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Relational Abstract Interpretation for the
Verification of 2-Hypersafety Properties (Proofs)

Maté Kovacs

This document contains the proofs of the theorems published in [1]. There-
fore, this work should be seen as an extension of [1] and should be read together
with it. In Section [I] we prove the theorems published in Section 2 of [1], and in
Section [2| we prove the theorems published in Section 3 of [I]. The numbering
of theorems in this document is consistent with that in [1].

1 Proofs for Section 2 in [1]

Theorem 1. Consider a pair of sequences of labels w1,y € nyy ~> ng on the
CFG G = (N,E,ny,,ng), and states so, s,to,t € S, where s = [m]so, t =
[m2]to and (so,t0) € v(do). In this case d 3 MTC(G, dy) implies (s,t) € y(d).

Proof. Lemmabelow entails that if &’ J[,c 4 (ry.r0) [w]¥do then (s, t) € v(d').
Since 1, Ty € Ny ~ ng, MTC(G, dy) 3 d' holds. O

Theorem 2. Given the CFG G = (N, E,ni,,ng) and a self-composition of it
GG = (N, E',n},,n%), the following holds for all dy:
|| [wlfdo 2 MTC(G, do)

’7 ’
wenmwnﬁ

Proof. According to Definition 3 in [1] for all m,m2 € n4y ~> ng there is an
Wry,my € Mgy, ~ M 80 that wry x, € A(m1, m2). Therefore:

MTC(G,do) = I_lﬂlenmwnﬁ I_IUJEA(TK'1771'2) [[W]]ﬁdo E

T2 ENin I Nf

f #
|_|Tr1€nmwnﬁ [[wﬂh‘ﬂ'zﬂ do £ l—lwwl.wzen;"wn}i [[wﬂ'hﬂ'z]] do
TrQEn,,nwnﬁ ’

O

Definition 4. The partially ordered sets (A,Cy) and (B,Cpg) together with the
functions a : A — B and v : B — A form a Galois connection (A, «,~,B), if for
all a € A and b € B the following holds:

ala) Eg b < a Ty v(b)



Lemma 1. If (A, «a,v,B) is a Galois connection then the following holds for
any arbitrary set B C B:

ala |_|’y(b):>aEA7(|_|b)

beB beB

Proof. From the precondition follows the following conjunction:

/\ [a Ca V(b)}

beB

The properties of Galois connections according to Definition [4] entail that:

/\ {oz(a) Cp b}

beB

Therefore, we have that:
aa) Cp |_| b
beB

From the properties of Galois connections follows that:

aEAV(Hb)

beB

O

Lemma 2. Let us regard two computations: m and wy. From [mi]sg = s,
[r2]to = t, (s0,do) € v(dp) and d 3 I_lweA(m,wz) [[wﬂﬁdo follows that (s,t) € v(d),
given that (P(S x S), «,v,D) forms a Galois connection.

Proof. Let us regard a specific w € A(my,m2), where w = (f{’, 9), ..., (f, g5 )-
Let d¥ = [f¥, gf]}ﬁd;"_l for all ¢ , where d§ = dy. Furthermore, let us suppose
that s; = [f¢, ..., f]so and t; = [¢%, ..., ¢¥]to. We prove inductively on the
length of w that (s¥,t¥) € v(d¥) using (1) in |1]. The inductive assumption is
that (s¢,t¢) € y(d¥), which holds on dy, s¢ and tg, because of the assumptions
of the lemma. Based on the abstract semantics of pairs of labels according to
(1) in [1] we know now that (s%,1,t) € Y([f&1, 951 ]%d%).

We know that [fi...f ] = [m] and [¢f...g% ] = [n2], because insert-
ing skip operations in a sequence of instructions according to (2) in [1] does
not alter the result of a computation. It follows then that (s,t) = (s¥,t¥) €

v([w]*do). Therefore, for each w € A(my,ms) we know that (s,t) € y([w]*do).
It follows then that (s,t) € (,e(ry,m) 7([[w]]udo). Otherwise put it we have

{(s,t)} C ﬂweA(mm)y(ﬂw]]udo). According to Lemma [l we have {(s,t)} C
Y[ e Ay ra) [[w]]ﬁdo). From the properties of Galois connections according to
Deﬁnition it follows that a({(s,?)}) T [1yca(my,ma) [w]’do. Accordingly, if

[Noe A m) [[w]]ﬁdo C d then a({(s,t)}) C d too. Therefore, from properties of
Galois connections follows that {(s,t)} C v(d). O



2 Proofs for Section 3 in [1]

Here we modify the notation of the original paper [1] to some extent. From now
on, we denote pairs of labels f and g with B } instead of (f,g). Furthermore,
we use a grammar to generate the set of possible alignments of two sequences.
We use here the notation A {2} for a nonterminal generating the possible align-
ments of sequences m; and 7y according to the rules below in . The set of all

possible alignments that can be generated from nonterminal A [:ﬂ using rules

(18) is then denoted by L(A [:;}) The grammar is as follows:

- .
A B = €
2 [skip | A [
als] 3 [e]als
3 ki
A _;ﬂ = _S glp- A fr
4 ki
Al 5 x|l
alrl s LA lalr
| € _skip_ | € (18)
A fr E} skip A f7r:|
| € _skip- | €
A fm l> skip A fm
| 972 1 9 T2
AlTm 8, Al ™
| 972 | skip | [ gm2
AlTm LN f]A[’”}
| 972 L9] _[7™=2
fr 10 ki fr
A_gw; - _:kii_A_gﬂ';}
By comparing the rules of (18) with the rules of (2) in [1], we can see that
there is a rule of the form A[:; 54 B A[:ﬂ in , if and only if there is

a corresponding member {B]w’ | ' € A(m},7h)} in the union of the equation

defining A(mq,m2) in (2) of |1]. In particular, for the rule A[i} L e of
there is the corresponding equation A(e,e) = e U ... in (2) of [1]. Therefore,
we LA [7’: }) for an arbitrary w, w1 and o, if and only if w € A(my,m2).

1

2
Theorem 3. Consider a program p together with its CFG G constructed by
the function p2cfg(p, nin,np). In this case, the resulting CFG of the function
pp2cfg(p, p, n;n,n;ﬁ) is a self-composition of G according to Definition 8 in [1|].

Proof. The statement of the theorem directly follows from Lemma[7] below. O

Lemma 3. The following holds for any pair of sequences of sequences T 1...T1 p

and T 1. Ton "
e[ 254
M, 1... M2 nd/ Tl Lo,



Note, that any m; ; above may equal to €, which is the empty sequence.

Proof. Let us denote the configurations of the derivation starting with the series
k
of nonterminals A[;;i]A[m”} using (w1 A [ﬂ”} LA [”“"])1, and similarly,

T l T
2,n T 1,n

denote the configurations of the derivation starting with A[”l*l'“m’“} using

T2,1---T2

k
(wa A {ﬂ}*i"'wl’"]b, where w; and wy are the sequences of pairs that have been

Ty i T2,n
generated, and 7rfi and 7Tl2_i are the postfixes of m; and my; where k and [
indicate the length of the prefixes of m;; and my; that have been processed
already.

Now we prove inductively on the length of the derivations that whenever
there is an k and an w such that

Al s a7 [

then there is a x such that

<A[7r1,1...771m,}>2 l}* (wA[Wf’i'"m’"bg

l
72,1---T2,n 7T27¢~-~7T2,n

holds. Above, x,x € {1,...,10}* denote sequences of numbers indicating the
order of the application of the rules of the grammar in . The rules cor-
responding to k are always applied to the left-most nonterminal of the config-
uration cfg;. The inductive assumption is that the configurations of the two
derivations are in relation cfg, ~ c¢fg,. cfg, ~ cfgy holds if cfg, and cfg, are of
the form:

k
71—171"”7(-1,71

ety = B [T AT )y~ [T e,

2,0 T1,n 71'2’14...71'2%

In each step we apply one rule on

g, = <m[:§f]...4gﬁ>l

and show what to do with

k

T - T1,n
fgs = (WA | T

7r2)1'~-~772,n

in order to preserve the inductive assumption. During the application of the

rules on cfg;, we always expand the leftmost nonterminal. In the initial case

when w = ¢ and no rules have been applied yet, the statement trivially holds.
Now we make a case distinction, based on the form of ¢fg,.



)

2a)

ﬂ‘”‘,i # ¢ and wéﬂ- # ¢. In this case we apply the same rule z on both of
the configurations cfg; and cfyg,:
k K
AT Az 5 @MA[:M...A[:;;bl

(wA[:gi...mmpz = <wmA[”?@---ﬂmb2

’
J.HTK‘Q,H 7"2,1""7(201

The inductive assumption holds on the resulting configurations.
mf, =ecand wh; # e, but 7} ,..m1, # €. If rule 3 is applied on ¢fg; then

rule 7 is applied on cfgy:

wal 5 o[ alme ]

) ikt e
wltrlals ol )-afm 0
e el PO el P i 1
If rule 4 is applied on cfg,, then rule 10 is applied on cfgy:
wal g Jaln sl &
wlap]alg Jalin] s 0
A ), 20 s a[ e,

The application of these rules preserve the inductive assumption, further-
more, no other rules can be applied on the left-most nonterminal in cfg;.

The case when Wfi # € and 7r57i = ¢, but 7T§)i...7r27n # € can be proved
analogously to case 2). If rule 5 is applied on c¢fg; then rule 8 is applied
on cfgy, and if rule 6 is applied on cfg, then rule 10 is applied on cfg,.
No other rules can be applied on the left-most nonterminal in ¢fg;.

7rfi =¢ and 7Té7z- # ¢ and ﬁfﬂ»...m’n = ¢. Either rule 3 can be applied on

cfg,, and we apply the same rule on cfyg,:

<WA[”Z,JA[”3,61'+1]"'A[”in;
el oyl Al

<OJA|:7TZ e )a 3, <w|:skipi|A|:ﬂJ+‘1€ }>2

2,5 T2,n | g 2,4 T2,

3
1 —

~

1

~

Or we can apply rule 4 on both of the configurations:

<MA[”Z,JA[”3,8¢+1]"'A[”jn; >1
(w[:ﬁg}A[W;}A[ o ]...A[Win=>1

T2 it1

4 s
<wﬁ[wg,i.fﬂ2,n_>2 - <W[Z§§§]AL;J“€WM}>2

\L»Jk




3a)

4a)

There are no other rules that can be applied on the left-most nontermi-
nal of configuration cfg,, furthermore, the inductive assumption has been
preserved by the application of the above rules.

The case when Wfi # ¢ and Wéyi = ¢ and 7T§7Z-...7T2,n = ¢ can be proved
similarly to the case 3). Either rule 5 or rule 6 is applied on the left-most
nonterminal of both of the configurations, which preserves the inductive

assumption.

wf,i =g, wéﬂ- =e, W{C7i...7'(1’n = ¢, but wéﬂ-...ﬂgm # ¢. In this case one of the
rules 1 and 2 may be applied on the left-most nonterminal of configuration
¢fg,. If rule 1 is applied on cfg; then we do not apply anything on cfg,:

@;A[;]A[OE }...A[;’JM EN (wA[ﬂiﬂ]...A[ﬂiJ)l

o N P P B

Toi+1T2,n T3i41-T2,n

If rule 2 is applied on cfg; then rule 4 is applied on cfgy:
<wA[§]A[ o ]..A[ 2 ] nd P E}A{ o ...A[ . ])1

T3 i1 T1,n skip 5 T3 i1 T1,n
4 ki
€ ski, €
<OJA 0 - >2 — <w skip A 0 >2
2,i4172,n p T2 i+1T2,n

The application of these rules preserves the inductive assumption, fur-
thermore, no other rules can be applied on the left-most nonterminal of

cfg,-

The case when 7§, = ¢, 7}, = ¢, 7T]f7i...7T1’n # €, but 7Té7i...7T2,n = € can

be proved similaﬂ’y to case 74). Whenever rule 1 is applied on ¢fg; then
¢fgy is not modified. And whenever rule 2 is applied on c¢fg,, then rule 6
is applied on cfg,.

ko |- k _ l — ;
T =€ My, =& M ;T1n = €, and 7 ,...M2,, = €. In this case one of

the rules 1 and 2 may be applied on the configuration cfg,. If rule 2 is
applied on cfg, then this rule is also applied on cfgy:

walzlale]aleh B wlmelald]alz]al]n
WA B (w]ZRIA[L ),

However, if rule 1 is applied on ¢fg; then this rule is only applied on cfg,
if ¢fg, = (wA[i})lz
(wA

B (wWh
(wA EN

)2

Otherwise no rule is applied on cfg,:
walz]afz]..a

(wA

T 1
m M M M
L s

b (wA

>2 <(.¢)A

r
m M M M
L N s
m m Mm M
~
]



These rule applications preserve the inductive assumption. Furthermore,
no other rules can be applied on the left-most nonterminal of ¢fg;.

6) ™, =e, 7, =¢, but 7} ,..m , # e and 7k ,..m2, # . Now rules 1 and

2 can be applied on the left-most nonterminal of cfg,. If rule 1 is applied,
then we do not modify cfg,:

walzla[m]almen b walme].almen

s T
7'{'2#‘+1 1,n 7\'2,7;+1 1,n

<m[”§ﬂ+1"-”m}>2 <wA[”§~i“'“m‘"]>2

T i+1 - T2,n T3 i41-T2,n

If rule 2 is applied on ¢fg; then rule 10 is applied on cfg,:

waldJalde]-almen 2 wlzm]ala[de]-alm

T2 it+1 T3 i+1

K/
<MA[W$,1‘+1---F1,TL}>2 10 <w|:Sk::I-P:|A|:Tr1/,i“'7rlyni|>2
ngi+1~~~ﬂ’2,n skip ﬂé)i“.'n'g,n

The application of these rules preserves the inductive assumption.

Lemma 4. The following holds for all sequences m:

val]) 2 afw])

ss[) 5 e(aa))

Proof. We prove now the first statement, the second can be proved analogously.
We show that for all w € L(A [sfp} ), w is an element of L(A [iD too. We de-
note the configurations of the derivation of an arbitrary w starting from A {sﬁp

with (w*A [;ﬂ 1, where w* stands for a prefix of w that has already been gener-
ated, and A [:i] is the nonterminal that has not been expanded yet. Similarly,
tuples of the form (w*A [Zi ] Y2 denote the configurations of the derivation start-

ing from the nonterminal A [;} .

The initial configurations of the derivations are <5A[Skip]>1 and <5A[fr} Yo

™
respectively. During the construction of w € L(A{sﬁpD there must be a

skip
I

one of the rules 5, 8 or 9. Therefore, we split w into subsequences so that

step when the upper label of the nonterminal A , skip, is processed using

W= w [Szip]wg. Accordingly, during the derivation of w we need to have the

<W1A[Sl;ip}>1 = {w1 [Szip]A{ g }>1

7-(-//

following step:



The following production rules in are used for the generation of wy by
the two derivations:

*

(eA [P ])15

(WA sfpbl
@A[; 1o X"

(@A)

Above k,x € {1,...,10}* are strings identifying the sequences of production
rules in that have been used for the generation of wy, where we assume that
always the left-most nonterminals are expanded in the configurations. Below
we give a function 7 : {1,...,10} — {1,...,10} to construct x from x by applying
1 on the members of :

n(7) =3

n(10) =4

Other rules than 7 and 10 can not occur in x without consuming the upper skip
skip

- ] . Now we make a case distinction based on the rule,

of the nonterminal A[

skip
7‘./

which is applied on (wlA[ ])1 after the prefix w; has been generated:

e If 7/ = ¢, then rule 5 can be applied:
skip 5 skip €
<w1A[ I bl - <w1[skip}A[e}>1

In this case rule 2 must be applied on the other derivation:

AT o NG

After the steps above, rule 2 is applied on both of the configurations an
equal number of times to construct wo and then finally rule 1 is applied
once.

e Rule 8 is applied:

([ 2 [ [ ]

Rule 4 is applied on the other derivation:

s[5t 718 L]

And then an identical sequence of production rules is applied on both of
the configurations to produce ws.

e Rule 9 is applied:

@A) S [ M)A 5 ]



Here we suppose that 7/ = gn””. Furthermore, rule 3 is applied on the
other derivation:

s[5 0] 5]

™

Now an identical sequence or production rules is applied on both of the
configurations in order to produce ws.

O

Lemma 5. We consider the two CFGs:

G. = c2cfg(c,ns,, n%)
and
Ga = c2cfg(d, ng,, nf;)

in’

and their compositions: G q = pc2cfg(c,d, nin,ng). The following holds:

a)

b)

d)

If ¢ and d are not composable, then G.q = pc2cfg(c, d, nin, ng) satisfies
the conditions of Definition 8 in [1|] with respect to G. and G4 without
further conditions.

If c = d = skip or ¢ = d = x:=e, then G.q = pc2cfg(c,d, nip,njs)
satisfies the conditions of Definition 3 in (1] with respect to G. and Gq
without further conditions.

We suppose that Gp,, r,, = pp2cfg(ptt,rtt,nffb’“,nﬁ) is a composition of

Gp,, = p2cfg(ptt,nffb’c,n%) and G, = p2cfg(rtt,nffl’d,n%) according to
te, ff

in

,Mfi) 15 a composition

of Gp,, = p2cfg(ptt,nffb’c,n%) and G,,, = p2cfg(ryy, n{,{’d,n%) according

Definition 3 in (1], Gp,,r,, = pp2cfg(pes, 75,1

to Definition 3 in (1], Gys ¢ = pp2cfg(pys, e, n{,{’tt,nﬁ) 18 a composition

of Gp,, = p2cfg(pss, n{j:c,n%) and G,,, = p2cfg(7‘tt,nf;’d,n%) according to
Definition 3 in [1] and G 5,55 = pp2cfg(pss, 75 n{f:’ff, ng) is a composition

of Gyp,, = p2cfg(pyy, n{ic,n%) and G, = p2cfg(ry;, n{,{’d,n%) according to

Definition 3 in [1].

I?’l chS case, ZfCI ’Lf bl then {pu} else {pff} and d= ’Lf b2 then {’f‘tt}
else {rys} then G4 = pc2cfg(c,d, nin, np) satisfies the conditions of Def-
inition 3 in [1] with respect to G. = (¢, ng,,nj;) and Gq = (d, nd n%)

tt,tt , . B
w2 nig) s a composition of G, =

tt,d d

in 0 in

We suppose that G, = pp2cfg(p,r,n
p2cfg(p, nit¢ nS.) and G, = p2cfg(r,n
m [1/.

In this case if c = while by do {p} and d = while by do {r} then G.q4 =
pc2cfg(c, d, nin, np) satisfies the conditions of Definition 8 in [1)] with re-
spect to G, = c2cfg(e, nf,,nG) and G4 = c2cfg(d, nf,, n%).

) according to Definition 3



Proof. We assume that the nodes generated by the functions c2cfg, p2cfg, pc2cfg

and pp2cfg are always fresh. Therefore, the generated subgraphs of the function

calls are only connected by the initial and final nodes given in the arguments.
We prove according to the cases of the statement of the lemma.

2)

In this case according to Section 3 in [1]:
pc2cfg(c, d, nin,ng) = skip2(c2cfg(c, nin,n')) Uskipl(c2cefg(d, n', ng))

According to the properties of the function c2cfg there is only one com-
mon node in skip2(c2cfg(c, niy,n’)) and skipl(c2efg(d,n’,ng), which is
n/. Let us consider an arbitrary path m. = fi,..., fx of the graph G, =
c2cfg(c, nyp,n') from node n;y, to ', and an arbitrary path g = g1, ..., g1
of the graph G4 = c2cfg(d,n’,ng) from n’ to ngs. According to the
definition of the functions skipl and skip2, then skip2(G.) has a path

o= {slﬁp}'“{s&p} and skipl(G4) has a path 7/, = [s};jp}“[ssz} with
the same initial and final nodes as m. and mg. Since the final node of

m., on the subgraph skip2(G.) and the initial node of 7/, on the subgraph
skipl(Gq) is n' in Ge g, w = LQP} [sﬁp} [s;lp} {Szlip} is a path of G 4
from n;, to ng. Furthermore we know that:

w= [sglip]"[slﬁp} [Szlip]"[ssz} < L(A[Z;D

Therefore, our statement is proved.

¢ = x1:=e1, d = x9:=ey or ¢ = d = skip. Now, pc2cfg(c,d, nin, ng) =

(i, [2},nﬁ), and this graph has only one path [2} c2cfg(c, ng,, ng) =

C
wm?

only path d. Since [;] € L(A [2} ), our statement trivially holds.

(ns,, ¢, n%) has the only path ¢ and c2cfg(d, ng n%) = (n¢,,d, n%) has the

mn’

Now we investigate the case when ¢ = if b; then {p..} else {ps} and
d= if b then {rit} else {rss}.

Let us suppose that the graph G. = c2cfg(c,ni,,ng;) has a path 7. =
fo, f1,..; [ from node nf, to node nf, and similarly, the graph Ggq =
c2cfg(d, nfn,n%) has a path 74 = go, 91, ..., g1 from node n?, to nj‘é. Ac-
cording to the CFG corresponding to the if construct generated by the
function c2cfg, each path of G, begins with either a fy = by or a fy = —b;.
Similarly, each path on G4 must start with either a go = by or a gg = —bs.
Therefore, we would need to examine four cases depending on the values of
fo and gg. We show the proof for the case when fy = by and gy = —bo, the
other three cases can be shown analogously. In this case mp,, = fi,..., fx
is a path on G),, from node n:o¢ to node n%, and 7., = g1,...,4; IS a

path on G,
there is an w € L(A Hll];ﬂ) on Gy,, r., from node an’ff to node ng.

n

from node nffl’d to node n;fi. According to the assumptions,

10



Furthermore, [f;Jw is a path on G, 4 from node n;, to node ng. Since

[ b1 }w € L(A{;ZD and it is a path on G4 = pc2cfg(c, d, nin, ns) gen-

b

erated by the function pc2cfg, the statement is proved.

Now we consider the case when ¢ = while b do {p} and d = while by do
{r}.

Let us suppose that the graph G. = c2cfg(c, ns,, n]?i) has a path 7. from
node ng,, to node ng, and similarly, the graph Gy = c2cfg(d, n2,, n%) has
a path 74 from node n?, to node n%. In general 7, starts with ¢ number of

tt,c

loops blﬂ;f on G. from node n§, to ng, so that 775 is a path from n, " to

wm
ng, on G, during loop number k, and 74 starts with j number of loops by,
on Gy from node n¢, to né, so that 7l is a path from nt>? to n¢, on G,
during the loop number [. We prove here the statement for the case when
i < j. For the case when ¢ > j the statement can be proved analogously.
Therefore, we split 4 into two parts. In the first part the body of d is
executed 4 times, in the second yet another j — ¢ times. Accordingly, .
and 7y look the following:

’
Te

Te = blﬂ';blﬂ'i...ﬂ; —b; (19)

T Tq

i+1

Tq = bgﬂibgﬂz...ﬂ'; bo L bo) b

According to our assumption, for all pairs of paths 7r§ and 7 of G, and
tt,tt

G, where 1 < ¢ < i there is a path w® on G, , = pp2cfg(p,7,n5. " nin)
so that wt € L(A[

3
T

5]) Therefore, we have a path

W= [Zﬂwl[lﬁ;]wl

on G4 = pc2cfg(c, d, nin,ng) from node ng, to n,. There are two cases
now.

— If i = j then m. = w,—b; and mq = 7,—by. Now we have an w on

Gt b1 bi1 4 b1 47t
w=w ng} - [bg}“ “‘[bQ]“’ LbJ
We know about w the following:
1 i
wer([plalml-alalz] )

Because {{;] € L(A H] ), it follows that:

sl sl FIsLL)

bg 7T; b2 7T7Z; ﬁbg

11



From Lemma [ follows:

e L(A[bm;...bm;ﬂbl}) _1(a[™))

bg?‘(’%...bgﬂ'fn—‘bg Td

Furthermore, because w is a path from n;, to ng on G. 4, the state-
ment is proved.

In this case ¢ < j. According to the graph G, generated by the
function pc2cfg and the definition of skipl(p2cfg(r, nii’tt,n”)) there
is a path w” beginning with ni.** and ending with ng; so that it

trespasses the graph Gsxip 2 = skipl(p2cfg(r, nfi’tt, n'")) at least once.

Now, it holds that w” € L(A [:"] ) Therefore, w' [; !
d 2
on G¢ g4 from n;, to ng. Furthermore, we know the following about

W= w/[ﬁbbl}w//:
2

e

}w” is a path

Therefore:

i

ver([plalil- s la L))

Because {J;] € L(A H] ), it follows now that:

ser(all]a[B].ala[H]a[ ][ 5])

From Lemma [ follows:

ver(s] by by by 1) = 2(a[™))

bgﬂ%...bgﬂ'f."bgﬂ'g Td
Therefore, the statement is proved.

O

Lemma 6. We suppose about an arbitrary set C' that for all commands c,d €
CU{skip}, Geq = pc2cfg(c, d,n?, n;;i’d) satisfies the conditions of Definition 3
in (1] with respect to the CFGs G = c2cfg(c, ng,,n%;) and Gq = c2cfg(d, nd n]dq)
In this case, if p = c1;...;¢c, and r = dy;...;d; are so that for each i and
J, ¢i,d; € CU {skip}, then G,, = pp2cfg(p,r,nin,np) satisfies the condi-
tions of Definition 3 in [1] with respect to G, = p2cfg(p, nfn,n%) and G, =
p2cfg(r,nk, , n]’%)

Proof. We assume that the nodes generated by the functions c2cfg, p2cfg, pc2cfg
and pp2cfg are always fresh. Therefore, the generated subgraphs of the function
calls are only connected by the initial and final nodes given in the arguments.
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Let us suppose that the function pp2cfg(p, 7, nin, nf) computes the alignment
of commands: Q = [;ﬁl},..., [Zl} € L(A[pD = L(A[‘; ilkD The result of
1 T 1.5

/
m

the function pp2cfg(p, 7, nin, ng) equals to the following:
pCZCfg(C/p dl]v Nin, nl) U pCQCfg(c/% d/27 ni, n?) U..u pCQCfg(C:Tw d;na Nm—1, ’flﬁ)

Therefore, any path from n;, to ng in G, crosses the nodes ngy,, n1, ..., ng.
Therefore, we can split any path wy  on G, into subpaths w. 4/, each corre-

’
C.

d |

Now we construct a path w on Gj from node Ny, to node ng for any pair
of paths m, and 7, so that it fulfills the requirements of this lemma, where m,
is a path on G, from node nf, to node n; and , is a path on G, from node
nj, to nf. We follow the choices made by the function pp2cfg(p, 7, Nin, np) at
the construction of the alignment of commands €2, and we construct w along
these choices. We prove the statement inductively on the length of the prefix

w™ of w which has already been constructed. Let us suppose that the prefix
w®J is already constructed so that it holds that w®’ € L(ALJ-D where m, =
Thme, 2P and m,. = 7T7];7Td?+17T7J;+2’l, so that the path 7/, is on the CFG of
the program c;;...;¢; and 7/ is on the CFG of the program di;...;d; from
the corresponding initial to the corresponding final nodes. 7, ,, and mq,,, are
fragments of the path on G, and G, corresponding to the commands ¢;41 and

djy1. Therefore, 7, , is a path on G.,,, = c2cfg(ci+1,nffl“,n;{“) from node

sponding to the actual pair of commands [

K3
ﬂ—P

dj+1
n

Ci+1 Cit+1 .
Min to node ng"", and mq,,, is a path on Gg,,, 4
7it2k stands for a path on the CFG of the program c;o;...;cx, and mi+2!

stands for a path on the CFG of the program d;;2;...;d;.

Initially, i = j = 0, and w”® = 77 = 7) = e. In the initial case the

= c2cfg(dji1,n ,n?f“).

statement holds because € € L(A [z]) In the next step of the construction of
the alignment of commands €2 the following choices can be made:

skip
djt1
that this twin command is number o in the sequence of twin commands
that have already been processed. According to the assumptions of the

e The next element of the alignment of commands 2 is [ } . We suppose

lemma there is a path wekipa;,, On Gexipd;,, = pc2cfg(skip, d;i1,mn0,
No+1) SO that Wskip,d;41 € L(A[ﬂ’::kip D, where 7gip = skip is a path
i+1

on the CFG Ggyip = c2cfg(skip, n},, n]*(i) and 7g;,, is a path on the CFG
Ga;,, = c2cfg(dj1,nyy, n5). From Lemma follows that:
7Ti 7Ti £
P D P
SO IAERER Gl )

From Lemma @] follows that:
r(a[al D) 2r(alf]a[])

41
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Tl'i N .
ﬂﬂ A L’;:l D entails Wpi riWskip,d; 1 €
L (A [ ; i D . The rest postfix of the path m, that needs to be processed

TrTdjqq

in the next step is 7rcl.+17r}i,+2*k, and the rest postfix of the path 7, that

needs to be processed in the next step is mi+2!.

Therefore, wyi ,iWskip,d,;,, € L(A[

e If the next element of the alignment of commands 2 is [Zﬁ;} then the

statement of the lemma can be proved symmetrically to the case above.

e The next element of the alignment of commands € to be processed is

[;?: | } We suppose that this is number o in the sequence of twin com-
J
mands that have already been processed. According to the assumptions of

the lemma there is a path we,,, 4,,, on Ge,,, 4., = pc2cfg(cit1,dji1, N0,

Not1) from n, to neq1, so that we, 4, € L(A{:Cwl D, where
41

is a path on the CFG G.,,, = c2cfg(ci+1,n;*n,n}§) and 7q;,, is a path

on the CFG Gy, = c2cfg(djt1,nj;,ny") from the corresponding ini-

tial nodes to the corresponding final nodes. Therefore, wyi jiwe,,,,d,,, €

L(A [fj } A {;;11 } ) According to Lemma

i1
j+1

Wi riWei g1 djq1 € L(A[p }A CiD entails

ri

o pleita
s LA 75])

U
<

Therefore, the statement of the lemma holds. The rest postfix of the path
mp that needs to be processed in the next step is 7T;+2’k, and the rest postfix

of the path 7, that needs to be processed in the next step is i 72!,
O

Lemma 7. Given two programs p, v, and the corresponding control flow graphs
Gy = p2cfg(p,nj,,ny) and G, = p2cfg(r,n,,n%), their composition Gy, con-
structed by the call pp2cfg(p, v, nin, ng) satisfies the conditions of Definition 8
mn [Z/

Proof. We prove the statement inductively on the maximal number of com-
mands embedded into each other on the root-leaf paths of the abstract syntax
trees corresponding to the subprograms of p and r. We collect the subprograms
of p and r having m commands on their root-leaf paths at the maximum into
the set P,,.

The initial case. In the initial case, the members p’,7’ € P; are programs
having 1 command on any root-leaf path of the abstract syntax trees. There-
fore, each member of P; is a sequence of commands of the form skip and
xz:=e. According to Lemma [5| for pairs of commands ¢ and d of this form it
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always holds that G4 = pc2cfg(c,d, n},,ny;) satisfies the conditions of Defini-
tion 3 in [1] with respect to G. = c2cfg(c, n§,,n%;) and Gq = c2cfg(d, nd n}%)
According to Lemma |§|7 Gy = pp2cfg(p’, ', nin, ng) then satisfies the condi-
tions of Definition 3 in [1] with respect to G,» = p2cfg(p/, nfrlb,ng) and G,» =

p2cfg(r’, nf,, ;).

The inductive case. We suppose now that the members of the set P, are
programs having at most m commands on any root-leaf path of the correspond-
ing abstract syntax trees. We suppose that for each pair p’, 7’ € P, it holds that
Gy v = pp2cfg(p’, 7', nin, ns) satisfies the conditions of Definition 3 in [1] with
respect to Gy = p2cfg(p’,nf7;,n%,) and G,» = p2cfg(r’,n§;,n}"{). In this case
according to Lemma [5| for each pair of commands ¢ and d that are composed of
the members of P, G. 4 = pc2cfg(c, d, nin, np) satisfies the conditions of Defi-
nition 3 in [1] with respect to G. = c2cfg(c, n§,,n§) and Gq4 = c2cfg(d, nd | n]dq)
Let us call the set of these commands C),11. Let us denote the set of programs
composed from the set of commands in Cy, 41 by Pp4+1. According to Lemma@
for all pairs of programs p”, 7" € Py, 11, Gpr v = pp2efg(p”, 7", nuin, np) satisties

the conditions of Definition 3 in [1] with respect to G, = p2cfg(p”,nfg,ng,)

and G, = p2cfg(r”, ni";;, n%”). Therefore, the statement of this lemma holds on
each pair of programs that are members of P, 4.
O
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