structure presents a single polynucleotide chain folding back upon itself
with the formation of double helices and looped-out regions. Hairpin, or stem-loop
structure, is the most frequent element of RNA secondary structure. It consists
of a stem, base-paired double helical region, and a hairpin loop, which has to be
minimum of three nucleotides to avoid steric hindrance with base pair in the stem
(Bevilacqua and Blose, 2008). Bulge loops form when one or more bases on one

strand cannot form base pairs with nucleotides on the other strand. Interior loops
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Chapter 1. Introduction

contain unpaired bases on both strands and may be either symmetric or asymmetric
depending on whether the numbers of unpaired nucleotides on each side are equal or
not. Multiloop, or junction, is an area of connection of three or more double helices
separated by single-strand regions of zero or more nucleotides (Hendrix et al., 2005).
And last but not least is a pseudoknot which is a secondary structural motif with

non-nested base pairings.

Graphically base pairings can be presented in different ways (Figure 1.3). One of

a) GCCCGGAUAGCUCAGUCGGUAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUUCCGAGUCCGGGCACCA

COOCOCCa e (00 0o eeenens DB D R G A ))))) e (CCCCeeenens 3))))))))))) ..
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Figure 1.3: Different ways to represent graphically RNA secondary structure
tnclude: a) Dot-bracket notation. b) Circular representation (created by sfold (Ding
et al., 2004)). ¢) Linear representation (created by VARNA visualization tool (Darty
et al., 2009)). d) Mountain plot (created by RNAfold (Gruber et al., 2008)). e) Energy
dot plot (created by mfold (Zuker, 2003)).

the most common approaches is to draw a simple planar plot similar to the one

shown on Figure 1.1b. Other ways include: dot-bracket notation (A string of dots

16



1.1. RNA Structure

and parenthesis of the same length as the corresponding sequence. A dot at position
i means that i** nucleotide is unpaired. In the case i and j*" bases are paired, it is
depicted with an open bracket at i'" position and closed bracket at j* position.); cir-
cular representation, where RNA sequence is presented as a circle and every paired
nucleotides are demonstrated with an arc; linear representation, which is similar to
circular plot, but the RNA sequence is shown as a line; diagonal dot plot (This
presentation is a two dimensional matrix divided into two parts. Usually, the upper
right triangle demonstrates probabilities of nucleotides to be paired; namely, the
bigger the dot at position (i, 7), the higher the probability of i* and j bases to be
in a double-stranded conformation. Similarly, the lower left triangle demonstrates
those base pairs that correspond to a conformation with the lowest free energy.);
and, mountain plot (It is simpler to consider this type of plot as a graphical repre-
sentation of a dot-bracket notation. '(', '), and '.'are represented with a line going
up, down, and horizontally, respectively. Thus, the symmetric slopes represent a

helix region and plateaus represent single-stranded regions).

It is also a consideration that some sort of hierarchy exists between different sec-
ondary structural elements, namely that short-range interactions should form faster
than the long-term interactions (Higgs, 2000). Additionally, synthesis of RNA
molecules starts at their 5 -end; hence, theoretically it is possible that structures at
that end may form before the synthesis of the complete molecule finishes. However,
according to thermodynamics, an RNA molecule likely folds in a most thermodynam-
ically stable conformation, in other words, in a structure with minimum free energy
that ignores all intermediate states occurring during the folding process. Therefore,
it is generally assumed that during the process in which the RNA folds toward the
structure with the lowest free energy, some temporal base pairs might form, but

those interactions will be rearranged later (Tinoco and Bustamante, 1999).

Many researches, both experimental and computational, have aimed to investigate
the stability of RNA structures. For example, it was shown that real tRNAs have
thermodynamically more stable structure than random sequences of the same length
and base composition (Higgs, 1993, 1995). It is likely that the high stability of tRNA
structure compared to alternative conformations is crucial for the function of the
molecule (Higgs, 2000). Lower free energies (resulting to higher stability) of real

sequences compared to the random ones were also reported for mRNAs (Seffens and

17



Chapter 1. Introduction

Digby, 1999). However, if shuffling is made with preserving dinucleotide frequen-
cies, then the difference between the minimum free energy (MFE) values of real and
random sequences is lower (Workman and Krogh, 1999). Researches of other long
RNAs, including rRNA, rRNase P and introns, showed the same inference about
higher stability of the natural sequences (Schultes et al., 1999). These facts suggest

the existence of thermodynamic constraints in the course of evolution.

RNA sequence can potentially fold into many RNA structures (Wan et al., 2011).
Thus, another interesting set of experiments was aimed to study the number of
possible suboptimal conformations of one sequence as a function of folding energy
(Higgs, 1993). Studying of tRNA demonstrated that there is an energy gap between
MFE structure and suboptimal conformations (Wuchty et al., 1999; Chen and Dill,
2000). However, several researchers demonstrated that large RNAs fold via rugged
energy landscape, and that during the folding process a molecule can get one of
the metastable conformations (Higgs, 2000; Weeks, 2010). Moreover, Hobartner
and Micura experimentally demonstrated that even very short RNA sequences in
thermodynamic equilibrium could fold into different structures with some ratio of
frequencies between them (H6bartner and Micura, 2003). From a theoretical point of
view, it resulted in the wide application of partition function to calculating the prob-
abilities of nucleotides to be in a double-stranded conformation. As was mentioned
above, at the equilibrium state an RNA molecule should be folded in a conforma-
tion with minimum free energy. However, if there are several possible conformations
with very close values of free energy, then, according to statistical mechanics, the
probability that an RNA molecule folds in each of them is proportional to the Boltz-
mann factor of the conformation. Nevertheless, the process of transition from one

structure to another is not currently well understood.

1.2 Functions of RNA

During the last couple of decades, many articles have been published, which reveal
different aspects of RNA functioning both as a protein-coding intermediate and as
a regulatory agent. Such dual functionality of RNA does not seem surprising from
the viewpoint of the RNA World hypothesis (Kloc et al., 2011). The list of known
roles of RNAs has grown up substantially. A large number of non-coding RNAs

18
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(ncRNAs) have been discovered, which are transcribed and carry out essential struc-
tural, catalytic or regulatory functions within a cell, but do not encode for amino
acid sequences (Eddy, 2001). Those functions are influenced by RNA secondary
and tertiary conformations according to which RNA molecules can interact with
other RNAs, ligands and RNA-binding proteins (RBPs) (Wan et al., 2011). Also,
the existence of functional structural elements in untranslated and coding regions of
messenger RNAs has been presented in recent experimental and computational pa-
pers (Bevilacqua and Blose, 2008; Wan et al., 2011). Plenty of excellent reviews on
the different aspects of various functions that RNAs perform have been published;

therefore, only some examples will be given here.

The three most known types of ribonucleic acids are messenger RNA (mRNA), trans-
fer RNA (tRNA), and ribosomal RNA (rRNA). All of them participate in protein
synthesis, and their roles in this process are well documented. Messenger RNAs are
copies of genes, which are translated into their corresponding protein; tRNAs are
adaptor molecules, one end of which can read the triplet code in the mRNA, and an
amino acid is attached to another end; finally, rRNAs move sequentially along the
mRNA and catalyze the attachment of amino acids to the growing peptide chain.
The described role of tRNA in protein synthesis is the most known function of trans-
fer RNA. Meanwhile, tRNA is also involved in many other biological processes apart
from protein synthesis, such as regulating the transcription of mRNA for enzymes
associated with biosynthesis of its amino acid both in prokaryotic and eukaryotic
systems, participation in making a DNA copy of the viral RNA, and acting as an
enzyme inhibitor (Rich and RajBhandary, 1976).

After the first cases of discovering catalytic activity of RNA molecules (namely that
the RNA moiety of ribonuclease P from FEscherichia coli cleaves precursors of the
transfer RNA molecules (Guerrier-Takada et al., 1983; Guerrier-Takada and Altman,
1984), and that ribosomal RNA of Tetrahymena whose ribosomal RNA contains a
self-splicing exon (Kruger et al., 1982; Zaug et al., 1983, 1984)), it became clear
that other catalytic functions might be performed by RNA as well. The range of
catalytic activity currently known to be fulfilled by RNAs is rather wide (Tarasow
and Eaton, 1998). For instance, priming of DNA synthesis in mitochondria (Wong
and Clayton, 1986), priming reverse transcription (Kikuchi et al., 1986), and others
(Greider and Blackburn, 1985; Fire et al., 1998).

19
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Since the discovery of RNA catalytic functions, many cases in which RNA molecules
carry out other essential functions within a cell, apart from encoding proteins, have
been discovered. Most of those RNAs are newly identified non-coding RNAs that
participate in different biological processes, and the number of which constantly
grows (Eddy, 2001). In particular, there are several interesting cases in which an
RNA molecule performs its function almost without folding into any conformation.
For instance, microRNAs (miRNAs) have been discovered that bind to complemen-
tary regions of target messenger RNA and, thus, inhibit the translation of corre-
sponding protein (Matzke and Birchler, 2005; Bevilacqua and Blose, 2008). Another
example is small interfering RNAs (siRNAs) that form base pairs with complemen-
tary mRNA and target it for degradation (Matzke and Birchler, 2005). Such mech-
anism of targeting mRNAs for cleavage is called RNA interference (RNAi) (Matzke
and Birchler, 2005). The degradation of mRNA in this case occurs by RNA-induced
silencing complex (RISC), the core component of which is either Argonaute protein
or RNA-dependent RNA polymerase (Matzke and Birchler, 2005).

Although there are several RNAs, which act without forming specific RNA structure,
most RNA molecules have to fold into a particular shape or contain a certain struc-
tural element, such as hairpin or pseudoknot, to perform their function (Bevilacqua
and Blose, 2008). Regulatory RNAs termed riboswitches have been found in bacte-
rial messenger RNAs and appear to control gene expression (Nudler and Mironov,
2004; Serganov and Patel, 2007; Montange and Batey, 2008). Small RNAs (sRNAs),
identified in a wide range of bacteria, have been shown to regulate the expression of
proteins, and to modulate the activity and stability of messenger RNAs (Gottesman
and Storz, 2011). RNAs also play an important role in mechanisms of phage defense
in bacteria (Marraffini and Sontheimer, 2010).

An extremely interesting area of research is the investigation of roles that differ-
ent types of RNAs can play in different diseases. miRNAs, long non-coding RNAs
(IncRNAs), small nuclear RNAs (snoRNAs), large intergenic non-coding RNAs (lin-
cRNAs), and others have been associated with different disorders, which makes them
potential new therapeutic targets (Taft et al., 2010; Esteller, 2011). miRNAs have
been associated with cancer, neurological disorders, cardiovascular disorders, and
other diseases; snoRNAs have been associated with cancer (Esteller, 2011). Many

long non-coding RNAs (IncRNAs) have also been associated with different diseases
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including cancer (Kung et al., 2013). For example, numerous IncRNAs demonstrate
different expression levels between normal and cancer cells (Huarte and Rinn, 2010).
Several IncRNAs have demonstrated inhibiting tumor suppressor functions in can-
cer cells (Gutschner and Diederichs, 2012). In addition, long non-coding RNAs have
been noted to play roles in metastasis formation (Gutschner and Diederichs, 2012).
Obviously, we are only beginning to understand all these molecular mechanisms and

there is still plenty to learn.

The biology of viruses and how it is affected by their RNA conformations is another
area of great significance. Numerous studies on viruses have revealed the importance
of RNA structures for virus assembly (Larson and McPherson, 2001; Schneemann,
2006; Hutchinson et al., 2010). One RNA of HIV-1 virus folds into two different
conformations promoting different functions (Lu et al., 2011). Locations of the most
stable predicted structural motifs correlate with regions were structures are thought
to play an important role in the genomes of the RNA picornavirus (Palmenberg
and Sgro, 1997). Translation initiation can occur in the middle of an mRNA se-
quence owing to the existence of internal ribosome entry sites (IRES) (Jackson and
Kaminski, 1995). Additionally, pseudoknots regulating gene expression and genome
replication have been identified in many viruses (Brierley et al., 2007). All these ex-
amples clearly demonstrate how significant RNA structures are for a diverse range

of viral activities.

For many years, it was thought that only non-synonymous nucleotide substitutions
in messenger RNAs, which lead to change in the function of the protein, might be
deleterious for an organism. Yet, recent studies have demonstrated that mRNAs,
both in eukaryotes and prokaryotes, have other hidden non-coding functions which
are performed by secondary structural elements and are unrelated to encoding for
correspondent proteins (Ulveling et al., 2011). Therefore, those mutations, which
result in a change in mRNA secondary structure, might affect some essential biolog-
ical processes due their affect on the ability of mRNA to interact with other RNAs

and proteins in a proper way.

Another generally accepted belief was that pre-mRNA is solely a passive transcript,
from which messages are produced by spliceosome, a large protein-RNA complex

that removes non-coding introns. Now, there are many examples that RNA struc-
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tures are actively involved in this regulation and can either inhibit or aid splicing
(Warf and Berglund, 2010). Splicing can be regulated by structures in pre-mRNA
directly, or by proteins or small molecules, which bind RNA structural elements.
One genome-wide study also reported that the existence of predicted secondary
structure elements with low free energy near splice sites decreases the efficiency of

splicing compared to introns, which have structural elements with higher free energy
(Shepard and Hertel, 2008).

Structural elements in messenger RNAs can regulate gene expression by controlling
the efficiency of translation initiation. RNA structure can influence accessibility
of the start codon or other signals that should be recognized by a ribosome (Mc-
Carthy and Gualerzi, 1990). A pseudoknot in retroviral RNA is responsible for
ribosomal frameshifting, and results in the production of two proteins at particular
ratios, which in turn are required for viral propagation (Chamorro et al., 1992).
Frameshifting has been observed in other viruses and species as well (Giedroc et al.,
2000), including Rous sarcoma virus (Jacks and Varmus, 1985; Jacks et al., 1988),
coronaviruses (Bredenbeek et al., 1990), and bacteria (Tsuchihashi and Kornberg,
1990; Flower and McHenry, 1990).

One of the methods for regulating gene expression is promoting or preventing the
degradation of target mRNA (Emory et al., 1992). The range of mRNA half-lives
within a single cell is rather wide. For instance, in E. coli it can vary from seconds
up to nearly one hour (Emory et al., 1992). At the same time, in eukaryotic or-
ganisms mRNAs usually live longer than in prokaryotic species (Belasco and Chen,
1988). In many cases, the degradation rate of messenger RNAs is determined by the
stability of some hairpin in the structure of this molecule. For example, particular
hairpin structure near the 3’-end of the transcript was experimentally demonstrated
protecting mRNA from degradation in Rhodobacter capsulatus (Belasco and Chen,
1988). A stem-loop element in the 5 -untranslated region E. coli ompA mRNA slows
down its degradation, although the sequence in this region is relatively unimportant
(Emory et al., 1992). However, hairpins that may promote mRNA degradation have
been observed as well. For instance, it was shown that in Fscherichia coli, during
the processing of the mRNA for ribosomal protein S20, a hairpin structure helps to
localize a cleavage site for a single-strand specific endonuclease RNase E (Mackie
and Genereaux, 1993; Bevilacqua and Blose, 2008).
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Dual functionality of coding RNAs, both in eukaryotic and prokaryotic organisms,
has been recently observed in several cases (Kloc et al., 2011; Ulveling et al., 2011).
One very interesting example is a so called transfer-messenger RNA (tmRNA), ini-
tially known as 10Sa RNA and expressed from the SsrA gene, which combines fea-
tures of both mRNA and tRNA (Jentsch, 1996; Atkins and Gesteland, 1996). In all
eubacteria, tmRNA directs a process called trans-translation aimed to release stalled
ribosomes from a defective mRNA (lacking a stop codon) (Keiler et al., 1996; Gillet
and Felden, 2001). The structure of tmRNA from FE. coli was determined experimen-
tally (Felden et al., 1997). It contains two domains: an mRNA-like and a tRNA-like,
which can be charged with alanine that will link to the truncated polypeptide chain.
Transfer-messenger RNA engages the stalled ribosome and mRNA-like domain re-
places the defective mRNA bound. Hence, translation switches to tmRNA from the
broken mRNA. The following translation of the tmRNA adds a peptide tag to the
nascent protein, which targets the polypeptide for rapid degradation (Keiler, 2008).
Thus, trans-translation is a quality control mechanism, which ensures that synthe-

sized proteins are correct (Keiler, 2008).

Another interesting case is the p53 tumor suppressor, mutations of which are found
in approximately 50% of human tumors (Soussi and Wiman, 2007). Due to this
fact, p53 is a fascinating research target for clinicians and researchers. Usually p53
protein is persistently degraded, but, upon stress, its activation eliminates tumor
cells (Farnebo et al., 2010; Ulveling et al., 2011). p53 tumor suppressor activity is
mainly regulated by the E3 ubiquitin ligase Mdm2, which binds p53 protein and tar-
gets it for degradation (Candeias et al., 2008; Farnebo et al., 2010). Recently, it has
been demonstrated that messenger RNA of p53 gene interacts directly with Mdm2
protein and thus restrains the Mdm2 activity of promoting p53 degradation (Can-
deias et al., 2008). Additionally, it was shown that synonymous single nucleotide
polymorphisms in the p58 mRNA can impair its interaction with Mdm2, and, as a

consequence, activity of p53 in this case will be decreased (Candeias et al., 2008).

Other known cases of messenger RNAs that can also fulfill some structural role in-
clude: VegT mRNA from Xenopus, which is involved in the cytokeratin network
of primordial germ; oskar mRNA from Drosophila melanogaster, which was shown
being responsible for the early oogenesis; and others (Kloc et al., 2011; Ulveling
et al., 2011).
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Undoubtedly, functions of molecules within a cell depend on their three-dimensional
structures. Therefore, to understand the functions that RNA molecules may per-
form, it is crucial to be able to determine atomic coordinates nucleotides in a 3D
conformation and what residues are base-paired. Nevertheless, neither present ex-
perimental techniques nor theoretical predictions allow analyzing high-throughput
data on tertiary structures of RNAs. Moreover, it is extremely difficult to pre-
dict three-dimensional folding. As a result, the first step toward determining and
studying the RNA tertiary conformation is to identify its secondary structure (base

pairing interactions within a molecule).

1.3 Experimental Techniques

The first ever experimentally determined structure was a conformation of transfer
RNA (tRNA), which was crucial to the understanding of molecular mechanisms of
protein synthesis and other biological functions of tRNA (Sigler, 1975). Initially
an X-ray diffraction analysis was applied to yeast phenylalanine tRNA to measure
its three-dimensional folding (Kim et al., 1971, 1972, 1973). The electron density
maps from the experiments showed double helix regions connected to each other
with weaker regions of electron density. These were interpreted as a confirmation
of the idea first proposed by Holley and his collaborators (Holley et al., 1965) who
sequenced alanine transfer RNA from yeast and suggested that tRNAs could be
folded into a secondary structure widely known as cloverleaf (Figure 1b). Later, that
method was improved and it allowed measuring the structure first at 3 angstrom res-
olution (Suddath et al., 1974; Kim et al., 1974; Robertus et al., 1974b), and then at
2.5 angstrom resolution (Quigley et al., 1975; Ladner et al., 1975). Further research
enabled reciprocal space refinement and the ability to model precise atomic coor-
dinates of the entire tRNA molecule (Sussman et al., 1978; Hingerty et al., 1978).
Subsequently, the X-ray crystallography was used to determine the structure of an-
other elongator transfer RNA (Giege et al., 1977) and yeast aspartic acid tRNA
(Westhof et al., 1988b), confirming the proposed general tRNA structure. To an
RNA, other than tRNA, the X-ray crystallography was first applied in 1994, when a
structure of hammerhead ribozyme was determined at 2.6 angstrom resolution (Pley
et al., 1994). Further development of crystallographic methods is described in the
review by Holbrook (Holbrook and Kim, 1997).
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X-ray diffraction from crystals gives the highest accuracy, but does not say whether
the structure in the crystal is the same as the structure in solution, hence, other
methods had to be adopted to answer this question (Rich and RajBhandary, 1976;
Holbrook and Kim, 1997). The high-resolution NMR (nuclear magnetic resonance)
spectroscopy study was first applied to determine the structure of yeast phenylala-
nine tRNA (Kearns and Shulman, 1974). Next, high-resolution NMR spectra of
several other purified tRNAs was examined by different groups (Reid and Robil-
lard, 1975; Reid et al., 1975; Daniel and Cohn, 1975; Wong et al., 1975; Bolton
and Kearns, 1975). Results of those NMR studies supported the conclusion that
the structure of the tRNA molecule in solution is identical to the 3D conformation
determined in the crystal (Rich and RajBhandary, 1976). Such knowledge of the
three-dimensional structure of tRNA led to the better understanding of chemistry
and the role of transfer RNA in different biological processes (protein synthesis, tran-
scription of messenger RNA| reverse transcription, etc.) (Rich and RajBhandary,
1976). The size of the RNA that can be analyzed at atomic resolution by NMR
is continually increasing, but slowly. For many years the upper limit was approxi-
mately 100 nt (Tinoco and Bustamante, 1999). Only recently, a nuclear magnetic
resonance approach, which enables detection of structural elements within longer
sequences, has been developed and applied to investigation of HIV-1 5 -leader RNA
(Lu et al., 2011). In addition, both X-ray approach and NMR studies require of
large amounts of highly purified material (Ehresmann et al., 1987).

Another experimental approach to probe structure is the use of chemical modifi-
cations to test the reactivity of every nucleotide. An RNA of interest is modified
somehow by treating it with a specific chemical reagent in such a way that any two
modification events are independent from each other (Weeks, 2010). Some bases
will be reactive while others will react at a much slower rate. Such reactivity of
bases identifies which nucleotides are unpaired and which ones are paired. Two ap-
proaches of determining modified nucleotides are using end-labeled RNA molecules,
which allows the detection of scissions in the RNA chain, and primer extension, which
detects stops of transcription at modified sites (Ehresmann et al., 1987). What nu-
cleotides should react depends upon the reagent used (Rich and RajBhandary, 1976).
The list of reagents, which have been applied to examine the secondary and ter-

tiary structures of transfer ribonucleic acid, includes: S-ethoxy-a-ketobutyraldehyde
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(kethoxal), which reacts with guanine (Litt, 1969); methoxyamine (Cashmore et al.,
1971; Robertus et al., 1974a; Chang, 1973) and hydrogen sulfide (Miura et al., 1982),
which react with cytosine; 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-
p-toluene sulfonate (CMCT), which used to map unpaired uridines and guanosines
(Robertus et al., 1974a; Chang, 1973); ethylnitrosourea (ENU), a reagent ethylating
phosphates in nucleic acids (Vlassov et al., 1981, 1983; Garret et al., 1984a; Romby
et al., 1985); dimethyl sulfate (DMS), which reacts with the N1 of adenine, the N3
of cytosine and the N7 of guanine (Peattie and Gilbert, 1980; de Bruijn and Klug,
1983; Garret et al., 1984a; Romby et al., 1987); diethyl pyrocarbonate (DEPC),
which reacts with the N7 of adenosines (Peattie and Gilbert, 1980; de Bruijn and
Klug, 1983; Garret et al., 1984a; Romby et al., 1987); and others (Igo-Kemenes and
Zachau, 1969, 1971; Vary and Vournakis, 1984a; Brunel and Romby, 2000; Rocca-
Serra et al., 2011).

Following tRNA, different parts of ribosomal RNA became the subject of interest
and were studied with different chemical probes. For example, mouse 5S ribosomal
RNA was tested with kethoxal (Miura et al., 1983b) and hydrogen sulfide (Miura
et al., 1983a), E. coli 16S ribosomal RNA was analyzed with diethyl pyrocarbonate
(Van Stolk and Noller, 1984); investigation of the interaction of ribosomal protein
S4 with E. coli 16S rTRNA was done with using of kethoxal and DMS (Stern et al.,
1986), binding of ribosomal protein S8 to 16S ribosomal RNA was studied with
DMS, CMCT, DEPC and ethylnitrosourea (Mougel et al., 1986); bisulfite, which
converts unpaired cytosine to uridine, was used to probe the RNA structure of 5S

rRNA from Spinacea oleracea (Pieler et al., 1983); and many others.

Another group of methods is similar to chemical probing and is based on using a
structure-specific enzymatic probe, which cleaves RNA at single- or double-stranded
regions. In fact, many groups combined data from chemical and enzymatic struc-
ture probes (Ehresmann et al., 1987). As with chemical reagents, there are several
enzymes, most of which cut the RNA within unpaired regions. First studies of RNA
base pairing were performed applying single-stranded-specific RNase T1, which cuts
unpaired guanosines, and S1 nuclease, which cleaves preferentially all single-stranded
nucleotides, to digest transfer RNAs from different organisms and at different envi-
ronment conditions (Wurst et al., 1978; Wrede et al., 1979b; Wrede and Rich, 1979;

Wrede et al., 1979a). The obtained results were consistent with previously deter-
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mined three-dimensional folding.

Other enzymatic reagents that are actively used to probe RNA structure include
RNase U2, which cuts unpaired adenines (Mougel et al., 1986; Baudin et al., 1987);
RNase CI3, which cleaves unpaired cytidines, adenosines and uridines, but for the
latter two it requires longer incubation time and high concentration of enzyme (Flo-
rentz et al., 1982); RNase T2, which cuts single-stranded adenosine residues (Vary
and Vournakis, 1984b; Kean and Draper, 1985; Romaniuk, 1985; Christiansen et al.,
1987). There are also other enzymes used to probe RNA structure, which similar
to nuclease S1 cleave single-stranded RNA regions without being specific to a par-
ticular nucleotide. For example, RNase ONE, which cleaves all unpaired bases, was
used in studying structure elements of umbravirus and panicovirus (Wang et al.,
2009); RNase J1 from Bacillus subtilis was used to solve the structure of the hbs
mRNA (Daou-Chabo and Condon, 2009); Neurospora crassa nuclease was used to
study interactions between beef tryptophan transfer RNA and avian myeloblastosis

reverse transcriptase (Garret et al., 1984b).

RNase V1 from cobra venom is the only enzyme that cuts preferentially double-
stranded regions (Wan et al., 2011). This ribonuclease specifically cleaves RNA in
regions that are helical, indicating where the RNA is base paired. It was first ap-
plied to probe the structure of yeast phenylalanine and E. coli methionine tRNAs,
and results demonstrated that the V1 nuclease also recognizes non-canonical base
pairs and tertiary interactions, in addition to usual secondary helices (Lockard and
Kumar, 1981). Owing to this uncommon specificity, it is a widely used enzyme
for probing RNA structure (Favorova et al., 1981; Troutt et al., 1982; Lowman and
Draper, 1986).

The use of chemical modifications for testing RNA structure is very time consuming
and requires a lot of effort (Weeks, 2010). Although chemical probing with a variety
of structure-specific probes provides comprehensive information at the nucleotide
level, data obtained solely from chemical probing techniques do not show which nu-
cleotides are base pairing with each other (Ehresmann et al., 1987). However, such
data can be directly incorporated as folding constraints into dynamic programming

algorithms for secondary structure prediction (Mathews et al., 2004).
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The current state of art in chemical probing techniques is the one termed Selective
2’-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) and based on the
discovery that the nucleophilic reactivity of a ribose 2’-hydroxyl group is gated by
local nucleotide flexibility (Merino et al., 2005; Wilkinson et al., 2005, 2006). It was
first applied to reproduce the well-studied structure of aspartic acid transfer RNA in
yeast (Westhof et al., 1985, 1988b,a; Perret et al., 1990). Single nucleotide resolution
SHAPE chemistry computes nucleotide flexibility at all four ribonucleotides and dif-
ferentiates paired residues from flexible ones. Knowledge of such local flexibilities
of nucleotide positions allows determining the RNA secondary structure. However,
SHAPE chemistry is a rather slow technique. Original protocol required two days to
complete for RNA with only 100-200 nucleotides (Wilkinson et al., 2006). Later, a
new faster-acting reagent was designed to improve the SHAPE chemistry (Mortimer

and Weeks, 2007); nonetheless, the entire procedure still required a lot of time.

Further development of SHAPE technology allowed analyzing long RNAs in a sin-
gle experiment and measuring flexibility at more than 99% of the bases (Wilkinson
et al., 2008; Watts et al., 2009). Thus, SHAPE measurements yield comprehensive
information about what nucleotides are paired and what nucleotides are unpaired in
the RNA structure. Such improved SHAPE technology was used to assess the RNA
secondary structure of a complete HIV-1 genome and revealed many previously un-
recognized structural elements and long-range interactions (Wilkinson et al., 2008;
Watts et al., 2009). Additionally, as with other chemical probing techniques, ex-
perimental data produced by the SHAPE analysis can be coupled with computa-
tional prediction methods. This feature has been implemented in the RNAstructure
program (Mathews et al., 2004) and increases the accuracy of secondary structure
predictions dramatically (Deigan et al., 2009; Low and Weeks, 2010). For example,
taking into account SHAPE reactivity information in benchmarking was performed
on 16S ribosomal RNA of Escherichia coli, the crystal structure of which was ear-
lier solved at 3 angstrom resolution (Wimberly et al., 2000). The accuracy of the
structure, based solely on a thermodynamic model, was less than 50%; however, the
SHAPE-directed structure modeling of F. coli 16S rTRNA demonstrated higher than
95% accuracy (Deigan et al., 2009).

The two main disadvantages of all the methods described above are that they are

limited to probing one RNA molecule at a time, and only a few hundred bases can
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be examined per experiment. Recently, several high-throughput methods of deter-
mination of the RNA structures have been suggested. The first technique, termed
Parallel Analysis of RNA Structures (PARS), was successfully applied to measure
the secondary structures of the messenger RNAs for over 3,000 distinct transcripts of
the Saccharomyces cerevisiae (Kertesz et al., 2010). The method is based on treating
mRNAs separately with S1 nuclease and RNase V1, nucleases, which cleave single-
and double-stranded RNA, respectively. Then, RNA is converted into a ¢cDNA li-
brary. High-throughput sequencing of cDNA library enables identification of the
cleavage sites. Those nucleotides, whose RNase V1 cleavage number is higher than
S1 nuclease cleavage number, are considered base-paired. And the other way round,
the nucleotides, whose RNase V1 cleavage number is lower than S1 nuclease cleavage
number, are considered unpaired. The enzymatic footprinting takes about five days
to complete and subsequent sequencing and analysis requires six to eight days (Wan
et al., 2013).

Analysis of yeast structural profiles measured by PARS revealed that nucleotides
in the coding regions of mRNAs are prone to appear in double-stranded conforma-
tions more often than nucleotides in the untranslated regions (UTRs) (Kertesz et al.,
2010; Mauger and Weeks, 2010). A similar finding was reported for the HIV-1 virus
genome (Watts et al., 2009). Another detail demonstrated by PARS was that the ef-
ficiency of mRNA translation is anti-correlated to the probability of nucleotides near
the translation start site to be in a double-stranded conformation (Kertesz et al.,
2010; Mauger and Weeks, 2010). Lately, a new approach similar to PARS analysis,
termed Parallel Analysis of RNA structures with Temperature Elevation (PARTE),
was suggested by the same group (Wan et al., 2012). It was applied to probe yeast
RNA structures and different temperatures and it helped to identify thousands of
putative RNA thermometers (Wan et al., 2012).

Zheng et al. combined nuclease-based mapping with high-throughput sequencing
and applied this technique, which they called dsRNA-seq, to a genome-wide analy-
sis of Arabidopsis (Zheng et al., 2010). The approach was based on treating RNA
samples with a single-strand specific RNase One. It allowed them to identify highly
stable regions of secondary structure, and also to identify many new small RNAs.
Later, this approach evolved. A double-strand specific RNase V1 was added to this

methodology; and, it was applied to the analysis of Drosophila melanogaster and
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Caenorhabditis elegans transcriptomes (Li et al., 2012). Interestingly, they found
that nucleotides both in the 5’- and 3 -untranslated regions have higher propensity
to be in a double stranded conformation than nucleotides in the coding regions.
This finding was interpreted as the existence of many regulatory signals or interac-
tion sites for RNA-binding proteins (Li et al., 2012).

Finally, an alternative technology, termed fragmentation sequencing (Frag-seq), was
used to probe for single-stranded regions of mouse transcriptome (Underwood et al.,
2010). The method relies on high-throughput sequencing of RNA fragments that
resulted from treating RNAs in solution with P1 endonuclease, which cleaves the
RNA of interest at single-stranded regions. A high number of cleaves at a particu-
lar position indicates that this nucleotide is unpaired. Through this method, known
structured regions in noncoding RNAs were validated and new, previously unprobed
RNAs, were tested.

Recently, SHAPE technology has also been paired with deep sequencing and was
termed SHAPE-Seq (Lucks et al., 2011). Compared with other high-throughput
methods of probing RNA structure, which use large nucleases, SHAPE-Seq uses
a small chemical probe. As a result, it has considerably higher accuracy of mea-
surement. This method was applied to probe the structure of the highly conserved
Bacillus subtilis RNase P and to identify changes in the structure resulting from
single nucleotide polymorphisms (SNPs). The method also can be further extended
to determine how the structure changes due to RNA-RNA or RNA-protein interac-
tions (Lucks et al., 2011).

It is interesting that PARS, dsRNA-seq and Frag-seq appeared almost simultane-
ously in research. This shows that high-throughput methods of RNA structure
mapping are of great interest and rapid further development of such techniques is
very likely. However, the biological importance of RNA and the long absence of
experimental techniques for measuring RNA structure have resulted in a fast grow-
ing number of works that are analyzing RNA functions based solely on theoretical

predictions.
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1.4 Theoretical Prediction Methods

To better understand of the biological functions of RNA molecules within a cell, it
is crucial to know their structures. Despite the fact that RNA structures play im-
portant roles in different biological processes, the experimental techniques to probe
RNA structure by high-throughput sequencing are only beginning to appear. There-
fore, the majority of researches connected to RNA structure is based on theoretical

predictions of secondary structures.

There are several problems that make the theoretical prediction of RNA structures
very complicated. First of all, RNA structures are dynamic, which means that RNA
conformation depends on surrounding conditions (such as temperature, salt con-
centrations, etc.) and on the functional role that an RNA molecule is supposed to
perform at the particular biological state (Weeks, 2010; Wan et al., 2011). Thus,
many of the processes that influence the conformation into which RNA folds (e.g.
folding kinetics, higher-order interactions, etc.), are too complex to be taken into
account to produce high accuracy results. Another problem is that the number of
theoretically possible conformations for an RNA sequence increases exponentially
with the length of the sequence, N (Zuker and Sankoff, 1984; Mathews, 2006):

Number of secondary structures =~ (1.8)"

From the experimental results, it is also becoming clear that RNA can fold into many
stable states with energy somehow different from the global minimum (Hébartner
and Micura, 2003; Weeks, 2010). Therefore, the longer the sequence, the worse the
quality of prediction is. Several studies were aimed to assess the accuracy of theo-
retical predictions. For instance, Higgs demonstrated that 85% of tRNA structures
were correctly predicted (Higgs, 1995). However, the accuracy of predicting longer
sequences drops significantly (Zuker and Jacobson, 1995; Konings and Gutell, 1995;
Fields and Gutell, 1996; Doshi et al., 2004). For instance, even the most accurate
dynamic programming algorithm predicts correctly less than 50% of the base pairs
for 16S ribosomal RNA of E. coli (Deigan et al., 2009; Weeks, 2010).

Since the conformation of RNA with the lowest possible value of free energy is con-
sidered the most thermodynamically stable, one of the most common methods of

secondary structure prediction is based on searching for the MFE structure. But,
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to incorporate such energy parameters into a prediction algorithm, they have to be
experimentally measured first. Thus, one potential explanations of poor accuracy is
incorrectness of the experimental energy parameters for base pairings (Doshi et al.,
2004). This factor can be especially important in the case that several alternative
structures, with similar values of free energy, do exist. Another reason is that more
than one structure may exist at equilibrium (Tinoco and Bustamante, 1999). Thus,

predicting only one structure for a long sequence may not show the entire picture.

A possible way to increase the quality of RNA secondary structure predictions,
especially for large RNA molecules, is to use data from experimental probing as
constraints into the prediction algorithms. Several works have demonstrated that in-
corporating chemical probing data into a dynamic programming algorithm improves
the accuracy of predictions dramatically (Mathews et al., 2004). For instance, indi-
cating those bases, which demonstrated high reactivity towards chemical probes, as
certainly unpaired helped to increase the accuracy of prediction from 50% to 72%
for 168 ribosomal RNA (Weeks, 2010).

Computer modeling of RNA molecules and computing of atomic coordinates, when
taking into account electrostatic interactions, are still extremely difficult tasks (Auffin-
ger and Westhof, 1998). Therefore, in those cases when it is absolutely necessary to
know atomic coordinates, the common solution is to use X-ray diffraction (Holbrook
and Kim, 1997). However, in most cases, we would like to know the structure well
enough to be able to understand the function it performs, instead of highest possible
resolution (Tinoco and Bustamante, 1999). Thus, predicting RNA structures can
be very useful either in interpreting experimental data concerning a particular RNA
function, or in suggesting new RNA regions that may be functionally important and

testing them experimentally (Seetin and Mathews, 2012).

It is generally accepted that the approach termed comparative sequence or covari-
ation analysis is the most reliable method of determining a secondary structure of
an RNA molecule (James et al., 1989; Pace et al., 1999; Weeks, 2010). The under-
lying assumption of this technique is that we would intuitively expect that if there
is a functionally important element of secondary structure then all the available
sequences must have this element of the structure (in other words, that structure

should be more conserved by evolution than sequence). Therefore, the main goal
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that resulted from this idea is to find a base pairing pattern that fits all the sequences
(i.e. if a nucleotide substitution occurs on one side of a helix, which disrupts the
structure, a compensatory substitution should occur on the other side of the helix).
In this case, we will see a high covariance or mutual information between those two
positions. The main advantage of this algorithm is that it predicts both secondary
and tertiary structures. However, this approach requires the existence of a large
number of homologous sequences, which makes it impossible to apply in most cases.
Another disadvantage of constructing a covariations model from a multiple align-
ment is that it may require significant effort from the researcher (Low and Weeks,
2010; Seetin and Mathews, 2012).

This method was first applied to the analysis of transfer RNA sequences, which
demonstrated the existence of correlation between mutations occurring in the posi-
tions that are base paired according to the cloverleaf model (Madison et al., 1966;
Levitt, 1969). Usually comparative analysis is performed on the sequences of the
same RNA molecule from different species, but homologs from the same organism
can also be investigated (Seetin and Mathews, 2012). The physical model underly-
ing the covariation method is the following. Let us consider two nucleotides paired
with each other, and, to simplify the description, let us assume that these bases are
G and C. Mutation rates are usually rather low; hence, it is considered that two
mutations cannot occur simultaneously and the compensatory substitutions repre-
sent a two-step process (Higgs, 2000). If a mutation happens in one of these two
bases and it changes, for example, to U, but that base pair was important to the
structure stability, then a second, compensatory mutation occurs later in the other
base which will form a new AU base pair. Thus, homologous sequences used in the
analysis may have a low level of sequence identity, but their helical regions will be
perfectly aligned (Seetin and Mathews, 2012). The analysis of Drosophila rRNA
clearly demonstrated that compensatory mutations usually occur through interme-
diate GU base pairs (Rousset et al., 1991).

Unfortunately, in the majority of cases, there are not enough homologous sequences
to apply covariation analysis. Thus, in those cases, it is crucial to be able predict an
RNA secondary structure from a single sequence; the most common method for this
is based on free energy minimization (Mathews and Turner, 2006; Shapiro et al.,
2007).
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First attempts to estimate stability of RNA secondary structure by minimizing fold-
ing energy were done more than 40 years ago by Tinoco et al. (Tinoco et al., 1971,
1973). According to thermodynamics, at equilibrium state the structure with the
lowest free energy should dominate (Turner et al., 1988). Algorithms based on this
thermodynamic model usually find many possible structures and estimate a free
energy value for each of them. The main assumption is that the total energy of a
conformation is just a sum over energies of separate local structural components, like
stems and loops (Tinoco and Bustamante, 1999). Free energies of base paired regions
are negative, hence, more favorable; while, loops are usually taken into account with
free energy penalties because loops do not make the structure more stable and are
considered as unfavorable elements (SantaLucia and Turner, 1997). Additionally, the
energy of a double-stranded region depends on the sequence. Namely, the energy of
a helix depends not only on the type of base pairs in the helix, but also on the order
of base pairs, so called base stacking. Stability of loops depends on the sequence
as well (Mathews et al., 1999). Moreover, accuracy of free energy associated with
a loop is much lower than accuracy of helix parameters (Santalucia and Turner,
1997). At the same time, the energy of a base pair is considered dependent only on
the types of adjacent base pairs. This is termed the nearest neighbor model (Tinoco
and Bustamante, 1999). Thus, to assess the free energy of a particular structure, it
is usually divided into elementary parts (energies of which are known or reasonably
estimated) and then energies of those simple parts are combined (Higgs, 2000). The

lower the free energy of a structure, the more stable this structure is considered.

The results of predictions made by free energy minimization algorithms strongly
depend on experimental thermodynamic data. As the accuracy of measuring free
energies of different interactions progresses, the quality of predictions improves as
well (Mathews et al., 1999). Usually optical melting studies are used to experi-
mentally determine energy parameters for the nearest neighbor model (Xia et al.,
1998; Mathews and Turner, 2002b; Mathews et al., 2004). The Nearest Neighbor
Database was created recently to summarize those parameters (Turner and Mathews,
2010). However, there are different methods of measuring the energy and different
models for the stacking free energy in helices (SantalLucia and Turner, 1997). For
example, there are pure computational approaches to estimate energy parameters

(Andronescu et al., 2007) and theoretical optimization of experimentally measured
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parameters (Mathews et al., 1999).

In 1978, Nussinov et al. presented the first dynamic programming algorithm to
find a particular folded form with the largest number of base pairs (Nussinov et al.,
1978). The biological underground idea is that every base pairing contributes to the
stability of the structure. Therefore, the more base pairings the structure has, the
more stable an RNA molecule is. Thus, the algorithm maximizing the number of
base pairings was developed. This algorithm included an important simplification,
however, it did not take pseudoknots into account. If we number all the nucleotides
in a sequence from 1 to N, then nucleotides i** and j* can form a base pair only
if they are complementary and at least three other bases exist between them. Now,
let us assume that 7*” nucleotide is paired with j** and k™" nucleotide is paired with
Ih. There are three possible variants of their mutual location: (i) one of the base
pairs is located aside of the other one (i < j < k < [); (ii) one pair is within
the other (i < k < I < j), so called nested base pairs; (iii) they are intersecting
(1t < k < j < 1). The latter case is called pseudoknot (Higgs, 2000). Elimi-
nating pseudoknots resulted in the fact that the original algorithm has O(n?) time
complexity and requires O(n?) memory; and hence, can be applied in most cases.
Later, several attempts were also made to accelerate this folding algorithm by using
graphics processing units (GPU) (Chang et al., 2010; Stojanovski et al., 2012; Su
et al., 2013).

Usually, the structure predicted by the original Nussinov’s algorithm is very different
from a conformation into which a real RNA folds. This is because the algorithm
takes into account only the number of possible base pairs and maximizes this num-
ber, which is not the best model from a thermodynamics point of view. It also
does not take into account different energy parameters for different base pairs, and
there are no penalties for the loops. However, a new version of their algorithm for
RNA structure predictions with incorporated energy parameters for base pairs was

presented two years later (Nussinov and Jacobson, 1980).

Nevertheless, energy rules for base stacking and destabilizing regions cannot be in-
corporated into the Nussinov’s algorithm. This problem was solved by Zuker and
Stiegler, who designed a new dynamic programming algorithm that allows taking

into account such energy parameters (Zuker and Stiegler, 1981). In many cases, the
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structure with the minimum free energy was not consistent with those measured
experimentally, but could be observed among the structures with free energy close
to the minimum. Therefore, Zuker developed a new version of the algorithm, which
allows finding not only the MFE structure, but all suboptimal structures within a
particular range of free energy (Zuker, 1989). Theoretically, suboptimal structures
correspond to less stable conformations. Yet, they also can be considered as highly
probable alternate structures because of simplifications used in the algorithm and
errors in the energy parameters measurements. This algorithm became a basis for

a popular software package termed mfold (Zuker, 2003).

In 1990 McCaskill proposed a novel application of dynamic programming, namely
to calculate partition function instead of just the MFE structure (McCaskill, 1990).
The partition function describes the entire ensemble of secondary structures in ther-
modynamic equilibrium and is defined as a sum of Boltzmann factors over all the

possible conformations of a particular sequence:

—AE(g;)

Z:E e BT
qi

where —AF(q;) represents the difference in free energies between a particular con-
formation, ¢;, and an unfolded state; kg is the Boltzmann constant; and 7" is the
temperature in kelvins. According to statistical physics, the probability of a given

conformation ¢; in the equilibrium can be assessed as:

—AE(q;)
e FpT

Z
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From this formula it is obvious that the MFE structure of an RNA molecule, as
well as the weights of different conformations in the partition function, depends on
the temperature. Therefore, this approach enables investigating how an ensemble of
alternative structures alters upon the temperature change instead of studying the
most probable conformation. In addition, from the partition function, it is possible
to compute the probability for any two bases to be paired (McCaskill, 1990). Thus,
calculating a partition function reveals important information about the complete
ensemble of possible alternative conformations and enables assessing the power of
prediction algorithms (McCaskill, 1990). For instance, it was demonstrated that the
base pairs, which have high predicted probability to be paired, have higher chances

to be present in a real structure (Mathews et al., 2004). Also, it was shown that
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the probabilities of nucleotides to be paired are less sensitive to errors in free energy

parameters (Layton and Bundschuh, 2005).

Later, a dynamic programming algorithm by Zuker for free energy minimization and
computation of partition function was combined into a package termed the Vienna
RNA Package (Hofacker et al., 1994). This implementation was demonstrated to be
much faster than the original versions and became rather popular (Hofacker et al.,
1994).

Since RNAs, especially long ones, may fold into different co-existing conformations,
the partition function approach was extended by Ding and Lawrence to select a sta-
tistical representation of structures from the ensemble (Ding and Lawrence, 2003;
Ding, 2006). This approach allows for easily estimating the probabilities of partic-
ular secondary structural elements, instead of individual base pairs. Also, it was
demonstrated to be very useful in rational design of RNAs, which have to fold into

a particular structure (Ding, 2006).

The methods described above do not take into account the kinetic aspects of RNA
folding, rather, they try to estimate an equilibrium state. However, there is also
a class of algorithms that try to predict RNA structure by simulating the folding
process instead of simply optimizing free energy (Abrahams et al., 1990; WuJu and
JiaJin, 1998). For instance, specially adapted forms of Monte Carlo simulations
were applied (Ferndndez, 1992; Schmitz and Steger, 1996). Also, several groups pro-
posed using genetic algorithms to solve the optimization problem of kinetic folding
(van Batenburg et al., 1995; Benedetti and Morosetti, 1995; Shapiro and Wu, 1996;
Shapiro et al., 2001). Nevertheless, all those algorithms have not achieved preva-

lence.

Since comparative analysis is considered the most accurate method, there have been
many attempts to automate this process and to combine comparative and thermo-
dynamics methods. Usually, such covariation models are built with using stochas-
tic context-free grammars (SCFG), which use formal language theory to develop a
grammar to describe RNA secondary structure, or hidden Markov models (Durbin,
1998; Dowell and Eddy, 2004; Do et al., 2006; Shapiro et al., 2007; Jossinet et al.,
2007). The first type of such techniques begins with constructing a multiple se-
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quence alignment and then predicting the consensus structure for the alignment
(Hofacker et al., 2002; Bernhart et al., 2008; Bernhart and Hofacker, 2009; Mathews
et al., 2010). This approach is very fast, but the quality of the consensus structure
depends a lot on the quality of the alignment. Such methods, for example, were
applied to analyze genomes of a wide range of viruses, including HIV-1, hepatitis
C virus, hantavirus, and others (Liick et al., 1996; Tabaska et al., 1998; Hofacker
et al., 1998; Hofacker and Stadler, 1999). The second technique does the opposite.
They predict a set of suboptimal structures, which have a free energy value close
to the minimum, and then search for a structure, which is common to all sequences
in the alignment. This paradigm is implemented in the RNAshapes software tool
(Steffen et al., 2006), which is very fast (Mathews et al., 2010; Seetin and Mathews,
2012). However, authors of this approach try to find a common topology, termed
abstract shape (Giegerich et al., 2004), instead of analyzing real structures (Reeder
and Giegerich, 2005). Finally, the last approach is to fold and align the sequences
simultaneously (Gorodkin et al., 1997b,a; Mathews and Turner, 2002a). One of the
first such algorithms was proposed by Sankoff (Sankoff, 1985), but for the S input
sequences, it has a complexity of O(n®) which makes it impractical for the majority
of cases. The algorithm suggested by Gorodkin et al. has a complexity of O(n?),
but does not take into account multi-branched loops (Gorodkin et al., 1997b). Ac-
counting for multi-branched loops increases the complexity to O(n%) and also makes
it impractical for most applications (Gorodkin et al., 1997b). As this is the most
expensive approach, it is usually applicable only to two sequences (Mathews et al.,
2010).

As was mentioned earlier, there are experimental evidences that pseudoknots can be
functionally important. Moreover, the number of known pseudoknots has been con-
stantly increasing and has resulted to creating a pseudoknot database (Taufer et al.,
2009). However, most of the developed algorithms for structure prediction do not
contain pseudoknots (Lyngsg and Pedersen, 2000). Predicting pseudoknots remains
a huge challenge and the accuracy of currently existing algorithms is still rather low.
The main complication is that RNA secondary structure prediction with pseudo-
knots was proved being NP-hard, which means that prediction of the structure for
a particular sequence can be performed computationally in a reasonable amount of

time only for very short RNAs (Lyngsg, 2004). Thus, some simplifications are used
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in attempts to predict pseudoknots.

Another problem of predicting pseudoknots, apart from the high complexity of
algorithms, is that although the melting behavior and thermodynamics data for
some types of pseudoknots have been obtained (Wyatt et al., 1990; Gregorian and
Crothers, 1995; Qiu et al., 1996; Theimer et al., 1998; Theimer and Giedroc, 1999;
Gonzalez Jr and Tinoco Jr, 1999), there is still limited experimental information
about energy parameters of pseudoknots. As a result, there have even been at-
tempts to estimate thermodynamic parameters for pseudoknots only from theory
(Gultyaev et al., 1999).

There are several groups, which have been working on developing dynamic program-
ming algorithms for predicting pseudoknots. For example, Rivas and Eddy suggested
a new dynamic programming algorithm that takes into account simple topologies of
pseudoknots (Rivas and Eddy, 1999). However, the algorithm complexity is O(n"),
which makes it impractical for applying to long sequences. A dynamic algorithm
with O(n?) complexity was suggested by Akutsu (Akutsu, 2000). However, this
algorithm is similar to the original algorithm by Nussinov in the sense that it just
maximizes the number of base pairs in the structure and does not take into ac-
count energy parameters. Stochastic modeling (Cai et al., 2003; Xayaphoummine
et al., 2003), heuristic algorithms (Ruan et al., 2004; Ren et al., 2005), and other
approaches also have been suggested to solve this problem. However, the accuracy

of those approaches is not very high yet.

1.5 Thesis Motivation and Outline of the Work

For many years it was considered that proteins and protein interactions control prac-
tically every biological process. More recently, however, an increasing number of sci-
entific papers have been published that describe a growing list of examples for when
RNA structures play important roles in cellular regulatory functioning. Therefore, a
deeper understanding of how RNA folds is required, including the kinetic aspect of
RNA folding, alternative conformations, etc. At the same time, indisputably, muta-
tions occur in RNA molecules. Hence, some very interesting questions are: What are
the relationships between sequence and structure? How big is the conformational

change of RNA resulting from occurred mutations? Can structure conservation be
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a filter to mutations disrupting the structure? Can modifications in RNA structure
play a role in different diseases and/or infections? Answering these and many other
questions about RNAs will help us better understand the processes within a cell,
will result in producing better vaccines and medicine in the future, and will assist

in investigating predecessors of the RNA World and of the origin of life.

The following chapter presents the results that have been achieved from our con-
tributing efforts to investigate these questions. Four articles are presented. The
first paper describes an analysis of sequence-structure relationships in yeast mR-
NAs based on the first-ever published genome-wide measurements of base pairing
propensities in mRNA structures. The second article presents an attempt to explain
a molecular mechanism of the rather famous cold-adapted, temperature-sensitive
phenotype of influenza virus. It shows that alterations in secondary structures of
viral mRNAs upon temperature change may be a potential factor affecting the cold-
adapted, temperature-sensitive phenotype. To demonstrate this fact, we developed
a new computational method of determining highly temperature-sensitive regions of
RNA structure. Based on this methodology, we implemented a web server described
in the third paper. The fourth publication is aimed at assessing the importance of
mRNA secondary structures in bacteria and how those structures may be a poten-
tial factor of filtering out nucleotide substitutions occurring in E. coli during the

Long-term evolutionary experiment by Richard Lenski.

Finally, the last chapter briefly presents some conclusions and possible applications

of our findings.
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Chapter

Results

This chapter presents the results of our work which have been published as four

papers in peer-reviewed scientific journals.

2.1 Sequence-structure Relationships in Yeast mR-

NAs

Andrey Chursov, Mathias C. Walter, Thorsten Schmidt, Andrei Mironov, Alexan-
der Shneider and Dmitrij Frishman
Nucleic Acids Res., 40(3):956-962, 2012

Structural bioinformatics of mRNAs is still in its infancy due to the absence of exper-
imentally known (rather than computationally predicted) structures. We provided
the first ever analysis of sequence-structure relationships in eukaryotic mRNAs based
on the experimental measurements of base pairing propensities published in 2010 by
Kertesz and colleagues in Nature (Kertesz et al., 2010). Our main finding is that
the relationship between sequence and structure divergence in mRNA molecules is

much weaker than in small RNAs, implying a high degree of evolutionary neutrality.

On a more general vein, the objective of our work was to analyze global structural
arrangements and their similarity as a function of sequence identity, similar in spirit
to the original work of Chothia and Lesk (Chothia and Lesk, 1986). In this work,

we focused on the comparison of experimentally determined as well as predicted
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secondary structures for yeast mRNA sequences that encode paralogous proteins.
We considered potential correlations between sequences and mRNA structures. In
order to detect such correlations, we used large-scale experimental data on yeast
transcriptome RNA structure (Kertesz et al., 2010). We combined these data with
theoretical predictions and compared structural and sequence similarities for a num-
ber of yeast paralogous genes. The results demonstrated correlations for relatively
highly similar sequences (higher than 85-90%), and their absence for sequences with

lower similarity:.

The result we obtained was not anticipated. To our surprise, we found that only
extremely similar sequences are folded into similar structures, while quite similar se-
quences, sharing as much as 80-85% identity, fold differently. Thanks to the Kertesz
et al. dataset, which was the first large-scale measurement of mRNA structures
ever published, we could then derive for the first time the quantitative dependence
between sequence and structure divergence in mRNAs. Such dependence was not

previously known.

The next obvious step was to compare mRNA structures for orthologous genes with
a similar distribution of nucleotide sequence identities to the distribution of similar-
ities between paralogs in S. cerevisiae. Does the structure diverge faster in paralogs
than in orthologs with comparable sequence similarity? For such a comparison, we
chose Candida glabrata, the closest organism with a completely sequenced genome,

and compared predicted structures in S. cerevisiae with C. glabrata.

In addition, we have made all sequence alignments, together with experimentally
determined and predicted structures, in FASTA format available as Supplementary
Files.

The research was designed by Dmitrij Frishman and me. I did the programming
and performed the research. The resulting data were analyzed by all the authors.

The paper was written by myself, Andrei Mironov and Dmitrij Frishman.
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ABSTRACT

It is generally accepted that functionally important
RNA structure is more conserved than sequence
due to compensatory mutations that may alter the
sequence without disrupting the structure. For small
RNA molecules sequence-structure relationships
are relatively well understood. However, structural
bioinformatics of mRNAs is still in its infancy due
to a virtual absence of experimental data. This
report presents the first quantitative assessment
of sequence-structure divergence in the coding
regions of mMRNA molecules based on recently pub-
lished transcriptome-wide experimental determin-
ation of their base paring patterns. Structural
resemblance in paralogous mRNA pairs quickly
drops as sequence identity decreases from 100%
to 85-90%. Structures of mRNAs sharing sequence
identity below roughly 85% are essentially uncor-
related. This outcome is in dramatic contrast to
small functional non-coding RNAs where sequence
and structure divergence are correlated at very low
levels of sequence similarity. The fact that very
similar mRNA sequences can have vastly different
secondary structures may imply that the particular
global shape of base paired elements in coding re-
gions does not play a major role in modulating gene
expression and translation efficiency. Apparently,
the need to maintain stable three-dimensional
structures of encoded proteins places a much higher
evolutionary pressure on mRNA sequences than on
their RNA structures.

INTRODUCTION

Secondary structure elements both in the untranslated
(UTR) and coding (CDS) regions of mRNAs have been
implicated in a variety of regulatory functions (1). For
example, riboswitches modulate gene expression through
conformational changes in response to various stimuli (2).
In addition, translation initiation, elongation, termination
and translation efficiency all depend on higher order
mRNA secondary structures in non-coding regions (3.4).
Coding region hairpins have also been suggested to play a
role in the regulation of translation (5). The relationship
between RNA structure and gene expression in the coding
regions of mRNAs has been demonstrated both computa-
tionally and experimentally (6-10). In particular, reduced
mRNA stability near the start codon has been observed in
a wide range of species, probably as a mechanism to fa-
cilitate ribosome binding or start codon recognition by
initiator tRNA (11). Computational studies show that
native mRNA sequences have lower folding energies and
hence more stable structure than codon-randomized ones
(5). The three mRNA functional domains—5-UTR, CDS
and 3’-UTR—form largely independent folding units, with
base pairing across domain borders being rare (12).
Evolutionary conserved local secondary structures have
been identified in the CDS regions (13,14) and shown to
be functional (15).

There is a selective pressure toward maintaining both
stable RNA structures of coding regions and the
three-dimensional folds of their encoded proteins (16). It
has been argued that the redundancy of the genetic code
plays an important role in satisfying these selection re-
quirements (12). In general, however, sequence—structure
relationships in mRNA-coding regions remain elusive;
and, their spatial structure is unknown. While hundreds
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of atomic resolution structures have been determined
for smaller RNA molecules, most notably tRNAs, experi-
mental structures of large RNAs are still rare (17). Until
recently, direct experimental determination of mRNA struc-
ture has been impossible on a large scale. Furthermore,
most insights into the evolutionary constraints acting on
them arose from correlating predicted base paring
patterns with the effects of site-directed mutagenesis on
mRNA expression and degradation, as well as on the ex-
pression levels and activity of encoded protein products.

Significant progress has been made in predicting RNA
secondary structure from sequence based on free-energy
minimization (18), probabilistic models (19) and evolu-
tionary information (20). However, the accuracy of current
algorithms is still insufficient to model large molecules,
primarily because the number of theoretically possible
RNA secondary structures grows exponentially with the
length of the sequence (21). Also, the free folding energy
of millions of suboptimal structures is very close to the
most stable structure. Lowest energy structures may not
necessarily reflect folding in vivo (22) due to kinetic pro-
cesses and protein—-RNA interactions. Additionally, it is
hard to model pseudoknots and unstructured regions (23).

More accurate prediction of RNA secondary structure
can be achieved by using experimental constraints
obtained from oligonucleotide data to guide free-energy
minimization (24). Moreover, experimental methods have
been developed that allow comprehensive monitoring of
RNA structure at single nucleotide resolution. One such
method, fragmentation sequencing, allows for recon-
structing RNA structures by sequencing fragments of
single-stranded RNA resulting from nuclease digestion.
Another method, known as selective 2’-hydroxyl acylation
and primer extension (SHAPE) (25), exploits the sensitiv-
ity of selective acetylation of the ribose 2’-hydroxyl
position to local nucleotide flexibility, thereby allowing
identification of those nucleotides that are conforma-
tionally constrained by base pairing. Accurate SHAPE-
directed RNA structure determination has been reported
for several types of RNA molecules, including Escherichia
coli 16S RNA and yeast tRNA™P (26), as well as for the
entire HIV-1 genome (27). This latter work highlighted the
intricate relationship between RNA sequences and protein
structure of the encoded proteins. In particular, it was
found that flexible loops in protein structures correspond
to highly structured RNA elements, implying a functional
role of mRNA structure in the modulation of ribosome
processivity at domain boundaries.

In recent work, Kertesz and colleagues (28) reported the
first transcriptome-wide experimental analysis of mRNA
structures using the novel technology called parallel
analysis of RNA structure (PARS). PARS enables the de-
termination of base pairing probabilities at single nucleo-
tide resolution by refolding RNAs in vivo, treating them
with structure-specific enzymes and then sequencing the
resulting fragments. Structural profiles were obtained for
more than 3000 transcripts from the budding yeast
Saccharomyces cerevisiae. The work of Kertesz et al.
revealed higher degree of structuredness in the mRNA-
coding regions compared with the 3’- and 5-untranslated
regions, implying a functional role of RNA structure in
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coding regions in regulating gene expression. The global
data set of PARS profiles represents a true treasure trove
for investigating sequence—structure and structure—
function relationships in mRNAs.

This report provides the first comprehensive analysis of
sequence—structure relationships in the coding regions of
yeast mRNAs based on base pairing propensities
measured by the PARS technology. It was found that
PARS profiles of paralogous mRNAs show very strong,
essentially linear, correlation sequence for identity levels
upwards of 85-90%. Yet, pairs of more distantly related
yeast transcripts secondary structure appear to be unre-
lated. Interestingly, predicted secondary structures of
yeast paralogs display a similar behavior with respect to
sequence identity; and, there is a significant correlation
between experimental and theoretical structures, as
noted previously (28). Theoretical structures of ortho-
logous mRNA pairs from yeast and Candida glabrata
are also uncorrelated for low sequence identity levels
while for highly similar sequences no conclusion could
be made due to lack of data.

MATERIALS AND METHODS
Experimental data on yeast mRNA secondary structure

Secondary structure profiles of 3000 transcripts from the
budding yeast S. cerevisiae have recently been determined
using a novel experimental strategy called PARS (28). For
each individual nucleotide position of mRNAs, a PARS
score reflects its likelihood to be in a double-stranded con-
formation. PARS scores for yeast transcripts were down-
loaded from http://genie.weizmann.ac.il/pubs/PARSI10.
S~ and 3’-UTR regions were identified by sequence com-
parison with yeast amino acid sequences, and then ex-
cluded from consideration. In the following, a vector of
PARS scores for a given transcript is referred to as its
experimental structure.

Yeast paralogs

Data on paralogous yeast proteins were kindly
provided by Martin Miinsterkétter and Ulrich Giildner
from the fungal genomics group at the Institute for
Bioinformatics and Systems Biology (German Research
Center for Environmental Health, Munich). A list of
protein pairs sharing significant similarity (identity at the
amino acid level >50%) was extracted from the SIMAP
database (29). Additionally, the putative paralogs were
required to have not >10% difference in sequence
length. In total, 243 paralog pairs involving 409 different
yeast genes satisfied these conditions.

Amino acid sequences of paralogous yeast proteins were
globally aligned using the ggsearch program from the
FASTA software suite (30). Amino acid sequence align-
ments were subsequently converted into mRNA sequence
alignments; and, the percent identity between each pair of
coding regions was calculated by dividing the number of
identical nucleotides by the length of the alignment.
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Orthologs from C. glabrata

Sequence data for C. glabrata were downloaded from the
PEDANT genome database (31). A list of orthologous
protein pairs between S. cerevisiae and C. glabrata was
extracted from the eggNOG database (32). In total, we
obtained 2327 ortholog pairs. The alignment procedure
was the same as for paralogs, see above.

PARS score distances between yeast paralogs

To assess global structural similarity between pairs of
aligned mRNA sequences, root mean square deviations
(RMSDs) between vectors of PARS scores were calculated
for all alignment positions that did not contain gaps.
Additionally, for each transcript pair, profiles of local struc-
tural similarity were obtained by calculating RMSDs
between PARS scores in non-gapped alignment positions
within a sliding window of varying length, typically
between 100 and 1000 nt.

Prediction of mRNA secondary structures

For each nucleotide position of transcript sequences, the
theoretical probability to be in double-stranded conform-
ation was calculated using the RNAfold method from the
Vienna RNA package (33). As done similarly for experi-
mental PARS scores (see above), RNAfold probability
values were used to calculate global and local measures
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of structural similarity between aligned coding regions of
mRNAs based on RMSD. For brevity, a vector of pre-
dicted probabilities of RNA bases in double-stranded con-
formation for a given transcript is further referred to as its
theoretical structure.

Data availability

All sequence alignments together with experimentally
determined and predicted structures are available in
Supplementary Data.

RESULTS

By illustrating the data used in this study on a concrete
example, the research results can be readily presented.
Two yeast mRNA sequences, YBR092C and YBRO093C,
share 86.5% sequence identity, and their partial align-
ment is depicted in the top part of Figure 1. The
position-dependent PARS scores for both sequences are
shown in the middle part of Figure 1. Both graphs display
a rather high degree or correlation, albeit not perfect. In
the bottom part of Figure 1, theoretical structures (prob-
abilities for individual bases to be paired) are drawn along
the sequence. Figure 2 shows how distances between ex-
perimental and theoretical structures of YBR092C and
YBRO093C vary along the mRNA sequence dependent
on sequence identity in a local sequence window. As
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Figure 1. Sequence alignment, experimental and theoretical structures of the first and last 50 nt for the pair of yeast mRNA sequences YBR092C

(dashed lines) and YBR093C (dotted lines).



expected, highly similar regions generally correspond to
more similar structures.

Calculations exemplified in Figures 1 and 2 were per-
formed for all pairs of paralogous mRNA sequences in
our data set. Table 1 summarizes pair-wise correlations
between the three evolutionary measures considered in
this work for different ranges of sequence identities.
Figure 3a shows how the difference between experimental
structures depends on sequence similarity. PARS scores
appear to be entirely uncorrelated for identity levels of
up to ~85-90%. In this sequence identity range, the me-
dian RMSD between PARS score vectors does not differ
from the median calculated for randomly selected mRNA
pairs (dashed horizontal line in Figure 3a). For sequence
identity levels over 85-90%, the distance between experi-
mental structures shows essentially a linear dependence
from sequence similarity (Supplementary Figure S1).

Upon conducting the same experiment with pairs of
theoretical structures of yeast mRNAs, it was found that
the distance between the structures also begins to depend
on sequence similarity upward of roughly 85-90% identity
(Figure 3b). For pairs with identity between sequences
within the range from 97.5% to 100%, the median
distance between theoretical structures constitutes 38%
of the random level. Yet, for experimental structures, it
is lower at 29%. The link between sequence and structure
is thus stronger when experimental structures are con-
sidered. The distance between theoretical structures also
shows a linear dependence from sequence similarity for
sequence identity levels over 85-90% (Supplementary
Figure S2).
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Therefore, what is the significance of the sequence—
structure dependence shown in Figure 3; and, how
would it appear for codon-randomized mRNA sequences?
Since experimental PARS scores are not available for
randomly generated sequences, this issue could only be
assessed for theoretical structures. For each pair of
paralogs, one sequence was kept unchanged. In the
seccond mRNA, however, mutations were randomly
distributed along the sequence, keeping the encoded
amino acid sequence, the codon usage and the total
number of mutations between the paralogs unchanged.
Overall, the divergence of structures between codon-
randomized paralogs displays virtually the same depend-
ence on sequence similarity as for native sequences
(Supplementary Figure S3).

We also compared predicted structures between
orthologous mRNAs from S. cerevisiae and the pathogen-
ic yeast C. glabrata (Figure 4). Although C. glabrata is the
most closely related organism to S. cerevisiae with a com-
pletely sequenced genome (34), no pair of orthologous
mRNAs between these two organisms shares sequence
identity >95% and thus no conclusion about structure
divergence for very similar sequences could be made.
However, for lower identity levels theoretical structures
of orthologs are uncorrelated and thus behave the same
way as paralogous structures.

DISCUSSION

In some sense, the current situation in RNA bioinformat-
ics is reminiscent of the early days of structural
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Table 1. Correlation coefficients and P-values for different ranges of sequence identity

Sequence
identity
range (%)

Sequence identity
versus RMSD between
experimental structures

Sequence identity
versus RMSD between
theoretical structures

RMSD between experimental
structures versus RMSD between
theoretical structures

Correlation P-value Correlation P-value Correlation P-value
coefficient coefficient coefficient
50-60 0.12 0.39 -0.07 0.62 0.14 0.31
60-70 0.14 0.22 —0.10 0.37 —0.02 0.87
70-80 —0.08 0.67 —0.08 0.67 —0.24 0.21
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Figure 3. Boxplots of distances between structures of aligned paralogous mRNAs in different ranges of sequence similarity. Each box corresponds to
the range of similarity 2.5%. The box extends from the lower to the upper quartile values, with a horizontal line at the median value. Whiskers
demonstrate the entire range of the data. Crosses show outliers. (a) Distances between experimental structures. The average level of PARS score
distances for alignments of random sequence pairs is 2.14 (dashed line). (b) Distances between theoretical structures. The average level of probability

distance for alignments of random sequence pairs is 0.5 (dashed line).

bioinformatics of proteins, when the availability of a suf-
ficiently large data set of X-ray structures allowed for the
first comprehensive analysis of the relation between the
divergence of sequence and structure in proteins (35).
Until recently, studies of the evolutionary conservation
of RNA structures were based on in silico predictions
and largely limited to non-coding RNA. In the first
large-scale study, Schudoma ef al. (36) determined that
in short RNA loops with known three-dimensional struc-
tures sequence identity >75% implies significant struc-
tural similarity. The most comprehensive investigation of
sequence—structure relationships in RNA molecules to
date is based on all-against-all pair-wise structural com-
parison of non-coding RNAs (tRNAs, rRNAs,
riboswitches and riboswitches) with known spatial archi-
tectures (37). Assessment of evolutionary divergence
revealed that the correlation between sequence and sec-
ondary structure conservation is highly significant for
sequence identity levels in the range between just a few
percentage points up to roughly 60% where this relation-
ship saturates. Further increase of sequence similarity (60—
100%) does not lead to an appreciable growth of second-
ary structure similarity. None of the studies mentioned

above considered mRNAs because no mRNA structures
are currently known at atomic resolution.

The principal finding of this research is that the correl-
ation between sequence and structure in the coding regions
of yeast mRNAs is much weaker than in small non-coding
RNAs. Up to ~85-90% sequence identity, the similarity
of both experimental and theoretical base pairing pro-
pensities between paralogous yeast mRNAs is at random
level; while, for more similar sequence pairs, sequence and
structure are strongly correlated. This may imply that
mRNAs do not experience a strong selective pressure to
preserve a certain degree of structuredness. The fact that
codon-randomized sequences display a similar behavior
also indicates that there is no appreciable evolutionary
pressure to preserve a particular RNA structure as long
as the encoded protein remains unchanged. Taken
together, these results underscore a high degree of evolu-
tionary neutrality in yeast mRNA molecules, both at the
level of primary (third codon position) and secondary
(extent of base paring) structure.

On one hand, our findings are in strong contrast to
many non-coding RNAs and cis-acting regulatory
elements of mRNAs whose biological function is primarily
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Figure 4. Boxplot of distances between theoretical structures of aligned
orthologous mRNAs in different ranges of sequence similarity.
Notation as in Figure 3.

mediated by their spatial architecture (38) stabilized by
tertiary interactions, modified bases and interactions
with proteins and small ligands. On the other hand,
sequence—structure relationships observed in this work
are compatible with the notion that, in general, RNA mol-
ecules do not have a single global structure. Instead, they
exist as a highly dynamic ensemble of alternative conform-
ations (39,40) that are often capable of performing differ-
ent functions (41). The extent of base pairing may play a
role in the regulation of pre-mRNA splicing, translation
and mRNA degradation. Both experimentally determined
PARS scores and computationally derived partition func-
tions analyzed in this work are statistical measures that
reflect the propensity of each nucleotide to form a base
pair across a large number of metastable structures.

This analysis has several important limitations. First,
PARS probes RNA structures in vitro rather than in the
living cell and may not always reproduce functional RNA
structures (42). Second, even if the base paring informa-
tion obtained by the PARS technology were perfectly cor-
rect, it still merely represents a one-dimensional profile of
structural propensities, a far cry from knowing the actual
RNA secondary structure, let alone spatial architecture,
for each individual molecule at any moment of time.
Third, the findings do not rule out much stronger
sequence—structure correlations in certain local structural
elements of coding regions, such as reprogrammed
genetic-decoding signals (43) or mRNA localization
signals. We also cannot rule out the possibility that the
degree of mRNA structuredness does have an important
functional role in spite of quick erosion of structural simi-
larity between paralogs with diminishing sequence similar-
ity, and that this erosion reflects functional differentiation.
However, we consider such explanation unlikely because
the same behavior is observed between orthologous
mRNAs. Finally, only a small subset of the PARS data
constituted by pairs of sequence similar yeast mRINAs
(paralogs) was explored. As a next step, it will be exciting

Nucleic Acids Research, 2012, Vol. 40, No.3 961

to conduct comparative analyses of mRNA structuromes
[the term coined by Westhof and Romby (44)], focusing
on orthologous sequences from multiple organisms and
taking into account important genomic variables, such
as expression level and evolutionary rate. Given the cur-
rent pace of high-throughput RNA analysis technologies
there is no doubt that such data will become available in
the near future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary figures S1-S3.
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Chapter 2. Results

2.2 Specific Temperature-induced Perturbations
of Secondary mRINA Structures are Associ-
ated with the Cold-adapted Temperature-sensitive
Phenotype of Influenza A Virus

Andrey Chursov, Sebastian J. Kopetzky, Ignaty Leshchiner, Ivan Kondofersky,
Fabian J. Theis, Dmitrij Frishman and Alexander Shneider
RNA biology, 9(10):1266-1274, 2012

Influenza A viruses constitute a serious threat to human health and vaccines against
these viruses are of crucial importance. There are two types of vaccines against
influenza A viruses: inactivated viruses, which are widespread in Europe; and live
attenuated vaccines, which were developed in the USSR and are used in the USA.
Live attenuated vaccines are cold-adapted, temperature-sensitive (ca/ts) mutant in-
fluenza A viruses. Mutations in the three proteins constituting the viral polymerase
complex are thought to contribute to the ca/ts phenotype. However, several virus
studies have elegantly demonstrated that the thermodynamic stability of certain
RNA structures is critical for optimal virus replication (Berkhout et al., 1997; Mir-
momeni et al., 1997; Rowe et al., 2000). Hence, this article presents an interesting
new idea: cold-adapted, temperature-sensitive (ca/ts) phenotypes of influenza may
depend on the temperature dependence of the RNA secondary structure. To test
this hypothesis, we developed a new approach to predicting RNA sequences that

may be responsible for this effect.

In this work we addressed the question of the contribution of the viral mRNA struc-
tures to the cold-adapted, temperature-sensitive phenotype. We developed a new
bioinformatics tool to analyze the variations of the RNA structures when the tem-
perature is shifted from 32 to 39°C, and to compare these variations in the ca/ts viral
strains and in the parental viruses from which they are derived. We used RNAfold
to predict the probability of each nucleotide to be involved in base pairing (via
partition functions), rather than predicting secondary structures. We found that

the nucleotides, whose probability to be base-paired was most affected by temper-

50



2.2. Specific Temperature-induced Perturbations of Secondary mRNA Structures are
Associated with the Cold-adapted Temperature-sensitive Phenotype of Influenza A
Virus

ature, tend to cluster (organize into regions with several such changes). Moreover,
these clusters were different for wild type and ca/ts mutant viruses. By comparing
these viruses with a pool of artificial viral sequences in which synonymous muta-
tions were randomly introduced (wt sequences with same number of mutations as
in ca/ts sequences), we concluded that the existence of nine clusters in the ca/ts
mutant viruses, but not in the wild type viruses, statistically correlated with the
ca/ts phenotype. Additionally, the analysis revealed the existence of one cluster,
present in the wt strain but absent in the ca/ts mutant, which could be attributed

to introducing specific mutations causing the ca/ts phenotype.

It is worth noting that the length of the overlap between clusters (when we compare
the location of clusters from two different strains) affects the strength of the sta-
tistical conclusion concerning appearance/disappearance of clusters resulting from
randomly introduced mutations. The longer the overlap allowed, the easier it is to
conclude that two clusters are different. Thus, we have restricted ourselves to short
overlaps only. Any conclusion that two clusters are different, which was made based
on short overlaps, would remain to be true if one allows longer overlaps. By contrast,
a conclusion made on longer overlaps may not sustain a test with shorter overlaps.

Thus, our results present the lower limit.

We also tested if the statistically significant clusters we have observed co-locate
with those few RNA structures, which are already known for the influenza A virus.
None such overlaps were observed. However, a comprehensive analysis of influenza
RNA structures was never conducted. Several structures were discovered because
of their biological importance and/or viral impairment in case these structures are
disturbed. Still, relatively little is known about influenza virus RNA folding and its
influence on influenza virus replication (Gultyaev et al., 2010). Thus, our results
provide a rationale for testing experimentally whether RNA structures are indeed
present at the locations of the clusters of highly temperature-sensitive positions at
32 and 39°C.

The research was designed by Alexander Shneider and me. The programming and all
the computations were performed by me and Sebastian J. Kopetzky. The resulting
data were analyzed by all the authors. The paper was written by myself, Sebastian

J. Kopetzky, Dmitrij Frishman and Alexander Shneider.
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Specific temperature-induced perturbations

of secondary mRNA structures are associated

with the cold-adapted temperature-sensitive
phenotype of influenza A virus

Andrey Chursov," Sebastian J. Kopetzky,'* Ignaty Leshchiner,?? lvan Kondofersky,* Fabian J. Theis,* Dmitrij Frishman'4#*
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For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated
vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold
adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play
important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can
lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of
the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing
whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The
proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at
two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature.
We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts
mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet

unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.

Introduction

Influenza vaccines have been a great public health priority' and
their future is man-made constructs created using molecular
biology tools. Compared with other types of influenza vaccines,
live attenuated influenza vaccines (LAIV) possess major advan-
tages because of administration convenience and potency of the
immune response.” There are alternative approaches which can
lead to viral attenuation and be utilized for LAIV design.’

Since the late 1960s, cold-adapted temperature-sensitive (ca/
ts) LAIVs have become an important vaccination instrument in
the USSR. The ca/ts phenotype leads to impaired growth at an
elevated temperature of approximately 39°C*? while permitting
viral growth at lower temperatures. Molecular mechanism(s)
causing the ca/ts phenotype in influenza A viruses remain
unclear. Significant effort was devoted to explaining temperature
sensitivity through mutations in the coding regions and amino

acid changes. Jin et al. found that certain non-silent mutations
in PB1, PB2 and NP might lead to temperature-sensitivity when
induced in A/Ann Arbor/6/60.° According to Song et al., three
non-silent mutations in PB1 and one non-silent mutation in PB2
might lead to the ts phenotype.* Youil et al. investigated several
A/Leningrad/134/17/57 subclones and found that the most tem-
perature-sensitive one had amino acid changes in the PB1, PA
and NS1 genes." Furthermore, Snyder et al. found that it can
be sufficient to induce the temperature-sensitive phenotype by
replacing the two segments of coding for PA and M1/M2 of a
wild type virus with those of A/Ann Arbor/6/60." Interestingly,
in all these cases at least one subunit of the viral polymerase (PA,
PB1 and PB2) is affected.

In addition to the attempts to explain the ca/ts phenotype
through mutations in viral proteins, there were also reports
implicating RNAs in temperature sensitivity. A promising find-
ing was made by Dalton et al.,”* suggesting that, at an elevated

*Correspondence to: Dmitrij Frishman and Alexander Shneider; Email: d.frishman@wzw.tum.de and ashneider@curelab.com
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temperature, viral polymerase tends to dissociate from the
cRNA-promoter, thereby leading to a decreased vRNA synthesis
while the synthesis of cRNA and mRNA remains approximately
constant. A decrease in the synthesis of vVRNA related to temper-
ature sensitivity, which also maintained mRNA synthesis, was
described by Chan et al.” In a more general vein, RNAs can serve
as intracellular thermometers."”® For example, a thermosensitive
RNA switch was implicated in the propagation of tick-borne
encephalitis virus." Recent publications suggest that, apart from
RNA abundance, RNA structures may play a comparably impor-
tant role. The importance of mRNA secondary structures for
expression of influenza virus genes was recently demonstrated by
Ilyinskii et al.” Therefore, identification of previously unknown
influenza RNA structures'® and the analysis of their functional
roles are areas of increasing interest."”""

We hypothesized that changing temperature causes pertur-
bations in mRNA secondary structures, which contributes to
the cold-adapted, temperature-sensitive phenotype. To test this
hypothesis, we have developed a new in silico method of analysis
to reveal if the structures of two closely related RNA molecules
would react differently to temperature elevation. Unfortunately,
it is not possible to reliably calculate exact structures of each RNA
molecule at two temperatures, compare the differences between
the two structures, and then evaluate whether or not these differ-
ences are identical for two RNAs. First of all, at each particular
temperature an RNA molecule may have different co-existing
structures. Furthermore, since the number of possible structures
increases rapidly with the length of the input sequence, the preci-
sion of RNA structure predictions suffers. Another limitation of
RNA secondary structure predictions is that taking pseudoknots
into account makes the task non-deterministic polynomial-time
hard (NP-hard).”® In this particular case NP-hard means that
growth of RNA length elevates time necessary for computation
to a restrictive duration. However, in support of our hypothesis,
one does not need to know the exact structures before and after
perturbation to conclude that the two structures have reacted
differently. For example, if two windows are broken into a dif-
ferent number of pieces by soccer balls, we need to know nei-
ther the shapes of the windows and nor the exact forms of the
pieces to conclude that the perturbations of the two glasses are
not identical.

An ensemble of RNA structures can be represented via a parti-
tion function,?"* which is a sum of Boltzmann factors over every
possible secondary structure. In using partition functions, one
can calculate the probability for each nucleotide to be coupled
within a double-stranded conformation.?*** An advantage of
partition functions is that they take into account not just the
minimum free energy structure, but rather an ensemble of ener-
getically favorable structures. Thus, if one adenine would be
bound to a particular uracil within a single highly likely struc-
ture, while another adenine would couple with ten uracils within
ten less likely structures, parameters for these two adenines may
be the same. Although partition functions are not precisely
accurate, they are much more accurate than in silico predictions
of the actual RNA structures. Partition functions were used
instead of actual structures, for example, by Witwer et al.”> and
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Thurner et al.?® to investigate secondary structure conservation
in Picornaviridae and Flaviviridae, respectively, and by Chursov
et al.?” for elucidating sequence-structure relationships in yeast
mRNAs. However, so far, partition functions have not been used
to assess and compare structural RNA perturbations caused by
temperature elevation.

Based on partition functions, we have developed a technique
to identify RNA sequence regions where probabilities of nucleo-
tide coupling change the most with temperature elevation. We
demonstrate that dense areas of altered nucleotide coupling
are not identical for closely related wt and ca/ts RNAs. Thus,
although, we cannot predict the exact RNA structures, we know
that these structures are changing differently with temperature
elevation.

Results

The propensity of nucleotides to appear in double-stranded con-
formations depends on temperature. As seen in Figure 3, all
nucleotides change their base-pairing probabilities upon tem-
perature elevation from 32°C to 39°C, with transitions from a
double-stranded to a single-stranded conformation being expect-
edly more frequent (see Table 2). Between 62.8% and 75.2% of
positions in each mRNA change their probability to be coupled
to a lower value. Furthermore, between 3.9% and 10.9% of
nucleotides in each mRNA change their base-pairing probabili-
ties significantly (more than three standard deviations below or
above the mean over all seven temperature increments between
33-39°C and 32°C (see the Materials and Methods section and
Table 3). In all but one mRNAs, the majority of significantly
changing positions (between 52% and 88.6%) shows a decrease
in their base-pairing probability, whereas this percentage is some-
what lower (42.1%) for NS2 Arb/ca.

For each mRNA, we computed a density plot of signifi-
cantly changing positions along the sequence as described in the
Materials and Methods section (Fig. 2; Figs. S1-19). From these
plots, it becomes immediately apparent that strongly tempera-
ture-sensitive positions are not evenly or randomly distributed
along the sequence but rather aggregate in clusters. The num-
bers of clusters defined by the density-based algorithm for each
mRNA are presented in Table 4. The only mRNA where no clus-
ters were detected is NS2 Len/wt. The average length of clusters
varies between 15.9 and 61.0 positions (Table 5) and the average
density of significantly changing positions in the clusters is in the
range of 22% to 53% (Table 6). Overall, very short clusters are
required by the DBSCAN algorithm to have a very high density
while the density in longer clusters can be as low as 21% (Fig. 4).

Furthermore, we found that patterns of cluster occurrence
exhibit substantial differences between the wild type strains and
their cold-adapted, temperature-sensitive mutants, as exemplified
in Figure 1 for a subsequence of the PA mRNA. In this case, a
cluster of significantly changing positions is observed in Len/17/
ca but not in Len/wt. This figure demonstrates that a perturba-
tion of mRNA structure begins at a temperature of approximately
37°C. Out of 218 clusters of temperature-sensitive positions, 126
clusters are present in both wt and ca/ts strains, 38 clusters are
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Figure 1. Comparison of significantly changing positions between

the PA mRNA of Len/wt (upper 7 rows) and Len/17/ca (lower 7 rows).
Each row corresponds to a difference vectorv,, ., ..., v,, ., containing
changes of base pairing probabilities between 32°C and a particular
higher temperature. Positions in which base paring probabilities signifi-
cantly change with temperature elevation in both sequences and those
where these changes only affect one of the phenotypes are marked
blue and orange, respectively. Only the first 40 bases of each sequence
are shown; position numbers of the coding sequence are indicated at
the top of the alignment.

present in wt strains but absent in ca/ts mutants, and 54 clus-
ters are present in ca/ts mutants but absent in the wt counterpart
(Fig. 4 and Supplemental Data).

The existence of clusters unique for ca/ts strains raises the
question whether such clusters are associated with the mutations
inducing the ca/ts phenotype or whether random mutations
unrelated to the ca/ts phenotype would be as likely to induce
these clusters. Likewise, one can ask whether the disappearance
of some clusters present in wt strains from ca/ts mutants may be
caused by particular ca/ts associated mutations. The best way to
approach this problem would be to test whether or not the same
pattern of cluster occurrence would be observed while compar-
ing the wt strains investigated here with a high number of natu-
rally occurring influenza virus strains as similar to the wt strains
as their ca/ts mutants. However, there are currently not enough
naturally occurring strains with the same extent of similarity to
the wt as possessed by the ca/ts mutants.

We therefore compared wt sequences with computer-gen-
erated mutants possessing random synonymous mutations
unrelated to the phenotype of interest. This analysis revealed
existence of only one cluster that is present in wt strain (Len/wt)
but absent in ca/ts mutant and could be attributed to introduc-
ing specific mutations causing the ca/ts phenotype (Table 7).
The length of this cluster is 140 nucleotides and the density of
significantly changing positions in it equals 38%. At the same
time, there are nine clusters (one in Arb/ca, three in Len/17/ca,
and five in Len/47/ca) present in ca/ts mutants, and not present
in wt, that cannot be observed in the pool of in silico gener-
ated random mutants with statistically significant P-values. The
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length of these ca/ts associated clusters is in the range of 8 to
19 positions and the density of significantly changing positions
in them varies between 32% and 80% (Table 7). All the clus-
ters that can be associated with ca/ts phenotype are indicated
in Figure 4D. The existence of such clusters suggests that the
cal/ts phenotype may be associated with specific perturbations
in mRNA secondary structures. Importantly, in all three ca/ts
mutants, there are clusters located in the polymerase genes (PA
or PB2), in line with previous reports where polymerase genes
were consistently associated with the temperature-sensitive
4,6,10,11

phenotype.
Discussion

Temperature-sensitive mutants were reported for a variety of
viruses.?#? Several studies have demonstrated that thermody-
namic stability of certain RNA structures is critical for virus rep-
lication.”** Temperature-sensitive, anti-viral and anti-bacterial
vaccines remain to be promising public health instruments.*¢-8
So far, cold-adapted temperature-sensitive anti-influenza vaccines
have arguably made the largest contribution to the prevention of
this infection around the world. Still, molecular mechanism(s)
underlining the ca/ts influenza phenotype is poorly understood.
Here, we have explored the hypothesis that ca/ts properties of
known influenza strains can be (at least partially) explained by
temperature-induced perturbations of mRNA structure.

It was, therefore, our intention to compare mRNAs at each of
the temperatures of interest. However, despite the fact that sig-
nificant attempts have been made toward theoretical predictions

24,34,49

of RNA structure based on energy calculations and co-vari-

ation analysis,’®!

it is still not possible to calculate secondary
structures of mRNAs accurately using currently available algo-
rithms. At the same time, experimental technologies to deter-

5253 and are

mine RNA structures are only beginning to emerge
barely available for a broad spectrum of research projects. Thus,
we had to develop an indirect computational method aimed to
assess if two RNA molecules change their shapes differently in
response to temperature elevation.

At each temperature, we calculate probability vectors that
contain, for each nucleotide position, the probability to be
coupled with another nucleotide within the same RNA, form-
ing a double-helix structure. Apparently, this coupling is tem-
perature-sensitive, with increasing temperature generally leading
to a reduced likelihood of “weak” structures. Thus, (1) differ-
ent structures may constitute an ensemble for the same RNA at
different temperatures, and/or (2) at different temperatures the
same structures may be present with different abundance. Both
of these options are valid and may coexist because, in each given
cell, multiple copies of the same RNA molecules may be distrib-
uted between alternative shapes.

The fact that the base-paring probability at each position
within a probability vector changes with temperature elevation
does not necessarily indicate that structural perturbations (or re-
distribution of alternative RNA structures) equally involve each
nucleotide. Thus, we selected only those nucleotide positions
that exhibited the most significant changes of their coupling
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Figure 2. Distributions of significantly changing positions along the PB2 mRNAs of Arb/wt and Arb/ca. A sliding window of size 20 was moved in steps
of 1 position over the vector v,, .. and the percentage of significantly changing positions in the window was calculated for each possible starting
position. The resulting density plots are depicted in Figure 2A and Figure 2C. Location of clusters of significantly changing positions identified by the

DBSCAN algorithm are depicted in Figure 2B and Figure 2D with gray color. Synonymous and non-synonymous mutations are depicted in Figure 2B

and Figure 2D with red and blue vertical lines, respectively.

probabilities. We do not assert that if in two closely related RNA
molecules the most temperature-sensitive positions coincide;
these two RNA molecules undergo identical temperature-induced
structural RNA perturbations. However, it is probably safe to
assume that if two RNA variants manifest different nucleotide
positions as the most temperature-sensitive ones within the prob-
ability vector, temperature elevation influences the structures of
these RNA molecules in a different way. Thus, we have proposed
here a new technique aimed at identifying mutations that influ-
ence temperature-dependent RNA behavior. The central finding
upon which our approach is based is that temperature-sensitive
positions are not randomly distributed along the length of RNA
but rather form distinct clusters. We speculate that such clusters
of temperature-sensitive positions may be located within RNA
domains that change their shapes particularly strongly with tem-
perature elevation. Although developed for a particular purpose,
our method can be applied for studying the role of RNA struc-
ture perturbations in a wide range of temperature-related bio-
logical phenomena, such as the evolution of warm-bloodedness,
thermophilic adapration of prokaryptic organisms, or suscepti-
bility of parasites and pathogens to increases in host temperature.

Differences in clusters of temperature-sensitive positions are
a potential indicator that RNA structures of mutants react dif-
ferently to temperature change. This raises the question whether
these differences can be a causative factor for (or, at least, associ-
ated with) the unique ca/ts behavior of the particular influenza
virus strains under study. We identified three types of clusters
of temperature-sensitive positions that are (1) present in both wt
and ca/ts mutants, (2) present in wt, but absent in ca/ts mutants,
and (3) absent in wt, but appear in the ca/ts mutants. We, there-
fore, first tested whether the disappearance of some clusters in
the mutants can indicate that they are causative for a rare pheno-
type, ca/ts. If these clusters would disappear in ca/ts mutants but
remain in non-ca/ts RNA variants possessing the same number
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Figure 3. The histogram of differences of the probability values of
nucleotides to be in a double-stranded conformation for PB1 Arb/wt
upon temperature change between 32°C and 39°C. The vector of prob-
abilities for 32°C was subtracted from the vector for 39°C.

of mutations, one could conclude that the cluster disappearance
and ca/ts behavior are associated. For all such clusters except
one, a high number of computer-generated mutants, which are
extremely unlikely to be ca/ts, also demonstrate disappearance
of the same clusters. Thus, these clusters may simply correspond
to temperature-sensitive regions within particular influenza
mRNAs unrelated to ca/ts phenotype. Nevertheless, we did
observe one cluster, which is associated with the ca/ts phenotype
with statistically significant P-value. This cluster is present in
the wt strain. It disappears specifically in the ca/ts mutant, but
remains in the computer-generated mutants possessing the same
number of mutations as the ca/ts one.
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Figure 4. Density of significantly changing positions in determined clusters vs. length. (A) Clusters that occur only in wt mRNAs but are not statistically
significant (37). (B) Clusters occurring in both wt and ca/ts mRNAs (126). (C) Clusters that occur only in ca/ts mutants but are not statistically significant
(45). (D) Statistically significant clusters (9 of them occur only in ca/ts mutants and 1 of them occurs only in wt mRNA). Different colors show different
numbers of clusters that have identical values of length and density. Black, one cluster; red, two clusters; green, three clusters; blue, four clusters.

Applying the same computational approach, we then tested
if appearance of clusters of temperature-sensitive positions in
ca/ts mutants, which are lacking in wt, is a phenotype-specific
phenomenon. Based on comparisons with computer-generated
mutants, we have demonstrated that nine particular clusters are
unlikely to appear in mutants other than ca/ts. Thus, we hypoth-
esize that changes in RNA structure caused by raising tempera-
ture could be a potential factor contributing to the molecular
mechanisms of the temperature-sensitive and/or cold-adapted
phenotype in influenza A.

Direct experimental evidence both on secondary structures of
mRNAs and their interactions partners will be required to eluci-
date the exact role of temperature-induced structural changes in
the acquisition of the ca/ts phenotype. For example, it is conceiv-
able that conformational changes of influenza mRNA may play
a role through altering the RNA ability to associate/dissociate
with proteins and other molecules. Also, it cannot be ruled out
that temperature-induced structural changes in the untranslated
regions, which we have not considered in our analysis, contrib-
ute to the ca/ts phenotype. The current scarcity of sequence
data for temperature-sensitive strains and their wild type coun-
terparts notwithstanding, we here propose the hypothesis that
temperature-induced structural RNA perturbations may be an
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underlying mechanism of the ca/ts behavior of influenza virus.
Further research in this direction might contribute to the rational
design of live-attenuated influenza vaccines.

Materials and Methods

Sequences. In our analysis, we have used the cold-adapted,
temperature-sensitive mutants A/Ann  Arbor/6/60 (Arb/ca)
stemming from the wild type (Arb/wt) with the same name
and the two mutants A/Leningrad/134/17/57 (Len/17/ca) and
A/Leningrad/134/47/57 (Len/47/ca) stemming from the wild
type (wt) A/Leningrad/134/57 (Len/wt). Since information on
the location of UTRs was not available, only coding regions
were used for the analysis. Information on the locations and
sequences of coding regions was retrieved from EMBL-ENA
(European Nucleotide Archive).”® However, these sequences were
adapted according to the publications where they originally were
reported?*° since the mutations annotated in the database were
not in agreement with those papers, and no further references
were given. The files containing final sequences, used in the cur-
rent analysis, are presented in the Supplementary Data.

The influenza A genome is composed of eight segments encod-
ing 12 proteins: three polymerase subunits (PB1, PB2, and PA),
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Table 1. The number of SNPs in the coding sequences of the ca/ts mu-
tants compared with their wild type counterparts.

Strain M1 M2 NP NS1 NS2 PA PB1 PB2

Arb/ca 0 1 2 1 1 3 7 7
Len/17/ca 1 2 0 0 1 3 3 1
Len/47/ca 1 2 1 0 1 3 4 3

The sequences of the ca/ts mutants of the M1, M2, NS2 and PA genes in
Len/17/ca and Len/47/ca are identical.

a small proapoptotic mitochondrial protein (PB1-F2), hemagglu-
tinin (HA), neuraminidase (NA), the nucleoprotein (NP), the
matrix protein M1, an integral membrane protein M2, and the
two nonstructural proteins NS1 and NS2.3' Recently, Wise et al.
showed that PB1 gene segment also encodes a twelfth gene prod-
uct, N-terminally truncated version on the polypeptide, N40.%
Sequences for NA and HA were not taken into consideration
since these segments do not stem from attenuated viruses in the
reassortant live vaccines, and thus cannot be associated with the
temperature-sensitive phenotype. For all other genes, the num-
bers of single nucleotide polymorphisms (SNPs) in the coding
sequences of the ca/ts mutants compared with their wild type
counterparts are presented in Table 1.

Identification of significantly changing positions. For the
first step, we wanted to identify those nucleotides within each
mRNA that are the most prone to changing their coupling pat-
tern with temperature elevation. These nucleotides would cor-
respond to the most temperature labile positions within RNA
chains. To achieve this goal, we proposed and implemented a new
technique as discussed here.

At each particular temperature, an RNA sequence consisting
of N nucleotides can be presented by a vector of probabilities
(hereinafter referred to as “probability vector”) for each nucleo-
tide to be in a double-stranded conformation at this tempera-
ture. Thus, we substitute a sequence of N ribonucleotides with a
sequence of N real numbers between 0.0 and 1.0. Then, we calcu-
late the probability vectors for each of the influenza mRNAs for
the temperatures 32°C up to 39°C (in increments of 1°C) using
the RNAfold tool from the Vienna RNA package (v.1.8.5)*2%%"
% with the command line option —noLP that disallows base
pairs that can only occur as helices of length 1. Performing the
above described procedure, eight probability vectors were gener-
ated for each mRNA. Seven difference vectors v, .., ..., v,,
were calculated from the probability vectors for 33°C to 39°C
for the same RNA and the vector at 32°C, containing the set
of differences between the value for each position of the prob-
ability vector at higher temperature and the value for the same
position at lower temperature. These positions in difference vec-
tors of each mRNA that possess values more than three standard
deviations apart from the mean calculated over all values of the
seven difference vectors were considered temperature-sensitive.
Such “significantly changing” positions are presumed to result
from perturbations in secondary RNA structures due to the tem-
perature elevation. Furthermore, to filter out possible calculation
artifacts, we considered a position temperature-sensitive only if
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it appeared at some temperature and remained to be such at all
higher temperatures.

Comparison of significantly changing positions between
wt and ca/ts strains. To test whether significant temperature-
induced structural changes in secondary RNA structures are the
same or different for wild type strains and their cold-adapted,
temperature-sensitive counterparts, we designed a visualization
method allowing simultaneous comparison of temperature-
induced changes for two RNAs. For example, Figure 1 depicts a
comparison of significantly changing positions between Len/wt
and Len/17/ca for a subsequence of the PA mRNA.

Visualization of significantly changing positions demon-
strated that such positions are not evenly distributed along the
sequences but rather have a tendency to aggregate into clusters,
i.e. regions with a high density of significantly changing posi-
tions. As a tool to analyze such clusters, we employed density
plots obtained by sliding a 20-base long window over the vec-
tOr vy, 5
positions in the window for each possible starting position. For
example, Figures 2A and 2C depict density plots for the PB2
mRNAs of Arb/wt and Arb/ca, respectively.

Identification of clusters of temperature-sensitive positions.

and calculating the percentage of significantly changing

We further sought to provide a definition of clusters of changing
positions for each RNA, focusing on the difference vectors v,, ..
To these difference vectors, we applied the density-based spatial
clustering of applications with noise (DBSCAN) algorithm.?*%
This algorithm needs two parameters as input, a distance thresh-
old r and a density threshold MinPts. For a given set of points D
(in our case the set of significantly changing positions in mRNA

according to the difference vector v,, ..), the density of every

point p, from D is calculated as the naljrralgber of points g, that are
within a radius 7 around p. If g, > MinPts, then the point p, is
classified as a core point. If the distance between two points is less
than 7, then they are said to be directly-connected. Two points are
considered density-connected if they are connected to core points
and these core points are, in turn, density-connected. A cluster
is constructed as a maximally connected component of the set of
points that have a distance of smaller than 7 to some core point.
We used the implementation of DBSCAN from the scikit-learn
Python module®® with a distance threshold 7 equal to 11 and a
density threshold MinPts equals 4.

Generation of randomly mutated mRNAs. In order to assess
whether the appearance of clusters of temperature-sensitive posi-
tions is specific for mutations inducing the ca/ts phenotype or
whether random mutations unrelated to ca/ts phenotype would
be as likely to induce these clusters, we adopted an approach
similar to that employed in our previous paper.”’ For each wt
mRNA, a data set consisting of 1000 mutant sequences was
generated in silico. Each in silico generated variant contained
the same number of mutations as the respective ca/ts mutant.
All computer-generated mutations were synonymous ones and
introduced into the sequences randomly. It is safe to assume
that none (or extremely few) of the randomly generated in silico
mutants would possess the ca/ts phenotype if tested in vitro and/
or in vivo. Significantly changing positions in the sequences
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Table 2. The number of positions in each mRNA where the probability of nucleotides to be in a double-stranded conformation decreases (increases)
upon temperature elevation from 32°C to 39°C

Strain
Arb/wt
Arb/ca
Len/wt
Len/17/ca
Len/47/ca

M1
—/-
—/=

534/225
525/234
525/234

M2

207/87
211/83
221/73
219/75
219/75

NP

1045/452
1007/490
900/507

—/=

899/508

NS1 NS2 PA PB1 PB2
445/209 231/135 1452/699 1433/841 1537/743
440/214 258/108 1437/714 1510/764 1531/749

—/- 233/133 1467/684 1428/846 1552/728

-/- 248/118 1462/689 1525/749 1578/702

-/- 248/118 1462/689 1510/764 1622/658

There are no positions at which the probability to be paired upon temperature change between 32°C and 39°C remains unchanged. Here, and in all
subsequent tables for those mRNAs that were not considered in the analysis due to the absence of mutations, values are not shown.

Table 3. The number of nucleotides in each mMRNA where the base pairing probability decreases (increases) significantly (more than three standard
deviations from the mean over all temperature differences between 33°C to 39°C compared with 32°C) upon temperature change between 32°C and
39°C compared with other nucleotides in the same mRNA

Strain
Arb/wt
Arb/ca
Len/wt
Len/17/ca
Len/47/ca

M1

/=
—/-
46/17
50/16
50/16

M2
19/8
13/12
17/8
19/13
19/13

NP
88/36
78/34
49/34

48/39

Table 4. The number of clusters in each mRNA as determined by the

DBSCAN algorithm

Strain
Arb/wt
Arb/ca
Len/wt
Len/17/ca
Len/47/ca

M1

4
5
5

M2

1
1
1

NP NS1
7 5
8 4
6 -
8 -

NS2

N N O

Table 5. Average cluster length in each mRNA

Strain M1
Arb/wt =
Arb/ca =
Len/wt 225

Len/17/ca 19.8
Len/47/ca 19.8

Table 6. Average density of significantly changing positions inside

M2

42.0
58.0
42.0
61.0
61.0

clusters in each mRNA

Strain
Arb/wt
Arb/ca
Len/wt
Len/17/ca
Len/47/ca

1272

M1

0.41
0.46
0.46

M2
0.43
0.38
0.40
0.38
0.38

NP
249
15.9
26.5

19.5

NP
0.39
0.53
0.36

0.46

NS1 NS2
27.0 18.3
21.5 450
= 23.0
= 23.0

NS1
0.38
0.36

NS2
0.45
0.22
0.26
0.26

PA

PA
19.4
28.6
25.0
21.5
21.5

PA
0.37
0.34
0.38
0.48
0.48

PB1
12

PB1
37.8
349
349
38.9
35.0

PB1
0.44
0.43
0.37
0.44
0.44

PB2
58.1
34.9
39.9
33.3
29.0

PB2
0.39
0.42
0.41
0.41
0.44

NS1 NS2 PA PB1 PB2
42/25 31/4 58/26 130/95 133/83
29/18 8/1 102/50 100/57 132/68

-/- 15/12 84/53 129/84 130/72

== 23/6 114/39 125/60 131/62

/- 23/6 114/39 123/60 137/52

from the artificial data sets were determined as described above
and used to calculate clusters of changing positions by apply-
ing the DBSCAN algorithm. Clusters from computer-generated
sequences were compared with the clusters from naturally occur-
ring wt and ca/ts mutants.

Statistical tests. For each particular cluster of interest identi-
fied in we and/or the ca/ts mutants, the frequency of its occurrence
in the in silico generated mutants was calculated. Using these fre-
quencies we conducted a statistical analysis to test if occurrence/
disappearance of a particular cluster is associated with the ca/ts
phenotype. For each cluster, which we observed in a ca/ts mutant
but not in the wt, we tested the null hypothesis (H) that the
probability to observe this cluster among the computer generated
sequences was 5% or higher. Conversely, for each cluster, which
was observed in the wt but not in ca/ts strain, the null hypoth-
esis (H,) was that the probability to observe this cluster was less
than 95%. In other words, a low frequency means that a cluster,
which we observe in naturally occurring ca/ts strain although
it is absent in the wt, is unlikely to occur by chance. Thus, the
appearance of this cluster is likely to be associated with the ca/ts
phenotype. Similarly, the fact that a cluster was present in the wt
but disappeared in the ca/ts mutant can only be explained by the
ca/ts phenotype if the probability to observe this cluster in the
random mutants is 95% or higher.

To that end, we used one-sided binomial tests. The signifi-
cance level for the test was Bonferroni-corrected by dividing the
significance level of 5% by the total number of clusters in that
sequence. H was rejected for P-values lower than the adjusted
significance level. For these calculations, a cluster was considered
to be ‘present’ in an artificial sequence if that sequence contained
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Table 7. Unique clusters potentially associated with the ca/ts phenotype. The P-values of all clusters in one sequence were checked against Bonferroni-
corrected significance levels. For each Bonferroni correction, the total number of clusters located in the corresponding sequence was used (11 clusters
in Arb/ca PB2, two clusters in Len/17/ca and Len/47/ca NS2, 11 clusters in Len/17/ca and Len/47/ca PA, ten clusters in Len/17/ca and Len/47/ca PB2, eight

clusters in Len/47/ca NP, 11 clusters in Len/wt PB2).

Strain Sequence Position

Arb/ca PB2 329-336
Len/17/ca NS2 290-308
Len/17/ca PA 93-101
Len/17/ca PB2 1293-1310
Len/47/ca NP 1017-1026
Len/47/ca NP 1178-1192
Len/47/ca NS2 290-308
Len/47/ca PA 93-101
Len/47/ca PB2 808-818

Len/wt PB2 1490-1629

Occurrence in the 95% confidence

random data set* interval® Bacalus
15 [0.0, 0.023] 3.34E-09
16 [0.0, 0.024] 1.11E-08
32 [0.0, 0.043] 0.0037
9 [0.0, 0.016] 5.24E-13
29 [0.0,0.039] 0.0007
29 [0.0, 0.039] 0.0007
16 [0.0, 0.024] 1.11E-08
32 [0.0, 0.043] 0.0037
3 [0.0, 0.008] 1.36E-18
982 [0.973, 1.0] 1.03E-07

aThe number of times a particular cluster was found in a data set of 1000 sequences with randomly introduced mutations. *Estimated range of values
which is likely to include the probability to find a particular cluster with the probability of 95%.

a cluster overlapping, by at least one position, with the cluster
from the real sequence.
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This article describes a web server for predicting temperature-induced changes in
RNA secondary structure. A wide range of biological phenomena (e.g. elevation
of body temperature due to an illness, adaptation to environmental temperature
conditions, biology of cold-blooded vs. warm-blooded organisms) is related to the
temperature effect on the organism. Although, thousands of papers have been pub-
lished attempting to explain temperature effects through perturbations of protein
structures, it has been almost impossible to assess if changes in RNA structures may
contribute to these effects. The web server we have developed closes this gap and

enables researchers to study temperature-induced perturbation of RNA structures.

Perturbations of secondary RNA structures may play an important role in an organ-
ism’s reaction to temperature change. The RNAtips (temperature-induced perturbation
of structure) web server can be used to predict regions of RNA secondary structures
that are likely to undergo structural changes when prompted by a change in tem-
perature. For a single RNA sequence, RNAtips identifies those nucleotides that
have the greatest reaction to temperature change and the temperature-sensitive
clusters of such nucleotides. When the research goal is to compare two RNA se-
quences and identify if they react to a temperature change differently, the locations
of temperature-sensitive clusters within the two RNAs are compared. If the two
sequences are homologs with a limited number of codon substitutions, an analysis
can be performed to demonstrate if the difference in the location of temperature-
sensitive clusters between the two sequences is specific to these particular nucleotide
substitutions, or if it could be achieved with the same number of random mutations
(synonymous or non-synonymous). The type of random computer-introduced mu-

tations depends on whether the input sequences are coding or non-coding.

For input into RNAtips, one or two RNA sequences of the same length must be
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Chapter 2. Results

provided in FASTA-format (the header can be omitted). These sequences can ei-
ther be uploaded as a text file (each file may only contain one sequence) or directly
pasted into an input field. Sequence length is restricted to 9999 nucleotides. Ad-
ditionally, a user has to select a temperature range for which the RNA structural
perturbation should be calculated (the default is 32°C — 39°C). The minimal and
the maximal temperatures allowed are 0°C and 99°C, respectively. Furthermore, the
maximal temperature difference (i.e. t,00 — tmin + 1) is restricted to 20°C (e.g. 30°C
—49°C). The advanced options allow the setting of the following: (i) a significance
threshold (see the following paragraph on processing), (ii) the DBSCAN parameters
e and MinPts (the defaults are 11 for € and 5 for MinPts), and (iii) parameters for
RNAfold in order to decide if GU-pairs should be allowed.

In addition, to avoid incorrect attribution of coding or non-coding input sequences,
we implemented a checkbox where the user can directly indicate that the input se-
quence(s) is (are) non-coding. If a user does not set this checkbox, then by default
the server assumes that the input sequence(s) is (are) coding ones. Also, if a dataset
of random mutants is generated, we indicate directly what type of mutations was
introduced at the link for downloading this dataset. In the case of coding sequences,
it says: “only synonymous mutations were introduced”; otherwise, it says: “random

mutations were introduced.”

Processing is based on the method described in the previous paper. For each temper-
ature in the given range, the probabilities of each nucleotide to be coupled within a
double-stranded conformation are calculated with the RNAfold tool (Hofacker et al.,
1994). For a temperature range [tymn : tmaz|, the probability-differences for each nu-
cleotide position for (tmin+ 1) — tmin, -+ tmaz — tmin are then calculated. A threshold
is applied (the default is three standard deviations) to the resulting distribution in
order to identify the most temperature-sensitive positions. By using the DBSCAN
algorithm (Ester et al., 1996) on the vector t,u. — tmin, clusters of significantly
changing positions are identified. P-values are obtained by applying one-sided bino-

mial tests to evaluate the occurrence of identified clusters in the mutant dataset.

The HTML output provides colored visualization of temperature-sensitive positions
and clusters. In addition, a table displays information on identified significant po-

sitions and clusters, including their total number as well as their average length
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and density. A second table shows the exact location of the clusters (if any). Re-
sults from the statistical evaluation (if conducted) are presented in a third table
demonstrating whether the difference between two RNAs in their reaction to the
temperature change is due to specific nucleotide substitutions or not. The output
also contains histograms that were used to identify significantly changing positions
(three sigmas away from the mean). In addition, there is a figure that shows the
relationship between the length and density of the clusters. Finally, there is another
figure that demonstrates the density of the most temperature-sensitive positions over
the whole RNA sequence, together with the location of clusters and the location of

nucleotide substitutions.

All figures and additional information, including sequences of the mutants generated

for the statistical analysis, can be downloaded by the RNAtips user.

The project was designed by Alexander Shneider and me. The web server has
been developed by me with an assistance of Sebastian J. Kopetzky and Gennady
Bocharov. The paper was written by myself, Sebastian J. Kopetzky, Dmitrij Frish-

man and Alexander Shneider.
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ABSTRACT

Although multiple biological phenomena are related
to temperature (e.g. elevation of body temperature
due to an illness, adaptation to environmental tem-
perature conditions, biology of coldblooded versus
warm-blooded organisms), the molecular mechan-
isms of these processes remain to be understood.
Perturbations of secondary RNA structures may
play an important role in an organism’s reaction to
temperature change—in all organisms from viruses
and bacteria to humans. Here, we present RNAtips
(temperature-induced perturbation of structure)
web server, which can be used to predict regions
of RNA secondary structures that are likely to
undergo structural alterations prompted by tem-
perature change. The server can also be used to:
(i) detect those regions in two homologous RNA se-
quences that undergo different structural perturb-
ations due to temperature change and (ii) test
whether these differences are specific to the par-
ticular nucleotide substitutions distinguishing the
sequences. The RNAtips web server is freely ac-
cessible without any login requirement at http://
rnatips.org.

INTRODUCTION

Structural perturbations in RNA molecules induced by
temperature change may have important biological impli-
cations. For instance, the stability of mRNA structural

elements in 5-untranslated regions correlates with the
translation rate in Saccharomyces cerevisiae (1). Another
example is the temperature-sensitivity of cold-adapted
influenza vaccine strains. For decades, it was a conundrum
why wild-type influenza strains react differently to
elevated temperature than their cold-adapted tempera-
ture-sensitive counterparts. Recently, it has been demo-
nstrated that this difference in temperature sensitivity
may be due to the difference in temperature-induced per-
turbations in mRNA secondary structures (2). Perhaps,
the most widely known example is RNA thermometers,
which at a particular temperature alter their structure, and
regulate translation of heat-shock, cold-shock and viru-
lence genes (3-8). Usually, RNA thermometers are
located in 5-untranslated regions, and their structures
melt at an elevated temperature thereby permitting ribo-
somes to initiate the translation process.

There are several experimental approaches to measuring
the melting temperature of an RNA structure (9),
including ultraviolet absorbance (10,11), fluorescence-
based techniques (12,13) and thermal gradient electro-
phoresis (14-16). Recently, temperature stability of
RNA structural elements was assessed on a genome-
wide basis (17). The Parallel Analysis of RNA
Structures with Temperature Elevation technique was
applied to the yeast transcriptome, and relative melting
temperatures for RNA structures were obtained by
probing RNA structures at different temperatures from
23 to 75°C. As a result of this assessment, thousands of
potential RNA thermometers and highly temperature-
stable structures were identified.

Temperature-induced perturbations of RNA structures
may play crucial, and yet unknown, biological role(s) in a

*To whom correspondence should be addressed. Tel: +1 609 841 1201; Fax: +1 310 446 9814; Email: ashneider@curelab.com
Correspondence may also be addressed to Dmitrij Frishman. Tel: +49 8161 712134; Fax: +49 8161 71 2186; Email: d.frishman@wzw.tum.de
The RNAtips web server can be accessed at http://rnatips.org. This website is free and open to all users, and there is no login requirement.

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

© The Author(s) 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

£T0Z ‘gZ aunf Uo Usyouen iy N.L 8P gn 1 /Bio'sieunolpiojxo reu//:dny wodj pepeojumod



variety of processes. Elevation of body temperature is the
most common symptom of many illnesses. The effects of
elevated body temperature on RNA structures both in
pathogens and their hosts are still unknown, although
they may constitute a defense mechanism. Additionally,
it would be interesting to assess whether RNA tempera-
ture sensitivity plays an evolutionary role in organism
adaptation to different climate zones, as well as to
seasonal and day-night temperature change. The latter
question is especially important owing to global climate
change. Is temperature sensitivity of RNA structures in
bacteria living in geysers different from that of bacteria
living at negative temperatures? Do RNA structures from
warm-blooded organisms react to the temperature change
similarly to their counterparts in cold-blooded animals?
These and many other questions could not be systematic-
ally addressed, however, as (to the best of our knowledge)
there is no convenient instrument to identify and compare
temperature-sensitive regions of RNA molecules.

To close this gap, RNAtips (temperature-induced per-
turbation of structure) web server has been developed. For
a single RNA sequence, RNAtips identifies (i) those nu-
cleotides for which temperature change causes appreciable
alteration of the probability to form Watson—Crick (W-C)
pairs and (ii) clusters of such temperature-sensitive nucleo-
tides. If the research goal is to compare two RNA se-
quences and identify whether they react differently to a
temperature change, the locations of temperature-sensitive
clusters within the two RNAs are compared. If the two
sequences are homologs with a limited number of base
substitutions, an analysis can be performed to demon-
strate whether the difference in location of the tempera-
ture-sensitive clusters between the two sequences is specific
to these particular nucleotide substitutions, or if it could
be achieved with the same number of random mutations
(synonymous and/or non-synonymous).

METHOD SUMMARY

The methodology implemented in RNAtips web server for
assessing such impacts of temperature change was previ-
ously described and published by Chursov et al. (2). In
short, each nucleotide within an RNA sequence has a
probability of being paired via W—C bonds. This probabil-
ity is temperature dependent; therefore, temperature
changes influence the probability of forming W-C pairs
for each and every nucleotide. However, some nucleotides
change their pairing probabilities to a much greater extent
than others. Moreover, these highly temperature-sensitive
nucleotides may not be evenly distributed along the RNA
sequence but rather form distinct clusters (2). Thus, the
first task performed by the RNAtips web server is identi-
fication of those positions, which are prone through tem-
perature elevation to significantly change their probability
of being paired. This task is performed through the fol-
lowing steps. Step 1: Probabilities of nucleotides to be
coupled within a double-stranded conformation are
assessed at each temperature within the given range by
using the RNAfold tool of the ViennaRNA package
(18). Step 2: For each nucleotide, RNAtips calculates
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the difference in probability for it to be in a paired state
at the lower temperature and at the higher one. These
differences are calculated for the entire temperature
range (t; : tp) [i.e. for (t;+1) — ty,..., to—t;] and then
combined into one data set. For example, if the tempera-
ture range is set to 32-39°C and the length of the sequence
is 1000, then the changes of probabilities are considered
for 33°C compared with 32°C, 34°C compared with
32°C,..., 39°C compared with 32°C, and the final data
set would contain 7000 values. Step 3: The server identifies
the most temperature-sensitive positions. For this
purpose, the server selects those values (and their corres-
ponding nucleotides) from the data set generated in Step
2, which are distant from the mean by more than three
standard deviations (the default value can be changed by
the user). The server then considers these positions to be
the most temperature-sensitive, and they are then mapped
on the original sequence. Furthermore, clusters of signifi-
cantly changing positions are then identified by applying
the density-based spatial clustering of applications with
noise (DBSCAN) algorithm to the locations of such pos-
itions. The server default action is to apply the cluster
analysis algorithm only to the highest temperature differ-
ences tr-ty, (32-39°C in the previous example) (19,20).

It may be important to assess whether structures of
RNA molecules sharing sequence similarity react
(dis)similarly to temperature change. For simplicity of ex-
planation, assume that one RNA sequence was derived
from another sequence via some mutations. Then, the
second task, which can be performed by RNAtips
server, is to identify whether structures of two homolo-
gous RNA sequences react differently to the temperature
change and, if they do, whether this difference can be
attributed to the specific mutations separating the two
homologous sequences. Thus, if a user inputs two se-
quences, RNAtips identifies clusters of temperature-sensi-
tive positions, which could be either common for both
sequences or uniquely present in only one of the two
RNA molecules. If the clusters of temperature-sensitive
positions are not identical for the two sequences, the
server offers statistical analysis identifying whether the
difference in temperature sensitivity is specific to the par-
ticular nucleotide substitutions naturally differentiating
the sequences or whether any set of mutations comparable
in size could lead to the same difference.

Therefore, assume that N nucleotide substitutions dif-
ferentiate sequence A from sequence B. The server gener-
ates a data set of derivative sequences for A introducing N
substitutions into each derivative sequence. There are two
different methods of introducing random substitutions
into a sequence(s) depending on whether the sequence(s)
is(are) non-coding or coding. If A is a coding sequence
(default), mutants will be generated by introducing syn-
onymous mutations only. If A is a non-coding sequence,
the user should mark a checkbox: ‘“The input sequence(s)
is(are) non-coding’. In this case, in silico mutations will be
introduced at random positions mimicking frequencies of
nucleotide substitutions naturally occurring between A
and B (e.g. if 25% of nucleotide substitutions between A
and B are T->C, then T->C substitutions will be
introduced in 25% of random in silico mutations). For
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each computer-generated sequence, the server will calcu-
late its clusters of the temperature-sensitive positions as
described earlier in the text. If sequence B has a
sequence-specific cluster of temperature-sensitive positions
not present in A, some of in silico derivatives of A may
possess clusters overlapping with the sequence-specific
cluster observed in B. Let us assume that 1% or less of
computer-generated sequences possess such clusters
overlapping with the sequence-specific cluster in B. This
means that 99% of random mutation sets did not lead to
the appearance of this sequence-specific cluster of tem-
perature sensitivity specific for sequence B, but not for
A. Thus, one can conclude that the RNA structure of
sequence B reacts to the temperature change differently
than the structure of sequence A because it possesses a
specific set of mutations as opposed to just N non-
specific mutations. The RNAtips server performs a statis-
tical analysis calculating a P-value for every sequence-
specific cluster by performing a one-sided binomial test.
For sequence-specific clusters occurring in the first
sequence but not in the second one, the null hypothesis
(Ho) is that the probability to observe this cluster is
<95%. Consequently, a small P-value shows that the
cluster is unlikely to disappear in the second sequence by
chance. For sequence-specific clusters occurring in the
second sequence but not in the first one, the null hypoth-
esis (Hg) is that the probability to observe this cluster
amongst the mutants generated in silico is >5%.
Therefore, a small P-value shows that the cluster is
unlikely to appear in the second sequence by chance.

WEB SERVER
Input data

The input for RNAtips consists of either one or two RNA
sequences of the same length that should be provided in
FASTA-format (the header can be omitted). The se-
quences can either be uploaded as text files (each file
may contain only one sequence), or the sequences may
be directly pasted into an input field. The sequences may
contain the characters A, C, G, U and T (for further com-
putations, all Thymidines will be replaced with Uracils
automatically). The maximal length of the sequences is
limited to 9999 nt. To see an example of possible input
sequences, the user can click on the ‘sample’ link on the
Start page. Influenza strains A/Leningrad/134/57 and its
cold-adapted temperature-sensitive mutant A/Leningrad/
134/47/57 are used as sample sequences.

Additionally, a user has to specify two temperatures t;
and t, (in °C) to define the temperature range (t; : t;) for
which the RNA structural perturbation should be
calculated (the default range is 32-39°C). t, is the tempera-
ture for which the actual cluster identification will be per-
formed. The minimal allowed temperature is 0°C, and the
maximal allowed temperature is 99°C. Furthermore, the
maximal allowed temperature difference (i.e. t> - t; +1) is
restricted to 20°C (e.g. 30-49°C).

If a user inputs two sequences, two options are avail-
able. The default option is to perform a statistical analysis
of the sequence-specific clusters identified in each of the

two sequences and to test whether these sequence-specific
clusters result from the particular set of mutations distin-
guishing the sequences. However, this analysis takes some
time and may be unnecessary for the particular user. In
this case, the user can choose the checkbox for the ‘Don’t
Create a Mutant Dataset’ option (this option is only
relevant for two input sequences).

An advanced user can deviate from this default setup
and input his parameters of choice. It was described in the
‘Method Summary’ section that the statistical threshold
for identifying significantly changing positions is 3.0
standard deviations. However, in a custom calculation, a
user may also choose a threshold level other than 3.0. The
next two advanced parameters, ¢ and MinPts, are both
parameters for the clustering algorithm called DBSCAN.
As the first step, the algorithm randomly selects one sig-
nificantly changing position. MinPts specifies the minimal
number of significantly changing positions in a cluster. €
specifies the distance from the chosen nucleotide. If the
number of significant positions specified by MinPts is
located within distance &, the sequence segment is then
considered part of a cluster. The default values for € and
MinPts are 11 and 5, respectively.

Finally, a user can then select checkbox options: ‘Don’t
allow GU pairs at the end of helices’ and/or ‘Don’t allow
GU pairs’. These selections instruct the server whether GU
pairs should be considered in calculations when the
probabilities of nucleotides to be in a double-stranded con-
firmation at any given temperature are calculated. These
two checkboxes are converted into the —noCloseGU and
—noGU parameters of RNAfold during the calculations of
probabilities of nucleotides to be coupled.

Server output

At the top of the results page from RNAtips, the HTML
output provides colored visual representation of identified
temperature-sensitive positions (Figure 1). The Ileft
column contains values for each temperature within the
temperature range (t; : t;). The right column presents the
input sequence with those nucleotides—which are the
most temperature-sensitive at this temperature—marked
in either blue or orange color. The header line presents
the FASTA header of the sequence(s). Position numbers
are indicated under the header line. In the case of two
input sequences, a line between the results for both se-
quences indicated matching positions with ‘|’ and
mismatches (mutations) with ‘-’. Additionally, significant
positions that are sequence specific to one of the two se-
quences only are displayed in orange color. Positions that
change their probabilities to be paired significantly in both
sequences are displayed in blue color. If only one sequence
is used as an input, then all positions demonstrating the
highest potency to change their likelihood of forming W—
C bonds are displayed in orange color. In addition, the
HTML output demonstrates the temperature initiating a
perturbation of the RNA structure.

All tables and figures presenting more detailed results
are shown in the lower part of the page and described in
the following paragraphs. The first table displays general
information on identified significant positions and
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32-33: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCAAUUCUGCUGCAUUUGAAGAUCUAAGAGUAUCAAGE
32-34: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCAAUUCUGCUGCAUUUGAAGAUCUAAGAGUAUCAAGE
32-35: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCAAUUCUGCUGCAUUUGAAGAUCUAAGAGUAUCAAGE
32-36: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCAAUUCUGCUGCAUUUGAAGAUCUAAGAGUAUCAAGE
32-37 : AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGCUGUGGAUCCCAUGCAAUUCUGCUGCAUUUGAAGAUCUAAGAGUAUCAAGE
32-38: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUCGCAUGCAAUUCUGCUGCAUUUGAAGAUCUAAGAGUAUCAAGE
32-39: AUCAGACCGAACGAGAAUCCAGC " CACAAGAGUCAGCUGGUGUGGAUGG AUGCAAUUCUGCUGCAUUUGAAGAUCUAAGAGUAUCAAGE
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32-34: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCAAUUCUGCUGCAUUUGAAGAUAUAAGAGUAUCAAGE
32-35: AUCAGACCGAACGAGAAUCCAGCACACAAGAGU " GCUGGUGUGGAUGGCAUGCAAUUCUGCUGCAUUUGAAGAUAUAAGAGUAUCAAGE
32-36: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUG: IGUGGAU :CAUGCAAUUCUGCUGCAUUUGA " GAUAUAA-AGUAUCAAGC

32-37 : AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCAAUUCUGCUGCAUUUGAAG UAUA
32-38: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCARUUCUGCUGCAUUUGAARG UL UA
32-39: AUCAGACCGAACGAGAAUCCAGCACACAAGAGUCAGCUGGUGUGGAUGGCAUGCAAUUC GCUGCAUUUGAAG UA
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Figure 1. Comparison of significantly changing positions between two RNAs. Top and bottom halves of the figure demonstrate influenza strains A/
Leningrad/134/57 and its cold-adapted temperature-sensitive mutant A/Leningrad/134/47/57, respectively. Each row corresponds to a particular
temperature difference. Positions in which base pairing probabilities significantly change with temperature elevation in both sequences and those
where these changes only affect one of the sequences are marked blue and orange, respectively. Position numbers are indicated at the top of the

alignment.

clusters. For every input sequence, it has the following
fields: ‘Sequence’ (shows the ID of the input sequence);
“#significant positions/total length’ (the number of signifi-
cantly changing positions and the total length of the input
sequence); ‘signif. pos. < 0/signif. pos. > 0’ [the numbers of
significantly changing positions that decrease (or increase)
their probability to be paired with temperature elevation];
‘Number of clusters’ (the total number of identified
clusters of significantly changing positions); ‘Avg. cluster
density’ (the average density of significantly changing pos-
itions in the identified clusters); and ‘Avg. cluster length’
(the average length of the identified clusters). The prob-
ability difference values are calculated by subtracting the
value at the highest temperature from the value at the
lowest temperature (psooc - p3rec for the previous
example). Cluster density is calculated as the number of
significantly changing positions in a cluster divided by the
total length of the cluster.

If a sequence contains 1000nt and the temperature
changes from 32 to 39°C, there are 7000 values reflecting
how much each nucleotide would change its probability to
form W-C couples when the temperature increases from 32
to 33°C, from 32 to 34°C,..., from 32 to 39°C. The output
for this example would contain a histogram over all these
7000 data points (Figure 2). These histograms are used to
identify the most temperature-sensitive positions (by default,
further than 3 standard deviations away from the mean
value). Overall, a histogram contains (t, - t;)*(sequence
length) values. For every input sequence, one histogram is
presented at the output page. Thus, if two closely related
sequences were used to compare their temperature sensitiv-
ity, the output would possess two histograms.

The exact location (start and end positions) of the
identified clusters (if any) is shown in the following table.

20

15
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Probability density
5

o) il

03  -0.1 0.1
Difference values

Figure 2. The histogram of differences in probability values of nucleo-
tides to be in a double-stranded conformation for mRNA of
nucleoprotein (NP) of influenza strain A/Leningrad/134/57 on tempera-
ture change between 32 and 39°C. The probability values of nucleotides
to be paired for 32°C were subtracted from the probability values for
every temperature from 33 to 39°C. All the differences were combined
into one data set.

The accompanying output figure shows the relationship
between the length and density of the clusters (Figure 3).
In this figure, each point represents one cluster. The cluster
density is plotted versus the cluster length. Several clusters
can have the same properties, and in such a case, the cor-
responding points will overlap. Therefore, the total number
of apparent points can be different from the total number
of clusters. Such tables and figures are presented for every
sequence in which clusters of the most temperature-sensi-
tive positions were identified. Otherwise, the web server
directly indicates that no clusters were identified for a par-
ticular sequence.

For every input sequence, the following figure demon-
strates density of the most temperature-sensitive positions
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Figure 3. Density of significantly changing positions in determined
clusters versus length of those clusters. Clusters were identified for
mRNA of nucleoprotein (NP) of influenza strain A/Leningrad/134/57
by applying default parameters of the web server.

over the whole RNA sequence together with localization
of clusters and localization of nucleotide substitutions
(if any) (Figure 4). The upper part of this figure is
created by moving a sliding window of size 2*¥¢+ 1 over
the corresponding sequence and determining the density
of significantly changing positions within it. The lower
part shows the localization of clusters and mutation sites
on the sequence.

As described earlier in the text, if two homologous
RNA sequences constitute an input, one of the sequences
may possess clusters of temperature-sensitive nucleotides,
which are not present in the other RNA molecule (i.c.
clusters that can be found for the given DBSCAN param-
eters in one RNA, and they do not overlap with any
clusters from the other RNA). Appearance of these
sequence-specific clusters may be a specific consequence
of the particular nucleotide substitutions differentiating
the RNAs. Alternatively, the clusters could result from a
high number of non-specific mutations. Results of the stat-
istical analysis presented in the last table (if conducted)
demonstrate whether a sequence-specific temperature-sen-
sitive cluster observed in one RNA but not in another is
due to specific nucleotide substitutions taking place in the
sequences. In other words, these data demonstrate
whether such a specific difference between the two
RNAs can be achieved by introducing the same number
of random mutations. The server generates a data set of
in silico mutants for the first RNA as described in the
‘Method Summary’ section. Some of these in silico
mutants may possess temperature-sensitive clusters,
which are not present in the original RNNA sequence.
The table shows positions of sequence-specific clusters
observed in the RNA sequence, the frequency for each
sequence-specific cluster to be overlapping with a cluster
in the computer-generated mutants (at least, by one pos-
ition), the P-value and 95% confidence interval calculated
from the binomial test for each sequence-specific cluster to
be a result of a random mutation set introduced into the
original RNA.

All figures and additional information can be down-
loaded by RNAtips users. The results page enables a
user to download a zip-file of all sequences of the
in silico mutants (if generated). Results of every job will
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Figure 4. The upper panel demonstrates a density plot of significantly
changing positions along the input sequence. A sliding window of size
2*¢+1 is moved in steps of 1 position over the sequence with the
highest temperature difference t, —t;. The percentage of significantly
changing positions in the window is calculated for each possible
starting position. The bottom panel shows location of clusters of sig-
nificantly changing positions identified by the DBSCAN algorithm
depicted with gray color, and mutation is depicted with red vertical
line. The depicted mutation corresponds to the nucleotide difference
between influenza strains A/Leningrad/134/57 and its cold-adapted
temperature-sensitive mutant A/Leningrad/134/47/57.

be stored on the server for at least 3 days. Every submitted
job receives a unique URL and a user can browse the
results during this period.

Implementation

RNAtips web server has a user-friendly interface and runs
under the Linux operating system. The server’s back-end,
including the core part of computations as well as imple-
mentation of the DBSCAN algorithm, is written in
Python. Statistical tests and generation of plots are imple-
mented in R programming language. Calculation of
probabilities of nucleotides to be paired in a double-
stranded conformation is performed by using the
RNAfold tool of the ViennaRNA package. The front-
end part of the web server is implemented in HTML
markup language with dynamic parts written in
JavaScript programming language. A MySQL database
is used to store the input parameters and results of the
computations. The server contains a help page with
detailed explanation of its functionality.

DISCUSSION

Before this presentation of RNAtips web server, re-
searchers did not have a simple and feasible way to
evaluate the affect of temperature change on secondary
RNA structure. RNAtips is based on the analysis
proposed and described by Chursov et al. (2). The name
RNAUtips stands for ‘temperature-induced perturbation of
structure’. This server can be used to analyze localization
of temperature-induced changes in the secondary struc-
tures of RNA and to compare such changes between
two sequences of the same length. There are at least
three advantages of using RNAtips web server instead of
simply calculating the probabilities of nucleotides to be
paired at two different temperatures and then comparing
those probabilities. First, RNAtips deciphers those
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nucleotides within the RNA sequence, which change the
most in their probability to form W-C bonds in response
to a given temperature change. The web server demon-
strates clusters of these positions within a sequence,
which constitute the most temperature-sensitive structural
regions. The second major benefit of RNAtips is the tool it
provides to compare whether RNA structures of two
closely related sequences would react (dis)similarly to a
temperature change. If two RNA molecules possess differ-
ent clusters of temperature-sensitive positions, their RNA
structures react to the temperature change differently.
Furthermore, if two RNA sequences are distinct in some
nucleotide substitutions, RNAtips can be used to analyze
whether either the difference in temperature sensitive
clusters is specific to these particular nucleotide substitu-
tions or whether it was likely to be caused by a similar
number of non-specific nucleotide substitutions. Finally,
the top RNAtips’ results page is an HTML output that
presents the temperature initiating a perturbation of sec-
ondary structure in a particular temperature-sensitive
region. To the best of our knowledge, no other server
provides these options. RNAtips web server can be
applied to a broad spectrum of research topics such as
drug development, molecular diagnostic and disease prog-
nosis, evolutionary mechanisms, ecology, investigation of
climate change effects and many more. In addition, cur-
rently, we are preparing a downloadable version of the
source code for local usage.
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Chapter 2. Results

2.4 Conservation of mRNA Secondary Structures
May Filter Out Mutations in Escherichia coli

Evolution

Andrey Chursov, Dmitrij Frishman and Alexander Shneider
Nucleic Acids Res., 41(16):7854-7860, 2013

In this paper, we stipulate and address the hypothesis stating that conservation of
mRNA structures and mRNA minimum folding energy serves as a previously un-
known factor of bacterial evolution. Our main finding is that purifying selection
tends to eliminate those mutations in essential genes that lead to greater changes of
MFE values and, therefore, may be more disruptive for the corresponding mRNA
secondary structures. This effect implies that mutations disrupting mRNA sec-
ondary structures may directly affect the fitness of the organism. Thus, our results
support the hypothesis of the paper and imply conservation of mRNA structures as

a previously unknown factor of bacterial evolution.

The present research was devoted to testing one single hypothesis: “Does disruption
of mRNA structure in bacteria serve as a functional gene knockout?” This ques-
tion is a direct continuation of a previous work by Ilyinski et al. (Ilyinskii et al.,
2009) who have demonstrated that perturbation of mRNA structure serves as a
functional gene knockout in a non-bacterial system. Thus, we have hypothesized
that the same effect may take place in bacteria as well. If this hypothesis is correct,
then mutations that are disruptive of mRNA structures would be “filtered out” only
if they took place in essential genes. By definition, knockout of an essential gene
renders bacteria nonviable. Alternatively, if a mutation perturbs mRNA structure
of a nonessential gene making the gene non-functional, this mutation would not be
eliminated. Following this logic and conducting a hypothesis-driven research, we
have focused on essential vs. nonessential genes only. Our enthusiasm in testing this
hypothesis was further encouraged by discussions with Richard Lenski and other

bacteriologists considering this particular question of high biological relevance.

Additionally, it is important to note that we originally selected the essentiality data
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produced by Gerdes et al. (Gerdes et al., 2003) instead of the Keio dataset (Baba
et al., 2006; Yamamoto et al., 2009) based on a biological reason. These two datasets
utilize alternative definitions of essentiality both of which make biological sense. To
produce the Keio collection, Mori’s group have knocked out genes one by one and
observed if the particular clone can grow by itself without assistance and/or interac-
tion with other clones. In contrast, Gerdes and colleagues have analyzed the ability
to grow bacteria lacking a gene, while the bacteria was surrounded with other bac-
terial cells possessing this particular gene. Obviously, the system used by Gerdes
et al. is more similar to the situation of Lenski’s experiment. Additionally, it is
known, that some bacteria lacking a gene could not grow by itself, but can maintain
growth in the presence of a helper strain, for example the report by D’Onofrio et al.
(D’Onofrio et al., 2010). Thus, utilizing the Keio collection as a proxy for Lenski’s
experimental design, we would be at a higher risk to identify some genes as false-

positive and/or false-negative than with Gerdes dataset.

The research was designed by Alexander Shneider and me. The research was per-
formed by myself. All the authors participated in analyzing the resulting data and

in writing the paper.
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ABSTRACT

Recent reports indicate that mutations in viral
genomes tend to preserve RNA secondary structure,
and those mutations that disrupt secondary struc-
tural elements may reduce gene expression levels,
thereby serving as a functional knockout. In this
article, we explore the conservation of secondary
structures of mRBRNA coding regions, a previously
unknown factor in bacterial evolution, by comparing
the structural consequences of mutations in essential
and nonessential Escherichia coli genes accumulated
over 40000 generations in the course of the ‘long-
term evolution experiment’. We monitored the
extent to which mutations influence minimum free
energy (MFE) values, assuming that a substantial
change in MFE is indicative of structural perturbation.
Our principal finding is that purifying selection tends
to eliminate those mutations in essential genes that
lead to greater changes of MFE values and, therefore,
may be more disruptive for the corresponding mRNA
secondary structures. This effect implies that syn-
onymous mutations disrupting mRNA secondary
structures may directly affect the fithess of the organ-
ism. These results demonstrate that the need to
maintain intact mRNA structures imposes additional
evolutionary constraints on bacterial genomes, which
go beyond preservation of structure and function of
the encoded proteins.

INTRODUCTION

Increasing experimental (1) and computational (2,3)
evidence points to the existence of extensive RNA struc-
tures in the coding regions of mRNA molecules. RNA
secondary structures have been implicated in regulation

of translation initiation, elongation and termination in
both prokaryotes and eukaryotes (4,5). In particular, the
anti-correlation between translation efficiency and the
thermodynamic stability of local secondary structure in
the vicinity of the translation initiation site has been thor-
oughly documented (6). RNA hairpins are thought to
be involved in controlling mRNA decay (7), localization
(8-10) and interaction with other molecules (11). Overall,
the mRNA coding regions appear to be more structured
than the untranslated regions (1) and have lower
minimum folding free energies. Hence, the mRNA
coding regions appear to have more stable structures
than codon-randomized sequences (12). Owing to the
need to simultanecously preserve both the function and
structure of the encoded protein, as well as the structural
elements of the RNA molecule itself, mRNA coding
regions are subject to dual selection pressure.

Using a mammalian system, we have recently shown
that mutations altering secondary structures of influenza
mRNAs may serve as a functional knockout of the cor-
responding genes (13). More recently, Moss et al. (14) es-
tablished a direct connection between mutation patterns in
the influenza virus genome and the hydrogen-bonding
patterns shaping RNA structures. Thus, preservation of
viral RNA structures and elimination of mutations disrup-
tive for RNA structures may be a previously unknown
mechanism of viral evolution. In the present article, we
put forward the hypothesis that conservation of RNA
structures may also play a role in bacterial evolution. To
examine this hypothesis, we compared the genomes of
parental and progeny Escherichia coli clones standing
40000 generations apart. The ‘long-term evolution experi-
ment’ (15-18) tracking genetic changes in 12 populations
of E. coli was started by Richard Lenski in February 1988.
All 12 replicate populations have originated from a single
cell of the baseline strain, which was an E. coli B clone,
and have been propagated at 37°C in liquid culture. Every
500 generations, samples for each population were frozen
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away at —80°C and retained for sequencing and compari-
son with their predecessors.

If our hypothesis is correct, mutations in essential genes
that disrupt mRNA secondary structures would lead to
insufficient gene expression and, due to the essentiality of
those genes, such mutations would be filtered out as lethal.
By contrast, selection against mutations disrupting mRNA
secondary structures of nonessential genes would be
expected to be less pronounced because an altered expres-
sion level of nonessential genes would not influence bacter-
ial propagation. Supplementary Figure S1 exemplifies
predicted structural perturbations induced by mutations
altering minimal free energy of an E. coli mRNA.

To demonstrate this effect, one would ideally need to
calculate exact secondary structures for both the original
and the mutated mRNAs, compare them and make an
inference about the changes in the RNA structure
caused by mutations. However, a single RNA molecule
may fold into more than one conformation (19,20). With
increasing sequence length, the number of possible struc-
tures that an RNA molecule can adopt with similar (in
many cases even the same) values of folding energy in-
creases as well (21), thereby resulting in diminished pre-
diction accuracy. Another well-known complication is
that predicting secondary structures with pseudoknots is
an NP-hard problem (22), which necessitates using ap-
proximations in structure prediction algorithms.
Therefore, instead of calculating explicit secondary struc-
ture shapes for mRNAs, we pursued an indirect method of
assessing whether mutation(s) affect secondary structures
by quantifying minimum free energy (MFE) change.
While different RNA structures may have exactly the
same MFE, different MFE values are guaranteed to cor-
respond to different structures. Despite the fact that a
mutation did not change MFE does not mean that the
RNA structure remained the same, yet, an opposite situ-
ation is reliably conclusive. The more mutations change
the MFE, the greater affect on a secondary RNA structure
they have.

Using this approach, we investigated how mutations
observed in essential and nonessential genes influence the
MFE values of mRNA structures. This article presents
evidence that mutations in essential genes of E. coli that
occurred during the ‘long-term evolution experiment’
changed the MFE of mRNA secondary structures to a
lesser extent than mutations in nonessential genes. We
emphasize that we focus exclusively on the conservation
of secondary structures of mRNA coding regions and do
not consider noncoding RNAs. This finding supports our
hypothesis that mutations disrupting the mRNA structure
of essential genes are filtered out during the course of
bacterial evolution.

MATERIALS AND METHODS
Experimental data on evolutionary mutations in E. coli

In our analysis, we used data on genetic polymorphisms in
E. coli accumulated in the course of the ‘long-term evolu-
tion experiment’ (16-18). Specifically, mutations in the
40000th generation of one of the populations (Ara-1),

with the ancestral strain REL606 (GenBank accession
number NC _012967.1), were investigated. In this
40000th clone, 627 single-nucleotide polymorphisms
(SNPs) and 26 deletions, insertions and other polymorph-
isms were detected. Hereinafter, we take into account only
SNPs. Ninety-two mutations occurring in intergenic
regions as well as six mutations in pseudogenes and one
mutation in an insertion sequence element were excluded
from consideration. We also ignored one SNP owing to an
inconsistency between the mutated nucleic acid, as
reported in (18) and the nucleic acid occurring at this
position in the complete genome sequence. Two genes
with available SNP data were not considered: one with
an inconsistency between its nucleotide and amino acid
sequences, and another that had one of the reported mu-
tations in its start codon. Our final data set contained 523
mutations involving 485 genes.

Data on essential and nonessential genes of E. coli

There is no essentiality data available for the B strain of
E. coli, but it is closely related to the well-studied E. coli
K-12 MG1655 (23,24). For this latter strain (GenBank
accession number U00096.2) Gerdes et al. (25) experimen-
tally identified 620 genes as essential and 3126 genes as
dispensable using a genetic footprinting technique.
Because of the numerous discrepancies between the gene
names, we conducted similarity-based transfer of essenti-
ality data from the MG1655 strain to the REL606 strain,
using the bidirectional best hit strategy to identify
orthologous genes. Using blastp (26), we aligned all
mutated genes from the REL606 genome against all
genes from the MG1655 genome and vice versa. Genes
from the two genomes were considered orthologous if
they were the best hits for each other, with amino acid
sequence identity >75% and e-value <10~%. This proced-
ure enabled us to map 456 out of the 485 mutated genes in
RELG606 to the MG1655 strain, of which 48 were essential,
348 dispensable and 60 had undefined essentiality accord-
ing to the MG1655 annotation.

MFE values of RNA secondary structures

For each of the 48 essential and 348 nonessential mutated
genes, we calculated MFE values of secondary RNA
structures for both the original ancestral mRNAs and
their 40000th generation counterparts. We used the
RNAfold tool from the Vienna RNA Package with the
command line option noLP, which disallowed base pairs
that can only occur as helices of length 1 (27).

Generation of randomly mutated mRNAs

For each gene reported in (18) as possessing mutation(s) in
the 40 000th generation, we produced an in silico family of
random counterparts. Synonymous random mutations
were introduced into ancestral mRNAs. When compared
with the ancestral strain, each computer-generated RNA
sequence had the same number of point mutations as the
respective 40 000th generation mutant. There are six types
of possible nucleotide substitutions: C:G— A:U;
AU—-CG;, AU-UA; CG—-GC;, CG—UA;
A:U — G:C. We introduced random mutations in such a
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way that the frequency for any given nucleotide substitu-
tion type was similar for essential and nonessential gene
groups (Supplementary Table S1) and free of transition to
transversion bias. For each gene, the ratio of transitions to
transversions was calculated, and distributions of these
ratios were compared for essential and nonessential
genes. According to the Mann—Whitney U test, these dis-
tributions do not differ (P = 0.38). For the purpose of this
work, we did not have to simulate in silico relative
frequencies of nucleotide substitution observed reported
by Wielgoss et al. (28). The MFE of secondary RNA
structure was calculated for each computer-generated
sequence by the RNAfold tool as described above.

The number of computer-generated sequences varied
from gene to gene dependent on gene length (Figure 1).
If a short gene possesses only one nucleotide substitution
in vitro, the number of conceivable in silico generated se-
quences having only one nucleotide changed is limited to
an exhaustive set of synonymous point mutations (e.g. 516
variants for the gene yciT of length 750). For sufficiently
long genes (typically >1300 bases), the subset of 1000 se-
quences with randomly introduced SNPs was used for
further analysis.

Statistical test

To find out whether in vitro mutations in essential and
nonessential genes differ in their affect on MFE and
mRNA secondary structures, we applied the following
analysis. First, for each gene, we determined the
absolute value of the difference between the MFE of
the ancestor RNA and the MFE of the in vitro mutant,
as well as that of each of the computer-generated mutants.
Then, we calculated the fraction of computer-generated
mutants whose absolute values of MFE differences
were lower than the corresponding in vitro mutant.
Each gene in the data set of essential genes and in the
data set of dispensable genes was thus characterized by a
percentile value. The Mann—Whitney U test was then used
with the null hypothesis (H) that the percentile values for
essential and nonessential genes are from the same
distribution.
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Figure 1. Histograms of gene lengths for essential (a) and nonessential
(b) genes.
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Data availability

The lists of defined essential and nonessential genes with
the corresponding MFE values are presented in the
Supplementary Tables S2 and S3, respectively.

RESULTS

The main scientific questions we addressed in this study
are whether purifying selection tends to eliminate muta-
tions that are disruptive for mRNA structures, and
whether this effect is more pronounced in essential genes
compared with dispensable ones. Our methodology
involved a comparison of actual mutations observed in
the 40 000th generation of the ‘long-term evolution experi-
ment’ (18) with a pool of random computer-generated
mutations.

As an example, for a gene harboring two point muta-
tions, we generated a thousand in silico mutants with two
mutations each. MFE was calculated for the ancestor
mRNA as well as for the mRNA of the 40 000th gener-
ation mutant experimentally observed in a Petri dish and
for those of the in silico mutants. Owing to slight sequence
changes, the RNA folding energies of both experimentally
recorded and computer-generated mutants will be
somewhat different from the MFE of the ancestor’s
mRNA. We calculated the fraction of in silico mutants
with a lesser extent of MFE change than the mutant
observed in vitro. Suppose, for example, that the MFE
of the ancestor mRNA was —5kcal/mol and that the
MFE of the in vitro mutant differs from it by 2 kcal/mol
(it does not matter whether the MFE went down to —7 or
went up to —3kcal/mol). If 700 out of 1000 computer-
generated mutants have their MFEs either >—3 or
<—T7kcal/mol, it means that for this particular gene a
mutant recorded in the in vitro experiment changes its
MFE to a greater extent than 30% of the randomly
mutated sequences.

Suppose that experimentally observed mutations in es-
sential genes lead to bigger MFE changes than only 10%
of random mutations, while in the data set of mutations in
nonessential genes, MFE changes bigger than those of
random mutants are observed in 50% of the cases. This
would indicate that the evolutionary constraints acting on
mRNA structure in essential genes are stronger that those
acting on dispensable genes.

In the E. coli genome sampled at 40 000th generation,
523 nucleotide substitutions occurred in 485 genes (11.5%
of all E. coli genes), of which 48 genes were essential, 348
nonessential and 89 genes either could not be successfully
mapped from the REL606 to the MG1655 strain or had
unknown essentiality status (Table 1). A great majority of
the mutated genes (92.2%) have only one SNP mutation.
For the mutated genes, the ratio between the number of
essential and nonessential genes is 0.138; while for
nonmutated genes, this ratio is 0.206. The latter finding
is in agreement with the report by Jordan et al. (29)
showing that essential genes in bacteria accumulate muta-
tions less frequently than nonessential genes do. The
majority of mutations are nonsynonymous (Table 2),
with the ratio of synonymous to nonsynonymous
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Table 1. The number of all, essential and nonessential genes in which
a particular number of SNPs occurred during the ‘long-term evolu-
tion experiment’ between the first and the 40 000th generations

Genes type Number of mutations per gene Total
1 2 3

All genes® 447 36 2 485

Essential genes 43 S 0 48

Nonessential genes 318 29 1 348

“Including those with unknown essentiality status.

Table 2. The divisions of synonymous and nonsynonymous mutations

Mutation type All Essential Nonessential
genes genes genes

Synonymous 83 4 70

Nonsynonymous 442 49 309

mutations in essential genes (0.082) being somewhat lower
than in nonessential genes (0.227). The P-value calculated
using a binomial test (4 synonymous SNPs out of 53 in
essential genes vs 70 synonymous SNPs out of 379 in
nonessential genes) equals 0.048.

SNPs cause changes in the MFE and structural perturb-
ations in many, though not all, mRNAs (Table 3).
Specifically, 27.1% of essential genes do not change the
MFE value, while only 14.7% of nonessential genes dem-
onstrate the same MFE values for both original and
mutated mRNAs. In general, SNPs in essential genes
change the MFE values (median = 0.69 kcal/mol) to a
smaller extent than do mutations in nonessential genes
(median = 1.10 kcal/mol) (Figure 2). We compared the
properties of essential and nonessential genes that could
influence MFE calculations, but found no confounding
factors (data not shown). Both groups of genes have the
same average GC content. While essential genes tend to be
somewhat shorter than nonessential ones (Figure 1),
neither in essential nor in nonessential genes do the differ-
ences in MFE between the native and mutated sequences
depend on mRNA length. Additionally, different types of
mutations (e.g. C— G) occur in these two data sets
equally often. At the same time, mutations observed at
the 40 000th generation in vitro are more likely to reduce
MFE of nonessential genes than the essential ones. MFE
value decreased in 56.0% of the nonessential mutants,
while only 45.8% of the essential ones demonstrated
MFE reduction. A possible interpretation could be that
ancestral essential genes were folded in structures that
caused the values of their folding energies to be close to
the minimum (robust); in contrast, nonessential genes had
MFEs more distant from the minimal values. Thus, mu-
tations were less likely to reduce energies of essential
genes.

We subsequently compared the absolute values of MFE
changes caused in each mRNA by naturally occurring and
an equal number of randomly introduced synonymous

Table 3. The number of essential and nonessential genes that
decrease, increase or do not change their MFE value on mutation

Gene type MFEquan: — MFEoriginal Total

<0 =0 >0

Essential
Nonessential

22 (45.8%)
195 (56.0%)

13 (27.1%)
51 (14.7%)

13 (27.1%) 48
102 (29.3%) 348
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Figure 2. Histograms of absolute changes in MFE values for essential
(a) and nonessential (b) genes.

mutations, thus avoiding those mutations in the se-
quences, generated in silico, that could be eliminated by
purifying selection due to their effect on the encoded
protein. For each mRNA, we determined the fraction of
in silico derivatives, which change their MFEs less than the
mutant observed in vitro. These percentages are much
lower in essential E. coli genes than in nonessential genes
(Table 4), implying that mutations accumulated in essen-
tial E. coli genes affect MFEs (and hence secondary struc-
ture) to a lesser extent than mutations in nonessential
genes. This effect is further demonstrated by the fact
that the cumulative distribution function corresponding
to essential genes elevates considerably faster at the begin-
ning (Figure 3). The difference between values for essential
and nonessential genes is statistically significant according
to the Mann—Whitney U test (P = 0.044). Our results
suggest that mRNA secondary structure imposes substan-
tially smaller selective pressure at the mutations taking
place in nonessential genes because the median of their
effect on MFE is 50.2% of what the random set of muta-
tions would cause. By contrast, the median value of how
mutations occurring in essential genes influence MFEs is
only 32.6% of what random mutations would do.

DISCUSSION

The importance of mRNA secondary structure for gene
expression was demonstrated for many organisms
including bacteria  (30-33), human (34,35) and
Drosophila (36). These studies showed that synonymous
SNPs altering mRNA folding may result in decreased
mRNA stability and may also change expression effi-
ciency. In a recent in vitro study, we introduced mutations

€T0Z ‘gz aunf uo Uayousn NL Bp dn e /610$|eum0 [pJOJXO'JEU//Idllq wioJ} pepeojumoq



Table 4. Summary of MFE changes in mRNA secondary structures
of essential and nonessential genes

Gene type Number Lower Median % Upper

of genes quartile % quartile %
Essential 48 9.4 32.6 71.1
Nonessential 348 25.5 50.2 75.0

Lower quartile, median and upper quartile values are presented for the
distributions of percentages of computer-generated mutants with
randomly introduced mutations that change the MFE less than the
naturally occurring mutations.
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Figure 3. Cumulative distribution functions of the percentages of
randomly introduced in silico mutations that change the MFE values
less than the mutations occurring in vitro for essential genes (solid line)
and nonessential genes (dashed line). Each curve gives the probability
that the MFE change in a particular gene due to an actual mutation
will be higher than MFE changes observed in a given percentage of
genes with randomly introduced mutations.

into an influenza gene, particularly into a region of the
gene encoding for a functionally important protein
domain (13). As a result of the perturbations in the
RNA structure caused by these mutations, gene expres-
sion was significantly reduced. Mutations altering RNA
structures thus had a functional knockout effect. We
also demonstrated that mutations disruptive to RNA
structure may impair transcription without facilitating
mRNA degradation. Thus, a new mechanism of viral evo-
lution was proposed (13). We hypothesized that mutations
disruptive to RNA structures would likely be eliminated
to preserve the gene regions encoding for functionally im-
portant sites of viral proteins. Following this line of
thought, the goal of the present study was to examine
whether preservation of mRNA structures is implicated
in the evolution of bacteria.

An important evolutionary characteristic of bacterial
genes is their essentiality for organism survival, which
can be experimentally assessed based on absence of
growth on knockout. We hypothesized that if some of
the mutations causing perturbations in mRNA structures
also result in reduction in expression levels of bacterial
genes, these mutations are more likely to be eliminated
by purifying selection if they take place in essential
rather than nonessential genes. Indeed, we found that
mRNA secondary structures of essential genes are more
conserved than those of nonessential genes in bacteria.

Nucleic Acids Research, 2013 5

Previous work revealed that essential bacterial genes are
more evolutionarily conserved than nonessential ones
(29,37). It was shown that in the E. coli genome paired
DNA bases have lower propensities to mutate than
unpaired bases (38,39). Based on the comparison of the
E. coli and Salmonella typhi genomes, it was concluded
that homologous RNAs of polycistronic genes in both
organisms have significantly higher folding potential
than randomized sequences, which is a sign that natural
selection is acting to preserve RNA secondary structure in
the coding regions of polycistronic genes (7). However, to
the best of our knowledge, preservation of intact mRNA
structures of individual genes has not yet been assessed as
a potential constraint on the evolution of bacterial genes.

As the best available proxy for E. coli B essential genes
we used experimentally determined the essentiality status
of genes in the closely related E. coli K-12 genome (25).
Such homology mapping may not always be accurate,
even between similar organisms, owing to possible differ-
ences in gene regulation, posttranslational modifications
and other cellular processes. An additional factor poten-
tially masking the true magnitude of the effect is that we
used changes in MFE as an indirect indication that the
secondary structure of the mRNA has changed. However,
changes in RNA sequence and the resulting perturbations
of its structure may in fact take place without causing
MFE changes (Table 3). Owing to these obvious limita-
tions, we believe that our results represent a conservative
estimate of the role played by mRNA structure in con-
straining mutations.

Our results point to the preservation of coding mRNA
structures as a previously unappreciated factor influencing
bacterial evolution. Until now, selective pressure in coding
regions was thought to primarily act against mutations
that either impair protein function and stability or affect
robustness against mistranslations (40). In particular, se-
lection against mistranslation-induced protein misfolding
is currently considered to be the major factor determining
the strong dependence of protein evolutionary rate on the
level of expression (41). The bulk of this research has thus
been devoted to the ‘protein half of the equation’—trans-
lation, folding and function. In the past few years, atten-
tion is being increasingly focused on the noncoding
selective pressure in coding regions, which is manifested
by the presence of synonymous constraint (42-44). Such
noncoding selective pressure may be caused, on one hand,
by the presence of various functional elements, such as
microRNA binding sites, transcription factor binding
sites and splicing enhancers in eukaryotic mRNAs, and,
on the other hand, by the formation of RNA structural
elements playing a role in mRNA localization, degrad-
ation and interactions with other molecules. This article
presents the first statistical evidence linking mRNA
folding to bacterial evolution. Our principal finding is
that purifying selection tends to eliminate those mutations
in essential genes that lead to greater changes of MFE
values and, therefore, may be more disruptive for the cor-
responding mRNA secondary structures. This effect is
implying that synonymous mutations disrupting mRNA
secondary structures may directly affect the fitness of the
organism.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-3 and Supplementary Figure 1.
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Chapter

Discussion

A large number of papers, both theoretical and experimental, have demonstrated
the importance of the different conformations in which non-coding RNAs have to
fold for the regulation of different cellular processes (Eddy, 2001; Kung et al., 2013).
Furthermore, secondary structures of unstranslated regions of messenger RNAs have
been shown to play a role in translation, degradation, stability and others (Mignone
et al., 2002). Recently, functionally important secondary structural elements in cod-
ing regions of mRNAs have also been reported for different living organisms and
viruses. Nonetheless, a comprehensive analysis of the diversity and functional roles
of the structures of mRNAs is still needed.

One of the main obstacles in the analysis of the functional roles of RNA structures is
the lack of well developed experimental methods for probing RNA structures. As a
result, most of the publications on RNA structures published so far have been based
on analysis of theoretical predictions, which are subjected to various limitations
and are thus characterized by low accuracy. One standard approach for predicting
RNA secondary structure is based on free energy minimization, but the free energy
nearest-neighbor model used in it is incomplete (Lu et al., 2006). However, it is
worth noting that the model is continuously improved by integration of new mea-
surements. Another limitation of the theoretical approaches is caused by the fact
that the number of possible conformations for an RNA sequence rises very fast with
the length of the sequence. Moreover, taking pseudoknots into consideration even
makes the problem of predicting RNA structure NP-hard. That is why all prediction

algorithms have to use some simplifications and approximations. Furthermore, sev-
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eral experimental works have confirmed that an RNA may have different co-existing
conformations that will be important for fulfilling different functions (Hébartner and
Micura, 2003; Schultes and Bartel, 2000). Thus, predicting a single optimal struc-

ture for an RNA sequence may not accurately reflect the reality.

To alleviate some of these problems, alternative approaches have been developed,
one of which for example is based on the prediction not of a structure but of proba-
bilities of nucleotides to be in a double-stranded conformation. This can be done by
computing a partition function, which is the sum of Boltzmann factors over all possi-
ble conformations of an RNA molecule. Then the probability of every conformation
can be assessed as a ratio of the Boltzmann factor for this particular conformation
over the partition function. Finally, the probability of every nucleotide to be paired
can be assessed as a sum of the probabilities corresponding to those structures in
which that nucleotide is in a double-stranded conformation. This approach is widely
used because instead of trying to predict one optimal structure, it considers the en-
tire ensemble of possible conformations, and it was actively applied in the course of

the present thesis.

The main goal of this thesis was to increase the understanding of the mechanisms
and role of secondary structure of messenger RNAs. One of the underlying basis for
this thesis was the paper by Ilyinsky and co-authors (Ilyinskii et al., 2009), which
showed that disruption of a particular secondary structural element in coding re-
gions of influenza mRNAs leads to a significant decrease in gene expression level.

Mutations altering RNA structures thus had a functional knockout effect.

In the first publication of this thesis the first ever transcriptome-wide measurement
of mRNA secondary structures was analyzed. Based on that experimental data and
on theoretical predictions we wanted to examine the hypothesis that structure (and
potentially, as a consequence, function) is more conserved than sequence in mRNAs.
We compared probabilities of nucleotides to be in a double-stranded conformation
between mRNAs of homologous genes in yeasts. Our results showed that the prob-
abilities of nucleotides to be paired are unrelated for those sequences, the sequence
identity level of which is below 85-90%. When the sequence identity level was in the
range of 90100%, the distance between the structures (evaluated as root mean square

deviation between vectors of probabilities) and the sequence similarity followed lin-
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ear correlation. Our findings demonstrate that the structures of coding regions of
mRNAs are less evolutionary conserved than those of non-coding RNAs. Thus,
from the evolutionary point of view, it is more important to eliminate misfoldings of
proteins than to maintain global structures of messenger RNAs. In the second publi-
cation of the thesis, we suggested a computational method of finding those regions in
RNA molecule, the secondary structure of which is most likely to alter with changes
in temperature. With this technique, cold-adapted (ca) temperature-sensitive (ts)
influenza strains, which are widely used as live attenuated influenza vaccines, were
analyzed and compared to wild type (wt) influenza strains. We showed that there
are temperature-sensitive regions in influenza mRNAs, in which nucleotides are the
most prone to changing their probability to be paired with temperature elevation.
These regions differed between the wt strains and their ca/ts counterparts. To as-
sess the statistical significance of such differences, mutants were generated in silico
by introducing the same number of single nucleotide polymorphisms as there is be-
tween the wt and the real ca/ts strains. The conducted statistical analysis revealed
the existence of ten regions, the difference in which is likely to be associated with
the ca/ts phenotype. Nine of those temperature-sensitive areas were not observed
in the wt strains, but were detected in the ca/ts mutants. The tenth region had
the opposite behavior, it was present in the wt strain, but was absent in the ca/ts
mutant. Thus, based on the developed computational method, we demonstrated
that changes in mRNA secondary structures caused by temperature elevation may

potentially determine temperature-sensitivity of cold-adapted influenza strains.

Next, based on the suggested indirect methodology for identification of temperature-
sensitive regions in RNA secondary structures, the publicly available web service
RNAtips (temperature-induced perturbations of structure) was implemented. Prior
to our development, researchers studying broad range of temperature-related biolog-
ical phenomena did not have a simple way of analyzing the consequences of changes
in temperature on RNA conformations. The service provides every scientist with
an instrument for evaluation of temperature-induced perturbations in the secondary
structure of RNAs. RNAtips has a user-friendly graphical interface, allows cus-
tomization of different parameters of interest, and generates high-resolution output
plots. Additionally, if a researcher is interested in comparing the areas of tempera-

ture sensitivity between two homologous sequences, RNAtips is capable of conduct-
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ing statistical analysis of the difference in the location of the temperature-sensitive
regions to determine if that difference is specific to a particular set of nucleotide sub-
stitutions. For this, a dataset of random mutants will be automatically generated
by introducing into one of the input sequences the same number of mutations as
there is between the original sequences. Also, the original algorithm was upgraded
as initially we worked with coding regions of mRNAs and hence for building datasets
of random mutants only synonymous mutations were inserted. However, for those
scientists, who are interested in non-coding RNAs; RNAtips would generate datasets
of random mutants by introducing any random mutations. The service is freely ac-
cessible to all users and may be applied in studying multiple biological phenomena

related to temperature.

Last but not least, we demonstrated that RNA structures may play a role in bacte-
rial evolution. Mutations in E. coli occurring in the long-term evolution experiment
being conducted by Richard Lenski and their influence on the minimum free energy
values of messenger RNAs were analyzed. According to the lows of thermodynam-
ics, every RNA molecule tends to fold into a structure with the lowest possible free
energy. Therefore, we calculated minimal free energy (MFE) values for the original
mRNAs and for the mutated mRNAs from the 40,000"" generation and assessed how
it has changed. It is important to note that if ancestral and progeny RNA sequences
have the same MFE value, it does not mean that their structures are identical.
However, different MFE values would indicate that the structure has changed in
the course of evolution. Comparing changes in the minimum free energy values
of messenger RNAs of essential and nonessential genes in E. coli, we determined
that in general mutations in essential genes tend to change the MFE value to a
lesser extent compared to mutations in nonessential genes. Next, we compared the
changes in MFE values attributed to the mutations that were observed between the
first and the 40,000'" generations to the MFE changes that could be caused by the
mutations that were filtered out or could have potentially taken place. To do that,
in silico mutants were generated by introducing the same number of synonymous
mutations as observed in the real experiment mutant to the ancestral mRNAs of
each gene. We calculated the difference in the MFE values between the original E.
coli mRNAs and the computer-generated mutants and computed the percentage of

those in silico mutants which changed the MFE value to a lesser extent than the real
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mutant did. Cumulative distribution functions for those percentage values for es-
sential and nonessential genes clearly demonstrated that such percentages are much
lower in essential genes compared to nonessential ones. Our results clearly show
that mutations accumulated in essential E. coli genes affect the minimum free en-
ergy values (and, hence, the secondary structure of mRNAs) to a lesser extent than
those in nonessential genes. Thus, we can conclude that mutations, which disrupt
the secondary structures of mRNAs of essential genes may be filtered out during the
evolution. This in turn suggests that mRNA secondary structure imposes selective
pressure on single nucleotide polymorphisms taking place in essential genes, whereas

its effect is much weaker in nonessential genes.

So far, studying RNA structures has been largely hampered by the absence of ex-
perimentally measured data. However, genome-scale methods for measuring RNA
structures are becoming increasingly available. Without any doubts, further techni-
cal improvements will allow for measuring RNA conformations more accurately and
faster, and hence, will greatly contribute to increasing our notion of the plethora of
functions associated with the different RNA structures. The structural RNA field is
still marked by a large number of unanswered questions. For instance, investigating
the dynamics of RNA conformations will be crucial for understanding how structure
alters and what functions the same molecule may perform at different moments in
time. Another unexplored area that would be beneficial for both experimental mea-
surements and theoretical predictions is concerned with measuring or taking into
consideration potential interactions between the thousands of different molecules
within the cell.

The work done in this thesis contributes to understanding the great potential that
the field of structural RNA holds and in particular demonstrates the power of com-

putational tools for unraveling important functional aspects of RNA structures.
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Conclusions and outlook

Until recently it had been considered that proteins accomplish most of the regu-
latory functions in living organisms. Results from the ENCODE (ENCyclopedia
Of DNA Elements) project (Feingold et al., 2004; Thomas et al., 2007; ENCODE
Project Consortium, 2011) aimed to identify all functional elements encoded in the
human genome revealed that more than 80% of the genome have some biochemi-
cal functions. There are over 20,000 protein-coding genes in the human genome,
but they cover only a tiny portion of the genome. Much of this 80% is transcribed
to non-protein-coding RNAs performing some regulatory functions (Dunham et al.,
2012; Djebali et al., 2012; Banfai et al., 2012). Therefore, as we can see there are
many more very important functions that RNA molecules perform within modern

cells and there is a lot to learn about RNA.

Experimental techniques of measuring RNA structures have been developed to the
point that large RNAs can be probed. Hence, it is likely that more RNA genomes
will be probed and, due to the obvious reasons, viral genomes are of the greatest
interest. Information about RNA conformations of different viruses will help to un-
derstand viral biology or pathogenicity (Wan et al., 2011). At the same time, as the
amount of data generated by next-generation technologies for probing the structure
of RNA molecules increases, the importance of applying bioinformatics approaches
to analyzing the data properly and to accurately interpreting the results will in-
crease as well. In addition, further improvements of experimental techniques likely
will allow accurate determining how different RNAs interact with each other and

with RBPs. Such data will also contribute significantly to our understanding of the
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different biological processes and will be very important for drugs design.

I also believe that accurate bioinformatics analysis may indicate specific things that
should be tested experimentally. Our research has demonstrated that further stud-
ies aimed to identify exact mRNA sequences (including UTRs) of influenza strains
are needed. 5°- as well as 3 -untranslated regions might have a major impact on
structural elements in the coding region. However, at the present time, the only
available information we possess is cRNA /vRNAs and CDSs. Obviously, 5~ as well
as 3 -untranslated regions have important RNA structures. These structures have

to be preserved due to their crucial biological functions.

It would be interesting to test experimentally if the clusters, which we predicted in
our work, are indeed the regions of the viral mRNAs in which the RNA structure
is most sensitive to temperature. This would be the first ever experimental work of
its kind (after all, the very concept of temperature-sensitive clusters is proposed in
our paper). The experimental analysis, demonstrating that mRNA structures are
the most temperature-sensitive in the regions corresponding to the clusters we have
discovered, would require a comprehensive experimental analysis of influenza mR-
NAs at two temperatures and a comparison of structural RNA perturbations both

within and outside of the clusters.

Further research of secondary structures of mRNAs in Escherichia coli is needed
as well. Experiments aimed to measure expression levels of essential and nonessen-
tial genes, which can support our hypothesis, are of potential interest. Difference
in the expression levels between essential and nonessential genes, if it is observed,
can serve as an experimental evidence of selective pressure on the essential genes in

FEscherichia coli.

Currently, we are observing only the tip of the iceberg. It is very likely that many
more classes of RNAs, as well as new unexpected functions of RNAs, will be dis-
covered. This in turn will require development of new bioinformatics tools and
algorithms for data analysis and predictions. The present work is a small step to-
ward our understanding of biological roles of RNAs, yet it can serve as a basis for

the further hypotheses.
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