
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Máté Kovács

TUM-I1340

Relational Abstract Interpretation for the
Verification of 2-Hypersafety Properties
(Proofs)

Relational Abstract Interpretation for the

Verification of 2-Hypersafety Properties (Proofs)

Máté Kovács

This document contains the proofs of the theorems published in [1]. There-
fore, this work should be seen as an extension of [1] and should be read together
with it. In Section 1 we prove the theorems published in Section 2 of [1], and in
Section 2 we prove the theorems published in Section 3 of [1]. The numbering
of theorems in this document is consistent with that in [1].

1 Proofs for Section 2 in [1]

Theorem 1. Consider a pair of sequences of labels π1, π2 ∈ nin nfi on the
CFG G = (N,E, nin , nfi), and states s0, s, t0, t ∈ S, where s = Jπ1Ks0, t =
Jπ2Kt0 and (s0, t0) ∈ γ(d0). In this case d w MTC(G, d0) implies (s, t) ∈ γ(d).

Proof. Lemma 2 below entails that if d′ w
d
ω∈A(π1,π2)

JωK]d0 then (s, t) ∈ γ(d′).

Since π1, π2 ∈ nin nfi , MTC(G, d0) w d′ holds.

Theorem 2. Given the CFG G = (N,E, nin , nfi) and a self-composition of it
GG = (N ′, E′, n′in , n

′
fi), the following holds for all d0:⊔

ω∈n′
in n

′
fi

JωK]d0 w MTC(G, d0)

Proof. According to Definition 3 in [1] for all π1, π2 ∈ nin nfi there is an
ωπ1,π2

∈ n′in n′fi so that ωπ1,π2
∈ A(π1, π2). Therefore:

MTC(G, d0) =
⊔
π1∈nin nfi
π2∈nin nfi

d
ω∈A(π1,π2)

JωK]d0 v⊔
π1∈nin nfi
π2∈nin nfi

Jωπ1,π2
K]d0 v

⊔
ωπ1,π2∈n

′
in n

′
fi
Jωπ1,π2

K]d0

Definition 4. The partially ordered sets (A,vA) and (B,vB) together with the
functions α : A→ B and γ : B→ A form a Galois connection (A, α, γ,B), if for
all a ∈ A and b ∈ B the following holds:

α(a) vB b⇔ a vA γ(b)

1

Lemma 1. If (A, α, γ,B) is a Galois connection then the following holds for
any arbitrary set B ⊆ B:

a vA
l

b∈B

γ(b)⇒ a vA γ
(l

b∈B

b
)

Proof. From the precondition follows the following conjunction:∧
b∈B

[
a vA γ(b)

]
The properties of Galois connections according to Definition 4 entail that:∧

b∈B

[
α(a) vB b

]
Therefore, we have that:

α(a) vB
l

b∈B

b

From the properties of Galois connections follows that:

a vA γ
(l

b∈B

b
)

Lemma 2. Let us regard two computations: π1 and π2. From Jπ1Ks0 = s,

Jπ2Kt0 = t, (s0, d0) ∈ γ(d0) and d w
d
ω∈A(π1,π2)

JωK]d0 follows that (s, t) ∈ γ(d),

given that (P(S × S), α, γ,D) forms a Galois connection.

Proof. Let us regard a specific ω ∈ A(π1, π2), where ω = (fω1 , g
ω
1), ..., (fωnω , g

ω
nω).

Let dωi = Jfωi , gωi K]dωi−1 for all i , where dω0 = d0. Furthermore, let us suppose
that si = Jfω1 , ..., fωi Ks0 and ti = Jgω1 , ..., gωi Kt0. We prove inductively on the
length of ω that (sωi , t

ω
i) ∈ γ(dωi) using (1) in [1]. The inductive assumption is

that (sωi , t
ω
i) ∈ γ(dωi), which holds on d0, s0 and t0, because of the assumptions

of the lemma. Based on the abstract semantics of pairs of labels according to
(1) in [1] we know now that (sωi+1, t

ω
i+1) ∈ γ(Jfωi+1, g

ω
i+1K]dωi).

We know that Jfω1 ...fωnωK = Jπ1K and Jgω1 ...gωnωK = Jπ2K, because insert-
ing skip operations in a sequence of instructions according to (2) in [1] does
not alter the result of a computation. It follows then that (s, t) = (sωn , t

ω
n) ∈

γ(JωK]d0). Therefore, for each ω ∈ A(π1, π2) we know that (s, t) ∈ γ(JωK]d0).

It follows then that (s, t) ∈
⋂
ω∈A(π1,π2)

γ(JωK]d0). Otherwise put it we have

{(s, t)} ⊆
⋂
ω∈A(π1,π2)

γ(JωK]d0). According to Lemma 1 we have {(s, t)} ⊆
γ(

d
ω∈A(π1,π2)

JωK]d0). From the properties of Galois connections according to

Definition 4, it follows that α({(s, t)}) v
d
ω∈A(π1,π2)

JωK]d0. Accordingly, if
d
ω∈A(π1,π2)

JωK]d0 v d then α({(s, t)}) v d too. Therefore, from properties of

Galois connections follows that {(s, t)} ⊆ γ(d).

2

2 Proofs for Section 3 in [1]

Here we modify the notation of the original paper [1] to some extent. From now

on, we denote pairs of labels f and g with
[
f
g

]
instead of (f, g). Furthermore,

we use a grammar to generate the set of possible alignments of two sequences.

We use here the notation ∆
[
π1

π2

]
for a nonterminal generating the possible align-

ments of sequences π1 and π2 according to the rules below in (18). The set of all

possible alignments that can be generated from nonterminal ∆
[
π1

π2

]
using rules

(18) is then denoted by L(∆
[
π1

π2

]
). The grammar is as follows:

∆
[
ε
ε

]
1−→ ε

∆
[
ε
ε

]
2−→

[
skip
skip

]
∆
[
ε
ε

]
∆
[
ε
gπ

]
3−→

[
skip
g

]
∆
[
ε
π

]
∆
[
ε
gπ

]
4−→

[
skip
skip

]
∆
[
ε
gπ

]
∆
[
fπ
ε

]
5−→

[
f

skip

]
∆
[
π
ε

]
∆
[
fπ
ε

]
6−→

[
skip
skip

]
∆
[
fπ
ε

]
∆
[
fπ1

gπ2

]
7−→

[
skip
g

]
∆
[
fπ1

π2

]
∆
[
fπ1

gπ2

]
8−→

[
f

skip

]
∆
[
π1

gπ2

]
∆
[
fπ1

gπ2

]
9−→

[
f
g

]
∆
[
π1

π2

]
∆
[
fπ1

gπ2

]
10−→

[
skip
skip

]
∆
[
fπ1

gπ2

]

(18)

By comparing the rules of (18) with the rules of (2) in [1], we can see that

there is a rule of the form ∆
[
π1

π2

]
x−→
[
f
g

]
∆
[
π′
1

π′
2

]
in (18), if and only if there is

a corresponding member {
[
f
g

]
ω′ | ω′ ∈ A(π′1, π

′
2)} in the union of the equation

defining A(π1, π2) in (2) of [1]. In particular, for the rule ∆
[
ε
ε

]
1−→ ε of (18)

there is the corresponding equation A(ε, ε) = ε ∪ ... in (2) of [1]. Therefore,

ω ∈ L(∆
[
π1

π2

]
) for an arbitrary ω, π1 and π2, if and only if ω ∈ A(π1, π2).

Theorem 3. Consider a program p together with its CFG G constructed by
the function p2cfg(p, nin , nfi). In this case, the resulting CFG of the function
pp2cfg(p, p, n′in , n

′
fi) is a self-composition of G according to Definition 3 in [1].

Proof. The statement of the theorem directly follows from Lemma 7 below.

Lemma 3. The following holds for any pair of sequences of sequences π1,1...π1,n
and π2,1...π2,n:

L
(

∆
[π1,1...π1,n
π2,1...π2,n

])
⊇ L

(
∆
[π1,1
π2,1

]
...∆

[π1,n
π2,n

])
3

Note, that any πi,j above may equal to ε, which is the empty sequence.

Proof. Let us denote the configurations of the derivation starting with the series

of nonterminals ∆
[
π1,1

π2,1

]
...∆

[
π1,n

π2,n

]
using 〈ω1∆

[
πk1,i
πl2,i

]
...∆

[
π1,n

π1,n

]
〉1, and similarly,

denote the configurations of the derivation starting with ∆
[
π1,1...π1,n

π2,1...π2,n

]
using

〈ω2∆
[
πk1,i...π1,n

πl2,i...π2,n

]
〉2, where ω1 and ω2 are the sequences of pairs that have been

generated, and πk1,i and πl2.i are the postfixes of π1,i and π2.i where k and l
indicate the length of the prefixes of π1,i and π2.i that have been processed
already.

Now we prove inductively on the length of the derivations that whenever
there is an κ and an ω such that

〈∆
[π1,1
π2,1

]
...∆

[π1,n
π1,n

]
〉1

κ−→
∗
〈ω∆

[πk1,i
πl2,i

]
...∆

[π1,n
π1,n

]
〉1,

then there is a χ such that

〈∆
[π1,1...π1,n
π2,1...π2,n

]
〉2

χ−→
∗
〈ω∆

[πk1,i...π1,n
πl2,i...π2,n

]
〉2

holds. Above, κ, χ ∈ {1, ..., 10}∗ denote sequences of numbers indicating the
order of the application of the rules of the grammar in (18). The rules cor-
responding to κ are always applied to the left-most nonterminal of the config-
uration cfg1. The inductive assumption is that the configurations of the two
derivations are in relation cfg1 ∼ cfg2. cfg1 ∼ cfg2 holds if cfg1 and cfg2 are of
the form:

cfg1 = 〈ω∆
[πk1,i
πl2,i

]
...∆

[π1,n
π1,n

]
〉1 ∼ 〈ω∆

[πk1,i...π1,n
πl2,i...π2,n

]
〉2 = cfg2

In each step we apply one rule on

cfg1 = 〈ω∆
[πk1,i
πl2,i

]
...∆

[π1,n
π1,n

]
〉1

and show what to do with

cfg2 = 〈ω∆
[πk1,i...π1,n
πl2,i...π2,n

]
〉2

in order to preserve the inductive assumption. During the application of the
rules on cfg1, we always expand the leftmost nonterminal. In the initial case
when ω = ε and no rules have been applied yet, the statement trivially holds.

Now we make a case distinction, based on the form of cfg1.

4

1) πk1,i 6= ε and πl2,i 6= ε. In this case we apply the same rule x on both of
the configurations cfg1 and cfg2:

〈ω∆
[
πk1,i
πl2,i

]
...∆

[
π1,n

π1,n

]
〉1

x−→ 〈ω
[
f
g

]
∆
[
πk

′
1,i

πl
′

2,i

]
...∆

[
π1,n

π1,n

]
〉1

〈ω∆
[
πk1,i...π1,n

πl2,i...π2,n

]
〉2

x−→ 〈ω
[
f
g

]
∆
[
πk

′
1,i...π1,n

πl
′

2,i...π2,n

]
〉2

The inductive assumption holds on the resulting configurations.

2) πk1,i = ε and πl2,i 6= ε, but πk1,i...π1,n 6= ε. If rule 3 is applied on cfg1 then
rule 7 is applied on cfg2:

〈ω∆
[

ε
πl2,i

]
∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

3−→

〈ω
[
skip
g

]
∆
[

ε
πl+1
2,i

]
∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

〈ω∆
[
π0
1,i+1...π1,n

πl2,i...π2,n

]
〉2

7−→ 〈ω
[
skip
g

]
∆
[
π0
1,i+1...π1,n

πl+1
2,i ...π2,n

]
〉2

If rule 4 is applied on cfg1, then rule 10 is applied on cfg2:

〈ω∆
[

ε
πl2,i

]
∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

4−→

〈ω
[
skip
skip

]
∆
[

ε
πl2,i

]
∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

〈ω∆
[
π0
1,i+1...π1,n

πl2,i...π2,n

]
〉2

10−→ 〈ω
[
skip
skip

]
∆
[
π0
1,i+1...π1,n

πl2,i...π2,n

]
〉2

The application of these rules preserve the inductive assumption, further-
more, no other rules can be applied on the left-most nonterminal in cfg1.

2a) The case when πk1,i 6= ε and πl2,i = ε, but πk2,i...π2,n 6= ε can be proved
analogously to case 2). If rule 5 is applied on cfg1 then rule 8 is applied
on cfg2, and if rule 6 is applied on cfg1 then rule 10 is applied on cfg2.
No other rules can be applied on the left-most nonterminal in cfg1.

3) πk1,i = ε and πl2,i 6= ε and πk1,i...π1,n = ε. Either rule 3 can be applied on
cfg1, and we apply the same rule on cfg2:

〈ω∆
[

ε
πl2,i

]
∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

3−→

〈ω
[
skip
g

]
∆
[

ε
πl+1
2,i

]
∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

〈ω∆
[

ε
πl2,i...π2,n

]
〉2

3−→ 〈ω
[
skip
g

]
∆
[

ε
πl+1
2,i ...π2,n

]
〉2

Or we can apply rule 4 on both of the configurations:

〈ω∆
[

ε
πl2,i

]
∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

4−→

〈ω
[
skip
skip

]
∆
[

ε
π1
2,i

]
∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

〈ω∆
[

ε
πl2,i...π2,n

]
〉2

4−→ 〈ω
[
skip
skip

]
∆
[

ε
πl2,i...π2,n

]
〉2

5

There are no other rules that can be applied on the left-most nontermi-
nal of configuration cfg1, furthermore, the inductive assumption has been
preserved by the application of the above rules.

3a) The case when πk1,i 6= ε and πl2,i = ε and πk2,i...π2,n = ε can be proved
similarly to the case 3). Either rule 5 or rule 6 is applied on the left-most
nonterminal of both of the configurations, which preserves the inductive
assumption.

4) πk1,i = ε, πl2,i = ε, πk1,i...π1,n = ε, but πl2,i...π2,n 6= ε. In this case one of the
rules 1 and 2 may be applied on the left-most nonterminal of configuration
cfg1. If rule 1 is applied on cfg1 then we do not apply anything on cfg2:

〈ω∆
[
ε
ε

]
∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

1−→ 〈ω∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

〈ω∆
[

ε
π0
2,i+1...π2,n

]
〉2 〈ω∆

[
ε

π0
2,i+1...π2,n

]
〉2

If rule 2 is applied on cfg1 then rule 4 is applied on cfg2:

〈ω∆
[
ε
ε

]
∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

2−→ 〈ω
[
skip
skip

]
∆
[
ε
ε

]
∆
[

ε
π0
2,i+1

]
...∆

[
ε

π1,n

]
〉1

〈ω∆
[

ε
π0
2,i+1...π2,n

]
〉2

4−→ 〈ω
[
skip
skip

]
∆
[

ε
π0
2,i+1...π2,n

]
〉2

The application of these rules preserves the inductive assumption, fur-
thermore, no other rules can be applied on the left-most nonterminal of
cfg1.

4a) The case when πk1,i = ε, πl2,i = ε, πk1,i...π1,n 6= ε, but πl2,i...π2,n = ε can
be proved similarly to case 4). Whenever rule 1 is applied on cfg1 then
cfg2 is not modified. And whenever rule 2 is applied on cfg1, then rule 6
is applied on cfg2.

5) πk1,i = ε, πl2,i = ε, πk1,i...π1,n = ε, and πl2,i...π2,n = ε. In this case one of
the rules 1 and 2 may be applied on the configuration cfg1. If rule 2 is
applied on cfg1 then this rule is also applied on cfg2:

〈ω∆
[
ε
ε

]
∆
[
ε
ε

]
...∆

[
ε
ε

]
〉1

2−→ 〈ω
[
skip
skip

]
∆
[
ε
ε

]
∆
[
ε
ε

]
...∆

[
ε
ε

]
〉1

〈ω∆
[
ε
ε

]
〉2

2−→ 〈ω
[
skip
skip

]
∆
[
ε
ε

]
〉2

However, if rule 1 is applied on cfg1 then this rule is only applied on cfg2

if cfg1 = 〈ω∆
[
ε
ε

]
〉1:

〈ω∆
[
ε
ε

]
〉1

1−→ 〈ω〉1
〈ω∆

[
ε
ε

]
〉2

1−→ 〈ω〉2

Otherwise no rule is applied on cfg2:

〈ω∆
[
ε
ε

]
∆
[
ε
ε

]
...∆

[
ε
ε

]
〉1

1−→ 〈ω∆
[
ε
ε

]
...∆

[
ε
ε

]
〉1

〈ω∆
[
ε
ε

]
〉2 〈ω∆

[
ε
ε

]
〉2

6

These rule applications preserve the inductive assumption. Furthermore,
no other rules can be applied on the left-most nonterminal of cfg1.

6) πk1,i = ε, πl2,i = ε, but πk1,i...π1,n 6= ε and πl2,i...π2,n 6= ε. Now rules 1 and
2 can be applied on the left-most nonterminal of cfg1. If rule 1 is applied,
then we do not modify cfg2:

〈ω∆
[
ε
ε

]
∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

1−→ 〈ω∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

〈ω∆
[
π0
1,i+1...π1,n

π0
2,i+1...π2,n

]
〉2 〈ω∆

[
π0
1,i+1...π1,n

π0
2,i+1...π2,n

]
〉2

If rule 2 is applied on cfg1 then rule 10 is applied on cfg2:

〈ω∆
[
ε
ε

]
∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

2−→ 〈ω
[
skip
skip

]
∆
[
ε
ε

]
∆
[
π0
1,i+1

π0
2,i+1

]
...∆

[
π1,n

π1,n

]
〉1

〈ω∆
[
π0
1,i+1...π1,n

π0
2,i+1...π2,n

]
〉2

10−→ 〈ω
[
skip
skip

]
∆
[
πk

′
1,i...π1,n

πl
′

2,i...π2,n

]
〉2

The application of these rules preserves the inductive assumption.

Lemma 4. The following holds for all sequences π:

L
(

∆
[
ε
π

])
⊇ L

(
∆
[
skip
π

])
and

L
(

∆
[
π
ε

])
⊇ L

(
∆
[

π
skip

])
Proof. We prove now the first statement, the second can be proved analogously.

We show that for all ω ∈ L
(

∆
[
skip
π

])
, ω is an element of L

(
∆
[
ε
π

])
too. We de-

note the configurations of the derivation of an arbitrary ω starting from ∆
[
skip
π

]
with 〈ω∗∆

[
π′
1

π′
2

]
〉1, where ω∗ stands for a prefix of ω that has already been gener-

ated, and ∆
[
π′
1

π′
2

]
is the nonterminal that has not been expanded yet. Similarly,

tuples of the form 〈ω∗∆
[
π′
1

π′
2

]
〉2 denote the configurations of the derivation start-

ing from the nonterminal ∆
[
ε
π

]
.

The initial configurations of the derivations are 〈ε∆
[
skip
π

]
〉1 and 〈ε∆

[
ε
π

]
〉2

respectively. During the construction of ω ∈ L
(

∆
[
skip
π

])
there must be a

step when the upper label of the nonterminal ∆
[
skip
π

]
, skip, is processed using

one of the rules 5, 8 or 9. Therefore, we split ω into subsequences so that

ω = ω1

[
skip
g

]
ω2. Accordingly, during the derivation of ω we need to have the

following step:

〈ω1∆
[skip
π′

]
〉1 → 〈ω1

[skip
g

]
∆
[ε
π′′

]
〉1

7

The following production rules in (18) are used for the generation of ω1 by
the two derivations:

〈ε∆
[
skip
π

]
〉1

κ−→
∗
〈ω1∆

[
skip
π′

]
〉1

〈ε∆
[
ε
π

]
〉2

χ−→
∗
〈ω1∆

[
ε
π′

]
〉2

Above κ, χ ∈ {1, ..., 10}∗ are strings identifying the sequences of production
rules in (18) that have been used for the generation of ω1, where we assume that
always the left-most nonterminals are expanded in the configurations. Below
we give a function η : {1, ..., 10} → {1, ..., 10} to construct χ from κ by applying
η on the members of κ:

η(7) = 3
η(10) = 4

Other rules than 7 and 10 can not occur in κ without consuming the upper skip

of the nonterminal ∆
[
skip
π

]
. Now we make a case distinction based on the rule,

which is applied on 〈ω1∆
[
skip
π′

]
〉1 after the prefix ω1 has been generated:

• If π′ = ε, then rule 5 can be applied:

〈ω1∆
[skip
π′

]
〉1

5−→ 〈ω1

[skip
skip

]
∆
[ε
ε

]
〉1

In this case rule 2 must be applied on the other derivation:

〈ω1∆
[ε
π′

]
〉2

2−→ 〈ω1

[skip
skip

]
∆
[ε
ε

]
〉2

After the steps above, rule 2 is applied on both of the configurations an
equal number of times to construct ω2 and then finally rule 1 is applied
once.

• Rule 8 is applied:

〈ω1∆
[skip
π′

]
〉1

8−→ 〈ω1

[skip
skip

]
∆
[ε
π′

]
〉1

Rule 4 is applied on the other derivation:

〈ω1∆
[ε
π′

]
〉2

4−→ 〈ω1

[skip
skip

]
∆
[ε
π′

]
〉2

And then an identical sequence of production rules is applied on both of
the configurations to produce ω2.

• Rule 9 is applied:

〈ω1∆
[skip
π′

]
〉1

9−→ 〈ω1

[skip
g

]
∆
[ε
π′′

]
〉1

8

Here we suppose that π′ = gπ′′. Furthermore, rule 3 is applied on the
other derivation:

〈ω1∆
[ε
π′

]
〉2

3−→ 〈ω1

[skip
g

]
∆
[ε
π′′

]
〉

Now an identical sequence or production rules is applied on both of the
configurations in order to produce ω2.

Lemma 5. We consider the two CFGs:

Gc = c2cfg(c, ncin , n
c
fi)

and
Gd = c2cfg(d, ndin , n

d
fi)

and their compositions: Gc,d = pc2cfg(c, d, nin , nfi). The following holds:

a) If c and d are not composable, then Gc,d = pc2cfg(c, d, nin , nfi) satisfies
the conditions of Definition 3 in [1] with respect to Gc and Gd without
further conditions.

b) If c = d = skip or c = d = x:=e, then Gc,d = pc2cfg(c, d, nin , nfi)
satisfies the conditions of Definition 3 in [1] with respect to Gc and Gd
without further conditions.

c) We suppose that Gptt,rtt = pp2cfg(ptt, rtt, n
tt,tt
in , nfi) is a composition of

Gptt = p2cfg(ptt, n
tt,c
in , ncfi) and Grtt = p2cfg(rtt, n

tt,d
in , ndfi) according to

Definition 3 in [1], Gptt,rff = pp2cfg(ptt, rff, n
tt,ff
in , nfi) is a composition

of Gptt = p2cfg(ptt, n
tt,c
in , ncfi) and Grff = p2cfg(rff, n

ff,d
in , ndfi) according

to Definition 3 in [1], Gff,tt = pp2cfg(pff, rtt, n
ff,tt
in , nfi) is a composition

of Gpff = p2cfg(pff, n
ff,c
in , ncfi) and Grtt = p2cfg(rtt, n

tt,d
in , ndfi) according to

Definition 3 in [1] and Gff,ff = pp2cfg(pff, rff, n
ff,ff
in , nfi) is a composition

of Gpff = p2cfg(pff, n
ff,c
in , ncfi) and Grff = p2cfg(rff, n

ff,d
in , ndfi) according to

Definition 3 in [1].

In this case, if c = if b1 then {ptt} else {pff} and d = if b2 then {rtt}

else {rff} then Gc,d = pc2cfg(c, d, nin , nfi) satisfies the conditions of Def-
inition 3 in [1] with respect to Gc = (c, ncin , n

c
fi) and Gd = (d, ndin , n

d
fi).

d) We suppose that Gp,r = pp2cfg(p, r, ntt,ttin , nin) is a composition of Gp =

p2cfg(p, ntt,cin , ncin) and Gr = p2cfg(r, ntt,din , ndin) according to Definition 3
in [1].

In this case if c = while b1 do {p} and d = while b2 do {r} then Gc,d =
pc2cfg(c, d, nin , nfi) satisfies the conditions of Definition 3 in [1] with re-
spect to Gc = c2cfg(c, ncin , n

c
fi) and Gd = c2cfg(d, ndin , n

d
fi).

9

Proof. We assume that the nodes generated by the functions c2cfg, p2cfg, pc2cfg
and pp2cfg are always fresh. Therefore, the generated subgraphs of the function
calls are only connected by the initial and final nodes given in the arguments.

We prove according to the cases of the statement of the lemma.

a) In this case according to Section 3 in [1]:

pc2cfg(c, d, nin , nfi) = skip2(c2cfg(c, nin , n
′)) ∪ skip1(c2cfg(d, n′, nfi))

According to the properties of the function c2cfg there is only one com-
mon node in skip2(c2cfg(c, nin , n

′)) and skip1(c2cfg(d, n′, nfi), which is
n′. Let us consider an arbitrary path πc = f1, ..., fk of the graph Gc =
c2cfg(c, nin , n

′) from node nin to n′, and an arbitrary path πd = g1, ..., gl
of the graph Gd = c2cfg(d, n′, nfi) from n′ to nfi . According to the
definition of the functions skip1 and skip2, then skip2(Gc) has a path

π′c =
[
f1
skip

]
...
[
fk
skip

]
and skip1(Gd) has a path π′d =

[
skip
g1

]
...
[
skip
gl

]
with

the same initial and final nodes as πc and πd. Since the final node of
π′c on the subgraph skip2(Gc) and the initial node of π′d on the subgraph

skip1(Gd) is n′ in Gc,d, ω =
[
f1
skip

]
...
[
fk
skip

][
skip
g1

]
...
[
skip
gl

]
is a path of Gc,d

from nin to nfi . Furthermore we know that:

ω =
[f1
skip

]
...
[fk
skip

][skip
g1

]
...
[skip
gl

]
∈ L

(
∆
[πc
πd

])
Therefore, our statement is proved.

b) c = x1:=e1, d = x2:=e2 or c = d = skip. Now, pc2cfg(c, d, nin , nfi) =

(nin ,
[
c
d

]
, nfi), and this graph has only one path

[
c
d

]
. c2cfg(c, ncin , n

c
fi) =

(ncin , c, n
c
fi) has the only path c and c2cfg(d, ndin , n

d
fi) = (ndin , d, n

d
fi) has the

only path d. Since
[
c
d

]
∈ L

(
∆
[
c
d

])
, our statement trivially holds.

c) Now we investigate the case when c = if b1 then {ptt} else {pff} and
d = if b2 then {rtt} else {rff}.

Let us suppose that the graph Gc = c2cfg(c, ncin , n
c
fi) has a path πc =

f0, f1, ..., fk from node ncin to node ncfi , and similarly, the graph Gd =

c2cfg(d, ndin , n
d
fi) has a path πd = g0, g1, ..., gl from node ndin to ndfi . Ac-

cording to the CFG corresponding to the if construct generated by the
function c2cfg, each path of Gc begins with either a f0 = b1 or a f0 = ¬b1.
Similarly, each path on Gd must start with either a g0 = b2 or a g0 = ¬b2.
Therefore, we would need to examine four cases depending on the values of
f0 and g0. We show the proof for the case when f0 = b1 and g0 = ¬b2, the
other three cases can be shown analogously. In this case πptt = f1, ..., fk
is a path on Gptt from node ntt,cin to node ncfi , and πrff = g1, ..., gl is a

path on Grff from node nff,din to node ndfi . According to the assumptions,

there is an ω ∈ L
(

∆
[
f1,...,fk
g1,...,gl

])
on Gptt,rff from node ntt,ffin to node nfi .

10

Furthermore,
[
b1
¬b2

]
ω is a path on Gc,d from node nin to node nfi . Since[

b1
¬b2

]
ω ∈ L

(
∆
[
πc
πd

])
and it is a path on Gc,d = pc2cfg(c, d, nin , nfi) gen-

erated by the function pc2cfg, the statement is proved.

d) Now we consider the case when c = while b1 do {p} and d = while b2 do

{r}.

Let us suppose that the graph Gc = c2cfg(c, ncin , n
c
fi) has a path πc from

node ncin to node ncfi , and similarly, the graph Gd = c2cfg(d, ndin , n
d
fi) has

a path πd from node ndin to node ndfi . In general πc starts with i number of

loops b1π
k
p on Gc from node ncin to ncin so that πkp is a path from ntt,cin to

ncin on Gp during loop number k, and πd starts with j number of loops b2π
l
r

on Gd from node ndin to ndin so that πlr is a path from ntt,din to ndin on Gr
during the loop number l. We prove here the statement for the case when
i ≤ j. For the case when i > j the statement can be proved analogously.
Therefore, we split πd into two parts. In the first part the body of d is
executed i times, in the second yet another j − i times. Accordingly, πc
and πd look the following:

πc =

π′
c︷ ︸︸ ︷

b1π
1
pb1π

2
p...π

i
p ¬b1

πd =

π′
d︷ ︸︸ ︷

b2π
1
rb2π

2
r ...π

i
r b2

π′′
d︷ ︸︸ ︷

πi+1
r ...b2π

j
r¬b2

(19)

According to our assumption, for all pairs of paths πξp and πξr of Gp and

Gr where 1 ≤ ξ ≤ i there is a path ωξ on Gp,r = pp2cfg(p, r, ntt,ttin , nin)

so that ωξ ∈ L
(

∆
[
πξp

πξr

])
. Therefore, we have a path

ω′ =
[b1
b2

]
ω1...

[b1
b2

]
ωi

on Gc,d = pc2cfg(c, d, nin , nfi) from node nin to nin . There are two cases
now.

– If i = j then πc = π′c¬b1 and πd = π′d¬b2. Now we have an ω on
Gc,d:

ω = ω′
[¬b1
¬b2

]
=
[b1
b2

]
ω1...

[b1
b2

]
ωi
[¬b1
¬b2

]
We know about ω the following:

ω ∈ L
([b1
b2

]
∆
[π1

p

π1
r

]
...
[b1
b2

]
∆
[πip
πir

][¬b1
¬b2

])
Because

[
f
g

]
∈ L

(
∆
[
f
g

])
, it follows that:

ω ∈ L
(

∆
[b1
b2

]
∆
[π1

p

π1
r

]
...∆

[b1
b2

]
∆
[πip
πir

]
∆
[¬b1
¬b2

])
11

From Lemma 3 follows:

ω ∈ L
(

∆
[b1π1

p...b1π
i
p¬b1

b2π1
r ...b2π

i
r¬b2

])
= L

(
∆
[πc
πd

])
Furthermore, because ω is a path from nin to nfi on Gc,d, the state-
ment is proved.

– In this case i < j. According to the graph Gc,d generated by the
function pc2cfg and the definition of skip1(p2cfg(r, nff,ttin , n′′)) there
is a path ω′′ beginning with nff,ttin and ending with nfi so that it
trespasses the graph Gskip,2 = skip1(p2cfg(r, nff,ttin , n′′)) at least once.

Now, it holds that ω′′ ∈ L
(

∆
[
ε
π′′
d

])
. Therefore, ω′

[
¬b1
b2

]
ω′′ is a path

on Gc,d from nin to nfi . Furthermore, we know the following about

ω = ω′
[
¬b1
b2

]
ω′′:

ω = ω′
[¬b1
b2

]
ω′′ =

[b1
b2

]
ω1...

[b1
b2

]
ωi
[¬b1
¬b2

]
ω′′

Therefore:

ω ∈ L
([b1
b2

]
∆
[π1

p

π1
r

]
...
[b1
b2

]
∆
[πip
πir

][¬b1
¬b2

]
∆
[ε
π′′d

])
Because

[
f
g

]
∈ L

(
∆
[
f
g

])
, it follows now that:

ω ∈ L
(

∆
[b1
b2

]
∆
[π1

p

π1
r

]
...∆

[b1
b2

]
∆
[πip
πir

]
∆
[¬b1
¬b2

]
∆
[ε
π′′d

])
From Lemma 3 follows:

ω ∈ L
(

∆
[b1π

1
p...b1π

i
p¬b1

b2π1
r ...b2π

i
r¬b2π′′d

])
= L

(
∆
[πc
πd

])
Therefore, the statement is proved.

Lemma 6. We suppose about an arbitrary set C that for all commands c, d ∈
C ∪{skip}, Gc,d = pc2cfg(c, d, nc,din , n

c,d
fi) satisfies the conditions of Definition 3

in [1] with respect to the CFGs Gc = c2cfg(c, ncin , n
c
fi) and Gd = c2cfg(d, ndin , n

d
fi).

In this case, if p = c1;...;ck and r = d1;...;dl are so that for each i and
j, ci, dj ∈ C ∪ {skip}, then Gp,r = pp2cfg(p, r, nin , nfi) satisfies the condi-
tions of Definition 3 in [1] with respect to Gp = p2cfg(p, npin , n

p
fi) and Gr =

p2cfg(r, nrin , n
r
fi).

Proof. We assume that the nodes generated by the functions c2cfg, p2cfg, pc2cfg
and pp2cfg are always fresh. Therefore, the generated subgraphs of the function
calls are only connected by the initial and final nodes given in the arguments.

12

Let us suppose that the function pp2cfg(p, r, nin , nfi) computes the alignment

of commands: Ω =
[
c′1
d′1

]
, ...,

[
c′m
d′m

]
∈ L

(
∆
[
p
r

])
= L

(
∆
[
c1;...;ck
d1;...;dl

])
. The result of

the function pp2cfg(p, r, nin , nfi) equals to the following:

pc2cfg(c′1, d
′
1, nin , n1) ∪ pc2cfg(c′2, d

′
2, n1, n2) ∪ ... ∪ pc2cfg(c′m, d

′
m, nm−1, nfi)

Therefore, any path from nin to nfi in Gp,r crosses the nodes nin , n1, ..., nfi .
Therefore, we can split any path ωp,r on Gp,r into subpaths ωc′i,d′i , each corre-

sponding to the actual pair of commands
[
c′i
d′i

]
.

Now we construct a path ω on Gp,r from node nin to node nfi for any pair
of paths πp and πr so that it fulfills the requirements of this lemma, where πp
is a path on Gp from node npin to node npfi and πr is a path on Gr from node
nrin to nrfi . We follow the choices made by the function pp2cfg(p, r, nin , nfi) at
the construction of the alignment of commands Ω, and we construct ω along
these choices. We prove the statement inductively on the length of the prefix
ωi,j of ω which has already been constructed. Let us suppose that the prefix

ωi,j is already constructed so that it holds that ωi,j ∈ L
(

∆
[
πip

πjr

])
where πp =

πipπci+1
πi+2,k
p and πr = πjrπdj+1

πj+2,l
r , so that the path πip is on the CFG of

the program c1;...;ci and πjr is on the CFG of the program d1;...;dj from
the corresponding initial to the corresponding final nodes. πci+1 and πdj+1 are
fragments of the path on Gp and Gr corresponding to the commands ci+1 and
dj+1. Therefore, πci+1

is a path on Gci+1
= c2cfg(ci+1, n

ci+1

in , n
ci+1

fi) from node

n
ci+1

in to node n
ci+1

fi , and πdj+1
is a path on Gdj+1

= c2cfg(dj+1, n
dj+1

in , n
dj+1

fi).

πi+2,k stands for a path on the CFG of the program ci+2;...;ck, and πj+2,l

stands for a path on the CFG of the program dj+2;...;dl.
Initially, i = j = 0, and ω0,0 = π0

p = π0
r = ε. In the initial case the

statement holds because ε ∈ L
(

∆
[
ε
ε

])
. In the next step of the construction of

the alignment of commands Ω the following choices can be made:

• The next element of the alignment of commands Ω is
[
skip
dj+1

]
. We suppose

that this twin command is number o in the sequence of twin commands
that have already been processed. According to the assumptions of the
lemma there is a path ωskip,dj+1

on Gskip,dj+1
= pc2cfg(skip, dj+1, no,

no+1) so that ωskip,dj+1 ∈ L
(

∆
[
πskip

πdj+1

])
, where πskip = skip is a path

on the CFG Gskip = c2cfg(skip, n∗in , n
∗
fi) and πdj+1

is a path on the CFG
Gdj+1

= c2cfg(dj+1, n
∗∗
in , n

∗∗
fi). From Lemma 3 follows that:

L
(

∆
[πip

πjrπdj+1

])
⊇ L

(
∆
[πip
πjr

]
∆
[ε

πdj+1

])
From Lemma 4 follows that:

L
(

∆
[πip
πjr

]
∆
[ε

πdj+1

])
⊇ L

(
∆
[πip
πjr

]
∆
[πskip
πdj+1

])
13

Therefore, ωpi,riωskip,dj+1 ∈ L
(

∆
[
πip

πjr

]
∆
[
πskip

πdj+1

])
entails ωpi,riωskip,dj+1 ∈

L
(

∆
[

πip

πjrπdj+1

])
. The rest postfix of the path πp that needs to be processed

in the next step is πci+1
πi+2,k
p , and the rest postfix of the path πr that

needs to be processed in the next step is πj+2,l
r .

• If the next element of the alignment of commands Ω is
[
cj+1

skip

]
then the

statement of the lemma can be proved symmetrically to the case above.

• The next element of the alignment of commands Ω to be processed is[
ci+1

dj+1

]
. We suppose that this is number o in the sequence of twin com-

mands that have already been processed. According to the assumptions of
the lemma there is a path ωci+1,dj+1

on Gci+1,dj+1
= pc2cfg(ci+1, dj+1, no,

no+1) from no to no+1, so that ωci+1,dj+1
∈ L

(
∆
[
πci+1
πdj+1

])
, where πci+1

is a path on the CFG Gci+1 = c2cfg(ci+1, n
∗
in , n

∗
fi) and πdj+1 is a path

on the CFG Gdj+1 = c2cfg(dj+1, n
∗∗
in , n

∗∗
fi) from the corresponding ini-

tial nodes to the corresponding final nodes. Therefore, ωpi,rjωci+1,dj+1
∈

L
(

∆
[
pi

rj

]
∆
[
ci+1

dj+1

])
. According to Lemma 3:

ωpi,rjωci+1,dj+1
∈ L

(
∆
[
pi

rj

]
∆
[
ci+1

dj+1

])
entails

ωpi,rjωci+1,dj+1
∈ L

(
∆
[
pici+1

rjdj+1

])
Therefore, the statement of the lemma holds. The rest postfix of the path
πp that needs to be processed in the next step is πi+2,k

p , and the rest postfix

of the path πr that needs to be processed in the next step is πj+2,l
r .

Lemma 7. Given two programs p, r, and the corresponding control flow graphs
Gp = p2cfg(p, npin , n

p
fi) and Gr = p2cfg(r, nrin , n

r
fi), their composition Gp,r con-

structed by the call pp2cfg(p, r, nin , nfi) satisfies the conditions of Definition 3
in [1].

Proof. We prove the statement inductively on the maximal number of com-
mands embedded into each other on the root-leaf paths of the abstract syntax
trees corresponding to the subprograms of p and r. We collect the subprograms
of p and r having m commands on their root-leaf paths at the maximum into
the set Pm.

The initial case. In the initial case, the members p′, r′ ∈ P1 are programs
having 1 command on any root-leaf path of the abstract syntax trees. There-
fore, each member of P1 is a sequence of commands of the form skip and
x:=e. According to Lemma 5 for pairs of commands c and d of this form it

14

always holds that Gc,d = pc2cfg(c, d, n∗in , n
∗
fi) satisfies the conditions of Defini-

tion 3 in [1] with respect to Gc = c2cfg(c, ncin , n
c
fi) and Gd = c2cfg(d, ndin , n

d
fi).

According to Lemma 6, Gp′,r′ = pp2cfg(p′, r′, nin , nfi) then satisfies the condi-

tions of Definition 3 in [1] with respect to Gp′ = p2cfg(p′, np
′

in , n
p′

fi) and Gr′ =

p2cfg(r′, nr
′

in , n
r′

fi).

The inductive case. We suppose now that the members of the set Pm are
programs having at most m commands on any root-leaf path of the correspond-
ing abstract syntax trees. We suppose that for each pair p′, r′ ∈ Pm it holds that
Gp′,r′ = pp2cfg(p′, r′, nin , nfi) satisfies the conditions of Definition 3 in [1] with

respect to Gp′ = p2cfg(p′, np
′

in , n
p′

fi) and Gr′ = p2cfg(r′, nr
′

in , n
r′

fi). In this case
according to Lemma 5 for each pair of commands c and d that are composed of
the members of Pm, Gc,d = pc2cfg(c, d, nin , nfi) satisfies the conditions of Defi-
nition 3 in [1] with respect to Gc = c2cfg(c, ncin , n

c
fi) and Gd = c2cfg(d, ndin , n

d
fi).

Let us call the set of these commands Cm+1. Let us denote the set of programs
composed from the set of commands in Cm+1 by Pm+1. According to Lemma 6,
for all pairs of programs p′′, r′′ ∈ Pm+1, Gp′′,r′′ = pp2cfg(p′′, r′′, nin , nfi) satisfies

the conditions of Definition 3 in [1] with respect to Gp′′ = p2cfg(p′′, np
′′

in , n
p′′

fi)

and Gr′′ = p2cfg(r′′, nr
′′

in , n
r′′

fi). Therefore, the statement of this lemma holds on
each pair of programs that are members of Pm+1.

References

[1] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. Relational abstract
interpretation for the verification of 2-hypersafety properties. In Proceedings
of the 2013 ACM Conference on Computer and Communications Security,
CCS ’13. ACM, 2013.

15

